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Abstract 

Justification and argumentation have been identified as important mathematical 

practices; however, little work has been done to understand the knowledge and pedagogy 

teachers need to support students in these ambitious practices. Data for this research was 

drawn from the Justification and Argumentation: Growing Understanding in Algebraic 

Reasoning (JAGUAR) project. JAGUAR was a multi-year research and professional 

development project in which 12 middle school math teachers and a group of researchers 

explored the knowledge and pedagogy needed to support student justifications. This 

dissertation consists of three case study analyses. The first paper describes the 

development of teacher conceptions of justification, including their proficiency with 

justification and purpose of justification in the middle school classroom. The second 

paper examines the relationship between teacher understanding of empirical reasoning 

and their use of examples in their classrooms. The final paper describes the relationship 

between task scaffolding and student forms of reasoning in the context of a justification 

task. Collectively, this body of work identifies important relationships between teacher 

knowledge, practice, and student justification activity.  

  



	 ii	

Acknowledgements 

 
First and foremost, I would like to thank all of the JAGUAR participating teachers 

who opened up their minds and their classrooms. They challenged themselves with 

ambitious teaching practices and allowed me to join them on their journey. I would also 

like to thank my adviser, Sean Larsen, for his guidance, support, and critical feedback. 

Thanks for believing that I had something significant to say. I also thank Megan Staples 

for her continued support and outstanding leadership on this project. Thank you to my 

other committee members, Paul Latiolais and Anita Bright for their critical reading of my 

work and thoughtful feedback. Many thanks to all of those who have helped with the 

analysis of this large data set, including Dana Kirin, Krista Strand, Kate Melhuish, Ann 

Sitomer, Joanna Bartlo, and Eva Thanheiser. Thank you Helen Gordon, Helen Mead, and 

Jordan Drebin, who allowed me the time to focus my mind worry-free. Thank you to my 

cohort, who offered encouragement, resources and humor all the way through. Finally, 

thanks to my husband OJ who has stood by me the whole way, and my little ladies Lily 

and Jaya, who give me purpose and inspiration. 

  



	 iii	

Table of Contents 

Abstract	........................................................................................................................................	i	

Acknowledgements	................................................................................................................	ii	
List	of	Tables	............................................................................................................................	vi	

List	of	Figures	.........................................................................................................................	vii	

Chapter	1:	Introduction	........................................................................................................	1	
Project Overview	................................................................................................................................	1	
My Involvement	..................................................................................................................................	5	
Member Check Process	.....................................................................................................................	7	

Chapter	2:	JAGUAR	Project	Overview	.............................................................................	10	
JAGUAR Rationale	..........................................................................................................................	10	
Participants	........................................................................................................................................	11	
Structure of JAGUAR Project	.......................................................................................................	15	
Data Sources and Data Collection	................................................................................................	20	
Teacher	Data	..................................................................................................................................................	20	
Summer	and	Working	Session	Data	.....................................................................................................	22	
Lesson	Cycle	Data	.........................................................................................................................................	22	

Chapter	3:	Justification	Literature	..................................................................................	24	
Call for Justification	........................................................................................................................	24	
Student Difficulty with Proof and Justification	.........................................................................	25	
Teacher Difficulty with Proof and Justification	........................................................................	25	
Promoting Justification and Related Practices	..........................................................................	26	
Definition of Justification	................................................................................................................	29	
Forms of Reasoning	..........................................................................................................................	30	
Example	Based	Reasoning	........................................................................................................................	31	
Transformational	Reasoning	...................................................................................................................	32	
Appealing	to	Known	Information	and	Model	Based	Reasoning	..............................................	33	

Role of Justification	..........................................................................................................................	34	
Chapter	4:	Theoretical	Perspective	and	Methodology	.............................................	36	

Theoretical Perspective	...................................................................................................................	36	
General Methodology	......................................................................................................................	39	
Thematic	Analysis	........................................................................................................................................	40	

Chapter	5:	Teacher	Conceptions	of	Justification	........................................................	43	
Abstract	..............................................................................................................................................	43	
Motivation	..........................................................................................................................................	43	
Theoretical Framework	...................................................................................................................	47	
Research Questions	..........................................................................................................................	49	
Background Literature	....................................................................................................................	52	
Definition	of	Justification	..........................................................................................................................	52	
Purposes	of	Justification	...........................................................................................................................	53	
Proficiency	with	Justification	..................................................................................................................	55	

Analytic Frameworks	......................................................................................................................	58	
Operationalization	of	Justification	........................................................................................................	58	



	 iv	

Forms	of	Reasoning	Framework	...........................................................................................................	60	
Methods	..............................................................................................................................................	60	
Participants	.....................................................................................................................................................	61	
Data	Sources	...................................................................................................................................................	62	
Data	Analysis	..................................................................................................................................................	63	

Results	.................................................................................................................................................	66	
Case	1:	Kelly	Wade	.......................................................................................................................................	67	
Case	2:	Cynthia	Littrel	................................................................................................................................	68	
Case	3:	Irene	Primm	....................................................................................................................................	71	
Case	4:	Paige	Davilla	...................................................................................................................................	73	

Cross Case Analysis	.........................................................................................................................	76	
Question	1:	What	do	JAGUAR	teachers	think	justification	is?	..................................................	76	
Question	2:	What	do	they	see	as	its	purpose	in	their	classroom?	...........................................	81	
Question	3:	What	are	teacher	proficiencies	with	justification?	...............................................	86	

Conclusions and Further Directions	.............................................................................................	91	
References	..........................................................................................................................................	93	

Chapter	6:	Middle	School	Teacher	Treatment	of	Examples	in	the	Context	of	
Justification	Activity	..........................................................................................................	103	

Abstract	...........................................................................................................................................	103	
Introduction	....................................................................................................................................	103	
Literature Review	..........................................................................................................................	104	
Theoretical Framework	................................................................................................................	108	
Operationalization of Empirical Reasoning	............................................................................	109	
Research Questions	.......................................................................................................................	110	
Methods	...........................................................................................................................................	111	
Context	............................................................................................................................................................	111	
Methods	for	RQ1:	Teacher	Understanding	of	Empirical	Reasoning	....................................	113	
Methods	for	RQ	2:	Teacher	Treatment	of	Empirical	Reasoning	in	the	Classroom	........	114	
Methods	for	RQ	3:	Case	Study	...............................................................................................................	117	

Results	..............................................................................................................................................	118	
Framework:	Teacher	Use	of	Examples	in	the	Classroom	.........................................................	119	
Case	Descriptions	of	Teacher	Treatment	of	Examples	..............................................................	126	

Discussion and Conclusions	.........................................................................................................	152	
References	.......................................................................................................................................	156	

Chapter	7:	Scaffolding	Mathematical	Tasks	to	Support	Student	Justification	162	
Abstract	...........................................................................................................................................	162	
Introduction	....................................................................................................................................	162	
Definitions of Scaffolding	.............................................................................................................	164	
Research on the Impact of Task Structuring	..........................................................................	166	
Linking	Scaffolding	to	Forms	of	Reasoning	.....................................................................................	168	

Theoretical Framework	................................................................................................................	169	
Research Questions	.......................................................................................................................	171	
Methods	...........................................................................................................................................	172	
Written-Task	Analysis	Methods	and	Data	Sources	.....................................................................	174	
Task	Set	Up	and	Implementation	Methods	.....................................................................................	176	
Tasks	as	Enacted	by	Students	and	Student	Learning	Outcomes	Analytic	Methods	......	177	

Results	..............................................................................................................................................	178	



	 v	

Results	Year	1	..............................................................................................................................................	179	
Results:	Year	2	.............................................................................................................................................	193	

Discussion and Conclusions	.........................................................................................................	203	
Concluding	Thoughts	................................................................................................................................	209	

References	.......................................................................................................................................	210	
Chapter	8:	Conclusions	.....................................................................................................	217	
Terminal	References	.........................................................................................................	219	

Appendix	A:	Teacher	Justification	Survey	Sample	..................................................	230	

Appendix	B:	Student	Justification	Survey	Sample	...................................................	232	
Appendix	C:	Interview	Protocol	Sample	.....................................................................	233	

Appendix	D:	Reflective	Journal	Questions	.................................................................	236	
Appendix	E:	Classroom	Data	Collection	Forms	........................................................	238	

Appendix	F:	Teacher	Working	Session	Task	.............................................................	240	
 

 

  



	 vi	

List of Tables 

 
Table 1: Demographic data for participating JAGUAR teachers	.............................................	12	
Table 2: Stylianides' (2007) definition of proof	..............................................................................	59	
Table 3: Forms of reasoning in middle school classrooms	.........................................................	60	
Table 4: Questions guiding transcript analysis of teacher conceptions of justification	.....	63	
Table 5: Analytic Framework for Justification Proficiency	.......................................................	65	
Table 6: Summary of Case Study Teacher Conceptions of Justification	...............................	75	
Table 7: Ahmed's response for the sum of 1/2 and 1/4	................................................................	89	
Table 8: Empirical Reasoning Task	.................................................................................................	112	
Table 9: Mr. Hummel's treatment of examples by task and year	...........................................	129	
Table 10: Ms. Primm's treatment of examples by task and year	............................................	138	
Table 11: Ms. Davilla's treatment of examples by task and year	...........................................	146	
Table 12: Number Trick example with starting value of 9	......................................................	151	
 



	 vii	

List of Figures 

 
Figure 1: Model of case connections between teacher knowledge, teacher practice, and 

student learning	...................................................................................................................................	4	
Figure 2: JAGUAR Project Overview	...............................................................................................	16	
Figure 3: General statement of the Hexagon Task	.........................................................................	19	
Figure 4: General statement of the Number Trick Task	..............................................................	19	
Figure 5: Theoretical framework linking teacher orientations, goals and resources with 

teacher practice	................................................................................................................................	49	
Figure 6: Fiona's pictorial argument that the sum of two even numbers is even	.................	70	
Figure	7:	Sarah's	generic	example	argument	that	the	sum	of	two	consecutive	

numbers	is	always	odd	...............................................................................................................	71	
Figure 8: Ms. Primm's generalized pictorial diagram representing that the sum of three 

odd numbers is odd	.........................................................................................................................	72	
Figure 9: Fiona's pictorial justification that the sum of two even numbers is even	............	74	
Figure 10: Consecutive number task with hypothetical student work	.................................	127	
Figure 11: The stages on implementation for the mathematical task framework (Stein, 

Grover & Henningsen, 1996)	...................................................................................................	171	
Figure 12: Framework for analyzing task features of the written task	...............................	175	
Figure 13: Task as written in year 1	................................................................................................	181	
Figure 14: Illustration of common student misconception.	.....................................................	184	
Figure 15: Student work for scaling of shapes. The yellow highlighted regions are the 

original areas, and the red highlighted columns are the areas for the scaled figure.
	............................................................................................................................................................	188	

Figure 16: Student work of the scaling of shapes. The green column indicates the scale 
factor. The blue column is the scale factor squared. The brown cells and arrows 
display the steps in the computation of the area of a scaled up trapezoid.	................	189	

Figure 17: Student partial explanation for relationship between area and scale factor	..	191	
Figure 18: Student statement of the relationship between area and scale factor	..............	192	
Figure 19: Written task for the Scaling Task in Year 2 (questions 5-7 were written on the 

back of the sheet)	..........................................................................................................................	195	
Figure 20: Nate's generic-example argument for the area of a scaled-up square	.............	198	
Figure 21: Kay's picture of a scaled up square and parallelogram	........................................	199	
Figure 22: Student appeals to known information as the form of reasoning in this 

justification	.....................................................................................................................................	201	
Figure 23: Student diagram indicates the scale factor of 2 results in a rectangle with 4 

times the area	.................................................................................................................................	202	
Figure 24: Pattern-result reasoning is indicated by the table of values: the student 

assumes the pattern will hold by does not justify why	....................................................	203	
 

  



	 1	

Chapter 1: Introduction 

 This dissertation’s primary contribution consists of three empirical case studies 

that each address important questions regarding teaching with justification. Before I 

present my papers, I begin with an introduction that situates the papers with respect to the 

project background. This introduction also describes ethical considerations, including a 

positioning of myself as a researcher relative to the data and ethical considerations for 

teacher participants.   

Project Overview 

The Justification and Argumentation: Growing Understanding in Algebraic 

Reasoning (JAGUAR) was a multiyear, bicoastal research and professional development 

project that investigated teaching with justification in middle school math classrooms.  

The JAGUAR project focused on how teacher’s understanding of justification develops, 

how teacher understanding of justification impacts practice, and how advanced teacher 

pedagogy impacts students’ ability to construct justifications. Twelve teachers 

participated in the project, which included two years of collaborative professional 

development alongside justification lesson implementation in the classroom.  

This dissertation is a retrospective analysis of portions of the JAGUAR data set. 

As a research assistant working on the JAGUAR project, I helped to collect and analyze 

JAGUAR data, and I became curious about specific aspects that warranted further 

analysis. My dissertation consists of three case studies that investigate teachers’ 

understanding of justification and teachers’ practice supporting student justifications in 

the classroom at an in-depth level. 



	 2	

The first paper is a case study analysis of teacher conceptions of justification. 

Using Schoenfeld’s (2011) framework for teacher decision-making, I explored teacher 

conceptions of justification guided by three questions: What is justification? What is the 

purpose of justification? What are teacher proficiencies with justification? This 

investigation resulted in a case study analysis of four teachers’ conceptions of 

justification and their development over time. One primary result of the study was the 

relationship between justification as a mathematical practice that demonstrated why 

something was true and justification as a pedagogical practice that focused on voicing 

student thinking. 

The second paper in this dissertation is a case study that examines teacher 

treatment of example-based reasoning. I investigated of teachers’ understanding of 

example-based reasoning, including their reaction to students’ example-based 

justifications and the teachers’ use of examples within their justification work. 

Additionally, this paper connects teacher understanding of example-based arguments 

with their treatment of examples in the classroom. The research questions for this case 

were: 

1) How do JAGUAR teachers understand empirical reasoning? How do teachers 

evaluate empirical reasoning? What kinds of empirical arguments do teacher 

produce?  

2) How to JAGUAR teachers treat examples in the context of classroom 

justification tasks? 
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3) What is the relationship between teachers’ understanding of empirical reasoning 

and treatment of empirical reasoning in their classrooms? How does this shift 

over time? 

This paper “zooms in” on one important aspect of justification—example based 

reasoning-- and provides a more detailed accounting of this single component. The 

results of the study include a framework of different ways teachers treat examples in the 

classroom, as well as a set of three case studies that explore the connections between 

teacher conceptions and their practice. This study found that teacher beliefs about 

justification and their value for sharing student reasoning mediated the impact of content 

knowledge about examples within their classroom practice. 

The final case study investigated how the scaffolding of a justification task can 

impact students’ justification activity. The research question for this case was: How does 

teacher scaffolding of open-ended, justification tasks relate to student forms of reasoning 

as they engage with the task? The paper consists of a detailed case study of a single 

teacher’s implementation of a single task over two different years. I used Stein, Grover 

and Henningsen’s (1996) Math Task Framework as the theoretical framework to guide 

the analysis of the task as it was written, as it was set-up in the classroom, as it was 

implemented by students, and the resulting student justifications. I identified three 

attributes of task scaffolding that promoted more complete student justifications, 

including a focus on concept building, strong use of models and examples, and a 

sustained press for justification.  
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Figure 1: Model of case connections between teacher knowledge, teacher practice, 
and student learning 

This set of studies contributes to the field of mathematics research education in a 

number of ways. At a local level, each of my case studies will contribute to the larger 

research agenda of the JAGUAR project. My research questions are designed to elaborate 

on specific topics within the broader JAGUAR project questions of how teacher 

understanding of justification impacts practice, and how advanced teacher pedagogy 

impacts students’ ability to construct justifications. Specifically, the case of teacher 

conceptions of justification will provide detailed description of the beliefs, goals, and 

practices teachers had about justification. The second case unpacks teacher pedagogy of 

empirical reasoning, an important sub-element of the pedagogy of justification. Finally, 

the third case looks squarely at how advanced teacher pedagogy impacts students’ ability 

to justify, but confines itself to how teacher scaffolds impact student forms of reasoning. 

In this dissertation, I begin with a brief self-reflection, locating myself within the 

context of the investigation and addressing ethical concerns and member-checking. Next, 

I give a description of the JAGUAR project and its related data sources, an overview of 

Case	1:		Conceptions	

Teacher	
Practice	

Teacher	
Knowledge	

Student	
Learning	

Case	2:	Empirical	Reasoning	 Case	3:	Scaffolding	
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literature relevant to teaching with justification, and the theoretical perspective for the 

study. The main body of the dissertation consists of three research papers. Each paper is 

intended to be a stand-alone document that ready for submission to a journal pulication. I 

conclude the dissertation with a brief summary, including directions for future work. 

My Involvement  

I have been involved in the data collection and analysis of the JAGUAR project 

for the past five years. In the first year of the project I assisted with data collection and 

ongoing analysis. In the second year I was the primary data collector and lead contact for 

the teachers. I visited classrooms and collected data, co-created and conducted 

interviews, and participated in the ongoing collaborative working sessions. These 

teachers allowed me into their classrooms, shared their thoughts, and exposed their 

perceived weaknesses for group reflection. My teaching has been challenged and changed 

because of what I’ve witnessed in their classrooms, and for that I’m grateful.  

 While filming, transcribing, and reviewing the data for this project, I became 

curious about aspects of the data. The research questions for this study have emerged 

from my informal reflections on the teachers and data. Before embarking on formal 

analysis of the data, I constructed a set of conjectures based on my perceptions of the data 

set. By explicating these conjectures, I was more aware of my preexisting ideas and 

actively seek out both confirming and disconfirming evidence to refute or revise them. 

 As a qualitative researcher, it is important not only to locate one’s self within the 

context of the research, but to examine that self. In a manner recommended by Peshkin 

(1988), I will perform a “subjectivity audit” and identify “when I felt moved to act in 
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roles beyond those necessary to fulfill my research needs” (1988, p. 18). I arrived at a set 

of three roles. 

The Relational I: My relationship with the teachers extended beyond that 

of observer. I was at times a friend sharing a meal, at times a task-manager asking 

for documents and paperwork, at times the student learning from their classroom 

practice, and at times an “expert” giving solicited advice on math content or 

curricular choices. As could be expected, I had different relationships with 

different teachers, and those relationships impacted how I viewed their thinking 

and teaching. 

The Mathematical I: I am trained as a mathematician. I have personal 

opinions about the value, purpose, and applicability of mathematics. 

Conventionally valid mathematics is extremely appealing to me, and deviations 

from valid mathematics can be painful. My feelings toward the validity of the 

mathematics needed to be considered separately from the role that mathematics 

plays within this research.  

The Math Education Researcher I: I am also trained as a math education 

researcher. Current research leads me to believe that a reform-oriented approach 

to teaching, one that empowers students to question, explore and verify, leads to 

deeper understanding and is thus a preferred method of instruction. This bias 

influences the way that I think about learning and how I see the classroom 

environment. This perspective has the potential to bias my analysis or limit my 

appreciation for other approaches or perspectives. 
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Rather than allowing my I’s to unintentionally distort, transform, or misconstrue 

the analysis, I can see them as valuable I’s: recognizing my own subjectivity is not a way 

to distance myself from it, but to operationalize it into a productive team of analysts, each 

with specialties and weaknesses. 

Member Check Process 

Part of recognizing my I’s included a recognition of all of the other I’s who 

participated in the creation of this work. I included a member check out of ethical regard 

for the teacher participants and to promoting further learning for teachers and researchers.  

I did not use member checks as a tool for establishing external validity: this research was 

intended to “explain the teacher’s perspective from the researcher’s perspective” (p. 254, 

Simon & Tzur, 1999). Some researchers view member checks as an essential element in 

ensuring credibility of the findings and interpretations (Lincoln, 1985; Stake, 1995); 

however, a participant’s ability to interpret research may have limitations. The participant 

may have changed as a result of the intervention experience, or may revise their 

statements to more closely align with what they believe the researcher expects or how 

they wish to appear. Moreover, the premise that member checks can improve validity 

relies on the notion that there is universal, fixed reality to which the results of a study can 

be compared (Angen, 2000).  In this study, the primary tools to establish validity were 

triangulation and rich description (Cresswell, 2007). 

More important for this research, member checks were conducted out of ethical 

regard for the teacher participants. This set of case studies was made possible because of 

the teacher participants who agreed to take part in the JAGUAR project. It is an act of 

trust to allow a stranger into one’s classroom, and outright bravery to agree to be 
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videotaped and analyzed. These teachers were willing to share their ideas, try new things, 

and open themselves up for critique. In light of the pivotal role that the teachers have 

played in this research, it is fitting that they were given the opportunity to contribute to 

the analysis of the data through member checks.  

Most importantly, member checks allowed for growth opportunities for both 

teachers and researchers. The JAGUAR project was conceptualized as a collaborative 

exploration of justification practices among the teacher participants and researchers. The 

teachers have been co-contributors in the development of our ideas of justification and 

how best to support justification in the classroom. Contribution to the process of analysis 

is a natural extension of that participation. By allowing teachers the opportunity to reflect 

on their own data and researcher interpretations of that data, they may see elements in 

their practice in a new way. Additionally, they may have new ideas to contribute that will 

help improve the overall depth and scope of the analysis. 

 It is important that teacher participants were given an opportunity to participate in 

a way that both allowed for meaningful contribution and was easy to be followed through 

by the teachers. Traditional member checks frequently include a review of paper drafts 

before submission. Although that allows members the opportunity to review the entire 

data corpus, such documents are lengthy and can sometimes be overwhelming. My 

member check plan included multiple types of possible feedback to maximize the 

potential for participation. 

Step 0: Notification. Data collection for the JAGUAR project concluded three years 

prior to this study, and the teachers had very few updates about results of the project in 

that time. Once I proposed my dissertation, I contacted the teachers to let them know 
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about my research interests for this particular set of analyses. This step did not include a 

request for member checks, but it simply let them know what I was planning and 

provided the opportunity for them to learn more if they were interested. 

Step 1: Member Check Request: Once the analysis had taken shape, I sent each case 

teacher a synopsis of their case and asked for feedback. Teachers had the opportunity to 

make contributions and add revisions to the shape of the analysis; however ultimately I 

was responsible for the final interpretation of the data.  By putting on the analytic lens, 

teachers would hopefully have the additional benefit of learning something new about 

their practice in the process. None of the participates opted to participate in the data 

analysis of this project. However, the renewed contact did result in the finalization of a 

collaboration that resulted in an accepted joint publication in Mathematics Teaching in 

the Middle School. 

Step 2: Member Review of Draft. Once a formal draft was complete, I shared the entire 

draft with the case teachers, highlighting the portions that included their case. This had 

the benefit of allowing the teachers to learn from one another, but the drawback was that 

a long dissertation document was unlikely to be read with a lot of rigor. Although most of 

the teachers responded with limited feedback, all of the feedback I received was positive. 

In particular, Ms. Davilla commented that she was impressed by the amount she changed 

over the two year project. Several other teachers and I hope to continue the work of the 

third paper with a second submission to Mathematics Teaching in the Middle School.  
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Chapter 2: JAGUAR Project Overview 

In the following section, I describe in detail the JAGUAR project, which was the 

large-scale research and professional development project from which the data for my 

dissertation was drawn. This section includes an overview of the rationale for the 

JAGUAR project, the JAGUAR project research questions, an overview of the 

participants, and a description of the structure of the project, which includes the data 

collection elements. This detailed description of the parent project helps to set the stage 

for my contribution, which are the three research papers in the following three sections. 

JAGUAR Rationale 

Much of mathematics education professional development in the past several 

decades has shifted away from lecture-oriented teaching and toward a more student 

centered, “reform-oriented” approach. Generally speaking, the reform orientation places 

greater emphasis on attentiveness and responsiveness to student thinking and allows 

students opportunities to engage in authentic mathematical activities such as sense-

making, problem solving, modeling, and argumentation. These ideals are reflected in 

current policy documents, such as the NCTM process standards and the Common Core 

Standards for Mathematical Practice (NCTM, 2000; CCSSO, 2010). Previous research 

has investigated teacher transitions to reform-oriented teaching (e.g. Cohen, 1990; 

McClain & Cobb, 2001; Nathan & Knuth, 2009; Speer & Wagner, 2009), however there 

has been relatively little research into the links between teacher knowledge of and 

pedagogy surrounding justification specifically.  

The JAGUAR project was the parent project from which the data for this 

dissertation was drawn. JAGUAR focuses more narrowly on teacher development of 
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justification understanding and pedagogy within the context of middle school algebra. 

The math content domain of algebra was chosen because of its importance in future 

mathematics and its role as a “gatekeeper” for further mathematics and science training 

(Ladson-Billings, 1998; Moses & Cobb, 2001). Justification was chosen as a content 

topic because of the importance proving plays in the discipline of mathematics (Toulmin, 

1969), as well as the opportunities justification provides for promoting equitable access 

among students (Boaler & Staples, 2008).  

The three research questions that guided the JAGUAR project are:  

1)  How do teachers’ develop in their understanding of algebraic justification and 

argumentation as new content knowledge?  

2)  How do teachers’ transform new content knowledge (justification and 

argumentation) to their classroom practice and develop advanced practice?  

3)  How does teachers’ advancement in practice affect their students’ capabilities for 

justification and argumentation?  

These research questions guided the data collection and intervention for the JAGUAR 

project as a whole. My dissertation work focused in on answering tractable sub-questions 

within the larger questions of the project. 

Participants 

In order to study student justifications, we intentionally selected teacher 

participants who attended to student thinking and supported student discourse as part of 

their preexisting pedagogy. We believed that classroom environments of this type are 

more conducive for student justification, and thus had a foundation more easily built 

upon to reach the goals of our research, which included an analysis of student 
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justification. Thus the sampling for this project was purposive sampling (Creswell, 2007), 

and is certainly not representative of typical middle school math teachers. Twelve middle 

school teachers in two states volunteered to participate. The teachers were recruited based 

upon participation in past professional development projects that focused on student 

discourse and researcher familiarity with teacher practice.  

Table 1 gives an overview of each of the case study teacher participants and 

associated school demographic information: 

 

Table 1: Demographic data for participating JAGUAR teachers 

Pseudonym Bruce 
Hummel 

Paige  
Davilla 

Irene  
Primm 

Cynthia 
Littrell 

Kelly  
Wade 

LMT Score 
(pre/post) 

79%**/94% 85%/87% 79%/81% 64%/58% 57%/66% 

Grade (y1/y2) 8th /8th  7th /7th  7th /8th  7/7 8/8 
Location Town in west Urban east Town in rural 

west 
Town in rural 
west 

Suburban east 

Demographics 75% minority 70% minority <10% 
minority 

<10% 
minority 

<10% 
minority 

% FRL 80% FRL 30%FRL 20%FRL 20%FRL <10% FRL 
% ELL 50% ELL <5%ELL <5% ELL <5% ELL  
Primary 
Curriculum 

Connected 
Math Project 

Littell’s Pre-
Algebra 
curriculum 
with 
supplements 

Connected 
Math Project 

Connected 
Math Project 

Connected 
Math Project 

Years of 
teaching 
experience at 
the start of the 
project 

10 total (all 
math and 
science at 
middle school 
level) 

1 year 
(middle) 

7 total (2 at 
middle school 
level. 
Previously 
1st grade 
teacher and 
elementary 
math coach) 

14 (all middle 
school) 

29 total (28 
middle 
school) 

Class 
Composition  

Non-ability 
grouped 

Top 1/3  Homogeneou
s 

Mainstream 
8th grade 
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(y1/y2) math (does 
not include 
top third who 
take algebra) 

Other 
professional 
development 

OMLI  Studio, 
OMLI 

Studio, 
OMLI 

 

 

Cynthia Littrell: Ms. Littrell taught 7th grade math both years at a 6-8 middle school in a 

town in the rural west. The student body was primarily white and middle class, with less 

than 10% minority, 20% Free/reduced lunch, and less than 5% classified as English 

Language Learners. Her 7th grade classes were not ability grouped and used the 

Connected Math Project curriculum. At the start of the project, Ms. Littrell had 14 years 

of teaching experience, all of which were at the middle school level. In addition to the 

JAGUAR project, Ms. Littrell had participated in a number of other intensive 

professional development programs, such as OMLI1 and Studio.2 

Irene Primm: Ms. Primm taught 8th grade math both years at a 6-8 middle school in a 

town in the rural west. The student body was primarily white and middle class, with less 

than 10% minority, 20% Free/reduced lunch, and less than 5% classified as English 

Language Learners. Her 8th grade classes were not ability grouped. At the start of the 

project, Ms. Primm had 7 years of teaching experience, 3 of which were at the middle 

school level. Before becoming a middle school math teacher, Ms. Primm was a 1st grade 

teacher and an elementary school math coach. In addition to the JAGUAR project, Ms. 

Primm had participated in a number of other intensive professional development 

programs, such as OMLI1 and Studio.2 
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Bruce Hummel: Mr. Hummel taught in a midsized town in a populated area of the west 

coast. The students at his school were primarily Hispanic, with 75% minority, 80% Free 

or Reduced Lunch, and 50% classified as English Language Learners. Mr. Hummel 

taught 8th grade math both years, using Connected Math Project as the curriculum. His 

classes were heterogeneously grouped. At the start of the project, Mr. Hummel had been 

teaching for 10 years at the middle school level, although he taught science for the first 

two years. Mr. Hummel participated in OMLI1 prior to his involvement with JAGUAR. 

Kelly Wade: Ms. Wade taught at a small suburban school on the east coast. Less than 

15% of the student body identified as a minority and less than 25% qualified for free or 

reduced lunch program. Ms. Wade had been teaching for 29 years before the start of the 

program, 28 of which were at the middle school level. Ms. Wade taught 8th grade using 

the Connected Math Project curriculum for both years of her focal classes. In the second 

year, the many of her students had been exposed to the justification tasks in Mr. Ferris’s 

class the previous year. 

Paige Davilla: Ms. Davilla taught at an urban school on the east coast. The student body 

was 70% minority, 30% qualified for free or reduced lunches, and fewer than 5% were 

English Language Learners. Ms. Davilla was relatively new to teaching, with only one 

year of teaching experience prior to the start of the JAGUAR project. She taught 7th grade 

for both years of the project, using Littell’s Pre-Algebra as the primary curriculum, but 

with supplementation from other sources, including Connected Math Project and other 

outside materials. The math classes at her school were ability grouped, and her focal class 

was drawn from the top third of the students.  
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Structure of JAGUAR Project 

 The JAGUAR project consisted primarily of summer sessions, working sessions, 

and focal task implementations (see Error! Reference source not found.). Each year of 

the two-year project began with a weeklong summer session, in which teachers worked 

with mathematicians, math education researchers, and one another on justification and 

pedagogy activities. Although teacher learning and instructional development were goals 

of the JAGUAR project, the project was not a professional development program in the 

traditional sense. We view the project as a co-investigation of justification, in which ideas 

were generated collaboratively, tested out in the classroom, and reflected upon as a 

community of teachers and researchers. 

These sessions provided an opportunity for teachers to both reveal their These sessions provided an opportunity for teachers to both reveal their 

conceptions of justification and to refine that conception through discussion with other 

teachers and the researchers. In addition, the sessions provided opportunities for teachers 

to reflect on their pedagogy and the pedagogy of other teachers. In these sessions the 

researchers served two roles: that of co-participants collaboratively exploring ideas and 

that of experienced teacher-educators facilitating conversations, posing questions and 

offering insights. My involvement shifted over the course of the project. For the first 

working session I was strictly an observer and data collector. Over time I joined 

conversations and gave input into planning the sessions. In the final working session I 

was responsible for planning the session, and I served as lead facilitator for the Oregon 

site.  
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Figure 2: JAGUAR Project Overview 

Each week-long summer session included activities such as: 

- Discussing the definition of justification, roles of justification, and related 

content such as representations and forms of reasoning   

- Working individually and collaboratively on justification tasks designed by 

the researchers 

- Reflecting on and analyzing student work 

- Goal setting and lesson planning for justification tasks  

- Discussing pedagogy surrounding classroom justification activity 

- Reflecting on past justification task implementations 

- Written assessments of teacher knowledge and justification proficiency 

Summer	Session	Year	1 

Summer	Session	Year	2 

School	Year	1 

Lesson	Cycle	
1 

Lesson	Cycle	
2 

Lesson	Cycle	
3 

Lesson	Cycle	
4 

Working	
Session	1 

Working	
Session	2 

Working	
Session	3 

School	Year	2 

Lesson	Cycle	
1 

Lesson	Cycle	
2 

Lesson	Cycle	
3 

Lesson	Cycle	
4 

Working	
Session	1 

Working	
Session	2 

Working	
Session	3 
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- One-on-one interviews with researchers 

In addition to the summer sessions, teachers and researchers met three times 

throughout the school year for working sessions. The working session activities were 

similar to the summer session activities, but due to their proximity within the school year, 

the working sessions placed greater emphasis on practice: more time was spent reflecting 

on past task implementations, discussing and analyzing the difficulties of implementing 

justification tasks, and planning of focal tasks.  

The summer sessions and working sessions helped to further our understanding of 

teacher development of understanding of justification (Project research question 1) and 

helped teachers to reflect on and improve on their instructional practices that support 

justification in the classroom (Project research question 2). 

 Between each of the working sessions the teachers would implement a 

justification task, which I will refer to as a focal task. Three of the focal tasks were 

common among all of the teachers, and the fourth task was open for the teachers to 

design themselves. Teachers implemented the tasks once in Year 1 and again in Year 2. 

Having a common task across teachers and years allowed for stronger comparisons and 

evidence of change. At the same time, allowing teachers to design their own task allowed 

the task to fit more snugly with the existent curriculum and align more closely with the 

natural classroom environment. 

In preparation for the focal lessons, teachers worked on the tasks in the summer 

and working sessions. Teachers explored the tasks by solving the tasks themselves and in 

groups, analyzing potential student thinking, aligning the tasks within their curricular 

goals and standards, and developing detailed lesson plans. Teachers structured the tasks 
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according to their own classroom’s mathematical goals, and in the second year they 

revised their tasks based on the first year’s implementation and reflection. 

 Teachers selected one of their classes (either a 7th or 8th grade class) to be the 

focal class for the year. For logistical reasons data collection took place only for the focal 

class, although the majority of the teachers implemented the justification lesson in other 

classes as well. The selection of the focal class took place before the start of the school 

year and was primarily motivated by convenience: teachers in the same school staggered 

their focal classes for filming purposes. The focal lesson lasted between 1 and 5 class 

periods, depending in part on the length of the class session.  

The Tasks 

 Each of the common focal tasks were open-ended, lent themselves to multiple 

representations, drew upon multiple big ideas from middle school mathematics 

curriculum (such as proportional reasoning, equivalent representations, and patterning), 

and posed justification questions appropriate for middle school math students. 

 The Hexagon Task asked students to identify a pattern in a geometric figure and 

justify a generalization of that pattern for any length figure (See Figure 3).  The task gave 

students opportunities to describe a mathematical relationship and form connections 

between multiple representations. This task could be crafted to focus on a number of 

different mathematical goals, from understanding linear functions to comparing 

equivalent mathematical expressions. 
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Figure 3: General statement of the Hexagon Task 

The Number Trick task provided an opportunity for students to explore a specific 

case of the distributive property. In the Number Trick students applied two different sets 

of operations to the same number and justified why the results would always be the same 

(see Error! Reference source not found.). Although students started by applying the 

procedure to a specific number, they were asked to justify why the trick holds for all 

numbers. This task provided an explicit opportunity to discuss why individual examples 

cannot prove the general case.  

 

 

Figure 4: General statement of the Number Trick Task 

What	is	the	perimeter	of	Figure	3?	What	is	the	perimeter	of	Figure	5?	How	might	you	
find	the	perimeter	of	any	figure? 

