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Abstract 
 

Complex systems abound on this planet, in the composition of the human body, in 

ecosystems, in social interaction, in political decision-making, and more.  Analytical 

methods allowing us to better understand how these systems operate and, consequently, 

to have a chance to intervene and change the undesirable behavior of some of the more 

pernicious systems have developed and continue to be enhanced via quickly changing 

technology.  Some of these analytical methods are accessible by pre-college students, but 

have not been widely used at that level of education.  Jay Forrester, the founder of one of 

the methodologies, System Dynamics (SD), used to study complex system behavior 

involving feedback, laments the lack of understanding of complex systems evident in 

short-sited decisions made by legislators – global climate change and fiscal policies being 

cases in point.   

In order to better prepare future decision makers with tools that could allow them 

to make more informed decisions about issues involving complex systems efforts have 

been underway to increase pre-college teacher understanding of the SD method.  The 

research described in this dissertation introduces the mathematics education community 

to the value of System Dynamics modeling in pre-college algebra classes, indicates a path 

by which a traditional mathematics curriculum could be enhanced to include small SD 

models as a new representation for elementary functions studied in algebra classes, and 

provides an empirical study regarding conceptual understanding of functions by students.   

Chapter 2 indicates the numerous beneficial learning outcomes that empirical 

studies have shown accompany model-building activities.  Chapter 3 indicates the need 
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for students to become familiar with complex systems analysis, how SD modeling (one 

method of complex systems analysis) aligns with the Common Core State Standards in 

Mathematics, and the work that has transpired over the past two decades using SD in K-

12.  Chapter 4 focuses on the importance of the concept of function in high school 

mathematics, some limitations of exclusive reliance on the closed form equation 

representation for mathematizing problems and the SD stock/flow representations of 

some of the elementary functions that are studied in algebra classes.  Chapter 5 looks at 

the issues affecting two traditional teachers and the challenges they faced when trying to 

reintroduce SD modeling into their algebra classes.   Chapter 6 explains the student 

component of the classroom experiment that was conducted by the teachers who are 

highlighted in Chapter 5.   

The analysis of the results of student model-building activities in the two 

classroom studies that are part of the third paper did not indicate a statistical difference 

between the two experimental groups and the two control groups. Many environmental 

and scheduling issues conspired to adversely affect the experiment.  However, positive 

outcomes were evident from the two pairs of students who were videotaped while they 

built the final multi-function drug model, the final student lesson in the experiment.  

Research focused on student outcomes is needed to further assess the strengths and 

weakness of the SD approach for student learning in mathematics.  
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I. Introduction 
 
Many of our daily experiences involve interacting with complex systems (Chen & 

Stroup, 1993; Lesh, 2006).   Our culture requires that we routinely make decisions about 

social interactions with family and co-workers, transportation choices, scheduling, and 

interacting with a myriad of systems.  Each of these systems is connected to a larger 

system that comprises the world we live in.  For most working adults, the opportunity to 

return to school to study techniques for increasing our understanding of complex systems 

will likely not present itself, but our children may yet learn how to incorporate into their 

thinking techniques for conducting complex systems analysis.  Introducing System 

Dynamics analysis into the K-12 curriculum is both timely and critically needed (Hung, 

2008; Lesh, Kelly, Loon, 2008; Sterman, 2002).  

 Our students are entering a world in which dynamics, feedback, unintended 

consequences, and delays are hidden within the structure of the problems they will have 

to address.   The following literature review focuses on the need to include dynamic 

feedback analysis in the high school mathematics curriculum, the symbiotic relationship 

that such curriculum would provide in fostering a more interdisciplinary approach to 

problem solving, and the value of bringing a student-centered, model-building approach 

to the study of change dynamics at a much earlier level of mathematics sophistication 

than waiting for students to take calculus. 

A. What is a Complex Systems Problem? 
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 Complex systems problems are those that contain a web of relationships between 

component parts that govern the behavior of the system.  Those connections often 

incorporate feedback relationships of various strengths that when modified can 

significantly change the behavior of the system.  Complex problems contain less pre-

defined structure, are less transparent, and are open to multiple interpretations regarding 

solutions.   Such problems tend to cross disciplinary lines and so can be understood from 

different vantage points, leading to more thoughtful beneficial alternatives.  The 

boundary within which the problem is situated also fluctuates, causing complex systems 

problems to change substantially over time.   Consequently, analyzing complex systems 

problems requires a broad knowledge base including both domain methods and content 

knowledge (Jonassen & Hung, 2008).  

 To be able to make progress toward understanding a dynamic complex systems 

problem, a person needs to be able to explain the feedback structures that generate the 

problem and to identify the linkages that contribute to the problematic behavior.  

Analysts should be able to anticipate and explain why changes in the system behavior are 

occurring.  Such understanding does not happen quickly, nor does it occur from merely 

observing patterns of behavior or manipulating simulations (Dörner, 1996, in Milrad, 

Spector, & Davidsen, 2003). 

 Complex systems problems are significantly different from typical problems 

studied in high school mathematics today.  To teach students to work with complex 

systems it is necessary to approach problems holistically. Students often need to look at a 

problem both qualitatively and quantitatively when attempting to gain insight into its 
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structure.  They must understand the individual component pieces, but also realize that 

the components change due to the dynamic interrelationships (Hung, 2009).    

B. The need for instruction to address complex, dynamic, systems problems 
 
John Sterman (2002), director of the System Dynamics Program at the Sloan School of 

Management at Massachusetts Institute of Technology (MIT), writes: 

“As the world changes ever faster, thoughtful leaders increasingly recognize 
that we are not only failing to solve the persistent problems we face, but are in 
fact causing them. All too often, well-intentioned efforts to solve pressing 
problems create unanticipated ‘‘side effects.’’ Our decisions provoke 
reactions we did not foresee. Today’s solutions become tomorrow’s problems. 
The result is policy resistance, the tendency for interventions to be defeated 
by the response of the system to the intervention itself. From California’s 
failed electricity reforms, to road building programs that create suburban 
sprawl and actually increase traffic congestion, to pathogens that evolve 
resistance to antibiotics, our best efforts to solve problems often make them 
worse” (p. 504). 

 
Increasingly, people are asked to make decisions about complex phenomenon.  Trying to 

deal with complex systems problems places “severe cognitive challenges on those who 

are required to develop solutions and formulate policies with regard to these systems” 

(Spector, 2008, p. 251).  Herbert Simon (1996) indicates that people are constrained by 

bounded rationality, that is, decision makers do not have the all the necessary 

information, do not have the mental capacity to process all the interconnections, and are 

not given the time to make well informed decisions.  Without training in the skills that 

might help them gain insight into the unintended consequences of such decisions, 

solutions will be elusive.  “Conventional methods to teach problem solving are 

inadequate preparation for the wild and wicked [ill-structured] problems that confront 

society“ (Spector, 2008, p. 253).    Forrester (2009), founder of the field of System 
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Dynamics, and Germeshausen Professor Emeritus at MIT, stresses that introduction of 

systems analysis in the K-12 curriculum is a high leverage point for increasing the 

necessary preparation.  If students learn to think more systemically they will make better 

decisions as adults. 

 System dynamics theory has been applied to the study of issues dealing with 

global warming, business and regulatory management decisions, natural resource 

degradation, supply-chain management, and many more complex systems.  Not everyone 

has direct involvement in these systems, but as an informed citizenry, we are asked to 

vote on issues that impact parts of many complex systems.  People tend to simplify 

complex issues when trying to understand their behavior and “therefore overlook side 

effects, feedback processes, and delays” (Reimann & Thompson, 2009).  If people do not 

have the capability to look at the interrelationships that occur in such complex systems 

they can have a partial or inaccurate understanding about the problem they are trying to 

analyze (Hung, 2009; Jonassen & Strobel, 2006).   

 Forrester has identified multiple mistakes made in managing complex systems.  

Among those mistakes is inadequate analysis of potential unintended consequences that 

might result from implementing a new solution in a complex system.  He states that 

short-term fixes usually result in long-term problems, that local goals often do not match 

up with global goals, and that policy decisions and implementation are often based on 
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low leverage points in the system and so have small impact (Davies,1 2002, in Reimann et 

al., 2009). 

 Learning to address complex, dynamic, systemic problems is difficult and time 

consuming.   

“Because of their inherent complexity and dynamic nature, systems are hard to 
model.  Nevertheless, the end justifies the means, because systemic understanding 
is so much stronger than memorization. … Dynamic modeling tools are the most 
effective for modeling systems because they can be tested.  … The most 
important outcomes of efforts to represent systems is the kind of system thinking 
that may result” (Jonassen, 2006, p. 53). 

C. What does modeling, and specifically system dynamics modeling, have to offer for 
advanced learning? 

 
 In the process of educating people to enter the professional world, the educational 

system must help them develop habits of mind that are useful for their professional 

growth.  Researchers have recommended facilitating experiences that lead novices to 

develop thinking patterns similar to the experts in their chosen profession (Hung, 2009; 

Milrad et al., 2003; Spector, 2009).  Part of this cognitive growth requires that students 

alter their mental models (Davidsen, 2000; Jonassen, 2004).   Mental models are “deeply 

ingrained assumptions, generalizations, or even pictures or images that influence how we 

understand the world and how we take action” (Senge, 2006, p. 8).  It has been suggested 

that model building can be a successful strategy to get students to alter their mental 

models, deepening student understanding of problems being analyzed  (Forrester, 2009; 

Hillen & Gonzales, 2009; Jonassen, 2004;  Jonassen, Strobel, & Gottdenker,2 2005, in 

                                                
1 Davies, C. H. (2002). Student engagement with simulations: a case study. Computers & Education, 39(3), 
271-282. 
2 Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive 
Learning Environments, 13(1-2), 15-37. 
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Jonassen, 2009; Nicolaou, Nicolaidou, & Constantinou, 2009; Seel & Blumschein, 2009).  

One part of problem analysis that is very effective in changing mental models is the 

process of requiring an explicit replication of the system, a model, as the modeler 

understands it (Carney, Forbus, Ureel, & Fisher, 2009).  The model-building process 

helps reveal the modeler’s mental model and tracks how it changes over the course of the 

modeling exercise.  It also reduces cognitive load, helping the modeler develop non-

linear causal reasoning, dynamic thinking, closed-loop thinking, and more holistic 

thinking. (Hung & Blumschein, 2009; Johnson, Bryden, & Refsgaard, 2009)   Research 

has shown, building dynamic models fosters higher level thinking processes including 

“analyzing, reasoning, synthesizing, testing/debugging, and explaining” (Stratford, 

Krajcik, & Solway, 1998, p. 225). 

 It has been posited that students might gain insight that is just as useful from 

using pre-designed simulations, merely by manipulating parameters and observing the 

altered behavior that occurs from this activity.  This type of simulation is referred to as 

“black-box.”  Certainly, if one is limited in the time that can be allocated to a simulation 

experience, a certain amount of information might be learned (Alessi, 2000).  But access 

to the underlying model structure (glass-box) is needed if students are to gain a causal 

understanding of the system under study (Jonassen, Carr, & Yeuh, 1998; Milrad et al., 

2003; Spector, 2000).  Jonassen et al. (1998) and Spector, Christensen, Sioutine, & 

McCormack (2001) claim that students learn a great deal more from building objects than 

from just using them.   Jonassen (2006) also states, “if you cannot build a model of what 

you are studying, then you do not understand what you are studying” (p. 4). 
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 Dörner (1996) showed that types of thinking that lead to failure (to solve a 

complex, systemic problem) develop gradually over time.  He performed numerous 

experiments watching people make decisions about how to address the problems that 

emerge when they try to manipulate complex systems (via simulations).  Participants who 

did not perform well in these experiments tended to act without analyzing the situation 

carefully and failed to anticipate side effects and long-term consequences of their actions.  

They assumed that when they dealt with the symptoms of the problem, it was solved, that 

they had made correct decisions.  Dörner said,  “people concern themselves with the 

problems they have, not the ones they don’t have (yet)” (p. 52). Lack of systemic 

understanding tends to cause people to overlook the fact that new problems can emerge 

because immediate problems were addressed in a short-sighted fashion.    

D. What does system dynamics have to offer to enhance mathematics instruction? 

1. Systems Thinking as Problem-Solving 
 

Understanding the causal relationships in a system is sometimes loosely referred to as 

systems thinking.  Hung (2008) asserts that: 

“Systems thinking is an essential cognitive skill that enables individuals to 
develop an integrative understanding of a given subject at the conceptual and 
systemic level. A deep, integrative conceptual understanding is the foundation for 
advanced applications and transfer of knowledge. Developing a deep and holistic 
understanding of a subject matter requires a full and complex integration of the 
knowledge under study, in which traditional mechanistic teaching methods and 
learning strategies fall short. More sophisticated thinking skills are required for 
students to engage in such higher order cognitive processes. Amongst these, 
systems thinking is an important one. Systemic understanding of a subject 
includes static integration of the individual concepts (parts) into an integrative 
body of knowledge (a system), as well as a dynamic depiction of the nature of the 
system” (p. 1099).  
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Ossimitz3 (2000, in Hung, 2008) and Meadows (2008) add “thinking in closed loops” 

(feedback loops) and “understanding the impact of delays” as critical components in 

systems thinking, especially related to understanding the dynamics of complex systems. 

2. System Dynamics Modeling as Cognitive Technology 
 
 Access to technology has transformed mathematics instruction in the last decade. 

Graphing calculators are used in most mathematics classrooms regularly.   Access to 

interactive software such as Geometer’s Sketchpad for geometry and web applets for use 

with statistics have provided much needed visualization tools to support learning difficult 

mathematical concepts.  The use of algebraic solver software has also become almost 

commonplace in the teaching of Calculus. Examples include programs like Maple and 

devices like the TI 89 calculator and similar calculators from other companies.  There are 

even web accessible programs that will solve equations (e.g., Wolfram Alpha).   

 Some of these tools Pea (1985) labeled as “amplifiers of thinking.”   The tools 

perform complicated calculations easily or graph relationships quickly so that patterns 

can be discerned.  But Pea indicates cognitive tools provide a method for the human mind 

to “think differently” about a problem.  Pea suggests that cognitive technologies help 

people “transcend the limitations of the mind, such as memory, in activities of thinking, 

learning, and problem solving.”  Kaput and Roschelle (2000a) suggest computer 

technology has brought an enhancement to mathematics education in that 1. previous 

knowledge is now learnable in new ways, using dynamic interaction capabilities, 2. “new 

                                                
3 Ossimitz, G. (2000). Teaching system dynamics and systems thinking in Austria and Germany. In P. 
Davidsen, D. N. Ford & A. N. Mashayekhi (Eds.), Proceedings of the 18th International Conference 
System Dynamics Society. Bergen, Norway. 
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representations provide a reconstitution of previously constructed knowledge,” and 3. 

“construction of new systems of knowledge” is possible, specifically regarding analysis 

of complex systems, not accessible previously for pre-college students. 

 But not much progress has been made incorporating techniques that will enhance 

students understanding of dynamic, complex system problems, especially at the pre-

college level.  There is abundant evidence that understanding complex systems is a 

pressing problem.   What follows are some suggestions for how SD modeling can operate 

as a cognitive technology in the mathematics classroom. 

    2.a    SD Surfaces Students’ Mental Models, Promoting Student Justification/ 
Discussion  
 
 Forrester (2009) says that working with systems should help students fine-tune 

their mental models.  He indicates that people need a method to test their mental models 

and that SD modeling is an ideal vehicle for doing that.  What this means for 

mathematics is that SD modeling is an ideal tool to help students identify and modify 

misconceptions about how they think a particular problem or system operates.  The 

building process allows students to surface their mental models and the visual nature of 

the modeling software, the full word or phrase naming protocol for the icons, and the 

explicit display of dependences of one component upon another helps students describe 

and discuss their models with others.  Highlighting mathematical structures within the 

model provide scaffolding for these discussions. 

				2.b SD Supports an Environment that can Enhance Conceptual Understanding of 
Algebra Functions 
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The Importance of the Function Concept in Mathematics 

 The concept of functions plays a key role as a unifying concept in mathematics, 

so there has been a significant amount of research dedicated to trying to determine how 

best to facilitate student understanding of functions (Akkoc & Tall, 2003; Clement, 2001; 

Dubinsky & Wilson, 2013; Hollar & Norwood, 1999; Leinhardt, Zaslavsky, & Stein, 

1990).   

“The concept of function is central to undergraduate mathematics, 
foundational to modern mathematics, and essential in related areas of the 
sciences. A strong understanding of the function concept is also essential 
for any student hoping to understand calculus – a critical course for the 
development of future scientists, engineers, and mathematicians”  
(Oehrtman, Carlson, & Thompson, 2008, p. 27).   

 
Many of the articles talk about how to help students understand the theoretical definition 

of function, that it is a relationship between two variables with the restriction that for 

each element of the independent variable there is at most one element of the dependent 

variable.  But Leinhardt et al. (1990) presents a broader window within which functions 

could be viewed.  They suggest that a task involving functions, graphs, and graphing can 

be viewed from four perspectives:  

•  action (interpretation: classification, gaining meaning; or construction: prediction, 
generating an example of a function), 

•  situation (setting and context, i.e., is the task abstract or is it an application?), 
•  variables (static or dynamic, i.e. does the task involve discrete or continuous 

behavior), and 
•  focus (local/global, i.e., where is the attention placed, on details of given point or on 

general behavioral shape?).  
 
 A broader view of functions is helpful in the same way that understanding the 

concept of a car does not depend upon understanding how the combustion engine works 

(even though that is useful knowledge) but that cars can transport people or goods, are 
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built for either speed or strength or both, have limitations regarding distance and terrain, 

have a finite lifetime, etc.  Knowing each of these other characteristics gives someone 

who has never seen a car a better chance to recognize a car if they should happen upon 

one. 

 In a study conducted by Carlson, Jacobs, Coe, Larsen & Hsu (2002) the 

researchers suggested that students who were entering the university did not understand 

functions very well.  Thompson4 (1994, in Carlson et. al., 2002) indicates that an 

understanding of rate is an essential concept in understanding dynamical functional 

relationships, and that this understanding is slow to develop.  He continues, suggesting 

that covariational reasoning5 is essential for understanding the Fundamental Theorem of 

Calculus.  The results of the study conducted by Carlson et al., (2002) indicate  

“the need for students to have opportunities to think about the covariational nature 
of functions in real-life dynamics events. We recommend that students be given 
lines of inquiry that compel probing reflections on their own understandings of 
patterns of change (involving changing rates of change). Accordingly, we believe 
that curricula at the high school and university should take into consideration the 
complexity of acquiring L5 (Instantaneous Rate) reasoning and should provide 
curricular experiences that sustain and promote this reasoning ability, especially 
when one considers its importance for understanding major concepts of calculus 
(e.g., limit, derivative, accumulation) and for representing and understanding 
models of dynamic function events” (p. 374).   
 

Learning Environments that Enhance Conceptual Understanding 

 “Conceptual knowledge involves understanding concepts and recognizing their 

applications in various situations” (Ben-Hur, 2006, p. 6).  The author indicates that 
                                                
4  Thompson, P. W. (1994a). Images of rate and operational understanding of the fundamental theorem 
of calculus. Educational Studies in Mathematics, 26, 229–274; Thompson, P. W. (1994b). Students, 
functions, and the undergraduate curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), 
Research in Collegiate Mathematics Education, I: Issues in Mathematics Education, (Vol. 4, pp. 21–44). 
Providence, RI: American Mathematical Society. 
5 "Covariation is the mental process of coordinating the values of two quantities as they vary 
simultaneously" (Saldanha and Thompson in Thompson, Byerley, & Hatfield, 2013, p. 126) 
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conceptual knowledge grows when problems involve understanding connections and 

relationships between the individual parts of the problem as well as knowing what parts 

to include.  He further states that this type of knowledge cannot be learned by rote 

memorization. 

 “Learning with understanding is essential to enable students to solve the new 

kinds of problems they will inevitably face in the future” (NCTM, 2000, p. 21).  The 

NCTM Principles and Standards for Mathematics committee goes on to state that 

children are better able to learn with understanding when they have some control over 

their learning, where they can monitor their own progress, are challenged with difficult 

tasks that build their confidence, reflect on their thinking, and learn from their mistakes.   

Having students explain their work (Brandsford, Brown, Cocking, Donovan, & 

Pellegrino, 2000) and reflect on their work (Heid & Blume, 2008b) appears to be an 

important component in promoting conceptual understanding in the studies that they 

reviewed on the learning of mathematics.   

 In mathematics, visualization has played an important role in helping students 

“engage with and recover conceptual underpinnings [of problems] which may easily [be] 

bypassed by formal solutions” (Arcavi, 2003, 63).   One might think the multiple 

representations of functions in mathematics, one of which is a graph (a visual 

representation), might enhance conceptual understanding of functions.  Yet, Thompson 

(1994) suggests otherwise.  He says that students tend to view each representation in 

isolation, separate bits of knowledge to be memorized.  He suggests that to truly use 

multiple representations to enhance student understanding of functions “…[we must] 
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orient students toward drawing connections among their representational activities in 

regard to the situation that engendered them” (p.24).  Again, attention must be paid to 

explicitly connecting information. 

 In the book How People Learn it is suggested that environments that optimize 

learning should be learner-centered, knowledge-centered, assessment-centered, and 

community-centered (Bransford et al., 2000).    Learner-centered learning is easy enough 

to define.  Students must be actively engaged in the learning process.  Knowledge-

centered involves knowing what topics should be included in the curriculum, why they 

should be included, and how the teacher can determine if a student has mastered the 

topic.  Assessment-centered means that student-thinking should be made visible to both 

the teacher and the other students in the class, allowing teachers to determine a student’s 

mental model so they can provide the appropriate instruction.  The authors indicate that 

assessment should be student-friendly so it can be a vehicle for students to improve their 

thinking.  Finally, community-centered incorporates the establishment of classroom 

norms, for example, building student learning relationships and establishing a positive 

method of correcting misconceptions and raising questions.  Community-centered also 

involves connecting what is being learned in class to the world outside the classroom. 

How Does System Dynamics Modeling Support Conceptual Understanding of Functions? 

 SD modeling addresses concerns raised in the previous section about the 

importance of functions by incorporating many of the strategies identified as useful in the 

enhancement of conceptual understanding. 
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 It is possible to construct small SD models that capture some of the core function 

behaviors that are used in algebra classes at the secondary mathematics level: linear, 

quadratic, exponential, convergent (goal-seeking), logistic, and sinusoidal.  These models 

are structured so that a dynamic understanding of the behavior is reinforced.  For 

example, linear model diagrams visually depict constant rates of change, exponential 

models visually depict rates of change that are proportional to the current function 

amount, etc.   Models are constructed using icons (whose naming protocol uses full 

words or phrases) that are connected via arrow “wires” that explicitly identify the 

dependencies of one model component upon another.  (See Figure 1 later in this 

document.)  The model structure, developed from an understanding of the function’s rate 

of change, allows a strong connection to be made between the model diagram and its 

graphical output.  Moreover, when the model only depicts a single function, a connection 

between the model structure and its more traditional closed form symbolic representation 

can easily be made (Fisher, 2005), reinforcing the information gained by each 

representation.  Since the software allows multiple component values in a model to be 

graphed on the same grid, covariational reasoning is practiced repeatedly, as the graphs 

are displayed as time-series.  An example of such covariational reasoning is analyzing the 

graph of the population of a city over time.   The graphs of the city’s yearly number of 

births and number of deaths is graphed on the same grid so the relative position of the 

births and deaths graphs can be used to explain the shape of the population graph 

dynamics. 
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 The diagram structure of the functions is so easy to understand (it has been used 

successfully with students as young as 11 years of age) that the function diagrams can 

then be combined to study more sophisticated problems, such as drug pharmacokinetics, 

spread of epidemics, population dynamics, population and natural resource depletion, and 

predator/prey interactions, to name a few.  

 The SD modeling experience is a cognitive technology because the focus of the 

work students do with the functions comes from a “structure determines behavior” 

perspective, not from a manipulation of the closed form representation.  Students look for 

the dynamic characteristics in the behavior of the problem they are studying and try to 

determine which functions or combinations of functions could produce that behavior.  

Students can quickly test “what-if” scenarios, adding model structure to fine-tune their 

analyses.  The focus of the classroom work is on translating the problem to the SD 

symbolic representation, analyzing the output, having discussions to correct their own or 

other students’ misconceptions, and testing “what-if” scenarios.  Students are active 

learners, have control over their learning, can monitor their progress, and reflect on their 

thinking and the thinking of their peers as they modify their misconceptions and enhance 

their models.  Assessment can be done using the model diagram as a depiction of the 

student’s or group’s mental model.  More realistic community, national, and/or world 

problems can be included in the curriculum, as the SD modeling interface is highly  

intuitive for students to use. 

 Jonassen (2006) states that when students work primarily with formulas, they do 

not gain an understanding of the system within which the function operates.  He also 
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supports the value of multiple representation afforded by system dynamics software.  He 

claims students are able to extract more meaning using tools that help them visualize 

concepts.    

    2.c  Access to Introductory Concepts of Calculus in Algebra Classes 
 

In the broader view of understanding functions, presented by Leinhardt et al. (1990) 

(constructing dynamic functions in certain contexts and using graphs/graphing) 

technology provides an avenue for examining patterns (Leinhardt et al., 1990) and for 

bringing the study of change dynamics to students who are at a mathematically younger 

level than Calculus (Heid & Blume, 2008a; Kaput & Roschelle, 1997; Roschelle, Pea, 

Hoadley, Gordin, & Means, 2000; Tinker, 1990) 

Core to system dynamics modeling is the concept of a stock (accumulation) and flow 

(rate of change of the stock value).  System dynamics modeling not only provides 

analytical capabilities for understanding new problems involving complex systems, its 

tools (and underlying mathematical engine) are built using the fundamental concepts of 

calculus and differential equations.  Students deal with accumulations and rates of change 

using icons, making the conceptual principles of introductory calculus available to 

students much younger than those in their junior or senior year of high school.   

    2.d  Access to the Study of Complex Systems 
 
 The tools and techniques for addressing complex problems have been available to 

the educational community for decades.  Fey (1989) presents examples of tools for 

modeling dynamic systems explaining that using such tools can help students deal with 
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real problems that have complexity that would be beyond students’ reach using 

traditional mathematical approaches.  He cites Brolin and Greger6 (1987) who state that 

mathematics instruction should not continue to teach students those skills that the 

computer can do faster and better.  Fey claims modeling tools, such as STELLA, provide 

students not only access to another representation, but support conceptual understanding 

desired by mathematics teachers.  Johnson et al. (2009) also claim that tools such as 

STELLA are very useful for people who are not experts in complex systems analysis, 

making it ideal for introducing students to problems involving complex system. 

E. Research on Value of System Dynamics Modeling in High School Algebra 
 
 The following chapters in this dissertation will include a relatively large 

background chapter containing information explaining the components of the STELLA 

software so the reader will be able to read the model diagrams.  The background chapter 

also includes an extensive list of value-added learning benefits that have been 

documented to accompany model-building activities for students, a list of barriers that 

researchers have found that hinder teachers from incorporating 

modeling/technology/complex systems analysis in their classrooms, suggestions for 

teaching SD to students, and suggestions for helping teachers become more comfortable 

using technology in their instruction.   It also contains four research papers that each have 

a specific audience for whom the content is intended.  Those papers are described briefly 

below. 

                                                
6  Brolin, H., & Greger, K. (1987). Computers and the Teaching of Mathematics. Department of Teacher 
Training, Uppsala, Sweden: Uppsala University. 
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 Although it is appropriate to use System Dynamics (SD) modeling in quite a few 

high school disciplines (mathematics, environmental science, biology, physical 

science/physics, economics, social science, and health), the present research aims to add 

to the current literature by 1. Introducing System Dynamics modeling to the mathematics 

education research community and presenting its value for learning mathematics (chapter 

3, Paper 1), 2. Indicating the need for mathematics teachers to move beyond sole reliance 

on the closed form representation for mathematizing problems (chapter 4, Paper 2), and 

3. Providing the results of two case study experiments focused on how one might 

influence teachers to incorporate SD modeling activities in their in high school algebra II 

classes (chapters 5 and 6, Papers 3 and 4).   Paper 3 explains the experimental design and 

results as it relates to the teachers and the teaching environment.  Paper 4 explains the 

experimental design and results as it relates to the students.  

 Kelly, Baek, Lesh, and Bannan-Ritland (2008) indicate that for an innovation to 

have the potential for adoption it cannot stray too far from existing practice, in a given 

environment.  So, in the third and fourth paper (chapters 5 and 6), although the research 

experiments will not incorporate the full power of System Dynamics (SD) modeling for 

student learning, the objective is to test a sequence of simulation activities (enactive, 

iconic, and symbolic) and determine whether the learning outcomes from the use of these 

SD simulation can have a positive influence on student understanding of function 

behavior in the context of real world scenarios, when used in a traditional algebra 

classroom.  That is, the objective is to show that using small models and SD modeling 

lessons can have an immediate and positive impact on student learning. 
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 Following the four papers each of which is presented as a separate chapter 

(chapters 3 – 6), is a final chapter (chapter 7) that synthesizes and discusses the overall 

dissertation results and contributions. 

II.  Background 

A. System Dynamics Modeling: A Brief Introduction 
 
 “System dynamics … deals with how things change through time.  That covers a 

great deal of what most people find important.” (Forrester, 1996, p. 1).   Sterman (2000), 

one of Forrester’s students, adds, “Because we are concerned with the behavior of 

complex systems, system dynamics is grounded in the theory of nonlinear dynamics and 

feedback control developed in mathematics, physics, and engineering.” (p. 5) 

 Before continuing with how System Dynamics modeling might help students 

understand the nature of some dynamic systems in the world, it will be necessary to 

introduce the modeling symbols or icons and structure to enable the reader to 

conceptualize how it might fit with the theory and research that will be presented later in 

this dissertation.   

 Each System Dynamics modeling software contains elements that 

represent accumulations of “stuff” over time.  This “stuff” can be physical, 

like people in a city, or can be abstract, like “concern about the level of 

pollution” in an area.  The accumulator is identified as a “stock” and usually has an icon 

shaped as a rectangle.  The stock will increase or decrease in value over time.  It 

represents one of the elements in our model whose value we want to track. 
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 A flow (usually represented as an arrow with a wide shaft 

with a valve symbol at its center) represents a rate at which a stock 

value is changing.  If the flow arrowhead is pointing toward the 

stock, a positive value 

(within the icon) represents a rate of increase in the stock value.  If the flow arrowhead is 

pointing away from the stock, a positive value (within the icon) represents a rate of 

decrease in the stock value. 

 Another icon is called a converter.  It is represented as a circle and 

is used to hold parameter values or formulas for auxiliary variables 

important to system logic.       

 Finally, there is an icon called a connector.  It is represented by a 

thinly shafted arrow that connects converters to flows, converters to 

other converters, stocks to flows or stocks to converters.  It acts like a telephone line, 

communicating numeric information between components so that formulas can be 

updated each time step.  A diagram might help clarify the  

interconnections.  

 A simple example will be used to demonstrate how one might design a stock/flow 

model to study population dynamics. 

 

 

 

Connector 
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Figure 1: System Dynamics model of a population in a region. 
 
In Figure 1 the stock, Current Population, is the variable whose value we want to track 

over time.  It is given a starting value before the simulation is executed.  This stock value 

is increased by births per year and decreased by deaths per year.  Births per year depend 

upon two pieces of information, the Current Population amount, and the fraction (whose 

decimal value is held in fraction of births per year) of that population that produces a live 

birth each year.  The two arrow connectors communicate the required information to the 

flow births per year, each time step, so the flow can multiply them and increase the stock 

value by the appropriate amount (the product it has just calculated).  Similarly, the value 

of the outflow deaths per year, is calculated as the product of the Current Population 

value and the fraction (a decimal fraction stored in fraction of deaths per year) of that 

population that is dying each year.  The Current Population is increased by births per 

year and decreased by deaths per year each time step of the simulation. 

 The model diagram also makes feedback easy to observe.  There is a reinforcing 

(positive) feedback between the stock and the inflow (observe the closed loop in Figure 

1: Current Population to births per year to Current Population).  The larger the Current 

Population the more births per year there will be, and the more births per year there are 

the larger the Current Population will grow.  There is a balancing (negative) feedback 
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between the stock and the outflow (Current Population to deaths per year to Current 

Population).  The larger the Current Population the more deaths per year there are, but 

more deaths per year will produce a smaller Current Population. 

 The value of any icon in the model can be displayed in graphical form or tabular 

form, showing the pattern of change in that variable over time.  Hence, we are able to 

explain the graphical time series pattern of change shown in the stock value by 

comparing it (on the same grid) with the graphical patterns of change of each of its flow 

values.   

 The stock is an accumulator, hence is performing a mathematical integration, and 

the flows represent how the accumulator value is changing over time and hence they 

represent components of the derivative of the stock variable.  The diagram is a visual, 

conceptual representation of basic calculus principles, in a format easy enough for middle 

school students to understand.  The engine “under the hood” of the software uses 

numerical methods (Euler or Runge-Kutta) to approximate the solution of the systems of 

differential equations that is constructed as the model is designed. 

 There are other constructs available to facilitate the representation and display of 

non-linear behavior, but they are not essential at this point.  The four icons described 

above constitute the entirety of the foundational components in System Dynamics 

modeling. 

 When students build simple models, it is relatively easy to put individual simple 

model structures together to represent more sophisticated scenarios, similar to the way 

small Lego structures are assembled to construct a larger Lego system. 
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B. More About System Dynamics and Its Relation to How People Learn 
 

 To learn with understanding, the ability to internalize concepts and make them 

one’s own so they become tools for further learning, a foundation upon which intellectual 

growth can take place, is one of the overarching goals society is called upon to provide 

for children (Mansilla & Jackson, 2011; OECD, 2008)   

“Deep understanding implies that the information is well-represented and 
well-connected.  The greater the number and strength of the connections, the 
deeper the understanding.  New information can be well-connected to 
existing knowledge and/or the pieces of the new information can be well-
connected from within” (Grotzer, 1999). 

