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Abstract 

 

Continued dimensional scaling of CMOS processes is approaching fundamental limits 

and therefore, alternate new devices and microarchitectures are explored to address the 

growing need of area scaling and performance gain. New nanotechnologies, such as 

memristors, emerge. Memristors can be used to perform stateful logic with nanowire 

crossbars, which allows for implementation of very large binary networks that can be easily 

reconfigured. This research involves the design of a memristor-based massively parallel 

datapath for various applications, specifically SIMD (Single Instruction Multiple Data) like 

architecture, and parallel pipelines. The dissertation develops a new model of massively 

parallel memristor-CMOS hybrid datapath architectures at a systems level, as well as a 

complete methodology to design them. One innovation of the proposed approach is that 

the datapath design is based on space-time diagrams that use stateful IMPLY gates built 

from binary memristors. This notation aids in the circuit minimization in logic design, 

calculations of delay and memristor costs, and sneak-path avoidance. Another innovation 

of the proposed methodology is a general, new, architecture model, MsFSMD (Memristive 

stateful Finite State Machine with Datapath) that has two interacting sub-systems: 1) a 

controller composed of a memristive RAM, MsRAM, to act as a pulse generator, along 

with a finite state machine realized in CMOS, a CMOS counter, CMOS multiplexers and 

CMOS decoders, 2) massively parallel, pipelined, datapath realized with a new variant of 

a CMOL-like nanowire crossbar array, MsCMOL (Memristive stateful CMOL), with 

binary stateful memristor-based IMPLY gates. Next contribution of the dissertation is the 

new type of FPGA. In contrast to the previous memristor-based FPGA (mrFPGA), the 
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proposed MsFPGA (Memristive stateful logic Field Programmable Gate Array) uses 

memristors for memory, connections programming, and combinational logic 

implementation. With a regular structure of square abutting blocks of memristive nanowire 

crossbars and their short connections, proposed architecture is highly reconfigurable. As 

an example of using the proposed new FPGA to realize biologically inspired systems, the 

detailed design of a pipelined Euclidean Distance processor was presented and its various 

applications are mentioned. Euclidean Distance calculation is widely used by many neural 

network and associative memory based algorithms. 
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1 INTRODUCTION 

 

1.1 Research Outline 

1.1.1 Neural Network or Biologically Inspired Modeling 

By definition, any system that tries to model the architectural details of the 

neocortex is a biologically inspired model or neural network [54][55]. Computers 

cannot accomplish human-like performance for many tasks such as visual pattern 

recognition, understanding spoken language, recognizing and manipulating objects by 

touch, and navigating in a complex world. After decades of research, there exist no 

significant viable algorithms to achieve human-like performance on a computer or 

special hardware accelerator.  So far, there has not been much research and development 

in hardware for the biologically inspired software models. The hardware 

implementation of large-scale neural networks is an excellent candidate application for 

the high density computation and storage possible with current and emerging 

semiconductor technologies [84]. Besides, hardware implementation is much faster 

than software, the primary motivation for this dissertation research is to engineer a 

system level design in hardware that can be used for many biologically inspired 

computation and other similar applications. 

1.1.2 Associative Memory 

An associative memory (AM) [50] can recall information from incomplete or noisy 

inputs and as such, AM has applications in pattern recognition, facial recognition, robot 
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vision, robot motion, DSP, voice recognition, and big data analysis. Research on the 

potential mapping of the AMs onto the nano-scale electronics provides useful insight into 

the development of non-von-Neumann neuromorphic architectures. A datapath for 

implementing an AM can be implemented using common hardware elements, such as, 

adder, multiplier, simple divider, sorter, comparator and counter.  

Therefore, providing a methodology for non-von-Neuman architecture with 

nanoscale circuits and devices is one of the targets of this research. 

 

1.1.3 Massively Parallel Architecture 

Neural network based algorithms generally require massive parallelism. Single 

Instruction Multiple Data (SIMD) [95], pipelining, and systolic array architecture [95] 

are typical to DSP, neural network and image processing algorithms.  

The goal of this research is to propose a design methodology for a complete system 

that can handle large number of wide vectors with a series of SIMD (Single Instruction 

Multiple Data)-like processing elements and pipelined architecture.  

 

1.1.4 Neuromorphic Circuits and Devices 

The emergence of many novel nanotechnologies has been primarily driven by the 

expected scaling limits in conventional CMOS processes. Through such efforts many 

new and interesting novel neuromorphic circuits and devices have been discovered and 

invented. Memristor is an example of such a new technology.  
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A memristor feature size of F = 50 nm (where, F is the lithographic feature size or 

half-pitch i.e. half of center-to-center nanowire distance) yields a synaptic density of 

1010 memristive synapses per square centimeter, which is comparable to that of the 

human cortex [89][90]. Therefore, memristor technology shows the prospect of scaling 

up the capacities of DSP and Image Processing architectures, and associative memories. 

Hybrid CMOS-Memristor design could be used for architectures which due to their 

complexity cannot be designed and simulated in real-time in hardware-software using 

conventional CMOS based design. 

As such, this research undertakes the implementation of a complete system level design 

using binary memristors with IMPLY logic and using a new variant of a CMOL crossbar 

nano-grid array, MsCMOL (Memristive stateful CMOL). CMOL is defined as a two-layer 

hybrid technology, in which semiconductor CMOS transistors are placed in the lower 

layer, and molecular scale two-layer two-terminal nanodevices are placed at the upper layer 

[Strukov-Likharev, 2005]. 

 

1.1.5 Design Methodology Development 

The essence of this dissertation work is to develop a new methodology to design 

a massively parallel and pipelined architecture at a system level using binary 

memristors for biologically inspired Associative Memory and other similar application 

areas as mentioned before. The research proposed here will involve the design of an 

IMPLY-memristor based massively parallel reconfigurable architecture at a system and 

logic levels. 
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1.2 Research Background and Motivation 

1.2.1 Part 1: Research Groundwork 

1.2.1.1 Defining Associative Memory 

Associative memory (AM) [53][62] is a system that stores mappings from input 

representations to output representations. When the input pattern is given, the output 

pattern can be reliably retrieved. When the input is incomplete or noisy, the AM is still 

able to return the output result corresponding to the original input based on a Best Match 

procedure where the memory selects the input vector with the closest match, assuming 

some metric, to the given input, then returns the output vector for this closest matched 

input vector.  

In Best Match associative memory, vector retrieval is done by matching the contents 

of each location to a key. This key could represent a subset or a corrupted version of 

the desired vector. The memory then returns the vector that is closest to the key. Here, 

closest is based on some metric, such as Euclidean Distance 

[19][36][37][38][39][40][41][42][43][44][45]. Likewise, the metric can be conditioned 

so that some vectors are more likely than others, leading to Bayesian-like inference.  

As in associative memories the information is retrieved through a search: given an input 

vector one wants to obtain the stored vector that has been previously associated with the 

input. In a parallel hardware implementation of a large-scale associative memory the 

memory is searched to find the minimum distance between the new vector and the stored 

memory vector using the Euclidean distance formula.  
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On the other hand, the Exact Match association, as in the traditional content 

addressable memory (CAM), returns the stored value that corresponding to the exactly 

matched input. A CAM holds a list of vectors which are distinguished by their 

addresses, when a particular vector is needed, the exact address of the vector must be 

provided. 

 

1.2.1.2 History of Associative Memory Algorithm Development 

Associative memories can be of different types. The first associative memory model 

called Die Lernmatrix was introduced by Steinbuch and Piske in 1963. Willshaw 

modeled and modified versions (1969-1999) [53], Palm developed a version (1980) 

[73], and an iterative Palm model (1997). The Brain-state-in-a-box (BSB) was 

developed by Anderson et al. (1977, 1993, 1995, 2007). Likewise there is the Hopfield 

network model (1982) [64], the Self-Organizing Map (SOM) proposed by Kohonen 

(1982, 1989) [76][82], the Dynamical Associative Memory (DAM) by Amari (1988, 

1989), Bidirectional Associative Memory (BAM) by Kosko (1988) [68], Sparse 

Distributed Memory (SDM) by Kanerva (1988) [56][65][66], Bayesian Confidence 

propagation Neural Network (BCPNN) by Lansner et al. (1989) [75], Cortronic 

networks by Hecht-Nielsen (1999), and Correlation matrix memories (CMM) [77]. 

Furber developed his own model (2007) implemented using Spiking Neural Networks 

(SNN) [51][52][60][72], and there are, Spatial and Temporal versions of Self-

Organizing Incremental Neural Networks (SOINN, ESOINN, GAM) by Shen and 
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Hasegawa (2006-2011) [57][79][80]. Finally, the Cortical Learning Algorithms (CLA) 

developed by Numenta (2010) are examples of some associative memories [61].  

 

1.2.1.3 System Input Data Encoding  

The input data into a neural network system can be received in any form, e.g. binary 

data, real-valued data etc. Input data then gets encoded as wide vectors. Different neural 

network models follow different encoding mechanism.  

After generating the vectors, the similarity between the vectors is measured 

using the Euclidean distance calculation or calculating the dot product of the two 

vectors. The similarity is measured through a distance threshold value. A distance 

threshold constant is used to control the classification of a new node to a new class or 

to an existing class. During the experimentation, the values of distance threshold are 

changed several times. A small value of distance threshold may result in a large number 

of classes. With further experimentation, it is possible to obtain even fewer classes at 

the output by iterating on the distance threshold constant.  

1.2.1.4 Evaluation of Associative Memory Algorithm 

The purpose of the research was to provide hardware directions for biologically 

inspired associative memory models. Many groups have developed biologically 

inspired software based algorithms [61][79][80] to address such problems. A few 

groups are looking into creating increasingly more sophisticated hardware based 

models of neural circuits [63][67][87][88][89][93][96], and then apply those models to 

real applications. 



7 

 

Finding a suitable associative memory algorithm was the initial task for this 

dissertation work. Through a detailed literature search, some of the most promising 

models were identified. First, the performance of the associative memory model was 

evaluated. Next, the capability of sequential or temporal pattern prediction was 

checked. Based on all the results published by other authors and my own 

experimentation with software models, one suitable model was identified for this 

research.  

As a part of this dissertation work, the Kanerva (Furber) SDM Associative memory 

model and the Palm Associative memory models were implemented in Matlab. After 

evaluation of the two models using the same datasets [69], it was not possible to prove 

the superiority of one model over the other, as both models showed some capability as 

well as some inaccuracies. The CLA Model [61] used for these experiments is a 

commercial model by Numenta, Inc. 2010. The Furber Model is a model that was coded 

in Matlab as a part of my dissertation research, and the coding required certain 

assumptions based on the original published work by Furber et al. [51][52]. In addition, 

although the CLA model has the variable order sequence prediction feature [61], the 

experimental results did not show performance superiority of the CLA model over the 

Furber Model. As such, we were unable to justify that the CLA model is performing 

any better than the Furber model and we concluded that both models have similar 

performance and none of the models are completely error free. 

These conclusions were the motivation behind an additional literature search to find 

more models that can provide better solutions to the problem. A more promising 

biologically inspired associative memory model for spatial and temporal pattern 
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recognition by Shen and Hasegawa [57][79][80] was found through further literature 

search. This led to the study of their SOINN model, the ESOINN Model and finally the 

GAM model, which is the most promising algorithms among all of the models studied. 

For the purpose of this research, the SOINN [57], and ESOINN algorithm [79] were 

coded in Matlab for spatial pattern recognition. Later, the complete GAM [80] 

algorithm was also coded [Appendix A], the algorithm does both spatial and temporal 

pattern recognition. For the spatial pattern recognition experiments, input data was 

collected from Lecun’s MNIST hand-written digit database [70] both for training and 

test purposes. Upon completion of the training, a different set of images were used to 

test the performance of the algorithm.  

 

1.2.1.5  ESOINN/ GAM 

Shen and Hasegawa proposed several models on pattern recognition, such as the 

Self-Organizing Incremental Neural Network (SOINN) [57] based on an unsupervised 

learning technique [58], and the Enhanced Self-Organizing Incremental Neural 

Network (ESOINN) [79], which is a modification of SOINN. Both of these algorithms 

have applications in spatial pattern recognition. Shen and Hasegawa also published a 

General Associative Memory (GAM) algorithm [80], which is an associative memory 

based algorithm, and a temporal version of the SOINN algorithm. The GAM model is 

constructed as a three-layer network structure. The input layer inputs key vectors, 

response vectors, and the associative relation between vectors. The memory layer stores 

input vectors incrementally to corresponding classes. The associative layer builds 
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associative relations between classes. The method can incrementally learn key vectors 

and response vectors; store and recall both static information and temporal sequence 

information; and recall information from incomplete or noise-polluted inputs. Using the 

GAM model, Shen and Hasegawa demonstrated promising results of pattern 

recognition experiments using binary data, real-value data, and temporal sequences.  

 

1.2.1.5.1 GAM Architecture 

The input layer accepts any data that is encoded as a sparse distributed vector. These 

input vectors are called key and response vectors. The input layer receives the key vectors 

and response vectors. Response vectors are the outputs of the key vectors. The memory 

layer classifies the vectors into separate classes based on the similarity of the vectors 

falling within a threshold limit. The similarity between two vectors is measured through a 

distance calculation using normalized Euclidean distance. The memory layer stores the 

input vectors incrementally to the corresponding classes as it receives the input vectors. If 

the input vector does not belong to an existing class in the memory layer, the GAM builds 

a new subnetwork in the memory layer to represent the new class. The GAM sends the 

class labels of subnetworks in the memory layer to the associative layer, and the 

associative layer builds relationships between the class of the key vector (the key class) 

and the class of the response vector (the response class) by using arrow edges. One node 

exists in the associative layer corresponding to one subnetwork in the memory layer. The 

arrow edges connecting these nodes represent the associative relationships between the 

classes. The beginning of an arrow edge indicates the key class; and the end of the arrow 

edge indicates the corresponding response class. The associative layer builds associative 



10 

 

relationships among the classes. The GAM can store and recall binary or non-binary 

information, learn key vectors and response vectors incrementally, realize many-to-many 

associations with no predefined conditions, store and recall both static and temporal 

sequence information, and recall information from incomplete or noise-polluted inputs. 

Experiments using binary data, real-value data, and temporal sequences show that GAM 

is an efficient system. 

GAM at first realizes auto-association, and then hetero-association as humans 

initially recognize or recall a class with a garbled or incomplete key vector, and then 

associate it with other classes according to the recognition of the key vector. A pattern 

recognition or pattern completion process uses auto-associative information and 

association between classes uses hetero-associative information. 

 

1.2.1.5.2 GAM Analysis 

The complete General Associative Memory (GAM) algorithm was analyzed as a 

baseline algorithm for this dissertation research. It was observed that the GAM algorithm 

has an advantage as its datapath can be designed using the SIMD concepts. Also this 

algorithm fits well for a hybrid system level design as the control logic of the algorithm 

can be designed in CMOS, while the datapath and memory operations can be designed 

with a nanotechnology.  

Since the goal of this dissertation was to develop a methodology for hardware 

design, we realized that there is no need to design the complete GAM system. We rather 

identified one most common and critical component that is widely used in GAM and many 

other similar associative memory architectures. Thus Euclidean Distance Calculator was 
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identified for this methodology development work. Also, the reason the example of the 

Euclidean Distance calculator was used for this research is that it is widely applied by many 

Neural Network and similar algorithms in software. However, there is no hardware 

implementation available or even published. Moreover, for the application areas of pattern 

recognition, facial recognition, robot vision, Digital Signal Processing, voice recognition, 

big data analysis, and database mining, all of those algorithms require to process massively 

parallel large number of wide-word input vector/data and therefore, we need a hardware 

system that can handle those large number of wide input vectors or neurons efficiently. 

Conventional CMOS technology is not enough for handling any such massively parallel 

applications, and as a result, this dissertation proposes an alternate, memristor-based 

nanotechnology using stateful IMPLY based FPGA design, MsFPGA (Memristive stateful 

logic Field Programmable Gate Array).  

This proposed MsFPGA is the new idea and development by itself, only motivated 

by the previous research on associative memories. It can be used for many other 

applications, the same way as CMOS-based FPGA architectures are being used now. 

However, to illustrate the proposed new device, we use the Euclidean Distance calculator, 

which can be applied as an important component in any of the above application areas 

listed. Besides, in this dissertation several potential applications of the proposed FPGA 

architecture and its associated design methodology are mentioned, such as pipelined and 

SIMD-like architectures, which are typical for neural network, machine learning, robot 

vision, and control related applications.  
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1.2.2 Part 2: Memristor Based Research 

1.2.2.1 Development on Memristor Research  

Memristive devices [1] are electrical resistance switches that can retain a state of 

internal resistance based on the history of applied voltage and current. These devices 

were theoretically conceived in the late 1960s and recent progress has led to fast, low-

energy, high-endurance devices that can be scaled down to less than 10 nm and stacked 

in three dimensions [40]. Leon Chua in 1971 [1] published the theoretical description 

of memristors. Strukov et al. [2] in 2008 established the link between the memristor 

theory and experimental results for the first time. Snider et al. [81] showed that 

configurable crossbars are the easiest computational structures to fabricate at the 

nanoscale level and also to assemble them into larger structures. Likharev and Strukov 

in 2005 [6] predicted the development of hybrid CMOL integrated circuits that would 

extend Moore’s Law to the few-nm range. They listed several important future 

applications for such circuits, including large-scale memories, reconfigurable digital 

circuits, and mixed-signal neuromorphic networks with high and promising 

performances in delay and power. Likharev [71] proposed a memristive nanowire 

crossbar array. Wei Lu et al. [32] in 2011 experimentally demonstrated 1 Kb hybrid 

CMOS/memristor passive crossbar memory. Govoreanu et al. [59] in 2011 

demonstrated functioning memristive devices at the 10 nm scale. Yang et al. [83] 

recently published a paper where they reviewed the recent progress in the development 

of memristive devices with the performance requirements. Pierzchala and Perkowski 

[74] provided a crossbar architecture that is flexible for a programmable electronic 

hardware device or for an analog circuit whose input and output signals are analog or 

multi-valued in nature, and primarily continuous in time. Likharev et al. [89] proposed 

a technique for the spatial pattern recognition by implementing the Hopfield network 



13 

 

model using the CMOL crossbar network. Peng Li et al. [67] have developed memristor 

based design for memory and used it in a digital system that can be applied for spatial 

pattern recognition. Intel recently published [78] their research results using cross-bar 

neural network architecture based on memristor (phase change memory/PCM) synapses 

and spin neurons. Through estimates for common data processing applications this NN 

hardware shows 20X - 300X improvement in the computation energy when compared 

to the state of the art CMOS designs.  

In a price/performance study for the Hierarchical Temporal Memory (HTM) model, 

Zaveri & Hammerstrom in 2011 [84] showed the comparative results of mixed-signal 

(MS) CMOL, digital CMOL, digital CMOS and Analog CMOS designs. At present, if 

manufacturing cost is considered as a measure of price, then obviously digital CMOS 

design would be the cheapest. But in the near future, as the CMOL technology matures, 

CMOL based designs seem to be more suitable for implementing computation and 

memory intensive applications (Zaveri & Hammerstrom, 2010) [85]. Also, at present, 

power is becoming the major measure of price, with silicon area being important, but 

in the second place of importance to power. Neuromorphic circuits may provide 

solutions to these latest design issues.  

 

1.2.2.2 Summary on the Dissertation Research 

Memristors are small devices that are able to hold a state, and therefore, this research 

proposes to take advantages of the physical characteristics of memristors for certain design, 

where data processing can be difficult or area-consuming with pure CMOS implementation 

[22][31]. Memristive computing is expected to be advantageous in large-scale, massively 

parallel architectures. As such, memristor-based design is explored for such applications 

in order to evaluate the possible performance gain on the circuit design aspects, such as, 
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the processing time, area and the power consumption compared to the conventional CMOS 

implementation.  

The concepts and methodologies of this work were formulated based on the fact that 

memristors themselves can perform logical operations [3][4]. In pure CMOS 

implementations the datapath, memory and controllers must share die area. In contrast to 

this, in this research for the memristor nanowire crossbar implementation, the memristors 

are located above the CMOS layer in a physical layout. Because the memristor array is 

proposed to be fabricated on top of CMOS [6][8], this frees up CMOS die area, and thus 

reduces the total area of the combined CMOS and memristor circuits. Thus it enables more 

datapath and memory logic [3][4][21]. The CMOL-like architecture and methodology 

proposed in this dissertation are different from “Strukov and Likharev” proposed CMOL 

(CMOL is defined as hybrid CMOS/MOLecular device at nanowire intersections) 

[6][8][32][86]. In this proposed methodology, the pulses are generated in a memristor-

CMOS hybrid signal generator and are controlling the datapath and memories built with 

memristor-Implication logic in CMOL-like nanowire crossbars. In contrast to “Strukov 

and Likharev” proposed CMOL, in this proposed MsCMOL (Memristive stateful CMOL) 

methodology, two memristors need to be addressed at a time to perform one logical 

transfer, while in their CMOL, only a single memristor is addressed at a time, which leads 

to less design flexibility. Also, the conceptual realization of the proposed memristor-

IMPLY based circuits is based on the realization of combinational logic in space and time 

in such a way that a single memristor holds its state and is reused in many virtual IMPLY 

gates.  
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A major portion of the dissertation is devoted to the realization of combinational and 

sequential, pipelined logic in the proposed MsFPGA (Memristive stateful logic Field 

Programmable Gate array). This dissertation work did not concentrate on programming of 

memristor-based memories and connections, because these are well-known topics, known 

from the literature. The main contributions of this dissertation are the concepts and 

methodologies to design regular pipelined and SIMD-like architectures with stateful 

IMPLY memristive logic. The experimental results show substantial advantages of this 

new concept as compared to the classical CMOS FPGA in terms of area, power, and speed. 

 

1.3 Thesis Organization 

Chapter 1 discusses about the research motivation. Finding a hardware methodology 

for the biologically inspired associative memory models for the application areas of big 

data analysis, pattern recognition, robot motion, neural network etc. was the original 

motivation of this work. Therefore, the focus of this research was to provide a hardware 

methodology that is suitable for massively parallel and pipelined architecture and can be 

implemented with nanoscale technology. Memristor is a promising new technology and as 

such, this dissertation proposes a methodology of designing a massively parallel 

reconfigurable architecture using the IMPLY-memristor based nanowire crossbar. 

 

Chapter 2 discusses about the fundamental theories of memristors and CMOL 

crossbar from the literature, how to design a stateful IMPLY gate with memristors, logic 

synthesis with IMPLY gate using proposed space-time based notation together with pulse 
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generators, proposed optimized design of critical logic gates, like XOR and a 1-bit Full 

adder with sneak-path protection, innovative concepts of 8-bit iterative adder design in a 

new type of  8x8 nanowire crossbar, sneak-path reduction and pipelining using the array 

of 8x8 nanowire crossbar blocks. 

 

Chapter 3 introduces the proposed reconfigurable Hybrid memristor-CMOS 

MsFPGA (Memristive stateful logic Field Programmable Gate Array) design. The 

proposed architectural concepts behind the MsFPGA design such as: MsFSMD 

(Memristive stateful Finite State Machine with Datapath), Pulse Generator, use of MsRAM 

(Memristive stateful RAM), and block placement architecture are also discussed. The 

proposed pipelined architecture of MsFPGA with SIMD-like massive parallelism is 

presented as well.  

 

Chapter 4 presents the concept of designing the Euclidean Distance Calculator as an 

innovative pipelined datatpath. For future comparison against the proposed MsFPGA, this 

chapter also presents the detailed implementation of such a datapath as a CMOS FPGA 

design using the Xilinx Vivado 2015.2 tool. The complete design was coded using the 

hardware description language VHDL, synthesized in Xilinx Vivado 2015.2 and analyzed 

for area, power, and delay.  

 

Chapter 5 discusses the circuit implementation challenges of MsFPGA. The 

proposed MsCMOL, use of data MsRAM, array of 8x8 nanowire crossbar blocks, proposed 

sneak-path protection, proposed row-to-row data transfer, proposed 8-bit iterative adder 
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design were discussed. MsFPGA was compared with other published memristive FPGAs, 

for example, mrFPGA. Proposed MsFPGA is a reconfigurable system that can be designed 

with pipelined datapaths and massive parallelism. This parallelism can be designed by 

driving many such pipelines with one controller simultaneously, using the SIMD (Single 

Instruction Multiple Data)-like concept. Relation of this dissertation work to the recently 

published relevant paper on NVM is also discussed. 

 

Chapter 6 introduces an innovative novel sneak-path protected IMPLY-memristive-

nanowire crossbar circuit design methodology. For this purpose, an example of 8-bit Full 

iterative adder design was presented in detail. Also possible power consumption issues are 

discussed. Current literature was studied and compared. 

 

Chapter 7 discusses about the performance study of proposed MsFPGA in detail. 

PSPICE simulations were performed on nanowire crossbars for the nanowire RC delay 

measurement. Besides, memristor-nanowire power and area estimation were presented in 

this chapter. Other benefits of memristors e.g., functioning as a pipeline was discussed.   

 

Chapter 8 presents the results and comparative analysis of CMOS FPGA versus the 

proposed memristive FPGA, MsFPGA for the Euclidean Distance pipeline. 