Figure	1 Figure	2 Figure	3 

Jessie discovers a cool number trick. She thinks of a number between 1 
and 10, she adds 4 to the number, doubles the result, then she writes 
this answer down. She goes back to the number she first thought of, she 
doubles it, she adds 8 to the result, and then she writes this answer 
down.  
 
Will Jessie’s two answers always be equal to each other for any number 
between 1 and 10? Explain your reasoning. 
Will Jessie’s two answers always be equal to each other for any number 
(not just between 1 and 10)? Explain your reasoning. 
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 The third common focal task was the Scaling Task. The Scaling Task asked: 

“How does scaling various 2-dimensional [and 3-dimensional] figures impact the 

perimeter, area, and volume? Why?”  Teachers were able to operationalize this task in a 

number of ways depending on the types or dimensions of the figures, context, and 

expectations for representation. This task provided opportunities to connect proportional 

reasoning with geometric understanding and algebraic representations.  

Data Sources and Data Collection  

Teacher Data 

 We collected data about the teacher participants in a number of different forms. 

To contextualize the teachers, teachers completed questionnaires detailing personal 

information such as teaching background, education, and previous or concurrent 

professional development.  We also administered the Learning Mathematics for 

Teaching: Survey of Middle School Teachers of Mathematics (LMT) at the start of the 

first summer session and at the end of the last working session. The LMT measures 

mathematical knowledge for teaching specialized at the middle school level, developed 

by University of Michigan (LMT, 2006). In addition the teachers took a justification 

survey at the start and end of the project. The justification survey was developed by the 

JAGUAR team, which included some original questions and some questions adapted 

from Healy and Hoyles (2000). The justification survey provided a closer look at teacher 

justification proficiency, including how they represented their arguments (e.g. pictures, 

algebra) and the type of reasoning they used in their argument (e.g. using examples, 

relying in known information). 
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 In addition to written assessments, teachers participated in seven one-on-one of 

interviews over the course of the project; five standard interviews and two video 

interviews. The standard interviews were semi-structured (Creswell, 2007), lasting 45 to 

90 minutes (see Appendix C for representative interview protocol). Several interview 

questions were repeated in multiple interviews to help demonstrate whether teacher 

thinking had changed over time. Other questions were unique to one specific interview. 

However, most of the interview questions related to the following themes (a) teacher 

conceptions of justification, (b) teacher understanding of the roles of justification, (c) 

analysis of teacher understanding of justification and forms of reasoning, (d) teacher 

analysis of student justifications, (e) reflection on the pedagogy of justification, including 

specific classroom practices, and (f) reflection on the previous working sessions or 

summer sessions.  

The video interviews provided an in-depth analysis of teacher noticing of student 

thinking. In these interviews, teachers were presented with videos of student justification 

activity: one of the clips was common to all teachers and across interviews, and two of 

the other clips were specific to that teacher and taken from the teacher’s classroom or 

another JAGUAR teacher’s classroom. Teachers were asked to diagnose student thinking 

in the context of justification tasks.   

The interviews were audio recorded, and written work by the teacher during the 

interview was collected. In the first pass of data processing, a team of researchers 

transcribed all of the interviews. The interviews were transcribed to balance integrity of 

teacher meaning (all words transcribed) with readability (e.g. “umms” omitted and 



	 22	

punctuation added). Teacher work was scanned and copied into the transcription 

document. 

Summer and Working Session Data 

 All of the summer sessions and working sessions were video taped using two 

cameras. During whole class discussions one camera captured board work (when 

appropriate), while the other remained focused on the participants. During group work, 

each camera focused on one group with a dedicated table-microphone to capture 

conversations. If participants broke into more than two groups (which occurred 

infrequently), the third group’s conversation would be audio recorded only. In addition to 

the video recordings, all written work by teachers was scanned and all instructional 

materials were saved. A content log of events was created, and notes or reflections made 

by the researchers in the moment were saved on a volunteer basis. 

Lesson Cycle Data 

 All focal lessons were videotaped with two cameras. The main camera focused 

primarily on the teacher and captured board-work when appropriate.  That camera had 

two microphone systems; the boom microphone captured whole class discussions and a 

dedicated lapel microphone captured the teacher’s speech. Whenever possible, an 

additional camera followed over the teacher’s shoulder during group-work to better 

capture student-teacher interactions and student work. In addition, we filmed the lesson 

directly preceding the focal lesson in order to form a comparison between a “typical” 

lesson and focal lesson and to see how the focal lessons were embedded within the 

curriculum. 
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A log was created for each focal lesson that outlined the organization of the class 

and types of interaction during the class along with timestamps (see Appendix E for focal 

lesson log sheet). Copies of the task as written were collected, and all written student 

work related to the focal lesson was scanned and blinded. 

Teachers were responsible for creating reflective journals for each focal task 

implementation. Before the lesson the teachers described their goals and the types of 

justifications teachers expected from their students for the lesson. After the lesson the 

teachers watched the video and discussed specific details of the lesson. For example, 

teachers identified and described instances of student justification that went particularly 

well or poorly, reflected on what they learned about teaching with justification, and 

planned ahead about what future goals they have regarding student justification (see 

Appendix D for reflective journal prompts). 

To summarize, the JAGUAR project investigated knowledge and pedagogy 

necessary for teaching justification in middle school math classrooms. It was a 

collaborative investigation between 12 middle school math teachers and a team of 

researchers, with two years of data collection that consisted of summer and working 

sessions and classroom observations. This dissertation is a retrospective analysis of the 

data collected from the JAGUAR project: the research questions of this dissertation are in 

alignment with the goals of the larger project, but probe more deeply into specific aspects 

of teacher work with justification.  
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Chapter 3: Justification Literature 

This section provides an overview of literature relating to justification. This 

background is helpful in understanding the context of my contribution. In addition to the 

following section, each of my three research papers will also include a more targeted 

review of the literature that is relevant to that specific paper. 

Call for Justification 

Recent initiatives in mathematics education reform have identified proof and 

reasoning practices as critical for all grades of mathematics (NCTM, 2000; CCSSO, 

2010).  The Principles and Standards guideline created by the National Council of 

Teachers of Mathematics states that all students from Kindergarten through 12th grade 

should: 

… recognize reasoning and proof as fundamental aspects of 
mathematics, make and investigate mathematical conjectures; 
develop and evaluate mathematical arguments and proofs; select and 
use various types of reasoning and methods of proof (p. 56). 
 

Similarly, in the Common Core State Standards one of the eight Standards for 

Mathematical Practices includes “constructing viable arguments and critiquing the 

reasoning of others” (CCSSO, 2010).  

 These standards are ambitious. As the following review of the literature indicates, 

students struggle with argumentations and proving (e.g. Knuth, Choppin, Slaughter & 

Sutherland, 2002; Healy & Hoyles, 2000), and teachers similarly struggle to support 

students in these activities (e.g. Bieda, 2010; Chazan, 1993).   



	 25	

Student Difficulty with Proof and Justification 

 Although policy makers encourage the incorporation of proof and reasoning 

within the classroom, it has been well documented that students struggle to construct 

deductive arguments (e.g. Chazan, 1993; Knuth, Choppin, Slaughter & Sutherland, 2002; 

Hoyles, 1997; Weber, 2001).  In a study of 99 high school geometry classes in five states, 

Usiskin (1987) found that less than a third of the students (31%) were able to construct a 

valid deductive proof by the end of the course. Healy and Hoyles (2000) administered a 

justification survey to 2,459 high achieving 14- and 15- year old students in 94 classes in 

90 schools.  They found that 90% of students could not present even a partial proof when 

presented with an unfamiliar conjecture. In a study of 128 undergraduate students Harrel 

and Sowder (1998) found that the majority of students have proof schemes that are 

mathematically invalid, such as using a single example to prove a general result. Others 

have also documented a student preference for inappropriate use of empirical arguments 

(Balacheff, 1998; Selden & Selden, 2008). 

Teacher Difficulty with Proof and Justification 

Students are not alone in their struggles with proof.  Pre-service teachers 

frequently use empirical reasoning in a manner similar to students when engaging in 

justification activity; teachers rely on boundary-cases or sets of examples to provide 

evidence that a proof is valid (Stylianides & Stylianides, 2009; Simon & Blume, 1996; 

Martin & Harel, 1989). Buchbinder and Zaslavsky (2011) also found similarities between 

secondary school teachers’ and secondary students’ proving; both groups exhibited doubt 

that a counterexample provided sufficient evidence of the falsehood of a claim. In a study 

of 16 high school mathematics teachers, Knuth (2002) found that teachers tended to be 
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too lenient in their evaluation of the validity of proofs: the teachers rated over a third of 

the non-proofs as proofs in the study. In their evaluations of proofs, teachers frequently 

attended to the validity of the methods in the arguments rather than the applicability of 

arguments themselves. 

Not only do teachers struggle with proving themselves, they also struggle to 

promote proof and justification within their classrooms. Bieda (2010) looked at student 

opportunities to justify within the middle school setting and found that 71% of the proof 

related problems were implemented in a manner that encouraged proof.  Of those 

opportunities to prove, 54% were supported with a student justification, although the 

majority (53%) of those “justifications” consisted of invalid arguments.  

Promoting Justification and Related Practices 

Many researchers have investigated teacher practices that develop skills related to 

justification, such as mathematical discourse, conceptual understanding, argumentation, 

explanation, and generalization (e.g. Ball et al., 2003; Nathan & Knuth, 2003; McClain & 

Cobb, 2001; Rasmussen & Marrongelle, 2006). Research in this area tends to focus on 

one of two factors, or both: teacher moves and classroom culture.  

Franke and colleagues (2009) focused on the role of teacher questioning in 

encouraging student explanation. Franke and her team found that leading questions and 

asking students to explain their thinking did not consistently lead to explanations; instead 

a sequence of probing questions was more effective for eliciting student explanations. 

Similarly, Chazan and Ball (1999) described other types of teacher talk that helped to 

promote productive argumentation. They showed that creating constructive disagreement 

or establishing context during the launch of a task can lead to productive student 
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argumentation. Staples (2007) further specified a model of teacher activity during 

discussions. This model included supporting students in making contributions, including 

eliciting and scaffolding student ideas and creating contributions through linking and 

demonstrating logic; establishing and monitoring a common ground, which required a 

common understanding of the mathematical task and positioning students to collaborate 

with one another; and guiding the mathematics, which utilized student thinking to build 

on the mathematical goals of the task.  

Martino and Maher (1999) focused specifically on how teacher questioning could 

promote justification and generalization. They found that students did not naturally 

generate justifications when comparing solutions with one another; however, by inserting 

him or herself into the conversation after students have worked on a problem, the teacher 

could elicit justification, solution reorganization, and possibly generalization through 

effective questioning. Teachers used questioning to monitor student thinking, focus 

student attention to incomplete arguments, offer opportunities for students to form and 

test hypotheses, push students to generalize, and facilitate communal awareness. Based 

on effective teacher questioning, students were able to shift from their original method of 

exploration (through trial and error) to a more organized and complete justification.  

In contrast Mueller, Yankelewitz and Maher (2011) focused on student-student 

interactions rather than teacher-student interactions. They found that peer interaction led 

to three different types of argument construction: 1) co-construction, where arguments 

were build collaboratively from the ground up through back and forth exchanges, 2) 

Integration of arguments, in which one student’s argument was strengthened using 

elements from another peer’s argument, and 3) modification, when one peer attempted to 
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correct or make sense of an argument, and the argument was modified as a result. Their 

work’s findings were counter to the findings of Martino and Maher (1999), who found 

that students did not typically seek further elaboration or justification from one another 

when sharing solutions. 

Other research has focused on how teachers can influence classroom culture. 

Martin, McCrone, Wallace and Dindyal (2005) found that use of open-ended tasks 

coupled with classroom discourse that held students accountable for analyzing arguments 

and providing reasoning helped to promote student conjecturing, justification, and 

reasoning activity. In particular, the researchers highlighted the importance of teacher 

“coaching:” attending to student ideas by acknowledging ideas, pursuing suggestions, 

encouraging continued participation, or offering praise.  

Engle and Conant (2003) had finding similar to Martin, McCrone, Wallace and 

Dindyal (2005): productive disciplinary engagement could be supported by establishing a 

classroom learning environment that (a) problematized subject matter, (b) gave students 

authority to address problems, (c) held students accountable to others and disciplinary 

norms, and (d) provided students with proper resources. This type of engagement relied 

on both classroom design as well as specific in-the-moment activities.  In particular, 

teachers could play role in supporting productive disciplinary engagement in-the-moment 

by (i) giving students agency (emphasizing that they must decide among themselves), (ii) 

holding students accountable for providing information to support their arguments, and 

(iii) proposing counterarguments to keep the issue problematic. 

Similarly, McClain and Cobb (2001) found that by carefully managing social 

expectations, such as what constitutes a mathematical explanation, one first grade teacher 
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helped to establish a social environment in which students spontaneously provided 

explanations and reasoning. Kazemi and Stipek (2001) had similar findings; they 

identified four sociomathematical norms that supported conceptual thinking: explanation 

is a mathematical argument rather than procedure, mathematical thinking includes 

understanding relationships between multiple solution strategies, errors are valuable 

opportunities for exploration, and collaboration requires individual accountability and 

argumentation for consensus.  

The preceding summary of the literature indicates that teacher moves and 

classroom culture can contribute to productive student activity related to justification, 

such as explaining, conjecturing and comparing ideas. In the next section, I describe 

definitions of justification found in the literature, as well as the one used to guide this 

study. 

Definition of Justification 

 The specific meaning of the terms “proof” and “justification” are not universally 

agreed upon within the mathematics education research community (Balacheff, 2002). 

For example, Harel and Sowder (1998) focused on the verification process of an 

individual person: “By ‘proving’ we mean the process employed by an individual to 

remove or create doubts about the truth of an observation” (p. 241). Yackel’s (2001) 

definition is similar; however, instead of focusing on one’s own doubts, Yackel 

positioned justifications as responses to the doubts of others: “[Students and teachers] 

give mathematical justifications in response to challenges to apparent violations of 

normative mathematical activity” (p. 13).  

 Stylianides (2007) provided a detailed definition of proof that incorporated the 
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importance of community acceptance with the idea of mathematical validity: 

Proof is a mathematical argument, a connected sequence of assertions for 
or against a mathematical claim, with the following characteristics: 
1. It uses statements accepted by the classroom community (set of 

accepted statements) that are true and available without further 
justification; 

2. It employs forms of reasoning (modes of argumentation) that are valid 
and known to, or within the conceptual reach of, the classroom 
community; and 

3. It is communicated with forms of expression (modes of argument 
representation) that are appropriate and known to, or within the 
conceptual reach of, the class- room community. (p. 294)  

 
In this dissertation I use the term justification rather than the more formal construct 

of proof.  The term justification emphasizes sense-making and focusing on why rather 

than the formal, stylistic elements frequently associated with the term proof. Much like 

Hanna’s (1990) distinction between “proofs that prove” and “proofs that explain,” this 

study focuses on the argumentation and reasoning practices that establish mathematical 

truth through an explanation of why something works mathematically. The definition of 

justification used in this paper builds on that of Stylianides (2007), with the addition that 

justification can be thought of as both a product (a formal argument), and a process (the 

logical steps used to arrive at a conclusion). 

Forms of Reasoning 

 Stylianides’ (2007) definition of proof provides a defining framework for 

justification in this paper. The second component of this definition is Forms of 

Reasoning. Larsen (unpublished manuscript) has proposed a framework of forms of 

reasoning relevant to middle school mathematics, which is summarized in this section. 

The framework was based on preexistent literature and refined through empirical 
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investigation of student justifications in the JAGUAR project.  The framework includes 

example based reasoning (including generic-example and pattern-based reasoning), 

transformational reasoning, and appealing to known information (including model based 

reasoning).  

Example Based Reasoning 

 Example-based reasoning includes any reasoning that makes use of an example as 

evidence for a claim. As discussed previously, both teachers and students frequently 

show preference for example-based reasoning, even when that reasoning is insufficient to 

justify a general claim. However, examples can be leveraged in a variety of ways that 

extend beyond simple empiricism. Both students and mathematicians use examples in 

many ways within reasoning and proving activity (Ellis, 2012; Lockwood et. al, 2012; 

Mills, 2014), and differentiating between these uses has important implications for 

supporting students in justification activity. 

  Empirical reasoning with examples. The most basic form of empirical reasoning 

is naïve empiricism (Alcock & Inglis, 2008), in which an individual uses a single 

example or a small set of examples to prove a general statement. This is generally not a 

valid approach for proving of a general claim. However, if the claim is about a finite set 

of objects rather than an infinite set, checking each one of the finite cases constitutes a 

valid proof by exhaustion.  Similarly, a counter-example is a valid proof technique for 

refuting a general claim using a single instance: the counter-example must satisfy the 

propositions of a conjecture but fail to satisfy the result, which disproves the conjecture.  

 Generic example-based reasoning. Mason and Pimm (1984) describe generic 

example-based reasoning as reasoning about a specific example in a general way: “A 
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generic example is an actual example, but one presented in such a way as to bring out its 

intended role as the carrier of the general. This is done by means of stressing and 

ignoring various key features, of attempting to structure one’s perception of it” (p. 287) 

These types of arguments are also called generic proofs, (Selden & Selden, 2008). 

Generic examples are an important form of reasoning as they can form a bridge between 

specific empirical results and proving.  At a middle school level in particular, generic 

examples are a mechanism for students to be able to communicate general reasoning 

when they lack the algebraic or representational tools to represent that thinking in a fully 

generalized way. 

Pattern-based reasoning. Pattern-based reasoning is a form of reasoning in which 

a pattern is observed within a set of examples.  This is a specific type of example-based 

reasoning, but the examples are considered as a single set exhibiting a predictable pattern, 

frequently in the form of a table of values. The naïve form of pattern-based reasoning is 

result-pattern reasoning (Harel, 2001), in which a student notices a pattern and assumes 

it must hold. Ellis and colleagues (2012) observed a form of this reasoning in which 

students intentionally selected sets of numbers that formed a predictable pattern to test 

the validity of conjectures. A more sophisticated form of pattern-based reasoning is 

process-pattern reasoning in which a student notices a pattern and describes the 

mechanism or underlying process behind why the pattern must hold.  

Transformational Reasoning 

 Transformational reasoning (Simon, 1996) is reasoning in which a student 

performs dynamic physical or mental operations on objects to transform the 

objects.  
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Transformational reasoning is the mental or physical enactment of an 
operation or set of operations on an object or set of objects that allows one 
to envision the transformations that these objects undergo and the set of 
results of these operations.  Central to transformational reasoning is the 
ability to consider, not a static state, but a dynamic process by which a new 
state or a continuum of states are generated. (p. 201)  

 

These mental transformations must be mathematically appropriate; the dynamic 

transformation should be governed by the applicable rules of mathematics for the context. 

This reasoning can be thought of as “running” a mathematical system with the intention 

of understanding how the system works rather than generating data upon which to form a 

pattern-based, deductive argument. For example, one might dynamically manipulate a 

triangle to reason that the sum of two sides is always greater than the third side. Such 

manipulation can take place mentally or physically, but when physically enacted it must 

include “mental anticipation” of the process.  

Appealing to Known Information and Model Based Reasoning 

When appealing to known information, the student appeals to facts or procedures 

that are taken to be true. Examples include arithmetic facts, algorithms, equivalent 

statements, and metaphors. One particular type of known information is the use of model-

based reasoning. Model-based reasoning is reasoning that is based on an agreed upon 

mathematical model. Such models could be models of operations (such as the “sharing” 

model of division) or models of procedures (such as a “tree diagram” model for 

factorization).  

 This list of forms of reasoning is not comprehensive, but summarizes a 

representative set of common forms of reasoning evidenced in the JAGUAR project data 

set. These forms of reasoning should not be considered mutually exclusive. We see that 
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many of the forms are nested: an argument can be both empirical and pattern based. Also, 

a student might coordinate multiple forms of reasoning within a single justification 

argument.  

Role of Justification 

Teachers and students have a tendency to view proof as a ridged, formal process 

whose purpose is to follow a prescribed structure rather than to communicate 

mathematical meaning.  Many teachers tend to think of proof as a content topic that 

should be taught separately from regular mathematics instruction, typically as two-

column style proofs in the context of high school geometry (Harel & Sowder, 1998). 

Knuth (2002) found that teachers also believe proof is a topic that is only appropriate for 

the most advanced students, and the majority of secondary students are not capable of 

engaging in proving. He also found that teachers tended to view proof as a product rather 

than a process that facilitates mathematical understanding. 

Math education researchers may point out teachers’ impoverished view of the role 

of proof; however, there is disagreement about the role that proof should have in a 

classroom setting. Harel and Sowder (1998) argue that the purpose of proof in the 

classroom should closely mimic that of the mathematics community, which includes 

mathematical exploration and conjecturing.  Usiskin agrees, stating “we seem to have 

failed in our teaching of proof, because we too often ignore why mathematicians do 

proofs” (1980, p. 419).  De Villiers (1990) found six primary roles of proving among 

mathematicians, including verification of the mathematical truth of a statement, 

explanation of why something works mathematically, systemization, discovery of new 

mathematical ideas, and communication of mathematics. Knuth (2002) limits the list to 
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five primary purposes: verification of validity, explanation of validity, communicate 

mathematical knowledge, to discover or create new mathematics, or to systematize 

statements into an axiomatic system. 

Staples and Bartlo (2010) believe that the goals of the mathematics community 

and the classroom community differ, and thus the role of proof or justification should 

differ accordingly. The primary goals of the mathematical community are the invention 

and communication of new mathematical truths, while the goal in the classroom is for 

novice learners to understand previously established ideas. One important role for proof 

or justification is to establish the validity of a mathematical result, but justification can 

also be leveraged as a pedagogical practice that develops mathematical meaning and 

communication within the classroom (Bartlo, 2013). 

This section provided an overview of research literature relating to justification. 

In this paper, justification is defined to be a mathematical argument that explains why a 

result is true. This definition is operationalized using Stylianides’ (2007) three-

component definition of proof. This section also described purposes for justification 

within the classroom, and teaching practices that promote student activity associated with 

justification. These practices include teacher activity such as questioning and framing, as 

well as elements of classroom culture, such as student autonomy. In the next section, I 

describe the theoretical framework supporting this study. 

	  



	 36	

Chapter 4: Theoretical Perspective and Methodology 

So far in this document I have provided an overview of the JAGUAR project and 

contextualized the project with a review of the current literature regarding justification. 

Next, I will describe my theoretical perspective as it applies to broader issues of teaching 

and learning. This section also includes an overview of the general methodological 

approaches used for this research. 

Theoretical Perspective 

This study draws on both the cognitive and situated learning perspectives. I view 

learning as an act of individual cognition demonstrated via participation within a social 

context. These theoretical perspectives were chosen based on the explanatory power and 

relevance to the research questions. This research coordinates analysis between three 

different areas: teacher knowledge, teacher practice, and student activity, thus different 

lenses are needed to best exemplify the salient features of each area. 

My interpretation of the cognitive perspective is a reformulation of Steffe and 

Thompson’s (2000) construct students’ mathematics into teachers’ mathematics, which 

includes a teacher understanding and proficiency with justification. I conceptualize 

knowledge acquisition as an essentially constructivist activity in which teachers 

assimilate and accommodate information to construct an independent mathematical 

reality (Philips and Soltis, 1998). This reality is not directly accessible to anyone other 

than the primary thinker, thus I recognize that my conceptualization of his or her 

mathematical reality is an interpretation based on interaction with the thinker. In this 

light, I do not claim objective insight into the thinker’s mind, but instead I aim to develop 

a model of teacher’s understanding that describes the teacher’s representation of her or 
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his mathematical reality via verbal and nonverbal communication. Thus, teacher 

utterances will be interpreted at a semantic level, for those utterances are the object of 

interest rather than the unknowable, personal mathematical realities of the teachers. 

This interpretation of the cognitive perspective accounts for the role of researcher 

as an observer, rather than as an interactive partner. This choice is based on the research 

question: the goal is not to understand the mutually constructed meaning that evolves in 

an interview context, but instead to develop a robust model of an individual teacher’s 

articulated conceptions of justification. This perspective does not dismiss the role of 

context of the interaction; it simply views the individual contributions of the teacher as 

the primary mechanism for developing a model for that teachers’ mathematical reality. 

To further structure the development of models describing teachers’ conceptions 

of justification, I use Schoenfeld’s (2011) framework for teacher decision-making. He 

identified three primary factors that impact teachers’ practice: teacher orientations, which 

include beliefs and preferences; teacher goals; and teacher resources, which include their 

knowledge, curriculum, and physical resources.  

 This research will also draw upon the situated perspective to understand teachers’ 

evolving understanding of justification as mathematical practice. The situated view is 

based upon Lave and Wagner’s (1991) view of learning as evolving participation within a 

community of practice. In this research, the teachers participate within two different, yet 

overlapping communities: the first is the community of teachers, math education 

researchers, and mathematicians within the working sessions, and the second is their 

middle school classroom community. The teachers’ goals regarding justification 

development differ between the communities. In the working sessions, the primary goal 
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is for teachers to develop their understanding of justification as a pedagogical and 

mathematical practice. In the classroom community, the teachers’ primary justification 

goal is to promote justification proficiency within the classroom community. As such, the 

teachers may have different, yet related, types of participation among the different 

communities.  

The situated perspective provides a framework for understanding the factors that 

influence teacher participation within and across these different contexts. Although the 

community is an essential aspect of situated perspective, the unit of analysis will remain 

individual: like Cobb and Bowers (1999) I use “individual [teachers’] reasoning as a unit 

of analysis while simultaneously viewing that reasoning as an act of participation in 

evolving communal practices” (p. 8).  

The development of teacher justification practices is viewed as co-evolving across 

both the working session and classroom contexts. Professional development is commonly 

conceptualized as a causal agent that impacts how teachers teach; however this paper 

takes on the perspective proposed by Kazemi and Hubbard (2008), in which teacher 

participation in professional development can influence classroom practice, but 

classroom practices can also impact teacher participation within the professional 

development. Thus the evolving types of participation are traced along both contexts, 

seeking explanations that account for the changing types of participation in both 

communities.  

Although the JAGUAR project is not conceptualized as a professional 

development program in the traditional sense, this model of coevolution of teacher 

participation is particularly apt. The JAGUAR project included sustained interventions 
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over two years, including working sessions within the school year. The working sessions 

themselves were framed to help teachers reflect on classroom practices directly through 

classroom video viewing and structured discussion. Thus the ways that teachers taught in 

their classroom had a direct impact on the content of the working sessions.  

Rather than thinking of the cognitive and situated perspectives as contradictory or 

competing, I view them as mutually supportive in this investigation. The cognitive 

perspective helps describe the knowledge needed to support justification, while the 

situated perspective allows for understanding of teachers’ participation within the 

working session and the classroom. These theoretical perspectives help trace the 

evolution of teacher activity and ways of knowing over multiple contexts over time. The 

different types of analyses coordinate with one another to uncover patterns and offer 

explanations for relationships. 

General Methodology 

This section describes my general methodological approach. Each of the three 

case study papers includes a methods section specific to those papers. However, some of 

the methodological framework applies to the investigation as a whole. Taken as a whole, 

this research focuses on a contemporary phenomenon that cannot be subjected to controls 

or otherwise extracted from its context. The primary goal was to construct a rich, 

descriptive account of the phenomenon within that embedded context and to provide 

viable explanations for observed relationships between elements or events (Yin, 2009). 

Data analysis proceeded in a multi-layered fashion, as consistent with the 

recommendations of Yin (2009). In the first stage, the data corpus was reduced to a data 

set that directly addresses the research question. Next, each data type within data set was 
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coded and organized into themes using thematic analysis (Braun & Clarke, 2006). Next, 

the themes within each data type were compared with one another seeking convergence 

of evidence (Yin, 2009). Triangulation occurred between the multiple data sources to 

create a robust description of the individual cases. Next, a chain of evidence was created 

that links the original data to each of the convergent themes and to the final research 

question. In this stage, themes across the cases within each study were considered. 

Ultimately, the data analysis produced a vivid description of each of the cases and a 

comparison of the cases across analytic themes. This analysis informed the generation of 

a theoretical model to explain the relationships targeted in the research questions.  

Thematic Analysis 

 The primary analytic method used for this set of studies was thematic analysis 

(Braun & Clarke, 2006). Thematic analysis is a flexible, qualitative analytic process 

appropriate for case study research. Much like pattern matching (Yin, 2009), patterns in 

the data are identified and compared to one another. However, unlike pattern matching 

which relates independent variables to dependent variables for explanatory studies, 

pattern matching can be applied to both descriptive and explanatory studies. Thematic 

analysis can also be similar to grounded theory in the generation of themes, but unlike 

grounded theory methods, thematic analysis is not bound to a particular theoretical 

framework and need not be inductive. 

 Thematic analysis can be inductive, in which themes are identified within the data 

itself, or theoretical, in which themes are identified in advance based on preexisting 

theory or researcher interest. In either case, themes are identified based on the theoretical 

framework guiding the study, which is chosen based on the research questions. 



	 41	

 Thematic analysis was conducted using 6 iterative phases. These phases are 

described in Braun and Clarke (2006), but modified slightly for my use within case study 

methodology. 

Phase 1: Familiarizing yourself with the data First, the body of data was reviewed to 

(a) pare down the entire corpus into the set that is applicable to each study, and (b) to 

identify preliminary codes for phase 2. 

Phase 2: Generating Initial Codes Similar to open coding (Corbin & Strauss, 2008) 

codes form the most basic unit of analysis and were used in phase 3 to form themes. The 

initial coding highlights or identifies particular segments of the data and attaches 

interpretive meaning. To help increase internal validity, the data set was systematically 

reviewed to ensure the codes are representative of the data. 

Phase 3: Searching for themes Similar to the stage of axial coding in grounded theory 

(Corbin & Strauss, 2008), the third phase consisted of organizing the set of codes into 

groups and subgroups to better reflect the internal relationships of the concepts. 

Phase 4: Reviewing themes Once a set of themes were established, the themes need to 

be refined to ensure the data within the theme has meaningful coherence. Each data 

excerpt was reviewed to establish its fit with the given theme. This was an iterative 

process, and as new themes were identified they will be coded in the data set. 

Phase 5: Defining and naming themes Defining and naming themes included a 

demarcation of the meaning and boundaries of a given theme. This stage included a 

description of the “story” that each theme tells, and how that individual theme’s “story” 

fit into the larger narrative of the data in response to the research question.  
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Phase 6: Writing the report In the final report, data was presented that clearly 

demonstrates each theme. In addition, an interpretative account provided justification for 

the selection and importance of the themes, along with an analysis of how the themes 

address the research question of the case.  
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Chapter 5: Teacher Conceptions of Justification 

Abstract 

Recent initiatives in mathematics education reform have identified proof and 

reasoning practices as critical for all grades of mathematics (NCTM, 2000; CCSSO, 

2010). Successful enactment of these ambitious practices depends, in part, on teacher 

conceptions of proof and justification. This study examines middle school teacher 

conceptions of justification along three dimensions: What is justification? What is the 

purpose of justification? What are teacher proficiencies with justification? Data for this 

analysis is drawn from twelve middle school math teacher participants in the JAGUAR 

project and includes interview transcripts, justification assessments, and participation in 

workshops. One important result from this case study analysis is that teachers viewed 

justification as a mathematical practice, one that centers on why something works or is 

true mathematically, as well as a pedagogical practice, one that centers on 

communication of student reasoning.  

Motivation 

Using proofs to establish the validity of mathematical results is critical for the 

practice of mathematics. Yet many math teachers think of proof as a specific skill 

independent from content, with little relation to “every-day” mathematics instruction 

(Hanna, 2000; Knuth, 2002b; Ross, 1998; Wu, 1996). Over the past several decades math 

education researchers and policy makers have argued for greater integration of proof and 

justification into mathematics instruction. Schoenfeld (1994) argued that “proof is not a 

thing separable from mathematics, as it appears to be in our curricula; it is an essential 
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component of doing, communicating, and recording mathematics… and it can be 

embedded in our curricula, at all levels” (p. 76). Similarly, reform documents have called 

for greater emphasis on proof and reasoning throughout all grade levels (NCTM, 2000; 

CCSSO, 2010). 

 A growing body of research indicates that justification activity contributes to 

student understanding. Providing students with the opportunity to engage in proving 

activities, such as conjecturing, generalizing, and argumentation, aids in learning of 

mathematics. Justification activity has been demonstrated across grade levels and led to 

stronger mathematical discourse, strategy creation and refinement, pattern recognition, 

use of structure, and improved mathematical dispositions (see, e.g., Lampert, 1990; 

Maher & Martino, 1996; Reid, 2002; Stylianides, 2007; Wood, 1999; Yackel & Cobb, 

1996). Student engagement in justification activity can also lead to more equitable 

learning outcomes among diverse student populations (Boaler & Staples, 2008). 

In this paper I use the term justification rather than the more formal proof. This 

choice is intentional: the term proof tends to be associated with a rigid, formal structure 

that is typically focused on establishing truth rather than promoting student understanding 

(e.g. Hanna, 2010; Knuth, 2002a; Ross, 1998). Justification, on the other hand, meets the 

same purpose of proof (to establish the mathematical validity of a statement), while 

evoking connotations of explanation and avoiding the emphasis on formal, stylistic 

elements frequently associated with the term proof.  

Proof and justification have been identified as important mathematical practices, 

but it has been well documented that students struggle with proving and justifying (e.g. 

Chazan, 1993; Knuth, Choppin, Slaughter & Sutherland, 2002; Hoyles, 1997; Weber, 
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2001). To support students in this ambitious practice, teachers themselves need to have a 

robust understanding of justification. As teachers and teacher educators, we need to have 

a better understanding of the conceptions of justification necessary for teachers to teach 

justification and how these conceptions develop.  

Common sense, as well as empirical evidence, indicates that a teacher’s 

knowledge influences his or her practice (Fennema & Franke 1992). Stylianides and Ball 

(2008) elaborate: 

Unless teachers have good understanding of proof, we cannot expect 
that they will be able to effectively promote proving among their 
students. The serious difficulties that students of all levels face with 
proof…underlie further the importance of teachers’ knowledge about 
proof for teaching and the need for research to identify critical elements 
of this knowledge (p. 309).  

Knowledge of proof may be important, but content knowledge alone is a weak 

predictor of classroom outcomes (Floden, 2001; Darling-Hammond, 2000). 

Thus, someone who has demonstrated expertise as a skilled justifier may not 

possess the knowledge necessary to lead students in justification.  

 In other content areas, pedagogical content knowledge has been shown 

to correlate strongly with classroom practices (e.g. Hill et. al, 2008; Lewis & 

Blunk, 2012) and subsequent student learning (Hill, Rowan, & Ball, 2005). 

Several studies have described types of pedagogical content knowledge needed 

for teaching proof, such as the ability to understand the components of a proof, 

knowledge of situations for proving (Stylianides & Ball, 2008), essential proof 

understandings (e.g. a theorem has no exceptions; a proof must be general), the 

functions of proof (Lesseig, 2011), and the ability to evaluate the validity of 

students’ arguments (Tabach et. al, 2011). However, none of these studies 
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linked pedagogical content knowledge of proof with broader teacher beliefs or 

orientations, nor with specific teaching practice. 

 In addition to knowledge, research outside of the domain of justification has 

demonstrated that teacher beliefs and goals can influence teacher decision-making in 

their teaching practice (Ball, Thames, & Phelps, 2008; Schoenfeld, 2011; Wilson & 

Cooney, 2002). For example, Aguirre and Speer (2000) found that belief bundles inform 

the selection and prioritization of pedagogical goals during in-the-moment teaching 

practice. Beliefs themselves have been shown to impact teaching practice, although the 

nature of the relationship is complex (see i.e. Thompson, 1992). Thus, a constellation of 

factors, including beliefs, goals, and knowledge, all influence teach practice, and are 

included within the broadly defined construct of “conceptions of justification” within this 

paper.  

