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Abstract 

 
 Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the 

photoelectric effect to produce high-resolution electron images. Ultrafast pulse lasers allow for 

multi-photon PEEM where multiple visible or IR photons excite a single electron in a nonlinear 

process. The photoelectron yield in both cases is related to the near-field region of 

electromagnetic fields at the surface of the sample. We use this ability here to analyze wave 

propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The 

propagation constant of the waveguide can be extracted from interference patterns created by 

light propagating in the waveguide and incident light. Various properties like the polarization 

dependence of the propagation can be analyzed. The electromagnetic field interaction at the 

boundaries can then be deduced, which is essential to understand power flow in wave guiding 

structures. These results match well with simulations using finite element techniques as well as 

electromagnetic theory. 
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1. Introduction 
 

  Much of the world’s communication technology relies on optical devices. Fiber 

optic cables provide fast and reliable telecommunication, dielectric resonators serve as antennas, 

and optical disc drives store our data. Among optical components the dielectric waveguide is of 

particular importance for communications and computing and is needed for integrated optical 

circuits [1]. The waveguide consists of a simple slab like structure that employs total internal 

reflection to confine light in a dielectric layer surrounded by materials of lower refractive indexes. 

When the dielectric layer is thin, on the order of hundreds of nanometers, it only allows for a few 

distinct resonances to propagate in the waveguide. With the knowledge of these modes a 

complete picture of the energy propagation and optical properties of the dielectric structure can be 

developed.  

 As light propagates in a waveguide a polarization dependent shift occurs upon 

reflection at the interface of the dielectric waveguide and surrounding materials. This shift 

happens because in a dielectric waveguide the light is not fully contained in the core region, but 

rather the electric field bleeds into the surrounding materials in an evanescently decaying wave. 

This phenomenon is known as the Goos-Hänchen shift [2], which is a lateral shift of a finite beam 

due to the dependence of the evanescent field on the incident angle of the light. The magnitude of 

the Goos-Hänchen shift affects the allowed modes of propagation. 

 The Goos-Hänchen shift is important for understanding the nature of light 

interactions at material boundaries and can be incorporated into the ray model of light for 

improved accuracy [3]. The shift is generally on the order of a wavelength in materials with real 

dielectric constants but through the use of meta-materials much larger shifts can be induced [4,5]. 

These shifts have potential applications in optical sensors [6] and optical switching devices [7]. 



2	  

Furthermore, negative shifts can be obtained using materials with large imaginary refractive 

indexes such as metals [8] or by employing meta-materials like photonic crystals [9]. The ability 

to control light in this fashion could lead to new photonic devices for communication and 

computing. 

 Photoemission Electron Microscopy (PEEM) is a powerful surface imaging 

technique for observing electromagnetic near-field phenomena on the nanoscale. By directing 

high intensity light onto a sample, incident photons excite electron emission via the photoelectric 

effect. The photoelectrons are used to produce high quality images, which have obtained 

resolution down to 5nm in biological samples [10]. The contrast of the image comes directly from 

the spatial electron yield emitted from the samples surface, which depends on the work function, 

surface electron density, and topography of the material as well as the energy and intensity of the 

incident photons.   

 We demonstrate that PEEM can experimentally determine the propagating modes 

in a simple dielectric waveguide consisting of materials with real indexes of refraction to a high 

degree of accuracy. Because of the discrete modes of propagation, the incident excitation beam 

creates a standing interference pattern with the confined light. The interference creates strong 

variation in electromagnetic fields, which multi-photon PEEM is ideally suited to detect. The 

high-resolution surface information of PEEM not only allows for analysis of the wave 

propagation but also provides insight to fundamental aspects of light propagation in dielectrics 

when combined with electromagnetic theory. Understanding the propagation and energy 

confinement in these nanostructures is imperative to the development of the next generation of 

photonic devices. 
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2. Theory of Dielectric Waveguides 
2.1 Electromagnetic Theory 
 The propagation of light in a dielectric slab waveguide can be understood through 

electromagnetic theory. For the dielectric waveguide case we may use the source free time 

dependent version of the equations: 

 

!!

∇⋅D=0
∇⋅B =0

∇×E = − ∂B
∂t

∇×H = − ∂D
∂t
.

  (1-4) 

The time dependence is considered to be harmonic in the form exp(iωt). Taking into account this 

time dependence Eqs. (3,4) become: 

 !!
∇×E = −iωB ,
∇×H = iωD.   (5-6)

 

The geometry of our structure as seen in Fig. 1 will be considered as follows, an infinite dielectric 

slab in the y, z plane bounded at x equal to 0 and x equal to h by two different dielectrics. The 

propagation of modes in the slab will be considered to be in the z direction. 

