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Abstract 

Sablefish (Anoplopoma fimbria) is a scarcely represented species in Northwest 

Coast archaeology, but its remains are abundant at Tse-whit-zen, a large, Lower Elwha 

Klallam village in modern Port Angeles, WA that was occupied over the past 2,800 

years. Because sablefish flesh has high nutritional value and it can be easily captured 

from nearshore waters in its juvenile form, sablefish should have been pursued where it 

was available. Therefore, the scarcity of sablefish in many Northwest Coast 

archaeological sites could indicate this species was not abundant in past fisheries. 

However, current zooarchaeological reports do not contain sufficient information on 

taphonomic histories, sampling, or zooarchaeological methods to determine whether 

patterns of sablefish scarcity could actually explained by differential destruction of 

sablefish remains, sample size effects, screen size effects, or misidentification.  

In this thesis, I examine how each of these factors may have affected the 

abundance of sablefish remains in Northwest coast archaeological sites. I evaluate four 

hypotheses that attribute sablefish representation to zooarchaeological identification 

methods, screen size, sample size, and post-depositional destruction of fishbone. While I 

do not explicitly test whether social and ecological factors affect sablefish abundance, 

sociocultural and environmental variation can be considered likely explanations for the 

observed patterns of sablefish representation if the other hypotheses are rejected. I test 

my hypotheses using three scales of archaeological records. First, I reanalyzed six 

previously analyzed Salish Sea assemblages to assess whether criteria for sablefish 

identification exist, are valid, and have been applied consistently. Second, I synthesized 

fishbone data from 35 previously analyzed Northwest Coast assemblages to evaluate the 
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effects of screen size, sample size, and post-depositional destruction on sablefish 

representation. Finally, I integrate previously unreported fishbone data from the analysis 

of Tse-whit-zen into the synthesis of previous studies. The Tse-whit-zen materials I 

report on here represent six discrete time periods in the 1,800-year history of one large 

area of the site, which encompasses part of a plankhouse, providing a unique opportunity 

to examine the effects of screening, sample size, and post-depositional destruction at an 

extremely fine scale. I also use data from the reanalysis of a portion of the Tse-whit-zen 

fishbone to verify the consistency of sablefish identification for this site. 

I reject all four hypotheses and conclude that the uneven distribution of sablefish 

is likely a true reflection of ecological factors, human decision-making, or both factors. 

Whether sablefish scarcity is related to distributions of sablefish in past environments, or 

whether humans chose not to pursue sablefish is not known from the current study. 

Connecting sablefish capture to specific seasons with body-size regression methods may 

reveal associations between sablefish acquisition and other seasonal fisheries and 

activities, and help evaluate whether they conflicted with sablefish procurement in some 

contexts. 

Although zooarchaeological identification and reporting methods do not appear to 

account for sablefish scarcity, zooarchaeologists need to include more information about 

their methods so that the validity of inter-assemblage comparisons can be assessed. 

Zooarchaeologists maximize the value of their contributions to anthropology, biological 

sciences, and human ecodynamics when they explicitly report the methods they use to 

identify animal remains. By reporting the methodological and analytic procedures they 

used in detail, zooarchaeologists enhance the reader’s confidence in their conclusions and 
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provide future researchers with the information that is required to replicate their results. 

Which elements were recorded, and the criteria that were used to make taxonomic 

attributions, fundamentally affect the primary faunal data that researchers use. This study 

is part of a growing interest among zooarchaeologists in data quality assurance and 

quality control, which constitute a critical part of every large-scale comparative analysis. 
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Chapter 1: Introduction 

Zooarchaeologists have become increasingly concerned with issues of quality 

assessment and quality control related to animal bone identification (Allen 2003:338–

339; Butler and Lyman 1996; Driver 1992 [2011]; Lambrides and Weisler 2016; 

Lawrence 1973; Gobalet 2001; Wolverton 2013). These concerns are founded in 

recognition of the fact that the fundamental process of assigning a given bone, shell, or 

tooth specimen to a taxonomic group entails a complex suite of logical steps. For 

example, species-level identifications are only possible when analysts limit comparisons 

to a constrained universe of taxa that are believed to have been present in a specific range 

of space and time (Driver 2011:27). Taxonomic identification is further complicated by 

variation in skeletal morphology related to age, sex, and life history. However, few 

skeletal reference collections capture the complete range of intraspecies variation, or even 

the full range of animal species known to inhabit a given region. Analysts also use 

illustrated guides, diagnostic keys, and virtual media while making identifications, which 

may fill the gaps in a reference collection (Betts et al. 2011:756), but even these are 

rarely complete and come with their own disadvantages (Driver 2011:23). To resolve 

these issues, analysts can support their identifications by reporting the taxa that are 

represented in the reference collections they use and the diagnostic keys they employ 

(Lambrides and Weisler 2016). Ideally, zooarchaeologists would also report the criteria 

they use when assigning specimens to particular taxa (Driver 2011:28; Gobalet 2001:385; 

Lawrence 1973; Wolverton 2013:388). Publishing these criteria raises confidence in 

taxonomic identification, facilitates validation, and allows researchers to build upon each 

other’s work (Wolverton 2013:392–393). Furthermore, the validity of inter-assemblage 
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comparisons is uncertain unless zooarchaeologists report their methodology so that 

differences in the criteria used (Lawrence 1973:399) and the elements analyzed (Allen 

2003:338–339; Lambrides and Weisler 2016) can be identified. 

 Despite this general concern, Pacific Northwest archaeologists have largely 

ignored issues of quality assurance and quality control, impeding their ability to address 

key questions about past human-animal relationships. Most zooarchaeological reports 

continue to list identified taxa with only limited discussion of the morphological criteria 

and reference materials that were used to identify animal remains (e.g., Ewonus 2006; 

McKechnie 2012; Orchard 2007; Trost 2005). These practices may partially account for 

reports by Moss et al. (2015:5) that some southeast Alaskan assemblages contain 

specimens identified as Pacific herring (Clupea pallasii) that are actually Pacific tomcod 

(Microgadus proximus). Such misidentifications have real world consequences when 

researchers attempt to reconstruct the biogeography of ancient herring populations from 

zooarchaeological data that has not been subjected to quality control measures 

(McKechnie et al. 2014).  

 Data quality issues may also explain the extremely uneven frequencies of 

sablefish, or black cod (Anoplopoma fimbria), reported in Pacific Northwest coastal 

archaeological sites. In a pilot study of regional sablefish representation, I found this 

species is present, but uncommon, at 15 sites along the Northwest Coast (Table 1). 

Remains of this species are only abundant at Tse-whit-zen (45CA523), a large, Lower 

Elwha Klallam village in modern Port Angeles, WA. Sablefish occupies nearly every 

North Pacific habitat over its life history, from the extreme depths of continental slopes to 

inshore waters, where they can be easily caught by hand-jigging (Echave et al. 2013; 
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Table 1 - Sablefish abundance and quality control measures implemented for Northwest Coast fishbone assemblages.  

(“ID Crit.” = reports ID criteria; “Elem. Ana.” = reports elements analyzed; “Tax. Univ.” = reports taxonomic universe; “Ref. 

Coll.” = reports reference collection; “Elem. Freq.” = reports element frequency; “Re-Ana.” = reanalyzed; “Verif.” = 

identifications verified) 

 

Site Name Site Code 
NISP 

Sablefish 

ID Elem. Tax. Ref. Elem. Re-

Ana. 
Verif. Source 

Crit. Ana. Univ. Coll. Freq. 

Tse-whit-zen – Area A4 45CA523 2,778 n/a n/a n/a n/a n/a X  analysis in progress 

Hoko River Rockshelter 45CA21 103   X   X X     Wigen (2005) 

Huu7ii DfSh 7 65   X   X      McKechnie (2012) 

Cama Beach 45IS2 38 X X   X      Trost (2010) 

Ts'ishaa DfSi 16 & 17 23   X   X    X McKechnie (2005) 

West Point 45KI428 & 429 11       X X     Wigen (1995) 

Kaidsu 781T 9     X X      Orchard (2007) 

Dionisio Point DgRv 3 7       X X     Ewonus (2006, 2011) 

Xuud tsixwaas 'llnganaay 785T 4     X X      Orchard (2007) 

Ma'acoah DfSi 5 1       X      Monks (2006) 

Killisnoo Picnicground 49SIT124 0   X X X      Moss (1989) 

Pender Canal DeRt 1 0   X X X      Hanson (1991) 

Decatur Island 45SJ169 0       X X     Wigen (2003) 

Ozette 45CA24 0 X     X      Huelsbeck (1994) 

Hoko River Wet Site 45CA213 0              Croes (1995) 

Tum-tumay-whueton DhRr 6 0   X X X X     Pierson (2011) 

Loon Cave DiSo 9 0   X   X X     Calvert (1980) 

Cove Cliff Site DhRr 18 0   X X X      Trost (2005) 

Burton Acres 45KI437 0 X     X X     Kopperl and Butler (2002) 

Duwamish 45KI23 0 X     X X     Butler (1987) 

Bay Street 45KP115 0         X     Butler and Baker (2002) 

740T 740T 0     X X       Orchard (2007) 

7aydi ‘llnagaay 717T 0     X X       Orchard (2007) 

Huulaagwaans ‘llnagaay 1134T 0     X X       Orchard (2007) 

Q’iid ‘llnagaay 924T 0     X X       Orchard (2007) 

Qayjuu 'llnagaay 699T 0     X X       Orchard (2007) 
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Moser et al. 1994:157). Ethnographic accounts of fishing practices on the Northwest 

Coast contain little information on sablefish use, but Blackman’s (1990:244) description 

of Haida people in British Columbia indicates that sablefish was a central fish resource 

on Haida Gwaii, second only to halibut (Hippoglossus stenolepis) and salmon 

(Oncorhynchus sp.) in importance. And yet, archaeological sablefish remains are 

extremely scarce even on the islands of Haida Gwaii.  

Unfortunately, we cannot know if sablefish scarcity is actually related to human 

decision-making or the availability of the species because zooarchaeologists in the 

Pacific Northwest have not reported the information that is necessary to evaluate this 

claim. The validity of inter-assemblage comparisons of taxonomic abundance depends on 

agreement of the criteria used to make taxonomic attributions. Otherwise, there is no 

reason to assume that two researchers would identify the same number of specimens 

(Lawrence 1973:398), or even the same taxa (Gobalet 2001) in any assemblage. Even 

when observers agree on criteria, they may not be able to reproduce the results from an 

assemblage if they record different elements, exclude different species from analysis, or 

use different reference collections (Allen 2003:339). Driver (2011), Gobalet (2001), and 

Wolverton (2013) recommend that zooarchaeologists recognize these potential barriers to 

inter-assemblage comparisons explicitly and: 

1. Report the criteria used to make taxonomic attributions. 

2. Report elements recorded during analysis. 

3. Report the taxonomic universe considered during analysis. 

4. Report the reference materials used to make identifications. 

5. Report the frequency of each element identified to each taxon. 

6. Verify identifications by re-analyzing a subsample of the assemblage. 

7. Have a subsample of identifications verified by external researchers. 
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In my pilot study of sablefish representation, I recorded whether researchers followed 

these recommendations for each assemblage. While Northwest Coast zooarchaeologists 

routinely report the reference collections used, none of the other recommendations are 

commonly followed (Table 1). Identification criteria are reported for only four 

assemblages, and in each of these (Cama Beach, Ozette, Duwamish, and Burton Acres) 

criteria are reported for only a small subset of the identified taxa. 

 Without the criteria used to identify fish remains, we cannot know whether 

sablefish specimens could have been mistaken for other taxa; it is not possible to evaluate 

the validity of taxonomic identifications from the reports themselves. This is especially 

concerning in the case of sablefish because the texture of this species’ vertebrae is very 

similar to that of salmon vertebrae. The morphology of sablefish vertebrae also resembles 

the vertebrae of some sculpins (family Cottidae) and flatfish (order Pleuronectiformes).  

In light of these issues, I ask, does the scarcity of sablefish in the archaeological 

record reflect past distributions of sablefish populations and patterns in human fishing 

practices? Or is the scarcity of this species a product of poor quality control in 

archaeological practices? And why are sablefish frequencies so much higher at Tse-whit-

zen than in other regional assemblages? The primary goals of this thesis are to examine 

the factors that affect the abundance of sablefish remains in Northwest Coast 

archaeological sites, and to assess the quality of zooarchaeological data from the region. I 

propose six working hypotheses (Trigger 2006:514–515) that may explain sablefish 

scarcity, and attempt to evaluate them individually using non-parametric statistics or by 

the weight of evidence (Wolverton et al. 2014). Any hypothesis that is supported should 
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be considered as a possible explanation for the paucity of sablefish in archaeological 

sites, and any final explanation is likely to be multi-causal. 

 

Hypothesis 1 (H1) – Current identification criteria for sablefish are invalid or nonexistent 

 If the morphological criteria used by regional zooarchaeologists to identify 

sablefish are not valid, or if sablefish is not even included in the criteria, then sablefish 

remains may be systematically misidentified as other taxa. They may also be recorded as 

‘unidentified’ by cautious researchers who do not recognize them. Because there are no 

criteria reported for this fish, I cannot predict how likely it is that sablefish are 

misidentified. But the similarities between the vertebrae of sablefish, salmon, sculpins, 

and flatfish suggest that if sablefish is misidentified, it will be mistaken for one of these 

taxa. 

 

Hypothesis 2 (H2) – Excavators do not use suitably fine screen sizes to recover sablefish 

 Another factor that may account for the scarcity of sablefish is the screen size 

used by excavators to recover fishbone assemblages from archaeological deposits. The 

skeletons of large- and small-bodied fishes are poorly represented in coarse mesh screens 

(6.4 mm or greater) if they are recovered at all (Casteel 1972). If sablefish remains are 

caught disproportionately in fine-mesh screens (3.2 mm and finer), and if archaeologists 

do not use these routinely, then sablefish may be underrepresented because archaeologists 

use screens that are not appropriate for sablefish recovery.  
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Hypothesis 3 (H3) – Sablefish is scarce because fishbone samples are too small 

 The size of a sample that is collected and analyzed from an archaeological deposit 

necessarily constrains the number of specimens identified for each taxon, and the number 

of taxa identified (Lyman 2008:141). Zooarchaeologists may analyze a small subsample 

of recovered assemblages or adopt a limited core and auger sampling strategy so that 

fishbone from numerous site contexts can be identified in a reasonable amount of time 

(Cannon 2000). If only a small amount of archaeological material is represented by the 

fishbone samples that regional archaeologists have analyzed, then sablefish may be 

absent because the analyzed samples are not representative of the complete assemblages. 

Sablefish may also be more abundant at Tse-whit-zen than in assemblages recovered 

through coring because the identified Tse-whit-zen assemblage represents a 

comparatively large amount of excavated material. 

 

Hypothesis 4 (H4) – Sablefish bones are scarce due to post-depositional destruction 

 Close inspection of the sablefish bones suggests its skeleton is relatively fragile 

compared to the skeletons of other fishes. Like salmon bones, sablefish bones are fibrous, 

fenestrated, and lightly built. It is possible that sablefish is scarcely recorded because its 

skeleton is especially prone to post-depositional destruction and its bones have been 

degraded beyond recognition or eliminated from archaeological deposits. If post-

depositional processes were less intense at Tse-whit-zen than at other sites on the 

Northwest Coast, sablefish could be better represented at this site because more sablefish 

bones survived. 
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Hypothesis 5 (H5) – Sablefish representation reflects ancient sablefish biogeography 

 Modern sablefish populations are unevenly distributed on the Northwest Coast. 

Juvenile sablefish, for example, are abundant only in specific bays of southwest Alaska. 

The size of juvenile populations also varies widely from year to year, with very large 

year-classes occurring approximately once every seven years (Rutecki and Varosi 

1997a). If ancient sablefish populations followed similar life-history patterns, low 

frequencies of sablefish, or the absence of the species, from archaeological sites could 

indicate sablefish were not locally available. 

 

Hypothesis 6 (H6) – Humans did not target sablefish 

 Current archaeological perspectives emphasize the diversity of fish species that 

Northwest Coast peoples had access to and collected. However, Pacific Northwest 

economies mobilized large segments of the population to collect several key species such 

as salmon and herring at specific times of the year. It is possible that human fishers did 

not target sablefish because its availability conflicted with the harvests of more important 

or more reliable resources. Sablefish could also be scarce if it required specialized fishing 

technology that Northwest Coast peoples did not invest in, or if other aspects of resource 

management prevented sablefish capture. 

 

Even though I pose H5 and H6, my thesis research is focused on testing the first 

four hypotheses. While I do not explicitly test H5 or H6 in this thesis, sociocultural and 

environmental variation can be considered likely explanations for the observed patterns 

of sablefish representation if the other hypotheses are rejected. 
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In this thesis I draw on three scales of archaeological records. First, I reanalyzed 

six previously analyzed Salish Sea assemblages to assess whether criteria for sablefish 

identification exist, are valid, and have been applied consistently (H1). Second, I 

synthesized fishbone data from 35 previously analyzed Northwest Coast assemblages to 

evaluate the effects of screen size (H2), sample size (H3), and post-depositional 

destruction (H4) on sablefish representation. Finally, I integrate previously unreported 

fishbone data from the analysis of Tse-whit-zen into the synthesis of previous studies. 

The Tse-whit-zen materials I report on here represent six discrete time periods in the 

1,800-year history of a rigorously sampled plankhouse, providing a unique opportunity to 

examine the effects of screening, sample size, and post-depositional destruction at an 

extremely fine scale. I also use data from the reanalysis of a portion of the Tse-whit-zen 

fishbone to verify the consistency of sablefish identification for this site (H1). 

 This thesis is organized into five chapters. In Chapter 2 I discuss the possible 

factors that could affect sablefish representation in archaeological sites. I focus on 

zooarchaeological identification methods, archaeological recovery methods, post-

depositional destruction, and aspects of sablefish life history that affect the distribution of 

populations in the marine environment. I conclude with an overview of the existing 

evidence for human procurement and consumption of sablefish, and zooarchaeological 

quantitative units. Chapter 3 describes the reanalyzed assemblages, the fishbone data 

synthesis, the Tse-whit-zen materials, and the methods that I used to evaluate each 

hypothesis, as well as the analytic challenges I encountered. In Chapter 4, I present the 

results of my hypothesis tests. Finally, in Chapter 5, I draw conclusions about past 

relationships between humans and sablefish.
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Chapter 2: Background 

Theoretical Perspective 

My thesis research is situated in the sphere of middle-range theory: the reliable 

correlations between archaeological data and ethnographic behavior or actualistic test 

results that archaeologists use to make inferences about the past (Trigger 2006:32–33, 

414–415). Much zooarchaeological research has focused on problems of middle-range 

theory related to explaining site formation processes. The reasoning and methods behind 

much of this research closely resembles behavioral archaeological theory (Gifford-

Gonzalez 2011:301), which aims to conceptualize processual relationships between 

human behavior and the material culture that archaeologists study (LaMotta 2012; 

Schiffer and Skibo 1997; Skibo 2013). However, the connections between 

zooarchaeological models and behavioral archaeology are rarely made explicit (e.g. Bird 

and O’Connell 2006:144; Brewer 1992; Broughton and O’Connell 1999:160–161; 

Gifford-Gonzalez 2011:299; Marciniak 1999).  

In particular, zooarchaeological models of assemblage formation bear a close 

resemblance to behavioral chains or châine opératoire. While a châine opératoire 

describes the individual steps of artifact production, a behavioral chain describes an 

artifact’s life history from the procurement of raw material, to artifact production and use, 

to discard and possible reuse or recycling (Skibo 2013:8). Models of animal bone 

assemblage formation, or taphonomic histories, make similar step-by-step summaries of 

human-animal relationships. However, taphonomic histories differ from behavioral 

chains because they also describe the history of changes that occur to animal remains 

after they are deposited (e.g. Lyman 2008:24; Reitz and Wing 1999:110–112). 
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Reitz and Wing (1999) and Lyman (2008) model taphonomic histories as a series 

of events that add information to an assemblage and decrease the integrity of the 

information that it contained before. They state that all animal bone assemblages begin as 

animals on a landscape as part of a life assemblage (Lyman 2008:23; Reitz and Wing 

1999:110). This population is structured in part by human behavior (Reitz et al. 2009:23). 

A portion of the life assemblage enters the death assemblage when humans cull animals 

for food or secondary products like skin, sinew, or bone (Reitz and Wing 1999:112). 

Death assemblage accumulation can also be passive (Lyman 2008:23), as it is when 

rodents burrow into middens. The animal remains that accumulate together become a 

deposited assemblage, which is subsequently modified by dispersal and decomposition 

from biotic and abiotic agents (Lyman 2008:24; Reitz and Wing 1999:112). The 

deposited assemblage is further modified during archaeological recovery by excavators’ 

decisions regarding where to excavate, how to recover samples, and the size of the 

sample they collect. Whatever portion of the deposited assemblage that is recovered and 

identified to a taxon is the identified assemblage, at which point the information it 

represents is affected by how analysts choose to record and report data.  

The six hypotheses I pose to explain sablefish scarcity are related to specific 

elements of the taphonomic history model. H1 suggests sablefish scarcity is related to 

data loss during identification and reporting. Sablefish scarcity could also be a result of 

sampling the deposited assemblage during archaeological recovery (H2) and 

zooarchaeological analysis (H3). Post-depositional modification and destruction of 

sablefish bone in deposited assemblages is another factor that I consider (H4). My last 

two hypotheses explain sablefish scarcity at the level of the death assemblage (H6) and 
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the life assemblage (H5). However, entire taphonomic histories are flattened to create 

zooarchaeological records. Information about biogeophysical conditions, sociocultural 

patterns, local ecological patterns, political and economic conditions, and integrated 

social-ecological systems are always recorded in animal bone assemblages, even though 

they cannot be isolated from one another or the effects of site formation processes and 

zooarchaeological methods (Reitz et al. 2009:20). I make no attempt to isolate these 

variables. Instead, I recognize that the actual explanation for sablefish scarcity is likely 

multi-causal, and evaluate each hypothesis separately to evaluate which specific factors 

could play important roles. 