 This research is also concerned with teacher change: it describes the development 

of teacher conceptions of justification over the course of a two-year collaborative project. 

Changes in teacher knowledge, or teacher learning, has traditionally been described as a 

causal relationship in which a teacher’s training or professional development experiences 

impart knowledge that is then utilized in the classroom (Cochran-Smith & Lytle, 1999). 

However, I take on Kazami and Hubbard’s (2008) situated perspective in which teacher 

knowledge develops across multiple settings: participation in and outside of the 

classroom contribute to teacher knowledge and reinforce ways of knowing and doing. 

Teacher beliefs in particular have been identified as difficult to change; beliefs may 

remain inconsistent with one another (Thompson, 1992). Change in beliefs usually does 

not occur because of argument or reason, but because of a “conversion or gestalt shift” 



	 47	

(Nespor, 1987, p. 321). However, beliefs and practice mutually influence one another, so 

changed practice can lead to changed beliefs (Bray, 2011). 

Theoretical Framework 

The theoretical framework guiding this paper’s exploration of teacher conceptions 

is based on Schoenfeld’s (2011) model for teacher decision-making. Schoenfeld (2011) 

found that teachers rely on much more than content knowledge when engaging in the 

practice of teaching. He identified three factors that influence teachers’ decision-making 

within the classroom: orientations, goals, and resources (see Figure 5). Orientations are a 

broad category that encompasses “beliefs, values, preferences, and tastes” (p. 460). For 

this paper, I consider teachers’ orientations to include their beliefs about what 

justification is, what they value in a justification, and how they perceive justification 

relates to the classroom community or the mathematical community.  

In this framework, goals are the results or outcomes a teacher hopes to achieve, 

which can take on a variety of grain sizes and may or may not be consciously realized. In 

this paper a teacher’s goals consist of their purposes for using justification in the middle 

school mathematics classroom. The goals in this study are those consciously articulated 

by teachers, and may not represent the full spectrum of enacted goals within their 

practice. Just as the selection of goals can be impacted by teacher orientations (Aguirre & 

Speer, 2000), goals also have the potential to impact orientations. For example, if a 

teacher took on the goal of improving student to student communication, using 

justification activity to meet that goal might shift a teacher’s belief in the pedagogical 

value of justification.  
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Resources include a teacher’s knowledge (be that pedagogical knowledge, content 

knowledge, etc.) as well as other types of material or social resources such as access to 

curriculum or technology. In this paper, the resources under consideration are the 

teachers’ proficiencies with justification, including the types of justifications they 

produce, their understanding of the components of justifications, and their understanding 

of the mathematical validity of justifications. These understandings are part of Common 

Content Knowledge (CCK), a type of knowledge of mathematics that is not particular to 

teaching, and Specialized Content Knowledge (SCK) (Ball, Thames, & Phelps 2008). In 

isolation, a teacher’s ability to justify is not predictive of teaching competence; however, 

the content knowledge associated with justification is an important resource teachers may 

draw upon within their classroom practice (Lesseig, 2011). 

A visual representation of this theoretical framework is given in Error! 

Reference source not found.. Notice that each of the elements of teacher conceptions of 

justification (orientations, goals and resources) are reflexively related to one another. 

Thus a teacher’s orientation may impact a teacher’s proficiency with justification, just as 

one’s proficiency may affect one’s orientations. In the center is a teacher’s practice, 

which again is reflexively related to each component of a teacher’s conceptions. 

It is important to note that these dimensions are not distinct partitions; a teacher’s It is important to note that these dimensions are not distinct partitions; a teacher’s 

knowledge of mathematics and beliefs about mathematics are intertwined and difficult to 

separate (Fennema and Franke, 1992; Thompson, 1992). Rather, this framework offers a 

lens through which interrelated dimensions of the conceptions of justification can be 

explored. 
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Figure 5: Theoretical framework linking teacher orientations, goals and resources with 
teacher practice 

Research Questions  

This paper serves multiple purposes. At its core, it gives insight into how teachers 

view justification, providing a robust profile of relationships between a teacher’s 

understanding of justification, view of the purposes of justification, and proficiency with 

justification. Secondly, this paper demonstrates the development of those conceptions 

over time. This longitudinal analysis has important implications for teacher growth and 

can inform future professional development. Finally, the results from in this paper will be 

used in a larger case study that identifies relationships between teacher conceptions of 

justification, professional noticing of justification, and pedagogy with respect to 
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justification.  

Data for this paper was drawn from the JAGUAR project (Justification and 

Argumentation: Growing Understanding of Algebraic Reasoning): a two-year co-

investigation of justification and pedagogy among a team of middle school teachers and 

math education researchers. It is important to recognize that the teachers in this study are 

not representative of typical middle school teachers: the teachers selected for this study 

already had classroom cultures classified as strategy reporting or inquiry-argument 

(Wood & Turner-Vorbeck, 2001), and their participation in the project demonstrated an 

active interest in improving justification practices. Within the context of the project they 

spent two years working to improve their understanding of justification and support for 

justification within their classrooms. The conceptions of justification held by these 

teachers can be considered productive: all of the teachers in this group had evidence of 

student justification activity in their classes (see Staples and Newton, in progress).  

This paper offers a detailed analysis of conceptions of justification held by 

teachers who engage in this ambitious practice. The teachers had differences in their 

conceptions, thus this paper offers multiple models of conceptions necessary to support 

justification. By comparing the conceptions, this analysis also describes important 

conceptual elements across the cases. Finally, this set of cases illustrates the development 

of conception of justification, which can serve as a guide for training teachers in future 

professional development work.  

In this paper I present a description of JAGUAR middle school teacher 

conceptions of justification, which include teachers’ understanding of the definition of 
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justification, their purposes for justification, and their proficiency with justification. 

Specifically, the research questions are: 

1. What do JAGUAR teachers think justification is? What attributes of 

justification do they believe are important? How do their beliefs this shift over 

time? 

2. What do they see as the purposes of justification in their classroom? How 

does this shift over time? 

3. What are teacher proficiencies with justification? What types of justifications 

do they produce? How do they understand components of justification? How 

does this shift over time? 

The first research question targets teachers’ orientations: their beliefs about what 

justification is, how it relates to proofs and explanations, and what they value in 

justifications. The second research question targets what teachers see as the goal or 

purpose of justification within the middle school classroom. The third research question 

targets their proficiencies with justification, which is one type of resource. Notice that 

proficiencies is plural, because teachers may demonstrate multiple abilities when 

demonstrating understanding of justification. This includes the teachers understanding of 

representations, forms of reasoning, and validity of justifications. 

 This paper builds on the previous work of Thanheiser et. al (2010) that examined 

teacher conceptions of justification and Staples, Bartlo and Thanheiser (2011) that 

examined teacher purposes of justification. Both of these previous studies were based on 

a portion of the JAGUAR data drawn from the first year of the project. This study 

completes the picture by examining the full data set over the course of the entire 
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JAGUAR project.  

Background Literature 

 In the following section, I briefly review previous research relating to the 

definition of justification, the roles of justification, and teacher proficiency with 

justification. Little work has been done to investigate justification specifically, thus this 

literature review focuses on both proof and justification. Because teachers tend to view 

proof as a more formal argument compared to justification, their view of proof and the 

roles of proof may differ somewhat from their view of justification. We see this in the 

contrast between teach beliefs about formal and informal proofs, described below. 

Definition of Justification 

Very little literature has examined teacher definitions of justification specifically, 

but a number of studies have looked at preservice teacher (PST) and inservice teacher 

definitions of proof. In general, elementary PSTs tended to view proof as support for an 

argument or a convincing argument (Goettlings, 1995; Mingus & Grassls, 1999). Middle 

and secondary teachers demonstrated a wider range of conceptions in terms of the focus 

on validity and mathematics. These conceptions include proof is as a convincing 

argument, proof as a demonstration of how the math works, and proof as a logical 

argument that establishes validity (Knuth, 2002a&b; Thanheiser et. al, 2010; Weiss, 

Herbst and Chen, 2008). Several studies also indicated that teachers believe a proof or 

justification should demonstrate a student’s understanding (Staples & Truxaw, 2009; 

Thanheiser et. al, 2010; Tsamir et. al, 2009).  

Knuth (2002b) uncovered an important distinction held by many of the teachers in 
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his study: a divide between formal proofs and informal proofs. Formal proofs were 

characterized as ritualistic arguments, based on conventions of format and language, and 

were seen as appropriate only for advanced students. Informal proofs, on the other hand, 

included explanations and empirical arguments that provide reasons or evidence, but may 

not fully establish the validity of a claim. These informal proofs were viewed as 

important for all students and vital to mathematics instruction across all grades. This 

distinction was echoed by one preservice elementary teacher in Mingus and Grassl’s 

(1999) study: “I think that informal proofs can be investigated in elementary school and 

that formal proofs should be presented in high school. It was hard for me to both learn 

difficult material and formal proof at the same time" (p. 434). The distinction between 

formal and informal proof can be compared to the distinction between proof and 

justification held by some teachers. Informal proofs offer evidence in support of an 

argument but may lack rigor or formal structure. Similarly, some teachers may view 

justification as an informal argument that provides evidence without the formality of a 

proof. An important distinction is that informal proofs may or may not establish the 

validity of a claim, while in this paper a valid justification indeed use valid forms of 

reasoning to establish a result. 

Purposes of Justification 

De Villiers’ (1990) paper on the roles of proof has been influential in shaping how 

the purpose of proof is framed both within mathematics and within mathematics 

classrooms (e.g. Hanna, 2000; Herbst, Miyakawa & Chazan, 2012; Knuth, 2002a & 

2002b). De Villiers’ five roles of proof for mathematics consist of (1) proof as a means of 

verification, (2) proof as a means of explanation, (3) proof as a means of systemization, 
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(4) proof as a means of discovery, and (5) proof as a means of communication. A number 

of researchers have expanded the roles of proof on theoretical grounds to include 

purposes specific to the classroom community. These additional roles include: 

exploration and incorporation of ideas into new frameworks (Hanna, 2000), development 

of conviction for oneself or others (Bartlo 2013; Hersh, 1993), demonstrating a 

mathematical technique (Herbst et. al, 2010), construction of empirical theory, and 

incorporation of known facts into new frameworks (Bartlo, 2013; Hanna, 2000; Herbst et 

al 2010). 

In addition to this work, empirical studies have addressed teachers’ conceptions of 

the purposes of proof in mathematics classrooms. Knuth (2002a & b) found secondary 

mathematics teachers believed these purposes included verification of truth, 

communication, displaying thinking, explaining why, and creating mathematical 

ownership. Additionally, teachers saw proof as part of systemization, but their view of 

systemization was the construction of building blocks for future mathematics, not the 

creation of an axiomatic system. Notably absent from the teachers’ conceptions was a 

belief that proof aided in the deepening of mathematical understanding.  

Knuth’s (2002b) findings contrast with those of Staples, Bartlo, and Thanheiser 

(2011), who found deepening understanding to be an important purpose for justification 

according to middle school teachers. The middle school teachers in Staples and 

colleagues’s study (2011) were JAGUAR participants. They articulated a large number of 

purposes for justification beyond deepening understanding, such as fostering valued math 

skills and dispositions, fostering valued life-skills and dispositions, assessment, managing 

diversity, and influencing social relationships. Unlike the teachers in Knuth’s (2002a & 
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2002b) studies, the teachers in Staples, Bartlo, and Thanheiser (2011) did not identify 

verification of mathematical validity as a purpose of justification. One possible 

explanation for the differences between Staples et. al’s (2011) findings and those of 

Knuth (2002a&b) was their focus on mathematical justification rather than mathematical 

proof. As discussed previously, teachers tend to view proof in more formal terms, while 

they view justification as an argument that explains why. As such, concept of justification 

may play a greater role in deepening understanding of mathematics, while the purpose of 

proof might be more closely associated with establishing validity. An additional reason 

for this distinction might be the teacher sample; since the teachers in Staples et. al’s 

(2001) study were JAGUAR participants, they had focused on developing justification as 

a pedagogical practice. 

Proficiency with Justification 

Much of the work that focuses on teacher proficiency with proof centers on a 

teacher’s ability to construct or evaluate a valid mathematical argument. As a whole, 

teachers appear to be proficient in the construction of their own proofs, particularly when 

those proofs are represented via algebraic representations (Barkai et. al, 2002; Tabach et. 

al, 2009; Tabach et al., 2011; Tsamir et. al, 2009). However, evidence indicates that 

teachers tend to be too lenient in their evaluation of the validity of proofs, accepting 

mathematically invalid arguments (Knuth, 2002a; Martin & Harel, 1989). Staples and 

Truxaw (2009) found that although teachers were able to shift in their understanding of 

attributes of justifications, they still struggled to evaluate what makes an argument a 

strong justification. 

Empirical Reasoning and Universality 
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One of the most commonly cited errors in teacher treatment of proofs is their 

acceptance of empirical reasoning arguments in cases for which it is mathematically 

invalid (e.g. Barkai et. al, 2002; Knuth, 2002a&b; Martin & Harel, 1989; Stylianides & 

Stylianides, 2009). Teachers may be aware that empirical examples fall short of fully 

generalized proof, but they may be incapable of constructing a general argument or view 

examples as a convincing form of evidence (Healy & Hoyels, 1998; Stylianides & 

Stylianides, 2009). Teachers also used examples to increase conviction of the validity of 

previously proven statements (Knuth, 2002a; Martin & Harel, 1989). See Chapter 6 of 

this paper for a more complete discussion of teacher conceptions of empirical reasoning. 

Another difficulty teachers have with proof is understanding universality: a valid 

proof is always true. Once a statement has been proven to be true, teachers may still 

believe that counter-examples are possible (Knuth, 2002a). Similarly, teachers struggle 

with the idea that a single counter-example can disprove a universal statement (Barkai et. 

al, 2002; Tirosh and Vinner, 2004).  

Ritualistic Components of Proof 

Evidence also indicates that teachers focus on surface features of proofs, such as 

type of representation or format, rather than the content of the argument (Knuth, 2000a; 

Martin & Harel, 1998; Weiss, Herbst, & Chen, 2008). Similarly, teachers have focused 

on the validity of algebraic operations within an argument, rather than whether the 

conclusions of the argument actually addressed what was to be proven (Tabach et al., 

2011). Other features teachers attended to included use of a familiar mathematical 

technique or argument (Knuth 2002a, Staples and Truxaw, 2009), use of sufficient levels 

of detail (Knuth, 2002a), use of a predictable sequence of steps (Weiss, Herbst & Chen, 
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2008), and use of the teacher’s anticipated form of reasoning (Tsamir et. al, 2009).  

Representations in Proof 

 A number of studies have focused on the types of representations teachers use in 

their arguments or prefer from students. Teachers themselves tend to use algebra when 

producing general arguments, and their algebraic arguments tend to be valid more 

frequently than arguments utilizing other representations (Barkai et. al, 2002; Tabach et. 

al, 2009; Tabach, 2011; Tsamir et. al, 2009). When evaluating student work, Healy and 

Hoyles (1998) found that teachers had strong aptitude in evaluating the validity of 

algebraically presented arguments. These results contrast with the findings of Tabach 

(2011), in which about half of the teachers failed to notice when an algebraic argument 

failed to address the domain that was supposed to be shown. These findings indicate that 

although teachers are skilled at creating and assessing sequential algebraic equations, 

they may struggle to assess the underlying premise of arguments. 

Some evidence indicates that teachers have less appreciation for arguments given 

in verbal or pictorial form (Dreyfus, 1999; Healy & Hoyles, 1998). Teachers struggled 

with evaluating the validity of verbally produced justifications, because they did not 

believe that a verbal argument was able to cover the general case (Tabach, 2011; Tsamir 

et. al, 2009; Barkai et. al,2002). In Dreyfus (1999) some teachers noted that a pictorial 

proof was valid, but would still give that type of argument a low score on a proving task. 

Stylianides, Stylianides, and Philippou (2004) had different findings for the specific case 

of proofs by contrapositive; prospective elementary teachers did significantly better 

evaluating the verbal proofs over symbolically represented ones. In summary, teachers 

generally show a preference for algebraic representations, and may not have strong value 
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for pictorially represented proofs. 

 As a whole, the existing body of literature points to a number of deficits in teacher 

proficiency with justification. Teachers tend to be too lenient in their evaluation of what 

constitutes a valid proof, often times accepting empirical arguments in cases for which 

they are inappropriate. Teachers struggle with the universality of proofs, believing that a 

valid proof may have counter-examples or that a counter-example is insufficient to 

disprove a universal claim. Teachers in these studies demonstrated limited appreciation 

for varied forms of argument representation and limited use of different types of 

representations within their own arguments. Rather than focusing on teacher deficiencies, 

this paper seeks to understand teacher proficiencies with justification. 

Analytic Frameworks 
 This paper describes teacher conceptions of justification. Their conceptions 

include their orientations toward what justification is, their purposes for justification, and 

their proficiencies with justification. Given the lack of consensus within the literature on 

the definitions of proof and justification in particular, start with a definition of 

justification and how that definition is operationalized for the analysis within this paper. 

Operationalization of Justification 

 The definition of justification used for analysis in this paper is based on the 

definition of proof offered by Stylianides (2007) (Table 2). This definition of proof was 

developed specifically to describe proof within school mathematics classrooms. It 

includes three characteristics: accepted statements, modes of argumentation, and modes 

of representation. Accepted statements are the basis upon which a justification is built: 

statements that have been proven or are accepted within the community without further 
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explanation. Forms of reasoning are the type of argumentation employed (see Forms of 

Reasoning, Table 3). Modes of representation include the ways in which an argument is 

presented (e.g. visual diagrams, tables, graphs, verbal, written, numeric, algebraic). 

Table 2: Stylianides' (2007) definition of proof 

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics:  
 
1. It uses statements accepted by the classroom community (set of accepted 
statements) that are true and available without further justification;  
 
2. It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community; and  
 
3. It is communicated with forms of expression (modes of argument representation) 
that are appropriate and known to, or within the conceptual reach of, the classroom 
community. 

This definition accounts for the tension between student thinking and mathematical 

validity commonly present within the mathematics classroom: proofs must be 

mathematically valid (namely, utilize valid statements and modes of argumentation), 

while at the same time be accessible to the classroom community.  

Stylianides’ (2007) definition of justification was an important part of the 

implementation of the JAGUAR project. In the working sessions, the teachers themselves 

developed their own definitions of justification based on discussions and mathematical 

activities. However, as part of the working session activities, teachers were exposed to 

the components of Stylianides’ (2007) definition of justification, and asked to analyze 

and evaluate justifications based on the components of this definition. This definition 

serves as a basis for the analysis of the teacher’s conceptions of justification, particularly 

in terms of teacher proficiency with justification. 
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Forms of Reasoning Framework 

The second component of Styliandies’ (2007) definition, forms of reasoning, 

requires further elaboration. A taxonomy of forms of reasoning was developed by the 

JAGUAR project team, which identified forms of reasoning accessible to the middle 

school community (Larsen & James, in “preparation”) (Table 3). This forms of reasoning 

framework was also used, and refined, within the JAGUAR working sessions for 

evaluating justifications. It served as part of the framework for the analysis of teacher 

conceptions of justification. 

Table 3: Forms of reasoning in middle school classrooms 

Forms of Reasoning 

•  Empirical Reasoning 
o Valid forms of empirical reasoning (counter examples, proofs by 

exhaustion) 
o Naïve empirical reasoning (individual or sets of examples used to 

justify a general case) 
o Generic example-based reasoning (a single example is reasoned 

about in a general way- there is a continuum of sophistication for 
such proofs) 

o Result-pattern reasoning (a pattern is identified. A general rule or 
claim is formed based on a patterned set of examples) (Harel, 2001) 

o Process-pattern reasoning (a pattern is identified and the reason why 
that pattern must hold is described) (Harel, 2001) 

•  Transformational Reasoning (dynamic mental or physical operations are 
used to “run through” or transform the mathematical objects) (Simon, 1996) 

•  Appealing to known information or model-based reasoning (arguments that 
rely on known givens or models; such as a “tree-diagram” for factorization) 

Methods 

The goal of this study is a detailed description and analysis of teacher conceptions 

of justification and their shifts over time. This study is part of the larger JAGUAR project 
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analysis, which examined teacher development in their understanding of justification, the 

transformation of that knowledge into classroom practice, and the subsequent impact on 

student justification activity. The parent project was designed to culminate in accounts of 

practice (Simon & Tzur, 1999), specialized case studies that “portray the complex 

interrelationships among different aspects of teachers' knowledge and their relationships 

to teaching” (p. 163). As a piece of the larger whole, this study also utilizes a case-study 

methodology. Each teacher served as a case, and four cases were selected as “replications 

of each other, contrasting comparisons, or as hypothesized variations” (Yin, 2009, p. 

112).  

Participants 

All twelve JAGUAR teacher participants were included in the initial analysis. 

From those twelve, four cases were selected to best represent a wide range of conceptions 

present from the original group. The themes that emerged from the larger group are 

represented by those found in these 4 cases. The cases also serve as contrasting cases: 

they were selected to provide the most diversity in different types of conceptions, all of 

which remain within the themes of the larger group. 

The four case teachers include Kelly Wade, Cythia Littrel, Irene Primm, and 

Paige Davilla, (all pseudonyms). Ms. Wade taught 8th grade at a small suburban school 

on the east coast. Ms. Wade had been teaching for 29 years before the start of the 

program, 28 of which were at the middle school level. Ms. Littrell and Ms. Primm both 

taught at a 6-8 middle school in a town in the rural west. The student body was primarily 

white and middle class, with less than 10% minority, 20% Free/reduced lunch, and less 

than 5% classified as English Language Learners. Ms. Littrell taught 7th grade, and had 
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14 years of teaching experience, all of which were at the middle school level. Ms. Primm 

taught 8th grade, and had 7 years of teaching experience, 3 of which were at the middle 

school level. Ms. Davilla taught 7th grade at an urban school on the east coast. The 

student body was 70% minority, 30% qualified for free or reduced lunches, and fewer 

than 5% were English Language Learners. Ms. Davilla was relatively new to teaching, 

with only one year of teaching experience prior to the start of the JAGUAR project.  

Data Sources 

 Data was drawn from the JAGUAR project, which included two years of 

collaboration with 12 middle school teachers. Each year consisted of a week long 

summer session, three working sessions in the school year, and four focal lesson 

observations. The summer and working sessions were collaborative investigations into 

the development of the understanding of what justification is and the pedagogical 

practices necessary for supporting it.   

Data for this analysis included teacher interviews, verbal and written 

contributions in working sessions, and two written justification assessments. Interview 

data included transcriptions from five individual 45-90 minute, semi-structured 

interviews over the course of the project. The first interview took place before the first 

meeting, and the last interview took place nearly two years later during the final working 

session. The interviews included questions specifically designed to elicit teacher 

definitions of justification such as “If you were to describe justification to a colleague, 

what would you say.” Some questions asked teachers about the purpose of justification in 

the middle school classroom and in learning math. The interviews also provided 

opportunities for teachers to demonstrate justification and to evaluate hypothetical 
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student justifications. Several interview questions were repeated across each of the 

interviews to help indicate changes in teacher thinking over time. Other questions were 

unique to individual interviews (see Appendix C for sample interview protocols).  

Data also included written work and video tape recordings from the working 

sessions. Teachers completed three written justification assessments: one at the start, one 

in the middle, and one at the end of the project. The justification survey was developed 

by the JAGUAR team, which included some original questions and some questions 

adapted from Healy and Hoyles (2000).  

Data Analysis 

A qualitative analysis of the interview and working session data led to the 

construction of a robust description of teacher conceptions of justification, and how those 

conceptions changed over time. This analysis focused on teacher definition of 

justification, proficiency and the purposes of justification, as well as how those 

understandings shifted over time. 

In the first stage of analysis, the author and a second researcher began by 

independently reviewing interview transcripts and identifying excerpts relating to the 

following questions that align with the paper’s research questions: 

Table 4: Questions guiding transcript analysis of teacher conceptions of justification 

1: What is justification?  
• How does it relate to explanation? How does it relate to generalization? How does 

it relate to proof? 
• How different for middle school vs. for mathematician community? 
• What are attributes of a good justification?  
 

2: What is the role/purpose of justification in the middle school mathematics 
classroom?  

• Why should students do it?  
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• How can it help students learn? (More specifically how can it help students learn 
mathematical concepts?) 

• What can it help students learn?  
• How does it help the teacher?  

3: What are teacher proficiencies with justification?  
• What is needed for a valid justification?  
• What are the different forms of reasoning? 

How proficient is the teacher at constructing or evaluating justifications? 

 
 
 Each researcher identified passages related to these questions and organized the 

teacher responses into themes. We then formed evidence-based conjectures with attention 

to differences between interviews. Next, we compared and revised the conjectures to 

construct a comprehensive set based on evidence from the excerpts. For example, when 

collecting evidence about Ms. Primm’s definition of justification, the first author formed 

the conjecture, “Additional elements of her definition of justification emerged over time. 

In particular, she paid greater weight to the importance of basing the argument on things 

that are already known or accepted by the community.” This conjecture was refined when 

compared with the second researcher’s conjecture, “At the start of the project, Ms. Primm 

believed the validity of the justification depends on what is expected knowledge for the 

student’s grade level. After the first Summer Session, the validity of a justification 

instead depends on taken-as-shared/common/agreed-upon understandings among 

students.” Both researchers observed that Ms. Primm placed increasing importance of the 

role of commonly accepted statements, but when comparing the conjectures a trajectory 

in the development of this conception was more clearly seen. 

Once the set of conjectures was refined, this author revisited the interview data to 

find confirming and disconfirming evidence in the interview data. The conjectures were 
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organized temporally to create a chronicle of teacher conceptions over the course of the 

project. 

In the next stage of analysis, the set of conjectures generated from the interview 

data was further refined based on the data from the working sessions. First, excerpts in 

the working session data were identified that pertained to the questions listed previously 

(see Table 4). Next, the excerpts from the working session data were compared to the 

conjectures formed from the interview data with the objective of further refining the set 

of conjectures. In practice, no conflicting data arose from the working session analysis, 

and the conjecture set was simply refined to include more detail in supporting data. 

To address teacher proficiency with justification, research question 3, an 

additional analysis of the teacher justification surveys and working session work was 

conducted.  The working session data was reviewed to find instances in which the 

teachers engaged in justification activity. Additionally, every response from the 

justification survey was analyzed. The teacher justifications from both the written 

assessments and the working sessions were all analyzed using an analytic framework 

developed from Stylianides’ definition of justification. The justifications were analyzed 

based on the validity of the argument, the mode of argumentation (form of reasoning) and 

the representation (See Table 5). The results of the analysis formed a catalogue of teacher 

responses over the course of the project. 

Table 5: Analytic Framework for Justification Proficiency 

Analytic Framework for Teacher Justification Proficiency: Based on Stylianides’ 
definition of justification (2007) 

Validity: Is the teacher’s justification mathematically valid? (Does it address the proper 
cases? Is it logically sound?) 
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Forms of Reasoning: What form(s) of representation are used? (Naive empirical, 
generic example, process-pattern, result-pattern, model-based, transformational, etc.) 
Modes of Representations: What mode(s) of representation are used? (Pictorial, 
algebraic, verbal, numerical, etc.) 

After each teacher was analyzed individually, a cross-case analysis was conducted 

to identify similarities and differences among the four case teachers. The cross case 

analysis used each teacher’s chronicle as a basis for comparison; unifying themes (and 

variations within those themes) were identified. A final analysis was conducted that 

focused narrowly on each theme, to ensure that the data from the previously constructed 

chronicle was both accurate and comprehensive. For example, for the cross-case theme of 

validity, every transcript was reviewed and every passage that contained the words “true,” 

“truth,” “valid,” or “validity” was reexamined.  

Once a formal draft was complete, I shared the entire draft with the case teachers 

for a member check. Three of the four teachers responded, each with positive, though 

limited, feedback. In particular, Ms. Davilla commented that she was impressed by the 

amount she changed over the two-year project. This member check provided backing of 

the validity of interpretation as well as the opportunity for teacher reflection. 

In summary, the individual cases provide a detailed description of individual 

conceptions, how those conceptions coexist and evolve, while the cross-case comparison 

looks across the cases to identify commonalities and differences among this group of 

JAGUAR teachers. 

Results 

 The goal of this study is to describe middle school teacher conceptions of 

justification and the changes in those conceptions over time. I begin with a brief 
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description of each teacher’s conceptions, including their definition, purposes, and 

proficiencies, and their development over the project. I conclude the results with a 

summary of the cross-case analysis that includes a description of themes across the cases.  

Case 1: Kelly Wade 

Ms. Wade’s definition of justification centered on a student’s explanation of his 

or her thinking or process. At the start of the project, Ms. Wade’s definition included a 

description of what the student did, but over the course of the project her definition grew 

to include the importance of explaining why a student did what he or she did.  Toward the 

end of the project she explained: 

“Justification, to me, would be explaining your reasoning… The 
step-by-step process might be part of that reasoning, but it's my 
reasoning more than anything else. Or why I did what I did, and 
why I got what I got.” 

Notably absent from Ms. Wade’s definition of justification was mathematical validity, 

although she did include some mathematical reasoning (“how it works”) within the final 

interview. For Ms. Wade, a good justification should demonstrate a student’s 

understanding and include illustrative examples. 

According to Ms. Wade, the primary roles of justification were not specifically 

mathematical; purposes included the development of life and communication skills, such 

as working well with others and improving thinking or problem solving skills. This 

aligned well with her definition of justification, which focused on student thinking rather 

than explicating mathematics. Ms. Wade also maintained justification could be used as an 

evaluation tool because it helped to demonstrate student understanding. This, too, aligned 
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well with her definition of justification, which is an explication of a student’s 

understanding. 

The most notable component of Ms. Wade’s justification proficiency was her 

early reliance on naïve empirical reasoning. Over the course of the project empirical 

reasoning was replaced by more general written arguments; however she continued to 

value the inclusion of examples to aid clarity in explanation. Again, this aligned with her 

belief that justification should be an explication of student thinking: even when she 

recognized that naïve empirical reasoning was invalid, she continued to value examples 

based on their explanatory power. At the start of the project, Ms. Wade produced and 

valued verbal arguments most highly, especially those accompanied by examples. As the 

project continued, Ms. Wade included more varied types of representations within her 

description of good justifications, including verbal, written, diagrams, computations and 

algebraic representations. 

Case 2: Cynthia Littrel 

 Ms. Littrel’s definition of justification consistently focused on the communication 

of a student’s thinking. She valued use of multiple representations as a means for 

communication, particularly early in the project. At the start of the project she stated, 

“Justification is my view, … I can verbalize it, I can think it, I can talk it, I can share it.” 

Her explicit definition focused on communication, and based on her reaction to student 

work Cynthia also implied that students must also have an understanding of the 

mathematical meaning behind their steps to count as a justification. Over the course of 

the project her definition expanded to include specific reference to mathematical 

reasoning and sense-making. She explained, “And so now everything is, ‘Does your 
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thinking make math sense? Can you justify that thinking? Is there math sense in your 

justification, not just an explanation?’” Her definition expanded to include an explanation 

of the “math sense” of one’s thinking, which we interpret to mean an explanation of why 

one’s thinking makes sense, mathematically. 

Ms. Littrel wrestled with, and never fully resolved, the relationship between 

generalization and justification: at times, she seemed to think of the terms as nearly 

synonymous, while at other times, they were related yet clearly distinct. She also wrestled 

with the validity of justifications that were not grounded in statements that the class 

understood and agreed on. For example, she believed a student’s argument was 

mathematically correct, but did not categorize it as a justification because the other 

students would not understand it, stating: “I’m thinking that her justification is not valid 

because the other kids aren't there.”  

Consistent with her definition of justification, Ms. Littrel viewed the primary 

purposes of justification as aiding communication and the development of students as 

mathematical thinkers. At the very beginning of the project, Ms. Littrel focused on how 

justification allowed her to evaluate students’ thinking. However, as the project 

continued her focus shifted to how justification helps students evaluate their own and 

each other’s thinking. 

Ms. Littrel consistently made strong use of diagrams and exhibited increasing 

generality in their usage over the course of the project. She consistently maintained that 

specific examples alone could not justify a general result, because examples alone do not 

explain why something works. One notable exception was example-based arguments 

presented in picture form. At the start of the project, she maintained that Fiona’s pictorial 
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argument showed that the sum of two even numbers was always even, and that it also 

explained why that sum was even (see Error! Reference source not found.). She stated, 

In Fiona's I love the representation in which she justifies and generalizes." However, by 

the end of the project she reversed her position: she decided that Fiona’s argument neither 

showed that the result was always true nor did it explain why, stating that Fiona’s picture 

was not general. 

 

Figure 6: Fiona's pictorial argument that the sum of two even numbers is even 

 Ms. Littrel struggled with the validity of generic-example based arguments. Early 

on, she was conflicted about Sarah’s generic example based argument (see Error! 

Reference source not found.). Sarah’s response displayed an understanding of the 

mathematics, but Ms. Littrel concluded that her argument was not general, and thus not a 

valid justification: “I would say that Sarah’s is not valid … [Sarah’s work] does not push 

it to, "Oh, this works for every number.” By the second year she decided that Sarah’s 

work did address the general case, and was therefore a valid justification. She stated, “I 

love what Sarah did….I think she generalizes…I would have loved to have seen her say 

something like 'Well, what if you take 2x + 1.'” Her difficulty analyzing generic example 

arguments was related to her belief that justifications should demonstrate a general result.  

Some students were asked to determine whether or not the statement “When you add any 
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Figure	7:	Sarah's	generic	example	argument	that	the	sum	of	two	consecutive	
numbers	is	always	odd 

Ms. Littler’s commitment to communication, multiple representations, and 

generalization were important elements of her definition of justification, purposes for 

justification, and proficiency with justification. Her conception of justification underwent 

a number of transitions over the project: in particular her definition shifted from 

communication of a person’s view to one of mathematical reasoning and sense-making. 

Case 3: Irene Primm 

Ms. Primm’s definition of justification was stable and clearly stated: she 

described justification as a student’s mathematical reasoning about why something 

worked or is true. She stated, “So justification would be knowing why something is true 

mathematically… Justification is using math content to, to prove why something is, 

mathematically” [emphasis added]. She believed representations were vital for 

justifications; they served as the vehicle through which students could explain their 

mathematical reasoning. For Ms. Primm it was also important that justifications be based 

on valid statements accepted by the classroom community. 

According to Ms. Primm the primary purpose of justification was for students to 

gain a deeper understanding of the mathematics, which included retention and transfer of 

Some students were asked to determine whether or not the statement “When you add 
any two consecutive numbers the sum is always odd” is true.  

Sarah’s response: 
10 and 11 are consecutive numbers so adding them together is like doing 10 plus 10 
plus 1.  
You really double and add 1. 
 
Since doubles are even, doubles plus one are odd. So the sum of two consecutive 
numbers is an odd number.  



	 72	

understanding between domains. A secondary role of justification was for students to 

form connections between representations and to develop student ability to represent 

thinking with multiple representations. 

She was strict in her evaluations of justifications, both in terms of the 

mathematical validity of the argument and the argument’s ability to fully convey why 

something worked. For example, Ms. Primm maintained that generating a rule from a 

table was not a valid form of reasoning, because it did not establish why a result was true 

or why it would work every time. She was a strong justifier herself, making use of 

multiple representations within her arguments. She was the only teacher in the project to 

consistently and correctly use fully generalized diagrams within her arguments (see 

Figure 8).  

 

Figure 8: Ms. Primm's generalized pictorial diagram representing that the sum of 

three odd numbers is odd 
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Case 4: Paige Davilla 

Ms. Davilla’s conception of justification was detailed, nuanced, and relatively 

stable over time. According to Ms. Davilla, justifications should contain evidence, 

reasoning or proof for why an argument works or is true. In order for Ms. Davilla to 

consider a statement a strong justification, a student must demonstrate his or her 

conceptual understanding of the mathematics. She admitted that it was easy to conflate a 

statement of understanding with justification, but a justification should go beyond student 

understanding and really describe why something works. 

