
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-6-2016

Complete Design Methodology of a Massively Complete Design Methodology of a Massively

Parallel and Pipelined Memristive Stateful IMPLY Parallel and Pipelined Memristive Stateful IMPLY

Logic Based Reconfigurable Architecture Logic Based Reconfigurable Architecture

Kamela Choudhury Rahman
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons, and the Nanoscience and Nanotechnology

Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Rahman, Kamela Choudhury, "Complete Design Methodology of a Massively Parallel and Pipelined
Memristive Stateful IMPLY Logic Based Reconfigurable Architecture" (2016). Dissertations and Theses.
Paper 2956.
https://doi.org/10.15760/etd.2952

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/313?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/313?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2956&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2956
https://doi.org/10.15760/etd.2952
mailto:pdxscholar@pdx.edu

Complete Design Methodology of a Massively Parallel and Pipelined

Memristive Stateful IMPLY Logic Based Reconfigurable Architecture

by

Kamela Choudhury Rahman

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Dissertation Committee:

Marek A Perkowski, Chair

Dan Hammerstrom

Xiaoyu Song

Rolf Koenenkamp

Portland State University

2016

 © 2016 Kamela Choudhury Rahman

i

Abstract

Continued dimensional scaling of CMOS processes is approaching fundamental limits

and therefore, alternate new devices and microarchitectures are explored to address the

growing need of area scaling and performance gain. New nanotechnologies, such as

memristors, emerge. Memristors can be used to perform stateful logic with nanowire

crossbars, which allows for implementation of very large binary networks that can be easily

reconfigured. This research involves the design of a memristor-based massively parallel

datapath for various applications, specifically SIMD (Single Instruction Multiple Data) like

architecture, and parallel pipelines. The dissertation develops a new model of massively

parallel memristor-CMOS hybrid datapath architectures at a systems level, as well as a

complete methodology to design them. One innovation of the proposed approach is that

the datapath design is based on space-time diagrams that use stateful IMPLY gates built

from binary memristors. This notation aids in the circuit minimization in logic design,

calculations of delay and memristor costs, and sneak-path avoidance. Another innovation

of the proposed methodology is a general, new, architecture model, MsFSMD (Memristive

stateful Finite State Machine with Datapath) that has two interacting sub-systems: 1) a

controller composed of a memristive RAM, MsRAM, to act as a pulse generator, along

with a finite state machine realized in CMOS, a CMOS counter, CMOS multiplexers and

CMOS decoders, 2) massively parallel, pipelined, datapath realized with a new variant of

a CMOL-like nanowire crossbar array, MsCMOL (Memristive stateful CMOL), with

binary stateful memristor-based IMPLY gates. Next contribution of the dissertation is the

new type of FPGA. In contrast to the previous memristor-based FPGA (mrFPGA), the

ii

proposed MsFPGA (Memristive stateful logic Field Programmable Gate Array) uses

memristors for memory, connections programming, and combinational logic

implementation. With a regular structure of square abutting blocks of memristive nanowire

crossbars and their short connections, proposed architecture is highly reconfigurable. As

an example of using the proposed new FPGA to realize biologically inspired systems, the

detailed design of a pipelined Euclidean Distance processor was presented and its various

applications are mentioned. Euclidean Distance calculation is widely used by many neural

network and associative memory based algorithms.

iii

Dedication

To my children, Favian and Nashita

iv

Acknowledgments

I would like to thank my adviser, Professor Marek Perkowski, with the Department of

Electrical and Computer Engineering, Portland State University, for his invaluable time

and relentless effort in mentoring me during my journey to finish my Ph.D. research and

dissertation. I not only learned how to define and solve an engineering problem, but also to

think critically and in innovative ways. With his vast knowledge on advanced logic

synthesis and architecture, he continuously challenged me with probing questions and

directed me in producing high quality work. I also learned how to write about technically

complex topics, a skill I know will be valuable to me in the future. Professor

Perkowski’s dedication to education and serving others is a true inspiration for me.

I would also like to express my deep-felt gratitude to my former adviser and current

committee member Professor Dan Hammerstrom, also with the Department of Electrical

and Computer Engineering at Portland State University, for giving me the opportunity to

work with his research team and introducing me to the amazing world of biologically

inspired computation. My prior profession as a circuit designer motivated me to find

hardware solutions for those biologically inspired algorithms, and thus later became the

topic of this dissertation. From Professor Hammerstrom, I learned a lot by observing his

consistently calm, non-reactive and patient personality. I am especially indebted to

Professor Hammerstrom for his continued guidance during his tenure at DARPA in

Washington D.C.

v

I must admit that without Professor Hammerstrom’s persistent support and confidence

in my potential, and without Professor Perkowski’s relentless guidance, it would not be

possible for me to complete my doctoral dissertation.

I also wish to thank the other members of my committee, Professor Xiaoyu Song of the

Department of Electrical and Computer Engineering and Professor Rolf Koenenkamp of

the Department of Physics, both with Portland State University. Their suggestions,

comments and additional guidance were invaluable.

I would like to thank Professor C. Teuscher of the Department of Electrical and

Computer Engineering, Portland State University for supervising the NSF grant in the year

2013. I also appreciate the time of Professor D. B. Strukov of the Department of Electrical

and Computer Engineering, University of California, Santa Barbara and Professor Wei Lu

of the Department of Electrical Engineering and Computer Science, University of

Michigan, Ann Arbor for helpful discussions on nanowire crossbar simulations and

memristor-nanowire power calculations.

I would also like to thank several former and current peer students in the department of

Electrical and Computer Engineering at Portland State University, Professor M. Zaveri, D.

Voils, Hongayn Xiyao, B. Ryu, and Yiwei Li for many helpful discussions.

Finally, I would like to introduce my family and their contributions. Many years back,

holding my father’s hand, my journey to Kindergarten began. Today my father is

watching over me from heaven. Although my mother did not get the opportunity to

pursue her own education, she was quite ambitious about the success of my career.

Since the days of my undergraduate studies, my husband has provided me with enormous

support, inspiration and motivation. My son Favian always wanted me to have a great

vi

career. It made him upset when few years back I left a position from a top US corporation,

so that I could spend more time with him and his younger sister Nashita. Both of them

constantly reminded me of a successful completion of my doctoral work so that

they could take pride in my success. My two older brothers are my other constant well-

wishers. I am grateful to my aunt for her many contributions since my childhood. I am

indebted to my numerous teachers in every step of my education for their contributions. I

am grateful to my friends and family from across the globe, who constantly encouraged

me to successfully complete my PhD. I also recognize my cat Tucker. His image is used to

explain the proposed methodology in the dissertation.

Lastly, I thankfully acknowledge Professor Hammerstrom for funding my research

through the National Science Foundation NSF-CDI under award #1028378.

vii

Table of Contents

Abstract .. i

Dedication .. iii

Acknowledgments ... iv

List of Tables .. x

List of Figures .. xi

List of Abbreviations .. xvii

1 INTRODUCTION .. 1

1.1 Research Outline .. 1

1.1.1 Neural Network or Biologically Inspired Modeling .. 1

1.1.2 Associative Memory .. 1

1.1.3 Massively Parallel Architecture ... 2

1.1.4 Neuromorphic Circuits and Devices .. 2

1.1.5 Design Methodology Development ... 3

1.2 Research Background and Motivation ... 4

1.2.1 Part 1: Research Groundwork .. 4

1.2.2 Part 2: Memristor Based Research ... 12

1.3 Thesis Organization.. 15

2 MEMRISTOR .. 18

2.1 Stateful IMPLY memristor... 19

2.2 Logic Synthesis with memristors ... 21

2.3 CMOL Crossbar ... 29

3 FPGA DESIGN USING MEMRISTORS .. 33

3.1 Concepts Behind MsFPGA Architecture ... 33

3.1.1 Memristive stateful Finite State Machine with Datapath (MsFSMD) 34

3.1.2 Pulse Generator .. 37

viii

3.1.3 Memristive stateful RAM (MsRAM) ... 39

3.1.4 Placement of Blocks and Connection Programming.. 42

3.2 Implementation of Proposed MsFPGA .. 43

3.2.1 Hybrid Architecture.. 43

3.2.2 Pipelined Architecture .. 43

3.2.3 Massively Parallel Architecture ... 45

3.3 Benefits brought by proposed architecture methodologies 46

4 CMOS FPGA IMPLEMENTATION... 48

4.1 Detailed Implementation of Euclidean Distance Processor 51

4.2 Simplified Euclidean Distance (ED) Pipeline .. 80

4.3 Results of Xilinx Simulations and Synthesis ... 82

5 CIRCUIT IMPLEMENTATION CHALLENGES FOR MsFPGA 85

5.1 About MsFPGA ... 85

5.2 Comparison with Other Published Memristive FPGAs and NVM 86

5.3 Proposed MsCMOL Architecture .. 89

5.4 Data MsRAM ... 90

5.5 Array of 8x8 Nanowire Crossbar Blocks ... 91

5.6 Sneak-Path Protection .. 92

5.7 Nanowire Row-to-Row Data Transfer ... 92

5.8 Proposed 8-bit Iterative Adder Design ... 94

5.9 Massively Parallel and Pipelined Reconfigurable Datapath 95

6 SNEAK-PATH CURRENT ... 96

6.1 Problems in Nanowire Crossbar Design .. 96

6.2 Proposed Sneak-Path Protection .. 97

6.3 Step-by-Step Execution of Proposed 8-bit Iterative Adder 98

6.4 Benefits Brought by Proposed Sneak-path Protection Methodology............... 156

7 PERFORMANCE STUDY OF PROPOSED MsFPGA 159

ix

7.1 Memristor Device and IMPLY Logic Gate.. 161

7.2 Nanowire Crossbar PSPICE Simulations ... 164

7.3 Performance Study ... 166

7.3.1 Memristor Device Delay .. 166

7.3.2 Memristor Nanowire Crossbar Delay Evaluation .. 167

7.3.3 Power Estimation of Memristor-Nanowire Design .. 167

7.3.4 Memristor-Nanowire Crossbar Area Estimation.. 173

7.4 Memristor-based Pipeline Design .. 177

8 RESULTS... 179

Comparative Performance Analysis of MsFPGA... 179

9 CONCLUSIONS .. 185

Contributions .. 187

REFERENCES ... 192

Appendix A - SOFTWARE – MATLAB CODES FOR ESOINN & GAM (PATTERN

RECOGNITION ALGORITHMS) ... 205

Appendix B - AREA, POWER, DELAY ESTIMATION OF EUCLIDEAN

DISTANCE PIPELINE AS A CMOS FPGA IN XILINX VIVADO 232

Appendix C - SPACE-TIME NOTATION BASED CIRCUIT DRAWING 240

x

List of Tables

TABLE 2-1: XOR GATE IMPLEMENTATION IN SPACE-TIME NOTATION [102]. .. 25

TABLE 4-1: RESULTS OF CMOS ED PIPELINE BASED ON XILINX FPGA [102]. 83

TABLE 7-1: CALCULATED AREA OF COMPONENTS OF ED PIPELINE DATAPATH

[102]. ... 176

TABLE 7-2: CALCULATED DELAY AND AREA FOR ED PIPELINE USING IMPLY-

MEMRISTIVE NANOWIRE BASED MSFPGA DESIGN [102]. 177

TABLE 8-1: PERFORMANCE COMPARISON OF CMOS FPGA VS. PROPOSED

MSFPGA. .. 184

xi

List of Figures

FIGURE 1: FUNDAMENTAL PASSIVE ELEMENTS [1]. ... 18

FIGURE 2: SYMBOL OF MEMRISTOR [3]. ... 18

FIGURE 3: MEMRISTOR I-V CURVE SHOWS HYSTERESIS LOOP [3]. 19

FIGURE 4: A. IMPLICATION (IMPLY) LOGIC GATE B. TRUTH TABLE [3]. 20

FIGURE 5: IMPLICATION (IMPLY) LOGIC: REALIZATION WITH TWO MEMRISTORS [3]. 20

FIGURE 6: SYMBOL FOR SPACE-TIME NOTATION [102]. .. 22

FIGURE 7: IMPLEMENTATION OF NAND/AND GATE USING SPACE-TIME NOTATION.

“RESET” OPERATION ON MEMRISTORS USING THE VCLEAR VOLTAGE IS INDICATED

BY A ‘0’. AT TIME T0, SIGNAL VCLEAR IS PRESENTED TO WORKING MEMRISTOR M3

WHICH INITIALIZED ITS VALUE TO ‘0’. AT T1, SIGNAL VCOND IS PRESENTED TO WM M1

AND SIGNAL VSET TO WM M3, WHICH CAUSES THE STATE OF M3 TO BE M1´+0=M1´.

AT T2, THE STATE OF M3 BECOMES M1´+M2´=(M1*M2)´ (DEMORGAN’S LAW). AT

T3, THE WM M2 IS SCHEDULED TO BE REUSED BY CLEARING IT. FINALLY, AT T4, THE

NEGATED VALUE OF M3 IS ADDED TO M2. THUS M2+
 = 0+((M1M2)´)´= (M1M2). M2+

IS THE NEXT STATE OF M2. [102] ... 22

FIGURE 8: SPACE-TIME NOTATION OF AN IMPLICATION BASED CIRCUIT FOR A 2-INPUT

XOR/XNOR GATE [102]. ... 24

FIGURE 9: SPACE-TIME NOTATION FOR 1-BIT FULL ADDER CIRCUIT WITH SNEAK-PATH

PROTECTION [102]. .. 26

FIGURE 10: AN EXAMPLE ARCHITECTURE OF FOUR 8×8 NANOWIRE CROSSBAR BLOCKS.

BLOCK TO BLOCK HORIZONTAL AND VERTICAL CONNECTIONS ARE MADE THROUGH

xii

SWITCHES IN NANOWIRE LAYER. EACH HORIZONTAL AND VERTICAL NANOWIRE IS

CONNECTED TO GROUND THROUGH SWITCH AND LOAD RESISTANCE RG TO PROVIDE

PROTECTION FROM SNEAK-PATH CURRENT. CMOS DECODERS ARE PLACED BENEATH

THE NANOWIRE CROSSBAR LAYER IN A PHYSICAL LAYOUT [102]. 27

FIGURE 11: COMBINATIONAL AND SEQUENTIAL COMPONENTS IN CMOS IMPLEMENTATION.

... 28

FIGURE 12: NO SEPARATION BETWEEN COMBINATORIAL AND SEQUENTIAL LOGIC IN

IMPLY-MEMRISTOR DESIGN. .. 29

FIGURE 13: “STRUKOV AND LIKHAREV” CMOL MEMRISTOR ARCHITECTURE [8][94]...... 30

FIGURE 14: CMOL-MEMRISTOR ARCHITECTURE BY LIKHAREV AND STRUKOV [8]. 31

FIGURE 15: PROPOSED MEMRISTIVE STATEFUL LOGIC FIELD PROGRAMMABLE GATE

ARRAY (MSFPGA). THE DETAILS OF THE “HYBRID PULSE GENERATOR” AND THE

“CMOS MERGE BLOCK” ARE SHOWN IN FIGURE 17. THE RED POLYGON REPRESENTS

ONE PIPELINE OF THE PROPOSED MEMRISTIVE ED ARCHITECTURE AND THE

IMPLEMENTATION IS ILLUSTRATED IN FIGURE 41 IN CHAPTER 7. COLOR CODE: GREEN-

MEMRISTOR NANOWIRE CROSSBAR, YELLOW- CMOS, BLUE- HYBRID CIRCUITRY

[102]. ... 35

FIGURE 16: A. CONVENTIONAL FSMD (FINITE STATE MACHINE WITH DATAPATH) B.

MSFSMD (MEMRISTIVE STATEFUL FINITE STATE MACHINE WITH DATAPATH). THE

PULSE GENERATOR BLOCK CONTAINS A CMOS COUNTER AND A MEMRISTIVE

STATEFUL MSRAM. COLOR CODE: YELLOW-CMOS, BLUE-HYBRID CMOS-

MEMRISTOR, GREEN-MEMRISTOR NANOWIRE CROSSBAR. ... 36

xiii

FIGURE 17: PROPOSED CONTROLLER FOR THE CMOS-MEMRISTOR HYBRID DESIGN (PULSE

GENERATOR WITH MERGE BLOCK). COLOR CODE: GREEN-MEMRISTOR NANOWIRE

CROSSBAR, YELLOW- CMOS, BLUE- HYBRID CIRCUITRY [102]. 38

FIGURE 18: PARTIAL ENCODING TABLE IN MSRAM FOR AN 8-BIT ITERATIVE FULL ADDER

REALIZED IN THE DATAPATH (COMBINATION OF CONTROL BITS FOR VARIOUS

CONTROLLING VOLTAGES ARE: 00-HIZ, 01-VSET, 10-VCOND, 11-VCLEAR) [102].

... 41

FIGURE 19: COMPLETE SYNTHESIZED PROPOSED EUCLIDEAN DISTANCE PIPELINE. 50

FIGURE 20: SIMULATION RESULT SISO REGISTER. ... 53

FIGURE 21: STRUCTURAL VIEW OF REGISTER AFTER SYNTHESIS. 53

FIGURE 22: SIMULATION RESULT OF N-BIT REGISTER. ... 55

FIGURE 23: VIEW OF LUT AFTER SYNTHESIZING IN XILINX. ... 56

FIGURE 24: ACTUAL OUTPUT FROM PYTHON SCRIPT. ... 58

FIGURE 25: SIMULATION RESULT OF SQUARE TABLE. ... 58

FIGURE 26: STRUCTURAL VIEW OF ADDER AFTER SYNTHESIS. .. 59

FIGURE 27: SIMULATION RESULT OF ADDER. ... 60

FIGURE 28: VIEW OF ACCUMULATOR AFTER SYNTHESIS. ... 61

FIGURE 29: ACCUMULATOR SIMULATION RESULT. ... 63

FIGURE 30: SUBTRACTOR DESIGN FOR THIS PIPELINE. .. 64

FIGURE 31: SIMULATION RESULT OF SUBTRACTOR BLOCK. ... 66

FIGURE 32: CONTROLLER BLOCK DIAGRAM. ... 67

FIGURE 33: FINITE STATE MACHINE DESIGN FOR THE CONTROLLER. 68

FIGURE 34: SIMULATION RESULT OF THE CONTROLLER BLOCK. .. 72

xiv

FIGURE 35: TESTING OF SISO AND SUBTRACTION UNIT. ... 74

FIGURE 36: TESTING OF THE SQUARE LUT. ... 75

FIGURE 37: TESTING OF THE ADDITION AND ACCUMULATION. ... 75

FIGURE 38: PIPELINE IMPLEMENTATION OF THE EUCLIDEAN DISTANCE (ED) CALCULATOR

(WITHOUT SQUARE-ROOT FUNCTION) USING STANDARD CMOS FPGA [102]. 81

FIGURE 39: “THE READING CURRENT PATH THROUGH A MEMRISTOR NANOWIRE CROSSBAR

AND THE EQUIVALENT CIRCUIT FOR (A) THE IDEAL CASE WHERE THE CURRENT FLOWS

ONLY THROUGH THE TARGET CELL AND (B) AN EXAMPLE OF A REAL CASE WHERE

CURRENT SNEAKS THROUGH DIFFERENT UNDESIRED PATH AND THE RED ONES SHOW

THE EFFECTIVE SNEAK PATHS” [99]. .. 96

FIGURE 40: CLASSICAL IMPLEMENTATION OF 8-BIT FULL ITERATIVE ADDER CIRCUIT [35].

... 98

FIGURE 41: PIPELINE IMPLEMENTATION OF THE EUCLIDEAN DISTANCE (ED) CALCULATOR

USING PROPOSED MSFPGA, MEMRISTOR-CMOS HYBRID FPGA. COLOR CODE:

GREEN-MEMRISTOR NANOWIRE CROSSBAR, YELLOW- CMOS, BLUE- HYBRID

CIRCUITRY [102]. ... 159

FIGURE 42: BLOCK DIAGRAM OF THE SQUARE OPERATOR. COLOR CODE: GREEN-

MEMRISTOR NANOWIRE CROSSBAR, YELLOW- CMOS, BLUE- HYBRID CIRCUITRY. . 160

FIGURE 43: IMPLY LOGIC GATE A. SYMBOL B. TRUTH TABLE [3]. 162

FIGURE 44: IMPLICATION (IMPLY) LOGIC: REALIZATION WITH TWO MEMRISTORS M1 AND

M2 [3].. 163

FIGURE 45: PSPICE SIMULATION MODEL FOR 8×8 NANOWIRE CROSSBAR [102]. 164

xv

FIGURE 46: PSPICE SIMULATION RESULTS FOR 8×8 NANOWIRE CROSSBAR; RC DELAY

MEASUREMENT IN PSPICE FOR VSET= 1.0V, NANOWIRE HALF-PITCH=40NM.

RESULTS FROM TWO SEPARATE RUNS ARE SHOWN SIDE-BY-SIDE [102]. 165

FIGURE 47: CWIRE /L CALCULATION [6]. .. 170

FIGURE 48: TOTAL ESTIMATED DYNAMIC POWER, PDYN OF THE PROPOSED MEMRISTOR

BASED COMPLETE PIPELINED DATAPATH. RESULTS SHOW PDYN CONSUMPTION BY

VARIOUS MEMRISTOR DEVICE BASED DESIGNS [FROM TABLE 7-2] WITH BOTH 8-NM

AND 40-NM HALF-PITCH NANOWIRES [102]. ... 171

FIGURE 49: 40-NM HALF-PITCH DISTANCE BETWEEN TWO NANOWIRES. 174

FIGURE 50: X-DISTANCE MEASUREMENT FOR EIGHT VERTICAL NANOWIRES. TOTAL X-

DISTANCE IS 0.6µM. SIMILARLY, TOTAL Y-DISTANCE FOR EIGHT HORIZONTAL

NANOWIRES IS 0.6µM. THEREFORE, THE AREA OF AN 8X8 NANOWIRE CROSSBAR IS

0.36µM
2. ... 175

FIGURE 51: PIPELINE IMPLEMENTATION OF THE EUCLIDEAN DISTANCE (ED) CALCULATOR

(WITHOUT SQUARE-ROOT FUNCTION) USING STANDARD CMOS FPGA [102]. 180

FIGURE 52: PROPOSED MEMRISTIVE STATEFUL LOGIC FIELD PROGRAMMABLE GATE

ARRAY (MSFPGA). THE DETAILS OF THE “HYBRID PULSE GENERATOR” AND THE

“CMOS MERGE BLOCK” ARE SHOWN IN FIGURE 17. THE RED POLYGON REPRESENTS

ONE PIPELINE OF THE PROPOSED ED ARCHITECTURE AND THE IMPLEMENTATION IS

ILLUSTRATED IN FIGURE 53. COLOR CODE: GREEN- MEMRISTOR NANOWIRE CROSSBAR,

YELLOW- CMOS, BLUE- HYBRID CIRCUITRY [102]. ... 181

FIGURE 53: PIPELINE IMPLEMENTATION OF THE EUCLIDEAN DISTANCE (ED) CALCULATOR

USING PROPOSED MSFPGA, MEMRISTOR-CMOS HYBRID FPGA. COLOR CODE:

xvi

GREEN-MEMRISTOR NANOWIRE CROSSBAR, YELLOW- CMOS, BLUE- HYBRID

CIRCUITRY [103]. ... 182

FIGURE 54: PERFORMANCE COMPARISON OF CMOS FPGA VS. PROPOSED

MSFPGA (IN LOGARITHMIC SCALE). ... 183

xvii

List of Abbreviations

The following table describes the significance of various abbreviations and

acronyms used throughout the dissertation. The page on which each one is defined or first

used is also given.

Abbreviation Meaning Page

AM Associative Memory 1

CMOL hybrid CMOS/MOLecular device at nanowire

intersections

3

ED Euclidean Distance 4, 43

FPGA Field Programmable Gate Array 11, 33

FSMD Finite State Machine with Datapath 34-36

IM Input Memristor 21

MsCMOL Memristive stateful CMOL 14, 32, 85, 89-90

MsFPGA Memristive stateful logci FPGA 11, 33-35

MsFSMD Memristive stateful FSMD 34-36

MsRAM Memristive stateful RAM 35-43

NVM Non Volatile Memory 87

NW Nanowire 170

PI Primary Input 98

SIMD Single Instruction Multiple Data 45

WM Working Memristor 21

1

1 INTRODUCTION

1.1 Research Outline

1.1.1 Neural Network or Biologically Inspired Modeling

By definition, any system that tries to model the architectural details of the

neocortex is a biologically inspired model or neural network [54][55]. Computers

cannot accomplish human-like performance for many tasks such as visual pattern

recognition, understanding spoken language, recognizing and manipulating objects by

touch, and navigating in a complex world. After decades of research, there exist no

significant viable algorithms to achieve human-like performance on a computer or

special hardware accelerator. So far, there has not been much research and development

in hardware for the biologically inspired software models. The hardware

implementation of large-scale neural networks is an excellent candidate application for

the high density computation and storage possible with current and emerging

semiconductor technologies [84]. Besides, hardware implementation is much faster

than software, the primary motivation for this dissertation research is to engineer a

system level design in hardware that can be used for many biologically inspired

computation and other similar applications.

1.1.2 Associative Memory

An associative memory (AM) [50] can recall information from incomplete or noisy

inputs and as such, AM has applications in pattern recognition, facial recognition, robot

2

vision, robot motion, DSP, voice recognition, and big data analysis. Research on the

potential mapping of the AMs onto the nano-scale electronics provides useful insight into

the development of non-von-Neumann neuromorphic architectures. A datapath for

implementing an AM can be implemented using common hardware elements, such as,

adder, multiplier, simple divider, sorter, comparator and counter.

Therefore, providing a methodology for non-von-Neuman architecture with

nanoscale circuits and devices is one of the targets of this research.

1.1.3 Massively Parallel Architecture

Neural network based algorithms generally require massive parallelism. Single

Instruction Multiple Data (SIMD) [95], pipelining, and systolic array architecture [95]

are typical to DSP, neural network and image processing algorithms.

The goal of this research is to propose a design methodology for a complete system

that can handle large number of wide vectors with a series of SIMD (Single Instruction

Multiple Data)-like processing elements and pipelined architecture.

1.1.4 Neuromorphic Circuits and Devices

The emergence of many novel nanotechnologies has been primarily driven by the

expected scaling limits in conventional CMOS processes. Through such efforts many

new and interesting novel neuromorphic circuits and devices have been discovered and

invented. Memristor is an example of such a new technology.

3

A memristor feature size of F = 50 nm (where, F is the lithographic feature size or

half-pitch i.e. half of center-to-center nanowire distance) yields a synaptic density of

1010 memristive synapses per square centimeter, which is comparable to that of the

human cortex [89][90]. Therefore, memristor technology shows the prospect of scaling

up the capacities of DSP and Image Processing architectures, and associative memories.

Hybrid CMOS-Memristor design could be used for architectures which due to their

complexity cannot be designed and simulated in real-time in hardware-software using

conventional CMOS based design.

As such, this research undertakes the implementation of a complete system level design

using binary memristors with IMPLY logic and using a new variant of a CMOL crossbar

nano-grid array, MsCMOL (Memristive stateful CMOL). CMOL is defined as a two-layer

hybrid technology, in which semiconductor CMOS transistors are placed in the lower

layer, and molecular scale two-layer two-terminal nanodevices are placed at the upper layer

[Strukov-Likharev, 2005].

1.1.5 Design Methodology Development

The essence of this dissertation work is to develop a new methodology to design

a massively parallel and pipelined architecture at a system level using binary

memristors for biologically inspired Associative Memory and other similar application

areas as mentioned before. The research proposed here will involve the design of an

IMPLY-memristor based massively parallel reconfigurable architecture at a system and

logic levels.

4

1.2 Research Background and Motivation

1.2.1 Part 1: Research Groundwork

1.2.1.1 Defining Associative Memory

Associative memory (AM) [53][62] is a system that stores mappings from input

representations to output representations. When the input pattern is given, the output

pattern can be reliably retrieved. When the input is incomplete or noisy, the AM is still

able to return the output result corresponding to the original input based on a Best Match

procedure where the memory selects the input vector with the closest match, assuming

some metric, to the given input, then returns the output vector for this closest matched

input vector.

In Best Match associative memory, vector retrieval is done by matching the contents

of each location to a key. This key could represent a subset or a corrupted version of

the desired vector. The memory then returns the vector that is closest to the key. Here,

closest is based on some metric, such as Euclidean Distance

[19][36][37][38][39][40][41][42][43][44][45]. Likewise, the metric can be conditioned

so that some vectors are more likely than others, leading to Bayesian-like inference.

As in associative memories the information is retrieved through a search: given an input

vector one wants to obtain the stored vector that has been previously associated with the

input. In a parallel hardware implementation of a large-scale associative memory the

memory is searched to find the minimum distance between the new vector and the stored

memory vector using the Euclidean distance formula.