 
Mathematics education has had, for years, the goal of teaching students so that they gain 

a deeper understanding of the concepts of mathematics thereby enabling them to apply 

the concepts to other problems within and outside of the discipline of mathematics 

(Bransford et al., 2000; NCTM, 2000).  Modeling complex systems is almost always a 

multi-disciplinary endeavor for which it is essential to develop a deep understanding of 

concepts involved in capturing and analyzing the dynamics of the problem.   

 To become more informed about strategies for realizing this goal in math and 

science education, let’s turn to some well known learning theorists, Lev Vygotsky and 

Jerome Bruner.  Lev Vygotsky suggested that learning should be a socially active 

endeavor, where students are expressing their thinking, and the teacher is facilitating the 

process.  This interaction should be cooperative and collaborative (i.e., the teacher uses 

demonstrations and leading questions) to be effective.  Teachers do not transmit concepts.  

“If concept development is to be effective in the formation of scientific concepts [those 

new ideas learned in school] instruction must be designed to foster conscious awareness 
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of concept form and structure and thereby allow for individual access and control over 

acquired scientific concepts” (Vygotsky in Daniels, Cole, & Wertwch, 2007, p. 312).  

Vygotsky is best known for his idea called the “Zone of Proximal Development” 

(ZPD). The zone of proximal development is represented as a gap between what the 

student could learn by him/herself and what he/she could learn with the help of more 

knowledgeable peers and/or the teacher.  Vygotsky indicated that the trajectories for 

individual student learning in this zone are quite open and will follow dynamic and 

divergent paths.   The objective of the “instruction” is, however, to help the student 

eventually internalize the new knowledge.  Vygotsky (1978) indicated that essential 

(good) learning should create a ZPD (“awaken a variety of internal developmental 

processes in the child that are activated by working cooperatively with peers and other 

people in his/her environment,” p. 90) that is forward looking, developmentally, rather 

than testing, which is backward (ineffective) looking.   In this way, Vygotsky said, once 

the processes within the child become internalized they lead to independent 

developmental achievement (Vygotsky, 1997, italics added). 

 Jerome Bruner was influenced by Vygotsky as we see more of Bruner’s writing 

start to reflect the importance of social and cultural influence on learning in his later 

writing (Bruner, 2009b).  Bruner states that the teacher or peer acts as:   

“… a vicarious form of consciousness until such time as the learner is able 
to master his own action through his own consciousness and control.  
When the child achieves that conscious control over a new function or 
conceptual system, it is then that he is able to use it as a tool.  Up to that 
point, the tutor [teacher or peer] in effect performs the critical function of 
“scaffolding” the learning task to make it possible for the child, in 
Vygotsky’s word, to internalize external knowledge and convert it into a 
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tool for conscious control” (Bruner7, 1985, p 24, in Newman & Holzman, 
2005, p. 137). 
 
Bruner has written numerous books and articles on education and learning theory.  

He believes that children progress continuously in their cognitive growth rather than in 

stages, as suggested by Piaget.  He stresses the use of language as instrumental in 

cognitive development and that a more knowledgeable teacher and/or peer can speed up a 

child’s cognitive development.  But what about depth of learning? 

 Bruner (1966) proposes three modes of acquiring new ideas, referred to as his 

three modes of representation:  enactive, iconic, and symbolic.  These modes are 

especially interesting for those educators interested in system dynamics modeling.  The 

first mode, enactive, involves students working with concrete objects, that is, learning is 

hands-on.  Students manipulate objects or act out a part in a story.   The effective use of 

physical play-acting or manipulating devices when teaching students to create system 

dynamics models is evidenced in the most popular books/lessons developed by K-12 

teachers who have used system dynamics modeling in their instruction for many years. 

Activities like using popsicle sticks in a jar to represent trees being planted or cut in a 

forest, or students standing in a circle and moving vertically up or down to represent the 

two types of feedback (reinforcing or balancing), or students walking in front of a motion 

detector to replicate linear behavior patterns, are often used as precursors to modeling 

                                                
7 Bruner, J. S. (1985). Vygotsky: A historical and conceptual perspective. In J. Wertsch (Ed.). Culture, 
Communication and Cognition: Vygotskian Perspectives (pp. 21-34). Cambridge, UK: Cambridge 
University Press. 
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activities (Booth-Sweeney & Meadows, 2001; Fisher, 2005; Quaden, Ticotsky, & Lyneis, 

2008).8  

 Bruner’s second mode of representation is iconic.  In the iconic mode students use 

images, pictures, diagrams, or graphs to represent concrete ideas or situations that they 

experienced in the first mode.  The iconic representation is still quite concrete as the 

representation is directly connected to the physical activity (from the enactive mode).  

For system dynamics learning this would be the use of graphs to represent change over 

time, perhaps representing the level of curiosity of a character from a story that was read, 

or the graph of motion displayed by a computer projector on the overhead screen in a 

classroom as a student walks in front of a motion detector.  In both the enacting and 

iconic representations students are developing mental models of how their activity 

represents some concept the teacher is trying to convey. 

 The third mode of representation Bruner proposes is symbolic.  Here the abstract 

concepts of numbers and words or other symbols are used to allow a student to organize 

their thinking.  The intention is that the abstraction does not require the direct connection 

to the concrete activity from which it arose.   In this stage system dynamics reaches its 

most powerful application.  The symbols are the stocks, flows, converters, and connectors 

students use to represent the elements they experienced in the enacting representation.  

They connect the elements, define the components and finally execute the symbolic 

model to produce a graph that should display the same type of behavior that was 

                                                
8 Although not in published form, teacher leaders from the Waters Foundation 
(www.watersfoundation.org), who also teach a significant number of elementary and middle school 
teachers systems thinking and some system dynamics modeling often use physical manipulation and play-
acting to initiate these systems lessons.  
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evidenced in the iconic mode.   Often the simple model structures are then applied to 

scenarios that the student did not experience in the enacting mode. 

Throughout the process of model-building, students work in teams, talking about 

the elements to use, how to connect and define the elements, and whether the output is 

realistic.  Students are then expected to explain how their model was constructed, why the 

elements are connected as they are, and experiment with the model to strengthen the 

belief that the model is a reasonable representation of the system (verification and 

validation techniques).   Finally, students can use the model to test policies that might 

alter the output of the original model, either changing parameters or adding structure to 

the model in the policy stage.  By working in teams to design and test a model, students 

are replicating the process used by professional System Dynamics modelers when they 

study real world problems.   So the team method of building System Dynamics models, 

used consistently in K-12, is well grounded in learning theory as an effective learning 

strategy. 

 System Dynamics modeling was first studied at the graduate level at some of the 

top tier universities around the world.  It was thought that the techniques were too 

difficult for children to learn.  Barry Richmond, a student of Jay Forrester, developed the 

STELLA software in 1985.  The simple design and use-friendly interface make the study 

of SD accessible to a broader audience.  A surprising number of K-12 teachers have 

figured out how to bring SD modeling into their classrooms.  This offers some support to 

another of Bruner’s beliefs, that “…any subject can be taught effectively in some 
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intellectually honest form to any child at any stage of development…No evidence exists 

to contradict it ...” (Bruner, 2009a, p 33).  

 In his more recent writings Bruner emphasizes the influence of culture on how 

and what we learn.  He says without culture the mind could not exist.   

“For the evolution of the hominid mind is linked to the development of a 
way of life where “reality” is represented by a symbolism shared by 
members of a cultural community in which a technical-social way of life is 
both organized and deconstrued in terms of that symbolism. … Meaning 
making involves situating encounters with the world in their appropriate 
cultural contexts in order to know “what they are about”” (Bruner, 2009b, 
p160-162). 

 
Forrester would agree, but goes a step further.  He indicates that to capture the behavior 

of a system one must mine the mental models of those who are involved with the system.    

“…all decisions are made on the basis of mental models.  …Decisions 
are based only on assumptions about separate parts of real systems, and 
trying by intuition to fit those fragments of knowledge into an estimate of 
how things change and what will be the consequences of a proposed 
action. …a system dynamics model is often built from assumptions in the 
mental models. …mental models are rich and often sufficiently accurate 
about pieces of a system.. [but they] are entirely unreliable in deducing 
what behavior will result from the known pieces of a complex system…” 
(Forrester, 1996, p.13).   

 
To determine the true behavior of a complex system one must design a computer 

simulation as it will “reveal the behavior implicit in the structure from which it is 

constructed” (Forrester, 1996, p. 13).   

 Mental models can be inconsistent, can change over time, and can be different for 

different people discussing the same problem (Forrester, 1995).  System Dynamics 

modeling can act as an aid to surface the mental model of a group studying a problem – 

as the stock/flow diagram is drawn to reveal the system structure indicated by the group.  
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Through conversations about the model design, and simulated results of the design, the 

group can come to a more generally accepted structure, thus allowing people in the group 

to modify their mental models accordingly.  Bruner would suggest that this is a way 

people learn as “‘how the mind works’ is itself dependent on the tools at its disposal” 

(Bruner, 2009b, p160). 

 Another agreed-upon exercise that supports learning is to have students think 

about how they think, when they solve problems (Chi, DeLeeuw, Chiu, & LaVancher, 

1994; Fusion, Kalchman, & Bransford, 2005; OECD, 2014; Pea, 1985).  Students are 

able to surface their mental models, using the System Dynamics software, by laying out 

the structure of how they think a system under study is structured, including 

dependencies and feedback.  It opens to the rest of the team a vehicle for communication.  

The designers talk about why they have designed the structure as shown and others can 

comment upon their thinking.  The power then is that the computer becomes an arbiter of 

what is actually displayed.  The simulation is executed and, if it does not produce the 

expected output, the team goes back to the diagram and analyzes how they were thinking 

about the problem and how they will have to adjust their thinking, and their diagram, to 

try to capture a more realistic behavior.  The model diagram acts as a vehicle for 

facilitating metacognitive activity. 

 To take this idea of metacognition one step further, since the software is so 

visual, it also allows teachers an opportunity to try to design models about how 

they believe students learn  (Fisher, 2010; Hirsch, 2006; Richmond, 2004; 

Svensson & Mats, 2002). 
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C. More Background Research 
 

 This section is broken into three parts.  The first part reviews the results of 

experiments conducted to study the effect of learning about complex systems for both 

students and teachers.  The second part supplements the first, but includes observations 

from researchers who did not conduct experiments.  The third section pulls out the topic 

of comparing novice and expert problem solvers.  As with conceptual understanding of 

core principles in math and science, moving students from novice to expert problem 

solvers is an overarching concern for educators. 

1a. Results from experiments: Students 
 
 Improving conceptual understanding of a given problem or set of problems is 

perhaps the most important product of a learning environment that includes model 

building.  There are, however, many other desirable outcomes that are possible when 

students are actively engaged in the study of systemic problems.   

 What follows are two categories of positive outcomes demonstrated and/or 

observed in research studies where experiments were conducted involving students in the 

analysis of systemic problems.  The first category deals with student behaviors that would 

be desirable learning outcomes from any effective learning activity.  See Table 1.  The 

second category deals specifically with desirable learning outcomes that address an 

attempt to have students learn more about complex systems.  See Table 2. 

 The studies cited dealt with six modalities directly or closely related to using 

modeling or higher level problem solving techniques.  To assist the reader with the 

references and the specific category of problem study the research addressed, the 



           31
            

following tags will be placed after each cited reference.  (1) Will specify the use of 

system dynamics modeling (model building) strategies, (2) will specify the use of 

systems thinking strategies, including causal loop diagramming, (3) will specify merely 

the use of technology in problem solving, perhaps computers and/or graphing calculators, 

(4) will specify the use of modeling concepts (not system dynamics) and technology, (5) 

will specify the use of microworlds – predesigned models where students manipulate 

parameters, and (6) will specify high level problem solving strategies, not necessarily 

applied to computer modeling.    

 In the first category, the desirable outcomes from an effective activity that dealt 

with one (or more) of the six categories described above were:  

 
Table 1: Research supporting desirable learning outcomes from any effective learning activity. 

 
 Desirable Learning 

Outcome 
References: Both from empirical research (ER) 
and from non-empirical (NER) research 

1 An increased motivation to 
learn 

ER: Jackson, Stratford, Krajcik, & Soloway, 
1994 (1) 
NER: Steed, 1992; Tinker, 1990 

2 An opportunity for students to 
become active learners 

ER: Confrey & Doerr, 1994 (4); Heid et al., 
2008b (3); Mandinach, Thorpe, & Lahart, 1988 
(1 & 2); Mandinach & Cline, 1993 (1 & 2); 
Mandinach & Cline, 1994 (1 & 2); Spector et 
al., 2001 (1 & 2); Stratford et al., 1998 (1 & 2) 
NER: Doerr, 1996; Papert, 1980; Roschelle et 
al., 2000 

3 An opportunity for students to 
practice inquiry 

ER: Confrey et al., 1994 (4) 
NER: Doerr, 1996; Pea, 1985; Steed, 1992 

4 An opportunity for students to 
take ownership of their 
knowledge – construct their 
own knowledge 

ER: Confrey et al., 1994 (4) 
NER: Pea, 1987; Roschelle et al., 2000; Steed, 
1992 

5 An opportunity for students to 
have access to real-world 
problems 

ER: Stratford et al., 1998 (1 & 2); Tinker, 1990 
(1 & 2) 
NER: Jacobson & Wilensky, 2006; Lesh, 2006; 



           32
            

Papert, 1980; Pea, 1987; Roschelle et al., 2000; 
Steed, 1992 

6 An opportunity for students to 
explore problems beyond 
what they would normally be 
able to study 

ER: Tinker, 1990 (1 & 2) 
NER: Blume & Heid, 2008; Doerr, 1996; 
Forrester, 1987; Heid et al., 2008a; Jacobson et 
al., 2006; Pea, 1987; Roschelle et al., 2000; 
Steed, 1992 

7 An enhancement of 
conceptual understanding of 
the problem 

ER: Heid et al., 2008b (3); Mandinach et al., 
1988 (1 & 2); Mandinach et al., 1993 (1 & 2); 
Mandinach et al., 1994 (1 & 2) 
NER: 

8 An opportunity for students to 
operate at the top of Bloom’s 
Taxonomy – creating and 
synthesizing 

ER: Stratford et al., 1998 (1 & 2) 
NER: Forrester,9 1991 (as cited in Doerr, 1996, 
p. 208) 

9 A demonstration of an 
increased need for reflection 
upon their work 

ER: Confrey et al., 1994 (4); Dörner, 1996 (5); 
Heid et al., 2008b (3) 
NER: Blume et al., 2008; Mandinach et al., 
1988; Pea, 1987 

10 A demonstration of an 
increased need for students to 
communicate effectively 

ER: Jackson et al., 1994 (1); Stratford et al., 
1998 (1 & 2) 
NER: Confrey et al., 1994; Doerr, 1996; Otero, 
Peressini, Meymaris, Ford, Garvin, Harlow…, 
2005; Pea, 1985; Steed, 1992 

 
 The previous ten desirable outcomes alone would support the recommendation for 

more modeling activities in the school curriculum.  But these are only the beginning of a 

more substantive list of positive outcomes that modeling systemic problems has 

demonstrated.  In the second category, the list of desirable learning outcomes from 

modeling systems, that were demonstrated from research studies were:  

 
Table 2: Research supporting desirable learning outcomes when students model systems. 

                                                
9 Forrester, J. (1991). System dynamics-adding structure and relevance to pre-college education. In K. R. Manning 
(ed.), Shaping the Future. Boston, MA: MIT Press. 
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10 Bliss, J. and Ogborn, J. (1989). Tools for exploratory learning. Journal of Computer Assisted Learning 5(1): 37-50. 
11 Coon, T. (1988). Using STELLA simulation software in life science education. Computers in Life Science Education 
5(9): 65-71. 
12 Clauset, K., Rawley, C. and Bodeker, G. (1987). STELLA: software for structural thinking. Collegiate 
Microcomputer 5(4): 311-319. 
13 Mandinach, E. (1989). Model-building and the use of computer simulation of dynamic systems. Journal of 
Educational Computing Research 5(2): 221-243. 

 Desirable Learning Outcome References: Both from empirical research 
(ER) and from non-empirical (NER) research 

11 An opportunity for students to 
enhance their intuition about 
how the world works 

ER:  Dörner, 1996 (5); Hung, 2008 (1 & 2); 
Jackson et al., 1994 (1); Mandinach et al., 
1988 (1 & 2); Roberts & Barclay, 1988 (1 & 
2); Stratford et al., 1998 (1 & 2) 
NER: 

12 Accessibility by a wide range of 
students to core ideas about 
complex systems 

ER:  Tinker, 1990 (1 & 2) 
NER:  Ang, 2001; Jacobson et al., 2006; 
Roschelle et al., 2000 

13 A lower level of abstraction 
when trying to model problems 

ER:  Hung, 2008 (1 & 2); Tinker, 1990 (1 & 
2) 
NER:  Roschelle et al., 2000; Steed, 1992 

14 An opportunity to understand a 
problem more deeply 

ER:  Hung, 2008 (1 & 2); Jackson et al., 1994 
(1); Stratford et al., 1998 (1 & 2) 
NER:  Bliss & Ogborn,10 1989 (as cited in 
Doerr, 1996 p. 205); Steed, 1992 

15 An opportunity to express and 
experiment with their own ideas 

ER:  Confrey et al., 1994 (4);  Hung, 2008 (1 
& 2); Jackson et al., 1994 (1) 
NER:  Coon,11 1988 (as cited in Doerr, 1996, 
p. 271); Papert, 1980 

16 Gaining insight into how 
complex systems work 

ER:  Hmelo-Silver, Marathe, & Liu, 2007 (2); 
Hung, 2008 (1 & 2); Jackson et al., 1994 (1); 
Mandinach  et al., 1993 (1 & 2); Roberts et al., 
1988 (1 & 2); Skaza & Stave, 2009 (2); 
Spector et al., 2001 (1 & 2); Stave, 2012 (1 & 
2); Stratford et al., 1998 (1 & 2) 
NER:  Forrester, 1986, 1987; Steed, 1992 

17 An opportunity to understand 
the process of change in the 
world 

ER:  Spector et al., 2001 (1 & 2); Stratford et 
al., 1998, (1 & 2) 
NER:  Chen et al., 1993; Forrester, 1987; 
Lesh, 2006; Steed, 1992; Tinker, 1990 

18 Ability to reason qualitatively 
about systems 

ER:  Spector et al., 2001 (1 & 2); Spector, 
2009 (2); Stratford et al., 1998 (1 & 2) 
NER:  Clauset, Rawley, & Bodeker,12 1987; 
Coon, 1988; Mandinach,13 1989 (previous 3 
references as cited in Doerr, 1996, p. 210); 
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14 Mandinach, E. and Cline, H. (1989). Applications of simulation and modeling in precollege education. Machine-
Mediated Learning 3: 189-205. 
15 Roberts, N. (1981). Introducing computer simulation into the high schools: an applied mathematics 
curriculum. Mathematics Teacher, 647-652. 
16 White, B. Y. (1984). Deisgnig computer games to help physics students understand Newton's Laws of 
Motion. Cognition and Instruction, 1, 69-108. 

Jackson et al., 1994 

19 An opportunity to formulate 
and test hypotheses 

ER:  Dörner, 1996 (5); Jackson et al., 1994 
(1); Mandinach et al., 1988 (1 & 2); Stratford 
et al., 1998 (1 & 2) 
NER:  Coon, 1988; Mandinach & Cline,14 
1989; Roberts, 15 1981; Steed, 1992 (previous 
4 references as cited in Doerr, 1996, p. 208); 
Forrester, 1987; Pea, 1987 

20 An opportunity to understand 
the importance of feedback 

ER:  Dörner, 1996 (5); Hmelo-Silver et al., 
2007 (2); Hung, 2008 (1 & 2); Spector et al., 
2001 (1 & 2); Spector, 2009 (2) 
NER:  Forrester, 1986; Lesh, 2006 

21 An opportunity to gain an 
appreciation for 
interconnections 

ER:  Hmelo-Silver et al., 2007 (2); Hung, 
2008 ( 1 & 2) 
NER: 

22 An opportunity to experience 
the iterative process of 
understanding difficult 
concepts 

ER:  Ben-Zvi-Assaraf & Orion, 2010 (2); 
Confrey et al., 1994 (4); Dörner, 1996 (5); 
Hung, 2008 (1 & 2); Jackson et al., 1994 (1); 
Mandinach et al., 1988 (1 & 2); Stein, Grover, 
& Henningsen, 1996 (6); Stratford et al., 1998 
(1 & 2) 
NER:  Mandinach et al., 1993; Steed, 1992 

23 An opportunity to participate 
in cognitively demanding 
experiences 

ER:  Ben-Zvi-Assaraf et al., 2010 (2); 
Stratford et al., 1998 (1 & 2)).  Note: Meer 
parameter manipulation of models is the least 
cognitively demanding (Mandinach & Cline, 
1993 (1 & 2) 
NER:  Doerr, 1996; Mandinach et al., 1993; 
Steed, 1992 

24 Ability to transfer 
understanding to new topics 

ER:  Roberts et al., 1988 (1 & 2)); Hung, 
2008 (1 & 2). Note: Meer parameter 
manipulation of models does not often 
promote transfer of systemic understanding to 
new topics (White,16 1984 (as cited in Doerr & 
Pratt, 2008, p. 268) (4) 
NER: 
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These desirable learning outcomes, from participating in a modeling activity, do not 

happen by chance.  The teacher must design the lesson and support reflections and 

conversations that explicitly promote the desired outcomes (Ben-Zvi-Assaraf et al., 2010; 

Hung, 2008; Mandinach, 1987; Mandinach et al., 1988, Yerushalmy,17 1991 (as cited in 

Heid et al., 2008a, p. 71).   

1b. Results from experiments: Challenges for Teachers  
 
 Let’s turn our attention now to those studies that have focused on preparing 

teachers to provide such learning experiences.  Unfortunately, efforts have been largely 

unsuccessful in promoting a lasting change, if any change, in most teachers’ classrooms 

that participated in these studies.  The challenges/barriers that teachers faced will be 

identified.  Teachers were concerned about: 

Table 3: Research supporting challenges/barriers for teachers attempting to provide some of the 
desirable learning experiences previously enumerated. 

                                                
17 Yerushalmy, M. (1991). Student perceptions of aspects of algebraic function using multiple 
representation software. Journal of Computer Assisted Learning, 7 (1), 42-57. 

25 An opportunity to gain access 
to metacognition 

ER:  Ben-Zvi-Assaraf et al., 2010 (2) 
NER:  Steed, 1992 
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As daunting as these barriers might seem, they are not insurmountable.  

Appropriate time allocation and appropriate support structures will need to be in place for 

future efforts to shelter/support teachers who are interested in incorporating modeling as 

part of their curriculum for the first time.  As for the first enumerated barrier that is the 

most difficult to address it would seem that a recommendation for teachers would be to 

 Challenge or Barrier References: Both from empirical research (ER) 
and from non-empirical (NER) research 

T1 losing control of their class, due 
to the change in their expected 
role 

ER:  Mandinach et al., 1988 (1 & 2); Roberts et 
al., 1988 (1 & 2); Skaza, Crippen, & Carroll, 
2013 (5); Zbiek & Hollebrands, 2008 (3) 
NER:  Roschelle et al., 2000 

T2 the need for more domain 
knowledge 

ER: Mandinach et al., 1994 (1 & 2); Roberts et 
al., 1988 (1 & 2); Skaza et al., (2013) (5) 
NER:  Hmelo-Silver & Azevedo, 2006; 
Jackson et al., 1994; Mandinach et al., 1988 

T3 the lack of time to develop skill 
(using the theory, using 
technology, in developing 
curriculum, in reorganizing 
lessons, in developing new 
types of assessment) 

ER: Mandinach et al., 1988 (1 & 2); Roberts et 
al., 1988 (1 & 2); Tinker, 1990 (1 & 2); Zbiek 
et al., 2008 (3) 
NER:  Doerr, 1996; Hung, 2008; Roschelle et 
al., 2000 

T4 the lack of appropriate 
curriculum 

ER: Roberts et al., 1988 (1 & 2); Tinker, 1990 
(1 & 2) 
NER:  Ang, 2001; Doerr, 1996; Mandinach & 
Cline, 2000; Zbiek et al., 2008 

T5 the time it takes to learn to 
create appropriate models 

ER: Mandinach et al., 1994 (1 & 2); Tinker, 
1990 (1 & 2) 
NER:  Hung, 2008 

T6 the need for ongoing 
administrative support 

ER: Mandinach et al., 1994 (1 & 2); Roberts et 
al., 1988 (1 & 2); Skaza et al., (2013) (5) 
NER:  Doerr, 1996; Mandinach et al., 2000; 
Otero et al., 2005; Roschelle et al., 2000; 
Tinker, 1990 

T7 the need for ongoing transition 
support  (tech support people 

ER: Skaza et al., (2013) (5) 
NER:  Doerr, 1996; Mandinach et al., 2000; 
Otero et al., 2005; Roschelle et al., 2000; 
Tinker, 1990 
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follow a gradual progression of infusion of systems concepts, starting with small steps, 

building more capacity over time, until the teacher feels he/she has reached a level that is 

comfortable/desirable for his/her classroom.  Unfortunately, most research studies do not 

last long enough to provide this on-going support. 

 Another concern for teachers and administrators was how one might assess 

student learning using the more open-ended activities associated with the study of 

complex systems.   The Jackson et al. (1994), Mandinach et al. (1988), and Spector et al. 

(2001) studies highlight the value of using system dynamics stock/flow diagrams and 

causal loop diagrams as methods of both formative and summative assessment of student 

thinking.  Mandinach et al. (1988) also mentions the value of having students make a 

prediction of how a given model will behave and then explain any discrepancies between 

their prediction and the actual model behavior.  However, Mandinach et al. (1994) speak 

of the need for more standardized assessments that emphasize the active process of 

learning. 

2. Results of non-empirical methods: Students and Teachers 
 

 The positive outcomes suggested by researchers, about having students study 

complex systems problems are worth enumerating, even if these observations were not 

the product of a study involving an experimental design.  Their observations provide 

insights that might prompt other researchers to design a specific experiment, to try to 

validate the observation, or might stimulate other creative processes for the reader.  

Previous positive outcomes will not be repeated.  The other observations (not supported 

by experiments) conclude that students:  
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Table 4:  Research supporting desirable leaning outcomes from the study of complex systems. 
 

 General Desirable Learning Outcomes 
(as in Table 1) 

References 

26 are provided an opportunity for effective 
and constructive group collaboration 

Mandinach et al., 1993; Pea,18 
1985; Roschelle et al., 2000 

27 more easily gain the ability to perform 
thought experiments 

Kreutzer,19 1986 (as cited in 
Jackson et al., 1994, p. 235); 
Steed, 1992; Tinker, 1990 (as 
cited in Jackson et al., 1994, p. 
233) 

28 have an opportunity to retain information 
better due to a structured pattern for details 

Forrester, 1986; Roberts, 1978 

 Desirable Learning Outcomes Specific to 
the Study of Complex Systems (as in 
Table 2) 

 

29 gain a cross-discipline exposure to concepts Ang, 2001; Forrester, 1986; 
Hmleo-Silver et al., 2006; Pea, 
1985 

30 gain an understanding that local decisions 
can have global impact 

Lesh, 2006 

31 have the opportunity to access new content  
(in math, science, social science, health, 
and economics) 

Heid et al., 2008a 

 Desirable Learning Outcomes in 
Mathematics When Modeling Complex 
Systems is Added to the Curriculum 

 

32 have an opportunity to focus on function 
concepts in math 

Heid et al., 2008a 

33 gain familiarity with structures that 
emphasize conceptual understanding of 
calculus before using equations 

Heid et al., 2008a; Roschelle et 
al., 2000; Tinker, 1990 

34 gain experience for horizontal and vertical 
mathematizing 

Doerr & Pratt, 2008 

35 have an opportunity to shift from process to 
object understanding of math entities 

Heid et al., 2008a 

                                                
ing computer simulation into the high schools: an applied mathematics curriculum. Mathematics Teacher, 647-
652. 
18 White, B. Y. (1984). Deisgnig computer games to help physics students understand Newton's Laws of 
Motion. Cognition and Instruction, 1, 69-108. 
matics Teacher, 647-652. 
18 White,  
B. Y. (1984). Deisgnig computer games to help physics students understand Newton's Laws of Motion. 
Cognition and  
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 Additional observations were made by researchers regarding attempts to assist 

teachers in their efforts to bring complex systems modeling into their classrooms.  These 

augment the previously mentioned seven observations made about instructing and 

supporting teachers.   

Teachers found: 

Table 5: Additional challenges/barriers for teachers attempting to teach complex systems. 
 
 Teacher Challenge or Barrier (as in 

Table 3) 
Research 

T8 complex systems to be counter-intuitive if 
teachers tended to be linear thinkers 

Jacobson et al., 2006 

T9 the interdisciplinary nature of complex 
systems makes them hard to understand, 
especially because there was no right 
answer; validation of models was difficult 

Doerr et al., 2008; Jackson et al., 
1994; Jacobson et al., 2006 

T10 making the distinctions needed to identify 
stock variables and flow variables is 
difficult 

Doerr, 1996; Riley, 1990; Tinker, 
1990 

3. Novice versus Expert Problem Solving 
 

 Expert problem solvers tend to use more divergent thinking, strive for conceptual 

understanding, and better appreciate the interconnections that occur in the study of 

complex systems.  These qualities are missing, but desirable in novice problem solvers  

(Chen et al., 1993; Doerr, 1996; Hmelo-Silver et al., 2007; Jackson et al., 1994; Jacobson 

et al., 2006; Lesh, 2006; Mandinach, 1987; Pea, 1985).  Expanding on some of the 

research findings: 

•  Hmelo-Silver et al., (2007) say students tend to understand the elements in a complex 
system, but not how to connect them and how the connections affect the behavior of 
the system.  Understanding how to connect the elements and how those connections 
affect the behavior of the system are qualities of expert problem solvers.  
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•  Doerr (1996) indicates novices often try to develop formal competence (i.e., knowing 
formulas to use for certain problems) but this type of knowledge is subordinate to 
conceptual understanding.  She says that formal knowledge will hardly ever effect 
change at a conceptual level, “conceptual awareness is a first critical step in the 
teaching/learning process” (p. 86). 

 
•  Mandinach (1987) says that experts are able to decontextualize their understanding of 

complex systems that allows them to transfer their knowledge more easily.  But she 
cautions that it is not necessarily desirable to aim novice thinking directly toward 
expert thinking.  Intermediate steps may be needed, allowing students an opportunity 
to internalize some of the tasks experts perform automatically.       

 
 Since SD modeling surfaces the mental model of the person who is constructing 

the model, it allows mistakes/misconceptions to become visible for review, promoting 

rich discussion.  This makes SD modeling an excellent vehicle for transitioning students 

from novice toward expert in their thinking about a specific problem.  Repeated modeling 

experiences can reinforce this practice.  But how will we analyze the modeling process to 

identify the misconceptions and provide appropriate recommendations for improving 

problem solving?  Looking at frameworks for model analysis may provide some 

direction. 

 The next section identifies four frameworks that have potential to support the 

instruction of complex systems in the precollege environment.  

D. Frameworks for Understanding Systems 
 

 The first framework is identified as the SBF (structure-behavior-function) 

framework and is described by Hmelo-Silver et al. (2007).  Structure refers to the 

elements of the system.  These elements can be simple, as in the amount of money in a 

bank account, the interest rate, and the interest added per year, or more complex, for 

example, lungs, brain, heart as components of the respiratory system (where each element 
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is itself a complex system).  Behavior refers to the mechanisms that are present within the 

system to produce an outcome.  This would include the interconnections of the particular 

elements.  Function refers to the individual elements and their purpose in the system.  

Structures are relatively easy for students to identify, but connecting the elements and 

knowing the purpose of each element within the system is generally difficult and usually 

dependent upon expert knowledge (Hmelo-Silver et al., 2007, p. 325).  System dynamics 

(SD) modeling could fit into this framework, allowing the modeler to explicitly represent 

the connections between elements within the system.  It does, however, require that the 

modeler know how to make those connections, some of which might be non-linear 

connections.  Allowing the model to be executed quickly and easily (using current SD 

software) provides the student with a method for refining the connections in an iterative 

process.   

 A second framework is described by Chen et al. (1993).  They describe a general 

systems theory (GST) for helping students understand complex systems.  There are five 

components to this framework: complex systems integrate different domains; complex 

systems should be understood in their complexity; change is central to the study of 

complex systems; complex systems need to be studied at both the micro and macro 

levels; and humans impact complex systems.  The first component, that complex systems 

need to be understood as an integrated approach, implies the need for crossing disciplines 

of physical, social, and human systems.   The second component, that problems need to 

be understood in their complexity, implies that problems should not be overly simplified.  

Students should be able to study/address some of the complex issues of the day.  The 
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third component, the need to understand change, implies the need to understand that the 

world operates dynamically.  Learning to understand patterns of change, how to 

recognize, describe, and represent them should be exercises students undertake.  The 

fourth component, that students should study systems from both a macro level and a 

micro level, implies, as SD analysts put it “seeing the forest and the trees.”  The fifth, and 

final component, understanding how humans impact and alter systems, implies that our 

impact on the world is pervasive and potentially destructive.   Systems thinking is central 

to this study, as is feedback analysis.  System dynamics modeling would be an 

appropriate vehicle for providing lessons for students who would be using this 

framework, as all five component parts are integral to SD analysis. 

