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AN ABSTRACT OF THE THESIS OF Dennis Munsterman for the 

Master of Science in Physics presenxed May 22, 1980. 

Titles Effective Force Constant Ratios& Iron In Iridium 

and Rhodium. 

APPROVED BY tEMBERS OF THE THESIS COMMITTEE: 

· Donal.d Howard 

Makoto Takeo 

David McClure 

Classical methods of analyzing heat capacity data 

for the characteristic moments of the frequency distribu­

tion are applied to iridium and rhodium. Impurity moments 

are determined from high and low temperature f values. 

These moments are combined by modern theory to estimate 

the magnitude of the host-host to host-impurity force 

constant ratio. Ratios of the various host moments are 

also examined. 
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INTR ODUC'l'I ON 

The studies directed to the properties of materials 

have long focused on the need to describe the forces 

between atoms in the crystalline lattice. The nature and 

magnitude of the forces between adjacent atoms and for those 

further away has been difficult to study experimentally. 

Recently, however, both theoretical 1 and experimental2 

procedures have been developed to allow a closer look at 

the nature of the forces between atoms in the lattice. The 

application of the Born-von Karman analysis to neutron 

dis~ersion rel~tions has allo~~d acqurate determination of 

the elastic constants of pure metals. Neutron dispersion 

curves are not available for all metals,however,and in those 

cases, an analysis of the heat capacity data leads to a 

determination of the moments of the frequency distribution. 2 

Impurity moments can also be determined from the mean 

squared displacement of substitutional impurity atoms from 

the recoil-free fraction f of the M~ssbauer effect. 1 By 

combining moments of the host and impurity frequency 

distribution with a reasonable physical model of the lattice 

(with an impurity present)3, it is now possible to derive a 

ratio of the host-host to host-impurity restoring forces. 16 

This thesis will treat the method by which the host 

moments can be derived from heat capacity data, how the 



2 

impurity moments can be deduced from Mossbauer measurements 

at low and high temperatures, and the effective force 

constant ratio derived from them, as applied to isolated 

iron impurity atoms in an iridium or rhodium lattice. 



HOST MOMENTS FROM HEAT CAPACITY DATA 

Early in this century it became clear that the heat 

capacity of materials was related to their internal 

structure. 

The theories of lattice vibrations of Einstein and 

Debye found their testing ground in the fundamental 

relationship between heat capacity and temperature. It 

was observed that the frequency distribution could be 

related to the heat capacity in the low to intermediate 

temperature range if corrections for volume expansions 
~ 

with temperature could be made. 

HEAT CAPACITY 

The heat capacity of a material is defined to be 

the amount of heat per mole required to raise the temp-

erature one degree. This is expressed in terms of the 

heat absorbed by the system dQ as 

C = dQ/dT , ( 1) 

where dQ is the amount of heat absorbed by one mole of 

the material. The first law of thermodynamics allows 

one to write dQ as 

dQ = dU + pdV = dH - Vdp , (2) 

where we have used the relation H = U + pV, and the terms 
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are as follows (on a molar basis); U is the internal energy, 

H is the enthalpy, V is the molar volume, and p is the 

pressure. 

In order to define the process by which the material 

absorbs heat in a thermodynamic sense, we must specify 

which of the variables will remain constant as the system 

changes with temperature. If volume is constant in eqn. 

(2), then 

c = (au/aT) , v v ( 3) 

and if the pressure remains constant, 

cP = (oH/aT)P • ( 4) 

The heat capacity at constant pressure is found 

experimentally, but the heat capacity at constant volume 

is the quantity directly related to the lattice vibrations 

in models. The relationship between CP and Cv is as 

follows. 

First, we note that in a reversible process, 

cp = (oQ/oT)p = T(dS/~T)p 

and 

c = (oQ/aT) = T(as/aT) • v v v 

Then taking the differential of the entropy, S, as 

dS = (os/aT)vdT + (as/av)Tdv , 

we find 

( 5) 

( 6) 

( 7) 

(as/dT)P = (as/dT)v + (as/av)T(as/oT)P • (8) 

If we now use the Maxwell relation 

(oS/aV)T = (3p/clT)v = -(~p/clV)T(av/c)T)p ( 9) 
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we find that 

C -C = T{dp/dT) (~V/~T) = p v v p 
2 2; -T(dp/oV)T(oV/dT)p = TVB kT ' (10) 

where B = (1/V)(oV/dT)P is the volume coefficient of 

thermal expansion, kT = -(1/V)(~V/op)T is the isothermal 

compressability, and V is the molar volume. These three 

are all functions of temperature, but an empirical relation, 

called the Nernst-Lindemann relation, which includes all 

three but is constant over temperature, has been observed, 4 

2 2 
A = VB /kTCp • (11) 

This allows one to write the dilation term of the heat 

capacity as 
2 C -C = AC T • p v p 

( 12) 

In a metal, the heat capacity can be separated into 

two contributions, one from the vibrations of the lattice, 

and the other from the conduction electrons. The latter 

is well known from the theory of metals to be linear with 

temperature (for T<<TFermi), i.e. 

c = c1 + ce = c1 + ~ T v v v v e ' ( 13) 

where ~e is the coefficient of the electronic component. 