 

Factors Affecting Sablefish Representation 

Zooarchaeological Identification 

The skeletal elements of many vertebrates share morphological similarities with 

multiple taxa (Driver 2011:23). When researchers fail to publish identification criteria 

used to distinguish taxa, the validity of their claims and inter-site comparisons are suspect 

(Lambrides and Weisler 2016; Lawrence 1973). Without knowing the criteria that 

analysts use to attribute specimens to a taxon, the reader has no basis for placing 

confidence in the identifications (Wolverton 2013:393). Ideally, such criteria are 

explicitly defined in writing before analysis begins (Driver 2011:27; Gobalet 2001:385; 

Wolverton 2013:388), making it a relatively simple matter to include decision rules with 

a zooarchaeological report, or publish the criteria separately and cite them later 

(Lawrence 1973). Zooarchaeologists can also evaluate how consistently they apply 

identification criteria by reanalyzing portions of identified assemblages to estimate how 
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often they agree with their own taxonomic attributions (Butler and Schroeder 1998:967; 

Preston in Driver 2011:37; Wolverton 2013:390). 

Regardless, the potential for misidentification of fish remains is real. Gobalet’s 

2001 study highlights this issue, and shows that four professional zooarchaeologists 

recorded vastly different taxa in the same Central California coast assemblage. While one 

analyst identified 18 species in the assemblage, the other researchers identified half that 

number at most, and one researcher only identified four species (Gobalet 2001:378). 

Neither extreme of this spectrum is ideal. The analyst who identified 18 species is likely 

overconfident in their ability to differentiate taxa, while the latter did not maximize the 

data potential of the assemblage (Gobalet 2001:380). 

As I discussed in Chapter 1, Pacific Northwest zooarchaeologists have not 

considered the ways that different identification criteria might affect the results of 

fishbone identification. Salmon (genus Oncorhynchus) vertebral fragments are sometimes 

identified solely by the fenestrated surface of the vertebral centrum (Butler 2004:320; 

Ewonus 2011:86; Pegg 1999:97). However, sablefish are also characterized by this 

texture. Further confusion is introduced by the abdominal vertebrae of staghorn sculpin 

(Leptocottus armatus) and some flatfishes (Pleuronectiformes), which also have 

fenestrated centra and bear a superficial similarity to the vertebrae of sablefish (Figure 1). 

Analysts who use reference collections that lack sablefish, or who are unaware of the 

characteristics that distinguish these species, may misidentify sablefish vertebral 

fragments as another taxon. If this problem is widespread, it may contribute to 

overestimations of salmonid’s importance in regional diets that Pacific Northwest 

archaeologists continue to challenge (Campbell and Butler 2010; Monks 1987; Moss and  



 

 

1
4 

 
Figure 1 – Vertebrae from taxa with similarly fenestrated vertebral centrums: a) sablefish (Anoplopoma fimbria), b) staghorn 

sculpin (Leptocottus armatus), c) rex sculpin (Glyptocephalus zachirus), d) salmon (Oncorhynchus kisutch). Scale bar is 10 mm 

long. Top row: abdominal vertebrae. Bottom row: caudal vertebrae. Salmon vertebra is a Type 3. 
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Cannon 2011). When reports lack information on the reference skeletons or identification 

criteria that are used, we cannot know if sablefish remains are scarce because of 

misidentification, or for other reasons. 

 

Mesh Size 

 The uneven abundance of sablefish remains could also be related to the mesh 

sizes used to sample archaeological deposits during excavation. Casteel (1972) 

established the dramatic effects of mesh size on the recovery of fish remains, but 

archaeologists have been concerned about this problem to varying degrees. Only recently 

in the Pacific Northwest have samples from archaeological excavations been wet-

screened in 6.4 mm (1/4”) and 3.2 mm (1/8”) hardware cloth to separate sediment from 

animal remains and small pieces of lithic debitage, increasing the visibility of these 

materials and simplifying their collection (Lyman 2008:152; Moss and Cannon 2011:7).  

Occasionally, bulk samples are also recovered and screened through 2 mm or 1 mm mesh 

to collect a representative portion of small fish remains (Butler 1996:705; McKechnie 

2005). Large quantities of bone from fish, small-bodied tetrapods, and fragmentary 

specimens are often lost with loose sediment through coarse-mesh screens. Therefore, the 

accurate interpretation and comparison of animal bone – and especially fish – 

assemblages depends on the consistent use of fine-mesh screens (3.2 mm or smaller) at 

all sites under consideration (Casteel 1972; Gordon 1993; James 1997; Lyman 2008:155; 

Partlow 2006). Because sablefish may have been captured predominately as small-bodied 

juveniles (see Sablefish Ecology below), I expect their bones are predominantly 
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recovered in 3.2 mm or finer mesh, and the scarcity of this species could be a result of 

heavy reliance on coarse-mesh screens (6.4 mm or greater). 

 

Sample Size 

Assemblages of animal remains are necessarily influenced by the amount of 

archaeological deposits that are recovered and analyzed. Increasing the size of an 

assemblage increases the number of specimens and taxa represented, and may change the 

relative abundance of each taxon (Lyman 2008:142). Small identified assemblages will 

likely include only the most abundant taxa from the deposited assemblage. To obtain 

samples that include all of the taxa represented in an assemblage, archaeologists can 

continue analyzing new subsamples until no new taxa are observed. This is called 

sampling-to-redundancy (Lepofsky and Lertzman 2005; Lyman 2008:144–145). 

Sampling-to-redundancy has seen some recent use in the Pacific Northwest (e.g. Lyman 

and Ames 2004; Rosenberg 2015), and it has also been applied retroactively to determine 

whether an identified assemblage is representative (McKechnie 2005, 2012; Smethurst 

2014). However, the method remains underutilized (Lyman 2008:149) and the 

representativeness of most Northwest Coast assemblages has not been explicitly assessed. 

Because many of the Northwest Coast site samples in Table 1 may not be representative 

of deposited assemblages, differences in the frequencies of fishbone and the observed 

taxa could be a product of differences in sample size (Lepofsky and Lertzman 2005:181). 

To control for differences in sample size when assemblages may not be 

representative of the deposited assemblages, zooarchaeologists have adopted rarefaction 

methods from botany and ecology that reduce samples to a standard size. Rarefaction 
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uses random sampling to determine the number of species that would be identified in an 

assemblage if a smaller sample had been analyzed (Lepofsky and Lertzman 2005; Lyman 

2008:160; Lyman and Ames 2007:1987; Woo et al. 2015). This method can also be used 

to make valid comparisons of taxonomic abundance across assemblages of different sizes 

(Lyman 2008:Figure 4.9, 167). Rarefaction assumes that all samples in the rarefied 

assemblage come from the same population, and requires careful definition of the target 

population in complex sites with multiple components to ensure that only homogenous 

samples are rarefied (Lyman 2008:163).  

If the goal is simply to decide whether or not comparisons between assemblages 

with different sample sizes are valid, zooarchaeologists can use the “regression approach” 

to measure the effects of sample size on any target variable. In this method, the target 

variable and sample size from statistically independent assemblages are plotted on a 

graph and used to calculate the best-fit regression line (Lyman 2008:165; Lyman and 

Ames 2007:1988). Some archaeologists have used regression models to predict artifact 

diversity in assemblages from known sample sizes. If the predicted and observed 

measures are highly correlated, it is assumed that sample size explains the observed 

artifact diversity (Byrd 1997:54–55; Rhode 1988). This application of the regression 

approach has been heavily criticized, in part because it assumes that artifact diversity is 

the same for assemblages used to generate the model and the assemblage being studied 

(Baxter 2001; Lepofsky and Lertzman 2005:177). The method that Lyman and Ames 

(2007; Lyman 2008:165) describe differs from Rhode’s (1988) regression approach 

because it uses regression to test whether sample size and artifact diversity (or any other 

variable) are correlated for a set of assemblages. If the correlation coefficient of the 
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regression model is statistically significant, then differences in sample size must be 

considered as a possible explanation for the behavior of the target variable (Lyman 

2008:165; Lyman and Ames 2007:1988).  

 

Taphonomy 

Taphonomic processes can create patterns in assemblages of animal remains. It is 

therefore essential to determine whether differences between assemblages reflect 

variation in the life or death assemblages, and not taphonomic effects on the deposited 

assemblage. Taphonomy is the study of human and non-human processes that affect 

organic materials and the biases these processes introduce to the archaeological and 

paleontological records (Gifford 1981:388; Lyman 1994:1, 2008:264). Taphonomic 

processes acting on animal bone assemblages change bone element frequencies by 

causing differential destruction and selective transport of certain elements or body-

segments (Gifford 1981:400). Taphonomic research may reveal information about human 

behaviors that are responsible for the attrition or modification of animal bone, including 

prey selection and procurement, selective body-part transport, butchery and culinary 

processing, and disposal practices. Taphonomic research also seeks to identify patterns in 

bone assemblages that are not caused by humans to understand how animal remains, and 

our quantitative measures of them, are changed by taphonomic processes (Lyman 

1994:5–7; Lam et al. 2003). Such processes must be identified so that differences 

between bone assemblages caused by non-human actors are not mistaken for differences 

in human behavior or the environmental context in which humans lived. 
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Much taphonomic research has been devoted to identifying the ways that 

depositional environments determine bone preservation. Hedges et al. (1995) and 

Nielsen-Marsh and Hedges (2000) present a range of diagenetic parameters that allow for 

direct comparisons of chemical and structural bone deterioration for large mammals. The 

results of their Northwestern European studies privilege the role of hydrological 

environments in preservation, and suggest bones are better preserved when water content 

of soils remains constant (Nielsen-Marsh and Hedges 2000:1146–1147). Experiments 

designed to test the generalization that acidic soils degrade bone and alkaline soils 

enhance preservation show that patterns of fishbone destruction are actually very similar 

at both extremes of the pH scale (Collins 2010; Lubinski 1996). Nicholson (1996:523, 

529) argues that burial depth, the presence of coverings, the state of the corpse, post 

burial temperature and rainfall, and soil texture are more important predictors of bone 

preservation than pH or intrinsic properties of bones themselves. In a similar line of 

reasoning, Jans et al. (2004) argue that bacterial degradation of bone depends on the peri-

mortem state of an animal carcass. For example, butchered animal parts are often not 

deposited with endogenous bacterial colonies from the intestinal tract that attack bone 

during early decomposition, but putrefaction of complete animal bodies causes biological 

degradation of bone (Jans et al. 2004:91–92). Exceptional preservation may also be 

observed in bones recovered from organic refuse in anaerobic conditions (i.e. compost) 

where humic factors generated by plant decomposition infiltrate bone, inhibiting 

collagenases and bacterial attack (Jans et al. 2004:91; Nicholson 1998).  

Directly measuring the effects of taphonomic processes and environmental 

conditions on an assemblage of animal remains is difficult. The body of research cited 
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above assesses bone condition at archaeological sites using porosimetry, histology 

(Hedges et al. 1995; Jans et al. 2004; Nielsen-Marsh and Hedges 2000), protein content, 

carbonate content, crystallinity (Hedges et al. 1995; Nielsen-Marsh and Hedges 2000), 

skeletal completeness scores, and subjective bone condition scores (Nicholson 1996, 

1998). While such sophisticated approaches may have great value, they have not been 

applied in the Northwest Coast, and other methods are required to assess whether 

taphonomic processes could be responsible for sablefish scarcity. 

Other taphonomic researchers have developed methods to test whether the 

properties of bones that may affect preservation (i.e. density, size, and shape) actually 

explain the observed patterns of species and body-part representation. One widely used 

method for estimating the intensity of taphonomic effects on a bone assemblage 

compares the frequencies of skeletal elements to the density of those elements. 

Taphonomists using this method assume that differential destruction of skeletal parts is 

explained by differences in bone density. Elements, and portions of elements, with a 

given bulk density (g/cm3) are expected to have a greater probability of surviving 

mechanical and chemical forces than less dense elements because they are more dense 

(Butler and Chatters 1994; Lam et al. 2003; Lyman 1985; Smith et al. 2011). If the 

frequencies of various taxa or body-parts are positively correlated with density values 

from modern examples of the archaeological specimens, then density-mediated 

destruction must be considered when explaining the formation of an archaeofaunal 

assemblage. 

Bone density values for a given species are often not uniform across its entire 

skeleton, potentially creating confusion if body-part representation is used to assess 
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butchery practices. For example, low frequencies of salmonid head parts relative to the 

post-cranial skeleton in Pacific Northwest sites have been interpreted as evidence of fish 

storage (Butler and Chatters 1994:413). But Butler and Chatters (1994) demonstrate that 

most salmonid cranial elements have lower bone density than salmonid vertebrae. 

Patterns of density-mediated destruction and butchery, therefore, cannot be distinguished 

for salmon in assemblages containing fewer cranial elements than vertebrae.  

Interpreting body-part representation for other taxa is not necessarily subject to 

the same problems. Because density in Pacific cod (Gadus macrocephalus) skeletons is 

consistent across all body-parts (Smith et al. 2011:49), and high-density elements are 

present in each body segment of sucker (Catostomus macrocheilus) skeletons (Stevenson 

and Butler 2015:182), density-mediated destruction cannot explain differential body-part 

representation for these species. Other patterns of density are also possible, and these 

studies suggest the role of density-mediated destruction must be carefully considered for 

each taxon. 

Bone density also varies between taxa, creating issues for interpretations of 

human prey choice based on the relative abundance of bone specimens from different 

species. For instance, comparisons of Pacific cod and salmon skeletons indicate that 

salmonid elements are less dense and less likely to survive deposition and recovery than 

cod (Partlow 2006:72; Smith et al. 2011:49). Before drawing conclusions about the 

importance of different taxa in human procurement strategies, archaeologists must 

consider the effects of differential destruction on taxonomic representation.  

Sablefish skeletons are likely highly vulnerable to post-depositional destruction. 

While bulk density values have not been measured for sablefish skeletal elements, 
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sablefish bones appear to be lightly built and extremely fragile. After I cooked and 

macerated several sablefish, I noticed that their vertebrae can be easily crushed between 

two fingers. Though anecdotal, this observation suggests that sablefish bone density is 

even lower than both salmon and cod bone density, and that sablefish remains are more 

prone to post-depositional destruction than other fish taxa. Unfortunately, we lack bone 

density values for many Northwest Coast fish taxa, preventing robust assessments of the 

effects of density-mediated destruction on fishbone assemblages. Furthermore, this 

approach would not be effective even if density values were available because 

researchers have failed to report element frequencies in the Pacific Northwest (Moss 

2011:161). As I discuss above, density-mediated destruction is taxon and element 

specific. Without a complete range of density values and element representation data, 

density-mediated destruction on fishbone assemblages cannot be assessed. 

Specimen fragmentation rates provide an alternative measure of post-depositional 

destruction in an assemblage. Lyman (2008:250–251) identifies two dimensions of 

fragmentation, the extent of fragmentation and the intensity of fragmentation. The extent 

of fragmentation can be estimated by the proportion of complete specimens to the total 

number of specimens identified for a taxon (Lyman 2008:250; Wolverton 2002:89; 

Wolverton et al. 2008:15). Measuring the extent of fragmentation with this method 

requires that a measurement of completeness was recorded for the specimens in an 

assemblage. However, completeness measures are typically not documented for fish, and 

they are actually very difficult to measure reliably. Instead, many zooarchaeologists 

prefer to measure fragmentation using fragmentation intensity. 
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Fragmentation intensity is the average size, or number, of fragments that an 

element has been broken into. A widely used measure of fragmentation intensity is the 

ratio of the number of identified specimens (NISP) to the minimum number of elements 

(MNE) represented for a single taxon, excluding complete specimens (Lyman 2008:251–

252; Wolverton 2002:89; Wolverton et al. 2008:15). Zooarchaeologists count MNE to 

avoid overestimating the contribution of a single bone that has broken into multiple 

specimens. MNE is calculated by counting the number of specimens from the same 

anatomical element that have the same morphological landmarks. Fragments that could 

have derived from the same bone are excluded (Lyman 2008:218–222). Calculating 

NISP:MNE uses this information to estimate how many specimens each whole bone has 

been broken into. Relatively high NISP:MNE ratios indicate that each bone was broken 

into more pieces, while ratios approaching 1:1 imply each specimen is nearly complete. 

However, the relationship between NISP and the level of fragmentation is not linear. As 

fragmentation increases and elements are broken into smaller and smaller pieces, fewer 

of those specimens are likely to be identifiable (Cannon 2013; Lyman 2008:253–254; 

Marshall and Pilgram 1993). Therefore, a NISP:MNE ratio approaching 1:1 may indicate 

specimens are relatively complete, or that they are fragmented beyond recognition, 

rendering this measurement of fragmentation intensity potentially useless. This problem 

of equifinality can be solved by comparing NISP:MNE ratios with other measures of 

fragmentation such as completeness (Wolverton et al. 2008:16) or NSP:NISP (see below) 

(Wolverton 2002:91). 

 In an experiment designed to empirically evaluate the validity of fragmentation 

measurements as estimates of fragmentation intensity, Cannon (2013) found that average 
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specimen size is the most useful measure for comparing fragmentation intensity of 

specific elements of a particular taxon. Specimen size decreases linearly with increasing 

fragmentation, and it can be used to compare fragmentation for specific taxa (Cannon 

2013:414–416). This method is highly biased by the size of the complete elements 

represented in an assemblage. For example, comparing an assemblage of whole deer 

scapulae to an assemblage of whole deer phalanges on the basis of average size would 

incorrectly suggest fragmentation is greater in the latter (Cannon 2013:418). Because of 

this issue, average specimen size should only be compared for adult mammals and birds 

on an element-by-element basis. The method would not be a valid measure of 

fragmentation for animals that grow indeterminately, such as fishes, reptiles, amphibians, 

or invertebrates.  

 One final measure of fragmentation that can be easily calculated from commonly 

reported zooarchaeological data was also validated by Cannon’s (2013) experiment. The 

ratio of the number of specimens (NSP) to the NISP in an assemblage measures the 

intensity of fragmentation. This method assumes that as taphonomic processes break 

bones into a greater number of ever smaller fragments, the specimens in an assemblage 

will become less identifiable. NSP:NISP has also been referred to as the identifiability 

rate, with the implication that identifiability is controlled by fragmentation (Grayson 

1991:487; Nagaoka 2005:1336). Cannon (2013:411) shows the relationship between NSP 

and NISP is linear, unlike similar calculations for the minimum number of individuals 

(MNI) or MNE. Larger NSP:NISP ratios indicate greater fragmentation, with few 

identifiable specimens relative to the number of specimens in the assemblage (Wolverton 

et al. 2008:16). Ratios of NSP:NISP approaching 1:1 always suggest that all specimens 
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are complete enough to enable identification. The NSP:NISP ratio cannot be calculated 

for individual taxa because NSP by definition incorporates unidentified specimens that 

cannot be attributed to any taxon, and it cannot be used to characterize differential 

handling practices (Cannon 2013:411). Baker (Baker 2009:41) also cautions that 

NSP:NISP may be greatly influenced by recovery methods, analyst experience, and the 

analyst’s research objectives. Nevertheless, it is an effective and widely used tool for 

quantifying fragmentation intensity in assemblages (Medina 2014:124) and evaluating 

whether post-depositional destruction explains differences between them (Grayson 1991; 

Nagaoka 2002, 2005; O’Brien 2015; Otaola 2012; Wolverton et al. 2008).  

Because sablefish bones are very fragile, and their representation could be greatly 

influenced by post-depositional destruction, I use NSP:NISP ratios to compare the 

intensity of fragmentation among sites and determine whether sablefish scarcity is 

explained by differences in taphonomic histories (Cannon 2013:418). I recognize that this 

measure over-simplifies extremely complex site histories, and that documenting the 

specific processes that structure assemblages remains an important undertaking. 

However, the NSP:NISP ratio is the most effective measure of fragmentation that can 

actually be calculated from the data that is currently reported for most sites. 

 

Sablefish Biogeography  

Current biogeographical information on sablefish life history suggests Northwest 

Coast peoples most likely caught these fish as juveniles. Sablefish is a demersal species 

that can live over 100 years and grow to over a meter in length. Though mature 

individuals may come very close to shore on occasion (Love 2011:282), adults normally 
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occupy the deep waters of continental slopes between 200-1,400 m depth where they are 

only accessible through long-line fishing methods (Head et al. 2014; Pearson and Shaw 

2004:127; Rutecki and Varosi 1997b:45). Young of the year measuring 20-40 cm, on the 

other hand, are common in bays and inlets along the Pacific coast and are efficiently 

caught by hand-jigging in waters 20-60 m deep (Echave et al. 2013:29; King et al. 

2000:64; Rutecki and Varosi 1997a:48–50). While humans may have pursued adult 

sablefish with deep sea fishing techniques in the past (Hobler 1978:46), juveniles should 

have provided an attractive, low-cost resource in many places along the Pacific coastline.  

One important aspect of juvenile sablefish ecology that should be considered 

when evaluating ancient use patterns is the geographic variation in their distribution and 

abundance. During a seven year survey of juvenile sablefish populations in a region of 

southeast Alaska, Rutecki and Varosi (1997b) found that juvenile sablefish were present 

in 11 bays and inlets (Figure 2), but were only captured in substantial numbers at St. John 

Baptist Bay. Why sablefish prefer this bay remains unknown (Rutecki and Varosi 

1997a:48), but Coutré (2014:71) suggests juveniles might prefer bays with freshwater 

input where salmon offal is available. Alternatively, sablefish may be entrained in St. 

John Baptist Bay as larvae.  

Even this relatively dependable source of sablefish showed large variations in 

catch size between seasons and survey years. In fact, many of the sablefish captured at 

sites other than St. John Baptist Bay were associated with the strong year class of 1985, 

when juveniles were extremely abundant throughout the region (Rutecki and Varosi 

1997b:Table 1, 126). Though poorly understood, these periodic “strong year class”  
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Figure 2 – Locations of juvenile sablefish tagged and released in southwest Alaska 

between 1985 and 1991 (adapted from Rutecki and Varosi 1997b:124). The total 

numbers of tagged sablefish are given next to the names of catch locations. 
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increases in juvenile populations correlate with favorable environmental conditions such 

as warmer sea surface temperatures (Sogard 2011), and have resulted in enormous 

sablefish catches from piers elsewhere on the Pacific coast (Cox 1948; McFarlane et al. 