5

On the other hand, the Exact Match association, as in the traditional content

addressable memory (CAM), returns the stored value that corresponding to the exactly

matched input. A CAM holds a list of vectors which are distinguished by their

addresses, when a particular vector is needed, the exact address of the vector must be

provided.

1.2.1.2 History of Associative Memory Algorithm Development

Associative memories can be of different types. The first associative memory model

called Die Lernmatrix was introduced by Steinbuch and Piske in 1963. Willshaw

modeled and modified versions (1969-1999) [53], Palm developed a version (1980)

[73], and an iterative Palm model (1997). The Brain-state-in-a-box (BSB) was

developed by Anderson et al. (1977, 1993, 1995, 2007). Likewise there is the Hopfield

network model (1982) [64], the Self-Organizing Map (SOM) proposed by Kohonen

(1982, 1989) [76][82], the Dynamical Associative Memory (DAM) by Amari (1988,

1989), Bidirectional Associative Memory (BAM) by Kosko (1988) [68], Sparse

Distributed Memory (SDM) by Kanerva (1988) [56][65][66], Bayesian Confidence

propagation Neural Network (BCPNN) by Lansner et al. (1989) [75], Cortronic

networks by Hecht-Nielsen (1999), and Correlation matrix memories (CMM) [77].

Furber developed his own model (2007) implemented using Spiking Neural Networks

(SNN) [51][52][60][72], and there are, Spatial and Temporal versions of Self-

Organizing Incremental Neural Networks (SOINN, ESOINN, GAM) by Shen and

6

Hasegawa (2006-2011) [57][79][80]. Finally, the Cortical Learning Algorithms (CLA)

developed by Numenta (2010) are examples of some associative memories [61].

1.2.1.3 System Input Data Encoding

The input data into a neural network system can be received in any form, e.g. binary

data, real-valued data etc. Input data then gets encoded as wide vectors. Different neural

network models follow different encoding mechanism.

After generating the vectors, the similarity between the vectors is measured

using the Euclidean distance calculation or calculating the dot product of the two

vectors. The similarity is measured through a distance threshold value. A distance

threshold constant is used to control the classification of a new node to a new class or

to an existing class. During the experimentation, the values of distance threshold are

changed several times. A small value of distance threshold may result in a large number

of classes. With further experimentation, it is possible to obtain even fewer classes at

the output by iterating on the distance threshold constant.

1.2.1.4 Evaluation of Associative Memory Algorithm

The purpose of the research was to provide hardware directions for biologically

inspired associative memory models. Many groups have developed biologically

inspired software based algorithms [61][79][80] to address such problems. A few

groups are looking into creating increasingly more sophisticated hardware based

models of neural circuits [63][67][87][88][89][93][96], and then apply those models to

real applications.

7

Finding a suitable associative memory algorithm was the initial task for this

dissertation work. Through a detailed literature search, some of the most promising

models were identified. First, the performance of the associative memory model was

evaluated. Next, the capability of sequential or temporal pattern prediction was

checked. Based on all the results published by other authors and my own

experimentation with software models, one suitable model was identified for this

research.

As a part of this dissertation work, the Kanerva (Furber) SDM Associative memory

model and the Palm Associative memory models were implemented in Matlab. After

evaluation of the two models using the same datasets [69], it was not possible to prove

the superiority of one model over the other, as both models showed some capability as

well as some inaccuracies. The CLA Model [61] used for these experiments is a

commercial model by Numenta, Inc. 2010. The Furber Model is a model that was coded

in Matlab as a part of my dissertation research, and the coding required certain

assumptions based on the original published work by Furber et al. [51][52]. In addition,

although the CLA model has the variable order sequence prediction feature [61], the

experimental results did not show performance superiority of the CLA model over the

Furber Model. As such, we were unable to justify that the CLA model is performing

any better than the Furber model and we concluded that both models have similar

performance and none of the models are completely error free.

These conclusions were the motivation behind an additional literature search to find

more models that can provide better solutions to the problem. A more promising

biologically inspired associative memory model for spatial and temporal pattern

8

recognition by Shen and Hasegawa [57][79][80] was found through further literature

search. This led to the study of their SOINN model, the ESOINN Model and finally the

GAM model, which is the most promising algorithms among all of the models studied.

For the purpose of this research, the SOINN [57], and ESOINN algorithm [79] were

coded in Matlab for spatial pattern recognition. Later, the complete GAM [80]

algorithm was also coded [Appendix A], the algorithm does both spatial and temporal

pattern recognition. For the spatial pattern recognition experiments, input data was

collected from Lecun’s MNIST hand-written digit database [70] both for training and

test purposes. Upon completion of the training, a different set of images were used to

test the performance of the algorithm.

1.2.1.5 ESOINN/ GAM

Shen and Hasegawa proposed several models on pattern recognition, such as the

Self-Organizing Incremental Neural Network (SOINN) [57] based on an unsupervised

learning technique [58], and the Enhanced Self-Organizing Incremental Neural

Network (ESOINN) [79], which is a modification of SOINN. Both of these algorithms

have applications in spatial pattern recognition. Shen and Hasegawa also published a

General Associative Memory (GAM) algorithm [80], which is an associative memory

based algorithm, and a temporal version of the SOINN algorithm. The GAM model is

constructed as a three-layer network structure. The input layer inputs key vectors,

response vectors, and the associative relation between vectors. The memory layer stores

input vectors incrementally to corresponding classes. The associative layer builds

9

associative relations between classes. The method can incrementally learn key vectors

and response vectors; store and recall both static information and temporal sequence

information; and recall information from incomplete or noise-polluted inputs. Using the

GAM model, Shen and Hasegawa demonstrated promising results of pattern

recognition experiments using binary data, real-value data, and temporal sequences.

1.2.1.5.1 GAM Architecture

The input layer accepts any data that is encoded as a sparse distributed vector. These

input vectors are called key and response vectors. The input layer receives the key vectors

and response vectors. Response vectors are the outputs of the key vectors. The memory

layer classifies the vectors into separate classes based on the similarity of the vectors

falling within a threshold limit. The similarity between two vectors is measured through a

distance calculation using normalized Euclidean distance. The memory layer stores the

input vectors incrementally to the corresponding classes as it receives the input vectors. If

the input vector does not belong to an existing class in the memory layer, the GAM builds

a new subnetwork in the memory layer to represent the new class. The GAM sends the

class labels of subnetworks in the memory layer to the associative layer, and the

associative layer builds relationships between the class of the key vector (the key class)

and the class of the response vector (the response class) by using arrow edges. One node

exists in the associative layer corresponding to one subnetwork in the memory layer. The

arrow edges connecting these nodes represent the associative relationships between the

classes. The beginning of an arrow edge indicates the key class; and the end of the arrow

edge indicates the corresponding response class. The associative layer builds associative

10

relationships among the classes. The GAM can store and recall binary or non-binary

information, learn key vectors and response vectors incrementally, realize many-to-many

associations with no predefined conditions, store and recall both static and temporal

sequence information, and recall information from incomplete or noise-polluted inputs.

Experiments using binary data, real-value data, and temporal sequences show that GAM

is an efficient system.

GAM at first realizes auto-association, and then hetero-association as humans

initially recognize or recall a class with a garbled or incomplete key vector, and then

associate it with other classes according to the recognition of the key vector. A pattern

recognition or pattern completion process uses auto-associative information and

association between classes uses hetero-associative information.

1.2.1.5.2 GAM Analysis

The complete General Associative Memory (GAM) algorithm was analyzed as a

baseline algorithm for this dissertation research. It was observed that the GAM algorithm

has an advantage as its datapath can be designed using the SIMD concepts. Also this

algorithm fits well for a hybrid system level design as the control logic of the algorithm

can be designed in CMOS, while the datapath and memory operations can be designed

with a nanotechnology.

Since the goal of this dissertation was to develop a methodology for hardware

design, we realized that there is no need to design the complete GAM system. We rather

identified one most common and critical component that is widely used in GAM and many

other similar associative memory architectures. Thus Euclidean Distance Calculator was

11

identified for this methodology development work. Also, the reason the example of the

Euclidean Distance calculator was used for this research is that it is widely applied by many

Neural Network and similar algorithms in software. However, there is no hardware

implementation available or even published. Moreover, for the application areas of pattern

recognition, facial recognition, robot vision, Digital Signal Processing, voice recognition,

big data analysis, and database mining, all of those algorithms require to process massively

parallel large number of wide-word input vector/data and therefore, we need a hardware

system that can handle those large number of wide input vectors or neurons efficiently.

Conventional CMOS technology is not enough for handling any such massively parallel

applications, and as a result, this dissertation proposes an alternate, memristor-based

nanotechnology using stateful IMPLY based FPGA design, MsFPGA (Memristive stateful

logic Field Programmable Gate Array).

This proposed MsFPGA is the new idea and development by itself, only motivated

by the previous research on associative memories. It can be used for many other

applications, the same way as CMOS-based FPGA architectures are being used now.

However, to illustrate the proposed new device, we use the Euclidean Distance calculator,

which can be applied as an important component in any of the above application areas

listed. Besides, in this dissertation several potential applications of the proposed FPGA

architecture and its associated design methodology are mentioned, such as pipelined and

SIMD-like architectures, which are typical for neural network, machine learning, robot

vision, and control related applications.

12

1.2.2 Part 2: Memristor Based Research

1.2.2.1 Development on Memristor Research

Memristive devices [1] are electrical resistance switches that can retain a state of

internal resistance based on the history of applied voltage and current. These devices

were theoretically conceived in the late 1960s and recent progress has led to fast, low-

energy, high-endurance devices that can be scaled down to less than 10 nm and stacked

in three dimensions [40]. Leon Chua in 1971 [1] published the theoretical description

of memristors. Strukov et al. [2] in 2008 established the link between the memristor

theory and experimental results for the first time. Snider et al. [81] showed that

configurable crossbars are the easiest computational structures to fabricate at the

nanoscale level and also to assemble them into larger structures. Likharev and Strukov

in 2005 [6] predicted the development of hybrid CMOL integrated circuits that would

extend Moore’s Law to the few-nm range. They listed several important future

applications for such circuits, including large-scale memories, reconfigurable digital

circuits, and mixed-signal neuromorphic networks with high and promising

performances in delay and power. Likharev [71] proposed a memristive nanowire

crossbar array. Wei Lu et al. [32] in 2011 experimentally demonstrated 1 Kb hybrid

CMOS/memristor passive crossbar memory. Govoreanu et al. [59] in 2011

demonstrated functioning memristive devices at the 10 nm scale. Yang et al. [83]

recently published a paper where they reviewed the recent progress in the development

of memristive devices with the performance requirements. Pierzchala and Perkowski

[74] provided a crossbar architecture that is flexible for a programmable electronic

hardware device or for an analog circuit whose input and output signals are analog or

multi-valued in nature, and primarily continuous in time. Likharev et al. [89] proposed

a technique for the spatial pattern recognition by implementing the Hopfield network

13

model using the CMOL crossbar network. Peng Li et al. [67] have developed memristor

based design for memory and used it in a digital system that can be applied for spatial

pattern recognition. Intel recently published [78] their research results using cross-bar

neural network architecture based on memristor (phase change memory/PCM) synapses

and spin neurons. Through estimates for common data processing applications this NN

hardware shows 20X - 300X improvement in the computation energy when compared

to the state of the art CMOS designs.

In a price/performance study for the Hierarchical Temporal Memory (HTM) model,

Zaveri & Hammerstrom in 2011 [84] showed the comparative results of mixed-signal

(MS) CMOL, digital CMOL, digital CMOS and Analog CMOS designs. At present, if

manufacturing cost is considered as a measure of price, then obviously digital CMOS

design would be the cheapest. But in the near future, as the CMOL technology matures,

CMOL based designs seem to be more suitable for implementing computation and

memory intensive applications (Zaveri & Hammerstrom, 2010) [85]. Also, at present,

power is becoming the major measure of price, with silicon area being important, but

in the second place of importance to power. Neuromorphic circuits may provide

solutions to these latest design issues.

1.2.2.2 Summary on the Dissertation Research

Memristors are small devices that are able to hold a state, and therefore, this research

proposes to take advantages of the physical characteristics of memristors for certain design,

where data processing can be difficult or area-consuming with pure CMOS implementation

[22][31]. Memristive computing is expected to be advantageous in large-scale, massively

parallel architectures. As such, memristor-based design is explored for such applications

in order to evaluate the possible performance gain on the circuit design aspects, such as,

14

the processing time, area and the power consumption compared to the conventional CMOS

implementation.

The concepts and methodologies of this work were formulated based on the fact that

memristors themselves can perform logical operations [3][4]. In pure CMOS

implementations the datapath, memory and controllers must share die area. In contrast to

this, in this research for the memristor nanowire crossbar implementation, the memristors

are located above the CMOS layer in a physical layout. Because the memristor array is

proposed to be fabricated on top of CMOS [6][8], this frees up CMOS die area, and thus

reduces the total area of the combined CMOS and memristor circuits. Thus it enables more

datapath and memory logic [3][4][21]. The CMOL-like architecture and methodology

proposed in this dissertation are different from “Strukov and Likharev” proposed CMOL

(CMOL is defined as hybrid CMOS/MOLecular device at nanowire intersections)

[6][8][32][86]. In this proposed methodology, the pulses are generated in a memristor-

CMOS hybrid signal generator and are controlling the datapath and memories built with

memristor-Implication logic in CMOL-like nanowire crossbars. In contrast to “Strukov

and Likharev” proposed CMOL, in this proposed MsCMOL (Memristive stateful CMOL)

methodology, two memristors need to be addressed at a time to perform one logical

transfer, while in their CMOL, only a single memristor is addressed at a time, which leads

to less design flexibility. Also, the conceptual realization of the proposed memristor-

IMPLY based circuits is based on the realization of combinational logic in space and time

in such a way that a single memristor holds its state and is reused in many virtual IMPLY

gates.

15

A major portion of the dissertation is devoted to the realization of combinational and

sequential, pipelined logic in the proposed MsFPGA (Memristive stateful logic Field

Programmable Gate array). This dissertation work did not concentrate on programming of

memristor-based memories and connections, because these are well-known topics, known

from the literature. The main contributions of this dissertation are the concepts and

methodologies to design regular pipelined and SIMD-like architectures with stateful

IMPLY memristive logic. The experimental results show substantial advantages of this

new concept as compared to the classical CMOS FPGA in terms of area, power, and speed.

1.3 Thesis Organization

Chapter 1 discusses about the research motivation. Finding a hardware methodology

for the biologically inspired associative memory models for the application areas of big

data analysis, pattern recognition, robot motion, neural network etc. was the original

motivation of this work. Therefore, the focus of this research was to provide a hardware

methodology that is suitable for massively parallel and pipelined architecture and can be

implemented with nanoscale technology. Memristor is a promising new technology and as

such, this dissertation proposes a methodology of designing a massively parallel

reconfigurable architecture using the IMPLY-memristor based nanowire crossbar.

Chapter 2 discusses about the fundamental theories of memristors and CMOL

crossbar from the literature, how to design a stateful IMPLY gate with memristors, logic

synthesis with IMPLY gate using proposed space-time based notation together with pulse

16

generators, proposed optimized design of critical logic gates, like XOR and a 1-bit Full

adder with sneak-path protection, innovative concepts of 8-bit iterative adder design in a

new type of 8x8 nanowire crossbar, sneak-path reduction and pipelining using the array

of 8x8 nanowire crossbar blocks.

Chapter 3 introduces the proposed reconfigurable Hybrid memristor-CMOS

MsFPGA (Memristive stateful logic Field Programmable Gate Array) design. The

proposed architectural concepts behind the MsFPGA design such as: MsFSMD

(Memristive stateful Finite State Machine with Datapath), Pulse Generator, use of MsRAM

(Memristive stateful RAM), and block placement architecture are also discussed. The

proposed pipelined architecture of MsFPGA with SIMD-like massive parallelism is

presented as well.

Chapter 4 presents the concept of designing the Euclidean Distance Calculator as an

innovative pipelined datatpath. For future comparison against the proposed MsFPGA, this

chapter also presents the detailed implementation of such a datapath as a CMOS FPGA

design using the Xilinx Vivado 2015.2 tool. The complete design was coded using the

hardware description language VHDL, synthesized in Xilinx Vivado 2015.2 and analyzed

for area, power, and delay.

Chapter 5 discusses the circuit implementation challenges of MsFPGA. The

proposed MsCMOL, use of data MsRAM, array of 8x8 nanowire crossbar blocks, proposed

sneak-path protection, proposed row-to-row data transfer, proposed 8-bit iterative adder

17

design were discussed. MsFPGA was compared with other published memristive FPGAs,

for example, mrFPGA. Proposed MsFPGA is a reconfigurable system that can be designed

with pipelined datapaths and massive parallelism. This parallelism can be designed by

driving many such pipelines with one controller simultaneously, using the SIMD (Single

Instruction Multiple Data)-like concept. Relation of this dissertation work to the recently

published relevant paper on NVM is also discussed.

Chapter 6 introduces an innovative novel sneak-path protected IMPLY-memristive-

nanowire crossbar circuit design methodology. For this purpose, an example of 8-bit Full

iterative adder design was presented in detail. Also possible power consumption issues are

discussed. Current literature was studied and compared.

Chapter 7 discusses about the performance study of proposed MsFPGA in detail.

PSPICE simulations were performed on nanowire crossbars for the nanowire RC delay

measurement. Besides, memristor-nanowire power and area estimation were presented in

this chapter. Other benefits of memristors e.g., functioning as a pipeline was discussed.

Chapter 8 presents the results and comparative analysis of CMOS FPGA versus the

proposed memristive FPGA, MsFPGA for the Euclidean Distance pipeline.

Chapter 9 is a short chapter on the conclusions and contributions of this dissertation

research.

18

2 MEMRISTOR

The existence of the memristor, the fourth fundamental passive circuit element, was

theoretically predicted in 1971 by Leon O. Chua [1], but not experimentally validated until

2008 by HP Labs [2][33]. A memristor is essentially a nonvolatile nanoscale

programmable resistor, memory resistor — whose resistance, or memristance, is changed

by applying a voltage across the device. Chua [1] defined memristor as shown in Figure 1

(symbol shown in Figure 2) as a previously missing relation between the flux, φ and the

charge, q and therefore yielding the defining relation, M(𝒒) =
𝒅𝝋

𝒅𝒒
.

Figure 1: Fundamental Passive Elements [1].

Figure 2: Symbol of Memristor [3].

19

As shown in Figure 3, the I-V curves of memristors form pinched hysteresis loops, and

the forms of these loops depend on the amplitudes and frequencies of the input

voltage signals.

Figure 3: Memristor I-V curve shows hysteresis loop [3].

This phenomenon defines a state variable, which determines the memristor’s

instantaneous resistance also known as the memristance.

2.1 Stateful IMPLY memristor

Memristors can be binary, meaning that they can have two distinct states of

resistivity. Kuekes [3][4] in 2008 showed that the material implication logic operation can

be efficiently implemented using memristors. Binary memristors can be used to perform

stateful logic [3][4][5][7][11][12][94] which allows for direct implementation of logical

computations within memristive crossbars (nano crossbars with memristors at

intersections), assuming that one first develops some methodologies for synthesis of digital

systems with combinational and sequential datapaths built from working memristors that

are pulsed from the memristor-CMOS hybrid control block.

20

Figure 4: A. Implication (IMPLY) Logic Gate B. Truth Table [3].

The circuit in Figure 4-A shows the realization of the implication gate with two

memristors, which enables stateful memristor logic [3]. The truth table of this circuit is

presented in Figure 4-B. Here the memristors are assumed to be bistable linear devices

having the on-resistance RON and the off-resistance ROFF, where the resistance ratio is

assumed to satisfy ROFF/RON ≫ 1. The series resistance RG is chosen as RON < RG < ROFF.

Figure 5: Implication (IMPLY) Logic: Realization with Two Memristors [3].

In Figure 5, Memristor M1 is driven with a conditional voltage VCOND and memristor M2

is driven with a voltage VSET, where the next state of M2 depends on the IMPLY stateful

21

logic operation (|VSET| > |VCOND|). Memristor M2 is called the “working memristor” (WM)

and memristor M1 is called the “input memristor” (IM). The flow of current through the

M2 memristor changes its memristance and consequently changes the memorized internal

state. This is how the input memristor M1 state affects the output state M2+ of memristor

M2. Memristors can be reset to state ‘0’ by applying a VCLEAR voltage. Memristors hold a

logical state as a resistance value and not as a voltage value. Resistance values ROFF and

RON represent logical state ‘0’ and logical state ‘1’, respectively.

2.2 Logic Synthesis with memristors

A hybrid reconfigurable system level design with memristors and CMOS is proposed

in this dissertation. A space-time based circuit notation is used in the methodology

proposed in this section for the memristor based logic design based on the implication

logic gate. The implication logic gate is used for this work because it is a universal logic

component that can implement any function and also memristor implementations are very

efficient using this logic gate. The notion of the memristor based stateful logic gate is that

the output of the gate represents the next state of one of the inputs to the gate. Since a

memristor can hold a state, either as a ‘0’ or as a ‘1’, the output of a memristive logic gate

will hold the next state of the input as a logic high or as a logic low.

In a space-time based notation, space represents the design area and time represents

the sequential changes of states related to delay or speed of the design [102]. The symbolic

drawing of the space-time based notation to represent a memristive implication gate is

shown in Figure 6.

22

Figure 6: Symbol for space-time notation [102].

In this drawing, each horizontal line represents a memristive nanowire. For the proposed

methodology, two vertical nanowires need to be selected simultaneously to realize a single

logical operation (IMPLY operation). In the symbolic drawing, horizontal lines represent

physical memristors as they change value in time and vertical lines represent moments

(time) of transfer between two memristors which realizes the IMPLY operation. This way,

the timing pulses can be illustrated to move data sequentially from the left to the right as

shown in Figure 7.

Figure 7: Implementation of NAND/AND Gate using space-time notation. “Reset” operation on memristors

using the VCLEAR voltage is indicated by a ‘0’. At time t0, signal VCLEAR is presented to working memristor

M3 which initialized its value to ‘0’. At t1, signal VCOND is presented to WM M1 and signal VSET to WM M3,

which causes the state of M3 to be M1´+0=M1´. At t2, the state of M3 becomes M1´+M2´=(M1*M2)´

(DeMorgan’s Law). At t3, the WM M2 is scheduled to be reused by clearing it. Finally, at t4, the negated

value of M3 is added to M2. Thus M2+ = 0+((M1M2)´)´= (M1M2). M2+ is the next state of M2. [102]

23

The red dotted lines on both sides of each gate denote one timing pulse. The two

memristors on which IMPLY operation (M1 → M3) is executed are connected with a

vertical line and receive pulses of VCOND and VSET voltages simultaneously. The source

memristor M1 receives VCOND and the target memristor M3 receives VSET voltages. Also

VCLEAR voltage is applied to reset any memristor to the logic ‘0’ state (e.g. state ‘0’ is

shown in time-step t0, t3 in Figure 7). It is obvious that IMPLY and ‘0’ operators make a

universal logic system, because a NAND gate can be created from two IMPLY gates: B →

(A → 0) = (A´ + 0) + B´ = (AB)´. It is well-known that NAND is a universal gate. The

design process is illustrated in Figure 7 with a NAND/AND gate implementation [102].

A single CMOS clock drives the proposed entire hybrid system. The CMOS CLK

drives the counter, which generates the sequences for the Memristive stateful RAM

(MsRAM) and consequently the CLK or micro-pulse for each implication logical operation

in the memristive crossbar datapath. In this methodology, ‘t’ represents the clock cycle and

the time steps are denoted as t0, t1, t2, t3, …, etc. starting with the reset operation at time-

step t0 and IMPLY logical operation starting at time-step t1 as shown in Figure 7.

Using the design methodology introduced in this dissertation, any combinational or

sequential circuit can be designed and optimized for area and delay. The design of an XOR

gate, a useful gate in many applications, and in particular in the applications of the MsRAM

in the proposed pulse generator, is presented next. Proposed XOR design uses only two

working memristors and seven pulses which makes this design competitive in larger logic

circuits. Figure 8 is an important figure, because problems that appear in logic synthesis of

larger memristive circuits in stateful logic can be illustrated through this design [102].

24

Figure 8: Space-time notation of an Implication based circuit for a 2-Input XOR/XNOR Gate [102].

Design of a two-input, A & B, XOR gate is presented in Figure 8 and Table 2-1,

which shows that it requires only 7 micro-pulses and 4 memristors to realize this gate.

Therefore, the minimum design requirements for an n-input XOR gate is set as (7*(n-1) +

1) pulses and n working memristors (W1, W2, .. Wn) if all memristors are reused to realize

IMPLY gates [102].

In Figure 8, in moment t4 we simultaneously execute transfer from W2 to A (A´ =

W2´ + A) and we clear memristor B. Thus three control signals are created simultaneously.

VCLEAR for memristor B, VSET for memristor A and VCOND for memristor W2. This is

possible because in this proposed architecture every column can be addressed individually,

in contrast to the classical memristor crossbar.

25

Table 2-1: XOR GATE IMPLEMENTATION IN SPACE-TIME NOTATION [102].

Timing

pulse

Implication Gate

Structure

Logical

Operation

Comments

t0 PI: A, B

WM: W1, W2

 W1 reset to state0

W2 reset to state0

t1 A  0 A Inverter

t2 B  0 B Inverter

t3 B  A A + B = (A.B) NAND Gate

t4 B  A

Memristor B

A + B OR Gate

B reset to state0

t5 (AB)  0

Memristor W2

A.B AND Gate

W2 reset to state0

t6 (A + B)  AB AB + AB XNOR Gate

t7 (AB + AB)  0 AB + AB XOR Gate

A 1-bit full adder is fundamental to the proposed Euclidean Distance (ED) pipeline

design. An innovative adder is designed from stateful memristive IMPLY gates with five

working memristors and only 18 micro-pulses to generate the sum and carry signals as

presented in Figure 9. This adder is designed with a much improved sneak-path current

protection compared to other published adder design [5]. An 8-bit adder circuit was

implemented in an 8x8 crossbar nanowire, in which we reset the three primary memristors

and four working memristors of each adder bit (located in each row of the 8x8 crossbar)

after completing the logical operations. Therefore, this design provides much improved

sneak-path current protection. The only memristor that holds the “sum” bit cannot be

cleared, but this memristor is unable to contribute to sneak-path current as there is no direct

sink path to Gnd. Similarly, an 8-bit adder requires 165 micro-pulses for the digital design

illustrated in the symbolic space-time notation [102]. While Figure 9 presents a single bit

adder in symbolic notation, Figure 10 presents the corresponding 8-bit adder where every

26

row realizes a single bit adder [102]. This notation from Figure 10 is not symbolic and

extends the physical circuit from Figure 5.

Figure 9: Space-time notation for 1-bit Full Adder circuit with sneak-path protection [102].

The presented adder circuit is designed carefully to avoid sneak-path currents.

When carry and sum for a given bit are calculated, the working memristors that are no

longer needed are cleared by setting them to logic state ‘0’. The remaining one memristor

located in column 8 of each row of the 8×8 nanowire crossbar from Figure 10 holds the

sum bit of each bit adder.

27

Figure 10: An example architecture of four 8×8 nanowire crossbar blocks. Block to block horizontal and

vertical connections are made through switches in nanowire layer. Each horizontal and vertical nanowire is

connected to Ground through switch and load resistance RG to provide protection from sneak-path current.

CMOS decoders are placed beneath the nanowire crossbar layer in a physical layout [102].

In general, using the proposed space-time based circuit design method, the designer

should utilize the minimum number of memristors in the crossbar to optimize the die area.

One of the techniques for saving area is to reuse the memristor by resetting the previously

used working memristors to logic ‘0’ state using the VCLEAR voltage, as illustrated earlier.

During this reset step, this same memristor cannot participate in a logical operation, but it

can be reused for a logical operation at any later time-step. Another technique to optimize

the timing of the design is to reset multiple nanowires to the logic ‘0’ state in a single

28

micro-pulse. Also, during this reset operation, simultaneously, a logical operation between

two other memristors can take place. This way the total delay of the design can be reduced.

In conventional CMOS circuit design there is a distinction between the

combinational logic stage and the sequential logic stage as sequential components are

driven by a CLK signal in a synchronized design, whereas, in IMPLY-memristor based

design, no such distinct separation exists. For example, in Figure 11, three DFFs are

serially connected and the output of the third FF is connected to the input of the first FF

through an AND gate. This circuit is realized in Figure 12 with IMPLY-memristor based

space-time design technique and shows that there is no distinct separation to draw the

complete circuit presented in Figure 11. This is an obvious advantage for the proposed

IMPLY-memristor based logic design using the space-time technique.

Figure 11: Combinational and Sequential components in CMOS Implementation.