 

Chapter 9 is a short chapter on the conclusions and contributions of this dissertation 

research.  
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2 MEMRISTOR 

 

The existence of the memristor, the fourth fundamental passive circuit element, was 

theoretically predicted in 1971 by Leon O. Chua [1], but not experimentally validated until 

2008 by HP Labs [2][33]. A memristor is essentially a nonvolatile nanoscale 

programmable resistor, memory resistor — whose resistance, or memristance, is changed 

by applying a voltage across the device. Chua [1] defined memristor as shown in Figure 1 

(symbol shown in Figure 2) as a previously missing relation between the flux, φ and the 

charge, q and therefore yielding the defining relation, M(𝒒) =
𝒅𝝋

𝒅𝒒
.  

 

 

Figure 1: Fundamental Passive Elements [1]. 

 

Figure 2: Symbol of Memristor [3]. 

 



19 

 

As shown in Figure 3, the I-V curves of memristors form pinched hysteresis loops, and 

the forms of these loops depend on the amplitudes and frequencies of the input 

voltage signals.  

 

Figure 3: Memristor I-V curve shows hysteresis loop [3]. 

 

This phenomenon defines a state variable, which determines the memristor’s 

instantaneous resistance also known as the memristance.  

 

2.1 Stateful IMPLY memristor 

Memristors can be binary, meaning that they can have two distinct states of 

resistivity. Kuekes [3][4] in 2008 showed that the material implication logic operation can 

be efficiently implemented using memristors. Binary memristors can be used to perform 

stateful logic [3][4][5][7][11][12][94] which allows for direct implementation of logical 

computations within memristive crossbars (nano crossbars with memristors at 

intersections), assuming that one first develops some methodologies for synthesis of digital 

systems with combinational and sequential datapaths built from working memristors that 

are pulsed from the memristor-CMOS hybrid control block.  
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Figure 4: A. Implication (IMPLY) Logic Gate B. Truth Table [3]. 

 

The circuit in Figure 4-A shows the realization of the implication gate with two 

memristors, which enables stateful memristor logic [3]. The truth table of this circuit is 

presented in Figure 4-B. Here the memristors are assumed to be bistable linear devices 

having the on-resistance RON and the off-resistance ROFF, where the resistance ratio is 

assumed to satisfy ROFF/RON ≫ 1. The series resistance RG is chosen as RON < RG < ROFF.  

 

Figure 5: Implication (IMPLY) Logic: Realization with Two Memristors [3]. 

 

In Figure 5, Memristor M1 is driven with a conditional voltage VCOND and memristor M2 

is driven with a voltage VSET, where the next state of M2 depends on the IMPLY stateful 
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logic operation (|VSET| > |VCOND|). Memristor M2 is called the “working memristor” (WM) 

and memristor M1 is called the “input memristor” (IM). The flow of current through the 

M2 memristor changes its memristance and consequently changes the memorized internal 

state. This is how the input memristor M1 state affects the output state M2+ of memristor 

M2. Memristors can be reset to state ‘0’ by applying a VCLEAR voltage. Memristors hold a 

logical state as a resistance value and not as a voltage value. Resistance values ROFF and 

RON represent logical state ‘0’ and logical state ‘1’, respectively.  

 

2.2 Logic Synthesis with memristors 

A hybrid reconfigurable system level design with memristors and CMOS is proposed 

in this dissertation. A space-time based circuit notation is used in the methodology 

proposed in this section for the memristor based logic design based on the implication 

logic gate. The implication logic gate is used for this work because it is a universal logic 

component that can implement any function and also memristor implementations are very 

efficient using this logic gate. The notion of the memristor based stateful logic gate is that 

the output of the gate represents the next state of one of the inputs to the gate. Since a 

memristor can hold a state, either as a ‘0’ or as a ‘1’, the output of a memristive logic gate 

will hold the next state of the input as a logic high or as a logic low.  

In a space-time based notation, space represents the design area and time represents 

the sequential changes of states related to delay or speed of the design [102]. The symbolic 

drawing of the space-time based notation to represent a memristive implication gate is 

shown in Figure 6.  
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Figure 6: Symbol for space-time notation [102]. 

 

In this drawing, each horizontal line represents a memristive nanowire. For the proposed 

methodology, two vertical nanowires need to be selected simultaneously to realize a single 

logical operation (IMPLY operation). In the symbolic drawing, horizontal lines represent 

physical memristors as they change value in time and vertical lines represent moments 

(time) of transfer between two memristors which realizes the IMPLY operation. This way, 

the timing pulses can be illustrated to move data sequentially from the left to the right as 

shown in Figure 7.  

 

Figure 7: Implementation of NAND/AND Gate using space-time notation. “Reset” operation on memristors 

using the VCLEAR voltage is indicated by a ‘0’. At time t0, signal VCLEAR is presented to working memristor 

M3 which initialized its value to ‘0’. At t1, signal VCOND is presented to WM M1 and signal VSET to WM M3, 

which causes the state of M3 to be M1´+0=M1´. At t2, the state of M3 becomes M1´+M2´=(M1*M2)´ 

(DeMorgan’s Law). At t3, the WM M2 is scheduled to be reused by clearing it. Finally, at t4, the negated 

value of M3 is added to M2. Thus M2+ = 0+((M1M2)´)´= (M1M2). M2+ is the next state of M2. [102] 
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The red dotted lines on both sides of each gate denote one timing pulse. The two 

memristors on which IMPLY operation (M1 → M3) is executed are connected with a 

vertical line and receive pulses of VCOND and VSET voltages simultaneously. The source 

memristor M1 receives VCOND and the target memristor M3 receives VSET voltages. Also 

VCLEAR voltage is applied to reset any memristor to the logic ‘0’ state (e.g. state ‘0’ is 

shown in time-step t0, t3 in Figure 7). It is obvious that IMPLY and ‘0’ operators make a 

universal logic system, because a NAND gate can be created from two IMPLY gates: B → 

(A → 0) = (A´ + 0) + B´ = (AB)´. It is well-known that NAND is a universal gate. The 

design process is illustrated in Figure 7 with a NAND/AND gate implementation [102]. 

A single CMOS clock drives the proposed entire hybrid system. The CMOS CLK 

drives the counter, which generates the sequences for the Memristive stateful RAM 

(MsRAM) and consequently the CLK or micro-pulse for each implication logical operation 

in the memristive crossbar datapath. In this methodology, ‘t’ represents the clock cycle and 

the time steps are denoted as t0, t1, t2, t3, …, etc. starting with the reset operation at time-

step t0 and IMPLY logical operation starting at time-step t1 as shown in Figure 7. 

Using the design methodology introduced in this dissertation, any combinational or 

sequential circuit can be designed and optimized for area and delay. The design of an XOR 

gate, a useful gate in many applications, and in particular in the applications of the MsRAM 

in the proposed pulse generator, is presented next. Proposed XOR design uses only two 

working memristors and seven pulses which makes this design competitive in larger logic 

circuits. Figure 8 is an important figure, because problems that appear in logic synthesis of 

larger memristive circuits in stateful logic can be illustrated through this design [102]. 
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Figure 8: Space-time notation of an Implication based circuit for a 2-Input XOR/XNOR Gate [102]. 

 

Design of a two-input, A & B, XOR gate is presented in Figure 8 and Table 2-1, 

which shows that it requires only 7 micro-pulses and 4 memristors to realize this gate. 

Therefore, the minimum design requirements for an n-input XOR gate is set as (7*(n-1) + 

1) pulses and n working memristors (W1, W2, ..  Wn) if all memristors are reused to realize 

IMPLY gates [102].  

In Figure 8, in moment t4 we simultaneously execute transfer from W2 to A (A´ = 

W2´ + A) and we clear memristor B. Thus three control signals are created simultaneously. 

VCLEAR for memristor B, VSET for memristor A and VCOND for memristor W2. This is 

possible because in this proposed architecture every column can be addressed individually, 

in contrast to the classical memristor crossbar. 
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Table 2-1: XOR GATE IMPLEMENTATION IN SPACE-TIME NOTATION [102]. 

Timing 

pulse 

Implication Gate 

Structure 

Logical 

Operation 

Comments 

t0 PI: A, B 

WM: W1, W2 

 W1 reset to state0 

W2 reset to state0 

t1 A  0 A Inverter 

t2 B  0 B Inverter 

t3 B  A A + B = (A.B) NAND Gate 

t4 B  A 

Memristor B 

A + B OR Gate 

B reset to state0 

t5 (AB)  0 

Memristor W2 

A.B AND Gate 

W2 reset to state0 

t6 (A + B)  AB AB + AB XNOR Gate 

t7 (AB + AB)  0 AB + AB XOR Gate 

 

A 1-bit full adder is fundamental to the proposed Euclidean Distance (ED) pipeline 

design. An innovative adder is designed from stateful memristive IMPLY gates with five 

working memristors and only 18 micro-pulses to generate the sum and carry signals as 

presented in Figure 9. This adder is designed with a much improved sneak-path current 

protection compared to other published adder design [5]. An 8-bit adder circuit was 

implemented in an 8x8 crossbar nanowire, in which we reset the three primary memristors 

and four working memristors of each adder bit (located in each row of the 8x8 crossbar) 

after completing the logical operations. Therefore, this design provides much improved 

sneak-path current protection. The only memristor that holds the “sum” bit cannot be 

cleared, but this memristor is unable to contribute to sneak-path current as there is no direct 

sink path to Gnd. Similarly, an 8-bit adder requires 165 micro-pulses for the digital design 

illustrated in the symbolic space-time notation [102]. While Figure 9 presents a single bit 

adder in symbolic notation, Figure 10 presents the corresponding 8-bit adder where every 
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row realizes a single bit adder [102]. This notation from Figure 10 is not symbolic and 

extends the physical circuit from Figure 5.  

 

 

Figure 9: Space-time notation for 1-bit Full Adder circuit with sneak-path protection [102]. 

 

The presented adder circuit is designed carefully to avoid sneak-path currents. 

When carry and sum for a given bit are calculated, the working memristors that are no 

longer needed are cleared by setting them to logic state ‘0’. The remaining one memristor 

located in column 8 of each row of the 8×8 nanowire crossbar from Figure 10 holds the 

sum bit of each bit adder.  
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Figure 10: An example architecture of four 8×8 nanowire crossbar blocks. Block to block horizontal and 

vertical connections are made through switches in nanowire layer. Each horizontal and vertical nanowire is 

connected to Ground through switch and load resistance RG to provide protection from sneak-path current. 

CMOS decoders are placed beneath the nanowire crossbar layer in a physical layout [102]. 

 

In general, using the proposed space-time based circuit design method, the designer 

should utilize the minimum number of memristors in the crossbar to optimize the die area. 

One of the techniques for saving area is to reuse the memristor by resetting the previously 

used working memristors to logic ‘0’ state using the VCLEAR voltage, as illustrated earlier. 

During this reset step, this same memristor cannot participate in a logical operation, but it 

can be reused for a logical operation at any later time-step. Another technique to optimize 

the timing of the design is to reset multiple nanowires to the logic ‘0’ state in a single 
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micro-pulse. Also, during this reset operation, simultaneously, a logical operation between 

two other memristors can take place. This way the total delay of the design can be reduced. 

In conventional CMOS circuit design there is a distinction between the 

combinational logic stage and the sequential logic stage as sequential components are 

driven by a CLK signal in a synchronized design, whereas, in IMPLY-memristor based 

design, no such distinct separation exists. For example, in Figure 11, three DFFs are 

serially connected and the output of the third FF is connected to the input of the first FF 

through an AND gate. This circuit is realized in Figure 12 with IMPLY-memristor based 

space-time design technique and shows that there is no distinct separation to draw the 

complete circuit presented in Figure 11. This is an obvious advantage for the proposed 

IMPLY-memristor based logic design using the space-time technique. 

 

 

Figure 11: Combinational and Sequential components in CMOS Implementation. 
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Figure 12: No Separation between Combinatorial and Sequential Logic in IMPLY-memristor Design. 

2.3 CMOL Crossbar 

One of the main driving forces of memristor technology is the prospect of crossbar 

architectures with very large numbers of memristive devices [8][32][86]. It is a 2D array, 

which consists of two perpendicular nanowire layers. The nanowires act as the top and 

bottom electrodes of memristors, and they can be patterned for example by e-beam 

lithography complemented with reactive ion etching, and lift-off processing for the upper 

nanowire layer [8][32][86]. A typical nanowire half pitch of the nanowires in the reported 

physical memristive crossbars, so far, is in the range of 30 nm−100 nm [20]. The 

memristive material is laid between the two nanowire layers, and as a result, a memristor 

is formed at each cross-point of two nanowires [8][32][86]. 

The “Strukov and Likharev” proposed CMOL memristor interfacing [8][94] is 

described below.  
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Figure 13: “Strukov and Likharev” CMOL Memristor Architecture [8][94]. 

In Figure 13 the CMOS cells are represented as square tiles, with circular interfaces to the 

nanowire crossbar. The nanowire crossbar is represented as a mesh of line segments. Each 

CMOS cell is addressed by four microwires that are connected to the address decoders 

represented at the perimeters of the circuit. The four-line addressing is used in order to 

independently control the horizontal and the vertical nanowires via the switches shown in 

the Figure 13. Although not shown here, there exists a memristor at each crossing of the 

nanowires. The CMOS pins are represented with red and blue circles. The red pins are 

connected to the lower layer or the crossbar, while the blue pins are connected to the upper 

layer.  

The addressing of a memristive crossbar is established in a CMOL-type architecture 

by two sets of row and column decoders and pass transistors. The four-wire addressing 

allows the selection any pair of a horizontal and a vertical nanowire. This selection is then 

used for reading from and writing to the memristive crossbar.  
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The CMOL structure shown in Figure 14 was originally proposed by Likharev and 

Strukov [8], in which, only one memristor can be selected at a time using two nanowires 

in one CMOS cell. The nanowires are represented by yellow color and the memristor is 

located at the intersection of the two nanowires as shown by green dot.  

 

 

 

Figure 14: CMOL-memristor architecture by Likharev and Strukov [8]. 

A variation of the CMOL architecture called the Field Programmable Nanowire 

Interconnect (FPNI) was later proposed by Snider and Williams [45]. In FPNI, logic is 

performed by the CMOS layer, and only signal routing is realized by the memristive 

crossbar. Unlike Likharev and Strukov’s CMOL-memristor architecture, more logical 

primitives than just inverters are needed at the CMOS layer. However, the Snider and 

Williams approach is also more like a classical FPGA-like circuit implementation and 

therefore is fundamentally different from the approach proposed in this dissertation. As 
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conventional CMOL only performs reconfiguration with memristors, while the logic 

circuits are designed with memristors in the proposed FPGA in this dissertation. 

As mentioned, proposed CMOL-memristor architecture, MsCMOL is completely 

different from the conventional CMOL-memristor architecture [102]. A limitation of the 

conventional CMOL-memristor architecture is in the addressing scheme of the design 

where only a single horizontal and a single vertical nanowire can be selected at a time. This 

restriction to a single-junction selection may not be a problem in pure memory 

architectures as well as FPGA-like architectures based on configuring the space-realized 

memristor-based circuits, but in all stateful memristor logic applications it would be 

advantageous to be able to select multiple nanowires at once. This is because of the 

sequential nature of implementing logic operations in the realization of the stateful IMPLY 

gate. But even in this circuit two pulses are needed most of the time, one addressing the 

receiving memristor and another addressing the sending memristor. Thus the memory-like 

or FPGA-like (FPNI) addressing schemes and respective CMOLs are not applicable to this 

proposed design, as explained in a more detail later.  
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3 FPGA DESIGN USING MEMRISTORS 

 

A Hybrid memristor-CMOS circuit can be used to implement reconfigurable 

Boolean logic circuits such as Field Programmable Gate Arrays (FPGAs) 

[6][8][9][10][13][30][86]. Since memristors act as non-volatile memories, memristive 

FPGA can retain its state when unpowered. Also, more than 90% of the area in classical 

FPGAs is consumed by the SRAM-based configuration bits [6][8][86], a memristive 

implementation can yield much higher logic gate density than is available in a pure CMOS 

implementation. Flash EEPROM based FPGAs are smaller and much less powerful and 

are not considered here. 

 

3.1 Concepts Behind MsFPGA Architecture 

Using memristor technology, we have the possibility of designing a massively parallel, 

programmable architecture with a very large number of memristive devices in a crossbar 

configuration [102]. Therefore, this dissertation work proposes a system-level architecture 

that significantly benefits from the small size characteristics of the memristive devices and 

nanowires. Moreover, the proposed design is capable of handling very wide word input 

vector lengths, and processing a large number of vectors (thanks to pipelined and SIMD-

like architectures [95]). Multiple pipelines can be driven simultaneously by a single 

controller in the proposed MsFPGA (Memristive stateful logic Field Programmable Gate 

Array) [102]. The proposed MsFPGA allows the implementation of massively parallel 

computation by leveraging a massively parallel architecture with a very large number of 
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memristive devices in a crossbar as discussed in section 3.2. 

The proposed hybrid memristor-CMOS reconfigurable system level architecture, 

MsFPGA (Memristive stateful logic Field Programmable Gate Array) is presented in 

Figure 15 [102].  

 

3.1.1 Memristive stateful Finite State Machine with Datapath (MsFSMD) 

A well-known model of a Finite State Machine with Datapath (FSMD) is a digital 

system composed of a finite-state machine controller, and a datapath. This model is used 

in centrally controlled pipelined and SIMD-like architectures. However, the FSMD 

concept cannot be applied to the proposed hybrid design with memristors. Therefore, a 

novel non-von Neumann architectural concept is proposed for the proposed MsFPGA 

design. 
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Figure 15: Proposed Memristive stateful logic Field Programmable Gate Array (MsFPGA). The details of 

the “Hybrid Pulse Generator” and the “CMOS Merge Block” are shown in Figure 17. The red polygon 

represents one pipeline of the proposed memristive ED architecture and the implementation is illustrated in 

Figure 41 in Chapter 7. Color code: Green- memristor nanowire crossbar, Yellow- CMOS, Blue- Hybrid 

circuitry [102]. 

The proposed methodology provides a novel general new architecture model, 

Memristive stateful Finite State Machine with Datapath (MsFSMD) as shown in Figure 

16 [102]. Like conventional FSMD, this proposed system is also a digital system that 

includes a finite-state machine, and a datapath, but all logic is implemented with 

memristors, which changes timing and design methods used. Besides, the MsFSMD model 

has an additional control block called the pulse generator [102]. The pulse generator can 

be defined as the brain of the proposed MsFPGA. The pulse generation block contains the 

Memristive stateful RAM (MsRAM) and a CMOS counter [102]. The usage of the 
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MsRAM is another innovation of this dissertation work. This MsRAM contains all the 

configuration information required to realize the virtual logic circuit in the memristive 

nanowire crossbar datapath [102]. Unlike traditional von Neumann architecture, the 

proposed MsFSMD datapath can contain both datapath and memory without any distinct 

separation between them.  

 

 

Figure 16: A. Conventional FSMD (Finite State Machine with Datapath) B. MsFSMD (Memristive stateful 

Finite State Machine with Datapath). The Pulse Generator block contains a CMOS counter and a 

Memristive stateful MsRAM. Color code: Yellow-CMOS, Blue-Hybrid CMOS-memristor, Green-Memristor 

nanowire crossbar. 

In a conventional FSMD, the FSM controls the register-transfer operations in the 

datapath. The datapath performs data processing operations and sends the flags (‘yes’ or 

‘no’) back to the FSM as shown in Figure 16. The proposed MsFSMD has two innovative 

properties: 

1.  Like FSMD, this proposed system is also a digital system that includes a finite-state 

machine, and Datapath, but all logic is implemented with memristors, which changes 

timing and design methods used. 
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2. The MsFSMD model has an additional control block called the pulse generator as 

shown in Figure 17 and presented in section 3.1.2. 

3.1.2 Pulse Generator 

The pulse generator can be defined as the brain of the proposed MsFPGA. The pulse 

generation block consists of a CMOS counter and a Memristive stateful RAM (MsRAM). 

This MsRAM contains all the configuration information required to realize the virtual logic 

circuit in the datapath. For instance, the datapath can have various arithmetic components 

such as an adder, subtractor, square, square-root, comparator, divider, and multiplier. 

Although the information in MsRAM is stored as memristances, the output values of 

MsRAM are available as voltages. The Voltage Regulator (VR) creates voltages VSET, 

VCOND and VCLEAR. These voltages are fed to the merge block in which many multiplexers 

controlled from the Pulse Generation block select the controlling voltages for each column 

in the datapath blocks. The use of voltages in the realization of stateful IMPLY operations 

was already explained in Figure 7.  
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Figure 17: Proposed controller for the CMOS-memristor hybrid design (Pulse Generator with Merge Block). 

Color code: Green-memristor nanowire crossbar, Yellow- CMOS, Blue- hybrid circuitry [102]. 

 

Figure 17 explains how the proposed architecture switches between row nanowires 

and column nanowires [102]. While the control voltages in Figure 5 are only presented to 

the column nanowires, and the row nanowires are connected to Gnd, the proposed 

architecture from Figure 17 allows switching the roles of rows and columns. This is done 
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using the CMOS multiplexers. Therefore, it is possible that the horizontal nanowires are 

given control voltages while the vertical nanowires are connected to Gnd.  

The proposed architecture then includes:  

1. voltage multiplexers,  

2. row select multiplexers,  

3. column select multiplexers and  

4. 4-to-16 one-hot decoder for switch to ground selection.  

All these components are realized in CMOS. Buffers can be inserted to prevent signal 

attenuation in case of long lines. 

 

3.1.3 Memristive stateful RAM (MsRAM) 

An MsRAM is made out of memristors. The control data in MsRAM, located in the 

Pulse Generator are described with the encoding table to generate the pulses for the 

datapath as shown in Figure 18 [102]. This table illustrates controls for a portion of 8-bit 

Full-adder circuit as per Figure 9 in Chapter 2. It can be compared to the well-known tables 

that illustrate contents of ROMs in classical designs. Rows correspond to addresses given 

in time by a controlling CMOS counter and to the time pulses given to the datapath by the 

pulse generator. The right-most five columns are kept for row/column selection and 

providing sneak-path protection. A single bit row_sel signal is used to distinguish whether 

the voltages are applied to a row or to a column. When the row_sel signal is ‘1’ the voltages 

are applied (through columns) to a row, and when the row_sel signal is ‘0’ the voltages are 

applied (through rows) to a column. Therefore, when the row_sel signal is ‘1’, voltages are 
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applied to the row (through columns) from the pre-programmed MsRAM, and the column 

select will be selecting high impedance state (Hi-Z). Also, a 4-bit CMOS one-hot decoder 

(Figure 17 shows columns sw1, sw2, sw3, sw4) is used to select one wire (1 row or 1 

column) from a total of sixteen wires (8 rows and 8 columns) to connect to the ground at a 

time. This feature ensures that current can sink through only one wire to Gnd, and thus 

providing protection from sneak-path current. 

The MsRAM controls the two select lines of a mux (control signals on the output of 

pulse generator). Data inputs to this mux are the voltages: for controls 00 – HiZ (High 

Impedance State), 10 - VCOND, 01 - VSET and 11 - VCLEAR that are selected to control the 

vertical/horizontal nanowires to perform the stateful logical operations in the memristor 

crossbar datapath. Since the proposed design provided protection from sneak-path current 

by adding few additional cycles in Figure 9, the MsRAM got extended with the decoder 

control bits as presented in Figure 18 [102]. 
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Figure 18: Partial Encoding Table in MsRAM for an 8-bit iterative Full Adder realized in the Datapath 

(combination of control bits for various controlling voltages are: 00-HiZ, 01-VSET, 10-VCOND, 11-

VCLEAR) [102]. 
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3.1.4 Placement of Blocks and Connection Programming 

The proposed Memristive stateful logic Field Programmable Gate Array (MsFPGA) 

architecture is completely reconfigurable and can be used for many applications, including 

those that require massive parallelism [102]. Massive parallelism in the example presented 

in this dissertation is based on pipelining and several pipelines operating in parallel. 

However, it should be obvious to the reader that advantages of proposed regular design are 

applicable also to Single Instruction Multiple Data (SIMD)-like architecture, systolic, and 

CMOL-like datapath-memory architectures which are typical to DSP, neural network and 

image processing. The proposed MsFPGA is particularly well-suited to regular designs 

with square or rectangular blocks executed in parallel or pipelined. Since the blocks (8x8 

nanowire crossbar blocks) are placed in abutment, the horizontal connections are short and 

routing is simplified. This makes the architecture highly reconfigurable and also 

specifically suited for regular SIMD-like and pipelined architectures [102].  

Since the example used in this dissertation does not have buses, and also the cells in 

the datapath are placed in abutment, connections are really simple. However, the proposed 

methodology is to send the output signals from a datapath block, located in the memristor-

nanowire crossbar to the pulse generator block, in presence of buses, long connections or 

feedback connections in the datapath. The pulse generator is configured to send the control 

signals to the next datapath block located in the memristor-nanowire crossbar and also, the 

pulse-generator makes necessary communications with the CMOS FSM as shown in 

Figure 15. 
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3.2 Implementation of Proposed MsFPGA  

3.2.1 Hybrid Architecture 

As mentioned before, this dissertation proposes a memristive system-level 

architecture, MsFPGA, which is capable of handling large number of wide-word input 

vectors using the concepts of SIMD (Single Instruction Multiple Data) and pipelining 

[102]. The datapath, and any memory including the MsRAM (Memristive stateful RAM) 

of the pulse generation block of the proposed MsFPGA are designed in nanowire crossbar 

memristor-based technology, while the control logic- FSM controller, counter in pulse 

generator, multiplexers and decoder in the Merge block are designed in CMOS technology. 

Buffers can be inserted to prevent signal attenuation in case of long lines in the system.  

