Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
Spring 7-15-2016

Seismic Behavior and Design of the Linked Column
Steel Frame System for Rapid Return to Occupancy

Arlindo Pires Lopes
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Civil and Environmental Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation

Lopes, Arlindo Pires, "Seismic Behavior and Design of the Linked Column Steel Frame System for Rapid
Return to Occupancy" (2016). Dissertations and Theses. Paper 3012.
https://doi.org/10.15760/etd.3007

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.


https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3012&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3012&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3012
https://doi.org/10.15760/etd.3007
mailto:pdxscholar@pdx.edu

Seismic Behavior and Design of the Linked Column Steel Frame System for

Rapid Return to Occupancy

by

Arlindo Pires Lopes

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in
Civil and Environmental Engineering

Dissertation Committee:
Peter Dusicka, Chair
Franz Rad
Hormoz Zareh
Qi-Song Yu

Portland State University
2016



Abstract

The Linked Column Frame (LCF) is a new brace-free lateral structural steel
system intended for rapid return to occupancy performance level. LCF is more
resilient under a design level earthquake than the conventional approaches. The
structural system consists of moment frames for gravity that combines with
closely spaced dual columns (LC) interconnected with bolted links for the lat-
eral system. The LC links are sacrificial and intended to be replaced following
a design level earthquake. The centerpiece of this work was a unique full-scale
experiment using hybrid testing; a combination of physical test of a critical
sub-system tied to a numerical model of the building frame. Hybrid testing al-
lows for full scale study at the system level accounting for the uncertainties via
experimental component and having the ability to model more conventional be-
havior through numerical simulation. The experimental subsystem consisted of
a two story LCF frame with a single bay while the remainder of the building was
numerically modeled. Two actuators per story were connected to the specimen.
The LC links have been designed to be short and plastically shear dominated
and the LCF met the design intent of 2.5% inter-story drift limits. For evaluat-
ing the LCF response, hybrid testing was performed for ground motion at three
different intensities; 50%, 10% and 2% probability of exceedence in 50 years for
Seattle, Washington ground motions. The system overall had exhibited three
distinct performance levels; linearly elastic, rapid return to occupancy where
only the replaceable links would yield, and collapse prevention where the grav-
ity beam components also became damaged. Results demonstrated a viable
system under cyclic and seismic loading, offering a ductile structural system

with the ability to rapidly return to occupancy.
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Chapter 1

Introduction

1.1 Research Motivation

Seismic design approach is generally based on elastic structural behavior and
accounts for the inelastic behavior indirectly (i.e., force modification factor,
occupancy importance factor, and deflection amplification factor). According
to Ghobarah (2001) although buildings designed to current codes performed well
during recent earthquakes from a life safety perspective, the level of damage to
structures, economic loss due to loss of use, and cost of repair were unexpectedly
high.

Performance-based seismic design (FEMA 445, 2006) is a more general de-
sign philosophy in which the design criteria are expressed in terms of achieving
stated performance objectives when the structure is subjected to specific levels
of seismic hazard. Two predominant methods, the coefficient method (FEMA
356, 2000) and the capacity-spectrum method (FEMA 440, 2005) are most of-
ten used in current U.S. practice. Both approaches use nonlinear static analysis
(pushover analysis) to estimate seismic demands and capacities.

New structural systems are being developed with emphasis on immediate
occupancy following a design level earthquake. Example of these systems in-
clude development of damage free beam-column connection, either through post
tensioning (Ricles et. al., 2001) or friction based resistance (Khoo et. al., 2011).

An alternative approach to immediate occupancy performance level is to design



for damage in non-gravity members that could be replaced. Such structural
systems would be capable of rapid repair that would facilitate return to occu-
pancy following a seismic event. For example, buckling restrained brace frames
exhibit this characteristic.

A non-braced structural system was developed at Portland State University
(PSU) and is referred to as the Linked Column Frame (LCF) system. The
LCF aims to address the rapid return to occupancy design performance while

maintaining the architectural advantages of non-braced steel frame construction.

1.2 NEESR-II LCF Research Project

A large research project funded by the National Science Foundation (NSF') un-
der the umbrella of the George E. Brown Network for Earthquake Engineering
Simulation Research (NEESR-II) was undertaken. This project was named “To-
ward Rapid Return to Occupancy in Unbraced Steel Frames” and the overall
vision of this project was to develop a lateral load-resisting system for unbraced
steel frames capable of achieving specific target performance levels. PSU was the
leading institution and the project also had collaborators from the University
of Washington, who conducted system level computer simulations, and Califor-
nia State University in Los Angeles, who helped with some of the preliminary
work and outreach. The research began with numerical and experimental in-
vestigation of wide-flange links for use in the LCF system utilizing plate bolted
connections (Lewis, 2010) followed by studies on composite sandwich links for
the LCF system (Stephens, 2011). Concurrent with these tests, two indepen-
dent numerical modeling and design on the LCF system level were performed
by Malakoutian (2012) and Lopes et. al. (2012%) in which the latter one was

chosen toward LCF system experimental tests.



1.3 Objectives

Building upon the research described in Section (1.2), full-scale LCF tests at
the NEES structural laboratory of the University of California at Berkeley
(nees@berkeley) were conducted culminating in the development of design rec-
ommendations for LCF systems based on the observations and data gathered
during the experimental and numerical tasks.

These full-scale tests were the first tests ever conducted on LCF systems
using either cyclic or hybrid simulation, which is a combination of physical
test of a critical experimental substructure tied to a numerical substructure
component of the building. The main objectives of this dissertation were as

follows:

1. To develop a numerical model toward experimental validation through

drift sensitivity analysis and lateral performance.

2. To investigate different boundary conditions on the system and use of

built-up sections for the replaceable links.

3. To develop a numerical substructure component model in order to proceed

with the hybrid simulation tests.

4. To prepare, execute and report findings of a unique full-scale LCF exper-

iment using cyclic and hybrid simulation tests.
5. To experimentally validate the LCF system performance.

6. To experimentally find the Overstrength coefficient, €2y, which is a seismic

performance factor.

7. To develop closed-form equations via structural mechanics for estimating

the lateral stiffness of LCF buildings and axial load on foundations.

8. To provide general guidelines for preliminary LCF design.
3



9. To study through seismic performance assessment the fit of the LCF sys-

tem into performance based design guidelines.

10. To propose additions to the current seismic code provisions to incorporate

the design of LCF buildings.

11. To provide structural detailing for horizontal diaphragm and linked col-

umn foundations.

1.4 Contributions to the Field

This research was the first methodical and comprehensive evaluation of LCF
buildings, including development, numerical analyses, experimental investiga-
tion, analytical studies, and bridge between academic and practice. Ultimately,
the LCF system performance validation was done by testing full-scale specimens
through cyclic and hybrid simulation investigations leading to design guidelines
for the LCF system in order to obtain multiple performance objectives simul-
taneously. This dissertation is intended to define a state-of-the-art method for
evaluation of LCF buildings, and therefore provide guidance to the seismic de-

sign of such structures in moderate-to-high seismicity regions.

1.5 Dissertation Organization

The dissertation is organized in 11 chapters, appendices and a list of references

as follows:

e Chapter 1 discusses the motivation of the study, NEESR-II LCF research

project, objectives, and contributions to the field.

e Chapter 2 presents a literature review and includes previous research on

lateral-load resisting frame systems, links and experimental methods.



e Chapter 3 describes the LCF system through drift sensitivity analysis and
lateral performance, illustrating that a viable non-braced frame alterna-
tive system is possible to be implemented. Also, an economic evaluation
comparison between LCF and Special Moment Resisting Frame (SMRF')
was made. Structural steel weight was calculated for each of the systems

as an indicator of cost of the structure.

e Chapter 4 considers numerical analyses toward experimental validation.
Changing boundary conditions and using built-up sections for the replace-
able links have shown an increase of LCF system’s efficiency. Non-linear
pushover analyses were used to validate the system ability to achieve the

rapid return to occupancy performance level.

e Chapter 5 gives a description of the experimental program that was con-
ducted at nees@berkeley, using cyclic and hybrid simulation tests. The
centerpiece of this work was a unique full-scale experiment consisted of
a two story LCF building with a single bay, while the remainder of the

building was numerically modeled.

e Chapter 6 contains the LCF system performance validation via the discus-
sion of the results of the experiments. For evaluating the LCF structural
response, FEMA 461 was used as the loading protocol for the cyclic test-
ing, whereas ground motions at three different intensities; 50%, 10% and
2% probability of exceedance in 50 years were used for the hybrid testing.
The system overall had exhibited three distinct performance levels: lin-
early elastic, rapid return to occupancy where only the replaceable links
yielded, and collapse prevention where the gravity beam components also

became damaged.

e Chapter 7 deals with principles of structural mechanics and their applica-

tions to the analysis of LCF systems and components. Most importantly,

5



cantilever and Vierendeel approaches applied to LCF buildings were de-
veloped leading to closed-form equations that may be used to select the
geometric properties not only for the closely spaced dual columns but
also the replaceable links, meeting the design inter-story drift limits. In
addition to estimating the lateral stiffness of LCF buildings, closed-form
equations were also developed to size gravity beam members as well as to

estimate the axial load on foundations.

Chapter 8 provides general guidelines for preliminary LCF design that
results in configurations where linked columns and replaceable links are
likely to satisfy capacity design requirements. A step-by-step design pro-
cedure is illustrated through an example of a 4-story LCF building.

Chapter 9 shows the results of a structural seismic performance assess-
ment into performance based design guidelines. The seismic performance
assessment was conducted using a linear analysis procedure and assess-

ment calculations for beams, replaceable links and columns are presented.

Chapter 10 proposes structural detailing for horizontal diaphragm and
linked column foundations; and also proposes additions to the current seis-
mic code provisions to incorporate the design of LCF buildings, providing
the basis of design, the requirements for analysis, and the requirements

for the system, members and connections.

Chapter 11 summarizes the main conclusions and provides recommenda-

tions for future studies.



Chapter 2

Literature Review

2.1 Introduction

Current approaches to structural steel building design for extreme seismic events
typically include forms of ductile structural systems contained in the AISC Seis-
mic Provisions. Most of these structural systems utilize gravity load-carrying
members to also resist lateral loads. However, inelastic behavior is usually di-
rectly related to structural damage, which in the conventional systems typically
results in damage to the gravity load-carrying members even for smaller than
design level events.

The LCF system incorporates aspects of conventional systems such as Mo-
ment Resisting Frames (MRFs) and Eccentrically Braced Frames (EBFs), but
combines them to achieve system performance that can be designed to obtain
multiple performance objectives simultaneously.

Relevant literature related to conventional system-level studies and other
lateral-load resisting frames is examined first, followed by information on ex-
perimental methods for structures. Due to extensive literature that exists on
these topics, only few references used to guide the overall scope of this research
are discussed here. Additional references are presented throughout the disser-

tation.



2.2 Moment Resisting Frames

MRFs are, in their simplest form, linear assemblages of beams and columns,
with the beams rigidly connected to the columns as shown in Figure (2.1). To
achieve economic designs while providing life-safety to the occupants, modern
seismic design principles take advantage of the ductility of buildings and design
structures for only a fraction of the expected elastic lateral load. In a steel
MRF, plastic hinges develop near the beam-to-column connections during large
seismic events. These plastic hinges act as ductile fuses, dissipating energy
through stable hysteretic behavior while limiting forces transmitted to other

components of the structure.