Ms. Davilla struggled with her commitment to honoring individual student 

thinking while simultaneously considering the needs for mathematical validity and 

community acceptance. She struggled with how to classify incorrect arguments or 

arguments not accessible to the classroom community. She eventually resolved this 

tension by positioning such arguments as incomplete justifications, and viewed her role 

as the teacher to help develop a student’s argument so that it was accessible to the class 

and mathematically valid. 

For Ms. Davilla, the primary purpose of justification include shifting the 

mathematical authority in the classroom from the teacher to the students and deepening 

students’ mathematical understanding. These goals align with her orientation toward 

justification: a justification should demonstrate a student’s understanding, thus the 

development of a justification would aid in the development of understanding. Similarly, 

Ms. Davilla’s value for student thinking is reflected in her goal of transferring 

mathematical authority to her students. 



	 74	

Ms. Davilla herself was highly proficient with justification: apart from minor 

algebra errors early in the project, she demonstrated the ability to form strong algebraic 

and verbal arguments. She maintained that generic-example based and pattern-based 

forms of reasoning were only valid to the degree that they demonstrate why the 

mathematics works or is true. Of note was her complex (and contradictory) understanding 

of the relationship between pictorially represented arguments and empirical reasoning. 

Before the project, Ms. Davilla stated that Fiona’s pictorial argument (shown in Figure 9) 

did not justify the general case, nor did it explain why. In the middle of the project, she 

still maintained that Fiona’s argument did not justify the general case, but that it did 

explain why the claim is true. However, by the end of the project she ranked Fiona’s 

argument as both verifying the general case and showing why the claim is true. It appears 

that, at least in this case, Ms. Davilla’s appreciation of picture-based representations 

increased over the course of the project, indicating that pictorial argument of a single 

example could show that a result was always true. 

 

Figure 9: Fiona's pictorial justification that the sum of two even numbers is even 

The following table summarizes the important elements of each teacher’s 

conceptions of justification. 
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Table 6: Summary of Case Study Teacher Conceptions of Justification 

 Orientation to 
Justification 

Goals of Justification Justification 
Proficiency 

Ms. 
Wade 

• Start: “What a student 
did” 

• Middle: “What a 
student did” and “Why 
they did what they 
did” 

• End (briefly): “Why it 
works” 

• Justifications should 
demonstrate a student 
understands 

• Development of 
interpersonal and 
communication skills 

• Developing of 
problem-solving and 
thinking skills 

• Early reliance on naïve 
empirical reasoning 

• Rejected naïve 
empirical reasoning as 
invalid mid-project, 
but still valued the 
explanatory 
component of 
examples 

• Verbal descriptions 
with increasing use of 
algebra, limited visual 
representations 

Ms. 
Littrel 

• Start: Communicating 
one’s thinking via 
representations 

• End: Inclusion of 
mathematical sense-
making 

• Conflation of 
justification and 
generalization 

• Focus on community 
acceptance 

• Communicate thinking 
• Allow teacher, 

themselves, and others 
to evaluate thinking 

• Improved thinking, 
understanding, 
disposition as 
mathematician 

• Improved teaching 

• Naïve empiricism not 
valid and does not 
explain why 

• Tension regarding 
generic examples 

• Strong use of visual 
representations 

Ms. 
Primm 

• Mathematical 
reasoning that explains 
why something works 
or is true 

• Importance of 
representation and 
community acceptance 

• Deeper understanding 
of mathematics, 
particularly connecting 
ideas 

• Connecting 
representations 

• Empirical reasoning 
was not valid and did 
not explain why 

• Strong use of algebra 
and diagrams, 
including fully 
generalized diagrams 

Ms. 
Davilla 

• Evidence for why an 
argument works or is 
true, increasing focus 
on student reasoning 

• Includes 
demonstration of 
student understanding 

• Balances mathematical 

• Shifting mathematical 
authority 

• Deepening 
understanding 

• Social learning 
• Life skills 

• Empirical reasoning 
was not valid. 

• Generic examples and 
process pattern 
reasoning was valid so 
long as it explained 
why 

• Preference for algebra, 
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validity with student 
thinking 

growing appreciation 
of pictorial 
representations 

 

Cross Case Analysis 

In the section that follows, I will report on the results of the cross-case analysis. 

As brokers between the mathematical community and the classroom community, teachers 

must balance the principles of the mathematical community with the demands of the 

classroom. Based on the thematic analysis of the individual case studies, three important 

themes emerged across the group of cases: validity, explaining why, and attending to 

student thinking. All of these teachers viewed justification as an important practice, with 

purposes that ranged from deepening understanding to shifting mathematical authority. 

They demonstrated a range of proficiencies when justifying, with common use of 

multiple forms of reasoning and representations.  

Question 1: What do JAGUAR teachers think justification is?  

Validity 

 In mathematics, a proof demonstrates the validity of a statement. These teachers’ 

primary view of justification was not an argument that established truth, although validity 

did play a role to a certain extent for all of the teachers. Rather than focusing on 

establishing mathematical certainty (or existential truth), teachers fell along spectrum of 

how much they valued validity in terms of mathematical truth versus validity for their 

community, the middle school classroom. 

Ms. Wade was concerned with the truth for an individual student, rather than the 
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establishment of ontological truth. For example, she stated, “And so they’re more or less 

testing what they believe to be true.” For her, justification demonstrated what the student 

believed to be true, and did not relate justification to the establishment of mathematical 

truth.  

Ms. Davilla, Ms. Littrel and Ms. Primm were all concerned about what was valid 

to the classroom community. They all shared similar hesitance in accepting a 

mathematically valid argument if that argument was not within the conceptual range of 

the class. Ms. Littrel stated, “If that statement is not valid for the kids it cannot work in 

that justification … even though it’s a valid wonderful proof or justification statement it’s 

not where the kids are right at that point.” Similarly, Ms. Davilla explained, “In the 

context of the classroom that audience really is important… all the students should be 

able to at least make sense of the pieces, because we said it should be based on ideas that 

all had access to…It was important that an argument be accessible to fellow students for 

it to be valid for the classroom community.”  

For each of the teachers in this study, truth was dependent on the audience. Ms. 

Wade viewed each student as an autonomous representative of their own truth, and 

justification was a means by which students could communicate that truth. The other 

teachers discussed truth as context or community dependent: while a justification might 

be true for the mathematical community, it may not be true for the middle school 

classroom community in which it is presented. This is reflected in Stylianides’ definition 

of proof, in which statements must be “accepted” by the classroom community, and both 

forms of reasoning and representations must be “known to or within the conceptual reach 

of the classroom community” (p. 291, 2007).  
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Student Thinking 

 Within the classroom teachers are challenged to utilize student thinking to build 

toward understandings consistent with the mathematical community (i.e. Ball, 1993). 

Both Ms. Wade and Ms. Littrel began the project with a definition of justification that 

focused heavily on the explication of student thinking. Ms. Wade maintained that a 

justification was how a student solved a problem, or how they were thinking. By the 

middle of the project that grew to include why they solved it the way they did. Ms. Littrel 

also focused on student thinking, but justification was the communication of a student’s 

thinking via multiple representations. Although both teachers’ definitions grew to 

encompass more mathematical aspects of justification, their core definitions focused on a 

communication of student thinking. 

 Ms. Davilla struggled to manage the tension between student thinking and the 

demands of mathematical validity. Although this tension was present for others as well, 

Ms. Davilla in particular had a clear view of mathematical proof as the establishment of 

validity, but recognized that incomplete student arguments also had value. She was 

hesitant to characterize mathematically invalid arguments as invalid justifications 

because of the pedagogical value in exploring incorrect arguments. She stated, “Well, it's 

not invalid. It's just not right yet, you know?” She maintained that incomplete or invalid 

student arguments should be taken up as a whole class.  By analyzing and improving 

them, the incomplete argument could lead to deeper understanding for the whole class.  

 All the teachers maintained that a justification should demonstrate student 

understanding. An argument that established the validity of a claim or how something 

works was frequently not sufficient to suffice as a mathematical justification: students 
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had to also demonstrate that they, themselves understand the mathematics behind why the 

argument works. Ms. Primm explained why simply proving that something works is not 

sufficient for her: “I don’t know if he understands the big idea of fractions or if he is just 

doing something procedurally. I would press and make sure he understands.” This relates 

directly to the fact that one of the primary purposes of the classroom community is to 

foster growth of understanding: justifications are one method by which a student can 

demonstrate that understanding. 

Answering “ Why?” 

 All four teachers focused on the importance of “why” within their definition of 

justification, but what they meant by “why” differed among the teachers. The differences 

in what the “why” question focused on illustrates the tension between mathematics and 

student thinking present within the teachers’ conceptions of justification. Ms. Wade’s 

“why” for much of the project was “why a student did what he or she did.” She 

explained, “Justification, to me, would be explaining your reasoning… The step-by-step 

process might be part of that reasoning, but it's my reasoning more than anything else. Or 

why I did what I did, and why I got what I got.” Ms. Wade’s description of explaining 

why a student did what he or she did is very close to her original conception of 

justification: explaining what a student did. By the very end of the project Ms. Wade also 

mentioned of “why it works.” This shift is significant: “why it works” targets the 

mathematical meaning of a statement. Previously, her focus had been on what the student 

was thinking or does, while at the end of the project she provided some evidence that a 

justification should provide a mathematical meaning of a statement. 

Ms. Davilla and Ms. Primm, and by the middle of the project Ms. Littrel, all focus 
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on “why it works” or “why it is true” as important questions that a justification should 

answer. “Why it is true” was a less important conception for these teachers; establishing 

truth was valued but not as important as an explication of a mathematical relationship or 

process. Ms. Davilla explains that students should “talk about how they knew it was 

true… what was the thinking that got them there or like, why did they do something? 

Why does it work?” They valued mathematically correct arguments, but noted that just 

establishing validity was not enough: a student must include an explanation of why it 

works to count as a justification. 

Both Ms. Davilla and Ms. Littrel shifted from focusing on “why it works” to 

include “why it makes (math) sense.” This shift is significant, because it included 

attention to student thinking as part of the “why.” Rather than just explicating what was 

happening mathematically, these teachers were attuned to how a justification was part of 

an individual student’s thinking and sense-making process. Ms. Primm was consistent 

over the course of the project that a justification should demonstrate a student’s 

mathematical reasoning for why something works. 

These questions of “why” could be placed along a continuum: “why a student did 

what he or she did” focuses primarily on the student; “why it works” focuses on the 

mathematics, and “why it makes (math) sense” combines both student thinking with 

mathematical reasoning. The relationship between student thinking and mathematical 

validity within these teachers’ conceptions of justification represents one example of a 

larger teaching practice: classroom mathematics should be grounded in student thinking, 

but build toward conventional mathematical truths (Ball, 1993).   
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Question 2: What do they see as its purpose in their classroom?  

 The purposes of justification identified by this set of case study teachers align 

with the purposes identified by Staples, Bartlo, and Thanheiser (2012). Their analysis 

was based on the same group of teachers after one year of the project, and the purposes 

they found included fostering valued math skills and dispositions, fostering valued life-

skills and dispositions, assessment, managing diversity, and influencing social 

relationships. This analysis included data from both years of the project 

Deepening understanding 

 One of the purposes of justification that was consistent among the teachers was 

how justification deepened student understanding. This purpose was primary for Ms. 

Primm, and important for Ms. Littrel and Ms. Davilla as well. For these teachers, the 

definition of justification included an explication of why something works or makes 

sense mathematically, thus it seems reasonable that through justification students gain an 

understanding of why. Ms. Davilla made this connection clear, “It makes it a stronger 

understanding for you if you have to think about why it is true and why it works.” For 

Ms. Davilla, a justification is an argument that explains why something works or is true; 

thus a student must understand why something is true to be able to explain why it is true. 

Included within a deepened understanding were the related ideas of retention and 

transfer.  

According to these teachers, justification could also help students form 

connections between other mathematical ideas, retain knowledge, and apply that 

understanding in new situations.  For example, Ms. Littrel stated that justification “uses 

their [students’] past learning and understands to make new understandings.” Similarly, 
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Ms. Davilla stated, “I think that when they make those connections, it just reinforces all 

of their understandings.” For these teachers, a deep understanding is associated with the 

ability to extend previous knowledge into new contexts and to provide a solid base for 

future learning. 

The exception was Ms. Wade, who did not see deepening understand as a primary 

purpose of justification. This could be explained by her view of the definition of 

justification; she viewed justification as an explanation of why a student did what he or 

she did rather than as an explanation of why something worked. With the relative absence 

of emphasis on the mathematics within her definition of justification, it is not surprising 

that deepening understanding of mathematics was equally limited within her perception 

of the roles of justification. 

Developing Mathematical Practices 

Teachers maintained that justification helped to improve math skills such as 

problem solving and higher-level thinking. Ms. Wade. Ms. Davilla and Ms. Littrel all 

discussed how justification could help students to become better thinkers. Ms. Wade 

stated, “Because if you've got the process [of justification], you really become a problem 

solver.” Notice how this role differs slightly from that of deepening understanding of 

mathematics, which focused on the development of knowledge. In this theme the focus 

was on the development of a student’s mathematical thinking skills independent from 

mathematical content. 

An associated role was the improvement of a student’s mathematical disposition; 

through justification students began to view themselves as effective mathematicians. Ms. 

Littrel stated, “I can help the kids feel a comfort to think like mathematicians who justify. 
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To use math that fits. To talk about conjectures; make conjectures and generalizations. … 

to think as mathematicians.” Other positive dispositional shifts included a feeling of 

ownership of the mathematics and enjoyment of mathematics. For these teachers, 

justification not only changed their content knowledge about mathematics (the 

“deepening mathematics” role described previously), it also helped students feel more 

confident or proficient with math. These findings align with those found by Bartlo, and 

Thanheiser (2012) when examining this teacher group after the first years’ data 

collection. 

Assessment 

Early in the project, several of the teachers focused on the importance of 

justification for assessment purposes: either because justification practices were 

important for state tests (Ms. Wade and Ms. Davilla), or because justification helped 

teachers with formative assessment (Ms. Primm, Ms. Littrel, and Ms. Davilla). However, 

as the project progressed, the focus on teacher and state assessment was no longer 

emphasized. Instead, teachers focused on how justification could help students assess one 

another or themselves. Ms. Littrel stated, “One, is that they can kind of hear their 

thinking, and so they can understand if it is true or not. And the other thing is, is it helps 

others.  And then people can, if there is a misunderstanding or a misconception, 

sometimes students will catch that.” Thus justification could help teachers evaluate their 

students, and also help students evaluate their own thinking and the thinking of others.  

In this study, teachers did not rely on justification to establish the truth of a 

mathematical statement; instead justification demonstrated to the teacher (or other 

classmates) that the student’s reasoning was valid. This distinction between the validity 
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of a claim and the validity of a student’s argument lies in the distinction between the 

middle school classroom and the disciple of mathematics. In a middle school classroom, 

developing and demonstrating understanding is frequently more important than 

establishing a result as valid: in part because unlike in the math community the results 

established in the middle school classroom will not typically be used to solve other 

problems. The teachers’ purpose of justification as a means for demonstrating student 

understanding more than establishing the validity of a result mirrors the teachers’ 

conception of justification. As discussed previously, these teachers defined justification 

as statements that explain why with a focus on student understanding, rather than 

statements that establish truth.   

Social Learning 

 According to these teachers, justification can also help students learn from one 

another. Justification activity provided opportunities for students to learn from one 

another by exposing them to each other’s ideas. As explained previously, it could also 

help students learn to evaluate each other’s ideas and to gain exposure to different 

viewpoints. Ms. Wade explained, “I think this, the idea of providing justification, maybe 

helps to open them up to other ways to do things, other ways to think about things.” 

 Justification can also help students improve their ability to learn from one another 

by improving their communication skills and representational skills. Three of the teachers 

discuss explicitly how justification can improve communication skills. Ms. Primm and 

Ms. Littrel also mention how justification can help students use and understand different 

forms of representations within their justifications.   
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Shifting Mathematical Authority 

 Some of the purposes of justification identified by these teachers were specific to 

the classroom. In particular, the idea of shifting the mathematical authority in the 

classroom was prominent for Ms. Wade, Ms. Davilla, and Ms. Littrel. These teachers 

noted that justification helped students to evaluate their own thinking rather than relying 

on the teacher. Ms. Davilla explained, “Now, I'm relying on math to be the decision 

maker… So we're not saying, whether I say it's right or I say it's wrong, we'll let math 

decide, you know?” Justification could also help shift the mathematical authority among 

students, as ideas were evaluated based on mathematical criteria rather than social status, 

and quieter students were given more opportunities to participate.  

Discussion of the purposes of justification 

 One trend found among the teachers was a general increase in the number of 

purposes of justification identified over the course of the project. These teachers 

identified only a few purposes of justification in their initial interview before the start of 

the project, but after the first summer institute the teachers identified many more. It is 

likely that this increase is due to the summer session, which included a discussion about 

the possible roles of justification in the classroom. However, new purposes emerged over 

the entire course of the project: as teachers began incorporating more justification activity 

in their classes, they may have seen an emergence of new purposes as well.  

 Another important theme is the connection between a teacher’s conception of 

justification and their purposes for justification. For example, we see that Ms. Primm, 

Ms. Davilla and Ms. Littrel all viewed justification as an explanation of why something 

works or makes sense mathematically, and they also found deepening understanding to 
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be an important purpose of justification. On the other hand, Ms. Wade focused on 

justification as an explanation of student thinking, thus her purposes were primarily non-

mathematical. Evidence for the connection between the definition and this purpose is 

particularly strong based on Ms. Wade’s final interview. In that interview, she included 

“Explains why something works” as part of her definition of justification, and 

correspondingly, that was the first time that she saw deepening understanding as one of 

the purposes. 

 However, a teacher’s definition of justification was not the sole predictor of a 

teacher’s purposes of justification. For example, Ms. Primm and Ms. Davilla both 

maintained similar definitions of justification over the course of the project: both teachers 

focused on explaining why something works or is true mathematically, and both teachers 

saw deepening understanding (including transfer and building over time) as important 

purposes of justification. However, for Ms. Primm deepening understanding was almost 

the exclusive function of justification, while Ms. Davilla was attuned to many more 

purposes, such as social learning and shifts in mathematical authority.  

Question 3: What are teacher proficiencies with justification? 

The teachers in this case study demonstrated a number of proficiencies with 

justification. The justifications they produced were generally mathematically valid, with a 

couple of notable exceptions: some justifications did not fully explain the rationale for 

every result and one of the teachers in particular relied on naïve empirical reasoning to 

justify the general case.  
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Validity 

The justifications produced by the teachers in this project were generally 

mathematically valid; however, they were not always well explained. Some of the 

accepted statements used to frame the arguments were not proven, which at times seemed 

inappropriate given the justification task. Similarly, connections between diagrams and 

verbal or algebraic explanations were not always clear or present.  

A second issue with validity in the teacher’s justification was inappropriate use of 

empirical reasoning. Most of the teachers used examples for illustrative purposes: a 

general argument was followed by a specific example to clarify the explanation. However 

all four teachers used single example justifications presented in pictorial form at some 

point. An exception was Ms. Wade, who used individual examples as her primary 

argument throughout the project, although with diminishing frequency. This result aligns 

with previous literature, in which teachers were typically able to produce mathematically 

valid proofs (e.g. Barkai et. al, 2002; Tabach, 2011; Tsamir et. al, 2009), with the 

common exception of inappropriate use of example-based reasoning (e.g. Barkai et. al, 

2002; Knuth, 2002a&b; Martin & Harel, 1989; Stylianides & Stylianides, 2009).  

The literature indicates that teachers tended to be too lenient in their acceptance of 

proofs, frequently believing that non-proofs were valid in cases they are not (e.g. Knuth, 

2002a; Martin & Harel, 1989). Our teachers stand in contrast with this result: this group 

of teachers tended to reject mathematically valid arguments because the argument did not 

sufficiently explain why a result worked or it did not demonstrate sufficient student 

understanding. For example, three times over the course of the project, the teachers were 

asked whether Ahmed’s argument was a justification (see Table 7). Notice that this 
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argument is mathematically valid in the sense that it uses valid claims to deductively 

arrive at the correct result. However, the argument is missing warrants, statement which 

justify the connection between data and conclusion, and backing which provides further 

evidence for the warrant (Toulmin 1969 as cited in Inglis, Mejia-Ramos, & Simpson, 

2007). 

Even though this argument uses mathematically valid operations, Ms. Primm, Ms. 

Littrel and Ms. Davilla all did not see this argument as a valid justification because it did 

not fully explain why the result held, nor did it sufficiently demonstrate the student’s 

understanding of fractional addition. Ms. Davilla explained, “I don't know that he's 

necessarily thinking about why it's true… I mean he explained what he did, but not 

necessarily why.” Similarly, Ms. Primm reflected, “It is hard to just look at that and know 

do they really understand? How much do they really understand?” 

This relates to the complicated relationship between validating truth and 

validating reasoning. Warrants and sufficient backing are necessary for a complete 

justification. They serve to both establish the validity of a claim, and in doing so they can 

demonstrate the understanding of the person who constructed the justification. The 

importance of explaining why and demonstrating understanding both informed these 

teachers’ treatment of validity of the justification. These results are similar to those of 

Tsamir et. al (2009), who found teachers would reject mathematically valid arguments if 

they felt the student did not demonstrate sufficient understanding.  
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Table 7: Ahmed's response for the sum of 1/2 and 1/4 

Some students were asked to explain how they solved ½ + ¼.   

Ahmed’s Response 

I found a common denominator, which was 4, and then I added and  to get   

 

 

Example-Based Reasoning 

By the end of the project, all of the teachers recognized that naïve empirical 

reasoning was not a valid form of justification, but teachers offered different perspectives 

on why it was not a valid form of reasoning. One reason was that naïve empirical 

reasoning was not mathematically valid: single sets of examples can never justify the 

general case1. At some point in the project, all teachers offered this explanation: Ms. 

Primm and Ms. Littrel at the start, and Ms. Davilla and Ms. Wade by the end. However, 

Ms. Primm and Ms. Littrel offered a secondary explanation that emerged at the end of the 

project: naïve empirical reasoning was not a valid justification because it lacked 
																																																								
1 Unless, of course, the general case consists of a finite number of cases 
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explanatory power. This perspective is fundamental to their conception of justification 

and its distinction from mathematical proof. For them, a justification must be an 

argument that explains why something works or is true, what Hanna (1990) refers to as 

proofs that explain. In contrast, a proof that proves (Hanna, 1990) may logically establish 

mathematical validity but fail to explain why the result holds. For the teachers in this 

study, the purpose of justification is primarily pedagogical; they want students to deepen 

understanding of mathematical ideas. Thus an argument that is not able to explain why 

cannot be considered a valid justification for these teachers.    

 A notable exception to the teacher’s agreement on empirical reasoning was their 

evaluation of Fiona’s picture-based empirical example (see Figure 9 discussed 

previously). Notice that Fiona’s picture is specific in the sense that it only illustrated the 

addition of two particular even numbers: 10 + 8 = 18. However, by representing each of 

the numbers as sets of pairs, it offers insight into why the claim would hold for any two 

even numbers in a way that numerals do not. This picture could be considered a very 

weak generic example: although the example is only presented for a single case, the 

representation as sets of pairs offers some evidence for why the claim would hold in 

general. 

Fiona’s picture-based example had the most disagreement among the teachers. 

Ms. Primm consistently maintained that Fiona’s argument was a single example, and thus 

not a valid justification nor an argument that explained why. However, the three other 

teachers shifted positions over the course of the project: Ms. Wade and Ms. Davilla 

initially maintained that Fiona’s argument was not a justification, but changed their mind 

by the end. Their stance may indicate an increased appreciation for generic-example type 
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arguments as well as for the explanatory power of pictures. Ms. Littrel had the exact 

opposite switch: she began believing it was a justification but later decided the single 

example was not enough.  

Representation 

 The teachers utilized a wide range of different representations to communicate 

their justifications, and every teacher used at least two different representations in their 

constructed justifications. Ms. Primm and Ms. Littrel, in particular, made strong use of 

visual representations, with the inclusion of increasingly general diagrams. Ms. Davilla 

and Ms. Primm both valued symbolic arguments using variables as a more sophisticated 

representation because of its power to describe the general case. 

Middle school students are at a stage of mathematical development in which 

algebra may be beyond their current capabilities, thus it is particularly important for 

middle school teachers to encourage modes of representation other than symbolic, such 

as diagrams and verbal arguments. One of the roles of middle school is to help promote 

algebraic reasoning and understanding which is a difficult challenge (i.e. Nathan & 

Koedinger, 2000). Utilizing non-algebraic representations for mathematical 

argumentation is one way for students to gain access to mathematical ideas and transition 

to increasingly general representation afforded by algebra.  

Conclusions and Further Directions 

Using Schoenfeld’s framework of Orientations, Goals and Resources (2011), this 

study described four different models for middle school teachers’ understanding of what 

justification is, its purposes, and the teachers’ proficiency with justifying. Although the 
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teacher conceptions were individually unique, several common themes emerged across 

their orientations, goals, and proficiencies.  

One theme was the value of student thinking and understanding. In their 

definitions of justification the teachers placed increasing value on justification as an 

explanation of a student’s (mathematical) thinking. Similarly, teachers consistently 

valued the deepening of student understanding and student learning as important 

purposes for justification. They focused on the importance of student understanding when 

assessing the validity of justification arguments.  

Attention to ways of thinking students is a critical part of effective teaching (e.g. 

Carpenter, 2004). However, part of a teacher’s role is to guide students toward 

increasingly valid mathematical ways of knowing. Ball has described this dilemma as 

respecting children as mathematical thinkers: 

How do I create experiences for my students that connect with what they 
know and care about but also transcend the present? How do I value their 
interests and also connect them to ideas and traditions growing out of 
centuries of mathematical exploration and invention? (Ball, 1993, p. 375) 

 

This case study in conceptions of justification highlights this tension of respecting 

children’s ways of knowing while valuing mathematical validity. The teachers in this 

study clearly valued mathematical understanding as part of justification rather than 

mathematical validity. The validity of a justification was dependent upon many factors 

beyond the mathematics, such as the context within classroom community, the degree of 

explication why, and the degree to which a student demonstrated understanding.  

A related theme is the importance of justification in establishing why something 

works or is true. Again, this aligns with the pedagogical role that justification plays 
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within the middle school math classroom. These results are not surprising: the primary 

purpose of a middle school math community is for students to deepen understanding 

rather than establish mathematical results, thus understanding why and prioritizing 

student understanding were present as defining characteristics in middle school teachers’ 

conceptions of justification. 

This work also identified multiple trajectories in the development of teacher 

understandings of justification over time. Many of the teachers described more roles for 

justification over the course of the project and refined their proficiencies including 

increasing use of representation and attention to generality. Several teachers also 

underwent a series of transformations in their conception of justification; transitioning 

from a student-centered definition, to mathematically centered definition, to one that 

combined both student thinking and mathematics. 

Next steps based on this work include further analysis that connects teacher 

conceptions of justification with teacher practice. This analysis is based on what teachers 

say about justification outside of teaching settings. More work is needed to connect 

teacher’s conceptions of justification with their justification practices within the 

classroom. Additionally, this work can help inform the development of a learning 

trajectory for teachers; now that productive conceptions of justification have been 

identified they can be leveraged to train others in this ambitious practice. 
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Chapter 6: Middle School Teacher Treatment of Examples in the Context of 

Justification Activity 

Abstract 

Although examples alone are not sufficient to prove a general case, specific examples can 

be useful when engaging in proof-related activity. Examples can be used to develop 

insight, check conjectures, and leveraged toward more generalized reasoning (e.g. 

Lockwood, et. al, 2012). This study is based on data from twelve middle school math 

teacher participants in the JAGUAR project. The analysis focuses on the teachers’ 

conceptions of example-based reasoning, the development of that reasoning, and their 

treatment of examples within the classroom. Contributions include a framework of 

middle school teacher treatment of examples within the classroom, as well as three case 

studies that link teacher conceptions of example-based reasoning with their classroom 

practice.  

Introduction 

 There is little doubt that proof and justification are fundamental to the discipline 

of mathematics and have become of increasing interest in school mathematics education 

as well (Ball et al., 2003; Yackel, 2001; NCTM, 2000; CCSSO, 2010). Some researchers 

suggest that students’ treatments of examples form a key factor in their difficultly with 

proving (e.g.  Ellis et al., 2012; Stylianides & Stylianides, 2009). However, little research 

has been done to understand middle school teacher conceptions of empirical reasoning or 

how they address empirical reasoning in the context of middle school math classrooms. 
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Literature Review 
 Much of the literature regarding the role of examples in proof and justification 

activity has focused on deficit models in which teachers or students engage in example-

based reasoning, even when that reasoning is not appropriate for a given mathematical 

task (e.g. Chazan, 1993; Harel & Sowder, 1998; Knuth, Choppin, Slaughter & 

Sutherland, 2002). In the following section I review current literature on the use of 

examples, and present evidence for ways in which examples have been used productively 

to inform or contribute to more general arguments. 

Examples can be used at a variety of different levels of sophistication when 

engaging in proving activity. The most basic form of empirical reasoning is naïve 

empiricism (Alcock & Inglis, 2008), in which an individual uses a single example or a 

small set of examples to prove a general statement. This is generally not a valid approach 

for proving of a general claim. However, if the claim is about a finite set of objects rather 

than an infinite set, checking each one of the finite cases constitutes a valid proof by 

exhaustion.  Similarly, a counter-example is a valid proof technique for refuting claim 

quantified by a universal quantifier whose domain of applicability is larger than the 

number of cases being checked: the counter-example must satisfy the propositions of a 

conjecture but fail to satisfy the result, which disproves the conjecture. 

It has been well established that both teachers and students frequently engage in 

naïve empiricism, even when that reasoning is not appropriate for a given mathematical 

task (e.g. Chazan, 1993; Harel & Sowder, 1998; Knuth, Choppin, Slaughter & 

Sutherland, 2002, Stylianides & Stylianides, 2009; Simon & Blume, 1996; Martin & 

Harel, 1989). Pre-service teachers have been shown using naïve empirical reasoning, 
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such as relying on boundary-cases or sets of examples to provide evidence that a 

statement is valid (Stylianides & Stylianides, 2009; Simon & Blume, 1996; Martin & 

Harel, 1989). Buchbinder and Zaslavsky (2011) found secondary school teachers 

exhibited doubt that a counterexample provided sufficient evidence of the falsehood of a 

universally qualified claim.  

However, research also indicates that many teachers are aware of the limitations 

of naïve empiricism. The high school teachers in Knuth’s (2002) study demonstrated a 

relatively sophisticated understanding of the limitations of naïve empirical reasoning. 

This group understood that specific examples do not prove the general case. They also 

used examples within their proving activity, occasionally utilizing them to improve their 

conviction of the validity of a previously proven result.  

Traditionally, example based reasoning has been thought of as a barrier to valid 

proof production, because specific examples alone can never be sufficient to prove a 

general claim. From this perspective, emphasis has been placed on creating an intellectual 

need for generalized justifications by making explicit the deficiencies inherent in purely 

example-based arguments. For example, Stylianides and Stylianides (2009) developed an 

instructional sequence for preservice elementary teachers in which tasks appear to have a 

regular pattern, but the pattern fails to hold after a finite number of cases. These tasks 

highlighted the insufficiency of checking individual cases and helped preservice teachers 

to appreciate the need for general proofs. Sowder and Harel (1998) also maintain that 

using a set of cases whose pattern fails to hold can be a valuable learning tool for 

students. However, they maintain that just seeing that the pattern fails is frequently 

unconvincing for students: students must understand why the pattern does not hold.  
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A different instructional approach maintains that proof production starts with 

specific cases and proceeds toward greater levels of generality (Simon & Blume, 1996; 

Knuth, Choppin & Sutherland, 2002). Knuth, Choppin, and Sutherland (2002) formalize 

this progression into 6 levels of proving competence, ranging from considering specific 

examples as sufficient evidence for proof (Level 1), checking targeted examples or use of 

generic examples (level 2), and increasing ability to follow and generate deductive 

arguments in familiar and unfamiliar settings (levels 3 through 6). Maher and Martino 

(1996) demonstrate that over the course of a six-year investigation, one elementary 

student successfully transitioned from empirical reasoning to more sophisticated generic 

example-based arguments that justify general results.  

Some studies have shown that deep analysis of individual examples can aid in 

proof production (Weber, Porter, & Housman, 2008; Mason & Watson, 2011). For 

example, Mason and Watson (2001) found undergraduate students’ use of boundary cases 

were helpful in generating intuition about the structure of functions, and Pedemonte & 

Buchbinder (2011) found that understanding similarities across examples can lead to 

deeper conceptual understanding and help generate conjectures. Selden and Selden 

(2008) suggest using generic proofs (also called generic examples) to unpack the 

essential elements of a proof, with careful attention to the elements of the example that 

are generic. Harel (2001) also recommended careful understanding of examples with a 

focus on why the examples work or hold true.  

Several studies have investigated the different ways experts and novices use 

examples within proving activity.  Ellis and colleagues (2012) documented seven 

different ways middle school students used examples when verifying conjectures. These 
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include 1) Check: test whether the conjecture will hold, 2) Support a General Argument: 

use a generic example to explain a more general phenomenon, 3) Convince: increase 

conviction of the result, 4) Understand: make sense of the conjecture, 5) Support 

Empirical Proof: examples used as a justification for the truth of a conjecture, 6) Asked: 

students use an example because they were asked to do so, and 7) Disprove: students use 

examples in an attempt to disprove the conjecture.  

Mills (2014) and Lockwood et al. (2012) found similarly broad usage of examples 

in proving activity among mathematicians. Mills (2014) investigated how experienced 

professors made use of examples within proof presentations in advanced undergraduate 

courses. She found four primary uses of examples within lecture: 1) to motivate a claim 

or proof, 2) to persuade students of the plausibility of the claim, 3) to generate proof 

insight, or 4) to support students’ understanding of the claim, proof, or the underlying 

mathematics content. Lockwood and colleagues (2012) examined how mathematicians 

used examples in their exploration of conjectures and development of proofs, and their 

results align with those of the previous two. 1) Check: test whether the conjecture will 

hold, 2) Break the Conjecture: use examples in an attempt to disprove the conjecture, 3) 

Make Sense of the Situation: deepen understanding of why the conjecture might be true or 

false, 4) Proof Insight: seeing examples may inspire a direction for the proof, 5) 

Generalize: understand the specific to be able to see the general, 6) Understand the 

Conjecture: understanding of what is being stated in the conjecture.  

Taken collectively, the literature indicates that students, teachers, and 

mathematicians all make use of examples in a variety of productive ways when engaging 

in proving activity. Empirical thinking can be thought of as a barrier to valid proof 
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techniques; however, a great number of studies emphasize how examples can be 

leveraged to gain understanding and develop more general arguments. Although many 

studies have considered example usage in the context of proving, none of these studies 

specifically address how middle school teachers understand example-based reasoning, 

nor how teacher understanding of examples is manifested in classroom practice. 

Theoretical Framework 

 Much of the previous work describing teacher understanding of examples focused 

primarily on teacher knowledge independent from a classroom setting. However, many 

have argued that investigating teacher conceptions outside of their practice offers an 

incomplete picture of their understanding (Leatham, 2006; Speer, 2005; Wilson & 

Cooney, 2002). Wilson and Cooney (2002) argued this point, writing, “it seems that both 

observing and interviewing teachers are necessary if one is interested in comprehending 

how teachers make sense of their worlds” (Wilson & Cooney, 2002, p. 145). 

This study offers an integrated approach in which teacher understanding and 

classroom practice are examined collectively. I take on a situated view in which 

“knowledge” and “practice” can be thought of as enacted knowledge in multiple contexts. 