 

3.2.2 Pipelined Architecture 

In this dissertation, the general idea for MsFPGA design is illustrated with a specific 

example of a pipeline architecture for the Euclidean Distance (ED) calculation.  

The straight-line distance between two points can be specified by using the 

Pythagorean formula. Euclidean Distance is the square root of the sum of the squares of 

the differences between corresponding values as shown in (1). 

D(X, Y) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ∙∙∙  +(𝑥𝑛 − 𝑦𝑛)2 .  (1) 

 

ED calculation is widely used in supervised and unsupervised learning, pattern recognition, 

and neural network algorithms for calculating distances between two neighboring neurons 

or vectors [19]. In addition to the above mentioned applications, ED is also used 
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[36][37][38][39][40][41][42][43][44][45] in Euclidean matrices, hierarchical clustering, 

phylogenetic analysis, molecular conformation in bioinformatics, dimensionality reduction 

in machine learning and statistics, natural language text processing, image processing, 

medical imaging, data mining, and big data analysis. Distance transformations use ED, and 

they are used in computer vision applications such as shape matching, pedestrian detection, 

human tracking, action recognition, robot motion planning or computation of 

morphological operations [39]. ED is also used in medial axis of a digital shape applied in 

surface reconstruction, shape simplification, volume representation and smoothing 

Voronoi diagrams applied in graphics and robot path planning. Several authors have 

discussed the growing importance of the ED calculation, which is incorporated in many 

important algorithms, and emphasized the need for fast ED calculation using a hardware 

realization. 

The proposed ED pipeline hardware can be used as a powerful accelerator in any 

system, for both spatial and temporal pattern recognition [19]. For the proposed MsFPGA, 

two separate memories were used, one to hold any previously stored vectors and the other 

to store new incoming vectors as inputs to the ED pipeline [102]. The length of each vector 

can be ‘n’ (where n is any integer), while each element of the vector is kept 8 bits wide in 

order to address image gray-scale values of 0-255. These two memories are also MsRAMs, 

but in contrast to the MsRAM used in the pulse generation block, they do not create output 

voltages, but the transfer from them to the datapath is done the same way as between 

memristor-based combinational blocks in the datapath which will be explained in Chapter 

5 and Chapter 6 of this dissertation [102]. For simplification, circuits for the transfer of 

initial data to these memories are not considered in this dissertation.   
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3.2.3 Massively Parallel Architecture 

As we see from the presented examples there is a very good match between the small 

size of memristors, the sequential realization of stateful IMPLY logic operations and a 

pipelined or Single Instruction, Multiple data (SIMD)-like design. Because of the 

sequential nature of combinational logic realization, the speed-up can be obtained only by 

implementing some form of parallelism. This is because: 

1. Small size of memristor allows massively parallel architectures with low power 

dissipation. 

2. Stateful design in which memristor stores a state, which allows “logic in memory” 

data-flow architectures, in particular pipelines, systolic and SIMD-like processors. 

3. No flip-flops are necessary, which allows deep pipelines at small cost. Only pulses 

from the pulse generator are used. 

4. The pulse generator is a relatively large circuit in several applications, but it can be 

shared among parallel blocks or pipelines.  

 

Pipeline registers are not necessary because every memristor stores its value. This 

changes the proportion of cost going to combinational and sequential components and calls 

for massive pipelines, if possible. Due to the very small size of memristor crossbars, several 

pipelines can operate in parallel. The sizes of the blocks that are executed in parallel can 

be selected by the user, depending on the application. Similarly, non-pipelined SIMD-like 

designs can be realized making use of the small size of memristors combined with 

sequential realization of logic and relatively regular routing between blocks. Therefore, in 



46 

 

this dissertation a massively parallel architecture is proposed for system level design by 

both pipelining in the datapath and the ability to have many identical pipelines that are 

operating on separate data elements, where a single controller can drive many datapath 

blocks operating in parallel. It was assumed that the controlling machine is a CMOS-

realized FSM that sends control signals to the hybrid Pulse Generator, which, in turn, 

controls many memristor-based pipelined datapaths. This parallelism along with the 

natural pipelining is expected to speed-up the overall design and to compensate for any 

delays due to the sequential nature of operations inside the 8×8 nanowire crossbars in the 

datapath that correspond to cells in standard FPGAs. 

In this proposed methodology, a single controller can control multiple pipelines. The 

memristive controller is located in the proposed pulse generator (PG) and drives data in 

multiple pipelines with the same control. The proposed MsCMOL based datapath has 

memristors as well as CMOS. It is important to mention that when going to parallel 

pipelines all using a single controller, the controller increases only slightly with the 

big increase of the number of datatpaths. However, the ratio of memristors to CMOS 

in the datapath remains the same.  

 

3.3 Benefits brought by proposed architecture methodologies 

Proposed MsFSMD model is a good approximation to SIMD-like architectures in 

which there is one central controller (in case of this dissertation, FSM and Pulse Generator) 

and massively parallel regular array of relatively simple processors that communicate by 

abutting. All processors execute the same simple algorithm based on control signals from 
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the controller. These architectures include Cellular Automata, Image Processors based on 

Convolution, Morphological Processors, Sorters, Neural Networks and other. 

Proposed pipeline architecture that is a good match with sequential nature of stateful 

memristor logic and with a regular style of designing circuits (also proposed in this 

dissertation work) based on abutting of hybrid blocks that are both pipelined and work in 

parallel. This dissertation compares this proposed design style with a classical CMOS 

FPGA. Therefore, all of the results from tables presented in this dissertation and related 

texts can be used to evaluate the proposed methodology relative to FPGA technology. 
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4 CMOS FPGA IMPLEMENTATION 

 

To illustrate the concepts of the proposed methodology for this dissertation work, 

a Euclidean Distance (ED) processor was designed. The straight-line distance between two 

points in a multi-dimensional space can be specified by using the Pythagorean formula. 

ED is the square root of the sum of the squares of the differences between corresponding 

values as shown in (1). 

 

D(X, Y) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ∙∙∙  +(𝑥𝑛 − 𝑦𝑛)2 .  (1) 

 

The reason that the example of the Euclidean Distance calculator was chosen for 

this work is that it is widely used by many Neural Network and similar algorithms in 

software, but there is no hardware implementation available. Moreover, for the application 

areas of pattern recognition, facial recognition, robot vision, Digital Signal Processing, 

voice recognition, and big database analysis, the algorithms typically require lots of data 

and the processing of that data can be done by massively parallel data processing pipelines 

[102]. 

The example of Euclidean Distance calculator was used for both CMOS FPGA 

design as presented in this chapter, as well as the proposed MsFPGA design as 

described throughout in this dissertation. Using the two technologies, an exactly 

same pipeline is designed with the arithmetic blocks − subtractor, square operator, 

adder, comparator and multiplexers. Since CMOS is the state-of-the-art technology, 
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the ED pipeline was additionally designed using CMOS, so that a comparative 

performance analysis against the proposed memristive-CMOS hybrid design is 

possible [102].  

This dissertation work proposes a pipelined implementation of the Euclidean 

Distance calculation using the IMPLY-memristor nanowire crossbar and, for comparison 

with the proposed memristive variant, the architecture is also implemented as a 

conventional CMOS FPGA using hardware description language VHDL [97][98]. The 

design was simulated for functionality evaluation and synthesized for performance 

measurement using Xilinx Vivado 2015.2 tool version [102].  

The design contains a datapath with a controller for calculating the Euclidean 

distance and also calculates the overall minimum distance between all vector 

combinations.  

A complete pipeline is implemented that has several arithmetic blocks as per the 

Euclidean distance formula.  

 

Dnew = SQRT[(x[0] – w[0])2 + (x[1] – w[1])2 + (x[2] – w[2])2 + (x[3] –  w[3])2]. (2)   

Dmin = Min (Dnew , Dmin). (3) 

 

The motivation of this design is a pattern recognition machine which is based on a 

neural network based supervised/unsupervised learning algorithm. This sub-system can be 

used in a design, such as, SOINN, ESOINN and GAM of Shen and Hasegawa. In the 

implementation discussed here, the length of each vector is kept 4-bit integer number for 
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simplicity, while each element of the vector is kept 8-bit wide. Each element of the vector 

represents a pixel of an image with gray scale value between 0-255 (i.e. 2^8). For a pattern 

recognition example, the length of the feature vector is calculated from the size of the 

image. For an image size of 28x28 pixels, the length of the vector is 784 integer numbers. 

For each element of this 784 is again 8-bit wide. The proposed pipeline design is based on 

an 8-bit width vector, however, instead of a large vector length like 784 integer numbers, 

the vector length was kept at 4-bit integer number only. Since, vector length does not play 

a significant role in this pipeline design, the length was rather kept at a variable parameter 

in the VHDL codes. The 8-bit vector element width dictates the size of each arithmetic 

block in the pipeline. Therefore, vector element width is important in this case. A longer 

vector length only indicates longer operation time of the pipeline to complete the ED 

computations between two vectors [102].  

The arithmetic blocks include, subtractor, Look-up Tables (LUT), adder, 

comparator, SISO (shift-in shift-out) registers, accumulation register and general registers. 

 

Figure 19: Complete synthesized Proposed Euclidean Distance pipeline. 
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The complete synthesized CMOS FPGA pipeline is shown in Figure 19. Each 

component of the pipeline is described separately with timing (functional) simulation and 

the results of the synthesis in the following section. 

 

4.1 Detailed Implementation of Euclidean Distance Processor 

Pipeline Design Blocks: 

1. Serial in Serial out (SISO) registers:   

  The register used for this pipeline is an 8 bit SISO meaning that it shifts one element 

i.e. 8 bit at each clock cycle. There is an initial delay for about one clock cycle for the data 

to appear at the output because the SISO can take in a vector element of width eight. The 

vector length and width numbers are changeable as it is designed for variable "n-bit". A D-

flip flop is used to build the SISO structurally, whose code is shown below along with the 

simulation result for sample data in Figure 20. 

 

Code:  

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

entity SISO is 

generic(N : integer := 8); 

    Port ( si : in  STD_LOGIC_vector(N-1 downto 0); 

           clk : in  STD_LOGIC; 

           so : out  STD_LOGIC_vector(N-1 downto 0)); 

end SISO; 
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architecture structural of SISO is 

component dff is 

 generic(N : integer := 8); 

    Port ( d : in  STD_LOGIC_VECTOR(N-1 downto 0); 

           clk : in  STD_LOGIC; 

           q : inout  STD_LOGIC_VECTOR(N-1 downto 0); 

           qbar : inout  STD_LOGIC_VECTOR(N-1 downto 0)); 

end component; 

type array_type is array (0 to N) of std_logic_vector(0 to N-1);  

signal x,y : array_type; 

begin 

x(0)<=si; 

l1: for i in 0 to N-1 generate 

   d1:dff port map( d => x(i), clk => clk, q => x(i+1), qbar => y(i)); 

 end generate; 

so <= x(N); 

end structural; 

Simulation result: 

The test bench will be discussed later in this chapter.  
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Figure 20: Simulation result SISO register. 

2. Register N-bit:  

  This is a simple register (n-bit) as shown in Figure 21, which on getting the data at 

the input will give the data at the output in the next clock cycle. The register uses D-flip 

flops. The code is presented below and the simulation result for sample data is shown in 

Figure 22. 

 
 

Figure 21: Structural view of register after synthesis. 

 

Code:  

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 
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entity n_bit_register is 

generic(N : integer := N); 

    Port ( load : in  STD_LOGIC; 

           a : in  STD_LOGIC_VECTOR (N-1 downto 0); 

           clk : in  STD_LOGIC; 

           q : inout  STD_LOGIC_VECTOR (N-1 downto 0); 

           qbar : inout  STD_LOGIC_VECTOR (N-1 downto 0)); 

end n_bit_register; 

architecture structural of n_bit_register is 

component one_bit_reg is 

    Port ( load : in  STD_LOGIC; 

           a : in  STD_LOGIC; 

           clk : in  STD_LOGIC; 

           q : inout  STD_LOGIC; 

           qbar : inout  STD_LOGIC); 

end component; 

begin 

l: for i in 0 to N-1 generate 

 r: one_bit_reg port map ( load => load, a => a(i), clk => clk, q => q(i), qbar => qbar(i)); 

end generate; 

end structural; 
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Simulation result: 

 

 
 

Figure 22: Simulation Result of n-bit Register. 

3. Square Function:  

  The square LUT is a ROM that takes in an 8-bit binary number and gives a 16-bit 

square of the binary input as output. Xilinx Block RAMs (BRAM) were used to implement 

the square operation. 

Originally, I planned to design the multiplier, divider, square and square-root 

operations using the Logarithmic Number Systems (LNS) based design [91][92]. In a 

Logarithmic Number System, a number x is represented as the fixed-point value i = log2 x, 

with a special arrangement to indicate zero x and an additional bit to show its sign. For i = 

log2 x and j = log2 y and assuming without loss of generality that, in dyadic operations, j ≤ 

i, LNS arithmetic involves the following computations: 

log2 (x + y) = i + log2 (1 + 2j-i); 

log2 (x - y) = i - log2 (1 - 2j-i); 

log2 (x * y) = i + j; 

log2 (x ÷ y) = i - j; 

log2 (√x) = i ÷ 2; 

log2 (x
2) = i * 2. 
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Thus using the LNS, multiplication, division, square-root and square operations can be 

simplified to addition, subtraction, and shift operations.  

However, later through experiments I found that the logarithmic implementation of 

the square operation was difficult to synthesize, and therefore, Xilinx provided block 

RAMs were used for the “square operator” design in this dissertation.  

Since the input is 8-bit wide, the LUT in this design has 256 entries. The 

synthesized design and simulation waveform are presented in Figure 23 and 25 

respectively. The data stored in the LUT were generated by a Python script. A small code 

snippet of the Square Lookup Table is shown in Figure 24. 

 

 
 

Figure 23: View of LUT after Synthesizing in Xilinx. 

Code (snippet): 

--input 8-bit binary number to output 16-bit Square number in binary 

library ieee; 

use ieee.std_logic_1164.all; 

entity Log2Table is 

  port( 
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        Binary_in: in std_logic_vector(7 downto 0);                

        square_out : out std_logic_vector(15 downto 0)); 

end Log2Table; 

 

architecture arch of Log2Table is 

begin 

  process(Binary_in) 

  begin 

    case Binary_in is 

  when "00000000" => square_out<= "0000000000000000"; 

  when "00000001" => square_out<= "0000000000000001"; 

  when "00000010" => square_out<= "0000000000000100"; 

  when "00000011" => square_out<= "0000000000001001"; 

  when "00000100" => square_out<= "0000000000010000"; 

  when "00000101" => square_out<= "0000000000011001"; 

  when "00000110" => square_out<= "0000000000100100"; 

  when "00000111" => square_out<= "0000000000110001"; 

  when "00001000" => square_out<= "0000000001000000"; 

  when "00001001" => square_out<= "0000000001010001"; 
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Sample Output from script: 

 

Figure 24: Actual output from Python script. 

Simulation result: 

 
 

Figure 25: Simulation Result of Square Table. 

 

4. Full adder (N-bit):  

  The code, synthesized circuit (Figure 26) and simulation result (Figure 27) using 

sample data for the N-bit full adder circuit are presented below. The adder is implemented 

as a ripple carry adder by full adders for N-bit parallel addition. 
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Figure 26: Structural View of adder after Synthesis. 

 

Code: 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity n_bit_adder is 

 generic(N : integer := N); 

    Port ( a : in  STD_LOGIC_VECTOR (N downto 1); 

           b : in  STD_LOGIC_VECTOR (N downto 1); 

           c_in : in  STD_LOGIC; 

           c_out : out  STD_LOGIC; 

           sum : out  STD_LOGIC_VECTOR (N downto 1)); 

end n_bit_adder; 

 

architecture structural of n_bit_adder is 

 signal carry : std_logic_vector(0 to N); 

 component full_adder 

        port (x    : in std_logic; 

              y    : in std_logic; 

              c_in  : in std_logic; 

              sum  : out std_logic; 

              c_out : out std_logic); 
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    end component; 

 

begin 

 carry(0) <= c_in; 

 c_out <= carry(N); 

 gen:for I in 1 to N generate 

   n_bit_adder: full_adder port map(  x => a(I),y => b(I),c_in => carry(I-

1),sum => sum(I),c_out => carry(I)); 

 end generate; 

end structural; 

 

Simulation Result: 

 

 
 

Figure 27: Simulation result of adder. 

5. Accumulator (N-bit):  

  The N-bit accumulator uses a N-bit register to accumulate the values coming from 

the adder until it receives a control signal from the controller and passes it to the next block 

as output, meanwhile the accumulator feeds the adder. The code, synthesized circuit 

(Figure 28), and simulation result (Figure 29) of the accumulator are shown below. The 

accumulated value changes until the accumulator receives the control signal from the 

controller as shown in the timing simulation. 
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Figure 28: View of accumulator after synthesis. 

Code: 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use ieee.numeric_std.all; 

entity accumulator_16bit is 

generic (N: integer := 16); 

    Port (A: in std_logic_vector(N-1 downto 0); 

          ctrl_sig: in std_logic; 

          clk: in std_logic; 

          feedback: out std_logic_vector(N-1 downto 0); 

    comp_out: out std_logic_vector(N-1 downto 0)); 

end accumulator_16bit; 
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architecture Structural of accumulator_16bit is 

 

component register16bit is 

 generic(N : integer := 16); 

    Port ( load : in  STD_LOGIC; 

           a : in  STD_LOGIC_VECTOR (N-1 downto 0); 

           clk : in  STD_LOGIC; 

           q : inout  STD_LOGIC_VECTOR (N-1 downto 0); 

           qbar : inout  STD_LOGIC_VECTOR (N-1 downto 0)); 

end component; 

 

signal reg16_out, reg16_qb: STD_LOGIC_VECTOR (N-1 downto 0); 

 

begin 

reg16: register16bit port map( load => '0', a => A, clk =>clk, q => reg16_out, qbar => 

reg16_qb); 

comp_out <= reg16_out when ctrl_sig = '1'; 

feedback <= "0000000000000000" when (reg16_out = "UUUUUUUUUUUUUUUU" and 

ctrl_sig = '0') or ctrl_sig = '1' else reg16_out; 

end structural; 
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Simulation Result: 

 

 

 
 

Figure 29: Accumulator simulation result. 

 

6. Subtractor:  

  The subtractor used in this pipeline is different from the normal subtractor, it would 

always produce a positive result even if the minuend is smaller than the subtrahend, eg. 2-

4 = 2. Thus the subtractor here computes the absolute difference between the two values. 

So, the design used in this pipeline does not output in the form of 2's complement, rather 

it gives the number itself, which is more suitable for the calculation purpose. The subtractor 

uses a comparator, and two subtractor blocks. The inputs to the unit is fed to the 

comparator, which compares the two values and depending on whether a is greater or not, 

the value of the borrow remains the same or is given a value '1'. If a is greater than b, the 

output of the first subtractor is obtained as output, else the output from the second 

subtractor is obtained as output. The top level of the subtractor is shown in Figure 30, along 

with the simulation results in Figure 31. 
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Figure 30: Subtractor design for this pipeline. 

Code: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity n_bit_subtractor is 

 generic(N : integer := 8); 

    Port ( a : in  STD_LOGIC_VECTOR (N downto 1); 

           b : in  STD_LOGIC_VECTOR (N downto 1); 

           bor_in : in  STD_LOGIC; 

           diff : out  STD_LOGIC_VECTOR (N downto 1); 

           bor_out : out  STD_LOGIC); 
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end n_bit_subtractor; 

architecture structural of n_bit_subtractor is 

signal bor1,bor2 : std_logic_vector(0 to N); 

signal a_eq_b,a_gt_b,a_ls_b : std_logic; 

signal diff1, diff2,x_in : STD_LOGIC_VECTOR (N downto 1); 

component full_sub is 

    Port ( x : in  STD_LOGIC; 

           y : in  STD_LOGIC; 

           bor_in : in  STD_LOGIC; 

           diff : out  STD_LOGIC; 

           bor_out : out  STD_LOGIC); 

end component; 

component comp8 is  

 port( a,b: in STD_LOGIC_vector(7 downto 0); 

   a_gt_b: out STD_LOGIC; 

   a_eq_b: out STD_LOGIC; 

   a_ls_b: out STD_LOGIC); 

end component; 

begin 

compare: comp8 port map( a => a, b => b, a_eq_b => a_eq_b, a_ls_b => a_ls_b, a_gt_b 

=> a_gt_b); 

bor1(0) <= bor_in when a_gt_b = '1' else '1'; 

bor2(0) <= bor_in; 
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x_in <= "11111111"; 

bor_out <= bor1(N) when a_gt_b = '1' else bor2(N); 

l: for i in 1 to N generate 

  n_bit_subtractor: full_sub port map(  x => a(I),y => b(I),bor_in => bor1(I-1),diff 

=> diff1(I),bor_out => bor1(I)); 

 end generate; 

l1: for j in 1 to N generate 

  n_bit_subtractor1: full_sub port map(  x => x_in(j) ,y => diff1(j),bor_in => bor2(j-

1),diff => diff2(j),bor_out => bor2(j)); 

 end generate; 

diff <= diff1 when a_gt_b = '1' else diff2; 

end structural; 

 

Simulation Result: 

 

 
 

Figure 31: Simulation result of Subtractor block. 

7. Controller:  

The controller is an important component of the pipeline. It generates control 

signals for the comparator block. If comparator enable signal is high, only then the 

accumulator sends accumulated values to the comparator block. The block diagram from 

Figure 32 gives the overall view of the controller. 
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Block Diagram: 

 

Figure 32: Controller Block Diagram. 

Controller has the following inputs and outputs. 

Inputs: accumulator_in (16-bit input signal from the accumulator), clock and reset 

Output: comparator enable signal: comp_enable (Gocomp) 

Function of the Controller: 

 Controller is designed in Finite State Machine (FSM) fashion. FSM takes input 

from the Accumulator feedback. It has a counter inside it. 

 It also has two more inputs, clock and reset.  

 Based on logic inside the FSM it performs the required operations.  

 After performing operations, it sends output signal comp_enable to the comparator 

block.  
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FSM: 

Figure 33 shows the Finite State Machine (FSM) for the controller. This is a simple 

FSM block that takes input from the accumulator register and generates comparator enable 

signal.  It has a ten-bit counter inside it. This block checks output feedback from the 

accumulator register and when the counter value is 784 (vector length); it generates counter 

enable signal to perform the comparison operation. 

 

 

Figure 33: Finite State Machine design for the controller. 

States of FSM: 

INIT: This is the initialization state. It takes reset as an input. In this state comp_enable 

and counter are assigned to zero. When this state gets input accumulator_in, then next state 

will be incr_counter. 
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Incr_counter: This state takes input signal as accumulator_in. In this state counter keeps 

changing with the accumulator_in signal. When counter value is equal to 784, it points to 

the next step i.e the comparator_enable state.  

comparator_enable: As the accumulator has gotten all adder input, this state generates 

comp_enable signal. It sends comp_enable signal to the comparator block to perform the 

comparison operation. 

Code: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use ieee.std_logic_unsigned.all;  

 

entity FSM is 

  Port ( reset : in STD_LOGIC; 

   accumulator_in : in  STD_LOGIC_VECTOR (15 downto 0); 

   clock : in  STD_LOGIC; 

         comp_enable : out  STD_LOGIC 

         ); 

end FSM; 

architecture Structural of FSM is 

type state_type is (Init, Incr_counter, comparator_enable); 

signal counter_new: STD_LOGIC_VECTOR(9 downto 0); 

signal current_s,next_s: state_type; 
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shared variable flag : bit; 

begin 

 PROCESS (reset, clock) 

 begin 

  if(reset = '0') then 

   current_s <= Init; 

   

  elsif(clock'event) then 

   current_s <= next_s; 

  end if; 

 end process ; 

 process (clock) 

 begin 

  if(current_s = Init) then 

   counter_new <= "0000000000"; 

   

  elsif(clock= '1' and clock'event and current_s = Incr_counter and flag ='0') then 

   counter_new <= counter_new + 1; 

   flag := '1'; 

  end if; 

 end process; 

 process (accumulator_in, current_s) 

 begin 
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 case current_s is 

  when Init => 

   if(accumulator_in /= "UUUUUUUUUUUUUUUU") then 

    next_s <= Incr_counter; 

   else 

    next_s <= Init ; 

   end if;  

 when Incr_counter =>     

   if(counter_new = 8) then 

    next_s <= comparator_enable; 

   else 

    next_s <= Incr_counter; 

    flag := '0'; 

    

   end if; 

 when comparator_enable =>    

   next_s <= Init; 

 end case; 

 end process; 

  

 process (clock, current_s) 

 begin 

 if(clock'event) then 
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  case current_s is 

   when Init =>  

    comp_enable <= '0'; 

         

   when Incr_counter => 

    comp_enable <= '0'; 

     

   when comparator_enable => 

    comp_enable <= '1'; 

  end case; 

 end if; 

 end process; 

end Structural; 

 

Simulation Result: 

 

Simulation result for FSM is shown in Figure 34 when the counter is 2 bits. 

 

 

 

Figure 34: Simulation result of the Controller block. 
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Test Bench:  

Testing was performed to validate the design. The test bench was generated in 

Xilinx Vivado. Several input values were given for the top level inputs: pipe_in_1 and 

pipe_in_2 and the behavior of the pipeline was tested after each clock cycle. 

