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AN ABSTRACT OF THE THESIS OF Mehdi Shadyab for the Master of Science

in Applied Science presented November 20, 1980.

Title: Non-Linear Behavior of Unbraced Two-bay Reinforced Concrete

Frames

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:-—_>

In this investigation, the prima ive was to study the non-
linear behavior of unbraced two-bay concrete frames and to determine

the extent to which ultimate load theory or 1imit design can be applied
to these structures. The frame behavior was investigated analytically
by two methods. In the first method the frame stability equation was
derived assuming that members of the frame possess an elasto-plastic
moment-curvature relationship. This stability analysis was also carried
out by another model consisting of a column attached to a linear spring
and carrying the total frame load. The second method was through a
computer program which took material and geometric nonlinearities of

concrete frames into account. A model concrete frame, with a scale

factor of approximately one-third was considered. Variable parameters-



were loading condition, column reinforcement ratio, and beam to column
load ratio. For each frame, the gravity loads were increased propor-
tionally until 75% of the frame ultimate capacity under gravity loads
was reached. Then, while these gravity loads were held constant, lat-
eral load was applied and increased to failure. The overall geometry,
21-in high columns and 84-in long beam, were kept the same for all of
model frames investigated. The computer study and the stability model
analysis indicated that all frames remained stable until four plastic
hinges (two in each bay) formed, thus producing a combined sway mechan-
ijsm. Based on the scope of this study, it appears that 1imit design may

be employed for unbraced reinforced concrete structures.
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CHAPTER I
INTRODUCTION

1.1 GENERAL

The inelastic behavior of reinforced concrete structures has been
recognized for several decades (1,2), and the related research which
spans over half a century (3) have clarified a number of important pro-
blems. However, despite the fact that there are some available theore-
tical and experimental data, the adoption of inelasticity concept in
structural design of reinforced concrete remains elusive. Convention-
ally, the analyses of indeterminate reinforced concrete structures has
been based on elastic method. The elastic method consists of determin-
ing the bending moments shear and axial thrusts by assuming that the
structure is perfectly elastic, i.e., the material's stress-strain
relationship varies linearly.

Since 1963, the American Concrete Institute (4), through the use
of Ultimate Strength Design (USD), has allowed designing individual
members and sections by recognizing their inelastic response, while the
elastic structure is assumed to determine the moments and forces. 1In
USD, the required strength to resist loads is found by multiplying the
service loads by load factors, corresponding to the type of loading
conditions. These load factors for a number of loading combinations
have been determined based on the probability of the combination occurr-
ing and on the safety of the structure. The USD method is also used by
codes of practice in several other countries such as Great Britain- and

the Soviet Union (5,6).



The application of ultimate load theory to structural design
started as early as 1914 (7,8). This theory, in design of steel frames
identified by "plastic design," utilizes the distribution of bending
moment as well as the strength of a cross section beyond the elastic
limit. Correspondingly, the ultimate load theory, which in reinforced
concrete is referred to by "limit design," utilizes the redistribution
of elastic moments in structures beyond the elastic limit. However,
since reinforced concrete does not have the same ductility character-
istics as structural steel there are some inconsistencies and unresolved
problems regarding its response beyond the elastic range. Excessive
cracks and deformation beyond the elastic range under service loads
is another reason why the application of limit design in reinforced
concrete has not been widely accepted. Nevertheless, due to the in-
elastic behavior of reinforced concrete members beyond the elastic
state (26), the present standards allow a certain deviation from the
elastic theory.

A 10% moment redistribution was permitted in the 1963 ACI code.
The present ACI code (4) allows up to 20% moment redistribution de-
pending on the reinforcement ratio (23). This figure is 15% in the
1972 CEB recommendation (9), 30% in the Soviet (10), 30% in the British
(5), and up to 67% in the Danish standards (11).

Finally, 1imit design is preferred over the conventional elastic
theory because of the following reasons:

1. the real properties of materials are considered (inelastic

phenomenon),

2. in indeterminate structures as a section reaches its yield



point, the structure will not collapse,
3. the reserved strength, beyond the elastic point to failure,
is usually considerable, and

4. reduction of negative moments reduces the steel concentration.

1.2 OBJECTIVE

The general objective of this investigation is to determine the
applicability of limit design to multistory multibay unbraced concrete
frames. The primary objective is to study the behavior of such frames
under gravity and gravity plus lateral loading for the following con-
ditions:

(a) as the loading increases

(b) as the relative flexural stiffness of the columns and beams

varies
(c) as the beam to column load ratio increases
(d) as the reinforcement ratio varies

This investigation is carried out using two analytical techniques.

1.3  ORGANIZATION

The remaining part of this thesis is divided into five chapters.
In Chapter II, the modeling consideration is discussed. In Chapter III,
analytical treatment of frames using the mathematical solution of
an elasto-plastic stability model frame is discussed.

The computer analysis of these model frames, using a computer
program which takes material and geometry nonlinearities into account,
is discussed in Chapter IV. Chapter V discusses the comparison of the
two methods of analysis used for selected model frames, and finally
Chapter VI includes the summary and conclusions of this study, along

with some recommendations for future research.



CHAPTER II
MODELING CONSIDERATIONS

2.1  GENERAL
In this chapter, overall loading patterns, load relationships
with some simplifying assumptions, different types of frame failure,
and some general requirements of structural similitude will be discussed.
The purpose of this chapter is to set the background stage for the

analytical treatment which follows in Chapters III and IV.

2.2 THE MODEL OF UNBRACED FRAME

In designing a reinforced concrete building frame, several loading
patterns must be considered. A critical condition for frame in-
stability exists when all floors are fully loaded, thus creating
full axial loads in columns. An unbraced n-story concrete frame is shown
in Fig. 2.1. The width of each bay (beam length) and the story to
story height (column length) are Ly and L. respectively. It is assumed
that the center to center distance between frames is also equal to Lb.

A two bay interior panel which represents a typical interior
panel is shown in Fig. 2.2. Due to symmetry of the frame points of
inflection are at column midheights and for simplicity a reduced model
as shown in Fig. 2.3 will be analyzed. According to Rad (12) for a
single panel the relationship between column load P (applied at top)
and beam load Q, neglecting the increased column load due to lateral

load, can be expressed as:

Q/P = 1/(2n-2) (2.1)
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Figure 2.1. A multi-story unbraced concrete frame
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And the relationship between the column thrust T and the beam load Q as:
Q/T = 1/(2n-1) (2.2)

where n = number of stories. Considering the reduced model shown in
Fig. 2.3, equation 2.1 is not valid for 2-bay frame, however, it will
be shown later that Equation 2.2 is still true. For a 2-bay frame,

the applied column loads P and P' must be chosen such that the column
thrusts T are all the same. For the exterior and interior column loads

P' and P at the first floor, the corresponding equations become:
Q/P' = 1/(2n-2); and (2.3)
Q/P = 1/(2n-3) (2.4)

Equation 2.2 will remain unchanged. Again, for Equation 2.3 and 2.4
the increased column 1load caused by the lateral Toad H is neglected.
Now let us examine these relationships for two extreme conditions
condition I for "very stiff" columns, and condition II for "very slim"
columns, as shown in Fig. 2.4.

The beam shear distribution varies as relative column/beam stiffness
ratio changes, thus influencing the interior and exterior column thrusts.
However, this variation is small. As an example, the extreme boundaries
of column thrust values are shown for n = 5, in Fig. 2.5. As n increases,
the range of variation decreases.

For simplicity of analytical treatment, the beam shear distribution
and thus the column thrusts of Condition I are assumed to exist in all
frames, regardless of column/beam stiffness ratio. So the interior

column thrust will be assumed as the interior column load plus 2Q; and
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Figure 2.4. Two extreme conditions
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the exterior column thrust as the exterior column load plus Q.

2.3 DESCRIPTION OF THE TYPES OF FRAME FAILURE

The primary purpose of this research is to study the behavior of
a two-bay unbraced reinforced concrete frame under the influence of
gravity and lateral loads.

Based on the ACI-77 Code (4), Article 9.2.2, if resistance to
structural effects of lateral load is included in design, 75% of
factored gravity and lateral load must be considered. Accordingly, the
behavior of the frame acted on by 75% of factored gravity and lateral
loads will be studied.

The frame loading sequence will be:

1. apply the gravity loads up to 75% of their design value,

2. then apply the lateral load H until frame failure occurs,
According to Rad (12), there are four types of failure which can occur
in the frame.

