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Abstract 

  

Invasive species are second only to habitat loss as a leading cause of native 

species displacement and the management of invasive species costs hundreds of billions 

annually. Invasion is often conceptualized as a series of stages (Transport, Introduction, 

Establishment, and Spread), which encourages ecologists to isolate factors that might 

enable a species to pass from one stage to another and therefore guide prevention or 

impact management. This thesis addresses each stage of invasion and attempts to 

determine where management might succeed in preventing invasion or minimizing 

impacts. The transport and introduction of aquatic invasive species (AIS) was analyzed 

by conducting a three tier human subjects survey at Tenmile Lake, Oregon over a two 

year period in which a public boat wash station was built and installed. Assessing boater 

knowledge of AIS and understanding proper boat cleaning procedure is useful in 

determining the threat of transport and introduction as overland boater movements is a 

major vector of AIS. The comparison between pre- and post- boat wash surveys indicate 

that there is a disconnect between what boaters say they will do and how they actually 

behave. While 75.9% of boaters from the pre-survey claimed they would use a boat wash 

station at Tenmile Lake, only 38.5% of post-survey boaters were observed using the 

station. Furthermore, the surveys identified knowledge gaps of boater’s awareness of 

AIS. More than 20.0% of boaters surveyed could not verbally name any AIS. To better 

understand the establishment and spread stages of invasion, I examined the influence of a 

specific AIS, the New Zealand mud snail (Potamopyrgus antipodarum; NZMS), on 

benthic food webs throughout three very different aquatic ecosystems (lakes, rivers, and 
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estuaries). Samples of benthic lake, river, and estuarine invertebrates were collected, 

identified, and counted, and stable isotope analyses (SIA) were conducted on several 

components of the food web. NZMS densities were found to be dynamic, with population 

densities fluctuating over time and between locations. A significant negative relationship 

between NZMS density and community diversity across all ecosystems was found. 

However, the densities of specific feeding groups had varying positive (omnivores) and 

negative (herbivores) correlations with NZMS densities. Furthermore, SIA indicated that 

NZMS don’t appear to be competing with native macroinvertebrates for the same food 

source. NZMS were found to have different influences on each invaded ecosystem, thus 

management of this particular AIS is difficult once established and spreading. The results 

of this thesis suggest that prevention of the transport and introduction of NZMS needs to 

be the focus for future management. Preventative management should include public 

outreach regarding AIS and proper boat cleaning procedure, and management should also 

emphasize the need for regional policies and regulations on the transport of AIS rather 

than site or state specific policies and regulations.  
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Chapter 1: Background on vectors, establishment, effects, and prevention of aquatic 

invasive species  

Since humans have had the ability to travel across continents and over oceans, 

they have facilitated the expansion of species’ geographic boundaries via introductions 

for sport and fishing, the domestication of animals and plants, and accidental transport 

(Lodge et al. 2006, Loo et al. 2007a). The introduction of species that are not native to a 

region can lead to novel selection pressures that have not previously been observed 

(Mooney and Cleland 2001). Some systems are more vulnerable to invasion as the result 

of anthropogenic influences like land use change, as well as the invasibility of the 

introduced species and the resilience of the native species. Risk analysis for an ecosystem 

requires information on the invading species, vulnerability of habitats to invasion, 

modeled information on current and potential distributions, and the costs (ecological and 

economic) associated with containing (or failing to contain) harmful species (Stohlgren 

and Schnase 2006, Lodge et al. 2006). Invasion is often conceptualized as a series of 

stages, which encourages ecologists to conceive factors that might enable a species to 

pass from one stage to another and therefore guide management (Catford et al. 2009).  

 

Transport and Introduction of Aquatic Invasive Species (AIS)  

Aquatic systems are especially vulnerable to invasion as a result of rapid invasive 

species spread by means of highly-connected lake and river ecosystems (Kinlan and 

Gaines 2003, Bobeldyk et al. 2005, Peters and Lodge 2009). Non-native species 

introductions and rapid dispersal are often exacerbated by a variety of human-influenced 

drivers of global change, all of which are increasing in frequency including: globalization 

of commerce, engineering of waterways, land-use changes, climatic changes, and 
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fisheries management (Kolar and Lodge 2002). There are multiple vectors with varying 

degrees of intensity for the introduction of aquatic invasive species. It has been 

recognized that ballast water from commercial ships is a well-established vector for 

invasive species introductions (Grigorovich et al. 2003, Endresen et al. 2004). A 

significant source of aquatic invasions is also likely through the ornamental pet and plant 

trade by aquarists (Padilla and Williams 2004, Strecker et al. 2011).  Chapter 2 of my 

thesis focuses on overland movement of boaters between waterbodies, which is 

potentially the greatest pathway for dispersal for most aquatic species (Buchan and 

Padilla 1999, Johnson et al. 2001, Leung et al. 2006). 

 

Establishment and Spread 

 Invasions are dependent both on the receiving environment (the invasibility of the 

environment and the community) and on the ability of species to reach these new systems 

(Leung and Mandrak 2007). The probability of establishment of an introduced species 

increases as the frequency of introduction events and the number of individuals released 

(propagule pressure) increases (Kolar and Lodge 2001). Propagule pressure also 

increases with the condition or health of the individuals released and the resiliency of 

their released life stage (Smith et al. 1999, Lodge et al. 2006). The receiving environment 

may also facilitate establishment by providing empty niche space or an opportunity 

window after a disturbance event where the invaders can utilize spare resources 

(Leppäkoski and Olenin 2000, Paavola et al. 2005, Catford et al. 2009). Once established 

in a novel ecosystem, invasive species may spread freely without the constraint of their 

natural predators, competitors, parasites, and diseases that limit their population in its 

home range (Catford et al. 2009). Interactions like enemy release can facilitate invasions, 
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but it is still important for invasive species to be able to adapt quickly to their new 

environment and be reproductively flexible for successful spread (Kolar and Lodge 2001, 

Dybdahl and Kane 2005). If an invasive species has established and spread, the only 

stage managers and ecologists can now address is the harmful impact of the invasive 

species to the economy and the ecosystem.  

   

Economic and Ecological Impacts 

The expected economic damages associated with non-native invasive species and 

their control has been estimated at approximately $120 billion annually (Pimentel et al. 

2005). Much of this sum is attributed to the cost of controlling the density and the spread 

of these species due to the expectation that economic and ecological damages incurred 

from inaction are far more costly than preventative measures (Pimentel et al. 2005, 

Stohlgren and Schnase 2006). The establishment of invasive species is a leading cause of 

native species endangerment and extinction (Wilcove et al. 1998) and can lead to 

homogenized genetic and/or functional variation jeopardizing future resilience of 

biological communities by altering evolutionary trajectories (Olden et al. 2004). Without 

management, the populations of these invasive species grow and spread so that ecological 

and economic damages accelerate over time (Lodge et al. 2006). 

The influence of invasive species is often variable and dependent on the recipient 

community. Aquatic invasive predators have been observed to cause significant 

reductions in specific species as well as significant reductions in community richness, 

diversity, and abundance (Strecker et al. 2006, Herbst et al. 2009, Dick et al. 2012). 

Invasive predators not only reduce native populations within a community but they can 

also lead to extinctions (Rodda et al. 1997, Mooney and Cleland 2001). The influence of 
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invasive herbivores on native communities may be less direct but can also be substantial, 

altering the control of plant resources, thereby exerting bottom-up control on the flows of 

energy through invaded food webs (Carlsson et al. 2004, Moore et al. 2012). Invasive 

herbivores have the potential of inserting themselves into ecosystems and causing far-

reaching consequences.  

Although much research focuses on the negative effects of non-native invasions, 

not all impacts caused by invasive species introduction and establishment are negative. 

Facilitation of native species by non-native species is common, can occur in a wide range 

of habitats, and can strengthen native communities (Rodriguez 2006). Facilitative 

interactions of invasive species on native species can be both direct (habitat modification 

or trophic subsidy) or indirect (competitive release or predatory release) interactions 

(Rodriguez 2006). For example, invasive zebra mussel (Dressena polymorpha) colonies 

have been observed to enhance soft-sediment habitats creating refuge and food for native 

invertebrates resulting in 700% more settlement in these mussel colonies than 

neighboring mussel-free habitats (Bially and Macisaac 2000, Beekey et al. 2004). 

Similarly, the invasive New Zealand mud snail (Potamopyrgus antipodarum) may 

facilitate native young instar invertebrates that rely heavily on detritus as a food source, 

the New Zealand mud snail can improve the quality of available detritus by feeding on it 

and excreting it in a more digestible form (Schreiber et al. 2002).  Thus, the influence of 

invasive species is often subtle and highly dependent on the invaded community and 

habitat. 
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Methods for Studying Introductions and Impacts 

Studying human behavior can be a valuable tool for determining the risk of an 

invasion. Understanding the common practices of the communities most likely to 

disperse AIS (i.e., boaters), as well as their knowledge gaps pertaining to invasive species 

characteristics and dispersal, is essential for building more comprehensive management 

plans. Surveys have been valuable in identifying the vectors for invasive species dispersal 

and the knowledge gaps of the community regarding ecosystem health (Pergams and 

Zaradic 2008, Rothlisberger et al. 2010). 

In addition to understanding the propagule pressure of an invasive species, there 

are various methods to better understand the impacts invasive species can have on an 

ecosystem. Recently, stable carbon and nitrogen isotope ratios have been used to provide 

a better understanding of the effects of invasive species on aquatic food-webs. 

The ratio of the rarer and heavy less abundant stable carbon isotope (13C) to the 

more common carbon isotope (12C) in a given sample compared to the standard 

(limestone for carbon) is denoted as δ13C (Fry 2006). Different types of primary 

producers (C3, C4, and CAM) have different photosynthetic pathways that influence 

unique δ13C signatures. The δ13C value can be useful in determining the primary 

production source responsible for energy flow in the ecosystem as there is little or no 

enrichment in 13C between trophic levels (<1‰) (Vander Zanden and Rasmussen 1999, 

Fry 2006). In simpler terms, in regards to carbon isotopes, ‘you are what you eat’ (Fry 

2006). Conversely, the stable nitrogen isotope ratio δ15N can be used to estimate trophic 

position due to an enrichment of 15N (at ~3.4‰) in consumers relative to their prey 

(Vander Zanden and Rasmussen 1999, Fry 2006). The δ15N signature is the ratio of the 

rare and heavier stable isotope 15N to the more common14N in a given sample compared 
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to the standard (atmospheric N2 for nitrogen). Different consumers will have different 

δ13C signatures due to variances in diet and digestion during assimilation and metabolic 

processes, but these consumers may have very similar δ15N if they are at the same trophic 

level (Vander Zanden and Rasmussen 1999, McCutchan et al. 2003, Fry 2006).  

Using stable isotopes to determine trophic position and the energy flow of carbon 

(what is eating what) through the food web can show impacts that abiotic or biotic 

disturbance (like the establishment of an invasive species) may have on the food webs 

(Fry 2006). Stable isotope analyses along with quantitative analyses and understanding of 

the ecosystem can help provide a better understanding of the influence AIS can have on 

the invaded food web. 

 

Prevention  

To reduce establishment and spread of aquatic invasive species, multiple 

preventative measures need to be addressed including: better management of 

transportation pathways, more quantitative procedures for risk analysis, increased active 

surveillance and information sharing, and more funding for programs reducing the spread 

of existing invasive species (Lodge et al. 2006). It is important to understand that there 

are multiple steps and approaches to preventing biological invasions. Understanding the 

influence of distinct invasive species is important for reactive mitigation, but managing 

vectors rather than specific invasive species has shown to be a more effective proactive 

approach to controlling the spread of invasive species (Leung et al. 2006, Peters and 

Lodge 2009, Rothlisberger et al. 2010). Management also needs to be adaptive depending 

on the stage and severity of the invasion (Drury and Rothlisberger 2008, Stewart-Koster 

et al. 2015). Furthermore, providing the public information on the threat of invasive 
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species, how they can contribute to the control of invasive species spread, and pertinent 

laws and regulations regarding invasive species should be among the first steps in any 

management plan.  

The cost of reacting to an invasion and controlling spread is more expensive, not 

to mention more ecologically degrading, than preventative measures (Stohlgren and 

Schnase 2006, Lodge et al. 2006). Laws and regulations can be a highly effective tool 

preventing invasive species dispersal. However, effective local-scale prevention measures 

can be weakened by the lack of action at neighboring source habitats (Peters and Lodge 

2009, Stewart-Koster et al. 2015). For aquatic invasive species that can easily travel 

(naturally or with human assistance) across political boundaries like state lines or 

management districts, regional policies are necessary (Peters and Lodge 2009). Shifting 

management from individual species to vectors and using a regional council to guide 

proactive regulations as well as educational outreach is essential for controlling the 

dispersal and spread of aquatic invasive species.  

 

Thesis Objectives 

My thesis aims to provide new details on the effects of invasive species on native 

invertebrate communities, increase public awareness of AIS and proper boat cleaning 

procedure, and contribute to future conservation and management of native and novel 

ecosystems. More specifically, my thesis addresses: the information known about AIS 

dispersal and spread from one of their most common vectors, boaters (Chapter 2); and the 

influence of a particular AIS, the New Zealand mud snail, on native competitors like 

herbivores and detritivores, and how this invasive species may be influencing changes in 

native benthic food webs (Chapter 3).  To determine overland AIS transport and 
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introduction by boaters and their knowledge surrounding AIS and boat cleaning 

procedure, I conducted human subjects surveys at Tenmile Lake in Lakeside, Oregon. To 

complement the boater surveys and investigate the influence of an invasive species that 

has been introduced and is at various phases of establishment and spread, I conducted 

field sampling to define the influence of New Zealand mud snail invasion on benthic 

lake, river, and estuarine food webs. This research will provide valuable information for 

the science and management of AIS.  

  



 

 9 
 

Chapter 2: Developing an understanding of boater’s knowledge concerning aquatic 

invasive species and proper boat cleaning procedure 

 

Introduction 

The introduction and establishment of invasive species is second only to habitat 

loss as the leading cause of species endangerment and extinction (Wilcove et al. 1998). 

The successful management of aquatic invasive species (AIS) necessitates continual 

adaptation depending on the species, transportation vectors, and the stage at which the 

invasive species has spread. Models indicate that early in the invasion process the best 

way to protect uninvaded areas is to allocate resources to containing already invaded sites 

(Drury and Rothlisberger 2008). As an invasion progresses however, containment at the 

invaded sites should give way to the protection of uninvaded sites (Drury and 

Rothlisberger 2008). Determining the type of management needed involves estimating 

the suitability of the receiving habitat given the ecological niche of the invader and 

having an understanding of the connectivity of the managed habitat with other at risk or 

invaded habitats (Stewart-Koster et al. 2015). Studies on AIS spread have shown that the 

movement of recreational boaters between waterbodies is potentially the most important 

pathway of overland dispersal for the majority of aquatic organisms (Buchan and Padilla 

1999, Johnson et al. 2001, Leung et al. 2006, Vander Zanden and Olden 2008).  

In addition to using an adaptive management strategy, creating more public 

awareness of AIS and proper boat cleaning procedures may prove to be highly beneficial 

in reducing the transport and establishment of AIS. Recent studies suggest that managing 

vectors rather than focusing on specific invasive species is a more effective approach to 

controlling the spread of invasive species (Leung et al. 2006, Peters and Lodge 2009, 
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Rothlisberger et al. 2010). Visual inspection and hand removal can reduce the amount of 

invasive macrophytes on boats by 88% and high-pressure washing can remove small-

bodied organisms at an efficiency of 91% (Rothlisberger 2010). However, surveys have 

indicated that these simple boat cleaning procedures are only being performed by about 

one-third of the boating community (Rothlisberger et al. 2010), suggesting that there is a 

knowledge gap in proper boat cleaning procedure and potentially the harmful effects of 

AIS.  

Educational campaigns for the public are an increasingly important tool for 

creating awareness of AIS and how individuals can help control the spread of invasive 

species. Outreach can come in many forms including through laws and regulations, 

newsletters, signage at boat launches, as well as from investing in infrastructure, such as 

a public boat wash station. Educational campaigns aimed to motivate boaters to take 

responsibility for their own boat hygiene would likely be a relatively inexpensive way to 

save the public the expense of equipment and employees required to clean boats at check 

stations and boat ramps. However, self-reported data on cleaning rates and boater 

observations suggest that existing and previous education campaigns that have not been 

augmented with staff cleaning stations, enforcement, or fines have resulted in 

consistently low cleaning rates by boaters (Rothlisberger et al. 2010). Therefore, 

determining the effectiveness of educational outreach tools is important for future 

management. My study used interviews with boaters to determine the vulnerability of the 

system and the effectiveness of a new management tool, a free public boat wash station. 