Simulation output after each stage is shown below: 

Following inputs are given to pipeline: 

  pipe_in_1 <= "01000110"; 

  pipe_in_2 <= "00101000"; 

  wait for 10ns; 

  pipe_in_1 <= "00100011"; 

  pipe_in_2 <= "00011001"; 

  wait for 10ns; 

  pipe_in_1 <= "00001001"; 

  pipe_in_2 <= "00001000"; 

  wait for 10ns; 

  pipe_in_1 <= "00001010"; 

  pipe_in_2 <= "00000000"; 

  wait for 10ns; 

  pipe_in_1 <= "00000101"; 

  pipe_in_2 <= "00000100"; 

  wait for 10ns;   

  pipe_in_1 <= "00010100"; 

  pipe_in_2 <= "00001010"; 
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  wait for 10ns; 

  pipe_in_1 <= "00000111"; 

  pipe_in_2 <= "00000011"; 

  wait for 10ns; 

  pipe_in_1 <= "01100100"; 

  pipe_in_2 <= "00110010"; 

  wait for 10ns; 

  pipe_in_1 <= "01010000"; 

  pipe_in_2 <= "00111100"; 

  wait for 10ns; 

  pipe_in_1 <= "01100011"; 

  pipe_in_2 <= "00001001";  

 

Simulation result after every clock cycle: 

1. SISO and Subtraction:  

 

Figure 35: Testing of SISO and Subtraction unit. 

As shown in Figure 35, after giving input at the first clock cycle (t=1), the output 

of SISO is obtained as siso1_out and siso2_out. At the same clock cycle, the subtraction 

operation takes place. Here we have taken pipe_in_1 and pipe_in_2 as 01000110 and 
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00101000 respectively. We get same values at siso1_out and siso2_out. The absolute 

difference of these two numbers is 00011110. Similarly, every next cycle the subtractor 

fetches new input values and performs shift and subtraction operation.  

 

3. Square operation: 

 

Figure 36: Testing of the Square LUT. 

Figure 36 shows after performing the subtraction, at the next clock cycle t2, 8-bit 

register holds output value of the subtraction operation. Here value at reg8_out is 

00011110. At the next clock cycle t3, square unit performs the squaring operation. Output 

of the sqr_lut_out is 0000001110000100. At t4, the 16-bit register, top_reg16_out gets the 

value of squaring unit i.e 0000001110000100. 

 

4. Addition and accumulation: 

 

Figure 37: Testing of the addition and accumulation. 
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  As presented in Figure 37, at t4, a 16-bit register value gets loaded into 

the adder. At t5, the adder adds the squared value of the next input with the older value. 

The adder performs addition operation untill the ctrl-out signal is low. Depending upon the 

counter value, controller asserts the ctrl_out signal. In this case, the counter value is 8 so it 

is high after getting the 8th input. 

 

4.  Comparator operation:  

 When the ctrl_out signal is asserted ‘high’, the accumulator sends the 

accumulated value to the comparator. In the next clock cycle, the comparator compares the 

value stored earlier in the 18-bit Dmin register and the newly calculated distance value 

obtained from the accumulator unit. If the newly calculated value is smaller than the stored 

value in the 18-bit Dmin register, Dmin register value gets updated.  Newly updated value of 

the 18-bit Dmin register will be output of the pipeline (pipe_out).   

                   Test bench code used for testing: 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 -- Uncomment the following library declaration if using 

-- arithmetic functions with Signed or Unsigned values 

--USE ieee.numeric_std.ALL; 

  

ENTITY test_bench_pipeline IS 

END test_bench_pipeline; 

 ARCHITECTURE behavior OF test_bench_pipeline IS  
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 -- Component Declaration for the Unit Under Test (UUT) 

    COMPONENT min_dist_pipeline 

    PORT( 

         pipe_in_1 : IN  std_logic_vector(7 downto 0); 

         pipe_in_2 : IN  std_logic_vector(7 downto 0); 

         clk : IN  std_logic; 

         reset : IN  std_logic; 

         pipe_out : OUT  std_logic_vector(17 downto 0) 

        ); 

    END COMPONENT; 

  --Inputs 

   signal pipe_in_1 : std_logic_vector(7 downto 0) := (others => '0'); 

   signal pipe_in_2 : std_logic_vector(7 downto 0) := (others => '0'); 

   signal clk : std_logic := '0'; 

   signal reset : std_logic := '0'; 

 --Outputs 

   signal pipe_out : std_logic_vector(17 downto 0); 

-- Clock period definitions 

   constant clk_period : time := 10 ns; 

BEGIN 

-- Instantiate the Unit Under Test (UUT) 

   uut: min_dist_pipeline PORT MAP ( 

          pipe_in_1 => pipe_in_1, 
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          pipe_in_2 => pipe_in_2, 

          clk => clk, 

          reset => reset, 

          pipe_out => pipe_out 

        ); 

-- Clock process definitions 

   clk_process : process 

   begin 

  clk <= '0'; 

  wait for clk_period/2; 

  clk <= '1'; 

  wait for clk_period/2; 

   end process; 

 -- Stimulus process 

   stim_proc: process 

   begin   

      -- hold reset state for 100 ns. 

-- wait for 100 ns; 

  reset <= '0'; 

  wait for 10ns; 

  reset <= '1'; 

  wait for 10ns; 

  pipe_in_1 <= "01000110"; 
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  pipe_in_2 <= "00101000"; 

  wait for 10ns; 

  pipe_in_1 <= "00100011"; 

  pipe_in_2 <= "00011001"; 

  wait for 10ns; 

  pipe_in_1 <= "00001001"; 

  pipe_in_2 <= "00001000"; 

  wait for 10ns; 

  pipe_in_1 <= "00001010"; 

  pipe_in_2 <= "00000000"; 

  wait for 10ns; 

  pipe_in_1 <= "00000101"; 

  pipe_in_2 <= "00000100"; 

  wait for 10ns; 

  pipe_in_1 <= "00010100"; 

  pipe_in_2 <= "00001010"; 

  wait for 10ns; 

  pipe_in_1 <= "00000111"; 

  pipe_in_2 <= "00000011"; 

  wait for 10ns; 

  pipe_in_1 <= "01100100"; 

  pipe_in_2 <= "00110010"; 

  wait for 10ns; 
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  pipe_in_1 <= "01010000"; 

  pipe_in_2 <= "00111100"; 

  wait for 10ns; 

  pipe_in_1 <= "01100011"; 

  pipe_in_2 <= "00001001"; 

-- insert stimulus here  

    wait; 

   end process; 

END; 

Output of each arithmetic block of the proposed synthesized Euclidean Distance 

(ED) pipeline: the outputs of the subtractor, square, adder, accumulator, and comparator 

were tested separately. Also the complete ED pipeline was tested with different input 

values. The value of the 18-bit minimum distance register (Dmin register) gets updated if 

and only if the newly calculated value (Dnew) is smaller than the previously stored value. 

One of the original tasks was to calculate the minimum distance between a number of 

different vectors, which was also achieved correctly. 

 

4.2 Simplified Euclidean Distance (ED) Pipeline 

This dissertation proposed a hardware implementation of the ED calculation as a 

pipeline design [102]. Because, for this application, the goal was only to make comparisons 

between distances rather than calculating them, the implementation of the square-root 

function in the Euclidean Distance calculation was ignored. The pipelined datapath 
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consists of several arithmetic units, such as, the 8-bit SISO (shift-in shift-out) register, the 

8-bit subtractor, 16-bit RAM, 18-bit adder, 18-bit accumulator register, 18-bit comparator, 

18-bit multiplexer and general registers as shown in Figure 38. Xilinx provided block 

RAMs were used for the “square operation”. 

Since the element width of each vector is 8-bit, therefore, the SISO and the subtractor 

are both 8-bit wide. However, the square of the 8-bit subtracted number is 16-bit and thus 

the RAM size is 16-bit. The adder was designed as 18-bit in order to accommodate the 

carry bit after adding the two 16-bit numbers. Thus the following blocks in the pipeline, 

accumulator, comparator and multiplexer are all 18-bit wide.  

 

Figure 38: Pipeline Implementation of the Euclidean Distance (ED) Calculator (without square-root 

function) using standard CMOS FPGA [102]. 
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The 16-bit RAM in the design is implemented as a Look-Up-Table (LUT) to function 

as a square operator. Two 8-bit SISO registers shift the X vector and the W vector to an 8-

bit subtractor, element by element, which then sends the subtracted value of the two 

elements to the 16-bit RAM for performing the square operation. The squared output is fed 

to the adder block, and the added value is stored into the accumulator register. The 

accumulator register continues to accumulate the last added value and also feeds the result 

back to the adder until all of the vector elements have been accumulated. A finite state 

machine (FSM) generates the control signal to reset the accumulator register when the 

addition completes. The accumulated result is the newly calculated ‘square of distance’. 

This value is compared against the previously stored square of the minimum distance and 

thus the new square of minimum distance is found. The comparator receives an enable 

signal from the FSM. This complete pipeline consists of four pipe-stages.  

 

4.3 Results of Xilinx Simulations and Synthesis 

The proposed design was simulated for functionality evaluation and synthesized 

using Xilinx® XA Vivado-2015 tool with Kintex®-7 family based smallest chip 

xc7k70tfbg484-3 that has a total package size of 23x23 mm2 [102]. This FPGA class is 

built on a state-of-the-art high-performance/low-power (HPL) 28 nm high-k metal gate 

(HKMG) process technology and optimized for best price-performance with a 2X 

improvement compared to the previous Xilinx FPGA generations [15].   

For completeness, the block by block delay numbers are presented in Table 4-1 [102]. 

The CMOS FPGA design was driven by a 134 MHz clock frequency, which was found to 

be the maximum frequency for the FPGA chip with no negative slack in the pipe-stages. 
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As mentioned before, in this design, the subtractor used in the pipeline is different from 

the normal adder-subtractor, it would always produce a positive result even if the minuend 

is smaller than the subtrahend, eg. 2-4 = 2. The result is always the difference of these two 

numbers. The design used in this pipeline does not output in the form of 2's complement, 

rather it gives the number itself, which is more suitable for the calculation purpose. The 

subtractor is built with a comparator, an 8-bit mux and two 8-bit subtractor blocks.  

 

Table 4-1: RESULTS OF CMOS ED PIPELINE BASED ON XILINX FPGA [102]. 

Block Delay (ns) Area (mm2) 

logic delay net delay Total 

8-bit subtractor 
1.25 5.7 6.95 

0.203 

 

16-bit LUT Sq. 

RAM 
3.78 0.71 4.49 

0.041 

 

18-bit adder 
2.29 0.76 3.05 

0.076 

 

18-bit 

accumulator 
2.51 0.43 2.94 

0.2 

 

18-bit 

comparator 
3.56 1.06 4.62 

0.042 

 

18-bit mux 
2.98 0.87 3.85 

0.038 

 

Pipeline Total 
16.37 9.53 25.9 0.6 

 

The estimated dynamic power for the complete design was 22.3mW and 24mW at 

25% and 100% toggle rate respectively in Xilinx. The static power of the chip remains 

constant because all of the blocks in the FPGA are turned on regardless of their utilization. 
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Thus the static power of the ED pipeline design depends only on a particular FPGA type 

selected for comparison. Based on the total device utilization compared to the total 

available units in the chip, the percentage area was estimated and thus the total area was 

obtained; 0.904 mm2 occupied by the ED pipeline. The details of power, delay and area 

estimations in Xilinx are presented in Appendix B. 
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5 CIRCUIT IMPLEMENTATION CHALLENGES FOR MsFPGA 

 

5.1 About MsFPGA 

This dissertation proposes a reconfigurable architecture that makes use of the stateful 

IMPLY logic of memristors. In this architecture, memristive crossbars operate as space-

time based circuits for the datapath, and a CMOL-like datapath-memory, MsCMOL 

(Memristive stateful CMOL) provides reconfigurability by controlling the selection of the 

active nanowires in each time step. More precisely the proposed architecture has a CMOL-

like datapath with memristive memories to store the pulses that reconfigure the fabric from 

the datapath to the logic blocks [102]. 

The proposed hybrid memristor-CMOS reconfigurable system level architecture, 

MsFPGA (Memristive stateful logic Field Programmable Gate Array) is presented in 

Figure 15 [102]. As mentioned earlier, the datapath, and any memory including the 

MsRAM of the pulse generation block of the proposed MsFPGA are designed in nanowire 

crossbar memristor-based technology, while the control logic- FSM controller, counter in 

pulse generator, multiplexers and decoder in the Merge block are designed in CMOS 

technology [102].  

The control data in MsRAM are described with the encoding table to generate the 

pulses for the datapath as shown in Figure 18. This table illustrates controls for a portion 

of 8-bit Full-adder circuit as per Figure 9. The MsRAM controls the two select lines of a 

mux (control signals on the output of pulse generator). Data inputs to this mux are the 

voltages: for controls 00 – HiZ (High Impedance State), 10 - VCOND, 01 - VSET and 11 - 



86 

 

VCLEAR that are selected to control the vertical/horizontal nanowires to perform the stateful 

logical operations in the memristor crossbar datapath. Buffers can be inserted to prevent 

signal attenuation in case of long lines [102].  

 

5.2 Comparison with Other Published Memristive FPGAs and NVM 

Several concepts related to building FPGA fabric in nanotechnologies as well as 

some relevant components are discussed in [6][9][10][13][30]. The paper [13] by Cong et 

al. introduced a new idea of FPGA called MrFPGA in which all logic functions were 

implemented in CMOS, and only the configurations of connections were implemented by 

memristors playing the role of connect-disconnect switches. The authors showed 

advantages of this concept over previously introduced CMOS FPGAs. They concentrated 

on routing and compared to combinational benchmarks with standard FPGAs. In contrast, 

this dissertation introduces the idea of MsFPGA (Memristive stateful logic Field 

Programmable Gate Array) [102]. This new concept is fundamentally different from the 

MrFPGA architecture because memristors are used to perform all logic operations in the 

datapath, which leads to significant gains in area, power and delay. In addition, similar to 

previous work, the methodology developed here implements memories and reconfigurable 

connections also mostly with memristors. Proposed design is hybrid and uses some CMOS 

components. It is geared towards both combinational and sequential circuits, especially 

those with regular blocks such as iterative circuits or SIMD-like data path. But the usage 

of the CMOS components is insignificant compared to the previous FPGAs such as 

MrFPGA. To illustrate an application of proposed MsFPGA and to facilitate a comparision 
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with a traditional FPGA approach, an example of a pipelined implementation of a 

Euclidean Distance (ED) calculation is presented. The pipeline is implemented in binary 

logic with memristors in memristive nanowire crossbars. Memristive crossbars are 

perpendicular nanowires, where memristors are located at the intersections of the 

nanowires [8]. The goal here is to use memristors in logic design as implication gates.  

MsFPGA [102] is a unique and completely different approach from published 

research on memristor-based FPGAs [9][10][13][30], because it allows separate 

programming (reconfiguration) of all- memories, logic and connections. While MrFPGA 

uses the general purpose combinational logic gates realized in CMOS, and therefore 

emphasizes connections programmability only, the proposed MsFPGA is intended for 

highly parallel regular architectures in which blocks are placed in abutment and horizontal 

connections are short. In contrast to MrFPGA, the MsFPGA methodology concentrates on 

logic design using stateful IMPLY gates with memristors and allows much larger 

logic/memory based systems with many applications. These applications include massively 

parallel pipelines, neural networks, SIMD-like architectures, differential equation solvers, 

image processors, cellular automata, and many other architectures. 

Recently, a new non-volatile memory (NVM) logic architecture such as 

iMEMCOMP [49] was proposed by Li et al., which is different from the IMPLY gate logic. 

The methodology in this dissertation work is different from the iMemComp paper. The 

iMemComp design used Resistive Switching (RS) devices instead of memristors. The 

iMemComp way of realizing Boolean logic is similar to this dissertation work by adapting 

the idea of Stateful IMPLY logic [4] for a single bit computation, however, for multi-bit 

logic computation, the iMemComp method is different. The use of hybrid circuits is 



88 

 

different in iMemComp architecture, and the paper did not present a complete system with 

control, datapath and memory as was presented here. The main similarity between the 

iMemComp paper and this work is that both created a new type of reconfigurable 

logic/memory block and used the resistive way of memorizing and creating logic gates. 

The iMemComp paper concentrated on a new way of reconfiguring resistance values in a 

crossbar to realize basic logic gates, whereas, this work concentrated on system design 

with stateful memristors and addressed several important circuit issues. The work 

presented in this dissertation has several advantages over the iMemComp paper. For 

example, the sneak-path current is a major concern for the crossbar based design that 

includes, memristors, and RS cells. But the iMemComp paper did not show the complete 

architecture for their RS array, and therefore, it is difficult to determine if they had this 

problem. Sneak-path elimination is a key feature of the work presented here. In the crossbar 

structure, for multiple bit logic, the methodology presented here allows the movement of 

data from row to row, so it is possible to perform serial logic operations between rows. 

Whereas, the iMemComp architecture programs a look up table (LUT) for certain 

functions, such as a full adder and for the multi-bit design, their architecture does not 

support row-to-row data transfer, rather they use CMOS circuitry to transfer data, such as, 

carry-out. Also, the datapath in this dissertation is completely reconfigurable compared to 

the iMemComp LUT design. The input of proposed design in this dissertation is configured 

in MsRAM, while iMemComp input is the voltage signal to the decoder, which selects the 

row of the RS cells for the corresponding output. In general, the methodology developed 

here provides a wider and more flexible framework for a whole programmable system 

design with IMPLY-memristor based nanowire crossbars. The iMemComp focuses on the 
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RS switch based design for the programmable logic and does not show any of the CMOS 

circuitry and pulse control. Besides, it was not clear why iMemComp called logic learning 

rather than logic programming. However, the authors of the iMemComp paper were able 

to fabricate their technology. It is interesting to speculate on whether, they could fabricate 

a functional crossbar design.  

 

5.3 Proposed MsCMOL Architecture 

A memristive crossbar, which can be fabricated on top of CMOS in a back end of 

the line (BEOL) process, is called CMOL [6][8][14]. In “Strukov and Likharev” proposed 

CMOL architecture, memristors are used for storing configuration information and as such, 

selection of only one memristor at a time is sufficient. To address a single memory 

memristor in CMOL we need to individually select any of the two terminals of this 

memristor, one on a skewed horizontal nanowire and another one on a skewed vertical 

nanowire [8]. For each nanowire two CMOS decoders are necessary. These two decoders 

select one vertical CMOS wire and one horizontal CMOS wire. At the intersection of the 

vertical and the horizontal CMOS wires, the skewed nanowire is connected. This is 

repeated twice for vertical skewed nanowire and the horizontal skewed nanowire. Observe 

that in this CMOL architecture four CMOS decoders and one CMOS AND cell are used to 

select a single memristor, which plays the role of a single memory bit. Because, following 

Keukes [4], this dissertation work uses memristors in MsFPGA to execute logic operations, 

it is necessary to select two vertical or alternately two horizontal nanowires simultaneously 

for each logical operation [102]. This dissertation proposed the MsCMOL (Memristive 
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stateful CMOL) architecture as shown in Figure 17 [102]. Consequently, proposed 

approach redefines the Strukov/Likharev’s CMOL architecture and its associated FPGA 

design methodology. In this proposed method, as in [3][4], the two vertical nanowires cross 

a common horizontal nanowire to execute the horizontal transfer between memristors. In 

addition, two horizontal nanowires can cross a vertical nanowire to execute the vertical 

transfer between memristors.  

 

5.4 Data MsRAM 

As mentioned before, the input vectors to the datapath of ED are stored in two 

separate Data MsRAMs (Memristive stateful RAM), which are implemented using the 

standard memristive nanowire crossbars or Strukov-Likharev’s CMOL. Therefore, in the 

Data MsRAMs, only one memristor is selected at one time. The stored data is copied from 

these MsRAMs to the MsFPGA memristive datapath using the previously explained 

memristive logical transfer operation method from one memristor to another memristor 

located in another block [102]. The voltages used here are VCOND, VSET and VCLEAR for 

logical operations for the circuit designed with implication logic. The same voltages are 

used in MsRAMs as well. The two Data MsRAMs used in the proposed MsFPGA can also 

be placed within the memristive Datapath blocks for bringing the source and destination 

memristors closer to have better transfer. However, here it was intentionally placed outside 

the MsFPGA datapath as the Data MsRAMs were based on a different type of CMOL than 

the proposed MsCMOL [102].  
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5.5 Array of 8x8 Nanowire Crossbar Blocks  

An 8×8 programmable nanowire crossbar block [102] is presented by this 

dissertation work. These crossbar blocks are connected horizontally as well as vertically 

through switches. Similar block-to-block connectivity has been discussed in previous 

papers [7][9], however, the approach taken here is to realize pipelined and SIMD-like 

datapaths as outlined in this work. Also, for the sake of comparison, this research has 

developed a detailed circuit that is different from previous work. An array of such small 

memristive 8×8 crossbar blocks can be connected through switches to form larger crossbars 

[7][9], and then to pipeline such crossbars, as shown in Figure 10. Since in this dissertation 

we assume 8-bit words in the pipeline, 8×8 crossbar blocks were assumed as cells for 

MsFPGA. The general methodology presented here is independent of the size of the 

crossbar block. 

Although reference [7] and others in the past presented block to block connectivity, 

the method of doing the IMPLY-memristor based logic design using the space-time based 

symbolic notation and designing pipelined datapath circuit using the block to block 

connectivity concept [102] is the contribution of this dissertation. This dissertation did not 

invent the block-to-block connectivity for the memristor-based design, rather a method 

was proposed for memristor-based logic design using the space-time based concepts 

introduced here, where, e.g., the 8-bit iterative adder circuit uses one 8x8 nanowire crossbar 

implementing each row of a one-bit adder. It was believed that a square geometric shape 

is a better use of space than a long wire kind of shape for such cell design. The adder was 

designed as a single cell, but several such cells can be pipelined or executed in parallel. 
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Also, the proposed design performs sequential operations inside the 8x8 cell, while many 

such cells can operate in parallel. Therefore, using the proposed method, a large number 

of reconfigurable, pipelined datapaths (designed with IMPLY-memristors and controlled 

by pre-programmed memristive MsRAM) can operate in parallel.  

 

5.6 Sneak-Path Protection 

In this dissertation, sneak-path current protection was the result of the 8-bit adder 

design in the 8x8 crossbar. The proposed sneak-path protected design will be presented in 

detail in Chapter 6. Also, as shown in Figure 17, a 4-bit one-hot CMOS decoder is used to 

select one wire (1 row or 1 column) from a total of sixteen wires (8 rows and 8 columns) 

in an 8x8 nanowire crossbar block, to connect to the ground one at a time. This feature is 

designed to ensure that the current sinks through only one path to the Gnd and thus the 

sneak-path protection is enabled [102]. 

 

5.7 Nanowire Row-to-Row Data Transfer 

A unique method was provided by this research for the row-to-row data transfer for 

memristors and thus switching from row-wise data transfer to column-wise data transfer 

[102]. As mentioned earlier, the proposed design applies VCOND, VSET and VCLEAR voltages 

either to a row or to a column of the 8×8 nanowire crossbar at any particular time. 

Therefore, in this work the row and column voltage control signals are encoded together. 

As presented before in Figure 17, a single bit row_sel signal is used to distinguish whether 

the voltages are applied to a row or to a column. When the row_sel signal is ‘1’ the voltages 
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are applied (through columns) to a row, and when the row_sel signal is ‘0’ the voltages are 

applied (through rows) to a column. Therefore, when the row_sel signal is ‘1’, voltages are 

applied to the row (through columns) from the pre-programmed MsRAM, with the column 

select selecting high impedance state (Hi-Z).  

 

Proposed General Rules for the row-to-row data transfer: 

For the proposed stateful IMPLY-memristor based model of combinational logic 

based on 8x8 nanowire crossbar blocks, the mapping of logic circuits to the detailed layout 

of memristors and pulses that execute operations is based on a set of rules [102]. These 

rules are general and apply to the squares of any size and can be also modified to blocks 

based on non-square rectangular arrays. We assume that in every block there are layers that 

are calculated sequentially one after another. For instance, the layers can correspond to 

cells of an iterative circuit. These layers are implemented in rows of the 8x8 nanowire 

block. After calculating one layer some data from it are copied to the next layer. 

The following rules must be applied in order and they illustrate the space-time 

based transfer of values from one row to the next row. 

Rule 1: In order to copy a bit from one row to another row, both bits must be located in 

the same column. 

Rule 2: At any point of time only one wire (either a row or a column) can be discharged 

through ground to provide sneak-path protection. Disconnect row from Gnd and connect 

the column to Gnd. 
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Rule 3: In order to do the transfer from one row to another row, apply voltages through 

the rows. This is a column-wise data transfer. Stateful logic state is transferred from one 

row to another row. 

Rule 4: In order to reset the former row memristor, VCLEAR is applied in order to avoid 

sneak-path. 

Rule 5: In order to calculate the next layer, the data needs to be transferred to a desired 

location in the new row. This is done by transferring bit value from one column to another 

column in the same row. Here, voltages are applied through columns.  

Rule 6: At any point of time only one wire (either a row or a column) can be discharged 

through ground to provide sneak-path protection. Disconnect column from Gnd and 

connect the row to Gnd. 

Rule 7: In order to do the transfer from one column to another column, apply voltages 

through the columns. This is a row-wise data transfer. Stateful logic state is transferred 

from one column to another column. 