29

Figure 12: No Separation between Combinatorial and Sequential Logic in IMPLY-memristor Design.

2.3 CMOL Crossbar

One of the main driving forces of memristor technology is the prospect of crossbar

architectures with very large numbers of memristive devices [8][32][86]. It is a 2D array,

which consists of two perpendicular nanowire layers. The nanowires act as the top and

bottom electrodes of memristors, and they can be patterned for example by e-beam

lithography complemented with reactive ion etching, and lift-off processing for the upper

nanowire layer [8][32][86]. A typical nanowire half pitch of the nanowires in the reported

physical memristive crossbars, so far, is in the range of 30 nm−100 nm [20]. The

memristive material is laid between the two nanowire layers, and as a result, a memristor

is formed at each cross-point of two nanowires [8][32][86].

The “Strukov and Likharev” proposed CMOL memristor interfacing [8][94] is

described below.

30

Figure 13: “Strukov and Likharev” CMOL Memristor Architecture [8][94].

In Figure 13 the CMOS cells are represented as square tiles, with circular interfaces to the

nanowire crossbar. The nanowire crossbar is represented as a mesh of line segments. Each

CMOS cell is addressed by four microwires that are connected to the address decoders

represented at the perimeters of the circuit. The four-line addressing is used in order to

independently control the horizontal and the vertical nanowires via the switches shown in

the Figure 13. Although not shown here, there exists a memristor at each crossing of the

nanowires. The CMOS pins are represented with red and blue circles. The red pins are

connected to the lower layer or the crossbar, while the blue pins are connected to the upper

layer.

The addressing of a memristive crossbar is established in a CMOL-type architecture

by two sets of row and column decoders and pass transistors. The four-wire addressing

allows the selection any pair of a horizontal and a vertical nanowire. This selection is then

used for reading from and writing to the memristive crossbar.

31

The CMOL structure shown in Figure 14 was originally proposed by Likharev and

Strukov [8], in which, only one memristor can be selected at a time using two nanowires

in one CMOS cell. The nanowires are represented by yellow color and the memristor is

located at the intersection of the two nanowires as shown by green dot.

Figure 14: CMOL-memristor architecture by Likharev and Strukov [8].

A variation of the CMOL architecture called the Field Programmable Nanowire

Interconnect (FPNI) was later proposed by Snider and Williams [45]. In FPNI, logic is

performed by the CMOS layer, and only signal routing is realized by the memristive

crossbar. Unlike Likharev and Strukov’s CMOL-memristor architecture, more logical

primitives than just inverters are needed at the CMOS layer. However, the Snider and

Williams approach is also more like a classical FPGA-like circuit implementation and

therefore is fundamentally different from the approach proposed in this dissertation. As

32

conventional CMOL only performs reconfiguration with memristors, while the logic

circuits are designed with memristors in the proposed FPGA in this dissertation.

As mentioned, proposed CMOL-memristor architecture, MsCMOL is completely

different from the conventional CMOL-memristor architecture [102]. A limitation of the

conventional CMOL-memristor architecture is in the addressing scheme of the design

where only a single horizontal and a single vertical nanowire can be selected at a time. This

restriction to a single-junction selection may not be a problem in pure memory

architectures as well as FPGA-like architectures based on configuring the space-realized

memristor-based circuits, but in all stateful memristor logic applications it would be

advantageous to be able to select multiple nanowires at once. This is because of the

sequential nature of implementing logic operations in the realization of the stateful IMPLY

gate. But even in this circuit two pulses are needed most of the time, one addressing the

receiving memristor and another addressing the sending memristor. Thus the memory-like

or FPGA-like (FPNI) addressing schemes and respective CMOLs are not applicable to this

proposed design, as explained in a more detail later.

33

3 FPGA DESIGN USING MEMRISTORS

A Hybrid memristor-CMOS circuit can be used to implement reconfigurable

Boolean logic circuits such as Field Programmable Gate Arrays (FPGAs)

[6][8][9][10][13][30][86]. Since memristors act as non-volatile memories, memristive

FPGA can retain its state when unpowered. Also, more than 90% of the area in classical

FPGAs is consumed by the SRAM-based configuration bits [6][8][86], a memristive

implementation can yield much higher logic gate density than is available in a pure CMOS

implementation. Flash EEPROM based FPGAs are smaller and much less powerful and

are not considered here.

3.1 Concepts Behind MsFPGA Architecture

Using memristor technology, we have the possibility of designing a massively parallel,

programmable architecture with a very large number of memristive devices in a crossbar

configuration [102]. Therefore, this dissertation work proposes a system-level architecture

that significantly benefits from the small size characteristics of the memristive devices and

nanowires. Moreover, the proposed design is capable of handling very wide word input

vector lengths, and processing a large number of vectors (thanks to pipelined and SIMD-

like architectures [95]). Multiple pipelines can be driven simultaneously by a single

controller in the proposed MsFPGA (Memristive stateful logic Field Programmable Gate

Array) [102]. The proposed MsFPGA allows the implementation of massively parallel

computation by leveraging a massively parallel architecture with a very large number of

34

memristive devices in a crossbar as discussed in section 3.2.

The proposed hybrid memristor-CMOS reconfigurable system level architecture,

MsFPGA (Memristive stateful logic Field Programmable Gate Array) is presented in

Figure 15 [102].

3.1.1 Memristive stateful Finite State Machine with Datapath (MsFSMD)

A well-known model of a Finite State Machine with Datapath (FSMD) is a digital

system composed of a finite-state machine controller, and a datapath. This model is used

in centrally controlled pipelined and SIMD-like architectures. However, the FSMD

concept cannot be applied to the proposed hybrid design with memristors. Therefore, a

novel non-von Neumann architectural concept is proposed for the proposed MsFPGA

design.

35

Figure 15: Proposed Memristive stateful logic Field Programmable Gate Array (MsFPGA). The details of

the “Hybrid Pulse Generator” and the “CMOS Merge Block” are shown in Figure 17. The red polygon

represents one pipeline of the proposed memristive ED architecture and the implementation is illustrated in

Figure 41 in Chapter 7. Color code: Green- memristor nanowire crossbar, Yellow- CMOS, Blue- Hybrid

circuitry [102].

The proposed methodology provides a novel general new architecture model,

Memristive stateful Finite State Machine with Datapath (MsFSMD) as shown in Figure

16 [102]. Like conventional FSMD, this proposed system is also a digital system that

includes a finite-state machine, and a datapath, but all logic is implemented with

memristors, which changes timing and design methods used. Besides, the MsFSMD model

has an additional control block called the pulse generator [102]. The pulse generator can

be defined as the brain of the proposed MsFPGA. The pulse generation block contains the

Memristive stateful RAM (MsRAM) and a CMOS counter [102]. The usage of the

36

MsRAM is another innovation of this dissertation work. This MsRAM contains all the

configuration information required to realize the virtual logic circuit in the memristive

nanowire crossbar datapath [102]. Unlike traditional von Neumann architecture, the

proposed MsFSMD datapath can contain both datapath and memory without any distinct

separation between them.

Figure 16: A. Conventional FSMD (Finite State Machine with Datapath) B. MsFSMD (Memristive stateful

Finite State Machine with Datapath). The Pulse Generator block contains a CMOS counter and a

Memristive stateful MsRAM. Color code: Yellow-CMOS, Blue-Hybrid CMOS-memristor, Green-Memristor

nanowire crossbar.

In a conventional FSMD, the FSM controls the register-transfer operations in the

datapath. The datapath performs data processing operations and sends the flags (‘yes’ or

‘no’) back to the FSM as shown in Figure 16. The proposed MsFSMD has two innovative

properties:

1. Like FSMD, this proposed system is also a digital system that includes a finite-state

machine, and Datapath, but all logic is implemented with memristors, which changes

timing and design methods used.

37

2. The MsFSMD model has an additional control block called the pulse generator as

shown in Figure 17 and presented in section 3.1.2.

3.1.2 Pulse Generator

The pulse generator can be defined as the brain of the proposed MsFPGA. The pulse

generation block consists of a CMOS counter and a Memristive stateful RAM (MsRAM).

This MsRAM contains all the configuration information required to realize the virtual logic

circuit in the datapath. For instance, the datapath can have various arithmetic components

such as an adder, subtractor, square, square-root, comparator, divider, and multiplier.

Although the information in MsRAM is stored as memristances, the output values of

MsRAM are available as voltages. The Voltage Regulator (VR) creates voltages VSET,

VCOND and VCLEAR. These voltages are fed to the merge block in which many multiplexers

controlled from the Pulse Generation block select the controlling voltages for each column

in the datapath blocks. The use of voltages in the realization of stateful IMPLY operations

was already explained in Figure 7.

38

Figure 17: Proposed controller for the CMOS-memristor hybrid design (Pulse Generator with Merge Block).

Color code: Green-memristor nanowire crossbar, Yellow- CMOS, Blue- hybrid circuitry [102].

Figure 17 explains how the proposed architecture switches between row nanowires

and column nanowires [102]. While the control voltages in Figure 5 are only presented to

the column nanowires, and the row nanowires are connected to Gnd, the proposed

architecture from Figure 17 allows switching the roles of rows and columns. This is done

39

using the CMOS multiplexers. Therefore, it is possible that the horizontal nanowires are

given control voltages while the vertical nanowires are connected to Gnd.

The proposed architecture then includes:

1. voltage multiplexers,

2. row select multiplexers,

3. column select multiplexers and

4. 4-to-16 one-hot decoder for switch to ground selection.

All these components are realized in CMOS. Buffers can be inserted to prevent signal

attenuation in case of long lines.

3.1.3 Memristive stateful RAM (MsRAM)

An MsRAM is made out of memristors. The control data in MsRAM, located in the

Pulse Generator are described with the encoding table to generate the pulses for the

datapath as shown in Figure 18 [102]. This table illustrates controls for a portion of 8-bit

Full-adder circuit as per Figure 9 in Chapter 2. It can be compared to the well-known tables

that illustrate contents of ROMs in classical designs. Rows correspond to addresses given

in time by a controlling CMOS counter and to the time pulses given to the datapath by the

pulse generator. The right-most five columns are kept for row/column selection and

providing sneak-path protection. A single bit row_sel signal is used to distinguish whether

the voltages are applied to a row or to a column. When the row_sel signal is ‘1’ the voltages

are applied (through columns) to a row, and when the row_sel signal is ‘0’ the voltages are

applied (through rows) to a column. Therefore, when the row_sel signal is ‘1’, voltages are

40

applied to the row (through columns) from the pre-programmed MsRAM, and the column

select will be selecting high impedance state (Hi-Z). Also, a 4-bit CMOS one-hot decoder

(Figure 17 shows columns sw1, sw2, sw3, sw4) is used to select one wire (1 row or 1

column) from a total of sixteen wires (8 rows and 8 columns) to connect to the ground at a

time. This feature ensures that current can sink through only one wire to Gnd, and thus

providing protection from sneak-path current.

The MsRAM controls the two select lines of a mux (control signals on the output of

pulse generator). Data inputs to this mux are the voltages: for controls 00 – HiZ (High

Impedance State), 10 - VCOND, 01 - VSET and 11 - VCLEAR that are selected to control the

vertical/horizontal nanowires to perform the stateful logical operations in the memristor

crossbar datapath. Since the proposed design provided protection from sneak-path current

by adding few additional cycles in Figure 9, the MsRAM got extended with the decoder

control bits as presented in Figure 18 [102].

41

Figure 18: Partial Encoding Table in MsRAM for an 8-bit iterative Full Adder realized in the Datapath

(combination of control bits for various controlling voltages are: 00-HiZ, 01-VSET, 10-VCOND, 11-

VCLEAR) [102].

42

3.1.4 Placement of Blocks and Connection Programming

The proposed Memristive stateful logic Field Programmable Gate Array (MsFPGA)

architecture is completely reconfigurable and can be used for many applications, including

those that require massive parallelism [102]. Massive parallelism in the example presented

in this dissertation is based on pipelining and several pipelines operating in parallel.

However, it should be obvious to the reader that advantages of proposed regular design are

applicable also to Single Instruction Multiple Data (SIMD)-like architecture, systolic, and

CMOL-like datapath-memory architectures which are typical to DSP, neural network and

image processing. The proposed MsFPGA is particularly well-suited to regular designs

with square or rectangular blocks executed in parallel or pipelined. Since the blocks (8x8

nanowire crossbar blocks) are placed in abutment, the horizontal connections are short and

routing is simplified. This makes the architecture highly reconfigurable and also

specifically suited for regular SIMD-like and pipelined architectures [102].

Since the example used in this dissertation does not have buses, and also the cells in

the datapath are placed in abutment, connections are really simple. However, the proposed

methodology is to send the output signals from a datapath block, located in the memristor-

nanowire crossbar to the pulse generator block, in presence of buses, long connections or

feedback connections in the datapath. The pulse generator is configured to send the control

signals to the next datapath block located in the memristor-nanowire crossbar and also, the

pulse-generator makes necessary communications with the CMOS FSM as shown in

Figure 15.

43

3.2 Implementation of Proposed MsFPGA

3.2.1 Hybrid Architecture

As mentioned before, this dissertation proposes a memristive system-level

architecture, MsFPGA, which is capable of handling large number of wide-word input

vectors using the concepts of SIMD (Single Instruction Multiple Data) and pipelining

[102]. The datapath, and any memory including the MsRAM (Memristive stateful RAM)

of the pulse generation block of the proposed MsFPGA are designed in nanowire crossbar

memristor-based technology, while the control logic- FSM controller, counter in pulse

generator, multiplexers and decoder in the Merge block are designed in CMOS technology.

Buffers can be inserted to prevent signal attenuation in case of long lines in the system.

3.2.2 Pipelined Architecture

In this dissertation, the general idea for MsFPGA design is illustrated with a specific

example of a pipeline architecture for the Euclidean Distance (ED) calculation.

The straight-line distance between two points can be specified by using the

Pythagorean formula. Euclidean Distance is the square root of the sum of the squares of

the differences between corresponding values as shown in (1).

D(X, Y) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ∙∙∙ +(𝑥𝑛 − 𝑦𝑛)2 . (1)

ED calculation is widely used in supervised and unsupervised learning, pattern recognition,

and neural network algorithms for calculating distances between two neighboring neurons

or vectors [19]. In addition to the above mentioned applications, ED is also used

44

[36][37][38][39][40][41][42][43][44][45] in Euclidean matrices, hierarchical clustering,

phylogenetic analysis, molecular conformation in bioinformatics, dimensionality reduction

in machine learning and statistics, natural language text processing, image processing,

medical imaging, data mining, and big data analysis. Distance transformations use ED, and

they are used in computer vision applications such as shape matching, pedestrian detection,

human tracking, action recognition, robot motion planning or computation of

morphological operations [39]. ED is also used in medial axis of a digital shape applied in

surface reconstruction, shape simplification, volume representation and smoothing

Voronoi diagrams applied in graphics and robot path planning. Several authors have

discussed the growing importance of the ED calculation, which is incorporated in many

important algorithms, and emphasized the need for fast ED calculation using a hardware

realization.

The proposed ED pipeline hardware can be used as a powerful accelerator in any

system, for both spatial and temporal pattern recognition [19]. For the proposed MsFPGA,

two separate memories were used, one to hold any previously stored vectors and the other

to store new incoming vectors as inputs to the ED pipeline [102]. The length of each vector

can be ‘n’ (where n is any integer), while each element of the vector is kept 8 bits wide in

order to address image gray-scale values of 0-255. These two memories are also MsRAMs,

but in contrast to the MsRAM used in the pulse generation block, they do not create output

voltages, but the transfer from them to the datapath is done the same way as between

memristor-based combinational blocks in the datapath which will be explained in Chapter

5 and Chapter 6 of this dissertation [102]. For simplification, circuits for the transfer of

initial data to these memories are not considered in this dissertation.

45

3.2.3 Massively Parallel Architecture

As we see from the presented examples there is a very good match between the small

size of memristors, the sequential realization of stateful IMPLY logic operations and a

pipelined or Single Instruction, Multiple data (SIMD)-like design. Because of the

sequential nature of combinational logic realization, the speed-up can be obtained only by

implementing some form of parallelism. This is because:

1. Small size of memristor allows massively parallel architectures with low power

dissipation.

2. Stateful design in which memristor stores a state, which allows “logic in memory”

data-flow architectures, in particular pipelines, systolic and SIMD-like processors.

3. No flip-flops are necessary, which allows deep pipelines at small cost. Only pulses

from the pulse generator are used.

4. The pulse generator is a relatively large circuit in several applications, but it can be

shared among parallel blocks or pipelines.

Pipeline registers are not necessary because every memristor stores its value. This

changes the proportion of cost going to combinational and sequential components and calls

for massive pipelines, if possible. Due to the very small size of memristor crossbars, several

pipelines can operate in parallel. The sizes of the blocks that are executed in parallel can

be selected by the user, depending on the application. Similarly, non-pipelined SIMD-like

designs can be realized making use of the small size of memristors combined with

sequential realization of logic and relatively regular routing between blocks. Therefore, in

46

this dissertation a massively parallel architecture is proposed for system level design by

both pipelining in the datapath and the ability to have many identical pipelines that are

operating on separate data elements, where a single controller can drive many datapath

blocks operating in parallel. It was assumed that the controlling machine is a CMOS-

realized FSM that sends control signals to the hybrid Pulse Generator, which, in turn,

controls many memristor-based pipelined datapaths. This parallelism along with the

natural pipelining is expected to speed-up the overall design and to compensate for any

delays due to the sequential nature of operations inside the 8×8 nanowire crossbars in the

datapath that correspond to cells in standard FPGAs.

In this proposed methodology, a single controller can control multiple pipelines. The

memristive controller is located in the proposed pulse generator (PG) and drives data in

multiple pipelines with the same control. The proposed MsCMOL based datapath has

memristors as well as CMOS. It is important to mention that when going to parallel

pipelines all using a single controller, the controller increases only slightly with the

big increase of the number of datatpaths. However, the ratio of memristors to CMOS

in the datapath remains the same.

3.3 Benefits brought by proposed architecture methodologies

Proposed MsFSMD model is a good approximation to SIMD-like architectures in

which there is one central controller (in case of this dissertation, FSM and Pulse Generator)

and massively parallel regular array of relatively simple processors that communicate by

abutting. All processors execute the same simple algorithm based on control signals from

47

the controller. These architectures include Cellular Automata, Image Processors based on

Convolution, Morphological Processors, Sorters, Neural Networks and other.

Proposed pipeline architecture that is a good match with sequential nature of stateful

memristor logic and with a regular style of designing circuits (also proposed in this

dissertation work) based on abutting of hybrid blocks that are both pipelined and work in

parallel. This dissertation compares this proposed design style with a classical CMOS

FPGA. Therefore, all of the results from tables presented in this dissertation and related

texts can be used to evaluate the proposed methodology relative to FPGA technology.

48

4 CMOS FPGA IMPLEMENTATION

To illustrate the concepts of the proposed methodology for this dissertation work,

a Euclidean Distance (ED) processor was designed. The straight-line distance between two

points in a multi-dimensional space can be specified by using the Pythagorean formula.

ED is the square root of the sum of the squares of the differences between corresponding

values as shown in (1).

D(X, Y) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ∙∙∙ +(𝑥𝑛 − 𝑦𝑛)2 . (1)

The reason that the example of the Euclidean Distance calculator was chosen for

this work is that it is widely used by many Neural Network and similar algorithms in

software, but there is no hardware implementation available. Moreover, for the application

areas of pattern recognition, facial recognition, robot vision, Digital Signal Processing,

voice recognition, and big database analysis, the algorithms typically require lots of data

and the processing of that data can be done by massively parallel data processing pipelines

[102].

The example of Euclidean Distance calculator was used for both CMOS FPGA

design as presented in this chapter, as well as the proposed MsFPGA design as

described throughout in this dissertation. Using the two technologies, an exactly

same pipeline is designed with the arithmetic blocks − subtractor, square operator,

adder, comparator and multiplexers. Since CMOS is the state-of-the-art technology,

49

the ED pipeline was additionally designed using CMOS, so that a comparative

performance analysis against the proposed memristive-CMOS hybrid design is

possible [102].

This dissertation work proposes a pipelined implementation of the Euclidean

Distance calculation using the IMPLY-memristor nanowire crossbar and, for comparison

with the proposed memristive variant, the architecture is also implemented as a

conventional CMOS FPGA using hardware description language VHDL [97][98]. The

design was simulated for functionality evaluation and synthesized for performance

measurement using Xilinx Vivado 2015.2 tool version [102].

The design contains a datapath with a controller for calculating the Euclidean

distance and also calculates the overall minimum distance between all vector

combinations.

A complete pipeline is implemented that has several arithmetic blocks as per the

Euclidean distance formula.

Dnew = SQRT[(x[0] – w[0])2 + (x[1] – w[1])2 + (x[2] – w[2])2 + (x[3] – w[3])2]. (2)

Dmin = Min (Dnew , Dmin). (3)

The motivation of this design is a pattern recognition machine which is based on a

neural network based supervised/unsupervised learning algorithm. This sub-system can be

used in a design, such as, SOINN, ESOINN and GAM of Shen and Hasegawa. In the

implementation discussed here, the length of each vector is kept 4-bit integer number for

50

simplicity, while each element of the vector is kept 8-bit wide. Each element of the vector

represents a pixel of an image with gray scale value between 0-255 (i.e. 2^8). For a pattern

recognition example, the length of the feature vector is calculated from the size of the

image. For an image size of 28x28 pixels, the length of the vector is 784 integer numbers.

For each element of this 784 is again 8-bit wide. The proposed pipeline design is based on

an 8-bit width vector, however, instead of a large vector length like 784 integer numbers,

the vector length was kept at 4-bit integer number only. Since, vector length does not play

a significant role in this pipeline design, the length was rather kept at a variable parameter

in the VHDL codes. The 8-bit vector element width dictates the size of each arithmetic

block in the pipeline. Therefore, vector element width is important in this case. A longer

vector length only indicates longer operation time of the pipeline to complete the ED

computations between two vectors [102].

The arithmetic blocks include, subtractor, Look-up Tables (LUT), adder,

comparator, SISO (shift-in shift-out) registers, accumulation register and general registers.

Figure 19: Complete synthesized Proposed Euclidean Distance pipeline.

51

The complete synthesized CMOS FPGA pipeline is shown in Figure 19. Each

component of the pipeline is described separately with timing (functional) simulation and

the results of the synthesis in the following section.

4.1 Detailed Implementation of Euclidean Distance Processor

Pipeline Design Blocks:

1. Serial in Serial out (SISO) registers:

 The register used for this pipeline is an 8 bit SISO meaning that it shifts one element

i.e. 8 bit at each clock cycle. There is an initial delay for about one clock cycle for the data

to appear at the output because the SISO can take in a vector element of width eight. The

vector length and width numbers are changeable as it is designed for variable "n-bit". A D-

flip flop is used to build the SISO structurally, whose code is shown below along with the

simulation result for sample data in Figure 20.

Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity SISO is

generic(N : integer := 8);

 Port (si : in STD_LOGIC_vector(N-1 downto 0);

 clk : in STD_LOGIC;

 so : out STD_LOGIC_vector(N-1 downto 0));

end SISO;

52

architecture structural of SISO is

component dff is

 generic(N : integer := 8);

 Port (d : in STD_LOGIC_VECTOR(N-1 downto 0);

 clk : in STD_LOGIC;

 q : inout STD_LOGIC_VECTOR(N-1 downto 0);

 qbar : inout STD_LOGIC_VECTOR(N-1 downto 0));

end component;

type array_type is array (0 to N) of std_logic_vector(0 to N-1);

signal x,y : array_type;

begin

x(0)<=si;

l1: for i in 0 to N-1 generate

 d1:dff port map(d => x(i), clk => clk, q => x(i+1), qbar => y(i));

 end generate;

so <= x(N);

end structural;

Simulation result:

The test bench will be discussed later in this chapter.

53

Figure 20: Simulation result SISO register.

2. Register N-bit:

 This is a simple register (n-bit) as shown in Figure 21, which on getting the data at

the input will give the data at the output in the next clock cycle. The register uses D-flip

flops. The code is presented below and the simulation result for sample data is shown in

Figure 22.

Figure 21: Structural view of register after synthesis.

Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

54

entity n_bit_register is

generic(N : integer := N);

 Port (load : in STD_LOGIC;

 a : in STD_LOGIC_VECTOR (N-1 downto 0);

 clk : in STD_LOGIC;

 q : inout STD_LOGIC_VECTOR (N-1 downto 0);

 qbar : inout STD_LOGIC_VECTOR (N-1 downto 0));

end n_bit_register;

architecture structural of n_bit_register is

component one_bit_reg is

 Port (load : in STD_LOGIC;

 a : in STD_LOGIC;

 clk : in STD_LOGIC;

 q : inout STD_LOGIC;

 qbar : inout STD_LOGIC);

end component;

begin

l: for i in 0 to N-1 generate

 r: one_bit_reg port map (load => load, a => a(i), clk => clk, q => q(i), qbar => qbar(i));

end generate;

end structural;

55

Simulation result:

Figure 22: Simulation Result of n-bit Register.

3. Square Function:

 The square LUT is a ROM that takes in an 8-bit binary number and gives a 16-bit

square of the binary input as output. Xilinx Block RAMs (BRAM) were used to implement

the square operation.

Originally, I planned to design the multiplier, divider, square and square-root

operations using the Logarithmic Number Systems (LNS) based design [91][92]. In a

Logarithmic Number System, a number x is represented as the fixed-point value i = log2 x,

with a special arrangement to indicate zero x and an additional bit to show its sign. For i =

log2 x and j = log2 y and assuming without loss of generality that, in dyadic operations, j ≤

i, LNS arithmetic involves the following computations:

log2 (x + y) = i + log2 (1 + 2j-i);

log2 (x - y) = i - log2 (1 - 2j-i);

log2 (x * y) = i + j;

log2 (x ÷ y) = i - j;

log2 (√x) = i ÷ 2;

log2 (x
2) = i * 2.

56

Thus using the LNS, multiplication, division, square-root and square operations can be

simplified to addition, subtraction, and shift operations.

However, later through experiments I found that the logarithmic implementation of

the square operation was difficult to synthesize, and therefore, Xilinx provided block

RAMs were used for the “square operator” design in this dissertation.

Since the input is 8-bit wide, the LUT in this design has 256 entries. The

synthesized design and simulation waveform are presented in Figure 23 and 25

respectively. The data stored in the LUT were generated by a Python script. A small code

snippet of the Square Lookup Table is shown in Figure 24.

Figure 23: View of LUT after Synthesizing in Xilinx.

Code (snippet):

--input 8-bit binary number to output 16-bit Square number in binary

library ieee;

use ieee.std_logic_1164.all;

entity Log2Table is

 port(

57

 Binary_in: in std_logic_vector(7 downto 0);

 square_out : out std_logic_vector(15 downto 0));

end Log2Table;

architecture arch of Log2Table is

begin

 process(Binary_in)

 begin

 case Binary_in is

 when "00000000" => square_out<= "0000000000000000";

 when "00000001" => square_out<= "0000000000000001";

 when "00000010" => square_out<= "0000000000000100";

 when "00000011" => square_out<= "0000000000001001";

 when "00000100" => square_out<= "0000000000010000";

 when "00000101" => square_out<= "0000000000011001";

 when "00000110" => square_out<= "0000000000100100";

 when "00000111" => square_out<= "0000000000110001";

 when "00001000" => square_out<= "0000000001000000";

 when "00001001" => square_out<= "0000000001010001";

58

Sample Output from script:

Figure 24: Actual output from Python script.

Simulation result:

Figure 25: Simulation Result of Square Table.

4. Full adder (N-bit):

 The code, synthesized circuit (Figure 26) and simulation result (Figure 27) using

sample data for the N-bit full adder circuit are presented below. The adder is implemented

as a ripple carry adder by full adders for N-bit parallel addition.

59

Figure 26: Structural View of adder after Synthesis.

Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity n_bit_adder is

 generic(N : integer := N);

 Port (a : in STD_LOGIC_VECTOR (N downto 1);

 b : in STD_LOGIC_VECTOR (N downto 1);

 c_in : in STD_LOGIC;

 c_out : out STD_LOGIC;

 sum : out STD_LOGIC_VECTOR (N downto 1));

end n_bit_adder;

architecture structural of n_bit_adder is

 signal carry : std_logic_vector(0 to N);

 component full_adder

 port (x : in std_logic;

 y : in std_logic;

 c_in : in std_logic;

 sum : out std_logic;

 c_out : out std_logic);

60

 end component;

begin

 carry(0) <= c_in;

 c_out <= carry(N);

 gen:for I in 1 to N generate

 n_bit_adder: full_adder port map(x => a(I),y => b(I),c_in => carry(I-

1),sum => sum(I),c_out => carry(I));

 end generate;

end structural;

Simulation Result:

Figure 27: Simulation result of adder.