With this knowledge, I aim to guide future educational outreach and management plans 

for AIS.  



 

 11 
 

This study draws on data from the results of human subjects surveys conducted 

both prior and following the installation of a public boat wash station. The objectives for 

this project were: 1) to determine the frequency in which boaters visited waterbodies and 

the traffic patterns of boater movement; 2) to ascertain boaters’ general knowledge of 

aquatic invasive species and proper boat cleaning procedure, as well as how they 

acquired their knowledge; 3) to measure the utilization and effectiveness of a public boat 

wash station; and 4) to establish an understanding of boaters’ knowledge on local laws 

and regulations.  

 

Methods 

Study Site 

Tenmile Lake is a large, shallow, and eutrophic freshwater lake on the Oregon 

Coast in Coos County. It is a popular spot for bass fishing and other recreation with 

nearly weekly fishing tournaments throughout the summer. Tenmile Lake is surrounded 

by many other popular recreational freshwater lakes and rivers as well as large estuarine 

bays (e.g., Winchester Bay, Coos Bay). The lake’s proximity to the ocean makes it a 

convenient destination for boaters wishing to back-flush, the process of running a boat’s 

motor in freshwater in order to wash out the salt or brackish water in the engine from the 

saline waterbody most recently boated. Tenmile Lake is a prime spot to passively observe 

and actively survey boaters traveling from within Oregon and those who are visiting from 

out of state because of the lake’s accessibility, recreational aspects, and its proximity to 

other waterbodies. Additionally, Tenmile Lake was chosen as the site for this research 

because a boat wash station was installed in the summer of 2013 at the primary public 

boat ramp of the lake. 
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Surveys 

In order to obtain a better understanding of boat traffic patterns and public 

awareness of invasive species, as well as proper boat-cleaning procedure, a human 

subjects survey at Tenmile Lake was conducted over the summers of 2012 and 2013. 

Boaters were surveyed prior to the installation of the boat-wash station in summer 2012 

(pre-boat wash survey, n = 199), as well as following the installation of the boat wash 

station in summer 2013 (post-boat wash survey, n = 200). The purpose of this 

management tool (the boat wash station) is to: 1) prevent invasive species from entering a 

waterbody; 2) contain invasive species already present in the waterbody from being 

transported elsewhere; 3) provide a free and efficient tool for cleaning motors after 

boating in salt water and before entering freshwater; and 4) increase public awareness of 

invasive species and proper boat cleaning procedure. These surveys were also useful in 

identifying knowledge of AIS and the willingness of boaters to use a free, voluntary boat 

wash station.  

The surveys were voluntarily submitted and all boaters received contact 

information verbally and through an informed consent form (Appendix A). The pre-boat 

wash installation surveys were collected on boaters’ knowledge of invasive species, their 

familiarity with proper boat cleaning procedure like the slogan “Clean, Drain, Dry”, and 

the patterns in boater movement to determine areas of frequent visit and common 

transportation routes (Appendix B). Post-boat wash installation surveys conducted 

(Appendix C) were similar to the pre-boat wash installation surveys, but also included 

observations on the pattern of boat wash station use. Both surveys were approved for 

human subject research by the Portland State University Institutional Review Board 
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(#122208). A three-tiered survey was implemented at Tenmile Lake, which included an 

observational survey, a short form boater survey, and an in-depth boater survey. The 

observational survey consisted of passive visual observations of the boater and their use 

of aquatic invasive species prevention techniques before entering Tenmile Lake and 

again while exiting Tenmile Lake. The observational portion of the survey was done prior 

to questioning in order to avoid biasing the behavior of the individuals participating in the 

survey.  

The short form boater survey consisted of quick, simple questions asked to the 

boater while exiting Tenmile Lake. Of the boaters observed and approached to partake in 

the survey, 67.3% participated in the short form boater survey. Short form boater survey 

questions included where and when the boater last boated, whether the boater was aware 

of state regulations and permits, whether the boater was aware of proper boat cleaning 

procedures, and their knowledge of aquatic invasive species (Appendix B, C). The short 

form boater surveys consisted of twelve questions and took approximately ten to fifteen 

minutes to complete. 

Of the boaters who completed the short form boater survey, 31.6% agreed to 

participate in a more in-depth boater survey, for an overall response rate of 21.3%. The 

in-depth boater survey asked the boater to elaborate on how aquatic invasive species 

(AIS) affect their on and off lake activities and where they learned about AIS. The in-

depth boater survey consisted of six questions and took an additional five to ten minutes 

to complete. All surveys were completed by the same researcher (S. Cimino). All survey 

answers were confidential. All questions and their responses can be found in Appendices 
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B-E; however, due to the great volume of questions only a select few that best 

represented the overarching themes of the paper were addressed below.  

 

Results 

Tenmile Lake Use 

The boaters at Tenmile Lake reported using the lake primarily for fishing and 

other recreational activities. Most boaters that use Tenmile Lake reported that they are 

frequent recreationalists, the majority boating more than twice a month (Figure 2.1). As 

would be expected, most of the boaters surveyed (pre-boat wash=75.9%, post-boat 

wash=69.0%) stated that they last came from waterbodies (freshwater and saltwater) that 

were within 50 kilometers traveling by road to Tenmile Lake (Figure 2.2); however, 3.0% 

of boaters who were surveyed also indicated that the last waterbody they boated at was 

beyond the Oregon state lines in places such as Shasta Lake, California, Snake River, 

Idaho, and Flathead Lake, Montana (Appendix D). Additionally, 9.5% of boaters 

surveyed at Tenmile Lake were observed to have boats registered to states other than 

Oregon (Appendix D).  

 

Boat Wash Station Use 

Of the pre-boat wash boaters surveyed, 75.9% of boaters claimed they would use 

a boat wash station at Tenmile Lake (Figure 2.3). After the boat wash station was 

installed, an amendment to the survey was made to include observations of whether or 

not boaters were using the boat wash station. The actual use of the boat wash station 

based on my observations during the post-boat wash survey was only 38.5% (Figure 2.3). 

Reasons reported for not planning to use or not using the boat wash station at Tenmile 
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Lake included: boaters would like better equipment at the station (pre-boat wash=45.8%, 

post-boat wash=39.7%), the station was inconvenient (pre-boat wash=16.7%, post-boat 

wash=27.8%), or boaters didn’t deem washing at a boat wash station necessary for their 

boating frequency or activities (pre-boat wash=33.3%, post-boat wash=30.2%; Appendix 

E). Only boaters who claimed they would not use the boat wash station in the pre-boat 

wash survey (n=48) and do not use the boat wash station in the post-boat wash survey 

(n=123) are represented in the survey questions regarding to the reasons why they would 

not or do not use the boat wash station.   

 

Knowledge of Aquatic Invasive Species and Relevant Regulations 

The aquatic invasive species (AIS) that surveyed boaters most frequently named 

was the zebra mussel (Dreissena polymorpha), where 44.7% of boaters in the pre-boat 

wash survey and 59.0% of boaters in the post-boat wash survey named this invasive 

species (Figure 2.4). Other commonly identified AIS included the New Zealand mud 

snail (Potamopyrgus antipodarum), hydrilla (Hydrilla verticallata), and rusty crayfish 

(Orconectes rusticus; Figure 2.4). However, the second most common answer to whether 

or not a surveyed boater could name an AIS was that they could not name any particular 

invasive species (Figure 2.4). In the pre-boat wash field season, 25.6% of boaters could 

not name an invasive species and in the post-boat wash field season 23.0% of boaters 

could not name an invasive species (Figure 2.4).  

Surveyed boaters were less informed in the post-boat wash survey (55.0%) 

compared to the pre-boat wash survey (69.0%) about the Oregon state law prohibiting the 

launching of a boat with invasive species attachment (Table 2.1). Conversely, surveyed 

boaters were more aware of the state regulations regarding the use and movement of bait 
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fish in the post-boat wash survey (82.0%) versus the pre-boat wash survey (63.0%; Table 

2.1). The awareness of the state regulation regarding the use and movement of crayfish 

changed only slightly from pre-boat wash survey (60.0%) to post-boat wash survey 

(62.0%; Table 2.1).  

 

Awareness of Educational Outreach 

A minority of surveyed boaters arriving at Tenmile Lake saw signage regarding 

aquatic invasive species (AIS) in both the pre-boat wash field season (25.1%) and the 

post-boat wash field season (31.5%). Even fewer boaters saw signage regarding AIS 

when leaving Tenmile Lake in both the pre-boat wash field season (5.5%) and post-boat 

wash field season (4.5%). However, the majority of boaters surveyed in both the pre-boat 

wash (63.3%) and post-boat wash (66.0%) field seasons were aware of the phrase “Clean, 

Drain, Dry” as an appropriate method to mitigate for AIS. Moreover, 44.7% of pre-boat 

wash boaters and 59.0% of the post boat wash boaters reported always practicing the 

“Clean, Drain, Dry” method. The majority of boaters unaware of the phrase “Clean, 

Drain, Dry” in the pre-boat wash season and post-boat wash season still reported 

practicing this cleaning method at least some of the time. See Appendix E for responses 

to additional survey questions.   

 

Discussion  

The pre-boat wash surveys and the post-boat wash surveys conducted at Tenmile 

Lake identified the type of recreationalists boating at Tenmile and their knowledge of 

AIS, proper boat cleaning procedures, and relevant boating and fishing laws and 

regulations. Most of the boaters’ surveyed had boats licensed in Oregon and primarily 
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boat locally within the state. However, numerous boaters surveyed boated in waterbodies 

outside of the state of Oregon immediately prior to boating at Tenmile Lake. Although 

most of the boaters’ surveyed report following the “Clean, Drain, and Dry” approach to 

wash their boats after use, they did not actually use the boat wash station at Tenmile 

Lake. This result is unique because most boaters indicated during the pre-boat wash 

survey that they would use the boat wash station once installed. The surveyed boaters 

revealed gaps in their knowledge of AIS as well as inconsistencies in their knowledge of 

proper boat cleaning procedure and state laws and regulations. Furthermore, signage 

regarding AIS at Tenmile Lake is being largely overlooked when arriving at the lake and 

even more so upon exiting the lake. More efforts need to focus on public outreach 

concerning the threats of current and future AIS to lake health and biodiversity as well as 

establishing more regional level laws and policies.  

 

Tenmile Lake Use 

The majority of boaters visited Tenmile Lake after boating in freshwater and 

saltwater waterbodies within 50 km of the lake (using road distance). In addition, the 

majority of these boaters are boating multiple times a month. Fishing is the most common 

activity of boaters surveyed at Tenmile Lake and it is becoming increasingly essential 

that fishermen are well educated on AIS identification and proper boat cleaning 

procedures. A greater investment in the environment and the protection of the 

environment will require a shift from current recreationalists’ choices and significant 

changes in these human behaviors (Kareiva 2008). Fishermen, who often participate in 

multiple different tournaments throughout the nation during peak fishing season, are 

likely the greatest vector of AIS spread (Buchan and Padilla 1999, Leung et al. 2006, 
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Vander Zanden and Olden 2008). Therefore, fishermen and other recreationalists’ 

behavior and choices must shift toward a greater investment in the environment, which 

may result in shorter fishing seasons and/or limited access to sites vulnerable to invasion 

and establishment. This shift towards environmental protection will likely result in short-

term economic costs but may be essential for long-term environmental benefits.  

 

Boat Wash Station Use 

Understanding the use of the boat wash station at Tenmile Lake should also 

provide a better understanding of recreationalists use and views of Tenmile Lake itself. 

Results from the two seasons of field surveys indicate that there was a disconnect 

between boater responses to the survey and boater behavior. In the pre-boat wash 

surveys, boaters were asked if they would be willing to use a boat wash station and 

75.9% said they would; however, in the post-boat wash surveys only 38.5% of surveyed 

boaters were actually observed using the washing station. Boaters appear to like the idea 

and the benefits of a healthy lake ecosystem, but they may not be inclined to change their 

daily routines. Pergams and Zaradic (2008) found that there has been a downtrend in 

nature-based recreation since the late 1980s, and a decline in wilderness and nature 

experience can lead to lower value being placed on nature (Kareiva 2008). Responses to 

why boaters are not using the Tenmile Lake boat wash station indicate that they support 

maintaining or promoting a healthy lake ecosystem, but their behavior may indicate they 

are not interested in actions that require more individual preparation and involvement that 

might limit access to parts of the lake. Similarly, mail-in boater surveys conducted by the 

Oregon State Marine Board indicate that in-state boaters support more education and 
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information regarding the maintenance of a healthy waterbody but are concerned with 

over-regulation and increased taxes and fines (Chan et al. 2014).  

It is worth considering that the post-boat wash surveys were administered within a 

month of the completion of the boat wash station and before the official opening. Perhaps 

with time, boaters will become more aware of the station’s existence and its efficacy for 

de-fouling boats. The plan for volunteers to work the station was also not put into effect 

by the time the post-boat wash surveys were completed. Observing the station’s use with 

volunteers present might provide an even greater understanding of boaters’ willingness to 

use the boat wash station.  Furthermore, boat wash station use was only recorded from 

surveyed boaters, and thus may not fully represent the boat wash station usage. My 

presence may have encouraged the surveyed boaters to use the boat wash station more 

than non-surveyed boaters, and therefore my estimates of boat wash station usage may be 

inflated. 

 

Knowledge of Laws and Regulations 

Despite boaters’ awareness of proper boat cleaning procedure, AIS have been 

spreading quickly and effectively in the United States (Loo et al. 2007a, McMahon 

2011).  In 2001, in response to the growing threat of invasive species to the state, the 

Oregon Invasive Species Council was created by the Oregon State Legislature (Reesman 

et al. 2012). Similarly, many other states have created their own councils to address the 

growing need of invasive species prevention. These councils have been effective at 

providing educational outreach and developing watercraft inspection programs. In 2015, 

the Washington Invasive Species Council reached more than 3,000 people through direct 

communication regarding the impacts of invasive species (Washington Invasive Species 
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Council 2015). Furthermore, Idaho’s “Invasive Species Watercraft Inspection Program” 

intercepted 105 vessels transporting zebra and/or quagga mussels from 2009-2013 (Idaho 

State Department of Agriculture 2014). However, Peters and Lodge (2009) found that 

inconsistencies among states concerning laws and regulations confuse consumers (in this 

case, boaters) and reduce the credibility of management agencies. A focus toward more 

regional and national regulations as well as international agreements need to be 

developed to govern the movement of potentially invasive species (Lodge et al. 2006, 

Drury and Rothlisberger 2008, Vander Zanden and Olden 2008).  

The majority of boaters surveyed were aware of Oregon’s state law that prohibits 

a boat from launching with an attached invasive species. However, awareness of this state 

law decreased by 14% from 2012 to 2013. The law passed by Oregon Legislature House 

Bill 2220 created an Aquatic Invasive Species Prevention Program and established a new 

user fee for boaters in 2009, the “Aquatic Invasive Species Prevention Permit” (Reesman 

et al. 2012). All licensed boats are paying this user fee, but since the law passed, boaters 

have appeared to become less aware of what this fee actually represents. However, 

boaters have shown continued awareness of the state regulations regarding the use and 

movement of bait fish and crayfish (Reesman et al. 2012) throughout the two year boater 

survey period.  

 

Awareness of Educational Outreach 

Through the information gathered from the boater surveys, a better understanding 

of recreationalists’ knowledge of AIS was developed. Case studies have shown that 

recreationalists have concerns for the environment but may not understand the vast range 

of ecosystem services provided by a healthy environment, such as clean water (Ryan 
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2005, Tilt et al. 2007, Kareiva 2008). Similarly, at Tenmile Lake most recreationalists 

were concerned with the health of the lake and especially the lakes’ fish populations. 

However, boaters were unaware of some of the major pressures threatening the health of 

the lake. The most noticeable lack of boater knowledge was in the verbal identification of 

AIS (Figure 2.4). After the zebra mussel (which has currently not been detected in 

Oregon), the second most common answer when asked to verbally identify AIS was that 

they could not name a single aquatic invasive species (Figure 2.4).  