1. Type I - Elastic Frame Instability

This frame, as shown in Fig. 2.6 (a) becomes unstable under
large column loads. The failure is analogous to elastic
column or frame buckling.
2. Type II - Material Failure
This failure exists when any section of a column fails by
crushing of the concrete. (Fig. 2.6 (b))

3. Type III - Frame Instability with Partial Plasticity
After the lateral load H is applied, the frame remains in
stable condition until two plastic hinges form at critical

sections of the frame. The lateral load which causes the
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(a) Type I, elastic frame instability.

(b) Type II, material failure

(c) Type III, frame instability with partial plasticity

(d) Type IV, frame instability with panel mechanism

Figure 2.6. Types of frame failure
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first set of plastic hinge to form is designated by Hye In

this type of failure, due to the loss of frame stiffness after

the first hinges, the frame can no Tonger stay in stable equi-

1ibrjum position. (Fig. 2.6 (c))

Type IV - Frame Instability with Development of a Panel
Mechanism

The frame will stay in a stable equilibrium until enough

plastic hinges form in the frame to produce an unstable mech-

anism. The extra lateral load beyond H] that is necessary

to produce a mechanism is designated by H2. (Fig. 2.6 (d))

In this present study, we will not focus on Types I and II failure,

but the boundary between Types III and IV failure will be examined.

The lateral load terminology will be as follows:

where:

H = Hy + H2

Total lateral load which is resisted by the frame

1 Lateral load to produce the first set of two plastic hinges

2 Lateral load in excess of H] to produce the panel mech-

anism

Also, a useful index can be introduced as the percentage of moment

redistribution, defined as g,

B = (Hy/H)(100) (2.5)

for Type III failure:

H2 =0, B=0, and H=H
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for Type IV failure:

H2>O, B >0, and H‘-‘H]'l'H2

2.4 LOADING OF THE PROTOTYPE VS. MODEL FRAMES

In this section an interior bay of a multistory structure will be
considered (Fig. 2.7) and the loading relationship between the proto-
type and the model with regard to scale factor (SF), structural analysis,
and member strength will be determined.

2.4.1 Frame Loading. Considering Fig. 2.8, one may write:

Total beam load = (wsL)Lb = 2Q, and

Column thrust, T = (wZ)Lb for each floor

where: w = uniform load per unit area

L

bent spacing
As discussed before:
Q/T = 1/2n-1 (2.2)
or 2Q/2T = 1/2n-1
or (we)Ly/2T = 1/2n-1 (2.6)

Equation 2.6 establishes the relationship between column thrust T

and number of stories n for a uniform surface load w.

2.4.2 Column Strength. In this section, the relation between the

column axial capacities of the model and the prototype is determined.

Pno = pure axial load capacity = 0.85 fc Ac + (DAg)fy
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0.85f (A, -p A )+ (p A )f

In m g, m 9

(A, =P A )t (p A )f
9 P9, P g,y

no(m) y

p
Pro(p)  0.85 f

c
i (2.7)
o

where "m" and "p" refer to model and prototype respectively. The

comparison of the section properties between prototype and the model

is summarized in Table 2.1.

By substituting for Agp in terms of Agm in Equation 2.7, the

following is obtained:

]
A 0.85 f_ (1-p) + pf ]
no(m) _ Im [ ¢ Y

no(p)  (1/5F)2 Aq [0.85 f; (1-p) + pfg

v O

m

or Py = (/SPEERL ) (2.8)

For example, for a scale factor of 1/3, we get:

P = gp

no(p) no(m)

2.4.3 Beam Strength. In this section, the relationship between

the beam moment capacity of the model and prototype is determined.

¢

y ANEBE ) E::EE}C:;.BSfé ab
JE . N

€s T=Asfy
beam cross section strain diag rectangular stress block




TABLE 2.1

COMPARISON OF SECTION PROPERTIES FOR
THE MODEL AND THE PROTOTYPE

Model Prototype
"
(o] o
T EHh
l i 5] o
1 1
fc fc
f f
Y _ Yy
2m - A i ;1iSF)2 A
9 9, In
SF = scale factor = model dimension/

prototype dimension
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=
(1}
>
—+H
[ )
o

and M_=A_ f jd

Mp/Mm = Asp fy J dp/ASm f.y J dm

or My [o (/sF % b )(1/SFxd) ] F () (1/SF *ap)

A
Fin [P Bl (&T ] 7, (3 (&
- 3
or Mp = (1/SF) (Mm) (2.9)

For example, for a scale factor of 1/3, we get:

My = 27 (M)

2.4.4 The Structural Analysis. In this section, the structural

analysis with regard to the column axial thrust and beam moment will

be considered. Let us consider column load first.

Pp = (“p“p)pr and P = (wmlm)me

P /P = (0.8 )Lb /(wmﬂ.m)Lb

p’"m "~ pp by 0
2
PR [ (1/SF) lm Lbn|]
or = (w./w_)
Pm p/*m % Lb



18

or /Py = (1/SF)° (wpfuy) (2.10)

For example, for a scale factor of 1/3, we get:

Po/P = (9) (wp/iy)

Now considered are the beam moments, which are caused by the beam Toad

(w2), and are functions of (wl)(LE). The moment coefficients which
define the moments at various beam locations may be obtained from the

ACI code 318-77 (4).

- 2
and M =k (w?d L2 )
m mm bm

where k is moment coefficient

2 2
k(w2 L) wi L
|
iE.= 7P byt TRTP b,
o ke L2 e Lh
m m
3, .2
” (1/SF) 2 Ly
m p/™m % Li
m
or Mo/My = (1/SF) (wp /) (2.11)

For example, for a scale factor of 1/3, we get:

Mp/Mm = (27)wp/wm
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Now by setting Equation 2.8 equal to Equation 2.10 we obtain:

- 2 2
Po/Py = (1/SF)2 = (1/SF)% (/i)

Also by setting Equation 2.9 equal to Equation 2.11 we obtain:

- 3 3
MMy = (/SF)® = (1/SF)° () fu)

W, =W (2.12)

The above equation indicates that the surface loading (psf) of
the prototype and the model frame are equal and independent of the
scale factor (SF). Since testing a frame by a couple of concentrated
loads is much easier than by uniform load, a relationship is found
between the concentrated 1oad Q and the uniform load of wf. Table 2.2
summarizes the related equations.

In conclusion, it may be stated that if two concentrated loads
Q =3/8 (wz)Lb are applied at beam third points, the moment effects
will be the same as uniform load (wf). Therefore, for either analytical
or physical testing of the frame, two concentrated loads each equal to
Q = 3/8 ws Lb’ must be applied at beam third points in order to simulate
uniform load w? moments.

In all analytical modeling in this investigation, concentrated

loads at beam third points were applied.
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THE RELATION BETWEEN UNIFORM AND
CONCENTRATED LOADS
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SUMMARY :

from the above two results, we conclude:

Q = 0.375 (wf)

L, = 0.375 (WLb)

W(k/ft) =

[w(k/ftzi’] *Q = (wl)k/ft




CHAPTER III

ELASTO-PLASTIC MODEL

3.1 GENERAL

The stability of unbraced frames using an analytical method will be
discussed in this chapter. This method consists of the mathematical
solution of an elasto-plastic stability model. This solution will define
the boundaries where 1imit design may be feasible.

In this stability analysis, the reduced model of Fig. 3.1 is investi-
gated. The behavior of the model frame as acted upon by column loads,
beam loads, and lateral force is studied. The stability equation of the
frame, when frame becomes unstable is determined by the principle of
neutral equilibrium. The stability equation is also determined by Bolton's
(15) method.

The stability equation of the frame when it becomes unstable under

the action of gravity loads alone without Tateral load is also determined.

3.2 FRAME LOADING, ASSUMPTIONS, AND NOTATION

The loading sequence for this model frame is in accordance with ACI
318-77, Art. 9.2.2, as discussed in Sec. 2.3. Axial column loads P and
beam loads Q are first applied proprotionally up to 75% of the predicted
ultimate capacity of the frame. Next, lateral load H is applied until total
failure of the frame is reached. The lateral deflection of the model is
half that of the actual frame.

In the stability analysis of the model, the following assumptions (12)
are made:

1. The beam members and column members possess an elasto-plastic
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Figure 3.1. The reduced model frame
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moment-curvature (M-g) relationship. Also, the flexural
rigidities of the column (EIC) and the beam (EIb) do not vary
along the length of the members,

2. The change in the magnitude of column thrust caused by the
lateral force H, is neglected.

3. The change in moment due to the product of column axial thrust
and the column deflection from the chord connecting the column
ends is neglected, i.e., the moment diagram is triangular.

4, The beam bending moment capacity, M_, for the negative and

P
positive bending is the same.
The reduced model frame of Fig. 2.3 is used for analysis with the
difference that, for simplicity, all column axial loads are assumed to
be equal to P as shown in Fig. 3.1. This frame is examined at two stages
of loading:
1. The first stage exists until the first hinges are developed at
corner C and section Ew due to gravity loads P, Q, and the
horizontal Toad Hq.