 The third framework was developed by Barry Richmond (1993), a renowned 

system dynamicist, trained in system dynamics at MIT (Massachusetts Institute of 

Technology) under Jay Forrester.  His framework for understanding complex systems 

contains seven thinking skills.  Complex systems require: dynamic thinking, closed loop 

thinking, generic thinking, structural thinking, operational thinking, continuum thinking, 

and scientific thinking. The first skill, dynamic thinking, is the study of change in the 

system.  He says students should see the pattern of behavior that is produced over time, 

not specific, isolated events.  The second skill, closed-loop thinking, requires 

understanding feedback interactions and recognizes feedback as the cornerstone of the 

study of complex systems.  The third skill, generic thinking, recommends thinking in 

structures and infrastructure that produce often-observed patterns of behavior in a diverse 

collection of systems from different disciplines.  The fourth skill, structural thinking, 
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requires thinking about systems in terms of stocks (accumulations) and flows (rates of 

change) and how these should be connected.  Maintaining unit consistency is part of this 

skill. The fifth skill, operational thinking, is incorporated when the modeler is trying to 

decide how the system actually works (operates), its equations of motion, so to speak, 

and tries to replicate its behavior using the structures of skill five.  The sixth skill, 

continuum thinking, requires recognizing that the complex models that are created, 

analyzed, and interpreted are representing continuous change on a system, not discrete 

events.  Rather than using “if-then-else” definitions, skill six employs continuous 

function definitions to reflect how increases or decreases in one component affect other 

components.  The seventh skill, scientific thinking, includes the expected characteristic of 

positing and testing hypotheses.  But it also means being able to include concepts that 

cannot be measured precisely, like a person’s stress or confidence, in a model, allowing 

the model to reflect the reality of a system more completely. 

 The final framework is formally represented in Sterman’s (2000) book, a seminal 

work, that lays out the system dynamic modeling process for system dynamics 

professionals.  The SD method involves five stages: 1) problem articulation, 2) dynamic 

hypothesis generation, 3) model formulation, 4) testing/validation, and 5) policy 

formulation and evaluation.  In problem articulation the student attempts to define the 

problem more precisely, identify key variables, decide on a time horizon, establish 

reference behavior modes (that will later be used to help validate the model), and 

formulate the boundary conditions for the problem being studied.  Formulating a dynamic 

hypothesis entails laying out the feedback mechanisms that are essential to capturing the 
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important behavior of the system.  When formulating a model the stock/flow map is 

created to include the feedback structures identified in the dynamic hypothesis.  The 

model will contain the rules controlling the interaction between components upon which 

the feedback relies.  Initial testing also occurs in this stage to insure the model is verified.  

Additional testing is required to determine if the model can replicate the reference 

behavior identified in stage one, to determine if the model behaves properly when 

parameters are set to extreme values, and to test the sensitivity of the model to uncertain 

parameter values.  Finally, policy decisions, made to change the behavior of the system, 

are tested for viability and sensitivity.  Additional experimentation can be performed on 

the model to gain insight into explanations for possible unexpected behaviors.   

 The following two sections provide guidelines relevant to teachers and/or 

researchers who want to design effective learning experiences involving student creation 

of systems models.   The first section focuses on issues and recommendations for 

instructing students.  The second addresses techniques that can help teachers infuse 

technology-based lessons into their curriculum.  

E. Techniques for Teaching Students 
 

 Building SD models is a systems thinking skill.  One of the first tasks a student 

will have when trying to build a model of a complex dynamic feedback system, is to 

identify the variables that are relevant to the problem.  Some of these variables will need 

to be designated as accumulations (stocks), some as flows, and others as auxiliary 

(algebraic) variables.  Researchers indicate that making this determination is difficult for 

students (Doerr, 1996; Riley, 1990; Tinker, 1990).  Others indicate that learning how to 
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build models is hard, due to issues dealing with how to design models, the amount of 

domain knowledge needed ot build operational models, how to reason scientifically, how 

to create hypotheses and test them, and how to communicate the results (Hmelo-Silver et 

al., 2006; Jackson et al., 1994; Mandinach et al., 1988).  Researchers suggest that the 

inter-disciplinary nature of the study of complex systems is hard for students because 

students are working with problems that do not have simple right answers and they may 

lack the background needed for them to determine if their model is valid (Doerr et al., 

2008; Jackson et al., 1994; Jacobson et al., 2006).  Learning to create system dynamics 

models takes time (Hung, 2008).  For those students and teachers who want to take the 

model building process to its productive conclusion, research suggests that students (and 

teachers) should apply in their own lives the insights they are gaining from the modeling 

process.   Doing so is not an easy transition for most people (Hung, 2008). 

 What guidance, then, can we glean from the experience of researchers to shepherd 

instructional practice to include SD modeling in the pre-college curriculum?  Reinforcing 

Bruner’s theory, Tinker (1990), and Doerr et al. (2008) indicate a need to provide 

physical activities as precursors to building models used to represent physical dynamics.  

Doerr quotes Vitale20 (p. 274) as he explains that physical activities help to de-mystify the 

process of model validation.   She also indicates that the problem being studied needs to 

be relevant to the students in order to provide them with a purpose for doing the model 

building. (c.f., Pea, 1987)   

                                                
Instruction, 1, 69-108. 
m local to global: Programming and the unfolding of local model in the exploratory learning of 
mathematics and science. In A. A. diSessa, C. Hoyles, R. Noss, & L. Edwards (Eds.), Computers and 
exploratory learning (pp. 45-58). Berlin, Germany: Springer-Verlag. 
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 As mentioned in a previous paragraph, modeling is hard.  It is, therefore, 

important to provide instructional experiences for students that offer a gradual increase in 

concept and skill development (Ben-Zvi-Assaraf et al., 2010; Confrey et al., 1994; Hung, 

2008).  Yet, Tinker (1990) notes that students as young as ninth grade can build dynamic 

models and understand their solution, which is very encouraging.   

 Mandinach et al. (1994) indicated that the teachers they observed used three types 

of SD modeling experiences with students.  The first they called parameter manipulation 

(the least cognitively demanding, according to them), the second was called constrained 

modeling (where students are given brief scenario descriptions and then build small 

models), and the final experience type is referred to as epitome modeling (where students 

build original models in a fully open exercise, choosing their own problems to model).  

Each earlier modeling experience can act as scaffolding for the next modeling 

experience.   They found that many teachers in their study, especially those working with 

young or at-risk students, tended to use non-computer based activities to work with 

systems concepts.  Most of the teacher lessons that used computer-based instruction in 

systems fell in the parameter manipulation or constrained modeling categories.  They 

suggest this may be due more to a feeling of discomfort with higher level modeling 

activities by the teacher, rather than by the student (a hypothesis with which this author 

strongly concurs). 

 Stein et al., (1996) conducted a study involving students participating in complex, 

high level tasks.  Though not a study involving computer modeling directly, it is relevant 

to this discussion, as system dynamics modeling would fall into the category of a 
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complex, high level task.  His study concluded that students need to see high level 

thinking modeled for them by the teacher or by other more advanced students.  They need 

exercises that use their previous knowledge as launching points for new problem 

exploration.  They need to have time to explore ideas and should be required to explain 

what they are learning and the deeper understanding that the exercises are trying to elicit. 

 Finally, research suggests that the iterative process required by creating, reflecting 

upon, and refining computer models to capture the behavior of a system is an important 

instructional strategy (Alessi, 2009; Confrey et al., 1994; Heid et al., 2008b; Jackson et 

al., 1994; Mandinach et al., 1988; Stratford et al., 1998). 

 There is a progression in the sophistication of recommended modeling activities, 

as has been mentioned above.  Steed (1992) reflects upon this progression (though not 

using an empirical study).  He describes hierarchical levels of lessons that could allow 

students to engage the learning process when studying complex systems.  The first 

(lowest) level provides students with pre-constructed models where students manipulate 

the parameters in the model. Another possible lesson strategy within this level gives the 

students the model components, perhaps even with designated pre-drawn stocks, flows, 

or converters, and has the students connect the variables appropriately. Yet another lesson 

strategy at this level would have students follow a scripted model-building scenario that 

accompanies a science lab or problems in a textbook.   

On the second level students could create a small model from scratch, given a 

brief scenario description. Here the topic of the model follows a well established pattern 

of behavior and the model structure is fairly well defined.  Students at this level would 
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experiment with the model, after constructing it, to gain additional information about the 

system (for example, analyzing simple feedback).  A third level has the teacher build a 

model together with the students using classroom discussion, where students get in 

groups and design sub-modules of the model to solve a certain problem.  The fourth level 

has students take a textbook concept or process and translate it into a dynamic model. 

The fifth level has students design their own theories about how a process works, and 

create a model to test those theories, refining their theory in the model building/testing 

process.  The difference between this level and the level two model building is that in 

level two students are trying to capture an established theory or process.  The sixth, and 

final, level occurs when a student sketches a model diagram as part of a note-taking 

exercise to better understand an explanation given by the teacher.  (Note: These levels of 

lessons are not the result of an experimental study, but they seem to reflect reasonable 

and realistic scenarios for lessons involving the application of modeling complex systems 

at the precollege level. This comment is based on my 20 years of experience teaching 

system dynamics modeling at the high school level.) 

 Pea (1987) mentions other important components needed to support 

deeper learning for students as they use cognitive technologies.  Students need to have 

the opportunity to work in groups as they experiment with technologies that support 

deeper thinking.  Dialog offers them opportunities to reflect, discuss, and collaborate on 

the mathematics that is part of the problem being analyzed.  He suggests that the 

computer can act as a mediating tool in this discussion, allowing students to test their 

arguments.  He argues that the computer can “free up” a student’s mind from the 
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drudgery of computation, allowing him/her an opportunity to focus on patterns and larger 

picture understanding.  He suggests that the computer can act as a vehicle for 

communication, a language to help capture sophisticated ideas and display those ideas in 

a fashion that is easier for others to understand, i.e. to serve as a reorganizer of mental 

functioning for the student.  Pea also notes the importance of using the technology to 

externalize the thought processes of the students that allows those thoughts to be 

modified by inspection and reflection of other students and the teacher.  

The rest of this section is highlights characteristics that are not the result of 

experimental studies, nor do they address system dynamics modeling directly.  Yet these 

studies present instructional strategies that appear to be appropriate as guides for teachers 

who want to include the study of complex systems in their math and/or science 

curriculum.  

F. Techniques for Teaching Teachers 
 

 As mentioned in a previous section, the efforts to prepare teachers to include the 

modeling of complex systems in their pre-college classrooms has been largely 

unsuccessful.  Some of the difficulties have been enumerated in a previous section.  The 

research presented below addresses the difficulties that teachers face when trying to 

incorporate a new computer technology into their instruction.  Although this material 

does not specifically address infusing system dynamics modeling as an instructional 

strategy, it does suggest some of the preliminary concerns that would have to be 

addressed for a teacher to feel comfortable using the computer as an integrated teaching 

tool.  
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 In order to provide effective lessons to help students gain deeper conceptual 

understanding of mathematics using technology, the teacher has to be comfortable with 

the technology.  Several articles suggest processes to increase teacher comfort level with 

technology so they will use it as part of their instruction.  Beaudin and Bowers21 in Zbiek 

et al. (2008) describe their PURIA model for teacher development of technology skill.  In 

the PURIA model, the P indicates teachers need to play with the technology, with 

appropriate guidance (materials and tutoring).  U stands for using the technology as a 

personal tool for learning mathematics. R stands for recommending the technology to 

other teachers or to students, usually in an informal setting.  I represents the use of 

technology for formal instructional purposes.  A indicates that a teacher is able to assess 

the students’ use of technology in the context of learning mathematics.  Zbiek et al. 

(2008) extend Beaudin and Bowers’ PURIA model for teacher development of 

technology skill to include more than calculator based activities, i.e., including computer 

activities as well, and expanding the process to include more scenarios for teacher 

communication, especially with experts.  A similar sequence (to PURIA) is suggested by 

Otero et al., (2005): familiarization, utilization, integration, reorientation (redesigning 

classroom function), and evolution (continually modifying the classroom structure to 

include new tools and theories using technology). 

 To effectively use technology in instruction the teacher’s concept of what it 

means to do mathematics has to change.  This change may result from technology use or 

may precede it (Heid et al., 2008b; Zbiek et al., 2008). The most effective way to change 
                                                
21 Beaudin, M., & Bowers, D. (1997). Logistics for facilitating CAS instruction. In J. Berry, J. Monaghan, 
M. Kronfellner, & B. Kutzler (Eds.), The state of computer algebra in mathematics education (pp. 126-
135). Lancashire, England: Chartwell-York. 
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a teacher’s perception of mathematics is to provide technology experiences for the 

teacher as he/she studies mathematics.   As with pre-college students, the connection 

between the technology activities and the specific mathematical concepts the activity is 

designed to introduce/reinforce must be made explicit.   Curriculum materials that use the 

technology effectively must be available for the teacher (Zbiek et al., 2008).  Professional 

development for including technology in instruction must be connected to classroom 

practice (Otero et al., 2005).  Assessment of teachers by administrators must change to 

accommodate the different classroom environment that often emerges in classrooms 

where technology is being used effectively (Mandinach et al., 2000). 

 Rochelle et al., (2000) identified some key factors that needed to be in place for 

technology to be implemented successfully in the classroom.  Teachers need access to the 

technology and to technology support people.  They need a reason to use the technology, 

for example, to illustrate a concept that has been difficult to convey without the visual or 

numerical calculation that the technology affords (quick production of graphs, use of 

numerical approximation techniques, etc.).  A sufficient number of teachers are needed 

who use the technology so there is a constant support organization as they implement the 

lessons.  Along with the number of teachers using the technology, there needs to be a 

strong collaboration between these teachers.  Teachers need time to support planning and 

collaboration.  There is an interdependence between using technology to support school 

change and school change supporting the use of technology (Mandinach et al., 1994). 
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Abstract 
 
 
 System Dynamics (SD) is an icon-based, analytical method whose interface is user-

friendly and whose model structure is so intuitive that students as young as 11 years of age 

may be taught how to model complex systems. The diagram structure provides a new vehicle 

for the mathematical modeling of real-world problems that may be used to: promote 

classroom discussion, reveal students’ mental models (helping to identify misconceptions), 

provide a dynamic view of many functions studied in algebra, ease transfer of model 

structure to other disciplines, support practice with covariational reasoning, afford an 

informal introduction to basic concepts of calculus, and give students access to complex 

systems.  Used by some high school mathematics teachers in algebra, pre-calculus, and 

calculus, it is a powerful method of problem solving that professionals have used to study 

global climate change, natural resource depletion, bioterrorist attacks, affordable health care 

provisions, kidney disease and treatment, among others.  In both curriculum and pedagogy, 

Systems Dynamics aligns well with Common Core State Standards – Mathematics. 

 
 

A. Modeling and Algebra Teaching and Learning 
 
 
 
 The modeling of complex systems prepares our students for many adult concerns: 

environmental degradation, health care affordability, global climate change, disease, 

financial wellbeing, and ensuring the continuation of our democracy, to name a few.  

Many aspects of our lives are governed by “mathematics in action” (Skovsmove, 2005), 



           54
            

that is, by the application of mathematical models mostly inaccessible to the citizens 

whose lives they affect.  Mathematics instruction could prepare future citizens with a 

critical disposition and sense of agency (Greer & Mukhopadhyay, 2012). In an 

understandable but misguided attempt to develop children’s understanding of how 

mathematics can be used to model aspects of our physical and social worlds, students are 

predominantly led to believe that phenomena can be mapped neatly onto mathematical 

equations.  Rather, students should study the modeling process: implications of 

simplification, importance of assumptions, representations available, communication of 

results, limitations of mathematical models due to inadequate information, uncertainty 

and complexity—in short, the embedding of mathematical modeling within its social, 

cultural, and political contexts. 

 SD icons capture the behavior of, and enhance understanding of, elementary 

functions studied in algebra classes.   Once students know the SD model structures that 

represent single function behavior they can begin to combine these structures to study 

more sophisticated dynamic behavior --- unlike most closed form equations in algebra. 

 We demonstrate how current SD modeling software technology may infuse real-

world modeling activities into the high school algebra curriculum.  Such modeling 

addresses many of the Common Core State Standards-Mathematics (CCSS-M) Practices 

and those CCSS-M Standards that describe both modeling and function understanding.    

We provide examples of the System Dynamics modeling that successfully incorporate 

into high school algebra classes as observed over two decades in inner city and suburban 

high schools.     
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B. System Dynamics Modeling for Learning Mathematics 
 
 In 1915, John Dewey complained that education was not adapting to changes 

brought about by the industrial revolution, “the primary waste is human life, the life of 

the children while they are at school, and afterward because of inadequate and perverted 

preparation” (Pea 1985, p. 179).  Today, we have effective technologies that provide 

powerful mathematics learning experiences (Kaput & Roschelle 1999).  One of those 

experiences is teaching students to create models to study complex dynamic systems. 

 There are multiple ways that modeling complex systems supports learning 

mathematics in algebra classes:  

1.  Support for student model building and justification in problem solving 

Model building to solve quantitative problems affords students and teachers the 

opportunity to discover how students think during problem-solving.  Confrey et al. (1994) 

state that having students create models and explain them helps them develop critical 

thinking and inquiry skills.  Stratford et al. (1998) studied secondary students as they 

created dynamic models.  They report that students developed skills such as analyzing, 

reasoning, synthesizing, testing and debugging, and explaining.  These are skills 

recommended by the CCSS-M standards. 

  The visual nature of the STELLA icons, the naming of icons (words or phrases), 

and the structure of the model, make the model a vehicle that is more accessible to 

students both for building (translating from a dynamic story scenario to symbolic 

representation) and for justifying their work.  Students can more easily identify the reason 

they think the model behaves the way it behaves, and they can explain how and why they 
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manipulated the model in response to “what if” experiments where adjustments are made 

to the variables of interest.  

2.  Identifying student misconceptions 

 The structure of the model externalizes the student’s conception about the nature 

of the phenomenon, often referred to as “surfacing” the student’s mental model. Senge 

(2006) defines mental models as “deeply ingrained assumptions, generalizations, or even 

pictures or images, that influence how we understand the world and how we take action” 

(p. 8). Though mental models tend to be incomplete, most of the world’s understanding 

of complex systems resides in the heads (mental models) of those who interact with such 

systems (Forrester, 1987). The same can be said about our students’ understanding of 

how the world works. Making one’s mental model explicit is a very important step in 

understanding how complex systems operate (Bliss & Ogborn in Doerr, 1996; Steed, 

1992). Hence, surfacing students’ conceptions of how systems work is a prerequisite for 

modifying their mental models through the experiences provided in school. 

3.  Model-building enhances conceptual understanding and transfer to other disciplines 

 Many researchers indicate that model building provides students an opportunity to 

enhance conceptual understanding (Hung, 2008; Mandinach et al., 1993) of real-world 

problem solving strategies, (Gordon & Gordon, 2006; Hung, 2008; Lesh & English 2005) 

and transfer to other disciplines (Hung 2008).  

 In algebra, students have built SD models to study drug pharmacokinetics 

(including alcohol consumption), how population growth impacts renewable resources, 

and maintaining a balanced ecosystem involving a predator and prey population (Fisher, 
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2005, 2011a, 2011b).  Each of these student lessons is enhanced using a multidisciplinary 

approach with modeling. 

4. Practice with covariation analysis 

 “Covariation is the mental process of coordinating the values of two quantities as 

they vary simultaneously” (Saldanha & Thompson in Thompson et al., 2013). 

Covariation analysis is difficult for many high school students and necessary for 

understanding of mathematical functions (Oehrtman et al., 2008).  It has been suggested 

that using “time” as one of the variables that is changing in a covariation analysis is a 

path that may help students develop this skill (Oehrtman et al. 2008, 31; Carlson et al., 

2002).  Having students create models of dynamic systems requires repeated analysis of 

time series graphs, supporting covariational reasoning.  

5.  Introducing basic calculus concepts 

 SD modeling is based upon understanding rates of change and how those rates 

create certain patterns of accumulations.  Many of the typical functions studied in algebra 

and in SD are based upon a conceptual understanding of calculus: linear accumulation 

occurs because its rate of change is constant, parabolic/quadratic accumulation occurs 

because its rate of change is linear, exponential accumulation occurs because its rate of 

change is proportional to the current accumulated amount, etc.  A teacher can use 

language that reinforces these conceptual relationships between a given function and its 

rate of change.  Kaput et al. (1997) argue that the use of technology and modeling 

“continuous change phenomenon” will help “democratize calculus” and constitutes an 

essential skill for preparing students for the world. 
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C. System Dynamics Modeling as Problem Solving and Cognitive Technology 
 

Many of our daily experiences involve interacting with complex systems (Lesh, 

2006). Introducing SD into the K-12 curriculum is both timely and critical (Hung, 2008; 

Sterman, 2002).   According to Jacobson et al. (2006): 

The conceptual basis of complex systems ideas reflects a dramatic change in 
perspective that is increasingly important for students to develop as it opens new 
intellectual horizons, new explanatory frameworks, and new methodologies that 
are becoming of central importance in scientific and professional environments 
(p. 12).  

 
Forrester (1987) observes that the behavior of complex systems is often counter-intuitive, 

and that the cause of systemic problems can usually be found within the system, yet we 

don’t attempt to understand systemic structure this way.  We simplify the problem in the 

hope that we can grasp it., but the balance between simplification and representing 

sufficient reality is delicate. Pea (1985) uses the term “cognitive technologies” for tools 

that capture more realistic causal relationships in systems without overburdening the 

mental capacity of the modeler, thus “transcend[ing] the limitations of the mind, such as 

memory, in activities of thinking, learning, and problem solving.”  

  We now introduce the modeling icons that are so critical to successful modeling 

and transfer to algebra.  

 
Representational Icons 
 
 
 SD software (STELLA, shown here) contains elements that 

represent accumulations of “stuff” over time.  This “stuff” can be physical, 

like the number of people in a city, or abstract, like “concern about level 
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of pollution”.  The accumulator is identified as a “stock” shown as a rectangular icon.  

The stock represents a key variable of interest and may be considered the output of the 

function being monitored. 

 A “flow” icon represents a rate at which the stock value is 

changing over time.  If the flow arrowhead is pointing 

toward/away from the stock, a positive value (within the icon) 

represents the rate of increase or decrease, respectively, in the stock value.   

Other icons are called “converters” , represented as circles holding 

parameter values or formulas for auxiliary variables.       

 Finally, there are icons called “connectors” that connect 

converters to flows, converters to other converters, stocks to flows, or 

stocks to converters.  They act like telephone lines, communicating 

numeric information between components so that formulas can be updated each time step 

(calculation interval).  

 

Exponential Function Example 

 Consider an example where the goal is to calculate the growth in the population of 

a small town.  Table 6 illustrates a recursive calculation approach. 

Table 6: The recursive calculations for population growth of 0.6% compounded annually. 
 

Year Population each year. 
Starting Population 5000 
Population after 1 year 5000+0.006(5000) = 5030 
Population after 2 years 5030+0.006(5030) = 5060.2 
…  
Population after 200 years 16443+0.006(16443) = 16541 

Connector 
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Recursive formula Pt = Pt-1 + 0.006(Pt-1) 
 

 The stock/flow model (Figure 2) also uses a recursive calculation approach.  The 

amount of flow (the rate at which the Current Population will grow) is not constant, but is 

calculated each year as the product of the current population and the yearly net growth 

(0.6%).  In Figure 2, the asterisk in the flow valve represents the multiplication of the two 

values sent by the components upon which the flow depends.   The Current Population 

(the stock) will grow exponentially because its rate of change (increase in population per 

year) is proportional to the number of people that are living in the town in any given year.   

  
Figure 2: The exponential stock/flow model and the graphical output of the stock, Current Population.   

The closed form equation for the Current Population is P = 5000(1.006)t. 
 
 The following sequence of gradually more sophisticated population models 

demonstrates an instructional plan to meld SD and algebra.   

Adding Separate Birth and Death Factors 

 Assume we want to disaggregate the increase in population flow (Figure 2), into 

two flows increase in population, say births per year (assume growth at 1.4%) and 

decrease in population, say deaths per year (assume decline at 0.8%).  

5000 

0.006 

* 
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 A STELLA model diagram for this scenario (values are superimposed on the 

diagram to indicate component definitions) is shown in Figure 3.  The graphical output of 

the model is identical to that shown in Figure 2, but disaggregating the inflow from the 

outflow is useful for the succeeding examples. 

 
Figure 3: The STELLA diagram for simulating a population growth with separate birth and death rates. 

                         The closed form equation is P = 5000(1 + 0.014 - 0.008)t = 5000(1.006)t. 

Students discuss those features of the model that must be altered to have the 

model produce a Current Population that is growing exponentially, decaying 

exponentially, or remaining in steady state.   

Extensions: 1.  We could also add immigration and emigration to our story with 

inflow for immigration and outflow for emigration.  Those flows would be defined in a 

manner similar to the definitions for births and deaths flows.  Such a model would be 

very useful in a social studies class when discussing current and suggested immigration 

laws.  2.  Suppose we wanted to consider a predator/prey scenario where one could 

identify the population structure in Figure 3 as a prey population and add a second 

population structure representing a predator population.  A few additional converters and 

connectors could be added to indicate how the numbers in each population (stock) affect 

the death percent and birth percent of the other population.  The scenario used in an 

0.014 

5000 

0.008 

* * 
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algebra class has each population start out in steady state.  Then a new issue is presented:  

The local farmers and ranchers are upset that the predator is killing some of their 

livestock, so they want the number of predators reduced.  Students are challenged to 

come up with a predator reduction policy that is effective over the long term. 

Population Scenario with Fixed Carrying Capacity 

 Our students will observe that populations cannot grow exponentially forever, 

since pressures on population slow the growth over time.  The upper limit resulting from 

those pressures is often referred to as “carrying capacity.”  As the number of people in 

the population grows near the carrying capacity (say 20,000 people) of the environment, 

the percent of deaths starts to increase (or the percent of births starts to decrease, or both).  

The STELLA diagram that would capture this part of the story is shown in Figure 4.  The 

reader will recognize the upper part of the diagram from Figure 3, but with a different 

definition for the percent of deaths per year.  
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Figure 4: STELLA diagram for simulating population growth with carrying capacity. 

 
The carrying capacity has its own new converter, while another holds the ratio of 

Current Population to carrying capacity.  A third new converter, the effect of ratio on 

percent of deaths, takes the value of the ratio upon which it depends and transforms that 

ratio into a new value that is sent to the percent of deaths per year.  The effect of ratio on 

percent of deaths component is defined graphically, with (input from ratio) domain 0 to 

1, and (output) range 0.05 to 2.   The output value of the effect of ratio on percent of 

deaths is multiplied by the percent of deaths per year (0.008) causing the death percent to 

grow or decline based upon how close the current population is to the carrying capacity.  

The model in Figure 4 will produce the typical logistic growth pattern associated with 

adding a fixed carrying capacity to a population growth model, a concept in some algebra 

II courses.   

5000 

0.014 0.008*effect 

20000 
÷ 
 

* * 
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 Students could be asked to determine (and test) policies to mitigate the dramatic 

rise in deaths when the population approaches the carrying capacity of the environment. 

 Extension: An extension of the model in Figure 4 replaces the fixed carrying 

capacity with a non-constant resource upon which the population depends.  That 

resource, say food (a stock), could have its own inflow (regeneration) and outflow 

(consumption).  The model enhances conversations about global hunger, especially if 

team-taught by math, social science, and health teachers.   

 Modeling is an art as well as a science.  There is always a trade-off between 

capturing enough of the dynamic to be able to gain important insight into a problem but 

not so much that the most important relationships are hidden in the details. We recognize 

that significant learning occurs in the model-building process, but having students share 

that learning with others by explaining the insights or devising experiments to surface 

important model behavior can add depth to the learning that occurs (Alessi, 2009).  Using 

the SD approach and a model-building tool like STELLA provides an avenue for student 

experimentation and communication.   

D. System Dynamics Modeling and Common Core State Standards – Mathematics 
 

 The processes associated with SD modeling address a significant number of the 

Mathematical Practices and the Functions and Modeling Overview Standards of the 

CCSS-M.  A detailed alignment list can be found at 

http://www.ccmodelingsystems.com/res-stds-skills-math.html. 
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E. Conclusion 
 

With demonstrations and examples, we have presented some arguments for 

providing students with more advanced tools and methods of analysis currently used by 

professional consultants, government officials, and university professors who are trying 

to address serious dynamic complex problems.  These tools are accessible to a broad 

audience of high school algebra students and can provide an alternate representation 

allowing students to study dynamic problems that may be used to both teach/reinforce the 

traditional closed form equation approach as well as surpass it with concepts from 

computer modeling. 

 An issue that lies beyond the scope of this paper, but has profound implications 

for any attempt to introduce SD modeling into school mathematics, is the nature of 

assessment.  It is pertinent to ask whether and how the complexity of modeling processes 

illustrated in this paper—for example, the progressive development of more and more 

complex models as extra factors are taken into consideration—can be meaningfully 

assessed through mass tests that afford minimal opportunities for dialogic communication 

over an extended time period. The issue gains in importance given the known effects of 

assessment practices on instruction. 

 There is still significant work to be done.  Although some curriculum has been 

developed using the SD modeling approach, especially for mathematics and the natural 

and life sciences (Fisher, 2005, 2011a; Creative Learning Exchange22 2015), much more 

curriculum needs to be developed that connects mathematics to other subjects, 

                                                
22 See http://www.clexchange.org/cleproducts/default.asp. 
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specifically social studies, economics, and health, as well as science.  While there is some 

online SD modeling training for math and science instructors (Fisher, 2015), more 

training, both in-person and online, needs to be developed that emphasizes integrating 

mathematics with the social and health sciences and helps interested teachers develop SD 

modeling skills.  Infusion of SD modeling strategies in high school mathematics provides 

significant opportunity for more research, training, and material development that will 

enhance the learning opportunities for students and expand our students’ problem solving 

toolkits to help them address the challenges they will face in the 21st century. 
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IV. Paper 2: Moving Beyond Closed Form Equations: Analyzing 
Complex Systems Using STELLA Reorganizes Algebraic Thinking 

Abstract 
 System Dynamics (SD) modeling is a powerful analytical method used by 

professional scientists, academics, and governmental officials to study the behavior 

patterns of complex systems.  It is a method that has been used with middle school 

students in math and science classes, but has been used more often with high school 

students, [both levels] for over two decades.  In this paper I introduce the modeling of 

complex systems using SD, an icon based analytical method that, due to its powerful 

representational interface is simple enough for a 5th grader to use.  A sequence of nested, 

simple bank account examples, increasing in complexity, is used to demonstrate a 

comparison between using a closed-form approach to mathematizing the problem and 

using STELLA (an SD software).  The article highlights the limitations of closed form 

equations to (eventually) capture the needed problem elements, even when the problem is 

still simple enough for analysis by quite young students using STELLA. The SD 

modeling approach aligns very well with the Common Core State Standards – 

Mathematics (CCSS-M) Practices and Modeling and Functions Standards. 

A. Introduction 
 

  In this paper I will show, using a sequence of simple, nested examples, increasing 

in complexity, why math teachers should not rely solely on the current symbolic 

representation (closed form equation) for studying dynamic problems in algebra.  The 

value of the new approach and software (STELLA) for mathematizing and analysis 

include: 
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•  a visual, icon-based method of defining variables and differentiating their purpose in 
the problem, 

•  specifying variables using a naming procedure that includes full words or phrases, 
•  a structural design that lays out, in two dimensions, the dependencies between the 

variables and parameters in the problem, allowing a more pictorial view of the overall 
problem structure, 

•  a dynamic approach to defining functions (i.e., focus on rates of change), 
•  a quick approach to testing “what-if” scenarios, altering model structure or 

parameters, and re-running the model to view the change in behavior graphically or 
numerically, 

•  a representation that has been used by adult professionals to perform complex 
systems analysis, but that is still accessible to a broad section of high school students 
(who can, therefore, also perform complex systems analysis - Fisher, 2011b). 

 
 Mathematizing story problems into closed form has, historically, been difficult for 

students (Schwartz & Yerushalmy, 1995).  New technologies can provide alternate and 

more visual representations of many functions studied in algebra, making algebraic 

concepts accessible to more students.  While the closed form representation of problems 

has served us well in the past, many of the problems our students will face, as adults, will 

require the ability to understand and make decisions about complex systems (Lesh, 

2006).  The goal of this paper is to support an evolution in teaching strategy and the 

content employed so as to make the study of complex systems available to algebra 

students. 

B. Background 
 

 “Change is accelerating, and as the complexity of the systems in which we live 

grows, so do the unanticipated side effects of human actions, further increasing 

complexity” (Sterman, 1994).  Our nation and the global community face serious 

problems such as global warming, soaring national debt, unsustainable consumption of 

natural resources, daunting health costs for families, rising numbers of children in 
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poverty, environmental impacts on health, and more.  How will our children be able to 

successfully address these problems if teachers do not have  strategies that are designed 

to help students build understanding of dynamic systemic problems?  

 Using technology it is possible to have students represent and analyze problems 

that would typically have been out of their mathematical reach using traditional closed 

form  equation approaches (Blume et al., 2008; Fisher, 2011a; Pea, 1987).   One approach 

to the study of dynamic complex problems, used successfully by professional modelers 

and by pre-college students, is the System Dynamics (SD) method. 

Representational Icons 
 
 The STELLA SD software, described here, contains four main icons.  One icon 

operates as an accumulator of “stuff” over time.  This “stuff” can be 

physical, like the number of cars in a city, or abstract, like “concern 

about child homelessness.”  The accumulator is identified as a “stock” 

shown as a rectangular icon.  The stock depicts an important variable of interest and 

represents an aspect of the state of the system. 

 A “flow” icon represents a rate of change in a stock.  If 

the flow arrowhead is pointing toward/away from the stock, a 

positive value (within the icon) represents the rate of 

increase/decrease of the stock value.   

Another icon called a “converter” could represent either a 

parameter value or a non-stock variable whose value is computed using a 

formula.       
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 Finally, there are icons called “connectors” that link converters 

to flows, converters to other converters, stocks to flows, or stocks to 

converters.  They act like telephone lines, communicating numeric 

information between components so formulas can be updated each time step (calculation 

interval).  

 A simple finance scenario will be used to show how it is possible to think about a 

problem using different symbolic representations, and will show some of the advantages 

of each representation. 

The First Lesson, Linear Growth: Depositing Money in a Shoebox  
 
 Eleven year old Demitre wants to save money to buy a bicycle and helmet that 

costs $198.  His grandmother gave him $50 on his last birthday.  He has a regular 

allowance of $5 per week for doing some chores around his house.  He wants to know 

how long he will have to save his money in order to buy the bike and helmet.  (We will 

assume he lives in a state that does not have sales tax.)  Demitre has not yet studied 

algebra so he might determine how long he has to wait using a recursive sequence of 

calculations, as shown below in the second column of Table 7. 