TIETE T TIETE

Figure 2.1: Moment resisting frame.

MRF's with traditional welded flange and bolted web connections were be-
lieved to be very ductile systems and were extensively used between the 1960s
and the early 1990s. This belief was put into question after failures during
the Northridge earthquake (Bruneau et. al., 1998), in many cases without any
signs of plastic deformation in the beam. As a result of these failures, different
schemes were developed to improve the connection performance. Depending on

the connection details, the system is classified as ordinary (OMF), intermediate
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(IMF) or special moment frame (SMF) with the latter being best suited for
areas of high seismicity.

OMFs are expected to sustain minimal ineslatic deformation in their mem-
bers and connections when subjected to seismic forces, and it is assumed to
have an interstory drift of 0.01 radians and should remain mostly elastic. IMFs
are expected to endure limited inelastic deformations in their members and con-
nections when subjected to seismic forces, and the required interstory drift is
a minimum of 0.02 radians. Finally, SMF's are expected to undergo significant
inelastic deformation when subjected to seismic forces, and the required inter-
story drift is a minimum of 0.04 radians. Usually, MRFs tend to have heavy
member sections and higher story drift compared to other lateral load resisting
systems in order to control the design drift.

A conventional MRF is designed to yield and form plastic hinges with asso-
ciated damages in beams and columns. These damages can result in significant
repair costs. In the case of SMF, rapid return to occupancy is not easily achiev-
able since the damage is in the gravity load-carrying beams and, sometimes, in

the columns.

2.3 Concentrically Braced Frames

Concentrically Braced Frames (CBFs) do not fit in the scope of non-braced
structural systems, and also suffer from similar shortcomings when considering

return to occupancy despite their ability to provide stiff and ductile response.

9



To achieve appropriate strength and ductile response, diagonal braces must
be specifically designed to sustain plastic deformation and dissipate hysteretic
energy in a stable manner through successive cycles of buckling in compression
and yielding in tension (Tremblay & Tirca, 2003). Schematic of a CBF is shown

in Figure (2.2).

T e

Figure 2.2: Concentrically braced frame.

2.4 Eccentrically Braced Frames

Eccentrically Braced Frames (EBFs) are very efficient structures for resisting
earthquakes as they combine the ductility of MRF's and the stiffness associated
with braced frames. An EBF is a frame system in wich the axial forces induced
in the braces are transferred either to a column or to another brace through
shear and bending in a small segment of the beam called link. Typical EBF
geometry is shown in Figure (2.3). EBFs depend on the inelasticity of specially
designed links to provide ductility and to dissipate energy during earthquakes.

With increasing emphasis on performance based design, the link’s replaceability
10



becomes a desired quality. Researchers have begun to examine the possibility
of using a bolted link design so that after a seismic event the damaged sections
could be replaced (Stratan & Dubina, 2004) and (Mansour, 2010). Bolted links
would also allow for cost effective designs of buildings located in lower seismic
regions (Hines, 2009). Unfortunately, EBFs do not fit in the scope of non-braced

structural systems.

T T

Figure 2.3: Eccentrically braced frame.

2.4.1 Links

Links have been used in EBF's to dissipate earthquake energy via large inelastic
deformations. They are classified into three types: short, intermediate and
long links, depending on the structural and geometric properties (ANSI/AISC
341, 2010). According to Chao et. al. (2006) when architectural constraints
permit, short links which dissipate energy primarily through inelastic shear
distortion are preferred to longer links that dissipate energy through plastic

hinge rotation. Within the scope of this dissertation, replaceable links were
11



adopted to interconnect the dual columns on the LCF system.

The idea behind the LCF system was based on recent developments in long
span bridge design and applied to building construction. Nader (2000) de-
signed the new San Francisco Oakland Bay Bridge (SFOBB) and one of their
approaches to have a clearly defined plastic mechanism for response to lateral
loads was to provide replaceable shear links between the tower shafts which
would yield in the event of a major earthquake with a clear failure sequence.
Figure (2.4) shows the rendering of the new SFOBB suspension signature span
and Figure (2.5) shows the effects of using shear links on the lateral behavior

of the tower.

SHEAR LINKS
FOR LONGITUDIN
DIRECTION

SHEAR LINKS
FOR TRANSVER:
DIRECTION

Figure 2.4: Rendering of the new SFOBB suspension signature span.

Dusicka (2004) investigated the inelastic behavior of built-up shear links
for seismic protection of bridges through the use of large-scale experiments,
material investigation and numerical analyses. Built-up shear links were shown

to be effective hysteretic energy dissipators. Figure (2.6) shows the ultimate

12
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Figure 2.5: Pushover analysis of the single tower.

failure of one of the links tested.

WEB TEARING
NEXT TO WELDS

Figure 2.6: Ultimate failure of link 1.225.

In current lateral systems the shear link is an integral component of the

frame system. After an extreme event, retrofit time and costs are increased due

to the difficulty in removal and replacement of the damaged link. The LCF

system takes an innovative step forward by separating the shear link from the

framing system, acting as a seismic dissipater. In addition, the link can now be

easily replaced and with less disruption after extreme events.
13



Lewis (2010) studied replaceable link connections with the intent of limit-
ing plastic strain at the link-to-end plate connection and thereby minimizing
undesirable failure modes. A variety of end stiffener configurations were first

investigated through numerical analysis and then experimentally tested at PSU.

Figure 2.7: Experimental setup at iSTAR laboratory.

Laboratory test setup was designed based on the LCF concept, with two
columns being tied through a link at mid-height as shown in Figure (2.7). The
test setup was approximately 12 ft tall, with column spacing at approximately
6 ft on center, representing a full story frame. The link is the only aspect of the
frame resisting the cyclic loading being applied by the 220 kip actuator at the

top of the frame.

14



Reducing the plastic demand at the location of welds was achieved through
end stiffeners that shifted the plastic strain away from the welded link ends.
Straight end stiffeners parallel to the web were found to be both practical and
effective in reducing plastic strains at the link-to-end plate connection. These
end stiffeners parallel to the web were also used in the full-scale LCF system
experiments at nees@berkeley.

Stephens (2011) focused on the potential of shifting from discrete transverse
web stiffening to continuously stiffened webs in built-up shear links within the
LCF system. Built-up links were designed to yield in shear when subjected to
severe cyclic loading and link webs were designed using two metal sheets joined
by an elastic core. These composite steel-rubber-steel sandwich webs allowed
for an increase in web thickness without increasing the shear strength of the
links. Numerical and experimental investigations were conducted to assess the
performance of composite sandwich links subjected to severe loading. Figure

(2.8) shows the strain distribution of one of the links tested.

2.4.2 Link Overstrength

The maximum shear strength (V},4,) that develops in the link can be different
to the plastic shear (Vp) capacity. The ratio of the maximum shear strength to
the plastic shear capacity given by Equation (2.1) is referred to as overstrength
and considers all factors that can contribute to the increased resistance (Dusicka

et. al., 2006), including material strain hardening and the development of shear

15



Figure 2.8: Strain distribution of link 25DBase.

resistance in the flanges.

(2.1)

Popov & Engelhardt (1988) recommended a link overstrength factor of 1.5.
Currently, the AISC Seismic Provisions (ANSI/AISC 341, 2010) specify a link
overstrength factor of 1.25 for I-shaped links and 1.4 for box links for the de-
sign of diagonal braces and their connections, beams outside links and for the
columns.

Okazaki et. al. (2005) evaluated link overstrength, particularly for sections
with large ratios of flange to web area. This was based on a concern that heavy
flanges can contribute substantially to the shear capacity of the section, and
therefore generate high levels of overstrength. A range of link lengths were

tested, ranging from short shear yielding links to very long flexural yielding
16



links. The average overstrength for shorter link specimens was 1.41 and the
average overstrength for longer link specimens was 1.22.

Tests on large built-up shear links for use in bridge applications showed
overstrength factors of nearly 2.0 (McDaniel et. al., 2003). These tests differed
from the others in that the specimens were built-up links with a larger sec-
tion and different cross-section proportions than rolled W-shapes typically used
for links in EBFs. Further, these links were also very short. This has led to
concerns that current overstrength factors may be unconservative. Underesti-
mating the overstrength developed in a shear link can lead to deficient designs
and undesirable failure modes. Therefore, during the design process of the LCF
system an overstrength of 2.0 was considered in order to estimate axial loads

on foundations.

2.5 Special Truss Moment Frames

Special Truss Moment Frames (STMFs) dissipate energy via ductile segments
located near the mid-span of truss girders and are suitable for high seismic areas.
According to Chao & Goel (2008) one advantage of using STMF systems is that
the truss girders can be used over longer spans, and greater overall structural
stiffness can be achieved by using deeper girders. On the other hand, the special
segment is confined to within half of the span and the chords are continuous
over the ends of the special segment, resulting in similar difficulties for rapid

return to occupancy as MRFs. Figure (2.9) illustrates a typical STMF.
17
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Figure 2.9: STMF with a single panel Vierendel ductile segment.

2.6 Other Lateral-Load Resisting Frames

The systems previously described are well suited to provide the desired level
of ductility and energy dissipation under seismic loading for life safety without
the need to design for elastic behavior. The resulting damage however can
be induced for earthquake intensities well below the design level earthquakes
because of the large response modification factor values used for sizing members;
ranging from R = 6 to 8 (ASCE/SEI 7, 2010). The loss of occupancy and the
difficulty associated with economically repairing the gravity system following
an earthquake can burden the owners and occupants.

More recent lateral load-resisting systems introduced in the latest seismic
design provisions for steel buildings (ANSI/AISC 341, 2010) offer additional
options and potential advantages as compared to the conventional approaches.

These systems include special steel plate shear wall and buckling-restrained

18



braced frame. Both systems avoid using the primary gravity members for pro-
viding lateral inelasticity, but still exhibit some disadvantages when considering
the potential for returning to occupancy.

Special Steel Plate Shear Walls (SPSWs) consist of a steel frame with steel
infill web plates and the structural system has both horizontal and vertical
boundary elements. Astanesh & Zhao (2002) performed tests on 3-story SPSWs
specimen to investigate the cyclic behavior of a steel plate shear wall system.
One of the failure modes was the local buckling of the wide flange column which
is a disadvantage when considering the potential for returning to occupancy.

Figure (2.10) shows a special steel plate shear wall system.

Ftrrd Ererrd s Ece sl

Figure 2.10: Special steel plate shear wall.

Buckling Restrained Braced Frames (BRBFs) use a prefabricated or manu-
factured brace element consisting of a steel core and a system of restraints that
limits buckling of the steel core (ANSI/AISC 341, 2010). Experiments con-
ducted by Roeder et. al. (2006) indicate that failure modes such as beam and

column local buckling and fracture of the beam to gusset plate welds can occur

19



outside of the brace. In addition, BRBFs have diagonal braces and the intent
of the LCF research was to develop an alternative non-braced frame system.

Figure (2.11) illustrates a buckling restrained braced frame.

Ererrd TR TERT TIIET

Figure 2.11: Buckling retrained braced frame.