 So long as there is no surface charge, the tangential components of E and H 

parallel to the interface of the waveguide must be continuous across the core-cladding boundary. 

These boundary conditions can be taken advantage of to find the modes allowed to propagate 

inside the dielectric structure. Since any field can be decomposed into components with 

transverse electric (TE) and transverse magnetic (TM) polarization, we can split the problem in 

two and solve for each polarization separately. For TE polarization the Hy, Ex, and Ez components 

of the electromagnetic field are 0. This is highly convenient as the cross product of E in Eq. (5) 

may be simplified to 

 !!
dEx
dy

−
dE y
dx

= iωµHz .     (7) 
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 Now we will take advantage of our geometry. Since the structure is uniform along 

the y-axis, the partial derivative with respect to the y-coordinate is zero. This leaves the z-

component of H proportional to the first derivative of the E-field. Recall that the boundary 

conditions are that the component of E and H parallel to the interface must be continuous. Since 

the transverse component of E is only Ey and the parallel component of H is proportional to the 

first derivative of Ey the boundary conditions may be put solely in terms of Ey and its derivative 

with respect to x. 

 Next we introduce the homogeneous wave equation, 

  
	   !!∇

2E +k0
2n2E =0; 	    (8)	  

 
where n is the refractive index of the medium, k0 is the free space wave number and it is assumed 

that any time dependence is harmonic. The spatial modulation of a particular mode in the 

direction of propagation, the z direction, is considered to be exp(iβz), where β is the propagation 

constant of that mode, which when divided by the free space wave vector, gives the effective 

index of the guided wave, Neff  ≡ β/k0. Also noting again that the derivative with respect to y is 0 

from the geometry, our wave equation, becomes, 

	  
!!
∂2E
∂x2

+(k02ni2−β2)E =0. 	    (9)

 

	  

The index on ni indicates the dielectric layer in the structure. The wave equation in each layer is 

then given as:  

	  

!!

∂2E y
∂x2

= s2E y ;!!!!!!!!x ≤0;!!!!!!!!!!!!s2 = β2−k02n32,

∂2E y
∂x2

= q2E y ;!!!!!!!0≤ !x ≤h;!!!!!q2 = k02n12−β2,

∂2E y
∂x2

= p2E y ;!!!!!!!!h ≤ x;!!!!!!!!!!!!p2 = β2−k02n22.

	  	   (10)	  
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To have a guided mode the electromagnetic field must be contained within the core of the 

waveguide. With this in consideration we take solutions of exponential decaying evanescent 

fields in the cladding and an oscillatory solution in the core in the form: 

	  

!!

E y = Dexp(sx);!!!!!x ≤0,
E y = D ⋅cos(qx)+F ⋅sin(qx);!!!!0≤ x ≤h,
E y = [D ⋅cos(qh)+F ⋅sin(qh)]exp(−p(x −h));!!!!h≤ x.

	  	   (11)	  

These fields must fulfill the boundary conditions obtained previously for the transverse 

component of the electric field and its first derivative. Taking the derivative with respect to x for 

each section yields: 

	  

!!

∂E y
∂x

= sDexp(sx);!!!!!x ≤0,
∂E y
∂x

= q(−D ⋅cos(qx)+F ⋅sin(qx));!!!!0≤ x ≤h,
∂E y
∂x

= −p[D ⋅cos(qh)+F ⋅sin(qh)]exp(−p(x −h));!!!!h≤ x.

	   (12)	  

The coefficients D and F can be related by matching conditions at the x = 0 boundary, 

	  
!!
sDexp(sx)= q(−D ⋅cos(qx)+F ⋅sin(qx)),
sD= qF . 	   (13-14)	  

Matching at the conditions at x = h we obtain: 

	  
!!
q(−D ⋅cos(qx)+F ⋅sin(qx))= −p[D ⋅cos(qh)+F ⋅sin(qh)]exp(−p(x −h)),
q(−D ⋅cos(qx)+F ⋅sin(qx))= −p(D ⋅cos(qh)+F ⋅sin(qh)). 	  	    (15-16) 

We can reduce the system to an eigenvalue equation in terms of p, q and s utilizing Eqs. (13-14). 

 

!!

q(− q
s
F ⋅sin(qh)+F ⋅cos(qh))= −p(q

s
F ⋅cos(qh)+F ⋅sin(qh)),

q(− q
s
⋅tan(qh)+1)= −p(q

s
+ tan(qh)),

q+ pq
s
= tan(qh)(q

2

s
− p),

tan(qh)= q(s + p)
q2 − ps

.

  (17-21) 
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Recall that p, q, and s as defined in Eq. (10) are all dependent on only propagation constant, 

refractive index of dielectric layer, and free space wave number. This equation can then be 

graphically solved as in Fig. 1. for the propagation constant with the known refractive indices of 

the materials and excitation wavelength. 