This allows one to express the theoretically important 

lattice heat capacity in terms of the two experimentally 

derived quantities cp and re. 

c1 = C (1-AC T) - ~ T • v p p e (14) 

As can be seen in Table I the values of ~ are several 

orders of magnitude below ~e· This may not be true for all 
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TABLE I 

PHYSICAL CONSTANTS 

IRIDIUM RHODIUM: 

Temp O(x1o 6 AL/l !x106 c:x.x10 6 ~1/1 Ax10 6 
(%) m/cal (%) m/cal -

10 .01 - J.4 .01 - 2.2 

20 .09 - .5. 9 .10 - 11. 

50 1. 8 - ?.O 1.8 - 11. 

100 4.4 .019 7.5 5.0 .014 9.4 

200 5.9 .073 7.4 7.3 .076 9.0 

293 6.4 .130 7.6 8.2 .149 9.4 

400 - .200 - - .240 

500 - .269 - - .331 

600 - .)42 - - .427 

~· (.765+.024)x10-3 {1.111~.0J6)x10-3 

Oland Al/l from ref. 17, ' ~from ref. 5. 
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metals, but for the fee, refractory metals considered here, 

A can be incorporated into the electronic coefficient. This 

was simply done by Furukawa et.al.5 on the heat capacity 

data used here, since their numerical "smoothing" technique 

allows them to derive an effective electronic coefficient d' 

by forcing the relation between the three terms into the 

form 

c1 = C - K' T • v p 
( 15) 

The quasiharmonic correction to the characteristic 

Debye temperature, e, is based on the assumption that the 

characteristic frequencies change as the volume changes with 

temperature. This will become more apparent from the Debye 

equation of state, which we derive as follows. 6 We can 

express the Helmholtz free energy of the crystal as 

A = U - TS , 

and therefore 

(oA/~T)v = -S ' 

so that the internal energy can be written as 

u = A - T(aA/dT)v = ~(A/Tyc)(1/T~v • 

Also the pressure of the solid can be derived from the 

Helmholtz free energy as 

p = - ( d A/~ V) T • 

If we assume that the Helmholtz energy is a function of 

temperature and volume only, then we may write 

A = U
0

(V) + AD(T,V) , 

where U
0 

is the internal energy at 0°K, and AD is the 

( 16) 

( 1 ?) 

(18) 

( 19) 

(20) 
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free energy of the lattice. 

For the Debye model we may assume that the dependence 

of the free energy on the volume is given by specifying 

the dependence of the Debye temperature 0 on V. There­

fore, from eqns, (19) and (20), 

p = -(dU0/~v)T - {<JA_ifoe) (Je/ov)]T . (21) 

Since in the Debye model the internal energy UD is 

composed of temperature multiplied times a function of 

e/T, by eqn. (18) the Helmholtz free energy must be 

of the same form, 

~ = T·f(0/T) , 

therefore 

dAD/d e = (1/9) d(AD)/d( 1/T) = UD/e • 

(22) 

( 23) 

Substituting eqn. (23) in eqn. (21) we arrive at the Debye 

.equation of state, 

p = -(JU
0
/dV) + rGu_ifv , 

where 

rG = -V/9 .de/dV = -dln0/dlnV, 

is called the Griineisen constant. For temperatures 

low enough for the Debye model to hold, we may reduce 

the Debye temperature S(V) at the temperature of the 

(24) 

(25) 

experiment to the Debye temperature at constant volume 

(i.e. O °K) , by using eqn ( 25) to find 

e < v ) /e ( v) = ( v /v l1 
G $ 

0 0 
(26) 

where V is the volume of the crystal at the temperature 

of the experiment and V
0
is the volume at zero degree 
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Kelvin. 

In using the Gruneisen constant, it is necessary to 

use the values of B, kT' and cv characteristic of the 

temperature at which the heat capacity was evaluated to 

give the 0(V) which is to be reduced to 0(V
0

). 

Observing that for a fee crystal 

V = V-AV = V(1-Jl2Al/13) = V(1-)Al/l) (27) 
0 

we find from eqn. (26), 

~( v 
0

)] 
2 = [e ( v) J 2 [1;11.-( JAl/lJ] 2¥G ( 28) 

This correction can be significant, but is less than .2 

percent for Ir and Rh at 100 degrees Kelvin but rises to 

around 2 percent in Pt at 200 K. 