Both of these systems are approaching the vision targeted by this research
except that both utilize bays that are filled or have a diagonal brace. Other,
not yet codified structural systems have been investigated including a moment
resisting frame where nonlinear behavior is achieved through rocking in the form
of post-tensioned moment connection rather than relying on material yielding
(Ricles et. al., 2001). Although the system utilizes the gravity members for
resisting lateral loads, the connections do not undergo inelastic deformation
and therefore immediate occupancy level can be rapidly achieved. This damage
free beam-column moment frame system has tremendous potential for achieving
immediate occupancy due to the theoretical ability to self-center. However, even
for these systems energy dissipation continues to be an important consideration

and must be externally introduced in order to control the lateral drift (Filiatrault
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et. al., 2003).

Others have proposed self-centering systems that rely on rocking at the base
of framing systems (Pollino & Bruneau, 2007) and Khoo et. al. (2011), how-
ever, these systems could present numerous nonstructural issues in buildings for
accommodating different vertical displacement at beams ends. More recently,
two innovative systems of seismic-resistant steel frames with dissipative fuses
were developed within the European Research Programme FUSEIS. The first,
named FUSEIS 1, resembles a shear wall, whereas in the second system, named
FUSEIS 2, the devices were made by introducing a discontinuity into the com-
posite beams of a moment-resisting frame (Dimakogianni et. al., 2013). The
cyclic experimental program consisted of testing only the columns with fuses in
a one-story building.

Additional design options for lateral load-resisting structural systems need
to be developed to propel state-of-the-art structural performance toward perfor-
mance based design. Inelasticity is extremely beneficial to control the dynamic
response and should not necessarily imply crippling damage to the gravity sys-
tem. This dissertation addresses this gap in seismic design at the system level
by developing and experimentally validating a new lateral load resisting system
that can achieve specific target performance levels including rapid return to

occupancy following an earthquake.

21



2.7 Experimental Methods for Structures

Three methodologies are commonly used for evaluating the performance of
structural systems when subjected to earthquake loads: shake table tests, quasi-
static tests, and hybrid simulation. Although more realistic results can be
achieved through shake table tests, only reduced-scale structural models can
be tested due to table constraints. Also, shake tables with multi-degree of free-
dom capabilities are expensive to build. LCF system experiments were planned
to be conducted at the University of Nevada, Reno considering a 2-story and
1-bay frame to investigate the dynamic inelastic behavior of the system and
validate the performance based design methodology using real time earthquake
simulation. Figure (2.12) illustrates the preliminary LCF experimental test

setup.

Figure 2.12: Preliminary LCF experimental test setup.

Quasi-static testing is a much simpler testing method that can be used to
22



test structural members at large scales, but these tests require a predefined
displacement history, that can later be difficult to relate to the seismic demands
on the structure (Shing & Mahin, 1984).

Hybrid simulation can be used to reduce the cost involved with fabrication
and full-scale testing of large structures. Within a hybrid simulation test, critical
componentes of the structural system under evaluation can be physically tested
to be better understood, while others can be represented with computational
models. The hybrid simulation test method is useful for modeling structures
exhibiting complex non-linear behavior, especially if the non-linear behavior is
concentrated in specific regions of the structure (Mosqueda et. al., 2005).

As mentioned in Chapter (1), the NEES site at the University of California
at Berkeley (nees@berkeley) was utilized for the system level cyclic and hybrid
simulation tests. The limitations of actuators as well as the overturning strong
floor capacity were used as constraints to further refine the full-scale LCF ex-

periments.
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Chapter 3

Linked Column Steel Frame System

3.1 Introduction

Non-braced frames are the lateral systems of choice when design constraints
need to accommodate large openings. These structures are expected to achieve
lateral ductility when subjected to earthquake loading through yielding beams
or columns, and the connections must be capable of remaining intact through
several cycles of inelastic rotation. The LCF system is a new lateral load re-
sisting system that was developed at PSU with the goals of rapid return to
occupancy via replacement of sacrificial components. The system consists of
moment frames (MF) and linked columns (LC) with replaceable links. The
MF provides gravity load-carrying capacity and under earthquake excitation
the structure remains elastic. The LC consists of closely spaced dual-columns
interconnected with links, which are designed to yield, deform plastically and

be replaceable. The LCF system’s ability to achieve rapid return to occupancy
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relies on the behavior of the replaceable links. The LCF system also offers ar-
chitectural advantages of open perimeter bays and occupation versatility in the
interior floor layout. Example LCF layout for a 3-story building is shown in
elevation in Figure (3.1), where two LCs were utilized.

During the initial development of the system, non-moment transferring con-
nections were introduced at all column to foundation locations and in strategic
beam to column locations (Dusicka & Iwai, 2007). These idealized pin connec-
tions at the base of each column limit yielding at the foundation and thereby
minimize damage to the columns that is typical in ductile moment frame de-
signs. The idealized pin connections in the MF beams reduce the lateral stiffness
of the gravity moment frame. By superimposing the lateral response contribu-
tions of the LC and MF as shown in Figure (3.2), the resulting lateral response
of the LCF system provides for three performance levels as follows: (i) Elas-
tic behavior: Under service loads, the entire structure remains elastic and the
primary stiffness is provided by the LC assembly. (ii) Rapid return to occu-
pancy: Under extreme lateral loads, the links plastically deform while the rest
of the structure remains elastic. (iii) Collapse prevention: MF beams are also
damaged. The effectiveness of the rapid return to occupancy performance level
depends on the relative transitions from elastic to plastic response of the LC
and of the MF. Relative deformation can be described by the ratio of displace-
ments at first yield A,ro/Aypp from Equation (3.1), where Vo and Vyp are

the idealized lateral strengths, and Ko and K, r are the lateral stiffness values
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of LC and MF subcomponents, respectively.
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Figure 3.1: Elevation of a 3-story LCF building.
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(3.1)

Ratios less than unity describe structural systems in which LC reaches plasticity

at lower displacements than MF, thereby providing the potential for rapid return
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to occupancy performance level. The larger the difference between the yield
displacements, the larger the drift range in which rapid return to occupancy
can occur. Numerical and experimental studies has been carried out on bolted
links that were either shear or moment dominated (Dusicka & Lewis, 2010). The
results have shown the viability of the links by their ability to deform plastically
and exhibit failure modes that form away from the bolted connection regions.
Other experiments on a steel frame similar to a linked column but with multiple
sacrificial metal rods at mid-length of the links that were distributed throughout
a story height had also indicated favorable cyclic response (Palkopoulou et. al.,
2009). Also, system level numerical model development and analyses of the LCF
system have been done considering time history analyses (Malakoutian, 2012)
and non-linear static analyses (Lopes et. al., 2012%) leading to preliminary

design procedures for the LCF system toward performance level response.

3.2 Prototype Buildings

The seismic assessment of multistory special moment-resisting frames (SMRF)
by the SAC Joint Venture (FEMA 355-C, 2000) after the 1994 Northridge earth-
quake revealed that many buildings using this type of lateral force resisting
system did not perform as intended. The SAC model buildings were designed
according to the 1994 Uniform Building Code and represented typical 3-, 9-,
and 20-story office buildings in Los Angeles, Seattle and Boston. In elevation,

the typical bay width was 9.1 m and typical bay height was 4.0 m.
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For the purpose of this research, the location of the building is in Seattle,
Washington. This location is considered a medium to high seismic design cat-
egory. The resulting SMRF around the perimeter of the buildings developed
by SAC included 3-story structures. Using the same design parameters, a 6-
story structure was also designed and beam and column sections for both LCF
buildings are summarized in Table (3.1). These SMRF designs served as the

benchmark for comparison with the LCF designs.

Table 3.1: Structural members for SMRF buildings.

3-story building

Story Beam Column

1 W33x201 W14x176

2 W24x94  W14x176

3 W21x62 W14x176

6-story building

1 W36x231  W14x730

2-3 W33x141  W14x730

4-6 W27x114  W14x665

The LCF buildings followed similar layout, except that two of the columns
were replaced by linked columns as shown in Figure (3.1). The LCFs were
located around the perimeter of the building. Each linked column was spaced
1.5 m apart and the beam lengths were adjusted accordingly such that the
building had the same overall plan dimensions. The links connecting the LCs
were designed as shear links, also referred to as short links in EBFs. Link designs

utilized built-up sections for additional design freedom and additional designs
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were also developed using wide flange beams. Unlike SMRFs, LCF systems
have the potential repair in the rapid return to occupancy performance level

because no gravity members would be damaged.

3.3 Drift Sensitivity Analyses

The initial member sizes of the LCFs were obtained using gravity load analyses
along with accommodation for equivalent seismic lateral loads using building
code prescribed forces (ASCE/SEI 7, 2010). Seismic design coefficients of R=8
and Cd=5.5 were used as per research done by Malakoutian (2012). Strong
column weak beam capacity design principles were applied for all columns, in-
cluding LCs. The initial LCF structure subjected to equivalent seismic lateral
loads resulted in inter-story drifts exceeding code maxima. The determination
of the controlling structural members in terms of drift within the structural sys-
tem was accomplished through a series of parametric studies on a linear elastic
numerical model subjected to the calculated equivalent lateral forces.

To investigate the stiffness sensitivity of individual members of the system,
the flexural stiffness of each of the members was increased while all other mem-
bers were kept unchanged. The flexural stiffness was altered numerically from
2 to 6 times the original in the model using a multiple of the moment of inertia
for the member of interest. The gravity MF columns, MF beams, LC columns
and the replaceable links were all independently considered. The impacts on

inter-story drifts are summarized in Figure (3.3), where only the top three most
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significant parameters per story are reported for clarity.
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Figure 3.3: Inter-story drift sensitivity analyses.

Changing just one parameter did not necessarily address the desired drift

criteria, however the results of the parametric study had identified key members

that influenced the LCF system drift. For the three story building, the LC links
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significantly influenced the drift in the first story while MF beams exhibited
more significant contributions in the upper stories. For the six story building,
LC links as well as LC columns exhibited the most influence on the drift in the
bottom stories with a diminishing role of the LC in the upper stories. The MF
beams tended to be more influential at higher stories.

Two different design approaches were undertaken to determine the section
sizes of LCF systems meeting the design intent of 2.5% inter-story drift limits;
increasing MF beam sizes first and increasing LC links and column sizes first.
Incremental increase in rolled wide flange sections available in the US was used
for columns and MF beams. Built-up sections from plates as well as rolled wide
flange alternatives were developed for the links resulting in LCF-L and LCF-M
designs corresponding to the approach of controlling drift primarily using LC
and MF, respectively. Member sizes were also checked for strong column weak
beam such that the columns were expected to remain elastic. The resulting
LCF 3 and 6 story systems are summarized in Table (3.2) for both approaches.
Additional designs were completed using wide flange sections for shear links and

were referred to as LCF-W design systems.
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Table 3.2: Structural members for LCF buildings

3-story LCF-L building

Story LC Link Beam GC
1 W14x257 A W24x146  W14x211
2 W14x257 A W24x117 W14x211
3 W14x257 B W21x55  W14x211
3-story LCF-M building
Story LC Link Beam GC
1 W14x233 A W24x84 W14x120
2 W14x233 A ‘W24x68 W14x120
3 W14x233 B W21x55 W14x120
6-story LCF-L building
Story LC Link Beam GC
1 W14x605 C W30x99  W14x398
2 W14x605 C W33x141  W14x398
3 W14x605 C W36x182  W14x398
4 W14x605 D W36x182  W14x398
5-6 W14x550 D W30x99  W14x311
6-story LCF-M building
Story LC Link Beam GC
1-2 W14x730 E W24x84 W14x283
3-4 W14x730 E W33x118  W14x283
5 W14x605 D W33x118  W14x283
6 W14x605 D W24x84  W14x283

All steel was assumed to be 345 MPa nominal yield except for the links which
were assumed to be 250 MPa. The LC links have been considered to be short
or plastically shear dominated resulting in sectional properties summarized in

Table (3.3). Intermediate or long links are also potentially possible in LCF
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designs, however the effects on meeting drift criteria and building member sizes

had not been investigated in this research.