5. Accumulator (N-bit):

 The N-bit accumulator uses a N-bit register to accumulate the values coming from

the adder until it receives a control signal from the controller and passes it to the next block

as output, meanwhile the accumulator feeds the adder. The code, synthesized circuit

(Figure 28), and simulation result (Figure 29) of the accumulator are shown below. The

accumulated value changes until the accumulator receives the control signal from the

controller as shown in the timing simulation.

61

Figure 28: View of accumulator after synthesis.

Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use ieee.numeric_std.all;

entity accumulator_16bit is

generic (N: integer := 16);

 Port (A: in std_logic_vector(N-1 downto 0);

 ctrl_sig: in std_logic;

 clk: in std_logic;

 feedback: out std_logic_vector(N-1 downto 0);

 comp_out: out std_logic_vector(N-1 downto 0));

end accumulator_16bit;

62

architecture Structural of accumulator_16bit is

component register16bit is

 generic(N : integer := 16);

 Port (load : in STD_LOGIC;

 a : in STD_LOGIC_VECTOR (N-1 downto 0);

 clk : in STD_LOGIC;

 q : inout STD_LOGIC_VECTOR (N-1 downto 0);

 qbar : inout STD_LOGIC_VECTOR (N-1 downto 0));

end component;

signal reg16_out, reg16_qb: STD_LOGIC_VECTOR (N-1 downto 0);

begin

reg16: register16bit port map(load => '0', a => A, clk =>clk, q => reg16_out, qbar =>

reg16_qb);

comp_out <= reg16_out when ctrl_sig = '1';

feedback <= "0000000000000000" when (reg16_out = "UUUUUUUUUUUUUUUU" and

ctrl_sig = '0') or ctrl_sig = '1' else reg16_out;

end structural;

63

Simulation Result:

Figure 29: Accumulator simulation result.

6. Subtractor:

 The subtractor used in this pipeline is different from the normal subtractor, it would

always produce a positive result even if the minuend is smaller than the subtrahend, eg. 2-

4 = 2. Thus the subtractor here computes the absolute difference between the two values.

So, the design used in this pipeline does not output in the form of 2's complement, rather

it gives the number itself, which is more suitable for the calculation purpose. The subtractor

uses a comparator, and two subtractor blocks. The inputs to the unit is fed to the

comparator, which compares the two values and depending on whether a is greater or not,

the value of the borrow remains the same or is given a value '1'. If a is greater than b, the

output of the first subtractor is obtained as output, else the output from the second

subtractor is obtained as output. The top level of the subtractor is shown in Figure 30, along

with the simulation results in Figure 31.

64

Figure 30: Subtractor design for this pipeline.

Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity n_bit_subtractor is

 generic(N : integer := 8);

 Port (a : in STD_LOGIC_VECTOR (N downto 1);

 b : in STD_LOGIC_VECTOR (N downto 1);

 bor_in : in STD_LOGIC;

 diff : out STD_LOGIC_VECTOR (N downto 1);

 bor_out : out STD_LOGIC);

65

end n_bit_subtractor;

architecture structural of n_bit_subtractor is

signal bor1,bor2 : std_logic_vector(0 to N);

signal a_eq_b,a_gt_b,a_ls_b : std_logic;

signal diff1, diff2,x_in : STD_LOGIC_VECTOR (N downto 1);

component full_sub is

 Port (x : in STD_LOGIC;

 y : in STD_LOGIC;

 bor_in : in STD_LOGIC;

 diff : out STD_LOGIC;

 bor_out : out STD_LOGIC);

end component;

component comp8 is

 port(a,b: in STD_LOGIC_vector(7 downto 0);

 a_gt_b: out STD_LOGIC;

 a_eq_b: out STD_LOGIC;

 a_ls_b: out STD_LOGIC);

end component;

begin

compare: comp8 port map(a => a, b => b, a_eq_b => a_eq_b, a_ls_b => a_ls_b, a_gt_b

=> a_gt_b);

bor1(0) <= bor_in when a_gt_b = '1' else '1';

bor2(0) <= bor_in;

66

x_in <= "11111111";

bor_out <= bor1(N) when a_gt_b = '1' else bor2(N);

l: for i in 1 to N generate

 n_bit_subtractor: full_sub port map(x => a(I),y => b(I),bor_in => bor1(I-1),diff

=> diff1(I),bor_out => bor1(I));

 end generate;

l1: for j in 1 to N generate

 n_bit_subtractor1: full_sub port map(x => x_in(j) ,y => diff1(j),bor_in => bor2(j-

1),diff => diff2(j),bor_out => bor2(j));

 end generate;

diff <= diff1 when a_gt_b = '1' else diff2;

end structural;

Simulation Result:

Figure 31: Simulation result of Subtractor block.

7. Controller:

The controller is an important component of the pipeline. It generates control

signals for the comparator block. If comparator enable signal is high, only then the

accumulator sends accumulated values to the comparator block. The block diagram from

Figure 32 gives the overall view of the controller.

67

Block Diagram:

Figure 32: Controller Block Diagram.

Controller has the following inputs and outputs.

Inputs: accumulator_in (16-bit input signal from the accumulator), clock and reset

Output: comparator enable signal: comp_enable (Gocomp)

Function of the Controller:

 Controller is designed in Finite State Machine (FSM) fashion. FSM takes input

from the Accumulator feedback. It has a counter inside it.

 It also has two more inputs, clock and reset.

 Based on logic inside the FSM it performs the required operations.

 After performing operations, it sends output signal comp_enable to the comparator

block.

68

FSM:

Figure 33 shows the Finite State Machine (FSM) for the controller. This is a simple

FSM block that takes input from the accumulator register and generates comparator enable

signal. It has a ten-bit counter inside it. This block checks output feedback from the

accumulator register and when the counter value is 784 (vector length); it generates counter

enable signal to perform the comparison operation.

Figure 33: Finite State Machine design for the controller.

States of FSM:

INIT: This is the initialization state. It takes reset as an input. In this state comp_enable

and counter are assigned to zero. When this state gets input accumulator_in, then next state

will be incr_counter.

69

Incr_counter: This state takes input signal as accumulator_in. In this state counter keeps

changing with the accumulator_in signal. When counter value is equal to 784, it points to

the next step i.e the comparator_enable state.

comparator_enable: As the accumulator has gotten all adder input, this state generates

comp_enable signal. It sends comp_enable signal to the comparator block to perform the

comparison operation.

Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use ieee.std_logic_unsigned.all;

entity FSM is

 Port (reset : in STD_LOGIC;

 accumulator_in : in STD_LOGIC_VECTOR (15 downto 0);

 clock : in STD_LOGIC;

 comp_enable : out STD_LOGIC

);

end FSM;

architecture Structural of FSM is

type state_type is (Init, Incr_counter, comparator_enable);

signal counter_new: STD_LOGIC_VECTOR(9 downto 0);

signal current_s,next_s: state_type;

70

shared variable flag : bit;

begin

 PROCESS (reset, clock)

 begin

 if(reset = '0') then

 current_s <= Init;

 elsif(clock'event) then

 current_s <= next_s;

 end if;

 end process ;

 process (clock)

 begin

 if(current_s = Init) then

 counter_new <= "0000000000";

 elsif(clock= '1' and clock'event and current_s = Incr_counter and flag ='0') then

 counter_new <= counter_new + 1;

 flag := '1';

 end if;

 end process;

 process (accumulator_in, current_s)

 begin

71

 case current_s is

 when Init =>

 if(accumulator_in /= "UUUUUUUUUUUUUUUU") then

 next_s <= Incr_counter;

 else

 next_s <= Init ;

 end if;

 when Incr_counter =>

 if(counter_new = 8) then

 next_s <= comparator_enable;

 else

 next_s <= Incr_counter;

 flag := '0';

 end if;

 when comparator_enable =>

 next_s <= Init;

 end case;

 end process;

 process (clock, current_s)

 begin

 if(clock'event) then

72

 case current_s is

 when Init =>

 comp_enable <= '0';

 when Incr_counter =>

 comp_enable <= '0';

 when comparator_enable =>

 comp_enable <= '1';

 end case;

 end if;

 end process;

end Structural;

Simulation Result:

Simulation result for FSM is shown in Figure 34 when the counter is 2 bits.

Figure 34: Simulation result of the Controller block.

73

Test Bench:

Testing was performed to validate the design. The test bench was generated in

Xilinx Vivado. Several input values were given for the top level inputs: pipe_in_1 and

pipe_in_2 and the behavior of the pipeline was tested after each clock cycle.

Simulation output after each stage is shown below:

Following inputs are given to pipeline:

 pipe_in_1 <= "01000110";

 pipe_in_2 <= "00101000";

 wait for 10ns;

 pipe_in_1 <= "00100011";

 pipe_in_2 <= "00011001";

 wait for 10ns;

 pipe_in_1 <= "00001001";

 pipe_in_2 <= "00001000";

 wait for 10ns;

 pipe_in_1 <= "00001010";

 pipe_in_2 <= "00000000";

 wait for 10ns;

 pipe_in_1 <= "00000101";

 pipe_in_2 <= "00000100";

 wait for 10ns;

 pipe_in_1 <= "00010100";

 pipe_in_2 <= "00001010";

74

 wait for 10ns;

 pipe_in_1 <= "00000111";

 pipe_in_2 <= "00000011";

 wait for 10ns;

 pipe_in_1 <= "01100100";

 pipe_in_2 <= "00110010";

 wait for 10ns;

 pipe_in_1 <= "01010000";

 pipe_in_2 <= "00111100";

 wait for 10ns;

 pipe_in_1 <= "01100011";

 pipe_in_2 <= "00001001";

Simulation result after every clock cycle:

1. SISO and Subtraction:

Figure 35: Testing of SISO and Subtraction unit.

As shown in Figure 35, after giving input at the first clock cycle (t=1), the output

of SISO is obtained as siso1_out and siso2_out. At the same clock cycle, the subtraction

operation takes place. Here we have taken pipe_in_1 and pipe_in_2 as 01000110 and

75

00101000 respectively. We get same values at siso1_out and siso2_out. The absolute

difference of these two numbers is 00011110. Similarly, every next cycle the subtractor

fetches new input values and performs shift and subtraction operation.

3. Square operation:

Figure 36: Testing of the Square LUT.

Figure 36 shows after performing the subtraction, at the next clock cycle t2, 8-bit

register holds output value of the subtraction operation. Here value at reg8_out is

00011110. At the next clock cycle t3, square unit performs the squaring operation. Output

of the sqr_lut_out is 0000001110000100. At t4, the 16-bit register, top_reg16_out gets the

value of squaring unit i.e 0000001110000100.

4. Addition and accumulation:

Figure 37: Testing of the addition and accumulation.

76

 As presented in Figure 37, at t4, a 16-bit register value gets loaded into

the adder. At t5, the adder adds the squared value of the next input with the older value.

The adder performs addition operation untill the ctrl-out signal is low. Depending upon the

counter value, controller asserts the ctrl_out signal. In this case, the counter value is 8 so it

is high after getting the 8th input.

4. Comparator operation:

 When the ctrl_out signal is asserted ‘high’, the accumulator sends the

accumulated value to the comparator. In the next clock cycle, the comparator compares the

value stored earlier in the 18-bit Dmin register and the newly calculated distance value

obtained from the accumulator unit. If the newly calculated value is smaller than the stored

value in the 18-bit Dmin register, Dmin register value gets updated. Newly updated value of

the 18-bit Dmin register will be output of the pipeline (pipe_out).

 Test bench code used for testing:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

 -- Uncomment the following library declaration if using

-- arithmetic functions with Signed or Unsigned values

--USE ieee.numeric_std.ALL;

ENTITY test_bench_pipeline IS

END test_bench_pipeline;

 ARCHITECTURE behavior OF test_bench_pipeline IS

77

 -- Component Declaration for the Unit Under Test (UUT)

 COMPONENT min_dist_pipeline

 PORT(

 pipe_in_1 : IN std_logic_vector(7 downto 0);

 pipe_in_2 : IN std_logic_vector(7 downto 0);

 clk : IN std_logic;

 reset : IN std_logic;

 pipe_out : OUT std_logic_vector(17 downto 0)

);

 END COMPONENT;

 --Inputs

 signal pipe_in_1 : std_logic_vector(7 downto 0) := (others => '0');

 signal pipe_in_2 : std_logic_vector(7 downto 0) := (others => '0');

 signal clk : std_logic := '0';

 signal reset : std_logic := '0';

 --Outputs

 signal pipe_out : std_logic_vector(17 downto 0);

-- Clock period definitions

 constant clk_period : time := 10 ns;

BEGIN

-- Instantiate the Unit Under Test (UUT)

 uut: min_dist_pipeline PORT MAP (

 pipe_in_1 => pipe_in_1,

78

 pipe_in_2 => pipe_in_2,

 clk => clk,

 reset => reset,

 pipe_out => pipe_out

);

-- Clock process definitions

 clk_process : process

 begin

 clk <= '0';

 wait for clk_period/2;

 clk <= '1';

 wait for clk_period/2;

 end process;

 -- Stimulus process

 stim_proc: process

 begin

 -- hold reset state for 100 ns.

-- wait for 100 ns;

 reset <= '0';

 wait for 10ns;

 reset <= '1';

 wait for 10ns;

 pipe_in_1 <= "01000110";

79

 pipe_in_2 <= "00101000";

 wait for 10ns;

 pipe_in_1 <= "00100011";

 pipe_in_2 <= "00011001";

 wait for 10ns;

 pipe_in_1 <= "00001001";

 pipe_in_2 <= "00001000";

 wait for 10ns;

 pipe_in_1 <= "00001010";

 pipe_in_2 <= "00000000";

 wait for 10ns;

 pipe_in_1 <= "00000101";

 pipe_in_2 <= "00000100";

 wait for 10ns;

 pipe_in_1 <= "00010100";

 pipe_in_2 <= "00001010";

 wait for 10ns;

 pipe_in_1 <= "00000111";

 pipe_in_2 <= "00000011";

 wait for 10ns;

 pipe_in_1 <= "01100100";

 pipe_in_2 <= "00110010";

 wait for 10ns;

80

 pipe_in_1 <= "01010000";

 pipe_in_2 <= "00111100";

 wait for 10ns;

 pipe_in_1 <= "01100011";

 pipe_in_2 <= "00001001";

-- insert stimulus here

 wait;

 end process;

END;

Output of each arithmetic block of the proposed synthesized Euclidean Distance

(ED) pipeline: the outputs of the subtractor, square, adder, accumulator, and comparator

were tested separately. Also the complete ED pipeline was tested with different input

values. The value of the 18-bit minimum distance register (Dmin register) gets updated if

and only if the newly calculated value (Dnew) is smaller than the previously stored value.

One of the original tasks was to calculate the minimum distance between a number of

different vectors, which was also achieved correctly.

4.2 Simplified Euclidean Distance (ED) Pipeline

This dissertation proposed a hardware implementation of the ED calculation as a

pipeline design [102]. Because, for this application, the goal was only to make comparisons

between distances rather than calculating them, the implementation of the square-root

function in the Euclidean Distance calculation was ignored. The pipelined datapath

81

consists of several arithmetic units, such as, the 8-bit SISO (shift-in shift-out) register, the

8-bit subtractor, 16-bit RAM, 18-bit adder, 18-bit accumulator register, 18-bit comparator,

18-bit multiplexer and general registers as shown in Figure 38. Xilinx provided block

RAMs were used for the “square operation”.

Since the element width of each vector is 8-bit, therefore, the SISO and the subtractor

are both 8-bit wide. However, the square of the 8-bit subtracted number is 16-bit and thus

the RAM size is 16-bit. The adder was designed as 18-bit in order to accommodate the

carry bit after adding the two 16-bit numbers. Thus the following blocks in the pipeline,

accumulator, comparator and multiplexer are all 18-bit wide.

Figure 38: Pipeline Implementation of the Euclidean Distance (ED) Calculator (without square-root

function) using standard CMOS FPGA [102].

82

The 16-bit RAM in the design is implemented as a Look-Up-Table (LUT) to function

as a square operator. Two 8-bit SISO registers shift the X vector and the W vector to an 8-

bit subtractor, element by element, which then sends the subtracted value of the two

elements to the 16-bit RAM for performing the square operation. The squared output is fed

to the adder block, and the added value is stored into the accumulator register. The

accumulator register continues to accumulate the last added value and also feeds the result

back to the adder until all of the vector elements have been accumulated. A finite state

machine (FSM) generates the control signal to reset the accumulator register when the

addition completes. The accumulated result is the newly calculated ‘square of distance’.

This value is compared against the previously stored square of the minimum distance and

thus the new square of minimum distance is found. The comparator receives an enable

signal from the FSM. This complete pipeline consists of four pipe-stages.

4.3 Results of Xilinx Simulations and Synthesis

The proposed design was simulated for functionality evaluation and synthesized

using Xilinx® XA Vivado-2015 tool with Kintex®-7 family based smallest chip

xc7k70tfbg484-3 that has a total package size of 23x23 mm2 [102]. This FPGA class is

built on a state-of-the-art high-performance/low-power (HPL) 28 nm high-k metal gate

(HKMG) process technology and optimized for best price-performance with a 2X

improvement compared to the previous Xilinx FPGA generations [15].

For completeness, the block by block delay numbers are presented in Table 4-1 [102].

The CMOS FPGA design was driven by a 134 MHz clock frequency, which was found to

be the maximum frequency for the FPGA chip with no negative slack in the pipe-stages.

83

As mentioned before, in this design, the subtractor used in the pipeline is different from

the normal adder-subtractor, it would always produce a positive result even if the minuend

is smaller than the subtrahend, eg. 2-4 = 2. The result is always the difference of these two

numbers. The design used in this pipeline does not output in the form of 2's complement,

rather it gives the number itself, which is more suitable for the calculation purpose. The

subtractor is built with a comparator, an 8-bit mux and two 8-bit subtractor blocks.

Table 4-1: RESULTS OF CMOS ED PIPELINE BASED ON XILINX FPGA [102].

Block Delay (ns) Area (mm2)

logic delay net delay Total

8-bit subtractor
1.25 5.7 6.95

0.203

16-bit LUT Sq.

RAM
3.78 0.71 4.49

0.041

18-bit adder
2.29 0.76 3.05

0.076

18-bit

accumulator
2.51 0.43 2.94

0.2

18-bit

comparator
3.56 1.06 4.62

0.042

18-bit mux
2.98 0.87 3.85

0.038

Pipeline Total
16.37 9.53 25.9 0.6

The estimated dynamic power for the complete design was 22.3mW and 24mW at

25% and 100% toggle rate respectively in Xilinx. The static power of the chip remains

constant because all of the blocks in the FPGA are turned on regardless of their utilization.

84

Thus the static power of the ED pipeline design depends only on a particular FPGA type

selected for comparison. Based on the total device utilization compared to the total

available units in the chip, the percentage area was estimated and thus the total area was

obtained; 0.904 mm2 occupied by the ED pipeline. The details of power, delay and area

estimations in Xilinx are presented in Appendix B.

85

5 CIRCUIT IMPLEMENTATION CHALLENGES FOR MsFPGA

5.1 About MsFPGA

This dissertation proposes a reconfigurable architecture that makes use of the stateful

IMPLY logic of memristors. In this architecture, memristive crossbars operate as space-

time based circuits for the datapath, and a CMOL-like datapath-memory, MsCMOL

(Memristive stateful CMOL) provides reconfigurability by controlling the selection of the

active nanowires in each time step. More precisely the proposed architecture has a CMOL-

like datapath with memristive memories to store the pulses that reconfigure the fabric from

the datapath to the logic blocks [102].

The proposed hybrid memristor-CMOS reconfigurable system level architecture,

MsFPGA (Memristive stateful logic Field Programmable Gate Array) is presented in

Figure 15 [102]. As mentioned earlier, the datapath, and any memory including the

MsRAM of the pulse generation block of the proposed MsFPGA are designed in nanowire

crossbar memristor-based technology, while the control logic- FSM controller, counter in

pulse generator, multiplexers and decoder in the Merge block are designed in CMOS

technology [102].

The control data in MsRAM are described with the encoding table to generate the

pulses for the datapath as shown in Figure 18. This table illustrates controls for a portion

of 8-bit Full-adder circuit as per Figure 9. The MsRAM controls the two select lines of a

mux (control signals on the output of pulse generator). Data inputs to this mux are the

voltages: for controls 00 – HiZ (High Impedance State), 10 - VCOND, 01 - VSET and 11 -

86

VCLEAR that are selected to control the vertical/horizontal nanowires to perform the stateful

logical operations in the memristor crossbar datapath. Buffers can be inserted to prevent

signal attenuation in case of long lines [102].

5.2 Comparison with Other Published Memristive FPGAs and NVM

Several concepts related to building FPGA fabric in nanotechnologies as well as

some relevant components are discussed in [6][9][10][13][30]. The paper [13] by Cong et

al. introduced a new idea of FPGA called MrFPGA in which all logic functions were

implemented in CMOS, and only the configurations of connections were implemented by

memristors playing the role of connect-disconnect switches. The authors showed

advantages of this concept over previously introduced CMOS FPGAs. They concentrated

on routing and compared to combinational benchmarks with standard FPGAs. In contrast,

this dissertation introduces the idea of MsFPGA (Memristive stateful logic Field

Programmable Gate Array) [102]. This new concept is fundamentally different from the

MrFPGA architecture because memristors are used to perform all logic operations in the

datapath, which leads to significant gains in area, power and delay. In addition, similar to

previous work, the methodology developed here implements memories and reconfigurable

connections also mostly with memristors. Proposed design is hybrid and uses some CMOS

components. It is geared towards both combinational and sequential circuits, especially

those with regular blocks such as iterative circuits or SIMD-like data path. But the usage

of the CMOS components is insignificant compared to the previous FPGAs such as

MrFPGA. To illustrate an application of proposed MsFPGA and to facilitate a comparision

87

with a traditional FPGA approach, an example of a pipelined implementation of a

Euclidean Distance (ED) calculation is presented. The pipeline is implemented in binary

logic with memristors in memristive nanowire crossbars. Memristive crossbars are

perpendicular nanowires, where memristors are located at the intersections of the

nanowires [8]. The goal here is to use memristors in logic design as implication gates.

MsFPGA [102] is a unique and completely different approach from published

research on memristor-based FPGAs [9][10][13][30], because it allows separate

programming (reconfiguration) of all- memories, logic and connections. While MrFPGA

uses the general purpose combinational logic gates realized in CMOS, and therefore

emphasizes connections programmability only, the proposed MsFPGA is intended for

highly parallel regular architectures in which blocks are placed in abutment and horizontal

connections are short. In contrast to MrFPGA, the MsFPGA methodology concentrates on

logic design using stateful IMPLY gates with memristors and allows much larger

logic/memory based systems with many applications. These applications include massively

parallel pipelines, neural networks, SIMD-like architectures, differential equation solvers,

image processors, cellular automata, and many other architectures.

Recently, a new non-volatile memory (NVM) logic architecture such as

iMEMCOMP [49] was proposed by Li et al., which is different from the IMPLY gate logic.

The methodology in this dissertation work is different from the iMemComp paper. The

iMemComp design used Resistive Switching (RS) devices instead of memristors. The

iMemComp way of realizing Boolean logic is similar to this dissertation work by adapting

the idea of Stateful IMPLY logic [4] for a single bit computation, however, for multi-bit

logic computation, the iMemComp method is different. The use of hybrid circuits is

88

different in iMemComp architecture, and the paper did not present a complete system with

control, datapath and memory as was presented here. The main similarity between the

iMemComp paper and this work is that both created a new type of reconfigurable

logic/memory block and used the resistive way of memorizing and creating logic gates.

The iMemComp paper concentrated on a new way of reconfiguring resistance values in a

crossbar to realize basic logic gates, whereas, this work concentrated on system design

with stateful memristors and addressed several important circuit issues. The work

presented in this dissertation has several advantages over the iMemComp paper. For

example, the sneak-path current is a major concern for the crossbar based design that

includes, memristors, and RS cells. But the iMemComp paper did not show the complete

architecture for their RS array, and therefore, it is difficult to determine if they had this

problem. Sneak-path elimination is a key feature of the work presented here. In the crossbar

structure, for multiple bit logic, the methodology presented here allows the movement of

data from row to row, so it is possible to perform serial logic operations between rows.

Whereas, the iMemComp architecture programs a look up table (LUT) for certain

functions, such as a full adder and for the multi-bit design, their architecture does not

support row-to-row data transfer, rather they use CMOS circuitry to transfer data, such as,

carry-out. Also, the datapath in this dissertation is completely reconfigurable compared to

the iMemComp LUT design. The input of proposed design in this dissertation is configured

in MsRAM, while iMemComp input is the voltage signal to the decoder, which selects the

row of the RS cells for the corresponding output. In general, the methodology developed

here provides a wider and more flexible framework for a whole programmable system

design with IMPLY-memristor based nanowire crossbars. The iMemComp focuses on the

89

RS switch based design for the programmable logic and does not show any of the CMOS

circuitry and pulse control. Besides, it was not clear why iMemComp called logic learning

rather than logic programming. However, the authors of the iMemComp paper were able

to fabricate their technology. It is interesting to speculate on whether, they could fabricate

a functional crossbar design.

5.3 Proposed MsCMOL Architecture

A memristive crossbar, which can be fabricated on top of CMOS in a back end of

the line (BEOL) process, is called CMOL [6][8][14]. In “Strukov and Likharev” proposed

CMOL architecture, memristors are used for storing configuration information and as such,

selection of only one memristor at a time is sufficient. To address a single memory

memristor in CMOL we need to individually select any of the two terminals of this

memristor, one on a skewed horizontal nanowire and another one on a skewed vertical

nanowire [8]. For each nanowire two CMOS decoders are necessary. These two decoders

select one vertical CMOS wire and one horizontal CMOS wire. At the intersection of the

vertical and the horizontal CMOS wires, the skewed nanowire is connected. This is

repeated twice for vertical skewed nanowire and the horizontal skewed nanowire. Observe

that in this CMOL architecture four CMOS decoders and one CMOS AND cell are used to

select a single memristor, which plays the role of a single memory bit. Because, following

Keukes [4], this dissertation work uses memristors in MsFPGA to execute logic operations,

it is necessary to select two vertical or alternately two horizontal nanowires simultaneously

for each logical operation [102]. This dissertation proposed the MsCMOL (Memristive

90

stateful CMOL) architecture as shown in Figure 17 [102]. Consequently, proposed

approach redefines the Strukov/Likharev’s CMOL architecture and its associated FPGA

design methodology. In this proposed method, as in [3][4], the two vertical nanowires cross

a common horizontal nanowire to execute the horizontal transfer between memristors. In

addition, two horizontal nanowires can cross a vertical nanowire to execute the vertical

transfer between memristors.

5.4 Data MsRAM

As mentioned before, the input vectors to the datapath of ED are stored in two

separate Data MsRAMs (Memristive stateful RAM), which are implemented using the

standard memristive nanowire crossbars or Strukov-Likharev’s CMOL. Therefore, in the

Data MsRAMs, only one memristor is selected at one time. The stored data is copied from

these MsRAMs to the MsFPGA memristive datapath using the previously explained

memristive logical transfer operation method from one memristor to another memristor

located in another block [102]. The voltages used here are VCOND, VSET and VCLEAR for

logical operations for the circuit designed with implication logic. The same voltages are

used in MsRAMs as well. The two Data MsRAMs used in the proposed MsFPGA can also

be placed within the memristive Datapath blocks for bringing the source and destination

memristors closer to have better transfer. However, here it was intentionally placed outside

the MsFPGA datapath as the Data MsRAMs were based on a different type of CMOL than

the proposed MsCMOL [102].

91

5.5 Array of 8x8 Nanowire Crossbar Blocks

An 8×8 programmable nanowire crossbar block [102] is presented by this

dissertation work. These crossbar blocks are connected horizontally as well as vertically

through switches. Similar block-to-block connectivity has been discussed in previous

papers [7][9], however, the approach taken here is to realize pipelined and SIMD-like

datapaths as outlined in this work. Also, for the sake of comparison, this research has

developed a detailed circuit that is different from previous work. An array of such small

memristive 8×8 crossbar blocks can be connected through switches to form larger crossbars

[7][9], and then to pipeline such crossbars, as shown in Figure 10. Since in this dissertation

we assume 8-bit words in the pipeline, 8×8 crossbar blocks were assumed as cells for

MsFPGA. The general methodology presented here is independent of the size of the

crossbar block.

Although reference [7] and others in the past presented block to block connectivity,

the method of doing the IMPLY-memristor based logic design using the space-time based

symbolic notation and designing pipelined datapath circuit using the block to block

connectivity concept [102] is the contribution of this dissertation. This dissertation did not

invent the block-to-block connectivity for the memristor-based design, rather a method

was proposed for memristor-based logic design using the space-time based concepts

introduced here, where, e.g., the 8-bit iterative adder circuit uses one 8x8 nanowire crossbar

implementing each row of a one-bit adder. It was believed that a square geometric shape

is a better use of space than a long wire kind of shape for such cell design. The adder was

designed as a single cell, but several such cells can be pipelined or executed in parallel.