1997:28). If year class strength was as irregular in the past as it is today, uneven sablefish 

representation at archaeological sites may simply reflect this unpredictable, temporal 

variation in the abundance and availability of juvenile sablefish. Archaeological records 

may contribute to modern understandings of sablefish distributions by providing 

historical perspectives on nearshore ecosystems that juveniles prefer. 

 

Sablefish in Northwest Coast Archaeological and Ethnographic Contexts 

A synthesis of Northwest Coast ethnographic records in the Smithsonian 

Institution’s Handbook of North American Indians, Volume 7 (Suttles 1990b) contains 

little information on sablefish use. In 10 of the 19 cultural and linguistic groups for which 

subsistence information is reported, only five fish taxa are cited as important food sources 

(salmon, eulachon, herring, halibut, and sturgeon; Linnaean taxonomy was not reported 

for these fishes). Numerous zooarchaeological analyses of ancient and contact-era 

fishbone assemblages confirm these taxa played key roles in past foodways, but the 

studies also demonstrate that many other taxa were at least as important in terms of 

culture and nutrition (Campbell and Butler 2010; Ewonus 2011; McKechnie et al. 2014; 

McMillan and St. Claire 2005; Moss 2010; Moss and Cannon 2011). Hanson (1991:385–

387, 395–396) argues these biases (including ‘salmonopia’: the overestimation of 

salmon’s importance in regional diets [Monks 1987:119]) might be related to the 

participation of many Northwest Coast peoples in commercial salmon and halibut 
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fisheries following Euro-American colonization. Because many of the interviews cited in 

Suttles (1990b) were conducted after 50 to 70 years of commercial fishing, the emphasis 

on salmon in ethnographies should not be surprising (Hanson 1991:387). These sources 

can help to develop expectations about patterns of past fish use, but they are not reliable 

evidence of pre-commercial fish use in and of themselves. 

Despite these limitations, sablefish do appear in at least two accounts of 

Northwest Coast fishing practices. Blackman (1990:224) notes that ‘sable-fish’ was a 

preferred food source among the Haida. Further evidence for sablefish use among the 

Haida was recorded in a story told by John Sky to John R. Swanton (1905:210–226). In 

Supernatural-Being-Who-Went-Naked, the titular character pays an extended visit to the 

west coast of Haida Gwaii and is asked, “Does the black cod stick you here?” (Swanton 

1905:220, 222). Swanton (1905:225) notes this expression refers to the exclusive 

availability of ‘black cod’ on the west coast of the islands, and that visitors to the region 

had such high regard for the fish they would delay their departure. Arima and Dewhirst 

(1990:397) mention that groups of Nootka and Nitinaht speakers on the west coast of 

Vancouver Island also captured ‘sablefish’ and ‘lingcod’ with lures and harpoons or 

dipnets from canoes. In addition, Suttles (1990a) argues that ethnographers often 

included several species of marine fishes – including sablefish – in the non-taxonomic 

group of ‘cod’ or ‘codfishes.’ Therefore, reference to ‘cod’ procurement by the Eyak 

(DeLaguna 1990a:190), the Tlingit (DeLaguna 1990b:211), the Makah (Renker and 

Gunther 1990:423–424), and Coastal Salish peoples (Hajda 1990:505–507; Kennedy and 

Bouchard 1990:444–445; Suttles and Lane 1990:456–457) indirectly suggest that 

sablefish may have been widely captured on the Northwest Coast.  
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Unfortunately, understanding the roles of sablefish in Northwest Coast 

archaeological contexts is difficult because researchers have referred to fishes by 

colloquial or common names without citing Linnaean taxonomy. This practice has 

created confusion where one name refers to multiple species, or multiple names exist for 

the same species. For example, confusion created by the reliance on common names is 

evident in the disagreement over the fishes that bentwood fishhooks were used to capture. 

According to Swan’s observations from 1873, Haida Gwaii fishers caught 75 ‘black cod’ 

at a time with a hundred specialized bentwood fishhooks attached “to a single line, which 

acts like a trawl” (in Hobler 1978:44). Archaeological examples of the eponymous black 

cod hook (Figure 3) have been identified at a contact-era cache on Moresby Island, Haida 

Gwaii (Hobler 1978), and similar hooks were recorded at 13 so called “wet sites” 

(waterlogged cultural deposits with preserved perishable materials) along the Northwest 

Coast (Croes 2003). Croes (2003:54) argues these slender, bentwood fishhooks appeared 

in the Salish Sea as early as 4,000 B.P. at Glenrose Cannery (DgRr 6) and were 

commonly used throughout the region until their contact-era disappearance. However, 

neither Swan nor Hobler (1978) cite the scientific name for their ‘black cod,’ and it is 

unclear whether they actually refer to Anoplopoma fimbria. In a description of the black 

cod hook, Stewart (1977:23) uses the name ‘black cod’ to identify the black rockfish 

(Sebastes melanops), but Croes (1988) argues these bentwood hooks may have been used 

to capture ‘Pacific cod’ from the family Gadidae, or ‘codfishes’ in general. Until these 

disagreements are resolved, black cod hooks should not be used as evidence of 

procurement for any particular taxa.  
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Figure 3 – Two types of black cod hook recovered from FeUa 3, a fishing gear cache on 

Moresby Island in Haida Gwaii: a) one-piece, b) composite (from Hobler 1978:41). 

 

Another line of evidence that anthropologists and archaeologists sometimes use to 

explore foodways is the nutritional content of plants and animals that make up a given 

diet (e.g. Speth and Spielmann 1983). Nutritional assessments of high protein diets 

typical of the Northwest Coast often emphasize the importance of dietary fat for avoiding 

protein poisoning (Cannon 1995). Of the 15 Pacific fish types for which the U.S. 

Department of Agriculture (2014) reports nutritional statistics, sablefish have the highest 

dietary fat content and are tied for the highest number of calories (Table 2). Based on the 

high nutritional quality of sablefish and the presence of juveniles in nearshore waters, I 

expect that Northwest Coast peoples would have chosen to procure sablefish when they 

were available. 

 

Quantitative Methods 

In this thesis, I quantify fishbone abundance using the number of identified 

specimens (NISP), which is simply a tally of the specimens attributed to a taxonomic  
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Table 2 – Macronutrient content per 100g of raw Pacific coast fishes (U.S. Department of Agriculture 2014). 

 

Common Name Taxon 
Energy 

(kcal) 

Protein 

(g) 
n 

Std. 

Error 

Fat 

(g) 
n 

Std. 

Error 

Date of 

Study 

Sablefish Anoplopoma fimbria 195 13.41 169 0.089 15.30 178 0.314 1987 

Pacific Herring Clupea pallasii 195 16.39 70 0.133 13.88 128 0.475 1987 

Chinook Salmon Oncorhynchus tshawytscha 179 19.93 9 0.420 10.43 12 1.478 2003 

Mackerel; Pacific and Jack Scombridae 158 20.07 11 - 7.89 126 0.865 1987 

Coho Salmon Oncorhynchus kisutch 146 21.62 178 0.044 5.93 219 0.161 1987 

Sockeye Salmon Oncorhynchus nerka 142 21.31 4 0.560 5.61 4 1.695 2010 

European Anchovy* Engraulis encrasicolus 131 20.35 1 - 4.84 26 0.318 1987 

Shark; mixed species Elasmobranchii 130 20.98 16 0.256 4.51 52 - 1987 

Pink Salmon Oncorhynchus gorbuscha 127 20.50 3 0.702 4.40 3 2.091 2010 

Chum Salmon Oncorhynchus keta 120 20.14 8 1.222 3.77 13 0.650 1987 

Sturgeon; mixed species Acipenseridae 105 16.14 2 - 4.04 7 - 1987 

Rainbow Smelt Osmerus mordax 97 17.63 47 0.222 2.42 52 0.107 1987 

Atlantic and Pacific Halibut Hippoglossus sp. 91 18.56 10 0.378 1.33 10 0.308 2010 

Perch; mixed species Perciformes 91 19.39 39 0.172 0.92 24 0.049 1987 

Rockfish; mixed species Scorpaenidae 90 18.36 4 0.344 1.34 4 0.467 2010 

Lingcod Ophiodon elongatus 85 17.66 173 0.078 1.06 16 0.143 1987 

Flounder and Sole species Pleuronectiformes 70 12.41 4 1.031 1.93 4 0.431 2010 

Pacific Cod Gadus macrocephalus 69 15.27 11 0.823 0.41 11 0.037 2010 

*proxy for Pacific Anchovy (Engraulis mordax)          
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order or finer in an archaeological assemblage (Lyman 2008:26). Some researchers prefer 

to measure taxonomic abundance using the minimum number of individuals (MNI), 

which is most often defined as being equal to “the most commonly occurring kind of 

skeletal specimen of a taxon in a collection” (Lyman 2008:39). NISP and MNI both have 

fundamental flaws, but both are also valid, ordinal scale measures of taxonomic 

abundance that provide redundant information (Lyman 2008:Chapter 2). I use NISP 

because it is the most commonly reported unit of fishbone abundance in the Northwest 

Coast. 

 Because NISP is an ordinal scale measure at best (Lyman 2008), only non-

parametric statistical tests that compare data at the ordinal or nominal scale are 

appropriate for zooarchaeological analysis (Wolverton et al. 2014). In this thesis, I use 

Spearman’s rank order correlation coefficient (rs) to test whether the rank order 

taxonomic abundance of sablefish is correlated with several independent variables. 

Spearman’s correlation test evaluates the hypothesis that two ordinal scale variables are 

correlated in n independent cases. If the correlation coefficient is significant at the 

specified level of confidence (α = 0.05 throughout this thesis), there is enough evidence 

to reject the null hypothesis that the two variables are not correlated. I calculate 

Spearman’s correlation coefficient and the significance of the result (p) using IBM SPSS 

version 23. Because it is possible to achieve a statistically significant correlation when no 

meaningful relationship exists, I report the effect size (rs
2) to show what percentage of the 

variability in the target variable (sablefish abundance) is explained by a given 

independent variable (Wolverton et al. 2014). 
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Chapter 3: Methods and Materials 

 My thesis research draws on three scales of archaeological records: reanalyzed 

fishbone assemblages from the Salish Sea, synthesized fishbone data from previously 

analyzed Northwest Coast assemblages, and previously unreported fishbone data from six 

time periods of the Tse-whit-zen assemblage. Here, I describe each set of materials that I 

incorporated into my hypothesis tests, and how I applied these materials to test each 

hypothesis (Table 3). I conclude the chapter with a discussion of the analytic challenges 

that I encountered during my analysis of the synthesized fishbone data. 

 

Reanalyzed Assemblages  

I reanalyzed six previously analyzed assemblages to evaluate the possibility that 

sablefish have been systematically misidentified (H1): Burton Acres, Decatur Island 

(45KI429 only), English Camp (Op A and Op D), and West Point (both sites) (Table 4; 

Figure 4). My selection was expedient, and largely determined by my ability to access the 

collections. However, I also selected these assemblages because they represent large 

samples of archaeological fishbone, and, in the case of West Point, because sablefish is 

reported as present. Because I am primarily concerned that sablefish vertebrae may have 

 

 

Table 3 – Materials used to test hypotheses that may explain sablefish scarcity. 

 

Hypothesis Reanalyzed 

Assemblages 

Northwest 

Coast Synthesis 

Tse-whit-zen 

Fishbone Data 

H1 – ID Criteria X  X 

H2 – Mesh Size  X X 

H3 – Sample Size  X X 

H4 – Post-Depositional Destruction  X X 
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Table 4 – Previously analyzed fishbone assemblages selected for reanalysis. 

 

Site Name Site Number Analyst Screen Sizes Used Owner Curator 

Decatur Island 45SJ169 Wigen (2003) 1/4”, 1/16” Bonneville Power 

Administration 

Bonneville Power 

Administration, Portland, OR 

 

Burton Acres 45KI437 Kopperl and Butler (2002) 1”, 1/2”, 1/4”, 1/8” Puyallup Tribe of Indians Burke Museum, Seattle, WA 

 

English Camp Op A 45SJ24 Pegg (1999) 1”, 1/2”, 1/4”, 1/8” National Park Service Burke Museum, Seattle, WA 

 

English Camp Op D 45SJ24 Kopperl (2011) 1”, 1/2”, 1/4”, 1/8” National Park Service Burke Museum, Seattle, WA 

 

West Point  45KI428 Wigen (1995) 1”, 1/2”, 1/4”, 1/8” West Point Tribal 

Oversight Committee 

Burke Museum, Seattle, WA 

 

 

West Point 45KI429 Wigen (1995) 1”, 1/2”, 1/4”, 1/8” West Point Tribal 

Oversight Committee 

Burke Museum, Seattle, WA 
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Figure 4 – Locations of archaeological sites selected for reanalysis.
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been confused for salmon (genus Oncorhynchus), sculpin (family Cottidae), or flatfish 

(order Pleuronectiformes) vertebrae, I only reanalyzed vertebral specimens from these 

assemblages. 

 

Northwest Coast Fishbone Data Synthesis 

I synthesized fishbone data from zooarchaeological reports for 24 archaeological 

sites (Table 5; Figure 5) to determine whether sablefish scarcity in the Northwest Coast 

can be explained by screen size effects (H2), sample size (H3), or post-depositional 

destruction (H4). I chose reports that are cited by Butler and Campbell (2004) and 

McKechnie et al. (2014) in their syntheses of Northwest Coast animal bone records. I 

divided each site into the largest number of assemblages possible using previously 

defined chronological components for each site. Because sablefish is rarely reported, I 

only selected assemblages with at least 10 identified fish taxa (nTaxa) and a sample size 

of at least 100 NISPfishes to focus my analysis on sites with a relatively high probability of 

containing sablefish. I also excluded sites that were not sampled with 3.2 mm (1/8”) or 

finer mesh, with the exception of Hoko River Rockshelter which includes numerous 

sablefish specimens despite the exclusive use of coarse mesh.  

 For each chronological assemblage of each site, I attempted to record which mesh 

sizes were used to sample fish remains, NISPsablefish, NISPfishes, NSPfishes, and the volume 

(L) of excavated material that each fishbone assemblage represents (Table 5). I derived 

%NISP, sablefish concentration (NISPsablefish/L), and NSP:NISP in Microsoft Excel. 

References and narrative descriptions of my data synthesis for each assemblage are 

reported in Appendix A.  
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Table 5 – Fishbone data available from Northwest Coast archaeological assemblages. 

(“Sable.” = Sablefish; “Vol.” = Volume analyzed for fishbone) 

 

Site Name Site 

Number 

Screen 

Size 

NISP 

Sable. 

NISP 

Fish 

NSP 

Fish 

Vol. 

(L) 

Source 

Kilisnoo Picnicground 49SIT124 X X X X  Moss (1989) 

Daax Haat Kanadaa 49SIT244 X X X X X Moss (1989) 

740T 740T X X X X X Orchard (2007) 

7aydi 'llnagaay 717T X X X X  Orchard (2007) 

Kaidsu - Unit 1 781T X X X X  Orchard (2007) 

Q'iid 'llnagaay 924T X X X X  Orchard (2007) 

Qayjuu 'llnagaay 699T X X X X  Orchard (2007) 

Xuud tsixwaas 'llnagaay 785T X X X X X Orchard (2007) 

Huu7ii - Back Terrace DfSh 7 X X X X X McKechnie (2012) 

Huu7ii - House 1 DfSh 7 X X X X X McKechnie (2012) 

Ts'ishaa - Main Village DfSi 16 X X X X X McKechnie (2005) 

Ts'ishaa - Back Terrace DfSi 16 X X X X X McKechnie (2005) 

Hoko River Rockshelter 45CA21 X X X X X Wigen (2005) 

Cove Cliff Site DhRr 18 X X X X X Trost (2005) 

Decatur Island - AU 2 45SJ169 X X X   Wigen (2003) 

Decatur Island - AU 5 45SJ169 X X X   Wigen (2003) 

Dionisio Point - Layer A DgRv 3 X X X X  Ewonus (2011) 

Dionisio Point - Layer B DgRv 3 X X X X  Ewonus (2011) 

Dionisio Point - Layer C DgRv 3 X X X X  Ewonus (2011) 

Tum-tumay-whueton DhRr 6 X X X X X Pierson (2011) 

Noons Creek DhRq 1 X X X X X Pierson (2011) 

Bay Street - Comp 1 45KP115 X X X X X Butler and Baker (2002) 

Bay Street - Comp 2 45KP115 X X X X X Butler and Baker (2002) 

Bay Street - Comp 3 45KP115 X X X X X Butler and Baker (2002) 

Burton Acres 45KI437 X X X X X Kopperl and Butler (2002) 

Cama Beach 45IS2 X X X X  Trost (2010) 

Duwamish 45KI23 X X X   Butler (1987) 

West Point 428 - Comp 1 45KI428 X X X X X Wigen (1995) 

West Point 428 - Comp 2 45KI428 X X X X X Wigen (1995) 

West Point 429 - Comp 1 45KI429 X X X X X Wigen (1995) 

West Point 429 - Comp 5 45KI429 X X X X X Wigen (1995) 

English Camp Op A 45SJ24 X X X   Pegg (1999) 

English Camp Op D 45SJ24 X X X X  Kopperl (2011) 

Loon Cave - Component I DiSo 9 X X X   Calvert (1980) 

Loon Cave - Component II DiSo 9 X X X   Calvert (1980) 
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Figure 5 – Locations of sites included in the Northwest Coast fishbone data synthesis. 

 

 

Tse-whit-zen 

Data from the large scale analysis of Tse-whit-zen provides a unique opportunity 

to closely study the effects of recovery methods (H2 and H3) and taphonomy (H4) on 

sablefish representation, and reanalysis of the Tse-whit-zen assemblage allows me to 

verify that sablefish were identified consistently throughout the project (H1). Tse-whit-

zen is a Lower Elwha Klallam Tribe (LEKT) village in Port Angeles, WA at the base of 

Ediz Hook on the south shore of the Strait of Juan de Fuca (Figure 5) that was occupied 

for the past 2,800 years (Larson 2006). In 2004, Larson Anthropological Archaeological 
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Services (LAAS) and LEKT members excavated the site with large open blocks of 1 x 1 

m units by natural stratigraphic layers that were subdivided into 10 cm arbitrary levels 

(Reetz et al. 2006:16, 19). All excavated matrix was collected in 10 L buckets and wet-

screened with nested 1”, 1/2”, 1/4”, and 1/8” mesh. The screened matrix of every 

twentieth bucket was designated a “complete” (“C”) bucket and collected for sorting in 

the field laboratory. The final bucket was also retained from any 1 x 1 m unit that 

produced less than 40 buckets of matrix to ensure that a 20% sample was collected from 

the entire site (Reetz et al. 2006:146). In 2010, Kristine Bovy (University of Rhode 

Island), Virginia Butler (Portland State University [PSU]), Sarah Campbell (Western 

Washington University), Michael Etnier (Western Washington University), and Sarah 

Sterling (PSU) initiated a large-scale zooarchaeological and geoarchaeological analysis 

of three structures at Tse-whit-zen.  

The zooarchaeological data from Tse-whit-zen that I use in this thesis come from 

the unpublished results of the fishbone analysis led by Butler at PSU. The universe of 

taxa was established using the results of fisheries surveys from the Environmental 

Protection Agency and the National Oceanic and Atmospheric Administration published 

in Miller et al. (1980). The non-taxonomic group ‘non-salmonid’ was also used to record 

unidentifiable vertebra fragments that are definitively not from salmon in an effort to 

counter the potential over-documentation of salmon specimens, which can be easily 

identified to genus from very small vertebra fragments. The finest possible taxonomic 

and skeletal element attributions were recorded for each specimen along with its catalog 

number, provenience, screen-size fraction, the presence of morphological landmarks, and 

the presence of burning. Kathryn Mohlenhoff, Anthony Hofkamp, Shoshana Rosenberg, 
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and I made identifications using the PSU Anthropology Department comparative 

collection, which was supplemented with species loaned to Butler by Bob Kopperl 

(Willamette Cultural Resources Associates) and Ross Smith (University of Oregon). 

Butler verified all identifications under magnification with a binocular loupe or 

microscope. To ensure that identification criteria remained consistent throughout the 

project, Butler and I carried out a reanalysis of identified Tse-whit-zen materials 

following protocol that I describe below (H1 Methods).  

The results I report in this thesis for Tse-whit-zen are aggregated by time period, 

or chronological zone. As of this writing, Sterling has defined six distinct chronological 

zones in Area A4 (Figure 6) of the site using the associations between microstrata 

identified in the field and approximately 100 radiocarbon dates (Butler, personal 

communication 2016). One of these chronological zones (CZ-4) is split into two 

assemblages (CZ-4a and CZ-4b) because it was excavated as two discrete portions. After 

fishbone data were recorded in Microsoft Excel, Kristina Dick (PSU) transferred the 

information to a central project database and assigned each specimen to a time period 

based on its provenience. I treat chronological zones as separate assemblages because 

they represent discrete deposits that may have experienced very different post-

depositional histories. 

Analysis of Tse-whit-zen materials collected as “C” buckets revealed 

discrepancies between the sizes of archaeological specimens in each bag and the recorded 

screen size on the bag label and in the Tse-whit-zen artifact catalog. For example, fish 

remains recorded as belonging to the 1/4” mesh fraction actually included much larger 

specimens that should have been captured by 1/2” mesh, and much smaller specimens 
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Figure 6 – Tse-whit-zen site map showing Area A4. Map by Kristina Dick (PSU). 
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that should have fallen through to 1/8” mesh. To overcome this problem and ensure 

comparability with other Northwest Coast assemblages, Butler’s lab staff re-screened all 

fishbone material into new 1/2”, 1/4”, and 1/8” bags prior to analysis. Records of the Tse-

whit-zen excavation indicate that 1/8” mesh was the finest screen size used for “C” 

buckets (Larson 2006), but almost every bucket also contained some fish remains that fell 

through 1/8” mesh. We retained this fishbone in bags that we labelled <1/8” mesh. We do 

not know the size of the finest mesh used, but the number of bones in some <1/8” bags 

was extremely high. 