At public boat ramps across the state of Oregon, signs have been posted with 

pictures of common AIS and information on how they can be transported via attachment 

to trailers and boats (Appendix F), as well as transportation of AIS by the process of 

back-flushing (Appendix F). The visibility of these signs at Tenmile Lake was low. 

Location of the signage being a substantial distance (approximately 30m) from the boat 

ramp (Appendix F) may be a leading contributor to such a small percentage of surveyed 

boaters claiming to have seen a sign entering or leaving the lake. In 2013, new signs were 

put up along the edges of the Tenmile Lake boat ramp warning boaters about the 

illegality of back-flushing their motors (Appendix F), but this sign only mentions the risk 

of transporting invasive species in small print. Better use of signage at boat docks and 

marinas may have considerable ecological benefits. In a 2014 mail-in survey, 55.0% of 

boaters in Oregon indicated that they prefer getting information about boating issues 

through posters or signs, which was the second most common answer given after the 

preference of getting information from the internet at 70.0% (Chan et al. 2014). Signs can 

be an effective educational outreach tool but they need to be more visible and easier to 

read.  
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Conclusion 

By obtaining recreationalists’ knowledge of AIS, laws and regulations, and proper 

boat cleaning procedures through human subjects surveys, local, state, and federal 

managers can collaborate to adapt the current AIS policies and move forward in future 

management plans. However, the survey administered provides only a snapshot of boater 

knowledge and only reflects a subset of the community’s awareness of AIS, laws and 

regulations, and proper boat cleaning practices. Moreover, visual representations through 

the use of pictures of common AIS while interviewing boaters may prove to be a more 

useful technique to gage local and recreational knowledge of invasive species.  

The majority of boaters were familiar with state laws and regulations regarding 

AIS, but as boaters continue to venture across state borders, more specific regional or 

federal laws and regulations are necessary to prevent invasion and control spread. 

Without regional laws concerning AIS transport, the current lack of usage of the free boat 

wash station at Tenmile Lake is a concern. Adding volunteers to the boat wash station to 

assist boaters and provide information on the spread of AIS and specific species of 

concern could be an effective method to encourage more boat wash station use while 

increasing boater knowledge. Additionally, AIS signage at Tenmile Lake needs to be 

bigger and closer to the boat ramp.  

The Tenmile Lake boat wash station aims to prevent outside AIS from entering 

the lake, contain present invasive species, provide a safe and effective tool for boat 

flushing, and increase public awareness. These goals are not unique to Tenmile Lake, but 

a free public boat wash station is unique to Oregon. Innovative techniques or tools like 

the boat wash station to reduce AIS introductions and increase public knowledge of AIS 



 

 23 
 

threats may be essential to future management. Much of the estimated cost associated 

with the economic and ecological damages inflicted by invasive species is controlling the 

density and spread of already established invasive species (Pimentel et al. 2005, 

Stohlgren and Schnase 2006). Thus, the successful management of AIS necessitates a 

focus on the transportation and introduction of AIS using tools like boat wash stations, 

educational outreach, and regional laws and regulations. 
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Tables and Figures Chapter 2 

 

Table 2.1: The percentage of boaters surveyed aware of Oregon State laws and 
regulations regarding aquatic invasive species.  

Survey Questions Pre-boat wash  Post-boat wash 
  (n=199)  (n=200)  

 Yes No Yes No 
Aware of state law that prohibits launching a boat 
with invasive species on it? 69% 31% 55% 45% 

Aware of state regulations regarding the use and 
movement of bait fish? 63% 37% 82% 18% 

Aware of state regulations regarding crayfish use 
and movement? 60% 40% 62% 38% 
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Figure 2.1: The number of days since the surveyed participant last put their boat in a 
waterbody from the pre-boat wash data collected in 2012 (n=199) and post-boat wash 
data collected in 2013 (n=200). 
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Figure 2.2: The road distance of water bodies (kilometers) surveyed boaters last came 
from. Symbols as in Figure 2.1.  
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Figure 2.3: The percentage of boaters claiming they would use a boat wash station in the 
pre-boat wash survey, and the percentage of boaters who were observed using the boat 
wash station in the post-boat wash survey.  
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Figure 2.4: The percentage of boaters surveyed who named specific aquatic invasive 
species when asked what aquatic invasive species they were aware of.  Symbols as in 
Figure 2.1.  
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Chapter 3: The influence of New Zealand mud snail in benthic freshwater and 

brackish water ecosystems in the Pacific Northwest 

 
 

Introduction 

 Invasive species can compete with native taxa to drive ecological changes such as 

niche displacement or even extinction (Mooney and Cleland 2001, Schreiber et al. 2002, 

Carlsson et al. 2004). These ecological changes may include alterations in the distribution 

and abundance of native species and changes in the feeding habit or diet of native species 

(Byers 2000, Carlsson et al. 2004, Brenneis et al. 2010, Moore et al. 2012). However, 

many studies have also shown invasive species to facilitate native species by providing 

food, shelter, and in some instances predator release (Schreiber et al. 2002, Beekey et al. 

2004, Rodriguez 2006). The influence of an invasive species on a community is highly 

variable and dependent both on the vulnerability of the native community and the 

invasibility of the ecosystem (Leung and Mandrak 2007). 

 The New Zealand mud snail (Potamopyrgus antipodarum; NZMS) is an invasive 

grazing herbivore and detritivore (i.e., generalist feeder) that utilizes the same food 

source as many native macroinvertebrates (Zaranko et al. 1997, Kerans et al. 2005). New 

Zealand mud snails are an aquatic invasive species (AIS) of concern because once 

established, they may out-compete native invertebrate grazers such as insect larvae that 

provide an important food source for salmon and trout species, whereas the NZMS 

themselves provide little nutritional value (McCarter 1986, Hall et al. 2006). However, 

Brenneis et al (2010) concluded that even at high densities in estuaries there was minimal 

competition and no obvious negative impacts between the NZMS and a native foraging 

isopod. The long-term ecological effects of the NZMS on invaded aquatic communities is 
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expected to be significant (Kerans et al. 2005) because NZMS can reach high densities, 

reducing niche space for native competitors (Dorgelo 1987, Richards et al. 2004). In 

general snails are important links between primary producers and higher order consumers 

in aquatic ecosystems (Hawkins and Furnish 1987, Feminella and Hawkins 1995). 

Furthermore, the NZMS is found in a variety of different aquatic ecosystems and thus 

their influence on native communities may vary greatly depending on the system. A more 

thorough investigation on the invasion of NZMS on these varying ecosystems is 

necessary to gain a better understanding of their influence on benthic food webs.   

 The New Zealand mud snail has been known to invade brackish estuaries, 

freshwater rivers, and freshwater lakes. These ecosystems, though very different, are all 

popular among boaters and anglers who are likely the most important vectors of AIS 

spread (Buchan and Padilla 1999, Leung et al. 2006, Loo et al. 2007b, Vander Zanden 

and Olden 2008). NZMS were first discovered in the United States in the Snake River, 

Idaho in 1987 (Bowler 1991). Within the first ten years, they colonized more than 640 

km of the Snake River and spread across the North American continental divide (Zaranko 

et al. 1997). NZMS can spread actively upstream up to 1 km∙year-1 (Loo et al. 2007b) and 

float passively downstream independently or attached to vegetation (Kerans et al. 2005). 

Additionally, they can be transported by fish species, passing live through the fish’s 

digestive tract (McCarter 1986, Vinson and Baker 2008, Brenneis et al. 2011).  

 The ability to establish in a new system is equally as important as the ability to 

spread. The term invasibility is used to describe the necessary environmental conditions 

suitable for the persistence (i.e., survival and reproduction) of an invasive species (Leung 

and Mandrak 2007, Crooks et al. 2011). NZMS are tolerant of a wide range of abiotic 
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conditions (Jacobsen and Forbes 1997, Zaranko et al. 1997, Dybdahl and Kane 2005). 

Their densities do not show evidence of declining until temperatures exceed 28°C, and 

they have been known to reproduce at temperatures > 24°C in an environment without 

limiting factors such as a lack of food or space (Dybdahl and Kane 2005). Furthermore, 

the presence of an operculum allows the NZMS to resist desiccation, which is beneficial 

for overland dispersal, but the operculum also allows the typically freshwater NZMS to 

tolerate and even thrive in brackish environments with salinity levels as high as 15 psu 

(Alonso and Castro-Díez 2008). Along with a high tolerance of abiotic factors, NZMS 

are unique in that they reproduce primarily by parthenogenesis (Wallace 1992). Sexual 

reproduction can occur but is very rare, especially outside of New Zealand (Dybdahl and 

Lively 1995). Instead, asexual females develop eggs that can grow without fertilization; 

therefore, one female is sufficient to initiate a new population (Wallace 1992). This 

reproductive characteristic allows NZMS to establish quickly.  

 Densities of NZMS in invaded communities have been measured at levels as high 

as 800,000 individuals∙m-2 (Dorgelo 1987, Kerans et al. 2005). Densities have typically 

been greatest in systems with high primary productivity, constant temperatures, and 

constant flow rates, with peak densities in the summer (Richards et al. 2001). At these 

high densities, NZMS are capable of consuming large volumes of algae and detritus, 

potentially competing with native benthic freshwater herbivores and detritivores, 

reducing their biomass production (Hall et al. 2006). Moore et al. (2012) observed that 

benthic invertebrates competing with a high density NZMS population changed their 

diets from their preferred food source of periphyton to detritus as a result of competitive 

exclusion, switching from a specialized feeding habit to a more generalized feeding habit. 
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 My study is unique in addressing both applied and basic ecological questions 

related to the influence of the NZMS throughout three aquatic ecosystems that vary 

greatly in biological and environmental characteristics. Studies have examined NZMS 

population dynamics and their influence on food webs in different freshwater and 

brackish ecosystems (Hall et al. 2006, Bersine et al. 2008, Brenneis et al. 2011, Moore et 

al. 2012); however, no one has looked at NZMS population dynamics and their influence 

on native food webs simultaneously across multiple ecosystem types (rivers, lakes, and 

estuaries). Critically, NZMS may have unique impacts in different ecosystems, as well as 

responding differently to environmental variables. Further, studies of NZMS population 

dynamic have typically observed only one site over an extended time period or compared 

very similar sites of differing NZMS densities within the same ecosystem and thus did 

not compare the effects of a NZMS invasion in different systems. Studying NZMS 

simultaneously across these diverse aquatic ecosystems may also broaden the gradient of 

densities and environmental conditions, allowing observation of effects that may only be 

noticeable at the extremes of the gradients. A better understanding of NZMS population 

dynamics in these three different ecosystems may be critical in determining where 

management and mitigation efforts are most needed especially in areas like the Oregon 

coast where the NZMS is easily transported between all of these ecosystems. The specific 

objectives of this study include: (1) Describing how the density of NZMS differs across 

invaded sites in estuaries, rivers, and lakes, how these densities vary over time, and what 

factors control density; and (2) Investigating the influence of NZMS density and 

establishment on community diversity, macroinvertebrate feeding groups (i.e., 

herbivores, omnivores, etc.), and benthic food webs using stable isotope analyses. 
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 I hypothesized that NZMS densities would have a negative relationship with the 

benthic invertebrate community’s diversity and with densities of competing benthic 

invertebrate feeding groups when environmental conditions are suitable for introduction 

and establishment. Diversity is predicted to be lower where NZMS density is higher 

because systems with available niche space (potentially due to degradation or harsh 

environmental conditions) accumulate more invaders than less-impacted systems with 

limited niche space (Paavola et al. 2005). Additionally, biological invasions have been 

shown to alter the properties of invaded habitats, decrease biodiversity, and induce biotic 

homogenization (Kolar and Lodge 2001, Alonso and Castro-Díez 2008, Crooks et al. 

2011). I also hypothesized that an increase in NZMS density will be negatively correlated 

with native competitors’ densities. Invasive herbivores have been observed to diminish, 

and in some cases eliminate, native species through competitive exclusion (Byers 2000, 

Mooney and Cleland 2001, Hall et al. 2006). Furthermore, I hypothesized that at high 

densities, NZMS would out-compete native invertebrates of the same feeding niche, thus 

forcing the native competitors into more generalized diets. Moore et al. (2012) observed 

such niche shifts of competing native invertebrates in freshwater streams when NZMS 

were at high densities, but not in streams with low or absent NZMS densities. Lastly, I 

hypothesized that NZMS will fill different feeding niches (i.e., detritivore or herbivore) 

when at high densities compared to low densities. New Zealand mud snails can 

significantly alter community dynamics when present at high densities by altering the 

competing invertebrates’ biotic interactions within the community and their resource-

consumer dynamics, thus creating an Eltonian niche shift (Elton 1927, Soberón 2007, 

Larson et al. 2010). 
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Methods 

Study Sites 

 To address the first objective, a long-term monitoring study was performed at 

upstream and downstream reaches of four rivers (John Day River, Umpqua River, 

Siuslaw River, and Deschutes River) and one estuary (Columbia River Estuary at Youngs 

Bay) in Oregon at various times from the summer 2006 to winter 2008 (Figure 3.1). Two 

of these rivers had documented NZMS presence as of 2006 (Table 3.1). Rivers in 

adjacent watersheds without reported NZMS were selected for comparison of community 

structure and abiotic variables. The estuary and river sites were again re-sampled in 

summer 2012 to look for changes in population densities, as well as the potential spread 

of NZMS (Figure 3.1). Further investigations were performed at some sites in winter 

2013 to conclude the temporal sampling (Table 3.1). The long-term monitoring project on 

NZMS was designed by Dr. Valance Brenneis, and data collection and analysis during 

this period were also performed by Dr. Brenneis. Within each river reach, four sub-sites 

were selected based on accessibility. When access sites (e.g., boat ramps or 

campgrounds) were abundant, sampling sub-sites were spread out (one site per access 

point). When access was sparse, multiple sub-sites were located at one access point; 

efforts were made to locate the sampling sub-sites as far apart as possible.  

 To complement the long-term monitoring study and to investigate specific aspects 

of NZMS invasion in a variety of ecosystems, five new brackish estuaries and six new 

freshwater coastal lakes were sampled in the summer of 2013, as well as a repeat 

sampling of the Columbia River Estuary at Youngs Bay (Figure 3.1; Table 3.1). All 

coastal freshwater lakes in Oregon with reported NZMS sightings (as of summer 2013; 
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USGS 2015) were selected for this study: Coffenbury Lake, Lake Lytle, Devils Lake 

(Lincoln County), and Garrison Lake. Three other brackish water estuaries with reported 

NZMS sightings were also sampled: Tillamook River Estuary, Yaquina River Estuary, 

and the Lower Rogue River Estuary.  In addition, two freshwater coastal lakes and two 

estuaries without known NZMS presence were sampled as controls: Cullaby Lake, 

Mercer Lake, Nestucca River Estuary, and Coquille River Estuary (Figure 3.1). 

 At each estuarine site, exposed shoreline locations were selected adjacent to boat 

access ramps.  Within each site, six sub-sites were sampled. Five of the estuarine sub-

sites were in exposed mudflats or rocky shoreline and one sub-site was pelagic (water-

column) and deep-water benthic (Table 3.1). Within each lake there were also six 

sampling sub-sites. One benthic sampling sub-site was selected near a public boat ramp 

and then the lake perimeter was divided into four more sections and one benthic sub-site 

was chosen in each section to best characterize the lake along with one pelagic sub-site 

(Table 3.1). When diverse habitats were present in estuaries and lakes (macrophyte 

stands, bedrock, cobble, riffle, run) an effort was made to sample across all habitat types 

to incorporate the maximum amount of diversity present at each site. Sampling protocols 

remained the same from 2006-2013.  

 

Sampling Method  

 The quantitative sampling method used for the lake and river sites was modified 

from the Oregon Department of Environmental Quality protocols for wadeable streams 

(ODEQ 2004a). Benthic invertebrates were sampled in littoral lake and riverine sub-sites 

by disturbing a fixed area (0.743 m2) of substrate with a D-net (250-m mesh size) 

(Appendix G).  When large rocks were present in the sample grid, they were scraped to 
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remove invertebrates. When aquatic vegetation was present, the D-net was swept over the 

grid area several times. The spacing between grids within a sub-site ranged between 5 

and 20 m. All grids per sub-site were pooled into a bucket and then poured through a 

250-m sieve, and preserved at a final concentration of 70% ethanol.  