MGN}ENT ANALYSIS %f HEAT'. CAPACI'R-~'. 
' "' . >11' ~ .\I """ .ijJ 

9 

Low Temperature Region. At low temperatures, the 

heat capacity can be expanded in powers of the temperature 

1 - 3 5 7 ( ) C - aT + bT + cT + •••• , 29 
v 

where a, b, and c are constants. We also know that at 

low temperature the Debye approximation can be used. For 

temperatures less than about eight percent of the low 

temperature Debye theta, e, (i.e. for T<e/12), the Debye 

approximation allows one to write 

c1 = (4rr4/5)JR(T/e)3 , (JO) 
v 

to an accuracy of one percent7. This corresponds to the 

first term in eqn. (29), and a graph of c1/T3 versus T2 
v 

will give the value of the low temperature Debye theta 
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from the intercept as T2 goes to zero, 
l.J, 1/J 

9
0 

= (121T'R/5a) , (31) 

where the intercept a is the coefficient of the cubic 

term in eqn. (29), and the subscript refers to the temp­

erature at which the Debye temperature is determined. 

As a practical matter, it is necessary to take into 

account the fact that at very low temperatures the 

measured heat capacity, cp' is mainly due to the electron 

gas in the metal. Small variations in the coefficient of 

the electronic term, r'' will therefore produce large 

changes in the deduced lattice heat capacity (fig. 1). 

It is therefore convenient to allow ¥ 1 to vary slightly 

around its average value and observe that the lattice heat 

capacities divided by T3 appear to fan out in the region 

below approximately eight degrees before diverging almost 

assymptotically below approximately two degre,es Kelvin. 

Since we know from the Debye theory that c/T3 is 

approximately constant in this region, we can extrapolate 

from the median of this family of curves to zero in order 

to evaluate 8
0 

(fig. 1). Also, we can expand the frequency 

spectrum at low temperatures as 

G (w ) = o<..W 2 + p W 4 + 'If uJ6 + (32) 

in which the coefficients ~,p, andr can be related to the 

coefficients a,b,and c of eqn.(29). Thus the graph 

of c/T3 versus T2 at low temperatures gives some 



6.7.5 
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Figure 1. Graph of c1 /T3 versus T
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for several 
values of t'• v 
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low temperatures. 
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High Temperature Region. At high temperatures th~ 

heat capacity can be expanded as a power series in 1/T2 , 3 

1 ~ 2 * 4 * 6 , -~ Cv = JR(1-B2u·2/2lT +JB4u4/4ZT -5B6u6/6!T + ••••• ) , ~jJ) 
. . . * * where B2 ,B4 , etc are the Bernoulli numbers, 211d u2 , u4 , etc 

are thermal moments derived directly from even moments 0£ 

the frequency spectrum, 
oO 

u~ = (fi/k)nu(n), u(n) = fuI'G(w)dw, u(0)=1, (34) 
d 

where h is Planck's constant, k is Boltzmann's constant, 

and the normalization is consistent with that of the 

impurity site moments to be discussed later. 

The convergence of eqn. (j)) is generally slo~ 

for temperatures less than e/2, and above that temperature 

anharmonic effects cause considerable problems. However, 

an equivalent expansion for e may be expected to converge 

rapidly at much lower temperatures9. This 8 expansion may 

be written in the form 

e2 = ~[1-A(~/T) 2+B(~/T) 4- .... J , (35) 

where 
1 

eo0 = < 11/k ) < 5u < 2 ) I 3 ) 2 , 

A= (3/1oo)[u(4)/u(2) 2-25/2~ 

B = (1/1400) [(u(6)/u(2)J-125/81)-100A] 

These three parameters can be obtained from a least 

squares curve fit to the values of a2 (v ) versus 1/T2 
0 

obtained from the heat capacity data. They have been 
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determined for iridium. and rhodium in the following 

fashion (table II). 
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First one take~ the heat capacity data and uses 

them to find values of 9/T ~rom interpolation in accurate 

tables of the Debye integral.; 10

~c!JJR = (T/e)J J~xx4dx/(ex-1) 2 , (J6) 

where x=hw/kT, and xm=htA.fuax/kT=0/T. This enables one to 

calculate values of 0(V). 

A plot of e(v) versus T (fig. 2) then shows three 

main regions. In the first region (A in fig. 2) we see 

that 9 falls rapidly with temperature to a minimum value. 

The second region (B) begins with this minimum and includes 

the slowly rising plateau before the general falling off 

of 0 at the higher temperatures of the last region (C). 

Then by using eqn. (28) on the values of 9(V) from 

the second region, and for a few degrees on either side to 

see the overall relationship, we obtain values of 9~V0 ) in 

the quasiharmonic approximation. 