While the <1/8” bags have largely been excluded from analysis given the 

questions regarding their recovery, Butler chose to analyze 14 bags from the <1/8” 

fraction of area A4 for a crude assessment of whether anchovy (Engraulidae) could be 

abundant at Tse-whit-zen even though it is barely represented in the 1/8” screen fraction. 

Butler (personal communication, 2015) selected the <1/8” bag from the bucket with the 

most herring (Clupea pallasii), and the <1/8” bag from a bucket with a modest abundance 

of herring, for each chronological zone. Butler and I analyzed each bag using the same 

protocol as the original analysis, except that only vertebrae were recorded, and bags from 

buckets with more than 500 NISPherring were quartered before identification. I use the 

results of this analysis for a crude assessment of whether 3.2 mm (1/8”) mesh is adequate 

for sablefish recovery (H2). 

 

H1 Methods – Current identification criteria for sablefish are invalid or nonexistent 

 If the morphological criteria used by regional zooarchaeologists to identify 

sablefish are nonexistent or invalid, sablefish remains may be systematically 
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misidentified as other taxa. Because there are no identification criteria reported for this 

fish, I cannot determine how likely it is that sablefish have been misidentified from the 

literature alone. 

 To evaluate whether systematic misidentification accounts for sablefish scarcity, I 

reanalyzed portions of Tse-whit-zen and samples of vertebrae from Burton Acres, 

Decatur Island, English Camp, and West Point (both sites). Because sablefish vertebrae 

are morphologically similar to those of salmon (genus Oncorhynchus), sculpins (family 

Cottidae), and flatfishes (order Pleuronectiformes), I expect that sablefish vertebrae were 

misidentified as belonging to one or more of these taxa. For the reanalysis of previously 

analyzed sites, I recorded the number of vertebral specimens that I identified to these four 

taxa and the number of vertebrae recorded on bag labels for the same specimens by the 

original analysts in a 10% random sample of each assemblage. If the vertebrae counts in 

the original analysis and the reanalysis differ enough that they offer divergent 

interpretations of sablefish use at the sites I study, invalid or nonexistent identification 

criteria must be considered as explanations for sablefish scarcity. 

I reanalyzed vertebrae from each of the six previously analyzed assemblages 

using the same protocol. First, I selected 10% of the excavation buckets containing 50 or 

more identified fish specimens according to random sequences generated by Random.org. 

A list of the buckets I selected for reanalysis is available in Appendix B. I excluded bags 

with small numbers of identified specimens so that I could focus my sampling effort on 

larger quantities of fishbone. After selecting a sample for re-analysis, I spread the faunal 

remains from individual screen-size fractions out on trays and sorted the material for 

vertebrae that were originally recorded as sablefish, salmon, sculpins, and flatfishes. I 
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also took care to scan all other fishbone material for misidentified and unidentified 

sablefish specimens. Then I recorded the number of vertebrae and vertebral fragments – 

specimens with less than half of the notochord – that I identified to these four taxa using 

identification criteria reported in Appendix C.  

Many Pacific Northwest researchers have asserted that very small fragments of 

salmon vertebrae can be distinguished by a characteristic texture (Butler 2004:320; 

Ewonus 2011:86; Moss 2007:13; Pegg 1999:97). However, because vertebrae of several 

other species are characterized by similarly fenestrated textures, I only recorded salmonid 

specimens that possess a portion of the centrum lip, the base of the vertebral spine, or any 

part of the facet for the articulation of a vertebral spine (Figure 7). Any one of these 

landmarks definitively marks specimens as belonging to a salmonid. I was also 

conservative with my identifications of flatfish, sculpin, and sablefish vertebrae that 

derive from the extreme caudal end of the vertebral column. These specimens appear  

uniform across multiple taxonomic orders of class Osteichthyes and lack distinguishing 

features necessary to make confident taxonomic attributions. Therefore, I did not record 

these “too caudal” specimens in my tally of vertebrae for any taxon. 

For each vertebral specimen, I recorded the site from which it originated, its 

provenience, and the screen-fraction to which it belongs. I returned all materials to their 

bags as I found them, with the exception of previously unidentified sablefish specimens, 

which I sub-bagged with a paper tag recording my attribution. 

Unlike the other assemblages, which used a minimum screen size of 3.2 mm, the 

Decatur Island fishbone was recovered in 6.4 mm (1/4”) and 1.5 mm (1/16”) screens. To 

ensure that inter-assemblage comparisons are valid for the Decatur Island materials, I re-
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screened the 1.5 mm fraction through 3.2 mm mesh and only counted the vertebrae 

collected in the 3.2 mm screen and 6.4 mm screen fractions. I also scanned the < 3.2 mm 

material for small sablefish remains. After my reanalysis, I returned the materials from 

the 3.2 mm mesh to the bags as I found them. 

 

Figure 7 – Identifiable salmon vertebral fragments (top row) and unidentified fish bone 

specimens (bottom row). Salmonid fragments identified by a) vertebral spine facet, b) 

robust lip, and c) base of vertebral spine. Scale bar is 10 mm. Photos by Tony Hofkamp. 

(Courtesy of the Thomas Burke Memorial Washington State Museum, catalog number 

WS-14677.99.08.23, Area A4, Unit 17) 

 

I reanalyzed the Burton Acres, West Point, and English Camp assemblages at the 

Burke Museum in 2015 using sablefish, salmonid, staghorn sculpin, and starry flounder 

(Platichthys stellatus) comparative specimens from the PSU Anthropology Department 

comparative collection. I reanalyzed the Decatur Island assemblage using materials 

loaned to Butler by the Bonneville Power Administration in the PSU zooarchaeology lab 

with the entire PSU Anthropology Department comparative collection.  

 The Tse-whit-zen reanalysis was part of a larger study on the reliability of 

taxonomic attributions for fishbone. It therefore differs from the reanalysis of previously 
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analyzed sites because it was designed to verify the identification criteria used for all 

fishes identified at the site. Butler and I randomly selected 10% of the buckets from 

excavation units that were analyzed at the beginning, middle, and end of the three-year 

analysis of fish remains (Appendix D) and reanalyzed them using the same protocol as 

the original analysis (see Tse-whit-zen above). I used Spearman’s rank order correlation 

coefficient to test whether the rank order taxonomic abundance of sablefish is correlated 

in the reanalysis and the original analysis. If the rank order taxonomic abundance of 

sablefish is not statistically correlated in the results of the original analysis and the 

reanalysis, the identification criteria used for this species may not be valid, and the high 

frequency of sablefish at this site could be the result of misidentification. 

  

H2 Methods – Excavators do not use suitably fine screen sizes to recover sablefish 

 Sablefish scarcity may be caused by the relatively small size of sablefish bones, 

especially if archaeologists only use 6.4 mm or larger mesh to recover fishbone 

assemblages. I evaluated the effects of screen-size empirically by comparing the 

frequencies of sablefish bones represented in different mesh-size fractions of nested 

screens from Tse-whit-zen and the synthesized Northwest Coast assemblages. The goal 

of this comparison is to determine which screen sizes are sufficiently fine to recover 

sablefish specimens. Because it is likely that small-bodied juvenile sablefish were 

captured (see Sablefish Ecology above), I expect 3.2 mm mesh is required to obtain an 

adequate sample of sablefish remains.  

Nested screens were used to sample nearly every site, but Duwamish and Ts’ishaa 

are the only assemblages with taxonomic abundance data published for individual screen 
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sizes. I was also able to derive individual screen size results for Burton Acres, Tse-whit-

zen, and West Point (both sites) using digital zooarchaeological databases from each of 

these sites. None of these assemblages have comparable samples of fishbone from screen 

size fractions finer than 3.2 mm mesh. However, I compared sablefish abundance in 

<1/8” bags from Tse-whit-zen and the subsampled 1.5 mm (1/16”) mesh fraction from 

Ts’ishaa to the other screen size fractions of these assemblages to explore which screen 

sizes are sufficiently fine to obtain representative samples of sablefish remains. Then, I 

checked which assemblages were sampled using screens that are capable of recovering 

sablefish remains. If previously identified assemblages were not recovered using screens 

that retain sablefish remains, then screen-size effects cannot be ruled out as a factor in 

sablefish scarcity.  

I also used Fisher’s exact test to determine whether sablefish presence is 

associated with the use of mesh finer than 3.2 mm. Like the Chi-square test, Fisher’s 

exact test is used to evaluate the hypothesis that two categorical variables with m and n 

states are associated by calculating the probability (p) that an m × n matrix formed by a 

sample of observed cases was not produced by chance alone (e.g. Table 6). If p is less 

than the specified level of confidence (α), there is enough evidence to reject the null 

hypothesis that the two variables are not associated. Unlike the Chi-square test, Fisher’s 

exact test is valid even when the number of expected cases in any given cell of the m × n 

table is less than five. Because very few assemblages were sampled with a minimum 

screen size finer than 3.2 mm mesh, Fisher’s test is more appropriate for a comparison of 

sablefish presence in 3.2 mm mesh assemblages and assemblages sampled with finer 

mesh. I calculated p for Fisher’s test using SPSS, and I also report the effect size using 



 

49 

the odds ratio (OR) – the odds that a positive result will be observed under a specified 

condition compared to the odds that it will be observed under normal conditions. The 

odds ratio is calculated as: 

OR =
𝑎 𝑏⁄

𝑐 𝑑⁄
=
(𝑎 × 𝑑)

(𝑏 × 𝑐)
 

where a, b, c, and d are the numbers of observed cases (assemblages in Table 6). If 

sablefish presence and the use of mesh finer than 3.2 mm are statistically correlated, then 

sablefish scarcity could be related to the small number of assemblages that were sampled 

with such fine mesh. 

 

Table 6 – Model 2 x 2 matrix used for Fisher’s exact test and to calculate odds ratio, 

where a, b, c, and d are equal to the number of observed assemblages. 

 

Min. Screen Size 

Used 

Sablefish 

Absent 

Sablefish 

Present 

2 mm or finer a b 

3.2 mm or coarser c d 

 

 

H3 Methods – Sablefish is scarce because fishbone samples are too small 

 The stark differences in sablefish abundance at Tse-whit-zen and other Northwest 

Coast assemblages could be related to small volumes of excavated matrix in regional 

assemblages. To test this hypothesis, I used a method similar to the regression approach 

described by Lyman and Ames (2007; Lyman 2008:165) to compare the abundance of 

sablefish and the size of the fishbone sample for the assemblages of Tse-whit-zen and the 

regional synthesis. Instead of using linear regression to evaluate sample size effects, I 

used Spearman’s rank order correlation coefficient. I compared sablefish abundance to 
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two different measures of sample size: the volume of archaeological deposits analyzed 

for fishbone, and the NISP of fishes. Both are valid measures of sample size, but volume 

may be less reliable for identifying sample size effects because animal bone 

concentrations can vary dramatically within even a small deposit (Lyman 2008:149–150). 

Nevertheless, both volume and NISP may correlate with sablefish abundance, so I 

checked for a correlation in both. If sample size and sablefish rank-order abundance are 

statistically correlated by either measure, then sample size effects must be considered as 

an explanation for sablefish scarcity in regional assemblages.  

 

H4 Methods – Sablefish bones are scarce due to post-depositional destruction 

 Sablefish skeletal elements are very fragile, with bone density that may be similar 

to or lower than salmon bone density. Because low density skeletal elements are more 

vulnerable to post-depositional destruction, archaeological assemblages that were 

subjected to more destructive processes would contain relatively fewer sablefish 

specimens even if numerous sablefish carcasses were originally deposited. Assemblages 

with less destructive taphonomic histories would have higher frequencies of sablefish. 

 To test for the existence this hypothetical relationship, I estimated the intensity of 

post-depositional destruction for each assemblage in Tse-whit-zen and the regional 

synthesis with the measure of fragmentation intensity NSPfishes:NISPfishes. Then, I 

compared the relative abundance of sablefish to the intensity of fragmentation in each 

assemblage with Spearman’s rank order correlation coefficient to see if these two 
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variables are correlated. I used sablefish concentration* – NISPsablefish per liter of analyzed 

archaeological matrix (NISPsablefish/L) – to control for sample size rather than the more 

commonly reported relative measure of abundance, %NISP (NISPsablefish/NISPfishes) 

because %NISP and NSP:NISP would necessarily co-vary. If there is a statistically 

significant relationship between sablefish concentration and fishbone fragmentation, 

post-depositional destruction must be considered as an explanation for the scarcity of 

sablefish.  

 

Analytic Challenges 

 My goal to test whether sample volume and sablefish abundance are related was 

hampered because the volume of archaeological matrix that was analyzed for fishbone is 

not always reported. For some sites in the synthesis of regional fishbone data, the volume 

of fishbone that was studied is included with the publication (e.g. Ts’ishaa in McKechnie 

2005:Table 5, 31). I was also able to estimate the volume of studied material from several 

other assemblages using other information reported with the site. For example, the 

volume analyzed from Tum-tumay-whueton and Noons Creek were not reported, but I 

use the dimensions of the samples collected from these sites to calculate volume, as 

Pierson (2011) analyzed 100% of the recovered material (Appendix A). However, the 

volume of fishbone that was studied has not been reported, and cannot be estimated from 

the published information, for four sites (Table 7). In eight other sites, the reported 

volume estimates are not representative of the actual volume of analyzed material (Table 

                                                 
* Throughout, I refer to NISP/L as sablefish concentration rather than density to avoid confusion with 

measures of skeletal bone density (g/cm3). 
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7). The fishbone analyzed from all of these sites was subsampled, but the volumes 

included with the fishbone analyses represent the volume of the assemblages prior to 

subsampling. Because these identified fishbone assemblages are representative of a 

smaller volume than the site reports indicate, I only include them in tests that do not 

require volume data (H2 and H3 where sample size is measured as NISPfishes).  

 

Table 7 – Analytic challenges for assemblages in the regional fishbone data synthesis. 

 

Site Name Volume Not 

Reported 

Volume Not 

Representative 

NISP 

Inflated 

Protocol Not 

Comparable 

Kilisnoo Picnicground  X   

Daax Haat Kanadaa     

740T     

7aydi 'llnagaay  X X  

Kaidsu  X X  

Q'iid 'llnagaay  X X  

Qayjuu 'llnagaay  X X  

Xuud tsixwaas 'llnagaay     

Huu7ii     

Ts'ishaa     

Hoko River Rockshelter     

Cove Cliff Site    X 

Decatur Island  X   

Dionisio Point X    

Tum-tumay-whueton     

Noons Creek     

Bay Street     

Burton Acres     

Cama Beach X   X 

Duwamish X    

West Point 428     

West Point 429     

English Camp Op A  X   

English Camp Op D  X   

Loon Cave X    

 

  



 

53 

Fishbone abundance was also inflated to correct for subsampling in four of these 

assemblages (Table 7). For the 7aydi ‘llnagaay, Kaidsu, Q’iid ‘llnagaay, and Qayjuu 

‘llnagaay assemblages, Orchard (2007) analyzed only a quarter of the fishbone by 

volume in some contexts. In an attempt to report taxonomic abundance data that are 

representative of the excavated volumes for these sites, Orchard quadrupled the observed 

NISP values of all fishes in the subsampled contexts (Appendix A). Because the actual 

abundances of fishbone recorded in these sites cannot be determined, I only include them 

in nominal scale hypothesis tests for screen size (H2). 

Taxonomic abundances from at least two sites are not comparable to the other 

assemblages in the regional fishbone data synthesis because fishbone was identified 

according to different protocol than any of the others. Fish vertebrae from Cove Cliff 

were only identified if the rostral face, the caudal face, and a portion of the centrum, were 

present (Appendix A), causing NISP to be underestimated relative to other assemblages 

that have all vertebral specimens identified. In the Cove Cliff and Cama Beach 

assemblages, only a select range of skeletal elements was identified (Appendix A), 

causing NISP to be dramatically underestimated relative to other assemblages in which 

every element except fin rays and ribs was identified. Both of these decisions are 

justifiable and serve particular research interests (Trost 2005, 2010), but data from these 

assemblages cannot be directly compared to other sites that used different identification 

protocols. Therefore, I only include them in nominal scale hypothesis tests (H2). 

 It should also be noted that Cove Cliff and Cama Beach are the only two 

assemblages for which differences in identification protocol have been reported. 

Considering the absence of methodological descriptions for zooarchaeological research 
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throughout the region (Table 1), it is possible that important protocol differences exist for 

other assemblages as well, and that their results are not comparable to one another. For 

the purposes of this thesis, I assume that previously analyzed assemblages were analyzed 

for the same range of elements using the same criteria as one another. 
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Chapter 4: Hypothesis Tests and Results 

H1 Results – Current identification criteria for sablefish are invalid or nonexistent 

 To verify the validity of sablefish identification criteria, I reanalyzed a portion of 

the Tse-whit-zen fishbone material, and 10% of the previously identified fishbone from 

six assemblages: Burton Acres, Decatur Island (45KI429 only), English Camp (Op A and 

Op D), and West Point (both sites). I expect that sablefish vertebrae were misidentified as 

belonging to one or more taxa with similarly fenestrated vertebrae (salmonids [genus 

Oncorhynchus], sculpins [family Cottidae], and flatfishes [order Pleuronectiformes]). If 

sablefish rank order abundance is not statistically correlated in the original analysis and 

reanalysis of Tse-whit-zen, the identification criteria used for this species in the Tse-whit-

zen analysis may not be valid, and the high frequency of sablefish at this site could be the 

result of misidentification. If reanalysis of previously analyzed assemblages shows that 

sablefish is actually abundant, then invalid or nonexistent identification criteria must be 

considered as an explanation for sablefish scarcity. 

Sablefish abundance is extremely similar in the original analysis and the 

reanalysis of Tse-whit-zen, indicating that identification criteria used in the Tse-whit-zen 

project are valid (Appendix E: Supplemental Data File). The reanalyzed sample consists 

of 3,227 NISPfishes from 180 L of matrix. There is a net increase of 9 NISP for sablefish in 

the reanalysis from the 94 specimens identified in the original analysis (Table 8). The 

new sablefish specimens were originally attributed to staghorn sculpin (Leptocottus 

armatus; n = 5), family Cottidae (n = 1), and the non-taxonomic group non-salmonid (n = 

3; see Chapter 3: Tse-whit-zen for explanation of this group). Butler and I also identified  
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Table 8 – Rank order comparison of taxonomic abundance at the family level from the 

original analysis and reanalysis of a sample of the Tse-whit-zen fishbone assemblage. 

 

Common Name Taxon Original 

NISP 

Original 

Rank 

Reanalysis 

NISP 

Reanalysis 

Rank 

Herrings and Anchovies Clupeiformes* 2,259 1 2,296 1 

Flatfishes Pleuronectiformes* 229 2 234 2 

Sculpins Cottidae 201 3 201 3 

Cods Gadidae 162 4 174 4 

Sablefish Anoplopomatidae 94 5 103 5 

Salmon and Trout Salmonidae 79 6 85 6 

Dogfish Sharks Squalidae 59 7 60 7 

Surfperches Embiotocidae 16 8 17 8.5 

Rays Rajidae 14 9 13 10 

Sharks and Rays Elasmobranchii** 12 10 17 8.5 

Ratfishes Chimaeridae 10 11 10 12 

Greenlings and Lingcod Hexagrammidae 6 12 12 11 

Rockfishes Scorpaenidae 3 13 5 13 

 Grand Total 3144   3227†  

 Volume Reanalyzed 180 L    

*Taxonomic order, not family. 

**Taxonomic subclass, not family. 
†Additional identified specimens in the reanalysis were originally recorded as non-salmon 

or unidentified fish, and not counted towards NISP. 

 

one vertebra each from the order Pleuronectiformes and the family Cottidae that were 

originally identified as sablefish. In the reanalysis, we also counted three sablefish first 

vertebrae in a bag that was originally recorded as containing only one first vertebra. 

Despite these differences, comparing rank order abundance of fishes at the taxonomic 

family* level shows the results of the original analysis and the reanalysis are highly 

correlated (rs = 0.985; n = 13; P < 0.001). In addition, over 95% of the variability in the 

reanalysis results can be explained by the results of the original analysis (rs
2 = 0.970). 

                                                 
* I analyze flatfishes at the order level (Pleuronectiformes) because skeletal elements from member families 

Paralichthyidae (formerly Bothidae) and Pleuronectidae cannot always be distinguished with confidence. I 

analyze herrings and anchovies at the order level (Clupeiformes), even though only three anchovy (family 

Engraulidae) specimens have been identified at Tse-whit-zen because the elements of the otic series could 

not be identified to the family level with confidence. However, all Clupeiformes specimens almost 

certainly derive from the Pacific herring (Clupea pallasii). Sub-class Elasmobranchii is included because 

some fragmentary dogfish shark (family Squalidae) and ray (family Rajidae) vertebrae cannot be 

definitively identified to either family. 
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The extremely strong correspondence between these two data sets indicates that sablefish 

abundance has not been inflated at Tse-whit-zen by identification errors. 

Identification errors also cannot account for sablefish scarcity in the six 

Northwest Coast assemblages that I reanalyzed (Appendix F: Supplemental Data File). 

There is no evidence of sablefish use in the original analysis or the reanalysis of vertebrae 

from Burton Acres (n [number of vertebrae examined] = 252), Decatur Island (n = 91), or 

English Camp (Op A [n = 253] and Op D [n = 325]) (Table 9). In the West Point 

(45KI429) assemblage, I identified a single sablefish vertebra that Wigen attributed to 

staghorn sculpin. Our identifications agreed for all 11 previously identified sablefish 

vertebrae in the West Point (45KI428 [n = 311] and 45KI429 [n = 247]) assemblages. 

There is no indication that sablefish was systematically misidentified at any of these sites. 