2. The second stage exists after plastic hinges form at point k

and M due to the additional horizontal force H,.

The definitions of symbols used in the following discussion are
given below:

P axial load on the column

Q applied load on the beam third points

Ly length of the beam
L length of the column

M plastic moment capacity of the beam (or column)
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flexural stiffness of the beam
flexural stiffness of the column

relative flexural stiffness of the column and beam
) EIC/Lc
" ET,
lateral load applied at corner C
lateral load required for the formation of the first hinges
in the frame (at corner C and Ew)
additional lateral load required for the formation of the
second hinges in the frame (at k and M)
horizontal deflection of the frame
horizontal deflection of the frame at the formation of first
hinges
additional horizontal deflection of the frame at the formation

of second hinges.

Sign Convention: Clockwise moment on the columns at corners B, E and C

is positive

7 K L E ™M N c

+M +l‘1 +M
F D

A11 moment diagrams are drawn on the compression side of the members.

The gravity moments at corners B, E and C are determined by the method

of moment distribution. Since the column base is hinged and the beam

is bent symmetrically, the determination of distribution factor (DF)

for the column is as follows:
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For column AB and CD:

34 L1 ]

DF = =
SATETE 2] * 172 [EL7Tg

After substitution of Y, the above equation will simplify to:

DF

3V/(3y + 1)
For column EF:

3/4 [E1/L /o)

OF = =37z [ET/L. 5] ¥ 2005 EL /Ly

which after substitution of v , will simplify to:

DF = 3y/(3y + 2)

The DF is multiplied by the fixed end moment caused by the beam load Q.

Therefore the moment is:

=
i

(30430 + 1)) * (2/9 Q L)

or M= (6v/279 + 9)Q Ly =(2¥/9y + 3)) Q L

b

denoting 2V/(9y + 3) by F:
M=FQ Lb

3.3 CONDITION OF THE FRAME AT THE FIRST HINGE

The loads and the corresponding moment diagrams until the first
hinges form at E and C are shown in Fig. 3.2. For simplicity of calcu-
lations, moments are divided into two parts. Part one is the moments
due to beam loads Q, as shown in Fig. 3.2a. Part two is the moments
due to column axial thrust P, horizontal lateral load H], and the lateral

deflection Ay> as shown in Fig. 3.2b.
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Figure 3.2. Loads and moments at the first hinge
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Figure 3.3. Loads and deflected shape at the first hinge
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At the formation of first plastic hinges the moment capacity of

the beam (or column) is reached at corners E, and C. Therefore:

FQLy - HL/8 - (P+ Q) 8y = oM
or My - FQLy = HL/8 + (P +0Q) 4 3.1

Total moments, according to Fig. 3.2c are:

MB = -F Q Lb + H]Lc/8 + (P + Q) By

=
"

B FQ Ly - HiL./8 (P +Q) A,

M = QLp/3 = F Q Ly + HiL /28 + (P+Q)Ay/2
Mo =QLy/3-FQLy -HL./2a

MEw =-F Q Ly - HiL/8 - (P+Q)A;/2

Mo =

£ = -HL/8 - (P4 Q)a,

=
|

=-F Q Lb + H]LC/8 + (P+Q)A]/2

G, = -F Q Ly - HL./8 = (P + Q)1

MCC -FQ Ly - HiL/8 - (P + Q)b

Fig. 3.3 shows loads and frames deflected shape at the first hinge.

3.4 CONDITION OF THE FRAME AFTER THE FIRST HINGES

After the first hinges form, additional moment is caused by lat-
eral load H2 and additional deflection A2. First let us determine how
the lateral load H2 and the moment caused by deflection A, are going

to be distributed throughout the frame.
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3.4.1 Shear Distribution by Using a Spring Model. Let us consider

the (Az) effect only which is caused by lateral force H,. Since moment

at joint C has reached its capacity M_, the model can be reduced to what

P
is shown in Fig. 3.4. This reduced model can be further simplified to
a set of springs having a stiffness of k. As the tensile force H, is
applied, both springs will be stretched the same amount of AZ' The
tensile force in each spring will be equal to H2/2. Therefore by this
reasoning the horizontal shear distribution at the column supports of A
and F due to lateral force H, will be equal to H2/2.

As the frame deflects, the moment at corner Ew and C must remain

constant at moment capacity, M Therefore the added moment, (P+Q)A2,

p*
on the column CD must be opposed by a horizontal shear force equal to
2(P+Q)A2/LC. This shear force is transferred to column EF and AB such
as to keep the frame in equilibrium.

Again by considering the spring model shown in Fig. 3.4 and the
analogy explained above, this shear force must be distributed equally
at the column supports A and F, as shown in Fig. 3.5a.

By combining the P-A2 and the lateral load H2 effects, the shear

distribution as shown in Fig. 3.5b is obtained.

3.4.2 Shear Distribution by Yura's Method. A second technique

presented by Yura (13) may be used to determine the horizontal shear
distribution at the supports of A, F and D.

In general, the total gravity load which produces sidesway can be
distributed among the columns in a story in any manner. Sidesway will
not occur until the total frame load on a story reaches the sum of the

potential individual column loads for the unbraced frame. In our model
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Figure 3.4. Spring model and the shear distribution
caused by lateral load
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(b) Total shear distribution after the first hinge

Figure 3.5. Shear distribution by using a spring model



31

frame the total frame load is (3P + 4Q).

After the first hinges occur, since column CD is then "hinged-
hinged" it is no longer stable. Thereafter the frame loads must be
carried by the two remaining healthy columns AB and EF. In addition
to its own load, each column must support an additional P-A moment
equal to (P+Q)A2/2 = 0.5 (P+Q)A2 which is caused by the deflection of
column CD. This is equivalent to an additional axial load equal to
0.5(P+Q) on the healthy columns. Consequently column AB must be able to
support a fictitious axial load of (P+Q) + 0.5(P+Q) = 1.5(P+Q), and
column EF, a load of (P+2Q)+ 0.5(P+Q) = 1.5(P+Q) + Q. Considering

column AB and EF as shown in Fig. 3.6a:

M(PA) = 1.5(P+Q)A2 = (P+Q)A2 + VY (Lc/2)

from which: V] = (P+Q)/_\,2/LC

Mipyy = [1-5(P+Q) + Q] 85 = (P+2Q)a, + V, (L/2)
from which: V2 = (P+Q)A2/LC

By the spring model of Fig. 3.4, the horizontal shear distribution at
supports A and F caused by lateral load H2 are each equal to H2/2.

By superposition of P-A and lateral load effects, one can conclude
the shear distribution as shown in Fig. 3.6b which is identical to what

was found by the spring model, Loads and the corresponding moments after

the first hinge, along with the shear distribution are shown in Fig. 3.7.

3.5 CONDITION OF THE FRAME WHEN THE SECOND HINGES FORM AT (K) and (M)

The total moment at (K) and (M) must include those caused by
gravity loads P and Q, those due to lateral loads H] and HZ’ and their

corresponding deflections Ay and by Let us consider joint K.
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Figure 3.6a Horizontal shear distribution after
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The moment caused by gravity loads P and Q, lateral load Hy and its

respective deflection Avs is:

MK =Q Lb/3 - FQ Lb + H] Lc/24 + (P+Q)A]/2 3.2
The moment caused by lateral load H2 and its respective deflection By,
is:
M¢ = Hy L/6 + (P+Q)A2 3.3

Therefore the total moment at K is found by addition of equations 3.2

and 3.3. Since at collapse this total is equal to Mp:
Mo = [Q L3 - F QL + HiL /24 + (Pr)by/2
[Hch/6 + (P+Q)A2]

which after simplifying and rearranging gives:

Hole/2 = 3M) = Q Ly + 3F Q Ly + [-HiL /8 - (P+Q)aq ] -
[(P+)ay72] - 3(P+Q)a, 3.4

Now substitute for the value of [H]LC/S + (P+Q)A]] and [(P+Q)A]/2]

from equation 3.1 into equation 3.4:
HZLc/2 = 3Mp -Q Lb +3FQ Ly - Mp +F Q Lb - Mp/2A+ FQLb/Z +
H]LC/16 - 3(P+Q)A2
or

H2Lc/2

1.5 Mp - Q Lb + 4.5 FQLb + H]Lc/]ﬁ - 3(P+Q)A2 3.5

The lateral load H2 and the lateral deflection A2 can be related by
applying the moment-area theorem to the triangular moment diagram

shown in Fig. 3.7. It has been shown, that for single story, single

|
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bay frame (12):
Dy = MLy L6 EL + ML 22 ET
But considering the model of the frame after the first hinge, shown

in Fig. 3.4, the deflection equation relating A2 to moment for single

story-two bay frame is one-half as much. Therefore

= 2
by = MLy LC/ 1Z EIy) + M L."/24 EI, 3.6

This is true since by addition of one Qay we have doubled the stiffness
of the structure. Therefore the deflection due to lateral load is only

one-half. From Fig. 3.7:

M= Hy L./4 + 3/2 (P+Q)A2 3.7
Therefore:
H, L H, L

2 ¢, 3 2 ¢, 3 2

N +7(P+Q)A2}Lch+[ 7t 3 (P, L
2 . R
i2 EIb 24 EIc
EIC/Lc

But since y = T
b’"b

The above equation can be simplified and rearranged to:

(Hy L) (2p + 1)

b2 % SEEI/L, -6 L (PRON(Z *T) 3.8

Now by substitution of equation 3.8 into equation 3.5:

Hp Le : Hy Le

== L5 M - QL+ 45 F QL+ —p - 3(PHQ)
(Hy L) (2y + 1)

96 ET_/L_ - 6 L_ (PrQ)(20 * 17
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or after simplifying and solving for H2, gives:

: HiL, (P+Q)L 2 (20 + 1)

HZ-T_-C(l.SMP-QLb+4.5FQLb+—T——6)[2- 5T ]
Now, the index value for the critical buckling load, defined as

n2 EIC

PE = > may be substituted into the above equation.
Le
Hy =1 (1.5 M - QL +45FQL +H‘LC)[2-“2(P+Q)(24’+”]
2 7TV b ™ b™ "T6 8 Pp

3.9

By applying the condition of neutral equilibrium, if the frame is un-

stable after the first hinges form, then H2 is equal to zero. Therefore,

. 2
from equation 3.9, when [2 o (P+Q%(%¢ + 1)] = 0.0,
E

H2 will be zero. Therefore:

% (P+Q)(2p + 1)

=2
8 PE

and (P+Q)/pE = ]6/n2(2¢ + 1)) 3.10

Now, let us consider the condition of the frame when the second hinge
forms at joint M.
The moment caused by gravity loads P, Q and the lateral load H]

and its respective deflection N is:

My = Q Ly/3 - FQ Lb + Hch/24 3.11
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The moment caused by lateral load H2 and its respective deflection A2
is:

MM = HZLC/6 + 1/3(3P + 5Q)A2 3.12

Setting the total moment at M, at collapse equal to Mp:

Mo = [QLy/3 - F Ly + ML 28]+ [HyL /6 + 173 (3P + 50)a, ]

3.13
which after simplifying and rearranging gives:
H2Lc/2 =3 Mp -Q Lb +3FQ Lb - H]LC/S -
(3P + 5Q)A2 3.14

2
M LbLC ML,

Now, from equation 3.6, A, = + and from Fig. 3.7,
2 72 ETb 2q ETC
Mg = HoL. /4 + 1/2(3P + 50)A2, therefore:

HZLC H,L

3 2°¢c . 3 2
e peessany R e sman
2 12 EIb 24 EIC
Substituting for EIc/Lc
b= EIb;Eb

The above equation may be simplified and rearranged to:

B CAROTETER)
%2 T EI /L 6L, PF5A W FT) 3.15

Now by substitution of equation 3.15 into equation 3.14:
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H L Hch

.(Hztcz)m +1)
[96 EIC/Lc -6 Lc (P+5/3Q)(2 + 1)]

or after simplifying and solving for H2, gives:

H,L (P +5/3Q)(2p + 1)L.2
" 1 c)[ c ]

.I Iy
== (3 M. -QL.+3FQL, - 2 -
2 * T (3 My b b~ "B B EL

Now the index value for the critical buckling load PE = nZEIC/LC2

is substituted into the above equation:

H,L 2
B 1t (P +5/3Q)(2¢ + 1)
Hy = [ (3My-QLy*+3F QL - —5—) [2 i § P J

3.16
Again, by applying the condition of neutral equilibrium, if the frame

is unstable after the first hinges form, then H2 must be equal to zero.

Therefore, from equation 3.16

2
P+5/3Q(2y+1)]_
[2_“ ( 8PE ) (2 )}_0.0

or

22 (P +5/3Q) (20 + 1) _
8 PE

which simplifies to: P+ g-o
i _

_ 6
E 20 + 1)

3.17
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Equation 3.10 represents the stability equation when the second hinge
forms at K, and equation 3.17 is the stability equation when the second
hinge forms at M, Since the stability of a frame is a "total story"
phenomenon (13), the average of these two equations will represent the
frame stability equation, when the second hinges form at K and M.

Therefore,

1 [(P+Q ., (P+5/3Q7. 16
7 [ ¥ ] -

P P 2" (2p41)
oo A2 1330, 16 3.18
E o (2¢9+1)

This value of inelastic buclking load for single story two bay

frame is 167% greater in comparison with one bay frame (12).

3.6 THE INELASTIC BUCKLING LOAD BY BOLTON'S METHOD

In a paper presented recently by A. Bolton (15) he has shown that
the elastic critical buckling load of a structure can be investigated
and calculated by using a simple model. The important matter is that
whatever is true for this model of the structure is also true for the
whole structure.

This model consists of a vertical rigid bar which is freely
pivotted at its base A, carries an axial load of (3P + 4Q) (the total
load in that story, which should be carried by the frame) at its upper
end B, and is supported by a linear spring of stiffness k connected at
B, Fig. 3.8a. The vertical bar AB is then displaced by a lateral force
of H2, causing a deflection of A, which in effect causes overturning

moment (P-A effects) and elastic restoring forces from the Tinear spring.



Spring Stiffness, K —\\\‘

(a) The model

A
(b) The model, after displaced by lateral force H2

Figure 3.8. The stability model
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Then an equation of equilibrium is obtained which is used to
solve for the critical load knowing that at this condition the structural
stiffness is zero.

It was previously shown that:

2
b, M Ly Lc/ 12EIb + M LC /24EIc 3.6

The value of M = H2Lc/4 + 3/2 (P+Q)A2 from equation 3.7 is substituted
into the above equation but since the spring assumes a linear character-

istic only, the moment will reduce to M = H2LC/4. Therefore:
A, = H,L 3/96E1 + H.L 2 Ly/48El
2 = "2-c c "2t¢ b b

Substituting for ¢ = EIC/Lq/lEIb/Lb and solvong for Hy:

3 3
B, = Mol S/96ET_ + YH,L 3/48ET
and 96EIC/LC3
Hy = = 22

The spring stiffness k is determined as the force required to cause
a unit displacement. Therefore if AZ = 1 is substituted in the above
equation:
96EI /L >
k =WT)——— 3.]9
Now the equation of equilibrium is obtained by taking moments
about A as column AB of Fig. 3.8 is displaced as much as A, by the

lateral force of HZ:

3(P + 1.33Q)A2 + H, (LC(Z) - F (Lc/2) =0
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where F = the elastic restoring force in the spring = k * A,

substituting for F = k *A2 and simplifying

HZLC/AZ = kLc -6 (P + 1.33Q)
But when axial load reaches its critical value, the structural stiffness
H2/A2 is zero, therefore

0= kLC -6 (P + 1.33Q)
or
(P +1.33Q) = kL./6

substituting for k from equation 3.19

16EIC/LC2
P+ ].33Q=——2—‘JJ;'T—‘"

This equation is now divided by the critical buckling load, PE =

n?E1 /L2 to result the inelastic buckling load

P+ 1.33Q _ 16
PE n2(2¢+1)

3.20

which is the same as the previous solution.

3.7 ELASTIC INSTABILITY OF THE FRAME

Now let us examine the condition under which the frame will buckle
elastically, prior to formation of any hinges.

The model frame with its respective deflected shape and the free
body diagrams of exterior and interior columns are shown in Fig. 3.9.
Of course, knowing wbottom and wtop’ by means of Jackson and Moreland

nomograph one can find the effective column length factor A. But for
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more accuracy an exact solution is presented in the following.