            

Figure 1: Basic lay out of waveguide geometry (left). The graphical solution for the 
propagation constant of a 290nm thick waveguide with refractive cladding indices of 1, 
1.5, and core of 2.14 at a wavelength of 410 nm (right). The non-asymptotic intersections 
give the propagation constants for the possible guided modes. 

For the TM modes Ey, Hx, and Hz are zero and the boundary conditions are put only in terms of 

Hy through Eq. (6) and the derivation proceeds in a similar fashion. A complete derivation may be 

found in reference [11]. 

 
2.2 The Ray Model 
 An alternate approach to calculating the propagation constant of a dielectric 

waveguide is through a ray model using the transverse resonance condition. This method uses ray 

optics to find the discrete allowed modes of propagation assuming total internal reflection at each 

interface causing the ray to bounce back and forth in a zigzag fashion as in Fig. 2. This ray can be 

broken down into its transverse and longitudinal components. The transverse resonance condition 

states that a mode can only propagate in the wave guide if the transverse component interferes 

constructively with its self, that is, it undergoes a phase that is a multiple of π on a trip from one 

side of the guide to the other. 
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 On this path one must consider the thickness of the guiding structure, h, the angle 

at which the wave is zigzagging, θ, and the phase shift, φ, that is obtained upon total internal 

reflection at the interface. Together these give us our condition,  

	   !!hk0n1 ⋅cos(θ )−φ1 −φ2 =mπ , 	   (22)	  

where k0 is the free space wavenumber, n1 is the refractive index of the material, and m is some 

positive integer. The phase shifts can be obtained from the well-known Fresnel equations. They 

are polarization dependent and given by: 

	  
!!
φTE = tan−1

(ncore2 ⋅sin2θ −ncladding2 )1/2

ncore ⋅cosθ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
; 	  	   (23)

   

 !!
φTM = tan−1

(ncore2 ⋅sin2θ −ncladding2 )1/2

ncore ⋅cosθ
⋅
ncore
2

ncladding
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.
 (24)

	  

Where ncore is the refractive index of the core material of the waveguide and ncladding is the index 

of the outer material as seen in Fig. 2. Once again we can produce an eigenvalue equation that 

depends on refractive index, free space wavelength, waveguide thickness, and angle of 

propagation. Given the other parameter we can determine the angle and thus the propagation 

constant. 

 The ray model can hold several advantages for pictorial understanding as well as 

computational simplicity. The simple ray model, however, is not a good representation for 

structures with a scale on the order of the wavelength. While it can provide accurate results for 

the propagation constant it neglects important features such as the evanescent field. Since we 

know the electric field extends into the cladding region of the waveguide it would seem more 

reasonable to including this light penetration in a ray model as in Fig. 2(b) as first pointed out by 

Burke in 1971 [12]. In this refined ray model the waveguide thickness is effectively increased by 
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the depth the ray penetrates which corresponds to the characteristic decay length of the 

evanescent wave in the cladding [13]. 

   

Figure 2. (a) Ray model without the Goos-Hänchen shift with a round trip fulfilling the 
transverse resonance condition. (b) Ray model withthe Goos-Hänchen shift to account 
for penetration into the substrate. 

 This model has been shown to match with the electromagnetic theory [14] while 

keeping propagation along the lateral direction constant due to the time delay between the 

entering and exiting of the ray. The refined ray picture can be used as a reasonable model to 

understand the energy flow and power transfer in coupled wave guiding structures [15,16]. As 

seen in Fig. 2(b) the ray now undergoes an apparent lateral shift upon reflection. This is a 

phenomenon that was first predicted by Newton [17] and has come to be known as the Goos-

Hänchen shift, after it was experimentally demonstrated by Goos and Hänchen in 1947 [2]. 

2.3 The Goos-Hänchen Shift 
 The Goos-Hänchen shift is the lateral shift of a finite light ray in the plane of 

reflection. The root of this phenomenon is the fact that reflection at an interface has an angular 

dependence. This can be seen in phase shifts in Eq. (23,24). Because a finite beam is composed 
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of a superposition of plane waves, each with a different angular component, the components 

reflect differently effectively shifting the center of the beam. 

 A formula for the magnitude of the shift, as first obtained by Artmann in 1948 

[18], can be obtained by considering the decomposition into plane wave components. To begin 

consider two plane waves incident at slightly different angles. The complex amplitude at the 

interface of reflection may be written as, 

	   !!A(z)= [exp(iΔβz)−exp(−iΔβz)]exp(−iβz), 	   (25)	  

where β is the propagation constant of the wave. The phase shift that occurs at the interface is a 

function of the propagation constant. Assuming that the difference in phase shift and propagation 

constant of our two plane waves is small we may expand the phase shift as, 

 !!
Φ(β +Δβ)=Φ(β)+ dΦ

dβ
Δβ .