While sablefish abundance did not change with reanalysis, other taxa do show 

some shifts in the number of vertebral specimens counted in the original analysis and the 

reanalysis. At Burton Acres, English Camp (Op A and Op D), and West Point (both 

sites), I counted markedly fewer salmonid vertebrae than the other analysts, and sculpin 

 

Table 9 – Original (“1st”) and reanalysis (“2nd”) counts of vertebral specimens recorded 

for a 10% sample of six fishbone assemblages. 

 

Site 
Sablefish  Sculpin  Flatfish  Salmon Vol. 

(L) 1st 2nd  1st 2nd  1st 2nd  1st 2nd 

Burton Acres 0 0  1 0  23 13  228 195 10-40* 

Decatur Island 0 0  15 13  14 14  62 63 58 

English Camp Op A 0 0  47 30  9 13  197 153 96 

English Camp Op D 0 0  23 18  1 1  301 240 96 

West Point 428 1 1  32 25  85 74  193 133 140 

West Point 429 10 11  52 37  71 62  114 80 140 

*5 buckets were reanalyzed, but it is unknown whether any given bucket represents 2 L 

or 8 L of matrix. 
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counts differ noticeably as well (Table 9). The greatest differences are in the English 

Camp Op D and West Point (45KI428) assemblages, where I counted 61 and 60 fewer 

salmonid vertebral specimens, respectively. The disagreements about the number of 

salmon vertebrae likely result from differences in the morphological criteria that I 

(Appendix C) and the other analysts used. The number of salmonid vertebrae missing 

from the reanalysis counts for each site is almost exclusively made up of fenestrated 

fishbone fragments bagged with salmon that I did not count because they did not have a 

distinct centrum lip, the base of a distinctive vertebral spine, or any part of the facet for 

the articulation of a vertebral spine (Table 10). Similarly, the number of missing sculpin 

vertebrae is largely accounted for by the vertebrae I did not count because they come 

from the extreme caudal end of the vertebral column (Table 10). These extremely caudal 

vertebrae lack distinctive morphological landmarks, and I do not identify them to family 

according to my criteria. However, if these vertebra counts are compared at the ordinal 

level, as they should be, there is virtually no change between the original results and the 

reanalysis (Table 9). Overall, I found some discrepancies in identification criteria, but 

they do not change taxonomic abundance enough to affect interpretations of fish use at 

these sites. 

 

H2 Results – Excavators do not use suitably fine screen sizes to recover sablefish 

To evaluate whether sablefish scarcity could be the result of screen size biases, I 

compared the abundances of sablefish remains represented in different mesh-size 

fractions of nested screens at Tse-whit-zen and previously identified Northwest Coast  
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Table 10 – Original (“1st”) and reanalysis (“2nd”) vertebrae counts for salmonids and 

cottids. “Fenest. Texture” refers to specimens originally recorded as salmon vertebrae 

that have a fenestrated texture but no morphological landmarks. “Too Caudal” refers to 

specimens originally recorded as a member of family Cottidae that were too caudal to 

identify to family (Appendix C). 

 

Site Analysis Salmon 
Fenest. 

Texture 
Total  Sculpin 

Too 

Caudal 
Total 

Burton 

Acres 

1st 228  228  1  1 

2nd 195 32 227  0 0 0 
         

Decatur 

Island 

1st 62  62  15  15 

2nd 63 0 63  13 1 14 
         

English 

Camp Op A 

1st 197  197  47  47 

2nd 153 40 193  23 3 26 
         

English 

Camp Op D 

1st 301  301  23  23 

2nd 239 59 298  16 3 19 
         

West Point 

428 

1st 193  193  33  33 

2nd 133 57 190  26 4 30 
         

West Point 

429 

1st 114  114  51  51 

2nd 79 34 113  36 7 43 

 

 

assemblages. The purpose of this comparison was to determine which mesh sizes are 

sufficiently fine to recover sablefish remains. Then, I checked which assemblages were 

sampled with screens that are sufficiently fine to recover sablefish bones. If Northwest 

Coast assemblages were predominately sampled with coarse-mesh screens that do not 

collect sablefish remains, then screen-size effects cannot be ruled out as a factor in 

sablefish scarcity.  

 Most sablefish remains are recovered in 3.2 mm (1/8”) or finer mesh. Three sites 

with taxonomic abundance data reported for individual screen sizes contain sablefish, 

which is overwhelmingly represented in the 3.2 mm fraction (Table 11). No sablefish 

were recovered in the 12.8 mm (1/2”) fraction, but nine were recovered from the 6.4 mm  
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Table 11 – Sablefish representation in individual screen size fractions from Northwest 

Coast assemblages. (“Sable” = Sablefish; “n/a” indicates a given mesh size was not used) 

Site 

12.8 mm  6.4 mm  3.2 mm 

Vol. (L) NISP 

Sable 

NISP 

Fish 

 NISP 

Sable 

NISP 

Fish 

 NISP 

Sable 

NISP 

Fish 

Burton Acres 0 11  0 324  0 4,935 462 

Duwamish n/a n/a  0 403  0 3,596 unk. 

Tse-whit-zen - CZ-7 0 4  1 147  100 684 120 

Tse-whit-zen - CZ-6 0 38  3 1,075  1,281 25,093 960 

Tse-whit-zen - CZ-5 0 24  1 487  883 5,890 690 

Tse-whit-zen - CZ-4a 0 6  0 141  253 1,330 490 

Tse-whit-zen - CZ-4b 0 12  0 169  108 889 120 

Tse-whit-zen - CZ-3 0 2  0 79  85 553 260 

Tse-whit-zen - CZ-2 0 1  0 43  18 226 260 

Ts'ishaa - Main Village n/a n/a  4 745  18 4,040 115 

Ts'ishaa - Back Terrace n/a n/a  0 72  1 1,181 33 

West Point 428 - Comp 1 0 7  0 357  0 2,048 870 

West Point 428 - Comp 2 0 58  0 429  0 1,346 690 

West Point 429 - Comp 1 0 1  0 114  7 437 220 

West Point 429 - Comp 5 0 0  0 111  0 677 200 

Hoko River Rockshelter n/a n/a  103 48,353  n/a n/a 17,5000 

Total 0 164  112 53,049  2754 52,925 18,0490 

%NISP Sable. in Screen  0.0   0.2   5.2   

 

(1/4”) fraction of Tse-whit-zen and Ts’ishaa. All remaining sablefish (NISP = 2753) from 

Tse-whit-zen, Ts’ishaa, and the sablefish from West Point were recovered in the 3.2 mm 

fraction (Table 11). Sablefish is also reasonably well represented at Hoko River 

Rockshelter, despite the exclusive use of 6.4 mm screens to recover that assemblage 

(Croes 2005:24). Overall, however, sablefish relative abundance (%NISP) is much lower 

in the coarse mesh assemblages than in the 3.2 mm fraction (Table 11), indicating that 

fine mesh is necessary to recover large quantities of sablefish remains.  

Screens finer than 3.2 mm mesh are no more likely to recover sablefish than 3.2 

mm screens. Of the 11 assemblages in the regional fishbone synthesis that were screened 

with a minimum mesh size of 2 mm or finer, only three contain sablefish (Table 12). 

Assemblages screened with a minimum mesh size of 3.2 mm or coarser have a nearly 

equal chance of having sablefish or not having sablefish. The odds ratio (OR = 0.352)  
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Table 12 – Number of assemblages from Tse-whit-zen and regional fishbone data 

synthesis containing sablefish by minimum screen size used. 

 

Min. Screen Size 

Used 

Sablefish 

Absent 

Sablefish 

Present 

2 mm or finer 8 3 

3.2 mm or coarser 15 16 

 

indicates that assemblages screened with a minimum of 3.2 mm or coarser mesh are 

actually 2.8 times more likely to contain sablefish than assemblages screened with finer 

mesh, though the results of Fisher’s exact test show that these differences are not 

statistically significant (p = 0.291). The small sample (4.0 L) of material from Ts’ishaa 

that McKechnie (2005:Table 8, 34) screened through 1/16” mesh also contained no 

sablefish, even though sablefish was recorded in the 3.2 mm and 6.4 mm fractions of the 

same column samples. 

While 3.2 mm mesh is sufficient to recover sablefish remains, this mesh size 

appears to be biased against the recovery of vertebrae from younger, smaller-bodied 

juveniles. Analysis of fish vertebrae in <1/8” bags from Tse-whit-zen shows that finer 

mesh is required to sample the full size-range of sablefish specimens. Sablefish is well 

represented in the 3.2 mm mesh fraction (NISP = 226) of buckets that were analyzed for 

<1/8” bags (Table 13). But the <1/8” sample also contains a relatively large number of 

sablefish vertebral specimens (NISP = 135). Vertebral specimens small enough to fall 

through 3.2 mm mesh represent over one-third (37.3%) of the sablefish vertebrae from 

these buckets.  

 Sablefish is captured by 3.2 mm mesh, and all sites in the regional fishbone data 

synthesis except Hoko River were sampled using 3.2 mm or finer mesh. Sablefish was  
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Table 13 – Sablefish abundance by screen size in buckets with analyzed <1/8” bags from 

Tse-whit-zen. NISP counts are for vertebrae only. (“Sable.” = sablefish) 

 

Chronological 

Zone 

12.8 mm  6.4 mm  3.2 mm  <1/8” 
Vol. 

(L) 
NISP 

Sable. 

NISP 

Fish 

 NISP 

Sable. 

NISP 

Fish 

 NISP 

Sable. 

NISP 

Fish 

 NISP 

Sable. 

NISP 

Fish 

CZ-7 0 1  1 14  39 342  26 185 20 

CZ-6 0 0  0 22  25 2,594  30 2,523 20 

CZ-5 0 1  0 14  19 676  11 587 20 

CZ-4a 0 2  0 15  76 383  45 405 20 

CZ-4b 0 3  0 4  32 427  7 126 20 

CZ-3 0 0  0 19  28 215  14 194 20 

CZ-2 0 0  0 22  7 71  2 105 20 

Total 0 7  1 110  226 4,708  135 4,125 140 

%NISP Sable. 

in Screen 0.0   0.9   6.3   3.3  

 

 

 

even collected in 6.4 mm screens at Hoko River and Tse-whit-zen, but it is absent from 

more than half of the assemblages in the regional synthesis. Smaller vertebrae from 

younger individuals are also recovered in mesh finer than 3.2 mm. Because most 

Northwest Coast assemblages were sampled with 3.2 mm mesh, these records may not 

reflect the occurrence of the youngest sablefish. However, the assemblages that were 

sampled with 2 mm, 1.5 mm (1/16”), and 1 mm screens are not any more likely to 

contain sablefish than assemblages that were sampled with a minimum screen size of 3.2 

mm mesh. 

 

H3 Results – Sablefish is scarce because fishbone samples are too small 

 Sablefish could be more abundant at Tse-whit-zen than other sites because it 

represents a larger sample of identified fishbone. I used Spearman’s rank order 

correlation to compare the abundance of sablefish and the size of fishbone samples for 

each chronological zone of Tse-whit-zen and the synthesized Northwest Coast fishbone 
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assemblages. I measured sample size using both NISPfishes and volume (L). If either 

measure of sample size is statistically correlated with sablefish abundance, then sample 

size effects must be considered as a possible explanation for the scarcity of sablefish. 

 There is no relationship between sablefish abundance and sample size in 

Northwest Coast fishbone assemblages. While sablefish abundance appears to increase 

with sample size at Tse-whit-zen, sablefish is absent or barely represented in all other 

assemblages with large NISPfishes that were also sampled with a minimum screen size of 

3.2 mm mesh (Table 14; Figure 8). Calculating Spearman’s correlation coefficient shows 

that sablefish abundance and NISPfishes are not statistically correlated (rs = 0.229; n = 25; 

p = 0.271), and NISPfishes can only explain 5% of the variation in NISPsablefish (rs
2 = 

0.052).  

When sample size is measured in terms of volume for assemblages sampled with 

a minimum screen size of 3.2 mm mesh, sablefish is again absent from several large 

assemblages (Table 14; Figure 9). The relationship between sablefish abundance and 

volume is neither significant (rs = 0.240; n = 19; p = 0.321) nor strong (rs
2 = 0.058).  

Among the assemblages collected with 2 mm mesh, sablefish is poorly 

represented even when NISPfishes is large (Figure 8). Also, Hoko River Rockshelter 

contains few sablefish remains even though it has the largest sample size in terms of 

NISP, and 100 times more volume than the next largest assemblage (Table 14; Figure 8; 

Figure 9). However, this could be related to the exclusive use of 6.4 mm mesh at this site. 

In sum, sablefish is not scarce because sample sizes are too small.  
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Table 14 – Sablefish abundance (“NISP Sable.”) and sample size (“NISP Fish” and “Vol. 

(L)”) for Tse-whit-zen and Northwest Coast assemblages. 

 

Assemblage 
Min. Screen 

Size (mm) 

NISP 

Sable. 

NISP 

Fish 

Vol. 

(L) 

Decatur Island - AU 2 1.5 0 2,498 unk. 

Decatur Island - AU 5 1.5 0 600 unk. 

Daax Haat Kanadaa 2.0 0 1,969 55 

Huu7ii – Back Terrace 2.0 1 17,359 59 

Huu7ii - House 1 2.0 64 15,086 122 

Tum-tumay-whueton 2.0 0 1,813 32 

Noons Creek 2.0 0 1,861 257 

Kilisnoo Picnicground 2.0 0 1,319 unk. 

Loon Cave - Comp I 2.0 1 8,166 unk. 

Loon Cave - Comp II 2.0 0 11,183 unk. 

740T 3.2 0 121 270 

Xuud tsixwaas 'llnagaay 3.2 4 7,737 1,680 

Ts'ishaa - Main Village 3.2 22 4,785 115 

Ts'ishaa - Back Terrace 3.2 1 1,253 33 

Tse-whit-zen CZ-7 3.2 101 835 120 

Tse-whit-zen CZ-6 3.2 1,284 26,206 960 

Tse-whit-zen CZ-5 3.2 884 6,401 690 

Tse-whit-zen CZ-4a 3.2 253 1,477 490 

Tse-whit-zen CZ-4b 3.2 108 1,070 120 

Tse-whit-zen CZ-3 3.2 85 634 260 

Tse-whit-zen CZ-2 3.2 18 270 260 

Bay Street - 1 3.2 0 410 98 

Bay Street - 2 3.2 0 227 58 

Bay Street - 3 3.2 0 253 105 

Burton Acres 3.2 0 5,270 462 

West Point 428 - Comp 1 3.2 0 2,412 870 

West Point 428 - Comp 2 3.2 0 1,833 690 

West Point 429 - Comp 1 3.2 7 552 220 

West Point 429 - Comp 5 3.2 0 788 200 

Dionisio Point - Layer A 3.2 0 174 unk. 

Dionisio Point - Layer B 3.2 2 4,882 unk. 

Dionisio Point - Layer C 3.2 5 7,243 unk. 

Duwamish 3.2 0 3,999 unk. 

English Camp Op A 3.2 0 19,581 unk. 

English Camp Op D 3.2 0 9,124 unk. 

Hoko River Rockshelter 6.4 103 48,353 17,500 
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Figure 8 – Sablefish abundance and sample size (NISPfishes) by minimum screen size 

used. (“TWZ” = Tse-whit-zen) 

 

 
Figure 9 – Sablefish abundance and sample size (volume) by minimum screen size used. 

(“TWZ” = Tse-whit-zen) 
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H4 Results – Sablefish bones are scarce due to post-depositional destruction 

 To test whether sablefish abundance is related to fragmentation intensity, I 

compared the relative abundance of sablefish (NISP/L) to the NSP:NISPfishes to see if 

these two variables are correlated. As I note above, I only compare sablefish abundance 

and fragmentation intensity for assemblages that were collected with the same mesh size 

to control for the well-documented effects of screen size on NISP and NSP. If there is a 

statistically significant relationship, post-depositional destruction must be considered as a 

possible explanation for the scarcity of sablefish.  

 Overall, fragmentation intensity is lower in assemblages sampled with a minimum 

screen size of 2 mm mesh than in assemblages sampled with coarser mesh (Table 15). 

Fragmentation intensity in 2 mm assemblages ranges from a minimum of 1.2 NSP:NISP 

in the Huu7ii Back Terrace assemblage to a maximum of 3.2 NSP:NISP at Tum-tumay-

whueton. The minimum fragmentation intensity in 3.2 mm assemblages is 1.6 NSP:NISP 

in CZ-6 of Tse-whit-zen, and the maximum is 6.9 NSP:NISP at 740T, which appears to 

have abnormally high fragmentation for this mesh size on the Northwest Coast (Table 

15). However, the average NSP:NISP ratio is relatively similar for 2 mm assemblages (𝑥̅ 

= 2.5 NSP:NISP; σ = 0.7) and 3.2 mm assemblages (𝑥̅ = 2.9 NSP:NISP; σ = 1.1). These 

observations are quite surprising, considering that smaller mesh sizes are expected to 

recover many more unidentifiable fragments than coarse mesh, inflating NSP relative to 

NISP. The high identifiability in the 2 mm assemblages may indicate that such fine mesh 

actually recovers far fewer unidentifiable fragments than tiny but identifiable vertebrae of 

small taxa such as herring (Clupea pallasii) or anchovy (Engraulis mordax). 
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Table 15 – Sablefish relative abundance (NISP/L) and fragmentation (NSP:NISP) for 

Tse-whit-zen and Northwest Coast assemblages. (“Sable” = Sablefish; “Sable. Conc.” = 

Sablefish Concentration) 

 

Site Name 
Min. Screen 

Size (mm) 

NISP 

Sable. 

NISP 

Fish 

NSP 

Fish 

Vol. 

(L) 

NSP: 

NISP 

Sable Conc. 

(NISP/L) 

Kilisnoo Picnicground 2 0 1,319 3,678 43 2.8 0.00 

Daax Haat Kanadaa 2 0 1,969 4,293 55 2.2 0.00 

Huu7ii - Back Terrace 2 1 17,359 21,530 59 1.2 0.02 

Huu7ii - House 1 2 64 15,086 34,452 122 2.3 0.52 

Tum-tumay-whueton 2 0 1,813 5,822 32 3.2 0.00 

Noons Creek 2 0 1,861 5,853 257 3.1 0.00 

740T 3.2 0 121 840 270 6.9 0.00 

Xuud tsixwaas 'llnagaay 3.2 4 7,737 20,571 1,680 2.7 0.00 

Ts'ishaa - Main Village 3.2 22 4,785 10,979 115 2.3 0.19 

Ts'ishaa - Back Terrace 3.2 1 1,253 3,289 33 2.6 0.03 

TWZ CZ-7 3.2 101 835 2,491 120 3.0 0.84 

TWZ CZ-6 3.2 1,284 26,206 43,128 960 1.6 1.34 

TWZ CZ-5 3.2 884 6,401 15,022 690 2.3 1.28 

TWZ CZ-4a 3.2 253 1,477 4,001 490 2.7 0.52 

TWZ CZ-4b 3.2 108 1,070 2,951 120 2.8 0.90 

TWZ CZ-3 3.2 85 634 1,569 260 2.5 0.33 

TWZ CZ-2 3.2 18 270 673 260 2.5 0.07 

Bay Street - Comp 1 3.2 0 410 1,635 98 4.0 0.00 

Bay Street - Comp 2 3.2 0 227 618 58 2.7 0.00 

Bay Street - Comp 3 3.2 0 253 950 105 3.8 0.00 

Burton Acres 3.2 0 5,270 9,887 462 1.9 0.00 

West Point 428 - Comp 1 3.2 0 2,412 6,923 870 2.9 0.00 

West Point 428 - Comp 2 3.2 0 1,833 4,146 690 2.3 0.00 

West Point 429 - Comp 1 3.2 7 552 1,805 220 3.3 0.03 

West Point 429 - Comp 5 3.2 0 788 1,686 200 2.1 0.00 

Hoko River Rockshelter 6.4 103 48,353 163,202 17,500 3.4 0.01 

 

 Sablefish concentration is not explained by fragmentation intensity. Sablefish is 

only represented in assemblages with less than 3.5 NSP:NISP, and it is more 

concentrated in assemblages that have even lower fragmentation rates (Table 15; Figure 

10). However, there are numerous assemblages with fragmentation intensity less than 3.5 

NSP:NISP that have few, if any, sablefish remains. The correlation between sablefish 

concentration and fragmentation in assemblages sampled with a minimum screen size of 

3.2 mm mesh is neither statistically significant (rs = -0.240; n = 19; p = 0.323) nor strong 
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(rs
2 = 0.058). Fragmentation rates are relatively low among the assemblages sampled with 

2 mm mesh,  

 

Figure 10 – Sablefish concentration and fragmentation intensity by minimum screen size 

used. (“TWZ” = Tse-whit-zen) 

 

 

but sablefish is only present at Huu7ii, where it is more abundant in the assemblage that 
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sablefish concentration increases through time from a minimum of 0.07 NISP/L in CZ-2 

to 1.34 NISP/L in CZ-6, and then drops back to 0.84 NISP/L in CZ-7 (Table 15; Figure 

10). Sablefish is therefore relatively abundant in the components of Tse-whit-zen that 

have the maximum fragmentation intensity and the minimum fragmentation intensity. 

While fragmentation is relatively low at Tse-whit-zen relative to other Northwest Coast 

assemblages, the low post-depositional destruction does not explain the high abundance 

of sablefish at this site. 

Overall, fragmentation appears to affect sablefish representation, and the species 

is only represented in sites with low fragmentation. However, sablefish relative 

abundance in Northwest Coast assemblages cannot be explained by fragmentation 

intensity alone. 
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Chapter 5: Discussion and Conclusions 

Sablefish remains are scarce throughout Northwest Coast archaeological 

assemblages, except at Tse-whit-zen where the remains of this species are abundant. This 

uneven distribution of sablefish remains could reveal much about the ecological and 

cultural significance of the species in the region, but previous work has not established 

whether inter-assemblage comparisons are valid for the Northwest Coast. In addition to 

cultural and ecological factors, sablefish scarcity could also be related to 

zooarchaeological methods, archaeological sampling practices, or post-depositional 

destruction. The primary goals of this thesis were to examine the factors that affect the 

abundance of sablefish remains in Northwest Coast archaeological sites, and to assess the 

quality of zooarchaeological data from the region. Based on the results of my hypothesis 

tests, the scarcity of sablefish is not a result of misidentification (H1), of sampling 

fishbone assemblages with coarse mesh (H2), or of identifying small samples of fishbone 

(H3). Similarly, low relative abundances of sablefish cannot be explained by post-

depositional destruction, even though sablefish remains may not survive in assemblages 

that have intense fragmentation (H4).  