Table 7: Calculations for time needed to purchase the bicycle and helmet. 
 
Week Money in shoebox 

(recursive calculation) 
Money in shoebox 
(calculation leading to 
algebraic equation) 

Starting amount of money: $50 $50 
Money after 1 week $50 + $5 = $55 $50 + $5 = $55 
Money after 2 weeks  $55 + $5 = $60;     ($50 + $5) + $5 = $50 + 2*$5 

= $60 
Money after 3 weeks $60 + $5 = $65; ($50 + 2*$5) + $5 = $50 + 

3*$5 = $65 
… … … 

Connector 
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Money after 30 weeks $195 + $5 = $200; ($50 + 29*$5) + $5 = $50 + 
30*$5 = $200 

 
 Both calculations lead Demitre to the same conclusion, thirty weeks of saving are 

required.  The calculation shown in the middle column is intuitive, if cumbersome.  The 

calculations shown in the third column are even more cumbersome but lead to a pattern 

that can be written as a closed form linear formula, Mt = 50 + 5t, the type we want 

students to learn in algebra, because it is useful for mathematical thinking for future 

courses.   

 We could represent the calculations in the middle column using the recursive 

formula, Mt = Mt-1 + 5.  Pictorially, students could draw a box (or stock) where the money 

is being stored and draw an inflow to the box showing that a constant amount of money is 

being deposited into the box each week.  (See Figure 5, left diagram.) 

Figure 5: The pictorial representation of depositing money in a shoebox, and the graph of the 
amount of money in the shoebox over time. 

Note: the user can drag the cursor over the graph to read the values of the 
dependent and independent variables at each point. 

 
 Demitre thinks he may want to spend a little of his allowance each week, perhaps 

$2 on treats.  So now, how long will it take him to save for his bicycle and helmet?  See 

Table 8. 

 

  

5 50 
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Table 8: Calculations for time needed to save to purchase the bicycle and helmet if $2 are spent 
each week. 

 We see that Demitre will now need to save for fifty weeks to meet his goal. 

Again, the middle column is the most intuitive method of hand calculation for someone 

who does not know algebra.  The third column shows how one might recognize the 

pattern necessary to write the algebraic formula to summarize this savings plan, Mt = 50 

+ 5t – 2t = 50 + 3t. 

 The recursive formula for the middle column calculation is Mt = Mt-1 + 5 – 2.  (I 

will purposefully not simplify the arithmetic.  The diagram in Figure 6 shows the increase 

and decrease separately.)  If we want to draw a picture of what is happening in this 

situation we could draw a figure similar to Figure 5, but add an outflow to represent the 

constant spending that is occurring.  See Figure 6. 

 

Week Money in shoebox 
(recursive calculation) 

Money in shoebox 
(calculation leading to 
algebraic equation) 

Starting amount of money $50 $50 
Money after 1 week $50 + $5 - $2 = $53 $50 + $5 - $2 = $53 
Money after 2 weeks  $53 + $5 - $2 = $56     ($50 + $5 - $2) + $5 - $2 = $50 

+ 2*$5 – 2*$2 = $56 
… … … 
Money after 10 weeks $77 + $5 - $2 = $80 ($50 + 9*$5 – 9*$2) + $5 - $2 

= $50 + 10*$5 - 10*$2 = $80 
… … … 
Money after 50 weeks $197 + $5 - $2 = $200 ($50 + 49*$5 – 49*$2) + $5 - 

$2 = $50 + 50*$5 – 50*$2 = 
$200 
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Figure 6: A pictorial representation of depositing money to and spending money from a shoebox, 

and the graph of the money in the shoebox over time. 
 

The Second Lesson, Exponential Growth: Putting the Money in the Bank  
 
 Demitre’s older sister, Helena, says Demitre should put his money in the bank 

because he will collect interest and that will shorten the amount of time he will need to 

save to purchase his bike and helmet.  She explains how interest works.  To make the 

problem easier for him to understand she assumes the yearly interest will be 10%.  She 

also says that, since he will want to know how much will be saved each week, she will 

assume that the interest is calculated weekly by the bank.  That means the weekly interest 

rate will be about 10/52% or 0.0019.  She tells him they will only consider interest and no 

deposits or withdrawals for this initial interest example.  See Table 9. 

Table 9: Calculations for time needed to purchase the bicycle and helmet placing money in the 
bank at 10% annual interest, compounded weekly. 

 
Week Money in bank 

(recursive calculation) 
decimals rounded for 
convenience 

Money in bank 
(calculation leading to 
algebraic formula) 

Starting amount of 
money 

$50 $50 

Money after 1 week $50 + 0.0019($50) = 
$50.095 

$50 + 0.0019($50) = 
$50(1.0019) = $50.095 

Money after 2 weeks  $50.095 + 0.0019($50.095) 
= $50.19 

($50 + 0.0019($50)) + 
0.0019($50 + 0.0019($50)) = 
$50(1.0019)2  = $50.19 

… … … 

50 5 2 
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Money after 10 weeks $50.86 + 0.0019($50.86) =  
$50.96 

$50(1.0019)9 + 
0.0019($50(1.0019)9) =  
$50(1.0019)10  = $50.96 

…   
Money after 50 weeks $54.87 + 0.0019($54.87) =  

$54.97 
$50(1.0019)49 + 
0.0019($50(1.0019)49) = 
$50(1.0019)50  = $54.98 

… … … 
Money after 1040 weeks 
(about 20 years) 

$359.33 + 0.0019($359.33) 
=  $360.02 

$50(1.0019)1039 + 
0.0019($50(1.0019)1039) = 
$50(1.0019)1040  = $360.02 

  

 Again, the middle column appears more intuitive.  The third column shows the 

pattern for the algebraic formula if one were considering compounding interest weekly 

for 1040 weeks, i.e., M = 50(1.0019)t, where t = weeks. 

 The recursive formula for the middle column in table 9 is Mt = Mt-1 + 0.0019*Mt-1.  

If we wanted to look at a picture that would follow the recursive thinking in column two 

of Table 9 for this interest bearing account, we might draw the diagram shown in Figure 

7, on the left. 

 

 
Figure 7: A picture showing how the interest on an interest bearing bank account might be 

calculated and added to the bank account.  The graph shows the amount of money in the bank over 1040 
weeks (20 years). 

 
What the diagram in Figure 7 shows is that Demitre is starting with $50 in the bank and is 

adding interest each week.  The interest is calculated by taking the current amount of 

 

52 weeks 
of growth 

 

* 50 

0.0019 
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money that is in the bank and multiplying it by the weekly interest rate (0.0019).  The 

asterisk in the valve part of the inflow indicates that the software is multiplying the two 

factors that point to it.  When the interest is added, in any given week, the Money in Bank 

is increased by the interest amount and is therefore larger when the subsequent interest 

calculation is made, just as is shown in the second column (recursive calculation) of 

Table 9. 

 Up to this point the equation and STELLA representations were both useful.  

Now, in the next lesson, we start to see how we can easily continue to expand the 

problem using SD but not when using an equation approach. 

The Third Lesson, Constant and Exponential Change: Adding Interest to Demitre’s 
Original Savings Plan  
 
 Demitre has been convinced by his sister that placing his money in the bank is a 

good idea.  But he still wants to make his weekly deposits of $5 and wants to be able to 

take out $2 each week for incidentals.  Demitre will probably not find a bank that will 

give him 10% interest, but we will keep this interest rate, for convenience.  Let’s see how 

we can calculate the weekly status of his money now. 

Table 10: Calculating the money in the bank with 10% annual interest, compounded weekly, $5 
deposited per week and $2 withdrawn per week. 

 
Week Money in bank 

(recursive calculation) 
decimals rounded for 
convenience 

Money in bank 
(calculation leading to 
algebraic equation) 

Starting amount of 
money 

$50 $50 

Money after 1 week $50 + 0.0019($50) + $5 - 
$2 = $53.095 

$50(1.0019) + $5 - $2 = 
$53.095 

Money after 2 weeks  $53.095 + 0.0019($53.095) 
+ $5 - $2 = $56.196 

$53.095(1.0019) + $5 – $2 = 
$56.196 
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there is no longer a convenient 
pattern to follow when we 
combine exponential and 
constant change 

…   
Money after 10 weeks $78.07 + 0.0019($78.07) + 

$5 - $2 =  $81.22 
 

…   
Money after 46 weeks $195.26 + 0.0019($195.26) 

+ $5 - $2 =  $198.63 
No simple closed form 
equation 

 
 The recursive formula used for column 2 of Table 10 is Mt = Mt-1+ Mt-1*0.0019 + 

5 - 2.    It shows he could make the purchase four weeks sooner, by placing his money in 

the bank.  Eleven year old Demitre may not be able to follow all the calculations shown 

in column 2 of Table 10, but if we showed him the diagram in Figure 8 he would 

probably be able to understand the logic that is shown. 

 

 
Figure 8: A picture of Demitre's savings plan, with interest added to his bank account each week, 

and a constant amount in weekly deposits and (constant) weekly spending.  The (cut-out) graph shows the 
amount of money in the bank over 52 weeks. 

 
Extending Lesson 3 
 
 Demitre’s parents want him to develop good financial habits.  They are willing to 

increase his allowance to $6 per week if he will put $1 per week in a savings account in 

the bank that will earn 12% annual interest (compounded weekly).  If he were just to put 

52 weeks 
of growth 

 

50 2 

5 

0.0019 
* 
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this extra dollar in a savings shoebox he knows he would have saved $46 in his shoebox 

at the end of 46 weeks (when he bought his bike and helmet).  Placing the extra dollar in 

his checking account and having the bank automatically transfer $1 to his savings 

account each week should work out better for him, since he is earning interest on his 

accounts.  How much more money will he have in savings after 46 weeks, if he follows 

this plan?  ($2.47) A possible model diagram and graphical output are shown in Figure 9.  

There are many scenarios that could be tested with the model in Figure 9, different 

interest on checking and/or savings account, different savings amounts, different 

spending amounts, etc. 

 

 

Figure 9: A picture (diagram) of Demitre's checking and savings account system.  The graph 
shows the sum of both the checking and savings accounts. 

 

Other Considerations 

 It is possible to design STELLA diagrams that will produce not only linear and 

exponential function behavior, as shown in the previous examples, but produce quadratic, 

convergent (goal-seeking), logistic, and sinusoidal function behavior, for example.   It is 

6 
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then possible to combine these STELLA diagram segments to study larger problems in 

the same way that small Lego structures are combined to develop larger Lego systems.   

 STELLA has been used as a student model-building tool in some mathematics 

and science classes at the middle and high school level for over two decades.  Curriculum 

has been developed for use in middle school and for use in high school mathematics and 

science classes (Creative Learning Exchange,23 2015; Fisher, 2005, 2011a).   

 A detailed alignment of SD modeling and the CCSS-M Practices and Standards 

can be found at http://www.ccmodelingsystems.com/res-stds-skills-math.html. 

C. Discussion 
 

 The first three examples (shown in lessons 1 and 2) in this article are exact 

models, simple enough to be expressed both by closed form equations and STELLA 

diagrams, but most real problems are more complex.  Mathematizing with closed form 

equations typically requires simplifying the problem, sometimes extensively, to be able to 

bring the problem to an approachable level for students.  The SD approach allows more 

complexity to be retained and is ideal to model natural phenomena that are not 

necessarily simple.  It provides a vehicle more tuned to real-world analysis, giving 

students a tool that can grow with them throughout their educational instruction and into 

their professional lives.   

 Another benefit of the SD approach is that it more directly assesses student 

understanding, as the stock/flow diagrams bring to the surface, for analysis and 

discussion, the student’s conception of how a problem is structured, surfacing their 

                                                
23 See http://www.clexchange.org/cleproducts/default.asp. 
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“mental models.”  This visual mapping of the problem provides a vehicle for problem 

analysis that is inclusive of modeler and others, including students and teachers.  The 

modeling acts both as a mathematization process and a communication process.  As such, 

it allows students access to more sophisticated problems and gives them a vehicle for 

explaining their work that is more intuitive than using the closed form equation.   Access 

to such dynamic problems, starting from closed form algebraic equations comes later, in 

calculus.  Whereas learning the closed form equation in calculus helps only modestly, as 

most complex real world systems have no closed form solution of any type. 

D. Conclusion 
 

 When we restrict our mathematical representation to closed form algebraic 

equations we limit the types of problems that students can study.  In fact we also exclude 

students for whom the equation representation is not easy to understand nor easy to 

develop from a problem description.  The System Dynamics modeling method is based 

on observing patterns of change over time for problems whose structure is laid out using 

icons that are identified using full words or phrases and depicting the dependencies 

between variables in the diagram.  

 We need to take advantage of the power that technology brings to our students: 

some using visual representations, some assisting with the tedious number crunching 

needed to determine long-term patterns, some possessing the ability to easily link 

different function structures together to capture complex behavior, and some possessing 

the ability for students to easily test “what-if” questions about the subject of interest.  We 



           80
            

need more adults (now and in the future) who can use newer analytical methods and 

technology to make informed decisions about complex problems.  
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V.  Paper 3: Attempts to Enhance High School Algebra Through 
System Dynamics Modeling 
 

Abstract 
 
In this paper I argue that there is a compelling need to provide secondary students with 

experiences that will allow them to begin to analyze complex systems problems.  Dealing 

with the unintended consequences of complex systems problems present significant 

dilemmas for people locally, nationally, and globally. Technological advances have made 

access to the study of complex phenomenon accessible by pre-college students.  This 

author has used System Dynamics modeling with students in grades 9 – 12, successfully, 

for over 20 years in mainstream mathematics classes, in both inner city and suburban 

high schools.  What is missing is research to support the efficacy of this approach on a 

broader scale.  An initial attempt to document differentiated learning outcomes from 

using SD modeling was undertaken with the help of two high school math teachers in a 

public high school.   Multiple events led to compressing the time allotment for the 

classroom experiment, explained in this paper, to only 4 class periods.  The experiment 

failed to differentiate learning outcomes for the experimental and control groups, as one 

might expect, but it did surface useful information about the teaching environment.  The 

two participating teachers had used SD modeling in their algebra classes in the past, and 

found the experience valuable for their students.  But a variety of technical, curricular, 

and scheduling issues, along with departmental dynamics conspired to present new 

barriers that were too difficult for these two teachers to overcome.  An explanation of the 
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design and results of the experiment, from both the student perspective and from the 

teacher perspective, is presented. 

A. Introducing System Dynamics Modeling into K-12 Education 
 
System Dynamics Theory and its Importance 

“So if we want to bring about the thoroughgoing restructuring of systems 
that is necessary to solve the world’s gravest problems—poverty, 
pollution, and war—the first step is to think differently.  Everybody 
thinking differently” (Meadows, 1991, p. 3).    

 
Mathematical analysis can play a part in offering insight into systemic problems, and its 

potential contribution has been greatly increased through new representational resources 

that allow access to the analysis to many more people (Kaput & Rochelle, 2013). 

 In particular, System Dynamics modeling offers an analytical approach to the 

study of complex systemic problems (poverty, pollution, war, etc.) focusing on 

connections between components within the system, including feedback loops.  

Developed at Massachusetts Institute of Technology in the late 1950s by Jay Forrester, it 

has its roots in control theory.  System Dynamics (SD) modeling has been successful at 

providing insight into difficult complex problems dealing with global warming (Sterman, 

2011), kidney disease management at the Mayo Clinic (Gallaher, Steensma, Chrisope, 

Dingli, & McCarthy, 2011), disaster planning (Hoard, Homer, Manley, Furbee, Haque, & 

Helmkamp, 2005), health care policy reform (Homer & Hirsch, 2006), and biodiversity 

loss, to name a few.  In 1985, when one of Jay Forrester’s students, Barry Richmond, 

developed an icon-based software (STELLA, described later in this article) that affords 

SD modelers a visual, intuitive interface for designing and running SD models, SD 

analysis became accessible to pre-college students. 

The Case for Introducing SD Theory in Secondary Schools 
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 As teachers in K-12, with the potential to influence student thinking due to 

required student attendance for 13 years, we are called upon to prepare the younger 

generation with skills and analytic capabilities to help them when they are called upon to 

make decisions in their lives, in educational goals, in the world of work, and as 

participative citizens.   To do this, teachers must continue to update their skills as new 

methods of analysis become available and accessible to their student populations.  Jay 

Forrester has spent the past 25 years supporting efforts to bring SD modeling and analysis 

to the pre-college environment so that students would have the capability to address some 

of the pressing global problems of our times as they mature.  If it is desirable to have 

“Everybody thinking differently” (i.e., more systemically), then K-12 teachers are in a 

unique position to facilitate that outcome.   

 Stigler and Hiebert (2009) completed two nationally representative studies of the 

instructional practices of junior high school mathematics and science teachers in the 

United States.  The first study (in 1995) indicated that not much had changed in teacher 

instructional practice in the past 100 years.  The second study (in 1999) still found no 

evidence that teacher practices had changed even though teachers were more aware of 

mathematics reform efforts.  Stiegler and Hiebert stress that schools must become places 

where teachers as well as students are expected to learn.    

 Kaput et al. (2013) argue further that, within mathematics classrooms and many 

other contexts, representational access to mathematical concepts has not changed in (at 

least) the last 100 years.  They indicate that the current symbolic representation of 

mathematics was developed for an intellectual elite who, at the time, were less than one 
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percent of the population and for centuries only a very few people were ever expected to 

learn how to manipulate these symbols.  Consequently, no effort was made to bring this 

symbolic mathematizing vehicle up-to-date, as was done with the automobile, airplane, 

and communication industries, each of which has become a common tool for living by 

the general public.   Today we expect a very large, diverse population of students to learn 

algebra, but we have not developed an accessible style of reading and manipulating 

algebra (symbolically) that would be available to this population.  Kaput et al. (2013) call 

for “dramatic new efficiencies across the entire K-12 curriculum… [if we are expected 

to] teach much more mathematics to many more people.”  They coined the phrase 

“democratizing mathematics” to describe this effort.   

 I assert that System Dynamics modeling provides a significant step forward, both 

in instructional methodology in mathematics and in student accessibility to reading and 

writing algebra (symbolically) (Fisher, 2005, 2011b).   However, having students build 

small simulation models involves an instructional process that is very different from the 

traditional methods used by most US mathematics teachers.  The visual, dynamic nature 

provided by the SD software (explained shortly) has been shown to make mathematics 

more accessible to students, as it has been successfully used for more than two decades 

by children as young as 11 years of age (Quaden et al., 2008, Waters Foundation,24 2005).  

So, how might we go about educating those teachers who are interested in modifying 

their instructional approach, to incorporate this new System Dynamics analytic method?  

Challenges to Teacher Change 

                                                
24 See http://www.watersfoundation.org/about/history/ and http://watersfoundation.org/systems-
thinking/systems-thinking-strategies/ 
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Teachers’ receptivity to change 
 
 Most reformers believe that teachers are the key to change in the classroom (Wolf 

& LeVasan, 2008). Important questions to consider for teachers when introducing 

innovation into education include: 

•  Is the innovation consistent with the teacher’s beliefs about (a) his/her role in the 
classroom (e.g., teacher as the source of information versus facilitator of learning), 
and (b) what they think students should be learning and how they should learn it 
(e.g., will necessary content be covered versus will students discover and/or build 
their knowledge)? (Philipp, 2007) 

 
•  Have teachers had a role in the change (Rosenblatt, 2004)? 
 
•  Does the change consider the school culture, i.e. does it have administrative, 

parental, and community support? 
 
•  Have teachers been given extra time to implement the change; is professional 

development available to help teachers implement the change? 
 
•  Is there a method/incentive for recognizing teachers who implement the change 

well? 
 
Barriers to Teacher Change 
 
 If any of the questions mentioned in the section above is answered in the negative, 

it can act as a barrier to change.  Additional barriers to consider (Wolf et al., 2008) 

include: 

•  Teachers tend to be fearful of change. 
 
•  The demands of high stakes testing make teachers less inclined to try new ideas in 

the classroom that do not directly address performance on these tests [especially if 
their evaluations are partly based on student performance on these tests]. 

 
Additional Barriers Related to the Use of Computer Technology 
 
 Unfortunately, if the innovation involves using a technology the teacher has not 

yet incorporated into his/her instruction, and if that technology also involves modifying 
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the teacher/student relationship (as can be the case when creating simulation models), 

there are additional barriers that can present themselves.   

•   Some teachers are fearful of losing control of their class, due to the change in their 
expected role (Skaza et al., 2013; Zbiek et al., 2008) 

 
•   Modeling can require teachers to have more domain knowledge (Hmelo-Silver et 

al., 2006; Roberts et al., 1988) 
 
•   If the innovation is new (as in the case of creating simulations) there may be a lack 

of appropriate curriculum (Ang, 2001; Zbiek et al., 2008) 
 
• Teachers often lack the time to develop skill (using the theory, using technology, in 

developing curriculum, in reorganizing lessons, in developing new types of 
assessment)  (Doerr, 1996; Zbiek et al., 2008) 

 
•   For an innovation to take hold there is a need for ongoing administrative and 

technology support.  (Doerr, 1996; Otero et al, 2005; Roschelle et al., 2000) 
 

 Specific to building simulations that involve the study of complex systems  (as is 

the case with more advanced System Dynamics modeling lessons for students), the 

following further barriers can emerge.  

•    Teachers who are linear thinkers find working with complex systems to be counter-
intuitive  (Jacobson et al., 2006) 

 
•   The interdisciplinary nature of complex systems makes them hard to understand, 

especially because there is no right answer; validation of models can be difficult 
(Doerr et al., 2008; Jackson et al., 1994; Jacobson et al., 2006) 

 
 At this point the task of facilitating teacher receptiveness to including SD model-

building lessons in their instruction might seem insurmountable, but it is a challenge 

worth continued effort.    High School students are capable of creating impressive 

original SD models and explaining the logic within the models (Fisher, 2011a), and 

appear to be quite receptive to this instructional approach even when used in more guided 

model-building lessons (Fisher, Gallaher, Macovsky, 2003). 
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Modeling with STELLA 

 STELLA is one implementation of SD modeling software that has been used by 

professional modelers to study systemic problems.  It is the SD software chosen by most 

K-12 teachers that have done SD modeling work with their students.  

 STELLA displays change over time, for each variable in the model, in graphs or 

tables.  It does so by representing the state of the system at time zero, t, 2t, 3t, 4t and so 

on, where the time step t could be a minute, a year, etc., depending on the phenomenon 

being modeled.  The state of the system at time (n + 1)t is computed by applying the 

model to the state at time nt.   

 There are four icons that form the foundation for building SD 

models.  A stock, represented by a labeled rectangle, is an accumulator 

and designates a variable whose value increases or decreases over time.  An example of a 

stock variable might be the amount of money in a bank account.  The modeler usually 

wants to track the value of the stock variable over time.  

 A flow (usually represented as an arrow with a wide shaft 

with a valve symbol at its center) represents a rate of change of a 

stock.  If the flow arrowhead is pointing toward the stock, a 

positive value (within the icon) designates the rate of increase in the stock value.  If the 

flow arrowhead is pointing away from the stock, a positive value (within the icon) 

designates the rate of decrease in the stock value.  For example, if the stock designates 

the Amount of Money in a Bank Account, a flow whose arrowhead points toward the 



           88
            

stock could designate the interest added to the bank account each year.  (For this paper 

the purpose of the “cloud” symbol need not be explained.) 

 Another icon is called a converter.  It is represented as a circle and 

is used to hold parameter values or formulas for auxiliary variables 

important to system logic.  Continuing our example, a converter would designate the 

annual interest rate the bank uses to calculate interest to add to a bank account.  

 Finally, there is an icon called a connector.  It is represented by a 

thinly shafted arrow that connects a converter to a flow, a converter to 

another converter, a stock to a flow or a stock to a converter.  It acts like a telephone line, 

communicating numeric information between components so that formulas can be 

updated each time step.   For an example of its use see Figure 11 below.  

 An example of a linear function stock/flow diagram is shown in Figure 10.   

 

Figure 10: Linear function structure. 
 
Here we want to track the volume of water in the bathtub over time, the time step being a 

minute.   We will assume the bathtub is empty initially, and that the inflow of water from 

the faucet (the rate at which the bathtub water is changing) is a constant 3 gallons/minute.  

The volume of water in the bathtub (stock) will grow linearly because its rate (flow) is 

3 0 
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constant.  This representation is built from an understanding of the differential equation 

concept of a linear function. 

 An example of an exponential function stock/flow diagram is shown in Figure 11.  

Here we want to track the amount of money in a bank account over time (in years). We 

will assume the bank account initially contains $100 and that amount will grow at 5% 

interest compounded yearly, over time.25   

 

 

 

 

 

Figure 11: Exponential function structure. 
 
The amount of the flow (the rate at which the bank account will grow) is not constant, but 

is calculated each year as the product of the amount of money currently in the bank  

account and the yearly interest rate of 5%.  The Amount of Money in the Bank Account 

(the stock) will grow exponentially because its rate of change (interest added per year) is 

proportional to the amount of money that is in the bank in any given year.  This definition 

is built from an understanding of the differential equation for an exponential function. 

Beyond the Study of Functions to Modeling Complex Systems Using System 
Dynamics 
 
 It is possible to design other simple function structures for quadratic, convergent, 

logistic, and sinusoidal functions that might be studied in a second year algebra course 
                                                
25 Note: STELLA can represent this graph using the scatter plot option, which will graph the bank account 
values as discrete points plotted just once per time unit (once per year, in this case). 
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(all from their differential equation relationships).  It is then possible for students to 

create more sophisticated stock/flow diagrams of scenarios that involve combinations of 

these functions, producing more realistic function structures and behaviors for problems 

that would have been out of their mathematical reach without this modeling approach  

(Blume et al., 2008; Doerr, 1996; Forrester, 1986; Heid et al., 2008a; Jacobson et al., 

2006; Pea, 1987; Roschelle et al., 2000; Steed, 1992).  A simple example is the following 

drug model that has been used in several algebra II classes,26 after students have studied 

linear and exponential functions. 

 
Figure 12: The IV drip Drug Model. 

 
In the model shown above, a person is receiving a therapeutic drug via an intravenous 

(IV) drip.  The inflow is constant.  The outflow is exponential because the more drug 

there is in the body the more that is eliminated from the body per minute.  The growth of 

the therapeutic drug level in the bloodstream is convergent to a level of around 200 mg, a 

point at which the inflow to the stock matches the outflow from the stock.  

 Model building is a student-centered activity with the teacher acting as a 

facilitator.  To be able to do that the teacher must be comfortable with the process.  To 
                                                
26 The classes include multiple algebra II classes taught each year for over 20 years by myself, by some of 
my colleagues, by high school math teachers I have trained, and by various math teachers who have 
purchased either of my two modeling books (both of which have been available for over 10 years). 

0 * 1 

0.005 
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use the SD model-building approach the teacher will have to learn some basic principles 

of the SD theory, be comfortable using the computer and, in particular, the STELLA 

software.    

 SD theory is based on building computer models of dynamic systems and, using 

the structure of the model (including the feedback loops), explaining the behavior of the 

stock variables over time.  In Figure 12, the feedback goes from the Therapeutic Drug 

Level in the Bloodstream to the drug elimination per minute and back to the Therapeutic 

Drug Level in the Bloodstream.  Feedback analysis may not be part of initial model-

building activities in an algebra II class, but as models are built to capture the dynamics 

of more realistic applications feedback analysis become an essential part of 

understanding those dynamics.  Feedback analysis will not, however, be incorporated in 

this introductory study as the student model-building lessons are quite basic. 

  In the second part of the paper, I describe both my own classroom 

experience introducing SD modeling into my mathematics classes and a classroom study 

introducing SD modeling into algebra II conducted with two interested high school 

algebra II teachers in a suburban school in the northwestern part of the United States. 

B. Introducing SD Analysis in High School: Two Case Studies 
 
A 20-Year Action Research  
 

I have been a high school mathematics teacher for most of my career.  I also 

taught computer programming, so was comfortable using technology in my mathematics 

instruction.  In 1990 I saw the STELLA software for the first time and its influence on me 

during the next 20 years was significant.  I experimented with the introduction of SD 
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modeling in the high school mathematics classes that I taught in two ways.  In the more 

traditional curriculum, algebra I, algebra II, pre-calculus, and calculus, I used SD 

modeling to reinforce elementary function structure and introduce new, slightly more 

sophisticated problems for my students to work with at various times throughout the year.  

I used SD modeling mostly in algebra II, as that was where I found it provided the 

greatest leverage for the concepts I wanted the students to understand.  I only used 8 

lessons throughout the year, but incorporating the SD approach changed the way I taught 

my courses.  I focused more on general patterns of function behavior and their 

mathematical structure, especially using stock/flow diagrams.  When dynamic problems 

only involved a single function I required students to move between the stock/flow 

diagram and the closed form equation.  When the dynamic problems became more 

complicated, we mathematized the problems using only STELLA.  Students were to build 

the correct structures, anticipate model behavior, explain discrepancies between 

predictions and simulation output, and modify the models correctly to incorporate new 

information.  When students had a chance to become comfortable with the tool, I was 

able to introduce even more complicated problems.  Even students who were typically 

not adept at algebra II indicated an appreciation for this approach.  A student who was 

failing my algebra II class (the very first time I introduced STELLA in my class) said, 

“Why didn’t we do this sooner.  This I understand.”  Over the years, other comments 

from students who had difficulty with math were similar.   

 The second place I used SD modeling was in the design of a yearlong modeling 

course.  I did not know formal SD modeling analysis when I started the class.  I just liked 
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the visual nature of the STELLA software, and began a 25-year study of the SD 

analytical approach.  From the beginning the course culminated with students in teams of 

2 building an original model and writing a technical paper explaining their models.  Each 

year I would expand the benchmark for what I wanted students to do in the class.  Each 

year students would jump over the benchmark and surprise me with the models they were 

able to build and explain.  It was this yearly student progress that alerted me to the true 

potential of what SD offered for pre-college students.   

 When I started the modeling class I recruited students from my algebra II class, 

suggesting they take the modeling class.  I looked for students who appeared to be 

somewhat curious about problems in the world, students who exhibited an ability to 

focus, and students who were at average or above ability in second year algebra.   

Students’ ability to focus was very important because I never lectured in the modeling 

course.  I would give students lesson packets that described story scenarios and they 

would work to build models for the scenarios.  They talked to each other.  We held the 

class in a computer lab.  There were no tests and there was no homework.  The packets 

contained questions about the story that students would use the model to answer.   The 

course expanded so that students in grades 9 – 12 were in the same modeling class.  The 

younger students needed to have completed algebra I, and be more adept at math.  

Examples of some of the student models, student technical papers, and some short videos 

of students explaining their models can be found on the web.27  

                                                
27 www.ccmodelingsystems.com/student-projects-highlights.html, 
http://www.ccmodelingsystems.com/student-projects-videos.html, 
http://www.ccmodelingsystems.com/student-projects-other.html and 
https://www.youtube.com/user/CCModelingSystems 
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 I taught SD modeling for 20 years in the public school system in Portland, 

Oregon.  For the first 10 years I used SD modeling in my math classes and taught the 

yearlong SD modeling course at an inner city high school that served a middle to lower 

socio-economic student population.  We eventually had three sections of the first year SD 

modeling course and offered a second year SD modeling course for students.  Only about 

1/3 of the student population attended four-year colleges.  During the second 10 years I 

used SD in math and taught the yearlong SD modeling course at a suburban high school 

where 85% of the students attended four-year colleges.  In both schools the students 

reacted very favorably to the use of SD modeling as part of the math curriculum. 

 I have attended and presented papers or workshops at both the International 

System Dynamics Conference and the K-12 Systems Thinking and Dynamic Modeling 

Conference since 1993.  I wanted to share my initial experiences with teachers and so 

wrote two National Science Foundation grants that were funded.  I was the lead principal 

investigator and directed the NSF projects:  Cross-Curricular Systems Thinking and 

Dynamics Using STELLA (1993-1996) and Cross-Curricular Systems Using STELLA: 

Training and Inservice (1997-2001).  In the NSF projects math, science, and social 

science teachers were taught to build small SD modeling lessons and then build a 

collaborative SD modeling lesson for their classes.  Feeling a need to increase my formal 

training in System Dynamics modeling I earned a graduate certificate in System 

Dynamics from Worcester Polytechnic Institute in 2010 and have just completed my PhD 

in System Science at Portland State University.  I currently sit on Policy Council of the 

International System Dynamics Society.  My experience using SD modeling in the 



           95
            

classroom, my collaboration with other professionals in the SD field, and my continued 

study of SD were the experiences that prompted me to try to continue to help other 

teachers who might be interested in using this SD modeling approach.   

A Design Experiment Infusing SD Modeling In the Algebra II Curriculum 

 One of the main purposes of the experiment (to be explained in this paper) was to 

examine the specific components needed to support high school teachers as they taught 

initial SD model-building lessons in their algebra II classes.   The second purpose of the 

experiment was to document previously observed improvements in students’ ability to 

design and explain models of scenarios that were more complex than those typically 

presented in algebra II classes.   Hence, an experiment was designed and executed in two 

algebra II classes at a public high school in Portland, Oregon during the 2015-2016 

school year.  The school serves a student population that would be considered slightly 

above average in its performance on statewide mathematics assessment (79% proficient). 

It has a 22% minority population and receives no Title I funding.   

 Two algebra II teachers agreed to participate in the experiment.  Each teacher 

taught at least two algebra II courses, so one class could be (randomly) designated as the 

experimental group and the other as a control group.   The teachers were comfortable 

using technology in math instruction (beyond just graphing calculators) and were familiar 

with the STELLA software.  One teacher had some training using SD in mathematics 

about 23 years ago, and the other had experimented with the software in his algebra II 

class about 5 years ago.  Neither teacher was currently using SD modeling in his algebra 

classes.   
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 It is useful to know the math proficiency level of each of the four classes involved 

in this experiment.  The math proficiency level of the students involved in this 

experiment was measured (only) by using the class mean scores of their first semester in 

algebra II.  The results were:28 

Table 11: Mean scores of the first semester algebra II grades for the classes in this experiment. 
 