92

Also, the proposed design performs sequential operations inside the 8x8 cell, while many

such cells can operate in parallel. Therefore, using the proposed method, a large number

of reconfigurable, pipelined datapaths (designed with IMPLY-memristors and controlled

by pre-programmed memristive MsRAM) can operate in parallel.

5.6 Sneak-Path Protection

In this dissertation, sneak-path current protection was the result of the 8-bit adder

design in the 8x8 crossbar. The proposed sneak-path protected design will be presented in

detail in Chapter 6. Also, as shown in Figure 17, a 4-bit one-hot CMOS decoder is used to

select one wire (1 row or 1 column) from a total of sixteen wires (8 rows and 8 columns)

in an 8x8 nanowire crossbar block, to connect to the ground one at a time. This feature is

designed to ensure that the current sinks through only one path to the Gnd and thus the

sneak-path protection is enabled [102].

5.7 Nanowire Row-to-Row Data Transfer

A unique method was provided by this research for the row-to-row data transfer for

memristors and thus switching from row-wise data transfer to column-wise data transfer

[102]. As mentioned earlier, the proposed design applies VCOND, VSET and VCLEAR voltages

either to a row or to a column of the 8×8 nanowire crossbar at any particular time.

Therefore, in this work the row and column voltage control signals are encoded together.

As presented before in Figure 17, a single bit row_sel signal is used to distinguish whether

the voltages are applied to a row or to a column. When the row_sel signal is ‘1’ the voltages

93

are applied (through columns) to a row, and when the row_sel signal is ‘0’ the voltages are

applied (through rows) to a column. Therefore, when the row_sel signal is ‘1’, voltages are

applied to the row (through columns) from the pre-programmed MsRAM, with the column

select selecting high impedance state (Hi-Z).

Proposed General Rules for the row-to-row data transfer:

For the proposed stateful IMPLY-memristor based model of combinational logic

based on 8x8 nanowire crossbar blocks, the mapping of logic circuits to the detailed layout

of memristors and pulses that execute operations is based on a set of rules [102]. These

rules are general and apply to the squares of any size and can be also modified to blocks

based on non-square rectangular arrays. We assume that in every block there are layers that

are calculated sequentially one after another. For instance, the layers can correspond to

cells of an iterative circuit. These layers are implemented in rows of the 8x8 nanowire

block. After calculating one layer some data from it are copied to the next layer.

The following rules must be applied in order and they illustrate the space-time

based transfer of values from one row to the next row.

Rule 1: In order to copy a bit from one row to another row, both bits must be located in

the same column.

Rule 2: At any point of time only one wire (either a row or a column) can be discharged

through ground to provide sneak-path protection. Disconnect row from Gnd and connect

the column to Gnd.

94

Rule 3: In order to do the transfer from one row to another row, apply voltages through

the rows. This is a column-wise data transfer. Stateful logic state is transferred from one

row to another row.

Rule 4: In order to reset the former row memristor, VCLEAR is applied in order to avoid

sneak-path.

Rule 5: In order to calculate the next layer, the data needs to be transferred to a desired

location in the new row. This is done by transferring bit value from one column to another

column in the same row. Here, voltages are applied through columns.

Rule 6: At any point of time only one wire (either a row or a column) can be discharged

through ground to provide sneak-path protection. Disconnect column from Gnd and

connect the row to Gnd.

Rule 7: In order to do the transfer from one column to another column, apply voltages

through the columns. This is a row-wise data transfer. Stateful logic state is transferred

from one column to another column.

5.8 Proposed 8-bit Iterative Adder Design

In this dissertation, an 8-bit iterative adder design was proposed using an 8×8

memristive nanowire crossbar [102]. Each bit of the 8-bit adder is designed using one row

of the 8×8 crossbar as shown in Figure 10 (one quadrant of Figure 10). All 8 rows and 8

columns are connected through a switch and a load resistor RG to Gnd. However, the

proposed design allows the connect of only one of the 16 wires (total 8 rows and 8 columns)

to the ground at a time.

95

5.9 Massively Parallel and Pipelined Reconfigurable Datapath

The array of 8×8 nanowire blocks also facilitates pipelining and massive parallelism

[102]. As mentioned before, larger size crossbar structure can be designed for stateful logic

operations by connecting the 8×8 unit blocks through switches. An 8×8 block can be

connected to another block by closing the switches, while disconnecting the switches

allows various 8×8 blocks to perform stateful logical operations in parallel [7]. Also by

closing the block switches a larger circuit can be created for stateful logical operations, e.g.

the 16-bit RAM in our proposed ED pipeline design requires two 8×8 blocks vertically and

thirty-two 8×8 blocks horizontally (or vice versa) that are connected through switches.

Since by opening and closing the switches the operations of the 8×8 blocks can be

controlled, a complete pipeline can be implemented row-wise as well as column-wise in

this structure [102]. Many such pipelines can operate simultaneously facilitating massive

single instruction, multiple data parallelism. The whole datapath of crossbar blocks

introduced in this dissertation is generic. It is reconfigurable for any particular application

through the pulse generation block i.e. MsRAM. Also, intrachip communication [89] can

be naturally implemented using this proposed memristive crossbar datapath structure

[102].

96

6 SNEAK-PATH CURRENT

6.1 Problems in Nanowire Crossbar Design

Sneak-path current is a critical design concern in a nanowire crossbar. Memristors

are placed at each intersection of a vertical nanowire and a horizontal nanowire in a

crossbar. Memristors are non-volatile memory and are able to hold a state - either logic

level low or logic level high based on its resistance value at high or at low respectively.

Figure 39: “The reading current path through a memristor nanowire crossbar and the equivalent circuit for

(a) the ideal case where the current flows only through the target cell and (b) an example of a real case

where current sneaks through different undesired path and the red ones show the effective sneak paths” [99].

Although there has been some work in creating memristors with differential

forward and backward resistance, most memristors are resistors and allow current to

flow either direction. As current flows through the nanowire, it can sneak through some

undesired paths as shown in Figure 39 resulting in an effect which adds noise to the

computation being performed by the crossbar, making it difficult to read data reliably

from individual memory cells. Besides, sneak-paths also increase power consumption.

97

6.2 Proposed Sneak-Path Protection

In this chapter a sneak-path free 8-bit iterative adder design using an 8×8

memristive nanowire crossbar is presented. This innovative design methodology is a major

contribution of this dissertation work.

Each bit of the 8-bit adder is designed using one row of the 8×8 crossbar. All 8

rows and 8 columns are connected through a switch and a load resistor RG to Gnd.

However, the proposed design allows the connection only one of the 16 wires (total 8 rows

and 8 columns) to the ground at a time. The bit0 operation starts on row1 as shown in

Figure 9 and generates carry C1 and sum S0. Upon completion of the logical operations,

all of the memristors in each row are reset (cleared) using the VCLEAR signals. Only the sum

bits located in the eighth column of each row of the 8×8 crossbar are preserved in this

method. Thus through two mechanisms: (1) connecting only one wire (row or column) at

a time to Gnd and (2) resetting/clearing the memristors and forcing them to the “off” state,

a complete protection from sneak-path current in the 8-bit iterative adder circuit is provided

[102].

To demonstrate this approach, an 8-bit iterative adder circuit is developed for the

classical design as shown in Figure 40 [35]. This circuit is redesigned with memristive

nanowire crossbars using implication logic and proposed space-time based notation. The

following notation is used- capital letters with respective indices are used for memristors

in the datapath and the corresponding small letters are used as controls of the corresponding

memristor signals from the datapath [102]. For instance, a combination of control signals

a0 and a1 selects one of four possible controls used for the datapath memristor (signal) ‘A’.

98

Similarly, control signals a00 and a01 are used for the datapath memristor (signal) A0. The

carry-out signal C1 generated by the first adder bit, bit0, will be propagated to bit1, and so

on. As shown in Figure 9 in Chapter 2, this 1-bit full-adder circuit is designed with three

primary input nanowires for inputs A0, B0 and carry C0 and five additional working

memristor nanowires.

Figure 40: Classical Implementation of 8-bit Full Iterative Adder Circuit [35].

6.3 Step-by-Step Execution of Proposed 8-bit Iterative Adder

Here, the execution of the 8-bit iterative adder circuit is discussed in detail [102].

The partial encoding table of the 8-bit iterative adder design is shown in Figure 18. We

start with row-wise stateful operations. The required circuit can be implemented with one

8×8 nanowire crossbar as shown in Figure 10 (in one quadrant of Figure 10). The execution

is explained in four steps:

step1: The sequences of the bit0 adder operation are:

I. The primary inputs (PI) -- A0, B0, C0 are copied from storage MsRAM to the datapath

row1 locations to perform bit0 operations.

Transfer the value of A0 to the memristors at the intersection of row1 and col1 in Figure

10, symbolically, (row1, col1) := A0, (row1, col2) := B0, (row1, col3) := C0.

99

II. Select row1, close only the row1 switch to Gnd.

III. Apply VCOND and VSET through col1 and col2 respectively for a row-wise data transfer.

A stateful logic operation will take place.

As shown in Figure 9, the carry-out bit, C1, and sum, S0, are computed after 18 micro

pulses which includes all required reset operations. The carry and sum bits are saved in

(row1, col7) and (row1, col8) respectively. Also, col1 through col6 are cleared to state ‘0’

to avoid sneak-path currents.

step2: Copying of the carry bit in the current column, from the current row to the next row

is presented below. Here it is demonstrated for column 7 and copying from row1 to row2.

I. Disconnect row1 from Gnd. Select col7, close only the col7 switch to Gnd.

II. Apply VCOND to (row1, col7) and VSET to (row2, col7) for a column-wise data transfer.

Stateful logic state is transferred from (row1, col7) to (row2, col7).

III. Apply VCLEAR to (row1, col7).

step3: Carry bit transfer steps from one column to another in the same row. Here, voltages

are applied through columns again.

I. Disconnect col7 from Gnd. Select row2, close only row2 switch to Gnd.

II. Apply VCOND to (row2, col7) and apply VSET to (row2, col3) for a row-wise data transfer.

Location of carry-out bit C1 now is at (row2, col3).

step4: This step explains the bit1 operation of the adder.

Values A1 and B1 are copied from storage MsRAM to datapath in row2 locations to

perform bit1 operations. The values are transferred to the memristor locations in the row

below:

100

(row2, col1) := A1, (row2, col2) := B1. Recall that (row2, col3) := C1.

II. Repeat the above steps from step1 II through step3 for all eight rows in the 8×8

nanowire crossbar from one quadrant of Figure 10.

III. The final sum bits are located in the eighth column of each row respectively.

The total number of pulses for the 8-bit full-adder circuit operation is 165, which includes

all logic, copy, and reset operations [102]. For instance, each adder requires 17 pulses to

generate the sum and carry, so for 18-bit adder, 306 pulses are required for the logical

operations only. However, row 3, Table 7-2 has reported 369 pulses. The source of these

additional pulses were copy, reset etc. operations. Thus for the actual delay calculations in

Table 7-2, all pulses required for the design were considered [102].

The proposed innovative, sneak-path free, 8-bit iterative full adder design is presented

below.

t time step Primary Input memristor

1 connected to GND 0 OFF memristor

0 Disconnected VCOND/VSET applied

101

t0 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t1 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t2 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

Comment: t0- Step 1. I. complete.

102

t3 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t4 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t5 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

103

t6 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t7 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t8 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

104

t9 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t10 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t11 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

105

t12 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t13 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t14 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

106

t15 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t16 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t17 row sw A B C W1 W2 W3 W4 W5

 1 1 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

Comment: t17- Step 1. III. complete.

107

t18 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t19 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t20 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

Comments: 1. t19- Step 2. III. complete 2. t20- Step 3. II. complete.

108

t21 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t22 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t23 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

Comments: t21- Step 4. Bit1 operation begins.

109

t24 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t25 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t26 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

110

t27 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t28 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t29 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

111

t30 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t31 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t32 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

112

t33 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t34 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t35 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

113

t36 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t37 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t38 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 1 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

114

t39 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t40 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t41 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

115

t42 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t43 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t44 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

116

t45 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t46 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t47 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

117

t48 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t49 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t50 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

118

t51 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t52 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t53 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

119

t54 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t55 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t56 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

120

t57 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t58 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t59 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 1 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

121

t60 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t61 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t62 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

122

t63 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t64 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t65 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

123

t66 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t67 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t68 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

124

t69 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t70 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t71 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

125

t72 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t73 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t74 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

126

t75 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t76 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t77 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

127

t78 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t79 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t80 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 1 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

128

t81 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t82 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t83 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

129

t84 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t85 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t86 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

130

t87 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t88 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t89 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

131

t90 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t91 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t92 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

132

t93 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t94 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t95 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

133

t96 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t97 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t98 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

134

t99 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t100 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t101 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 1 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

135

t102 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t103 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t104 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

136

t105 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t106 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t107 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

137

t108 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t109 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t110 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

138

t111 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t112 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t113 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

139

t114 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t115 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t116 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

140

t117 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t118 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t119 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

141

t120 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t121 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t122 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 1 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

142

t123 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t124 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t125 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

143

t126 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t127 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t128 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

144

t129 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t130 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t131 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

145

t132 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t133 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t134 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

146

t135 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t136 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t137 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

147

t138 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t139 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t140 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

148

t141 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t142 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t143 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 1 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

149

t144 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t145 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 1 0

 col-> 1 2 3 4 5 6 7 8

t146 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

150

t147 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t148 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t149 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

151

t150 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t151 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t152 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

152

t153 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t154 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t155 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

153

t156 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t157 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t158 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

154

t159 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t160 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t161 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

155

t162 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t163 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

t164 row sw A B C W1 W2 W3 W4 W5

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

 3 0 0 0 0 0 0 0 0

 4 0 0 0 0 0 0 0 0

 5 0 0 0 0 0 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 1 0 0 0 0 0 0

 sw-> 0 0 0 0 0 0 0 0

 col-> 1 2 3 4 5 6 7 8

Comment: t164- Preserved sum s0 through s8 in col8, final Cout in (row8, col7).

156

6.4 Benefits Brought by Proposed Sneak-path Protection Methodology

In this dissertation, a new methodology was proposed with an example of the 8-bit

iterative adder design to provide protection from the sneak-path current. The proposed

complete 8-bit iterative adder design was presented in section 6.3, where the step-by-step

operations were shown to demonstrate the protection from sneak-path current. Using the

space-time based notation, the design of IMPLY-memristor based arithmetic circuits with

sneak-path current protection was presented [102]. 8x8 nanowire crossbars were used for

the designs. For instance, one 8x8 nanowire crossbar was used for one 8-bit Full adder

design. Each row of the 8x8 nanowire is used to implement a one-bit Full adder.

The proposed general rules for a sneak-path free design is described below:

Rule 1: In this 8x8 crossbar design, only the selected row (or column) performing

logical operations is discharged through a load resistance RG to ‘gnd’, while all other rows

and columns in an 8x8 nanowire crossbar remain disconnected from ‘gnd’.

Rule 2: After completing the logical operation, the memristor should be reset using

the VCLEAR voltage. In the proposed methodology, seven out of eight memristors are

turned-off (reset) in each row in an 8x8 nanowire crossbar as shown in Figure 9.

Comment: In certain cases, this clearing operation may add insignificant delay or

slight power consumption increase, yet this step is critical for providing the sneak-path

protection.

157

Comment: The right-most column in the 8x8 crossbar preserves the “sum” bits for

the 8-bit adder in an 8x8 nanowire crossbar. However, these memristors cannot contribute

to the sneak-path current as there is no direct sink path available for them.

In other published papers [5][7] on memristive datapath design e.g. a full adder

design using a nanowire crossbar have large number of memristors “on” at the same time

in different rows and columns of the nanowire crossbar and in those designs, memristors

find an alternate path to flow current to the ground causing sneak-path current. In order to

provide this additional protection, a few extra timing pulses were added to the proposed

design. In the space-time based notation, it is possible to have a faster design if the sneak-

path current protection were not provided [102].

In the above 8-bit iterative adder design, at the beginning of the execution, A0, B0,

C0 primary input data is copied to row1 locations from storage MsRAM. At t8, voltage

VCOND and at t12 voltage VSET are respectively applied to memristor C0. Therefore,

memristor C0 will contribute to the static power PON. For this dissertation work, detailed

power calculations were done based on the methodology presented in [6], however, it

appears that this power consumption by the initial carry bit for proposed design is a very

small number. For example, for an 8-bit iterative adder design, PON is calculated as 2.38µW

with 40nm half-pitch nanowire crossbar with VSET = 1.0V and 0.38µW power consumption

with 8nm half-pitch nanowire crossbar with VSET = 0.4V. The proposed design connects

only one wire (either one row or one column) to ground at a time and therefore, there can

be only one path from VSET to Gnd at a time. So, for the 1-bit adder operation as shown in

Figure 9, only one row is connected to the ground. Moreover, memristors are turned down

158

to the “reset” state through the VCLEAR signal in each row after the operation is completed.

Thus sneak-path protection is guaranteed in the proposed design.

This above proposed design process utilizes eight rows of the 8×8 nanowire

crossbar to implement the 8-bit iterative full-adder circuit to generate all eight sum and

carry signals [102]. Similarly, other iterative combinational circuits such as comparator,

multiplexer, subtractor etc. have been realized for the proposed design. Algorithmic

methods to realize arbitrary combinational functions with stateful IMPLY memristive logic

require smart placement and partitioning of crossbar blocks. This dissertation is not related

to these design automation algorithms and all designs for this research were hand-designed.

Wei Lu et al. [32] showed that memristors can be fabricated to exhibit diode

characteristics. These rectifying memristors can be used to build converse nonimplication

logic and may be useful to prevent sneak-path current as presented by Lehtonen [100].

However, the multi-input operation for converse nonimplication is not as useful as it is for

implication logic, because, only AND-clauses result from multi-input converse

nonimplication. Few important solutions proposed in the literature for the sneak paths in

the memristive nanowire crossbars are discussed in [99], such as, 1T1M, 1D1M, and

complimentary memristors. None of these techniques are realistic for a product design,

because, 1T1M will ruin the high memristor-memory density, 1D1M will add delay and

area to the design and complimentary memristors will add functional complexity to the

design. Thus the sneak-path protection methodology provided for the universal implication

or IMPLY logic presented in this dissertation is an important contribution.

159

7 PERFORMANCE STUDY OF PROPOSED MsFPGA

CMOS has become the technology of choice for its constantly shrinking chip area,

faster speed and lower power consumption. However, with the scaling of device

dimensions in CMOS, the voltage has stopped scaling, because, as the threshold voltage,

VT decreases, the leakage of the chip increases exponentially, increasing static power

consumption. Therefore, the need for an alternate technology to continue Moore’s law

scaling and to meet the growing demand for lower power and faster execution motivate

this work [102].

Figure 41: Pipeline Implementation of the Euclidean Distance (ED) Calculator using proposed MsFPGA,

memristor-CMOS Hybrid FPGA. Color code: Green-memristor nanowire crossbar, Yellow- CMOS, Blue-

hybrid circuitry [102].

In order to compare a CMOS FPGA realization of the ED calculation with the

proposed MsFPGA, the pipelined version of this circuit was designed in Xilinx FPGA

using standard logic synthesis. Then a pipelined ED circuit was designed with the same

160

functionality using the proposed MsFSMD methodology as outlined earlier. This proposed

MsFPGA datapath design for functioning as the Euclidean Distance processor is presented

in Figure 41.

Also, the detailed block diagram of the square operator is illustrated in Figure 42.

Figure 42: Block Diagram of the Square Operator. Color code: Green-memristor nanowire crossbar,

Yellow- CMOS, Blue- hybrid circuitry.

The CMOS based design was synthesized and simulated using Verilog in Xilinx.

Testing was performed to validate the design for correctness using test benches. Also the

8×8 nanowire crossbar in MsFPGA was simulated using PSPICE for RC delay evaluation.

Besides, for verification purposes the logical behavior and the transition delay of one kind

of memristive device were simulated in PSPICE.

161

7.1 Memristor Device and IMPLY Logic Gate

The characteristics of memristors are unique in nature. The physical model of the

memristor from [2], consists of a two-layer thin film (size D ≈ 10 nm) of TiO2, sandwiched

between platinum contacts. One of the layers is doped with oxygen vacancies and thus it

behaves as a semiconductor. The second, undoped region, has an insulating property.

One of the resulting properties of memristors and memristive systems is a I-V

hysteresis curve on application of a sinusoidal signal [1][2][3][4][16]. In the case of linear

elements, in which memristance M is a constant, it is identical to the resistance. However,

if M is a function of charge, q, it yields a nonlinear circuit element [2]. For a current-

controlled memristive system, the input is the current i(t), the output is the voltage v(t), and

the slope of the curve represents the electrical resistance. The change in slope of the

pinched hysteresis curves demonstrates switching between different resistance states which

is a phenomenon central to resistive RAM (ReRAM) and all other forms of two-terminal

resistance memories [1][2][40]. At high frequencies, memristive theory predicts the

pinched hysteresis effect will degenerate, resulting in a straight line, representative of a

linear resistor [1][2].

Two memristors can be used to perform implication with one pulse. Memristors act

as a switch with two states – RON and ROFF, where, RON = state 1, ROFF = state 0. Voltage

drop in M1 affects voltage drop in M2. M1 is input memristor and M2 is input/Output

memristor as shown in Figure 43.

M1 → M2 = M1´ + M2

162

Figure 43: IMPLY Logic Gate A. Symbol B. Truth Table [3].

Different gates can be constructed using memristors by applying appropriate

voltages at the memristor terminals. Implication and Inhibition gates are two fundamental

gates through which we can realize other logic functions like NOT, AND, OR etc. This

dissertation focuses on the functioning of a stateful implication gate. Three main voltages

are required for constructing logic gates using memristors - VSET, VCOND and VCLEAR

voltages. VSET and VCOND voltages are applied to switch on the memristor by lowering the

resistance. The VCLEAR voltage is applied to Turn off the memristor by increasing the

resistance to the maximum value.

Figure 44 shows two memristors M1 and M2 which are connected together with

the load resistor RG to form an implication gate. The value of load resistor RG is selected

in such a way such that RON < RG < ROFF. Inputs are given to both M1 and M2 memristors

in the implication gate and the output is measured for the change in memristance/resistance

of the M2 memristor.

163

Figure 44: Implication (IMPLY) Logic: Realization with Two Memristors M1 and M2 [3].

By applying a proper voltage at the memristor terminals, we can have a memristor

switch between the ON (logic ‘1’ or close) and OFF (logic ‘0’ or open) states. For the

implication gate to work properly, it is required to apply two different voltages, VCOND and

VSET to M1 and M2 respectively. VSET has a higher magnitude than VCOND. When M1 = 1,

then voltage at RG is approximately VCOND. The voltage on memristor M2 is approximately

VSET – VCOND. This minimum voltage is sufficient to maintain the logic state of M2. On

applying VSET to M2, M2´s resistance would drop close to RON and it would be set to logic

1. If both VSET and VCOND are applied together, the current state of memristor M1 would

influence the next sate of memristor M2. If M1 and M2 are both 0 in the current state, the

resistance of M2 will reduce and M2 will be set to 1 in the next state. If M1 = 0 and M2 is

conducting, M2 will remain high in the next state. If the resistance of M1 is low and M2´s

resistance is near ROFF in the present state, then the output of M2 remains low in the next

state. If resistance of both M1 and M2 is high in the current state, the output of M2 remains

high in the next state.

164

Generally used values in simulations from the literature [5] are, RON = 100Ω, ROFF =

10KΩ, VSET = 1.0V, VCOND = 0.5V, and VCLEAR = -1.0V. The delay of the implication gate

is measured by the time required to apply VSET and VCOND until the logic state of M2

reaches the desired state.

7.2 Nanowire Crossbar PSPICE Simulations

For this dissertation, the memristor nanowire crossbar PSPICE [29] simulation

model was created using OrCAD PSPICE software as shown in Figure 45 [102]. The

simulation model represents the wire RC segments of one row and eight columns in order

to simulate the 8x8 crossbar network. The fringe capacitance of the memristor device is

also shown in the figure, which is placed between one column and one row (Since

memristors are placed at the intersection of one row and one column).

Figure 45: PSPICE Simulation Model for 8×8 nanowire crossbar [102].

Through this simulation, the nanowire wire (RC) delays were measured in PSPICE for VSET

= 1.0V, RG = 5kΩ and nanowire half-pitch = 40nm. Nanowire 40nm half-pitch was chosen

165

per [20]. The load resistor RG is connected to the row nanowire and shown at the left side

of Figure 45. Also, VSET is supplied through column 1 in Figure 45. The points A and B

are actually the same point and represents the point of intersection of column 1 and row.

The current flows from column 1 through RG load resistor to Gnd in Figure 45. This is the

nearest current path to sink through the load resistor and therefore, represents the shortest

wire delay. A connection between point A and point C would thus represent the longest

wire delay. Simulations were performed for each column current source to sink path and

wire delays were measured. In each case the wire delays were less than 2fs, which is

negligible compared to the memristor device delays reported by various memristor models

[17][5][18]. Figure 46 shows RC delay measurement of the crossbars.

Figure 46: PSPICE Simulation Results for 8×8 nanowire crossbar; RC Delay measurement in PSPICE for

VSET= 1.0V, Nanowire half-pitch=40nm. Results from Two Separate Runs are shown side-by-side [102].

166

7.3 Performance Study

7.3.1 Memristor Device Delay

Behavioral models of memristive devices can provide an overview of the expected

characteristics. However, to determine the actual circuit performance we need a model that

would contain various process-dependent parameters, through which the devices can be

tweaked to optimize the design for performance improvement, such as delay reduction

[17]. Several papers have reported the delays of memristors for logical transfer operations

using behavioral models. Kvatinsky et al. [5] reported the delay of the memristive

implication gate to be 397.1ns using the ThrEshold Adaptive Memristor (TEAM) model

with a TiO2 based memristor. Torrezan et al. [18] showed that the set and reset operations

were successfully performed in the TaOX (Tantalum Oxide) memristor using pulses with

durations of 105 and 120ps, respectively. Mazady et al. [17] recently reported a promising

work based on ZrO2 memristor. They claimed their memristor model to be the only one so

far not based on a behavioral memristor model, but rather based on the underlying physics

of the device, which allows the optimization of circuit performance. They estimated the

delay of the ZrO2 memristor to be only 6.8ps, which is due to a very high mobility of 370

cm2/V-s of ZrO2 with a resistivity of 1.33×1013 Ω-cm for the insulating material.

Since the research goal of this dissertation is methodology development for circuit and

system design and not device modeling, logic transition delay numbers from published

research on various memristor models [17][5][18] were used for performance evaluations

of the proposed memristor-CMOS hybrid ED pipeline design.

167

7.3.2 Memristor Nanowire Crossbar Delay Evaluation

For this work, a simulation model was built to evaluate the RC delay of the 8×8

nanowire crossbar [102]. The wire resistance and wire capacitance values were calculated

[6] to use in the simulation model. Also a fringing capacitance was added for the device.

Simulations were performed using 1.0V VSET voltage for the 40nm half-pitch nanowire

crossbars [20] as shown in Figure 45. Simulation results showed that even for the worst

case, which is the farthest segment from the load resistor RG, the RC delay was only ~2fs,

and thus it is negligible when added to each transition delay in Table 7-2 [102]. The

nanowire model mentioned above can be tweaked further for more accuracy through

adjusting the wire resistances and capacitances, however, the results will not be

significantly different in order to make any change to the overall pipeline delay.

7.3.3 Power Estimation of Memristor-Nanowire Design

The three possible sources of power consumption for the memristive nanowire

crossbar design are listed below:

1. Static power PON due to current ION

2. Static power PLEAK due to leakage current through nanodevices in their OFF

state. Sneak-path current is considered a leakage type of power consumption

[101].

3. Dynamic power PDYN due to the recharging of nanowire capacitances.

168

The power calculations were performed based on [6]. For convenience of the readers

the calculation process with equations [6] are presented below.