To test whether criteria for sablefish are invalid or nonexistent, I reanalyzed the 

vertebrae of select taxa in samples of six previously analyzed assemblages (H1). My 

results show that identification criteria for sablefish are valid in these assemblages, 

insofar as I was able to reproduce the original counts of sablefish vertebrae. Assuming 

the zooarchaeologists who analyzed these assemblages use the same identification criteria 

for all assemblages they identify from Northwest Coast middens, sablefish 
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identifications, or the absence thereof, may be valid for other fish bone assemblages that 

were analyzed by the same researchers. 

Sablefish scarcity does not appear to be related to invalid identification criteria, 

but more assemblages will have to be verified before this conclusion can be reached with 

certainty. Hoko River Rockshelter would be particularly interesting to reexamine as 

sablefish is unusually abundant in the 6.4 mm sample from this site. In future studies, I 

would also attempt to reanalyze fishbone assemblages from Haida Gwaii, where 

Blackman (1990:244) and Hobler (1978) suggest sablefish was highly valued, and from 

southeast Alaska in the vicinity of St. John Baptist Bay where the abundance of juvenile 

sablefish has been highlighted (Echave et al. 2013; Rutecki and Varosi 1997a). 

Reanalysis projects that include a broader range of taxa and elements could also help 

verify the validity of inter-assemblage comparisons on the Northwest Coast and establish 

whether identification criteria and the elements selected for analysis are consistent 

between assemblages. Where methodological differences do exist, I would explore how 

those differences actually impact zooarchaeological measures of taxonomic abundance. 

In the future, zooarchaeologists could also streamline the process of reporting the analytic 

methods and identification criteria they use by creating an online database for publishing 

such information.  

Because mesh sizes recover remains from taxa with different body sizes 

unequally (Casteel 1972; James 1997; Lyman 2008:154–156), I attempted to determine 

empirically which screen sizes are suitably fine to recover sablefish (H2). Northwest 

Coast archaeologists have widely adopted nested screens, which should allow for 

comparisons of assemblages that were collected with different minimum screen sizes 
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(Partlow 2006:75). However, results for the quantities of fishbone recovered in individual 

screen size fractions are only reported for two (Duwamish and Ts’ishaa) of the 20 sites in 

my regional fishbone data synthesis that were sampled with nested screens. This is not a 

problem for the majority of the assemblages, which have a minimum screen size of 3.2 

mm, but the few assemblages that have been sampled with 2 mm, 1.5 mm, or 1 mm mesh 

are more difficult to compare with other collections.  

Overall, 3.2 mm mesh is sufficiently fine to recover sablefish, and the scarcity of 

sablefish cannot be explained by the screen sizes archaeologists use on the Northwest 

Coast. Nested screen size data from Tse-whit-zen, Ts’ishaa, and West Point (which I 

derived from an unpublished database) show that 3.2 mm mesh is sufficient to recover 

sablefish remains. While no sablefish are reported in the 1.5 mm (1/16”) sample of 

Ts’ishaa (McKechnie 2005:Table 8, 35), and I verified that sablefish is not present in the 

1.5 mm fraction of Decatur Island, small sablefish vertebrae were also abundant in a 

sample of fishbone finer than 3.2 mm from Tse-whit-zen. These differences suggest the 

smallest-bodied sablefish may not always be recovered in 3.2 mm mesh, but sites 

screened with finer than 3.2 mm mesh are no more likely to contain sablefish than 

assemblages that were screened with a minimum mesh size of 3.2 mm. To ensure that 

small-bodied sablefish have not been overlooked in Northwest Coast assemblages, I 

would screen unanalyzed bulk samples from previously analyzed assemblages through 

nested screens with a minimum mesh size finer than 3.2 mm mesh.  

Because the size of an archaeofaunal sample influences the number of taxa 

represented and their relative abundance, I compared the abundance of sablefish to the 

sample size of the assemblages in my regional fish bone synthesis using Spearman’s rank 
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order correlation test with the regression approach (H3). My results show that sablefish 

abundance and sample size are not related. In general, larger assemblages from the 

Northwest Coast contain no more sablefish than smaller assemblages. The Tse-whit-zen 

assemblages are exceptional in terms of sablefish representation, as they contain many, 

many more sablefish remains than other, comparably sized assemblages.  

Even though sample size and sablefish abundance are not related, analysts should 

control for differences in sample size when comparing sablefish remains from Northwest 

Coast assemblages. This could be accomplished by rarefying taxonomic abundance data 

using free rarefication software such as Colwell’s (2013) EstimateS. In addition, I would 

assess the sample size of each assemblage to determine whether the relative abundances 

of the common taxa in the identified assemblage are representative of the deposited 

assemblage using cumulative frequency curves, mimicking a sampling to redundancy 

protocol (Lepofsky and Lertzman 2005; Lyman 2008:144–145; Lyman and Ames 2004, 

2007). If the cumulative frequency curve of an assemblage levels off when taxonomic 

abundance data for the most common taxa are added for each excavation level or bucket 

(in random order or in the order they were excavated), the identified assemblage would 

be considered representative of the deposited assemblage, and the observed abundance of 

sablefish would be as well. 

Given the relative fragility of sablefish skeletal elements, I attempted to evaluate 

the effects of post-depositional changes to fishbone assemblages on sablefish abundance 

by comparing relative sablefish abundance to the fragmentation index NSP:NISPfishes 

while controlling for mesh size (H4). I found that fragmentation and relative sablefish 

abundance are not related. Sablefish is only present in assemblages with low 
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fragmentation rates, but there are numerous sites with low fragmentation that lack 

sablefish. This suggests sablefish are absent from these sites for other reasons. 

However, I suspect that fragmentation measures such as NSP:NISP are highly 

sensitive to differences in the elements that are recorded and the identification criteria 

used during analysis. For example, I excluded the Cove Cliff and Cama Beach 

assemblages from this hypothesis test because only a select number of elements were 

analyzed. In both of these assemblages, NISP is underestimated relative to other 

assemblages that have all vertebral specimens identified. Consequently, the 

NSP:NISPfishes ratios are much higher for Cove Cliff (7.0) and Cama Beach (8.8) than any 

other assemblage in the regional synthesis (maximum = 6.9 at 740T). If Trost (2005, 

2010) did not report these details about the identification criteria and elements analyzed 

for these two assemblages, I would have reached the invalid conclusion that the high 

fragmentation rates indicate intense post-depositional destruction at both sites. 

Fragmentation intensity may actually be high in these assemblages, but because 

NSP:NISP is so sensitive to the identification procedures, it should only be used to 

compare assemblages that were analyzed with the same methods. 

Taphonomy and post-depositional destruction are critical factors that greatly 

affect the patterns we observe in assemblages of animal remains, and we require robust 

tools to discuss their effects on archaeological assemblages. Any fragmentation index that 

is derived from measurements of taxonomic abundance (i.e. NSP:NISP, NISP:MNI, or 

NISP:MNE) may reflect the analyst’s skill, experience, and identification criteria more 

than it reflects the fragmentation of animal bone, and is therefore not an adequate tool for 

large comparative data syntheses.  
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Instead, I recommend that zooarchaeologists use fragmentation measures that are 

not directly related to taxonomic abundance, such as average specimen size (Cannon 

2013). As I note above, comparisons of average specimen size can be greatly affected by 

the taxa and the elements that are present in each assemblage, and by the body-size of the 

individuals that are represented. The first problem can be controlled for by only 

comparing specimens that are attributed to the same taxon and skeletal element. If the 

assemblages being compared are similar in terms of the taxa and elements that are 

represented, then average size for all identified and unidentified specimens could provide 

a valid basis of comparison for fragmentation in the assemblages overall. The problem of 

different body-sizes can be controlled for by also comparing the dimensions of complete 

anatomical landmarks that scale with body-size. For example, if the average height of the 

vertebral centrum for sablefish specimens is the same in two assemblages, then average 

specimen area would provide a valid measure of the differences in fragmentation of 

sablefish vertebrae that is not influenced by the body-size of the individual fishes.  

 Though average specimen size can be quickly measured with free image analysis 

software such as ImageJ (Cannon 2013), a large reanalysis project would be required to 

generate comparable specimen size measurements for previously analyzed Northwest 

Coast assemblages. Until this information can be collected, our understanding of the 

relationship between taxonomic abundance and taphonomic processes for fishes such as 

sablefish could be improved by measuring the bulk density (g/cm3) of their skeletal 

elements. Then sablefish abundance could be compared to the relative abundance of other 

fishes with known bone density values such as salmon and Pacific cod (Gadus 
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macrocephalus) to evaluate whether element survivorship and element density are 

related. 

 

Conclusion 

 Sablefish is rarely mentioned in previous archaeological research in the Northwest 

Coast and the Salish Sea, but its remains are abundant at Tse-whit-zen. To the greatest 

possible extent, I evaluated and rejected four hypotheses that attribute this pattern of 

sablefish representation to zooarchaeological methods, sampling strategies, and post-

depositional destruction. Therefore, the uneven distribution of sablefish appears to be a 

true reflection of ecological factors (H5) and human decision-making (H6). Much more 

work is required to determine how these two variables affect sablefish representation 

independently of one another and how they interacted. Body-size regression analysis of 

sablefish remains can determine the age-at-death of sablefish in the archaeological 

record, which would connect sablefish capture to specific environmental and seasonal 

contexts, as body-size is closely linked to season and habitat in the first year of life 

(Echave et al. 2013; King et al. 2000; Rutecki and Varosi 1997a). Connecting sablefish 

capture to specific seasons may reveal associations between sablefish acquisition and 

herring or salmon fisheries. 

Data from ancient sablefish remains can also be applied to modern research 

questions in biological sciences. Zooarchaeological data has the potential to greatly 

improve our understanding of this species’ early life history by providing information 

about the habitats juveniles prefer at a much broader spatial and temporal scale than 

modern studies, which are based on 30 years of data from only a few locations (Echave et 
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al. 2013; Rutecki and Varosi 1997b). Even nominal-scale information on ancient 

sablefish presence can contribute to conservation biology by providing historical baseline 

data about the occurrence of this species in areas it is not currently known to inhabit. For 

example, only 151 sablefish have been encountered by Washington Department of Fish 

and Wildlife (WDFW) trawl surveys at 74 sites throughout the Salish Sea since 1987 

(Dayv Lowry [WDFW], personal communication 2015), the majority of which were sub-

adults or small adults (James West [WDFW], personal communication 2015). With this 

in mind, the presence of small-bodied (i.e. possibly juvenile) sablefish at Tse-whit-zen, 

Ts’ishaa, and West Point (both sites) is very intriguing. 

Zooarchaeologists can maximize the value of their contributions to anthropology, 

biological sciences, and human ecodynamics by explicitly reporting the methods they use 

to identify animal remains. By reporting the methodological and analytic procedures they 

used to reach their conclusions in detail, zooarchaeologists enhance the reader’s 

confidence in their conclusions and provide future researchers with the information that is 

required to replicate their results. Which elements were recorded, and the criteria used to 

make taxonomic attributions, fundamentally affect the primary faunal data that 

researchers use to identify spatial and temporal trends in animal resource use, social 

power and inequality, and site function; reconstruct ecological and environmental 

conditions, habitats, and foodways; and explore the identities of site occupants. As we 

begin building large comparative databases to explore large scale patterns (McKechnie et 

al. 2014; Moss et al. 2015), we have to ensure that zooarchaeological data from multiple 

assemblages are comparable, and that the patterns we observe are not spurious. With 

larger datasets and broader goals, the need for rigorous methods increases.  
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Daax Haat Kanadaa - 49SIT244 (Moss 1989) 

Screen Size: Screen size is not explicitly stated. On p. 132, Moss suggests 72 

samples were screened in 2mm mesh and sorted into material type, with bone put aside 

for identification. Moss states on p. 141 that 28 column samples were screened, likely 

into nested 1/4”, 1/8” and 2 mm mesh, and that all 1/4" material was identified, but a 

quarter of the fine mesh (1/8” and 2 mm) material was identified. However, Table 4.5 on 

p. 142-143 states that 100% of the fine mesh sample from 49SIT244 was screened and 

analyzed. Based on the information in Table 4.5, I assume the screen size for this site is ≥ 

2 mm. 

NISP and NSP: The abundance of fish remains are reported for 3 separate column 

samples in Table 5.3, 5.4, and 5.5 on pg. 175, 176, and 177 respectively. All fauna from 

this site are reported together, without information on screen size samples. 

Volume: I estimated volume from data presented in Table 4.1 on page 129. Three 

25x25 cm columns were excavated to a depth of 20, 30, and 38 cm. I assume they have a 

square shape, so the volume calculated as LxWxD is 0.0125 m3 (12.5 L); 0.0188 m3 

(18.8 L); and 0.0238 m3 (23.8 L) respectively, or a total of 55.1 L. 

 

Kilisnoo Picnicground - 49SIT124 (Moss 1989) 

Screen Size: Screen size is not explicitly stated. P. 132 suggests 72 samples were 

screened in 2mm mesh and sorted into material type, with bone put aside for 

identification. On p. 141, Moss states that 28 column samples were screened with 1/4”, 

1/8” and 2 mm mesh, and suggests that all 1/4" material and 25% of the fine mesh (1/8” 

and 2 mm) material was identified. However, Table 4.5 on p. 142-143 also states that 
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100% of the fine mesh sample from column 1 was analyzed, but only 25% of the fine 

mesh from column 1 was analyzed. Fauna from this site are reported together, without 

information on screen size samples. Based on this information, I assume that mesh size 

for this site is ≥ 2 mm, with the caveat that only 25% of the 1/8” and 2 mm mesh material 

was analyzed for column 2.  

NISP and NSP: Fish abundance is reported for two column samples from this site 

in Table 6.3 and 6.4 on pages 257 and 258 respectively. 

Volume: I estimated volume from data presented in Table 4.1 on page 129. Two 

elongated columns were excavated into exposed sea cliff. Column 1 was 62.5 x 10 cm 

and excavated to 50 cm depth. Column 2 was 41.6 x 15 cm and excavated to 40 cm 

depth. However, Table 6.3 and Table 4.5 on p. 142 indicate that column 1 was excavated 

to a depth of 59 cm. I assume that tables 6.3 and 4.5 are correct, and that the depth of 

column 1 is 59 cm. Volume = LxWxD, so column 1 represents 0.0369 m3 (36.9 L) and 

column 2 represents 0.0250 m3 (25.0 L).  

Nevertheless, this volume is not representative of the identified assemblage, as 

only 25% of the 1/8” and 2 mm mesh material was actually analyzed for column 2, and I 

do not include this assemblage in any hypothesis test that depends on volume. 

 

Cove Cliff Site - DhRr 18 (Trost 2005) 

Screen Size: Analyzed material comes from 30 flotation samples (p. 35). Trost 

suggests the heavy fraction was passed through nested screens down to 1 mm mesh. 

Identified material therefore comes from screens ≥ 1mm, but the portion from each mesh 

size is not reported. 
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NISP and NSP: Unidentified fish values might be inflated because Osteichthyes 

vertebrae were only identified if the anterior surface, posterior surface, and a portion of 

the centrum were present (p. 36-37). Additionally, only a limited range of elements were 

selected for identification: “articular, basioccipital, dentary, dorsal spines (spiny dogfish 

only), hyomandibular, palatine, pharyngeal arch (perch, suckerfish only), premaxilla, 

maxilla, quadrate, scutes, teeth, vertebra, and vomer” (Trost 2005:34). This greatly biases 

sample size estimates and fragmentation measures. 

On p. 40, Trost indicates that the “unidentifiable vertebrate” remains were 

subsampled by quartering the flotation sample, counting the NSP, and multiplying the 

result by 4. However, Appendix B indicates that 17 of the 30 flotation fish samples were 

subsampled, rather than the unidentified vertebrates. Appendix K reportedly contains 

information on the standardization of flotation samples based on variable volume and 

subsampling. However, Appendix K is not provided with the thesis.  

From the description that is provided on p. 40 and in Appendix B, I am uncertain 

whether fish abundance data reported in Appendix C is based on raw counts, if it has 

been multiplied, and what volume the samples actually represent. Given no other 

information, I use the data in Appendix C on p. 111 to calculate NISP and NSP of fishes. 

Because the recording protocols for vertebrae and the elements selected for 

analysis are unique to this study, and because I am unsure whether the abundances reflect 

the actual number of specimens that Trost identified, I only include data from this 

assemblage in nominal scale tests. 

Volume: Volumes for each flotation sample are reported in Appendix B on p. 

109-110. They are measured in liters and total to 37.95 L. However, the reported volumes 
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do not reflect the volume that was actually analyzed, so I do not use this assemblage for 

any test based on volume. 

 

Hoko River Rockshelter - 45CA21 (Wigen 2005) 

Screen Size: On p. 24 Croes (2005) states that excavated material from each level 

at the site was screened with 1/4” mesh. 

NISP and NSP: Table 4.2 on p. 75-76 reports fish NISP, sablefish NISP, and 

concentration values for each State (chronological zone), or stratigraphic layer. The 

number of unidentified fish specimens in State 8 is suspiciously round for such a large 

assemblage, but there is no suggestion that the count of unidentified specimens was 

estimated. 

Volume: Table 4.10 on p. 86, provides the volume of material analyzed for each 

taxon. For fish, 17.50 m3 of sediment was analyzed. 

 

740T (Orchard 2007) 

Screen Size: The assemblage was screened in 1/4” and 1/8” mesh, but the data is 

presented as combined values on p. 229. 

NISP and NSP: NISP values are presented in table 7.10 on p. 236-237. NISP is 

given as 112, but 19 salmon vertebral fragments were also identified. Including these 

brings NISP to 121. NSP is also reported in this table. 

Volume: Orchard states on p. 229 that faunal materials were identified by 

Rebecca Wigen. The whole sample was identified, according to Table D.1 on p. 556. 

Vertebrate remains were collected from the matrix of each level (p. 229). The analyzed 
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volume is therefore equal to the volume excavated which is reported in Table 7.2 on p. 

189. 

 

7aydi 'llnagaay - 717T (Orchard 2007) 

Screen Size: The fauna was screened in 1/4” and 1/8” mesh, but the data is 

presented as combined values on p. 229. 

NISP and NSP: The number of fish taxa identified is given on p. 234 of Table 7.9, 

p. 232-234. NISP values are presented in table 7.10 on p. 236-237. NISP is given as 

6,877, but 10,522 salmon vertebral fragments were also identified. Including these brings 

NISP to 17,399. NSP is also reported in this table. 

 However, only subsamples were identified and the taxonomic abundances in the 

subsampled contexts were multiplied to correct for subsampling (p. 229). Because the 

actual abundance of specimens that were observed are not reported, I only include data 

from this assemblage in nominal scale tests. 

Volume: Vertebrate remains were collected from the matrix of each level (p. 229), 

but only 25% of the material was identified from Layers 1c, 2, and 3 at 717T (Table D.1, 

p. 556), and NISP was multiplied by 4 (p. 229). It is not possible to estimate the volume 

of these layers, but the total excavated volume is reported in Table 7.2 on p. 189. Because 

this is not representative of the analyzed volume, I do not include data from this site in 

any test that depends on volume. 

 

Kaidsu - 781T (Orchard 2007) 

Screen Size: The fauna was screened in 1/4” and 1/8” mesh, and the unit 
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assemblages are reported separately P. 229. However, 1/8” material was only identified 

from Unit 1.  

NISP and NSP: Fish abundance data for Unit 1 only is presented in Table D.11 on 

p. 572. This reports the 1/4” and 1/8” materials together. However, I separated the 1/8” 

and 1/4” mesh results for this unit by subtracting the values for 1/8” mesh only reported 

in table 7.10 on p. 236-237. 

Only 25% of the material was identified from Layers 3 level b and 3 level c, at 

781T (Table D.1, p.556), and NISP was multiplied by 4 (p. 229). The data for all levels 

of layer 3 have been lumped in Table D.11 on p. 572, so it is not possible to determine 

the actual number of specimens that were identified.  

Table D.11 reports 8 sablefish specimens. A ninth specimen is reported for 1/4” 

mesh in Table 7.10 on p. 236-237, but it comes from Unit 3, according to Table D.13 on 

p. 576. Therefore, all sablefish in Unit 1 must have derived from 1/8” mesh. Comparing 

summed NISP from 1/8”, Unit 1 only in Table 7.10 to summed NISP from 1/8” and 1/4” 

Unit 1 only in Table D.11 shows there is no difference in NISP. Doing the same for 

unidentified fish shows no differences there either. There could be two possible 

explanations. Orchard either analyzed only the 1/8” sample from 781T Unit 1, or the 

values in Table 7.10 erroneously report the summed 1/4” and 1/8” values from Unit 1 

instead of the 1/8” sample only. 

Volume: Vertebrate remains were collected from the matrix of each level (p. 229). 

The total volume excavated is 1.45 m3 (1450 L), as stated in Table 7.2 on p. 189. 

However, this volume is only representative of the 1/4” mesh. All identified 1/8” material 

appears to have come from Unit 1, layers 2-4, according to Appendix D.11 on p. 572-
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573. Unit 1 is a 1 x 1 m excavation unit, but only the southern half of the unit (0.5 x 1 m) 

was excavated below 26 cm, as stated on p. 466. Dimensions of the unit’s volume can be 

estimated from the stratigraphic profile in Figure B.14 on p.467. The top half of the unit 

was excavated from 10 to 32 cm BUD (Below Unit Datum), for a total depth of 22 cm. 

The volume is therefore 0.22 m3 (220 L). The lower half extends from 32 to ~62 cm 

BUD, for a total depth of 30 cm. The volume is therefore 0.15 m3 (150 L). I approximate 

the total excavated volume represented by the 1/8” sample as 0.37 m3 (370 L). Because 

this is not representative of the analyzed volume, I do not include data from this site in 

any test that depends on volume. 