 

 

 The teachers wanted the experiment to be done in the window of time between 

winter break and first semester exams, rather than spreading the lessons out over the first 

semester (as I had done in my own classes).  To accommodate their wishes, that time slot 

was selected.  Unfortunately, due to numerous scheduling difficulties, including 

unforeseen snow days that closed the school, it turned out we had to schedule the pre- 

and post-assessments and all 6 lessons into 4 class periods, only two of which were 93 

minutes29 long.  Students had enough time to complete the pre- and post-assessments, but 

each lesson had to be cut short and there was no time to go over student lessons before 

they had to work on the next lesson.   

The Student Experience 

 A brief description of the assessments and lessons is appropriate at this point.  

The research question was: “Can System Dynamics model-building activities aid students 

                                                
28 The number of students, n, designated for each class were those students, and parents who agreed that 
their student data could be used for the experiment (or who remembered to return the permission slips).  
The classes actually contained quite a few more students. 
29 The other two class periods, for this alternating block schedule, were either 75 minutes or 63 minutes 
long. 

 Teacher 1 Teacher 2 
Experimental 
Class 

83% 
n=21 

69% 
n=22 

Control 
Class 

74% 
n=17 

85% 
n=16 
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in identifying and differentiating linear and exponential function behavior over time in 

the context of a real-world scenario?”  The assessments asked conceptual questions about 

linear and exponential situations.  In the control classes the teacher conducted a 

traditional review of linear and exponential functions.   

Method:  In the experimental classes there were six lessons:30  

1. Students walked in front of a motion detector connected to a computer that displayed 
their motion graphically on an overhead screen.  As a final problem, an original 
walking scenario was designed by each student and the student explained how one 
would walk to produce the graph they drew.  This problem was “graded” by the 
researcher. 

 
2. Students built linear STELLA models, on computers, from descriptions of linear 

scenarios, and then sketched the stock/flow diagram for an original linera model 
devising their own scenario.  The original model was “graded” by the researcher. 

 
3. Students walked into and out of a 5’x5’ rectangle (stock) taped to the classroom floor 

via large flows (also taped to the floor).  The patterns of the inflow and outflow 
replicated linear and exponential patterns of change in the number of students in the 
stock. 

 
4. Students graphed some of the scenarios from the motion detector and tape-walking 

experiments. 
 
5. On the board the teacher used a bank account scenario to help students understand the 

design of the exponential STELLA structure that was used for the exponential model-
building lesson.  Students then built exponential STELLA models, on computers, 
from descriptions of exponential scenarios.  Finally, students sketched the stock/flow 
diagram for an original exponential model devising their own scenario.  The original 
model was “graded” by the researcher. 

 
6. Students built a drug model, on the computer, from a description that required a 

constant inflow of drug into the patient’s blood system, and required an exponential 
outflow as the drug is metabolized.  (See Figure 12.)  At this time two students were 
randomly selected from each experimental class, removed from the class to another 
empty classroom, and videotaped as they used think-aloud protocol to build the drug 

                                                
30 More detail about the lessons, the learning theory upon which they are based, and the specific outcomes 
from the student experiment can be found in Fisher (2016) [Chapter 6 of this thesis.] 
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model.  The entire drug lesson packet (for both the extracted pairs of students and the 
students in the experimental classes) was “graded” by the researcher. 

 
Analysis:  The pre- and post-assessment did not show a significant difference in learning 

outcomes between the experimental and control groups.  This is not surprising, given the 

extreme brevity of the duration of the experiment.  However, some interesting results did 

occur on the linear and exponential modeling problems that were graded from the 

experimental lessons.   

Table 12: Mean scores for each experimental class on the three graded problems from the 
experimental lessons: motion detector, sketch linear model, sketch exponential model. 

 
Experimental Groups 

Student Original Work 
 Motion 

Problem 
Linear 
Model 

Exponential 
Model 

Teacher 1 
n = 20 89% 80% 75% 

Teacher 2 
n = 22 79% 75% 76% 

 

It appears that the experimental group that was less proficient in traditional mathematics 

seemed to perform relatively well on the STELLA model-building lessons compared to 

the experimental group that was more proficient in traditional mathematics.  One might 

be concerned with the decrease in mean score of the more proficient math group.  I 

suggest, from experience, this is a temporary drop in performance, as the new approach 

requires different thinking, and these students would become proficient again in the new 

approach over time. 

 There were computer difficulties, using an old classroom set of netbooks, from 

the outset of this experiment.  That difficulty climaxed during the drug lesson when a 
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significant number of the classroom set of netbooks did not work.  However, the student 

pairs (removed to a different, empty classroom for videotaping) from each experimental 

class did complete the drug lesson successfully, even though the pair from class 2 started 

with a wrong diagram.  They realized their mistake as they were building the model on 

the computer and correctly modified their diagram. 

The Teacher Experience 

 As was mentioned earlier, both participating teachers had used STELLA in their 

classes before, for a brief time, and then discontinued its use.  They had each used it in a 

short self-contained one to two week unit, using either linear models exclusively, or 

linear and exponential models.  No assessments were conducted on the modeling lessons 

during any subsequent assessments in their classes. 

 The research question for the teacher part of the experiment was: “ What support 

is necessary to help interested algebra II teachers incorporate System Dynamics modeling 

in their algebra II curriculum?”   

Method:  The two participating teachers were videotaped teaching a statics lesson the 

week before the experiment started, each completed belief surveys, kept journals 

reflecting on their experiences during the execution of the student lessons, were 

videotaped teaching students how to develop the exponential stock/flow structure, 

completed a questionnaire at the end of the experiment, and were videotaped while being 

interviewed after the experiment.  

Analysis: The videotape of each teacher teaching a statistics lesson indicated that the 

more senior teacher was also more traditional in his teaching style.  His class involved 
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less teacher/student interaction.  He had students conduct an experiment and had them 

use calculators to produce the mean and standard deviation values for the experiment.  

The other (less senior) teacher was preparing students to conduct an original statistics 

experiment where they determined the question they were going to study, how they 

would collect data, what analysis they should try to conduct on the data and how they 

would present their findings.  He brought up examples from the news and from 

experiences that students had in the past to give examples of confounding variables and 

issues that arise in data collection.  Students interacted with him on a regular basis.   

 Both teachers completed a beliefs survey. The more senior teacher felt it was very 

important to lecture on new material and somewhat important to follow lesson 

approaches shown in the text.  He also felt it was important to maintain a quiet classroom.   

The younger teacher felt lectures and textbook guidance and quiet classrooms were less 

important.  The more senior teacher wanted students to be able to design a model for real 

world data in order to predict a future outcome.  The younger teacher wanted students to 

develop a love of critical thinking and be able to communicate their thought processes 

and findings when problem solving.  Both teachers felt it was okay for a teacher not to 

know the answers to some students’ questions.  The younger teacher felt that thoughtful 

students could always come up with challenging questions.  The more senior teacher felt 

that he should often use “I don’t know, let’s figure it out,” statements in class whether he 

knew the answer or not. 

 In the journals both teachers felt well prepared to lead the experimental lessons.  

They said they needed to brush up on their use of STELLA, but that it was not a problem 
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to do so.  Both teachers felt the students enjoyed and were engaged with the motion 

detector and model building lessons.  The younger teacher really liked the tape-walking 

activity.  He felt it helped students get a different perspective on linear versus exponential 

change.  The senior teacher did not like that activity and said he thought the students felt 

that activity was beneath their dignity.  The teacher of the group that was less proficient 

in math was quite concerned about the fact that there was not enough time for the 

students to complete the lessons.  He was also concerned with the time it would take for 

these students to become comfortable with the software.  He thought the frustration 

students felt building early models would not be balanced by potential positive learning 

outcomes unless the students used the software for more than two or three lessons.  Both 

teachers complained about the computer issues that occurred during the drug model 

lesson.  Both teachers said it would be important for a teacher to have a prior workshop in 

the use of the STELLA software to feel comfortable using the experimental lessons as 

part of their curriculum.   

 When introducing students to the exponential stock/flow diagram the younger 

teacher first reviewed the tape-walking exercise to set the stage for the new discussion.  

He focused on higher-level concepts – linear growth/decay is produced by a constant 

inflow/outflow, exponential growth/decay requires knowledge of the quantity in the stock 

as well as a rule indicating how much of that value should flow in or out.  He often asked 

students for input.  The more senior teacher merely put the linear structure and the 

exponential structure on the board and explained why the additional diagram parts were 

needed in the exponential structure.  It was more of a lecture. 
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 Both teachers indicated, in their questionnaire, that they felt the lessons were 

worth doing.  Both marked “essential” on the value of communicating with another 

teacher in their department when trying to use new software for the first time in their 

classes, to build their comfort level.  Both complained about the difficulties using 

unreliable computers. 

 In the post-experiment interview the teachers mentioned again the difficulty of 8 

math teachers trying to share one classroom set of netbooks that were slow and 

unreliable.  Both teachers indicated that having reliable computers, having the software, 

having at least one other teacher who knew how to use the STELLA software, having 

predefined lessons to use, having a department that was looking for new ways of reaching 

students and presenting material were important considerations for starting to use SD in 

their algebra II classes. They indicated that all of these components were in place when 

they first used STELLA in their classes but were not in place now.    It appears the choice 

of tools teachers are willing to use for instruction are fluid.  

C. Discussion of the Experiments 
 

 There is very little research on the feasibility of using SD modeling in pre-college 

education.  Mandinach et al. (2000) had conducted studies about the use of SD modeling 

in a some schools in the Northeast and in the Southwestern US where students were 

taught to build small SD models in science and math classes at the secondary school level 

(students ages 15 – 18 years) and concluded, after years of work (STACIN Project), that 

large scale incorporation of SD modeling was not going to happen any time soon.  They 

cite the increase in the cognitive load on students (and teachers) as more constructivist 
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methods are incorporated into school lessons.  They indicate (at the time of their analysis) 

computers were “a far cry from being used effectively.”  A statement that seems as true 

today as it was then.  They go on to explain, “There is not one research method or design 

that will provide the definitive answer to the question of whether the innovation was 

successful in enhancing learning” (p. 381).  One, of many, important points they make is 

the need to have data collected over an extended period of time.  Another issue they 

mention is the difficulty of constructing assessments that can measure the learning that 

one hopes is occurring with the more “constructivist” approach recommended for high 

school math and science instruction.  Finally, they mention the “zero-sum” game that 

must be played whenever attempting to introduce new curriculum.  Something within the 

curriculum must be removed to make space for the new lessons.  In spite of these, and 

other reservations, mentioned in the article, Mandinach et al. (2000) feel strongly (based 

on their own experience) that  

“when appropriately implemented, computer-based curricular innovations 
can markedly improve cognitive performance and subsequently, 
achievement on standardized tests. Furthermore, we know from our own 
experiences that engaging and cognitively demanding computer-based 
curricula can promote academic achievement among many students who 
are currently not served well by our schools” (p. 392). 

 
I would like to address several points about their observations and the experiment I 

conducted.  Regarding the increased cognitive load that constructivist activities 

bring to the learning environment, the issue is more the willingness of the teacher 

to bear that load.  If the teacher is not comfortable being put in situations that 

require them to “think on their feet” or that stimulate “deep thoughtful questions” 

they had not anticipated, they would not be attracted to the SD modeling approach.  
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Teachers who are comfortable with this less formal environment can help scaffold 

the student learning experiences that require deeper analysis.  This does, however, 

identify that the SD modeling approach will be quite uncomfortable for many math 

teachers.  As such, it would be unwise to require a professional development for all 

members in a math department just because the SD approach is attractive, in the 

eyes of the administration.31  Rather, it should influence hiring decisions for new 

teachers in the department.  Support and recognition should be provided for 

teachers who indicate an interest.  

 It is apparent from this brief experiment, the “special short unit” approach 

is not the way to introduce SD analysis into a curriculum.  System Dynamics 

analysis is a way of thinking about complex problems.  It is not a skill to be picked 

up in a few days just because the software makes building models relatively easy.  

The value of the approach is to have students begin to identify dynamics systems 

problems in the world they see and use the tool (STELLA) to begin to gain a 

deeper understanding of the structure of the system that causes it to produce the 

behavior they see.  Using STELLA to represent the typical elementary functions 

they see in algebra II is just the first step in the process.  It allows students to think 

about those functions from a dynamic structure perspective. Then those structures 

should be used as building blocks to access more sophisticated dynamics.   It is 

necessary for the SD modeling lessons to extend long enough for students to start 

                                                
31 This, in no way, is intended to downplay the important role administrators have in helping influence 
integration of innovative instructional methods in the school.  I suggest the more personal support of 
interested teachers to learn and implement innovative practice, by administrators, is more productive than a 
shotgun approach. 
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working with problems they could not access using closed form equations.  That is 

the value added, for both the students and the teacher.  Short unit introductions do 

not allow this transition to occur. 

 In the short unit SD modeling approach previously used by each 

participating teacher, neither teacher assessed the unit learning outcomes directly.  

This may be due to the positioning of the unit just before the first semester exam 

(which was their habit), but it may be that they did not know how to assess the 

learning from the unit.  (See the next paragraph for more about this issue).  

Whatever the reason, students place less importance on information/skills/concepts 

for which they are not held accountable.  Teachers hear “Is this going to be on the 

test” often enough from students to reinforce the importance of developing some 

performance criteria for the concepts they consider essential for student learning. 

 The next obstacle is devising assessments that capture the essence of an SD 

modeling approach: more holistic thinking, identifying the connection between 

structure and behavior in the modeling process, enhancing the ability of students to 

explain their understanding of the problem, and enhancing their ability to 

communicate what they learned in the modeling process to an audience.  These 

learning outcomes will not be captured on current standardized tests.   But we need 

ways to publicize these outcomes, or there will always be roadblocks to scaling up 

the use of the SD modeling approach.  The assessment used in the experiment 

explained in this paper was a beginning.  It required students to think conceptually 
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about linear and exponential functions.  It was imperfect but holds promise that 

more appropriate assessment instruments can be developed. 

 Mandinach et al. (2000) mention that when one infuses a new curricular 

approach something else in the curriculum must be removed.  I agree and disagree 

with this statement.  I agree that, initially, there will be topics that will need to be 

removed to allow more modeling lessons to be added to the curriculum.  This 

happened to me, when I started.  But I started with only a few lessons and added 

more lessons each year as I found other places in the curriculum where modeling 

fit my overall goals better than the lessons I had been using in the past.  

Eventually, the SD modeling approach changed the way I taught.  I looked at the 

algebra curriculum from a more holistic perspective.  I did less procedural practice 

that I felt would be eventually relegated to using calculator or computer software, 

and concentrated on having students focus on patterns of change, where they 

occur, why they occur, and how we can capture the appropriate structures when 

looking at (slightly) more complicate scenarios.  It allowed me to bring new 

problems into the classroom for analysis that the students found interesting.  So 

finding the space, over time, changed the focus of the space in which I taught. 

 I also found that the students in my algebra II course who were traditionally 

less adept at math felt relieved that there was another, less abstract vehicle to use 

to participate in the mathematics conversations that occurred.  I believe that is 

what we are seeing with the improved performance of the second experimental 

group, compared to the first experimental group, on the first three lessons that were 
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graded.  That the first group of students who were more mathematically adept 

(traditionally) can learn to use STELLA well is exemplified by the projects the 

modeling class produced. 

 The two participating teachers liked the STELLA lessons they had used in 

their classes, but stopped short of realizing the true value of the SD modeling 

approach.  The real reason they stopped was one they both mentioned and that I 

think is the primary barrier.  The technology was just too much trouble to use.  The 

one classroom set of netbooks were old, slow, and some did not work properly.  

The software on the netbooks had to be “pushed” to the laptops from the district 

office so if software programs were inadvertently deleted it was not a problem that 

had a quick solution.  These problems beset the execution of the drug model in the 

experiment described above.  There are 7 full computer labs in the high school 

where the experiment was conducted, but 6 of those labs are dedicated to testing, 

and one is dedicated to computer programming classes.  Even teachers, who are 

comfortable with technology, and interested in using technology in their 

instruction eventually decide the problem is not worth fighting on a regular basis.  

Interestingly, this problem may be solved another way.  By the end of 2016 isee 

systems, inc. (the developer of the STELLA software) will release a very basic, 

free, web-based version of the STELLA software.  This will allow many beginning 

and intermediate SD model-building lessons to become accessible by tablets and 

smart phones.  Another advantage of the free web version is that students would be 

able to finish model-building assignments at home. 
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 One teacher mentioned that the students who were less adept at math 

tended also to be less technically adept.  He said it was difficult to convince those 

students to persevere with the modeling lessons.  I believe this is an artifact of the 

short time allotted to the modeling unit approach that this teacher used.  It may 

take students who are generally less comfortable with math concepts a longer time 

to develop skill with the technology, but it is possible for that to occur if the 

lessons are spread out throughout the year.   

 The other teacher mentioned that all the algebra II teachers collaborate on 

which topics to cover during the year and what schedule they would like to follow 

when covering those topics.  This teacher indicated that it had been difficult to 

convince the other algebra II teachers that SD modeling should be incorporated 

into the collective list.  While there are advantages to having teachers agree on a 

course scope and sequence it is not a binding agreement.  One can introduce a 

lesson of one’s choice here and there, as was evidenced by the videotaping of the 

two teachers classes before the experiment started.  Each was conducting a lesson 

about statistics.  One teacher was preparing students for a project they would 

complete during the next class period; the other was having students perform a 

scripted experiment.  The second teacher did not have the students do the statistics 

project at all. 

 One of the teachers complained that with the new alternating block 

schedule there were a significant number of instructional class hours that had been 

lost.  That is a problem.  Teachers are held accountable, somewhat, for how their 
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students perform on standardized state math exams.  The school receives a report 

card indicating how well the students do on these tests.  A teacher has a 

responsibility to be aware of the topics that are assessed and the types of questions 

students will be asked on these tests.  But ultimately, the teacher is responsible for 

educating the student regarding the mathematics concepts that are to be studied in 

a given course.  It is also important to make sure students are prepared to study the 

concepts they will experience in the next math course they take.  But standardized 

tests have become a stranglehold on the curriculum, forcing attention to process 

questions rather than conceptual understanding.32  There was a gifted algebra I 

teacher at another high school who really felt SD modeling would help her 

students.  Her students always performed well on the statewide math assessments.  

Her principal would not allow her to introduce SD modeling into her curriculum 

because he did not want her to change her class instruction in any way.  The scores 

produced in her classes had elevated the scores for the entire math department.  

That was too important, to the principal, to tinker with. 

D. General Discussion 
 

 System Dynamics modeling of elementary functions in algebra II can act as 

an avenue to an interesting and important next step in mathematical analysis of 

complex systems for teachers and students at the high school level.  Such 

analytical skill is useful in helping one understand stories in the newspaper and is 

                                                
32 I understand the need for standardized assessments.  But the current situation overemphasizes this 
method of assessment over more important assessments that do not lend themselves to this venue. 
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even more important in preparing students to enter STEM related college 

disciplines and ultimately the professional workforce.  Yet, new, innovative 

teaching approaches seem to be woefully absent in much of mathematics 

instruction today (Stiegler et al., 2009).   

 Kaput et al. (2000a) have argued for decades about the advantages of using 

computer software programs whose tools can be used to construct new 

representations for mathematizing problems when students work with core 

concepts in algebra and calculus.  They claim the enhanced representations 

promote a “democratization of mathematics,” a claim that this researcher has seen 

at work in the classroom.  The computer can operate as a reorganizer of students’ 

ability to think deeply about problems (Pea, 1985).  Kaput, Bar-Yam, Jacobson, 

Jakobsson, Lemke, and Wilensky (2000b) make the case that new technologies are 

expanding access to the study of complex behaviors that, heretofore, had to be 

simplified to be analyzed.  They recommend that such analysis become part of 

mainstream pre-college education, a promising recommendation. 

What is causing the inertia in mathematics instruction at the high school 

level?  My experience with the teaching experiment explained in this paper 

illustrate how difficult it is to change mathematics instruction.   There are many 

barriers to teacher change.  More barriers are evident when that change involves 

the use of new technologies.   Even more barriers occur when the change involves 

new theoretical approaches, such as the inclusion of complex systems analysis.  

Still, there are teachers who are interested in experimenting with change involving 
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technology and complex systems in their instruction, but the environmental 

conditions must support teachers who want to maintain use of new strategies and 

technologies in their classrooms.  Changing the school environment is a complex 

systems problem. There are many factors needed to initiate change, teacher and 

administrative support being crucial.   Continued effort on multiple fronts is 

needed to maintain new instructional approaches (Cobb & Jackson, 2011).     

Finally, it is important to remember that conducting research in the 

educational arena is difficult.  It is not like conducting science experiments, where 

the researcher attempts to keep all conditions except the designated intervention 

constant.  Berliner (2002) states, “Doing science and implementing scientific 

findings are so difficult in education because humans in schools are embedded in 

complex and changing networks of social interaction.”  This should not dissuade 

us from attempting to do statistically controlled studies that could provide 

illuminating answers to important research questions.   And we should not be 

discouraged when we find that the statistical approach did not provide significant 

differentiation between student learning outcomes.  Rather, such findings indicate 

that most educational research should include multiple research instruments and 

approaches so that a more heterogeneous analysis can be done to help illuminate 

other important events/findings beyond just looking at the statistical results. 

E. Conclusion 
 

In this paper I present an argument for incorporating SD modeling 

activities into mainstream pre-college classes.  The considerable list of potential 
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barriers to teacher change indicates the inertia that will need to be overcome to 

make this happen.  But more young people are comfortable with technology, so it 

would seem that more young teachers would be open to its use in the classroom. 

 A 20-year action research study using SD modeling in high school 

mathematics classes provides evidence that students at the secondary school level 

are quite capable of using the SD modeling approach (Fisher, 2011b).  Moreover, 

the 20-year experiment with the yearlong modeling course suggests students are 

quite adept at building sophisticated models of complex systems, and explaining 

how they operate.   This further strengthens the value of bringing the SD modeling 

approach to pre-college mainstream education. 

 The classroom experiment conducted in January 2016 did not provide 

statistically significant differentiation between the experimental groups using SD 

modeling and the control groups using traditional lessons regarding student ability 

to differentiate linear from exponential patterns of behavior.  The teachers who 

participated in the experiment described the changing school environment that 

adversely impacted their efforts to maintain the inclusion of SD modeling lessons 

in their classes over multiple years.   Nonetheless, I think there is room for 

optimism.   The next study should repeat the experiment, implementing the SD 

modeling lessons over a semester, with the lessons infused into the regular algebra 

II curriculum. 
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VI.  Paper 4: Details of Student Component of Classroom Experiment 
Presented in Paper 3 
 

Lessons Learned From a Classroom33 Experiment:   

A Very Brief Introduction of System Dynamics Modeling in  

Two Algebra II Classes34  

Abstract 
 
 The purpose of this paper is to present the results of an experiment conducted at a 

secondary school in the US in which two mathematics teachers were enlisted to teach a 

series of 6 lessons introducing System Dynamics modeling as a method to help students 

better understand the difference between the structures that produce linear versus 

exponential change over time in real world scenarios.  There are very few formal research 

studies attempting to document learning outcomes from using System Dynamics 

modeling in mathematics classes at the secondary school level.  Four algebra II classes 

were involved in the study, an experimental and control class for each of the two 

participating teachers.  The teachers administered pre- and post- assessments to each of 

the four classes and taught 6 experimental lessons to their classes that were designated as 

experimental.  Due to a number of difficulties that contributed to a very limited time to 

conduct the assessments and lessons the pre- and post assessments did not produce 

significant differences between the experimental and control groups.  However the results 

collected on some of the lessons indicated that SD modeling might potentially reduce the 

                                                
33 The paper was submitted using “Failed” experiment.  But the suggestion by some on the dissertation 
committee was that “failed” was inaccurate.  Hence the name was changed for this document. 
34 Accepted for presentation at the 34th International System Dynamics Conference, Delft, The Netherlands, 
7/2016. 
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gap in performance between students who are more adept at math and those who are not.  

Videotaped think-aloud protocols used with two pairs of students, one from each 

experimental group indicated that, even with such a brief introduction, students can build 

correct SD models and correctly analyze the behavior for a problem that is slightly 

beyond the typical problem studied an algebra II.  The experiment should be repeated 

over a longer period of time and incorporated into the regular curriculum to overcome 

most of the problems that arose with the execution of this experiment.  This paper 

includes a great deal of information about the experiment that could be used by others 

interested in improving the method described here.  It is hoped future experiments will be 

conducted to add to the literature documenting the learning outcomes that SD modeling 

and analysis provides.  

A. Introduction 
 

“Concepts and methods enabled by rapid advances of information 
technologies are enabling us to understand aspects of the real world where 
events and actions have multiple causes and consequences, and where order 
and structure co-exist at many different scales of time, space and 
organization. Within this complexity framework, critical behaviors that 
were systematically ignored by classical science can now be included as 
essential elements that account for many observed aspects of our world–for 
example, global phenomena that require multiple physical, biological, 
social, and mathematical perspectives”   (Kaput, et al., 2000b, p 1). 
 
The literature indicates a pressing need for adults to become better at 

understanding complex systemic behavior (Homer et al., 2006; Hung, 2008; Sterman, 

2000, 2011).  If understanding complex systemic behavior is so important for adults, it 

seems reasonable to expect mainstream K-12 education to begin to incorporate activities 

that give students experience working with “wicked” problems.   The importance of 



           115
            

including the study of complex systems in mainstream education is increasingly 

appearing in research articles within the last decade, even for elementary school students 

(English, 2007).  Jacobson et al. (2006) state,  

“The conceptual basis of complex systems ideas reflects a dramatic 
change in perspective that is increasingly important for students to develop 
as it opens new intellectual horizons, new explanatory frameworks, and 
new methodologies that are becoming of central importance in scientific 
and professional environments” (p. 12). 
 
Although there are a variety of analytical methods that can be applied to the study 

of complex systems problems, the focus of this paper is on the system dynamics method. 

Some Current Efforts in K-12 Education in the US 

The Waters Foundation has had success working with elementary and middle 

school teachers, training them to use behavior over time graphs, their “Habits of a 

Systems Thinker” cards, and Iceberg and Ladder of Inference analysis techniques to get 

teachers to begin using more holistic approaches to their content.  Their goal is to help 

“build systems thinking capacity” in the teachers they train.  This effort is scaling up. 

The Creative Learning Exchange has increased curricular offerings for K-12 

teachers by commissioning curriculum development of models and lessons based on 

Forrester’s statements regarding the nature of systems (Forrester, 2009).   These lessons 

can be accessed on their website.  Quaden et al. (2008) have developed the Connection 

Circle to help elementary and middle school teachers and students analyze feedback 

loops in scenarios involving more than two components.  These two gifted teachers have 

developed simple System Dynamics (SD) modeling lessons that help students in grades 5 

– 8 (ages 11– 14 years) understand the importance of feedback in certain real-world 
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scenarios highlighting the difference between linear and exponential patterns of change 

over time.   CC Modeling Systems also offers online courses for math and science 

teachers who want to learn how to create small SD models to use in their curriculum. 

   What is missing?  Research on the efficacy of the SD modeling approach for K-12 

education is missing.  Mandinach et al. (1993) conducted quite a few studies working 

with over 32 secondary school math, science, and social studies teachers incorporating 

SD into their curriculum.  They discussed three levels of modeling using the STELLA 

software with high school students (ages 15 – 18 years).  The first they called parameter 

manipulation and referred to this as the least cognitively demanding.   Next they describe 

what they call constrained modeling, where students build a model to solve a specifically 

assigned problem.  Finally, they describe “epitome” modeling, the most cognitively 

demanding, where students build original models for an idea they conceive.  The needed 

modeling expertise of the teacher, as well as the student, increases significantly from the 

first to the third type of modeling, as does the amount of time that must be dedicated to 

the modeling activity in the curriculum.   In a later article, Mandinach et al. (2000) 

discuss the many difficulties that they encountered in trying to conduct their research and 

why they felt that this innovative approach was not destined to appear in mainstream 

education any time soon. 

   Yet, the need to document the value of the SD approach to learning about 

complex systems is reaching a critical stage.  Those who are familiar with the approach 

appreciate what SD modeling can offer, but without the strength of research support to 

document what, heretofore, have been mostly anecdotal success stories, it will not be 
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possible to convince educational decision-makers that efforts should be made to include 

this “new” approach in classrooms.  

  So this author undertook the design and execution of a classroom experiment to 

determine if the use of SD modeling might show an improvement in understanding a 

concept that is already in the algebra II curriculum, the difference between the underlying 

process that produces linear versus exponential change over time.  This effort was to stay 

close to the current curriculum as a bridge to moving students toward the study of a 

slightly more difficult problem that would be outside their normal algebra II curriculum.  

It was hoped this might indicate a more immediate way to begin incorporating SD 

modeling into a traditional algebra II course without requiring much modification on the 

part of the teacher.  

The rest of this paper describes the learning theory supporting the design of the 

experimental lessons, the importance of having students understand the function concept 

in mathematics, the school environment in which the experiment was conducted, the 

research question, the method used to conduct the experiment, the various data collected 

and analyzed, and a discussion of some of the results and lessons learned. 

B. The Experiment 
 

The study comprises an account of the student experience and the learning of the 

students as an introductory sequence of lessons was used to prepare students to build (in 

their final lesson) a model of a problem involving a combination of linear and 

exponential change over time (a situation not covered in algebra II).   Design of the 

experimental lesson sequence and classroom environment were guided, in broad terms, 
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by the learning theories developed by Lev Vygotsky and Jerome Bruner, as described 

below. 

Theoretical Foundations 

Learning Theory 

Lev Vygotsky suggested that learning should be a socially active endeavor, where 

students are expressing their thinking, and the teacher is facilitating the process.  This 

interaction should be cooperative and collaborative (i.e., the teacher uses demonstrations 

and leading questions) to be effective.  Teachers do not transmit concepts.  “If concept 

development is to be effective in the formation of scientific concepts [those new ideas 

learned in school] instruction must be designed to foster conscious awareness of concept 

form and structure and thereby allow for individual access and control over acquired 

scientific concepts” (Vygotsky in Daniels et al., 2007, p. 312).  

One of Vygotsky’s major contributions to learning theory he called the “Zone of 

Proximal Development” (ZPD).  The ZPD is conceived of as a gap between what the 

student could learn by him/herself and what he/she could learn with the help of more 

knowledgeable peers and/or the teacher.  Vygotsky indicated that the trajectories for 

individual student learning in this zone are quite open and will follow dynamic and 

divergent paths.   The objective of the “instruction” is, however, to help the student 

eventually internalize the new knowledge.  Vygotsky (1978) indicated that essential 

(good) learning should create a ZPD (“awaken a variety of internal developmental 

processes in the child that are activated by working cooperatively with peers and other 

people in his/her environment”, p. 90) that is forward looking, developmentally, rather 
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than testing, which is backward (ineffective) looking.   In this way, Vygotsky said, once 

the processes within the child become internalized they lead to independent 

developmental achievement (Vygotsky, 1997, italics added). 

Jerome Bruner is an important interpreter of Vygotsky, developing Vygotsky’s 

theory in certain directions.  Still relevant today is his early book “Toward a Theory of 

Instruction” (Bruner, 1966) in which he presented three modes of representation that are 

needed to help students acquire new ideas with understanding.  The first mode is 

enactive, wherein students manipulate concrete objects to gain an understanding of the 

elements in the system and how they might be related.  The second mode is iconic.   In 

this mode students use some pictorial representation of the system they experienced in 

the enactive mode, to capture the structure or behavior that was present in the activity.  

Creating and reading graphs are examples within this mode, as is the construction of 

various diagrams.  This mode is still quite concrete – the iconic representation is directly 

connected to a physical activity.  The final mode is symbolic, wherein students use 

symbols, such as numbers, computational symbols, or words to start to abstract the ideas 

from the concrete to other similar patterns existing in problems they do not physically 

experience.  STELLA modeling, with pre-activities involving physical simulation, 

constitutes part of a learning experience that exploits all three of Bruner’s modes. 

The team method of building System Dynamics models, used consistently in K-

12, is well grounded in these learning theories as an effective learning strategy.   Students 

work collaboratively with each other (and with teacher facilitation) to determine what 

components to include in the model, how they should be connected, whether the 
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simulation results are reasonable, how modifications to the values or to the structure 

modify the system behavior, and recommend possible “solutions” or policies that might 

transform the system to produce more desirable behavior.  This focused, active 

interaction with the modeling process aligns well with Vygotsky’s description of lessons 

that would produce effective concept development. 

The experimental lessons focus on strengthening student conceptual 

understanding of linear and exponential functions, the concept of function being 

foundational in algebra. 

The Importance of the Function Concept in Mathematics 

“The concept of function is central to undergraduate mathematics, 
foundational to modern mathematics, and essential in related areas of the 
sciences. A strong understanding of the function concept is also essential 
for any student hoping to understand calculus – a critical course for the 
development of future scientists, engineers, and mathematicians”  
(Oehrtman et al., 2008, p. 27).  
 

  Many mathematics education researchers present studies attempting to 

determine whether students understand the abstract definition of function, i.e., that 

a function is a special relationship between two variables whereby each value of 

one (the independent variable) within a specified range maps to at most one value 

of the other (the dependent variable).  System Dynamics fits into a broader, more 

dynamic, more applications oriented view of a function.  Using the stock/flow 

diagramming structure of SD many of the continuous elementary functions used 

in an algebra classroom can be constructed.  Those stock/flow structures can serve 

as an alternate, two-dimensional symbolic representation for the elementary 

functions.  The connection between different representations of functions is 
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essential in helping student build a stronger understanding of the function concept 

(Leinhardt et al., 1990; Keller & Hirsh, 1998; Yerushalmy, 1991).   

The elementary functions that are studied in most second year algebra classes in 

secondary school represent different patterns of change over time that occur often enough 

that mathematics educators think students should be able to recognize them whenever 

they arise in class, whether by viewing the graph or by solving a story problem.   But 

story problems tend to be simplified due to the limitations students have in understanding 

closed form equations.  