 Static Power, PON is expressed as,

𝑃𝑂𝑁 =
𝑉𝐷𝐷

2

2𝑅𝑠𝑒𝑟

𝑅𝑠𝑒𝑟 =
𝑅𝑂𝑁

𝐷
+ 2𝑅𝑤𝑖𝑟𝑒 + 𝑅𝐺

Therefore,

𝑃𝑂𝑁 =
𝑉𝐷𝐷

2

2(
𝑅𝑂𝑁

𝐷 + 2𝑅𝑤𝑖𝑟𝑒 + 𝑅𝐺)

Static Power, PLEAK is expressed as,

𝑃𝑙𝑒𝑎𝑘 =
𝑀𝑉𝐷𝐷

2

2𝑅𝑂𝐹𝐹/𝐷

Dynamic Power, PDYN is expressed as,

𝑃𝑑𝑦𝑛 =
𝐶𝑤𝑖𝑟𝑒𝑉𝐷𝐷

2

4𝜏

The value of the parameters in the above equations are furnished below:

D (parallel connection of memristive devices to latching switch) = 8

M (closed switches in parallel) = 2

VDD = VSET

RON = 100Ω

ROFF = 10kΩ

𝜏 (𝑡𝑜𝑡𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑑𝑒𝑙𝑎𝑦),

169

The total circuit delay was calculated using the proposed space-time based notation for the

Euclidean Distance Pipeline based on memristor device models from three published

research [17][5][18].

𝐶𝑤𝑖𝑟𝑒 = 𝐶𝑤𝑖𝑟𝑒 /𝐿 ∗ 𝐿𝑤𝑖𝑟𝑒 = (𝐶𝑤𝑖𝑟𝑒 /𝐿) ∗ 7 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑎𝑛𝑜

𝑅𝑤𝑖𝑟𝑒 = ρ
𝐿

𝐴
 = ρ0 ∗ (1 +

𝑙

𝐹𝑛𝑎𝑛𝑜
)

𝐿

𝐴

= 20𝛺 − 𝑛𝑚 ∗ (1 + 10𝑛𝑚/𝐹𝑛𝑎𝑛𝑜)
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑎𝑛𝑜

𝐹𝑛𝑎𝑛𝑜
2

𝑙 = electron mean-free path = 10 nm, which is typical for good metals at room temperature

 ρ0 = 20 Ω − 𝑛𝑚

variables:

𝜏: 𝑡𝑜𝑡𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑑𝑒𝑎𝑙𝑦

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑎𝑛𝑜: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑎𝑛𝑜 𝑤𝑖𝑟𝑒

𝐹𝑛𝑎𝑛𝑜: ℎ𝑎𝑙𝑓 𝑝𝑖𝑡𝑐ℎ 𝑜𝑓 𝑛𝑎𝑚𝑎𝑛𝑜 𝑤𝑖𝑟𝑒𝑠

𝐶_𝑤𝑖𝑟𝑒/𝐿: 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤 𝑔𝑟𝑎𝑝ℎ 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑛𝑎𝑛𝑜𝑙𝑎𝑦𝑒𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

The wire capacitance values were generated using the well-known FASTCAP code as

mentioned in [6], for the crossbar structure in which both width and thickness of the

nanowire, as well as the horizontal distance between the wires, were assumed to be all

equal to Fnano, while the vertical distance between two layers was varied between 2 to 4

nm. These wire capacitance values were used in the PSPICE simulations and for power

estimation for this research.

170

Figure 47: Cwire /L Calculation [6].

PDYN Calculation:

Detailed power calculations were performed based on both 40nm half-pitch [20]

and 8nm half-pitch [6] nanowire (nw) crossbars at two different VSET voltages.

Therefore, the below four combinations [102] were used for the PDYN calculation. Also,

Cwire values were calculated based on 2, 3, and 4nm separations as shown in Figure 47.

1. 40nm nw width, spacing; VSET = 1 V: calculate PDYN using delay, 𝜏 from [17][5][18].

2. 8nm nw width, spacing; VSET = 1 V: calculate PDYN using delay, 𝜏 from [17][5][18].

3. 40nm nw width, spacing; VSET = 0.4 V: calculate PDYN using delay, 𝜏 from [17][5][18].

4. 8nm nw width, spacing; VSET = 0.4 V: calculate PDYN using delay, 𝜏 from [17][5][18].

As presented in Figure 48, detailed dynamic power calculations [6] were performed

based on both 40nm half-pitch [20] and 8nm half-pitch [6] nanowire crossbars. Figure 48

also shows the total dynamic power PDYN consumed by the complete memristor-based

pipeline for the three types of memristor devices that were used for the device delay

171

calculations [Table 7-2]. The worst case PDYN is 9.63nW running at a VSET voltage of 1V

consumed by the pipeline for the 40nm half-pitch nanowires.

Figure 48: Total estimated dynamic power, Pdyn of the proposed memristor based complete pipelined

datapath. Results show Pdyn consumption by various memristor device based designs [from Table 7-2] with

both 8-nm and 40-nm half-pitch nanowires [102].

PLEAK and Sneak-path Current:

Since memristors are resistors that conduct current constantly, sneak-path current

is a concern for any memristor based design [102]. In the previous chapters, with the

example of an 8-bit iterative adder circuit (Figure 9, Figure 10, and Figure 18) a

methodology was proposed to provide the sneak-path current protection to the IMPLY-

172

memristor based design. The proposed 8-bit adder eliminates all logic sneak-path currents

and minimizes power related sneak-path current [102]. In this proposed design only one

row or column of the 8×8 crossbar at a time can discharge through Gnd. Moreover,

memristors go through reset with the VCLEAR voltage after completing the operations in

each row. In the proposed 8-bit adder design only the sum bits are preserved in the eighth

column of the 8×8 nanowire crossbar, while all other memristors are cleared. However, the

memristors that are holding the sum bits cannot easily discharge as no direct path to Gnd

is available for them. Thus this dissertation assumes that the leakage power PLEAK is

negligible in the proposed design. However, without any sneak-path protection, the worst

case estimated leakage power would be 0.8mW [6] per pipestage. This means that the

hybrid system consumes 11% less power due to the sneak-path protection provided by this

methodology.

PON Calculation:

Finally, the PON power was calculated. As shown in Figure 18, in proposed

methodology the primary input data is copied over from storage MsRAM to row1 of the

8×8 nanowire crossbar [102]. Therefore, as shown in Figure 9, the initial carry bit holds

the memristance value for several pulses/cycles. This may cause some static power loss.

However, since other protections are provided to the design, this loss is also negligible.

The calculated PON power loss is 2.38µW per pipestage. Therefore, the power loss due to

the initial carry bit is only (8/165) * 2.38 = 0.115µW per 8-bit adder.

Here, the initial carry bit does not participate in any transfer during the first 8 pulses, while

a total of 165 pulses are required for the 8-bit adder implementation.

173

CMOS PDYN Calculation:

The estimated dynamic power consumption by CMOS circuitry in the hybrid chip,

per 8×8 memristive nanowire crossbar (per pipestage) is 2.25mW at 25% toggle rate and

therefore, for four pipestages of the complete ED pipeline, it is approximately 9mW [102].

Thus in the proposed methodology, the total power consumption of the memristive-

nanowire crossbar is negligible and the CMOS dynamic power dominates the overall

power consumption of the hybrid design. The proposed hybrid MsFPGA operating at the

supply voltage of 1.0V consumes ~9mW total dynamic power.

7.3.4 Memristor-Nanowire Crossbar Area Estimation

Memristors are physically located at the intersections of each horizontal nanowire

and vertical nanowire in a two-layer crossbar network. Therefore, the total nanowire

crossbar area (x and y dimension) required for the ED pipeline design was calculated [102].

Based on several publications on the fabrication of nanowire crossbars [20][30][31][32],

the required area for the ED pipeline was estimated. For example, Borghetti et al. [20]

fabricated 40 nm half-pitch memristor crossbars using nanoimprint lithography on the

same silicon substrate with CMOS, for fully integrated hybrid circuits. Half-pitch is

defined as half the distance between two nanowires from center to center. Therefore, the

width of nanowire=40 nm, spacing of nanowire =40 nm and the center to center distance

is 80nm. Also, since memristors in a crossbar are located at the intersection of each

horizontal nanowire and each vertical nanowire, the memristor cross-sectional area for a

40-nm half-pitch is 40 nm x 40 nm.

174

Before we can estimate the design area and delay calculations, every memristors-

based block in the MsFPGA system is designed with IMPLY-memristors using the space-

time notation. Thus we know how many memristors or 8x8 crossbar block(s) and also how

many pulses are required for designing each component or block. The number of

memristors is used for the layout area estimation and the number of pulses is used for the

delay calculation.

Figure 49 and Figure 50 elaborate the area calculation method for an 8x8 nanowire

crossbar for the 40 nm half-pitch memristor crossbars.

X-direction distance = (Full-pitch between nanowires * number of nanowires in the

middle) + (Half of two side nanowires on both ends).

Half of each nanowire = 20nm;

 X-direction distance = (80 * 7) + (20) = 600 nm;

Similarly, Y-direction distance = 600 nm;

Thus the total area of 8x8 crossbar = 0.6 * 0.6 µm2 = 0.36 µm2

Figure 49: 40-nm Half-pitch Distance Between Two Nanowires.

175

Figure 50: X-Distance Measurement for eight vertical nanowires. Total x-Distance is 0.6µm. Similarly, total

y-Distance for eight horizontal nanowires is 0.6µm. Therefore, the area of an 8x8 nanowire crossbar is

0.36µm2.

Table 7-1 shows the total calculated area breakdown for various components in the

ED pipeline datapath [102]. The MsRAM areas for the subtractor, adder, comparator and

multiplexer were calculated. Since the total number of micro-pulses for the complete

pipeline is 1027 and the total number of control bits is 21, therefore the total MsRAM area

was calculated as shown below:

MsRAM area = ((Total number of micro-pulses * Total number of control bits) * Total

area for 8x8 crossbar)/Total number of memristors in an 8x8 crossbar.

Thus, the total MsRAM area for the ED pipeline is calculated as 121.31µm2.

176

Table 7-1: CALCULATED AREA OF COMPONENTS OF ED PIPELINE DATAPATH [102].

Component

Memristors Area(µm2)

8-bit sub 8x8 0.36

LUT 256x16 23.04

18-bit adder 8x18 0.81

18-bit comp 8x18 0.81

18-bit mux 5x18 0.51

Total 25.53

Based on ref. [20], the estimated area [presented in Table 7-2] of the proposed ED

pipeline datapath is 25.5µm2, with corresponding MsRAM area in Pulse Generator is

121µm2. Therefore, the total area consumed by the complete ED pipeline is 146µm2.

However, with the use of 8nm half-pitch nanowires [6], the total area requirement of the

same above mentioned memristor-based ED pipeline is only 5.9µm2. Besides, the CMOS

circuitry in the hybrid MsFPGA consumes 0.32mm2 area as estimated. Therefore, the area

of the hybrid MsFPGA design is dominated by the CMOS components [102]. As the

memristor crossbar technology matures, more components can be converted from CMOS

to memristors and thus these components can be moved to the memristor layer from the

CMOS layer [102].

177

Table 7-2: CALCULATED DELAY AND AREA FOR ED PIPELINE USING IMPLY-MEMRISTIVE

NANOWIRE BASED MsFPGA DESIGN [102].

Block

Micro

pulse

required

Delay

Based on

ZrO2

memristor

for each

transfer =

6.8ps [17].

Delay

Based on

TiO2

memristor

TEAM

Model for

each

transfer =

397.1ns

[5].

Delay

Based on

TaOx

memristor

for each

transfer =

120ps [18].

Area

(µm2)

Based on

Ref. [20].

Realistic

Process

Model

Behavioral

Model

Behavioral

Model

8-bit

Subtractor

224 1.52ns 88.95µs 26.88ns 0.36

16-bit LUT

RAM

35 0.24ns 13.9µs 4.2ns 23.04

18-bit Full

Adder

369 2.51ns 146.53µs 44.28ns 0.81

18-bit

Comparator

290 1.97ns 115.16µs 34.8ns 0.81

18-bit

Multiplexer

109 0.74ns 43.28µs 13.08ns 0.51

Pipeline Total 1027 6.98ns 407.82µs 123.24ns 25.53

PG MsRAM

For 5 Blocks

in Pipeline

- - - - 121.31

7.4 Memristor-based Pipeline Design

As discussed in Chapter 4, a CMOS pipelined circuit has a series of combinational-

sequential alternating blocks. Memristors are non-volatile memory and act like a Finite

178

State Machine (FSM). Therefore, for the memristor-implication based pipeline design,

memristors function as sequential elements. So, at the output of the memristor-based

combinatorial block, memristors act like an asynchronous delay circuit elements and hold

the data. Thus the standard registers (such as those with D Flip Flops) and their standard

clock are not required for the proposed methodology as illustrated in the memristor-based

pipeline design. This useful advantage makes the memristor-based design more efficient

compared to the CMOS-based pipelined circuits and thus saves area, and power, and

reduces the design complexity significantly. The example illustrates that the proposed

design style is the best for massively parallel multiple pipeline designs which are typical

for image processing, digital signal processing, control, pattern recognition, neural network

emulation, data mining and similar applications, driving forces for the development of new

hardware technologies and their associated design methodologies.

The ED pipeline was designed using the space-time notation for implication gates

realized with memristors as presented in Figure 53 [102]. The calculated delay and area

numbers for this design are presented in Table 7-2 [102]. Two behavioral models [5][18]

and one process-based model [17] from the literature were used for memristor device

delays and the nanowire crossbar was simulated in PSPICE for RC delay for the proposed

IMPLY-memristor based ED pipeline design. The performances of the CMOS components

in the hybrid design were obtained through HDL (Hardware Description Language)

Verilog simulations and synthesis results using Xilinx tools [15].

179

8 RESULTS

Comparative Performance Analysis of MsFPGA

As presented in the previous chapters, the design and methodology of MsFPGA,

which is a stateful IMPLY-memristor-CMOS hybrid FPGA was proposed in this

dissertation. This dissertation work has also proposed the pipelined implementation of the

Euclidean Distance (ED) Processor. The example of Euclidean Distance calculator was

used for both CMOS FPGA design as well as MsFPGA design. Using the two technologies,

an exactly same pipeline is designed with the arithmetic blocks − subtractor, square

operator, adder, comparator and multiplexers. Since CMOS is the state-of-the-art

technology, the ED pipeline was additionally designed using CMOS, so that a comparative

performance analysis against the proposed memristive-CMOS hybrid design is possible.

For the convenience of the readers, Figure 51, Figure 52, and Figure 53 are presented

again in this chapter. Logic components of Figure 51, CMOS FPGA ED pipeline and

“virtual” registers are all included in the red polygon of Figure 52, MsFPGA showing one

pipeline. Proposed MsFPGA architecture also contains memories and a pulse-generator

which are problem-specific programmable blocks and are shown in Figure 52. Also, the

components in Figure 52 red polygon are marked/mapped in Figure 53, memristor-CMOS

Hybrid ED pipeline. The red polygon in Figure 52 is nothing but a fabric, the actual logic

is configured in the MsRAM located in the Pulse Generator.

180

Figure 51: Pipeline Implementation of the Euclidean Distance (ED) Calculator (without

square-root function) using standard CMOS FPGA [102].

181

Figure 52: Proposed Memristive stateful logic Field Programmable Gate Array

(MsFPGA). The details of the “Hybrid Pulse Generator” and the “CMOS Merge Block”

are shown in Figure 17. The red polygon represents one pipeline of the proposed ED

architecture and the implementation is illustrated in Figure 53. Color code: Green-

memristor nanowire crossbar, Yellow- CMOS, Blue- Hybrid circuitry [102].

182

Figure 53: Pipeline Implementation of the Euclidean Distance (ED) Calculator using proposed MsFPGA,

memristor-CMOS Hybrid FPGA. Color code: Green-memristor nanowire crossbar, Yellow- CMOS, Blue-

hybrid circuitry [103].

A comparative study between CMOS technology and the proposed memristor-

CMOS hybrid technology is presented here using the example of the Euclidean Distance

calculation pipeline as shown in Figure 51 and 53 respectively [102]. Based on the results

presented in Chapter 4 for CMOS FPGA implementation and Chapter 7 for proposed

MsFPGA implementation, it is clear that a memristor based technology is a promising

alternative for future logic design. The delay numbers calculated in Table 7-2 for the

proposed IMPLY-memristor based design using the realistic process based simulation

model by Mazadi et al. [17] showed better results compared to the CMOS FPGA based

design shown in Table 4-1. Also significant area advantage of the IMPLY-memristor based

design was demonstrated, although for the memristor-CMOS hybrid design the CMOS

circuitry consumes most of the design area. However, if we exclude the CMOS circuitry

of the hybrid design and only compare the area of the ED datapath, we would see a massive

183

reduction of area (146µm2 area consumed by IMPLY-memristor nanowire crossbar vs.

0.6mm2 area consumed by CMOS FPGA). These numbers strongly justify the advantages

of the IMPLY-memristor based design over the standard CMOS design.

Besides, in the proposed MsCMOL architecture, protection from the sneak-path

current was provided with the proposed methodology in Chapter 6 using an 8-bit iterative

adder circuit. This design not only works to minimize the leakage power, but also is

protected from flipping bits or logical error. The dynamic power consumed by the example

CMOS FPGA at 25% toggle-rate was 22mW, which was much higher compared to the

memristor-CMOS hybrid design (~9mW) if both the designs were driven with a supply

voltage of 1V. These comparative results are presented in Figure 54, where graphs are

plotted in logarithmic scale and the results are also presented in Table 8-1.

Figure 54: PERFORMANCE COMPARISON OF CMOS FPGA VS. PROPOSED MsFPGA (In Logarithmic

scale).

184

Table 8-1: PERFORMANCE COMPARISON OF CMOS FPGA VS. PROPOSED MsFPGA.

Performances CMOS FPGA MsFPGA CMOS

Component

of

MsFPGA

Delay 25.9ns ZrO2 Realistic Process Model:

6.98ns

TaOx Behavioral Model:

123.24ns

TiO2 Behavioral Model:

407.82µs

-

Datapath Area 0.6mm2 146µm2 x

Total Die

Area

0.904 mm2 x 0.32mm2

Static Power Whole FPGA is

on, so not

comparable.

Sneak-path protection provided. -

Dynamic

Power @25%

toggle-rate

22mW 9.63nW ~ 9mW

The pulse frequency for the ZrO2 memristor variant can be 147GHz [17], which

translates into a 6.8ps micro-pulse for every logical operation. I suggest a high-frequency

clock to drive the CMOS-memristor hybrid design in the future as it has already been

shown that CMOS can be operated at 160GHz frequency or above

[23][24][25][26][27][28]. However, running the clock at high frequency would cost

significant power dissipation unless provided necessary solutions for that.

185

9 CONCLUSIONS

This dissertation work has proposed the Memristive stateful logic Field

Programmable Gate Array (MsFPGA), a novel and innovative memristor-CMOS hybrid

FPGA for digital system design [102]. This architecture is reconfigurable and can be used

for many applications, including those that demonstrate massive parallelism [102]. This

includes especially various types of neural architectures. In this disserations we are

assuming that massive parallel arithmetic operations are possible, as is pipelining.

However, it should be obvious to the reader that advantages of the proposed regular design

are also applicable to Single Instruction Multiple Data (SIMD)-like, systolic, and CMOL-

like datapath-memory architectures that are typical of DSP, neural network and image

processing. The proposed MsFPGA is particularly suited to regular designs with

rectangular or square blocks executed in parallel. Since the blocks communicate mostly by

abutting, the routing is simplified. This makes this architecture particularly well-suited for

regular SIMD-like and pipelined architectures. However, because a logical block can also

be used for interconnect, in principle the fabric of the MsFPGA can be used for general

purpose combinational and sequential functions as presented in [9][10][13]. This

dissertation also showed how to eliminate logically dangerous sneak-path current in the

nanowire crossbar design using this methodology [102]. The high level architecture, the

Memristive Finite State Machine with Datapath (MsFSMD), (which is designed with a

CMOL-like datapath-memory, MsCMOL and a memristor-CMOS hybrid controller) was

introduced [102]. The hybrid controller has a Pulse-Generation unit, which is based on

186

Memristive stateful RAM, MsRAM with CMOS interfaces and a small CMOS FSM [102].

This work also proposed a new architecture for calculating Euclidean Distance as a

pipelined design, and implemented the hardware with memristors based on implication

logic [102]. This dissertation showed a comparison of circuit performance between the

proposed memristor-CMOS hybrid design and a pure CMOS FPGA design that shows the

significant promise of memristors to be a viable new circuit technology for both memory

and combinational logic (including arithmetic) operations [102].

There are a variety of possible research topics that will result from the work presented

here. One example involves testing the proposed MsFPGA. This topic is not addressed,

with the exception of [46]. A testing method can be proposed that will be similar to the

testing of the classical EPLDs, GALs and FPGAs [47][48]. Moreover, this testing method

is intended to be used in fault tolerant design, which is able to self-repair using the spare

column method in the crossbar.

187

Contributions

[1] This dissertation has presented a hardware design methodology that is suitable for

massively parallel and pipelined reconfigurable architecture. Also, this work

implemented the design using the proposed methodology with the IMPLY-

memristor based nanowire crossbar [102]. The application areas of the proposed

design methodology are, due to the kind of highly parallel, pipelined execution, the

methodology enables pattern recognition, robot motion, neural network, big data

analysis etc. These application areas include biologically inspired associative

memory based models and other similar algorithms.

[2] Using the proposed space-time based notation and proposed pulse generator, this

dissertation presented optimized design for logic blocks using IMPLY-memristors

[102]. The list includes critical circuits, such as, XOR (exclusive OR) gate,

Half/Full adder, Subtractor, Multiplexer, Comparator design.

[3] In this dissertation, an innovative concept of an 8-bit iterative adder design using

the IMPLY-memristor is presented. The 8-bit iterative adder is designed in a new

type of 8x8 nanowire crossbar, where, each adder bit is implemented in one row of

the 8-row crossbar network [102]. The design is optimized for area and delay and

has sneak-path protection [102]. Similarly, components of 8-bit, 16-bit, or any other

order bit can be designed using one or multiple 8x8 crossbar blocks, as needed. For

this dissertation other arithmetic blocks, e.g. subtractor, comparator, multiplexer,

square-operator blocks were also designed using the same design concepts.

188

[4] The innovative pipelining concept is presented for the datapath design using an

array of 8x8 nanowire crossbar blocks [102]. This array of blocks can grow both

horizontally as well as vertically and can act as a pipeline.

[5] A novel Hybrid memristor-CMOS MsFPGA (Memristive stateful logic Field

Programmable Gate Array) [102] design was proposed in this dissertation. The

proposed MsFPGA is a reconfigurable system that can be designed with pipelined

datapaths and massive parallelism. This parallelism can be designed by driving

many such pipelines (mentioned in [4] above) with one controller simultaneously,

using the SIMD (Single Instruction Multiple Data) concept. These are innovative

concepts for the memristive FPGA design, presented by this research.

[6] Several novel architectural concepts were developed. The proposed methodology

provides a general new architecture model, Memristive stateful Finite State

Machine with Datapath (MsFSMD) [102]. Like conventional FSMD, this

proposed system is also a digital system that includes a finite-state machine, and a

datapath, but all logic is stateful and is implemented with memristors, which

changes timing and design methods used. Besides, the MsFSMD model has an

additional control block called the pulse generator [102]. The pulse generator can

be defined as the brain of the proposed MsFPGA. The pulse generation block

contains the Memristive stateful RAM (MsRAM). The usage of the MsRAM [102],

another innovation of this dissertation work, which contains all the configuration

information required to realize the virtual logic circuit in the memristive nanowire

crossbar datapath.

189

[7] The proposed MsFPGA uses memristors for memory, connections programming,

and combinational logic implementation as opposed to other published memristor

based FPGAs, such as mrFPGA, where memristors are reconfigured for logic

connections only.

[8] This dissertation proposed solutions to several critical circuit implementation

challenges for memristor-nanowire crossbar designs. The proposed MsCMOL,

usage of data storage MsRAM, usage of an array of 8x8 nanowire crossbar blocks,

the proposed sneak-path protection, and the proposed row-to-row data transfer are

all novel ideas and are valuable to the development of memristor technology [102].

[9] Sneak-path current causes both logical error as well as power consumption in

various types of nanowire crossbar designs, including memristor-nanowire

crossbar design. This research proposes a design methodology for an innovative,

novel sneak-path protected IMPLY-memristive-nanowire crossbar circuit [102].

For this purpose, an example of an 8-bit Full iterative adder design was presented

in detail. This design is free of dangerous logical errors and it was minimized for

possible power consumption. The power consumption for this proposed design is

reduced to the lowest possible level. This sneak-path free combinatorial circuit

design methodology proposed by this research is much more robust than any other

published research on similar designs with nanowire crossbars.

[10] This dissertation performed the price-performance analysis of CMOS

FPGA versus CMOS-memristive hybrid FPGA (Proposed MsFPGA) designs

using the Euclidean Distance pipelined datapath [102]. This is a new contribution

190

as no other published research has presented performance comparisons between

two technologies for complete systems with simulated results.

[11] This dissertation proposed the hardware implementation of the Euclidean

Distance Calculator as an innovative pipelined datapath and presented this

datapath as a CMOS FPGA design as well as a memristive FPGA design [102].

Since Euclidean Distance calculation is used in many neural network and

associative memory based software algorithms, the hardware realization of the

Euclidean Distance Calculator as a pipelined datapath with memristors is an

important concept. This concept can be used in the hardware realization of

neumerous application areas, such as, supervised and unsupervised learning,

pattern recognition, neural network, hierarchical clustering, phylogenetic analysis,

molecular conformation in bioinformatics, dimensionality reduction in machine

learning and statistics, natural language text processing, image processing, medical

imaging, data mining, big data analysis, shape matching, pedestrian detection,

human tracking, action recognition, robot motion planning, shape simplification,

volume representation and smoothing Voronoi Diagrams applied in graphics, and

robot path planning [19][36][37][38][39][40][41][42][43][44][45].

191

Journal Publication:

Rahman, K. C., Hammerstrom, D., Li, Y., Xiong, H., & Perkowski, M. (2016).

Methodology and Design of a Massively Parallel Memristive Stateful IMPLY Logic based

Reconfigurable Architecture. Nanotechnology, IEEE Transactions on, xx. (In Production,

accepted on 09-May-2016).

Patent:

Rahman, K. C., Perkowski, M., Hammerstrom, D., & Al-Jafar M. filed Provisional Patent

Application No. 61/989,387.

192

REFERENCES

[1] Chua, L. O. (1971). Memristor-the missing circuit element. Circuit Theory, IEEE

Transactions on, 18(5), 507-519.

[2] Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing

memristor found. Nature, 453(7191), 80-83.

[3] Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., & Williams, R. S.

(2010). ‘Memristive’ switches enable ‘stateful’ logic operations via material

implication. Nature, 464(7290), 873-876.

[4] Kuekes, P. (2008, November). Material implication: digital logic with memristors.

In Memristor and memristive systems symposium (Vol. 21).

[5] Kvatinsky, S., Satat, G., Wald, N., Friedman, E. G., Kolodny, A., & Weiser, U. C.

(2014). Memristor-based material implication (IMPLY) logic: design principles and

methodologies. Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 22(10), 2054-2066.

[6] Strukov, D. B., & Likharev, K. K. (2005). CMOL FPGA: a reconfigurable architecture

for hybrid digital circuits with two-terminal nanodevices. Nanotechnology, 16(6), 888.

[7] Lehtonen, E., Tissari, J., Poikonen, J., Laiho, M., & Koskinen, L. (2014). A cellular

computing architecture for parallel memristive stateful logic. Microelectronics

Journal, 45(11), 1438-1449.

[8] Likharev, K. K., & Strukov, D. B. (2005). CMOL: Devices, circuits, and architectures.

In Introducing Molecular Electronics (pp. 447-477). Springer Berlin Heidelberg.

193

[9] Kim, K., Shin, S., & Kang, S. (2011). Field programmable stateful logic array.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 30(12), 1800-1813.

[10] Kim, K., Shin, S., & Kang, S. (2011, May). Stateful logic pipeline architecture. In

Circuits and Systems (ISCAS), 2011 IEEE International Symposium on (pp. 2497-

2500). IEEE.

[11] Kvatinsky, S., Kolodny, A., Weiser, U. C., & Friedman, E. G. (2011, October).

Memristor-based IMPLY logic design procedure. In Computer Design (ICCD), 2011

IEEE 29th International Conference on (pp. 142-147). IEEE.

[12] Lehtonen, E., & Laiho, M. (2009, July). Stateful implication logic with memristors.

In Proceedings of the 2009 IEEE/ACM International Symposium on Nanoscale

Architectures (pp. 33-36). IEEE Computer Society.

[13] Cong, J., & Xiao, B. (2011, June). mrFPGA: A novel FPGA architecture with

memristor-based reconfiguration. In Nanoscale Architectures (NANOARCH), 2011

IEEE/ACM International Symposium on (pp. 1-8). IEEE.

[14] Snider, G. S., & Williams, R. S. (2007). Nano/CMOS architectures using a field-

programmable nanowire interconnect. Nanotechnology, 18(3), 035204.

[15] http://www.xilinx.com/ (2015, February 23). “XA Kintex-7 FPGAs Overview”.

DS182 (v2.13).