Note: I use the abundance from 781T, Unit 1 only. Although there is ambiguity 

related to the screen size, I assume this assemblage was screened with 1/4” and 1/8” 

mesh. Because the actual abundance of specimens that were observed are not reported, I 

only include data from this assemblage in nominal scale tests. 

 

Qiid ‘llnagaay - 924T (Orchard 2007) 

Screen Size: The fauna was screened in 1/4” and 1/8” mesh, but NISP is 

presented as combined values in table 7.10 on p. 236-237.  

NISP and NSP: NISP is given as 16,721, in table 7.10 on p. 236-237, but 11,567 

salmon vertebral fragments were also identified. Including these brings NISP to 28,288. 

NSP is also reported in this table. Because the actual abundance of specimens that were 

observed are not reported, I only include data from this assemblage in nominal scale tests. 

Volume: Vertebrate remains were collected from the matrix of each level (p. 229), 

but only 25% of the material was identified from Unit 2 Layer 3, and Unit 3 Layer 3 level 
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b-e, Layer 4, and Layer 5 level b at 717T (Table D.1, p. 556), and NISP was multiplied 

by 4 (p. 229). It is not possible to estimate the volume of these layers, but the total 

excavated volume is reported in Table 7.2 on p. 189. Because this is not representative of 

the analyzed volume, I do not include data from this site in any test that depends on 

volume. 

 

Qayjuu ‘llnagaay - 699T (Orchard 2007) 

Screen Size: The fauna was screened in 1/4” and 1/8” mesh, but the data is 

presented as combined values in table 7.10 on p. 236-237.  

NISP and NSP: NISP is given as 11,651 in table 7.10 on p. 236-237, but 18,415 

salmon vertebral fragments were also identified. Including these brings NISP to 30,066. 

NSP is also reported in this table. Because the actual abundance of specimens that were 

observed are not reported, I only include data from this assemblage in nominal scale tests. 

Volume: Vertebrate remains were collected from the matrix of each level (p. 229), 

but only 25% of the material was identified from Unit 4 Layer 2 c and d, Level 4; all of 

Unit 5; and Unit 6 Layer 2 and 3 at 717T (Table D.1, p. 556), and NISP was multiplied 

by 4 (p. 229). It is not possible to estimate the volume of these layers, but the total 

excavated volume is reported in Table 7.2 on p. 189. Because this is not representative of 

the analyzed volume, I do not include data from this site in any test that depends on 

volume. 

 

Xuud tsixwaas ‘llnagaay - 785T (Orchard 2007) 

Screen Size: The fauna was screened in 1/4” and 1/8” mesh, but the data is 
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presented as combined values in table 7.10 on p. 236-237.  

NISP and NSP: NISP is given as 6,317 in table 7.10 on p. 236-237, but 1,420 

salmon vertebral fragments were also identified. Including these brings NISP to 7,737. 

NSP is also reported in this table. 

Volume: Vertebrate remains were collected from the matrix of each level (p. 229), 

and all materials from 785T were analyzed (Table D.1, p. 556). Therefore, the volume 

estimated is equal to the excavated volume reported in Table 7.2 on p. 189.  

 

English Camp Op A - 45SJ24 (Pegg 1999) 

Screen Size: Faunal material was screened through nested mesh from 1” to 1/8” in 

size, p. 18. Not all material was saved for analysis though. 50% of 1/4” and 1/8" 

specimens were saved from 95-105 cm depth, 50% of 1/4" and 25% of 1/8" specimens 

were saved from 100-140 cm, and 25% total was saved from 125-155 cm, according to 

Table 1.1 on p. 18. 

NISP and NSP: On p. 31 Pegg says he did not count the unidentified fish material, 

so it was not possible to calculate NSP for this site. NISP for each taxon is reported in the 

text on p. 46-51 with all screen sizes lumped. Without a summary table, I calculated 

NISP by summing the values given for each taxon. 

Volume: Volume estimates can be derived from Appendix A, Table A.1 on p. 

114, which presents the volume, depth, and NISP of facies analyzed by Pegg. It is unclear 

whether the volume for each facie represents the excavated volume, or the volume of 

material that was actually saved for analysis (p. 18). Also, Facie 3P from unit 304302 is 

listed as having a volume of <10 L. I interpret this to mean the facie has a volume of 8 L, 
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because the site was excavated with 8 L buckets. 

I obtained a volume estimate of 4.28 m3 (4280 L), approximately 6% of the total 

site volume (72 m3) from p. 33. This does not match Pegg’s earlier statement that the 

analyzed material represents 7% of the site’s volume. It is unlikely that other facies with 

negligible volume or NISP were excluded, as some included facies contain 0 NISP. 

However, because this volume is likely not representative of the analyzed volume, I do 

not include data from this site in any test that depends on volume. 

 

English Camp Op D - 45SJ24 (Kopperl 2011) 

Screen Size: Excavated material was placed in 8 L buckets and screened through 

nested 1” to 1/8” mesh (Parr et al. 2011:24). 

NISP and NSP: Faunal data reported in this work is based on material before field 

season 1991, according to Parr et al. (2011) p. 28. NISP information for each taxon and 

the total fish NSP is presented in Table 12.2 on p. 154. I count 30 fish taxa, and calculate 

the total NISP by subtracting unidentified fish NSP from total NSP. 

Volume: The sampling strategy described by Parr et al. (2011) on p. 25 indicates 

that all buckets numbered 1-10 were saved, but only buckets with numbers evenly 

divisible by 4 were saved after bucket #10. There was approximately a 25% sample after 

the first ten buckets were collected. It is not clear from the description whether the bucket 

sequence is reset for each unit, or each facies, or by any other condition. 

Kopperl (2011) analyzed ~25% of the fish assemblage from 6 1x2 m units by 

selecting every 1st and 4th bucket from a given excavation level and screen size, p. 151. 

Based on this description, it sounds like there were 9-10 buckets on average for each 



 

103 

level from the selected units. Selecting 1st and 4th buckets for each screen size is 

confusing to me, but I assume Kopperl means that all screen sizes for a given bucket 

number were analyzed.  

An estimate of the volume represented by Kopperl’s analysis can be derived from 

Table 12.1 on p. 152-153. The table shows the NISP for each fish family in all six units 

by facies, and the volume of each facie. It is unclear whether the reported volume is the 

total volume of the facie, or if it is the volume represented by buckets that were sampled 

for analysis. I believe the volume estimates likely represent the total volume of the facie, 

but I have no way to determine the true volume sampled by Kopperl. Because these 

volumes are likely not representative of the analyzed volume, I do not include data from 

this site in any test that depends on volume. 

 

Burton Acres - 45KI437 (Kopperl and Butler 2002) 

Components: Stein (2002) indicates on p. 56 that the site could be separated into 

two components, pre and post contact. However, the number of fish bones reported in 

Table 10.2 by Kopperl and Butler (2002) on p. 111 is so small that separating this site 

into two assemblages is not useful. 

Screen Size: All faunal material was recovered in nested 1” to 1/8” screens as 

stated on p. 36 by Parr et al. (2002). 

NISP and NSP: Summary fish abundance is presented in Table 10.1 on p. 107 by 

Kopperl and Butler (2002) with all screen sizes lumped. However, unidentified fish are 

not reported in this table. They are reported in Appendix G for each bucket. To calculate 

the number of unidentified fish, I created a pivot table in a digital version of the 
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Appendix G that I was given access to during my research at the Burke Museum. This 

file reports that there are 4,617 unidentified fish. Adding these to the NISP reported gives 

me my total NSP estimate.  

I also used the digital version of Appendix G to create a pivot table in Microsoft 

Excel and separate the fish counts by screen size.  

The total NISP reported in Table 10.1 on p. 107 is 5,321, while the value I found 

in Appendix G is 5,270. I decided to use the Appendix G information over the values 

from the report, though I cannot account for the differences. 

Volume: Table 10.2 on p. 111 shows the volume of material by unit and 

excavation layer. On p. 112, Kopperl and Butler clarify that the volume in this table 

represents the volume that was sampled for fish bone analysis.  

 

Decatur Island - 45SJ169 (Wigen 2003)  

Components: Five analytic units (AU) have been defined for this site, and they are 

discussed on p. 79-129 of Walker (2003a), so I present the results of each as a separate 

assemblage. Only AU 2 and AU 5 are included, however, because the other AUs 

represent less than 100 NISP each. 

Screen Size: In discussing methods, Walker (2003b) says CV samples were 

floated and separated with 1/4” and 1/16” mesh. 

NISP and NSP: Summary NISP values are reported with aggregated screen sizes 

in Table D.7 on p. 283. The Table reports NISP as 3,232, but when I add up the number 

of NISP for all taxa, I get a value of 3,223, which is the number I use. This table does not 
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report the number of unidentified fish in the assemblage, and it is not possible to calculate 

NSP. 

Volume: Nineteen 2 L Constant Volume samples from Analytic Unit 2 were 

selected for fish bone analysis according to Walker (2003a) on p. 84. For AU3, 8 CVs 

were sent for analysis, p. 102. One CV from AU 4 was analyzed for fish.  

Estimating the volume represented by AU5 materials is more difficult. The 

excavators recovered fish remains from AU5 in house floor samples, two of which were 

sent to Wigen for analysis, as stated on p. 113. The material comes from Feature 169-10, 

which is 20 cm thick on average, and 3.35 x 3.2 m square, or a volume of 2.144 m3, and 

is part of 18 different excavation units according to the text on p. 116. On p. 119, Walker 

says “floor Levels” were excavated in 14 of those units. The two samples submitted were 

169-HF-13, which includes all housefloor sediment from the SE quarter of unit 5S/8E, 

and 169-HF-19 includes all housefloor sediment from the southeast quarter of 4S/9E, p. 

120. From this description, I expect that each sample represents 0.5 x 0.5 x 0.2 m of 

material, or 0.05 m3.  

In contrast with the information Walker (2003b) provided about the number of 

samples sent for analysis, Appendix D.1 suggests on p. 291-308 that Wigen (2003) 

analyzed 17 CVs for AU2, 8 CVs for AU3, 1 CV for AU4, and 2 HF samples and 1 CV 

for AU5. In addition, two catalog numbers are reported without an associated sample 

number. It is unclear what kind of sample they represent and what volume they might 

have been derived from.  

Wigen (2003) says on p. 227 that she halved all samples with over 500 specimens 

by volume. Appendix D.1 on p. 291-308 reports which samples were halved by volume. 
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However, this information cannot be used to correct the volume estimates to reflect what 

was identified, because the samples that were split represent only one screen fraction, and 

the screen size in a given bag is not reported. Furthermore, the 1/4” cannot be 

differentiated from the 1/16” mesh fraction from the summary tables, so adjusting the 

volume would not produce a valid estimate for the 1/4” samples. 

Because of all the issues discussed above, I do not include data from this site in 

any test that depends on volume. 

 

West Point - 45KI428 and 45KI429 (Wigen 1995) 

Components: I was able to record data for the five well-defined components 

identified at 428 and 429, and these can be analyzed as individual assemblages. However, 

I exclude Components 3 and 5 of 428 and Components 2 and 3 of 429 because NISP is 

too low (57, 99, 36, and 32 respectively), and I also exclude Component 4 from both 428 

and 429 because nTaxa is too low (4 and 8 taxa respectively).  

Screen Size: These assemblages were reportedly screened with 1/4” and 1/8” 

mesh. However, 1/2” mesh was also apparently used based on information in the 

electronic database discussed below. 

NISP and NSP: NISP and the unidentified NSP is reported for individual 

components and occupations for each area of excavation and site in a number of tables at 

the end of Appendix 5. However, I simplified the NISP and NSP summing process by 

using electronic databases of 428 and 429 that I compiled during my reanalysis project at 

the Burke Museum. Creating pivot tables for these databases in Microsoft Excel also 

allows me to separate the assemblages into different screen sizes. For this count, I 
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excluded all material that did not come from a bulk sample bag. 

Volume: Phillips (1995) reports on p. 8 that all bulk sample bags that were 

selected for sorting and 10 other bags from testing units were sent to Wigen for analysis. 

Bulk sample bags represent 10 L samples (p. 8) selected from every 10th bucket (p. 1). 

According to Phillips (p. 6), there were 1540 1/4” bags and 821 1/8” bags initially 

selected for sorting, and in a second round of sorting 309 1/4” bags and 154 1/8” bags 

were added to the sorted material. Therefore, 2,834 bags should have been sent to Wigen 

for analysis.  

While summing NISP and NSP data, I noticed that the number of bags 

represented in the databases does not match the number of bags that Phillips (1995) 

reports. Where there should be 2,834 bags total, I count 773 bulk sample bags from 

45KI428 and 311 bulk sample bags from 45KI429. Perhaps not all of the bags sent to 

Wigen were analyzed? Curiously, 1/8” bags are also better represented for both sites than 

1/4” bags, though more 1/4” bags were reportedly sorted and sent to Wigen.  

To estimate the volume that the fish remains recorded in the databases represent, I 

counted the number of buckets from each site, as well as the number of buckets that had 

material for each screen size. Each bucket represents 10 L of bulk matrix that was 

screened for fish bone in the lab, so the volumes reported in my table represent the 

number of buckets reported multiplied by 10 L. However, some buckets were analyzed 

for only 1/4” or only 1/8” material. 

To overcome this problem, I used the pivot tables to identify which buckets had 

been completely analyzed by sorting buckets by screen size. Buckets that have material 

identified in both the 1/4” and 1/8” fractions were labeled as “C buckets.” Any bucket 
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missing either 1/4” or 1/8” material was labeled as a “CX bucket” and then filtered out of 

all my analyses. The number of buckets (and consequently volume), NISP (sablefish and 

total), and NSP I recorded are based on Complete (C) buckets from bulk samples only.  

 

Duwamish - 45KI23 (Butler 1987) 

Screen Size: This report includes 1/4” field samples from 1978 and 1986, and a 

1986 bulk sample screened in nested 1/4” to 1/16” mesh (p. 1). I do not include the any of 

the 1/4” only results in my table. 

NISP and NSP: NISP for each taxon is reported for 1/4” and 1/8” bulk sample 

fractions in Table 10-1 on p. 2 of Butler. The number of unidentified fish is not reported, 

so it is not possible to calculate NSP.  

Volume: From the information in Butler (1987), Kennedy (1987), and Miss 

(1987), it is not possible to determine the number of bulk samples that were analyzed by 

Butler, or the volume that any given bulk sample represents. Butler also states on p. 1 that 

only a small number of 1/16” samples were sorted and available for analysis, so I will not 

include this portion in my table. 

 

Bay Street - 45KP115 (Butler and Baker 2002) 

Components: Fish bone was sent to Butler from three excavation units, each 

representing a different chronological component (Lewarch et al. 2002:136). Unit 7 is 

Comp 1, Unit 2 is Comp 2, and Unit 9 is Comp 3 (p. 51-66). I include results from each 

component as a separate assemblage. 

Screen Size: Butler and Baker indicate on p. 1 that the bulk samples were sorted 
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through 1/2”, 1/4”, and 1/8” mesh. Lewarch et al. (2002) report the volume submitted for 

analysis of each component on p. 136. 

NISP and NSP: NISP for analyzed bulk samples is presented with screen sizes 

lumped for each component in Tables 4 on p. 11 of Butler and Baker. NSP is reported on 

Table 2, p. 9 with separate values for each component. I do not use Table 2 to report 

nested screen values individually because I cannot determine what NISP would be for 

each screen fraction. 

Volume: The analyzed volume is not reported for these assemblages, and I do not 

include data from this site in any test that depends on volume. 

 

Huu7ii - DfSh 7 (McKechnie 2012) 

Components: Because the deposits from House 1 date to a much later period than 

the Back Terrace (p. 167), I include these as separate assemblages. 

Screen Size: Samples were wet-screened in 1 mm mesh, and then sieved through 

2 mm mesh, but only 2 mm vertebrate materials were collected (p. 157). McKechnie 

states that nested geological sieves were used, but the screen sizes are not reported, and 

the text suggests vertebrate remains were only collected from 2 mm screens. Despite this 

ambiguity, I report the screen size as aggregated nested screens with a minimum mesh 

size of 2 mm. 

NISP and NSP: Table 1 on p. 158 shows the NSP and NISP of all fish, and the 

total volume of excavated material for each sample. NISP of specific taxa is reported in 

Table 2 on p. 160. The total fish NISP reported in Table 2 disagrees with the NISP of 

Table 1, and summing the NISP values in Table 1 produces a number different from both 
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total NISP values. My NISP values come from summing the values in Table 1 for the 

separate assemblages, excluding the privy pit materials. 

Volume: Table 2 on p. 158 and the text of p. 161 explains that the total analyzed 

sample represents 185.4 L of site deposits from 168 levels. 

Loon Cave - DiSo 9 (Calvert 1980) 

Components: This site is divided into two assemblages, Component I and 

Component II. 

Screen Size: The deposits for this site were screened through 2 mm mesh, and all 

vertebrate remains were collected (p. 124). However, only results from units 1, 2, 3, 8, 

and 10 are reported. 

NISP and NSP: On p. 175, Calvert reports the weight of unidentified fish in 

Component I, but it appears unidentified specimens were not counted. This is also true 

for Component II (p. 176). These components are reported separately because there is a 

gap of several centuries between them according to radiocarbon data referenced on p. 

128. NISP for Component I and II are reported separately in Table 45 on p. 298 and 

Table 49 on p. 302, respectively. When I sum the NISP values for each identified Taxon 

in Table 49, I get a result of 11,260, not 10,760 as is reported. I use the result I obtained 

rather than the value in the table. 

Volume: It is not possible to estimate the volume that the identified fish remains 

represent in either component. 

 

Ts’ishaa - DfSi 16 (McKechnie 2005) 

Components: Columns N2-4/W102-104 and S14-16/W25-27 come from the main 
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village deposits, while columns S56-57/W50-52 and S62-64/W62-64 come from the back 

terrace, according to Figure 14 on p. 65. These two areas, (the Main Village and Back 

Terrace) represent two distinct chronological units, so I treat them as separate 

assemblages. 

Screen Size: Sediments from the site were screened through 6 mm mesh (p. 29), 

while faunal remains from column samples were screened through nested sieves from 

6mm to 1.5 mm (p. 30). I only report values for the column samples. However, in Table 5 

on p. 31 only four columns were actually screened through nested mesh. Table 6 on the 

same page also indicates that different volumes were analyzed for >3mm and 1.5mm 

samples from the same columns. Because of these differences in sample size, I only 

recorded the results for the >3 mm mesh recovered from the four columns that passed 

through nested screens. However, I do discuss the 1.5 mm samples in the text of the 

thesis. 

I report the screen size as >1/8” because 3 mm is comparable to 3.2 mm. Also, in 

McKechnie (2007), the screen sizes used are 3.2 mm and 6.4 mm. I assume that all 

columns were processed with the same screen sizes throughout work at this site, and that 

the decimal was dropped from the mesh size in the original thesis for stylistic reasons. 

NISP and NSP: Table 7 on p. 34 shows NISP for the taxa represented and NSP 

for individual column samples with lumped screen size samples. Appendix B.3 reports 

NISP for the 6 mm mesh sample. To get individual screen size fractions, I use Appendix 

B.3 for 6 mm, and subtract Appendix B.3 values from Table 7 to get the 3 mm only 

fraction. 

Volume: Volumes for these samples are reported in Table 5 on p. 31.  
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Dionisio Point - DgRv 3 (Ewonus 2011)  

Screen Size: Recovery of materials is described on p. 74, where Ewonus says 

vertebrate material was recovered from excavated sediment passed through 1/8” mesh. 

Because the stratigraphic layers from the site are considered different chronological units, 

I include them as separate assemblages. 

NISP and NSP: NISP for each taxon is reported in Table 1 on p. 77-78. I assume 

that Misc. Osteichthyes refers to unidentified fish, and the total at the bottom of the table 

is the NSP for all fish.  

Volume: On p. 90, fish bone density is discussed in terms of NISP/m2, but volume 

excavated or sampled is not reported. 

 

Tum-tumay-whueton - DhRr 6 (Pierson 2011) 

Screen Size: One sample was screened with nested 2 and 1 mm mesh, and the 

other two with 2 mm mesh only, p. 18.  

NISP and NSP: NISP is lumped for all screen sizes in Table 3-2 on p. 28-29, 

despite the uneven use of screen sizes across the auger samples. NSP and unidentified 

counts are not reported. Because of these issues, I measured NSP and NISP using 

Pierson’s supplementary database of zooarchaeological records for this site that is 

available for download from SFU. I created a pivot table in Microsoft Excel and filtered 

out fish remains from 1mm mesh to get my results. 

Volume: Faunal materials come from 3 auger samples (p. 17), but volume was not 

estimated for this assemblage (p. 18). I approximate it using the diameter of the auger (10 

cm) and the depth the samples were taken to (159 cm, 198 cm reported on p. 13, the third 
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is 54 cm reported on p. 14). The volume of these should then be 12 L, 16 L, and 42 L 

respectively. 

 

Noons Creek - DhRq 1 (Pierson 2011) 

Screen Size: One sample was screened with nested 2 and 1 mm mesh, and the 

other two with 2 mm mesh, p. 18. One sample was screened with nested 2 and 1 mm 

mesh, and the other two with 2 mm mesh only, p. 18.  

NISP and NSP: NISP is lumped for all screen sizes in Table 3-2 on p. 28-29, 

despite the uneven use of screen sizes across the auger samples. NSP and unidentified 

counts are not reported. Because of these issues, I measured NSP and NISP using 

Pierson’s supplementary database of zooarchaeological records for this site that is 

available for download from SFU. I created a pivot table in Microsoft Excel and filtered 

out fish remains from 1mm mesh to get my results. 

Volume: Faunal remains from this site come from three column samples (p. 17). 

One column was split from a 40x40 cm unit measuring 117 cm of depth into two column 

samples, p. 17, so it had a volume of 0.187 m3 (187 L). The third sample with depth of 87 

cm was also split from a whole unit, but only one part appears to have been analyzed. I 

assume its dimensions after splitting approximate 20x40 cm, so it would have a volume 

of 0.070 m3 (70 L).  