This perspective aligns with Kazemi and Hubbard’s (2008) stance that teacher ways of 

knowing coevolve across multiple contexts, each one impacting the other. Thus the ways 

that teachers understand empirical reasoning outside of the classroom and the ways that 

teachers respond to empirical reasoning inside of the classroom are different 

manifestations of a single, complicated conceptual structure.  
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Operationalization of Empirical Reasoning 

 Examples have many different roles in mathematics. My focus here is on the role 

of examples in mathematical reasoning. I use the terms empirical reasoning and 

example-based reasoning interchangeably in this paper.  In this context, example-based 

reasoning is reasoning about mathematical concepts based on specific instances of the 

concept.  

The following analytic framework will be used to analyze teacher treatment of 

empirical reasoning both within and outside of the classroom. These types of examples 

and forms of reasoning are based upon previous literature results, particularly Ellis et al. 

(2012) and Larsen and James (unpublished manuscript). These include: 

•  Valid forms of empirical reasoning  
o Counter examples: a single example is used to disprove a universal claim 
o Proof by exhaustion: the statement to be proved is split into a finite 

number of cases and each one of the cases is addressed  
•  Naïve empirical reasoning: an invalid proof method in which individual or sets 

of examples used to justify a general case. However, single examples can increase 
conviction or generate understanding of the conjecture. 

o Boundary case or unusual examples: such examples may test the 
“boundaries” of a conjecture 

o Randomly selected example: testing a “random” example may increase 
conviction that the result holds 

•  Result-pattern reasoning: an invalid form of reasoning in which a pattern is 
identified and a general rule or claim is formed based on a patterned set of 
examples (Harel, 2001) 

•  Process-pattern reasoning: a valid form of reasoning in which a pattern is 
identified and a mathematical argument for why that pattern must hold is 
described) (Harel, 2001) 

•  Generic example-based reasoning: a single example is reasoned about 
generally. Generic examples lie on a continuum from examples with little 
generalization to almost fully generalized arguments (Mason & Pimm, 1984) 
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This analytic framework describes different types of examples and example usage within 

forms of reasoning. On their own, examples may increase conviction of a result or 

provide insight into what is being proved. Examples are also used within forms of 

reasoning, or modes of argumentation, that form the reasoning within a proof or 

justification.  

Research Questions 

The central research question for this paper is: How do JAGUAR teachers 

understand and respond to empirical reasoning in the context of middle school algebra 

justifications, and how do those understandings and responses change over time? 

Specifically: 

1. How do JAGUAR teachers understand empirical reasoning? How do 

teachers evaluate empirical reasoning? What kinds of empirical arguments 

do teachers produce?  

2. How do JAGUAR teachers treat examples in the context of classroom 

justification tasks? 

3. What is the relationship between teachers’ understanding of empirical 

reasoning and treatment of empirical reasoning in their classrooms? How 

does this shift over time? 

The contribution of this paper is three-fold. The first contribution is a description of 

teacher understandings of empirical reasoning. The second is a taxonomy of ways 

JAGUAR teachers treat examples in during justification tasks in their classrooms. The 

final and primary contribution is a set of case study profiles linking teacher development 

of understanding of empirical reasoning with teacher practice. 
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Methods 

The primary goals of this study include a description of teacher knowledge of 

empirical reasoning and how that reasoning relates to treatment of examples in the 

classroom. This study is part of the larger JAGUAR project analysis, which examined 

teacher development in their understanding of justification, the transformation of that 

knowledge into classroom practice, and the subsequent impact on student justification 

activity. The parent project was designed to culminate in accounts of practice (Simon & 

Tzur, 1999), specialized case studies that “portray the complex interrelationships among 

different aspects of teachers' knowledge and their relationships to teaching” (p. 163). As a 

piece of the larger whole, this study also utilizes a case-study methodology. Each teacher 

served as a case, and three cases were selected as “replications of each other, contrasting 

comparisons, or as hypothesized variations” (Yin, 2009, p. 112). Note that these 

descriptions “explain the teacher’s perspective from the researcher’s perspective” (p. 254, 

Simon & Tzur, 1999). My role as researcher is to structure the account of teacher practice 

using a theoretical lens to focus my interpretation. The result is an account of teacher 

experience that emphasizes aspects with broader theoretical significance. 

Context 

 Data for this paper was drawn from the JAGUAR project (Justification and 

Argumentation: Growing Understanding of Algebraic Reasoning). JAGUAR was a two-

year co-investigation of among a team of 12 middle school teachers and math education 

researchers. One goal of the JAGUAR project was to investigate the development of the 

knowledge and pedagogy needed by teachers to support student justification. Each year 

of the two-year project consisted of a week-long summer working session, three weekend 
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working sessions during the school year, and four classroom observations of common 

justification tasks.  

Example-based reasoning was a specific content topic in the working and summer 

sessions of the JAGUAR project.  Within the project, the team of researchers designed a 

number of tasks intended to help teachers identify different types of example-based 

reasoning and to highlight some of the limitations and affordances of example-based 

reasoning in justification construction. For example, teachers were given a number-

generation task in which teachers were asked to generate a conjecture and to explore if 

the conjecture would hold (see Error! Reference source not found.). Notice that the 

function output is prime for the first 39 entries, but not the 40th or 41st. Other tasks for the 

teachers included evaluating actual and hypothetical student justifications that included 

different types of empirical reasoning (see Appendix F for sample justification task and 

student work). The researchers hoped that through the activities and discussions in the 

working sessions, teachers would see the mathematical limitations of naïve empirical 

reasoning while simultaneously gaining an appreciation of the explanatory power of 

different types of empirical reasoning, including process-pattern and generic-example 

based reasoning.  

Consider the function f (n) = n2 + n + 41. Consider the function f (n) = n2 + n + 41. 

What patterns do you notice? 

What patterns are provable for all cases? 

Table 8: Empirical Reasoning Task 
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Methods for RQ1: Teacher Understanding of Empirical Reasoning 

Multiple data sources were used to analyze how teachers understand empirical 

reasoning, including interview data, summer/working session data, and justification 

survey data. This included an analysis of what teachers said about empirical reasoning, 

their evaluation of hypothetical student justifications, and their use of empirical reasoning 

on justification tasks.  

The analysis of teacher conceptions started with what teachers said about their 

understanding of empirical reasoning. The interview data formed the basis of this 

analysis because many interview questions were designed specifically to elicit teacher 

understanding of empirical reasoning. All of the participating JAGUAR teachers were 

included in the first stage of analysis. In this stage, excerpts in which teachers made use 

of, discussed, or analyzed examples were identified and briefly described in the form of 

analytic memos. These excerpts included responses to questions specifically designed to 

capture teacher understanding of examples and spontaneous responses to open-ended 

questions (such as “Could you give an example of a justification? When you ask students 

to justify what do you expect to see?”) (See Appendix C for an interview protocol). A 

second researcher and I independently identified excerpts, organized them into themes, 

and generated conjectures regarding each of the teachers’ conceptions. Next, the second 

researcher and I compared and revised the conjectures to construct a comprehensive set 

based on evidence from the excerpts. Finally, we organized the conjectures to create a 

chronicle of teacher conceptions over the course of the project. This chronicle included a 

description of teacher treatment of different forms of reasoning over the course of the 

project. 
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In the next stage of analysis, the chronicle generated from the interview data was 

compared with the data from the working sessions and summer sessions (collectively 

referred to as the workshops). First, excerpts in the workshop data were identified that 

pertained to teacher understanding of example based reasoning. Next, the excerpts from 

the workshop data were compared to the conjectures formed from the interview data, and 

additional evidence to support or refine the conjectures was added to the chronicle.  

Next, the conjectures and supporting data within the chronicle was compared to 

data from the justification survey. Each teacher completed the justification survey 

individually at the beginning and the end of the project. Teacher uses of examples in their 

responses were identified and compared to those from the workshop analysis and added 

to the chronicle. In the end, the chronicle document was a comprehensive overview of 

each teachers’ treatment of every example type or empirical reasoning, with data 

illustrating the development within each type over the course of the project. A condensed 

version of each teachers’ chronicle is presented in the results section for research 

question 1. 

Methods for RQ 2: Teacher Treatment of Empirical Reasoning in the Classroom 

The analysis of teacher treatment of empirical reasoning resulted in two products: 

(1) a framework of teacher treatment of examples within the classroom and (2) a 

qualitative description of each case teacher based on the framework analysis. To 

construct a framework, a thematic analysis approach was taken to identify ways teachers 

treated empirical reasoning within the classroom (Braun & Clark, 2006). An initial 

coding framework was developed based on the results of previous literature (particularly 

Lockwood et al. (2012), Mills (2014) and Ellis et. al (2012)). The framework was 
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continually revised in a constant comparative method (Strauss & Corbin, 2008), in which 

categories were adapted or revised based on the data. The resulting framework captured 

these teachers’ treatment of examples within the context of middle school classrooms.  

The first stage of analysis consisted of coding of all classroom transcripts of the 

Number Trick Task for every JAGUAR teacher. The Number Trick Task was chosen first 

because that task had the most explicit use of examples embedded in the task. Codable 

instances were identified and tagged with potential codes. A codable instance of a code is 

a distinct treatment of examples. “Treatment” includes (1) the existence of an example 

and (2) teacher initiation and use of examples or example-based reasoning, OR teacher 

response to student use of examples or example-based reasoning. For example, if a 

teacher uses the same example in the same way over multiple utterances, it is considered 

a single coded instance. Alternatively, if a teacher responds to the same example in 

multiple, different ways in a single utterance, it would be coded with multiple codes. For 

example, in the following instance Mr. Hummel encourages students to test their 

conjecture using multiple examples:  

Try zero, try a fraction maybe, try a decimal, try pi, try a negative 
number, so try something you haven’t tried that seems like it might be a 
little unusual. 

This is coded as a single codable instance because although it includes multiple mentions 

of different possible examples, the entire passage is encouraging students to use examples 

to test the conjecture. It is also possible to have multiple instances for the same example. 

In the following excerpt, Ms. Davilla evaluates a pair of students’ work with examples 

and has the following exchange: 

Ms. Davilla: Okay [reading] yes, because it works with decimals, yes, it would 
work with different numbers, you could give examples of large numbers and 
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decimals [end reading]. Okay so that helped you to understand why it works 
for every example? That tells you why it works?  

Alexis: Pretty much. 
Ms. Davilla: Okay. And  you're content with that.  
[Alexis and Nat nod.] 
Ms. Davilla: All right. [moves to new group] 

In this passage, the green highlighted section was coded as “Explain Why,” because the 

students used examples to understand why their conjecture worked. The green 

highlighted section was coded as “Examples endorsed as valid” because Ms. Davilla 

moved to a new group without mentioning to the students that their set of examples did 

not in fact justify the general claim. 

The codes were continually revised based on a constant comparative method 

(Corbin & Strauss, 2008), in which all instances that were conceptually similar to 

preexisting codes were coded, and those that were new were tagged.  At the end of each 

set of transcripts the “tags” were reviewed and given their own code if they were 

sufficiently conceptually distinct from previous codes or incorporated into preexisting 

codes.  

In the next stage of analysis, themes among the codes were sought out. Similar to 

axial coding (Corbin & Strauss, 2008), codes were reorganized to better reflect the 

internal relationships between the concepts.  Previously established codes were refined, 

either by splitting of one code into multiple codes or joining previously separate codes 

into one common code. For example, the code initially called “To get a feel for how 

something works” was eliminated and separated into “Generate Conjectures” and 

“Explain Why (something works)” Codes with only one or two instances were eliminated 

or merged into other code categories. Once the codes had stabilized and been named, I 

returned to the transcripts and recoded all of the documents with the intent to attain 
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formal counts of instances of each code for every transcript. The full set of transcripts 

across all 12 teachers and 3 task implementations was used to give the greatest diversity 

of possible uses of examples within these justification tasks. A second researcher was 

trained in the coding, and double coded a representative selection of one-third of the 

transcripts with 89.5% reliability. 

The quantitative analysis formed the initial basis for the qualitative analysis. 

Based on the results of the quantitative analysis and results from analysis of teacher 

conceptions, three teachers were selected as case study teachers. These three teachers 

were selected because they demonstrated strong understanding of empirical reasoning: 

they all differentiated between forms of empirical reasoning and their understanding of 

the validity of naïve empirical reasoning aligned with that of the mathematical 

community. However, they offered contrasting cases (Yin, 2009) due to the differences in 

their treatment of empirical reasoning in their classrooms.  

  For each of the selected case study teachers, the coded instances from the 

quantitative classroom analysis were reviewed and contextualized within the other events 

of the lesson. Patterns within and across lessons were identified, as well as differences 

between the different implementations. Significant themes within the treatment of 

examples were identified, and the relationships between those themes across the 

chronology of the lesson were described. For consistency and clarity, excerpts from the 

number trick task were selected to illustrate those themes when possible. 

Methods for RQ 3: Case Study 

The results of research questions 1 and 2 were analyzed to answer the question: 

What is the relationship between teachers understanding of empirical reasoning and 
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treatment of empirical reasoning in their classrooms? How does this shift over time? 

Once the analysis of research questions 1 and 2 were completed, a set of three case study 

teachers were selected to represent the larger group. These case study teachers were 

representative of the larger group in the sense that the themes identified for these teachers 

reflected the themes identified for the whole group. However, these teachers were also 

selected because they offered contrasting results: each of the three teachers offer a 

different insight into the relationship between teacher understanding of empirical 

reasoning and practice. 

Once a formal draft was complete, I shared the entire draft with the case teachers 

for a member check. Three of the four teachers responded, each with positive, though 

limited, feedback. In particular, Ms. Davilla commented that she was impressed by the 

amount she changed over the two-year project. This member check provided backing of 

the validity of interpretation as well as the opportunity for teacher reflection. 

Results  
Results are presented in two sections. I begin with the framework of middle 

school teacher uses of examples within the classroom, which partially addresses research 

question two: How do JAGUAR teachers treat examples in the context of classroom 

justification tasks? In the second section I present three case study analyses, one for each 

case teacher. Each case includes three components. The first component is a description 

of each teachers’ understanding of empirical reasoning, which addresses research 

question one: How do JAGUAR teachers understand empirical reasoning? The case also 

includes a quantitative and narrative description of teacher treatment of examples, which 

both pertain to research question 2. Finally, each teacher case study also includes a 
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discussion of the connections between the teacher’s understanding of empirical reasoning 

and his or her treatment of examples in the classroom. 

Framework: Teacher Use of Examples in the Classroom 

One of the main results of this paper is a framework that identifies the ways 

JAGUAR middle school teachers treated examples within the context of justification 

activity in their classrooms. This framework contains two sections and a total of 13 

categories. The first section, Pedagogical Uses of Examples contains 8 categories, which 

represent the different ways teachers utilized examples to understand or explore the 

mathematics of the lesson. The Treatment of Validity of Examples section contains 5 

categories. It catalogues how teachers addressed the validity of naïve empiricism. The 

latter section is significant given the propensity for students to rely on faulty empirical 

reasoning, as described in the literature. I begin with a description of each of the 

categories in the first section: Pedagogical Uses of Examples. 

1. Demonstration: Teacher used an example to demonstrate what was to be justified 

(or proved) in the task. Conceptually similar to Lockwood and colleague’s (2012) 

category Make Sense of the Situation or Mill’s (2014) motivate a claim, the category 

Demonstration took place when an example was used to clarify the statement of the 

task.  

2. Generating conjectures: For this category, a teacher prompts students to use 

examples to generate a conjecture about a general relationship. Frequently this code 

occurs when the teacher asks students to reflect on examples that have already been 

computed. For example, after working with numbers between 1 and 10, Mr. Hummel 

addressed his class: “And right now don't worry about why or anything, just describe 
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what you're noticing.” In this example, Mr. Hummel is asking students to describe 

what they see occurring in a set of examples.  

3. Understanding how or why something works: In this code, a teacher has students 

explore specific examples to gain a deeper understanding of how or why something 

works mathematically. Notice that this code differs from the previous code because 

generating conjectures focuses on what is happening and this code focuses on why it 

is happening. It includes instances in which the teacher prompts students to look at 

numerous examples, such as the following from Mr. Hummel: “Use more examples 

and try to figure out why this works.” It also includes instances in which a teacher 

has students consider a single specific example in great detail. For example, Ms. 

Littrel has students examine Andrea’s example in this whole class discussion. She 

stated: 

“I actually love exactly how he wrote it because that’s going to help 
us understand... when Andrea wrote this up here, I kept this up here 
for a very specific reason, I think the way he wrote it is kind of a 
huge answer as to what’s happening in this number trick. … I think 
if you can see that in there [points where Andrea wrote 2(1+4)], this 
is going to be a big huge hint and help you figure out how to justify 
everything in an equation.” 

This category is similar to Mill’s (2014) description “to support student 

understanding of the claim, proof, or underlying mathematics,” but in my framework 

the focus is exclusively on understanding the mathematics of why the conjecture 

works. 

4. Identifying Patterns: This category includes instances in which a set of examples is 

used to identify a pattern. This category is a specific subtype of Generating 

Conjectures, because identifying a pattern can form the basis of a conjecture if that 
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pattern were to hold. However, because of the high frequency of this subcategory 

and its theoretical importance relative to the teachers’ conceptions of empirical 

reasoning, it was given its own category title. Instances of this code typically 

involved finding patterns based on finite sets of examples without exploring why (the 

basis of pattern-result reasoning). If students were asked to describe a pattern and 

why the pattern held, such an instance was double-coded as both identifying patterns 

and understanding why. For example, Ms. Wade asked two students to identify a 

pattern based on examples: “If there's a pattern going on, see if you can figure out 

what the pattern is. Okay?” Notice that this was an instance in which students were 

asked to form a specific type of conjecture, one based on patterns, but it was only 

placed within the identifying patterns category. 

5. Testing Conjectures: At times teachers asked students to use examples to test their 

conjectures. For example, Ms. Wade stated, “Try another number or two and see if it 

works.” This category focused on testing the validity of a statement by evaluating 

specific examples. This category matches Check from both Ellis et. al (2012) and 

Lockwood et al. (2012). 

6. Increase Conviction: This category was conceptually similar to the previous 

category of Testing Conjectures, but it went beyond simply testing whether a 

specific case held. This code indicated that specific cases were used to develop a 

sense of conviction that the result was true. For example, Mr. Hummel addressed the 

whole class after an initial investigation of the number trick: “Okay so all the 

different types of numbers you have tried have worked. So you’re convinced that it’s 
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always going to be true.” This code was conceptually similar to Ellis et al.’s (2012) 

Convince and Mill’s (2014) “to persuade students of the plausibility of a claim.” 

7. Explaining or demonstrating the general argument: When a teacher or student 

was providing a general argument, teachers would occasionally ask for the 

presentation of a specific example to help clarify that argument. For example, in Ms. 

Davilla’s classroom a student gave a general argument for the number trick. Ms. 

Davilla paused the student and stated, “Ok, I don’t understand what you’re saying. 

Can you come up maybe and point to these numbers in one of the examples so 

everyone else can understand?” Ms. Davilla asked the student to make use of 

specific examples to help clarify the general argument.  

8. Using examples to build a more general argument: In this set of classroom 

episodes, teachers used specific examples to guide students toward a more general 

argument by breaking down a single example in an explicit way and leveraging that 

example toward a general algebraic or pictorial representation. Ms. Davilla 

explained the process to her class: 

 “We need to be able to go from these examples, all these different 
examples, to show that something will work generally. To show that 
something will work for every number. And the way that we do that is we 
start using our variables.”  

 
Both Ellis et al. (2012) and Lockwood et al. (2012) had similar findings in their 

frameworks, with Support a General Argument and Generalize, respectively.  

In addition to the pedagogical uses of examples described previously, I also 

identified five ways teachers evaluated the validity of example use. These are a special 

sub-type of the pedagogical treatment of examples described earlier: instances in these 
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categories identify the manner in which teachers respond to naïve empirical reasoning. 

Literature indicates that students tend to view naïve empiricism as a valid form of 

reasoning (e.g. Chazan, 1993; Knuth, Choppin, Slaughter & Sutherland, 2002; Hoyles, 

1997; Healy and Hoyles, 2000; Harel & Sowder, 1998). Given this background, it was 

particularly important to consider how teachers addressed the validity of empirically 

based mathematical arguments. This analysis resulted in five categories. The first four 

categories address why single examples are not sufficient to show the general case, and 

the final category is an endorsement of empirical reasoning. 

1. Examples are not enough: No further explanation: In this category, teachers stated 

explicitly in their classroom that a single example was insufficient evidence to justify 

a general claim, and they offered no further explanation. For example, the following 

exchange took place in Ms. Primm’s classroom: 

Ms. Primm: Can we just choose a couple numbers and see if it works?   And then 
is that enough to say that it would work for any number?   

Student: Yeah. 
Ms. Primm: No, but that certainly would show that it works for those numbers 

that you choose.  
 

Notice in this passage Ms. Primm directly addressed the fact that single examples 

cannot justify the general case: they only prove the result for those examples. 

However she did not elaborate as to why the example was not enough. 

2. Examples are not enough: Not possible to test all cases: In this category, teachers 

addressed that examples were not enough to justify the general case, and also 

included the rationale that it is not possible to test all cases. For example, in his whole 

class wrap-up Mr. Ferris stated, “Important things to take away: [Student A] said, 

‘No, we can’t try every single number.’ We’ve got to come up with an equation.” In 
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this statement, Mr. Ferris described the mathematical impossibility of testing all 

cases, and offered algebra as an alternative. 

3. Examples are not enough: Not practical or efficient to test all cases: Much like 

the previous category, this category also includes instances in which teachers 

identifed testing examples as inappropriate for proving the general case. However, 

unlike the previous code, rather than confirming that testing all cases is impossible, in 

this category the teachers emphasized the impracticality or inefficiency of testing all 

cases. For example, Ms. Davilla stated, “If we were checking every number it would 

take a very long time.” Although it is possible that such statements could be intended 

as hyperbole, it might leave students with the impression that checking an infinite 

number of examples is a possible method for establishing results. 

4. Examples are not enough: Examples don’t explain why: The final category in 

Examples are not enough included statement that examples do not explain why. 

Notice that rather than focusing on the mathematical validity of using examples as a 

justification tool, in this category teachers emphasized the fact that individual 

examples on their own, without explanation, do not communicate the mathematical 

structure or reasoning why something is true. In this passage Ms. Littrel explained to 

her class the shortcoming of examples and the importance of explaining why:  

“So last period we had a question and with two questions, someone just 
said, ‘Ok well just try some numbers,” let’s try 99 and prove it, and then 
let’s try 152 and prove it… Alright so we're just kind of like assuming it 
will work. But how do we, how does it work. That's what we've got to 
prove. How is this trick working?” 
 

5. Examples Endorsed as Valid: The final code in this category included instances in 

which teachers implicitly or explicitly endorsed naïve empirical reasoning. This 
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typically took place when a student produced a naïve empirical argument and the 

teacher chose to move on and not comment directly on the argument. For example, in 

the following interchange one student maintained that equality would always hold in 

the number trick based on testing a set of examples: 

Student: They will always equal out.   
Ms. Davilla: Ok, how did you show that?   
Student: Um, we did whole numbers between 1 through 10. We did decimals 

too.   
Ms. Davilla: Ok, so we checked, we checked numbers 1 thought 10, and you said 

we checked some decimals too?   
Student: Yeah.   
Ms. Davilla: Some decimals, and these were the whole numbers right? Ok, other 

ways we established this? [emphasis added] 
 

Notice that by continuing the conversation by asking for other ways that the result 

was established, the teacher implicitly endorsed naïve empiricism as one possible 

justification form. 

 Taken together, these categories form framework the identifies 13 different ways 

that these middle school teachers made use of or responded to example use in their 

classroom. On its own, this framework is significant because it identifies a wide range of 

pedagogical uses for examples. This shows that justification work in middle school 

classrooms can include a rich variety of different ways in which examples are used. 

Additionally, many of the items in this framework align with those found by either Mills 

(2014) or Lockwood and colleagues (2012), indicating that the middle school teacher 

treatment of examples in their classrooms mirrors that of professors when demonstrating 

proofs in upper division courses and professional mathematicians when working with 

conjectures.  
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A unique component of this framework that had not been captured previously was the 

ways in which teachers responded to naïve empirical reasoning. These teachers gave a 

variety of reasons for why examples did not prove the general case. Of note was the 

reason that checking examples simple was not practical because it would take too long. 

This rationale reinforces the misconception that naïve empiricism could be a valid proof 

technique, if only we had the tools or resources to check an infinite number of cases. 

Mathematically it can never be possible to check an infinite number of cases with brute 

force.  

Case Descriptions of Teacher Treatment of Examples 

 In the following section, I describe the treatment of examples for each of the three 

case study teachers. I include quantitative results of the classroom analysis based on the 

previously presented framework. Please note that each teacher’s class had variable length 

and these counts should be interpreted within the context of their use; they may indicate 

patterns and trends but the frequency value in isolation should not be over-interpreted.   

Mr. Hummel 

Mr. Hummel demonstrated a robust understanding of empirical reasoning. Within the 

workshop sessions and interviews, he consistently categorized types of example-based 

reasoning in the manner intended by the research team. His own justification work relied 

heavily on algebra, but he also included appropriate uses of examples within his own 

justifications, including counter-examples, proof by exhaustion, and generic-example 

based arguments. Mr. Hummel clearly and consistently articulated that individual 
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examples could not prove the general result, but he was none-the-less willing to classify 

naïve empirical arguments as justifications.  

Mr. Hummel maintained that single examples could not prove the general case, 

but he still considered them (weak) justifications. For example, in the pre-project 

interview Mr. Hummel analyzed the hypothetical student work for the consecutive 

number task (see Figure 10).  

CONSECUTIVE NUMBER TASK 
 

Determine whether or not the statement “When you add any two consecutive 
numbers the sum is always odd” is true.  
 
5 and 6 are consecutive numbers, and 5 + 6 = 11 and 11 is an odd number. 
12 and 13 are consecutive numbers, and 12 + 13 = 25 and 25 is an odd number. 
1240 and 1241 are consecutive numbers, and 1240 +1241 = 2481 and 2481 is an 

odd number. 
That’s how I know that no matter what two consecutive numbers you add, the 

answer will always be an odd number. 
Figure 10: Consecutive number task with hypothetical student work 

Mr. Hummel concluded the following: “I think it’s a justification, but I think it’s kind of 

a limited justification. So it’s, it’s three specific examples. So kind of, I guess what I see 

is that, yeah, it’s justifying, based on those three examples. That it seems to work.” At the 

end of the project he reflected on the same student work: “So to me [this student] is not 

proving it with this. But I think that [the student] is lending some justification to what 

they are thinking by supporting their thinking with examples.” Mr. Hummel drew a 

distinction between the requirements for proof and those of justification: while naïve 

example-based arguments could not prove the general case, examples could provide some 

justification. A partial proof is not something typically highly valued within the 
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mathematics community, but in every-day life providing some evidence for a claim is 

very valuable, in part because rigorous, deductive arguments are typically impossible. 

This apparent contradiction is explained in part by Mr. Hummel’s definition of 

justification. He maintained that a justification is a convincing argument that explains 

why something works. He stated, “[Justification is] a convincing proof or argument for 

the reasoning behind why what you are doing mathematically works.” Thus if students 

find examples convincing, he was willing to classify that type of argument as a 

justification. 

  This view was consistent with his evolving stance on patterned example-based 

reasoning. Early in the project, Mr. Hummel viewed result-pattern justifications, those 

that describe a pattern and assume it will hold, as valuable and even superior to other 

empirical arguments. For example, in the first summer session, Mr. Hummel defended 

the use of tables in generating justifications, because they can be very helpful in helping 

students display and discover patterns. In later sessions, Mr. Hummel voiced a greater 

need for an explanation of why the pattern would hold, but still considered patterned 

examples justifications. For example, Mr. Hummel reflected on a student’s argument that 

included a table with little explanation: “From that first glance it seems to be [a 

justification]. It seems to be (Short Pause) - yeah, I think I might want to know - I might 

want to ask, based on the diagrams or based on what they know about what's happening; 

why it's going up three every time. But yeah, it's fairly convincing to me.” Thus although 

he would accept it as a justification, he would still want to know more about why the 

pattern held.  
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Throughout the project, Mr. Hummel consistently appreciated generic examples 

and saw the importance of their structural elements. For example, in the first summer 

session Mr. Hummel categorized a student’s reasoning as a justification because although 

the student was using examples, the student reasoned about the examples in a general 

way that explained why the result was true. 

In summary, Mr. Hummel had a unique perspective on the role of example-based 

reasoning within justifications. He had a strong grasp of the different types of examples, 

and although he understood that single examples or sets of examples could not prove the 

general result, he valued them as justifications. His view of naïve empirical reasoning 

could be in part because examples do indeed provide evidence, even if they do not prove 

a claim. Additionally, he believed students found examples convincing, and for him a 

justification was by definition a convincing argument. 

Mr. Hummel: Classroom Treatment of Examples 

In the following section, I describe Mr. Hummel’s treatment of examples 

numerically and qualitatively. Table 9 offers a quantitative summary of Mr. Hummel’s 

treatment of examples for the three focal tasks over two years. The following section 

describes Mr. Hummel’s treatment of examples and connects the numerical data to 

classroom context. 

Table 9: Mr. Hummel's treatment of examples by task and year 

 Bruce Hummel 
 Hexagon Task Number Trick Scaling Task 
 Year 1 Year 2 Year 1 Year 2 Year 1 Year 1 
Demonstration 1 0 5 2 5 4 
Generating Conjectures 1 0 12 8 12 2 
Understanding how or 13 4 9 6 9 37 
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why something works 
Identifying Patterns 2 0 2 0 2 1 
Testing Conjectures 6 0 5 7 5 1 
Increase Conviction 0 1 1 1 1 0 
Explaining or 
demonstrating the general 
argument 

2 9 1 1 1 4 

Build a general argument 3 3 3 4 3 2 
Examples are not enough 0 0 0 1 0 0 
Not possible to test all 
cases 

0 0 0 1 0 0 

Not practical to test all 
cases 

0 0 0 1 0 0 

Examples don’t explain 
why 

0 0 0 0 0 0 

Endorsed as valid 0 0 0 3 0 0 
Counter-example 0 0 0 0 0 0 

 

I characterize Mr. Hummel’s approach to empirical reasoning as an “adding why” 

model. Mr. Hummel consistently acknowledged that examples were convincing for 

students and encouraged students to explore many types of examples when forming and 

testing conjectures. However, he also directly confronted the conception that examples 

alone were enough: he insisted that in addition to examples, students must also explain 

“why” something was true. Testing out examples was an important part of his students’ 

mathematical investigation, but for him a justification should also include a description of 

why the result holds beyond the examples.  

Focus on Examples to Build Conviction, Generate Conjectures and Test Conjectures 
 Mr. Hummel asked students to use examples to generate conjectures, test 

conjectures, and to develop a sense of conviction that a result would hold. In particular, in 

the first year’s implementation of the number trick, Mr. Hummel frequently directed 

students to use examples to gain a sense of conviction that the “number trick” would 

work in all cases. In the first year’s implementation of the task, Mr. Hummel asked the 
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students if trying out examples helped convince them that the result holds for integers 1-

10. 

Mr. Hummel: Okay so did everybody in here who plugged in a number, you got 
the same thing here as you did here? 

Students: Yeah. 
Mr. Hummel: Alright are you convinced that it works for all numbers from one to 
ten? 

Students: Yeah. 
 Building on this conversation, Mr. Hummel acknowledged that given the 

students’ work with examples, they were likely to be convinced that the general result 

would hold. He stated, “Okay so you’re pretty convinced that that’s going to work, no 

matter what?”  

His focus on examples to increase conviction links directly to his conception of 

justification. Mr. Hummel described justification as “creating a convincing proof or 

argument for the reasoning behind why what you are doing mathematically works” 

[emphasis added]. Within his interviews, Mr. Hummel described an increasing emphasis 

on the convincing nature of a justification, so much so that by the end of the project he 

preferred the term convincing argument over the term justification. He explained: “I think 

that a lot of the students still feel when they hear justification that it just means to explain 

what they did and not necessarily to get to why it works or a convincing way that it 

makes sense.” Given his conception of justification, it is not surprising that he might 

utilize examples in his classroom practices to help students increase their conviction. 

What is surprising, perhaps, is that his use of examples to increase conviction is not more 

present, and on the whole tends to decrease over the two year implementations of 

justification tasks.  



	 132	

Another trend in Mr. Hummel’s treatment of examples was a consistent decrease 

in the use of examples to test conjectures.  For example, in the first implementation of the 

number trick task students used examples to generate conjectures, and spent much of the 

first class period testing a wide variety of different examples to see if their conjectures 

would hold. In the (first) year, Mr. Hummel polled the class to see what types of 

examples the students have tried.  

OK, raise your hand if you've tried a decimal. [Several hands go up] OK... 
uh, fraction? Any fractions? Could be kind of the same, yeah. Negatives? 
[Several hands go up] Irrational numbers? Anyone? OK. So just some ideas, 
to try some different ones…. Okay will that work in all cases? So try a 
different number. 

This aligns with Ellis and colleagues’ finding that students use dissimilar sets of 

examples to help increase conviction that a result will hold.  

His focus on examples for generating and testing conjectures generally decreased 

over the two-year project. Particularly in the scaling task, the exploration of lots of 

examples was replaced by a deep exploration of a single example to understand what was 

happening for that single case. (See Chapter 7 for a more detailed exploration of that 

task.) 

Examples to Explain the General Argument 
 Compared to the other case teachers in this study, Mr. Hummel used examples to 

help explain the general argument at a greater frequency, as indicated by 17 instances 

over the six task implementations. For the majority of these instances, Mr. Hummel asked 

students to explain their general rule or argument using a specific example given in the 

form of a picture or diagram. For example, in the scaling task Mr. Hummel explored with 

a student: “Here you have a general rule…  So how can you show that general rule with a 

picture?” Similarly, in the hexagon task he asked, “OK, can you explain how the four ties 
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in this example with the picture?” This may also explain why Mr. Hummel’s use of 

examples to explain the general case was relatively rare in the Number Trick task that did 

not readily lend itself toward pictorial representations. It also explains in part why the 

instance of this code increased over the two years of the scaling task: in the second year 

Mr. Hummel placed much greater emphasis on connecting to diagrams (see Chapter 7 for 

more on the scaling task). 

Examples are not enough 
 The Number Trick task was the only task in which Mr. Hummel directly 

addressed the validity of naïve empirical reasoning. In both implementations of the 

Number Trick task, Mr. Hummel explained to the class that testing individual examples 

is never sufficient for proving a general claim. In both years Mr. Hummel focused on the 

limitations of examples and on the possibility that a set of examples may lead a person to 

a false conclusion. In the following passage taken from a whole class discussion in the 

second year, Mr. Hummel explained that testing examples doesn’t prove a general result. 

Mr. Hummel: One thing you want to avoid is to try and prove something by saying, 
‘Well it works with this number and it works with this number and it works with 
this number, so it must always work.’ Because, how many numbers are there out 
there? 

Several students: A lot. 
Mr. Hummel: Yes, lots of them. So, can you try every possible number? 
Several students: No. 
Mr. Hummel: No. there's always gonna be another number you can try. So, it's hard 

to prove something's true, because it's worked with all the examples you've tried 
so far.  

 
In this passage, Mr. Hummel helped to explain to the class that testing examples is not 

sufficient to validate a general claim.  This connects with his understanding of the 

limitation of naïve empirical reasoning as demonstrated in the interviews and working 

sessions. 
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 However, even though he told students directly that examples cannot prove the 

general case, he still chose not to confront naïve empirical reasoning in the moment when 

working with groups. Consider the following interchange in the second year of the 

number trick task. Mr. Hummel visited a group and asked them to share whether they 

believe the number trick will always work.  

Student 1: I do think it will work for any number because we tried different 
numbers and they all worked. 