“What makes teaching (and learning) of the translation skills so difficult is 
that behind them there are many unarticulated mental processes that guide 
one in constructing a new equation on paper.  These processes are not 
identical with the symbols: in fact, the symbols themselves, as they appear on 
the blackboard or in a book, communicate to the student very little about the 
processes used to produce them” (Clement, Lockhead, & Monk, 1981, p. 
289). 
  

 These functions are generally only called to represent change in one direction 

(increase or decrease, never both).  But systems are not so restricted.  So for students 

to be able to study problems involving systems, it should not be expected that they 

jump from the graph or story description directly to a “correct” symbolic 

representation immediately.  Kaput (1999) indicated that functions are used to build 

mathematical systems through successive approximations, where each iteration tries 

to improve the structure built in an attempt to understand a problem under study.  

This process involves modeling and some researchers argue that modeling 

problems/phenomena is the primary reason to study algebra. 
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   The SD stock/flow function diagram is built with a focus on how the structure 

produces the function’s characteristic pattern of change over time.  This structure opens 

up a representation that has been used successfully to provide a conceptual introduction 

to elementary calculus concepts within algebra classes.  It also can provide a vehicle for 

enabling students to use the elementary function structures as building blocks that will 

allow them to study more realistic applications by having them build models that 

combine these elementary function structures, as small Lego structures can be used to 

build larger Lego systems. 

  The lessons for this study focus on increasing student understanding of linear 

and exponential change over time.  Two lessons are devoted to introducing and then 

enhancing student understanding of the behavior of each function.  The first of these 

two lessons uses a kinesthetic activity to introduce the primary dynamic characteristic 

of the function, that is, coupling the behavior with a specific type of rate of change 

(constant for linear, proportional to current value for exponential).   

[The primary framework35 guiding analysis of student learning in this study will 

be APOS Theory (A = action, P = process, O = object, S = schema) developed by Ed 

Dubinsky (Dubinsky & McDonald 2002).  At the Action level students are following a 

plan of action prescribed by the teacher.  They merely try to follow the instructions 

correctly.  To move to the Process level students need to reflect on what they have done 

in the action stage and be able to internalize the process enough to complete related 

                                                
35 Formal APOS Theory wording was not introduced, as such, in the paper submitted to the International 
System Dynamics Conference.  Instead, a more general vocabulary, “follow directions, create your own, 
transfer to a new situation,” was substituted to indicate the stages in the APOS framework used for 
analyzing the lessons. 
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problems without a set of step-by-step directions.  At the Object level students can 

understand the process sufficiently to apply the process concepts to other situations.  At 

the Schema level students take multiple objects and apply them as an approach to solve 

a more sophisticated problem.  (Asaila et al, 2004; Dubinsky et al., 2002)]  Students 

follow specific directions in these kinesthetic lessons initially, then are expected to 

produce their own actions to generate the same function behavior emphasized in the 

lesson.  The attempt is to move students from a “following directions” [action] mode of 

thinking to a “create your own” [process] understanding of the function.  The second 

function lesson (for each function) has students build an SD model that produces the 

characteristic function behavior (with focus on rate of change), following directions 

given in the lesson.  Students experiment with the models and explain the reason the 

model output changed.  Students, again, are expected to create an original model that 

produces the function behavior under study. Modifying the models gives students more 

experience with each function’s behavior.  Finally, students are given one problem that 

involves both a constant and a proportional rate of change and students, it is hoped, 

understand the type of function structure needed to capture these dynamics as they 

create one model structure to mathematize the problem.  This lesson is designed to 

move students from the :create your own” [process] understanding on a single function 

type to the :transfer to a new situation” [object] concept of function where they 

recognize, from the description, the types of functions that must be used to solve the 

new, more complicated problem (involving more than one function type). 
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In addition to doing the tasks, students will also be expected to explain what they 

create as a culminating activity in each stage of the experimental/intervention instruction.   

Explaining one’s creations has been shown to “enhance learning and understanding of 

new knowledge”  (Chi et al., 1994, p. 469).  Students will be working in teams on most of 

the activities.  Team problem solving is considered a positive learning environment, 

improving student attitude toward mathematics, and fostering more student engagement 

in lessons and with each other  (Davidson, 1990; Springer, Stanne, & Donovan, 1999). 

The Teachers and School Environment 

This study was conducted in partnership with the curriculum vice-principal and 

two algebra II teachers at a local high school in Portland, Oregon.  This school serves 

primarily a middle socio-economic population that is 22% minority, and about 24% of 

its students are considered disadvantaged.  It has 56 teachers who serve about 1250 

students.  The school has no Title I funding.  The students enter the school generally at 

normal grade level in mathematics.  Reporting on state mathematics tests indicate that 

79% of the students are proficient in mathematics. 

The two teachers are experienced secondary mathematics teachers with between 

14 and 32 years of experience, respectively, teaching at their current high school.  Each 

has taught algebra II between 10 and15 years, respectively, each is quite comfortable 

with technology, and each has used STELLA model-building briefly in their algebra II 

classes in the past, and then quit using the STELLA software. 

The student segment of this study attempted to determine how well students 

understood an extension of the elementary functions (linear and exponential) as they 
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designed a new function that combined the change dynamics associated with the two 

initial functions.  

The Research Question: 

Can System Dynamics model-building activities aid students in identifying and 

differentiating linear and exponential function behavior over time in the context of a real-

world scenario? 

Method 
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Figure 13 displays a quick overview of the method for the student experiment.  

There were 6 lessons for the experimental algebra II class. Two of these lessons fall into 

the “enactive” mode of Bruner’s learning theory, two in the “iconic” mode, and two in 

the “symbolic” mode.  (See Appendix A.)  All lessons require students to work with the 

topic for the lesson and three of the six require the creation of original scenarios and 

explanations dealing with the focus topics.  The enactive mode lessons are intended to 

determine if students have moved from “following directions” mode to the “create your 

own” thinking about linear and exponential functions.  The iconic and symbolic lessons 

are intended to determine if students have moved from “create your own” thinking to 

being able to “transfer” the function concept to a new situation involving more than one 

function type.  

   A quick overview of the lessons to be used with students will be described 

below, with a more detailed explanation of the lessons in Appendix A. 

1. (Motion) As a full-class activity the teacher had students move, to produce different 
types of linear motion, in front of a motion detector connected to a computer that 
projected the motion graph on the overhead screen.  As a final problem, an original 
walking scenario was designed by each student and the students explained how one 
would walk to produce the graph they drew.  This problem was “graded” by the 
researcher. 

 
2. (Linear Models) Using the STELLA software on a classroom set of netbooks students 

(in teams of two) built linear models matching scenario descriptions given on a 
handout.  A final assignment asked students to sketch the stock/flow diagram for an 
original linear model devising their own scenario.  The original model was “graded” 
by the researcher. 

 
3. (Floor stock/flow activity: Linear functions and exponential functions)  The teacher 

created a large stock/flow structure on the floor of the classroom and had the students 
enter and leave the stock in different linear and exponential patterns.  A table of 
values (number of students in the stock) was recorded for each different pattern. 
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4. (Graphs) Students graphed the values that were recorded in the tables that were 
produced in activity 3 above. 

 
5. (Exponential Models) After the teacher built a stock/flow bank account with simple 

interest model in class (to remind students about the process of building models using 
STELLA) students used the classroom set of netbooks to build (in teams of two) 
various exponential models based on problem descriptions given in their handout.  A 
final assignment asked students to sketch the stock/flow diagram for an original 
exponential model devising their own scenario.  The original model was “graded” by 
the researcher. 

 
The following day the teacher built a stock/flow bank account model with interest 
added (inflow) and constant withdrawals (outflow) with the aid of students in the 
class, asking students how to build the model and asking them to predict behavior 
based on changing values in the model.  

  
6. (Combine Functions) A random selection of two pairs35 of students were removed 

from the experimental classes when the rest of the experimental classes were working 
(in teams of two students each) on the drug model lesson.  Each randomly selected 
pair of students built a drug model requiring a constant inflow from an IV drip and 
exponential outflow simulating the body metabolizing and eliminating the drug.  
These students were videotaped by the researcher.  The rest of the class built the same 
model, while the two pairs of students were being videotaped.  The teacher “graded” 
the entire drug packet for all of the experimental students. 

 
Data and Analysis 

  Originally it was intended to conduct these lessons throughout the first semester 

of the year, but the teachers indicated that the curriculum structure of the algebra II 

course had changed recently and they no longer taught linear and exponential functions 

as separate units in algebra II.  So they wanted to conduct the experiment in a brief 3-

week unit review just before the first semester exam.  The 3-week period was to occur 

directly after winter break.  Another situation occurred that pushed the semester exam 

forward by a week.  So now there would be only two weeks between winter break and 

                                                
35 Student names were placed in pairs on small papers and selected at random from a container.  The 
pairing was designed to maintain student comfort in working with another student they usually choose to 
work with, if possible, on the task for activity 6.  
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semester exams.  Yet another situation occurred in that the school changed from a 

modified block schedule (3 – 50 minute class periods and 1 – 90 minute class period per 

week) to alternating block schedule, (either 3 – 93 minute classes per week or 2 – 93 

minute classes per week.  Moreover, there was not a guarantee of 93 minutes, since days 

involving early dismissal, late arrival, tutor times, or assembly schedules changed class 

periods to either 63 or 75 minutes instead of 93 minutes.) 

Due to circumstances beyond the control of the teachers and researcher 2 snow 

days occurred immediately after winter break.   The 6 lessons and the pre- and post-

assessments had to be executed in 4 class periods of between 63 and 93 minutes each. 

Consequently, students were able to complete only the first 3 (of 4) exercises in the linear 

and exponential modeling lessons.  For one teacher the graphing lesson had to be 

eliminated due to a very shortened class period.  In the drug model lesson there were 

significant difficulties with the computers and many students were only able to complete 

¼ of the lesson). 

   It is useful to know the math proficiency level of each of the four classes involved 

in this experiment.  The math proficiency level of the students involved in this 

experiment was measured (only) by using the class mean scores of their first semester 

assessments in algebra II.  The results were:  

Table 13: Class mean scores, first semester 2015-2016, for each for the four classes in this 
experiment. 

 
 

 

 

 Teacher 1 Teacher 2 
Experimental 
Class 

83% 
n=21 

69% 
n=22 

Control 
Class 

74% 
n=17 

85% 
n=16 
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The Pre- and Post-Assessments 

The pre- and post-assessment structures were almost identical in that they 

contained the same types of questions, only differing in numeric values or in slight 

modification of question asked (i.e., growth questions changed to decay questions, etc.)  

The assessments were identified as form A or form B and half of the students in each 

class received form A and half form B for pre-assessment.  Students received the other 

form for their post-assessment.  There were 12 questions on each assessment form.  Since 

the same assessments were to be used for both the experimental and control group 

students there were some traditional questions (questions 5 and 1136) as well as some 

more conceptual questions regarding linear and exponential function behavior, although 

no questions required the use of mathematical equations, to answer.  More detail about 

the assessment questions can be found in Appendix B.  

 Results:  The following tables show the results on the pre- and post-assessments 

as coordinates on a grid.  The first coordinate of each point represents the pre-assessment 

score.  The second coordinate represents the post-assessment score.  Students above the y 

= x diagonal line indicate an improvement in their performance from the pre- to the post-

assessment.  Each of the four classes, two experimental and two control, has its own plot. 

 

                                                
36 Questions 4, 7, and 9 favored the experimental group.  The rest of the questions 1, 2, 3, 6, 8, 10, and 12 
were intended to be neutral. 
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Figure 14: (Pre, Post) assessments plots for each student in each of the four classes involved in 

this experiment. 
 

If we combine the two experimental groups and the two control groups and 

analyze individual questions, there was interesting information:  

 
Table 14: Improvement in scores from pre- to post-assessments for the combined experimental and 

combined control groups, and then the improvement of the experimental over the control group on each 
question. 

 

 

 

 

  

 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 
Post-Pre 
Experimental 
Group n = 43 

2.3 -1 -1.7 2.3 -8.1 18.6 -8.1 15.4 14.9 3.8 4.1 21.4 

Post-Pre 
Control 
Group  n = 31 

6.1 5 5.5 -1.5 6.1 -3.0 0 7.5 1.5 8.5 -1.8 6.1 

Experimental-
Control -3.8 -6 -7.2 3.8 -14.2 21.6 -8.1 7.9 13.4 -4.7 5.9 15.3 

12 

9 

9 

6 

14 

7 

11 

5 
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Table 14 showed promising results on a few questions, 6, 9, and 12.  Yet Looking at each 

experimental group compared to its control group the findings tell a slightly different 

story.  

 
Figure 15: Teacher 1: Experimental pre & post-assessment scores compared to control pre & post-

assessment scores. 
Note: question 12 has significant improvement for the experimental group but the control group 

performance was already high and remained high. 
 

 
Figure 16: Teacher 2: Experimental pre & post-assessment scores compared to control pre & post-

assessment scores. 
Note: question 12 shows experimental and control groups improving by about the same amount. 
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It is apparent from both graphs (Figures 15 and 16) that it is not possible to draw 

conclusions about any overall success of the experimental groups over the control groups 

on any particular question.   

On the given assessment questions 2, 4, 6, 8, 9,10, and 12 fell into the category 

directly relating to an understanding of linear vs exponential change over time. 

• The scores on question 2, draw the graph of the water level in a container when 
someone is filling (emptying) a container at a steady constant pace for 5 seconds, 
then stopping for 5 seconds, were pretty high.  There is no reason the experimental 
group should have done more poorly than the control group.  In point of fact, the 
experimental group for teacher 2 (with a lower semester 1 algebra II average) 
performed better on this question than the other experimental group (with the higher 
class average).  Most of the errors involved students drawing a diagonal line up 
instead of down (or vice versa) and/or continuing the diagonal line for the second 5 
seconds instead of drawing a horizontal segment.   All students did, however draw 
linear segments and not exponential ones.  So, for the purposes of the research 
question, the students did choose the correct function (linear) representation for their 
curves. 

 
• Question 4 gave students a description of a person walking and asked them to select 

the correct distance versus time graph (given 4 choices).  Most of the errors 
involved not paying close attention to the time duration associated with a specific 
walking strategy. So this question did not really differentiate between linear and 
exponential behavior, since all the choices were linear.  It would have been better to 
include an exponential curve as part of one graph choice. 

 
• Question 6 involved describing the value of the slope of an exponential graph over 

time.  This was a good question for differentiating between linear and exponential 
functions, but, there was not significant improvement by the experimental group 
compared to both control groups on this question. 

 
• Question 9 involved using a labeled linear STELLA model diagram and asking 

students if the stock value would increase or decrease, and then asked them to select 
one of 3 graphical patterns to represent the increase or decrease.  This was a good 
question differentiating linear and exponential change for the experimental group, 
but was not really a fair question for the control group.  The experimental groups 
improved, as was expected, but one of the control groups improved even more. 
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• Since students had insufficient time to complete all of the problems for the linear 
and exponential model lessons. Some important relationships (assessed, for 
example,  in questions 8 – does doubling the growth rate double the growth amount 
in 5 years - or question 10 – will a linear payment plan or an exponential payment 
plan pay off a loan faster) were not experienced. 

  
• Question 12 held great promise.  It asked students to identify each of 5 short 

scenarios as representing linear or exponential change over time.  Both experimental 
groups improved, one significantly (over 30%), but one control group had high 
scores already (and remained high) and the other control group improved almost as 
much as the experimental group for that same teacher. 

 
• Questions 3 and 7 tried to assess how a quantity would change based on relative size 

of inflow versus outflow and so were not directly useful for the research question.  
With the problems that occurred on the drug lesson (the only lesson that contained 
both an inflow and an outflow that all students were required to complete) there was 
insufficient time to practice, and so to develop an intuition for that concept. 

 
Data from The Lessons 

 Motion Detector:  The graded question involved giving each student a graph containing 

two points, asking the students to connect the two points using between 2 and 4 linear 

segments, and then to explain the walking motion a person would have to complete to 

produce the graph drawn.  3 points were awarded for drawing a correct graph and 4 

points were awarded for describing the walking motion correctly.  The results of this 

assessment are shown below.   

Table 15: Mean scores for each experimental class on the motion detector problem. 
 

 

 

 

Constructing an original linear STELLA model: The graded question required that students 

select a scenario that increased or decreased in a linear fashion over time.  They were to 

Experimental Groups 
Teacher 1 
n = 20 89% 

Teacher 2 
n = 22 

 
79% 
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sketch the appropriate STELLA diagram and label it (3 points), indicate the values and 

units for the stock and the flow (3 points), indicate whether the stock value would 

increase or decrease over time and how they could tell from the diagram (2 points), and 

how they knew the stock would change linearly (2 points).  Note: students did not 

actually build this model on the computer. 

Table 16: Mean scores for each experiental class on the linear modeling problem. 
 

 

 

 

Constructing an original exponential STELLA model: The graded question required that 

students select a scenario that increased or decreased in an exponential fashion over time.  

They were to sketch the appropriate STELLA diagram and label it (3 points), indicate the 

values/formula and units for the stock and the flow (3 points), value for the converter (1 

point), indicate whether the stock value would increase or decrease over time and how 

they could tell from the diagram (2 points), and how they knew the stock would change 

exponentially (2 points).  Note: students did not actually build this model on the 

computer. 

Table 17: Mean scores for each experimental class on the exponential modeling problem. 
 

 

 

 

Experimental Groups 
Teacher 1 
n = 20 75% 

Teacher 2 
n = 22 

 
76% 

Experimental Groups 
Teacher 1 
n = 20 80% 

Teacher 2 
n = 22 

 
75% 
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 Students worked on the first 2 models for the linear and exponential lessons in 

pairs.  That work would be considered at the “following directions” stage of the learning 

framework.  The 3rd problem in each lesson, however, was to design an original growth or 

decay model of their choosing, label the model, indicate how the model should be defined 

(i.e., the values or formulas needed) and explain why the model would show 

growth/decay and why the stock should increase/decrease in a linear/exponential fashion.  

Success on these exercises would demonstrate that those students had progressed to the 

“create your own” stage of the learning framework, since they are transferring their 

understanding of linear and/or exponential structure to a new situation, defining the 

model correctly, and correctly indicating why the model should produce the desired 

pattern of growth/decay over time.   

 Building the drug model:  Due to technical problems only the first 2 questions on the 

student packets were graded.  The first question required that students read the 

description of the scenario and sketch the STELLA diagram that would capture the 

details of the scenario.  (The scenario required a constant inflow and an exponential 

outflow for the stock.)  The diagram was graded (4 points) as indicated in the table below 

(1 point for a diagram that contained an inflow and an outflow, 1 point if the inflow was 

constant and the outflow was exponential, 1 point if the diagram was labeled correctly, 

and 1 point if the correct values were indicated for each icon).  Students were then to 

predict what they thought the graph of the stock value would be over time. Then students 

were to build the model on the computer and copy the simulation results on the same grid 

as the prediction graph.  The 2 graphs were given a total of 1 point. 
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Table 18: Mean scores for each experimental call on the sub-parts of the first and second problem 
of the drug model lesson. 

 

Theoretically, those students who correctly designed the drug model and 

simulated it would have moved to the “transfer” stage of the learning framework because 

they demonstrated that they understood linear and exponential behavior sufficiently to 

create a diagram that contains a constant flow (and linear behavior in the stock, if there 

were no outflow) and an exponential flow.  Moreover, they understood that the outflow 

had to be exponential and the inflow constant.  This would satisfy the “transfer” stage 

since students are applying their understanding of linear and exponential behavior to a 

completely new scenario involving both functions, something they had not dealt with in 

the past. 

Results of Videotape of two pairs of students from each experimental class 

Additionally, for the drug model, two pairs of students (one from each 

experimental class) were videotaped, separately, using a think-aloud task-structured 

protocol to determine how they thought about the model as they were creating it.  The 

videotapes were transcribed and analyzed using Lesh and Lehrer’s (2000) videotaping 

analysis framework to determine if students understood the difference between linear and 

exponential functions and could interpret a more sophisticated problem involving both 

types of functions. 

Experimental Groups 

 Stock, 
In/outf 

Con in, 
ExpOu 

labels values Pred 
Run 

Teacher 1  
n = 21 

97% 80% 34% 39% 57% 

Teacher 2  
n = 17 

68% 62% 26% 32% 44% 
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The pair was working on the drug lesson (and being videotaped by the researcher) 

at the same time their algebra II class was working on the same lesson with their algebra 

II teacher.  Each student had a “Drug Model Lesson” packet to read and work from for 

this exercise.  Students were to build and exercise the drug model while using think-

aloud-protocol. 

1. Overall Purpose 1:  To capture the thinking of the students as they decided how to 
construct the stock/flow diagram to capture the behavior of the following problem: 

 
“You are continuing your work as a medical resident at a local hospital.  You 
are again working in the emergency room when a patient arrives and needs 
medical attention.  For this patient you decide you must insert an IV drip into 
the person’s arm in order to administer a therapeutic drug.  You set the IV drip 
so it will allow a constant inflow of 1 g/min of the drug into the person’s 
blood system.  The patient, you estimate, will eliminate 0.55 % of the drug in 
his system each minute. (Be careful, 0.55% is less than 1%).” 

	
a. A subordinate purpose was to determine if the students could construct a 

stock/flow diagram that had the students select a stock and identify it as the 
amount of drug in the body, and construct a constant inflow toward the stock and 
an exponential outflow from the stock. Note that the generic exponential growth 
and exponential decay stock/flow diagrams were shown in a boxed display at the 
top of the paper, for student reference. 

 
• Team 1 produced a correct stock/flow structure on their initial attempt.   

 
• Team 2 started out with an incorrect inflow structure (exponential instead of 

constant), but realized since the inflow was a constant they need to remove the 
exponential inflow structure and replace it with a constant flow structure.  
(They redrew the inflow correctly.)  They also defined the model components 
correctly.  

 
2. Overall Purpose 2:  To determine if students can explain what is happening with the 

dynamics of the problem that causes the shape of the stock graph to be produced 
when the model is simulated?  That is, can the students interpret the model output, 
relating it to the real world problem?  

 
a. It is typical in System Dynamics modeling lessons to request that students 

anticipate model behavior before simulation runs are executed.  Most students, 
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initially, have a great deal of trouble doing this, as it is not something that is 
typically asked of them in their math classes.  This situation was no different. 

   
• The first pair of students drew an exponential growth curve.  The curve was 

incorrect.  
  

• The second pair created a linear graph where they moved by blocks, in time, 
and increased the next point vertically by 1 block but then subtracted .5 of a 
block from that, creating a line that had essentially a slope of .5 of a block.  
This curve was incorrect on many levels.  (Note: The default STELLA graph 
pad is divided into 16 grid blocks.  See Figure 5, for example.) 

 
b. Students were then asked to explain the result the simulation produced (whose 

appearance showed an exponential convergence upward from 0 to about 173 g, 
reaching steady state about 1/3 the way through the simulation). 

 
•   The first pair of students reached a reasonable conclusion.  In the packet the 

students wrote: “The medicine being eliminated slowly approaches the value 
of the medicine entering but never will reach the same value or decrease. “ 
Unfortunately, they did not explain why the medicine level should not 
decrease.  But it is a valuable insight that they did consider this option. 

 
• The second pair, after exclaiming how different the simulation graph was 

from their prediction, came to a reasonable explanation for the shape of the 
simulation graph.  The students observed the graph, then set up a table with 
the drug in the system, the inflow value and the outflow value.  In the packet 
the students wrote: “The inflow is constant but the outflow is exponential so 
as more drugs enter the system the outflow at a rate of .55% the outflow will 
grow to be the same as the inflow.” 

 
3. Overall Purpose 3: The final objective was to determine if the students were 

becoming comfortable enough understanding the model dynamics that they could 
correctly predict what would happen to the graphical model output if a modification 
of the model was made.  The following description was given to the students: 

 
“A complication occurs with this patient about 8 hours after the IV is 
administered.  One of his kidneys quits functioning, causing the elimination 
rate to reduce to half.  Predict what you think will happen to the drug level 
in the patient’s body, recording your prediction on the grid below.” 
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Both pairs correctly predicted the new behavior and were able to identify where the 

model needed to be modified, and how the definition of the selected component needed 

to be modified.   

• Team 1: [The students ran out of time.  They did not have time to see the 
simulation run, so they could check their prediction.  Both students drew 
prediction graphs in their lesson packet that indicated an initial jump upward at 8 
hours followed by a leveling off of the drug at a higher equilibrium.  This is the 
correct behavior the model would have produced.] 

 
• Team 2: These students drew both the prediction (using a dotted curve) and the 

actual simulation run (using a solid curve).  The dotted curve increased in a more 
gradual fashion, indicating a smoother upward transition at 8 hours, than the 
simulation graph that made a more pronounced upward jump at 8 hours. 

 
The transcripts37 indicate that the students were able to mathematize the problem 

without much difficulty, even after a faulty start with the second pair.  They were able 

to use the software to explain the dynamic behavior represented in the simulation 

graph of the initial model.  That was a key point.  Once they had an understanding of 

the cause of the dynamic behavior pattern of the original model they were able to 

modify the model and were reasonably successful predicting the new behavior of the 

modified model.  All of this work was on a model whose behavior was not typical of 

functions they had seen in class at that point.   

The student problem solving scenario captured in these two videotapes supports 

the claim that students are able to mathematize new scenarios that are combinations 

of behaviors they already know and are able to analyze and modify and reanalyze the 

problem with relative ease.  The videotaping lasted about 33 minutes for each pair of  

students. 

                                                
37 Conversation clips from the transcripts can be found in Appendix C. 
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This analysis was done comparing three problems across both student pairs 

(horizontal analysis) and also analyzing the improvement in thinking over the full 

time frame (vertical analysis) for each pair of students. 

Algebra Questionnaire 

Table 19: LIkert scale results, student opinions about the lessons. 

 

A Likert scale was used to give students in the experimental groups an 

opportunity to express how useful they felt the lessons were in helping them understand 

the concept of linear and exponential functions.  The lowest indicator was labeled “Not 

very helpful” and the highest indicator was labeled “Very helpful.” There were five 

points on the scale.  Students were to choose one of the five points to assess each lesson 

  Not_very 
helpful 

   Very 
helpful 

Activity Teacher 1 2 3 4 5 
1. The motion 
detector activity 

1 
2 

1 
4 

2 
3 

10 
6 

10 
5 

2 
1 

2. Building linear 
models on 
computer with 
STELLA 

1 
2 

2 
6 

1 
3 

11 
3 

5 
6 

6 
1 

3. The walking 
into/out of the box 
made with tape on 
the floor 

1 
2 

0 
6 

3 
2 

13 
5 

5 
5 

4 
1 

4. Building 
exponential models 
with STELLA 

1 
2 

2 
5 

2 
6 

11 
2 

7 
5 

3 
1 

5. Building bank 
model in class with 
the teacher 

1 
2 

1 
4 

0 
3 

8 
5 

8 
6 

8 
1 

6. Building the drug 
model with 
STELLA 

1 
2 

1 
5 

1 
5 

7 
5 

12 
3 

4 
1 
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(motion detector, building linear STELLA models, tape-walking floor activity, building 

exponential STELLA models, building a STELLA bank model with the teacher, building 

a STELLA drug model). 

 
Students were then asked to make comments about the lessons in general. 

 
Table 20: Student comments about their impression of the usefulness of the experimental lessons. 

 

Of the comments made regarding question 1-6:  55% were positive comments 

(enjoyed, liked, fun, helpful), 9% were neutral (wanted more interaction with the teacher, 

depends on the person), and 36% were negative (took more time than it was worth, didn’t 

understand, confusing). 

  Of the comments made regarding question 7: 43% were positive (yes: reasons 

varied from gained better understanding because I am a visual learner, liked the 

problems, it was hands-on).  18% were neutral (I already knew linear and exponential, 

Statement Teacher 
 

Negative Neutral Positive 

Comments about items 1-6 1 
2 

3 
5 

2 
0 

9 
3 

7.  From these six lessons, did you feel 
you learned important/useful information 
about linear and exponential functions? 

1 
2 

5 
12 

6 
2 

14 
5 

8.  Do you think the STELLA models 
helped you understand why the graphs of 
the situation you built models for had a 
linear or exponential shape? 

1 
2 

3 
7 

1 
3 

19 
8 

9.  Do you think this activity (all 6 
lessons) were worth doing? 

1 
2 

8 
12 

3 
1 

14 
6 

Additional Comments 1 
2 

0 
3 

0 
0 

4 
0 
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learned a little).  39% were negative (no: I already knew this, confusing, not taught well, 

easier to just use numbers).  

Of the comments made regarding question 8: 66% responded in the affirmative (it 

was visual so easier to understand, the models were interactive, I could see what was 

going on, I already understood the concept but now I know it from a different 

perspective), 10% were neutral (I already understood the concept), and 24% were 

negative (it was confusing, I still don’t understand them, it was unclear). 

Of the comments made regarding question 9: 45% said yes (fun, it definitely 

improved my understanding, they all tied together, because I learned something that 

actually might be useful in my life), 16% were neutral (timing was bad – right before 

finals, useful now but probably not in the future), and 45% were negative (no impact on 

my learning, hard to understand, felt like we were rushing, not practical, confusing).  

Validity 

This procedure (the six lessons) is assumed to have content and face validity 

because the lessons deal specifically with linear and exponential function concepts and 

have been used successfully with algebra II students in the past.  The procedure is also 

assumed to have construct validity, hoping to support a more conceptual understanding of 

linear and exponential functions.  The definition used to support evidence of conceptual 

understanding is 1) whether students can extend the models built in class to include a 

combination of those functions (linear and exponential), 2) whether students can 

comfortably transfer the linear and exponential scenarios they studied in the model-

building activities 2 and 5 to a drug model scenario, and 3) whether students can correctly 
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modify the initial drug model they create at the beginning of activity 6 to solve additional 

problems presented later in the drug lesson.  Note: The pre- and post-assessment is 

assumed to have reliability due to the use of the cross-balancing38 process for distributing 

the two forms of the assessment. 

C. Discussion and Lessons Learned 
 

The Assessment 

• The extreme compression of time for the six lessons (one of which – the graphing 
lesson - was not able to be executed in the experimental group for teacher 2) 
impacted the overall results of the post assessment, as students did not have time to 
complete any lesson and there was no time to provide feedback to the students on 
their work before moving on to another lesson.  Also, students who missed a class 
did not have an opportunity to make up the lesson due to the very short time frame 
for the experiment.  Consequently, the full post-assessment scores, do not represent 
a reasonable assessment of overall progress toward shedding light on the research 
question.  

 
• For any possible meaningful results from the total scores the experiment would have 

to be conducted over a longer period of time. 
   
• It was a mistake to do this experiment as a short unit (even if we had been able to 

dedicate a full three weeks to the unit) rather than infusing it into the regular 
curriculum.  It seemed as if most students did not place much value on the new 
approach because they knew they would not see it again after the experiment 
concluded.  Also, a short unit experiment, while easier to design and implement, 
gives short shrift to the fact that SD analysis is a way of thinking about problems.  It 
needs incubation time to be fully realized. 

 
• To perform statistical test item confidence analysis it is important to ask questions 

that have at least 5 different possible scores.  This was not considered in advance of 
the execution of the experiment.  

 
• It is important to view the data using multiple perspectives.  Combining the 

experimental classes and control classes in order to achieve a larger “n” value to 

                                                
38 Half the students received form A and half form B for the pre-assessment.  Then the form was reversed 
to use for the post-assessment for each student. 



           145
            

assist statistical analysis actually hid important relationships that ultimately negated 
the assumptions that the collective data seemed to present. 

 
 
The Lessons 
 
• STELLA linear and exponential model building seems to narrow the gap in 

performance between students who traditionally perform well compared to students 
who traditionally perform more poorly in algebra II.   Evidence for this statement 
was based upon comparing the class averages on the linear and exponential graded 
assignments for the two experimental groups whose performance on their first 
semester algebra II course was different by 14 percentage points. 

 
• The results of the drug model lesson completed by the two randomly selected 

student teams who were videotaped were quite positive.  Even the students who 
created an incorrect model initially were able to correct their mistake themselves as 
they built the model.  Those results provide promise that, had the two classroom 
attempts to complete the drug model lesson not succumb to so many technical 
problems,39  there might have been an opportunity to determine whether more 
students were able to transfer what they learned in the linear and exponential 
modeling lessons to a new, more complicated scenario.   

 
The Questionnaire 

• Students who generally had more success with math evaluated this very quick 
experiment in a more positive light than the students who were generally less 
successful.  This does not mean the lessons could not have altered the negative view 
had the students been given more time to work with the software.  The experiment 
was rushed and did not provide time for students to complete lessons, nor was there 
time to provide feedback about their work to the students, both situations that are 
felt more strongly by students who are already uncomfortable with regard to course 
content.  

  
• Although the teachers chose the placement of the experiment in the school calendar, 

some of the students indicated that they were not pleased that the experiment was 
conducted just before semester final exams.  They wanted to work on lessons that 
specifically prepared them for the final.  The students knew their course grades 
would not be impacted by their performance on any of the experiment assessments. 

 
Other 

                                                
39 The netbooks were old.  Quite a few of the computers did not function properly.  By the end of the 
experiment, the STELLA software, whose image had to be “pushed” onto the computers from the central 
district office, was missing from a significant number of the computers that were still operational.   
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• There are other issues that should be researched.   Another article by this author 

documenting this experiment from the perspective of the teacher is currently in the 
review process with a mathematics education journal.  It includes an analysis of 
teacher beliefs, teacher reflections during the experiment and also clarifies why the 
two teachers, both of whom have found SD modeling useful for their students, no 
longer use it in their curriculum. 

D. Conclusion 
 

It is becoming abundantly clear that adults need to gain facility dealing with 

complex systems scenarios as informed citizens or even when making decisions about 

social interactions.  It is becoming clear that some educational leaders also feel that 

educating people about complex systems should start in mainstream education, with 

students in K-12.  Progress has been made in K-12, but research supporting the 

improvement in learning outcomes for students at this level is sorely lacking.  The 

experiment described in this paper encountered some of the problems mentioned by 

researchers who have conducted classroom experiments with SD in the past.  The 

difficulty with the technology and the extremely compressed time frame for executing 

the experimental lessons led to results showing no statistical difference between the 

experimental and control groups on the pre- and post-assessments.  However, there 

were promising results from data gathered on the lessons themselves, indicating SD 

modeling may provide a useful method of closing the gap somewhat between students 

who are adept at math and those who are less adept, when analyzing dynamic problems.  