 

Cama Beach - 45IS2 (Trost 2010) 

Components: This site has been separated into 5 chronological periods (discussed 

by Trost on p. 106), but I do not split the site into separate assemblages because it is not 
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possible to determine NISP values for sablefish or all fish for individual components 

from the data that have been reported. 

Screen Size: Animal bone was collected in bulk samples, 1/4” screens, and nested 

1/4”-1/8” screens according to Nelson et al. (2010) on p. 55 and Table 6.2 on p. 56. Most 

bulk samples represent 4 L, 1/8” samples represent 25 L, and the 1/4” consists of 

everything that remains. Nelson et al. also explain on p. 56 that the sediment from each 

level was mixed so that each sample type was collected from a homogenous deposit.  

Only 1/8” and 1/4” samples were used for fish bone analysis, and on p. 105 Trost (2010) 

explains that any 1/8” sample greater than 25 L was normalized to 25 L. Some bulk 

samples were also analyzed for 1/4”-2mm fractions to explore small fish representation. 

NISP and NSP: Only the angular, basioccipital, dentary, elasmobranch spines, 

hyomanidbular, opercle, palatine, pharyngeal plates, premaxilla, maxilla, quadrate, post-

temporal, scutes/denticles, teeth, vertebrae, and vomer were identified, because 

comparing a subset of fish remains to all identifiable fish remains produces similar 

results, p. 107. This greatly biases sample size estimates and fragmentation measures. 

Bags <1/4” and >5.0 g were subsampled so only 1/8, 1/4, or 1/2 was analyzed, 

and then NISP was multiplied to 100%, p. 107. However, Table 9.2c on p. 109 suggests 

NSP of the 1/8” fraction from 1/8” samples were not standardized by subsample or 

standardized to 25 L volume. Table 9.5 on p. 112 indicates this also applies to NISP 

reported for the same portion.  

The terms used here are very misleading. The 1/8” sample represents nested 1/8” 

and 1/4” screens collected in ~25 L batches (see above). This is actually a >1/8” sample. I 

only use the data from this uncorrected 1/8” sample in my table. 
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Sablefish NISP, and total NISP are reported in table 9.5 on p. 112. The NISP for 

fish does not match in tables 9.5 and 9.2c, which leads me to believe the much higher 

value in 9.2c has been standardized for subsampling and volume. NSP is reported in 

Table 9.2c on p. 109.  

Because the elements selected for analysis are unique to this study, I only include 

this assemblage in nominal scale tests. 

Volume: Table B.8 of Appendix B on p. B.5 provides the number of fish and 

volume excavated for each unit in the fishbone analysis. In the text on p. 126, Trost 

explains that 1/8” fish samples were only analyzed from Areas A, B, and D. So I estimate 

volume analyzed using units from these areas only. 

However, it is only possible to estimate the volume analyzed by multiplying the 

number of bags from the 1/8” sample by the average volume represented by 1/8” sample 

bags. On p. 107 while discussing subsampling, Trost mentions there were 126 bags, but it 

is unclear whether this is the number of 1/8” samples, or the number of bags containing 

<1/4” and >1/8” material. I assume these values would be largely similar, and that the 

number given is not the total number of bags in the analysis from all sample types. The 

average volume represented by each 1/8” sample is given by Nelson et al. (2010) in table 

6.2 on p. 56 as 23.27 L, with a range of 2.00 to 39.00 L. Using the average value, I 

estimate the volume analyzed (in 126 bags) as 2930 L. 

Because this value has an unknown relationship to the actual volume that was 

analyzed, I do not include this assemblage in any test that depends on volume. 
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Appendix B: Buckets Selected for Reanalysis from Burton Acres (45KI437), Decatur 

Island (45IS169), English Camp Op A and Op D (45SJ24), and West Point (45KI428 and 

45KI429) 
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Table B.1 – Bags selected for reanalysis from previously analyzed assemblages. 

 

Site Unit Catalog Number Alternate Designation 

45-KI-428 B1-10 B1-1391.07  

  B1-1391.08  

 B1-15 B1-1030.04  

  B1-1030.07  

 B1-17 B1-1955.08  

  B1-1955.10  

 B1-25 B1-0759.02  

  B1-0759.08  

 B1-5 B1-0313.05  

 B2-10 B2-0534.02  

  B2-0534.07  

  B2-0534.10  

  B2-0534.12  

 B2-12 B2-0661.04  

  B2-0661.08  

  B2-0661.10  

 B2-16 B2-0575.04  

  B2-0575.07  

 B2-19 B2-0145.05  

 B2-27 B2-2036.04  

 B2-6 B2-0481.02  

  B2-0481.11  

 B3-11 B3-453.03  

  B3-453.06  

 SB-4 SB-192.03  

  SB-192.07  

 SB-5 SB-143.03  

  SB-143.07  

45-KI-429 CL2-1 CL2-068.05  

  CL2-068.10  

 E1-11 E1-0208.02  

  E1-0208.06  

  E1-0208.07  

 E1-22 E1-1277.02  

  E1-1277.05  

 E1-22 E1-1344.01  

  E1-1344.02  

  E1-1344.07  

 E1-27 E1-1200.03  
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Site Unit Catalog Number Alternate Designation 

45-KI-429 E1-4 E1-1200.07  

  E1-0193.05  

 E1-5 E1-0701.07  

  E1-0717.02  

  E1-0717.07  

  E1-0744.04  

  E1-0744.09  

  E1-0831.03  

  E1-0831.06  

  E1-0831.07  

 NA-11 NA-305.04  

 NA-8 NA-445.05  

  NA-445.10  

 SG-6 SG-359.08  

  SG-466.05  

  SG-466.08  

45-KI-437 22/58 2E.20.24  

  2E.20.28  

 26/57 3A.4.24  

  3A.4.28  

 28/58 2B.32.24  

  2B.32.28  

  2C.4.24  

  2C.4.28  

 29/58 2D.12.24  

  2D.12.28 Lot No.; Sample No. 

45-SJ-169 2S/21E 1390 499; DR-CV-133 

 4S/9E 491 120; DR-HF-19 

  493 121; DR-HF-19 

 5S/7E 1452 512; DR-CV-14 

  1445 511; DR-CV-14 

 8S/2E 1665 547; DR-CV-236 

  1671 548; DR-CV-236 

  1676 549; DR-CV-1676 

   SAJH No. 

45-SJ-24 Op A 304300 .1d.01.184.24 17277 

  .1d.01.184.28 17692 

 304302 .1a.02.100.24 16009 

  .1a.02.100.28 16027 

  .2v.01.001.24 39125 
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Site Unit Catalog Number Alternate Designation 

   SAJH No. 

45-SJ-24 Op A 304302 .2v.01.001.28 39138 

  .2v.01.004.24 39128 

  .2v.01.004.28 39141 

  .2v.01.005.24 39129 

  .2v.01.005.28 39142 

  .2v.02.003.24 93823 

  .2v.02.003.28 93844 

  .2v.02.020.24 93833 

  .2v.02.020.28 93854 

 306302 .1c.01.162.24 13719 

  .1c.01.162.28 13721 

  .2e.01.001.24 10188 

  .2e.01.001.28 10189 

  .4e.01.004.24 94253 

  .4e.01.004.28 94258 

 308302 .1j.01.004.24 23837 

  .1j.01.004.28 23854 

  .1j.01.016.24 23841 

  .1j.01.016.28 23853 

45-SJ-24 Op D 105365 .00.01.020.24 127310 

  .00.01.020.28 127327 

  .1k.02.012.24 103772 

  .1k.02.012.28 103783 

  .1o.01.020.24 103864 

  .1o.01.020.28 103877 

  .1s.01.004.24 127140 

  .1s.01.004.28 127152 

 107341 .1d.01.001.24 40661 

  .1d.01.001.28 40663 

 111349 .2a.01.001.24 104103 

  .2a.01.001.28 104113 

  .2d.01.004.24 127340 

  .2d.01.004.28 127344 

  .2d.02.004.28 127355 

 121347 .1d.02.012.24 127523 

  .1d.02.012.28 127536 

  .1a.05.084.24 40899 

  .1a.05.084.28 40907 

 130352 .1a.02.020.24 105903 
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Site Unit Catalog Number Alternate Designation 

   SAJH No. 

45-SJ-24 Op D 130352 .1a.02.020.28 105915 

  .1b.02.012.24 105982 

  .1b.02.012.28 105994 

  .1b.03.004.24 106020 

  .1b.03.004.28 106034 
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Appendix C: Identification Criteria Used for Reanalysis of Sablefish, Salmonid, Sculpin, 

and Flatfish Vertebrae 
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For my reanalysis, I tallied all vertebral specimens belonging to sablefish 

(Anoplopoma fimbria), salmon (family Salmonidae), sculpins (family Cottidae), and 

flatfish (order Pleuronectiformes). The elements I recorded for salmon are vertebra type 

1, vertebra type 2, vertebra type 3, vertebra type 4 (types are defined below) and vertebral 

fragments. Because the woven fenestrated texture on salmonid vertebrae is also found on 

sablefish vertebrae, and it can also be found in non-vertebral elements, I only consider 

salmonid vertebral fragments identifiable if they include a distinctive morphological 

landmark, such as a portion of a vertebral spine, a portion of a dorsal spine facet, or a 

portion of the robust centrum lip (Figure C.1). 

The elements I recorded for non-salmonid taxa are the first vertebra, 

indeterminate vertebra, and vertebral fragment. Indeterminate vertebrae represent all 

vertebral specimens not identifiable as the first vertebra that include at least half of the 

opening for the notochord. Vertebral fragments include all vertebral specimens that 

include less than half of the opening for the notochord. I do not record abdominal, pre-

caudal, and caudal vertebrae as separate elements because it is often impossible to 

determine whether the haemal arch – the distinctive feature of caudal vertebrae – is 

present or absent due to breakage of the haemal processes. Furthermore, the distinction 

between abdominal vertebrae and pre-caudal vertebrae is defined by the presence of a 

transverse process, which may be arbitrarily defined. Nevertheless, I report the 

distinguishing features of abdominal, pre-caudal, and caudal vertebrae for the three non-

salmonid taxonomic groups below. 

Vertebrae for many sculpin species are easily distinguished from sablefish 

vertebrae by bone texture alone. Sablefish vertebrae are always finely fenestrated with a 
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woven texture, but a similar texture is usually only found in family Cottidae on the 

vertebrae of staghorn sculpins (Leptocottus armatus). Vertebrae from other sculpin taxa 

are not likely to be confused for sablefish. Cabezon (Scorpaenichthys marmoratus) and 

Irish lords (Hemilepidotus sp.) have vertebrae with a solid, glossy texture. Buffalo 

sculpin (Enophrys bison) vertebrae have distinctive, scooped lateral sides. And great 

sculpin (Myoxocephalus polyacanthocephalus) vertebrae have a large, distinctive 

foramen on the ventral side of the centrum. However, it is possible that sablefish 

vertebrae might be identified as an indeterminate sculpin on the basis of some 

morphological similarities, and I attempt to distinguish sablefish vertebrae from the 

general features of sculpin vertebrae below. 

 

 

Figure C.1 – Identifiable salmon vertebral fragments (top row) and unidentified fish bone 

specimens (bottom row). Salmonid fragments identified by a) vertebral spine facet, b) 

robust lip, and c) base of vertebral spine. Scale bar is 10 mm long. Photos by Tony 

Hofkamp. (Courtesy of the Thomas Burke Memorial Washington State Museum, catalog 

number WS-14677.99.08.23, Area A4, Unit 17) 
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First Vertebra/Vertebra Type 1 

The first vertebrae of sablefish, sculpins, and flatfish, and salmon vertebra type 1, 

are all easily distinguished by the exoccipital facets on the rostral side of the vertebra, and 

the shape of the centrum. 

Sablefish first vertebrae have ovoid facets on the dorsolateral sides of a semi-

circular centrum (Figure C.2a). 

Sculpin first vertebrae have small exoccipital facets on the rostral ends of 

prominent prezygapophyses (Figure C.2b) and a semi-rectangular centrum (Figure C.3b).  

The salmonid vertebra type 1 has large, rugose exoccipital facets that overlay the 

centrum (Figure C.2c). 

 

Figure C.2 – Rostral side of first vertebrae from a) sablefish (Anoplopoma fimbria), b) 

staghorn sculpin (Leptocottus armatus), c) salmon (Oncorhynchus kisutch), and e) rex 

sole (Glyptocephalus zachirus). Scale bar is 10 mm long. 
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Figure C.3 – Lateral side of first vertebrae from a) sablefish, b) staghorn sculpin, c) 

salmon, and e) rex sole. Scale bar is 10 mm long. 

 

Pleuronectiformes first vertebrae have ovoid exoccipital facets on the dorsolateral 

sides of an egg-shaped centrum (Figure C.2d). 

 

Abdominal Vertebrae 

Abdominal vertebrae are the vertebrae following the first vertebra that do not 

have a haemal arch or transverse processes. The division between pre-caudal and 

abdominal vertebrae is not fixed because abdominal vertebrae may have morphological 

landmarks on the lateral sides that resemble transverse processes. In successive vertebrae, 

these landmarks do become more prominent until they develop into transverse processes, 

but the definition of transverse process could be applied arbitrarily to nearly any vertebra 

in the sequence. For this reason, I do not attempt to distinguish any vertebrae as 



 

130 

abdominal or pre-caudal. I merely wish to acknowledge that abdominal and pre-caudal 

vertebrae have different morphology, and describe the differences in both types of 

vertebra for each taxonomic group. 

 Sablefish abdominal vertebrae have a very circular centrum face on an ovoid 

body, and the neural arch attaches to the lateral sides of the centrum body when viewed 

from the rostral (Figure C.4a) or caudal end. The sablefish abdominal centrum has nearly 

equal length (rostral-caudal) and height (dorsal-ventral) (Figure C.5a) and never has a 

foramen on the ventral or lateral sides. 

Sculpin abdominal vertebrae have large, robust pre- and postzygapophyses. The 

centrum body is also noticeably longer (rostral-caudal) than it is tall (dorsal-ventral) 

(Figure C.4b). 

 
 

Figure C.4 – Rostral side of abdominal vertebrae from a) sablefish, b) staghorn sculpin, 

and c) rex sole. Scale bar is 10 mm long. 
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Figure C.5 – Lateral side of abdominal vertebrae from a) sablefish, b) staghorn sculpin, 

and c) rex sole. Scale bar is 10 mm long. 

 

The neural arch of the flatfish vertebra connects along the entire length of the 

centrum’s dorsal side (Figure C.5c). The arch also connects closer to the midline on the 

dorsal side of the centrum (Figure C.4c), rather than to the lateral sides as in sablefish.  

 

Pre-caudal Vertebrae 

 Sablefish pre-caudal vertebrae have very a circular centrum (Figure C.6a) with 

transverse processes that connect to the very rostral end of the centrum body (Figure 

C.7a). 

 Sculpin pre-caudal vertebrae typically have short transverse processes with facets 

on the rostral side of the distal end (Figure C.6b).  
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Figure C.6 – Rostral side of pre-caudal vertebrae from a) sablefish, b) staghorn sculpin, 

and c) rex sole. Scale bar is 10 mm long. 

 

 
 

Figure C.7 – Lateral side of pre-caudal vertebrae: a) sablefish, b) staghorn sculpin, and c) 

rex sole. Scale bar is 10 mm long. 
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Flatfish pre-caudal vertebrae have transverse processes that connect along nearly 

the entire rostral-caudal length of the centrum body (Figure C.7c). 

 

Caudal Vertebrae 

 Caudal vertebrae have a complete haemal arch on the ventral side of the centrum 

that is formed by the fused ends of the transverse processes.  

 Sablefish caudal vertebra have a very circular centrum (Figure C.8a) that has 

nearly equal length (rostral-caudal) and height (dorsal-ventral) (Figure C.9a). The neural 

arch connects along the entire length of the centrum’s dorsal side, but the haemal arch 

only connects to the very rostral end of the centrum (Figure C.9a).  

 
 

Figure C.8 – Rostral side of caudal vertebrae from a) sablefish, b) staghorn sculpin, and 

c) rex sole. Scale bar is 10 mm long. 
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Figure C.9 – Lateral side of caudal vertebrae from a) sablefish, b) staghorn sculpin, and 

c) rex sole. Scale bar is 10 mm long. 

 

Sculpin caudal vertebrae have a centrum that is very long (rostral-caudal) relative 

to its height (dorsal-ventral). The haemal arch also makes a very shallow angle between 

its caudal end and the centrum body (Figure C.9b).  

Flatfish caudal vertebrae have neural and haemal arches that connect along the 

entire length of the centrum body (Figure C.9c). They also often have barb-like lateral 

processes (Figure C.8c). 

 

Salmonid Vertebra Type 2 

 Type 2 salmonid vertebrae have paired facets for the articulation of vertebral 

spines on the dorsal and ventral sides of the centrum body (Figure C.10a). 
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Salmonid Vertebra Type 3 

 Type 3 salmonid vertebrae have at least one pair of vertebral spines fused to the 

centrum body (Figure C.10b). 

 

Salmonid Vertebra Type 4 

 Type 4 salmonid vertebrae have at least one side of the centrum that does not 

have fused vertebral spines, and the paired facets for the vertebral spines have merged 

into a single facet (Figure C.10c). 

 

 

 

Figure C.10 – Salmon vertebrae a) type 2 – lateral side, b) type 3 – lateral side, and c) 

type 4 rostral side. Scale bar is 10 mm long. 
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Too Caudal 

Towards the extreme caudal end of the non-salmonid vertebral column, caudal 

vertebrae become smaller, less distinctive, and the angles between the haemal arch and 

the centrum body, and the neural arch and the centrum body decrease. Many taxa also 

exhibit lateral barbs on the rostral end of the centrum body. Because these changes cause 

the extreme caudal vertebrae of all taxa to become more uniform, I do not identify 

vertebrae that appear to be too caudal. 

For sablefish, I define vertebrae as being too caudal to identify if the connection 

for the haemal arch extends along the entire length of the centrum body (Figure C.11a). 

The four sablefish in the Portland State University (PSU) Anthropology Department 

comparative collection have between 4 and 8 vertebrae that meet these criteria. 

I define sculpin vertebrae as too caudal if they have barb-like lateral processes 

that resemble the barb-like processes on flatfish caudal vertebrae, or if the angle between 

the vertebral spines and the centrum is less than 30° (Figure C.11b). In 12 sculpin 

skeletons from the PSU comparative collection, there are between 3 and 7 vertebrae that 

meet these criteria.  

Flatfish caudal vertebrae can be distinguished from the extremely caudal 

vertebrae of sculpins because the haemal and neural spines of flatfish caudal vertebrae 

are typically perpendicular to the rostral-caudal axis of the centrum. When the angle 

between the caudal end of either spine and the centrum body is approximately 60°, I 

consider flatfish vertebrae to be too caudal to identify (Figure C.11c).  
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Figure C.11 – Examples of vertebrae too caudal to identify to family in archaeological 

assemblages from modern a) sablefish, b) staghorn sculpin, and c) rex sole. Scale bar is 

10 mm long. 
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Appendix D: C Bags Selected for Reanalysis from Tse-whit-zen 
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Table D.1 – Bags selected for reanalysis from Tse-whit-zen. 

 

Analytic 

Stage 

Area Unit Catalog Number 

1 A4 17 WS-10039.99.02.23 

   WS-10039.99.04.23 

   WS-10039.99.08.23 

    

 A4 18 WS-10994.99.04.23 

   WS-10994.99.08.23 

    

 A4 19 WS-13621.99.04.23 

   WS-13621.99.08.23 

    

 A4 20 WS-18082.99.04.23 

   WS-18082.99.08.23 

    

2 A4 14 WS-8034.99.04.23 

   WS-8034.99.08.23 

    

 A4 16 WS-9146.99.02.23 

   WS-9146.99.04.23 

   WS-9146.99.08.23 

   WS-9475.99.04.23 

   WS-9475.99.08.23 

    

 A4 21 WS-10468.99.04.23 

   WS-10468.99.08.23 

   WS-8097.99.04.23 

   WS-8097.99.08.23 

    

3 A1 4 WS-6903.99.04.23 

   WS-6903.99.08.23 

   WS-691.99.04.23 

   WS-691.99.08.23 

    

 A1 5 WS-549.99.04.23 

   WS-549.99.08.23 

   WS-7897.99.04.23 

   WS-7897.99.08.23 

    

 A1 8 WS-189.99.08.23 
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Appendix E: Supplemental Data File – Primary fish bone data for the original analysis 

and reanalysis of a portion of the Tse-whit-zen assemblage 

 

 

 

Name: Supplementary Appendix E - Tse-whit-zen Reanalysis.xlsx 

Description: This spreadsheet includes original analysis and reanalysis results for buckets 

listed in Appendix A. The column heading “Stage” refers to Analytic Stage in 

Appendix A, and the column heading “Analysis” refers to whether a given entry 

was identified in the original analysis (A) or the reanalysis (B). Entries for the 

reanalysis also include original taxonomic identifications for a specimen where 

the results of the analysis and the reanalysis differ. 

File Type: Microsoft Excel Spreadsheet 

File Size: 132 kb 

Required Software: Microsoft Excel 2007 (or newer) 
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Appendix F: Supplemental Data File – Primary fish bone data from the reanalysis of 

portions of Burton Acres (45KI437), Decatur Island (45IS169), English Camp (45SJ24 

Op A and Op D), and West Point (45KI428 and 45KI429) 

 

 

 

Name: Supplementary Appendix F – Sablefish Verification.xlsx 

Description: This spreadsheet includes vertebra counts for sablefish (Anoplopoma 

fimbria), salmon (family Salmonidae), sculpins (family Cottidae), and flatfish 

(order Pleuronectiformes) specimens that I identified from each bucket listed in 

Appendix C using criteria reported in Appendix D. Each entry also includes the 

identification made by the original analyst. 

File Type: Microsoft Excel Spreadsheet 

File Size: 34.1 kb 

Required Software: Microsoft Excel 2007 (or newer) 
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