   (26) 

Then the reflected ray packet may be written as: 

 
!!
B(z)= [exp(iΔβz − ∂Φ

∂β
Δβ)+exp(−iΔβz + ∂Φ

∂β
Δβ)]exp(−i(βz −Φ))    (27) 

 
!!
B(z)= cos(Δβ(z − ∂Φ

∂β
))exp(−i(zβ −Φ))   (28) 

Then the displacement of the reflected beam, z, is simply 

 !!
z = ∂Φ

∂β
,
 (29) 

where Φ is the Fresnel phase shift. This gives us a polarization-dependent equation for the lateral 

displacement of the beam. 

	  
!!
zTE =2(ncore2 ⋅sin2θ −ncladding2 )−1/2tanθ 1

k0
; 	  	   (30) 
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!!
zTM = zTE

ncore
2 ⋅sin2θ
ncladding
2 + sin2θ −1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
. 	  	   (31)	  

 These results give a good value for the shift but break down as the beam comes 

within half a degree of the critical angle due to our approximation in Eq. (25). Other formulations 

have been proposed using approaches such as conservation of energy [19,20,21], but Artmann’s 

formulation remains the simplest and provides an extremely good approximation for incidence 

far from the critical angle. For the applications of the Goos-Hänchen shift explored here, the 

Artmann approach is sufficient. 

 To show that extended ray model is consistent we must demonstrate an equivalent 

shift. In the extended version we claim the ray penetrates some distance, x into the substrate, 

which through simple geometry gives a shift of, 

 !!z =2x ⋅tanθ ,  (32) 

 The penetration depth, x, is closely related to the transverse decay constant. 

Because the field in the cladding is evanescent, it decays exponentially away from the core of the 

waveguide. This decay is described by, 

	   !!γ = k0(ncore2 ⋅sin2θ −ncladding2 ). 	   (33)	  

The penetration depth of the ray is then given by: 

 !!
x = 1

γ q
;  (34) 

where q is a polarization dependent factor that can be derived based on the corresponding 

boundary conditions and written as, 

	   !!qTE =1; 	   	  (35) 

	  
!!
qTM =

ncore
2 ⋅sin2θ
ncladding
2 + sin2θ −1. 	  	   (36)	  
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Comparing the results given by Eqs. (32-36), we see it is precisely identical to the equations 

obtained in the plane wave expansion method. 
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3. Photoemission Electron Microscopy 

 The original concept of using photoelectrons to produce images is credited to 

Brüche who, in 1933, demonstrated that a primitive magnetic lens could be used to produce an 

image from accelerated photoelectrons [22]. Though a number of interesting studies were 

conducted with early versions of PEEM, it was not until the invention of a reliable ultrahigh 

vacuum system (UHV) that it became a competitive technique [23]. Before UHV, vacuum 

systems mainly used oil diffusion pumps, which introduced a large amount of contamination into 

the system. This is especially detrimental to PEEM as photoelectrons can only escape from the 

very surface of the sample. One of the early UHV-PEEM instruments was constructed by the 

Oregon microscope project at the University of Oregon [24]. The construction of this instrument 

was spearheaded by Griffith and Rempfer and was primarily used for biological applications 

achieving spatial resolution down to 10 nm [25,26,27]. Gertrude Rempfer was one of the 

pioneers in the development of PEEM and her theoretical work drove development for many 

years [28].   

 PEEM can employ either incoherent ultraviolet (UV) radiation sources such as 

mercury lamps or X-rays generated by a synchrotron. The high photon energies of these sources 

generally allow for a single photon to produce electron emission from the photoelectric effect. 

This type of PEEM is referred to as single photon PEEM, or 1P-PEEM. As one would expect, 

UV lasers can dramatically increase the photoelectron yields by increasing the intensity of 

illumination. The work function of most materials prohibits 1P-PEEM from studying interesting 

optical phenomena that occur in the visible and infrared spectral region. With the high intensities 

of ultrafast pulse lasers, it is possible to produce sufficient photoemission using two (2P-PEEM) 

or even three (3P-PEEM) low energy photons to overcome the work function.  
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 Because multiphoton emission is a nonlinear response the process is particularly 

sensitive to changes in photon density. This method has proved useful in the study of light-

confining mechanisms such as surface plasmon polaritons [29,30], which are collective 

oscillations of electrons and photons on metal surfaces. Plasmonic responses have attracted 

considerable attention as plasmonics provides a way to confine light past the diffraction limit. 

PEEM has extensive potential for this application as it provides direct imaging of the optical near-

field and is a non-invasive imaging technique. In addition to studying surface plasmon 

polaritions, the multiphoton process is also well suited for observing electromagnetic fields on the 

surface of photonic structures consisting of dielectric materials with real dielectric constants [31]. 