 

5.8 Proposed 8-bit Iterative Adder Design 

In this dissertation, an 8-bit iterative adder design was proposed using an 8×8 

memristive nanowire crossbar [102]. Each bit of the 8-bit adder is designed using one row 

of the 8×8 crossbar as shown in Figure 10 (one quadrant of Figure 10). All 8 rows and 8 

columns are connected through a switch and a load resistor RG to Gnd. However, the 

proposed design allows the connect of only one of the 16 wires (total 8 rows and 8 columns) 

to the ground at a time. 
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5.9 Massively Parallel and Pipelined Reconfigurable Datapath 

The array of 8×8 nanowire blocks also facilitates pipelining and massive parallelism 

[102]. As mentioned before, larger size crossbar structure can be designed for stateful logic 

operations by connecting the 8×8 unit blocks through switches. An 8×8 block can be 

connected to another block by closing the switches, while disconnecting the switches 

allows various 8×8 blocks to perform stateful logical operations in parallel [7]. Also by 

closing the block switches a larger circuit can be created for stateful logical operations, e.g. 

the 16-bit RAM in our proposed ED pipeline design requires two 8×8 blocks vertically and 

thirty-two 8×8 blocks horizontally (or vice versa) that are connected through switches. 

Since by opening and closing the switches the operations of the 8×8 blocks can be 

controlled, a complete pipeline can be implemented row-wise as well as column-wise in 

this structure [102]. Many such pipelines can operate simultaneously facilitating massive 

single instruction, multiple data parallelism. The whole datapath of crossbar blocks 

introduced in this dissertation is generic. It is reconfigurable for any particular application 

through the pulse generation block i.e. MsRAM. Also, intrachip communication [89] can 

be naturally implemented using this proposed memristive crossbar datapath structure 

[102]. 
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6 SNEAK-PATH CURRENT 

 

6.1 Problems in Nanowire Crossbar Design 

Sneak-path current is a critical design concern in a nanowire crossbar. Memristors 

are placed at each intersection of a vertical nanowire and a horizontal nanowire in a 

crossbar. Memristors are non-volatile memory and are able to hold a state - either logic 

level low or logic level high based on its resistance value at high or at low respectively.  

 

 

Figure 39: “The reading current path through a memristor nanowire crossbar and the equivalent circuit for 

(a) the ideal case where the current flows only through the target cell and (b) an example of a real case 

where current sneaks through different undesired path and the red ones show the effective sneak paths” [99]. 

 

Although there has been some work in creating memristors with differential 

forward and backward resistance, most memristors are resistors and allow current to 

flow either direction. As current flows through the nanowire, it can sneak through some 

undesired paths as shown in Figure 39 resulting in an effect which adds noise to the 

computation being performed by the crossbar, making it difficult to read data reliably 

from individual memory cells. Besides, sneak-paths also increase power consumption. 
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6.2 Proposed Sneak-Path Protection 

In this chapter a sneak-path free 8-bit iterative adder design using an 8×8 

memristive nanowire crossbar is presented. This innovative design methodology is a major 

contribution of this dissertation work.  

Each bit of the 8-bit adder is designed using one row of the 8×8 crossbar. All 8 

rows and 8 columns are connected through a switch and a load resistor RG to Gnd. 

However, the proposed design allows the connection only one of the 16 wires (total 8 rows 

and 8 columns) to the ground at a time. The bit0 operation starts on row1 as shown in 

Figure 9 and generates carry C1 and sum S0. Upon completion of the logical operations, 

all of the memristors in each row are reset (cleared) using the VCLEAR signals. Only the sum 

bits located in the eighth column of each row of the 8×8 crossbar are preserved in this 

method. Thus through two mechanisms: (1) connecting only one wire (row or column) at 

a time to Gnd and (2) resetting/clearing the memristors and forcing them to the “off” state, 

a complete protection from sneak-path current in the 8-bit iterative adder circuit is provided 

[102]. 

To demonstrate this approach, an 8-bit iterative adder circuit is developed for the 

classical design as shown in Figure 40 [35]. This circuit is redesigned with memristive 

nanowire crossbars using implication logic and proposed space-time based notation. The 

following notation is used- capital letters with respective indices are used for memristors 

in the datapath and the corresponding small letters are used as controls of the corresponding 

memristor signals from the datapath [102]. For instance, a combination of control signals 

a0 and a1 selects one of four possible controls used for the datapath memristor (signal) ‘A’. 
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Similarly, control signals a00 and a01 are used for the datapath memristor (signal) A0. The 

carry-out signal C1 generated by the first adder bit, bit0, will be propagated to bit1, and so 

on. As shown in Figure 9 in Chapter 2, this 1-bit full-adder circuit is designed with three 

primary input nanowires for inputs A0, B0 and carry C0 and five additional working 

memristor nanowires. 

 

 

Figure 40: Classical Implementation of 8-bit Full Iterative Adder Circuit [35]. 

 

6.3 Step-by-Step Execution of Proposed 8-bit Iterative Adder 

Here, the execution of the 8-bit iterative adder circuit is discussed in detail [102]. 

The partial encoding table of the 8-bit iterative adder design is shown in Figure 18. We 

start with row-wise stateful operations. The required circuit can be implemented with one 

8×8 nanowire crossbar as shown in Figure 10 (in one quadrant of Figure 10). The execution 

is explained in four steps: 

step1: The sequences of the bit0 adder operation are: 

I. The primary inputs (PI) -- A0, B0, C0 are copied from storage MsRAM to the datapath 

row1 locations to perform bit0 operations.  

Transfer the value of A0 to the memristors at the intersection of row1 and col1 in Figure 

10, symbolically, (row1, col1) := A0, (row1, col2) := B0, (row1, col3) := C0. 
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II. Select row1, close only the row1 switch to Gnd. 

III. Apply VCOND and VSET through col1 and col2 respectively for a row-wise data transfer. 

A stateful logic operation will take place. 

As shown in Figure 9, the carry-out bit, C1, and sum, S0, are computed after 18 micro 

pulses which includes all required reset operations. The carry and sum bits are saved in 

(row1, col7) and (row1, col8) respectively. Also, col1 through col6 are cleared to state ‘0’ 

to avoid sneak-path currents.  

step2: Copying of the carry bit in the current column, from the current row to the next row 

is presented below. Here it is demonstrated for column 7 and copying from row1 to row2.  

I. Disconnect row1 from Gnd. Select col7, close only the col7 switch to Gnd. 

II. Apply VCOND to (row1, col7) and VSET to (row2, col7) for a column-wise data transfer. 

Stateful logic state is transferred from (row1, col7) to (row2, col7). 

III. Apply VCLEAR to (row1, col7). 

step3: Carry bit transfer steps from one column to another in the same row. Here, voltages 

are applied through columns again.  

I. Disconnect col7 from Gnd. Select row2, close only row2 switch to Gnd. 

II. Apply VCOND to (row2, col7) and apply VSET to (row2, col3) for a row-wise data transfer. 

Location of carry-out bit C1 now is at (row2, col3). 

step4: This step explains the bit1 operation of the adder.  

Values A1 and B1 are copied from storage MsRAM to datapath in row2 locations to 

perform bit1 operations. The values are transferred to the memristor locations in the row 

below: 



100 

 

(row2, col1) := A1, (row2, col2) := B1. Recall that (row2, col3) := C1. 

II. Repeat the above steps from step1 II through step3 for all eight rows in the 8×8 

nanowire crossbar from one quadrant of Figure 10. 

III. The final sum bits are located in the eighth column of each row respectively.  

The total number of pulses for the 8-bit full-adder circuit operation is 165, which includes 

all logic, copy, and reset operations [102]. For instance, each adder requires 17 pulses to 

generate the sum and carry, so for 18-bit adder, 306 pulses are required for the logical 

operations only. However, row 3, Table 7-2 has reported 369 pulses. The source of these 

additional pulses were copy, reset etc. operations. Thus for the actual delay calculations in 

Table 7-2, all pulses required for the design were considered [102].  

The proposed innovative, sneak-path free, 8-bit iterative full adder design is presented 

below. 

t time step   Primary Input memristor 

1 connected to GND 0 OFF memristor 

0 Disconnected   VCOND/VSET applied 
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t0 row sw A B C W1 W2 W3 W4 W5 

  1 1       0 0 0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t1 row sw A B C W1 W2 W3 W4 W5 

  1 1         0 0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t2 row sw A B C W1 W2 W3 W4 W5 

  1 1           0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

Comment: t0- Step 1. I. complete.  
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t3 row sw A B C W1 W2 W3 W4 W5 

  1 1           0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t4 row sw A B C W1 W2 W3 W4 W5 

  1 1   0       0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t5 row sw A B C W1 W2 W3 W4 W5 

  1 1         0 0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

  



103 

 

 

t6 row sw A B C W1 W2 W3 W4 W5 

  1 1         0 0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t7 row sw A B C W1 W2 W3 W4 W5 

  1 1 0         0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t8 row sw A B C W1 W2 W3 W4 W5 

  1 1   0       0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t9 row sw A B C W1 W2 W3 W4 W5 

  1 1           0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t10 row sw A B C W1 W2 W3 W4 W5 

  1 1           0 0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t11 row sw A B C W1 W2 W3 W4 W5 

  1 1             0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t12 row sw A B C W1 W2 W3 W4 W5 

  1 1         0   0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t13 row sw A B C W1 W2 W3 W4 W5 

  1 1   0     0   0 0 

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t14 row sw A B C W1 W2 W3 W4 W5 

  1 1   0 0   0   0   

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t15 row sw A B C W1 W2 W3 W4 W5 

  1 1   0 0   0 0     

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t16 row sw A B C W1 W2 W3 W4 W5 

  1 1 0 0 0   0 0     

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t17 row sw A B C W1 W2 W3 W4 W5 

  1 1 0 0 0 0 0 0     

  2 0 0 0 0 0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

Comment: t17- Step 1. III. complete.  
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t18 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0     

  2 0 0 0 0 0 0 0   0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t19 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0   0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t20 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1 0 0   0 0 0   0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

Comments: 1. t19- Step 2. III. complete 2. t20- Step 3. II. complete.  
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t21 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1       0 0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t22 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1         0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t23 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1           0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

Comments: t21- Step 4. Bit1 operation begins.   



109 

 

t24 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1           0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t25 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1   0       0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t26 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1         0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t27 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1         0 0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t28 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1 0         0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t29 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1   0       0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t30 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1           0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t31 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1           0 0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t32 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1             0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

  



112 

 

t33 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1         0   0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t34 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1   0     0   0 0 

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t35 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1   0 0   0   0   

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t36 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1   0 0   0 0     

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t37 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1 0 0 0   0 0     

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t38 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 1 0 0 0 0 0 0     

  3 0 0 0 0 0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t39 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0     

  3 0 0 0 0 0 0 0   0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t40 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0   0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t41 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1 0 0   0 0 0   0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t42 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1       0 0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t43 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1         0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t44 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1           0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t45 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1           0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t46 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1   0       0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t47 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1         0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 



117 

 

 

 

t48 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1         0 0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t49 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1 0         0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t50 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1   0       0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t51 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1           0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t52 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1           0 0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t53 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1             0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t54 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1         0   0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t55 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1   0     0   0 0 

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t56 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1   0 0   0   0   

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t57 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1   0 0   0 0     

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t58 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1 0 0 0   0 0     

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t59 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 1 0 0 0 0 0 0     

  4 0 0 0 0 0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t60 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0     

  4 0 0 0 0 0 0 0   0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t61 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0   0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t62 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1 0 0   0 0 0   0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

  



122 

 

t63 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1       0 0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t64 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1         0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t65 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1           0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

  



123 

 

 

t66 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1           0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t67 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1   0       0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t68 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1         0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t69 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1         0 0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t70 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1 0         0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t71 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1   0       0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t72 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1           0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t73 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1           0 0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t74 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1             0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t75 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1         0   0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t76 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1   0     0   0 0 

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t77 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1   0 0   0   0   

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

 



127 

 

 

t78 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1   0 0   0 0     

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t79 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1 0 0 0   0 0     

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t80 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 1 0 0 0 0 0 0     

  5 0 0 0 0 0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t81 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0     

  5 0 0 0 0 0 0 0   0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t82 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0   0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t83 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1 0 0   0 0 0   0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

  



129 

 

 

t84 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1       0 0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t85 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1         0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t86 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1           0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t87 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1           0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t88 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1   0       0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t89 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1         0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t90 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1         0 0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t91 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1 0         0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t92 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1   0       0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t93 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1           0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t94 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1           0 0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t95 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1             0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

  



133 

 

 

t96 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1         0   0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t97 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1   0     0   0 0 

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t98 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1   0 0   0   0   

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

  



134 

 

 

t99 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1   0 0   0 0     

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t100 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1 0 0 0   0 0     

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t101 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 1 0 0 0 0 0 0     

  6 0 0 0 0 0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t102 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0     

  6 0 0 0 0 0 0 0   0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t103 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0   0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t104 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1 0 0   0 0 0   0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t105 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1       0 0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t106 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1         0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t107 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1           0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

  



137 

 

t108 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1           0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t109 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1   0       0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t110 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1         0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

  



138 

 

t111 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1         0 0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t112 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1 0         0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t113 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1   0       0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t114 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1           0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t115 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1           0 0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t116 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1             0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t117 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1         0   0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t118 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1   0     0   0 0 

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t119 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1   0 0   0   0   

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t120 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1   0 0   0 0     

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0   

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t121 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1 0 0 0   0 0     

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t122 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 1 0 0 0 0 0 0     

  7 0 0 0 0 0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t123 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0     

  7 0 0 0 0 0 0 0   0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t124 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0   0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t125 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1 0 0   0 0 0   0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t126 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1       0 0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t127 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1         0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t128 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1           0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t129 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1           0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t130 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1   0       0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t131 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1         0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t132 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1         0 0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t133 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1 0         0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t134 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1   0       0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t135 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1           0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t136 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1           0 0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t137 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1             0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t138 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1         0   0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t139 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1   0     0   0 0 

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t140 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1   0 0   0   0   

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t141 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1   0 0   0 0     

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t142 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1 0 0 0   0 0     

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t143 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 1 0 0 0 0 0 0     

  8 0 0 0 0 0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t144 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0     

  8 0 0 0 0 0 0 0   0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t145 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 0 0 0 0 0 0 0   0 

  sw->   0 0 0 0 0 0 1 0 

  col->   1 2 3 4 5 6 7 8 

t146 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1 0 0   0 0 0   0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t147 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1       0 0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t148 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1         0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t149 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1           0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t150 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1           0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t151 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1   0       0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t152 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1         0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t153 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1         0 0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t154 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1 0         0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t155 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1   0       0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t156 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1           0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t157 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1           0 0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t158 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1             0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t159 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1         0   0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t160 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1   0     0   0 0 

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t161 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1   0 0   0   0   

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 
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t162 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1   0 0   0 0     

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t163 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1 0 0 0   0 0     

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

t164 row sw A B C W1 W2 W3 W4 W5 

  1 0 0 0 0 0 0 0 0   

  2 0 0 0 0 0 0 0 0   

  3 0 0 0 0 0 0 0 0   

  4 0 0 0 0 0 0 0 0   

  5 0 0 0 0 0 0 0 0   

  6 0 0 0 0 0 0 0 0   

  7 0 0 0 0 0 0 0 0   

  8 1 0 0 0 0 0 0     

  sw->   0 0 0 0 0 0 0 0 

  col->   1 2 3 4 5 6 7 8 

 

Comment: t164- Preserved sum s0 through s8 in col8, final Cout in (row8, col7).  
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6.4 Benefits Brought by Proposed Sneak-path Protection Methodology 

In this dissertation, a new methodology was proposed with an example of the 8-bit 

iterative adder design to provide protection from the sneak-path current. The proposed 

complete 8-bit iterative adder design was presented in section 6.3, where the step-by-step 

operations were shown to demonstrate the protection from sneak-path current. Using the 

space-time based notation, the design of IMPLY-memristor based arithmetic circuits with 

sneak-path current protection was presented [102]. 8x8 nanowire crossbars were used for 

the designs. For instance, one 8x8 nanowire crossbar was used for one 8-bit Full adder 

design. Each row of the 8x8 nanowire is used to implement a one-bit Full adder.  

 

The proposed general rules for a sneak-path free design is described below: 

Rule 1: In this 8x8 crossbar design, only the selected row (or column) performing 

logical operations is discharged through a load resistance RG to ‘gnd’, while all other rows 

and columns in an 8x8 nanowire crossbar remain disconnected from ‘gnd’.  

Rule 2: After completing the logical operation, the memristor should be reset using 

the VCLEAR voltage. In the proposed methodology, seven out of eight memristors are 

turned-off (reset) in each row in an 8x8 nanowire crossbar as shown in Figure 9.  

Comment: In certain cases, this clearing operation may add insignificant delay or 

slight power consumption increase, yet this step is critical for providing the sneak-path 

protection. 
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Comment: The right-most column in the 8x8 crossbar preserves the “sum” bits for 

the 8-bit adder in an 8x8 nanowire crossbar. However, these memristors cannot contribute 

to the sneak-path current as there is no direct sink path available for them. 

 

In other published papers [5][7] on memristive datapath design e.g. a full adder 

design using a nanowire crossbar have large number of memristors “on” at the same time 

in different rows and columns of the nanowire crossbar and in those designs, memristors 

find an alternate path to flow current to the ground causing sneak-path current. In order to 

provide this additional protection, a few extra timing pulses were added to the proposed 

design. In the space-time based notation, it is possible to have a faster design if the sneak-

path current protection were not provided [102].  

In the above 8-bit iterative adder design, at the beginning of the execution, A0, B0, 

C0 primary input data is copied to row1 locations from storage MsRAM. At t8, voltage 

VCOND and at t12 voltage VSET are respectively applied to memristor C0. Therefore, 

memristor C0 will contribute to the static power PON. For this dissertation work, detailed 

power calculations were done based on the methodology presented in [6], however, it 

appears that this power consumption by the initial carry bit for proposed design is a very 

small number. For example, for an 8-bit iterative adder design, PON is calculated as 2.38µW 

with 40nm half-pitch nanowire crossbar with VSET = 1.0V and 0.38µW power consumption 

with 8nm half-pitch nanowire crossbar with VSET = 0.4V. The proposed design connects 

only one wire (either one row or one column) to ground at a time and therefore, there can 

be only one path from VSET to Gnd at a time. So, for the 1-bit adder operation as shown in 

Figure 9, only one row is connected to the ground. Moreover, memristors are turned down 
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to the “reset” state through the VCLEAR signal in each row after the operation is completed. 

Thus sneak-path protection is guaranteed in the proposed design. 

This above proposed design process utilizes eight rows of the 8×8 nanowire 

crossbar to implement the 8-bit iterative full-adder circuit to generate all eight sum and 

carry signals [102]. Similarly, other iterative combinational circuits such as comparator, 

multiplexer, subtractor etc. have been realized for the proposed design. Algorithmic 

methods to realize arbitrary combinational functions with stateful IMPLY memristive logic 

require smart placement and partitioning of crossbar blocks. This dissertation is not related 

to these design automation algorithms and all designs for this research were hand-designed.  

Wei Lu et al. [32] showed that memristors can be fabricated to exhibit diode 

characteristics. These rectifying memristors can be used to build converse nonimplication 

logic and may be useful to prevent sneak-path current as presented by Lehtonen [100]. 

However, the multi-input operation for converse nonimplication is not as useful as it is for 

implication logic, because, only AND-clauses result from multi-input converse 

nonimplication. Few important solutions proposed in the literature for the sneak paths in 

the memristive nanowire crossbars are discussed in [99], such as, 1T1M, 1D1M, and 

complimentary memristors. None of these techniques are realistic for a product design, 

because, 1T1M will ruin the high memristor-memory density, 1D1M will add delay and 

area to the design and complimentary memristors will add functional complexity to the 

design. Thus the sneak-path protection methodology provided for the universal implication 

or IMPLY logic presented in this dissertation is an important contribution.  
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7 PERFORMANCE STUDY OF PROPOSED MsFPGA 

 

CMOS has become the technology of choice for its constantly shrinking chip area, 

faster speed and lower power consumption. However, with the scaling of device 

dimensions in CMOS, the voltage has stopped scaling, because, as the threshold voltage, 

VT decreases, the leakage of the chip increases exponentially, increasing static power 

consumption. Therefore, the need for an alternate technology to continue Moore’s law 

scaling and to meet the growing demand for lower power and faster execution motivate 

this work [102].  

 
Figure 41: Pipeline Implementation of the Euclidean Distance (ED) Calculator using proposed MsFPGA, 

memristor-CMOS Hybrid FPGA. Color code: Green-memristor nanowire crossbar, Yellow- CMOS, Blue- 

hybrid circuitry [102]. 

In order to compare a CMOS FPGA realization of the ED calculation with the 

proposed MsFPGA, the pipelined version of this circuit was designed in Xilinx FPGA 

using standard logic synthesis. Then a pipelined ED circuit was designed with the same 
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functionality using the proposed MsFSMD methodology as outlined earlier. This proposed 

MsFPGA datapath design for functioning as the Euclidean Distance processor is presented 

in Figure 41.  

Also, the detailed block diagram of the square operator is illustrated in Figure 42. 

 

 

Figure 42: Block Diagram of the Square Operator. Color code: Green-memristor nanowire crossbar, 

Yellow- CMOS, Blue- hybrid circuitry. 

 

The CMOS based design was synthesized and simulated using Verilog in Xilinx. 

Testing was performed to validate the design for correctness using test benches. Also the 

8×8 nanowire crossbar in MsFPGA was simulated using PSPICE for RC delay evaluation. 

Besides, for verification purposes the logical behavior and the transition delay of one kind 

of memristive device were simulated in PSPICE.   
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7.1 Memristor Device and IMPLY Logic Gate  

The characteristics of memristors are unique in nature. The physical model of the 

memristor from [2], consists of a two-layer thin film (size D ≈ 10 nm) of TiO2, sandwiched 

between platinum contacts. One of the layers is doped with oxygen vacancies and thus it 

behaves as a semiconductor. The second, undoped region, has an insulating property. 

One of the resulting properties of memristors and memristive systems is a I-V 

hysteresis curve on application of a sinusoidal signal [1][2][3][4][16]. In the case of linear 

elements, in which memristance M is a constant, it is identical to the resistance. However, 

if M is a function of charge, q, it yields a nonlinear circuit element [2]. For a current-

controlled memristive system, the input is the current i(t), the output is the voltage v(t), and 

the slope of the curve represents the electrical resistance. The change in slope of the 

pinched hysteresis curves demonstrates switching between different resistance states which 

is a phenomenon central to resistive RAM (ReRAM) and all other forms of two-terminal 

resistance memories [1][2][40]. At high frequencies, memristive theory predicts the 

pinched hysteresis effect will degenerate, resulting in a straight line, representative of a 

linear resistor [1][2].  

Two memristors can be used to perform implication with one pulse. Memristors act 

as a switch with two states – RON and ROFF, where, RON = state 1, ROFF = state 0. Voltage 

drop in M1 affects voltage drop in M2. M1 is input memristor and M2 is input/Output 

memristor as shown in Figure 43. 

M1 → M2 =  M1´ + M2 
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Figure 43: IMPLY Logic Gate A. Symbol B. Truth Table [3]. 

Different gates can be constructed using memristors by applying appropriate 

voltages at the memristor terminals. Implication and Inhibition gates are two fundamental 

gates through which we can realize other logic functions like NOT, AND, OR etc. This 

dissertation focuses on the functioning of a stateful implication gate. Three main voltages 

are required for constructing logic gates using memristors - VSET, VCOND and VCLEAR 

voltages. VSET and VCOND voltages are applied to switch on the memristor by lowering the 

resistance. The VCLEAR voltage is applied to Turn off the memristor by increasing the 

resistance to the maximum value. 

Figure 44 shows two memristors M1 and M2 which are connected together with 

the load resistor RG to form an implication gate. The value of load resistor RG is selected 

in such a way such that RON < RG < ROFF. Inputs are given to both M1 and M2 memristors 

in the implication gate and the output is measured for the change in memristance/resistance 

of the M2 memristor.  
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Figure 44: Implication (IMPLY) Logic: Realization with Two Memristors M1 and M2 [3]. 

By applying a proper voltage at the memristor terminals, we can have a memristor 

switch between the ON (logic ‘1’ or close) and OFF (logic ‘0’ or open) states. For the 

implication gate to work properly, it is required to apply two different voltages, VCOND and 

VSET to M1 and M2 respectively. VSET has a higher magnitude than VCOND. When M1 = 1, 

then voltage at RG is approximately VCOND. The voltage on memristor M2 is approximately 

VSET – VCOND. This minimum voltage is sufficient to maintain the logic state of M2. On 

applying VSET to M2, M2´s resistance would drop close to RON and it would be set to logic 

1. If both VSET and VCOND are applied together, the current state of memristor M1 would 

influence the next sate of memristor M2.  If M1 and M2 are both 0 in the current state, the 

resistance of M2 will reduce and M2 will be set to 1 in the next state. If M1 = 0 and M2 is 

conducting, M2 will remain high in the next state. If the resistance of M1 is low and M2´s 

resistance is near ROFF in the present state, then the output of M2 remains low in the next 

state.  If resistance of both M1 and M2 is high in the current state, the output of M2 remains 

high in the next state. 
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Generally used values in simulations from the literature [5] are, RON = 100Ω, ROFF = 

10KΩ, VSET = 1.0V, VCOND = 0.5V, and VCLEAR = -1.0V. The delay of the implication gate 

is measured by the time required to apply VSET and VCOND until the logic state of M2 

reaches the desired state.  