Student 2: I think it will work with different other numbers because we've 
tried it with different numbers and it worked. 

Mr. Hummel: All right. [Walks to next group.] 
 

This excerpt is typical of the way that Mr. Hummel implicitly endorsed naïve empirical 

reasoning. By choosing not to correct the argument, he allows students to continue to 

believe that their reasoning is reasonable. This may link back to Mr. Hummel’s strong 

belief that a justification should be a convincing argument, and he recognized that for 

these students testing a set of examples is indeed convincing. 

Adding “why” 
 A common pattern for Mr. Hummel’s implementations was to have students work 

with examples to generate conjectures, test those conjectures, and build conviction that 

the conjecture was true before moving on to answering why the conjecture was true. In 

fact, Mr. Hummel intentionally delayed having students share an explanation as to why 

the task worked to allow the rest of the class the opportunity to explore examples first: 

“Don’t worry about ‘the why’ too much here because that’s actually, you’re going to get 

to that here, but do you think you might have figured out 1?”  He made the same 

suggestion in the second year’s implementation of the task, “And right now don't worry 

about why or anything, just describe what you're noticing.” Thus Mr. Hummel appeared 
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to value the exploration of examples as an initial introduction to the task, and he delayed 

asking about why until student had become more familiar with the mathematics of the 

task. 

Once the students felt convinced that the result was reasonable, he would turn the 

class’s attention to answering why it worked. For example, in the second year’s 

implementation of the number trick task, Mr. Hummel explained to the whole class how 

he wanted students to proceed in verifying their conjectures: 

So, for number four, I want you to work together to come up with a 
convincing argument for how this works and why it works. OK, so if you're 
all convinced that it works, without using a bunch of examples, try and 
show how and why it's working.  
 

In this passage, Mr. Hummel focused student attention away from listing additional 

examples and redirected it toward understanding why. However, in other instances 

specifically directed student attention toward examples to help students understand why. 

In the following passage, Mr. Hummel pointed to specific places in the student’s worked 

example in an attempt to have the student explain more fully why the result held. 

Mr. Hummel: Okay so I want you to figure out why it’s working. 
Student: Because every number I tried worked. 
Mr. Hummel: Yeah, but why? So figure out what’s happening here: so what’s 

happening here [points to part of the example] and what’s happening here 
[points to the other part of the example], and why does that make that the 
same at the bottom? 

 
 Similarly, Mr. Hummel asked students to use examples as a starting place for 

thinking about a more general argument: 

Now, what are you thinking for why it always works? [5 second pause] 
And, like, I don't want you to dismiss the whole thing that it works for 
the examples. So think about why it's working for the examples. Like, 
what's happening to make it work for every one of these examples? 
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Mr. Hummel made it clear to his students that he expected the argument to go beyond a 

set of examples. Mr. Hummel also asked students to build on the work they did with the 

specific examples to construct a more general argument. 

 In summary, Mr. Hummel had a strong understanding of different forms of 

empirical reasoning, but a unique perspective on naïve empirical reasoning. He 

maintained that although single examples insufficient to establish the validity of a general 

claim, they did provide some evidence for the claim, and thus he considered them 

justifications. In his classroom, he frequently asked students to explore examples to 

generate and test conjectures. Once students developed conviction that a result held, he 

then directed them toward answering why the result held.  

Ms. Primm 

Throughout the project, Ms. Primm’s evaluation of example-based reasoning was 

based on the degree to which the argument explained why. She consistently maintained 

that naïve empirical reasoning could not justify because single examples did not have the 

explanatory power to describe why something works mathematically. For example, 

before the start of the project when evaluating the naïve empirical argument (see Figure 

10) she stated, “So this one here is just where you have an example, so this is not a 

justification… there is no mathematical reasoning about why you have this.” 

Although Ms. Primm classified naïve empirical reasoning as invalid, she did view 

certain types of example-based reasoning as better than others, depending on their ability 

to address why. For example, she valued a patterned set of examples over seemingly 

random examples, because the patterned examples were closer to describing why, 

according to Ms. Primm. With regards to a patterned example she stated,  “At least she 
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has some sort of systematic pattern. Whereas Micah's [in Figure 10] was just some-- they 

seemed to me to be random choices. At least Erica has some sort of pattern, so I think 

that it is a better justification why… But it still seems to be just examples”.  From a 

mathematical standpoint, patterned sets of examples by themselves do not actually offer 

explanations; but for Ms. Primm example-based arguments that relied on a pattern were 

preferable to random examples because they were closer to unpacking the mathematical 

why. Ultimately, both random and patterned sets of examples were not valid justifications 

according to Ms. Primm. 

Ms. Primm recognized that a single counter-example was sufficient to prove that 

a general result does not hold, but she still favored a more explanatory justification that 

described why. She stated, “I just know the difference between just showing that 

something doesn't work… like this isn't true because this example doesn't work and 

showing why it doesn't work.” Unlike some other teachers in the project, Ms. Primm 

understood that a single example could be a useful tool in establishing that something is 

not true, but she maintained that it may not explain why something is not true, which was 

important for her definition of justification. 

Similarly, Ms. Primm’s opinion regarding the validity of generic example based 

arguments depended upon the degree to which the argument explained why. At times Ms. 

Primm favored some generic examples because they demonstrated why something was 

true mathematically. However, at other times she questioned whether the certain generic 

example argument were valid because of how well they described why something held 

for the general case. 
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Ms. Primm: Classroom Treatment of Examples 

Ms. Primm’s treatment of examples was more limited than that of the other focal 

teachers in this study.  Within her task implementations she used several specific 

examples early in the launch of the task, with the purpose of giving the students a chance 

to understand the exact directions of the task. She also had students consider examples 

represented in pictorial form to help them understand why a task worked. However, she 

typically redirected students away from looking at examples and had students focus 

instead on representing their thinking using algebraic and graphical representations. 

Table 10 displays the counts for Ms. Primm in each of the coding categories, organized 

by year and by task.  

 

Table 10: Ms. Primm's treatment of examples by task and year 

 Irene Primm 
 Hexagon Task Scaling Task Number Trick 
 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 
Demonstration 1 2 2 1 3 2 
Generating Conjectures 1 0 3 3 2 0 
Understanding how or 
why something works 

10 2 16 0 8 2 

Identifying Patterns 2 1 2 2 4 1 
Testing Conjectures 2 0 7 4 1 0 
Increase Conviction 0 0 0 0 0 0 
Explaining or 
demonstrating the general 
argument 

0 0 0 0 0 0 

Build a general argument 6 2 4 0 1 0 
Examples are not enough 1 0 1 0 5 3 
Not possible to test all 
cases 

0 0 0 0 0 0 

Not practical to test all 
cases 

0 0 0 0 1 0 

Examples don’t explain 0 0 0 0 0 0 
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why 
Endorsed as valid 0 0 0 0 0 0 

 

Insufficiency of Empirical Reasoning 
 Ms. Primm was consistent and direct in her evaluation that naïve empiricism was 

not a valid form of reasoning. She was one of the few teachers who never implicitly or 

explicitly endorsed naïve empirical reasoning as valid, as indicated by the empty bottom 

row of Table 10. Additionally, she was one of the few teachers who discussed the 

insufficiency of naïve empirical reasoning outside of the Number Trick task.  

When Ms. Primm evaluated naïve empirical reasoning, she focused on the fact that it 

was not a valid form of reasoning, but she generally did emphasize that examples alone 

do not have explanatory power to demonstrate why something was true. For example, 

early in the first year of the Number Trick task, one student suggested trying out several 

examples to show that the two rules were valid. Ms. Primm rejected the student’s 

method: 

Matty: On number one, can we just pick like a few random numbers, and try the rule 
or do we?  

Ms. Primm: So good question, so what Matty just ask is, can we just choose a couple 
numbers and see if it works?  And then is that enough to say that it would work 
for any number?   

Student: Yeah.  
Ms. Primm: No, but that certainly would show that it works for those numbers that 

you choose. But how could we show that it would work for any number?  Okay, 
that's the big question.   

 
In this passage Ms. Primm pointed out that a single example did not show that the result 

would hold for all numbers. This is an interesting contrast to her description of naïve 

empirical reasoning within the interview setting. During her interviews, she was explicit 

that single examples were insufficient not only because they cannot address the general 
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case, but also because they fail to explain why the result works or is true. In her interview, 

she explained, “So this one here is just where you have an example, so this is not a 

justification… there is no mathematical reasoning about why you have this.” However, 

within her classroom she did not explicitly explain that single examples fail to explain 

why a result holds. 

Focus on representations to explain why 
	

When addressing empirical reasoning, Ms. Primm did not highlight an example’s 

insufficiency in explaining why. However, she frequently directed students to explain 

why, and relied on pictorial representations of examples to do so. Evidence for her focus 

on using examples to explain why is found in the relatively high number of counts in the 

category Understanding how or why something works. When working with students, she 

frequently pressed students to explain how and why something was true, such as, “Why 

would it always be the same?  If we add eight after we've doubled the number, why is 

that always the same?” and “Why are the pictures the same?  Why is this picture the same 

as that picture?”   

Ms. Primm consistently pressed students to explain how and why they knew 

something was true by asking students to consider using multiple representations rather 

than numeric examples. She stated, “And when you show how you know, what I mean by 

that, is I need you to use words, pictures, numbers, and symbols, to show how you 

know.” Additionally, when students had trouble understanding how to answer why 

something was true, rather than directing them toward numerical examples, she would 

prompt them to draw a picture to understand the relationship. A picture can be used to 
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represent a specific example, but unlike the numeric counterpart, Ms. Primm emphasized 

a picture’s ability to help students understand why.  

Focus on patterns 
	
 Although Ms. Primm guided her students away from most forms of empirical 

reasoning, result-pattern reasoning was present, particularly in the second year’s 

implementation of the number trick task. Ms. Primm did not confront this as invalid 

reasoning in her class, and at times she directly stated that result-pattern arguments were 

valid justifications. 

 For example, in the second year of the number trick task Ms. Primm encouraged 

students to organize their investigation to look for patterns. She stated, “Remember, 

mathematicians always organize their work so they can see patterns.” The result was that 

some students found a pattern that the outputs of both number tricks increase by two for a 

one unit increase in the input. Students reasoned that the trick would hold because of a 

pattern, but they did not explain why that pattern exists or why it would continue to hold. 

Based on the pattern, students formed linear equations. Ms. Primm accepted these 

equations as valid justifications, even though the students had not justified the origins of 

the pattern itself. In response to one of these arguments, Ms. Primm stated: “That's a 

great justification right there. Perfect, you found the y-intercept and the coefficient and 

you found that they're the same. Good job.” In this case, the student generated linear 

equations using pattern-result reasoning.  

 Ms. Primm did not accept naïve empirical reasoning as a justification in her 

classroom, but more subtle forms of empirical reasoning were validated. In this case, 

students supported their arguments using patterned sets of examples and formed algebraic 
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rules based on those patterned examples. Rather than pressing the students to explain why 

the pattern held, Ms. Primm endorsed the pattern-result argument. This exchange took 

place toward the very end of the project, in the second to last classroom observation. 

This finding stands in contrast to that of her work within the interviews and 

working sessions.  Within the third interview, she clearly articulated that a result-pattern 

argument was not a justification. She explained, “There's no “why it works… they're just 

looking at the table and saying, ‘well it increases by three each time’.” Thus although she 

seemed to characterize result-pattern reasoning as insufficient when placed in contrast to 

other justifications in an interview setting, that same type of reasoning was endorsed as 

valid within her classroom after the interview had taken place. 

Redirect Toward Algebra 
	
 Rather than using specific examples to have students explore the tasks, as was the 

case for many of the other teacher’s implementations, Ms. Primm preferred to have 

students use algebra. For example, in the first year’s implementation of the number trick 

task, Ms. Primm demonstrated an example for the class with a starting number of 5, but 

then immediately moved to algebraic notation as she worked through the specific 

example. She stated: 

So we'll start with that same number, five. So we've worked with variables in 
that last book we were in, right?  … We can just replace that with the variable, 
n, and that means whatever number we choose.  Okay, so, n equals five, 
[writes five on the poster]. 
 

While Ms. Primm is demonstrating the example for n=5, she is also preparing the 

students to consider the general case.  
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 This method was echoed throughout other task implementations, in which she 

encouraged students to move away from specific examples and toward algebraic 

representations, as we see in the Build a General Argument category. For example, in the 

hexagon task she prompted students, “You can explain how you got [Figure number] 50, 

and then we can make that a [algebraic] rule.” At times she was explicit about asking 

students to replace single numbers with variables in order to generalize their equations. 

For example, Ms. Primm guided students to construct an equation for the perimeter of a 

polygon train composed of n polygons, each with k sides.  

Ms. Primm: Could you figure out an equation for a 10-sided figure?... So I heard 
you say 8?  So do you know how to write that mathematically?   

Veronica:  So k minus 2? 
Ms. Primm:  Yeah.  Mmhm.  Exactly.  Exactly!  Yeah.  And then I heard you say 

multiply by n.  Yeah. 
 

 In this exchange, Ms. Primm helped students transform their equation for a specific 

example into a more general algebraic equation. This aligns with Ms. Primm’s stance 

from the interviews that fully generalized algebraic arguments are preferable to specific 

examples. 

 Ms. Primm was consistent in her evaluation that naïve empiricism was an invalid 

form of reasoning. In her interviews she emphasized that single examples were not 

mathematically valid nor did they explain why. When she did focus on examples in her 

class, she most often did so using pictorial representations: she frequently asked students 

to use pictures or diagrams to explain why. In her classroom, she tended to redirect 

students away from using examples, and focused on finding patterns or alternate 

representations such as algebra or diagrams.  
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Ms. Davilla 

Ms. Davilla’s thinking about empirical arguments underwent a number of changes 

over the course of the project. At the start of the project, she was uncertain if naïve 

empirical reasoning could be considered a justification. When evaluating the student 

work for the consecutive number task (see Figure 10), she stated, “I don’t know…[the 

student] did look pretty globally I mean they looked at small numbers and big numbers. 

So that’s not a bad thing…. But I still feel like they are reasoning through this. They are 

not… they are not just following any algorithm.” However, in later interviews she was 

certain that this student’s naïve empiricism was not a justification because it did not show 

that the conjecture was always true. She explained, “You've looked at three cases. That 

doesn’t prove it to me for all numbers.” Note that her objection to the argument was on 

the grounds of its mathematical validity and not that the argument did not explain why. 

Ms. Davilla described a shift in her own thinking about the differences among 

naïve empirical arguments. When she reflected on her own thinking, she realized that 

early in the project she preferred arguments that used a wide variety of example values 

over arguments that used small consecutive values. However, after the first summer 

session she placed both arguments on equal footing because they were both empirical 

arguments that did not prove the general case. 

Over the course of the project Ms. Davilla also displayed a growing 

understanding of generic example reasoning. For example, in the first summer session 

she initially classified [FoR #5 from SS1] as a naïve empirical reasoning, but through 

discussion saw that the student was representing the specific example generally. She 

explained, “I think I missed the piece about generic representation using a specific 



	 145	

example, but then they are reasoning about it generally. I agree [that it is generic 

example]." Later in the project, Ms. Davilla was clear about her appreciation of generic 

example reasoning. When evaluating a generic example, she stated: “I mean she does it 

with a concrete example, but I think that's okay because then she makes it a little bit more 

generic or general …  And that's the statement that I think we're trying to get to.” 

Although Ms. Davilla appreciated generic examples, she frequently stated that they could 

be improved by including a more general, algebraic, argument. She stated, “She starts off 

her argument with two concretes, so she could probably represent that more generally… 

represent that algebraically for all numbers.” Ms. Davilla maintained that arguments must 

also include strong connections between the specific example and the general case, 

preferably using algebra. 

Ms. Davilla: Classroom Treatment of Examples 

Ms. Davilla provided a mixture of different messages to her students regarding 

the role of examples in justification. On the one hand, she valued examples as a good 

place to start, and numerous times throughout both years’ implementations of the number 

trick task she implicitly endorsed naïve example-based arguments when sharing student 

solutions. However, she also made it clear that students must provide more explanation 

than examples alone. A common element in her instruction was extended use of a 

specific example to either explain an underlying mathematical property or as the starting 

point to build a more general (algebraic) argument.  Table 11 displays the results for the 

analysis of Ms. Davilla in each of the coding categories, organized by year and by task. 
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Table 11: Ms. Davilla's treatment of examples by task and year 

 Paige Davilla 
 Hexagon Task Scaling Task Number Trick  
 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 
Demonstration 0 0 12 6 3 2 
Generating 
Conjectures 

1 1 8 0 0 1 

Understanding 
how or why 
something works 

20 31 9 20 6 7 

Identifying 
Patterns 

2 1 0 2 1 1 

Testing 
Conjectures 

4 1 5 1 4 0 

Increase 
Conviction 

0 0 0 1 4 0 

Explaining or 
demonstrating the 
general argument 

0 0 4 3 2 3 

Build a general 
argument 

2 3 3 1 3 3 

Examples are not 
enough 

0 0 0 0 2 0 

Not possible to test 
all cases 

0 0 0 0 1 0 

Not practical to 
test all cases 

0 0 0 0 2 3 

Examples don’t 
explain why 

0 0 0 0 5 0 

Endorsed as valid 0 0 0 0 5 7 
 

Implicit endorsement of naïve empiricism 
 Multiple times throughout both years’ implementations of the number trick task, 

Ms. Davilla did not directly confront the validity of naïve empirical reasoning when it 

was suggested in her classroom. As shown previously, the following passage was a 

typical example of a whole class discussion in which one student gave an argument based 

on a set of examples, and Ms. Davilla did not refute it. 
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Student: They will always equal out.   
Ms. Davilla: Ok, how did you show that?   
Student: Um, we did whole numbers between 1 through 10. We did decimals 

too.   
Ms. Davilla: Ok, so we checked, we checked numbers 1 thought 10, and you said 

we checked some decimals too?   
Student: Yeah.   
Ms. Davilla: Some decimals, and these were the whole numbers right? Ok, other 

ways we established this? [emphasis added] 
 

Notice that rather than directly confronting the student, Ms. Davilla instead asked the 

class for other ways that the result was established. The implication was that counting 

examples was a way to establish the result, and other ways were also worth discussing. 

Later in the course of the lesson, Ms. Davilla explicitly explained that examples cannot 

verify a general claim, but in the moment students might be left with the impression that 

checking examples was one way to prove a result. 

Similar instances of not confronting or commenting on empirical arguments 

occurred throughout both years of the number trick task. This classroom work did not 

align with Ms. Davilla’s conception as stated in the interview and workshop settings: 

after the first summer session she was consistent in her evaluation that naïve empirical 

reasoning was not valid. It is likely that Ms. Davilla prioritized the pedagogical concern 

of honoring student thinking rather than the mathematical concern of validity. This 

tension relates to Ms. Davilla’s ongoing struggle regarding incorrect student answers. On 

the one hand, she deeply valued student participation and student autonomy in the 

development of their own thinking, which sometimes stood in contrast to her obligation 

to upholding mathematical truth. In this case, rather than confronting students in the 

moment with their naïve empirical reasoning, she waited until a different whole-class 

discussion to address the fact that examples alone are not sufficient. 
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Examples need explanation 
Ms. Davilla frequently encouraged students to use examples as a good starting 

place for mathematical exploration, but she also emphasized that examples should be 

accompanied by further explanation. For example, in the first year’s implementation she 

stated, “[The problem] says, ‘explain your reasoning,” Okay? You may be able to show 

some examples, and that's just fine, but you also need to write an explanation. Okay?” 

She communicated that she expected students to present more than examples: “Just don't 

show me a bunch of examples. You need to answer the question: ‘Will it always work for 

every …Will it always work?” Although she allowed students to present example-only 

arguments to the class and not confront them in the moment, she did state later that she 

expected students to include further explanation with the examples. In these cases it may 

not be clear to students whether the inclusion of an explanation is a mathematical 

necessity for establishing a general result, or if it is simply her preference as a teacher for 

showing one’s work. 

Building toward Algebra 
	
  Across every task implementation, Ms. Davilla leveraged specific examples 

toward more general, frequently algebraic, arguments. For example, in the first year of 

the hexagon task, she explored in detail the specific case of a train with 100 hexagons. 

She continued on by stating,  “So I want to be able to describe it as n, where we know 

that n means any number of hexagons. We want to be able to describe it so that I can pick 

a number and plug it in there [points to equation for specific example], and find the right 

answer.” 
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Similarly, in the first year’s implementation of the number trick task, she 

explicitly contrasted the power of single examples with the power of algebra to address 

the general case. She stated:  

So if we want to be able to prove something true for every number, we 
need to be able to go from these examples, all these different examples, 
to show that something will work generally: to show that something will 
work for every number. And the way that we do that is we start using 
our variables. We start using a variable, it means for any number, I can, 
this will work, and I can prove it.    
 

Much like Ms. Primm, Ms. Davilla pointed out that algebraic arguments could 

prove the general case. Also similar to Ms. Primm, Ms. Davilla made use of 

specific examples as a basis to build more general arguments. 

However, unlike Ms. Primm, Ms. Davilla described the algebraic method as 

easier than an example-based method, because an algebraic method did not require 

checking every example. In one conversation a student, Addison, suggested creating an 

algebraic rule. Ms. Davilla contrasted this with checking an infinite number of cases: “Do 

people like Addison’s homework better than my homework which was to do all the 

examples, infinite number? … I think we might like Addison’s idea better.” In this 

instance, students may be left with the idea that checking an infinite number of examples 

is a tedious way to verify a result, but not that it is mathematically impossible. Ms. 

Davilla implied that forming an algebraic rule was a useful alternative to checking 

examples, in part because it is faster than having to check an infinite number of 

possibilities. 

Generic Example Arguments 
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 Ms. Davilla’s practice was characterized by extended whole-class 

discussions that focused on a deep understanding of one particular example. In 

these discussions, Ms. Davilla greatly emphasized understanding why the 

mathematics worked in the specific example, and the conversations typically 

culminated in a co-created generic-example justification.  

For example, in the second year of the number trick task, Ms. Davilla helped 

orchestrate the construction of a generic-example argument by having students 

unpack the structure of one particular example. In this example, the original number 

is 9, and Ms. Davilla pressed the students to articulate where they saw each of the 

operations of the number trick within the computations of the specific example. For 

example,  

Ms. Davilla: Ok, so where is the 4 being doubled? Can you just repeat that 
one more time?... 

Student 8: Because you’re add 9 and 4 which is 13 and then doubling 13 so. 
Ms. Davilla: So the 4 gets doubled… 
Student 8: Because you’re doubling the 13. And it’s part of 13. 
Ms. Davilla: Can somebody else tell me why 4 is part of 13. Why is 4 part of 

13? Because he is saying that the 4 is getting doubled here (points to the 13). 
Why is 4 part of 13? 

Student 9: Because 4 plus 9 is 13. And 9 is the number we started out with. 
 
Notice the Ms. Davilla highlighted an important piece of the mathematics within 

the students’ reasoning about the example and had the students in the class clarify which 

operations were related to each number. In particular, Ms. Davilla made students “break 

down” each of the numbers to see exactly where the “doubling 4” was happening. This 

conversation eventually resulted in a co-constructed generic-example justification. (Refer 

to Table 12 for the equations in the trick.) 



	 151	

Table 12: Number Trick example with starting value of 9 

Number Trick Example 
PART 1 

9 + 4 = 13 
13 x 2 = 26 

PART 2 
9 x 2 = 18 
18 + 8 = 26 

 

Ms. Davilla: Can somebody else tell me where the two  4’s are? … 
Student 1: Um, in this one with the two 4’s, the first one is when you add 4 and 

then you multiply by 2 so that makes two 4’s. And in this one you’re adding 8 
because 4 times 2 is 8. 

Ms. Davilla: Ok, so that’s my two 4’s there. So I want to make sure we’re really 
solid on she said the 4 gets doubled here. Can somebody remind me again, I just 
want to make sure we’re clear on that. How are we saying that the 4 is getting 
doubled? I see a 9. Where the 4 is getting doubled I see a 13, I don’t see a 4. So 
where’s that 4 again. Where’s that 4? 

Student 2: Since the 4 is part of the 13 you’re doubling the 4 too. 
Ms. Davilla: Ok, is everybody ok with that? Is there any questions on that, that the 

4 is part of this 13 and the 4 is part of this 9? Yes, no?  So we’ve heard from a 
couple people that seem ok with that. Ok. And then can somebody then show 
me, does the other part of the whole sequence have 2 of the original number. 
Can somebody show us that? What do we mean by that? That there is 2 of the 
original number in each? Can you show that? Jiana, can you show that? 

Hana: So the original number is 9, right? So, when you multiply it by 2 there are 
two 9’s in 18. 

Ms. Davilla: Ok, so that’s part 2. Can you do the same thing for part 1? Show me 
that they’re two 9’s there. 

Hana: So 9 is part of the 13, because yeah. And since you’re doubling the 13, 9 is 
still a part of that so there’s 2 of them, so it’s doubled. 

Ms. Davilla: Ok, can we explain the “because yeah” part? So, you said 9 is part of 
the 13 because yeah. Could we elaborate on that part a little bit? 

Hana: Because 9 plus 4 equals 13, so… 
Ms. Davilla: So the 9 is part of the 13? 
Hana: Yeah. 
Ms. Davilla: And you said there is 2 because why? 
Hana: Because the 13 is doubled. 
Ms. Davilla: Ok, 13 is doubled. Ok, so in both parts we have two 4’s and two 

of the original number.   
 

In this passage, Ms. Davilla helped guide students toward an explanation of how the 

number trick worked for the specific example starting with the original number of 9. 
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Students were led to see how the doubling process took place in each of the rules, which 

formed the basis of a generic-example argument. 

 I consider Ms. Davilla’s case to be one of “moving toward the general.” She 

exhibited development in her understanding of empirical reasoning. By the end of the 

project she articulated strong understanding of various forms of reasoning and an 

insistence that naïve empirical reasoning was not valid. However, in her classroom she 

frequently chose not to confront students when they used examples to justify the general 

case. She also encouraged students to use examples as a starting place for their thinking, 

but consistently reminded them of the importance of explaining why. Unlike the other 

case teachers, Ms. Davilla’s classes frequently included sustained, detailed whole-class 

discussions in which a single example was analyzed in great detail, leading to generic 

example or fully algebraic argument. 

Discussion and Conclusions  

 One of the primary contributions of this paper was a framework illustrating 13 

ways teachers utilized examples within the context of justification activity. These uses 

included Pedagogical Uses of Examples, which represent the different ways teachers 

utilized examples to understand or explore the mathematics of the lesson, and Treatment 

of Validity of Examples, which catalogues how teachers addressed the validity of naïve 

empiricism. This framework shows that JAGUAR middle school teachers utilize 

examples in a number of rich and productive ways, many of which mirror the ways 

mathematicians use examples within lecture or proving activity. 

This paper also described three different teachers’ conceptions of empirical 

reasoning along with their treatment of examples in their middle school classrooms. All 
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three case teachers had well-articulated and sound understanding of the limitations of 

naïve empirical reasoning from a strictly mathematical standpoint: a single example is 

insufficient to prove the general case. However, even with this commonality the three 

teachers had a variety of understandings of empirical reasoning and differences in their 

treatment of empirical reasoning within their classrooms.  

Mr. Hummel valued naïve empirical reasoning as a valid form of justification for 

his middle school students, because he maintained that examples were convincing for 

students, and a justification should be a convincing argument. Within his classroom, 

students were encouraged to explore examples at length in developing and testing 

conjectures, and to gain conviction of the result. However, after students worked with 

examples, he encouraged them to “add why:” to describe mathematically why the 

examples work. 

Ms. Primm consistently stated that naïve empirical reasoning was insufficient for 

a justification. Early in the project her focus was on the mathematical insufficiency for 

addressing the general case; however, she soon included the criteria that individual 

examples alone do not explain why, which was her primary criteria in evaluating the 

validity of a justification. In her classroom, Ms. Primm was consistent that single 

examples were not a valid form of reasoning, and she redirected students toward other 

representations, such as diagrams, graphs, or algebraic equations, to explore and express 

their understanding. 

Ms. Davilla exhibited some growth in her thinking about example-based 

arguments over the course of the project. At first she was conflicted about the validity of 

naïve empirical reasoning, because it demonstrated student thinking but did not address 
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the general case. Later she resolved that examples alone were not justifications, but other 

forms of reasoning that include examples, such as generic-example based arguments, 

could be valid justifications. Her classroom practice included some implicit validation of 

example-based arguments, likely because of her stated value in honoring student 

thinking. Her classroom practice was also characterized by extended classroom 

discussions focused on single examples both to develop student understanding of the 

mathematics and to build toward a more general argument.  

 This study found that teacher treatment of examples in the classroom can be tied 

to a constellation of different factors, including a teacher’s content knowledge, definition 

or purpose of justification, and beliefs about teaching and learning. In particular, teacher 

content knowledge of empirical reasoning was evident across all cases. All three teachers 

agreed that naïve empirical reasoning did not address the general case, and all three 

teachers pointed out the limitations of such reasoning within their classrooms. Similarly, 

all of the teachers recognized that algebraic arguments were able to prove general case, 

and to a certain degree all of the teachers pressed their students to construct algebraic 

arguments.  

 While content knowledge of empirical reasoning was important, the enactment of 

that knowledge in the classroom was mediate by teacher understanding of the definition 

of justification as well as their view of the purpose of justification in the classroom. For 

example, Mr. Hummel’s definition of justification was “a convincing argument.” His 

belief that examples were convincing may have influenced his choice to have students 

explore examples before answering why. Similarly, all of the teachers believed that a 

justification should explain why and all of the teachers consistently leveraged examples to 
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have their students understand why. This is reflected in the dominant presence of the code 

Understanding how or why something works, which accounted for over a third of all 

codable instances of examples for these teachers. The teachers’ beliefs about what a 

justification is related to their treatment of empirical reasoning while teaching. 

Related to this, the teachers’ beliefs about the purpose of justification impacted 

their treatment of examples in the classroom. All of these teachers were unified in their 

belief that one of the primary purposes of justification was to deepen student 

understanding. Just as the mathematical community’s primary goal is (arguably) the 

generation of valid results, the middle school math community’s primary goal should be 

student learning. These teachers used examples to meet their instructional goals, which 

included deepening understanding of why something was true or worked. 

Finally, the their unique approaches to empirical reasoning in the classroom were 

also influenced by their individual beliefs about students and learning. For example, Ms. 

Davilla’s strong commitment to honoring student thinking and valuing student 

contributions may have led her to choose not to directly confront student’s example-

based arguments during whole-class discussions.  

Similarly, each teacher’s belief about their role as a teacher in the classroom 

influenced how tightly they coupled their press for examples with student thinking. For 

example, when Ms. Primm asked students to explain why with an example, it was 

typically in passing and did not link directly to a specific example or student thinking. A 

typical example was when Mr. Primm asked a student: “Can you explain why? Maybe by 

using a picture?” Ms. Primm’s role in the classroom was an orchestrator of proscribed 

routines: she relied on social protocols and general, mathematical prompts to advance the 
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mathematical agenda. In contrast, Ms. Davilla was more likely to use Understanding Why 

in extended, specific, connected work, such as her development of generic-example based 

arguments described previously.  Thus although the teachers all valued using examples to 

explain why, the degree to which they linked that work to student thinking or directed 

investigation differed among the teachers. 

This paper offers a significant contribution in understanding middle school 

teacher understanding of empirical reasoning, treatment of examples and the relationships 

between the two. This study found that knowledge of empirical reasoning was evident in 

teacher treatment of examples in their classes, however that treatment was influenced by 

a number of other factors, including their definitions and purposes for justification and 

their beliefs about students and teaching. These findings are consistent with the literature 

that teacher beliefs, goals and knowledge all have influence on one another and teacher 

practice (Aguirre & Speer, 2000; Bray, 2011; Leatham, 2006).  

This study provided evidence of teacher use of examples in the context of 

justification activity, but did not address the impact of examples on student learning. 

Future studies could consider the effects of using different types of examples in varied 

ways on subsequent student justification production. Similarly, this study provided 

evidence of teacher change in their development of their understanding of empirical 

reasoning, more work could be done to capture the nature of that growth, particularly in 

relation to the development of teacher practice. 
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Chapter 7: Scaffolding Mathematical Tasks to Support Student Justification 

Abstract 

Justification and argumentation have been identified as important elements of 

school mathematics at all grades (CCSSO, 2010; NCTM, 2000), however designing and 

implementing open-ended tasks that support student justifications is challenging work 

(i.e. Bieda, 2010). This case study explores two different implementations of a single task 

over the course of two years by the same teacher. In the first year, the task was structured 

as an exploration of patterns, which led to limited student justifications. In the second 

year the task was redesigned and led to generic example and model-based justifications. 

This case study describes how task scaffolds impact student reasoning: scaffolds that 

focus students toward numerical patters can led to result-pattern reasoning, while 

scaffolds that focus on key relationships early in a task and developing common models 

can support the development of stronger student justifications.   

Introduction 

Reform efforts in math education have focused on student-centered approaches in 

which students construct their own understanding under the guidance of a capable 

teacher. In this model students build upon their current ways of understanding toward a 

more sophisticated type of mathematical reasoning. “Open-ended” or “exploratory” tasks 

give students the opportunity to investigate problems utilizing their own mathematical 

thinking and the thinking of their peers, rather than “closed” problems for which the 

procedure is proscribed, typically by the teacher. In the absence of prescriptive rules set 

by the teacher, students are given greater opportunities for generating and testing their 
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own conjectures and supporting those conjectures through justifications. Teaching in this 

model requires a shift in pedagogical practices as well as a reformulation of curriculum to 

support student inquiry (Gravemeijer, 2004). 

Open-ended mathematical tasks allow for multiple solution strategies, draw upon 

different areas of math content knowledge, and allow varied types of student 

mathematical engagement (such as conjecturing, generalizing, and justifying). The nature 

of open-ended tasks provides opportunities for student justification. When no fixed 

procedure is specified and students can approach the problem using varied strategies, a 

greater burden is placed on students to assess the mathematical validity of their chosen 

problem-solving approach and subsequent solution. Dewey described the benefits for 

students in exploring open-ended tasks:   

This creates the openness that is essential for examining and improving the 
methods and for becoming full participants in the community. One of the 
most important factors in preventing an aimless and discursive recitation 
consists in making it necessary for every student to follow up and justify the 
suggestions he offers... Unless the pupil is made responsible for developing 
on his own account the reasonableness of the guess he puts forth, the 
recitation counts for practically nothing. (Dewey, 1933, p. 271, emphasis in 
original) 
 

This sentiment was substantiated by the work of Martin, McCrone, Wallace and 

Dindyal (2005), who found that open-ended tasks coupled with classroom discourse 

norms helped promote student conjecturing and justification activity. Justifications 

can take place outside of open-ended tasks, and not all open-ended tasks explicitly 

require justification, but they offer a starting place for greater student engagement 

in justification. In addition, tasks can be specifically design to prompt for 

justification.  
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It has been well documented that the pedagogies required for successful 

implementation of open-ended tasks are different from traditional lecture, and they can be 

difficult to master (e.g., Cohen, 1990; Simon & Tzur, 1999; Speer & Wagner, 2009; 

Wood, Cobb & Yackel, 1991). Encouraging justification in the context of these tasks 

adds an additional dimension of difficulty. Franke and colleagues (2008) found that 

simply asking students to explain their thinking does not consistently lead to 

explanations, and Martino and Maher (1999) found that students do not typically provide 

justifications when interacting with one another. Bieda (2010) found that even tasks that 

ask for justification rarely result in mathematically sound justifications. Bieda’s work is a 

more targeted exploration of a general phenomena described by Stein and others (2000): 

tasks written at a high level of cognitive demand frequently devolve into less challenging 

activity during the implementation of the task. Stein and her group examined 144 tasks as 

implemented in middle school classrooms and characterized the level of cognitive 

demand over the implementation of the task. They found that one tool teachers employed 

to maintain the level of cognitive demand was effective scaffolding of the task 

(Henningsen & Stein, 1997).  