Table 3.3: LC links dimensions (mm)

3-story LCF-L building

Links hw tw bf tf

A 483 9.5 267 159

B 356 9.5 267 159
C 762  12.7 267 15.9
D 546 9.5 267 159
E 864 12.7 432 254

Structural steel weight was calculated for each of the frames as an indicator
of cost of the structure and these are summarized in Table (3.4). The LCF
systems in which the LC links and columns were used as the primary means
of achieving drift criteria resulted in significantly lighter frames than those in
which MF beams were used as means to control drift. These lighter LCF de-
signs had comparable weights to SMRF designs indicating that comparable cost
effectiveness is possible while considering the steel costs only. Hence, while the
MF beam stiffness has greater influence on the drift than LC links or columns,
more cost effective designs are achievable by altering the stiffness of LC links

and columns as the starting point in controlling drift.
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3.4 Lateral Performance

3.4.1 Numerical Model

Non-linear lateral behavior of two dimensional frames was evaluated by incre-
mental pushover analyses using SAP2000 (2010), which utilized lumped plastic
hinge formulations based on FEMA 356 (2000). The numerical model included
a P-A column linked by axially rigid horizontal truss elements at each story.
Pushover analyses were chosen for the ability to study and demonstrate the
deformation mechanism, while assuming first mode dominated lateral response.
Time history analyses can better represent the participation of higher mode

effects, being covered elsewhere (Malakoutian, 2012).

3.4.2 Lateral Response

The system level pushover behavior of LCF and SMRF' as measured by the roof
drift and total frame base shear are shown in Figure (3.4). Both approaches
used for design of members are included. Points where the first LC link and the
first MF beam developed their respective plastic capacity are also indicated.
Each of the LCF systems exhibited three regions within the lateral response;
elastic, yielding of L.C link and yielding of LC links as well as MF beams. Pro-
vided the links are replaceable, these correspond to three distinct performance
levels; elastic, rapid return to occupancy via replaceable links and collapse pre-

vention. Unlike SMRF's, LCF systems have the potential for effective repair in
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the rapid return to occupancy performance level because no gravity members
would be damaged. Unlike EBFs, the shear links are bolted to the columns to
facilitate post-earthquake replacement. Even when residual drift results in the
structure, the permanent deformations are locked in the shear links, which can
be removed using a plasma cutter or an oxygen-acetylene torch. And, the elas-
ticity of the MF component of the LCF system would provide restoring forces
upon removal of the permanently deformed links.

The design base shear was included in Figure (3.4) to evaluate the efficiency
of the designs. Since the SMRFs were drift controlled, an increase in beams size
associated with addressing drift criteria also significantly increased the system
strength and resulted in base shears that were at least 45% and 120% higher
at first yield for the 3-story and 6-story LCF buildings, respectively. The LCF
designs were found to have base shears closer to the design base shear both at
first yield as well as at 5% drift, a value that is twice the design drift limit. The
lower base shears for the LCFs translates to lower demand on the foundation,

which results in potential cost savings for the building.
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Figure 3.4: Pushover comparisons.

3.4.3 Performance Characteristics

For the LCF systems, individual contributions from MF and LC subcomponents

were determined with separate pushover analyses of a modified model where
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the member connections in MF and LC respectively were released, as shown
in Figure (3.5). The building lateral response as measured by the roof drift
was then expressed as a sum of the two subcomponents as illustrated in the
idealized case of Figure (3.2). The difference to the idealized case was that
system pushover results exhibited post yield stiffness and gradual transitions
following first yield. Lateral system performance parameters were extracted to

describe the overall system behavior.

LCF MF LC

O &y o & O

_— . @ —

O - Az O
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L,
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Figure 3.5: Modified model for a 3-story LCF building.

In addition to the drift ratio of Equation (3.1), stiffness and strength ratios
K C/KyF=a and V,C/Vy F=p were calculated. The lateral strength values
were obtained at first yield, recognizing that additional strength is gained on
subsequent plastic hinge formations and due to strain hardening. The system
parameters are summarized in Table (3.4) and are useful in comparing the
relative lateral performance of the overall systems.

For 3-story buildings the LCs dominated the stiffness as well as the strength
of the overall structure while for 6-story buildings the LC strengths were below

that of MF contributions. This difference explains in part the inter-story drift
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sensitivity of the 6-story building to MF beam stiffness. In all but one LCF
case, the displacement or drift ratio was equal to or less than 0.52, indicating
that rapid return to occupancy performance level, in which only LC links are
damaged and all gravity members remain elastic, can occur over a drift range
that is at least twice the drift of the first yield. The case in which the drift
ratio was less favorable with regard to rapid return to occupancy was the 6-
story LCF-M design, where the MF beams were primarily used to achieve the
prescribed drift criteria. In this case, the intended performance advantage of
the LCF was less effective, suggesting that using L.C links and columns first to

meet drift is more advantageous.

Table 3.4: LCF system lateral parameters

LCF 3-story building

@ B8 T weight (103 kg)

SMRF - - - 39.5
LCF-M 291 0.86 0.30 50.3
LCF-L 4.83 1.51 0.31 37.4
LCF-W 536 1.78 0.33 38.9
LCF 6-story building
« B T weight (103 kg)
SMRF - - - 178
LCF-M 1.63 127 0.78 176
LCF-L 3.08 1.27 041 170
LCF-W 246 1.29 0.52 180
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3.5 Preliminary Design Recommendations

The LCF system is designed for strength and ductility. Strength is related to
the maximum capacity of the structural member to resist a specific load and
ductility is related to the maximum deformation beyond the yield stress without
loss of strength. Based on sensitivity analyses Lopes et. al. (2012) aimed at ad-
dressing drift limit considerations and their resulting lateral pushover response,
suggesting the following steps for initial design of LCF buildings in medium to

high seismic areas.

e Obtain and apply appropriate loads including equivalent static seismic

loads as defined in ASCE/SEI 7 (2010).

e Proportion beams and columns as defined in AISC (2011).

e Check deflection limits of structural members as defined in IBC (2012).

e Proportion links as defined in ANSI/AISC 341 (2010) for EBFs. The links
connecting the LCs are designed as shear links, also referred to as short

links.

e Apply strong column and weak beam design and adjust member sizes
accordingly as defined in ANSI/AISC 341 (2010). To prevent the failure
during an earthquake the column member is designed stronger than the

beam member using the strong column and weak beam concept.
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e Check inter-story drift as defined in ASCE/SEI 7 (2010). Should drift
criteria not be met, increase the stiffness of the links and linked columns

first before increasing moment frame beams.

e Check the relative LC and MF displacement using Equation (3.1) via

non-linear pushover analyses as defined in FEMA 440 (2005).

e Refine the system strength by using links as built-up sections/wide flanges
such that flexural stiffness of the links is minimally affected while decreas-

ing the strength to reduce foundation forces.

Thus far the design recommendations rely on the designers ability to con-
duct pushover analyses to verify the potential of the system to achieve rapid
return to occupancy. This may be viable for buildings where performance de-
sign is explicit, however, closed-form equations were developed to simplify the
design procedures for routine structures while maintaining the outlined target

performance levels. Those equations are discussed in Chapter (7).
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Chapter 4

Numerical Analyses Toward Experimental Validation

4.1 Introduction

This chapter outlines the LCF system analyses conducted in preparation for
large-scale system experiments. Changing boundary conditions and using built-
up sections for the shear links have shown an increase of LCF system’s efficiency.
Non-linear pushover analyses were used to validate the system ability to achieve
the rapid return performance level. The objectives of these analyses were to
design the physical specimens while considering laboratory constraints and as
such have shed light on some of the important design considerations of the LCF
system. In addition to the design of the physical specimens, a set of earth-
quakes was chosen in order to proceed with the hybrid simulation experiments;
a combination of physical test of a critical experimental substructure tied to a

numerical substructure component of the building.
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4.2 Building Geometry

The design resistance of the LCF was based on a prototype building that is
a modified version of the 3-story building SAC configuration. The modifica-
tion was due to physical space laboratory constraints. The building is three
stories tall and has a 49.5 m x 33 m plan with typical floor. In elevation,
the typical bay width is 7.5m and typical story height is 4m and each LC is
spaced 1.5 m apart. The building is located in Seattle, Washington, considered
to be a medium to high seismic design category, with site class D as defined
in ASCE/SEI 7 (2010). Seismic design coefficients for SMFRs of R = 8 and
Cy = 5.5 were assumed because specific LCF system coefficients have not yet
been established at the time these numerical analyses were performed. The
SAC 3-story building has been extensively studied in the past, and this build-
ing was selected as the study building in this research because it is well known
in the structural engineering research community and has served as a bench-
mark building in the structural analysis of moment-resisting frames. Lopes et.
al. (2012%) designed both SMRF and LCF systems considering 3 and 6-story
buildings. Figure (4.1) shows the plan view of the LCF building considered in

the numerical analyses.
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Figure 4.1: Plan view of the LCF building considered in the numerical analyses.

4.3 System Efficiency

The determination of the controlling members within the LCF system was ac-
complished through a series of parametric studies. Lopes et. al. (2011) started
with a base model for the LCF system in which the inertial properties of frame
members were increased incrementally by a succession of factors. Frame mem-
bers were grouped according to function and story height. Each frame member
group was individually altered by increasing the sectional properties for mo-
ment of inertia by a succession of factors from the integers and half-values from
1 to 6. These parametric studies successfully identified the controlling frame

members of the LCF structural system thereby affording the designer precise
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control over the system as a whole. These studies were repeated for 1,2, 3 and
6 story models of the LCF system leading to a preliminary LCF design (Lopes
et. al., 2012%).

The next step was to analyze the LCF buildings considering two aspects: 1)
change in links’ boundary conditions and 2) use of built-up sections as shear
links. As such, four different numerical models were designed as per the prelim-
inary LCF design procedure described in Chapter (3) to determine the section
sizes of LCF systems meeting the design intent of 2.5% inter-story drift limits.
Figure (4.2) shows different boundary conditions that were used for the links.
Should be mentioned that all analyses consisted of a 3-story and 4-bay LCF
building. LCF-B-ISL (a) is a system considering built-up sections for the links
at inter-story levels of the structure, whereas LCF-B-L (b) is a system consid-
ering built-up sections for the links at both floor and inter-story levels of the
structure. LCF-W-ISL (a) is a system considering wide flanges for the links at
inter-story levels of the structure, whereas LCF-W-L (b) is a system considering
wide flanges for the links at both floor and inter-story levels of the structure.
All steel is assumed to be 345 MPa nominal yield stress except for the links
which are assumed to be 250 MPa. The results for LCF 3 story systems are
summarized in Table (7.4). The LC links have been considered to be short and
plastically shear dominates resulting in section properties summarized in Table
(4.2).