 Sampling of the exposed mudflats and rocky shoreline of the estuarine sites was 

performed using a circular PVC ring (0.073 m2 in area, 30.5-cm diameter, created by 

sawing off the top of a 5-gallon bucket). The sampling ring was placed at 5 different sub-

sites within the accessible and exposed intertidal zone at low tide (0.365-m2 total area 

sampled), incorporating cobble and mud substrate at each estuary. The distance between 

sampling sub-sites was determined using a random number generator between 1 and 10 

and pacing out the distance of the number generated. A spade was used to dig to 2-cm 

depth within the 30.5-cm core benthic ring. Any large rocks within the core ring were 

scraped and cleaned for invertebrates and the entire sub-site sample was then pooled in a 

5-gallon bucket. All material collected was then sifted through using a 250-μm sieve. 

Macroinvertebrates captured were preserved at a final concentration of 70% ethanol. 

Samples for stable isotope analyses (described below) were collected using the same 

methods as the quantitative sampling methods described above with the addition of using 

an Ekman grab to collect a benthic profundal sample for stable isotope analysis at each 

coastal lake and estuary.  

 Samples of aquatic vegetation from the lake, river, and estuary sites were collected 

from each sub-site and placed in Ziploc bags and frozen for subsequent stable isotope 

analysis. Periphyton and phytoplankton samples were also collected for stable isotope 

analysis at each sub-site by brushing periphyton off rocks and other smooth surfaces and 
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using a Van Dorn to collect phytoplankton in the pelagic water column. The periphyton 

slurry was filtered on to 25-mm Whatman glass microfiber filter papers with 0.7-µm pore 

size (Whatman International Ltd., Maidstone, England) using a BD 60-mL syringe (BD, 

Franklin Lakes, NJ). Phytoplankton was filtered on to 47-mm glass microfiber filter 

papers with 0.7-µm pore size (Whatman International Ltd., Maidstone, England) and 

filtered using a Nalgene filter and pump. Both periphyton and phytoplankton samples 

were wrapped in tinfoil, put in Ziploc bags, and flash frozen using dry ice. Zooplankton 

sampled at the pelagic site were collected with a horizontally towed 250-μm plankton net 

(diameter = 30 cm) and preserved at a final concentration of 70% ethanol. Baited minnow 

traps were used at each sub-site to catch secondary invertebrate consumers like crayfish, 

which were then preserved at a final concentration of 70% ethanol. In the estuaries, 

minnow traps were used during higher tide and at depths that were still submerged during 

low tide for collection of secondary consumers.  

 In situ measurements of abiotic conditions using a YSI ProPlus (Yellow Springs, 

OH) included measurements at 1-m intervals for specific conductance (μS·cm-1), 

dissolved oxygen (mg·L-1), pH, and temperature (°C) in lakes, and surface measurements 

in rivers and estuaries (Table 3.2). A Secchi disc was used to determine water clarity. 

Rapid observational environmental assessments were also conducted at each site and sub-

site including relative wind and sky clarity assessment, shoreline/bank assessment, 

substrate, types of riparian vegetation and emergent macrophytes, and any key 

environmental or anthropogenic characteristics. Research was conducted on NOAA 

Scientific Permit #17879.  
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Sample Processing 

 For quantitative macroinvertebrate samples, I used the Caton subsampling 

apparatus, which consists of a standardized gridded screen (370-μm opening) and a tray 

(Caton 1991). Each sample from a sub-site was emptied and washed onto the Caton 

gridded screen making sure to spread the sample contents evenly across the screen 

(Blackwood 2007). Macroinvertebrates ≥1.3 cm in length that occur in four or fewer 

grids were noted and included in the subsample (Blackwood 2007). A random number 

generator was used to select at least 12.5% of the gridded screen (with 24 grids, 3 grids 

were chosen) for subsampling. At least 300 and no more than 500 organisms had to be 

present within the three grids; if less than 300 specimens were counted, another grid was 

randomly selected for sampling (Blackwood 2007). There was never a case where more 

than 500 organisms were present in the three randomly selected Caton tray grids. After 

subsampling, counts for each taxa were multiplied by the fraction of sample not 

contained in the chosen grids to provide an approximate count of the entire sample and 

scaled to the sampled area.  

 A Leica MI65C microscope and IC80HD camera (Leica Microsystems Inc., 

Buffalo Grove, IL) was used to identify macroinvertebrate, mosses, and macrophyte 

samples with the following taxonomic identification guides (Smith 2001, Voshell and 

Reese 2002, Merritt et al. 2008, Thorp and Covich 2010). Once taxonomically identified 

(usually to family or genus), macroinvertebrates were grouped into functional feeding 

groups (herbivores, detritivores, predators, omnivores, collector-filterers, and collector-

gatherers) based on the classification of Barbour et al. (1999), Voshell and Reese (2002), 

Poff et al. (2006), and Bob Wisseman (personal communication 2015). Macrophytes and 

mosses were also categorized into groups primarily by how they photosynthesize (C3 
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plants, C4 plants, CAM plants) and location of photosynthesis (pelagic, littoral, and 

terrestrial leaf litter). Primary producer groups were determined using various published 

keys and reports (Van et al. 1976, Anton Hough and Wetzel 1977, Degroote and 

Kennedy 1977, Aiken et al. 1979, Keeley 1981, Longstreth 1989, Curtis et al. 1990, 

Frost-Christensen and Sand-Jensen 1995, Stribling and Cornwell 1997, Pagano and Titus 

2004, Liu and Wang 2006, Bruhl and Wilson 2007, Minckley et al. 2009, Sage et al. 

2011, Xu et al. 2013). 

 Stable carbon (C) and nitrogen (N) isotope ratios can be used to provide a better 

understanding of the effects of invasive species on aquatic food-webs. The stable carbon 

isotope ratio (δ13C) can be useful in determining the primary production source 

responsible for energy flow in the ecosystem, and the stable nitrogen isotope ratio (δ15N) 

can be used to estimate trophic position (Fry 2006). Stable isotope analyses of nitrogen 

and carbon were performed on preserved invertebrate, macrophyte, algal, and terrestrial 

leaf litter samples. Leaf litter can be an important pathway for macroinvertebrates like 

detritivores to get nutrients. Collected SIA samples were dried at 60°C for 24 to 48 hours 

until a constant dry weight was achieved and homogenized with a mortar and pestle. A 

total of 1 mg (±0.2 mg) of dry weight for individual invertebrate samples and a total of 3-

5 mg of dry weight for individual primary producer samples were enclosed in tin 

capsules, placed in a 96-well tray, and kept dry in a desiccator (UC Davis Stable Isotope 

Facility 2013). All samples were then analyzed for δ15N and δ13C using a PDZ Europa 

ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass 

spectrometer (Sercon Ltd., Cheshire, UK) at the UC Davis Stable Isotope Facility. The 

facility expresses measuring error as the long-term standard deviation of 0.2‰ δ13C and 
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0.3‰ δ15N. All benthic invertebrate samples were preserved in 70% ethanol and this 

preservation process can alter isotopic signatures. To correct for alteration of isotopic 

signatures, a constant adjustment factor was used, subtracting 0.39‰ from δ15N and 

1.18‰ from δ13C (Ventura and Jeppesen 2009). 

 

Statistics 

 The densities of NZMS and macroinvertebrate feeding groups from each sampling 

site were calculated to obtain average density. Densities were log transformed (log10(x) 

+1) to achieve normality. The assumption of normality was tested using the Shapiro-Wilk 

test and histograms and boxplots were used to visually observe normality. A one-way 

ANOVA with Tukey HSD post hoc test was conducted to test for differences between 

densities of NZMS between different systems (lake, river, and estuary). 

 For all sites and sampling dates, a Pearson’s correlation was used to determine the 

relationship between the average NZMS density and average alpha diversity using the 

Shannon-Weiner diversity index 𝐻′ = − ∑ 𝜌𝑖𝑙𝑛𝜌𝑖
𝑅
𝑖=1 , where 𝜌𝑖= is the fraction of 

individuals in a random sample that represent species i (Gotelli and Ellison 2004). All 

sites were used to help determine if the presence and density of NZMS influenced 

diversity. Thus, both upstream and downstream sites of river systems were treated as 

independent replicates based on spatial distance of sampling sites, elevation differences, 

and substrate differences (Appendix H). Samples taken from 2006-2008 and from 2012-

2013 (averaged within time period) were also treated as independent based on the time 

gap between sampling events (summer 2008 - summer 2012). I also analyzed the 

correlation between the density of NZMS and the density of individuals in specific 

feeding groups (herbivores, detritivores, omnivores, and predators) in the recipient 
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community using Pearson’s correlation. Herbivores, detritivores, and omnivores were 

deemed to be the most likely to compete for food sources with NZMS (Zaranko et al. 

1997, Kerans et al. 2005) and predators were included because invasive species have 

been observed to facilitate predator densities (Rodriguez 2006). Analyses were performed 

using the basic R package version 3.0.1 (R Core Team 2013). 

 Correlations between NZMS densities and environmental variables (specific 

conductance, dissolved oxygen, pH, and temperature) and variables representing 

propagule pressure (boat use days and trips) were examined using principal component 

analysis (PCA). Boat use days is a count of the number of boaters on a particular 

waterbody in a year (Oregon State Marine Board 2009). Trips is defined as leaving a 

residence to go boating at a waterbody; therefore, boaters living at a particular waterbody 

are not included in the trips count when boating at their home waterbody (Oregon State 

Marine Board 2009). Like the correlation analyses described above, both upstream and 

downstream sites, as well as both time periods were treated as independent replicates and 

used for PCA analysis.  

 Understanding the variables that influence macroinvertebrate diversity as well as 

NZMS density may indicate which ecosystems are most susceptible to the establishment 

of invasive species (Paavola et al. 2005). Regression trees are an appropriate tool for 

testing the variables that best describe NZMS density and community diversity because 

they are able to detect and reveal interactions in the data set, they are not affected by 

outliers, and regression trees can identify a reduced set of important variables from a 

large number of submitted variables (Olden et al. 2008). Regression trees used the same 

set of variables as PCA to predict which variables best define NZMS density and 
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macroinvertebrate community diversity (H’). A regression tree was run using R version 

3.0.1 (R Core Team 2013) with the “tree” library, and PCA was run using the “MASS” 

and “vegan” libraries in R version 3.0.1 (R Core Team 2013). 

To obtain a better understanding of how NZMS may be influencing or altering 

feeding habits in the benthic food web, the δ13C and δ15N signatures of sampled benthic 

taxa at each site were examined (Appendix I). When comparing from ecosystem to 

ecosystem, the δ13C and δ15N of an organism alone provides little information about its 

absolute trophic position or ultimate source of carbon because there is considerable 

variation among ecosystems (Post 2002); therefore, I obtained an isotopic baseline to 

estimate trophic position in each ecosystem. I used an equation derived from Post (2002) 

to determine an isotopic baseline that allowed for comparison between ecosystems where 

consumers acquire nitrogen from benthic food webs without pelagic influence: trophic 

position = λ + (δ15N secondary consumer - δ15N base)/Δn, where λ is the trophic position of the 

organism used to estimate δ15N base (e.g., λ = 1 for primary producers), δ15N secondary consumer 

(δ15N sc, or any higher consumer) is measured directly, and Δn is the enrichment in δ15N 

per trophic level or 3.4‰. Organisms used as baselines for most sites were bivalve 

collector-filterers, which are typically long-lived primary consumers with tissue that is 

not very sensitive to short-term seasonal fluctuations in nutrients (Cabana and Rasmussen 

1996, Post 2002). For sites absent of collector-filterers, other collector-gatherer taxa were 

used as the baseline organisms.  

In order to examine potential competition between NZMS and native 

macroinvertebrates, I determined the amount of overlap in the feeding ranges of feeding 

groups (detritivore, herbivore, and omnivore) and NZMS using stable isotope analyses. I 
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also examined the amount of overlap in the feeding ranges of predators and NZMS. 

Convex hulls can be used to represent the total extent of a feeding group’s trait space or 

niche space (Cornwell et al. 2006, Layman et al. 2007). Convex hulls were created within 

each feeding group’s scatter plot depicting the feeding range of individuals from a certain 

sampling location (at least 3 individuals were required to create the convex hull). 

Separate convex hulls of NZMS feeding range were also created for each site in which 

NZMS were present, which were overlaid with feeding group convex hulls (Appendix J), 

allowing measurement of the percent of overlap between the feeding ranges. The area of 

the hull was measured using the program ImageJ and scaled to the maximum feeding 

range value. These percentages were related to log-transformed NZMS densities of the 

same sampling location with Pearson’s correlation. A one-way ANOVA with Tukey 

HSD post hoc test was conducted to test for significant differences in the amount of 

trophic overlap shared between NZMS the different feeding groups. The ranges created 

by the convex hulls were produced in the “basic” R library version 3.0.1 (R Core Team 

2013) and correlation analyses were performed with the libraries “ggplot2” in R version 

3.0.1 (R Core Team 2013). 

 

Results 

 This study revealed some dramatic changes in NZMS densities over time as well as 

new detections at previously undetected sites. Notably, NZMS were detected for the first 

time in the lower Siuslaw River at the Tiernan boat ramp in summer 2012 and in the 

Nestucca River Estuary in summer 2013 (Figure 3.2). Conversely, the densities of NZMS 

at the Umpqua River downstream sites appeared to have declined over the seven year 

sampling period from ~3,200 NZMS·m-2 to ~30 NZMS·m-2 (Figure 3.2). The Deschutes 
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River upstream sites had consistently low NZMS densities with a slight upward trend 

over the study period (Figure 3.2). NZMS densities remained high in Youngs Bay 

throughout the sampling period, with values averaging around 10,000 NZMS·m-2 (Figure 

3.2). There were no or few detections of NZMS at the upstream and downstream reaches 

of the John Day River, Siuslaw River upstream, Umpqua River upstream, and the 

Deschutes River downstream (average <2 NZMS·m-2) sites during every sampling period 

(see Appendix K for densities).  

  NZMS densities varied greatly across lakes, rivers, and estuaries (Figure 3.3). 

Estuaries on average had the greatest densities of NZMS followed by lakes, and then 

rivers (Figure 3.3). There was a significant difference in NZMS densities between 

ecosystems (F=10.16, p=0.002): a Tukey HSD test determined that the main difference 

occurred between river and estuary sites (p=0.001; Figure 3.3).  No significant 

differences in NZMS densities were found between lake and estuary sites (p=0.332). 

River and lake sites had nearly significantly different NZMS densities (p=0.079).   

 There was a wide range of macroinvertebrate species diversity among the sites: the 

lowest diversity averaged over time was H’=0.46 (Siuslaw River downstream 2006-

2008), whereas the highest alpha diversity was H’=2.40 (John Day River downstream 

2012; Figure 3.4). Within each system (lakes, rivers, or estuaries), there was no 

significant correlation between NZMS densities and the macroinvertebrate diversity 

(lakes r=-0.422, n=6, p=0.404; estuaries r=-0.396, n=7, p=0.379; rivers r=-0.273, n=16, 

p=0.307; Figure 3.4). However, across all sites, systems, and sampling periods there was 

a significant negative correlation between NZMS density and the diversity of the benthic 

invertebrate community (r= -0.476, n=29, p=0.009; Figure 3.4).  
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 At all sampled sites, there was a modestly significant negative correlation between 

NZMS densities and the densities of herbivores (r = -0.366, n=29, p= 0.051) (Figure 

3.5a). Conversely, there was a significant positive correlation between NZMS densities 

and the densities of omnivores (r = 0.393, n=29, p = 0.035; Figure 3.5d). However, 

detritivore densities (r = 0.205, n= 29, p= 0.286) and predator densities (r = 0.279, n= 29, 

p =0.144) had no significant correlations with NZMS densities (Figure 3.5b, c).  

 A Principal Components Analysis (PCA) was performed for all sampling sites to 

indicate which environmental factors and propagule pressures correlate with NZMS 

densities in each of these distinct ecosystem types (lake, river, and estuary; Figure 3.6a). 

Trips to a waterbody and boat use days at a waterbody were correlated with principal 

component I (PC I), which explained 52.8% of the variance between sites (Figure 3.6a). 