By plotting these values of e2 (V
0

) versus 1/T2 we 

obser~re that the values of e2(V
0

) show a sharp dip at the 

minimurr:. value of e and fall off rapidly at the upper edge 

of the middle region (fig. 3). By finding the least 

squares curve fit to the values of e2(V
0

) versus 1/T2 

between their maximum and minimum values, we can find the 

coefficients in eqn.(35). 2 The intercept as 1/T2 goes to 

zero gives~' the extrapolated high temperature value of. 
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TABLE II 

HOST MOMENTS AND MOMENT RATIOS 

Ir Rh (see text) 

e~ x104 
(K

2) 8.44 12.0 12.0 

A x104 (K4) .184 -1.48 4.41 

B x10 6 (K6) • 741 -1.80 0 

u(2) x1o- 26 (rad/s) 2 8.68 12.3 12.4 

u(4) xlo-53 (rad/s) 4 9.43 18.0 18.5 

u(6) xlo-81 (rad/s) 6 1.14 2.82 3.02 

14 u(-1) xlO (s/rad) 3.72 3. 05 3.04 

u(-2) x10 27 (s/rad) 1. 60 1.14 1.14 

J34 .?99 .844 • 830 

~-1 .914 .935 .934 I 

J3_2 • 718 • 710 • 707 
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?igure 2. Graph of e versus temperature for iridium. 
Aoove 100 K, the lines correspond to 1% of C , and 
those below 100 K, 10% of Cv. v 
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2 

Graph of e2 (v ) versus 1/T for iridium. 
0 



the Debye temperature. The initial slope of the curve 

fit to the data gives Ae! and the curvature, the term in 

1/T4 , gives BQ~. This enables one to write the host 

moments in terms of these coefficients; 

u(2) = (J/5)(k/n) 20~ , 

u( 4) = [< 100/J )A+25/21J u( 2) 2 

u(6) = (1400B+100A+125/81)u(2)3 

17 

It is important.to note that the temperature of the 

minimum in the Debye temperature (fig. 2) is approximately 

eoa/6 and the maximum value reached occurs at a temperature 

around 9.o/J. Therefore by selecting only those points 

between the minimum and the maximum for the curve fit, 

one can make a meaningful extrapolation for the high temp­

erature Debye theta, ee)O. This fit is above tne intermed­

iate temperature range where the Debye temperature falls 

rapidly and below the temperature where anharmonicity 

causes the Debye temperature to fall off again. 

Moments and the frequency distribution. Since the 

moments are weighted integrals of powers of the frequency 

over the frequency distribution G(w), eqn. (34), it will be 

instructive to make some observations about the frequency 

distribution for a generalized fee structure (fig. 4). 

In the Debye theory, the frequency distribution 

increases as the square of the frequency, 

GD(w) = (J/w~)w2 , (J?) 

where the constant (3/w~) is obtained by normalizing the 



• 11~+em B JOJ 

uo1+nq1~+s1p aouanba~J paz11~~auan ·~ a~iili1~ 

(m)n 
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integral as in eqn. (J4), andW is the limiting frequency m 
of the integral (fig. 4). 

If, however, the ~requency spectrum has structure 

related to the higher order terms of eqn. (J2), then the 

integral over the frequency spectrum will increase more 

rapidly, and the cutoff frequency will be correspondingly 

' reduced (Wm in fig. 4). It is this weighting of the 

higher order terms in the frequency distribution which 

characterizes the moments. 

As the temperature increases from the low temperature 

region, the occupation of the transverse modes at lower 

frequencies increases rapidly until most of these modes 

are occupied. Then at the first singularity, (the edge of 

the plateau of the first peak in fig. 4), the density of 

states no longer increases rapidly as in the initial curve. 

In fact it is practically constant in the arbitrary 

distribution of fig. 4. 

This allows the Debye temperature derived from the 

cutoff frequency to increase slowly as the temperature at 

which cv .is determined increases. It is in this temp­

erature region that one evaluates e(v ) in order to find 
0 

the extrapolated high temperature 9o0 which characterizes 

u(2). As the temperature increases above fio/J, however, 

the lattice vibration can no longer be considered harmonic 

and e derived from the heat capacity gradually falls off. 

This limits the number of useful data points in the 
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analysis to the region approximately defined by e/6<T<9/J. 

Therefore a statistical smoothing of the heat capacity 

data from very low to high temperatures is necessary to 

eliminate problems concerning the accuracy of the curve 

fit to e2 (V
0

) in this region.5 This increases the 

accuracy of the moments significantly. 