[16] Biolek, D., Di Ventra, M., & Pershin, Y. V. (2013). Reliable SPICE simulations of

memristors, memcapacitors and meminductors. arXiv preprint arXiv:1307.2717.

[17] Mazady, A. (2014). Modeling, Fabrication, and Characterization of Memristors.

http://www.xilinx.com/

194

[18] Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G., & Williams, R. S. (2011).

Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology,22(48),

485203.

[19] Furao, S., Ogura, T., & Hasegawa, O. (2007). An enhanced self-organizing

incremental neural network for online unsupervised learning. Neural Networks, 20(8),

893-903.

[20] Borghetti, J., Li, Z., Straznicky, J., Li, X., Ohlberg, D. A., Wu, W., ... & Williams,

R. S. (2009). A hybrid nanomemristor/transistor logic circuit capable of self-

programming. Proceedings of the National Academy of Sciences, 106(6), 1699-1703.

[21] Manem, H., Rajendran, J., & Rose, G. S. (2012). Design considerations for

multilevel CMOS/nano memristive memory. ACM Journal on Emerging Technologies

in Computing Systems (JETC), 8(1), 6.

[22] International technology roadmap for semiconductors. URL http://www.itrs.net/

[23] Razavi, B., Lee, K. F., & Yan, R. H. (1995). Design of high-speed, low-power

frequency dividers and phase-locked loops in deep submicron CMOS. Solid-State

Circuits, IEEE Journal of, 30(2), 101-109.

[24] Sun, Y., & Herzel, F. (2006). A fully differential 60 GHz receiver front-end with

integrated PLL in SiGe: C BiCMOS. In 2006 European Microwave Integrated Circuits

Conference (pp. 198-201).

[25] Pinel, S., Sarkar, S., Sen, P., Perumana, B., Yeh, D., Dawn, D., & Laskar, J. (2008,

February). A 90nm cmos 60ghz radio. In Solid-State Circuits Conference, 2008. ISSCC

2008. Digest of Technical Papers. IEEE International (pp. 130-601). IEEE.

http://www.itrs.net/

195

[26] Tsai, K. H., & Liu, S. I. (2012). A 104-GHz phase-locked loop using a VCO at

second pole frequency. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 20(1), 80-88.

[27] Lin, Y., & Kotecki, D. E. (2012, August). A 126.9–132.4 GHz wide-locking low-

power frequency-quadrupled phase-locked loop in 130nm SiGe BiCMOS. InCircuits

and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium on (pp.

754-757). IEEE.

[28] Chen, W. Z., Lu, T. Y., Wang, Y. T., Jian, J. T., Yang, Y. H., & Chang, K. T.

(2014). A 160-GHz Frequency-Translation Phase-Locked Loop with RSSI Assisted

Frequency Acquisition.

[29] http://www.orcad.com/ (2015). “OrCAD 16.6 Lite Demo Software (OrCAD

Capture and PSpice)”. Cadence Design Systems, Inc.

[30] Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J., ...

& Williams, R. S. (2009). Memristor− CMOS hybrid integrated circuits for

reconfigurable logic. Nano letters, 9(10), 3640-3645.

[31] Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano letters, 10(4),

1297-1301.

[32] Kim, K. H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa,

N., & Lu, W. (2011). A functional hybrid memristor crossbar-array/CMOS system for

data storage and neuromorphic applications. Nano letters, 12(1), 389-395.

http://www.orcad.com/

196

[33] Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., & Williams, R.

S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices.

Nature nanotechnology, 3(7), 429-433.

[34] Raghuvanshi, A., & Perkowski, M. (2014, November). Logic synthesis and a

generalized notation for memristor-realized material implication gates. In Proceedings

of the 2014 IEEE/ACM International Conference on Computer-Aided Design (pp. 470-

477). IEEE Press.

[35] Kime, C. R., & Mano, M. M. (2004). Logic and computer design fundamentals.

[36] Breu, H., Gil, J., Kirkpatrick, D., & Werman, M. (1995). Linear time Euclidean

distance transform algorithms. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 17(5), 529-533.

[37] Liberti, L., Lavor, C., Maculan, N., & Mucherino, A. (2014). Euclidean distance

geometry and applications. SIAM Review, 56(1), 3-69.

[38] Parhizkar, R. (2013). Euclidean distance matrices: Properties, algorithms and

applications (Doctoral dissertation, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE

LAUSANNE).

[39] Coeurjolly, D., & Vacavant, A. (2012). Separable distance transformation and its

applications. In Digital Geometry Algorithms (pp. 189-214). Springer Netherlands.

[40] Dokmanić, I., Parhizkar, R., Walther, A., Lu, Y. M., & Vetterli, M. (2013).

Acoustic echoes reveal room shape. Proceedings of the National Academy of

Sciences, 110(30), 12186-12191.

197

[41] Ye, Q. Z. (1988, November). The signed Euclidean distance transform and its

applications. In Pattern Recognition, 1988., 9th International Conference on (pp. 495-

499). IEEE.

[42] Chu, D. I., Brown, H. C., & Chu, M. T. (2010). On least squares euclidean distance

matrix approximation and completion. Available at February, 16.

[43] Barrett, P. (2006). Euclidean distance: Raw, normalised, and double-scaled

coefficients. Unpublished paper retrieved from http://www. pbmetrix.

com/techpapers/Euclidean_Distance. pdf.

[44] Krislock, N., & Wolkowicz, H. (2012). Euclidean distance matrices and

applications (pp. 879-914). Springer US.

[45] Dokmanic, I., Parhizkar, R., Ranieri, J., & Vetterli, M. (2015). Euclidean Distance

Matrices: A Short Walk Through Theory, Algorithms and Applications. arXiv preprint

arXiv:1502.07541.

[46] Kannan, S., Karimi, N., Karri, R., & Sinanoglu, O. (2015). Modeling, Detection,

and Diagnosis of Faults in Multilevel Memristor Memories.Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 34(5), 822-834.

[47] Lee, C. H., Perkowski, M. A., Hall, D. V., & Jun, D. S. (2000). Self-repairable

EPLDs: design, self-repair, and evaluation methodology. In Evolvable Hardware,

2000. Proceedings. The Second NASA/DoD Workshop on (pp. 183-193). IEEE.

[48] Lee, C. H., Perkowski, M. A., Hall, D. V., & Jun, D. S (2001). Self-Repairable

GALs. Journal of Systems Architecture, 02/2001; 47(2):119-135.

https://www.researchgate.net/journal/1383-7621_Journal_of_Systems_Architecture

198

[49] Li, H., Gao, B., Chen, Z., Zhao, Y., Huang, P., Ye, H., ... & Kang, J. (2015). A

learnable parallel processing architecture towards unity of memory and

computing. Scientific reports, 5.

[50] Austin, J., & Stonham, T. J. (1987). Distributed associative memory for use in

scene analysis. Image and Vision Computing, 5(4), 251-260.

[51] Bose, J. (2007). Engineering a Sequence Machine Through Spiking Neurons

Employing Rank-order Codes (Doctoral dissertation, University of Manchester).

[52] Bose, J., Furber, S. B., & Shapiro, J. L. (2005). An associative memory for the

on-line recognition and prediction of temporal sequences. In Neural Networks,

2005. IJCNN'05. Proceedings. 2005 IEEE International Joint Conference on (Vol.

2, pp. 1223-1228). IEEE.

[53] Buckingham, J., & Willshaw, D. (1992). Performance characteristics of the

associative net. Network: Computation in Neural Systems, 3(4), 407-414.

[54] Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive pattern

recognition by a self-organizing neural network. Computer, 21(3), 77-88.

[55] Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-

211.

[56] Flynn, M. J., Kanerva, P., & Bhadkamkar, N. (1989). Sparse distributed

memory: Principles and operation.

[57] Furao, S., & Hasegawa, O. (2006). An incremental network for on-line

unsupervised classification and topology learning. Neural Networks, 19(1), 90-106.

199

[58] Ghahramani, Z. (2004). Unsupervised learning. In Advanced lectures on

machine learning (pp. 72-112). Springer Berlin Heidelberg.

[59] Govoreanu, B., Kar, G. S., Chen, Y. Y., Paraschiv, V., Kubicek, S., Fantini, A.,

... & Jossart, N. (2011, December). 10× 10nm 2 Hf/HfO x crossbar resistive RAM

with excellent performance, reliability and low-energy operation. In Electron

Devices Meeting (IEDM), 2011 IEEE International (pp. 31-6). IEEE.

[60] Guyonneau, R., VanRullen, R., & Thorpe, S. J. (2005). Neurons tune to the

earliest spikes through STDP. Neural Computation, 17(4), 859-879.

[61] Hawkins, J., Ahmad, S., & Dubinsky, D. (2010). Hierarchical temporal memory

including HTM cortical learning algorithms. Techical report, Numenta, Inc, Palto

Alto http://www. numenta.

com/htmoverview/education/HTM_CorticalLearningAlgorithms. pdf.

[62] Hebb, D. O. (2005). The organization of behavior: A neuropsychological

theory. Psychology Press.

[63] Holleman, J., Mishra, A., Diorio, C., & Otis, B. (2008, September). A micro-

power neural spike detector and feature extractor in. 13μm CMOS. InCustom

Integrated Circuits Conference, 2008. CICC 2008. IEEE (pp. 333-336). IEEE.

[64] Hopfield, J. J. (1982). Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the national academy of

sciences, 79(8), 2554-2558.

200

[65] Jordan, M. I. (1997). Serial order: A parallel distributed processing approach.

Advances in psychology, 121, 471-495.

[66] Kanerva, P. (1992). Sparse distributed memory and related models.

[67] Kim, Y., Zhang, Y., & Li, P. (2012, September). A digital neuromorphic VLSI

architecture with memristor crossbar synaptic array for machine learning. InSOC

Conference (SOCC), 2012 IEEE International (pp. 328-333). IEEE.

[68] Kosko, B. (1988). Bidirectional associative memories. Systems, Man and

Cybernetics, IEEE Transactions on, 18(1), 49-60.

[69] Levenshtein, V. I. (1966, February). Binary codes capable or ‘correcting

deletions, insertions, and reversals. In Soviet Physics-Doklady (Vol. 10, No. 8).

[70] LeCun, Y., Cortes, C., & Burges, C. J. (1998). The MNIST database of

handwritten digits.

[71] Likharev, K. K. (2011). CrossNets: Neuromorphic hybrid

CMOS/nanoelectronic networks. Science of Advanced Materials, 3(3), 322-331.

[72] Loiselle, S., Rouat, J., Pressnitzer, D., & Thorpe, S. (2005, July). Exploration of

rank order coding with spiking neural networks for speech recognition. InNeural

Networks, 2005. IJCNN'05. Proceedings. 2005 IEEE International Joint

Conference on (Vol. 4, pp. 2076-2080). IEEE.

201

[73] Palm, G., Schwenker, F., Sommer, F. T., & Strey, A. (1997). Neural associative

memories. Associative processing and processors, 307-326.

[74] Pierzchala, E., & Perkowski, M. A. (1999). U.S. Patent No. 5,959,871.

Washington, DC: U.S. Patent and Trademark Office.

[75] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected

applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

[76] Sakurai, N., Hattori, M., & Ito, H. (2002, May). SOM associative memory for

temporal sequences. In Proceedings of the 2002 international joint conference on

neural networks (pp. 950-955).

[77] KP, S. S., Turner, A., Sherly, E., & Austin, J. (2014). Sequential data mining

using correlation matrix memory. arXiv preprint arXiv:1407.2206.

[78] Sharad, M., Augustine, C., Panagopoulos, G., & Roy, K. (2012, June).

Cognitive computing with spin-based neural networks. In Proceedings of the 49th

Annual Design Automation Conference (pp. 1262-1263). ACM.

[79] Shen, F., Yu, H., Kasai, W., & Hasegawa, O. (2010, July). An associative

memory system for incremental learning and temporal sequence. In Neural

Networks (IJCNN), The 2010 International Joint Conference on (pp. 1-8). IEEE.

[80] Shen, F., Ouyang, Q., Kasai, W., & Hasegawa, O. (2013). A general associative

memory based on self-organizing incremental neural network.

Neurocomputing, 104, 57-71.

202

[81] Snider, G., Kuekes, P., Hogg, T., & Williams, R. S. (2005). Nanoelectronic

architectures. Applied Physics A, 80(6), 1183-1195.

[82] Yamada, T., Hattori, M., Morisawa, M., & Ito, H. (1999). Sequential learning

for associative memory using Kohonen feature map. In Neural Networks, 1999.

IJCNN'99. International Joint Conference on (Vol. 3, pp. 1920-1923). IEEE.

[83] Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013). Memristive devices for

computing. Nature nanotechnology, 8(1), 13-24.

[84] Zaveri, M. S., & Hammerstrom, D. (2011). Performance/price estimates for

cortex-scale hardware: a design space exploration. Neural Networks, 24(3), 291-

304.

[85] Zaveri, M. S., & Hammerstrom, D. (2010). CMOL/CMOS implementations of

bayesian polytree inference: Digital and mixed-signal architectures and

performance/price. Nanotechnology, IEEE Transactions on, 9(2), 194-211.

[86] Strukov, D. B., Stewart, D. R., Borghetti, J., Li, X., Pickett, M. D., Medeiros-

Ribeiro, G., ... & Xia, Q. (2010, May). Hybrid CMOS/memristor circuits. InISCAS (pp.

1967-1970).

[87] Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative

memory with memristive neural networks. Neural Networks,23(7), 881-886.

[88] Snider, G. S. (2007). Self-organized computation with unreliable, memristive

nanodevices. Nanotechnology, 18(36), 365202.

203

[89] Likharev, K., Mayr, A., Muckra, I., & Türel, Ö. (2003). CrossNets: High‐

Performance Neuromorphic Architectures for CMOL Circuits. Annals of the New York

Academy of Sciences, 1006(1), 146-163.

[90] Snider, G., Amerson, R., Gorchetchnikov, A., Mingolla, E., Carter, D., Abdalla, H.,

... & Patrick, S. (2011). From synapses to circuitry: Using memristive memory to

explore the electronic brain. Computer, (2), 21-28.

[91] Coleman, J. N., Chester, E. I., Softley, C. I., & Kadlec, J. (2000). Arithmetic on the

European logarithmic microprocessor. Computers, IEEE Transactions on, 49(7), 702-

715.

[92] Taylor, F. J., Gill, R., Joseph, J., & Radke, J. (1988). A 20 bit logarithmic number

system processor. Computers, IEEE Transactions on, 37(2), 190-200.

[93] Eshraghian, K., Cho, K. R., Kavehei, O., Kang, S. K., Abbott, D., & Kang, S. M.

S. (2011). Memristor MOS content addressable memory (MCAM): Hybrid architecture

for future high performance search engines. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 19(8), 1407-1417.

[94] Lehtonen, E., Poikonen, J. H., & Laiho, M. (2012, August). Applications and

limitations of memristive implication logic. In Cellular Nanoscale Networks and Their

Applications (CNNA), 2012 13th International Workshop on (pp. 1-6). IEEE.

[95] Patterson, D. A., & Hennessy, J. L. (2013). Computer organization and design: the

hardware/software interface. Newnes.

204

[96] Hu, X., Duan, S., & Wang, L. (2012, November). A novel chaotic neural network

using memristive synapse with applications in associative memory. In Abstract and

Applied Analysis (Vol. 2012). Hindawi Publishing Corporation.

[97] Chu, P. P. (2006). RTL hardware design using VHDL: coding for efficiency,

portability, and scalability. John Wiley & Sons.

[98] Barrabés Castillo, A. (2012). Design of single precision float adder (32-bit

numbers) according to IEEE 754 standard using VHDL.

[99] Zidan, M. A., Fahmy, H. A. H., Hussain, M. M., & Salama, K. N. (2013).

Memristor-based memory: The sneak paths problem and solutions. Microelectronics

Journal, 44(2), 176-183.

[100] Lehtonen, E. (2012). Memristive computing. University of Turku, Finland.

[101] Shevgoor, M., Muralimanohar, N., Balasubramonian, R., & Jeon, Y. (2015,

October). Improving memristor memory with sneak current sharing. InComputer

Design (ICCD), 2015 33rd IEEE International Conference on (pp. 549-556). IEEE.

[102] Rahman, K. C., Hammerstrom, D., Li, Y., Xiong, H., & Perkowski, M. (2016).

Methodology and Design of a Massively Parallel Memristive Stateful IMPLY Logic

based Reconfigurable Architecture. Nanotechnology, IEEE Transactions on, xx. (In

Production, accepted on 09-May-2016).

205

Appendix A - SOFTWARE – MATLAB CODES FOR ESOINN & GAM

(PATTERN RECOGNITION ALGORITHMS)

The motivation of this work is explained in detail in Chapter 1 of this

dissertation. For this research, various biologically inspired i.e. neural network based

pattern recognition algorithms were studied. In order to understand and compare the

performance, some of these promising algorithms were coded in MATLAB as a part of

this research. The pseudo codes were published in many papers

[51][52][61][73][79][80] and most of those algorithms were coded for this research.

These algorithms were then simulated and a comparative performance for the pattern

recognition application was conducted. Based on the performance comparison, GAM

(General Associative Memory) [80] was found to be the best algorithm for both spatial

and temporal pattern recognition.

 Although the original goal of this dissertation work was to develop a hardware

design methodology for this best performing algorithm for its complete system,

however, later we realized that the implementation of the complete system is

unnecessary for providing the design methodology. Therefore, a common critical

hardware component was selected to develop the design methodology that is used by

most of the neural network and machine learning based algorithms. This component is

the Euclidean Distance (ED) Processor/Calculator. ED calculator can be used in a

massively parallel and pipelined datapath systems and thus it can have applications in

pattern recognition, robot motion, big data analysis, image processing, voice

recognition, DSP, database mining and may other hardware systems where large

number of wide vectors need to be processed simultaneously.

206

 The ESOINN [79] and GAM [80] codes are presented in Appendix A.

ESOINN (Enhanced Self-Organizing Incremental Neural Network) Model:

The ESOINN algorithm is an Unsupervised Learning algorithm for Spatial

Pattern Recognition. Unsupervised learning [79] studies how a system can learn to

represent particular input patterns in a way that reflects the statistical structure of the

overall collection of input patterns. By contrast with supervised learning or

reinforcement learning, in unsupervised learning there are no explicit target outputs or

environmental evaluations associated with each input.

GAM (General Associative Memory) Model: This algorithm is an improved version of

ESOINN for temporal pattern recognition.

Handwritten digit database

This training dataset used for the algorithm was derived from the original MNIST database

available at http://yann.lecun.com/exdb/mnist/ [70]

The training data file for each class 0 to 9 was generated.

File format:

Each file has 1000 training examples. Each training example is of size 28x28 pixels. The

pixels are stored as unsigned chars (1 byte) and take values from 0 to 255. The first 28x28

bytes of the file correspond to the first training example, the next 28x28 bytes correspond

to the next example and so on.

Algorithm Organization:

 Many classes

http://yann.lecun.com/exdb/mnist/

207

 Many sub-classes under each class

 Many nodes under each sub-class

Data Structure:

Data of 10 classes - 0 – 9

In each class there are 1000 samples

So potentially there are 10*1000 = 10K nodes

Node = 28x28 = 784 elements with values between 0 to 255

Node = A vector of 784 elements with values from 0 to 255

Each image is node -> sub-class -> class

When an image is received, first its class is found and then its subclass is identified.

Class will be indexed/identified by numbers 0 - variable

Sub-class will be indexed/identified by numbers 0 - variable

Nodes will be indexed/identified by numbers 0 - variable

Image can be catalogued --> NODE[CI][SCI][NI]

CI -> Class index

SCI -> Sub-class index

NI -> Node index

Node has a local maximum density -> apex of a sub class

208

Image Database: The image database is populated with 10,000 images, of which, the node

distribution for digits 0 through 9 is shown in Figure A-1. Each digit between 0 through 9

represents a Class. Each category in Figure A-1 has 1000 images and each of these images

represents a Subclass under the Class. Figure A-2 shows MNIST handwritten digits. Each

digit has a pixel size of 28x28. The pixels are stored as unsigned chars (1 byte) and take

gray-scale values from 0 to 255. The first 28x28 bytes of the training file correspond to the

first training example, the next 28x28 bytes correspond to the next example and so on. As

such, 10,000 lines were concatenated in one training file.

Nodes Represent Image for Digit

1-1000 0

1001-2000 1

2001-3000 2

3001-4000 3

4001-5000 4

5001-6000 5

6001-7000 6

7001-8000 7

8001-9000 8

9001-10000 9

Figure A- 1: Node Representation for Various Digits.

209

Figure A- 2: MNIST Handwritten Digits used in the experiments. Upper left: Classes 2, 4, 5, 8; Right:

Subclasses of digit 4; Lower left: 3-D image of digit 4.

Training database: There are 400 images randomly picked from the image database and

used for training, of which nodes 1-100 represent image 2; nodes 101-200 represent

image 4; nodes 201-300 represent image 5 and nodes 301-400 represent image 8.

Test database: There are 200 images randomly picked from the image database and used

for testing, of which nodes 1-50 represent image 2; nodes 51-100 represent image 4;

nodes 101-150 represent image 5 and nodes 151-200 represent image 8. The number of

test images is a smaller set compared to the number of training images.

210

Distance Threshold constant:

A distance threshold constant is used to control the classification of a new node

to a new class or to an existing class. During the experimentation, the values of distance

threshold are changed several times. A small value of distance threshold may result in

a large number of classes. For example, after some trial and error, for the four broader

input classes (digits 2, 4, 5, 8) as mentioned above, a large number of classes can be

obtained at the output. With further experimentation, it is possible to obtain even fewer

classes at the output by iterating on the distance threshold constant.

211

ESOINN MODEL:

readdata.m

clear all

%open the file corresponding to digit

k=1;

l=1;

for j=[1 4 5 8]

 filename = strcat('MNIST\data',num2str(j),'.txt');

 [fid(k) msg] = fopen(filename,'r');

 filename

 %read in the first training example and store it in a 28x28 size

matrix t1

 for i=1:100

 [data28x28,N]=fread(fid(k),[28 28],'uchar');

 data(l,:) = reshape(data28x28,1,28*28);

 dataX = reshape(data28x28,1,28*28);

 l = l+1;

 %imshow(data28x28');

 %pause(0.5)

 end

 k = k+1;

end

save ('numimagedat4_1.mat','data');

distcalc.m

function z = distcalc(w,p)

%DIST Euclidean distance weight function.

% Algorithm

% The Euclidean distance D between two vectors X and Y is:

% D = sqrt(sum((x-y).^2))

[S,R] = size(w);

[R2,Q] = size(p);

if (R ~= R2), error('Inner matrix dimensions do not match.'),end

z = zeros(S,Q);

if (Q<S)

 p = p';

 copies = zeros(1,S);

 for q=1:Q

 z(:,q) = sum((w-p(q+copies,:)).^2,2);

 end

else

 w = w';

 copies = zeros(1,Q);

 for i=1:S

 z(i,:) = sum((w(:,i+copies)-p).^2,1);

 end

end

212

z = sqrt(z)/R;

findthreshold.m

% given a set of nodes, find maximum & minimum sim_threshold of each of

the nodes.

function [TMax, TMin] = findthreshold(a,DIST_THRESH)

[NRow,MCol] = size(a);

for i=1:NRow % assuming I have 100 nodes

 TMax(i) = 0;

 TMin(i) = 9999;

 for j=1:NRow

 dist = distcalc (a(i,:), a(j,:)');

 %fprintf('%f %f\n',DIST_THRESH, dist);

 if(dist < DIST_THRESH)

 if dist > TMax(i)

 TMax(i) = dist;

 end

 if dist < TMin(i)

 TMin(i) = dist;

 end

 end

 end

end

return

findwinners.m

% given a set of nodes, find winner and second winner.

function [winner, winner2, DWinner, DWinner2] = findwinners(a,x)

[NRow,MCol] = size(a);

for i=1:NRow % assuming I have 100 nodes

 dist(i) = distcalc (x, a(i,:)');

end

if dist(1) < dist(2)

 winner = 1;

 winner2 = 2;

else

 winner = 2;

 winner2= 1;

end

for i= 3:NRow

213

 if dist(i) < dist(winner)

 temp = winner;

 winner = i;

 if dist(winner2) > dist(temp);

 winner2 = temp;

 end

 else

 if dist(i) < dist(winner2)

 winner2 = i;

 end

 end

end

DWinner = dist(winner);

DWinner2 = dist(winner2);

return

find winnersX.m

% given a set of nodes, find winner and second winner.

function [winner, winner2, DWinner, DWinner2] = findwinnersX(a,x)

[NRow,MCol] = size(a);

for i=1:NRow % assuming I have 100 nodes

 dist(i) = distcalc (x, a(i,:)');

end

if dist(1) < dist(2)

 winner = 1;

 winner2 = 2;

else

 winner = 2;

 winner2= 1;

end

for i= 3:NRow

 if dist(i) < dist(winner)

 temp = winner;

 winner = i;

 if dist(winner2) > dist(temp);

 winner2 = temp;

 end

 else

 if dist(i) < dist(winner2)

 winner2 = i;

 end

 end

end

DWinner = dist(winner);

DWinner2 = dist(winner2);

% if DWinner == 0

% DWinner

214

% sparse(a)

% sparse(x)

% end

Return

find_neighbors.m

function [nghbrs] = find_neighbors(winner, W, DIST_THRESH)

% find how many nodes in the sub space

[SR SC] = size(W);

cnt = 1;

for i=1:SR

 dist = distcalc(W(winner,:), W(i,:)');

 if(dist < DIST_THRESH)

 nghbrs(cnt) = i;

 cnt = cnt + 1;

 end

end

end

return

soinn_subclass.m

clear all

load soinn_400.mat

% pick class

[RC SC] = size(class_of_node);

% initialize

for i = 1:SC

 visited(i) = 0;

 subclass(i) = 0;

end

% now do the classification

% "Connections matrix" is tracking all the connected nodes of a given

node

for i = 1:SC

 k = 1;

 for j = 1:SC

 if(i ~= j)

 if (Conn(i,j) == 1)

215

 Connections(i,k) = j; % Connection recorded

 k = k + 1;

 end

 end

 end

end

% Find density of each node

for p = 1:NClass

 scindx = 1;

 for i = 1:SC

 if ((visited(i) == 0) && (class_of_node(i) == p))

 k=1;

 clear visited_t;

 %fprintf ('class = %d node = %d\n',p,i);

 marker = 99;

 max = h(i);

 max_node = i;

 visited_t(k) = i; % Keepingtrack of visited tree

 visited(i) = 1; % Keeping track of the nodes that are

already worked on

 current_node = i;

 new_marker = marker + 1 ; % this is a way to flag the last

node of the tree

 [max, max_node, new_marker, visited, visited_t, k] =

search_node_tree(Connections, max, max_node, marker, current_node, k,

h, visited_t, visited);

 while (new_marker > marker)

 marker = new_marker;

 [max, max_node, new_marker, visited, visited_t, k] =

search_node_tree(Connections, max, max_node, marker, current_node, k,

h, visited_t, visited);

 current_node = max_node;

 end

 % done searching that tree

 % assign sub-class here

 [X, TNodesInTree] = size(visited_t);

 %disp ('visited_tree')

 visited_t;

 %disp('visited of current node')

 visited(current_node);

 for m=1:TNodesInTree

 subclass(visited_t(m)) = scindx;

 end

216

 subclass_elems{p,scindx,:} = visited_t;

 subclass_apex{p,scindx} = max_node; % Node with highest

density of a given subclass

 scindx = scindx + 1;

 end

 end

 p;

 scindxcount(p) = scindx -1;

end

%%

% For testing writing the results to a text file

%%

fileID = fopen('organize.txt','w');

for i = 1: SC

% %fprintf (fileID, 'class = %d subclass = %d node =

%d\n',class_of_node(i), subclass(i), i);

 fprintf (fileID, '%d %d %d\n',class_of_node(i), subclass(i), i);

 end

 fclose(fileID);

%%

% Following is needed for subclass merging

%%

for p = 1:NClass

 for m = 1:scindxcount(p)

 sum(p,m) = 0;

 count(p,m) = 0;

 end

end

for p=1:NClass

 for m=1:scindxcount(p)

 for i=1:SC

 if((class_of_node(i) == p) && (subclass(i) == m))

 sum(p,m) = sum(p,m) + h(i);

 count(p,m) = count(p,m) + 1;

 end

 end

 end

end

for p=1:NClass

 for m=1:scindxcount(p)

 Avrg(p,m) = sum(p,m)/count(p,m);

 end

end

[dataR dataC] = size(W);