3.7.1 A for Exterior Columns. The free body diagram (FBD) of

an exterior column is shown in Fig. 3.9c. One may start with the basic

differential equation for flexure

M= (P +Q)y = -EI_ y"

or (P+Q)/EIC y+y"'=0
Introducing the notation of k2 = P+Q/EIC, the above equation can be
written as:
y'+ k% y = 0. 3.21
The solution of equation 3.21 is
y = A sin kx + B cos kx
Applying the boundary conditions (B.C.):
B.C. 1 at x =0, y=0
B=0
and y = A sin kx 3.22

~

B.C.2 at x=1L./2, Mg = -EI_y"

2

if y" = -A k" sin kx

= 2 s
Mg = EIC A k™ sin kLc/2

substituting for k2 =P+ Q/EIc and simplifying:
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A = Mg/(P+Q) Sin KL_/2 3.23

using the method of slope deflection for beam BE; and knowing that

QB = OE will result:
Mse B<5;5:ﬂ—'k";;§%ﬂ§)Msa
6%3 £9E

Due to compatability condition at joint B, it requires that Column OB =

Ream OB |
@ x = LC/2, QB = y' = dy/dx

From equation 3.22,
y' = QB = Ak cos (kLc/2)
which after substitution into equation 3.24 will result:
Mg = 6 EI /L, (A k cos kLC/2)
and after substitution into equation 3.23 it can be rewritten as:

6 EIp (A k cos KL /2)
B L, (P*Q) sin KL /2

A

or

6 k EIb
F+Q Lb = tan kLc/2 3.25
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EI /L
. . _ .2 - _¢"c . .
now substituting for (P+Q) = k EIC and for ¢ ETE7EE into equation

3.25 it may be shown that:

(kLc/2)tan (kLC/2)= 3/ 3.26

which is the stability equation for the exterior columns.

For example, ify= 2; substituting into equation 3.26:
(KL/2)tan (kL _/2) = 3/2 = 1.5

Now by trial and error solution, one may find (kLc/2) such that

the above equation is equal to 1.5.
kLc/Z = 0.988 (radians)

or

K2 = 0.9761
(Lo/2)?
substituting for k2 = Pcr/EIc’ (where Pcr is the exterior column critical
load):
Per _ 0.9761
EI. (Lc/2)2
or (0.9761)EIC
P =
o (L/2)
. s . TTZEIC .
Equating the critical buckling load, Pcr = z;;:{:75323 with above:

2
(O.9761)EIC m EIc

(L2 (2L r2)?
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will result, xe to be equal to 3.18.

A summary of Ae for variety of { values are shown in table 3.1,

3.7.2 » for Interior Column. The free body diagram of the interior

column is shown in Fig. 3.9d. Following the same procedure, as described

in the previous section, it may be shown that,

A - Mer 3.27
(P+2Q) sin EEC72

By condition of equilibrium at joint E,
Mep *+ Mgg * Mg = 0
and due to symmetry of the frame,

EC C

by using the slope deflection method:
MEF = 12 EIb/Lb QE 3.28
Due to compatability condition at joint E, it requires that:
@ x = LC/Z, GE =y' = dy/dx

or y' = GE = A k cos kLc/2

which after substituting into equation 3.28 and back substituting into

equation 3.27 it can be rewritten as:

12 EIb A k cos kLc/2

S P ) S T




TABLE 3.1

THE EFFECTIVE EXTERIOR AND INTERIOR COLUMN LENGTH
FACTOR, BY EXACT SOLUTION

v >‘e }\'I
.05 2.03 2.02
. 2.07 2.03
.25 2.17 2.08
.5 2.33 2.17
1 2.63 2.33
2 3.18 2.63

3 3.63 2.91
4 4.07 3.17

5 4.46 3.41
6 4.8 3.63
7 5.14 3.87
8 5.45 4.07
9 5.74 4.27
10 6.02 4.46
15 7.26 5.3
20 8.31 6.02
25 9.25 6.67
30 10.10 7.26
35 10.88 7.81
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12 k EIb kLC
or m = tan —2— 3.29

> EI/L,
now, substituting for (P + 2Q) = k™ EI_ and the value of ¥ = ETL,

into equation 3.29, it may be shown that :

kL kL
5t (8- §

which is the stability equation for the interior column.

Again, for example if ¢ = 2, it will be determined that Ay = 2.63.

A summary of Ay for variety of y values are shown in Table 3.1.

3.8 ELASTIC STABILITY EQUATIONS FOR MULTI-BAY FRAMES

For frames where elastic buckling takes place, H = 0. Therefore,
for the reduced model, before any hinges form, the elastic buckling
2 )2

load may be expressed as P__ =1 EIC/(>\Lc

or s where A = effective

column length factor, as was determined by exact solution (see Table 3.1).
According to Yura (13), sidesway buckling is a total story character-

istic, not an individual column phenomenon. And in this case, since

the column axial thrust for every column is the same, the elastic sta-

bility equation of this frame can be defined as below:

2 2 2
P = % [Zﬂ EIC 2_ + ! EIC '2'] = ] (TT EIC}[ 8 + 4 ]
cr , 3 2 2 2
(AgLc/2) (xi LC/2) L Ao A
where: Ag = effective exterior column length factor
Aj = effective interior column length factor
nZEIC
not, substituting the index for critical buckling load, PE = s
L

c
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P

cr _ 2 4 1,4
ﬁgﬁ =3 (;.?) *t 3 (;—QJ 3.31
e i

The graphical solution of the above equation, as a function of y, is
shown by curve A in Fig. 3.10, which represents the elastic stability
equation of a two-bay frame.

The elastic stability equation of frames with 3, 4, 10, or in
general J number of bays may be found and is summarized in Table 3.2.
These equations are all shown graphically in Fig. 3.10. It is important
to recognize that curve A' (for an exterior column or single-bay frame)
and curve A" (for an interior column or many-bay frame) represent the
lower and upper bounds of the elastic stability equation. As the number
of bays increase, the elastic stability equation gets c]bser and closer

to the upper bound, as the effect of two exterior columns diminish.

3.9 STABILITY DOMAINS DEFINED BY THE ELASTO-PLASTIC ANALYSIS

The stability of the reduced model will be presented in a
graphical form. The value of the inelastic buckling load, (P+1.33Q)/PE,

where H2 = 0 was found in section 3.5 in terms of ¢,

(P +1.33Q) _ 16
. 3.18
P 12 (20+1)

The above equation, inelastic instability, is plotted as a fun-
ction of ¢ in Fig. 3.11, which is shown by curve B. Also, the elastic
stability equation for two-bay frames which is indicated by curve A
in Fig. 3.10, is reproduced here in Fig. 3.11 and again is shown by

curve A,
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J—NO. OF BAYS

0.1 02 03 0.4 0.5
COLUMN THRUST/ R

Figure 3.10. The elastic stability equation
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~ TABLE 3.2

THE ELASTIC STABILITY EQUATION FOR FRAMES WITH
DIFFERENT NUMBER OF BAYS

. ‘- | l
The Elastic Stability Eq., P ./Pp = (Eéﬁg{;gg)(4/xe )+<égﬁ§§;ﬂ§)(4/xiz)

No. 3f Bays| Exterior Constant| Interior Constant
1 (1/2)(2) (1/2)(0) [l
2 (1/3)(2) (1/3)(1) [T1
3 (1/4)(2) (1/8)(2) [TT1
: (1/5)(2) (1/5)(3) [TTT1
10 (1/11)(2) (1/11)(9) LITITITIIT]
J [1/7(3+1)] (2) [1/7(3+1)] (9-1) [Tl ITI1
. 0 ] I_I_I—i --------- IT1
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6 4
DOMAIN I
Unstable
5 ¢ A
4 4
DOMAIN OO0
Stabie for' H,,
3 -
21 DOMAIN II
Stable H, ,Hy>0.0
1 -
0 0.1 0.2 0.3 0.4 0.5 -[} E:

COLUMN THRUST/ P

Figure 3.11. The stability domains
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Curves A and B divide the total spectrum into three separate
domains. Domain I is to the right of curve A which represents the
frames that are unstable before any lateral load can be applied.
Therefore H] and H2 = 0. Domain II, which is the region which Tlies
between curves A and B, represent the frames that are stable only for
lateral loads up to Hy. Therefore H2 = 0.

Domain III, which is to the left of curve B, represents the
frames that are stable until a mechanism forms. Therefore H, and H2 > 0.

3.10 COMPARISON OF INELASTIC STABILITY EQUATION OF TWO-BAY FRAMES WITH
SINGLE-BAY FRAMES

The inelastic stability equation of two-bay frames was determined
in the previous section and was plotted graphically as a function of ¢
in Fig. 3.11, which is shown by solid curve B in Fig. 3.12. For single-
bay frames, the value of the inelastic buckling load as determined in
previous studies (12, 24) is (P + Q)/PE = 6/(n2(2w+1)) which is shown by
dashed curve B in Fig. 3.12.

The comparison of curve B of single-bay with double bay indicates
- that by adding an additional bay the frame stability has increased
about 2% folds. For example, if flexural rigidity of the columns is
the same as the beams, i.e., ¥ = 1, for two-bay frames resistance to
lateral force after the formation of first hinges exists if the column
thrusts are less than 54% of the critical buckling load index, PE' For

single-bay frames (24) this value is 20 percent.
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CHAPTER IV
COMPUTER ANALYSIS

4.1 GENERAL

In this chapter, the stability of unbraced frames will be investi-
gated using a computer program. This program is applied to twenty rec-
tangular model frames with the same overall geometry. Fourteen frames
have the same low column reinforcement ratio of 2% but different loading
conditions and cross sections. The remaining six frames have the
same high reinforcement ratio of 8% but different loading conditions
and cross sections.