In the past years we have used multiphoton excitation to characterize optical wave propagation in 

nanostructured optical waveguides [32].  

  The general basic design of the modern PEEM is remarkably similar to Brüche’s 

original instrument but with more refined components. One of the major improvements to the 

modern instrument is correction of the aberration. Due to the energy spread and spatial 

distribution of the photoelectrons emitted from the sample both spherical and chromatic 

aberrations are introduced by the accelerating field at the cathode and electron lenses. An electron 

mirror can introduce aberrations approximately inverse to these thereby reducing the total 

aberration to first order [33]. One of Rempfer’s major contributions was her testing and 

development of an electron mirror to correct for spherical and chromatic aberrations [34]. The 

electron mirror is held at a large potential difference to reflect the electron beam with adjustable 

electrodes to control the electric field and adjust the aberration introduced by the mirror. 

Aberrations can theoretically be reduced even further by going from a diode mirror to a three or 

four electrode mirror giving more freedom to adjusting the parameters [35,36]. 
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 An outline of the basic design of the electron optics in our aberration-corrected 

microscope is seen in Fig. 3. A laser beam illuminates the sample at an incident angle of 60° and 

excites the photoelectrons emitted at low energy. These electrons are accelerated through a 

voltage difference of approximately 20 keV to the objective lens. The objective lens and auxiliary 

lens form a zoom pair, which controls the initial magnification. The objective lens is largely 

responsible for the final resolution of the final image, as aberration introduced by the objective 

lens will be magnified in following transfer lenses.  

 

Figure 3. Simplified diagram of a PEEM. Photoelectrons excited by the laser illumination 
go through the electron optics in the microscope and hit a phosphor screen producing 
photons to be recorded by a CCD camera. 

 An aperture is located on the optical axis in the back focal plane of the objective 

lens to limit the angular spread of electrons. The aperture angle is directly related to the maximum 

obtainable resolution based on the diffraction limit [37]. The 30 µm aperture in our system has an 

aperture angle of approximately 0.4°, which gives a theoretical maximum achievable resolution 
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on the order of a few nanometers [36]. Currently PEEM is far from this resolution, with 

aberration being the limiting factor rather than the diffraction limit. 

 After the objective lens and aperture, the transfer lenses and magnetic deflectors 

are used to guide the electron beam through the optical column to the electron mirror. The 

potential of the electron mirror is chosen such that the reflected beam is coincident with the 

incident beam, but reverse in direction, i.e. the electron beam is reflected back through the 

magnetic deflector, which then deflects it such that a separation between incident and reflected 

beam occurs. The beam is guided back through a second set of transfer lenses to the projection 

lens, which magnifies and projects the final image onto a phosphor screen. When each electron 

strikes the phosphor it emits many photons, providing a kind of signal amplification due to the 

high electron energy. These photons are imaged in an optical transfer lens system to a CCD 

camera to record the final image. 
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4. Experiment with PEEM 

4.1 Methods 
 The sample consisted of a 0.2 mm borosilicate glass sheet coated with an indium-

tin-oxide (ITO) layer of ~290 ± 20 nm thickness acquired from SPI supplies, Inc. The refractive 

index of ITO is 2.14 ± 0.01 at a wavelength λ = 410 nm and n = 1.78 ± 001 at λ = 780 nm [38]. 

Other optical properties of ITO thin films such as absorption are dependent on the thickness of 

the film [39]. The real part of the refractive index of the glass substrate is 1.53 ±. 01, the 

imaginary index is negligible and may be disregarded with no significant consequence. Parallel 

strip waveguides were defined with a FEI Strata 273 focused ion beam (FIB). A deep narrow 

groove was milled to a depth of ~240 nm into the sample with dimensions of 6.0 µm x 0.4 µm to 

allow for in-coupling of light into the waveguide through diffraction. A thinned waveguide region 

was milled to a depth of ~50 nm ±10 nm and dimensions of 2.0µm × 5.0µm connecting to the 

center portion of the groove.  

  

Figure 4. Basic waveguide experiment: polarized light is directed towards the milled slit 
at an incident angle of 60°. Interference between the wave-guided light and the non-
scattered light produces an interference pattern. 

 As shown in Fig. 4, the sample was oriented in the PEEM such that the groove 

was perpendicular to the incident laser light. The optical excitation beam was incident at an angle 
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of 60° from the sample normal. The waveguide illuminated at wavelengths of λ = 410 nm and λ = 

780 nm. In this configuration light is coupled into the groove of the waveguide and propagates 

laterally in through the waveguide. This guided light interferes with the direct excitation light and 

generates a stationary interference pattern. This pattern is imaged in the PEEM with a spatial 

resolution of ~30 nm and can be analyzed in terms of the propagation constants of the wave-

guided light.  