Principal component II (PC II) explained 41.0% of the variance between the sampling 

sites and was influenced primarily by specific conductance (Figure 3.6a), which was 

highest in estuaries. PC I and PC II explained 93.8% of the total variance between 

sampling sites. An additional PCA was performed for just the freshwater sampling sites 

to indicate which environmental factors and propagule pressures correlate with NZMS 

densities in lakes and rivers without the amplified variance of the high specific 

conductance in estuaries (Figure 3.6b). Trips to a waterbody and boat use days at a 

waterbody were the most influential variables driving principal component I (PC I), 

which explained 81.6% of the variance between sites (Figure 3.6b). Principal component 

II (PC II) explained 10.8% of the variance between the sampling sites and was influenced 

primarily by specific conductance and pH (Figure 3.6b). PC I and PC II explained 92.4% 

of the total variance between freshwater sampling sites.  
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 A regression tree was run to help determine which abiotic and propagule pressure 

(i.e., boat use days and trips) variables at all sites best predicted NZMS densities as well 

as native macroinvertebrate diversity (Figure 3.7a,b). Higher specific conductance 

(>2,029 μS·cm-1) predicted the highest NZMS densities at an average of 703.1 

individuals·m-2 (Figure 3.7a). The lowest NZMS densities (1.04 individuals·m-2) were 

predicted by lower specific conductance (<2,029 µS·cm-1), high dissolved oxygen (>9.13 

mg·L-1), and high pH (>8.09; Figure 3.7a). Low native macroinvertebrate diversity 

(H’=0.915) was found in sites with moderate specific conductance (>317.4 μS·cm-1), 

whereas the highest diversity was predicted to occur at lower specific conductance 

(<317.4 μS·cm-1) and lower temperatures (<18.12°C) (Figure 3.7b). An additional 

regression tree was also run without estuaries to help determine which variables best 

predicted NZMS densities as well as native macroinvertebrate diversity in the freshwater 

sampling sites (Figure 3.7c,d). Lower dissolved oxygen (<9.13 mg·L-1) predicted the 

highest NZMS densities at an average of 395.4 individuals·m-2 (Figure 3.7c). The lowest 

NZMS densities (1.04 individuals·m-2) were predicted by higher dissolved oxygen (>9.13 

mg·L-1) and high pH (>8.09; Figure 3.7c). Low native macroinvertebrate diversity 

(H’=1.11) was found in sites with higher boat use days (>4753), whereas the highest 

diversity (H’=1.97) was predicted to occur at freshwater waterbodies with lower boat use 

days (<4753) and lower average surface water temperatures (<18.12°C; Figure 3.7d). 

Differences in variables between the NZMS density trees and the diversity trees indicate 

that NZMS aren’t simply responding to the sites that are good for native taxa.  

 The degree of feeding similarity between NZMS and its competitors was evaluated 

using the amount of overlap between trophic niches as observed with stable isotope 
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analyses.  The amount of overlap between NZMS feeding ranges and each particular 

feeding group’s (herbivore, detritivore, omnivore, or predator) feeding range was not 

significantly different (F=1.711, p=0.182; Figure 3.8).  A Tukey HSD test identified 

herbivore-NZMS trophic overlap and detritivore-NZMS trophic overlap were the most 

dissimilar but not significantly different (p=0.198; Figure 3.8). Additionally, though there 

was a tendency for high density NZMS sites to show a greater degree of feeding overlap 

between NZMS and a specific feeding group (herbivore, detritivore, omnivore, or 

predator), none of the correlations were significant (herbivores r=0.438, n=7, p =0.326; 

detritivores r =0.366, n=10, p=0.298; omnivores r=-0.552, n=11, p=0.078; predators r=-

0.472, n=12, p =0.121; Figure 3.9). For NZMS feeding range, there is a nearly significant 

positive correlation between the size of the feeding range and NZMS density (r=0.570, 

n=10, p=0.086; Figure 3.10) suggesting that as NZMS densities increased their feeding 

range also increased. 

 

Discussion 

  New Zealand mud snails are unique in their ability to successfully establish in a 

variety of very different aquatic environments, and range widely in the densities at which 

they occur in aquatic environments. My research objectives were spurred by the unique 

ecology of NZMS.  I sought to describe how NZMS densities differ across invaded sites 

and over time in specific sites and what factors control the density differences, and to 

describe the influence NZMS might have at these varying densities on diversity and 

benthic food web feeding ranges. This study is unique in that it observes NZMS 

population dynamics and their influence on native food webs simultaneously across 

multiple ecosystem types (rivers, lakes, and estuaries), in contrast to previous studies that 
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examined NZMS population dynamics and their influence on specific food webs in either 

freshwater or brackish ecosystems (Hall et al. 2006, Bersine et al. 2008, Moore et al. 

2012). As expected, this study observed varying densities of NZMS throughout all 

ecosystems and sites. Additionally, variations were observed on how NZMS may be 

influencing invaded communities. There are three major mechanisms that could have 

driven these changes in NZMS densities as well as their influence on benthic 

communities: NZMS population dynamics, biotic controls (competition/predation), and 

abiotic and human-mediated (propagule pressure) controls.  

NZMS Population Dynamics  

 There was significant variation in the population dynamics of NZMS, which may 

be the result of boom and bust cycles. NZMS densities tend to boom and bust seasonally 

and even more dramatically on longer time scales  (Kerans et al. 2005, Moore et al. 

2012). Although the three ecosystems surveyed are uniquely different from each other, 

NZMS densities were only significantly different in estuaries compared to rivers, with 

estuaries having ~92.5% larger populations than rivers, on average (Figure 3.3). This 

result does not come as a great surprise considering NZMS have been known to thrive in 

a variety of lake, river, and estuarine ecosystems (Zaranko et al. 1997, Richards et al. 

2001, Hoy et al. 2012). However, I believe the variation in NZMS densities between 

estuaries and rivers is more likely due to abiotic and biotic conditions. Biodiversity in 

estuaries is typically controlled more by the ability to tolerate disturbance rather than 

being controlled by competition (Kittelson and Boyd 1997, Chabrerie et al. 2001), 

whereas environmental conditions tend to be comparatively less harsh in rivers. It is well 

known that invasions can be promoted by disturbance through the creation of available 
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niche space (Hobbs and Huenneke 1992, Mack and D’Antonio 1998). Because of these 

variations in population dynamics, it is important to understand the influence of NZMS at 

varying densities on benthic communities in a range of different ecosystems. 

 

Biotic Controls  

 Biotic variables like predation and competition may influence NZMS densities, as 

well as the impact of NZMS on native communities. Comparing the density of an 

invasive population and the diversity of the native community may provide a better 

understanding of what type of community is most vulnerable to establishment and higher 

densities of invaders.  In fact, isolated, young, and species-poor communities have been 

shown to be more vulnerable to invasion (Elton 1958). The results of this study showed a 

trend of higher NZMS density in communities with lower diversity when comparing 

across all ecosystems, which supports my hypothesis that there is a negative relationship 

between NZMS density and community diversity. There are two possible interpretations 

of this result: first, NZMS may be having a negative effect on the biodiversity of the 

invaded communities via competition, and second, NZMS have more establishment 

success and spread in systems with already low native diversity. Other studies of invasive 

species have found this same pattern and determined that low species richness and 

diversity provided less competition for establishing species and a wider range of 

unoccupied niches (Wolff 1998, Leppäkoski and Olenin 2000, Paavola et al. 2005). In 

this study I contend that it is more likely that NZMS densities thrive in systems with low 

biodiversity and ample niche space rather than NZMS outcompeting native competitors, 

and this is supported by the lack of feeding range overlap of NZMS and other benthic 

feeding groups (Figure 3.8).  
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 Stable isotopes can be used to examine competition for feeding resources (Post 

2002, Moore et al. 2012, Hill et al. 2015).  I observed very little overlap between NZMS 

feeding range and that of benthic competitor’s and predator’s feeding ranges (average 

overlap across all feeding groups = 5.3%) and no relationship with NZMS density 

(Figure 3.9; Appendix J), which would indicate that NZMS are not currently competing 

with these other feeding groups for food. A possible explanation for this trend could be 

that NZMS at high densities have already forced competitors to change their diets (e.g., 

Hall et al. 2006, Moore et al. 2012). However, I also observed a nearly significant trend 

that at higher NZMS density sites the feeding range of NZMS was comparatively larger 

than at sites with low NZMS densities, which did not support my hypothesis that the 

NZMS feeding range would become more specialized at higher densities (Figure 3.9). A 

larger feeding range would indicate a more generalized diet and thus would not be likely 

to force competing feeding groups to change their diets. Therefore, this study did not 

observe Eltonian niche shifts among any surveyed feeding group. Biotic components like 

community diversity may be a good indicator of where establishment and high NZMS 

densities may be most successful, but the competition of specific feeding groups does not 

appear to influence or be influenced by NZMS densities in these sites. 

 

Abiotic and Human-Mediated Controls 

 Abiotic and human-mediated controls may have a more apparent influence on 

NZMS establishment and densities. Although NZMS can tolerate a wide range of abiotic 

conditions due to the presence of an operculum (Zaranko et al. 1997, Dybdahl and Kane 

2005, Alonso and Castro-Díez 2008), it is reasonable to expect that densities may be 

controlled by abiotic and human-mediated factors, such as those that increase propagule 
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pressure. Across all of my sampling sites, the sites with higher specific conductance 

(mainly estuaries) had higher NZMS densities (Figure 3.7a). Conversely when looking 

across all of my sites, I found that higher specific conductance was associated with lower 

community diversity, which may again suggest NZMS thrive in systems with unoccupied 

niche space and that increased niche availability may be due in part by relatively harsh 

abiotic conditions (Figure 3.7b). Additionally, analysis on just my freshwater sites 

indicated sites with lower dissolved oxygen had higher NZMS densities (Figure 3.7c). 

However, I found that dissolved oxygen was not a predicting factor for invertebrate 

community diversity in my freshwater sites. The lowest community diversities were 

associated with freshwater sites that had the greatest boat use days, which may suggest 

that boaters are decreasing diversity by introducing non-native species that out-compete 

native species or boaters may be disturbing these waterbodies creating conditions not 

favorable to diversity (Figure 3.7d). Relatively harsh abiotic conditions like low 

dissolved oxygen (freshwater sites) and higher specific conductance (estuarine sites) have 

been observed to make a system vulnerable to NZMS establishment (Herbst et al. 2008). 

In contrast, systems with very low disturbance like freshwater streams with constant 

temperatures and flow rates have also shown to be conducive to NZMS establishment 

and can promote high densities (Hall et al. 2003, Kerans et al. 2005, Alonso and Castro-

Díez 2008). NZMS densities thriving at low disturbance (other studies) and high 

disturbance (this study) may be explained by the intermediate disturbance hypothesis. 

 In the intermediate disturbance hypothesis, diversity forms a bell shaped curve in 

relation to disturbance where low disturbance and high disturbance both result in lower 

diversity (Connell 1978, Townsend et al. 1997). As previously mentioned, this study 
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found that diversity and NZMS densities were negatively correlated, thus more disturbed 

systems may be creating available niche space for NZMS due to a lack of diversity.  

Furthermore, establishment of NZMS may be greatly dependent on human-mediated 

controls like boater trips to a waterbody, particularly considering the spread of NZMS is 

likely exacerbated by overland dispersal by boaters (Buchan and Padilla 1999, Leung et 

al. 2006, Vander Zanden and Olden 2008). Although the boat use day variable was not a 

predictor of NZMS densities in this study, it was a predictor of freshwater invertebrate 

community diversity (Figure 3.7). It is possible boat use days and trips were not 

significant variables at predicting NZMS densities in this study because there can be a lag 

time between the establishment of an invasive species and when the species spreads and 

increases in population density (Sakai et al. 2001). A more predictive variable might be 

the date at which NZMS were first introduced or how long they have been established, 

but I did not have enough reliable information to include these variables. Regardless of 

how NZMS were introduced, once they become established in a community due to a 

combination of favorable biotic and abiotic controls it is essential to measure their 

ecological effect on the system. 

 

Ecological Influence 

 The relationship between NZMS populations and specific feeding groups may 

provide a good understanding of how invasive species affect native communities. My 

study indicated that there was a significant negative correlation between NZMS densities 

and the density of herbivores (Figure 3.5a). This negative relationship supports my 

hypothesis that NZMS densities would be inversely related to competitor herbivore 

densities and supports other studies’ findings of competitive exclusion at high invasive 
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herbivore densities (Byers 2000, Mooney and Cleland 2001, Hall et al. 2006). However, 

this result may be skewed due to the absence of herbivores in estuarine systems in which 

many NZMS densities were high. These estuaries may not actually be absent of 

herbivores, instead a taxa like oligochaetes (classified as detritivores or collector-

gatherers; Appendix I) may be functioning as herbivores in these estuaries to help fill the 

empty niche. In my estuarine stable isotope plots there is some overlap between NZMS 

feeding range and the feeding range of collector-gatherers (like the oligochaete) and 

sometimes collector-filterers (Appendix I). Common collector-filterers captured in my 

estuaries include the Asian clam (Corbicula fluminea) and the fingernail clam 

(Sphaeriidae). Neither of these taxa have shown evidence as acting as an herbivore 

grazer. In contrast, omnivores were abundant at all my sites and were positively 

correlated to NZMS densities (Figure 3.5d). This positive correlation may indicate that 

NZMS are facilitating omnivore feeding groups.  Another potential explanation is that the 

systems that are suitable for NZMS are also suitable for omnivores. Studies have 

observed that factors promoting native species richness and density, such as propagule 

pressure, can also promote the establishment and population density of invasive species 

(Levine 2000, Schreiber et al. 2002, Brenneis et al. 2010). Furthermore, NZMS have the 

ability to break down large organic matter making it available for native fauna and can 

also provide high nutrient waste, potentially facilitating native taxa (Schreiber et al. 

2002). Yet, detritivores were not correlated with NZMS in my study. My analysis of 

feeding groups may provide more accurate information about the ecological role of 

NZMS and whether their effect is feeding group dependent. The ecological effects of 

NZMS on their invaded systems was varied in my study, and further investigation of their 
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influence on these three highly diverse ecosystems is necessary for future management 

efforts.  

 

Conclusion  

 Overall, this study found that estuarine systems were the most conducive to high 

densities of NZMS possibly due to the available niche space in a disturbance controlled 

estuary as opposed to the lack of niche space in the more competition-controlled rivers 

and lakes. However, even at high NZMS densities in estuaries and some of the freshwater 

systems, this study did not support the conventional wisdom that the invasive NZMS will 

out-compete native taxa or markedly influence a change in competitors’ diets. In fact, 

some competitors may even be facilitated by NZMS densities in this study. It is tempting 

to make generalizations about invasive species and their influence on communities, but 

this study echoes the findings of multiple other studies illustrating that the influence of 

invasive species is often subtle and dependent on the composition of the recipient 

community. NZMS at higher densities than what were found in this study may have a 

greater influence on native competitors. Thus, management should focus on proactive 

approaches to minimize NZMS densities and keep NZMS from spreading to systems with 

available niche space. Therefore, the focus of this management should be on systems 

potentially controlled by disturbance rather than competition in which NZMS populations 

can reach extremely high densities.  
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Tables and Figures Chapter 3 

Table 3.1. Sampling design for New Zealand mud snails (NZMS) and benthic 
invertebrate surveys from 2006 to 2013.  

Ecosystem Ecoregion Site 

Sample 

Years 

Sample Size & Site 

Description  Location 

Year: 

NZMS? 