Definitions of Scaffolding  

The term scaffolding was first introduced in 1976 by Wood, Bruner and Ross, and 

continues to be a popular metaphor to describe support of student learning through 

intentional structuring.  Over time, the term “scaffolding” has taken on a number of 

different definitions and connotations. Scaffolding has been characterized as a teacher 

directed activity, in which the teacher builds scaffolds for a student (Tharpe & Gallimore, 
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1998; Wood, Bruner & Ross, 1976), as well as a discursive activity, in which the teach-

student pair co-construct scaffolds (i.e. Rogoff, 1995).   

In math education, scaffolding has been both broadly and narrowly defined. For 

example, Anghileri’s (1995) characterization goes beyond the traditional metaphor of 

task scaffolding to account for a large array of classroom artifacts and activity that 

promote student learning. I consider Wood’s (1994) distinction between funneling and 

focusing to be a helpful characterization of different forms of scaffolding.  Funneling 

includes teacher questioning that guides students toward a particular solution or way of 

thinking about a topic. Focusing, on the other hand, involves teacher interactions that 

highlight particular aspects of the student’s thinking or problem features that are 

mathematically relevant.  It remains honest to the child’s thinking and places continued 

responsibility on the student for resolving the situation.  

Staples (2007) identified several types of teacher focusing behaviors that helped to 

guide students without limiting student’s thinking. To help students better share their 

ideas, the teacher might provide structure by posing questions based directly on a 

student’s thinking. These questions “provide a kind of cognitive, structural support while 

maintaining space for the student to contribute and develop his or her ideas” (p. 178). 

Similarly, a teacher might offer food for thought to help students persevere through 

difficult tasks by commenting on a particular aspect of student work or asking new 

questions related to their current thinking.  These types of scaffolding activities are 

consistent with Henningsen and Stein’s (1997) conception that “scaffolding occurs when 

a student cannot work through a task on his or her own, and a teacher or more capable 

peer provides assistance that enables the student to complete the task alone, but that does 
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not reduce the overall complexity or cognitive demands of the [intended mathematical] 

task” (p. 527). Scaffolding can help direct student attention to the important aspects of the 

task, reducing the cognitive load without compromising the intellectual agency of a 

student. 

In this paper, scaffolds are defined as mathematical resources that provide 

structure or information to guide the task. This paper does not focus on social scaffolds: 

the scaffolding of social interaction is a critical part of classroom instruction, but it is 

beyond the scope of this paper. While it is possible to present differentiated scaffolds 

based on the needs of specific groups or individuals, this paper is only concerned with 

those scaffolds delivered to the whole class. In this way, I use the terms “scaffolding” to 

describe the mathematical structuring of task as delivered to the whole class. 

Research on the Impact of Task Structuring 

 Evidence indicates that completely unstructured tasks can have limited impact on 

student learning (Alfieri, 2010; Kirschner, 2006; Mayer, 2004; Stein, Henningsen & 

Silver, 2000). Alfieri and colleagues (2010) conducted a comprehensive meta-analysis of 

164 studies comparing unassisted discovery learning, assisted discovery learning and 

explicit instruction. They found that unassisted discovery was less effective than direct 

instruction in most cases, although assisted or structured exploration was associated with 

greatest learning outcomes. These findings complement the findings demonstrated by 

Mayer (2004), that students demonstrate faster learning outcomes, more elegant 

solutions, and better retention when given some structure as opposed to independent 

reinvention. Henningsen and Stein (1997) also found that “unsystematic exploration” was 

a common cause for devolution of the cognitive demand of a task, accounting for the 
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decline in 11 of the 36 of the middle school classrooms that shifted from doing 

mathematics into a less cognitively demanding activity over the course of a task.  

Evidence indicates that tasks with proper scaffolding have a favorable impact on 

student learning when compared to unstructured tasks. Henningsen and Stein (1997) 

found that 73% of the tasks that maintained a high level of cognitive demand included 

scaffolding; for this study, scaffolding included structuring the task in a way that directed 

student attention to important aspects of the task without lowering the cognitive demand 

by “giving away” the solution method. Cognitive load theory (Sweller, 1994) provides 

theoretical support for appropriate task structuring: intentional task design can help 

reduce the cognitive load of a task by focusing cognitive activity directly on the 

meaningful elements of the task. By reducing distractors, more of a student’s cognitive 

capacity can be directed toward the important elements of the task without compromising 

the problem-solving activity associated with the task. 

 On the other hand, providing too much information or inappropriate scaffolds can 

undermine a student’s inquiry. Hsu, Kysh, Ramage and Resek (2009) found that over-

structuring algebra tasks led to lesser student learning. This group found that by 

“unstructuring” algebra tasks, the pass rates of students (particularly at-risk students) 

improved. Similarly, Stein, Grover and Henningsen (1996) found that one of the primary 

ways that teachers contributed to cognitive decline of a task was by providing too much 

information and eliminating the challenging aspects of the task. Indeed, the point of 

student-centered instruction is to allow students to construct understanding through 

exploration and argumentation. As Mayer states, “Students need enough freedom to 

become cognitively active in the process of sense making, and students need enough 
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guidance so that their cognitive activity results in the construction of useful knowledge” 

(p. 16, 2004). Research indicates that some structuring is warranted, but too much 

structuring can be detrimental. What is lacking in the current research is a description of 

how much or which types of scaffolds are effective in supporting justification activity.  

Linking Scaffolding to Forms of Reasoning 

 When students engage in justification, they employ forms of reasoning, or modes 

of argumentation, within their justifications. A form of reasoning is the type of argument 

used in a proof or justification. For example, generic-example based reasoning is a form 

of reasoning in which a specific example is reasoned about in a general way to make 

salient the features of the example that generalize. Generic-example arguments can have 

varying degrees of generality. Other forms of reasoning include result-pattern reasoning, 

in which a pattern is identified and assumed to hold, and process-pattern reasoning, in 

which a pattern is identified and the process that generated the pattern is explained. 

Particular features of the task design or implementation of the task may have an impact 

on how students reason about the task and what forms of reasoning they employ in those 

justifications. 

 Lannin’s (2005) work with 6th grade students found that result-pattern reasoning 

frequently emerged when working with numerical values found in a table. When numbers 

were displayed as a list in a table, students attend to the patterns in the numbers rather 

than the underlying mathematical processes that generated those numbers. While result-

pattern reasoning can be extended to process-pattern reasoning that explains why a 

pattern holds, on its own result-pattern reasoning is not a valid form of reasoning. Lannin 

(2005) also found that spreadsheets could be leveraged to promote generic-example 
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justifications, although the role of the teacher was pivotal in directing students toward the 

generic aspects of their arguments. 

Other researchers have also found that elements of a task impact how students 

reason about the task. Simon (1996) found that preservice teachers were likely to engage 

in transformational reasoning when working with area models in a geometry task. 

Transformational reasoning is a form of reasoning in which a student performs dynamic 

physical or mental operations on objects to transform the objects. High school students 

exhibited transformational reasoning when manipulating triangles while using dynamic 

geometry software (Sherman, 2012). It seems likely that the type of task, the 

representation of the task, and the scaffolds used to support the task might all impact the 

forms of reasoning students use as they engage with the task.  

Theoretical Framework 

The theoretical framework underlying the analysis of this paper is the 

Mathematical Task Framework developed by Stein, Grover and Henningsen (1996). In 

this framework, a mathematical task is a classroom activity designed to focus student 

attention on a specific mathematical idea. Mathematical tasks can be characterized as 

having high or low cognitive demand, although the level of cognitive demand is likely to 

vary through the phases of task implementation. Cognitive demand can vary between 

individual learners, but for this work it is analyzed at a classroom level based on the 

previous experiences of learning community. There are two types of low-level cognitive 

demand tasks: memorization and procedures without connection to understanding, 

meaning, or concepts (referred to as procedures without connections.)  A memorization 

task requires simple recall of a fact or definition, while procedures without connections 



	 170	

tasks typically take the form of applying a known procedure to a routine problem, and 

explanations are typically confined to a description of the procedure. High-level cognitive 

demand tasks include procedures with connections to understanding, meaning or 

concepts (referred to as procedures with connections) and doing mathematics. 

Procedures with connections tasks ask students to utilize a known procedure in a way 

that builds on conceptual understanding or meaning, such as connecting algebraic 

computation to pictorial representations. When doing mathematics, students are asked to 

explore relationships or draw mathematical conclusions based on tasks for which no 

procedure is known.  Students must apply previous understandings in new ways and rely 

on sense-making to guide their problem solving process. 

The mathematical task framework also describes three phases of task 

implementation (see  

 

Figure 11): tasks as they are written, either by the teacher or in curricular 

materials; tasks as set up or described by the teacher; and tasks as they are enacted by 

students in the classroom, which ultimately lead to student learning. The connections 

between each of these phases are mediated by additional factors. Factors influencing the 

set-up include teacher goals, teacher content knowledge, and teacher knowledge of 

students. In this study, because the teachers themselves were responsible for the design of 

the written task, those factors also influenced the written tasks. The factors that influence 

implementation include classroom norms, task conditions, teacher habits and dispositions 

and student habits and dispositions. One major finding in Stein, Grover, and 
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Henningsen’s (1996) work was the frequent decline in cognitive demand of tasks over the 

phases of implementation. 

 

Figure 11: The stages on implementation for the mathematical task framework (Stein, 
Grover & Henningsen, 1996) 

 This study examines all four phases of task implementation (tasks as they were 

written by the teachers, tasks as set up in their classrooms, tasks as implemented by 

students, and the subsequent student justifications). Analysis also includes the factors that 

influenced the creation of the written tasks, the set up of the written tasks, and the 

implementation of the written tasks. This study tracks the cognitive demand of the tasks 

over the phases of implementation with attention to how scaffolds impact the cognitive 

demand and forms of reasoning within student justifications.  

Research Questions 

 This case study investigates the relationship between task scaffolding and 

subsequent student justifications. How does teacher scaffolding of open-ended, 
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justification tasks relate to student forms of reasoning as they engage with the task? In 

particular, what are the relationships between tasks as written, tasks as set up by the 

teacher, and student forms of reasoning? Although it is recognized that scaffolds are 

helpful in structuring open-ended tasks, this targeted analysis will describe in more detail 

the types of scaffolds used in written task construction and implementation and the 

resulting student justifications. By linking scaffolds to forms of reasoning exhibited by 

students, this research could help inform the conjectured learning process by illustrating 

student justification activities associated with particular instructional tasks. Although this 

study is not intended as design research, it builds a base of knowledge to inform future 

development of instructional design to help guide teachers in supporting student 

construction of justification (Gravemiejer, 2004).  

Methods 

This investigation used a single case study design (Yin, 2009). One single teacher, 

Mr. Hummel, serves as the case. The case includes a description of his task 

implementation and revision over two years. The purpose of this study is explanatory; the 

detailed account of this particular case offers a compelling example of the relationships 

between task design, implementation, and subsequent student reasoning. 

 Mr. Hummel was a teacher participant in the Justification and Argumentation: 

Growing Understanding in Algebraic Reasoning (JAGUAR) project. The JAGUAR 

project was a bi-coastal research and professional development project that investigated 

the development of knowledge and pedagogy of middle school teachers to support 

justification practices in their classes. There were 12 teachers who participated in two 

years of the project. Each year consisted of a week-long summer workshop, three 



	 173	

working-sessions during the school year, and four classroom implementations of 

common justification tasks. 

 Mr. Hummel taught 8th grade in a midsized town in the northwest. The school 

population was approximately 75% minority, nearly 80% receiving free or reduced lunch, 

and 50% of the students at his school were classified as English Language learners, 

primarily native Spanish speakers. His classes were heterogeneously grouped. Prior to the 

start of the project, Mr. Hummel had taught 10 years all at the middle school level, the 

first two were middle school science and the rest were math. Mr. Hummel had 

participated in a number of previous professional development trainings, including 

development focused on promoting student discourse and training for students with 

English as a second language. 

The questions for this research were initiated by Mr. Hummel himself. Given his 

experience with the first years’ implementation of the task, he was very reflective 

regarding how the structure and implementation of the task contributed to student 

justifications. After the completion of the second year of the project, he collaborated with 

the author of this paper to formalize his reflections regarding the scaling task. This 

collaboration resulted in the submission of a practitioner article. This paper builds on the 

themes of the practitioner paper, but formalizes the investigation into an empirical study. 

Mr. Hummel’s Scaling Task was selected because of the strong relationship 

between task design and student reasoning. He revised the task in substantial and 

intentional ways between the two years. Both written tasks contained scaffolds to guide 

the students, but the nature of those scaffolds were very different. Additionally, these 

tasks both included strong student participation, which was necessary to evaluate the 
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student reasoning. Although Mr. Hummel serves as the illustrating case for this paper, the 

empirical investigation for this paper took place among seven of the participating 

JAGUAR teachers. While his case presents the strongest evidence for connections 

between student reasoning and task scaffolds, the types of scaffolds demonstrated in this 

paper were consistent with the other participating teachers. 

Written-Task Analysis Methods and Data Sources 

The general statement of the Scaling Task was: “How does scaling various 2-

dimensional [and 3-dimensional] figures impact the perimeter, area, and volume? Why?” 

Notice that perimeter of a figure scales proportionally with its side-lengths (i.e. if the side 

lengths double, the perimeter doubles); however, the area of a figure is proportional to the 

square of the side lengths (i.e. if the side-lengths triple, the area increases 9 times). The 

central question for this task was open-ended: there was no prescribed method for 

students to investigate this relationship. Depending on a teacher’s mathematical or 

justification goals, the task could be structured in many different ways to explore 

proportional reasoning, geometric representations, or algebraic modeling. 

Although the central question of the task was prescribed, Mr. Hummel was able to 

design the written task around the central question himself based on the content goals of 

his classroom. Additionally, he was given the opportunity to revise and refine his task in 

the second year of the project, based on how students engaged with the task in the 

previous year’s implementation and class composition. 

 The first stage of analysis focused on the task as written. Data for this stage 

included the written copies of the tasks given to the students in the classroom. The 

analysis was based on Stein, Grover and Henningsen’s (1996) concept of task features, 
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which are elements of a task that develop mathematical understanding and reasoning, and 

include the use of multiple solution strategies, multiple representations, and prompts for 

explanations. The goal of the task analysis was to describe the task features, particularly 

those related to promoting justification. For this analysis I generated an analytic 

framework of task features that pertain specifically to justification tasks. These task 

features included: (1) Examples – are students asked to explore individual examples, sets 

of examples, or general examples? (2) Representations – are students asked to consider 

specific types of representations or the links between representations? And (3) 

Justification – are students specifically prompted to justify? These task features are 

summarized in Figure 12. 

 

Figure 12: Framework for analyzing task features of the written task 

1) Examples: Does the task ask students to demonstrate an idea using 
examples? 

a. Specific examples 
b. Generalized examples 

2) Representation: What types of representations (tables, graphs, 
diagrams, equations, narratives) are required for the task? 

a. Does the task require a specific representation? 
b. Does the task ask students to link representations? 

3) Justification: How are students prompted to justify? 
a. Does the task specifically ask for a justification? 
b. At what stage(s) in the task are students asked to justify? 
c. Does the task provide criteria for that justification? (Specific 

items that need to be included in the justification?) 
 In addition to the task features, the Factors Influencing the Creation and Set Up 

were also analyzed. These factors include teacher goals, teacher content knowledge, and 

teacher knowledge of students (Stein, Grover & Henningsen, 1996). The primary data 

source for this analysis was Mr. Hummel’s reflective journal (See Appendix D for full 
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reflective journal protocol). Prompts for the reflective journal included, “What is the 

primary goal for this lesson” and “What kinds of justifications do you expect students 

might produce as they work on the task for this lesson?” Data for this analysis also 

included discussions within the working sessions and interview questions pertaining to 

the task creation. The data sources were reviewed to locate passages concerning Mr. 

Hummel’s designing of the scaling task. Instances within those passages were identified 

that pertained to the goals of the lesson, knowledge pertaining to the lesson, or 

knowledge about students relevant for the lesson.  

Task Set Up and Implementation Methods 

The second stage of analysis focused on the task as set-up in the classroom. Data 

for this stage of the analysis included classroom transcripts of the classroom 

implementation of the task. The analytic framework used for this analysis was based on 

Jackson and colleague’s (2013) work on setting up complex tasks in middle grades 

classrooms. They identified four key elements of effective task set-up: 

1. Key contextual features of the task scenario are explicitly discussed.  
2. Key mathematical ideas and relationships, as represented in the task statement, 

are explicitly discussed.  
3. Common language is developed to describe contextual features, mathematical 

ideas and relationships, and any other vocabulary central to the task statement 
that might be confusing or unfamiliar to students.  

4. The cognitive demand of the task is maintained over the course of the setup.  
 

Excerpts in the classroom transcript were identified that pertained to the set-up of the 

task. These excerpts were typically at the start of the class: however, because each task 

had multiple stages, the set-up for each stage was analyzed. The transcripts of each 

excerpt were reviewed and elements from the above framework were identified. 
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Beyond the task set-up, the analysis also included a review of the factors 

influencing implementation. These included classroom norms, task conditions, and 

teacher and student habits and dispositions.  The goal of this analysis was not a 

comprehensive description of classroom culture: instead the analysis was a comparison of 

the classroom cultures across the two years’ implementations of the task. Rather than 

conducting an independent analysis, the results from Staples’ (unpublished manuscript) 

previous analysis were summarized. Staples’ work included a description of Mr. 

Hummel’s general pedagogy and approach.  

Tasks as Enacted by Students and Student Learning Outcomes Analytic Methods 

 The final phase of analysis focused on both the task as enacted by students and 

student learning outcomes. Many of the student justifications (which are considered 

“student learning outcomes”) were presented during the enactment of the task. The 

student justifications (an outcome) impacted future enactments, thus the enactment and 

outcomes were analyzed collectively. 

The scaffolds present during the enactment by students were analyzed in an 

iterative fashion. First, instances of whole-class scaffolding were identified. These 

scaffolds consist of instances in which Mr. Hummel provided students with mathematical 

resources that gave structure or information to guide the task. This could be done directly 

himself or by intentionally selecting students to present mathematical ideas. Next, the 

content of each scaffold was analyzed in terms of its use of examples, representations, or 

press for justification, as described previously.  

Student justification activity was analyzed for each of the task implementations. 

Student justification activity was identified by the verbal justifications in the lessons and 
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also included the written student work. The work was analyzed along two dimensions: (1) 

the form(s) of reasoning present in the work and (2) the completeness and validity of the 

argument.  

The analytic framework for forms of reasoning used for this analysis was based 

on Larsen and James (manuscript in progress). These include:  

• Single empirical examples 
o Naïve empirical reasoning: invalid reasoning that a general result can be 

proven based on the existence of an individual case 
o Counter-examples: a single counter-example disproves a general statement 

• Sets of examples 
o Dissimilar set of examples: invalid reasoning that a general result can be 

proven based on the existence of a set of “random” or “different types” of 
examples 

o Proof by exhaustion: every possible example is considered 
o Result-pattern reasoning: a pattern is identified in a set of examples and 

assumed to hold 
o Process-pattern reasoning: a pattern is identified in a set of examples and 

an explanation is given as to why the pattern must hold 
• Generic Examples: a single example that is reasoned about generally. Generic 

examples lie on a continuum from examples with little generalization to almost 
fully generalized arguments. 

• Transformational Reasoning: reasoning about mathematical objects by 
performing dynamic physical or mental transformations of objects  

• Appealing to Known Information: appealing to arithmetic facts, algorithms, 
equivalent statements, or mathematical metaphors. 

• Model-Based Reasoning: a specific sub-type of Appealing to Known Information, 
model-based reasoning is based on an agreed upon mathematical model, such as 
the long division algorithm. 

Results 

 In this section I present the results of the analysis. I begin with a description of the 

results for the first year, which includes the written-tasks analysis, the set-up analysis, 

and the analysis of the implementation and student outcomes. Next, I present the same 

sets of analyses for the second year. 
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Results Year 1 

In the first year, students explored the side-lengths and areas for many different 

figures and many different scale factors (see Figure 13). According to Mr. Hummel, the 

primary mathematical goal was for the students to use numeric patterns to understand the 

relationship between scale factor and area of similar shapes. He stated, “Justification will 

give students the opportunity to elaborate on observations they make about numeric 

patterns, in order to construct the relationship between scale factor and area of similar 

shapes. Justification will also help students build the bridge between generalization and 

application.” In addition, students were expected to generalize the relationship to any 2-

dimensional figure.  

When reflecting on his expectations for how students would approach the task, he 

stated, “I believe students will mostly use examples when justifying … using illustrations 

or diagrams.  If they are comfortable working with algebraic expressions, they might use 

the area formulas for various 2D shapes to justify their reasoning.” Mr. Hummel 

anticipated the possibility of multiple representations of student reasoning within their 

justifications (diagrams, algebraic equations), and he believed that most students would 

use example-based reasoning in their justifications. 
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 Figure 13: Task as written in year 1 

The written task was intentionally designed to assist students in finding 

relationships among numeric patterns, which aligned with the goal of the task (Figure 13 

displays the task as written for the first year’s task). The first part of the task led students 

to explore a patterned set of examples: each row on the spreadsheet corresponds to a 

specific scale factor and each section of columns corresponded with a specific shape. 

Once students completed the table, students were then asked to form a generalization. 
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Students were asked to apply their conjecture to a generalized shape in the final stage of 

the task. 

The written task never explicitly asked for a justification: instead students were 

instructed, “Explain how (and why if you can!) this relationship works.” This prompt did 

not explicitly require students to justify the relationship: instead the prompt requires 

students to “explain how” the relationship works.  

Stein, Smith, Henningsen and Sliver (2009) would consider the task as written to 

be “procedures with connections,” which is a high-level cognitive demand task. 

Procedures with connections tasks “focus students’ attention on the use of procedures for 

the purpose of developing deeper levels of understanding of mathematical concepts and 

ideas.” In this case, the procedure was using familiar formulas to calculate areas of two-

dimensional figures. Students then used those calculations to connect the relationship 

between the area of a figure and the area of a congruent, scaled up figure and to apply 

that reasoning to a general shape.  

Task Set-Up Year 1 
In the first year of the task, Mr. Hummel spent nearly 15 minutes setting up the 

task. Much of the scaffolding Mr. Hummel introduced in his set-up aligned with Jackson 

and colleagues’ (2013) framework for high-quality set-ups for complex tasks he 

collaborated with students to establish common understanding of vocabulary, procedures, 

and ideas needed for the task. At the start of the set-up for the Scaling Task, he reminded 

students of their experience scaling figures in a previous scaling task of 2-D figures. In 

that conversation, he guided students toward the definitions of similar and scale factor, 

two key vocabulary terms needed for the task. 
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 Next, Mr. Hummel demonstrated how to scale up a rectangle.  He explained, “If I 

have a scale factor of 4, I make everything 4 times as big.  So this gets 4 times as tall, and 

this gets 4 times as long…. So we are going to explore what happens to the area when we 

increase things by a scale factor.” To which a student responded, “Oh, I get it.” The 

student’s indication of understanding demonstrated that demonstrating scaling was likely 

an appropriate scaffold: the student developed understanding of a necessary skill to 

access the task. 

Finally, to be sure that the class had access to the procedures necessary for the task, 

Mr. Hummel reviewed the area formulas of each of the shapes in the Scaling Task. The 

following interchange was typical of the interaction: 

Mr. Hummel: Ok, our first rectangle, our original rectangle is a 1 by 2.  So 
fill in the area of that first rectangle. So Greg, what is the area of that 
first rectangle? 

Greg: 2 
Mr. Hummel: 2. Why?  
Greg: Um, you multiply the one times 2. 
Mr. Hummel: Yeah, one times 2. So the first rectangle is just one times two, 

would be two. 
 

The review of area formulas included student explanations of steps in their procedures. 

These elements of high quality set-up may be in part due to his extensive experience and 

training when working with English Language Learners. While all of the students in his 

class were no longer receiving support as non-native speakers, the majority of the 

students in his class did not have English as their native language. Mr. Hummel’s direct 

and intentional focus on mathematical vocabulary and context features when setting up 
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the task were especially helpful for students who did not speak English as a native 

language. 

 Although Mr. Hummel’s set-up included many of the elements of strong set-ups 

identified by Jackson and colleagues (2013), his set-up also included over-scaffolding 

that contributed to the decline in the cognitive demand of the task. Once students were 

given a copy of the task and asked to begin working, Mr. Hummel saw a common student 

error and chose to intervene. He saw that students were computing the area of the scaled 

up figure by multiplying the area of the original figure by the scale factor rather than 

computing the new area using the scaled up side lengths (see Figure 14). 

	

Figure 14: Illustration of common student misconception. 

  

	

Student	Error	

Area:	2	
sq.	units	

Original	Rectangle	

1	

2	

Scaled	Side	length	x		
Scaled	Side	Length	=	

Scaled	Area		
	

3	x	6	=	12	square	units	
	

Scaled	Rectangle	

6	

3	

Scale	
Factor	3	

Old	Area	x		
Scale	Factor	=	
	Scaled	Area		

	
3	x	2	=	6	square	units	
	The	original	1	x	2	rectangle	is	scaled	up	by	a	factor	of	3.	The	resulting	scaled-up	rectangle	

is	3	x	6	and	has	an	area	of	12.	A	common	student	error	was	to	compute	the	scaled	area	by	
multiplying	the	original	area,	2,	by	the	scale	factor,	3,	arriving	at	an	incorrect	scaled	area	
of	6.	
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Mr. Hummel knew that if the students computed the scaled-up area incorrectly, 

they would not be able to discover the correct relationship based on a pattern of incorrect 

values in their table. He instructed the class in the following way: 

Just to be really, really, really clear. Every eye up here please.  Stop 
whatever you are doing. I need your eyes up here. Just to be really clear. 
You can't just multiply the areas by the scale factor. It is not right. Ok. 
Whatever you have for the areas, you can't just multiply by 3 for the third 
row and 4 for the fourth row. You actually have to calculate the areas given 
those side lengths. Does that make sense?  
 

The relationship between scale-factor and area was a critical mathematical idea for the 

scaling task. By directly telling students how to calculate the scaled-up area, the cognitive 

demand of the primary task declined from procedures with connections to procedures 

without connections. As written, the task was one of “Procedures with Connections” 

(Stein, Grover & Henningsen, 1996), because although students needed to use proscribed 

procedures, the procedures were being used to develop conceptual understanding of the 

relationship between scaling and area. However, by restricting students to follow a 

particular procedure without a strong explanation why, the use of procedures became 

“opaque with respect to the underlying concepts” (p.6, Stein et al., 2000), and thus 

reduced the cognitive demand of this portion of the task to “Procedures without 

Connections.” Instead of telling them the procedure, he might have maintained the 

cognitive demand of the task by instead taking up their misconception and asking them to 

verify it using a different approach, such as through the use of a diagram. 
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Factors Influencing Implementation Year 1 

 According to Stein, Grover and Henningsen (1996) the primary factors that 

influence task implementation are classroom norms, task conditions, and teacher and 

student habits and dispositions. While a detailed description of these factors is beyond the 

scope of this paper, a brief synopsis provides both a context for the enactment of the task 

and evidence of the consistency of classroom culture between both years of the task. 

These results align with those found by Staples’ (unpublished manuscript). 

 Mr. Hummel’s classroom was arranged with desks in groups of four, and he used 

both whole-class and small-group formats. The first year’s implementation of the Scaling 

Task took place over 136 minutes of instructional time, with more time spent in groups 

than whole class.  

 In the small group time Mr. Hummel worked directly with students’ mathematics. 

He commonly focused on an individual student for an extended period of time, 

questioning and helping to develop a particular student’s idea. He occasionally asked 

other students at the table to weigh in on the idea or to share their own ideas. His work 

with students focused closely on the written task: he rarely discussed mathematical ideas 

outside of the specific task questions, with the exception of explicating background 

content needed to access the task. Students in the class generally exhibited a high level of 

engagement, and worked both individually and collectively to complete the written task. 

Students had access to and made use of calculators while completing the task. 

 After the initial set-up, whole class time was used primarily to “share-out” student 

strategies, making use of a document camera to display student work. In this lesson, Mr. 

Hummel had several whole-class “sharing” sessions in which students described the 
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results they found in their tables and how they arrived at their results. Mr. Hummel asked 

students whether they agreed with the results, but did not use whole-class time for 

lengthy discussions or to improve incomplete solutions. 

Task Enactment and Student Outcomes Year 1 
Many students in the class arrived at a conjecture for the relationship between 

areas of scaled up figures and the original areas, however none of the students offered a 

valid justification for this relationship. For example, in one extended interaction Mr. 

Hummel helped facilitate a discussion that led a pair of students to a correct conjecture, 

but the students were not strongly pressed to explain why their conjecture held. At the 

start of the interaction, the pair of students noticed that the original area divided evenly 

into all of the scaled-up areas:  

Mr. Hummel: Okay, so you guys have filled out the whole table?  Alright. So now, so 
what about the first question.  So what did you notice? What relationship? 

Student 1: The original area is factors of all of the other areas. 
Mr. Hummel: Ok, so what do you mean? 
Student 2: So 1 [points to the area of the original square] is a factor of all of these [points 

to the column that contains the areas for the scaled up squares]. 2 [points to the area 
of the original rectangle] is a factor of all of these [points the to column that contains 
the areas for the scaled up rectangles].  3.14 [points to the area of the original circle] 
is a factor of all of these [points to the column that contains the areas for the scaled 
up circles], .5 [points to the area of the original triangle] is a factor of all of these 
[points to the column that contains the areas for the scaled up triangles]., and 1.5 
[points to the area of the original trapezoid] is a factor of all of these [points to the 
column that contains the areas for the scaled up trapezoids].[Figure 15 illustrates the 
regions of the table to which the student is referring.] 

Mr. Hummel: Nice! 



	 188	

 

 

Figure 15: Student work for scaling of shapes. The yellow highlighted regions are the 
original areas, and the red highlighted columns are the areas for the scaled figure. 

Notice that these students are relying on result-pattern based reasoning. They see a 

pattern in the table of values (as indicated by their description of the columns), and they 

conclude that the pattern will hold. 

Continuing in the conversation, Mr. Hummel directed the pair’s attention to the row 

in the table of scale-factor 2, and by examining the entries in the table the students 

concluded, “That the scale factor of 2, the area is 4 times bigger than the original area.” 

Next Mr. Hummel directed their attention to other scale factors, resulting in the following 

exchange. (The student work being referred to is color coded in Figure 16.) 

Mr. Hummel: So what did you guys notice? 
Student 2: That this number [points to scale factors in green] squared equals that one 

[points to column in blue].  And this [scale factor squared in blue] multiplied by 
the original area equals the new area. 

Mr. Hummel: Alright, so explain how, how does it work, like for 10 for like a 
trapezoid? 

Student 1: So 10 squared equals 100. Multiply that by 1.5, is 150. 
Mr. Hummel: Alright, so in your own words, what is the pattern. What did you 

notice? What is the relationship? 



	 189	

Student 2: That whatever you are increase the scale factor by, you square that 
number, multiply by the original area, and that gives you the new area of the 
new shape. 

Mr. Hummel: Alright! (said in a complimentary tone)  

 

Figure 16: Student work of the scaling of shapes. The green column indicates the scale factor. The blue 
column is the scale factor squared. The brown cells and arrows display the steps in the computation of the 
area of a scaled up trapezoid.  

This was another example of result-pattern reasoning. Like the students in Harel’s 

study, these students were “relying on the regularity of the results of their 

calculations” (p. 11, 2001) to explain their claim, which he classified as result-

pattern reasoning. Their results were based on a computation, but the computation 

originated from observing a regular pattern within the table. This is not considered 

process-pattern reasoning because the students do not display an understanding of 

how their computation connects to an underlying process independent from their set 

of examples. 

 To follow up this pair’s claim, Mr. Hummel asked them why the 

relationship held: 

Mr. Hummel: So now I'm going to challenge you to see if you can figure out, 
uh, why. (looks at both students) 

Scale	factor	squared	

Times	the	original	area	

Equals	new	area	
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Student 1: What? [laughs] 
Mr. Hummel: (to a third student in the group) So, did you understand the 

relationship?  What they are saying it is? 
Notice that rather than spending focused time pressing the pair to explain why the 

computation was valid and generate a complete justification, he instead turned to 

the third group-member to see if that student understood the conjectured procedure. 

In this way, Mr. Hummel focused on having a community understanding of the 

conjecture, but did not focus on pressing the students for a more complete 

justification. 

 Several other groups arrived at an alternate, valid procedure for finding the area of 

the scaled up figure. Rather than considering the scale-factor squared multiplied by the 

original area, students multiplied the scale-factor by the original area and then again by 

the scale factor. A student explains the procedure to find the area of a rectangle (of 

original area 2) that has been scaled by 15: 

Mr. Hummel: If I gave you like the 15th [scale factor], what would you do? 

Student 7: The 15th, times- 
Student 8: [simultaneously] 15 plus 15. 
Student 7: Well, yeah, 15 times 2, which would be whatever that other number 

would be, and then 15 times that number which would give you the answer. 
 

In particular, Student 8 has abstracted the process so that it is no longer “scale factor 

times original area time scale factor.” In this special case where the original area is 2, the 

student conceptualized the computation as “(scale factor plus scale factor) times scale 

factor.” This procedure was invented by looking at patterns in the numbers of the table, 

because they cannot be connected in meaningful ways to either geometric or algebraic 

properties of scaling. This reasoning is a weak form of result-pattern reasoning: the 
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students see a regular pattern in the results of their computations and assume it must hold. 

The reasoning is weak because they never fully state a generalized version of their claim. 

In their written work, very few students offered any explanation for the 

relationship between scale factor and area. Of the 24 students, 7 left the explanation 

portion blank. 12 students gave partial explanations such as “they both increase” (See 

Figure 17).

 

Figure 17: Student partial explanation for relationship between area and scale 
factor 
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Five students stated the correct procedure to find a new area, but none of those gave a 

justification for the relationship. For example, the student below recognized that the area 

of the scaled up figure would be equal to the area original figure multiplied by the square 

of the scale-factor (see Figure 18). However, the student did not support his reasoning 

with either a geometric or algebraic argument.

 

Figure 18: Student statement of the relationship between area and scale factor 

In summary, in the first year of the Scaling Task the written task was scaffolded 

so that students filled out a table for the areas and perimeters of different shapes with 

different scale-factors. In the set-up of the task, Mr. Hummel provided further scaffolding 

that caused a decline in the cognitive demand of the task: he directed students to find a 

scaled up area using a particular procedure to ensure they arrived at the correct value. 

Many students were able to find a pattern within their table, but they were not able to 

justify why the pattern held. Much of the student reasoning was typified by result-pattern 
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reasoning: identifying a computational pattern based on examples and assuming that the 

pattern would hold.  

Results: Year 2 

After the first implementation of the task, Mr. Hummel reflected, “I think that … 

the task was too guided and not open-ended enough for these justifications to occur… I 

felt like I moved on from the squares (and rectangles) too quickly and the way that we 

designed and implemented this task didn’t allow for enough exploration and discussion 

about why the scale factor/area relationship works.” Based on his experiences with the 

task in the first year, Mr. Hummel made a number of revisions to the written task to 

encourage students to better justify why the relationship between the scale factor and the 

area held. The revisions began with a shift in the mathematical goals away from 

generalizing based on number-patterns and toward understanding why the pattern existed 

using both algebraic and geometric representations. Mr. Hummel commented, “The goal 

last year was for students to be able to generalize this relationship, and the focus this year 

will be more on students understanding the relationship” [emphasis added].  

 To this end, the written task for the second year included scaffolding that helped 

students understand the scaling of a single shape, Squary, for various scale factors. 