 

7.2 Nanowire Crossbar PSPICE Simulations 

For this dissertation, the memristor nanowire crossbar PSPICE [29] simulation 

model was created using OrCAD PSPICE software as shown in Figure 45 [102]. The 

simulation model represents the wire RC segments of one row and eight columns in order 

to simulate the 8x8 crossbar network. The fringe capacitance of the memristor device is 

also shown in the figure, which is placed between one column and one row (Since 

memristors are placed at the intersection of one row and one column). 

 

Figure 45: PSPICE Simulation Model for 8×8 nanowire crossbar [102]. 

 

Through this simulation, the nanowire wire (RC) delays were measured in PSPICE for VSET 

= 1.0V, RG  = 5kΩ and nanowire half-pitch = 40nm. Nanowire 40nm half-pitch was chosen 
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per [20]. The load resistor RG is connected to the row nanowire and shown at the left side 

of Figure 45. Also, VSET is supplied through column 1 in Figure 45. The points A and B 

are actually the same point and represents the point of intersection of column 1 and row. 

The current flows from column 1 through RG load resistor to Gnd in Figure 45. This is the 

nearest current path to sink through the load resistor and therefore, represents the shortest 

wire delay. A connection between point A and point C would thus represent the longest 

wire delay. Simulations were performed for each column current source to sink path and 

wire delays were measured. In each case the wire delays were less than 2fs, which is 

negligible compared to the memristor device delays reported by various memristor models 

[17][5][18]. Figure 46 shows RC delay measurement of the crossbars. 

 

 

Figure 46: PSPICE Simulation Results for 8×8 nanowire crossbar; RC Delay measurement in PSPICE for 

VSET= 1.0V, Nanowire half-pitch=40nm. Results from Two Separate Runs are shown side-by-side [102]. 
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7.3 Performance Study 

7.3.1 Memristor Device Delay 

Behavioral models of memristive devices can provide an overview of the expected 

characteristics. However, to determine the actual circuit performance we need a model that 

would contain various process-dependent parameters, through which the devices can be 

tweaked to optimize the design for performance improvement, such as delay reduction 

[17]. Several papers have reported the delays of memristors for logical transfer operations 

using behavioral models. Kvatinsky et al. [5] reported the delay of the memristive 

implication gate to be 397.1ns using the ThrEshold Adaptive Memristor (TEAM) model 

with a TiO2 based memristor. Torrezan et al. [18] showed that the set and reset operations 

were successfully performed in the TaOX (Tantalum Oxide) memristor using pulses with 

durations of 105 and 120ps, respectively. Mazady et al. [17] recently reported a promising 

work based on ZrO2 memristor. They claimed their memristor model to be the only one so 

far not based on a behavioral memristor model, but rather based on the underlying physics 

of the device, which allows the optimization of circuit performance. They estimated the 

delay of the ZrO2 memristor to be only 6.8ps, which is due to a very high mobility of 370 

cm2/V-s of ZrO2 with a resistivity of 1.33×1013 Ω-cm for the insulating material.  

Since the research goal of this dissertation is methodology development for circuit and 

system design and not device modeling, logic transition delay numbers from published 

research on various memristor models [17][5][18] were used for performance evaluations 

of the proposed memristor-CMOS hybrid ED pipeline design. 
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7.3.2 Memristor Nanowire Crossbar Delay Evaluation 

For this work, a simulation model was built to evaluate the RC delay of the 8×8 

nanowire crossbar [102]. The wire resistance and wire capacitance values were calculated 

[6] to use in the simulation model. Also a fringing capacitance was added for the device. 

Simulations were performed using 1.0V VSET voltage for the 40nm half-pitch nanowire 

crossbars [20] as shown in Figure 45. Simulation results showed that even for the worst 

case, which is the farthest segment from the load resistor RG, the RC delay was only ~2fs, 

and thus it is negligible when added to each transition delay in Table 7-2 [102]. The 

nanowire model mentioned above can be tweaked further for more accuracy through 

adjusting the wire resistances and capacitances, however, the results will not be 

significantly different in order to make any change to the overall pipeline delay. 

 

7.3.3 Power Estimation of Memristor-Nanowire Design  

The three possible sources of power consumption for the memristive nanowire 

crossbar design are listed below: 

1. Static power PON due to current ION  

2. Static power PLEAK due to leakage current through nanodevices in their OFF 

state. Sneak-path current is considered a leakage type of power consumption 

[101].  

3. Dynamic power PDYN due to the recharging of nanowire capacitances.  
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The power calculations were performed based on [6]. For convenience of the readers 

the calculation process with equations [6] are presented below. 

 Static Power, PON is expressed as,  

𝑃𝑂𝑁 =
𝑉𝐷𝐷

2

2𝑅𝑠𝑒𝑟
 

𝑅𝑠𝑒𝑟  =
𝑅𝑂𝑁

𝐷
+ 2𝑅𝑤𝑖𝑟𝑒 +  𝑅𝐺  

Therefore,  

𝑃𝑂𝑁 =
𝑉𝐷𝐷

2

2(
𝑅𝑂𝑁

𝐷 + 2𝑅𝑤𝑖𝑟𝑒 +  𝑅𝐺)
 

Static Power, PLEAK is expressed as, 

𝑃𝑙𝑒𝑎𝑘 =
𝑀𝑉𝐷𝐷

2

2𝑅𝑂𝐹𝐹/𝐷
 

Dynamic Power, PDYN is expressed as, 

𝑃𝑑𝑦𝑛 =
𝐶𝑤𝑖𝑟𝑒𝑉𝐷𝐷

2

4𝜏
 

The value of the parameters in the above equations are furnished below: 

D (parallel connection of memristive devices to latching switch) = 8  

M (closed switches in parallel) = 2  

VDD = VSET  

RON = 100Ω  

ROFF = 10kΩ  

𝜏 (𝑡𝑜𝑡𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑑𝑒𝑙𝑎𝑦), 
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The total circuit delay was calculated using the proposed space-time based notation for the 

Euclidean Distance Pipeline based on memristor device models from three published 

research [17][5][18]. 

𝐶𝑤𝑖𝑟𝑒  =  𝐶𝑤𝑖𝑟𝑒  /𝐿 ∗ 𝐿𝑤𝑖𝑟𝑒 =  (𝐶𝑤𝑖𝑟𝑒 /𝐿 ) ∗ 7 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑎𝑛𝑜  

𝑅𝑤𝑖𝑟𝑒 = ρ 
𝐿

𝐴
 = ρ0 ∗  (1 +

𝑙

𝐹𝑛𝑎𝑛𝑜
)

𝐿

𝐴
 

=  20𝛺 − 𝑛𝑚 ∗  (1 + 10𝑛𝑚/𝐹𝑛𝑎𝑛𝑜) 
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑎𝑛𝑜

𝐹𝑛𝑎𝑛𝑜
2   

𝑙 = electron mean-free path = 10 nm, which is typical for good metals at room temperature 

 ρ0 = 20 Ω − 𝑛𝑚 

variables:  

𝜏: 𝑡𝑜𝑡𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑑𝑒𝑎𝑙𝑦 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑎𝑛𝑜: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑎𝑛𝑜 𝑤𝑖𝑟𝑒 

𝐹𝑛𝑎𝑛𝑜: ℎ𝑎𝑙𝑓 𝑝𝑖𝑡𝑐ℎ 𝑜𝑓 𝑛𝑎𝑚𝑎𝑛𝑜 𝑤𝑖𝑟𝑒𝑠 

𝐶_𝑤𝑖𝑟𝑒/𝐿: 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑏𝑒𝑙𝑜𝑤 𝑔𝑟𝑎𝑝ℎ 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑣𝑎𝑟𝑖𝑜𝑢𝑠 𝑛𝑎𝑛𝑜𝑙𝑎𝑦𝑒𝑟 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 

 

The wire capacitance values were generated using the well-known FASTCAP code as 

mentioned in [6], for the crossbar structure in which both width and thickness of the 

nanowire, as well as the horizontal distance between the wires, were assumed to be all 

equal to Fnano, while the vertical distance between two layers was varied between 2 to 4 

nm. These wire capacitance values were used in the PSPICE simulations and for power 

estimation for this research. 
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Figure 47: Cwire /L Calculation [6]. 

PDYN Calculation: 

Detailed power calculations were performed based on both 40nm half-pitch [20] 

and 8nm half-pitch [6] nanowire (nw) crossbars at two different VSET voltages. 

Therefore, the below four combinations [102] were used for the PDYN calculation. Also, 

Cwire values were calculated based on 2, 3, and 4nm separations as shown in Figure 47. 

1. 40nm nw width, spacing; VSET = 1 V: calculate PDYN using delay, 𝜏 from [17][5][18]. 

2. 8nm nw width, spacing; VSET = 1 V: calculate PDYN using delay, 𝜏 from [17][5][18]. 

3. 40nm nw width, spacing; VSET = 0.4 V: calculate PDYN using delay, 𝜏 from [17][5][18]. 

4. 8nm nw width, spacing; VSET = 0.4 V: calculate PDYN using delay, 𝜏 from [17][5][18]. 

As presented in Figure 48, detailed dynamic power calculations [6] were performed 

based on both 40nm half-pitch [20] and 8nm half-pitch [6] nanowire crossbars. Figure 48 

also shows the total dynamic power PDYN consumed by the complete memristor-based 

pipeline for the three types of memristor devices that were used for the device delay 
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calculations [Table 7-2]. The worst case PDYN is 9.63nW running at a VSET voltage of 1V 

consumed by the pipeline for the 40nm half-pitch nanowires. 

 

Figure 48: Total estimated dynamic power, Pdyn of the proposed memristor based complete pipelined 

datapath. Results show Pdyn consumption by various memristor device based designs [from Table 7-2] with 

both 8-nm and 40-nm half-pitch nanowires [102]. 

 

PLEAK and Sneak-path Current: 

Since memristors are resistors that conduct current constantly, sneak-path current 

is a concern for any memristor based design [102]. In the previous chapters, with the 

example of an 8-bit iterative adder circuit (Figure 9, Figure 10, and Figure 18) a 

methodology was proposed to provide the sneak-path current protection to the IMPLY-



172 

 

memristor based design. The proposed 8-bit adder eliminates all logic sneak-path currents 

and minimizes power related sneak-path current [102]. In this proposed design only one 

row or column of the 8×8 crossbar at a time can discharge through Gnd. Moreover, 

memristors go through reset with the VCLEAR voltage after completing the operations in 

each row. In the proposed 8-bit adder design only the sum bits are preserved in the eighth 

column of the 8×8 nanowire crossbar, while all other memristors are cleared. However, the 

memristors that are holding the sum bits cannot easily discharge as no direct path to Gnd 

is available for them. Thus this dissertation assumes that the leakage power PLEAK is 

negligible in the proposed design. However, without any sneak-path protection, the worst 

case estimated leakage power would be 0.8mW [6] per pipestage. This means that the 

hybrid system consumes 11% less power due to the sneak-path protection provided by this 

methodology. 

 

PON Calculation: 

Finally, the PON power was calculated. As shown in Figure 18, in proposed 

methodology the primary input data is copied over from storage MsRAM to row1 of the 

8×8 nanowire crossbar [102]. Therefore, as shown in Figure 9, the initial carry bit holds 

the memristance value for several pulses/cycles. This may cause some static power loss. 

However, since other protections are provided to the design, this loss is also negligible. 

The calculated PON power loss is 2.38µW per pipestage. Therefore, the power loss due to 

the initial carry bit is only (8/165) * 2.38 = 0.115µW per 8-bit adder.  

Here, the initial carry bit does not participate in any transfer during the first 8 pulses, while 

a total of 165 pulses are required for the 8-bit adder implementation. 



173 

 

CMOS PDYN Calculation: 

The estimated dynamic power consumption by CMOS circuitry in the hybrid chip, 

per 8×8 memristive nanowire crossbar (per pipestage) is 2.25mW at 25% toggle rate and 

therefore, for four pipestages of the complete ED pipeline, it is approximately 9mW [102].  

Thus in the proposed methodology, the total power consumption of the memristive-

nanowire crossbar is negligible and the CMOS dynamic power dominates the overall 

power consumption of the hybrid design. The proposed hybrid MsFPGA operating at the 

supply voltage of 1.0V consumes ~9mW total dynamic power. 

 

7.3.4 Memristor-Nanowire Crossbar Area Estimation 

Memristors are physically located at the intersections of each horizontal nanowire 

and vertical nanowire in a two-layer crossbar network. Therefore, the total nanowire 

crossbar area (x and y dimension) required for the ED pipeline design was calculated [102]. 

Based on several publications on the fabrication of nanowire crossbars [20][30][31][32], 

the required area for the ED pipeline was estimated. For example, Borghetti et al. [20] 

fabricated 40 nm half-pitch memristor crossbars using nanoimprint lithography on the 

same silicon substrate with CMOS, for fully integrated hybrid circuits. Half-pitch is 

defined as half the distance between two nanowires from center to center. Therefore, the 

width of nanowire=40 nm, spacing of nanowire =40 nm and the center to center distance 

is 80nm. Also, since memristors in a crossbar are located at the intersection of each 

horizontal nanowire and each vertical nanowire, the memristor cross-sectional area for a 

40-nm half-pitch is 40 nm x 40 nm.  
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Before we can estimate the design area and delay calculations, every memristors-

based block in the MsFPGA system is designed with IMPLY-memristors using the space-

time notation. Thus we know how many memristors or 8x8 crossbar block(s) and also how 

many pulses are required for designing each component or block. The number of 

memristors is used for the layout area estimation and the number of pulses is used for the 

delay calculation. 

Figure 49 and Figure 50 elaborate the area calculation method for an 8x8 nanowire 

crossbar for the 40 nm half-pitch memristor crossbars.  

X-direction distance = (Full-pitch between nanowires * number of nanowires in the 

middle) + (Half of two side nanowires on both ends).  

Half of each nanowire = 20nm; 

 X-direction distance = (80 * 7) + (20) = 600 nm; 

Similarly, Y-direction distance = 600 nm; 

Thus the total area of 8x8 crossbar = 0.6 * 0.6 µm2 = 0.36 µm2 

 

Figure 49: 40-nm Half-pitch Distance Between Two Nanowires. 
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Figure 50: X-Distance Measurement for eight vertical nanowires. Total x-Distance is 0.6µm. Similarly, total 

y-Distance for eight horizontal nanowires is 0.6µm. Therefore, the area of an 8x8 nanowire crossbar is 

0.36µm2. 

 

Table 7-1 shows the total calculated area breakdown for various components in the 

ED pipeline datapath [102]. The MsRAM areas for the subtractor, adder, comparator and 

multiplexer were calculated. Since the total number of micro-pulses for the complete 

pipeline is 1027 and the total number of control bits is 21, therefore the total MsRAM area 

was calculated as shown below: 

MsRAM area = ((Total number of micro-pulses * Total number of control bits) * Total 

area for 8x8 crossbar)/Total number of memristors in an 8x8 crossbar. 

Thus, the total MsRAM area for the ED pipeline is calculated as 121.31µm2. 
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Table 7-1: CALCULATED AREA OF COMPONENTS OF ED PIPELINE DATAPATH [102]. 

Component 

 

Memristors Area(µm2) 

 

8-bit sub 8x8 0.36 

LUT 256x16 23.04 

18-bit adder 8x18 0.81 

18-bit comp 8x18 0.81 

18-bit mux 5x18 0.51 

Total  25.53 

 

Based on ref. [20], the estimated area [presented in Table 7-2] of the proposed ED 

pipeline datapath is 25.5µm2, with corresponding MsRAM area in Pulse Generator is 

121µm2.  Therefore, the total area consumed by the complete ED pipeline is 146µm2. 

However, with the use of 8nm half-pitch nanowires [6], the total area requirement of the 

same above mentioned memristor-based ED pipeline is only 5.9µm2. Besides, the CMOS 

circuitry in the hybrid MsFPGA consumes 0.32mm2 area as estimated. Therefore, the area 

of the hybrid MsFPGA design is dominated by the CMOS components [102]. As the 

memristor crossbar technology matures, more components can be converted from CMOS 

to memristors and thus these components can be moved to the memristor layer from the 

CMOS layer [102]. 
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Table 7-2: CALCULATED DELAY AND AREA FOR ED PIPELINE USING IMPLY-MEMRISTIVE 

NANOWIRE BASED MsFPGA DESIGN [102]. 

 

Block 

 
Micro 

pulse 

required 

 

Delay 

Based on 

ZrO2 

memristor 

for each 

transfer = 

6.8ps [17]. 

 

Delay 

Based on 

TiO2 

memristor 

TEAM 

Model for 

each 

transfer = 

397.1ns 

[5]. 

Delay 

Based on 

TaOx 

memristor 

for each 

transfer = 

120ps [18]. 

 

Area 

(µm2) 

Based on 

Ref. [20]. 

 

Realistic 

Process 

Model 

Behavioral 

Model 

Behavioral 

Model 

 

8-bit 

Subtractor 

224 1.52ns 88.95µs 26.88ns 0.36 

16-bit LUT 

RAM 

35 0.24ns 13.9µs 4.2ns 23.04 

18-bit Full 

Adder 

369 2.51ns 146.53µs 44.28ns 0.81 

18-bit 

Comparator 

290 1.97ns 115.16µs 34.8ns 0.81 

18-bit 

Multiplexer 

109 0.74ns 43.28µs 13.08ns 0.51 

Pipeline Total 1027 6.98ns 407.82µs 123.24ns 25.53 

PG MsRAM 

For 5 Blocks 

in Pipeline 

- - - - 121.31 

 

7.4 Memristor-based Pipeline Design 

As discussed in Chapter 4, a CMOS pipelined circuit has a series of combinational-

sequential alternating blocks. Memristors are non-volatile memory and act like a Finite 
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State Machine (FSM). Therefore, for the memristor-implication based pipeline design, 

memristors function as sequential elements. So, at the output of the memristor-based 

combinatorial block, memristors act like an asynchronous delay circuit elements and hold 

the data. Thus the standard registers (such as those with D Flip Flops) and their standard 

clock are not required for the proposed methodology as illustrated in the memristor-based 

pipeline design. This useful advantage makes the memristor-based design more efficient 

compared to the CMOS-based pipelined circuits and thus saves area, and power, and 

reduces the design complexity significantly. The example illustrates that the proposed 

design style is the best for massively parallel multiple pipeline designs which are typical 

for image processing, digital signal processing, control, pattern recognition, neural network 

emulation, data mining and similar applications, driving forces for the development of new 

hardware technologies and their associated design methodologies. 

The ED pipeline was designed using the space-time notation for implication gates 

realized with memristors as presented in Figure 53 [102]. The calculated delay and area 

numbers for this design are presented in Table 7-2 [102]. Two behavioral models [5][18] 

and one process-based model [17] from the literature were used for memristor device 

delays and the nanowire crossbar was simulated in PSPICE for RC delay for the proposed 

IMPLY-memristor based ED pipeline design. The performances of the CMOS components 

in the hybrid design were obtained through HDL (Hardware Description Language) 

Verilog simulations and synthesis results using Xilinx tools [15].  
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8 RESULTS 

 

Comparative Performance Analysis of MsFPGA  

As presented in the previous chapters, the design and methodology of MsFPGA, 

which is a stateful IMPLY-memristor-CMOS hybrid FPGA was proposed in this 

dissertation. This dissertation work has also proposed the pipelined implementation of the 

Euclidean Distance (ED) Processor. The example of Euclidean Distance calculator was 

used for both CMOS FPGA design as well as MsFPGA design. Using the two technologies, 

an exactly same pipeline is designed with the arithmetic blocks − subtractor, square 

operator, adder, comparator and multiplexers. Since CMOS is the state-of-the-art 

technology, the ED pipeline was additionally designed using CMOS, so that a comparative 

performance analysis against the proposed memristive-CMOS hybrid design is possible.  

For the convenience of the readers, Figure 51, Figure 52, and Figure 53 are presented 

again in this chapter. Logic components of Figure 51, CMOS FPGA ED pipeline and 

“virtual” registers are all included in the red polygon of Figure 52, MsFPGA showing one 

pipeline. Proposed MsFPGA architecture also contains memories and a pulse-generator 

which are problem-specific programmable blocks and are shown in Figure 52. Also, the 

components in Figure 52 red polygon are marked/mapped in Figure 53, memristor-CMOS 

Hybrid ED pipeline. The red polygon in Figure 52 is nothing but a fabric, the actual logic 

is configured in the MsRAM located in the Pulse Generator.  
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Figure 51: Pipeline Implementation of the Euclidean Distance (ED) Calculator (without 

square-root function) using standard CMOS FPGA [102]. 
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Figure 52: Proposed Memristive stateful logic Field Programmable Gate Array 

(MsFPGA). The details of the “Hybrid Pulse Generator” and the “CMOS Merge Block” 

are shown in Figure 17. The red polygon represents one pipeline of the proposed ED 

architecture and the implementation is illustrated in Figure 53. Color code: Green- 

memristor nanowire crossbar, Yellow- CMOS, Blue- Hybrid circuitry [102]. 
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Figure 53: Pipeline Implementation of the Euclidean Distance (ED) Calculator using proposed MsFPGA, 

memristor-CMOS Hybrid FPGA. Color code: Green-memristor nanowire crossbar, Yellow- CMOS, Blue- 

hybrid circuitry [103]. 

A comparative study between CMOS technology and the proposed memristor-

CMOS hybrid technology is presented here using the example of the Euclidean Distance 

calculation pipeline as shown in Figure 51 and 53 respectively [102]. Based on the results 

presented in Chapter 4 for CMOS FPGA implementation and Chapter 7 for proposed 

MsFPGA implementation, it is clear that a memristor based technology is a promising 

alternative for future logic design. The delay numbers calculated in Table 7-2 for the 

proposed IMPLY-memristor based design using the realistic process based simulation 

model by Mazadi et al. [17] showed better results compared to the CMOS FPGA based 

design shown in Table 4-1. Also significant area advantage of the IMPLY-memristor based 

design was demonstrated, although for the memristor-CMOS hybrid design the CMOS 

circuitry consumes most of the design area. However, if we exclude the CMOS circuitry 

of the hybrid design and only compare the area of the ED datapath, we would see a massive 
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reduction of area (146µm2 area consumed by IMPLY-memristor nanowire crossbar vs. 

0.6mm2 area consumed by CMOS FPGA). These numbers strongly justify the advantages 

of the IMPLY-memristor based design over the standard CMOS design.  

Besides, in the proposed MsCMOL architecture, protection from the sneak-path 

current was provided with the proposed methodology in Chapter 6 using an 8-bit iterative 

adder circuit. This design not only works to minimize the leakage power, but also is 

protected from flipping bits or logical error. The dynamic power consumed by the example 

CMOS FPGA at 25% toggle-rate was 22mW, which was much higher compared to the 

memristor-CMOS hybrid design (~9mW) if both the designs were driven with a supply 

voltage of 1V. These comparative results are presented in Figure 54, where graphs are 

plotted in logarithmic scale and the results are also presented in Table 8-1. 

 

 

Figure 54: PERFORMANCE COMPARISON OF CMOS FPGA VS. PROPOSED MsFPGA (In Logarithmic 

scale). 
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Table 8-1: PERFORMANCE COMPARISON OF CMOS FPGA VS. PROPOSED MsFPGA. 

Performances CMOS FPGA MsFPGA CMOS 

Component 

of 

MsFPGA 

Delay 25.9ns ZrO2 Realistic Process Model: 

6.98ns 

TaOx Behavioral Model: 

123.24ns 

TiO2 Behavioral Model: 

407.82µs 

- 

Datapath Area 0.6mm2 146µm2 x 

Total Die 

Area 

0.904 mm2 x 0.32mm2 

Static Power Whole FPGA is 

on, so not 

comparable. 

Sneak-path protection provided. - 

Dynamic 

Power @25% 

toggle-rate 

22mW 9.63nW ~ 9mW 

 

The pulse frequency for the ZrO2 memristor variant can be 147GHz [17], which 

translates into a 6.8ps micro-pulse for every logical operation. I suggest a high-frequency 

clock to drive the CMOS-memristor hybrid design in the future as it has already been 

shown that CMOS can be operated at 160GHz frequency or above 

[23][24][25][26][27][28]. However, running the clock at high frequency would cost 

significant power dissipation unless provided necessary solutions for that. 
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9 CONCLUSIONS 

 

This dissertation work has proposed the Memristive stateful logic Field 

Programmable Gate Array (MsFPGA), a novel and innovative memristor-CMOS hybrid 

FPGA for digital system design [102]. This architecture is reconfigurable and can be used 

for many applications, including those that demonstrate massive parallelism [102]. This 

includes especially various types of neural architectures. In this disserations we are 

assuming that massive parallel arithmetic operations are possible, as is pipelining. 

However, it should be obvious to the reader that advantages of the proposed regular design 

are also applicable to Single Instruction Multiple Data (SIMD)-like, systolic, and CMOL-

like datapath-memory architectures that are typical of DSP, neural network and image 

processing. The proposed MsFPGA is particularly suited to regular designs with 

rectangular or square blocks executed in parallel. Since the blocks communicate mostly by 

abutting, the routing is simplified. This makes this architecture particularly well-suited for 

regular SIMD-like and pipelined architectures. However, because a logical block can also 

be used for interconnect, in principle the fabric of the MsFPGA can be used for general 

purpose combinational and sequential functions as presented in [9][10][13]. This 

dissertation also showed how to eliminate logically dangerous sneak-path current in the 

nanowire crossbar design using this methodology [102]. The high level architecture, the 

Memristive Finite State Machine with Datapath (MsFSMD), (which is designed with a 

CMOL-like datapath-memory, MsCMOL and a memristor-CMOS hybrid controller) was 

introduced [102]. The hybrid controller has a Pulse-Generation unit, which is based on 
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Memristive stateful RAM, MsRAM with CMOS interfaces and a small CMOS FSM [102]. 