In the determination of the moments for rhodium, an 

ambiguity developed in the initial three parameter curve 

fit. Here, the coefficients A and B yielded unexpected 

negative values, though very small. Forcing the data 

into an initial two parameter fit of the form; 

e2 = ~-Ae!/T 2 

allowed me to estimate a value of e~ and A to compare with 

the same values from the initial three parameter curve 

fit. By referring to table II we see that even this 

dramatic manipulation resulted in less than a half percent 

change in u(2) and changes of 2 and 5 percent for u(4) and 

u(6) respectively. Even though these variations are at the 

limit of the resolution which can be carried through the 

calculations, they do not affect our primary intent here. 

For this work the fourth and sixth moments are only 

involved in the negative first and second moments, and in 

that case the difference is insignificant (table II). 

Intermediate Temperature Region. We have until now 

only discussed the analysis of the heat capacity at high 

and low temperatures. Important information, and for the 



case of this work, the most useful information, can be 

obtained from the heat capacity at intermediate temper-

atures. In this range the anharmonic effects are small 

and the heat capacity is sensitive to the form of the 

frequency distribution. 
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Barron2 has shown that the expression for the thermal 

energy at moderately high temperatures can be used to 

obtain the first moment u(1), which is directly related 

to the zero point energy of the crystal, 

Ez = 3/2N~u(1) = 3RT(1+B2u;/21T2-B4u:/41T4+ 

* 6 f T B6u6/6!T - ..•. ) -
0 

C
0

dT. (38) 

* * Here B2 , B4 , and B6 are the B.ernoulli numbers, u2 , u4 , and 

* u6 are defined in eqn. (34), and C
0 

is the heat capacity 

corrected to zero degree Kelvin. This correction is made 

by using the heat capacity at a given temperature to find 

the Debye temperature from standard tables of the Debye 

integra1. 10 This Debye theta is corrected to zero degree 

by use of Griineisen's constant, eqn. (26). This corrected 

Debye theta is then used in the standard table to find 

the corresponding heat capacity, now called C • 
0 

Hwang11 developed an expression for some moments 

using a similar integral form; 
~ 

0
J(c0 /'J!1)dT = JRr(n+1)j(n)u:_n , (J9) 

wherer(n) is the Gamma function, and!(n) is the Riemann 

zeta function. 

Therefore by integrating the Thirring8 expansion for 
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c/Tn and using eqn. (39), Barron derived an expression 

for the moments of the form; 2 

u1_n = (1;f(n+1)f(~)(fl./k)n-i U1/JR~fic0/Tn)dT + 

(1/r-1 )(1/n-1) - ~1 (-1)s+l(B2s/2sl )¢2s-1)/(2s+n-1Y 

(fl/k) 2s(u(2s)/T2s+n-i) J , 1<n<4 • (40) 

T in this equation is determined, essentially by trial and 

error, to be the temperature which causes the third term 

in the series of eqn. (40), i.e. s=J, to be less than one 

percent of the entire quantity in the square brackets. 

This allows convergence at the lowest temperature possible 

to minimize the influence of anharmonicity on the heat 

capacity. For the negative moments used here, T was taken 

to be 115 K. 

The integral was handled by using Stirling's method, 

and an initial guess at Twas used to set the limit of 

integration. It turned out that the initial guess for T 

of e/3 met the requirements for convergence o~ the first 

attempt. 



EXPERIMENTAL PROCEDURE 

PREPARATION OF MOSSBAUER SOURCES 

The iridium Mossbauer source was prepared from a 

thin polycrystalline foil. The purity of the foil was 

99.999 percent iridium. The foil was prepared by degreas­

ing with acetone and alcohol, then washed with a weak 

(approximately 10%) solution of HCl to clean and lightly 

etch the surface. The technique used to deposit the 57co 

onto the surface was developed in this laboratory. When 

the 57co is produced at the accelerator, it is separated 

from the other products by using ion exchange resins. 

The 57co activity comes out in a weakly acidic HCl 

solution which is dried in the shipping vial for transport 

to the laboratory. When it arrives, it is taken up in 95% 

ethanol in which it is slightly soluble. In order to 

prepare the source, the foil is heated to a modest temp­

erature (on the order of 50 degrees Centigrade), then 

microliter quantities of the ethanol with the 57co activity 

in solution are pipetted slowly onto a small spot. Since 

the ethanol will evaporate rapidly at this temperature, a 

very discrete source can be created, usually no more than 

2mm in diameter. 

In order to have a reasonable count rate, at least 
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one half millicurie of activity is deposited but not more 

than one millicurie. The iridium source used in this work 

contained .97 millicurie of 57co activity in a spot 2 mm 

in diameter before diffusion. 

The diffusion of the 57co activity into the interior 

of the sample is done at low pressure in a hydrogen 

atmosphere. The vacuum system was purged three times as 

the sample was warmed inside the furnace initially. 