 The Spectra-Physics Mai Tai Ti:Sapphire laser used in the experiment generates 

80-fs pulses with energies in the low nJ range at a rate of 80 MHz. A Del Mar second harmonic 

generator was used to up-convert the IR pulses to 410 nm. The CW-equivalent power at 780 nm 

was 900 mW and at 410 nm it was 50 mW. 

 With a work function of 4.2 eV [40], ITO requires a 2-photon process at λ = 410 

nm (3.02 eV) to produce an electron emission. At λ = 780 nm the photon energy drops to 1.59 eV 

requiring a three photon excitation process. For imaging at 780 nm the sample only exhibited 

interference patterns in the milled region while the smooth un-milled region had no visible 

photoemission. The increased emission in the milled area is attributed to enhancement of the 

electric field due to surface roughness. The milled region at 780nm illumination only produced 

images for a short time period before the contrast disappeared. We suspect this to be due to 

surface smoothing and annealing in the intense illumination. Gallium residue from the FIB 

process may play a role as well, however its contribution is not well understood. 

4.2 Results 
 The two areas of interest are the central area referred to as the milled region and 

the section on either side referred to as the bulk region as seen in Fig. 5. The brightness in the 
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image is proportional to the photoelectron yield, which relates to the electric field in the sample 

as, 

	   !!YPE ∝||Etot ||2n , 	  	   (37)	  

where n is the order of the photoemission process i.e. n = 2 for λ = 410 nm light and n = 3 for λ  = 

780 nm [32].  

 
Figure 5. PEEM images of the waveguide illuminated by TE (top) and TM (bottom) 
polarized light with wavelengths of 410 nm (left) and 780 nm (right).  

 To obtain the periodic information of the interference patterns, we average the 

pixel value perpendicular to the propagation path and take the Fourier transform of the resulting 

spatial intensity profile after applying a Hamming window to the data. The Fourier transform 

provides the spatial frequency spectrum of the interference pattern. Dividing the length of the 

waveguide by the frequency converts it to periodic data as seen in Figs. 6 and 7.  

 For the 410 nm illumination, theory predicts two propagating modes, while the 

780 nm illumination supports only one mode. The two main peaks in the 410 nm periodograms 
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represent these main guided modes allowed by the parameters of the waveguide labeled 1 and 2. 

In addition to the main modes of propagation several other features appear in the 410-nm 

periodograms. The interference between the two propagating modes creates a beating pattern in 

the interference seen between 1 and 2 µm in the bulk region and labeled 3. This mode is lost in 

the TE milled region in the windowing threshold. 

 
Figure 6. Periodograms from the waveguide under 410-nm illumination. Top is TE and 
bottom is TM polarization. Left is the milled and right is the bulk region. FFT powers 
normalized to one for largest peak. (1, 2) Main propagating modes. (3) Interference of 
main modes. (4) higher order multi-photon emission peaks. (5) strongly suppressed 3rd 
mode. 

 
Figure 7. Periodograms of the λ = 780 nm illuminated waveguide. The only significant 
peak is the single propagating mode. 
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 Small peaks visible just above the noise level, labeled 4 are present as well. These 

small peaks are the result of the non-linearity of the multi-photon emission process [32]. The total 

electromagnetic field is the interference of the propagation modes and incident light given by, 

	   !!Etotal = Eincident +Emode1 +Emode2. 	   (38)	  

The photoemission yield in nP-PEEM is proportional to the nth power of the sum of the different 

fields as in Eq. (37). Putting Eq. (38) in Eq. (37) produces cross terms for two- and three- photon 

emission. Because the total photoemission is directly related to the electromagnetic field, each 

term corresponds to a peak in the periodogram. The higher order terms are weaker and 

correspond to the peaks labeled 4, which appear in the Fourier analysis. 

 The last unexplained feature, labeled 5, appears only in the TE bulk region at a 

periodicity of ~700nm. This poorly defined peak can be understood by taking a closer look at the 

allowed modes for the waveguide. While the thickness bulk region allows only two modes of 

propagation, for TE polarization the thickness lies very near the border of allowing a third mode. 

This results in a weakly damped mode. By shifting the sampling location further from the slit 

where the modes are excited we see a dramatic drop-off as the mode disappears as seen in Fig. 8. 

 
Figure 8. By shifting the data sampling location we observe the disappearance of the 
strongly suppressed “third” mode. 
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 The periodograms provide the spacing of the interference pattern, which can be 

used to determine the propagation constant of the waveguide. To obtain the effective index of the 

dielectric structure a simple geometrical model is used. The separation of the interference pattern 

is used to determine the effective index, Neff, of the waveguide assuming x is the distance the 

guided light travels before it constructively interferes with the incident light. 