River Coastal Rivers Siuslaw 
Upstream 

2006, 
2012-2013 

Rocky substrate 
(n=4) 

44.031N 
-123.858W 

2006: No 
2013: No 

       Siuslaw 
Downstream 

2006, 
2012-2013 

Tidally influenced, 
mudflats (4) 

43.967N 
-124.102W 

2006: No 
2013: Yes 

       Umpqua 
Upstream 

2006-2008 
2012-2013 

Rocky substrate, 
bedrock (4) 

43.650N 
-123.839W 

2006: No 
2013: Yes 

       Umpqua 
Downstream 

2006-2013 Tidally influenced, 
silt/sand (4) 

43.710N 
-124.095W 

2006: Yes 
2013: Yes 

      Columbia 
Plateau Rivers 

John Day 
Upstream 

2006-2012 Rocky and gravel 
substrate (4) 

45.858N 
-120.409W 

2006: No 
2012: No 

       John Day 
Downstream 

2006-2012 Rocky and gravel 
substrate (4) 

45.706N 
-120.602W 

2006: No 
2012: No 

       Deschutes 
Upstream 

2006-2012 Gravel and 
bedrock(5) 

45.388N 
-120.871W 

2006: Yes 
2012: Yes 

       Deschutes 
Downstream 

2006-2012 Silt and bedrock (4) 45.633N 
-120.913W 

2006: Yes 
2012: Yes 

     Estuary Brackish 
Estuaries 

Columbia: 
Youngs Bay 

2006-2013 Mudflats(3), Rocky 
shore(2), Pelagic(1) 

46.170N 
-123.834W 

2006: Yes 
2012: Yes 
2013:Yes        Tillamook  2013 Mudflats(2), 

Rocky(3), Pelagic(1) 
45.472N 
-123.891W 

2013: Yes 

        Nestucca  2013 Mudflats/Organic(3), 
Rocky(2), Pelagic(1) 

45.207N 
-123.961W 

2013: Yes 

        Yaquina  2013 Mudflats/Organic (5), 
Pelagic (1) 

44.591N 
-123.943W 

2013: Yes 

        Coquille  2013 Mudflats/Rocky(3), 
Rocky(2), Pelagic(1) 

43.148N 
-124.401W 

2013: No 

        Rogue  2013 Mudflats/Rock(2), 
Sandy(3), Pelagic(1) 

42.420N 
-124.423W 

2013: Yes 

      Lake Coastal Lakes Coffenbury 2013 Littoral (5): Muddy/ 
organic; Pelagic (1) 

46.173N 
-123.963W 

2013: Yes 

        Cullaby 2013 Littoral (5): Sandy/ 
silty; Pelagic (1) 

46.087N 
-123.906W 

2013: No 

        Lytle 2013 Littoral (5): Muddy/ 
organic; Pelagic (1) 

45.624N 
-123.940W 

2013: Yes 

        Devils  2013 Littoral (5): Sandy/ 
rock; Pelagic (1) 

44.979N 
-123.991W 

2013: Yes 

        Mercer 2013 Littoral (5): Organic/ 
sandy; Pelagic (1) 

44.048N 
-124.075W 

2013: No 

        Garrison 2013 Littoral (5): Organic/ 
sandy; Pelagic (1) 

42.754N 
-124.506W 

2013: Yes 
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Table 3.2. The median, minimum, maximum, and standard deviation of abiotic variables 
in the freshwater coastal lakes, freshwater rivers, and brackish estuaries sampled through 
the extent of the research. 

 
  Rivers Lakes Estuaries 

Temperature 

(°C) 

Median 13.5 21.6 19.1 
Min 12.2 19.7 17.3 
Max 24.2 22.6 22.2 
Standard Deviation 4.09 1.01 1.49 

Dissolved  

Oxygen 

(mg·L-1) 

Median 10.7 8.14 8.21 
Min 7.75 7.54 7.01 
Max 11.4 8.63 9.03 
Standard Deviation 1.30 0.41 0.73 

Specific  

Conductance  

(μS·cm-1) 

Median 131.7 119.5 6900 
Min 53.5 74.5 2710 
Max 449.9 202 19650 
Standard Deviation 127.1 40.5 6824 

pH Median 7.92 7.68 7.57 
Min 7.08 6.7 6.81 
Max 8.40 8.25 8.37 
Standard Deviation 0.46 0.48 0.51 
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Figure 3.1. A relief map of Oregon, USA depicting the New Zealand mud snail sampling 
locations and the type of waterbody for each location. 

  

Legend 
    Lake 
    River 
    Estuary 
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Figure 3.2. The average log10 New Zealand mud snail (NZMS) density (individuals·m-2) 
at each of the sites tested from 2006-2013 (±1 standard error). Only the Umpqua 
downstream and Siuslaw downstream river sites were sampled in the winter of 2013. 
Deschutes downstream, Umpqua upstream, Siuslaw upstream, and the John Day River 
upstream and downstream were not included in this graph due to absence or near absence 
of NZMS at every sampling period.  
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Figure 3.3. Boxplots depicting the range of log10 New Zealand mud snail (NZMS) 
density (individuals·m-2) in estuaries (n=7), lakes (n=4), and rivers (n=7) including all 
samples and all sampling periods. Only sites with NZMS present were included in the 
boxplots. The center line of each box represents the median NZMS density in that 
ecosystem. The lower reach of the box represents the lower quartile and the upper reach 
of the box represents the upper quartile. The whiskers of the boxplots represent 
variability outside the upper and lower quartile within the 5th and 95th percentile range, 
with the black symbol representing an outlier (>95th percentile). Letters represent the 
results of Tukey HSD post hoc tests, where different letters are significantly different 
from each other (p<0.05). 
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Figure 3.4.  A correlation (r = -0.476) of the average log-transformed New Zealand mud 
snails (NZMS) density and average Shannon-Weiner diversity index (H’) of every 
system, at all sampling sites, and throughout the extent of the sampling effort. Rivers are 
represented by triangles, estuaries are represented by squares, and lakes are represented 
by circles. Only sites with NZMS present were included.  
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Figure 3.5. Correlation analyses representing the relationships of average log10-
transformed and scaled to the maximum value (max-scaled) New Zealand mud snails 
(NZMS) densities and log-transformed, max-scaled densities of specific 
macroinvertebrate feeding groups: (a) herbivore, (b) detritivore, (c) predator, and (d) 
omnivore. All sites were included in this analysis. Densities were scaled to the maximum 
value to visually compare between ecosystems (each site scaled within ecosystem type 
between 0-1).  
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Figure 3.6. PCA biplot of the (a) all sampling locations and (b) freshwater sampling 
locations depicting environmental factors recorded at each site PCA biplot of the and 
log10-transformed New Zealand mud snails (NZMS) densities (individuals·m-2) 
represented by shape size. The size of the shape is related to the density of the NZMS in 
the system and solid shapes were absent of NZMS in the system. DO = dissolved oxygen, 
Temp = surface water temperature. 
  

a 

b 
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Figure 3.7. Regression trees predicting which variables in all sampling sites influence (a) 
New Zealand mud snails (NZMS) density and (b) Shannon-Weiner diversity (H’) and 
which variables in just freshwater sites influence (c) New Zealand mud snails (NZMS) 
density and (d) Shannon-Weiner diversity (H’).  DO = dissolved oxygen, Temp = surface 
water temperature. Less than (<) independent variable values - the response variables are 
to the right branch. Greater than (>) independent variable values - the response variables 
are to the left branch. 
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Figure 3.8. Box plots depicting the percentage of trophic overlap between New Zealand 
mud snails (NZMS) feeding range and specific feeding group feeding ranges. The thick, 
bold line of each box represents the median percentage of overlap between NZMS 
feeding ranges and the particular feeding group’s feeding range. The lower reach of the 
box represents the lower quartile and the upper reach of the box represents the upper 
quartile of the overlap. The whiskers of the boxplots represent variability outside the 
upper and lower quartile within the 5th and 95th percentile range, with the black dots 
representing outliers (>95th percentile). A y-axis break was created between ~20 and ~40 
percent overlap. 
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Figure 3.9. Correlations between feeding range overlap (percentage of NZMS range 
overlapping other feeding group’s range) of specific macroinvertebrate feeding groups (a. 
herbivores, b. detritivores, c. omnivores, d. predators) and log-transformed New Zealand 
mud snails (NZMS) densities. Convex hulls were created to measure feeding range using 
the stable isotope signatures (δ15N and δ13C) of taxon and then the hulls were measured 
for total area. Each point represents the amount of overlap of convex hulls between 
NZMS feeding range and another feeding group’s feeding range at the same sampling 
location. The location’s ecosystem is represented by a circle (lake), triangle (river), and 
square (estuary). No herbivores were sampled from the estuaries thus only feeding range 
overlaps and NZMS densities from lakes and rivers are present in the correlation. 
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Figure 3.10. Correlation between feeding range (total area of convex hulls, max-scaled) 
of New Zealand mud snails (NZMS) and log10-transformed NZMS densities. Convex 
hulls were created to measure feeding range using the stable isotope signatures (δ15N and 
δ13C) of NZMS and then the hulls were measured for total area. Each point represents an 
individual convex hull area from a certain location in an identified ecosystem represented 
by a circle (lake), triangle (river), and square (estuary). 
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Chapter 4: Conclusions and Future Work 

 

The invasion of a species is often conceptualized as a multi-stage process which 

encourages ecologists to conceive factors that might permit a species to pass from one 

stage to the next and therefore guide management (Catford et al. 2009). Proper 

management involves risk analysis for an ecosystem, which requires information on the 

invasive species, vulnerability of habitats to invasion, information on what stage the 

invasion is in (transportation and introduction, establishment, or spread), and the 

ecological and economic costs associated with containing (or failing to contain) harmful 

species (Stohlgren and Schnase 2006, Lodge et al. 2006). My thesis investigates multiple 

stages of aquatic invasions and has contributed to a better understanding of proactive and 

preventative management plans, as well as the management for a specific aquatic 

invasive species (AIS), the New Zealand mud snail (Potamopyrgus antipodarum; 

NZMS), which is at various phases of establishment and spread. 

 

Transportation and Introduction of Aquatic Invasive Species  

Non-native species introductions and rapid dispersal are often exacerbated by a 

variety of human-influenced drivers of global change including overland movement of 

boaters between waterbodies (Buchan and Padilla 1999, Kolar and Lodge 2002). By 

obtaining boaters’ knowledge of AIS, laws and regulations, and proper boat cleaning 

procedures through human subjects surveys, managers can adapt the current AIS policies 

and move forward in future management plans concerning AIS transport and 

introduction. I found that there was a startling disconnect between what boaters say they 

will do and how they actually behave in regard to using a public boat wash station 
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(Chapter 2), and thus management should focus on educational outreach concerning the 

benefits of boat wash stations and the destructiveness of AIS. Educational outreach is 

practical and has been shown to be a useful long-term management tool and effective at 

reducing AIS spread (Rothlisberger et al. 2010, Larson et al. 2011). However, outreach 

alone will not likely reduce invasive species introductions. A sustainable invasive species 

management plan should include behavioral factors such as identifying vectors (like 

overland boater movement), economic factors such as securing efficient funding, and 

social and political factors such as educational outreach and expanding policies to a 

regional scale (Larson et al. 2011).  

The majority of boaters were familiar with Oregon’s state laws and regulations 

regarding AIS (Chapter 2). The primary objective of Oregon’s AIS Prevention Program 

is to keep Oregon waters free of invasive species.  Similarly, Idaho passed House Bill 

213 in 2009 to provide additional yearly fees to water vessels, which will be deposited 

into Idaho’s invasive species fund helping to combat the spread and establishment of AIS 

(Idaho States Department of Agriculture 2009), and in 2014 Washington passed Senate 

Bill 6040 providing enhanced response to invasion and more stringent enforcement 

(Washington Invasive Species Council 2014). All of these individual state policies are 

necessary to address invasive species at smaller jurisdictional scales; however, 

coordinated regional policies may be more essential as a result of invasive species spread 

without regard to human-created borders (Peters and Lodge 2009). Land-scape level 

approaches are increasingly recognized as critically important for effective management 

of future spread (Drury and Rothlisberger 2008, Vander Zanden and Olden 2008).  
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Establishment and Spread 

Management for established and spreading invasive species is much more costly 

economically and ecologically than the prevention of invasive species (Pimentel et al. 

2005, Stohlgren and Schnase 2006). If an invasive species is successfully introduced, the 

next step in invasion is establishment and spread. New Zealand mud snails are a unique 

AIS with their ability to successfully establish in a variety of very different aquatic 

environments, including the lakes, rivers, and estuaries sampled in this study, at a wide 

range of densities. I determined that there were three major mechanisms that likely 

influenced the population density as well as the establishment and spread of NZMS and 

their influence on the community the most: NZMS population dynamics, biotic controls, 

and abiotic and human-mediated controls (Chapter 3).  

NZMS densities tend to boom and bust seasonally with typically greater densities 

in warmer months  (Kerans et al. 2005, Moore et al. 2012), therefore managing 

established and spreading populations should be adaptable with the season. Attempting to 

eliminate NZMS from a system can be very difficult considering their high tolerances to 

abiotic factors (Jacobsen and Forbes 1997, Dybdahl and Kane 2005, Alonso and Castro-

Díez 2008), but if eradication is to be attempted, waiting for the population to bust should 

be in the management plan. Meanwhile when populations are high, the appropriate 

management should be containing NZMS and limiting spread.  

The results of this study showed a trend of higher NZMS density in communities 

with lower diversity when comparing across all ecosystems (Chapter 3). Low species 

richness and diversity have been shown to provide less competition for establishing 

species and a wider range of unoccupied niches (Wolff 1998, Leppäkoski and Olenin 

2000, Paavola et al. 2005). Similarly, relatively harsh abiotic conditions like high specific 
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conductance, fluctuations in salinity, and drastic changes in water level found in estuaries 

can create niche space and have been observed to make a system vulnerable to NZMS 

establishment (Herbst et al. 2008). The containment of NZMS should therefore target 

systems with high NZMS densities and especially those near systems with the potential 

for NZMS establishment. 

 

Prevention 

 The Tenmile Lake boat wash station aims to prevent outside AIS from entering 

the lake, contain present invasive species, provide a safe and effective tool for boat 

flushing, and increase public awareness. Understanding the influence of distinct invasive 

species is important for reactive mitigation, but by managing vectors rather than 

managing specific invasive species, a more effective proactive approach can be 

developed to control the introduction of invasive species (Leung et al. 2006, Peters and 

Lodge 2009, Rothlisberger et al. 2010). Additionally, much of the estimated cost 

associated with the economic damages inflicted by invasive species is controlling the 

density and spread of already established invasive species (Pimentel et al. 2005, 

Stohlgren and Schnase 2006). Because it is more effective economically and ecologically 

to target invasive species in the early stages of invasion, preventative management is 

essential. To capitalize the most on these preventative measures, vector management 

should not be site- or state-specific but instead it needs to be strengthened by regional 

policies.  

In many systems it is too late for preventative management and the only 

management options are more costly restoration and mitigation. However, much can be 

learned about systems with established invasive populations and this knowledge can 
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contribute to preventative measures taken in outside systems. The NZMS food web study 

found that estuarine systems were the most conducive to high NZMS densities in Oregon 

possibly due to the available niche space in a disturbance controlled estuary (Chapter 3). 

The management focus for a system with established NZMS densities does not actually 

have to differ much from those without NZMS. Management should still focus primarily 

on controlling vectors of spread rather than the specific characteristics of NZMS. 

However, knowledge about a specific invader never hurts. Vander Zanden and Olden 

(2008) determined that knowledge of the basic biology of a specific invasive species and 

identifying sites vulnerable to the invader may improve the allocation of management 

efforts and funds.  

 

Conclusion 

The focus for NZMS management should be on controlling their vectors of 

transportation and introduction. NZMS are small and can tolerate harsh abiotic conditions 

so cleaning, draining, and drying a boat between waterbodies is essential in limiting 

NZMS introductions. Therefore, educational outreach becomes necessary in order to 

increase awareness from those potentially transporting NZMS (like boaters). Along with 

more effective educational outreach campaigns, regions need to adopt management 

policies that cross state borders. The management of New Zealand mud snails may not be 

able to eliminate their densities in the Pacific Northwest, but management can substantial 

slow down the invasive spread by identifying systems most threatened and focusing on 

the vectors of transport and introduction. 
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Appendix A: Informed consent 

The informed consent form given to all boaters prior to participating in the Tenmile Lake 
boater survey. Participants were also encouraged to contact via post mail or phone if they 
had any questions or concerns about their participation in this study.  

 

 

 

You are invited to participate in a research study conducted by Professor Angela Strecker 
from Portland State University, Department of Environmental Science and Management. 
These researchers hope to learn about boater behavior and attitudes on aquatic invasive 
species. You were selected as a possible participant in this study because you are a boater 
here at Tenmile Lake. 

If you decide to participate, you will be asked to verbally answer questions. The first part 
of the survey will last approximately 10 minutes.  If you agree to answer the more in-
depth questions, this second part of the survey will last approximately 15 minutes.  While 
participating in this study, it is possible that you will feel some embarrassment or 
discomfort, at which point the interviewer will disregard your responses or will terminate 
the interview. You may not receive any direct benefit from taking part in this study, but 
the study may help to increase knowledge which may help others in the future. To 
encourage participation, we will enter your name in a draw for a $50 gift certificate from 
a local vendor. 