This work also proposed a new architecture for calculating Euclidean Distance as a 

pipelined design, and implemented the hardware with memristors based on implication 

logic [102]. This dissertation showed a comparison of circuit performance between the 

proposed memristor-CMOS hybrid design and a pure CMOS FPGA design that shows the 

significant promise of memristors to be a viable new circuit technology for both memory 

and combinational logic (including arithmetic) operations [102].  

There are a variety of possible research topics that will result from the work presented 

here. One example involves testing the proposed MsFPGA. This topic is not addressed, 

with the exception of [46]. A testing method can be proposed that will be similar to the 

testing of the classical EPLDs, GALs and FPGAs [47][48]. Moreover, this testing method 

is intended to be used in fault tolerant design, which is able to self-repair using the spare 

column method in the crossbar. 
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Contributions 

[1] This dissertation has presented a hardware design methodology that is suitable for 

massively parallel and pipelined reconfigurable architecture. Also, this work 

implemented the design using the proposed methodology with the IMPLY-

memristor based nanowire crossbar [102]. The application areas of the proposed 

design methodology are, due to the kind of highly parallel, pipelined execution, the 

methodology enables pattern recognition, robot motion, neural network, big data 

analysis etc. These application areas include biologically inspired associative 

memory based models and other similar algorithms. 

[2] Using the proposed space-time based notation and proposed pulse generator, this 

dissertation presented optimized design for logic blocks using IMPLY-memristors 

[102]. The list includes critical circuits, such as, XOR (exclusive OR) gate, 

Half/Full adder, Subtractor, Multiplexer, Comparator design.  

[3] In this dissertation, an innovative concept of an 8-bit iterative adder design using 

the IMPLY-memristor is presented. The 8-bit iterative adder is designed in a new 

type of 8x8 nanowire crossbar, where, each adder bit is implemented in one row of 

the 8-row crossbar network [102]. The design is optimized for area and delay and 

has sneak-path protection [102]. Similarly, components of 8-bit, 16-bit, or any other 

order bit can be designed using one or multiple 8x8 crossbar blocks, as needed. For 

this dissertation other arithmetic blocks, e.g. subtractor, comparator, multiplexer, 

square-operator blocks were also designed using the same design concepts.  
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[4] The innovative pipelining concept is presented for the datapath design using an 

array of 8x8 nanowire crossbar blocks [102]. This array of blocks can grow both 

horizontally as well as vertically and can act as a pipeline. 

[5] A novel Hybrid memristor-CMOS MsFPGA (Memristive stateful logic Field 

Programmable Gate Array) [102] design was proposed in this dissertation. The 

proposed MsFPGA is a reconfigurable system that can be designed with pipelined 

datapaths and massive parallelism. This parallelism can be designed by driving 

many such pipelines (mentioned in [4] above) with one controller simultaneously, 

using the SIMD (Single Instruction Multiple Data) concept. These are innovative 

concepts for the memristive FPGA design, presented by this research. 

[6] Several novel architectural concepts were developed. The proposed methodology 

provides a general new architecture model, Memristive stateful Finite State 

Machine with Datapath (MsFSMD) [102]. Like conventional FSMD, this 

proposed system is also a digital system that includes a finite-state machine, and a 

datapath, but all logic is stateful and is implemented with memristors, which 

changes timing and design methods used. Besides, the MsFSMD model has an 

additional control block called the pulse generator [102]. The pulse generator can 

be defined as the brain of the proposed MsFPGA. The pulse generation block 

contains the Memristive stateful RAM (MsRAM). The usage of the MsRAM [102], 

another innovation of this dissertation work, which contains all the configuration 

information required to realize the virtual logic circuit in the memristive nanowire 

crossbar datapath. 
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[7] The proposed MsFPGA uses memristors for memory, connections programming, 

and combinational logic implementation as opposed to other published memristor 

based FPGAs, such as mrFPGA, where memristors are reconfigured for logic 

connections only.  

[8] This dissertation proposed solutions to several critical circuit implementation 

challenges for memristor-nanowire crossbar designs. The proposed MsCMOL, 

usage of data storage MsRAM, usage of an array of 8x8 nanowire crossbar blocks, 

the proposed sneak-path protection, and the proposed row-to-row data transfer are 

all novel ideas and are valuable to the development of memristor technology [102].  

[9] Sneak-path current causes both logical error as well as power consumption in 

various types of nanowire crossbar designs, including memristor-nanowire 

crossbar design. This research proposes a design methodology for an innovative, 

novel sneak-path protected IMPLY-memristive-nanowire crossbar circuit [102]. 

For this purpose, an example of an 8-bit Full iterative adder design was presented 

in detail. This design is free of dangerous logical errors and it was minimized for 

possible power consumption. The power consumption for this proposed design is 

reduced to the lowest possible level. This sneak-path free combinatorial circuit 

design methodology proposed by this research is much more robust than any other 

published research on similar designs with nanowire crossbars. 

[10] This dissertation performed the price-performance analysis of CMOS 

FPGA versus CMOS-memristive hybrid FPGA (Proposed MsFPGA) designs 

using the Euclidean Distance pipelined datapath [102]. This is a new contribution 
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as no other published research has presented performance comparisons between 

two technologies for complete systems with simulated results. 

[11] This dissertation proposed the hardware implementation of the Euclidean 

Distance Calculator as an innovative pipelined datapath and presented this 

datapath as a CMOS FPGA design as well as a memristive FPGA design [102]. 

Since Euclidean Distance calculation is used in many neural network and 

associative memory based software algorithms, the hardware realization of the 

Euclidean Distance Calculator as a pipelined datapath with memristors is an 

important concept. This concept can be used in the hardware realization of 

neumerous application areas, such as, supervised and unsupervised learning, 

pattern recognition, neural network, hierarchical clustering, phylogenetic analysis, 

molecular conformation in bioinformatics, dimensionality reduction in machine 

learning and statistics, natural language text processing, image processing, medical 

imaging, data mining, big data analysis, shape matching, pedestrian detection, 

human tracking, action recognition, robot motion planning, shape simplification, 

volume representation and smoothing Voronoi Diagrams applied in graphics, and 

robot path planning [19][36][37][38][39][40][41][42][43][44][45]. 
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Appendix A - SOFTWARE – MATLAB CODES FOR ESOINN & GAM 

(PATTERN RECOGNITION ALGORITHMS) 

The motivation of this work is explained in detail in Chapter 1 of this 

dissertation. For this research, various biologically inspired i.e. neural network based 

pattern recognition algorithms were studied. In order to understand and compare the 

performance, some of these promising algorithms were coded in MATLAB as a part of 

this research. The pseudo codes were published in many papers 

[51][52][61][73][79][80] and most of those algorithms were coded for this research. 

These algorithms were then simulated and a comparative performance for the pattern 

recognition application was conducted. Based on the performance comparison, GAM 

(General Associative Memory) [80] was found to be the best algorithm for both spatial 

and temporal pattern recognition. 

  Although the original goal of this dissertation work was to develop a hardware 

design methodology for this best performing algorithm for its complete system, 

however, later we realized that the implementation of the complete system is 

unnecessary for providing the design methodology. Therefore, a common critical 

hardware component was selected to develop the design methodology that is used by 

most of the neural network and machine learning based algorithms. This component is 

the Euclidean Distance (ED) Processor/Calculator. ED calculator can be used in a 

massively parallel and pipelined datapath systems and thus it can have applications in 

pattern recognition, robot motion, big data analysis, image processing, voice 

recognition, DSP, database mining and may other hardware systems where large 

number of wide vectors need to be processed simultaneously.  
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 The ESOINN [79] and GAM [80] codes are presented in Appendix A. 

ESOINN (Enhanced Self-Organizing Incremental Neural Network) Model:  

The ESOINN algorithm is an Unsupervised Learning algorithm for Spatial 

Pattern Recognition. Unsupervised learning [79] studies how a system can learn to 

represent particular input patterns in a way that reflects the statistical structure of the 

overall collection of input patterns. By contrast with supervised learning or 

reinforcement learning, in unsupervised learning there are no explicit target outputs or 

environmental evaluations associated with each input. 

GAM (General Associative Memory) Model: This algorithm is an improved version of 

ESOINN for temporal pattern recognition. 

Handwritten digit database 

  

This training dataset used for the algorithm was derived from the original MNIST database 

available at http://yann.lecun.com/exdb/mnist/ [70] 

The training data file for each class 0 to 9 was generated.  

File format: 

Each file has 1000 training examples. Each training example is of size 28x28 pixels. The 

pixels are stored as unsigned chars (1 byte) and take values from 0 to 255. The first 28x28 

bytes of the file correspond to the first training example, the next 28x28 bytes correspond 

to the next example and so on.  

 

Algorithm Organization: 

 Many classes 

http://yann.lecun.com/exdb/mnist/
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 Many sub-classes under each class 

 Many nodes under each sub-class 

Data Structure:  

Data of 10 classes - 0 – 9 

In each class there are 1000 samples 

So potentially there are 10*1000 = 10K nodes 

Node = 28x28 = 784 elements with values between 0 to 255 

Node = A vector of 784 elements with values from 0 to 255 

Each image is node -> sub-class -> class   

When an image is received, first its class is found and then its subclass is identified. 

Class will be indexed/identified by numbers 0 - variable 

Sub-class will be indexed/identified by numbers 0 - variable 

Nodes will be indexed/identified by numbers 0 - variable 

Image can be catalogued --> NODE[CI][SCI][NI] 

CI -> Class index 

SCI -> Sub-class index 

NI -> Node index 

Node has a local maximum density -> apex of a sub class 
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Image Database: The image database is populated with 10,000 images, of which, the node 

distribution for digits 0 through 9 is shown in Figure A-1. Each digit between 0 through 9 

represents a Class. Each category in Figure A-1 has 1000 images and each of these images 

represents a Subclass under the Class. Figure A-2 shows MNIST handwritten digits. Each 

digit has a pixel size of 28x28. The pixels are stored as unsigned chars (1 byte) and take 

gray-scale values from 0 to 255. The first 28x28 bytes of the training file correspond to the 

first training example, the next 28x28 bytes correspond to the next example and so on. As 

such, 10,000 lines were concatenated in one training file.  

Nodes Represent Image for Digit 

1-1000 0 

1001-2000 1 

2001-3000 2 

3001-4000 3 

4001-5000 4 

5001-6000 5 

6001-7000 6 

7001-8000 7 

8001-9000 8 

9001-10000 9 

 

Figure A- 1: Node Representation for Various Digits. 
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Figure A- 2: MNIST Handwritten Digits used in the experiments. Upper left: Classes 2, 4, 5, 8; Right: 

Subclasses of digit 4; Lower left: 3-D image of digit 4. 

 

Training database: There are 400 images randomly picked from the image database and 

used for training, of which nodes 1-100 represent image 2; nodes 101-200 represent 

image 4; nodes 201-300 represent image 5 and nodes 301-400 represent image 8. 

Test database: There are 200 images randomly picked from the image database and used 

for testing, of which nodes 1-50 represent image 2; nodes 51-100 represent image 4; 

nodes 101-150 represent image 5 and nodes 151-200 represent image 8. The number of 

test images is a smaller set compared to the number of training images. 
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Distance Threshold constant: 

A distance threshold constant is used to control the classification of a new node 

to a new class or to an existing class. During the experimentation, the values of distance 

threshold are changed several times. A small value of distance threshold may result in 

a large number of classes. For example, after some trial and error, for the four broader 

input classes (digits 2, 4, 5, 8) as mentioned above, a large number of classes can be 

obtained at the output. With further experimentation, it is possible to obtain even fewer 

classes at the output by iterating on the distance threshold constant.  
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ESOINN MODEL: 

readdata.m 

clear all 

%open the file corresponding to digit  

k=1; 

l=1; 

for j=[1 4 5 8] 

    filename = strcat('MNIST\data',num2str(j),'.txt'); 

    [fid(k) msg] = fopen(filename,'r'); 

    filename 

    %read in the first training example and store it in a 28x28 size 

matrix t1  

    for i=1:100 

        [data28x28,N]=fread(fid(k),[28 28],'uchar');  

        data(l,:) = reshape(data28x28,1,28*28); 

        dataX = reshape(data28x28,1,28*28); 

        l = l+1; 

        %imshow(data28x28'); 

        %pause(0.5) 

    end 

    k = k+1; 

end 

save ('numimagedat4_1.mat','data'); 

 

distcalc.m 

function z = distcalc(w,p) 

 

%DIST Euclidean distance weight function. 

%  Algorithm 

%  The Euclidean distance D between two vectors X and Y is: 

%  D = sqrt(sum((x-y).^2)) 

 

[S,R] = size(w); 

[R2,Q] = size(p); 

if (R ~= R2), error('Inner matrix dimensions do not match.'),end 

 

z = zeros(S,Q); 

if (Q<S) 

  p = p'; 

  copies = zeros(1,S); 

  for q=1:Q 

    z(:,q) = sum((w-p(q+copies,:)).^2,2); 

  end 

else 

  w = w'; 

  copies = zeros(1,Q); 

  for i=1:S 

    z(i,:) = sum((w(:,i+copies)-p).^2,1); 

  end 

end 
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z = sqrt(z)/R; 

 

findthreshold.m 

% given a set of nodes, find maximum & minimum sim_threshold of each of 

the nodes. 

function [TMax, TMin] = findthreshold(a,DIST_THRESH) 

 

[NRow,MCol] = size(a); 

 

for i=1:NRow % assuming I have 100 nodes 

     

    TMax(i) = 0; 

    TMin(i) = 9999; 

     

    for j=1:NRow 

        dist =  distcalc (a(i,:), a(j,:)'); 

        %fprintf('%f %f\n',DIST_THRESH, dist); 

        if(dist < DIST_THRESH) 

            if dist > TMax(i) 

                TMax(i) = dist; 

            end 

            if dist < TMin(i) 

                TMin(i) = dist; 

            end 

        end 

         

    end 

     

end 

 

return 

 

findwinners.m 

% given a set of nodes, find winner and second winner. 

function [winner, winner2, DWinner, DWinner2] = findwinners(a,x) 

 

[NRow,MCol] = size(a); 

 

for i=1:NRow % assuming I have 100 nodes 

    dist(i) =  distcalc (x, a(i,:)'); 

end 

 

if dist(1) < dist(2) 

    winner = 1; 

    winner2 = 2; 

else 

    winner = 2; 

    winner2= 1; 

end 

 

for i= 3:NRow 
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    if dist(i) < dist(winner) 

        temp = winner; 

        winner = i; 

        if dist(winner2) > dist(temp); 

           winner2 = temp; 

        end 

    else  

        if dist(i) < dist(winner2) 

            winner2 = i; 

        end 

    end 

end 

DWinner = dist(winner); 

DWinner2 = dist(winner2); 

return 

 

find winnersX.m 

% given a set of nodes, find winner and second winner. 

function [winner, winner2, DWinner, DWinner2] = findwinnersX(a,x) 

 

[NRow,MCol] = size(a); 

 

for i=1:NRow % assuming I have 100 nodes 

    dist(i) =  distcalc (x, a(i,:)'); 

end 

 

if dist(1) < dist(2) 

    winner = 1; 

    winner2 = 2; 

else 

    winner = 2; 

    winner2= 1; 

end 

 

for i= 3:NRow 

     

    if dist(i) < dist(winner) 

        temp = winner; 

        winner = i; 

        if dist(winner2) > dist(temp); 

            winner2 = temp; 

        end 

    else 

        if dist(i) < dist(winner2) 

            winner2 = i; 

        end 

    end 

end 

DWinner = dist(winner); 

DWinner2 = dist(winner2); 

% if DWinner == 0 

%     DWinner 
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%     sparse(a) 

%     sparse(x) 

% end 

 

Return 

 

 

find_neighbors.m 

function [nghbrs] = find_neighbors(winner, W, DIST_THRESH) 

 

% find how many nodes in the sub space 

 

[SR SC] = size( W); 

cnt = 1; 

for i=1:SR 

    dist = distcalc(W(winner,:), W(i,:)'); 

    if(dist < DIST_THRESH) 

        nghbrs(cnt) = i; 

        cnt = cnt + 1; 

    end 

end 

 

end 

 

return 

 

soinn_subclass.m 

clear all 

load soinn_400.mat 

 

% pick class 

 

[RC SC] = size(class_of_node); 

 

% initialize 

 

for i = 1:SC 

    visited(i) = 0; 

    subclass(i) = 0; 

end 

 

% now do the classification 

 

% "Connections matrix" is tracking all the connected nodes of a given 

node 

 

for i = 1:SC 

    k = 1; 

    for j = 1:SC 

        if(i ~= j) 

            if (Conn(i,j) == 1) 



215 

 

                Connections(i,k) = j; % Connection recorded 

                k = k + 1; 

              

            end 

        end 

    end 

end 

 

 

 

% Find density of each node 

for p = 1:NClass 

    scindx = 1; 

     

    for i = 1:SC 

        if ((visited(i) == 0) && (class_of_node(i) == p)) 

            k=1; 

            clear visited_t; 

            %fprintf ('class = %d node = %d\n',p,i); 

            marker = 99; 

            max = h(i); 

            max_node = i; 

             

            visited_t(k) = i; % Keepingtrack of visited tree 

            visited(i) = 1;   % Keeping track of the nodes that are 

already worked on 

             

            current_node = i; 

            new_marker = marker + 1 ; % this is a way to flag the last 

node of the tree 

             

            [max, max_node, new_marker, visited, visited_t, k] = 

search_node_tree(Connections, max, max_node, marker, current_node, k, 

h, visited_t, visited); 

             

            while (new_marker > marker) 

                marker = new_marker; 

                [max, max_node, new_marker, visited, visited_t, k] = 

search_node_tree(Connections, max, max_node, marker, current_node, k, 

h, visited_t, visited); 

                current_node = max_node; 

            end 

            % done searching that tree 

            % assign sub-class here 

            [X, TNodesInTree] = size(visited_t); 

            %disp ('visited_tree') 

            visited_t; 

            %disp('visited of current node') 

            visited(current_node); 

             

            for m=1:TNodesInTree 

               subclass(visited_t(m) ) = scindx; 

            end 
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            subclass_elems{p,scindx,:} = visited_t; 

            subclass_apex{p,scindx} = max_node; % Node with highest 

density of a given subclass 

            scindx = scindx + 1; 

        end 

         

    end 

    p; 

    scindxcount(p) = scindx -1; 

     

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  For testing writing the results to a text file 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

fileID = fopen('organize.txt','w'); 

for i = 1: SC 

%     %fprintf (fileID, 'class = %d subclass = %d node = 

%d\n',class_of_node(i), subclass(i), i); 

     fprintf (fileID, '%d %d %d\n',class_of_node(i), subclass(i), i); 

 end 

 fclose(fileID); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Following is needed for subclass merging 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for p = 1:NClass 

    for m = 1:scindxcount(p) 

        sum(p,m) = 0; 

        count(p,m) = 0; 

    end 

end 

 

for p=1:NClass 

    for m=1:scindxcount(p) 

        for i=1:SC 

            if( (class_of_node(i) == p) && (subclass(i) == m)) 

                sum(p,m) = sum(p,m) + h(i); 

                count(p,m) = count(p,m) + 1; 

            end 

        end 

    end 

end 

 

for p=1:NClass 

    for m=1:scindxcount(p) 

        Avrg(p,m) = sum(p,m)/count(p,m); 

    end 

end 

 

[dataR dataC] = size(W); 
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for p=1:NClass 

    fprintf('Total elements in class %d is %d\n',p,scindxcount(p)); 

    for m=1:scindxcount(p) 

        clear other_nodes; 

        if(scindxcount(p) > 1) % there is no point of finding winner 

and second-winners to other subclasses when we have only 1 subclass 

            mxnode = subclass_apex{p,m}; 

             

            for j=1:scindxcount(p) 

                scwinner(p,m,j) = 0; 

                scwinner2(p,m,j) = 0; 

                scDWinner(p,m,j) = 0; 

                scDWinner2(p,m,j) = 0; 

                all_elems_of_subclass = subclass_elems{p,j,:}; 

                [A Sz] = size(all_elems_of_subclass); 

                other_nodes = zeros(Sz,dataC); 

                 

                for i=1:Sz 

                    other_nodes(i,:) = W(all_elems_of_subclass(i),:); 

                end 

                subclass_elems{p,j,:} 

                if(Sz == 1) 

                    SnglNode = subclass_elems{p,j,:}; 

                    scwinner(p,m,j) = subclass_elems{p,j,:}; 

                    scwinner2(p,m,j) = subclass_elems{p,j,:}; 

                    scDWinner(p,m,j) = distcalc(W(SnglNode,:), 

W(mxnode,:)'); 

                    scDWinner2(p,m,j) = scDWinner(p,m,j); 

                else 

                    MoreNodeArray = subclass_elems{p,j,:}; 

                    [WW1,WW2,scDWinner(p,m,j), scDWinner2(p,m,j)] = 

findwinnersX(other_nodes,W(mxnode,:)); 

                    scwinner(p,m,j) = MoreNodeArray(WW1); 

                    scwinner2(p,m,j) = MoreNodeArray(WW2); 

                end 

                clear other_nodes; 

                fprintf ('p=%d m=%d, winner=%d, 

winner2=%d\n',p,m,scwinner(p,m,j), scwinner2(p,m,j)); 

            end 

        end 

         

    end 

end 

 

         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  Check if the two subclasses need to be merged 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for p=1:NClass 

    for m=1:scindxcount(p) 

        for j=1:scindxcount(p) 

            fprintf ('==>[%d %d %d] %d %d %f 

%f\n',p,m,j,scwinner(p,m,j), scwinner2(p,m,j),scDWinner(p,m,j), 

scDWinner2(p,m,j)); 
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        end 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% If nodes from two sub classes are connected -> disconnect 

% This is true for even if the two subclasses belong to two different 

class 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for i = 1:SC 

    for j = 1:SC 

        if((i ~= j) && (subclass(i) ~= subclass(j))) 

            if (Conn(i,j) == 1) 

                Conn(i,j) = 0;              

            end 

        end 

    end 

end 

 

 

subclass_test.m 

load soinn.mat 

[SA SB] = size(class_of_node); 

 

for ii = 1:SB 

    if(class_of_node (ii) == 2) 

        point_density(ii) 

    end 

end 

 

 

 

updt_winner.m 
 

function  [A] = updt_winner(winner, x, W, M) 

 

[SR SC] = size( W); 

 

for j = 1:SC 

    dW(j) = x(j) - W(winner,j); 

    A(j) = W(winner,j) + dW(j)/M(winner); 

end 

 

return 

 

 

updt_neighbors.m 

function  [W] = updt_neighbors(winner, nghbrs, x, W, M) 

 

[SR SC] = size( W); 
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[SNR SNC] = size(nghbrs); 

 

for k = 1: SNC 

    if(nghbrs(k) ~= winner) % We do not want to update winner again 

        for j = 1:SC 

            dW(j) = x(j) - W(nghbrs(k),j); 

            W(nghbrs(k)) = W(nghbrs(k),j) + dW(j)/(100*M(winner)); 

            %fprintf('neighbor node = %d\n',nghbrs(k)); 

        end 

    end 

     

end 

 

return 

 

updt_connection_matrix.m 

function [Conn] = update_connection_matrix (Conn, CN, value) 

 

[SR, SC] = size(Conn); 

 

for i = 1:SR 

    Conn(CN,SR) = value; 

end 

 

return; 

 

updt_conn_edge_n_point_density.m 

function [Conn, Age, point_density] = 

update_conn_edge_n_point_density(W, Conn, Age, winner) 

 

% Conn -- Connectivity matrix 

% W -- Weight vectors of each node 

% Age -- age of each connection. So all possible connection edge will 

have 

% an "age" value 

% winner - winner node 

% Size of connection matrix will determine the  

% size of existing node space 

%disp('Weight::') 

%W 

 

[SR, SC] = size(Conn); 

 

Agemax = 100; 

 

 

point_density = zeros(SR,1); 

avg_density = zeros(SR,1); 

 

% Search for all connectivity to winner and update their connection age 
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for i = 1: SC 

   if Conn(winner, i) == 1 

        Age(winner, i) = Age(winner, i) + 1; 

        

        if Age(winner, i) > Agemax 

            Conn(winner, i) = 0; 

        end 

    end 

end 

 

% Now calculate the point density of ALL the nodes  

for i = 1: SR 

    dist = 0; 

    M=0; % Number of connections with the given node "i" 

    for j = 1: SC 

        if i ~= j 

            if Conn(i, j) == 1 

                % W(i,:) 

                % W(j,:) 

                dist = dist + distcalc(W(i,:),W(j,:)'); 

                M = M + 1;         

            end 

        end 

    end 

     

    % Calculate Average Density 

    if(M > 0) 

        avg_density(i) = dist/M; 

    else 

       avg_density(i) = 0; 

    end 

    if M == 0 

        point_density(i) = 0; 

    else 

        point_density(i) = 1/ (1 + avg_density(i))^2; 

    end  

end 

return 

         

search_node_tree.m 

function [max, max_node, new_marker, visited, visited_t, k] = 

search_node_tree (Connections, max, max_node, marker, current_node, k, 

h, visited_t, visited) 

 

% Now lets find the largest connected tree because that will determine 

the 

% final size of the "Connections" matrix 

 

[CR, CC] = size(Connections); 

new_marker = marker; 

k; 

 

for jc = 1:CC % checking connections of the nodes connected to i 
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    j = Connections(current_node,jc); 

    if ( j ~= 0) 

        %fprintf ('=> %d %d %d %d %d\n',current_node, j, k, 

visited(current_node), visited(j)); 

    end 

    if (  ( j ~= 0) && (max_node ~= j)) 

        if (visited(j) ~= 1) 

            k = k+1; 

            visited_t(k) = j; 

            visited(j) = 1; 

            if (h(j) > h(max_node)) 

                max = h(j); 

                max_node = j; 

                new_marker = marker + 1; 

            end 

        end 

        %fprintf ('===> %d %d %d\n',current_node, j, k); 

        visited_t; 

    end 

 

soinn.m 

clear all     

load numimagedat4.mat  

 

% Select two random entries from the image database to   

% initialize the SOINN system  

dist = 0; 

 

[DataSize,DataElems] = size(data); 

 

DIST_THRESH = 3.00; %% used for determining the neighboring nodes 

 

while(dist < 2.5)  

    randindx1 = (round(rand(1)*(DataSize-1)) +1); 

    randindx2 = (round(rand(1)*(DataSize-1)) +1);    

    W(1,:) = data(randindx1,:);  

    W(2,:) = data(randindx2,:);  

    sd = 0; 

 

% i stands for row vector and ik stands for column values in each row 

 

    for ik=1:784 

        sd = sd + (W(1,ik) - W(2,ik))^2; 

    end 

    dist = sqrt(sd)/784; 

    TMax(1) = dist; 

    TMax(2) = dist; 

end 

% Now the system has two nodes 

N= 2; 

NClass = 2; 

%class(class,node#)=node# 
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class_of_node(1) = 1; 

class_of_node(2) = 2; 

 

Conn(1,1) = 1; 

Conn(1,2) = 0; 

Conn(2,1) = 0; 

Conn(2,2) = 1; 

 

Age(1,1) = 0; 

Age(1,2) = 0; 

 

M(1) = 1; 

M(2) = 1; 

 

% Introduce new nodes (i.e. images) to the system 

for i = 1: DataSize-2 

    indx = i; 

    % CN --- index of the nodes as a new input is introduced 

    CN = 2 + i; 

    x = data(indx, :); 

    Conn(CN,CN) = 1; 

    Age(CN,CN) = 0; 

    [winner, winner2,DWinner, DWinner2] = findwinners(W,x); 

    W(CN,:)= x; 

    M(CN) = 1; 

    % update connection matrix for the new member with no connection to 

    % begin with 

    [Conn] = update_connection_matrix (Conn, CN, 0); 

    % W - Weight matrix 

    % Conn - Connection matrix 

    % Age = Age matrix 

    % winner - ID of the winner node 

    if DWinner > TMax(winner) % A new class. 