The column reinforcement ratio (pg) of 2% was chosen to represent
a practical value representative of columns in buildings. The maximum
value of 8% was chosen to represent the upper limit of column reinforce-

ment according to ACI 318-77, Art. 10.9.1 (4). A1l beams were assumed

to possess a reinforcement ratio p = 1%.

4.2 DESCRIPTION OF THE COMPUTER PROGRAM

The computer program used in this investigation is program

NONFIX7 (12), which is a version of the computer program NONFIX5, ori-
ginally developed by Gunnin (16) and later modified by Rad (12). The
program is a generalized computational method for nonlinear analysis of
planar frames, and takes nonlinear geometry and nonlinear force defor-
mation properties (thrust-moment-curvature, P-M-@) of the members into
account. The P-M-@ relationships for individual members are constructed
using a computer program originally developed by Breen (17) which assumes

the Hognestad's (18) stress-strain curve relationship for concrete in
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compression and an elasto-plastic stress-strain relationship for the
steel in tension and compression. The tensile strength of concrete is
ignored.

A11 member cross-sections are assumed to be reinforced symmetrically
about the centroid of section, positioned in single layer (p=p'). For
the concrete stress-strain curve. The maximum stress was assumed to be
1.0 f;, and the maximum strain was assumed as € = 0.0038.

It should be noted that, this program includes the axial thrust-
deflection moments caused by the displacements of joints in addition to
those caused by nonlinear behavior of the material. Also change in

member stiffnesses caused by these moments and the axial thrusts are

taken into account.

4.3 PARAMETRIC STUDY OF THE MODEL FRAME

In this sectioh, the nonlinear computer program NONFIX7 is used
to study the behavior of twenty different model frames as shown quali-
tatively in Fig. 2.3 under different loading conditions.

Each beam to column load ratio relates to a particular number of
story, n, as shown in Table 4.1. To start, a maximum Q/P' ratio of 0.25
was assumed, which relates to a 3-story building (minimum n = 3). For
each frame the exterior column axial load, P', and the interior column
axial load, P, were chosen so that the axial-thrust of all columns were
equal. Then the gravity loads P', P and Q, and the lateral load H in-

creased proportionally until frame failure (see Fig. 2.6) occurred.

4.3.1 Frame Description. A dead load of 100 psf was chosen, and

three conditions for live load (LL) were selected. Using the Uniform

Building Code (UBC), (19) as a guide, for the first condition a light



Q/P', Q/P, Q/T RATIOS FOR VARIOUS NUMBER OF STORIES, n

TABLE 4.1

n Q/P! Q/P Q/T

3 0.25 0.333 0.2

5 0.125 0.143 0.111
7 0.083 0.091 0.077
9 0.063 0.067 0.059
20 0.026 0.027 0.026
30 0.017 0.018 0.017

59
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1ive load of 50 psf, for the second condition a medium live load of
150 psf, and for the third condition a heavy live load of 250 psf were
selected.

The height of the columns (L.) and the length of the beams (Lb)

o)
were 42-in and 84 in respectively. Column and beam sections were rein-
forced symmetrically with respect to the centroid of the section on
two opposite faces in a single layer, throughout the Tength of the
member (p=p'). The thickness of concrete cover, measured from face
to center of the nearest steel bar, dc’ was assumed as 0.75 in. A
width b = 6 in was assumed for both beam and column sections. For
the cases of 20 and 30 stories for the beam section, a width b = 7"
and for the column sections a width b = 8" and b = 10" were assumed
respectively.

The center to center spacing of the frames was assumed to be equal

to 84-in, i.e., same as L,. Grade 60 steel reinforcement (f,, = 60 ksi)

y
and the concrete strength fé = 4000 psi were used. All frames were
chosen to approximate a one-third scale factor (SF = 1/3).

Design of beams and columns of a typical frame is discussed in
the following sections. The only variables were Q/P' ratio, loading

condition, and column reinforcement ratio.

4.3.2 Design of Beams. A1l beam sections were designed to carry

the gravity load. After the desired loading condition was selected,
using equations 9-1 of the ACI-Code (4), the ultimate loads were deter-
mined. Then by moment distribution method, moments were calculated and
beams were designed. An example of the above design procedure for con-
dition of light 1ive load, i.e., LL = 50 psf; is shown below. Note that,

an equal reinforcement ratio of one percent, p = 1%, for bottom and top
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steel layer for all beams was assumed. Therefore:
F'—Lb '&4' —-'i—Lb =6+—-—-;

-
L’i :Z';_l
U 1.4 (wD) + 1.7 (wL) 1 A

Frames 7 O.C.
1.4(100 psf) + 1.7(50 psf) * 7' = 1.58 k/ft

€
"

w
u

from moment distribution method, the maximum moment is, Mu = 7.72 k-ft.

Effecting the @ factor of 0.9 for flexure, will result in

M=17.72/0.9 = 8.58 k-ft

Using design constants for rectangular beams (21) it may be shown that:

M= .547 bd? = M,/B = 8.58 x 12

setting b = 6 in, will result in d = 5.60

h = d + cover (to steel center)
h=5.60+ .75 =6.35
use h =6 in

.85 fc ab = Asfy

., 85 x4 xaxb-= AS X 60
M =Af (d-a/2)
8.58 x 12 = AS x 60 (5.25-a/2)

The above two equations and two unknowns (a and AS) may be solved.
After a trial and error solution, it was determined that AS = 0.36 inz
was required. By a similar procedure, the beam sections corresponding

to other loading conditions were designed.
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Table 4.2, summarizes the design value of the beam sections.

4.3.3 Design of the Columns. For design of columns two cases

were considered. For case 1, a reinforcement ratio of two percent,

o. = 2%, was used. In this case, for each loading condition, four

g
columns corresponding to a 3,5,7 and 9 story buildings were designed,
using the ACI Column Design Handbook (20). Also for the medium live
load condition, LL = 150 psf, columns for 20 and 30 story frames were
designed. For case 2, a maximum Pq = 8% was uased. In this case, for
each loading condition, two columns corresponding to a 3 and 9 story
building were designed.

The slenderness effect of each column was considered using the
moment magnifier method, Article 10.11 of the 318-77 ACI Code (4). It
consists of multiplying the column end moment by a magnification factor
§. The ACI code equations (10-8) and (10-10) were used to determine
this factor. Equation 10-10 is:

(E.I /2.5)
El = —=9 4.1
1+ 8y
where EI = flexural stiffness of compression member and equation 10-8

is used to calculate the elastic critical buckling load:

2 El

Pc = I——-—TZ 4.2
where A]u = effective column length

The above values are then substituted in ACI equation 10-7 to find

the magnification factor:
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THE SUMMARY OF BEAM SECTIONS
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Loading Cond. __st '

DL = 100 psf b(in) h(in) d(in) As (in)2 °“ph d'/h
I | LL=50 6 5% 0.36 0.02 0.125
II LL=150 7 64 0.48 0.02 0.0968

III LL=250 9 8% 0.58 0.02 0.0833

The beam section, for 20 and 30 story

Loading Cond. st '

oL = 100 psf | 2(in) | "¢iny | 9¢in) | s (im)2] °BR | 4'/h
IT | LL=150 7 7 . 6.25 0.54 0.02 0.1071
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§ = T‘?“é?5av“7“>-"° 4.3
u' " c
where: Pu = factored design column thrust
@ = strength reduction factor
Cm = 1.0 for unbraced frames (4)

The magnification factor is then multiplied by the moment calcu-
lated from the moment distribution to define the design magnified
column moment,

M. = &M 4.4

The critical buckling load, PC, is a function of the effective
column length factor, X, which in effect is a function of flexural
rigidity ratio, v. Assuming that flexural stiffness (EI) of both column

and the beam are equal, for the exterior column

EIC/(L )
v “VTop = BT * 2
Botto. '°P b
which results in Ao = 1.59 for the full model that possesses column

length = Les or Ae = 3.18 for half model that possesses column length =
EIC/(LC)

LC/Z. For interior column,
2EIb;[b

which results in

Ai = 1.31 for the full model, or Ai = 2.63 for the half model.
These values were found by the exact solution as described in section
3.7. ACI Column Design Handbook (20) was used in the design of column
sections.