  

Figure 9: The mode excited by the first wave front is interfered with by the second wave 
front at some distance X. 

 !!

x
c /Neff

= x ⋅sin60
o +λ

c
;
 

(39) 

 !!
Neff = sin60o +

λ
x
,
 (40) 

where λ is the free space wavelength and 60°  is the angle of incidence We can thus determine the 

effective index of the waveguide for each mode from the experimentally observed interference 

pattern spacing determined from the periodograms. The effective index is then related to the 

propagation constant as, 

	  
!!
Neff = β

λ
2π . 	  	   (41)	  
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5. Simulation 
 To simulate the PEEM results we use the radio frequency (RF) module of 

COMSOL Multiphysics. COMSOL uses finite element methods to solve Maxwell’s equations 

iteratively for the electromagnetic field on a mesh overlaying the geometry. For our purpose we 

produce an image of the time averaged real portion of the electric field as we know the photon 

yield to be proportional to the field as in Eq. (37). Because our structure has symmetry in the y 

direction we can reduce the model to a 2-dimensional simulation in the y=0 plane. A plane wave 

is produced incident at an angle of 60° onto a thin ITO layer with a slit for coupling on a glass 

substrate as seen in Fig. 10. 

 
Figure 10. (a) Time averaged electric field in finite element technique simulation using 
COMSOL multiphysics. (b) Close up of the guiding region supporting two modes. (c) 
Line graph of the electromagnetic field from the surface of the ITO layer.   

 The electrons received in PEEM are from the surface of the sample. Therefore we 

extract a line graph from the vacuum-ITO interface of the time averaged electric field intensity 

from the simulation. By taking the Fourier transform over the same distance as for the 

experimental data we find good agreement between the simulation and experimental data for both 

polarizations as in Fig. 11. Furthermore the relative mode intensities (relative peak heights) of the 

two main modes of propagation for λ = 410 nm correspond well to those of the experimental 

data. Note that the mode strongly suppressed mode as discussed in Fig. 8. Is much more apparent 
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in simulation. This may indicate the theoretical waveguide thickness used in simulation may be 

slightly larger than the actual thickness of the ITO layer. The discrepancy at long periods is due to 

the artifact produced by finite window size in the Fourier Transform. The position of this artifact 

differs between the experimental and simulated periodograms due to differences in windowing 

and data resolution. The relevant experimentally observed modes lie outside the range of the 

window-induced artifacts and can reliably be reproduced in the simulation. 

 

Figure 11: Simulated (red) vs. experimental (blue) data for TE and TM polarizations in 
the bulk and milled regions at 410 nm excitation. 
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 Through simulation we can check the validity of our ray model for the Goos-

Hänchen shift as well. The depth to which the ray penetrates into the cladding is directly tied to 

how quickly the electromagnetic field decays in the substrate. The decay depth is defined as the 

distance it takes for the field to decay to 1/e of its initial value [11].  By exciting a mode directly 

in the waveguide and taking a cross section we can see the electromagnetic profile across the ITO 

layer and into the claddings. From this profile the distance it take the field to decay by 1/e divided 

by the scale factor q from Eqs. (35)-(36) gives the penetration. The penetration depth then 

produces a shift through simple geometry of ray tracing as in Eq. (32) [41,42].  

   

Figure 12. (a) Semi-log line graph of electromagnetic field intensity taken across (b) a 
COMSOL simulated waveguide with h=240 nm, λ = 780 nm, n1=1.78, n2=1.53, n3=1. 
The graph is used to determine the penetration depth at each interface.  
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6. Goos-Hänchen Shift Results 

 We now have several methods of determining the Goos-Hänchen shifts occurring 

in our waveguide. First, from the measured thickness of our waveguide and refractive indices we 

may use electromagnetic theory and Artmann’s formula as expressed in Eqs. (30)-(31) to 

calculate a theoretical shift [43]. Second we can experimentally determine the angle of 

propagation from Fourier analysis of PEEM data and Artmann’s formulation. Third we take 

decay of the electromagnetic field as measure in finite element simulation and use the extended 

ray model to obtain the shift. A complete summary of the Goos-Hänchen shift values obtained 

through each method can be seen in tables 1-3. 

 TE λ=410 nm, Mode 1 TE λ=410 nm, Mode 2  

Milled Region Bulk Region Milled Region Bulk Region 

Vacuum 
Interface 

Glass 
Interface 

Vacuum 
Interface 

Glass 
Interface 

Vacuum 
Interface 

Glass 
interface 

Vacuum 
Interface 

Glass 
interface 

Artmann 233 nm 307 nm 268 nm 350 nm 128 nm 220 nm 142 nm 215 nm 

Simulation 239 nm 313 nm 274 nm 359 nm 131 nm 217 nm 142 nm 210 nm 

Experiment 236 nm 311 nm 244 nm 320 nm 127 nm 222 nm 137 nm 214 nm 

Table 1: Measurements for TE λ=410 nm modes in milled and bulk regions. 