Any information that is obtained in connection with this study and that can be linked to 
you or identify you will be kept private and will not be shared. This information will be 
kept private by storage at Portland State University in a password-protected computer 
file.  Paper copies will be kept in a locked filing cabinet. 

Your participation is voluntary. You do not have to take part in this study and you may 
withdraw from this study at any time. 

If you have questions or concerns about your participation in this study, contact Angela 
Strecker (strecker@pdx.edu, 503-725-2427) at PO Box 751, Portland State University, 
Portland OR 97201.   If you have concerns about your rights as a research subject, please 
contact Human Subjects Research Review Committee, Research and Strategic 
Partnerships, PO Box 751, Portland State University, Portland OR 97201 
(hsrrc@lists.pdx.edu, 1-877-480-4400).  

Please indicate to the researcher that you have read and understand the above information 
and agree to take part in this study. The researcher will provide you with a copy of this 
form for your own records. 

  

Department of Environmental Science and Management 

 
Post Office Box 751 503-725-4982  tel 
Portland, Oregon  97207-0751 503-725-9040  fax 

 

mailto:strecker@pdx.edu
mailto:hsrrc@lists.pdx.edu
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Appendix B: Survey questions pre-boat wash 

Boater survey questions from the 2012 pre-boat wash installation field season. The boater 
surveys included a three step process: Step 1 an observational survey, Step 2 a short form 
boater survey, and Step 3 an in-depth boater survey.  

Step 1: Observational Survey (to be filled out by researcher) 

1. Coming from in state/out of state? _____________   If out of state, 
name:__________________ 

2. Kind of boat (motorized, non-motorized, canoe, fishing): __________________  

3. Details about the day (fishing tournament, etc):__________________________ 

4. Did the boat launch clean (no vegetation or invertebrates)? 
________________________   

5. Did the boat leave clean?_________________________ 

If not, what was on it (vegetation, invertebrates)? ________________ 

6. Was there any effort to remove the fouling organisms? ____________   

Drain bilge/live well? _________________ 

 

Step 2: Short Form Boater Survey (to be filled out by researcher)  

1. When was the last time your boat was in the water?  ___________ 

2. What waterbody did you and your boat come from?  ____________ 

What waterbody are you visiting next? ______________ 

How many waterbodies have you visited in the last month? _____________ 

3. Do you know about the invasive species prevention program permit?  ____yes    
____no 

a. Have you ever been asked to show your permit?  ____yes    ____no 

4. Are you aware of the phrase “clean, drain, dry”?  ____yes    ____no  

a. Have you done this before?   ____always    ____sometimes   ____never 

b. Do you know which parts of the boat might be susceptible to invasive 
species attachment? ____yes    ____no 

5. Have you ever been through a boat inspection station? 

a. Oregon b.   other: _____________________ 
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6. Would you use a boat wash station at a boat ramp?  ____yes    ____no 

a. If no, what would it take for you to change your behavior? 

__________________________________________________ 

7. Are you aware of a state law that prohibits launching a boat that has invasive 
species on it? 

____yes    ____no 

8. Have you ever backflushed your motor in a lake after boating in salt water?   

____always    ____sometimes   ____never 

a. Do you know anyone who has?  ____yes    ____no 

9. Are you aware of the state regulations regarding the use and movement of 
baitfish?   

____yes    ____no  

a. What about crayfish?  ____yes    ____no 

10. Do you know how to report a suspected invasive species? ____yes    ____no 

a. Would you be able recognize or name an invasive species?  ____yes    
____no 

____________________________________________________ 

11. What types of activities do you engage in with your boat (e.g., sailing, fishing, 
recreation)? 

________________________________________________________________ 

12. Did you see any signage regarding invasive species when you arrived at the lake?   

____yes    ____no  

Left the lake?  ____yes    ____no  

 

Step 3: In-Depth Boater Survey (to be filled out by researcher) 

1. How do invasive species affect you and your activities? 

a. Do they change your experience at the lake? 

2. How important are invasive species as an issue in Oregon? 

____very     ____somewhat   ____not at all 
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3. Where did you see or hear the information regarding aquatic invasive species?  

4. If you do not wash your boat (clean, drain, dry), what would motivate you to do 
so? 

5. What invasive species are you aware of? 

6. Have you heard of Hydrilla?  Eurasian watermilfoil?  Brazilian elodea? 
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Appendix C: Survey questions post-boat wash 

Boater survey questions from the 2013 post-boat wash installation field season. The post-
boat wash survey is identical to the 2012 pre-boat wash survey with the addition of 
question 7 in the “Step 1: Observation Survey” (bold) and a change in question 6 in the 
“Step 2: Boater Survey” from “Would you use a boat wash station at Tenmile Lake?” 
(2012) to “Do you use the boat wash station here at Tenmile Lake?” (bold).  

 

Step 1: Observational Survey (to be filled out by researcher) 

1. Coming from in state/out of state? _____________   If out of state, 
name:__________________ 

2. Kind of boat (motorized, non-motorized, canoe, fishing): __________________  

3. Details about the day (fishing tournament, etc):__________________________ 

4. Did the boat launch clean (no vegetation or invertebrates)? 
________________________   

5. Did the boat leave clean?_________________________ 

If not, what was on it (vegetation, invertebrates)? ________________ 

6. Was there any effort to remove the fouling organisms? ____________   

Drain bilge/live well? _________________ 

7. Did the boater use the boat wash station? ____________ 

If yes, was the station staffed by a volunteer at the time? ____________ 

Step 2: Short Form Boater Survey (to be filled out by researcher)  

1. When was the last time your boat was in the water?  ___________ 

2. What waterbody did you and your boat come from?  ____________ 

What waterbody are you visiting next? ______________ 

How many waterbodies have you visited in the last month? _____________ 

3. Do you know about the invasive species prevention program permit?  ____yes    
____no 

a. Have you ever been asked to show your permit?  ____yes    ____no 

4. Are you aware of the phrase “clean, drain, dry”?  ____yes    ____no  

a. Have you done this before?   ____always    ____sometimes   ____never 
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b. Do you know which parts of the boat might be susceptible to invasive 
species attachment? ____yes    ____no 

5. Have you ever been through a boat inspection station? 

a. Oregon b.   other: _____________________ 

6. Do you use the boat wash station here at Tenmile Lake?  ____yes    ____no 

a. If no, what would it take for you to change your behavior? 

__________________________________________________ 

7. Are you aware of a state law that prohibits launching a boat that has invasive 
species on it? 

____yes    ____no 

8. Have you ever backflushed your motor in a lake after boating in salt water?   

____always    ____sometimes   ____never 

b. Do you know anyone who has?  ____yes    ____no 

9. Are you aware of the state regulations regarding the use and movement of 
baitfish?   

____yes    ____no  

b. What about crayfish?  ____yes    ____no 

10. Do you know how to report a suspected invasive species? ____yes    ____no 

a. Would you be able to visually recognize or name an invasive species?  
____yes    ____no 

Name: ____________________________________________________ 

11. What types of activities do you engage in with your boat (e.g., sailing, fishing, 
recreation)? 

________________________________________________________________ 

12. Did you see any signage regarding invasive species when you arrived at the lake?   

____yes    ____no  

Left the lake?  ____yes    ____no  

Step 3: In-Depth Boater Survey (to be filled out by researcher) 

1. How do invasive species affect you and your activities? 
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a. Do they change your experience at the lake? 

2. How important are invasive species as an issue in Oregon? 

____very     ____somewhat   ____not at all 

3. Where did you see or hear the information regarding aquatic invasive species?  

4. If you do not wash your boat (clean, drain, dry), what would motivate you to do 
so? 

5. What invasive species are you aware of? 

6. Have you heard of Hydrilla?  Eurasian watermilfoil?  Brazilian elodea? 
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Appendix D: Waterbodies visited by boaters 

Table D1: All of the waterbodies last visited by surveyed boaters at Tenmile Lake during 
the 2012 and 2013 field seasons. The percentage is the number of boaters surveyed who 
last came from that waterbody. Waterbodies outside of Oregon are labeled with the state 
abbreviation.  

Waterbody 
Boat Came 
From Tenmile 

Siltcoos 

Lake Eel Lake 

Woahink 

Lake Loon Lake 

Umpqua 

River 

Tahkenitch 

Lake 

2012 34.7% 8.0% 7.0% 5.5% 5.5% 5.0% 4.0% 

2013 21.0% 7.0% 11.0% 6.5% 4.0% 6.5% 5.0% 

Waterbody 
Boat Came 
From 

Smith 

River Coos Bay 

Fern 

Ridge 

Lake 

Klamath 

Lake 

Lake 

Shasta 

(CA) 

Wincheste

r Bay 

Detroit 

Lake 

2012 2.5% 2.0% 2.0% 2.0% 1.5% 1.5% 1.0% 

2013 0.5% 3.0% 1.0% 2.0% 0.5% 4.0% 1.5% 

Waterbody 
Boat Came 
From 

Diamond 

Lake 

Mercer 

Lake 

Siuslaw 

River 

Snake 

River (ID) 

Willamett

e River 

Crane 

Prairie 

Columbia 

River 

2012 1.0% 1.0% 1.0% 1.0% 1.0% 0.5% 0.5% 

2013 1.5% 2.5% 1.0% 0.0% 0.5% 1.0% 0.5% 

Waterbody 
Boat Came 
From 

Haystack 

Reservoir 

Green 

Peter 

Lake 

Howard 

Prairie 

Coquille 

River 

Munsel 

Lake 

Dorena 

Lake 

Sutton 

Lake 

2012 0.5% 0.5% 0.5% 0.0% 0.0% 0.0% 0.0% 

2013 2.0% 1.5% 1.0% 3.0% 2.0% 2.0% 1.0% 

Waterbody 
Boat Came 
From 

Dexter 

Lake 

Rogue 

River 

Lost 

Creek 

Lake Alsea Bay 

Deschutes 

River 

Mayfield 

Lake 

(WA) Suttle Lake 

2012 0.0% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 

2013 1.0% 1.0% 1.0% 0.5% 0.5% 0.5% 0.5% 

Waterbody 
Boat Came 
From 

Floras 

Lake 

Paddock 

Valley 

(ID) 

Wickiup 

Reservoir 

Flathead 

Lake 

(MT) 

Meiss 

Lake (CA) 

Mackenzie 

River 

Riffe Lake 

(WA) 

2012 0.0% 0.0% 0.0% 0.5% 0.05% 0.5% 0.5% 



 

 89 
 

2013 0.5% 0.5% 0.5% 0.0% 0.0% 0.0% 0.0% 

Waterbody 
Boat Came 
From 

Siletz 

River 

Silver 

Lake 

(WA) 

Timothy 

Lake 

Garibaldi 

Bay    

2012 0.5% 0.5% 0.5% 0.5%    

2013 0.0% 0.0% 0.0% 0.0%    
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Appendix E: Raw data of survey answers 

Raw data of boater survey answers from the 2012 pre-boat wash field season and the 
2013 post-boat wash field season with sample size. All questions are italicized and 
questions in bold are from the 2013 field season only. 

 

Step 1: Observational Survey (to be filled out by researcher) 

1. Coming from in state/out of state? _____________   If out of state, 

name:__________________ 

2012 (n=199): Oregon=176, California =13, Washington=5, Idaho=3, Arizona=2 

2013 (n=200): Oregon=185, California=5, Arizona=4, Washington=4, Idaho=1, 
Nevada=1 

2. Kind of boat (motorized, non-motorized, canoe, fishing): __________________  

2012 (n=199): Motorized Fishing=151, Motorized Recreation=31, Motorized Luxury=7, 
Canoe=3, Sail Boat=3, Jet Skis=1  

2013 (n=200): Motorized Fishing=146, Motorized Recreation=40, Motorized Luxury=5, 
Canoe=5, Sail Boat=3, Jet Skis=2, Kayak=2 

3. Details about the day (fishing tournament, etc):__________________________ 

2012 (n=199): No Tournament=118, Tenmile Open=21, Smaller Tournaments= 60 

2013 (n=200): No Tournament=146, Tenmile Open=33, Smaller Tournaments=21,  

4. Did the boat launch clean (no vegetation or invertebrates)? 

________________________  

2012 (n=199): Yes=75, No/Vegetation attached=2, Did not see boat launch=122 

2013 (n=200): Yes=84, No/Vegetation attached=3, Did not see boat launch=113  

5. Did the boat leave clean?_________________________ 

If not, what was on it (vegetation, invertebrates)? ________________ 

2012 (n=199): Yes=172, No/Vegetation=20, No Invertebrates=5, No/Both Invertebrates 
and Vegetation=2 

2013 (n=200): Yes=176, No/Vegetation=22, No Invertebrates=1, No/Both Invertebrates 
and Vegetation=1 

6. Was there any effort to remove the fouling organisms? ____________  
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2012 (n=199): Yes, Nothing to Remove=68, Removed Fouling Organism=54, No, but 
Clean=50, No=23, Yes, Did Not Get All Organisms=4 

2013 (n=200): Yes, Nothing to Remove=71, Removed Fouling Organism=68, No, but 
Clean=37, No=21, Yes, Did Not Get it All=3 

Drain bilge/live well? _________________ 

2012 (n=199): Yes= 53, No= 79, N/A=67 

2013 (n=200): Yes=124, No=39, N/A=37 

8. Did the boater use the boat wash station? ____________ 

2013 (n=200): Yes, Leaving Lake=63, Yes, Entering and Leaving Lake=6, No=131 

If yes, was the station staffed by a volunteer at the time? ____________ 

2013 (n=0): *Boat wash station was never staffed during the 2013 field season 

 

Step 2: Boater Survey (to be filled out by researcher)  

1. When was the last time your boat was in the water?  ___________ 

2012 (n=199): 1 Day= 30, 2-6 Days=52, 7-14 Days=74, 15-31 Days=23, 32-364 
Days=16, 365+ Days=4 

2013 (n=200): 1 Day= 36, 2-6 Days=75, 7-14 Days=66, 15-31 Days=19, 32-364 Days=3, 
365+ Days=1 

2. What waterbody did you and your boat come from?  ____________ 

2012 (n=199): See Appendix D  

2013 (n=200): See Appendix D 

What waterbody are you visiting next? ______________ 

2012 (n=199): Don’t Know=17, Umpqua River=15, Tenmile Lake=71, Non-descript 
Bay=3, Woahink Lake=13, Eel Lake=12, Loon Lake=9, Coos Bay=8, Siltcoos Lake=7, 
Tahkenitch Lake=7, Siuslaw River=4, Fern Ridge Lake=3, Willamette River=3, Lake 
Shasta=3, Hagg Lake=2, Silutz Lake=2, Lake Washington=2, Detroit Lake=1, Klamath 
Lake=1, Winchester Bay=1, Coos River=1, Deschutes River=1, Diamond Lake=1, Alsea 
River=1, Haystack Reservoir=1, Mackenzie River=1, Smith River=1, Snake River=1, 
Suttle Lake=1, Sutton Lake=1, Charelston Bay=1, Foster Reservoir=1, Green Peter=1, 
Howard Prairie=1, Timothy Lake=1     

2013 (n=200): Don’t Know= 19, Alsea Bay=1, Coos Bay=2, Coos River=1, Coquille 
River=3, Crane Prairie Reservoir=1, Detroit Lake=2, Devils Lake=1, Dorena Lake=4, 
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East Lake =1, Eel Lake=17, Emigrant Lake=1, Fern Ridge=4, Howard Prairie=1, 
Klamath=3, Lake Billy Chinook=1, Loon Lake=3, Lost Creek Lake=2, Rogue River=2, 
Siltcoos=18, Siuslaw=7, Smith River=5, Suttle Lake=1, Sutton Lake=3, Tahlenitch 
Lake=12, Tenmile Lake=57, Umpqua River=7, Willamette River=1, Willow Lake=1, 
Winchester Bay=5, Woahink Lake=13, Yamhill River=1  

How many waterbodies have you visited in the last month? _____________ 

2012 (n=199): 1 waterbody=50, 2=61, 3=53, 4=20, 5=9, 6=6  

2013 (n=200): 1 waterbody=19, 2=47, 3=62, 4=39, 5=20, 6=9, 7=3, 10=1 

3. Do you know about the invasive species prevention program permit?  ____yes    

____no 

2012 (n=199): Yes=140, No=59 

2013 (n=200): Yes=144, No=56 

a. Have you ever been asked to show your permit?  ____yes    ____no 

2012 (n=199): Yes=22, No=177 

2013 (n=200): Yes=54, No=146 

4. Are you aware of the phrase “clean, drain, dry”?  ____yes    ____no  

2012 (n=199): Yes=126, No=73 

2013 (n=200): Yes=132, No=68 

a. Have you done this before?   ____always    ____sometimes   ____never 

2012 (n=199): Yes/Always=89, Yes/Sometimes=37, Yes/Never=0, No/Always=25, 
No/Sometimes=44, No/Never=4 

2013 (n=200): Yes/Always=118, Yes/Sometimes=14, Yes/Never=0, No/Always=35, 
No/Sometimes=32, No/Never=1 

b. Do you know which parts of the boat might be susceptible to invasive 

species attachment? ____yes    ____no 

2012 (n=199): Yes=191, No=8 

2013 (n=200): Yes=186, No=14 

5. Have you ever been through a boat inspection station? 

a. Oregon  b.   other: _____________________ 

2012 (n=199): No=152, Yes/Arizona=1, Yes/California=17, Yes/Lake Tahoe=1, 
Yes/Nevada=1, Yes/Oregon=27 
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2013 (n=200): No=146, Yes/Arizona=3, Yes/California=7, Yes/California and 
Oregon=2, Yes/Oregon=38, Yes/Washington=4 

6. Would you use a boat wash station at a boat ramp?  ____yes    ____no 

2012 (n=199): Yes=160, No=39 

a. If no, what would it take for you to change your behavior? 