The results of the videotaped think-aloud protocol used with a pair of students, 

randomly selected from each of the experimental classes, as they built a drug model 

indicate that students are able to successfully build and analyze a model that is slightly 
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more difficult than the typical problems studied in algebra II.  The experiment should be 

repeated over a more extended time frame where the experimental lessons are infused 

into the mainstream curriculum.  The experiment was intended to suggest a path from 

the current topics covered in algebra toward those topics that are more illustrative of 

complex systems.  In this vein, the current experiment can add value to the current 

literature. 

The student work produced in classrooms where teachers are already using 

Systems Thinking and System Dynamics modeling is impressive.  This work will be 

largely ignored until documentation can be provided showing an improvement in 

learning outcomes.  This improvement will probably not be captured by current 

standardized tests.  Further work needs to devise appropriate assessment instruments to 

capture the more holistic thinking, attention to feedback analysis, structure/behavior 

connections, and increased depth of understanding evidenced in student explanations 

when they are using systems tools.  We should have a discussion about what behaviors 

we hope to see in students studying systems that sets them apart from students in other 

more traditional classes.  We should have a discussion about how to structure 

experiments to guide our studies to give them the best chance to produce results that we 

can document.  I invite those researchers who are interested in pursuing this path to 

build from the mistakes of this experiment and then tell us how much further they were 

able to progress, than I have.  We can do this.   It is, after all, a complex systems 

problem. 
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VII.  Synthesis  

A. Overall Aims 
 

 For over 20 years I have used System Dynamics modeling in my teaching, first as 

a new representation (stock/flow diagrams) for mathematizing simple dynamic problems 

that exemplified the behavior of the elementary functions found in the algebra II 

curriculum, second as a vehicle to expand the type of (multi-function) dynamic problems 

students in algebra II could analyze, and finally to have students build original System 

Dynamics models of complex systems problems that they subsequently explained in 

technical papers and presented to audiences.  Each of these avenues raised my 

appreciation for what students were capable of understanding using this “new” 

representation and analytical approach.  In my 30+ years of teaching mathematics at the 

high school level I had never encountered an approach whose benefits to student learning 

were as dramatic as using SD modeling.   

 SD modeling has been around for 60 years, almost exclusively at the graduate 

university level.  I wondered why I had not been exposed to this approach nor seen any 

application of this method at the high school level.  I wanted to find research about the 

efficacy of SD modeling in mathematics.  The research was scant.  Mandinach and her 

colleagues had done research in high schools and, although they were impressed by what 

they saw, were discouraged by the systemic barriers the pre-college environment 

presented with regard to implementing this innovation.  Yet, I felt I was not unique in my 

ability to apply SD modeling concepts in my high school courses.  I had not been trained 
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in SD analysis but still managed to find useful applications in the algebra II curriculum 

and found consistently positive reception by my students to this approach. 

 The STELLA software was developed in 1985, still early enough that there 

should have been plenty of opportunity for experimentation before I started my research 

work.  But it did not happen, and I wondered why.  Why was this approach invisible to 

the pre-college educational environment?  It turned out that there were pockets of pre-

college work going on.   Systems thinking work was happening as early as 1989 at 

Orange Grove Middle School in Tucson, Arizona.  It started when a retired MIT 

professor, Dr. Gordon Brown, who had mentored Jay Forrester at MIT, walked into the 

middle school and had a conversation with the principal.   Lola Piper, a computer science 

teacher, was using STELLA in her computer science classes at Blair Magnet Program in 

Silver Spring, Maryland around that same time and was trying to get some of the other 

teachers at her school interested.  Reports indicated that students were enthusiastic.  

Mandinach and colleagues were conducting experiments on infusing systems thinking 

and dynamic modeling in a high school in Brattleboro, Vermont, four high schools and 

two middle schools in the San Francisco Bay area and a high school in Tucson, Arizona 

1986 – 1993 (STACI and STACIN Projects).  It is hard to know what happened to the 

efforts to bring systems thinking to the schools involved in the STACIN research, as none 

of the teachers involved have attended the K-12 Systems Thinking/Dynamic Modeling 

biannual conference for the past 20 years.   Save Mandinach’s work, there seemed to be 

very little empirical research since that time.   
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 One of my aims for this dissertation was to review literature in mathematical 

education and system dynamics education relevant to using modeling to teach 

mathematics at the pre-college level.  Secondly, I wanted to write three research papers 

about the use of SD modeling in algebra classes to submit to math education journals.  It 

is no trivial task to write research papers that have the potential to be published.  I needed 

guidance in this area.  Thirdly, I wanted to design and execute a formal classroom 

experiment, learning all the requirements and procedures that this entailed. 

 This dissertation documents my efforts and how they will influence my future 

research. 

B. Findings/Contributions to Knowledge 
 
 From the literature review I found that, although there was scant empirical 

evidence with regard to the use of SD modeling in secondary school classrooms, there 

was significant empirical evidence with regard to modeling activities and modeling using 

technology in math education research.  Many of these findings, though not using SD 

modeling directly, were applicable to the use of SD in secondary school mathematics.  

The greatest find was the work of the late James Kaput, who had been writing for 

decades about his efforts to use technology to (at first) make calculus meaningful to 

everyone, then to make core concepts in algebra meaningful to everyone using a 

collection of interconnected representations that start with an analysis of motion.  He 

coined the term “democratization of mathematics,” as the underlying impetus of his 

efforts to improve mathematics instruction.  In 2000 he worked on a national initiative 

with like-minded mathematics and science educators to support the inclusion of complex 
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systems analysis in mainstream K-16 education.  My work and vision presented in this 

paper, for the use of SD modeling in algebra are very closely related to Kaput’s vision.   

 A second valuable finding that occurred from the literature review was the 

documentation of the many positive learning outcomes that occur from having students 

create models.   The initial expectation was to show that students, through modeling (and 

SD modeling), gained a deeper, more conceptual understanding of the problem with 

which they were working.  This is a significant claim, borne out by the work of Heid et al 

(2008b), Hung (2008), Jackson et al (1994), Mandinach et al (1988, 1993, 1994), and 

Stratford et al (1998).  The other positive outcomes were so numerous that a section of 

this dissertation, More Background Research, was created to record the positive learning 

outcomes. 

 A third valuable finding from the literature review was the indication that 

understanding functions and covariational reasoning were essential skills for success in 

calculus and for students’ future work in the sciences.  This fact indicates that starting SD 

modeling efforts focused on elementary functions, in the path toward inclusion of 

complex systems analysis in algebra as proposed in this paper, is on the right track.  

Gaining a deeper, more conceptual understanding of elementary functions, then 

understanding how multiple functions interact when studying slightly more complex 

problems is a useful trajectory to enhance mathematical thinking starting in algebra 

classes. 

 When deciding about the topics the three research papers should address, it 

became clear that it would be necessary to “educate” the mathematics education research 
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community and the secondary mathematics teacher community about SD modeling, both 

to introduce/reacquaint them with the approach and to set a stage for a possible increase 

in research articles on this topic.  Essentially, it was necessary to raise the visibility of the 

SD modeling approach in the mathematics education research and practitioner 

communities  To do that the articles had to provide not only a connection of SD modeling 

to traditional algebra, but provide a clear path that could be traversed by educators who 

were interested in order to help them gain experience and begin experimentation in the 

classroom.  The first two papers in this dissertation strive to do that.  

 The classroom experiment, presented in papers 3 and 4, was key in providing a 

foundation for future classroom experiments, indicating both pitfalls to avoid and 

experiences to replicate.  The main finding was to note that a short one to two-week unit 

introducing SD modeling lessons into an algebra II class will not provide enough 

experiences for students to demonstrate statistically significant improved learning 

outcomes compared to students given traditional instruction over the same concepts. 

Students need time to develop skill with the software.  They need feedback on their initial 

model-building efforts.  They need to progress enough with the SD modeling approach to 

start working with problems that move them beyond the typical problems found in the 

algebra II curriculum.  This cannot happen in one to two weeks.  

Two technology-savvy teachers recruited for the study who had used the 

STELLA software to introduce SD modeling in algebra II in the past, had discontinued 

its use due to the following departmental and environmental barriers:   

• the only set of computer netbooks available for math department instruction were old, 
slow, and only partially functional;  
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• the software used on the netbooks had to be “pushed” to the computers from the 

district office,  making the turn-around time for dealing with technology issues 
(especially the disappearance of software icons) unmanageable; 

  
• the new alternating block class schedule had reduced the number of instructional 

hours per year and placed significant pressure on teachers to cover topics that are 
assessed on state standardized tests, reducing time for implementing more innovative 
topics and instructional techniques. 

 
• all algebra II teachers had to collectively agree on the topics to cover in the course 

and when to cover them, and most teachers have not been trained to use STELLA, do 
not know its value and have indicated no interest in using it; 

   
 
For the two participating algebra II teachers involved in the classroom experiment 

(described in chapters 5 and 6 of this dissertation) these barriers had not been present 

during their initial experimentation with SD modeling lessons (in the past).  

In preparation for the experiment, original pre- and post-assessments had to be 

created.  It is necessary to give considerable thought to the construction of pre- and post-

assessment instruments when conducting research aimed at accessing improvement in 

conceptual understanding of a topic (i.e., linear and exponential function structure and 

behavior, in this case).  These types of assessments are not readily available, yet are 

essential for capturing the different type of learning that one hopes to document when 

students are expected to think more deeply about concepts and applications. 

Other considerations came to light, after the fact, when trying to analyze the 

student pre- and post-assessment results.  Creating pre- and post-assessment questions 

that have less than 5 possible different numeric scores (i.e., multiple choice questions) 

make statistical confidence analysis on those questions impossible.  This has implications 



           154
            

for how one might try to capture student thinking on a short assessment instrument, and 

warrants further study. 

Conducting statistical analysis on data is an art as well as a science.  It is 

important to look at pre- and post-assessment results from multiple perspectives to 

ascertain whether there is a reasonable indication that statistical confidence analysis is 

warranted.  In the classroom experiment conducted for papers 3 and 4, when combining 

the results of the two experimental groups, combining the results of the two control 

groups, and then comparing the experimental group pre/post-assessment gains with the 

control group gains, it appeared there were 3 out of 12 questions where the experimental 

group significantly outperformed the control group.  On further analysis, graphing the 

experimental and control group pre/post-assessment results for teacher 1 separately from 

the pre/post-assessment results for teacher 2, those comparative performance 

improvements disappeared.   

Hidden agendas can impact innovation in schools.  Grading schools on student 

performance on standardized state mathematics tests has had the unintended consequence 

of placing a stranglehold on innovation in the classroom.  There was a gifted Algebra I 

teacher at another high school who really felt SD modeling would help her students.  Her 

students always performed well on the statewide math assessments.  She wanted to 

conduct an experiment with her students in collaboration with this researcher to 

document her efforts introducing simulation modeling into her Algebra I class.  Her 

principal would not allow her to introduce SD modeling in her curriculum because he did 

not want her to change her class instruction in any way.  The scores produced in her 
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classes had elevated the scores for the entire math department at her school.  That was too 

important to the principal to be tinkered with. 

C. Implications/Significance 
 

For Researchers 
 

Kaput et al. (2013) present a compelling argument regarding the approach 

teachers take toward traditional mathematics instruction.  They indicate that at about the 

time the Gutenberg printing press was invented, the symbolic representation for 

expressing algebraic relationships was emerging.  This representation was intended for an 

elite few intellectuals who were expected to use this method of communicating with each 

other.  It was never intended for the general public.  They continue by expressing the 

impressive transformation that the transportation industry has undergone since the early 

days of the automobile and airplane, making travel easily accessible to the general public.  

A similar transformation has occurred in communication since the emergence of the 

printing press.  The general public is quite comfortable with many forms of 

communication.  But, Kaput et al. (2013), lament, no real effort has been made to develop 

“an equally accessible style of reading and writing algebra for everyday use by the 

general public”(p. 15), although we expect all high school students to understand this 

language.   The SD method and the STELLA software, in particular, provides an 

alternative, visual, symbolic representation for mathematizing dynamic problems.   The 

two-dimensional stock/flow structures displaying variable connections, and using naming 

conventions that are more like everyday conversation, can move us toward a more 

accessible communication of algebraic concepts.   After having my algebra II class build 
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and test a simple population model using STELLA, a student who was failing my class 

said, “Why didn’t we do this sooner?  This I understand.”   In the short term, using the 

STELLA software as a vehicle for mathematizing dynamic scenarios for students in 

algebra, pre-calculus, and calculus classes would be a worthwhile endeavor. 

If one agrees that the alternate symbolic representation provided by the STELLA 

software can enhance a traditional curriculum by reinforcing function concepts that are 

already part of the curriculum, then we automatically gain additional benefit from its use.   

We gain many of the desirable outcomes for learning experiences that were listed in the 

“More Background Research” section of this dissertation.  The SD modeling approach 

has the potential to support:  

• an increased motivation to learn (Jackson et al, 1994);   
• a student-centered, active instructional approach (Mandinach et al, 1988, 1993, 1994; 

Spector et al, 2001; Stratford et al, 1998);  
• lowering the level of abstraction when trying to model problems (Hung, 2008; 

Tinker,1990);   
• an opportunity for students to  

- practice inquiry (Confrey et al, 1994);  
- take control of their knowledge (Confrey et al, 1994);  
- have access to real-world problems (Stratford et al, 1998, Tinker, 1990), that have 

the potential to take them beyond what they would normally study (Tinker, 1990);  
- increase conceptual understanding (Mandinach et al, 1988, 1993, 1994);  
- have a vehicle to help them reflect more upon their work (Confrey et al, 1994);  
- better communicate their “mental model” of how a problem is structured (Jackson 

et al, 1994; Stratford et al, 1998);  
- express and experiment with their own ideas (Hung, 2008; Jackson et al, 1994);  
- formulate and test hypotheses (Jackson et al, 1994; Mandinach et al, 1988; 

Stratford et al, 1998);  
- enhance their intuition about how the world works (Hung, 2008;  Jackson et al, 

1994; Mandinach et al; 1988; Roberts et al, 1988; Stratford et al, 1998).  
 

While the advantages listed in the previous two paragraphs regarding the use of 

the STELLA software to enhance the traditional curriculum and the learning environment 
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are noteworthy, they don’t tell the whole story.  The real message is that the full power of 

the System Dynamics modeling approach can be a game changer for mathematics 

instruction.  It provides: 

• accessibility by a wide range of students to core ideas about complex systems 
(Tinker, 1990);  

• an opportunity for students to: 
-  understand the importance of feedback and interconnections (Hung, 2008; 

Spector et al, 2001;  Spector, 2009);  
- understand a problem more deeply (Hung, 2008; Jackson et al, 1994; Stratford et 

al, 1998);  
- understand the process of change in the world (Spector, 2009; Stratford et al, 

1998);  
- gain cross-discipline exposure to concepts (Hmleo-Silver et al, 2006);  
- gain insight into how complex systems work (Hung, 2008; Jackson et al, 1994; 

Mandinach et al, 1993; Roberts et al, 1988; Spector et al, 2001; Stave, 2012; 
Stratford et al, 1988).  

  
Using the SD method has the power to change the way our students think about 

the world.  STELLA is just a vehicle, providing access to a “cognitive enhancement” 

(Pea, 1985) in one’s ability to analyze complex, non-linear dynamic systems.   In the long 

term, teachers have a chance to take a quantum leap in helping students gain skill in 

analyzing problems that the current, traditional method of instruction cannot provide.  

The SD approach has been used by professional problem-solvers in industry, 

government, academia, and non-profit organizations since the 1950s.  So we know it has 

powerful application.  When the STELLA software made the modeling interface 

graphical and elegantly simple, that power became available to pre-college students.  Pre-

college students have shown that they can build relatively sophisticated models of 

dynamic, complex systems, and explain their reasoning.   This is documented in: a) the 

20 years this author has had students in grades 9 through 12 doing just that, b) in SD 
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modeling activities/courses offered in other high schools, and c) in the student 

SymBowl,40 SymFest, and DynamiQuest expositions of student SD modeling work that 

has occurred over the past 20 years. 

Most of the previous discussion has been about using STELLA to enhance an 

algebra curriculum.  That is where most math teachers interested in this approach will 

start and stay.  But some of the work that students in grades 9 – 12 produced during a 

year-long course in SD modeling is available for anyone to view.  Some of their models, 

technical papers explaining their reasoning, and some short student video clip 

presentations can be found on the web.41  Although their work has not been assessed on 

any standardized national or state exam, there has not been one parent, administrator, or 

other professional adult (in the 20+ years these SD modeling classes were offered) who 

has looked at these models and papers and not been impressed by the student work.  The 

student work itself serves as an assessment of the method and of the student’s thinking.  

It is the student’s portfolio of what they learned to accomplish by using the SD modeling 

approach.  As a teacher, it gives me hope that our students will be better prepared to face 

the future with more powerful tools than good (traditional) mathematics training alone.  I 

want to believe I have provided my students a tool that can help them understand how to 

think about some of the difficult problems they will face (collectively) as adults. A high 

                                                
40 SymBowl, SymFest, and DynamiQuest were/are gatherings that have been held annually, the first two in 
Portland, Oregon and the third in Massachusetts, that are similar to science fairs, where students display 
and explain their SD models for judges, parents, and other interested adults.  SymBowl and SymFest are no 
longer active. 
41 See pages http://www.ccmodelingsystems.com/student-projects-highlights.html, 
http://www.ccmodelingsystems.com/student-projects-videos.html, 
https://www.youtube.com/user/CCModelingSystems, and http://www.ccmodelingsystems.com/student-
projects-other.html. 
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school student recently attended a conference on global warming.  When the keynote 

speaker finished telling the audience about all the dire predictions, the student rose and 

asked “Is there no hope?”  Thankfully the speaker said,  “in the words of Donella 

Meadows [a great system dynamicist], I believe there is just enough time.”  Complex 

systems abound.  We must provide our students with the tools, and the hope, that they 

will in fact be able to address complex problems – or allow the desperation of thoughtful 

students to go unattended. 

Implications/Significance For Practitioners 
 

Some recommendations for educational decision-makers who want to introduce 

SD modeling in the pre-college curriculum are outlined below.   

Educate the principal and/or curriculum vice-principal of the school where a 

teacher wants to implement the SD model-building activities.  Show them how the SD 

modeling approach opens up new possibilities for students.   Show them what students 

can do with SD modeling that cannot be done with traditional symbolic representations.  

Show them how the visual nature of the software provides an opportunity for less 

successful math students to access algebra concepts.  What you will not have is evidence 

that SD modeling improves student outcomes on standardized tests (although it probably 

will).   

Once the appropriate administrators have agreed to allow implementation of SD 

model-building activities in math classes it will be important to ask for a commitment 

from them to maintain the computers available for math instruction.  A working computer 

lab is essential to the success of this instructional approach,  not just providing computer 
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access initially but maintaining the lab so it teachers can depend upon that technology 

over time.  Chapters 5 and 6 indicated the importance of this part of the plan.   

Moreover, it would be necessary to request support for training at least two (or 

more) algebra II teachers, initially, so they can learn the SD instructional approach 

together and would be more willing to incorporate SD into the general curriculum scope 

and sequence document that guides the algebra II instructional goals.  It would be useful 

to ask if it is possible invite other teachers to the SD modeling training (perhaps from 

environmental science, biology, physics, global studies, and/or health) who might be 

willing to coordinate topics into their classes that are amenable to SD analysis. 

 Educate parents.   This can be done by creating a one-page handout that 

highlights the main virtues of the SD approach for supporting mathematics concepts and 

having that handout available at parent-teacher conferences.  Often schools have a “back 

to school” night in September where parents follow their child’s school schedule and 

meet the teachers.  In this venue teachers, formally or informally, tell the parents about 

the expectations of the course.  This is a good time to introduce the idea that students will 

be doing computer assisted model-building activities to enhance conceptual 

understanding of mathematics via the use of a visual interface.   It is important that 

parents are informed of new techniques used in instructing their children, especially if 

they are not familiar with the approach.   Parent can be quite supportive if they feel a new 

instructional strategy will give their child an opportunity to understand mathematics in a 

deeper, clearer way.  They can also be useful allies in helping to convince the appropriate 
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administrators (and other parents) of the value of an experiment regarding the infusion of 

SD model-building activities in mathematics classes. 

Highlight student work both at school and in the larger community if possible.  It 

is important to show parents and administrators what students can do using SD modeling 

that they could not do before.  SD modeling gives students tools that can be applied to 

community problems (traffic congestion, homelessness, recycling projects, etc.) and if 

students choose local problems as modeling topics it can improve community/school 

relations to have students display and explain their models and the policy implications. 

Use alternate assessments to document understanding that highlight the systems 

approach.  Do not expect necessarily to see a difference on state math assessments.  

Standardized assessment mathematics questions do not test understanding of behavior 

and dynamics (in math).  So innovators must develop other ways to capture what the 

students are learning that demonstrates their improved understanding.  This can include 

exams that ask students to 1) build stock/flow diagrams for short descriptive, dynamic 

problem scenarios (mathematizing a problem), or 2) explain what multiple graphs (e.g., a 

population graph and its births and death graphs on the same grid) are telling the viewer 

about the pattern of population change over time and why that change is happening 

(covariational reasoning), or 3) sketch the graph of a scenario studied in class in which a 

new problem occurs part way through the simulation and changes the dynamics 

(hypothesis creation/testing, estimation/prediction), or 4) sketch (on a stock/flow diagram 

that is provided) an enhancement of the given diagram to include a new idea (extend 

mathematical understanding), etc. 
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Ask students to articulate what they learned,  how the SD approach has helped 

them understand specific math concepts better, and why.  It is always good to listen to 

how the students feel the new approach has helped (or hindered) them.  Recall, however, 

it is not sufficient to introduce SD modeling lessons in a short, isolated one to two week 

unit.  While it is useful to have students use the STELLA software to build very small 

models of dynamic problems, this experience does not allow students to see this approach 

in a broader perspective, as an actual tool that can enhance their ability to think about 

difficult, dynamic problems.  Until students have an opportunity to work with problems 

that are beyond the scope of the typical problems included in most algebra II textbooks 

(i.e., simple multi-function problems like the drug model) students may not see the value 

in the SD approach and question if learning it is worthwhile.  It is important to note that if 

a teacher only uses one or two STELLA lessons the frustration level indicated in the 

comments might outweigh the virtues, so it would be best to allow students to gain some 

comfort with the software to get a more balanced view of their opinions.  It will also 

make a difference if students have been able to study problems that are more 

sophisticated than typical (e.g., resource depletion scenarios, predator/prey scenarios, 

etc.) before asking them about the value of the approach.   It takes extra time to reach this 

point when SD modeling has been introduced in a mathematics class.  Allowing that 

extra time is essential.  Student comments can make powerful statements about the value 

of teaching differently. 

Try to find a colleague to work with.   Most teachers need to have a safety net 

when trying something new in their classes, especially if it involves technology.  That 
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safety net is another person, ideally another teacher who is using the same technology (or 

idea) in the same type of class, with whom a teacher can speak when problems arise.  

And they will arise.   Teachers can discuss the theory behind the new approach that may 

not be clear, or how to use certain features of the software.  They can also share ideas on 

how best to introduce a new approach, share curriculum materials created to implement 

the new approach, and discuss issues that arose with classroom management and/or 

computer access.  

Moreover, it is important that the SD modeling approach be seen as an important 

value-added topic, supported by multiple teachers teaching the same course so the 

instructional approach can be included in the scope and sequence document for the 

course, if such a schedule controls what can be covered in the course.   Having multiple 

teachers argue for the inclusion of SD modeling activities within a given course 

curriculum makes its inclusion more probable. 

Emphasize the value SD modeling has for reinforcing the concept of function.  

The concept of “function” is foundational to mathematics, is very important for 

applications in the sciences, and necessary for understanding calculus (Oehrtman et al, 

2008).  Using SD modeling to reinforce the function concept in algebra II could be used, 

and has been used, as an entry point for SD modeling lessons. 

Provide time for cross-disciplinary SD teaching, or at least coordination between 

the math teachers and science or social science or health teachers via topics covered for 

subgroups of students in their given year.  Systems thinking has not typically been 

emphasized in math instruction at the pre-college level. But this is not the case for other 
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disciplines.  In science, the Next Generation Science Standards (NGSS) specify as a 

cross-cutting goal (across all the sciences) “Systems and Systems Modeling.”  Additional 

cross-cutting concepts specified in the NGSS that are directly related to SD modeling are 

Patterns, Cause and Effect, Structure and Function, and Stability and Change.42  

Population models and the many scenarios to which they can be applied make it ideal for 

studying cultural challenges faced in many parts of the world (e.g., water shortages, 

arable land, deforestation, etc.) that are taught in global studies classes.  Drug models, 

such as an alcohol consumption model, and how alcohol affects the human body are ideal 

for discussions in health classes.  These models have been used in the pre-college 

classroom, usually in algebra classes.  This is a great way for students to see the benefits 

of learning mathematics.   Moreover, these models can be relatively small models.  

Insight can be gleaned from even simple models (Ghaffarzadegan, Lyneis, & Richardson, 

2011). 

 Unfortunately, traditional high school schedules do not easily provide 

opportunities for teachers from different disciplines the chance to discuss potential 

curricular coordination.  For this option to occur the administration has to work diligently 

and innovatively to foster such team collaboration. 

D. Strengths and Limitations 
 

Strengths  
 

                                                
42 A more complete alignment of SD modeling and the NGSS cross-cutting concepts can be found at: 
http://www.ccmodelingsystems.com/res-stds-skills-science.html 
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In this dissertation I document the need for including a method of analyzing 

complex systemic problems that is accessible by pre-college students.   Some researchers 

within the mathematics and science communities have already indicated that infusing 

complex systems analysis in mainstream pre-college education is important (Kaput et al, 

2000b).  System Dynamics modeling is a powerful method of analyzing complex, non-

linear, systems problems (Forrester, 1987; Sterman, 2000) that is accessible by pre-

college students (Creative Learning Exchange; Waters Foundation; Fisher, 2011b), due to 

the graphical human interface provided by the STELLA software.   As such, it affords 

mathematics teachers a vehicle to initiate the infusion of complex systems analysis in 

algebra courses. 

In paper 2 included in this dissertation, a connection between the traditional 

closed-form equation approach, the traditional recursive equation approach, and the 

STELLA modeling approach to mathematizing a simple bank account problem is given.  

That paper forms a simple explanation illustrating the mathematics engine (recursive 

solution of differential equations) driving the STELLA software, in a manner that is easy 

for a mathematical audience to understand.  Paper 2 can help create more of a glass box 

view of the SD modeling approach, to mathematics practitioners. 

Paper 2 also illustrates, using a typical bank account scenario, how easy it is to 

move problem analysis beyond access via the traditional closed-form equation 

representation, yet still allow even quite young students an avenue (using STELLA) for 

further mathematical investigation.   Moreover, the problem described uses only linear 

and exponential functions, topics included in most introductory algebra courses.   
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Although not presented in this dissertation, additional SD stock/flow structures can be 

designed to represent quadratic, convergent, logistic, and sinusoidal functions as well. 

All three papers in this dissertation contain examples of simple SD models that 

have been used in algebra classes by a broad range of students to mathematize dynamic 

problems, allowing them access to investigation.   This access is afforded by the visual 

nature of the software, STELLA in this case.   Tinker (1990) documents that a broad 

range of students have access to complex systems analysis using SD modeling. 

Having students explain their solutions to problems is an important component of 

learning with understanding (Chi et al., 1994).  SD stock/flow diagrams can serve as a 

tool for helping students display and explain their “mental model” for how a dynamic 

problem is structured.  SD modeling can help a person surface his/her mental model 

(Forrester, 2009).  In paper 3, I present the 20-year action research conducted by this 

researcher.   An illustration of students using SD modeling and stock/flow diagrams to 

explain their mental models is evident in the technical papers written by high school 

students who have had an SD modeling course and can be found at the website listed in 

footnote 41. 

In all three papers I explain that the STELLA stock icon represents a variable that 

is an accumulator and the flow icon represents a variable that is a rate of change.  

Moreover, the manner in which the simple SD models are presented in each paper uses a 

differential equations frame of reference.  SD modeling provides a vehicle for 

introducing a dynamic perspective for many of the elementary functions that are part of 

the standard algebra II curriculum, enabling a conceptual introduction to calculus 
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principles before students reach a traditional calculus course.  This statement is supported 

in research done by Tinker (1990). 

In papers 2 and 3, I present a multi-staged path that can be used whereby high 

school teachers could successfully implement the study of complex systems in their 

algebra II classes.  The path could start with introducing stock/flow diagrams for 

mathematizing simple, dynamic, single-function problems, then expand by introducing 

applications using multi-function dynamics not typically studied in algebra II.  The path 

mentioned in the previous sentence has been successfully implemented by this researcher 

and other math teachers (notably those who participated in the NSF CC-STADUS and 

CC-SUSTAIN projects mentioned in the 20-year action research section of paper 3) in 

dozens of algebra II classes in the past. 

Determining how to assess a new instructional approach that is quite different 

from a traditional approach can be difficult.  However, multiple strategies for designing 

classroom assessments have been presented in the Implications/Significance for 

Practitioners sub-section, of chapter 7 of this dissertation. 

In this dissertation I differentiate those studies that provide empirical results with 

regard to enhanced learning outcomes from modeling from those that merely provide 

thoughtful reflection and conjecture on the part of the researchers.  The differentiated 

references to the articles can be found in tables 1, 2, and 3, displayed in the “More 

Background Research” section of this dissertation. 

  
Limitations 
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The classroom experiment designed and executed for this dissertation (papers 3 

and 4) did not involve many students, only a total of 43 for the experimental group and 

33 for the control group.  Such small numbers do not support findings that could be 

generalized.  The experiment did, however, yield valuable insight into the mechanisms 

that were needed to conduct an experiment on a larger scale.  It is necessary to take into 

consideration the large number of students who do not return permission slips, and the 

few parents or students who did return permission slips but decided not to participate.   

Originally, the design experiment was to include both algebra I and algebra II 

teachers, but the two algebra I teachers who had agreed to participate encountered 

impediments to their participation.  One teacher’s school did not have a site license of the 

STELLA software, nor could she obtain permission from her administrator to participate.  

The other was given a teaching assignment that included new courses during the year the 

experiment was to be conducted that required extra time; consequently, she felt unable to 

participate due to lack of time to prepare for the experiment.  As a result, the experiment 

was conducted with only two teachers, both of whom taught algebra II.  Although this 

narrowed the scope of the experiment, all of the lessons and design for the algebra I 

segment of the experiment have been constructed and can still be used in an experiment 

at a future time. 

The two experimental student groups were of significantly different ability in 

mathematics (algebra II semester mean of 69% for one group and 83% for the other).  

This created a problem when combining the students into a larger experimental group, for 

analysis, and trying to draw conclusions based on the performance of the larger group.  
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Additional confounding influences would possibly have been introduced by such 

divergent group ability.  Having two student groups with quite different math ability, 

however, did produce results that suggest SD modeling might support students who are 

less adept at traditional mathematics in their effort to mathematize and analyze dynamic 

problems.  This point is mentioned in the section on topics that warrant further study. 

The classroom experiment (see paper 4) did not result in differentiating learning 

outcomes in the experimental algebra II classes compared to the control algebra II 

classes.   What I learned from this experiment was the need to perform experiments that 

extend over longer time frames to allow students to gain a comfort level using the 

STELLA software, to receive feedback on their early model-building experiences, and to 

develop their ability to anticipate and explain the behavior of the model based on its 

structure.  These skills do not develop in two weeks.   

Both the short experiment time-frame and the technical problems hindering 

students’ ability to build the important last model (the drug model) may have adversely 

affected the value students placed on the SD modeling approach.    Students need to see 

problems that extend beyond those typically covered in an algebra II class to be able to 

experience the value afforded by the SD approach to help them learn mathematics.  

Developing the foundational skills needed to introduce such problems takes longer that 

the 1.5 weeks that were allotted to the experiment conducted for the study presented in 

chapters 5 and 6 of this dissertation.  Furthermore, the fact that many of the netbooks lost 

the STELLA icon by the last lesson meant many students were unable to construct the 

drug model (the extended problem for this experiment), a lesson that had been popular 
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with students in previous years.  The abbreviated model-building process and computer 

problems did not allow sufficient time to execute the extended problem.   

A longitudinal study was not incorporated into the design of the experiment for 

this dissertation.  Longitudinal studies over several years within the secondary school 

timeframe would be ideal for testing the claim that SD modeling has the potential to 

change how students think about the world, a claim that is made by many teachers who 

teach systems thinking and dynamic modeling.  It was not practical to conduct a 

longitudinal study as part of this dissertation experiment, but such a component is very 

important for any future research involving SD modeling. 

The pre- and post-assessment instruments were not optimally constructed to allow 

statistical confidence analysis on individual questions.  Future assessment instruments 

should contain more questions that are open-ended and/or require student responses that 

can be scored over a range of at least 5 different possible numeric values.  

Moreover, students should have been interviewed about the pre- and post-

assessment instrument after the classroom experiment was over to determine if they 

found any questions confusing, so the assessment instrument could be improved. 

An experiment with regard to teacher training, for teachers who have never used 

SD modeling, was not conducted.  This researcher has pursued several avenues for such 

training and it would be useful to conduct such a study to fine-tune a training approach 

that would allow teachers to implement and retain SD analysis as part of their algebra II 

curriculum.  
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The STELLA software is only available commercially, at this time.  This adds a 

barrier to its use at the high school level, a barrier that becomes apparent when a teacher 

becomes trained in SD modeling and wants to implement SD model-building lessons in 

his/her class.  For example, when a teacher who had attended a short training in SD 

modeling and was interested in implementing SD modeling in her algebra class, asked 

her administrator to purchase the software,  he refused.  The teacher wanted to conduct 

some experiments with her students and this researcher.  Only schools with a site license 

of the STELLA software are candidates for experiments based on infusing SD modeling 

over an extended period of time in the classroom.  Lack of software access could be one 

reason teachers have been reluctant to experiment with SD modeling.  However a free, 

web-based basic version of STELLA should be available by the end of the 2016 calendar 

year. 