        NClass = NClass+1; 

        class_of_node(CN) = NClass; 

        [TMax, TMin] = findthreshold(W,DIST_THRESH); 

        Conn(CN, winner) = 0; 

        Age(CN, winner) = 0; 

        Conn(CN, winner2) = 0; 

        Age(CN, winner2) = 0; 

        point_density(CN) = 0; 

        size(Conn); 

         

    else % step4 - member of existing class of the winner node 

        class_of_node(CN) = class_of_node(winner); 

        M(winner) = M(winner) + 1; 

        [TMax, TMin] = findthreshold(W,DIST_THRESH); 

        Conn(CN, winner) = 1; % establishing a connection between 

winner and the new node 

        Conn(winner, CN) = 1; 

        dw1w2 = distcalc(winner, winner2); 

        Age(CN, winner) = 0; % setting age to 0 

        Age(winner, CN) = 0; 

        if(dw1w2 < DIST_THRESH) 
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            Conn(winner, winner2) = 1; 

            Conn(winner2, winner) = 1; 

            Age(winner, winner2) = 0; 

            Age(winner2, winner) = 0; 

        end 

        %%% Update weight of winner and its neighbors 

        % find neighbors of winner 

        [nghbrs] = find_neighbors(winner, W, DIST_THRESH); 

        % update weight of winner 

        [W(winner,:)] = updt_winner(winner, x, W, M); 

        % update weight of neighbor 

        [W] = updt_neighbors(winner, nghbrs, x, W, M); 

        % disp('Weight::'); 

        %W 

        [Conn, Age, point_density] = 

update_conn_edge_n_point_density(W, Conn, Age, winner); 

        % Now that I updated the point density of one node, I need to 

        % update the accumulated point density of every one 

 

    end 

    size(point_density); 

    point_density'; 

    for kk = 1: i-1  

        

       % kk is the row and CN is the column.  

       % kk tracks the history of the 

       % previous learnings as a row of the 

       % "point_density_history" matrix. 

       % Since each row has to hold same number  

       % of columns and as we learn 

       % new items, number of columns grow,  

       % we have to zero pad the earlier 

       % rows to accommodate the size growth for the new entry 

 

       point_density_history(kk,CN) = 0; 

    end 

     

    point_density_history(i,:) = point_density'; 

    [sr, sc] = size(point_density_history); 

     

    for col = 1:sc    

        NN = sum(spones(point_density_history(:,col))); 

        accum_point_density(col) = sum(point_density_history(:,col)); 

        mean_accum_point_density(col) = accum_point_density(col)/NN;   

        h(col)= mean_accum_point_density(col); 

    end 

     

end 

 

save('soinn_400.mat') 
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GAM MODEL: 
 

 

 soinn_12_train_v0: Implementation of algorithm 1 & 2 for training the memory 

layer and creating the associative layer. 

 

% In algorithm at first we put all nodes into one class 

% For training you go with known classes of data as suggested in GAM 

% Or you go with unsupervised learning as suggested in SOINN 

% 

% ALGORITHM 1: Learning of the memory layer 

% ALGORITHM 2: Building Associative Layer 

 

clear all 

tic 

for ClsName=1:10 

    FName = strcat('traindata_p',num2str(ClsName),'.mat'); 

    FName 

    load ( FName ); 

    [DataSize,DataElems] = size(data); 

     

    % introduce new node - Step 4 

    Class(ClsName).Node(1).W = data(1,:); 

    Class(ClsName).Node(1).Th = 0; 

    Class(ClsName).Node(1).M = 1; % Frequency of winning of that node 

    Class(ClsName).Node(1).N = 0; % 

    Class(ClsName).NodeCount = 1; 

    ClassCount = 1; 

    Class(ClsName).ConnMatrix(1,1) = 1; 

    Class(ClsName).ConnAge(1,1) = 1; 

     

     

    for indx = 2: DataSize 

        x = data(indx,:); 

        DoneClassification = 0; % Reset it every time  

                                 % you processed a new node 

        XX= ['Training Class => ',num2str(ClsName),' New data => 

',num2str(indx)]; 

        disp(XX); 

         

        % Find winner and second winner - step 6 - 8 

         

        WinnerNode = 1; 

        Winner2Node = 1; 

        WinnerDistance = 0; 

        Winner2Distance = 0; 

         

        for Ni = 1:Class(ClsName).NodeCount 

            dist = distcalcSOINON(Class(ClsName).Node(Ni).W ,x); 
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            %dd = sprintf ('Now Processing indx:  %5d -> Node: %5d 

dist: %f [Node Th: %f]' , indx, Ni, dist, Class(ClsName).Node(Ni).Th ); 

            %disp(dd); 

             

            if (dist > Class(ClsName).Node(Ni).Th)      % Step 8 

                %disp('dist > thr'); 

                if Class(ClsName).Node(Ni).Th == 0 

                    %disp('=> Wd = 0'); 

                    WinnerNode = Ni; 

                    Winner2Node = Ni; 

                    WinnerDistance = dist; 

                    Winner2Distance = dist; 

                    Class(ClsName).Node(Ni).Th = dist; 

                else 

                    if WinnerDistance == Winner2Distance 

                        %disp( '=> Wd == W2d'); 

                        if WinnerDistance == 0 

                            Winner2Node = Ni; 

                            Winner2Distance = dist; 

                            WinnerNode = Ni; 

                            WinnerDistance = dist; 

                        elseif dist > WinnerDistance 

                            Winner2Node = Ni; 

                            Winner2Distance = dist; 

                        else 

                            WinnerNode = Ni; 

                            WinnerDistance = dist; 

                        end 

                    elseif dist < Winner2Distance 

                        %disp('=> dist < W2d'); 

                        Winner2Node = Ni; 

                        Winner2Distance = dist; 

                    else 

                        %disp(['  > th but 

..',WinnerDistance,Winner2Distance]); 

                    end 

                end 

                 

            else 

                % Update winner and second winner - Step 6 

                if dist <=  Class(ClsName).Node(Ni).Th 

                    Winner2Distance = WinnerDistance; 

                    Winner2Node = WinnerNode; 

                    WinnerDistance = dist; 

                    WinnerNode = Ni; 

                     

                elseif dist < Winner2Distance 

                     

                    Winner2Distance = dist; 

                    Winner2Node = Ni; 

                end 

            end 
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            %dd = sprintf ('Node:  %5d -> Wd: %5.3f WN: %5d W2d: %5.3f 

W2N: %5d' , Ni, WinnerDistance,WinnerNode, Winner2Distance, Winner2Node 

); 

            %disp(dd); 

        end 

         

        %Class(Ci).NodeCount 

         

         

        %dd = sprintf('Classification Done for indx: %d, NodeCount: %d, 

Wd: %f Th: %f', indx,Class(ClsName).NodeCount,WinnerDistance, 

Class(ClsName).Node(WinnerNode).Th); 

        %disp(dd); 

        Class(ClsName).Node(WinnerNode).M = 

Class(ClsName).Node(WinnerNode).M + 1; % step 6 

         

        if WinnerDistance > Class(ClsName).Node(WinnerNode).Th % Step 8 

            %disp( ['introduce new node to the class', WinnerDistance, 

' > ' ,Class(ClsName).Node(WinnerNode).Th ]); 

            NNi = Class(ClsName).NodeCount+1; 

            Class(ClsName).NodeCount = Class(ClsName).NodeCount + 1; 

            Class(ClsName).Node(NNi).W = x; 

            Class(ClsName).Node(NNi).M = 1; 

            Class(ClsName).Node(NNi).N = 0; 

            % Update thresholds 

 

            Class(ClsName).Node(NNi).Th = dist; 

            Class(ClsName).Node(Ni).Th = dist; 

        elseif WinnerDistance  == Winner2Distance 

            %disp( ['introduce new node to the class', WinnerDistance ' 

== ' ,Winner2Distance]); 

            NNi = Class(ClsName).NodeCount+1; 

            Class(ClsName).NodeCount = Class(ClsName).NodeCount + 1; 

            Class(ClsName).Node(NNi).W = x; 

            Class(ClsName).Node(NNi).M = 1; 

            Class(ClsName).Node(NNi).N = 0; 

            % Update thresholds 

            Class(ClsName).Node(NNi).Th = dist; 

            Class(ClsName).Node(Ni).Th = dist; 

        else  % Step 10 

            delS1 = 1/Class(ClsName).Node(WinnerNode).M; 

            delS2 = 1/Class(ClsName).Node(Winner2Node).M; 

            Class(ClsName).Node(WinnerNode).W = 

Class(ClsName).Node(WinnerNode).W + delS1*(x-

Class(ClsName).Node(WinnerNode).W); % eq 10 

            Class(ClsName).Node(Winner2Node).W = 

Class(ClsName).Node(Winner2Node).W + delS2*(x-

Class(ClsName).Node(Winner2Node).W); % eq 11 

            Class(ClsName).Node(WinnerNode).Th = 

(Class(ClsName).Node(WinnerNode).Th + WinnerDistance)/2; %eq 12 

        end 

        Class(ClsName).ConnMatrix(WinnerNode,Winner2Node) = 1; %Step 13 

        Class(ClsName).ConnAge(WinnerNode,Winner2Node) = 0; %Step 14 

        Class(ClsName).ConnMatrix(Winner2Node,WinnerNode) = 1; %Step 13 
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        Class(ClsName).ConnAge(Winner2Node,WinnerNode) = 0; %Step 14 

        %image(reshape((Class(ClsName).Node(WinnerNode).W),28,28)') 

        %pause(1) 

        % Step 15 

        [NS_1 NS_2] = size(Class(ClsName).ConnAge(WinnerNode,:)); 

        for jk = 1:NS_2 

            if Class(ClsName).ConnMatrix(WinnerNode,jk) == 1 

                Class(ClsName).ConnAge(WinnerNode,jk) = 

Class(ClsName).ConnAge(WinnerNode,jk) + 1; 

            end 

        end 

    end 

     

    [Ns1 Ns2] = size(Class(ClsName).Node); 

     

    MostVisNode = 1; 

    MostVisNodeM = 1; 

    for Mn=1:Ns2 

        if Class(ClsName).Node(Mn).M > MostVisNodeM 

            MostVisNode = Mn; 

            MostVisNodeM = Class(ClsName).Node(Mn).M; 

        end 

    end 

     

    % Build associative layer 

    AssocClass(ClsName).Wb = Class(ClsName).Node(MostVisNode); 

    AssocClass(ClsName).Mb = 0; 

     

     

end 

 

 

 

save('soinn_trained_assoc.mat') 

toc 

 

 soinn_2_v0: training the associative layer with temporal sequence. 

 

% Learning of the associative layer 

% 2-4-1-3 

% key-rwaponse vector 

% 2-4 

% 4-1 

% 1-3 

clear all 

tic % to measure the CPU time of the algorithm 

load('all_input_data_flat.mat'); 

 

% load the pre-trained node space 

load('soinn_trained_assoc.mat'); 
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% Start with a key/control vector 

[CDCnt CDLen] = size(Control_Vec); 

 

AssocClassConnMatrix = zeros (10,10); 

RespClass  = zeros (10,10); 

 

for j = 1:CDCnt 

    % Here we find which class a given Control Vector belongs to 

    j 

    [MinClassCnt MinNodeCnt MinDistCnt] = 

memlayer_classification_v0(Control_Vec(j,:),Class) 

    [MinClassRes MinNodeRes MinDistRes] = 

memlayer_classification_v0(Response_Vec(j,:),Class) 

     

    % TBD: Update the node space of the class with the information of 

the new 

    % node 

     

    % Build Association - Step 19,23,26/A-2 

    if AssocClassConnMatrix(MinClassCnt,MinClassRes) <= 0 

        AssocClassConnMatrix(MinClassCnt,MinClassRes) = 1; 

    else 

        AssocClassConnMatrix(MinClassCnt,MinClassRes) =  

AssocClassConnMatrix(MinClassCnt,MinClassRes) + 1; 

    end 

     

    % associative index of Node i 

    AssocIndxNode(MinClassCnt,MinNodeCnt) = MinNodeRes; 

    AssocIndxClass(MinClassCnt,MinNodeCnt) = MinClassRes; 

     

    % Response class of Node i 

    RespClass(MinClassCnt,MinClassRes) = 

RespClass(MinClassCnt,MinClassRes) + 1; 

end 

 

toc 

 

Supporting Codes: 

 readdata: For creating the training and testing vector for creating memory layer. 

 

% Generating train and test data from MNIST data set 

clear all 

%open the file corresponding to digit  

k=1; 

for j=[1 2 3 4 5 6 7 8 9 0] 

    filename = 

strcat('Users/Kamela/Documents/MatLabCodes/Codes_ESOINN/MNIST/data',num

2str(j),'.txt'); 
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    [fid(k) msg] = fopen(filename,'r'); 

    filename 

    l=1; 

    %read in the first training example  

    % and store it in a 28x28 size matrix t1  

    for i=1:2:100 

%    for i=2:2:100 

        [data28x28,N]=fread(fid(k),[28 28],'uchar');  

        data(l,:) = reshape(data28x28,1,28*28); 

        dataX = reshape(data28x28,1,28*28); 

        l = l+1; 

        %imshow(data28x28'); 

        %pause(0.5) 

    end 

    fname = strcat('traindata_p',num2str(k),'.mat'); 

%    fname = strcat('testdata_p',num2str(k),'.mat'); 

    save (fname,'data'); 

    k = k+1; 

end 

 

 prep_key_response_vector_data: For creating temporal sequence for training and 

inference. 

 

% Generating train and test data  

% from MNIST data set 

clear all 

%open the file corresponding to digit 

k=1; 

for j=[1 2 3 4 5 6 7 8 9 0] 

    filename = 

strcat('Users/Kamela/Documents/MatLabCodes/Codes_ESOINN/MNIST/data',num

2str(j),'.txt'); 

    [fid(k) msg] = fopen(filename,'r'); 

    filename 

    l=1; 

    %read in the first training example  

     % and store it in a 28x28 size matrix t1 

    for i=1:2:100 

        %    for i=2:2:100 

        [data28x28,N]=fread(fid(k),[28 28],'uchar'); 

        data(k,l,:) = reshape(data28x28,1,28*28); 

        dataX = reshape(data28x28,1,28*28); 

        l = l+1; 

    end 

    k = k+1; 

end 

 

 

% Create control and response vectors from the training data 
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l = 1; 

for j=1:50 

     

    Control_Vec(l,:) =  data(1,j,:); 

    Response_Vec(l,:) = data(3,j,:); 

    l = l+1; 

    Control_Vec(l,:) =  data(2,j,:); 

    Response_Vec(l,:) = data(4,j,:); 

    l = l+1; 

    Control_Vec(l,:) =  data(4,j,:); 

    Response_Vec(l,:) = data(1,j,:); 

    l = l + 1; 

end 

 

fname = strcat('all_input_data_flat','.mat'); 

save (fname,'data','Control_Vec','Response_Vec'); 

 

 memlayer_classification_v0: To classify a new incoming node. Used in training 

temporal sequence. 

function [MinClass MinNode MinDist] = 

memlayer_classification_v0(x,Class) 

 

% x = input vector 

% Class = Node Space information 

% Class = 

% 

%           Node: [1xn struct] 

%      NodeCount: n 

%     ConnMatrix: [pxp double] 

%        ConnAge: [pxp double] 

 

tic 

 

[a b] = size(Class); 

 

MinDist = 99999; 

MinClass = 0; 

MinNode=0; 

 

for m=1:b 

    Class(m).NodeCount; 

    [Ns1 Ns2] = size(Class(m).Node); 

    MostVisNode(m) = 1; 

    for n=1:Ns2 

        dist = distcalcSOINON(Class(m).Node(n).W, x); 

 

        if dist < MinDist 

            MinDist = dist; 

            MinClass = m; 

            MinNode = n; 
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        end 

    end 

end 

 

 

toc 

 

distcalcSOINON.m 

function z = distcalcSOINON(w,p) 

 

%DIST Euclidean distance weight function. 

%  Algorithm 

%  The Euclidean distance D between two vectors X and Y is: 

%  D = sqrt(sum((x-y).^2)) 

 

[S,R] = size(w); 

[R2,Q] = size(p); 

 

if (R ~= Q),  error('Inner matrix dimensions of R and Q do not 

match.'),end 

if (S ~= R2), error('Inner matrix dimensions of S and R2 do not 

match.'),end 

 

Tot = 0; 

 

for i = 1:R 

    Tot = Tot + (w(i) - p(i))^2; 

end 

z = sqrt(Tot)/R; 
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Appendix B - AREA, POWER, DELAY ESTIMATION OF EUCLIDEAN 

DISTANCE PIPELINE AS A CMOS FPGA IN XILINX VIVADO 

Power estimation 

The chip used for synthesizing the pipeline is  

xc7k70tfbg484-3 (active) 

area 23mm*23mm = 529mm2 

product family: kintex-7 

tool - Vivado 2015.2 

frequency of pipeline – 134Mhz 

node – 28nm 

 

Process: 

The dynamic power of pipeline and the individual blocks in the pipeline were 

estimated using the Vivado power report tool after synthesis. The power was 

estimated at 25 % and 100 % toggle rates.  The frequency used for the clock was 

134MHz. 

 

The static power of the chip remains constant and varies from one FPGA chip to the 

other. It remains constant because all the blocks in the FPGA are turned on no matter 

if it is utilized or not. Static power will not change with CLB used, or not.  Nor for DSP 

used or not.  And it will change only very slightly for BRAM used or not. 

  

In the FPGA device, almost everything is powered regardless it is used or not. 

Dynamic power varies with what is used, and how fast it is clocked, and the signal’s 

toggle rate. 
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Procedure: 

1) Create a new project in Vivado 

2) Select the FPGA device and Device family 

3) Run the synthesis, by pressing “Run synthesis” button in the flow navigator 

4) Ensure that the RTL schematic is the same the synthesized schematic 

5) Ensure that the post synthesis functional simulation works 

6) In the Edit timing constraint options, create a clock for the design and assign it to 

the clock pin 

7) Set the period of the clock  

8) The period of the clock is chosen in such a way that it is the maximum frequency 

of the design at which there is no negative slack 

9) Run the “Report power” option to generate the power report for the synthesized 

design 

10) Change the toggle rate in the power report options as per the requirement. 
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 CMOS FPGA Pipeline dynamic power at 25% toggle rate 

 

 

Figure B- 1: Breakdown of Total Dynamic Power Consumption at 25% Toggle Rate. 

 

Figure B- 2: Block level dynamic power consumption at 25% toggle rate. 

 

Figure B- 3: Component level dynamic power consumption at 25% toggle rate. 

 

Total Dynamic Power: 0.0222 (W). 
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 CMOS FPGA Pipeline dynamic power at 100% toggle rate 

 

 

Figure B- 4: Breakdown of Total Dynamic Power Consumption at 100% Toggle Rate. 

 

Figure B- 5: Block level dynamic power consumption at 100% toggle rate. 

 

Figure B- 6: Component level dynamic power consumption at 100% toggle rate. 

 

Total Dynamic Power: 0.0241 (W). 
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Delay Estimation 

Process: 

The delay values were estimated by using Timing report tool after synthesis of the 

design. The frequency used for the clock is 134MHz. 

Procedure: 

1) Create a new project in Vivado 

2) Select the FPGA device and Device family 

3) Run the synthesis, by pressing “Run synthesis” button in the flow navigator 

4) Ensure that the RTL schematic is the same as the synthesized schematic 

5) Ensure that the post synthesis functional simulation works 

6) In the Edit timing constraint options, create a clock for the design and assign it to 

the clock pin 

7) Set the period of the clock  

8) The period of the clock is chosen in such a way that it is the maximum frequency 

(134MHz) of the design at which there is no negative slack 

9) Run the “Report Timing summary” option to generate the timing summary of the 

design and various logic blocks used. 

 

 

Figure B- 7:  Delay breakdown of various components in CMOS FPGA. 
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Area estimation 

The Vivado tool reports the Utilization (after synthesis) of resources for the entire 

pipeline as shown below. It is done using the Vivado utilization report after synthesis- 

 

Figure B- 8: Area Utilization Breakdown. 

Components that consume the chip area are- 

IO count = 484 

IOBs = 285 

LUT = 41000 

FF = 82000 

BRAM = 135 

DSP = 240 

Transceivers = 8 

PCIE = 1 

MMCMs = 6 

 Assuming that all the available units occupy 100% of the chip, we can estimate the 

area of the pipeline- 

(Total utilization/ Total available units) * 100 

From the table total utilization = 76+100+36+0.5+1 = 213.5 
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Total available units = 484+285+41000+82000+135+240+8+1+6= 124159 

Let’s say that 124159 units consume 529mm2 of the chip. 

Percentage area occupied by the pipeline is = (213.5/124159) * 100 = 0.171% 

Approximate estimation of the Area in mm2 is = 0.171% of 529mm2 = 0.00171 * 529 = 

0.904mm2. 

 

Figure B- 9: Area Utilization by Various Components. 
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From the above table: 

LUT occupy (100/213.5 *100) =46.8% of 0.904mm2 = 0.423mm2 

1) Adder uses 18 LUTs = 18/100 *100 = 18% of LUT area = 0.18*0.423= 0.076mm2 

2) subtractor uses 48 LUT = 48/100 *100 = 48% of LUT area = 0.48*0.423= 0.203mm2 

3) comparator uses 10 LUT = 10/100 *100 = 10% of LUT area = 0.1 * 0.423= 

0.0423mm2 

4) LUT SQ RAM uses 0.5 BRAM.  

BRAM occupy 0.5/213.5 *100 = 0.23% of total area = 0.0023 * 0.904 = 0.00207mm2 

 LUT SQ RAM area = 0.00207mm2 

5) MUX uses 9 LUT = 9/100 *100 = 9% of LUT area = 0.09*0.423= 0.038mm2 

6) Accumulator uses 12 LUT and 37 registers 

 Area occupied by LUT is 12/100*100= 12% of LUT area = 0.12*0.423= 0.05mm2 

 There are 76 registers and it occupy (76/213.5 *100) =35.5% of total area = 

0.355*0.904 = 0.32mm2 

 Accumulator uses 37 registers = 37/76*100 = 48.6% of register area. 

 Accumulator Register area= 0.486 * 0.32 = 0.15mm2 

 Total area occupied by registers = 0.05mm2 + 0.15mm2= 0.2mm2 

Adding area of individual blocks would approximately be equal to the area of the 

pipeline ~ 0.6 mm2.   
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Appendix C - SPACE-TIME NOTATION BASED CIRCUIT DRAWING  

 

Figure C- 1 Basic Logic Synthesis. 
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Figure C- 2: 1-bit Full Subtractor Design. 

 

Figure C- 3: 1-bit Full Subtractor Design (Optimized for area). 
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Figure C- 4: 2-to-1 Multiplexer Design. 

 

 

Figure C- 5: 5: 2-bit Greater than (GT) Comparator Design. 
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Figure C- 6: 2-bit Equal Comparator Design. 
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