2012 (n=48*): Cleans at Home/Better Equipment=22, Station Inconvenient/Too Long to 
Wait=8, Boated More Often=4, If Going from One Waterbody to Another=10, If Station 
was Enforced=2, Had a Better Boat=2 

*9 surveyed boaters claimed they would use the boat wash station only if it had better 
equipment than their home boat wash equipment  

7. Do you use the boat wash station here at Tenmile Lake?  ____yes    ____no 

2013 (n=200): Yes=78, No=122 

a. If no, what would it take for you to change your behavior? 

2013 (n=126*): Cleans at Home/Better Equipment=39, Station Inconvenient/Too Long to 
Wait=35, Boated More Often=16, If Going from One Waterbody to Another=16, If 
Station was Enforced=2, Had a Better Boat=6, If the Station Had Heated Water=11 

*4 surveyed boaters who use the boat wash station only use it if they are going to a 
different waterbody next. 

8. Are you aware of a state law that prohibits launching a boat that has invasive 

species on it? 

____yes    ____no 

2012 (n=199): Yes=138, No=61 

2013 (n=200): Yes=109, No=91 

9. Have you ever backflushed your motor in a lake after boating in salt water?   

____always    ____sometimes   ____never 

2012 (n=199): Always=1, Sometimes=19, Never=179 

2013 (n=200): Always=2, Sometimes=7, Never=191 

a. Do you know anyone who has?  ____yes    ____no 

2012 (n=199): Yes=73, No=126 

2013 (n=200): Yes=64, No=136 
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10. Are you aware of the state regulations regarding the use and movement of 

baitfish?   

a. ____yes    ____no  

2012 (n=199): Yes=126, No=73 

2013 (n=200): Yes=163, No=37 

b. What about crayfish?  ____yes    ____no 

2012 (n=199): Yes=119, No=80 

2013 (n=200): Yes=124, No=76 

11. Do you know how to report a suspected invasive species? ____yes    ____no 

2012 (n=199): Yes=89, No=110 

2013 (n=200): Yes=84, No=116 

a. Would you be able to visually recognize or name an invasive species?  

____yes    ____no 

2012 (n=199): Yes=148, No=51 

2013 (n=200): Yes=154, No=46 

Name: 

2012 (n=148*): Zebra mussel=89, New Zealand mud snail=29, hydrilla=28, green 
crab=16, trout species=16, Brazilian elodea=27, quagga mussel=12, yellow perch=12, 
Eurasian watermilfoil=11, rusty crayfish=11, northern pike=10, white flowered lilypads 
(odorata)=9, shad=8, catfish and bullheads=3, bass=3, swollen bladderwort=3, nutria=2, 
Asian freshwater clams=1, carp=1, bluegill=1, parrot feather=1, softshell clam=2, 
terrestrial vegetation=17, terrestrial fauna=7   

2013 (n=154*): Zebra mussel=118, New Zealand mud snail=34, hydrilla=20, green 
crab=7, trout species=26, Brazilian elodea=13, quagga mussel=19, yellow perch=13, 
Eurasian watermilfoil=13, rusty crayfish=13, northern pike=6, white flowered lilypads 
(odorata)=4, shad=14, bass=10, nutria=2, Asian freshwater clams=1, carp=5, bluegill=1, 
parrot feather=5, snakehead fish=4, reed canary grass=5, round goby=2, terrestrial 
vegetation=30, terrestrial fauna=16   

*Surveyed boaters named one or more species 

12. What types of activities do you engage in with your boat (e.g., sailing, fishing, 

recreation)? 

2012 (n=199): Fishing=103, Recreation=40, Recreation & Fishing=24, Leisure=23, 
Transportation=6, Sailing=3 
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2013 (n=200): Fishing=128, Recreation=30, Recreation & Fishing=22, Leisure=15, 
Transportation=2, Sailing=3 

13. Did you see any signage regarding invasive species when you arrived at the lake?   

____yes    ____no  

2012 (n=199): Yes=50, No=149 

2013 (n=200): Yes=63, No=137 

Left the lake?  ____yes    ____no  

 2012 (n=199): Yes=11, No=188 

 2013 (n=200): Yes=9, No=191 

Step 3: In-Depth Boater Survey (to be filled out by researcher) 

1. How do invasive species affect you and your activities? 

2012 (n=69): Avoid areas that may have invasives=5, More aware of negative 
impacts=17, inhibits exercise=1, Invasive species don’t affect my activities=9, More 
permits and checkpoints=8, more rules and regulations to follow=8, Take better care of 
boat and equipment=22, Invasives have benefitted me=2 

2013 (n=57): Avoid areas that may have invasives=12, More aware of negative 
impacts=5, Invasive species don’t affect my activities=10, More rules and regulations to 
follow=8, Take better care of boat and equipment=21, Invasives have benefitted me=1 

a. Do they change your experience at the lake? 

2012 (n=68): Yes/ Avoid areas=5, Fishing is worse=4, Less Enjoyable=9, No=50,  

2013 (n=57): Yes/ Avoid areas=7, Fishing is worse=7, Less Enjoyable=5, No=37, Better 
fishing=1 

2. How important are invasive species as an issue in Oregon? 

____very     ____somewhat   ____not at all 

2012 (n=69): Very=47, Somewhat=22, Not at All=0 

2013 (n=57): Very=30, Somewhat=27, Not at All=0 

3. Where did you see or hear the information regarding aquatic invasive species?  

2012 (n=69*): Education=6, Signage=21, Word of Mouth=21, News=36, ODFW 
Newsletter=5, Internet=8, No Info seen=3 

2013 (n=58*): Education=4, Signage=20, Word of Mouth=22, News=20, ODFW 
Newsletter=5, Internet=12, Books=3, Permit=1 
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*Some surveyed boaters provided multiple sources 

4. If you do not wash your boat (clean, drain, dry), what would motivate you to do 

so? 

2012 (n=68): Boating more often=4, If cleaning was quicker and easier=2, A boat wash 
station=7, Washes boat=55  

2013 (n=57): Boating more often=3, Boating in multiple waterbodies=3, A nicer boat=3, 
More boat wash stations=2, Washes boat=46 

5. What invasive species are you aware of? 

2012 (n=69): Answers included to the answers from question 11 in Step 2 of the survey. 

2013 (n=57): Answers included to the answers from question 11 in Step 2 of the survey.  

6. Have you heard of Hydrilla?  Eurasian watermilfoil?  Brazilian elodea? 

2012 (n=69): Hydrilla/Yes=27, Hydrilla/No=41, Eurasian watermilfoil/Yes=18, Eurasian 
watermilfoil/No=50, Brazilian elodea/Yes=13, Brazilian elodea/No=55, 

2013 (n=57): Hydrilla/Yes=17, Hydrilla/No=40, Eurasian watermilfoil/Yes=15, Eurasian 
watermilfoil/No=42, Brazilian elodea/Yes=7, Brazilian elodea/No=50, 
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Appendix F: Boat ramp signage 

 
Figure F1: Signs at Tenmile Lake boat ramp instructing visitors on invasive species and 
proper boat cleaning procedure (left) and warning against back-flushing motors (right). 
The back-flushing sign (right) was installed in between the 2012 and 2013 field season. 
Photos were taken by Sam Cimino in the 2013 (post-boat wash) field season.  

 

 
Figure F2: Tenmile Lake public boat ramp with the "Aquatic Invaders" sign (far left) 
approximately 30 meters distance from the boat ramp and the "Warning of Back-
Flushing" sign (near boat ramp). Photo was taken during the 2013 field season (Sam 
Cimino).  
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Appendix G: Sampling method 

Appendix G includes a conceptual diagram on proper quantitative macroinvertebrate 
sampling protocol of the riverine and lake ecosystems. The conceptual diagram was 
created by Valance Brenneis to assist with future sampling procedure. 

 

 

Figure G1. Placement of imaginary grids for collection of eight 1ft2 samples substrate for 
benthic invertebrate collection. Figure created by Valance Brenneis. 
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Appendix H: River data 

Appendix H includes the data that influenced addressing both upstream and downstream 
sites of river systems to be treated as independent replicates. Similarly, these riverine 
sites sampled from 2006-2008 and from 2012-2013 were also deemed independent of 
each other.  

Table H1. Differences in downstream (DS) and upstream (US) reaches of the sampled 
rivers. Data was collected by Valance Brenneis and analysis was performed by Valance 
Brenneis and Sam Cimino.  

Site Distance from Mouth (km) Elevation (m) Substrate 

Deschutes DS 0.32 70 Silt/Bedrock 
Deschutes US 32.3 260 Gravel/Bedrock 
John Day DS 4.72 170 Gravel 
John Day US 24.8 400 Gravel 
Siuslaw DS 6.52 15 Silt 
Siuslaw US 28.0 75 Bedrock 
Umpqua DS 14.6 5 Silt/Sand 
Umpqua US 37.5 25 Bedrock 
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Appendix I: Stable isotope maps 

Appendix I includes graphs of the stable isotope signatures of the sampled taxa at the 
lake and estuary sites collected in the summer of 2013. Color required to fully understand 
food webs. 

 

 

 

 

 

Figure I1. A. Cullaby Lake, B. Coffenbury Lake, C. Devils Lake (Lincoln Co.), D. Lake 
Lytle, E. Mercer Lake, and F. Garrison Lake. Average stable isotope signatures of the 
benthic food webs with standard error bars for δ13C and δ15N. Horizontal error bars 
represent a range in δ13C indicating a range in consumer diet. Vertical error bars represent 
a range in δ15N indicating a range in trophic position.  
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Figure I2. A. Rogue River Estuary, B. Coquille River Estuary,  C. Yaquina River 
Estuary, D. Nestucca River Estuary, E. Columbia River Estuary at Youngs Bay, and F. 
Tillamook River Estuary at Memaloose Point. Average stable isotope signatures of the 
benthic food webs with standard error bars for δ13C and δ15N. 
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Figure I3. Umpqua River and Siuslaw River upstream and downstream stable isotope 
samples. The figure was produced and samples were collected by Dr. Valance Brenneis. 
The number in parentheses indicates the number of samples analyzed for stable isotopes.    
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Figure I4. Deschutes River and John Day River upstream and downstream stable isotope 
samples. The figure was produced and samples were collected by Dr. Valance Brenneis. 
The number in parentheses indicates the number of samples analyzed for stable isotopes.    
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Figure I5. Columbia River Estuary at Youngs Bay stable isotope samples. The figure 
was produced and samples were collected by Dr. Valance Brenneis. The number in 
parentheses indicates the number of samples analyzed for stable isotopes.    
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Appendix J: Convex hulls depicting feeding ranges 

 

Appendix J includes all of the convex hulls depicting the feeding ranges of NZMS and a 
specific feeding group (herbivore [J1], detritivore [J2], omnivore [J3], and predator [J4]) 
at each sampling site with enough individuals with stable isotope signatures (3+) to create 
a convex hull and observe feeding range overlap.  
 

 
Figure J1. a. Deschutes River downstream, b. Deschutes River upstream, c. Lake Lytle, 
d. Devils Lake (Lincoln Co.), and e. Umpqua River downstream, stable isotope 
signatures of the benthic invertebrates with convex hulls depicting the feeding ranges of 
herbivores (dashed-blue polygons) and NZMS (solid-red polygons).  
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Figure J2. a. Deschutes River upstream, b. Garrison Lake, c. Nestucca Estuary, d. Devils 
Lake (Lincoln Co.), e. Umpqua River downstream, f. Rogue Estuary, and g. Youngs Bay 
stable isotope signatures of the benthic invertebrates with convex hulls depicting the 
feeding ranges of detritivores (dashed-blue polygons) and NZMS (solid-red polygons).  
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Figure J3. a. Deschutes River downstream, b. Coffenbury Lake, c. Yaquina Estuary, d. 
Lake Lytle, e. Nestucca Estuary, f. Umpqua River downstream, g. Devils Lake (Lincoln 
Co.), h. Youngs Bay, and i. Rogue Estuary stable isotope signatures of the benthic 
invertebrates with convex hulls depicting the feeding ranges of omnivores (dashed-blue 
polygons) and NZMS (solid-red polygons).  
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Figure J4. a. Deschutes River downstream, b. Tillamook Estuary, c. Devils Lake 
(Lincoln Co.), d. Garrison Lake, e. Lake Lytle, f. Nestucca Estuary, g. Umpqua River 
downstream, h. Youngs Bay, and i. Rogue Estuary stable isotope signatures of the 
benthic invertebrates with convex hulls depicting the feeding ranges of predators 
(dashed-blue polygons) and NZMS (solid-red polygons).  
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Appendix K: NZMS densities 

 

Appendix K includes the densities of NZMS at a particular location per square meter with 
an included standard error. 
 
Table K1. The average densities and standard error (SE) of New Zealand mud snails per 
square meter at each sampling location. Each location was sampled for densities at five 
different sites. Freshwater River data 2006-2008 and 2012-2013 and Youngs Bay data 
from 2006-2008 and 2012 was collected and analyzed by Valance Brenneis. 

Ecosystem Location/Year 
Average Density 

(Individuals·m-2) 
SE 

Freshwater Lakes Coffenbury/2013  204.01 196.04 
 Cullaby/2013  0.00 0.00 

 Lytle/2013 474.34 242.76 
 Devils/2103 1,611.79 442.89 
 Mercer/2013 0.00 0.00 
 Garrison/2013  280.75 189.38 

Brackish Estuaries Youngs Bay/ 2013 12,829.91 2,682.31 
 Tillamook/2013  157.43 65.87 
 Nestucca/2013  1,116.88 375.97 
 Yaquina/2013  391.47 179.27 
 Coquille/2013 0.00 0.00 
 Rogue/2013  9,984.65 4,505.50 
 Youngs Bay/2006-2008 8,706.9 2,987.64 
 Youngs Bay/2012 10,454.34 463.47 

Freshwater Rivers Deschutes DS/2006 2.69 2.26 
 Deschutes DS/2012 0.34 0.34 
 Deschutes US/2006-2008 20.32 13.19 
 Deschutes US/2012 53.57 51.23 
 John Day DS/2006 0.00 0.00 
 John Day DS/2012 0.00 0.00 
 John Day US/2006 0.00 0.00 
 John Day US/2012 0.00 0.00 
 Siuslaw DS/2006 0.00 0.00 
 Siuslaw DS/2012-2013 97.80 6.41 
 Siuslaw US/2006 0.00 0.00 
 Siuslaw US/2012 0.00 0.00 
 Umpqua DS/2006-2008 1,730.03 915.21 
 Umpqua DS/2012-2013 31.76 11.77 
 Umpqua US/2006 0.00 0.00 
 Umpqua US/2012 0.00 0.00 
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