E. Indications for Future Research 
 
Reflections 

 To move forward in the effort to incorporate more model-building activities as 

part of infusing analysis of complex systems into the precollege classroom, more research 

is needed.  In fact, without more research, it may be difficult to gain administrative 

support for efforts by teachers interested in incorporating complex systems analysis in 

their curriculum, as administrators control professional development for teachers, time 

allocated for experimenting with new concepts and instructional strategies, assessment of 

teachers who use new strategies, and the accessibility of technology for instructional (as 

opposed to statewide assessment) use. 
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 It is my intention to continue to conduct classroom experiments using SD 

modeling in mathematics and science pre-college classes.  Based on lessons learned 

conducting research for this dissertation I will be following some guidelines that I now 

share with the reader.  For future research I plan firstly, to insure experimental modeling 

lessons be infused in the regular curriculum.  The number of lessons should be sufficient 

for students to consider SD modeling as a viable tool for studying dynamic problems.  

This may require a minimum of one SD modeling lesson per month.  Secondly, it is 

important to avoid short “unit” length introductions of SD modeling of a few weeks, and 

where the approach is never used again during the class.  SD is an analytical approach for 

thinking differently about dynamic problems.  The “unit” instructional method short-

circuits the intention of the SD approach.  Thirdly, it is important to design part of the 

experiment to include pre/post-assessments using control and experimental groups 

whenever feasible, in order to try to perform statistical confidence analysis, as results of 

such experiments are still held in high regard in the research community.   While it is true 

that obtaining statistically significant results from instructional intervention is quite 

difficult in educational research (Berliner, 2000), it does not mean it should be 

abandoned, rather that it should be honed.  Fourthly, it is still important to designate part 

of the experiment to include design experiment instruments such as videotaping 

students/teachers as they work, interviewing teachers and students, etc., as valuable 

information is obtained by these analytical methods that cannot be obtained by statistical 

analysis using control and experimental groups.   I believe the previous recommendations 

can be useful in designing experiments to address recommendations for further research. 
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 Some readers might notice that I have not made any mention of gender issues 

with regard to SD modeling.  The reason is that I found the girls just as interested and just 

as capable as the boys using the SD approach in my algebra II classes.  A better indicator 

might be that the number of girls who signed up for, and successfully completed the 

yearlong modeling course (an elective math course) was in balance with the boys who 

signed up for and successfully completed the course.43  Of note, the girls tended to select 

for their final original models topics dealing with health issues.  One of my female 

students said, “I wanted to study how cocaine works in the human body because a 

member of my family is addicted to cocaine.”  I think the female students felt the SD 

approach allowed them to study topics that were very interesting to them.  This is 

especially important with the emphasis on STEM related courses for both girls and boys.  

A colleague who is a retired NASA engineer and who is familiar with SD and the 

STELLA software said that SD models allow students to do design engineering.  So SD 

modeling addresses STEM topics as they directly apply to all four areas: Science, 

Technology, Engineering, and Mathematics. 

 Another consideration arises from the fact that many of the recommendations for 

further research mentioned below have had some research attention in the past.  While 

that research has been useful, much of it is dated, and the research that exists is minimal.  

SD analysis of complex systems is a timely topic for pre-college education.  The 

recommendations for further research highlighted here identify some of the most 

                                                
43 As a matter of fact the drop-out rate for the year-long modeling course for both girls and boys was near 
zero. 
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important claims (regarding SD modeling) that are promising and sorely in need of more 

analysis. 

Suggestions 

 Research is needed to determine whether students who are less adept at traditional 

mathematics (using closed form equations) can mathematize dynamic problems and 

explain their reasoning more easily than using traditional closed-form equations.  (See 

Tinker, 1990.)  Experiments could be conducted whereby modeling activities are 

analyzed with respect to the success of subgroups using different representations.  

Moreover, the teacher could allow students a choice of representation method to 

mathematize certain dynamic problems and see which representations are selected by 

different subgroups.   

  Following the previous recommendation, it would be useful to use the stock/flow 

diagramming approach to identify areas of common mistakes and misconceptions that 

occur during model building, and how often these mistakes occur (Van Borkulo, van 

Joolingen, Saelsbergh, & de Jong, 2009).   Part of identifying and correcting areas of 

common mistakes and misconceptions requires that students be able to identify those 

parts of the model structure that produce the behavior exhibited by the model.  Without 

understanding the connection between structure (stock/flow diagram) and behavior 

(graphical output) students will likely not be able to correct their mistakes (Hmelo-Silver 

et al., 2007).  Determining how well students are able to understand the connection 

between structure and behavior is another area for future research (Doerr, 1996) that will 
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likely need to be developed on a continuum, where the problems gradually become more 

complicated so that the quality of student explanations could be analyzed. 

 As students become more comfortable using SD modeling to capture their 

“mental models” by creating the stock/flow diagram and validate that the behavior of the 

model is reasonable by explaining how and why their model produced the behavior 

demonstrated, the question remains, does this enhance their understanding of key 

concepts at the foundation of the lesson?  This question requires some agreement about 

what conceptual understanding means.  One might suggest that it could mean, can 

students extend models to capture additional facets of a problem (e.g., can they include a 

carrying capacity component in a population model that is growing exponentially) or can 

they transfer a model structure to another scenario that has similar behavior (e.g., taking 

the spread of an epidemic structure and apply it to the spread of a rumor or marketing a 

new product)?   Determining whether most students who use SD modeling are able to 

adapt models and/or transfer structure to a new context requires further study (Hmelo-

Silver, et al., 2006; Jacobson et al., 2006).   Mandinach et al., 1987) suggests this transfer 

is not automatic and needs scaffolding by the teacher before it can occur. 

 Since SD modeling software uses variables that represent accumulations and rates 

of change it is claimed that SD modeling can be used to introduce students to basic 

calculus concepts in courses that occur in the mathematics sequence prior to a formal 

calculus course (Roschelle et al., 2000; Tinker, 1990).  It would useful to know exactly 

how much students understand about accumulations and rates of change after working 

with SD modeling and whether they can explain what they know by using other, say, 
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more physical or pictorial examples.  Some researchers have identified the need to 

research whether students really understand the difference between stocks and flows 

(Mandinach, et al., 1988).  If students cannot differentiate between variables that should 

be represented as stocks versus flows, it would certainly call into question whether 

students understand the most fundamental concepts in calculus.  

 Researching claims by teachers that SD analysis has changed how some of their 

students view local, national, and/or global issues requires more than a few classroom 

experiments with a few teachers.  Mandinach et al. (2000) suggest that longitudinal 

studies should be designed over several years and should include interviews with 

students, teachers, and administrators and incorporate observations of the classroom and 

multiple assessment criteria.  They suggest that student information should be collected, 

including grade point average, types of classes taken, attendance, disciplinary actions, 

and dropout rate, among others, to give a more complete picture of the effect SD 

modeling has on subgroups of students.   Expanding on Mandinach’s recommendation, 

even more extensive longitudinal studies focused on the value of SD modeling to prepare 

students for college and/or the workforce could provide valuable insights regarding 

whether SD training affects the educational path students choose for college and/or their 

choice of profession.   I would strongly recommend that any future research should 

include components that do follow-up studies in later years with the students who have 

been trained in SD modeling. 

 As suggested in previous sections, further research is needed to devise new 

assessment instruments to capture the enhanced student learning outcomes that SD 
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educators claim are a product of using SD modeling (Doerr, 1996; Roschelle, et al, 2000).  

Documenting student explanations provides some of this data, but such documentation is 

not easily summarized.   It may be useful to investigate how science teachers assess 

systems thinking (ST) concepts, as considerable focus has been placed on ST in science 

education in the past decade.  

 Students will not have an opportunity to use SD modeling unless their teachers 

are interested and willing to take the risks associated with using an instructional approach 

that is quite different from the traditional one (Mandinach et al., 1988).  Research should 

explore the new role of the teacher as a facilitator rather than a person who imparts 

knowledge to the student.  It is important to determine the teacher’s belief about the value 

of modeling when analyzing the effectiveness of student modeling activities.  Continued 

research is needed to determine whether newly trained teachers are more open to the 

facilitator role and the use of technology in the classroom.    

 Online professional development for teachers can be tailored to individual teacher 

needs and interest, differentiating in-service professional growth opportunities.  System 

Dynamics modeling training is already available online.  It would be useful to determine 

if those opportunities provide what teachers need to begin using SD modeling in their 

classrooms.  An administrator could experiment, allowing a small group of teachers to 

determine the direction for their professional development, and then could visit their 

classrooms in subsequent months/years to see if the teachers are applying what they 

learned.  Conversations between the teacher and administrator would be needed to define 

the expectations for this mode of professional development. 
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F. Concluding Comments 
 
 Secondary school mathematics education in the US is in dire need of an overhaul.  

Math scores on state and national assessments are very low, yet classroom instruction has 

not changed in decades.  The current system does not serve significant subgroups of 

students, nor does it serve the teachers who are expected to differentiate instruction but 

are not given adequate training on new technological approaches nor given adequate 

technology to use in the classroom. 

 Technology use, in the form of computer modeling and simulation can serve as a 

reorganizer of algebraic thinking and as such, can be a game changer for mathematics 

instruction.  Students at the secondary school level have shown that they are capable of 

creating SD models to study complex systems problems, explaining their models in 

technical papers, and highlighting the insights gained from model building to others.  An 

important need is to present evidence about the value that SD modeling provides to 

enhance mathematics learning outcomes for students.   To do so will require researchers 

to devise assessments that capture the differences that teachers who use SD model-

building lessons claim they see in their students after using the SD approach.  A multi-

stage path has been identified in this dissertation to guide teachers who want to begin to 

incorporate SD modeling in their algebra classes.  Not all teachers will want to follow the 

entire path, but following any part of the path could provide value for students.   

 In this dissertation I have presented the empirical research of others supporting 

the value computer modeling brings to student learning.  I have identified efforts within 

the mathematics research community to bring complex systems analysis into mainstream 
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pre-college education.  I have reinforced the importance of the focus on understanding 

functions as a high leverage point in early SD modeling lessons in mathematics.  I have 

identified the lessons learned from a classroom experiment whereby two algebra II 

teachers introduced SD modeling lessons into their classes.  The lessons were: infuse SD 

modeling into the curriculum over an extended time period, allow students to see SD 

modeling as a tool that supports mathematizing and analysis of problems that are beyond 

those they would typically be able to study, and provide an environment for teachers that 

allows them to focus on their teaching – including reliable, available computers, another 

SD teacher to talk to, a class schedule that provides needed instructional hours for core 

content as well as time for innovation by students, and a reduction in the stress to “teach 

to the standardized state/national tests.” 

Online instruction in SD modeling and analysis is available through various 

universities and online SD instruction for math and science teachers is available through 

Portland State University.  Curriculum materials appropriate for K-12 Systems Thinking 

(ST) and SD modeling are available through the Creative Learning Exchange and isee 

systems, inc.  A bi-annual K-12 Systems Thinking and Dynamic Modeling conference is 

held in Massachusetts (organized by the Creative Learning Exchange) for teachers who 

want to learn and/or share their systems thinking and SD work.   

 Mathematical analysis of complex systems problems is becoming increasingly 

important.  We have powerful analytical methods with elegant graphical interfaces that 

make these methods accessible to pre-college students.  We teachers have a responsibility 
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to equip our students as we prepare them to deal with a world that has not prospered 

under our care, with the best available tools for thinking.  
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Appendix A:  Detailed Explanation of Lessons for the Study  
 
Stage 1 & 2:   Enactive & Iconic (linear) 
 

Activity 1:  (Motion) The teacher will use a motion detector activity, where a 
motion detector is connected to a computer projection unit and will have students move 
in front of the detector to produce several graphs of linear function patterns described in 
short paragraphs.  Questions will be asked (in the handout) to determine if the students 
can identify key graphical concepts that are related to the motion (i.e., connection 
between y-intercept and starting position of the person who will walk in front of the 
motion detector, connection between slope and velocity, the characteristic of the motion 
that makes the graph linear,  etc.) Students will be expected to predict/sketch graphical 
result before actual data is captured.  Students will also be expected to create velocity 
graphs from position graphs and position graphs from velocity graphs.  Finally, students 
will be asked to create their own motion descriptions that will produce graphs 
composed of linear segments to move a person from point A to point B (on the graph).   
The researcher will “grade” this original motion problem the students have produced. 

 
Stage 3:   Symbolic (linear) 
 

Activity 2:  Students will be shown the STELLA software icons and, using the 
software, the teacher will build one linear model of motion in class.  Students will then 
use the classroom set of computer netbooks to build various linear models based on 
problem descriptions.  They will be expected to use the model to make predictions and 
answer questions about the problem scenario.   Students will be expected to create an 
original linear model of their choice, label the icons appropriately (with units), produce a 
graph that is linear, and explain why the graph produced is linear, the meaning of the 
slope and y-intercept for their scenario.  The researcher will “grade” this original model. 

 
Stage 1:   Enactive (exponential) 
 

Activity 3:  (Floor stock/flow activity: Linear functions and exponential 
functions) 
This activity will consist of using masking tape to form a 5ft. by 5ft. rectangle on the 
floor of the classroom. There will also be an inflow path, with an arrow pointing toward 
the rectangle (created by masking tape on the floor).  Students will walk inside the arrow 
path, into the rectangle, in certain constant flow patterns (used to quickly review creating 
a linear function).  The number of people in the stock will be recorded in a table.  Student 
will be asked to come up with ideas to produce linear decay. 
 
 Then the teacher will have one student start in the stock and have him (her) take 
out his (her) cell phone.  A strip of masking tape will be placed on the floor connecting 
the stock back to the flow (in a curved pattern).  The teacher will take out his (her) cell 
phone and, standing with his (her) back to the stock pretend to contact the person in the 
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stock using the phone, asking how many people are in the stock.  Then the teacher will 
ask that same number of people in the class to move into the stock.  The teacher then asks 
(mimicking a call on his (her) cell phone) the person in the stock (with the cell phone) to 
tell him (her) how many people are in the stock. When he (she) receives that information 
he (she) sends in that number of new people, from the class, into the stock.  (A table of 
the number of people in the stock will be recorded, each turn, on the board.)  This process 
continues for two more turns.  Students will come up with original ideas for descriptions 
that will produce a similar pattern of increase in the number of people in the stock. 
   
Stage 2:   Iconic (linear and exponential) 
 

Activity 4:  Students will graph the values that were recorded in the tables that 
were produced in stage 1 (for exponential functions).  Students will be given some tables 
of values and asked to determine if they represent linear or exponential growth and if so 
explain how they know.  

  
Stage 3:  Symbolic (exponential)  
 

Activity 5:  Students will be reminded of the STELLA software icons and the 
teacher will build one exponential model of an interest-bearing bank account in class.  
Students will then use the classroom set of netbooks and build various exponential 
models, using the STELLA software, based on problem descriptions given in their 
handout.  They will be expected to use the model to make predictions and answer 
questions about the problem scenario. Students will be expected to create an original 
exponential STELLA model of their choice, label the icons appropriately (with units), 
and explain why the graph produced is exponential. 

 
Day after activity 5:  The teacher will build a bank account model with constant 

withdrawals with the aid of students in the class, asking students how to build the model 
and asking them to predict behavior based on changing values in the model. 

   
Activity 6:  A random selection of one pair44 of students will be removed from 

each experimental class when the rest of the class is working on the drug model lesson.  
Each pair will build a drug model.  These students will be videotaped, by the researcher, 
as they try to determine how to build the model and answer the questions.   The student 
pairs will build the model identified as the IV drug model on a computer netbook 
provided in an empty classroom.  The rest of the class will build the same model.   Each 
student pair will be asked to: 1. explain the behavior (graph) of the model,  2. Explain 
how they would modify the model to include a change in the story scenario, and 3. 
anticipate the behavior of the modified model.  The researcher will “grade” this packet. 
  
                                                
44 Student names will be placed in pairs on small papers and selected at random from a container.  The 
pairing is designed to maintain student comfort in working with another student they usually choose to 
work with, if possible, on the task for activity 3.  
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Appendix B:  Detailed Explanation of Pre- and Post-Assessments for the 
Study  
 
1. Question 1:  Given 4 straight line graphs with different vertical scale designations 

(only min and max numbers specified) and the same horizontal scale designations 
students are asked to determine the graph that has the largest slope. 

 
2.  Question 2: A description of filling or emptying a tub or glass is given and students 

are to draw a graph of the resultant volume over time. 
 
3. Question 3: An ecosystem with a deer herd that is growing or declining is described.  

Students are to designate the relationship between the birth and death rates of the deer 
herd over time. 

 
4. Question 4:  A description of a person moving in front of a motion detector is given 

with four graphs to choose from showing potential representations of the described 
motion. 

 
5. Question 5: A description of a scenario that produces a linear graph, and the linear 

graph produced.  Students are to designate a label for the dependent and independent 
variables for the graph. 

 
6. Question 6: Asking students how the slope of an exponential graph changes over 

time. 
 
7. Question 7.  Given two straight-line graphs, on the same scale, one of the inflow and 

the other of outflow for contents of a container, describe how the quantity in the 
container is changing over time. 

 
8. Comparing the growth or the decay amounts of two items that are growing/decaying 

exponentially where one change rate is exactly twice the other change rate. 
 
9. Given a STELLA linear function diagram with icons described, but no values 

indicated, determine if the stock value will increase or decrease and determine the 
pattern of change that will occur. 

 
10. Determine if linear growth/decay of a money scenario is more efficient/productive in 

reaching the goal over 100 years compared to an exponential growth/decay. 
 
11. Determine whether slope or y-intercept is altered if a line is shifted up/down or 

right/left. 
 
12. Given 5 scenarios determine if the growth/decay is linear or exponential. 
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Appendix C:  Videotape of Two Student Pairs, One From Each 
Experimental Class, Building the Drug Model 
 
1. Overall Purpose 1:  To capture the thinking of the students as they decide how to 

construct the stock/flow diagram to capture the behavior of the following problem: 
 

“You are continuing your work as a medical resident at a local hospital.  You 
are again working in the emergency room when a patient arrives and needs 
medical attention.” 
“For this patient you decide you must insert an IV drip into the person’s arm in 
order to administer a therapeutic drug.  You set the IV drip so it will allow a 
constant inflow of 1 g/min of the drug into the person’s blood system.  The 
patient, you estimate, will eliminate 0.55 % of the drug in his system each 
minute. (Be careful, 0.55% is less than 1%).” 
	

b. A subordinate purpose was to determine if the students could construct a 
stock/flow diagram that had the students select a stock and identify it as the 
amount of drug in the body, and construct a constant inflow toward the stock and 
an exponential outflow from the stock. Note that the generic exponential growth 
and exponential decay stock/flow diagrams were shown in a boxed display at the 
top of the paper, for student reference. 

 
The following sentence in the lesson indicated how the structure should be 
constructed: 
 
“Modify the basic exponential STELLA diagram to incorporate the constant 
inflow of drug and the exponential outflow.  Draw the STELLA diagram you now 
have in the space below.  Label each icon to match the situation described.  Be 
sure to place the correct value or formula in each icon.” 
	
(Note: it would have been much more useful to the analysis not to have specified 
that the inflow was constant and the outflow was exponential. It would have been 
better to see if the students could have performed this construction merely from 
the description of the scenario given above.)  
  
An unintended bias on the part of the researcher was that, if the students did not 
get the model structure constructed correctly they could not proceed with the rest 
of the lesson that was to enhance and experiment with the model. 

 
Another unintended bias on the part of the researcher was that, since the 
researcher was videotaping the two students working on the Drug Model lesson at 
the same time the classroom teacher was having the rest of the class work on 
constructing and exercising the Drug Model in class, the flow description would 
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help the teacher troubleshoot questions, making this part of the lesson easier, 
since students could not proceed without producing at least a correct basic model. 

 
As it turns out the two videotaped pairs did not proceed in the same way at this 
point.  In fact the first pair overlooked the “Modify the basic exponential…” 
sentence completely, that specified that the inflow should be constant and the 
outflow should be exponential. 

 
Team from Teacher 1’s class build the correct structure immediately: 

S1 = student 1, S2 = student 2 
 

S1: [reads the problem description] …be careful .55 is less than one.  Modify the 
STELLA diagram. So we’re supposed to draw the STELLA diagram different 
or the same and just label it? 

S2:  So stock is like medicine in the system and then inflow 
S1: So it’s inflow or outflow cause it’s… 
S2: Well there’s both. 
S1: So there’s one going in and one going out? 
S2: Because there’s 1 gram a minute going in and then you lose .55% of it. 
S1: And there’s a connection on the outflow right because its .55%? 
S2: Yeah. 
S1: Of the drug it’s one gram per minute so 
S1: Because it’s .5% so would be .0055 
S2: Yeah. 
S1: And then the initial is, there is no initial, so it’s zero and then for the inflow 

it’s one.  What’s next?  … 
 
Team from Teacher 2’s class build the incorrect inflow structure initially, then 
correct their mistake later: 

P1 = pupil 1, P2 = pupil 2 
 

P1: [reads the problem description] …be careful 0.55 percent is less than one 
percent.  Modify the basic exponential STELLA diagram to incorporate the 
constant inflow of drug and the exponential outflow.  Draw the STELLA 
diagram you now have in the space below. Label each icon to match the 
situation described.  Be sure to place the correct value or formula in each icon. 

P2: So we make this one first. 
P1: All right.  So we’re making a model. 
[Instead of drawing the structure first, as indicated in the lesson, the students go 
directly to the computer to build the model.] 
P2: We pull down the stock. 
P1:  Name it. 
P2: I’m just going to name it later.  Okay, I’ll name it now.  So what would be the 

name of the stock?  Drug in system, wouldn’t it be? 
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P1:  I guess, yes. 
P2: What percentage of drug is in the system?  That’s what it would be right.  [P2 

labels the stock Drug in System]  How much should we start of with? 
P1: That’s a good question.  Hold on, let’s just get all this stuff down first. [P1 

draws an inflow] 
P2:  Wouldn’t it be an outflow for how much is leaving or would it be both? 
P1:  Well, this is the IV drip thing [P1 is drawing an exponential structure for the 

inflow] 
P2:  But it’s also saying 
P1: There’s stuff going out of it. 
P2:  Yeah.  There’s how much is getting out of the system. 
P1:  [P1 is now drawing an exponential outflow] 
P2:  There’s one percent going in. 
P1:  There’s less than 1 percent going in. 
P2:  No, there’s one percent going in and less than .55% going out. Yeah. 
P1:  I got you.  I got you. 
P2:  So this is the rate of drug going into the system [P2 is pointing go the 

converter on the inflow side.] 
P1: So that’s one.  You said there was a constant inflow of one g per minute of 

drug going into the blood stream. 
P2:[P2 is renaming the converter on the inflow side as Rate of Drug Entering] 

And this is the drug entering the system. [P2 is now labeling the inflow 
Amount of drug entering system] This is the amount, the rate of drug leaving 
the system. [P2 is labeling the converter on the outflow side as Rate of Drug 
Leaving System and then labels the outflow Amount of Drug Leaving 
System].  P2 now goes back to the converter on the inflow side of the 
diagram.]  So the rate of drug entering the system is 1% so we have to put that 
as a decimal right? 

P1: It’s not 1% it’s 1 gram a minute. 
P2: Oh, just kidding. 
P1: So that’s not a exponential that would be 
P2: That would be linear. 
P1: [P1 starts erasing the converter on the inflow and tries to erase the flow from 

the stock to the inflow but is unsuccessful.] 
Researcher: put the arrow point in the little circle tail, in the little circle tail, and 

hit backspace. [Researcher explains how to erase a connection on the diagram] 
P1: Adios.  So this is one [P1 is defining the inflow value] gram a minutes. 
P2: Yeah. 
P1: [P1 is now double-clicking on the outflow converter] this would be the 
P2: That would be the 
P1: So it’s less than 1% so would be .0055? 
P2: No. 
P1: Because .55 
P2: Yeah, yeah, yeah.  You move it over two it’s .0055.  Yeah. So we start out 
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with zero in the drug in the system. 
P1: [P1 double-clicks on the outflow] and this would be drug in system times rate 

of drug leaving system. 
P2: Okay, so we have to draw that on here [referring to drawing the stock/flow 

structure they just built on the computer, in the packet]. 
 
So the team from teacher 2 started out with an incorrect inflow structure but 
realized, since the inflow was a constant they need to remove the exponential 
inflow structure and replace it with a constant inflow structure.  They completed 
this alteration correctly.  They also defined the model components correctly.  

 
2. Overall Purpose 2:  To determine if students can explain what is happening with the 

dynamics of the problem that causes the shape of the stock graph to be produced 
when the model is simulated?  That is, can the students interpret the model output to 
the real world problem?  

 
c. It is typical in System Dynamics modeling lessons to request that students 

anticipate model behavior before simulation runs are executed.  Most students, 
initially, have a great deal of trouble doing this, as it is not something that is 
typically asked of them in their math classes.  This situation is no different. 

   
• The first pair of students drew an exponential growth curve that was incorrect.   

S1: I think it’s going to start really slow because it’s removing little of the 
body.  Then as it gets bigger it’s going to be, like, would it be growing or 
decreasing? 

S2: It be growing, I think. 
S1: Yeah, because it’s adding one and .05%, so the amount leaving would be 

bigger but it would be more in the body 
S2: So wouldn’t it stay like 
S1: It be starting flat and then get steeper over time, right? 
S2: Yeah, I think so. 
 

• The second pair creates a linear graph where they move by blocks, in time, 
and increase the next point vertically by 1 block but then subtract .5 of a block 
from that, creating a line that has essentially a slope of .5 of a block.  This is 
incorrect on many levels. 
P2: Oh yeah, the prediction.  So there is going to be more drugs going into the 

system than leaving.  It goes in one and only leaves at half a percent, or 
whatever. 

P1: So for every one it goes up it goes back down.5, yes? 
P2: What? 
P1: It goes up one g. 
P2: It goes up one, so. 
P1: And then half of that so it goes up one and leaves half [P1 goes to the first 
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block on the grid on the lesson packet (that is actually at 360 min) and 
puts a dot half way up the block from the horizontal axis. Then he goes to 
the next block (actually at 720 min), and increases by one block and then 
reduces half a block and places a dot there] and then one and then half and 
then one and then half [P1 places another dot at the 3rd block -at 1080 
min- at the 1.5 block mark up from the horizontal axis.  P1 shows P2 what 
he is doing.  He finished by placing a dot half-way up the vertical axis - 
i.e. at the top to the second box at the far right of the grid -the 1440 min 
time. Then P1 connects his dots with a straight line.] 

 
c. Students are now asked how the simulation produced the graph shown on the 

computer (whose appearance shows an exponential convergence upward from 0 
to about 173 g, reaching steady state about 1/3 the way through the simulation). 

 
•  The first pair of students reaches a reasonable conclusion: 

S2: So the inflow is 
S1: Equal to the percentage going out, like, over time.  Or closer to being equal 

to. 
S2: Yeah. 
S1: Cool. 
S2: so we should do this [he selects and places the table in the modeling 

window and double clicks to define the table.  He selects “medicine in the 
body” and moves it to the selected window, and moves elimination of 
medicine and medicine entering to the selected window] let’s see how it 
changes as we run the thing. The elimination is eight it’s slowly getting 
closer to it.  I’m going to start writing because we already know what 
happens the medicine is eliminated slowly approaches the value of the 
medicine entering till it let’s see how far it gets. 

S1: We’re only at 400.  We need to get to, what?  We’re only a third of the way 
there. 

S2: I’m going to hit on fast-forward what’s going on there so it’s slowly reaches 
it but it never actually gets there you know that rule you know  

S1: Will never actually reach a point where it’s decreasing 
S2: It’s staying at .99 
 

In the packet the students wrote: The medicine being eliminated slowly 
approaches the value of the medicine entering but never will reach the same 
value or decrease. 
 
Unfortunately, they do not explain why the medicine level should not 
decrease.  But it is a valuable insight that they did consider this option. 

 
• The second pair, after exclaiming how different the simulation graph was from 

their prediction, comes to a reasonable explanation for the shape of the 
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simulation graph. 
 

The students observe the graph, then set up a table with the drug in the system, 
the inflow value and the outflow value. 
 
P1: So we have one g per minute entering the system and then 55% of it, point 

55% of it leaving the system. 
P2: So the same goes in every single time, 1 g, right?  So how much is leaving?  

So then .55% of the drug is leaving each time.  So eventually, like it starts to 
catch up, see. like now.  .96 of a gram or whatnot is leaving but only one 
more is going in so even though that’s like .55% of the entire drug in the 
system it’s almost like the same, that’s why it flattened out of the top. 

P1: I got it.  So, yeah, it will eventually catch up to like, one.  So this is when I 
start not giving him the drug, so like, here. 

P2: Yeah. So even, like .55%, is really a really small amount of the entire drug 
P1: Since it’s exponential it will catch up pretty quickly. 
P2: Yeah, because this is constant and it doesn’t get higher. 
P1: So now it’s caught up and this is kind of flat line, hopefully not like the 

patient.  So what are we writing 
P2: I don’t know how to put into words the inflow is the same amount but the 

outflow is exponential so eventually it will catch up and be the same amount 
as the inflow and it will be as if no new drugs are entering.  It eventually 
won’t.   Does it get to be more than it or no? 

P1: No, this won’t become more than this [pointing first to the outflow value in 
the chart and then to the inflow value in the chart].  That’s it.  That’s all the 
drug going in. 

P2: Well, yeah, but eventually.   Like, no, that makes sense.  When they stop 
giving him drugs he’ll start [unintelligible].   That makes sense so the inflow 
is constant the outflow is [unintelligible] so as more drugs enter the system 
the outflow of .55%, at a rate of .55%.  Eventually the outflow will grow to 
be the same as the inflow … 

 
 In the packet the students wrote: The inflow is constant but the 
outflow is exponential so as more drugs enter the system the outflow at a 
rate of .55% the outflow will grow to be the same as the inflow. 
 

3. Overall Purpose 3: The final objective was to determine if the students are becoming 
comfortable enough understanding the model dynamics that they can correctly predict 
what would happen to the graphical model output if a modification of the model is 
made.  The following description is given to the students: 

 
“A complication occurs with this patient about 8 hours after the IV is 
administered.  One of his kidneys quits functioning, causing the elimination 
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rate to reduce to half.  Predict what you think will happen to the drug level in 
the patient’s body, recording your prediction on the grid below.” 
	

Both pairs correctly predict the new behavior and are able to identify where the model 
needs to be modified, and how the definition of the selected component needs to be 
modified.  Although they do not know exactly how to get the modification to happen 
at 8 hours and not before, the research tells them the command to use, as this is not a 
command the students have learned. 
 

     The first pair of students: 
 

S1: We have that [referring to the first simulation graph recorded on his paper]. 
That’s not the new one 

S2: It’s like that one for eight hours. 
S1: Then it’s going to get really flat again.  Or is it actually going to go back 

down.  No. 
S2: Yeah. It would go back down wouldn’t it and then it would go? 
S1: But it’s decreasing by half so wouldn’t it go back up? 
S2: The medicine in the system would go up and then back down to whatever. 
S1: Well, it’s half so as soon as it hits eight hours it would go back up again.  It 

would be back just like. 
S2: So at eight hours it would start going up again. 
S1: Yeah.  What would it go up to?  400?   Yeah.  It would go up to 400.  Let’s 

see what happens. 
[We ran out of time to see the simulation run, so they could check their 

prediction.  Both students drew prediction graphs in their lesson packet that 
indicated an initial jump upward at 8 hours followed by a leveling off of the 
drug at a higher equilibrium.  This is the correct behavior the model would 
have produced.] 

 
The second pair of students: 
 
P2: It’s going to continue growing [P2 is pointing at the original Drug in System 

graph starting at about 720 minutes and pointing her finger to rise above the 
Therapeutic Maximum line that is at 200 g] and it’s going to go quicker [P2 
pointing to the initial increase in the Drug in the System graph] because it’s 
not going to have 

P1: Well, it’s after eight hours.  How much is eight hours in minutes? 
P2: Well, there’s 60 minutes, so it’s 60 times eight, which is 480, so would be, 

like 
P1: So it be around here-ish.   The kidney’s going to fail, so I think it’ll, like, keep 

going along this [P1 is pointing to the original Drug in System graph] until it 
gets here [pointing to the place on the graph that is at about 480 minutes] and 
then [he points as if the graph would start increasing quite a bit]. 
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P2: It will spike up, yeah.  [P2 indicates a curving of the increased prediction.] 
P1: Yeah.  It’ll still be curved. 
P2: It’s about a quarter of the way-in so,  it’s doing its thing, and once it gets there 

it’s going to spike.  How far did you say it was going to go up? 
 
These students drew both the prediction (using a dotted curve) and the actual 
simulation run (using a solid curve).  The dotted curve increased in a more 
gradual fashion, indicating a smoother upward transition at 8 hours, than the 
simulation graph that made a more pronounced upward jump at 8 hours. 
 
The transcripts indicate that the students were able to mathematize the problem 
without much difficulty, even after a faulty start with the second pair.  They were 
able to use the software to explain the dynamic behavior represented in the 
simulation graph of the initial model.  That was a key point.  Once they had an 
understanding of the cause of the dynamic behavior pattern of the original model 
they were able to modify the model and were reasonably successful predicting the 
new behavior of the modified model.  All of this work was on a model whose 
behavior was not typical of functions they had seen in class at that point. 
   
The student problem solving scenario captured in these two videotapes supports 
the claim that students are able to mathematize new scenarios that are 
combinations of behaviors they already know and are able to analyze and modify 
and reanalyze the problem with relative ease.  The videotaping lasted about 33 
minutes for each pair of students. 
This analysis was done comparing three problems across both student pairs 
(horizontal analysis) and also analyzing the improvement in thinking over the full 
time frame (vertical analysis) for each pair of students. 
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