 TM λ=410 nm, Mode 1 TM λ=410 nm, Mode 2  

Milled Region Bulk Region Milled Region Bulk Region 

Vacuum 
Interface 

Glass 
Interface 

Vacuum 
Interface 

Glass 
Interface 

Vacuum 
Interface 

Glass 
interface 

Vacuum 
Interface 

Glass 
interface 

Artmann 51 nm 169 nm 58 nm 183 nm 54 nm 400 nm 47 nm 220 nm 

Simulation 50 nm 172 nm 55 nm 180 nm 55 nm 404 nm 50 nm 226 nm 

Experiment 49 nm 164 nm 57 nm 183 nm 56 nm 460 nm 48 nm 237 nm 

Table 2: Measurements for TM λ=410 nm modes in milled and bulk regions. 
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 TE λ=780 nm TM λ=780 nm  

Milled Region Milled Region 

Vacuum Interface Glass Interface Vacuum Interface Glass interface 

Artmann 409 nm 1080 nm 172 nm 2049 nm 

Simulation 411 nm 1090 nm 170 nm 2035 nm 

Experiment 400 nm 1101 nm 171 nm 2179 nm 

Table 3: Measurements for λ=780 nm for TE and TM modes in milled regions.  

 The simulated results provide very good results within 10 nm of the expected 

theoretical result. The slight variation can be attributed to the finite meshing and the imperfect 

absorption at the simulation boundaries. The accuracy to which the Goos-Hänchen shift can be 

calculated from the experimental data greatly depends on the sensitivity of the shift to changes in 

the propagation angle. An excellent example can be seen at 780 nm where the poor resolution 

due to the reduced signal in 3P-PEEM produces a large discrepancy at the glass interface. 

However at the vacuum interface the shift the dependence of the shift on the incident angle is 

very small and thus the values are close to the theoretical results. 

 A graphical comparison of results for the milled region is seen in Fig. 13. The 

simulated results are plotted using the theoretical angle and the shift as calculated from the 

extended ray model. Thus the uncertainty lies in the vertical displacement from the theoretical 

value. The experimental values are plotted at the theoretical shift and an angel of propagation as 

determined from the periodograms thus the uncertainty lies in the horizontal direction from the 

theoretical value. The theoretical shift is calculated from an experimentally determined thickness 

of the ITO layer of 240 nm in the milled region. A value of 230 nm would improve the fit of the 

experimental data indicating a slight error of  ~5% in the experimental thickness.  
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Figure 13. Goos-Hänchen shift vs. angle of propagation at 410 nm for both interfaces and 
polarizations in the milled region. Solid line (blue) is the theoretical shift at the air 
interface. Dashed line (red) is the theoretical shift at the glass interface. Squares represent 
experimentally determined data points at air interface (black) and glass interface (purple). 
Similarly circles are data points from simulation.  

 In Fig. 13 we can see another example of the dependence of the shift on the angle. 

For TM polarization Mode 1 has an experimental propagation angle of ~67° where there is very 

little change in the shift.  Though the uncertainty in the experimental propagation angle is larger 

for Mode 1, it obtains a more accurate shift as Mode 2 has a propagation angle of ~48° where the 

shift changes very rapidly. The sensitivity to parameters such as incident angle and material index 

is important in design of optical sensors that incorporate the Goos-Hänchen shift [6]. 
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7. Conclusion 

 With the high-resolution capabilities available in PEEM we have successfully 

measured optical properties of small light confining structures with dimensions on the scale of a 

wavelength. An extended ray model can accurately represent the propagation of light in our 

waveguide and this ray model may even be extended to other sub-wavelength structure such as 

dielectric resonators [44]. Beyond basic science aspects there is currently increased interest in the 

measurement of Goos-Hänchen shifts. The magnitude of the shift can be greatly increased or 

even made negative in materials with high imaginary index and in meta-materials [8]. A negative 

shift is the result of reverse power flow in the cladding and this phenomenon can be exploited to 

trap or slow down light in the optical wavelength regime [45,46]. Slow light devices are critical to 

the development of optical computing and data storage and have a wide range of potential 

applications. 

  While imaginary indices can be difficult to work with in PEEM, however similar 

results can be obtained in meta-materials such as photonic crystals consisting of periodic 

modulation of refractive index. These structures can also induce large negative Goos-Hänchen 

shifts [9]. In future work we hope to show that an ITO based photonic crystal waveguide may be 

used to slow the propagation of light by taking advantage of the reverse power flow created in the 

photonic crystal region.  
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