As an example, consider the condition of DL = 100 psf and LL = 150

psf, for a 7 story building (Q/T = 0.077). This condition, will result
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in a factored column axial thrust of Tu = 94,51 k and a column end -

moment 8.48 k-ft. As mentioned before, Pg = 2% and 8% were desired.

A trial and error procedure for pg = 2% will be described below.

b =6 1n
Trial h = 8 in

r () = (8% = 2.3 n

K1y 3.18.210

Lesa =

u=94.50 k

My -8.48 k- ft

— =y = 29 > 22 (ACI Code 10.11.4.2), (4)

* Slenderness must be considered.

Now substituting into equation 4.1,

£1 - (3605 ksi * 256 in® /2.5)

T+ 035 = 273446. k-in

and the elastic critical buckling load using equation 4.2 is:

2
_ Mo * 273446, _ .
PC = . v 609 kips

(3.18 * 21")

Substituting in equation 4.3 the magnification factor is determined

as:

i i _
$ = rT—rrsTI0 76097 - 28

M. = (1.28)(8.48K" * 121)

130:75 k-in

e = 130.75 k-in/94.51 k = 1.38 in

e/h = 1.38 in/8 in

"

0.17

Using the ACI Column Design Handbook (20), entering e/h = 0.17 and
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Pg = 0.02, QPn/Ag is read:

¢Pn/Ag = 94.51k//—\g = 2.0

Ag = 47.26 in?

e h=147.26/6 = 7.88 v.s. trial h = 8 1in

By a similar procedure, all the columns for the various loading
conditions were designed. Table 4.3 and 4.4 summarize the design value

of column sections.

4.3.4 Procedure and Computer Results. The following loading

sequence was applied to each frame:

I; To find the frame ultimate capacity under gravity load only,
gravity loads P', p and Q were proportionally increased until
frame failure occured. The Q/P' ratio relates to the parti-
cular number of story of that frame.

II. Based on the ACI Article 9.2.2 (4), gravity loads P', P and
Q were proportionally increased until 75% of the frame ulti-
mate capacity (under gravity loads only) was reached. The
gravity loads were held constant as the lateral load H was

applied and increased until frame failure occured.

The computer output consists of an echo print of input data, along
with the results. The results are nodal x and y displacements, nodal
rotation, member axial forces, moments, and reactions.

From the computer output, for each frame two relationships were
examined: (1) the exterior column load - moment re]atioﬁships (P'-M)

for joints B, K, L and Ew; and (2) the lateral load moment relation-



TABLE 4.3
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THE SUMMARY OF COLUMN SECTIONS, pg(oo1 ) = 2%
Loading
d. - . .
G e L IR NLCOR
3 6 5.5 0.02 1.22
5 6 5.75 0.02 1.40
LL=50 psf | 6 6.25 0.02 1.47
9 6 5 0.02 1.59
3 6 7 0.02 1.15
5 6 7.5 0.02 1.23
=150 psf| 7 6 8 0.02 1.28
9 6 8.75 0.02 1.28
20 8 14 0.02 1.1
30 10 17 0.02 1.07
3 6 8.25 0.02 1.1
5 6 8.75 0.02 1.18
LL=250 psf} 6 10 0.02 1.18 .
9 6 1.5 0.02 1.15




TABLE 4.4

THE SUMMARY OF COLUMN SECTIONS, o = 8%

g(col.)
Loading
Cond. DL = n b,. h,.
100 psf (in) (in) °g 8
LL=50 psf 3 6 4.50 0.075 1.49
9 6 5.75 0.080 2.15
o150 oaf 5.50 0.080 1.36
=150 ps 7.00 0.080 1.76
o250 oef 3 6 6.50 0.080 1.27
=co0 Ps 8.50 0.075 1.47
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ships (H-M) for joints B, K, L, E, M, N and C. From the P'-M relation-
ships, it was determined whether the plastic hinges form in the beam
or column at corners E and C.

The most useful plots are the H-M curves, which is used to study
the inelastic behavior of the frames. From these curves the level
of lateral load (H]) causing the first hinges at corners Ew and C,
and the level of lateral load (H2) causing the second hinges at K and M
to produce a combined mechanism were determined.

For some particular cases, the lateral load-deflection relationship
(H-A) were studied. The H-A relationship does give some idea about
the level of lateral load (H2) but not as accurately as the H-M response
(14).

The response of each individual frame was studied by plotting a
set of (H-M) curves for corners B, C and E and joints K, L, M and H.
Each of these sets is identified by a different Q/P' ratio (n stories),
and were plotted by using a Tektronix 4051 plotter. As an example,
let us consider the behavior of the frames in medium loading condition
(DL = 100 psf, LL = 150 psf) and column Pg = 2% which are shown in
Fig. 4.1 and 4.2. It appears that the curves essentially consist of
two approximately linear parts which are connected together by a curved
segment. The bending moment capacity for a particular condition is
Mp and is shown by a single value. At zero lateral load, the moments
are at 75% of frame capacity under gravity loads. With increasing
lateral load, the moments at B, C, E and K, L, M, N change almost

linearly until the bending moment capacity is reached at Ew and C.

The Tateral load at this level is denoted by (H]). As the lateral Toad
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Figure 4.1. Lateral load-moment curves
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Figure 4.2. Lateral Load-moment curves
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increases, the moments at K and M increase more rapidly due to the
reduced frame stiffness caused by hinging at Ew and C, while the moments
at the later nodes remain unchanged at Mp. Also the moments at B and

EL unwind rapidly to approximately zero. The moments at L and N slightly

increase. After the plastic moment capacity M_ is reached at K and M,

P
these locations constitute the second set of plastic hinges. A combined
mechanism is then developed and frame is no longer stable failing in a
swaE motion.

The studies made from behavior of n = 9 stories in Fig. 4.1 in-
dicate that in comparison with n = 3 stories, the lateral load capacity
of frame at the level which first hinges form (Hy) increases but the
level at which second hinges form (H2) decreases.

The behavior of 20 and 30 stories are shown in Fig. 4.2. Their
response in comparison with 3 and 9 stories indicate that as the
number of stories increases, the lateral load capacity of frame at the
level which second hinges form (Hz) to produce a combined mechanism
decreases. For the case of 30 stories in Fig. 4.2, H2 is approximately
zero, which indicates the frame after the formation of first hinges
becomes unstable and fails.

These differences from 3 to 30 stories are due to the higher

column thrust-deflection (P-A) moments which are caused by the higher

column thrusts in the frame.



CHAPTER V
COMPARISON OF RESULTS BY TWO METHODS

5.1 GENERAL

In this section the frames analyzed in Chapter IV by computer pro-
gram NONFIX7 are compared with the stability domain of Fig. 3.11.
For all the frames, dead load was kept constant at 100 psf, but three
live load conditions (1) light LL = 50 psf, medium LL = 150 psf, and
heavy LL = 250 psf were selected. Columns in fourteen frames contai-
ned reinforcement ratio of 2%, and the remaining six frames had a
reinforcement ratio of 8% which is the maximum reinforcement ratio

permitted by the ACI Code.

5.2 COMPUTER RESULTS VS. STABILITY DOMAIN ANALYSIS

The computer results for each condition are shown in Tables 5.1
and 5.2. These tables give the column thrust T, lateral load capacity
H along with H], H2, and the redistribution index B = H2/H.

Plots of moment redistribution index B as a function of the
number of stories, n, for 3 to 9 story frames with column pg = 2%
and 8% are shown in Fig. 5.1. This figure shows the capacity of the
frame after the first hinge decreases as stories vary from 3 to 9.
The slope of each line appears to be approximately constant. As
loading becomes heavier, the percent of moment redistribution appears
to increase slightly. Also for a specific n, B decreases as percent
reinforcement varies from 2% to 8%.