Since the activity is present as the chloride salt, 57coCl, 

the hydrogen is necessary to reduce the cobalt to a free 

metal at the surface with the HCl fonned being pumped 

away. When the chamber temperature reached 700 degrees 

centigrade the H2 atmosphere was finally p'umped away. 

Since iridium is a refractory metal with a melting 

point of 2683 degrees Kelvin, the furnace was allowed to 

rise to its maximum temperature of 1100 degrees centigrade 

in order to enhance the diffusion rate of 57co into the Ir 

lattice. After 44 hours at this temperature, the sample 

was quenched by plunging the Vycor tube with the iridium 

foil inside into a bucket of cold water. The initial 

cooling rate of the quenching procedure is on the order of 

several hundred degrees per second. 

The iridium sample was then etched lightly with a 

JO% HCl etching soution in order to remove any activity 

which remained on the surface. The total amount of 

activity in the sample after this cleaning was determined 
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to be .78 millicurie. 

An energy spectrum was then taken on a multichannel 

analyzer in order to determine that the activity had 

diffused to the interior of the sample. 

The iridium source was then mounted on a velocity 

drive described by Brace. 12 A Mossbauer velocity spectrum 

was taken and the results are in table III. The line 

shape of the source was slightly broader than the natural 

line shape (.23 mm/sea compared with .20 mm/sec.), but 

showed no irregularities, and based on past experience 

with other sources, it was assumed that the vast majority 

of the 57co impurity atoms had found their way into sub-

stitutional sites in the iridium lattice. 

RECOIL FREE FRACTION 

In order to clarify the method by which the recoil-

free fraction or f is measured, a short explanation of 

the Mossbauer fraction is included here. For greater 

clarity, other sources should be consulted. 12 

The Mossbauer effect allows one to observe the mean 

squared displacement of a gamma ray emitting impurity atom 

in a crystalline metal lattice. If the lifetime of the 

nuclear transition is long in relation to the period of 

the lattice vibration, (whioh is generally true), Lipkin13 

has shown that 

f = exp[-k2 <x2>] , (41) 



TADLE III 

VELOCITY SPECTRUM, IRIDIUM 

Peak 1 

Amplitude (%) 

Position (mm/s) 

FWHM (mm/s) 

Peak 2 

Amplitude (%) 

Position (mm/s) 

FWHM {mm/s) 

-7. 90.±.18 

• 528±. 001 

.226±.001 

-7. 96,:t.18 

-1.121,:t. 001 

.226+.001 

26 
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where k is the gamma ray wave number, and <x2> is the mean 

squared displacement of the emitting atom in the direction 

of emission of ·the gamma ray. When considering a very 

large population of emitting atoms, f can be interpreted 

as the fraction of gamma rays emitted without exciting a 

normal mode of lattice vibration due to recoil. Since 

there is no Doppler broadening of the gamma ray, these 

"resonant" gamma rays· will be entirely absorbed by a 

"black wide absorber" 14 which is a chemical mixture of 

57Fe salts whose line width is much wider (20 times) than 

the width (in energy) of the resonant gamma ray. There-

fore one can count the total number of gamma rays emitted 

by shifting the energy of the resonant gamma ray out from 

under the absorber. That is done in this case· by giving 

either source or:absorber a high relative velocity with 

respect to the other. If the velocity drive is kept 

at rest, then the absorber will remove the resonant gamma 

rays and one can count the non-resonant gamma rays. 

Therefore the Mossbauer fraction is found experimentally 

as the difference of these two divided by the total; 

f = total number of 14.4 keV ~-rays - non-resonant r-rays 
total number of 14.4 keV r.rays 

= (I~ - IB) - (I
0 

- IE) 
Ico - IB 

= °' Io10' - I 0 

o<.." Ioo' - {3 IB , 
(42) 

where I«> is the intensity of all the 14.4 keV gamma rays, 

IB is the intensity of the background radiation which 
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are within the energy range of the counting equipment, I . 0 

is the intensity of the non-resonant 14.4 keV gamma rays, 

the primes indicate experime~tally measurable quantities, 

. t• I d • 12 and the correc ion :factors oC., «.. an {J are determined to 
. . 

beioe =1.006, o<.=1.009, and f3=1.0t9. This produces a raw f 

value which is then corrected for the geometry of the 

experimental ·:-~.quipment and the "blackness" of the wide 

absorber to an absolute f value, This involved multiplying 

the raw f values by 1.032 for this experiment as set up 

on the velocity drive. Since the experiwental procedure 

involved plac~ng the source inside a cryostat and a furnace 

which both have different geometrical correction facto~st 

a correction was made for that empirically by equating 

ihe f Vfl.lue~:o~ain,ed. at room temperature in ~ch to the 

f value obtained on the velocity drive. 