Lateral behavior of the linked column frame is evaluated by incremental
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Figure 4.2: Different boundary conditions for links.

Table 4.1: Structural members for LCF buildings.

Type Story LC MF
Column Link Beam Column
LCF-B-ISL 1 W14x132 A W24x62  W14x120
2 W14x132 A W24x62 W14x120
3 W14x132 A W18x50 W14x120
LCF-W-ISL 1 W14x132 WI12x96 W24x62 W14x120
2 W14x132 WI12x96 W24x62 W14x120
3 W14x132 WI12x96 W18x50 W14x120
LCF-B-L 1 W14x132 B W24x62  W14x120
2 W14x132 B W24x62 W14x120
3 W14x132 B W18x50 W14x120
LCF-W-L 1 W14x132 WI12x50 W24x62 W14x120
2 W14x132 WI12x50 W24x62 W14x120
3 W14x132 WI12x50 W18x50 W14x120

pushover analysis using SAP2000 (2010), which utilized lumped plastic hinge
formulations based on FEMA 356 (2000). In this method inelastic material
behavior with p-delta effects were included. The plastic hinges at beams and
columns were modeled to have elasto-plastic behavior considering the effect of
the interaction of moment and axial load. The system level pushover behavior of
LCF systems measured by overall base shear versus roof drift is shown in Figure
(4.3). LCF systems considering wide flanges as shear links indicated a larger
overall base shear. LCF-B-L and LCF-B-ISL systems indicated a preference

to be experimentally tested. The lower base shears for the LCF's translates to
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Table 4.2: Structural members for LCF buildings.

Links hw (mm) tw (mm) bf (mm) tf (mm) Vp (kN) Mp (kN.m)
A 260 9.5 368 32 335 295
B 152 9.5 368 32 195 170

lower demand on the foundation, which results in potential cost savings for the

building.
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Figure 4.3: Pushover response for different LCF systems.

For the LCF systems shown in Figures (4.4) and (4.5), individual contribu-
tions from LC and MF subcomponents were determined with separate pushover
analyses of a modified model where the member connections in MF and LC
respectively were released. Points where the first LC link and the first MF

beam developed their respective plastic capacity indicate the rapid return to

occupancy performance level.
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The building lateral response as measured by the roof drift was then ex-
pressed as a sum of the two subcomponents as illustrated in the idealized case
of Figure (3.2). The difference to the idealized case is that system pushover re-
sults exhibited post yield stiffness and gradual transitions following first yield.
The LCF-B-ISL and LCF-B-L systems were found to have base shears closer to
the design base shear both at first yield as well as at 5% drift, a value that is
twice the design drift limit. Also, the LCF philosophy of exhibiting rapid return
to occupancy performance level was improved considering built-up sections for
the links instead of wide flanges. Each of the LCF systems exhibited three re-
gions within the lateral response; elastic, yielding of L.C link and yielding of L.C
links as well as MF beams.

Lateral system performance parameters were extracted to describe the over-
all system behavior. In addition to the drift ratio of Equation (3.1), stiffness and
strength ratios Kpc/Kyp and Vie/Viyr were calculated. The lateral strength
values were obtained at first yield, recognizing that additional strength is gained
on subsequent plastic hinge formations and due to strain hardening. The sys-
tem parameters, the first LC link and the first MF beam plasticity drift are

summarized in Table (4.3).

Table 4.3: LCF system lateral parameters.

Type KLC/K]WF VLC’/VI\/IF ALC/AJWF ISt LC yield (%) ISt MF yield (%) RR (%)
LCF-B-ISL 2.65 0.81 0.30 0.56 2.1 1.54
LCF-W-ISL 2.76 1.18 0.43 0.79 1.91 1.12

LCF-B-L 2.87 0.91 0.32 0.53 1.97 1.44
LCF-W-L 2.96 1.24 0.42 0.71 1.90 1.19
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For 3-story buildings the LCs dominated the stiffness as well as the strength
of the overall structure. In all cases analyzed, the drift ratio Ao /Ay is equal
to or less than 0.43, indicating that rapid return to occupancy performance level,
in which only LC links are damaged and all gravity members remain elastic,

can occur over a drift range that is at least twice the drift of the first yield.
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Figure 4.4: Element contribution to LCF-B-ISL and LCF-W-ISL systems.
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Figure 4.5: Element contribution to LCF-B-L and LCF-W-L systems.

4.4 LCF Building Selection

Even though 3-story LCF-B-L and LCF-B-ISL systems indicated a preference

to be experimentally tested, a different experimental substructure was chosen.
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The reasons were as follows:

e Laboratory constraints revealed that the LCF system could be imple-

mented up to a 2-story building.

e The LCF system required two actuators per floor and only four actuators

were available.

e Using only one type of connection for the linked columns dictated the two
specimens to be tested. For the first specimen with five links, denoted
hereafter as LCF-5L, the wide flange links were placed throughout the
height of the building, whereas for the second specimen with three links,
denoted hereafter as LCF-3L, the wide flange links were placed at floor

levels only.

e The research project had tight budget limits in terms of ordering built-up

sections. Welding cost would have increased the budget.

Thus, the LCF building selected for the experimental test using hybrid sim-
ulation scheme consisted of a 2-story and 4-bay structure with replaceable links
as wide flanges. The building plan was considered to be symmetric about the
x and y axes, but the mass centers were shifted by 5% of plan dimension in
both directions to account for accidental torsion, as required by (ASCE/SEI
7, 2010) for dynamic analysis. However, only one grid of the LCF system was

analyzed as shown in Figure (4.1). Slab action was accounted for through a
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rigid diaphragm constraint, which allowed the mass and rotational inertia to be
distributed to the entire floor.

Malakoutian (2012) performed nonlinear dynamic analyses of LCF build-
ings using OpenSees and his model was used as a reference. Therefore, two-
dimensional models were created in OpenSees to represent two different LCF
buildings. The first building consisted of a 2-story and 4-bay LCF building and
had five links per linked column, LCF-5L, and the second building consisted
of a 2-story and 4-bay LCF building and had three links per linked column,
LCF-3L. Figures (4.6) and (4.7) show an overview of the numerical model for
specimens LCF-51 and LCF-3L, respectively, including rigid end offsets. While
beam-to-column connections and link-to-column connections were assumed to
be perfectly rigid, non-moment transferring connections were introduced at all

column to foundation locations and in strategic beam to column locations.
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Figure 4.6: Numerical model for specimen LCF-5L.

The yield strength of structural steel f, was taken to be 50 ksi and modulus
of elasticity E equals to 29,000 ksi. All beams and columns were modeled using
force-based nonlinear beam-column elements that model the spread of plasticity

52



=20’

2 story

beams .24 _ 325 325  __ 24

links ... 35 35

Figure 4.7: Numerical model for specimen LCF-3L.

across the element, with fiber sections that essentially account for moment-
axial force interaction at each analysis step. All columns were pinned at the
base and Rayleigh damping ratio of 2% at the first mode was used. Damping
comparison studies of a 3-story conventional building performed by (Sayani
et. al., 2011) indicated only a trivial difference in median responses between
Rayleigh damping and stiffness proportional damping. Also, replaceable links
were modeled based on experimental results from Dusicka & Lewis (2010).
P-delta effects were also included in the analysis. Gravity loads acting on
the deformed configuration of the structure amplify story drift especially under
severe earthquake motions. Bernal (1987) proposed an empirical formula that
characterizes gravity loads to account for P-delta effects in inelastic structures
subjected to earthquakes. Based on the results, he concluded that the code
previsions were inadequate and not conservative enough to account for P-delta
effects. Gupta & Krawinkler (2000) illustrated how the response of steel frames
is very sensitive to p-delta effects and not simple to predict. According to Gupta

& Krawinkler (1999) the P-delta effects caused by the vertical loads tributary
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to the interior cannot be ignored, thus their structures were modeled through a
leaning column.

Thus, the leaning column approach was used to take into account the P-
delta effects in the LCF system. The leaning column was pinned at the base
and connected to the frame by axially rigid link elements and was modeled with
elastic column elements. The model consisted of a very small moment of inertia
in order to have negligible effect on the lateral stiffness of the structure and a

very large area in order to create axially rigid elements.

4.5 Earthquake Selection

Ground motion intensity was selected such that three distinct performance levels
were induced in the LCF specimen: linearly elastic (E), rapid return to occu-
pancy (RR1 and RR2) corresponding to a moderate damage state, and collapse
prevention (CP1 and CP2) corresponding to a significant damage state. The
ground motions were those developed in the SAC project for the Seattle site
(Somerville et. al., 1997). The ground motion for the linearly elastic intensity
was obtained taking 15% of SE-05. Table (4.4) below provides information on
the records generated for Seattle having probabilities of exceedence of 10% in
50 years (SE-05 and SE-20) and 2% in 50 years (SE-25 and SE-29). These ac-
celeration time histories have been derived from historical recordings and have
been altered so that their mean response spectrum matches the NEHRP (1997)

design spectrum, modified from soil type of Sp and S¢ to soil Sp and having
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a hazard specified by the 1997 United States Geological Survey (USGS) maps.
Response design spectra and acceleration time history are illustrated in Figure

(4.8) and Figure (4.9), respectively.

Table 4.4: Details of Seattle ground motions.

Name Code Record Magnitude Scale Factor
SE-05 RR1 Olympia, 1949 6.5 1.86
SE-20 RR2  Vina del Mar, 1949 8.0 1.69
SE-25 CP1 Olympia, 1949 6.5 4.35
SE-29 CP2 Valparaiso, 1985 8.0 2.9
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Figure 4.8: Ground motions used in the dynamic analyses.
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Figure 4.9: Acceleration time history used in the dynamic analyses.

4.6 LCF Building Response

The main contribution of this research is to validate a performance based design
methodology through hybrid simulation experimental investigation. As such,
there was a need to obtain maximum values regarding internal forces (bending
moment, shear and axial) in order to proper design the LCF building to be
experimentally tested. Three types of analyses were performed: static, nonlinear
pushover and time history. Lopes ef. al. (2012°) used for the 2-story and 4-bay
LCF building, static and nonlinear pushover analyses to design the specimen

that was tested in the laboratory, whereas Malakoutian (2012) worked heavily on
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the numerical aspect of the system using time history analyses. Malakoutian’s
model was used to confirm the maximum values of the LCF system obtained

through the previous analyses mentioned before.

4.6.1 Equivalent Lateral Force Procedure

Prior to performing pushover or dynamic time history analyses, a static analysis
using the Equivalent Lateral Force (ELF) procedure was performed to verify the
design of the LCF building. Since the design strength was approximately verified
by pushover analysis and the design of moment frame buildings is generally
found to be drift sensitive, this design verification was limited to a drift check.