217

for p=1:NClass

 fprintf('Total elements in class %d is %d\n',p,scindxcount(p));

 for m=1:scindxcount(p)

 clear other_nodes;

 if(scindxcount(p) > 1) % there is no point of finding winner

and second-winners to other subclasses when we have only 1 subclass

 mxnode = subclass_apex{p,m};

 for j=1:scindxcount(p)

 scwinner(p,m,j) = 0;

 scwinner2(p,m,j) = 0;

 scDWinner(p,m,j) = 0;

 scDWinner2(p,m,j) = 0;

 all_elems_of_subclass = subclass_elems{p,j,:};

 [A Sz] = size(all_elems_of_subclass);

 other_nodes = zeros(Sz,dataC);

 for i=1:Sz

 other_nodes(i,:) = W(all_elems_of_subclass(i),:);

 end

 subclass_elems{p,j,:}

 if(Sz == 1)

 SnglNode = subclass_elems{p,j,:};

 scwinner(p,m,j) = subclass_elems{p,j,:};

 scwinner2(p,m,j) = subclass_elems{p,j,:};

 scDWinner(p,m,j) = distcalc(W(SnglNode,:),

W(mxnode,:)');

 scDWinner2(p,m,j) = scDWinner(p,m,j);

 else

 MoreNodeArray = subclass_elems{p,j,:};

 [WW1,WW2,scDWinner(p,m,j), scDWinner2(p,m,j)] =

findwinnersX(other_nodes,W(mxnode,:));

 scwinner(p,m,j) = MoreNodeArray(WW1);

 scwinner2(p,m,j) = MoreNodeArray(WW2);

 end

 clear other_nodes;

 fprintf ('p=%d m=%d, winner=%d,

winner2=%d\n',p,m,scwinner(p,m,j), scwinner2(p,m,j));

 end

 end

 end

end

%%

% Check if the two subclasses need to be merged

%%

for p=1:NClass

 for m=1:scindxcount(p)

 for j=1:scindxcount(p)

 fprintf ('==>[%d %d %d] %d %d %f

%f\n',p,m,j,scwinner(p,m,j), scwinner2(p,m,j),scDWinner(p,m,j),

scDWinner2(p,m,j));

218

 end

 end

end

%%

% If nodes from two sub classes are connected -> disconnect

% This is true for even if the two subclasses belong to two different

class

%%

for i = 1:SC

 for j = 1:SC

 if((i ~= j) && (subclass(i) ~= subclass(j)))

 if (Conn(i,j) == 1)

 Conn(i,j) = 0;

 end

 end

 end

end

subclass_test.m

load soinn.mat

[SA SB] = size(class_of_node);

for ii = 1:SB

 if(class_of_node (ii) == 2)

 point_density(ii)

 end

end

updt_winner.m

function [A] = updt_winner(winner, x, W, M)

[SR SC] = size(W);

for j = 1:SC

 dW(j) = x(j) - W(winner,j);

 A(j) = W(winner,j) + dW(j)/M(winner);

end

return

updt_neighbors.m

function [W] = updt_neighbors(winner, nghbrs, x, W, M)

[SR SC] = size(W);

219

[SNR SNC] = size(nghbrs);

for k = 1: SNC

 if(nghbrs(k) ~= winner) % We do not want to update winner again

 for j = 1:SC

 dW(j) = x(j) - W(nghbrs(k),j);

 W(nghbrs(k)) = W(nghbrs(k),j) + dW(j)/(100*M(winner));

 %fprintf('neighbor node = %d\n',nghbrs(k));

 end

 end

end

return

updt_connection_matrix.m

function [Conn] = update_connection_matrix (Conn, CN, value)

[SR, SC] = size(Conn);

for i = 1:SR

 Conn(CN,SR) = value;

end

return;

updt_conn_edge_n_point_density.m

function [Conn, Age, point_density] =

update_conn_edge_n_point_density(W, Conn, Age, winner)

% Conn -- Connectivity matrix

% W -- Weight vectors of each node

% Age -- age of each connection. So all possible connection edge will

have

% an "age" value

% winner - winner node

% Size of connection matrix will determine the

% size of existing node space

%disp('Weight::')

%W

[SR, SC] = size(Conn);

Agemax = 100;

point_density = zeros(SR,1);

avg_density = zeros(SR,1);

% Search for all connectivity to winner and update their connection age

220

for i = 1: SC

 if Conn(winner, i) == 1

 Age(winner, i) = Age(winner, i) + 1;

 if Age(winner, i) > Agemax

 Conn(winner, i) = 0;

 end

 end

end

% Now calculate the point density of ALL the nodes

for i = 1: SR

 dist = 0;

 M=0; % Number of connections with the given node "i"

 for j = 1: SC

 if i ~= j

 if Conn(i, j) == 1

 % W(i,:)

 % W(j,:)

 dist = dist + distcalc(W(i,:),W(j,:)');

 M = M + 1;

 end

 end

 end

 % Calculate Average Density

 if(M > 0)

 avg_density(i) = dist/M;

 else

 avg_density(i) = 0;

 end

 if M == 0

 point_density(i) = 0;

 else

 point_density(i) = 1/ (1 + avg_density(i))^2;

 end

end

return

search_node_tree.m

function [max, max_node, new_marker, visited, visited_t, k] =

search_node_tree (Connections, max, max_node, marker, current_node, k,

h, visited_t, visited)

% Now lets find the largest connected tree because that will determine

the

% final size of the "Connections" matrix

[CR, CC] = size(Connections);

new_marker = marker;

k;

for jc = 1:CC % checking connections of the nodes connected to i

221

 j = Connections(current_node,jc);

 if (j ~= 0)

 %fprintf ('=> %d %d %d %d %d\n',current_node, j, k,

visited(current_node), visited(j));

 end

 if ((j ~= 0) && (max_node ~= j))

 if (visited(j) ~= 1)

 k = k+1;

 visited_t(k) = j;

 visited(j) = 1;

 if (h(j) > h(max_node))

 max = h(j);

 max_node = j;

 new_marker = marker + 1;

 end

 end

 %fprintf ('===> %d %d %d\n',current_node, j, k);

 visited_t;

 end

soinn.m

clear all

load numimagedat4.mat

% Select two random entries from the image database to

% initialize the SOINN system

dist = 0;

[DataSize,DataElems] = size(data);

DIST_THRESH = 3.00; %% used for determining the neighboring nodes

while(dist < 2.5)

 randindx1 = (round(rand(1)*(DataSize-1)) +1);

 randindx2 = (round(rand(1)*(DataSize-1)) +1);

 W(1,:) = data(randindx1,:);

 W(2,:) = data(randindx2,:);

 sd = 0;

% i stands for row vector and ik stands for column values in each row

 for ik=1:784

 sd = sd + (W(1,ik) - W(2,ik))^2;

 end

 dist = sqrt(sd)/784;

 TMax(1) = dist;

 TMax(2) = dist;

end

% Now the system has two nodes

N= 2;

NClass = 2;

%class(class,node#)=node#

222

class_of_node(1) = 1;

class_of_node(2) = 2;

Conn(1,1) = 1;

Conn(1,2) = 0;

Conn(2,1) = 0;

Conn(2,2) = 1;

Age(1,1) = 0;

Age(1,2) = 0;

M(1) = 1;

M(2) = 1;

% Introduce new nodes (i.e. images) to the system

for i = 1: DataSize-2

 indx = i;

 % CN --- index of the nodes as a new input is introduced

 CN = 2 + i;

 x = data(indx, :);

 Conn(CN,CN) = 1;

 Age(CN,CN) = 0;

 [winner, winner2,DWinner, DWinner2] = findwinners(W,x);

 W(CN,:)= x;

 M(CN) = 1;

 % update connection matrix for the new member with no connection to

 % begin with

 [Conn] = update_connection_matrix (Conn, CN, 0);

 % W - Weight matrix

 % Conn - Connection matrix

 % Age = Age matrix

 % winner - ID of the winner node

 if DWinner > TMax(winner) % A new class.

 NClass = NClass+1;

 class_of_node(CN) = NClass;

 [TMax, TMin] = findthreshold(W,DIST_THRESH);

 Conn(CN, winner) = 0;

 Age(CN, winner) = 0;

 Conn(CN, winner2) = 0;

 Age(CN, winner2) = 0;

 point_density(CN) = 0;

 size(Conn);

 else % step4 - member of existing class of the winner node

 class_of_node(CN) = class_of_node(winner);

 M(winner) = M(winner) + 1;

 [TMax, TMin] = findthreshold(W,DIST_THRESH);

 Conn(CN, winner) = 1; % establishing a connection between

winner and the new node

 Conn(winner, CN) = 1;

 dw1w2 = distcalc(winner, winner2);

 Age(CN, winner) = 0; % setting age to 0

 Age(winner, CN) = 0;

 if(dw1w2 < DIST_THRESH)

223

 Conn(winner, winner2) = 1;

 Conn(winner2, winner) = 1;

 Age(winner, winner2) = 0;

 Age(winner2, winner) = 0;

 end

 %%% Update weight of winner and its neighbors

 % find neighbors of winner

 [nghbrs] = find_neighbors(winner, W, DIST_THRESH);

 % update weight of winner

 [W(winner,:)] = updt_winner(winner, x, W, M);

 % update weight of neighbor

 [W] = updt_neighbors(winner, nghbrs, x, W, M);

 % disp('Weight::');

 %W

 [Conn, Age, point_density] =

update_conn_edge_n_point_density(W, Conn, Age, winner);

 % Now that I updated the point density of one node, I need to

 % update the accumulated point density of every one

 end

 size(point_density);

 point_density';

 for kk = 1: i-1

 % kk is the row and CN is the column.

 % kk tracks the history of the

 % previous learnings as a row of the

 % "point_density_history" matrix.

 % Since each row has to hold same number

 % of columns and as we learn

 % new items, number of columns grow,

 % we have to zero pad the earlier

 % rows to accommodate the size growth for the new entry

 point_density_history(kk,CN) = 0;

 end

 point_density_history(i,:) = point_density';

 [sr, sc] = size(point_density_history);

 for col = 1:sc

 NN = sum(spones(point_density_history(:,col)));

 accum_point_density(col) = sum(point_density_history(:,col));

 mean_accum_point_density(col) = accum_point_density(col)/NN;

 h(col)= mean_accum_point_density(col);

 end

end

save('soinn_400.mat')

224

GAM MODEL:

 soinn_12_train_v0: Implementation of algorithm 1 & 2 for training the memory

layer and creating the associative layer.

% In algorithm at first we put all nodes into one class

% For training you go with known classes of data as suggested in GAM

% Or you go with unsupervised learning as suggested in SOINN

%

% ALGORITHM 1: Learning of the memory layer

% ALGORITHM 2: Building Associative Layer

clear all

tic

for ClsName=1:10

 FName = strcat('traindata_p',num2str(ClsName),'.mat');

 FName

 load (FName);

 [DataSize,DataElems] = size(data);

 % introduce new node - Step 4

 Class(ClsName).Node(1).W = data(1,:);

 Class(ClsName).Node(1).Th = 0;

 Class(ClsName).Node(1).M = 1; % Frequency of winning of that node

 Class(ClsName).Node(1).N = 0; %

 Class(ClsName).NodeCount = 1;

 ClassCount = 1;

 Class(ClsName).ConnMatrix(1,1) = 1;

 Class(ClsName).ConnAge(1,1) = 1;

 for indx = 2: DataSize

 x = data(indx,:);

 DoneClassification = 0; % Reset it every time

 % you processed a new node

 XX= ['Training Class => ',num2str(ClsName),' New data =>

',num2str(indx)];

 disp(XX);

 % Find winner and second winner - step 6 - 8

 WinnerNode = 1;

 Winner2Node = 1;

 WinnerDistance = 0;

 Winner2Distance = 0;

 for Ni = 1:Class(ClsName).NodeCount

 dist = distcalcSOINON(Class(ClsName).Node(Ni).W ,x);

225

 %dd = sprintf ('Now Processing indx: %5d -> Node: %5d

dist: %f [Node Th: %f]' , indx, Ni, dist, Class(ClsName).Node(Ni).Th);

 %disp(dd);

 if (dist > Class(ClsName).Node(Ni).Th) % Step 8

 %disp('dist > thr');

 if Class(ClsName).Node(Ni).Th == 0

 %disp('=> Wd = 0');

 WinnerNode = Ni;

 Winner2Node = Ni;

 WinnerDistance = dist;

 Winner2Distance = dist;

 Class(ClsName).Node(Ni).Th = dist;

 else

 if WinnerDistance == Winner2Distance

 %disp('=> Wd == W2d');

 if WinnerDistance == 0

 Winner2Node = Ni;

 Winner2Distance = dist;

 WinnerNode = Ni;

 WinnerDistance = dist;

 elseif dist > WinnerDistance

 Winner2Node = Ni;

 Winner2Distance = dist;

 else

 WinnerNode = Ni;

 WinnerDistance = dist;

 end

 elseif dist < Winner2Distance

 %disp('=> dist < W2d');

 Winner2Node = Ni;

 Winner2Distance = dist;

 else

 %disp([' > th but

..',WinnerDistance,Winner2Distance]);

 end

 end

 else

 % Update winner and second winner - Step 6

 if dist <= Class(ClsName).Node(Ni).Th

 Winner2Distance = WinnerDistance;

 Winner2Node = WinnerNode;

 WinnerDistance = dist;

 WinnerNode = Ni;

 elseif dist < Winner2Distance

 Winner2Distance = dist;

 Winner2Node = Ni;

 end

 end

226

 %dd = sprintf ('Node: %5d -> Wd: %5.3f WN: %5d W2d: %5.3f

W2N: %5d' , Ni, WinnerDistance,WinnerNode, Winner2Distance, Winner2Node

);

 %disp(dd);

 end

 %Class(Ci).NodeCount

 %dd = sprintf('Classification Done for indx: %d, NodeCount: %d,

Wd: %f Th: %f', indx,Class(ClsName).NodeCount,WinnerDistance,

Class(ClsName).Node(WinnerNode).Th);

 %disp(dd);

 Class(ClsName).Node(WinnerNode).M =

Class(ClsName).Node(WinnerNode).M + 1; % step 6

 if WinnerDistance > Class(ClsName).Node(WinnerNode).Th % Step 8

 %disp(['introduce new node to the class', WinnerDistance,

' > ' ,Class(ClsName).Node(WinnerNode).Th]);

 NNi = Class(ClsName).NodeCount+1;

 Class(ClsName).NodeCount = Class(ClsName).NodeCount + 1;

 Class(ClsName).Node(NNi).W = x;

 Class(ClsName).Node(NNi).M = 1;

 Class(ClsName).Node(NNi).N = 0;

 % Update thresholds

 Class(ClsName).Node(NNi).Th = dist;

 Class(ClsName).Node(Ni).Th = dist;

 elseif WinnerDistance == Winner2Distance

 %disp(['introduce new node to the class', WinnerDistance '

== ' ,Winner2Distance]);

 NNi = Class(ClsName).NodeCount+1;

 Class(ClsName).NodeCount = Class(ClsName).NodeCount + 1;

 Class(ClsName).Node(NNi).W = x;

 Class(ClsName).Node(NNi).M = 1;

 Class(ClsName).Node(NNi).N = 0;

 % Update thresholds

 Class(ClsName).Node(NNi).Th = dist;

 Class(ClsName).Node(Ni).Th = dist;

 else % Step 10

 delS1 = 1/Class(ClsName).Node(WinnerNode).M;

 delS2 = 1/Class(ClsName).Node(Winner2Node).M;

 Class(ClsName).Node(WinnerNode).W =

Class(ClsName).Node(WinnerNode).W + delS1*(x-

Class(ClsName).Node(WinnerNode).W); % eq 10

 Class(ClsName).Node(Winner2Node).W =

Class(ClsName).Node(Winner2Node).W + delS2*(x-

Class(ClsName).Node(Winner2Node).W); % eq 11

 Class(ClsName).Node(WinnerNode).Th =

(Class(ClsName).Node(WinnerNode).Th + WinnerDistance)/2; %eq 12

 end

 Class(ClsName).ConnMatrix(WinnerNode,Winner2Node) = 1; %Step 13

 Class(ClsName).ConnAge(WinnerNode,Winner2Node) = 0; %Step 14

 Class(ClsName).ConnMatrix(Winner2Node,WinnerNode) = 1; %Step 13

227

 Class(ClsName).ConnAge(Winner2Node,WinnerNode) = 0; %Step 14

 %image(reshape((Class(ClsName).Node(WinnerNode).W),28,28)')

 %pause(1)

 % Step 15

 [NS_1 NS_2] = size(Class(ClsName).ConnAge(WinnerNode,:));

 for jk = 1:NS_2

 if Class(ClsName).ConnMatrix(WinnerNode,jk) == 1

 Class(ClsName).ConnAge(WinnerNode,jk) =

Class(ClsName).ConnAge(WinnerNode,jk) + 1;

 end

 end

 end

 [Ns1 Ns2] = size(Class(ClsName).Node);

 MostVisNode = 1;

 MostVisNodeM = 1;

 for Mn=1:Ns2

 if Class(ClsName).Node(Mn).M > MostVisNodeM

 MostVisNode = Mn;

 MostVisNodeM = Class(ClsName).Node(Mn).M;

 end

 end

 % Build associative layer

 AssocClass(ClsName).Wb = Class(ClsName).Node(MostVisNode);

 AssocClass(ClsName).Mb = 0;

end

save('soinn_trained_assoc.mat')

toc

 soinn_2_v0: training the associative layer with temporal sequence.

% Learning of the associative layer

% 2-4-1-3

% key-rwaponse vector

% 2-4

% 4-1

% 1-3

clear all

tic % to measure the CPU time of the algorithm

load('all_input_data_flat.mat');

% load the pre-trained node space

load('soinn_trained_assoc.mat');

228

% Start with a key/control vector

[CDCnt CDLen] = size(Control_Vec);

AssocClassConnMatrix = zeros (10,10);

RespClass = zeros (10,10);

for j = 1:CDCnt

 % Here we find which class a given Control Vector belongs to

 j

 [MinClassCnt MinNodeCnt MinDistCnt] =

memlayer_classification_v0(Control_Vec(j,:),Class)

 [MinClassRes MinNodeRes MinDistRes] =

memlayer_classification_v0(Response_Vec(j,:),Class)

 % TBD: Update the node space of the class with the information of

the new

 % node

 % Build Association - Step 19,23,26/A-2

 if AssocClassConnMatrix(MinClassCnt,MinClassRes) <= 0

 AssocClassConnMatrix(MinClassCnt,MinClassRes) = 1;

 else

 AssocClassConnMatrix(MinClassCnt,MinClassRes) =

AssocClassConnMatrix(MinClassCnt,MinClassRes) + 1;

 end

 % associative index of Node i

 AssocIndxNode(MinClassCnt,MinNodeCnt) = MinNodeRes;

 AssocIndxClass(MinClassCnt,MinNodeCnt) = MinClassRes;

 % Response class of Node i

 RespClass(MinClassCnt,MinClassRes) =

RespClass(MinClassCnt,MinClassRes) + 1;

end

toc

Supporting Codes:

 readdata: For creating the training and testing vector for creating memory layer.

% Generating train and test data from MNIST data set

clear all

%open the file corresponding to digit

k=1;

for j=[1 2 3 4 5 6 7 8 9 0]

 filename =

strcat('Users/Kamela/Documents/MatLabCodes/Codes_ESOINN/MNIST/data',num

2str(j),'.txt');

229

 [fid(k) msg] = fopen(filename,'r');

 filename

 l=1;

 %read in the first training example

 % and store it in a 28x28 size matrix t1

 for i=1:2:100

% for i=2:2:100

 [data28x28,N]=fread(fid(k),[28 28],'uchar');

 data(l,:) = reshape(data28x28,1,28*28);

 dataX = reshape(data28x28,1,28*28);

 l = l+1;

 %imshow(data28x28');

 %pause(0.5)

 end

 fname = strcat('traindata_p',num2str(k),'.mat');

% fname = strcat('testdata_p',num2str(k),'.mat');

 save (fname,'data');

 k = k+1;

end

 prep_key_response_vector_data: For creating temporal sequence for training and

inference.

% Generating train and test data

% from MNIST data set

clear all

%open the file corresponding to digit

k=1;

for j=[1 2 3 4 5 6 7 8 9 0]

 filename =

strcat('Users/Kamela/Documents/MatLabCodes/Codes_ESOINN/MNIST/data',num

2str(j),'.txt');

 [fid(k) msg] = fopen(filename,'r');

 filename

 l=1;

 %read in the first training example

 % and store it in a 28x28 size matrix t1

 for i=1:2:100

 % for i=2:2:100

 [data28x28,N]=fread(fid(k),[28 28],'uchar');

 data(k,l,:) = reshape(data28x28,1,28*28);

 dataX = reshape(data28x28,1,28*28);

 l = l+1;

 end

 k = k+1;

end

% Create control and response vectors from the training data

230

l = 1;

for j=1:50

 Control_Vec(l,:) = data(1,j,:);

 Response_Vec(l,:) = data(3,j,:);

 l = l+1;

 Control_Vec(l,:) = data(2,j,:);

 Response_Vec(l,:) = data(4,j,:);

 l = l+1;

 Control_Vec(l,:) = data(4,j,:);

 Response_Vec(l,:) = data(1,j,:);

 l = l + 1;

end

fname = strcat('all_input_data_flat','.mat');

save (fname,'data','Control_Vec','Response_Vec');

 memlayer_classification_v0: To classify a new incoming node. Used in training

temporal sequence.

function [MinClass MinNode MinDist] =

memlayer_classification_v0(x,Class)

% x = input vector

% Class = Node Space information

% Class =

%

% Node: [1xn struct]

% NodeCount: n

% ConnMatrix: [pxp double]

% ConnAge: [pxp double]

tic

[a b] = size(Class);

MinDist = 99999;

MinClass = 0;

MinNode=0;

for m=1:b

 Class(m).NodeCount;

 [Ns1 Ns2] = size(Class(m).Node);

 MostVisNode(m) = 1;

 for n=1:Ns2

 dist = distcalcSOINON(Class(m).Node(n).W, x);

 if dist < MinDist

 MinDist = dist;

 MinClass = m;

 MinNode = n;

231

 end

 end

end

toc

distcalcSOINON.m

function z = distcalcSOINON(w,p)

%DIST Euclidean distance weight function.

% Algorithm

% The Euclidean distance D between two vectors X and Y is:

% D = sqrt(sum((x-y).^2))

[S,R] = size(w);

[R2,Q] = size(p);

if (R ~= Q), error('Inner matrix dimensions of R and Q do not

match.'),end

if (S ~= R2), error('Inner matrix dimensions of S and R2 do not

match.'),end

Tot = 0;

for i = 1:R

 Tot = Tot + (w(i) - p(i))^2;

end

z = sqrt(Tot)/R;

232

Appendix B - AREA, POWER, DELAY ESTIMATION OF EUCLIDEAN

DISTANCE PIPELINE AS A CMOS FPGA IN XILINX VIVADO

Power estimation

The chip used for synthesizing the pipeline is

xc7k70tfbg484-3 (active)

area 23mm*23mm = 529mm2

product family: kintex-7

tool - Vivado 2015.2

frequency of pipeline – 134Mhz

node – 28nm

Process:

The dynamic power of pipeline and the individual blocks in the pipeline were

estimated using the Vivado power report tool after synthesis. The power was

estimated at 25 % and 100 % toggle rates. The frequency used for the clock was

134MHz.

The static power of the chip remains constant and varies from one FPGA chip to the

other. It remains constant because all the blocks in the FPGA are turned on no matter

if it is utilized or not. Static power will not change with CLB used, or not. Nor for DSP

used or not. And it will change only very slightly for BRAM used or not.

In the FPGA device, almost everything is powered regardless it is used or not.

Dynamic power varies with what is used, and how fast it is clocked, and the signal’s

toggle rate.

233

Procedure:

1) Create a new project in Vivado

2) Select the FPGA device and Device family

3) Run the synthesis, by pressing “Run synthesis” button in the flow navigator

4) Ensure that the RTL schematic is the same the synthesized schematic

5) Ensure that the post synthesis functional simulation works

6) In the Edit timing constraint options, create a clock for the design and assign it to

the clock pin

7) Set the period of the clock

8) The period of the clock is chosen in such a way that it is the maximum frequency

of the design at which there is no negative slack

9) Run the “Report power” option to generate the power report for the synthesized

design

10) Change the toggle rate in the power report options as per the requirement.

234

 CMOS FPGA Pipeline dynamic power at 25% toggle rate

Figure B- 1: Breakdown of Total Dynamic Power Consumption at 25% Toggle Rate.

Figure B- 2: Block level dynamic power consumption at 25% toggle rate.

Figure B- 3: Component level dynamic power consumption at 25% toggle rate.

Total Dynamic Power: 0.0222 (W).

235

 CMOS FPGA Pipeline dynamic power at 100% toggle rate

Figure B- 4: Breakdown of Total Dynamic Power Consumption at 100% Toggle Rate.

Figure B- 5: Block level dynamic power consumption at 100% toggle rate.

Figure B- 6: Component level dynamic power consumption at 100% toggle rate.

Total Dynamic Power: 0.0241 (W).

236

Delay Estimation

Process:

The delay values were estimated by using Timing report tool after synthesis of the

design. The frequency used for the clock is 134MHz.

Procedure:

1) Create a new project in Vivado

2) Select the FPGA device and Device family

3) Run the synthesis, by pressing “Run synthesis” button in the flow navigator

4) Ensure that the RTL schematic is the same as the synthesized schematic

5) Ensure that the post synthesis functional simulation works

6) In the Edit timing constraint options, create a clock for the design and assign it to

the clock pin

7) Set the period of the clock

8) The period of the clock is chosen in such a way that it is the maximum frequency

(134MHz) of the design at which there is no negative slack

9) Run the “Report Timing summary” option to generate the timing summary of the

design and various logic blocks used.

Figure B- 7: Delay breakdown of various components in CMOS FPGA.

237

Area estimation

The Vivado tool reports the Utilization (after synthesis) of resources for the entire

pipeline as shown below. It is done using the Vivado utilization report after synthesis-

Figure B- 8: Area Utilization Breakdown.

Components that consume the chip area are-

IO count = 484

IOBs = 285

LUT = 41000

FF = 82000

BRAM = 135

DSP = 240

Transceivers = 8

PCIE = 1

MMCMs = 6

 Assuming that all the available units occupy 100% of the chip, we can estimate the

area of the pipeline-

(Total utilization/ Total available units) * 100

From the table total utilization = 76+100+36+0.5+1 = 213.5

238

Total available units = 484+285+41000+82000+135+240+8+1+6= 124159

Let’s say that 124159 units consume 529mm2 of the chip.

Percentage area occupied by the pipeline is = (213.5/124159) * 100 = 0.171%

Approximate estimation of the Area in mm2 is = 0.171% of 529mm2 = 0.00171 * 529 =

0.904mm2.

Figure B- 9: Area Utilization by Various Components.

239

From the above table:

LUT occupy (100/213.5 *100) =46.8% of 0.904mm2 = 0.423mm2

1) Adder uses 18 LUTs = 18/100 *100 = 18% of LUT area = 0.18*0.423= 0.076mm2

2) subtractor uses 48 LUT = 48/100 *100 = 48% of LUT area = 0.48*0.423= 0.203mm2

3) comparator uses 10 LUT = 10/100 *100 = 10% of LUT area = 0.1 * 0.423=

0.0423mm2

4) LUT SQ RAM uses 0.5 BRAM.

BRAM occupy 0.5/213.5 *100 = 0.23% of total area = 0.0023 * 0.904 = 0.00207mm2

 LUT SQ RAM area = 0.00207mm2

5) MUX uses 9 LUT = 9/100 *100 = 9% of LUT area = 0.09*0.423= 0.038mm2

6) Accumulator uses 12 LUT and 37 registers

 Area occupied by LUT is 12/100*100= 12% of LUT area = 0.12*0.423= 0.05mm2

 There are 76 registers and it occupy (76/213.5 *100) =35.5% of total area =

0.355*0.904 = 0.32mm2

 Accumulator uses 37 registers = 37/76*100 = 48.6% of register area.

 Accumulator Register area= 0.486 * 0.32 = 0.15mm2

 Total area occupied by registers = 0.05mm2 + 0.15mm2= 0.2mm2

Adding area of individual blocks would approximately be equal to the area of the

pipeline ~ 0.6 mm2.

240

Appendix C - SPACE-TIME NOTATION BASED CIRCUIT DRAWING

Figure C- 1 Basic Logic Synthesis.

241

Figure C- 2: 1-bit Full Subtractor Design.

Figure C- 3: 1-bit Full Subtractor Design (Optimized for area).

242

Figure C- 4: 2-to-1 Multiplexer Design.

Figure C- 5: 5: 2-bit Greater than (GT) Comparator Design.

243

Figure C- 6: 2-bit Equal Comparator Design.

	Complete Design Methodology of a Massively Parallel and Pipelined Memristive Stateful IMPLY Logic Based Reconfigurable Architecture
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1467759609.pdf.h4D4q