To determine the behavior of these frames beyond n = 9,

B vs. n is plotted for medium loading condition (DL = 100 psf, LL =
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TABLE 5.1
SUMMARY OF COMPUTER RESULTS, o (.07 ) = 2%
Cond. O (VTN I PP TP N I SO (VO
(I) 3 lo.250] 18.64 8.22 2.75 5.47 66
Leso psf | 5 [0-125) 3176 | 8.27 3.12 5.15 62
7 lo.083] 45.20 | 7.49 3.12 4.37 58
9 lo.063] 56.75 | 7.49 3.43 4.06 54
(11) 3 |o.250] 3a.79 | 14.15 4.50 9.65 68
5 lo.125| 59.06 | 14.85 5.03 9.82 66
LL=150 psf | 5 19,083} 83.77 | 13.79 5.29 8.50 62
9 lo.063)10a.77 | 14.00 5.78 8.22 59
20 l0.026/283.53 | 9.10 6.47 2.63 29
30 l0.017}428.90 | 5.83 5.32 0.51 9
11y | 3 Jo.250| 51.33 | 19.25 4.80 | 14.45 75
5 lo0.125| 86.80 | 20.60 6.40 | 14.20 69
LL=250 psf | 5 1g.083/118.77 | 22.11 7.84 | 14.30 64
o lo.063151.67 | 21.62 7.99 | 13.60 63
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TABLE 5.2
SUMMARY OF COMPUTER RESULTS, Pg(col.) = 8%
Cond. Q/P! T(k) H(k) H] (k) H2 (k) H2/H (%)
(I) 0.2504 18.25 8.73 3.30 5.43 62
LL=50 psf 0.063} 57.47 7.10 3.20 3.90 55
(IT) 0.250] 35.91 12.67 4.35 8.31 66
LL=150 psf 0.063]103.37 14.47 00 8.47 59
(II1) 0.250} 50.98 19.14 40 12.70 67
LL=250 psf 0.063]150.03 21.83 .59 13.20 61
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150 psf) with column p_ = 2%, as stories vary from 3 to 30, as shown

9
in Fig. 5.2. This figure shows that the capacity of frame after the
formation of first hinges decreases with increasing number of stories.
Frames higher than 30 stories approach a 8 of approximately zero,
which indicates that they become unstable after the formation of the
first set of hinges. '

The stability domain of Fig. 3.11 is reproduced here, as shown
in Fig: 5.3. Tables 5.3 and 5.4 give the column thrust T, the beam
cracked flexural stiffness EIb, the column flexural stiffness EIC as
determined by ACI Code (4) Equation, the relative flexural ¢, the
buckling load index PE and the ratio of T/PE.

The values of T/PE and ¢ for 3 and 9 story frames from light to

heavy loading with column = 2% to 8% are plotted in Fig. 5.3. All

g
the points fall below curve B in Domain III. This domain relates to
frames which are stable uatil a plastic mechanism occurs. For each
specific story, the frame data points tend to group in a cluster form,
and as ;b increases, this cluster of data tends to shift upward and
slightly to the left. Also, with increasing number of stories, the
cluster tends to shift upward and slightly to the right.

A1l data for n = 3 through 9 fall in Domain III close to abscissa
which indicates substantial stability. This observation was also
evident in Fig. 5.1 which indicated high moment redistribution indeces
for n 9.

The data for 20 and 30 story frames are plotted on a reproduction
of Fig. 5.3 but drawn to a larger scale, as shown in Fig. 5.4. It

shows that for both very small and very large ¢ values, the areas con-

tained within Domains II and III become small. Also frames higher
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KEY

O LL=50. psf
a LL =I50. psf
A LL =250. psf

DL =100. pst for all

ol 02 03 04 05 1/
COLUMN THRUST / R

Figure 5.3. The stability domains
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TABLE 5.3
COMPARISON WITH STABILITY DOMAIN ANALYSIS, pg(co] ) = 2%
EIb EI
n . 2 €. 2
Condition | n | Q/P' T(k) (k=in€) (k=1in%) ) PE (k) T/P
(1) 310.25 18.64 84300 0.96 472 { .04
LL=50 psf 5(10.125 31.76 175300 98100 1.13 549 1 .06
7 10.083 45.20 130100 1.48 728 | .06
910.063 56.75 148400 1.69 830 | .07
(IT) 310.25 34.79 228100 1.07 1276 | .03
LL=150 psf| 5| 0.125 59.06 124300 286700 1.35 1604 | .04
710.083 83.77 354000 1.7 2014 | .04
90.063|104.77 | | 421700 | 1.99 | 2360 | .04
20 .026 | 283.53 372800 2856600 15.3 15983 | .02
30 .017 | 428.9 6573400 35.27 | 36778 | .01
(III) 310.25 51.33 423600 1.17 2370 | .02
LL=250 psf{ 5 0.125 86.8 724700 513300 1.42 28721 .03
710.0831118.77 791300 2.18 4427 | .03
91 0.063}|151.67 1239000 3.42 6932} .02
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TABLE 5.4
COMPARLSON WITH STABILITY DOMAIN ANALYSIS, py (oo ) = 8%
£, El
. . 2 .2
Condition | n |Q/P' T(k) (k=in®) | (k=in®) 0 PE (k) T/PE
(1) 3 [0.25 | 18.25 | 155500 | 107300 | 1.22 | 600 .03
LL=50 psf | g | 0.063 | 57.47 265400 | 3.03 | 1485 .04
(I1)

150 pef | 3 0-25 | 3591 | 4oag00 [ 271300 | 1.28 [1518 .02
9 |0.063 |103.37 637400 | 3.00 | 3566 .03
(111) 3 10.25 | 50.98 | ;04700 | 531600 | 1.47 |2974 .02
LL=250 psf| g | .063 |150.03 1264200 | 3.49 | 7073 .02
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than 30 stories tend to fall close to Domain II, which indicates that
they become unstable after the first hinges form. This was also evi-
dent in Fig. 5.2 which indicated low B8 for n = 20, and B tending to
zero as n increased beyond 30.

From the above comparison, it appears that good correlation exists
between the elasto-plastic stability domain analysis and the nonlinear

computer results.

5.3 SUMMARY OF RESULTS

From the computer results, all 3 to 9 story frames, from Tight to
heavy loading with minimum to maximum column reinforcement ratio, were
stable until a plastic mechanism occured. As the case was examined

for 20 to 30 story frames for medium loading with column p_ = 2%,

g
results indicated that frames higher than 30 stories are unstable

after the first hinges form and thus unable to resist additional lateral
load. Therefore, it appears that for frames up to 30 stories, redistri-
bution of moments, which is the essential requirement in limit design,
does take place.

Also, these frames were examined using the mathematically derived
stability domains. There is good agreement between the results of the
two methods of analysis.

Comparison of this investigation with previous investigations on

lTow rise unbraced single-gay frames (14), indicates that by addition

of a bay, the stability of the frame is considerably increased.



CHAPTER VI
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this investigation, a scale model frame of a typical prototype
unbraced reinforced concrete structure was considered. The primary
objective of this study was to determine whether ultimate load theory
or limit design can be applied to these structures. The behavior of
these model frames was investigated by two methods. In the first method,
a mathematical solution was used which assumed the members of the frame
possess an elasto-plastic moment-curvature (M-@) relationship, and
flexural rigidities of beam (EIb) and column (EIC) do not vary along
the length of the members.

From this mathematical solution a stability equation was derived;
which exhibited the frame stability as a function of the relative
flexural stiffness () and the column thrust/critical buckling load
index (T/PE). The stability equation was also derived by another model
described as a column attached to a linear spring which carries the
total frame load from which an identical solution was obtained.

In the second method, the computer analysis of the model frames
was accomplished by a computer program which takes material and geo-
metric nonlinearities into account. The variable parameters were the
loading condition, reinforcement ratio, and different beam-column load
ratio which is a function of the number of stories n. A dead load
of 100 psf was chosen constant, and three live load conditions as light
50 psf, medium 150 psf, and heavy 250 psf, were selected. Two cases

of column reinforcement ratio, as minimum 2% and maximum 8%, were chosen.
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Each frame was designed for a particular number of stories (n), for a
specific loading condition, and a percent reinforcement. For each of
these frames the gravity loads were increased proportionally until 75%
of the frame ultimate capacity under gravity loads are reached. Then,
while these gravity loads were held constant, the lateral load was
applied and increased to failure.

The overall geometry and width of the columns and beams were the

same for all of the model frames.

According to this investigation, the following results and conclu-

sions can be presented:

1. The computer study indicated that all frames from light to
heavy loading conditions, remained stable until a combined
mechanism failure (Type IV) occurred. The variation in live
load did not appreciably affect frame behavior.

2. The computer study for 3 to 9 story frames, indicated that as
the column reinforcement ratio varied from 2% to 8% they
remained in stable position until a combined mechanism failure
occured. The variation in column reinforcement did not appre-
ciably affect frame behavior.

3. Redistribution of moments, which constitutes the basis for
iimit design, occured for all frames up to about 30 stories.

4. Comparison of stability equations between unbraced two bay
frame and unbraced single-story frame, indicates that
the addition of one bay increases the stable domain by
167 percent.

5. Good agreement was observed between the two methods, i.e.,

the nonlinear computer method, and the elasto-plastic stability
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model analysis.
6. It appears that ultimate load theory or 1limit design may be
applied to multibay unbraced reinforced concrete structures

up to 10 to 12 stories high, with a moment redistribution
index of 50% or better.

The following recommendations are made:

1. The inelastic stability of frames containing three or more bays
should be investigated.

2. Behavior of two bay frames representing 10 to 12 story high
structures should be investigated experimentally, in order to
verify the high moment redistribution index determined ana-

lytically in this investigation.
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