The seismic base shear V' in a given direction is determined in accordance

with Equation (8.4) (ASCE/SEI 7, 2010):

V=Cs.W (4.1)

where Cy is the seismic response coefficient and W is the effective seismic
weight. The seismic response coefficient shall be determined in accordance with

Equation (4.2).

Sps

Cg =22
(£)

(4.2)

where Spg is the design spectral response acceleration parameter in the short

period range, R is the response modification factor and I, is the importance
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factor.
The value of C's computed in accordance with Equation 4.2 need not exceed

the following:

Sp1
Cq = (4.3)
T.(%)
for T' < T}, and Cg shall not be less than
Cs =0.044.5pg.1. > 0.01 (4.4)

where Sp; is the design spectral response acceleration parameter at a period
of 1.0 sec, T is the fundamental period of the structure, and 77, is the long-period
transition period.

The values used in these calculations were as follows: Spg = 0.87¢g, Sp; =
0.30g, T'= 0.76sec, Cs = 0.108g, W = 2,857kips, and V = 310kips. Since the
system has 2 grid lines of LCF, the base shear should be divided by 2. R =8
was used as specific LCF system coefficients have not yet been established at
the time that these analyses were performed.

The total lateral force was distributed over the height of the building in

accordance with the following equations:
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F,=C.V

w,.hE (4.5)

Cvm iy
> wi.hf
=1

where C,, is the vertical distribution factor, w; and w, correspond to the
portion of the total effective seismic weight of the structure located or assigned
to level ¢ or x, h; and h, correspond to the height from the base to level i or
x, and k is an exponent related to the structure period. k is determined in

accordance with the following equation:

k=057 +0.75 (4.6)

Using the building weight, the vertical distribution of shear was determined
as indicated in Table (4.5) and illustrated in Figure (4.10). Should be noted

that the accidental torsion was included in the analysis.
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Table 4.5: Details of Seattle seismic forces.

Level wz (Kips) Sum w(Kips) he (ft) h (ft)
Floor 2 1325 1325 20 10
Floor 1 1532 2857 10 10
Sum 2857 -
wg . hE (kips-ft) % Fx (Kips) Fx (Kips) - torsion
39118 65 101 106
20666 35 53 56
Sum 59784 100 154 162
106 kips
56 kips
A A VANNNVAS vaS

Figure 4.10: Seismic forces used in the ELF procedure.

After applying these lateral loads to the numerical model, the linear dis-
placements .. between each two stories were determined by an elastic analysis.
The elastic linear displacements of level & were modified in accordance with the

following equation:

5, = & (4.7)

where Cy = 5.5 is the deflection amplification factor. Table (4.6) indicates

elastic and design drifts, and drift limit of each story for the structure, while
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Figure (4.11) shows the deformed shape of the structure. Allowable drifts were
calculated in accordance with (ASCE/SEI 7, 2010). The final location of the
links of LCF system was based upon the drift demands determined from this
analysis. Table (4.6) also indicates that the story drift requirements have been

met for all stories in the structure for the proposed layout of the lateral systems.

Table 4.6: Drift story check for the 2-story & 4-bay LCF systems.

LCF-5L  Story height (in)  Elastic Displ. (in) Elastic drift (in)  Design drift (in)  Drift limit (in)

Floor 2 110 0.55 0.26 1.43 2.75

Floor 1 110 0.29 0.29 1.60 2.75

LCF-3L  Story height (in)  Elastic Displ. (in) Elastic drift (in)  Design drift (in)  Drift limit (in)

Floor 2 110 0.74 0.34 1.87 2.75

Floor 1 110 0.40 0.40 2.20 2.75

/ [[ 7f / l[ YT ]
- -

Figure 4.11: Deformed shape for the LCF-5L system.

4.6.2 Pushover Analysis

Although the LCF structures were analyzed using the time history approach,
nonlinear static analysis (pushover) were conducted using the load pattern from
the ELF procedure. The pushover analysis is an evaluation method in which

force and displacement demands are estimated from a nonlinear analysis. This
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analysis provides information in regards to the inelastic behavior of the build-
ing and potential collapse mechanisms. According to FEMA P-695 (2009), a
pushover analysis is a reasonable approach for first mode dominated structures
but is not representative of the dynamic response of structures in which higher
modes dominate.

Pushover analysis in displacement control was carried out under a lateral
load pattern corresponding to the fundamental mode shape to determine the
base shear capacity and post-yield behavior on the basis of the building models.
The structure was pushed up to 5% drift. The pushover analysis made use of the
Newton algorithm with the convergence tolerance set at 10~* and the maximum
number of iterations set at 50. A step size of 0.001 in was chosen based on a
preliminary study to ensure convergence. In the cases where convergence was
a problem, either the Broyden algorithm or the Newton algorithm with line
search was used.

Numerical models were designed as per LCF preliminary design procedure
described in Chapter (3) to determine the section sizes of LCF systems meeting
the design intent of 2.5% inter-story drift limits. All steel was assumed to be
345 MPa nominal yield stress and the resulting LCF specimen is summarized as
follows: gravity columns (W14x132), linked columns (W14x132), gravity beams
(W16x57), and replaceable links (W10x45). The LC links have been considered
to be short and plastically shear dominated.

Estimate lateral response for a 2-story, 4-bay LCF system is shown in Figure
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(4.12). Individual contributions from LC and MF subcomponents were deter-
mined with separate pushover analyses of a modified model where the member
connections in MF and LC respectively were released. Points where the first LC
link and the first MF beam developed their respective plastic capacity indicated
the rapid return to occupancy performance level. The system parameters for a
2-story & 4-bay LCF and a 2-story & 1-bay LCF systems are summarized in

Table (4.7).

Fapid retum to occupancy
(2.1%)

400 -
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Figure 4.12: Estimate of the lateral response for LCF-5L system.

Table 4.7: LCF system lateral parameters

First LC  First MF

LCF Type a B r plasticity  plasticity
drift drift
2-story, 4-bay 5.55 0.79 0.14 0.30 2.40
2-story,l-bay  10.54 1.43 0.14 0.31 2.46

For 2-story buildings the LCs dominated the stiffness as well as strength of
the overall structure. Lateral parameters indicated that rapid return to occu-

pancy performance level can occur over a drift range of 2%. Due to differences
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on lateral parameters between the numerical (2-story, 4-bay) and experimental
(2-story, 1-bay) models, hybrid simulation was needed to investigate the overall

structure response.

4.6.3 Response History Analysis

Nonlinear dynamic procedures are required for tall buildings and for buildings
with torsional irregularities, but structural member sizes still must be deter-
mined before an analysis can be performed. Nonlinear time history analyses
were carried out to evaluate the structural response of the LCF systems when
subjected to the ground motion described in Section (4.5). Figure 4.13 shows
base shear versus drift for the LCF-3L system and Table (4.8) summarizes the

expected internal forces during the experiment.
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Figure 4.13: Base Shear vs Drift for LCF-3L system.

Table 4.8: Expected internal forces during the experiment.

Internal Forces LCF-5L  LCF-3L

GC Axial + 50 55
GC Axial - 5 5
GC Shear 60 50
LC Axial + 565 305
LC Axial - 645 380
LC Shear 130 80
Kre/Kur 5.55 3.77
Vie/Vur 0.79 0.53
Arc/Aur 0.14 0.14

As mentioned before, Malakoutian (2012) worked mainly on the numerical
aspect of the LCF building while decisions had to be made in order to exper-

imental test the LCF specimens. As such, the expected internal forces during
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the experiment were obtained through pushover analysis and then compared to

time history analysis indicating similar values.

4.7 Numerical Substructure Component

Thus far the LCF buildings were numerically analyzed considering either the
entire system (2-story & 4-bay) or the experimental subsystem component (2-
story & 1-bay). Due to differences on lateral parameters between system and
subsystem responses, hybrid simulation was needed to better understand the
behavior of the LCF system. Hybrid testing allows for full scale study at the
system level accounting for the uncertainties via experimental component and
having the ability to model more conventional behavior through numerical sim-
ulation. In order to proceed with the experimental tests in the laboratory, a
numerical substructure component was developed using OpenSees in conjuction
with OpenFresco. Figure (4.14) shows the numerical substructure component
of the LCF system.

The numerical substructure component consisted of a moment frame that
connects two LCF subsystems. Masses from the LCF subsystems were trans-
ferred to the moment frame and a experimental element was used to attach the

numerical and experimental parts.
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Figure 4.14: Numerical substructure component.

The Tool Command Language, hereafter denoted as tcl script, for the nu-
merical substructure component was created in Notepad++ and was divided
into four parts: main routine, input, solution, and output modules. The main
routine represents the skeleton of the tcl script and consists of the main lines
of the solution process. This routine calls other routines to perform specific
tasks. The input module consists of the geometry of the structure, element,
section, material properties, and loads. Information is also needed on the fixity
condition of the joints. The element data consist of connectivity, that is, joint
numbers and section numbers associated with each element. The section data
are required for all the different sections used in the structure and consists of
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cross-sectional area and moment of inertia of the section. Modulus of elasticity
and shear modulus are defined on the material data while loaded joints and el-
ements are defined on the load parameters. The solution module is responsible
for assembly of the structure matrices (mass, damping and stiffness), assem-
bly of the load vector, solution of the equilibrium equations, and calculations
of element-displacement and member-end force vectors. Finally, OpenSees can
output a variety of data as defined by the user, which can then be analyzed using

a post-processor. The hybrid simulation tcl script is presented in Appendix-A.

68



Chapter 5

Experimental Program

5.1 Introduction

The system experiments were moved from the University of Nevada at Reno in
2011 (Lopes et. al., 2010) to the University of California at Berkeley in 2012
(Lopes et. al., 2012°) due to schedule conflicts. The first LCF specimen arrived
at the laboratory in November of 2012, whereas the last experimental was con-
ducted in July of 2013. Meanwhile, several trips from Portland-OR to Berkeley-
CA were arranged. All experimental tests were done during spring/summer of
2013 and the LCF system was investigated as a full-scale 2-story and 1-bay
structure. Cyclic and hybrid simulation tests were performed. The large scale
nees@berkeley structure laboratory is equipped with a state-of-the-art servo-
hydraulic system for simulating earthquake loads. The laboratory features a
main test floor, a configurable reaction wall, bridge cranes, hydraulic actuators,
digital controllers, and a data-acquisition system with a variety of instrumen-

tation devices. The analyses thus far have focused on system level numerical
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model development. The next step in understanding the behavior of the system
was to perform experimental testing on a typical LCF system. The goals of the
tests were to understand how the LCF system components interact together as
a unit, to monitor the progression of damage in the replaceable links and gravity

beams, and ultimately validate the LCF system.

5.2 Specimen Design

5.2.1 Specimen Dimensions

The design resistance of the LCF was based on a prototype building that was
a modified version of the 3-story building SAC configuration. The modification
was due to physical space laboratory constraints. In elevation, the typical bay
width was 24.5 ft and typical story height was 10 ft and each LC was spaced
3.5 ft apart. The two specimens denoted as LCF-5L (five links) and LCF-3L

(three links) are shown in Figure (5.1).