Students were asked to justify every answer, even in the early, computational stages of 

the task. Additionally, students were explicitly required to provide a convincing argument 

as to why their rule for scale factor always worked.  Students were prompted to include a 

picture or diagram to help support their arguments.  

After the investigation with Squary, students were asked to explore other shapes. 

Mr. Hummel explained, “The second part of the lesson will then build upon what they’ve 
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discovered with Squary to extend their reasoning to other 2D shapes (with a 3D option).” 

A copy of the written task for the second year is in Figure 19. 
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5) Write a rule for how to find Squary’s new area for any scale factor. Explain how 

your rule works. 

6) Provide a convincing argument that clearly shows why it always works. Include a 

picture or diagram that helps support your argument. 

7) Summarize – Complete the sentence below: 

To obtain the new area of any square, increased by any scale factor you have to 

… 

Figure 19: Written task for the Scaling Task in Year 2 (questions 5-7 were written on the 
back of the sheet) 

 The task as written in the second year could also be classified as “Procedures with 

Connections.” Again, students were asked to use known procedures for scaling figures 

and area formulas for computing area with the goal of gaining a deeper understanding of 

a relationship between area and scale factor. However, the scaffolding to support this 
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exploration differed significantly from the first year’s task. The second year’s task had 

explicit scaffolds to guide the exploration of a single example in detail rather than 

focusing on finding relationship in numerical patterns. 

Task Set-Up Year 2 
 The task set-up in the second year was minimal compared to the first year. Unlike 

the first year, Mr. Hummel did not set-up the mathematical ideas or relationships needed 

to access the task. Mr. Hummel had a couple of brief discussions about the definitions of 

some key terms, such as justify and affect. Unlike the previous task, he did not explicitly 

review area formulas, but instead responded to students in the moment when they were 

working with a particular figure. In terms of Jackson et al.’s (2013) framework, Mr. 

Hummel included only a minimal number of elements associated with high-quality set-up 

of a task: his inclusion of the defining of specific vocabulary terms. 

 In the second year’s set-up of the Scaling Task, there was no decline in the level 

of cognitive demand of the task during the set-up. In the first year he directly told 

students that the scaled-up area could not be computed by multiplying the previous area 

by the scale factor. In the second year his approach was more student-led. After students 

had done a single example on their own of doubling the side lengths and computing the 

area of a square with side-length 3, he had the following conversation: 

Mr. Hummel:  Okay.  Don't look at your papers right now.  Just look up here.  If 
somebody asked me and I had to answer right away- and somebody said 
you're going to take the side lengths and double it.  What's going to happen to 
the area?  My response might be? 

Student:  It doubles. 
Mr. Hummel:  Right.  Why?   
Student:  Cause you just doubled it. 
Mr. Hummel:  Cause you just doubled it.  Was this area 18? [The original area 

was 9.] 
Class:  No. 
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Mr. Hummel:  No.  What if I said you're going to the take the side length and 
triple it. I might say well, the new area is going to be three times, right?  But 
is it? 

Class:  No. 
Mr. Hummel:  No.  It's not. Okay, so you're finding that the areas are not just 

doubled and tripled. So something's happening here. So when you have a 
scale factor of 2, it’s not twice as big as far as area goes. Scale factor of 3 
isn't 3 times as big. 

 
In this passage Mr. Hummel addressed the common misconception from the previous 

year, but unlike the previous year he did not give a proscriptive procedure to address the 

problem. Instead he had students refute the faulty conjecture with their own evidence and 

positioned the question as one for further exploration. With this scaffold he was able to 

direct student attention to a common misconception while still maintaining the level of 

cognitive demand of the task. 

Factors Influencing Implementation Year 2 

 The classroom norms, task conditions, and teacher and student habits and 

dispositions were similar to the previous year’s task implementation. Class time was still 

split between whole-class and group-work time, with more time in group-work. The total 

amount of class time spent on the scaling task in the second year was 136 minutes, 

compared to 134 minutes in the first year. Like the previous year, Mr. Hummel focused 

on developing students’ mathematics during group work. He would work for extended 

periods with a single student or a group of students, often asking for input but not directly 

scaffolding conversations between students. His whole-class time was spent reporting 

student solutions. These results align with those identified by Staples’ (unpublished 

manuscript). 
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Task Enactment and Student Outcomes Year 2 

 The justifications students produced during the second year of the task were more 

varied and complete than those of the first year. Although there were only a handful of 

complete justifications in the second year, they included a variety of different forms of 

reasoning, including generic examples of different degrees of generality, model-based 

reasoning and transformational reasoning. 

 One student, Nate, generated a generic-example justification that utilized 

transformational reasoning. Nate’s pictorially represented argument for the relationship 

between the area of the original square and a scaled-up square is presented in Figure 20. 

The original square was in the bottom left corner of his diagram, and Nate explained that 

when scale it up by seven, “It will be seven times as big in both directions” and thus the 

total new area will be seven times seven, or 49 times the original area. This justification 

relied on generic-example based reasoning, because although he illustrated his argument 

using a single example of a scale-factor of 7, he reasoned generally about how the 

relationship would hold for any scale factor. His justification also relied on 

transformational reasoning: he envisioned the expanding square and conceptualized the 

copies of the original square within the scaled-up square as it expanded.  

 

Figure 20: Nate's generic-example argument for the area of a scaled-up square 
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This justification served as an important model for subsequent justification 

activity of other students in the class. Mr. Hummel intentionally selected Nate to present 

his argument to the whole class. He explained his rationale: “[Nate] not only had a 

general rule, but was also able to present a convincing argument to the class with a 

picture and explanation to support why the rule worked.  I really liked this because I felt 

it was key to be able to extend the task into different shapes for the entire class to be on 

board with this generalization and to have a good visual representation for why it 

worked.” Mr. Hummel’s choice to have Nate share his justification was a way for Mr. 

Hummel to scaffold future student justifications. 

For example, in the second phase of the task students chose a shape other than a 

square in their exploration. Kay modeled his justification for the scaling of a 

parallelogram directly from Nate’s justification from the previous day of class (Figure 

21). 

Kay: Alright, I got original area times scale factor squared. 

Mr. Hummel:  Okay. And can you explain your picture?  Why that works there? 

Kay:  Uh- this is the original one right there [pointing to the bottom left 

parallelogram]. That one is the original and then times 2, 3, 4... [outlining each scaled 

up parallelogram on his drawing as he counts] And then times 3 squared would be 9. 

	

Figure 21: Kay's picture of a scaled up square and parallelogram 
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 This student also displayed transformational and generic-example forms of 

reasoning in his argument that the area of a parallelogram scaled by a factor of three 

would have 9 times the area. This justification was also model-based: Kay was basing his 

justification on the model that was constructed by Nate in the previous class period. In 

this case the justification was based on both the scaffolding of the written task and the 

scaffolds that occurred in the implementation. Kay based his justification on his 

understanding of how scaling affected the area of the square: thus an important 

component was previous exposure to the square in the flow of the written task. Also, 

Kay’s work was based on scaffolds during the implementation of the task: Nate’s 

presentation became a model for Kay’s justification of the parallelogram.  

The strength of the justifications in class was mirrored by stronger written 

justifications compared to the first year’s written justifications. Of the 31 students who 

submitted work, only 3 students left the justification portion blank. Of the remaining, 14 

gave incomplete or incorrect arguments (8 of which were “pseudo” algebraic arguments 

that contained a valid algebraic expression but insufficient reasoning for a justification). 

Nine students gave a algebraic argument with a form of reasoning best characterized as 

“Appeals to known information.” The student in Figure 22 provided a typical justification 

of this kind, in which she described the process for computing the area of a scaled-up 

square whose original side length was 3. It was general in the sense that it held for any 

scale factor, and it appealed to known information because relied on the formulas for 

scaling side-lengths and area as its warrant. 
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Figure 22: Student appeals to known information as the form of reasoning in this 
justification 

Six students gave justifications similar to Nate and Kay’s justifications described 

previously. These justification could be characterized as “model based” because they 

relied on Nate’s justification as a model. All of which were also generic examples 

(because the pictorial representation was of a specific figure that was reasoned about 

generally), and the degree of generality varied in terms of how closely the general 

argument was connected to the specific shape. The student’s work in Figure 23 also 

indicated transformational reasoning: the arrows in the diagram indicate an imagined 

enlarging of the rectangle to accommodate the inner four rectangles of original size. 
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Figure 23: Student diagram indicates the scale factor of 2 results in a rectangle with 4 
times the area 

 Only one student produced a pattern-result argument (shown in Figure 24) in the 

written work of the second year. This student listed out several values in a table and 

assumed that the pattern would hold, but did not justify why. 
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Figure 24: Pattern-result reasoning is indicated by the table of values: the student 
assumes the pattern will hold by does not justify why 

 Overall, the justifications offered in the second year were more developed and 

exhibited more varied forms of reasoning than in the first year. The structure of the task 

in the second year had a direct impact on student justifications: students focused on a 

single shape and were asked to make meaning of their operations in the early stages of 

the task. Structuring the task to include a rationale for a rule (algebraic equation) and a 

diagram helped students connect their understanding of the geometric scaling process 

with algebraic operations. Also, a student presentation of a strong justification served as a 

model for subsequent student justifications.  

Discussion and Conclusions 

The research indicates that scaffolding open-ended, mathematical tasks can be 

both valuable and problematic. Too little structure and students are less likely to arrive at 

a specific targeted understandings, while over-scaffolding inhibits student exploration 
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and can decrease the cognitive demand of the task. This case study describes the 

scaffolding of a single case over two different implementations, focusing on scaffolds 

within the written task and scaffolds within the implementation of the task.  

In the first year the task was implemented, the mathematical scaffolds present in 

the task directed students’ attention toward patterned sets of examples listed as numerical 

values in a table. The scaffolding of the task focused student attention to the numeric 

value of the examples, rather than a deep understanding of why the examples worked. In 

addition, the disconnect between the numerical value of the examples and how the 

examples worked was further exacerbated by Mr. Hummel’s interjection early in the task 

that reduced the cognitive demand. As a result, justification attempts typically took the 

form of result-pattern reasoning, in which a computational pattern was identified and 

assumed to hold without explaining why. These findings mirror those found by Lannin 

(2005), that when presented with a table, students typically engage in result-pattern 

reasoning. In addition, by focusing on the number patterns first and then asking why 

second, result-pattern reasoning occurred. 

In the second year, students were asked to deeply understand a single example 

and generated a wider variety of valid justifications. The initial extended work with a 

square helped students gain a deeper understanding of the relationship between area and 

scale factor, which may have contributed to the initial generic-example based reasoning. 

Also Nate’s pictorially represented, transformational generic-example argument served as 

a model for other student justifications for different shapes. Thus having a model of a 

strong justification served as a model for subsequent student justifications. In summary, 

extended work with a single example produced generic-example based reasoning. 



	 205	

Additionally, a strong understanding of the computational process for computing areas of 

a single shape also led to algebraic-based justifications that appealed to known 

information. 

This case study analysis indicates that appropriate scaffolding for a justification 

task included a focus on building concepts, strong use of examples or models, and a 

sustained press for justification. Mathematical concepts are developed via models and 

examples. Embedded within a specific and sustained press for justification, the end goal 

of student justification can be reached. A critical element in the success of student 

justifications includes an appropriate justification goal for the task. In this case, the goal 

shifted from justifying a relationship observed in a numeric pattern to understanding why 

the pattern existed using algebra and diagrams. This shift in goals corresponded to a shift 

in the task design, and a change in the subsequent student activity.  

The following sections elaborate on the ideas building concepts, community 

understanding of examples or models, and sustained press for justification and explains 

their connections to student reasoning. Each of these are considered general task 

scaffolds, because they represent a contribution of a mathematical tool or resource to 

guide or focus a student’s mathematical activity. 

Building Concepts 

Successful construction of justifications requires sufficient knowledge of 

mathematical content. Weber and Alcock (2004) found that students with instrumental 

understanding produced syntactic proofs reliant upon “symbol pushing,” while experts 

with relational understanding could create semantic proofs that approached material from 

an intuitive level. While syntactic arguments can be sufficient for proving the validity of 
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a statement, a strong justification in the middle school classroom is one that not only 

establishes the truth of a claim, but also has the capacity to describe why something is 

true. Thus it is reasonable that in order to construct a strong justification, a person would 

require relational, or what I call conceptual, understanding of the material. 

In the first year’s implementation of the task, Mr. Hummel developed a shared 

vocabulary and a shared process for computing area. However, when the class 

miscomputed the area of the scaled up figures, he did not scaffold the development of 

conceptual understanding of the relationship. Instead, he mandated a prescriptive method, 

and the task devolved into computing without connections. 

In contrast, in the second year the task was scaffolded to guide students toward a 

conceptual understanding of what it means to scale a figure. Connecting a diagram to an 

equation was a critical part of this development, and it gave students the mathematical 

content knowledge necessary to explain why the relationship held. These explanations 

served as the foundation for valid justifications.  

 The relationship between conceptual understanding and justification is not 

unidirectional. Bartlo’s (2013) work indicates that while content knowledge is needed to 

construct justifications, justifications can also play an important role in the development 

of content knowledge. Thus scaffolds that support the construction of justifications - such 

as forming connections between representations - are the same scaffolds necessary for the 

development of conceptual understanding.  

Community Understanding of Examples or Models 

Shared understanding of an example or model was another critical component in 

the scaffolding of justification. An example is a mathematical object that is specific or 
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concrete and is also a member of a larger, general class (Mills, 2014), while a 

mathematical model is a commonly understood process or representation for a 

mathematical task or object. Developing a community understanding of these models or 

examples influenced how students approached the task, and thus impacted the resulting 

student forms of reasoning.  

In the first year’s implementation of the task, students did not have a shared 

model for understanding the scaling process. Although students could algorithmically 

compute the areas for scaled-up figures, that process was never leveraged toward a more 

general, algebraic argument. The task had the potential to result in algebraic 

justifications, but without a sustained press for justification, such justifications did not 

materialize. 

In the second year, the task was designed to explore the scaling of a single 

example of a square. Using a square to find the area of a scaled up shape resulted in 

several “computational” justifications that described the computational process for 

finding a scaled-up area. These justifications appealed to known information as their 

form of reasoning, because they relied on the known operations for scaling and 

computing area. This single example of a square also generated generic example 

justifications, in which students reasoned generally about a specific example, a square of 

side length 3, as part of their justification. 

In the second year Nate’s justification also served as a model for other students’ 

future justifications. His pictorially represented justification was a generic example, but 

also included elements of transformational reasoning. His justification served as a model 

for subsequent student justifications. Some of those model-based justifications were also 
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generic examples that exhibited some transformational reasoning. Other student 

justification attempts were classified as strictly model-based reasoning: they saw the 

occurrence of tessellation with figures other than a square (namely parallelograms and 

rectangles), and due to the similarity applied Nate’s model without justifying the 

applicability of the model. In this case, the model presented in the class scaffolded 

subsequent student justifications and resulted in student forms of reasoning based on the 

original justification.   

Sustained press for justification 

 The sustained press for justification was a final critical element in the scaffolding 

of justifications. It may seem redundant that a reminder to justify could be considered a 

scaffold for justification; however the press for justification in the initial steps of the task 

resulted not only in justifications at those stages, but also a deeper understanding of the 

relationships that informed justifications at later stages in the task. 

 In the first year’s implementation of the task, students were asked to generate data 

(by computing areas), create a table, observe a pattern, and only then were they asked to 

explain (or justify) the pattern. This “do first, justify later” approach inhibited the 

students’ ability to justify, because their initial steps for doing the math were based on a 

proscribed procedure rather than on an understanding of the content. Had students 

explored the “why” behind the generation of their data in the table, they would have been 

much better equipped to justify the pattern they found. By pushing the justification to the 

end, it encouraged students to disconnect their procedures from the corresponding 

geometric transformations.  
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In the second year, sustained press for justification throughout the early stages of 

the task forced students to make sense of their operations as they computed them. Those 

operations informed how they made sense of the rest of the task, and resulted in stronger 

justifications. 

Additionally, in the first year of the task the prompt for student justification was 

placed as an afterthought: “Explain how (and why if you can) this relationship works.” In 

contrast, in the second year the press for justification was direct and specific: students 

were asked to generate a rule (mathematical equation) and a picture to explain why the 

relationship held. When asking students to engage in a mathematical activity, setting 

specific expectations can result in stronger student mathematical activity (Silver & Stein, 

1996). An important (but not sufficient) way to get students to justify is to ask them to 

justify, and the specific inclusion of representations resulted in student justifications with 

generic example and transformational reasoning. 

 Finally, the press for justification must be meaningful for students. They must 

understand what it means to justify when they are asked. In Mr. Hummel’s classroom, he 

was explicit that a justification should be a convincing argument, which students 

understood as something more than displaying calculations.   

Concluding Thoughts 

Mr. Hummel’s case was selected for this analysis was because of the strong 

contrast in the written task over the two years and the strong contrast in the resulting 

student work. Such a contrast was likely due to the high fidelity Mr. Hummel’s 

implementation had to the written task. His classroom culture allowed for a long period 

of investigation within which students worked with the task, and very little time was 
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spent “off-script” during whole-class discussions. In the first year when he noticed 

difficulties, he stuck to the task design instead of taking-up the student misconception and 

engaging in an extended exploration not laid-out in the written task. 

 When reflecting on the task over the two years, Mr. Hummel stated, “It is good to 

have some structure and some organization, but if it is too guided it is not going to lead to 

the variety that we want, and it is not going to lead to a good justification.” This paper 

illustrated how the table-based task in the first year led to result-pattern reasoning, while 

the guided exploration of a single example in the second year led to a variety of forms of 

reasoning, including generic example, transformational, and appealing to known 

information.  

 This case study is a valuable contribution to the field because it offers a detailed 

description of the kinds of scaffolds that support student justification activity. Research 

indicates that effective scaffolding is valuable, but descriptions of effective scaffolding 

are rarely specified. This study was able to track the development of a single task and 

provide detailed evidence for the relationship between task scaffolds and subsequent 

student justifications. Future directions for this work would include an analysis of a 

greater number of justification task implementations to provide further evidence for these 

relationships and possibly expand the list of effective scaffolds.  
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Chapter 8: Conclusions 

 
This dissertation identifies relationships between teacher conceptions, teacher 

practice and student outcomes in the context of middle school justification activity. Data 

for the analysis was drawn from the JAGUAR project, a collaborative research and 

development project focused on developing knowledge and practice to support 

justifications in the classroom. In this paper, a justification is a mathematical argument 

that establishes the validity of a result while also explaining why the result holds. 

The primary content of the dissertation consists of three interrelated, yet distinct, 

case studies. In the first paper, Middle School Teacher Conceptions of Justification, I 

provide a detailed description of four teachers’ conceptions of justification. Using 

Schoenfeld’s (2011) framework as a theoretical lens, I described teachers’ orientations to 

justification (including their beliefs about the definition of justification and preferences 

regarding justification), their purpose or goal for using justification in their classroom, 

and their proficiencies with justification. Results indicate that teachers’ conceptualized 

justification as both a mathematical practice that focused on establishing why and a 

pedagogical practice that focused on student reasoning and understanding. 

The second paper, Middle School Teacher Treatment of Examples in the Context 

of Justification Activity, describes teacher understanding of empirical reasoning and 

teacher treatment of empirical reasoning in their classrooms. Results from this paper 

include a framework of ways teachers treat examples in their classrooms; many of which 

aligned with example usage by mathematicians. The paper also found that teacher 

treatment of examples in their classroom was influenced by knowledge of empirical 
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reasoning, as well as teacher definition of justification and beliefs about teaching and 

learning. 

In the final paper, Scaffolding Mathematical Tasks to Support Student 

Justifications, is a case study analysis of a single teacher’s implementation and revision 

of a justification task over the course of two years. Using Stein, Smith, Henningsen, and 

Silver’s (2000) framework for mathematical task design to guide the analysis, I describe 

the task as written, as set-up in the classroom, and the subsequent student justification 

activity. The case demonstrates how the scaffolding of the task impacted student forms of 

reasoning, and concludes that effective scaffolding for justification tasks should provide 

the building of concepts, community understanding of concepts or models, and a 

sustained press for justification. 

Taken collectively, these three case studies offer a significant contribution toward 

understanding justification in the middle school classroom. They describe different types 

of teacher knowledge and conceptions necessary to support this ambitious practice. They 

also explain how that knowledge is transformed into practice in their classrooms as they 

support students in justification work. This research builds the base for future work in 

developing a pedagogy of justification; such research might include a replication study in 

which the knowledge and pedagogy of justification is analyzed for a larger group of 

participants. My work also forms a foundation for the creation of future professional 

development to help other teachers learn to teach for justification. 
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Appendix A: Teacher Justification Survey Sample 

Question #1 
Joe and Fred are thinking about the pair of numbers 5 and 9.  
They notice that the SUM (5 + 9) is EVEN. 
They notice that the PRODUCT (5 × 9) is ODD. 
Joe says: If the SUM of two whole numbers is EVEN, their PRODUCT is ODD. 
Fred says: If the PRODUCT of two whole numbers is ODD, their SUM is EVEN. 
Answer the following questions about this discussion: 
 
a) Are Joe’s and Fred’s statements saying the same thing?  
b) The PRODUCT of two whole numbers is 1247. 
   Suppose that Fred’s statement is true. Which, if any, of these statements must also then 
be true? Tick (� ) one box.  
 !  You can be sure that the SUM of the two numbers is EVEN.  
 !  You can be sure that the SUM of the two numbers is ODD.  
 !  You can't be sure whether the SUM is ODD or EVEN until you know what 
the two numbers are. 
 
 Explain why that statement must also be true, if Fred’s statement is true. 
  
c) The SUM of two whole numbers is 1246. 
   Suppose that Joe’s statement is true. Which, if any, of these statements must also then 
be true? Tick (� ) one box.  
 !  You can be sure that the PRODUCT of the two numbers is EVEN.  
 !  You can be sure that the PRODUCT of the two numbers is ODD.  
 !  You can't be sure whether the PRODUCT is ODD or EVEN until you know 
what the two numbers are. 
 
 Explain why that statement must also be true if Joe’s statement is true. 
 
d) Is Fred’s statement actually true? ......... Explain your answer.  

e) Is Joe’s statement actually true? ......... Explain your answer. 

Question #2 
Amy is building a sequence of geometric figures with toothpicks, by following a specific 
pattern (making triangles up and down alternatively). Below are the pictures of the first 
three figures she builds. Variable t denotes the position of a figure in the sequence. 
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In finding a mathematical description of the pattern, Amy explains her thinking by 
saying: 
 
“First, I use three sticks for each triangle: 

 
But then I see that I am counting one stick twice for each of the triangles except the last 
one, so I have to take those away.” 
 
Part 1: Of the following expressions, which most closely fits with Amy’s explanation? 
Tick (� ) one box  
 
!   2t +1 
!   2(t + 1) - 1 

!   3t - (t - 1)  
!   3t + 1 - t   
 
 
Explain why you think that one most closely fits Amy’s explanation. 
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Appendix B: Student Justification Survey Sample 

Question #1:  Some problems that you do in math ask you to give your answer and then 
"Justify your answer." What are those directions asking you to do? (Pretend a classmate 
doesn't understand the directions. What would you tell them to do?) 
  
Question #2 
Joe and Fred are thinking about the pair of numbers 5 and 9.  
They notice that the SUM (5 + 9) is EVEN. They notice that the PRODUCT (5 × 9) is 
ODD. 
Joe says: If the SUM of two whole numbers is EVEN, their PRODUCT is ODD. 
Fred says: If the PRODUCT of two whole numbers is ODD, their SUM is EVEN. 
 
Answer the following questions about this discussion: 
a. Are Joe’s and Fred’s statements saying the same thing?  
b. Is Joe’s statement actually true? ………Explain your answer.  
c. Is Fred’s statement actually true? ………Explain your answer. 
d. The PRODUCT of two whole numbers is 1247. 
Suppose that Fred’s statement is true. Which, if any, of these statements must also then 
be true? Tick (�) one box and explain why that statement must also be true, if Fred’s 
statement is true. 
 
!  You can be sure that the SUM of the two numbers is EVEN.  
!  You can be sure that the SUM of the two numbers is ODD.  
!  You can't be sure whether the SUM is ODD or EVEN until you know what the two 
numbers are. 
 
Why:  
 
 
Question #4 
Suppose we already know that an odd number added to another odd number is always an 
even number.  Suppose we also know that an even number added to an odd number is 
always an odd number. 
 
a. What happens if you add any three odd numbers together? Justify your answer. 
 
b. Josie thinks of 3 odd numbers, she adds them together, and writes down the 
answer. Will her answer be odd or even (or is it impossible to tell)? Justify your answer. 
  



	 233	

Appendix C: Interview Protocol Sample 

1) This project, JAGUAR, focuses on justification and proof. I want to make sure I 
know what these words currently mean to you. 
 a) When you talk about justification, what do you mean by that term? 
• So justification is … 
• If you had 3 minutes in a faculty lounge with a colleague, how would you explain 
justification? 
• Could you give an example of a justification? When you ask students to justify what 
do you expect to see? 
b) Do you distinguish between justification and proof? Why or why not? What is the 
distinction for you?  
•  Sometimes textbooks ask students to “prove” and other times they ask them to 
“justify”.  Is there a difference between these two prompts? (If so, what is the 
difference?) 
• Is it important to distinguish between justification and proof? 
 
c) Another term often used in math classes is “explanation.” In your mind, is there a 
difference between justification and explanation? 
Is a proof a kind of justification then? (Is a justification a kind of proof? Is proof then a 
larger category and a justification within that?)  
 
2) How has your thinking about what a justification is changed over the course of the 
project? In what ways has it changed? 
 
 b) What influence, if any, has this had on what you do in the classroom? 
 
c) Next, focus specifically on what you do.  Are there any changes you’ve noticed to your 
teaching practice since you started the JAGUAR project that you would attribute to 
participating in the JAGUAR project?  
 Make sure interviewee is comfortable saying – no- 
 If say yes, probe to see if the “source” of the change can be identified.  
 
d) Imagine that you were presenting to a group of middle school math teachers about 
teaching with justification. What are 2 or 3 things that you’ve learned about teaching with 
justification (implementing justification tasks) that you’d want to be sure to include in 
your presentation?  
 Follow-ups: 
• Why would that be important to include? 
• How do you see this playing out in your teaching? 
• Is this a new aspect of your pedagogy? (Or is it an old one that has been given 
new life/importance?) 
 
3) What value do you see you see in incorporating justification into the classroom? 
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 a) how would you summarize why you incorporate justification into your middle 
school classroom? (or the value you see) 

• What is the role of justification in your classroom? 

• What is the role of justification in learning mathematics?  
Listen carefully for Whether justification plays a role in actually verifying and 
establishing truths in their mathematics classroom.. 
•  
 b) Could some of the things (what you aim to do with justification) get done 
without incorporating justification? Or do you see justification as a critical means and 
without it, you couldn’t accomplish those particular goals? Need to tweak wording here 
based on what interviewee says.  
 

NOTE:  

• Listen carefully for Is justification is a valued outcome (disciplinary practice) in 
and of itself?  
o Follow up as needed to gain clarity on this 
• Do you focus on justification as a content topic in an of itself? (Justification for 
the sake of justification.)  Why or why not? 
5) Some students were asked to explain how they solved ½ + ¼.  Here are two responses 
offered by middle school students.  
 

Claire’s Response Ahmed’s Response 
 
I know that ½ is the same as two ¼ s.  
So, altogether I have three ¼ s, or ¾ . 
 
 
    

 

 
I found a common denominator, which 

was 4, and then I added 

� 

2
4

and 

� 

1
4

 to get 

� 

3
4

 . 

 

� 

1
2

= 2
4

+ 1
4
3
4

 

 
 
Is either of these responses an example of what you consider to be justification? If so, in 
what ways? If not, why not?  
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A. Do you think Claire’s [Ahmed’s] is a justification? Why or why not? [Repeat the 
questions for Ahmed] 
If yes: 
a. What makes this a justification? 
b. How do you decide? 
 
If no: 
a. What would you characterize this one as [other than justification]? 
b. Why is this not a justification? 
c. What is missing? 
d. What would make it a justification? 
 
B. If they think they are both a justification,  
b) Are there any differences between these two justifications that are important to 
note? (that are important to you as a teacher?)  
c) What are those differences? 
 
C. If they think they neither is a justification,  
d) Are there any differences between these two solutions that are important to note? 
(that are important to you as a teacher?)  
e) What are those differences? 
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Appendix D: Reflective Journal Questions 

Justification Tasks Reflective Journal Entries 
JAGUAR – Lesson Cycle 4 

Instructions: Please respond to each of the questions below. Please complete Question 1 
before the lesson. Please complete the other questions no later than the Sunday after 
the lesson. It is important that your reflection is informed by your active memory of the 
lesson in addition to the video. 
Thank you! We’re looking forward to reading your thoughts about your lesson. 

BEFORE THE LESSON 

1) A. What is the primary goal of this lesson? 
B. What role will justification play in this lesson?  
C. What kinds of justifications do you expect students might produce as they work on the 
task for this lesson? Please address the kinds of statements, reasons, and representations 
students might use.  
AFTER TEACHING THE LESSON, watch the lesson:  

2) Find the moments when students were engaged in justification (on some level) 
during the lesson and write them down. (Please also include the time on the video.)  
 
3) Did these justifications align with what you thought would happen?   
 
4) Pick one instance involving student justification that you thought was productive 
and/or went well. Identify the time on the tape and explain what you valued about this 
instance. 
 
5) Pick one instance involving student justification that didn’t go as well as it could 
have, and transcribe that exchange between the student(s) and yourself. Please include the 
date of the lesson and time on the tape.  
a) Please explain why this is an instance that didn’t go as well as it could have.  
b) What would you do next time with this exact situation to make it go better?  
c) Explain why you revised it as you did. 
 
6) a) What, if anything, do you think students understood about the math content that 
was a result of, or strengthened by, justification?  
b) What, if anything, do you think students learned about justification as a result of this 
lesson?  
7) What, if anything, did you learn about teaching to promote student justification as 
a result of this lesson? Please be sure to explain how this lesson led to that learning. 
 
8) Given where your students are with justification right now,  
a) What goals do you have for your students with respect to justification?  
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b) What will you do next time to move towards these goals? (When you answer this 
question, think specifically about your interactions with students.) 
 
9) Anything else on your mind with respect to justification or your students’ work 
with justification.  
10) a) Can we use the clips you selected in Question 4 and/or Question 5 in future 
sessions?  
b) Are there other clips you’d be interested in having the group look at? If so, please 
specify the time of the clip and let us know a bit about why you’d like to have the group 
look at it. 
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Appendix E: Classroom Data Collection Forms 

 
LESSON LOG – TEMPLATE  - JAGUAR – revised 02.12.10 

Lesson Table 

Teacher initials: 
 
 

Grade/course/class: Period only needs to be included 
if there are multiple sections of given class that the 
teacher teaches. E.g. – Grade 7, pre-algebra, Period 3 
or Grade 8, Math 8, period 2 

File name: this should be 
“Lesson table” cycle initials 
date, e.g., Lesson Table 
y1c1 AC 2010.02.12 
 

Initials of Preparer:  Date of Lesson 
Log (last modified): 

Teacher's Goal: This may be inferred  
Topic:   
Handouts, curric 
materials: (see cover 
sheet)  

Classroom Description:     
 

 

Time Description of 
Activity 

Organization of 
Interaction 

Description of 
Content Other 

Record 
time on 
video in 
form 
 
Xx:xx – 
xx:xx 
Use hrs 
as 
needed  
 
Within 
30 secs 
is fine. 

This column 
has a high 
level 
description of 
the activity. 
Please use the 
terms: 
Whole Class 
Small Group 
Individual 
Transition 
 
 
 

Teacher is xxx 
Students are xxx 
This column describes 
more about the nature of 
interaction during the 
given activity.  
There may be more than 
one kind of interaction 
during a given activity. 
Please list all major kinds 
of interaction in new cells. 
For Activity, you can write 
“continue”. 

This column 
focuses on the 
mathematics. If 
possible, record 
the problem 
that is being 
discussed. 
There are likely 
several 
mathematical 
ideas that are 
related to any 
one Activity.  

 Additiona
l notes as 
needed, 
including 
those 
related to 
technical 
stuff (e.g., 
teacher 
mic 
fuzzy) 
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JAGUAR LESSON COVER SHEET  Researcher: 
_________________________ 
 
 
 
Teacher: __________________  Grade/period: _______________________ 
 
Date: _____________________  Class: __________  
      (e.g., math 7 vs pre-algebra): 
 
No. of Students: _____________________  Other teachers/adults:  
 
Length of lesson: ___________________  Topic:  
 
 
Lesson Cycle:    1  2 3 4  for  2009-2010 2010-2011 
 
Number in Cycle:   _______   of      ______ (3 or 4)  
 
Focal Lesson:   YES  NO 
 
Was this a lesson developed during the summer course?  YES  NO 
 
 
 
Please list handouts and materials (paperclip copies of all handouts; note all sections of 
text): 
 
*  

* 

* 

* 

 
 
Anything unusual/any comments:  
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Appendix F: Teacher Working Session Task 

Triangle Number Task: Forms of Reasoning Evaluation 
Justification #1 

 

 
 

I randomly picked 11 and it worked, so I think it will always work. 
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Justification #2 
 

   
 
1 

 

 
 
1 

 
2 

 

 

 
3 

 
3 

 

 

 
6 

 
4 

 

 

 
10 

 
5 

 

 

 
15 

 
I made a table and noticed that every time if you take the figure number and 

multiply it by the next figure number (like 4x5 = 20) and then divide by 2 you get 
the number of circles. 
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Justification #3 
 
 

 
 

If you make a copy of one of the figures (for example the 5th one) and flip it 
over you can make a rectangle out of the two copies. The rectangle has 5x6 = 
30 circles in it. So each copy of the 5th figure has 15 circles (half of the total) 

in it. So this proves the formula, 
n(n +1)
2

works for every triangular number.  
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Justification #5 
 

Base number n nth Triangular Number 
1 1 
2 3 
3 6 
4 10 
5 15 
6 21 

 
Notice the pattern in the second column of the table.  When you add the 
next base number to any triangular number you get the next triangular 
number.  
From the table we can see that the formula works for the 5th triangular 

number since 
5 × 6
2

= 15.   

For the 6th one: 
5 × 6
2

+ 6  = 
5 × 6 +2 × 6

2
=
6 × 7
2

. Yes! 

For the 7th one: 
6 × 7
2

+ 7 = 
6 × 7 +2 × 7

2
= 
7 × 8
2

. Yes!!  

 It goes on like this forever! Each time we add the next base number we 
get a new version of the formula with each number in the top getting 

bigger by one. So the formula 
n(n +1)
2

will always work! Woo Hoo! 
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Justification #6 
 
For example, we get the 7th triangular number by adding the first 7 numbers 
together. 
1 + 2 + 3 + 4 + 5 + 6 + 7.   We can reverse this list and add the two lists together 
like so: 
 
1 + 2 + 3 + 4 + 5 + 6 + 7 
 +           7 + 6 + 5 + 4 + 3 + 2 + 1 
 = 8 + 8 + 8 + 8 + 8 + 8 + 8 
 
This gives 7x8. This is double what we wanted so the 7th triangular number is 
7 × 8
2

. This works for any triangular number. So the formula 
n(n +1)
2

will 

always work! 
 
 
 
 
 

Justification #7 
 

 
 The nth triangular number is given by Tn = 1 + 2 + … + (n-1) + n.  Adding 
this sum to itself (written in reverse order), we obtain: 
 
2 Tn =    1 +    2     +    …    + (n-1) + n 
 +  n + (n-1) +    …    +   2      + 1 
 
=          (n+1) + (n+1) + … + (n+1) + (n+1) = n(n+1) 
 

This means that Tn = n(n +1)
2

 for any n. 
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