The method was the same as that described by Brace, 

but in this experiment, however, there was no problem with 

the blackness correction constant. Since the iridium 

source has an emission line close in energy to ·the center 

of the absorber, the thermal shift did not affect the value 

of the blackness correction ·constant. 

The cryostat and the furnace were equipped with ·an 

electromechanical control which allowed the experimental 

ts~perature ·to be maintained to within one percent. A 

digital voltmeter was used with an appropriate thermocouple 

to accurately measure the temperature of the experiment. 
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The rhodium source was prepared in essentially the 

same manner as I have described for iridium by Jim Grow. 

It had a narrow linewidth, and had already been character­

ized as a good source where the iron was a substitutional 

impurity in the rhodium lattice. 

The combined systematic and statistical error in the 

measurement of the absolute f value was kept under .5 

percent of thefvalue by using a source with a sufficiently 

high count rate, and repeating the measurements approximat­

ely ten times. The absolute f values and the negative 

logarithm used in finding the impurity moments are given 

in table IV. 
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TABLE IV 

RECOIL-FREE FRACTION f AND LOG f 

IRIDIUM RHODIUM 

 Temp K f -log f f -log f 

4 .915 .0888 

20 .914 .0897 

80 .909 .0953 

130 .893 .1129 

180 • 870 .1396 

230 .848 .1653 

295 .808 .2132 .776 • 2541 

350 . 785 .2421 .• 738 .3045 

400 • 760 .2744 • 708 .3447 

450 .737 • 3055 • 680 .3868 

500 • 712 .3394 • 650 .4302 

550 .688 .3743 .622 .475 

600 .663 .4117 • 596 • 518 



IMPURITY MOMENTS AND EF'FECTIVE FORCE CONSTANT RATIOS 

As indicated in the section on the experimental 

method, the Mossbauer fraction can be expressed as 

f = exp [. - ~2 <x:5 J , 
or conversely, 

_2· 2 
<P =(-ln f)/k • 

. 1 
From the analysis of Housley and Hess, one can 

show that the Thirring expansion for the energy of a 

(4J) 

(44) 

crystal leads to an expression for the mean squared 

displacement in terms of the impurity moments. At high 
·~··t temperatures, 

~ T = (kT/M I) [< u. (-2) + 
0

( 1/12)(h/kT) 
2 

-

( 1/720) ( h/kT) 4 u' ( 2) + •••• D, ( 4 5) 

and as T goes to zero, 

<.x3 = (h/2M')u'(-1), 
0 

(46) 

where k is Boltzmann's constant, M' is the mass of the 

impurity atom, and the u•(n) are the impurity s,ite moments 
. 16 

as defined by Grow, Howard, Nussbaum, and Takeo. 

However, let us observe here that these moments represent 

weighted frequencies over the integral of either the 

host or impurity response functions. For the host, 
00 

u(n) = f uPG(w)dw , u(O) = 1, (47) 
<> 

and for the impurity, co 

u' ( n.) = J uPG • (w) dw , u'{O) = 1. (48) 
0 



Therefore, where the frequency distribution is 

unknown, these moments can be used to characterize the 

dynamical properties of the host or impurity. 16 
1 . . 

Specifically, it has been shown that for harmonic 

cubic crystals in general 
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u(2) = A/M , (49) 

and for the impurity, 

u' (2) = A'/M' , (50) 

where M is the mass of the host, M' is the mass of the 

impurity, A is known as the effective force constant of 

the host, and A' is the effective force constant of the 

impurity. The ratio of these effective force constants 

can be expressed in an analytical form involving the host 
.,,-. 

and impurity moments. ·16 

The impurity moments are determined (from eqns. 44, 

45, and 46) to be, at high temperatures (T<9/2), 

u'(-2) = M'.o$ /kT - (1/12)(fi/kT) 2 , (51) 

and at liquid He temperatures, 

u•(-1) = 2M'/n <& ( 52) 

where all terms above the second on the right in eqn. (45) 

can be neglected. Also the host moments can be determined 

f~om eqn. (49) by use of neutron dispersion data, or as 

in this work, from heat capacity data. 

Using Mannheim's impurity model and restricting it 

to the central force, nearest neighbors approximation, 

Grow, Howard, Nussbaum, and Takeo16 derived expressions 
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for the effective force constant ratios; for n = -2, 

A/A' = (1 + (u'(-2)M/u(-2)M' - 1)/~_2 ) , ( t::~) 
.; _, ' 

and for n = -1, 

A/A' = (1+(~4)- 1 (M/M•) 2a(u•(-1)/u(-1)(M/M')~+a_1)) 2 , 
1 

a= i((~_1 )-2-1), (54) 

where u(n), u'(n), M, M', A, and A' are as defined pre­

viously and Pn = u(2)n/2/u(n) is the ratio of the host 

moments to the u(2) moment. This ratio is used because of 

the model independent relation of u(2) to the host re­

storing force, as in eqn. (49). 16 

Just as for the host moments, we assume that the 

impurity moments are volume dependent. Therefore by 

evaluating u'(-2) a~ various temperatures and plotting 

the moments against AV/V from the linear expansion17 

(AV/V = JAl/l), we can obtain the value of u'(-2) in 

the quasiharmonic approximation from the intercept as ~v/v 

goes to zero. 