The member sizes and dimensions of the test specimens were chosen to
approximate large scale frame for a two story building constructed in a medium
to high seismic design category and to meet the constraints of the laboratory.
The laboratory constraints included: (1) capacities of the actuators and strong
floor, (2) height of the reaction wall and (3) plan dimensions of the strong floor.
The design of the frame members are discussed in Section (5.2). Detailed design
calculations for the specimen and structural drawings, that were supplied to the

steel fabricator, are available in Appendices B and C, respectively.
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Figure 5.1: Elevation of the LCF specimens.
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5.2.2 Beams and Columns

The LCF system was designed for strength and ductility. Strength is related
to the maximum capacity of the structural member to resist a specific load and
ductility is related to the maximum deformation beyond the yield stress without
loss of strength. The beams and columns were designed according to capacity
principles and additional demands from structural analysis. The demands from
gravity load were relatively small due to the inability to apply gravity load
to the floor system in the laboratory. Therefore, the gravity demands on the
system were only from the self weight of the structure.

For doubly symmetric wide flange members bent about its strong-axis the
applicable LRFD flexural strength limit states are yielding and lateral-torsional
buckling (LTB). When the member unbraced length, Ly, is less than the limit-
ing laterally unbraced length for the limit state of yielding, L,, the LTB limit
state does not apply and flexural strength is determined by the plastic moment
capacity, M, of the section given by Equation (5.1). When L is between L,
and the limiting laterally unbraced length for the limit state of inelastic LTB,
L., the flexural capacity is determined using Equation (5.2).

When L, < L,

oM, = ¢y 2y, (5.1)

When L, < Ly, < L,

Ly—L
M = ¢pCy | My, — (M, — 0.7F,S,) (ﬁ)} < oMy (52)
r p

where Cj, is the lateral-torsional buckling modification factor, F}, is the yielding
stress, M, is the nominal flexural strength, S, is the elastic section modulus
about the x-axis, Z, is the plactic section modulus about the x-axis, and ¢y is

the resistance factor for flexure. For the W16x57 section the value of L, was
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5.7 ft and L, was 18.3 ft. Since L, = 24.5 ft is greater than L,, the strength
was based on elastic LTB.

The LRFD axial compressive strength of doubly symmetric wide flange mem-
bers is governed by the flexural buckling limit state. Compression strength is
controlled by the member slenderness ratio (K L/r). The effective length fac-
tor, K, accounts for member end conditions. The design compressive strength

is given by the following equations:

chpn - ¢CFCTAQ (53)
When £F < 4.71, /&
F, = [0.658%‘} F, (5.4)
When % >4.71 Fﬁ
F.. = 0.877F, (5.5)
2
E
F= (5.6)

(52)°
where A, is the gross area of the member, E is the modulus of elasticity, F,
is the critical stress, F, is the elastic critical buckling stress, L is the length of
member, r is the radius of gyration, and ¢, is the resistance factor for compres-
sion. According to Galambos (1998) these column strength equations consider
the influence from initial residual stress and geometric imperfections.
The structural analysis for design was performed with both OpenSees (McKenna,
1997) and SAP 2000 (SAP2000, 2010) by pushing the test specimen model out
to 5% drift, with the results being similar. The internal forces and corresponding

displacements were found from the above structural analysis. When a column

is subjected to combined axial and flexural loading, a portion of the member
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capacity is consumed by the axial force demand and a portion by the moment
demand. An interaction equation, that is dependent on the ratio of axial force
demand to capacity, was used to evaluate whether or not the member has ad-
equate strength for the imposed demand. Before evaluating member strength
for combined loading the independent axial and flexural capacities were deter-
mined. The demand capacity ratios of the beams and columns were determined
according to the following AISC (2011) equations:
For P,/¢P, > 0.2

P, 8 Mo Muy
—. <1.0 5.7
5P, 9 (¢Mm * ¢Mny) = (5.7)
For P,/¢P, < 0.2
Po o Mua | Muy g (5.8)
2op, " \on,, o, ) = |

During an earthquake the structure is designed so it can provide energy dis-
sipation as well. Therefore, the structure is designed so it can develop inelastic
structural behavior. This behavior is achieved when the column members re-
main elastic providing strength and stability of the stories above and the beam
members behave plastically. Frames in which measures are taken to promote
plastic hinges in the beams rather than in the columns are said to be Strong
Column and Weak Beam (SCWB) frames. The behavior of a steel beam is more
ductile than a steel column, so it is safer to establish the location of the plastic
hinges at the end of the beam rather at the column. The philosophy behind
this approach is that, at a joint, the summation of the columns’ plastic moment

capacities exceed the summation of the beam’s plastic moment capacities, based
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on simple moment equilibrium at the joint as defined by the ratio:

SCWB = m > 1.0 (5.9)

Z My
where ) M, is the summation of the projections to the beam centerline of
the nominal flexural strengths of the columns above and below the joint and
> My, is the summation of the expected flexural strengths of the plastic hinges
in the beams, projected from the hinge location to the column centerline. For
the strong column and weak beam check, several cases were analyzed and two

of them are summarized below:

1. Joint at gravity column and gravity located at first floor level, where

SCWB was equal to 1.63.

2. Joint at linked column and first shear link located at foundation level,

where SCWB was equal to 1.17.

The above requirement cannot fully prevent column plastic hinges at beam-
to-column joints because the internal forces acting at the top and bottom faces
of a joint varies greatly during an earthquake. It is believed that satisfying
Equation (5.9) will limit column yielding, resulting in columns strong enough
to spread beam plastic hinges over multiple frame levels.

The panel zones of the frame columns were analyzed to determine if the webs
were adequately sized to prevent yielding according to the current philosophy
used for moment frames ANSI/AISC 341 (2010). The check was performed as
a basis for assessing the behavior of panel zones of the frame columns where
column stiffeners were an option due to a beam joint. The forces on the panel
zones were determined assuming that the beams formed plastic hinges at a

distance of d/2 from the face of the column. The column shears were determined
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Figure 5.2: Free-body diagram of a link.

from equilibrium. The plastic moment at the beam face was determined ignoring

axial load in the beam.

5.2.3 Shear Links

Shear links were necessary to interconnect the dual columns and guarantee a
controlled drift behavior. Figure (5.2) shows the free-body diagram of a link.
If axial force and moment-shear interaction are ignored, plastic flexural hinges
will form at nodes 1 and 2 of the link when moments M; and M, reach plastic
moment, M,. A plastic shear hinge is formed when shear reaches V,,. The plastic

moment and plastic shear are respectively computed as follows:

M, =F,.Z, (5.10)

V, = 0.6.F,.A, (5.11)
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where A, is the link web area. If M, and V, are reached at the same time, the

corresponding link length is given by:

(5.12)

where eq is the link length when a balanced yielding condition is achieved.

According to Bruneau et. al. (1998) test results showed that a properly stiff-
ened shear link can strain harden and develop a shear strength equals to 1.5V,
Also, to avoid high bending strains that may lead to severe flange buckling or to
failure of link flange-to-column welds, these end moments are limited to 1.2M,,
and the maximum length, ey, in Equation (5.13), for a shear link is modified as
follows Kasai & Popov (1986).

2(1.2M,)  1.6M,
L5V,

€y =

(5.13)

Links in the LCF specimens were designated as structural fuses to dissipate
energy and were designed to satisfy several conditions simultaneously such as
desired shear strength, link length limit, link rotation limit, and inter-story drift
limit, while meeting the seismic limits for compactness. Members of the LCF
system shall have flanges continuously connected to the web and the width-

thickness ratios of its compression elements shall not exceed the limiting ratios

7



below.

by E
— =0.30— 5.14
2 F, (5.14)
h E
— =2.45— 5.15
=245 (5.15)

The nominal shear strength of a link, denoted V,,, is the lesser of V, and
2M,/e. Also, the design shear strength of a link is given by the following
equation

V, = 0.9V, (5.16)

According to ANSI/AISC 341 (2010) the link rotation angle shall not exceed
0.08 radians for links of length 1.6M1,/V}, or less. Therefore, the plastic moment

considering the link rotation angle for a shear link can be written as

V,.e
Mp(mt) = %6 (5.17)

Because there are two limit states, both of the following equations must be

satisfied, where V,, and M, are values from structural analysis.
Vi <V (5.18)

M, < My, (5.19)

Considering a yield stress of 50 ksi, a W10x45 shear link cross-section was
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Figure 5.3: Shear link detailing.

used with the following parameters: d = 10.1n, t, = 0.35in, t; = 0.62in,
h = 8.86in, A, = 3.1in%, and Z, = 54.01in3. Using these values, the antic-
ipated plastic shear, nominal shear, plastic moment, and plastic moment con-
sidering the link rotation were V), = 93 kips, V,, = 84 kips, M, = 2,700 kips.in,
and Mp(rot) = 1,100 kips.in. Five links for the first specimen and three links for
the second specimen with identical geometric and material properties were fab-
ricated. The duplicate specimens were necessary to access the replaceability of
the links. Shear links used on the LCF test assembly and shear link connection
are shown in Figures (5.3) and (5.4), respectively.

The shear links were shop welded to an end-plate and then field bolted
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Figure 5.4: Shear link connection.

to the column flange using prestressed high strength bolts. The total length
considering the end plates was 27 inches with an effective link length equals to
17 inches. The calculated number of intermediate link stiffener was equal to
1 and spacing equals to 9.5in, however, intermediate link stiffeners were not
considered in the design process. It is believed that ANSI/AISC 341 (2010) has
an overdesign intermediate link stiffener equation, because the yielding link is
coupled with the beam floor in the current design of EBFs. This drawback can
be mitigated by designing the system with replaceable shear links and, therefore,
reducing the number of intermediate stiffeners.

A partial penetration bevel butt weld (both sides) was chosen to join the
web to the end plate connection. As shown in Figure (5.3), the welding flanges
were designed with both bevel groove weld (arrow side) and fillet weld (other

side). Also, fillet welds were used to join the 3/8” web to both web and end
80



plate connection. The links were connected to the linked columns by eight 17

diameter A490-X bolts.

5.2.4 Frame Connections

In order to expedite the construction process and to eliminate the need for field
welding, bolted connections were used as framing connections. The connection
between gravity beams and gravity column, as well as the connection between
links and dual columns were bolted unstiffened extended end-plate moment
connections, denoted hereafter as moment connection. The connection between
gravity beams and the linked column were bolted shear connections known as
a double angle connection, denoted hereafter as shear connection, which were
made with two angles, one of each side of the beam to be supported.

Extented end-plate connections were investigated elsewhere as an alternative
to welded connections during the aftermath of the Northridge Earthquake, and
two variations were chosen as pre-qualified connections: the four bolt unstiffened
end-plate connection and the eight bolt stiffened end-plate connection. Design
procedures for these two connections subjected to cyclic loading were developed
by Sumner & Murray (2002) and were included in FEMA 350 (2000).

Design procedures used for the moment connection are presented in AISC
(2011) and Murray & Sumner (2004). The two main limit states which control
the design, for moment connection, are end plate flexural yielding and bolt

tension rupture. However, the following limit states were also considered in the
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design of the moment connection: shear yielding, shear rupture, web buckling,
web crippling, and plate buckling. Since most of the moment transferred from
the gravity beam to the gravity column results in large concentrated forces, the
use of column stiffeners and continuity plates were necessary to reinforce the
columns.