In table V are listed the· values for the effective 

force constant' ratio A/A' derived from eqns. (53), and (54~ 

Also included in the table are force constant ratios 

calculated from eqns. (53), and (54) using impurity 

moments determined from a recent report18 on the recoil 

free fraction, f, in fee metals using 119sn as the 

impurity. 



TABLE V 

IMPURITY MOMENTS AND EFFECTIVE 

FORCE CONSTANT RATIOS 

57Fe impurity system: 

Ir host, M/M' = 3.376, p_2= .?18, ~- 1= .. 914 ~4 = .799 

u(-1) = 3.72 x1o-14 (s/rad) 

u'(-1) = 2.99 x 10-14 (s/rad) 

A/A' = 2.61±.43 

u(-2) = 1.60 xio-27 (s/rad} 2 

u•(-2) = 8.37 xlo-28 (s/rad) 2 

A/ A' = 2 • 0 7±. 24 

Rh host, M/M' = 1.807, 13_2= .?07 

u(-2) = 1.14 xio-27 (s/rad) 2 

u•(-2) = 1.04 x1o-27 (s/rad) 2 

A/A' = 1.92+.23 

119sn impurity systems 

Host IVI/M' u (-~~ 
x10 

~-2 f u'(22) A/A' 
x10 'l 

Rh .858 .114 .707 .75 .905 .55 

Ir 1. 60 ·• i-61 • 718 • 82 • 607 .45 
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DISCUSSION 

For 57Fe in either Ir or Rh, we see from table IV that 

the impurity-host restoring forces are smaller than the 

host-host restoring forces, since A/A' is greater than one. 

h . . . . h f 119 . d h T is is in contrast to t e case o Sn in Ir an R 

where the impurity-host restoring forces are larger than the 

host-host restoring forces since A/A' is less than one. The 

interatomic spacing for either Ir (3.84 A) or Rh (3.80 A) is 

slightly larger than the value for Fe (2.87 A). Therefore 

the iron impurity will fit easily into a substitutional site 

in the lattice. On the other hand, the tin impurity is 

about twice the size of Fe with an interatomic spacing along 

the a axis of 5.82 A. Because of this, one should expect 

more overlap between the orbitals of the tin impurity and 

the host than for the iron impurity. This would lead to 

larger interatomic forces for tin than for iron, and there-

fore smaller values of the effective force constant ratio. 

For metals in general, the effective force constant 

ratios derived from low temperature f values and heat 

capacity data agree with those derived from low temperature 

f values anq neutron dispersion data. 16 This demonstrates 

that the use of the heat capacity data, when combined with 

accurate Mossbauer f values, can provide information about 
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the host-impurity interaction, and is especially useful 

when the neutron dispersion relations are unknown. such is 

the case for both Ir and Rh since the heat capacity data is 

well defined but neutron dispersion relations remain 

unknown. 

For Ir, the effective force constant ratio determined 

from u' {-1)/u{-l) is twenty five percent higher than the 

value of A/A' determined from u' (-2)/u(-2). A similar 

pattern is exhibited by other 3d, 4d, and 5d transition 

elements, where the low temperature f values yield system-

atically higher values of A/A' than the high temperature 

f measurements. 16 This is paralleled to some extent by 

the relationship of the force constants found from neutron 

di.spersion data. The value of A/A• determined from the low 

temperature f values (i.e. u' (-1)) and the negative moment, 

u(-1}, from neutron data is usually slightly larger than the 

value of A/A' determined from the high temperature f values 

(i.e. u' (-2)) and the negative moment u(-2) determined from 

a host neutron density of states, G(w), and eqn. (47). 16 

Perhaps the anharmonicity at higher temperatures or the 

change of G(W) with temperature are responsible for this 

effect. 

By referring to table II, and recalling that Pn = 

u(2)n/2/u(n), we can make some casual observations about 

the structure of the frequency distribution, G(w). The 

moment ratios for Ir and Rh are higher than for the other 
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fee metals. These higher values of ~4 , ~-l' and ~- 2 imply 

that the frequency spectrum is more compressed into the 

central frequencies than the other fee metals. Hopefully 

this will be illuminated by neutron dispersion data. 
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