For the shear connection, AISC (2011) considers axial load acting on the
gravity beam, was used. The following limit states were considered in the design
of the shear connection: shear yielding, shear rupture, flexural yielding, flexural
rupture, block shear rupture, bolt bearing, bolt shear, yielding under combined
shear and tension, rupture under combined shear and tension, block shear under
combined shear and tension, and local buckling for the angles.

The gravity beams were shop welded to an end-plate and then field bolted
to the column flange using prestressed high strength bolts. The moment and

shear connections are shown in Figures (5.5) and (5.6), respectively.

5.2.5 Column Base Plates and Clevises

The design of the base column required consideration of bearing pressure on the
supporting material and bending of the plate. According to Thornton (1990)
there is no need to determine whether the plate is large or small, lightly loaded,
or heavily loaded. Thornton (1990) proposed a unified procedure resulting in
Equation (5.20) and this procedure was used in order to determine the thickness

of the base plate for the LCF columns.
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Figure 5.5: Extended-end plate moment connection.
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Figure 5.6: Double angle shear connection.
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Figure 5.7: (a) Linked column base plate; (b) Gravity column base plate.

(5.20)

where L is the maximum cantilever strip, P, is the factored load, B and N are
the base plate dimensions. This procedure is the same as that given in Part 14
of the Manual, Design of Beam Bearing Plates, Column Base Plates, Anchor
Rods, and Column Splices (AISC, 2011). Figure (5.7) shows the details of these

base connections for each column along with the bolt layouts and plate sizes.
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Figure 5.9: Linked column clevis.

Column base plates and clevises were designed to provide an idealized pinned
connection that would prevent slip and uplift and also to avoid plastic hinges on
the columns. In regards to the pinned connection, the dimension requirements
presented in Specification Section D5.2 (AISC, 2011) were met to provide for the
proper functioning of the pin. Those requirements are illustrated in Figure (5.8)
and are as follows: a > %beff, w 2> 2bep+d, and ¢ > a, where by = 2t +0.625.
Figure (5.9) and (5.10) show the details of the clevis connections for linked and

gravity columns, respectively.
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5.2.6 Summary of Design Characteristics

The columns and beams of the test specimen were specified to be ASTM A572
Grade 50 steel. Also, plates for column stiffeners, doubler plates and clevises
were specified to be ASTM A572 Grade 50 steel. The yield stress for the columns
was 60 ksi whereas for the beams was 55 ksi. The gravity beam plastic moment,
M, was determined equal to 5,775 kips-in. Pin clevises were specified to be
ASTM A354 Grade BD steel pin. The links of the test specimen were specified
to be ASTM A572 Grade 50 steel. Similarly, all plates for the shear links were
specified to be ASTM A572 Grade 50 and compliance was verified by review of
the mill certificates. The yield stress for the links was 53 ksi and the plastic
shear, V), and plastic moment, M, were equal to 100 kips and 2,625 kips-in,
respectively. Bolts were specified as ASTM A490 structural bolts and were
pre-tensioned using a hydraulic torque wrench. The turn-of-the-nut method
described in AISC (2011) was used for this purpose. Certified mill test and

weld inspection reports are presented in Appendix D.
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5.3 Experimental Test Setup

The LCF system was tested using parts of an existing test setup already found
at nees@berkeley. Prior to the LCF tests, Lai (2012) tested conventional and
hybrid braced frames using two actuators attached to the reaction wall. The
existing test setup had to be modified in order to accommodate the LCF system.
Fours actuators and two new actuator brackets were needed for the LCF project
as well as an extra foundation element capable of receiving the gravity column.
Modifications on the out-of-plane restraint system and reinforcement on the

strong floor were also needed.

5.3.1 Construction Sequence

Test specimens were designed at PSU and fabricated by AMT Metal Fabricators,
Inc. of Richmond, California and all welding was performed according to AWS
(2004) D1.1 prequalified welds. Prior to the arrival of the LCF specimen, several
tasks were done in order to properly accommodate the experimental setup. A
heavy built-up floor beam, denoted hereafter as LC floor beam, was positioned in
place in order to receive the linked columns. Steel brackets made of W14x211
sections were installed on the existing reaction wall to attach the actuators
while three HSS columns, which belongs to the out-of-plane system, were also
positioned on the strong floor and attached to an existing cantilever beam fixed

to the reaction wall. Actuator brackets and out-of-plane system are discussed
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Figure 5.11: (a) LC floor beam; (b) Actuator bracket.
in Sections (5.3.2) and (5.3.4), respectively. Figure (5.11) shows the LC floor
beam and the upper actuator bracket being installed on the reaction wall.

The LCF-5L specimen was erected within a three-week period in the lab-
oratory. The arrived specimen consisted of a set of linked columns with five
links already assembled, two gravity beams and one gravity column. The linked
columns with five links were placed on the LC floor beam. Link end-plate con-
nections were shop welded using partial joint penetration at flange to plate and
single pass fillet welds at webs. In practice, the links and surrounding compo-
nents are intended to be welded in the shop and bolted on site, thus there was
no need to simulate field welding conditions on the LCF system.

The base plate of the linked columns was attached to the LC floor beam
located at the top of the strong floor slab, and a series of relatively stiff load
transfer beams were provided on the bottom side of the strong floor slab. The
2” thick linked column base plates were bolted to the LC floor beam with 1 1/4”
¢ A490 bolts. Figure (5.12) shows the linked columns of the LCF-5L specimen

being installed on the LC floor beam.
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Figure 5.12: Linked columns of LCF-5L specimen being installed on the LC floor
beam.

A foundation beam element, denoted hereafter as GC floor beam, was posi-
tioned on the strong floor in order to receive the gravity column. The gravity
column base plate was attached to a load cell, which is in turn coupled to the
GC floor beam, made of a W14x211 section, located at the top of the strong
floor slab as shown in Figure (5.13). The 2”7 thick gravity column base plate was
bolted to the load cell with 17 ¢ A490 bolts. The load cell was bolted to the
GC floor beam with 7/8” ¢ A490 bolts through the top flange of the W14x211
section. The LC and the GC floor beams were connected to the strong floor by
post-tensioned anchor rods.

After the gravity column was fully bolted to the GC floor beam, three sliding

mechanisms per floor were positioned. Two of them (sliding mechanism A) were
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Figure 5.13: GC floor beam.

attached directly to the HSS columns while the other one (sliding mechanism
B) was attached to the reaction wall. Sliding mechanism A already existed
in the laboratory whereas sliding mechanism B had to be fabricated. The T-
section beam that is also part of the out-of-plane system, had to be fabricated,
was then lifted and positioned in the sliding mechanisms. Figure (5.14) shows
sliding mechanism B at the first floor level.

The first floor gravity beam was lifted and connected to the gravity column
through a moment connection at one end and connected to the linked column
through a shear connection at the other end. In the next step, the same proce-
dure was done to connect the second floor gravity beam to the columns. Recall
that gravity beam end-plate connections were shop welded using complete joint
penetration at flanges and single pass fillet welds at webs. Column stiffeners

and doubler plates were also shop welded to the columns using fillet welds.
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Figure 5.14: Sliding mechanism B at the first floor level.

After the second floor gravity beam was connected to the columns, a sec-
ond T-section beam was then lifted and positioned in the sliding mechanisms.
Each T-section was bolted to four continuity plates (PL 17x19x1/2”) and these
plates were in turn connected to the top flange of the gravity beam through
fillet welds. Each T-section was also connected to the linked columns and to
the gravity column via a set of plates bolted to the T-section and fillet welded
to the stiffeners and flanges of the columns. Figure (5.15) shows the second
floor T-section beam being lifted for installation. In regards to tightening the
bolts, a torque-manual-wrench or a gun based wrench were used to tightened the
fasteners and/or anchor bolts. They were tightened to the minimum required
pretension forces specified either in the AISC manual or by the tool manufac-
turer. Actuators were then attached to the LCF system. The second specimen,
LCF-3L, reused the same apparatus as the LCF-5L specimen, replacing only

the damaged links.
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Figure 5.15: Second floor T-section beam being lifted.

5.3.2 Actuators and Brackets

Actuators for the experimental tests were selected from among those available
in the laboratory, considering the loads and displacement targets. Thus, two
static MTS 243.70T, 216 kips with + 72 inches stroke were used at the second
story level and two dynamic MTS 244.518S, 220 kips with £ 20 inches stroke were
used at the first story level. The MTS 243.70T actuators have a hydraulically
powered piston that can extend or retract (double-acting). The MTS 244.51S
actuators were not only double-acting, but also double-ended where the actuator
provides equal power in tension and compression. With these actuators and also
considering the laboratory constraints, a second story level displacement equal
to about 5% drift could be imposed, which corresponds to a displacement of 11

inches at the second floor level. The detailed drawings of the MTS 243.70T and
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Figure 5.16: Static actuators used in the LCF system experimental test.
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Figure 5.17: Dynamic actuators used in the LCF system experimental test.

MTS 244.51S actuators were provided by MTS and are shown in Figures (5.16)
and (5.17), respectively.

Brackets on the reaction wall were needed in order to install the actuators.
The upper bracket housed two static actuators whereas the lower bracket re-
ceived the dynamic actuators. The capacity of each bracket is about 800 kzps.

Figure (5.18) shows the elevation view of the actuator brackets while Figure
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Figure 5.18: Elevation view of the actuator brackets.

(5.19) shows the actuator brackets installed on the reaction wall. Shop draw-

ings for these brackets are presented in Appendix E.

5.3.3 Actuator Spreader Beams

In order to attach the actuators to the LCF system, two actuator spreader
beams were designed. Each of the spreader beams consisted of two cantilever
beams located at the floor levels to accommodate two actuators per floor. The
cantilever beams were made of the same cross section and material as the linked
columns and were designed to resist a bending moment of 4,950 kips.in and a
shear of 220 kips. Stiffeners were designed accordingly. The cantilever beams
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Figure 5.19: Actuator brackets installed on the reaction wall.

were shop welded to the linked column through a partial penetration bevel butt
weld (both sides). Figure (5.20) shows the actuator spreader beam details while
Figure (5.21) shows the actuator spreader beam located at the second floor

before attaching the actuators.

5.3.4 Out-of-Plane Restraint System

The out-of-plane restraint system consisted of a cantilever beam fixed at the
reaction wall, a T-section beam with three sliding mechanisms per floor, HSS
columns, single plates, denoted hereafter connectors A (C-A), which connected
the T-section to the gravity beam, a combination of plates and HSS sections,
denoted hereafter connectors B (C-B), which connected the T-section to the

gravity beams, and a set of plates, denoted hereafter connectors C (C-C), which
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Figure 5.20: Actuator spreader beam details.

Figure 5.21: Actuator spreader beam located at the second floor.
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connected the T-section to the gravity and linked columns. There were three
sliding mechanisms, two C-A, two C-B and three C-C connectors per floor. The
T-section beam with L=31 feet was made of a half W36x135 section. Figure
(5.22) shows the highlighted out-of-plane restraint system used to avoid out-of-

plane movement during testing.

Figure 5.22: 3D view of the out-of-plane restraint system.

The connection between the T-section beam and the gravity beam was done
via C-A connectors which consisted of a single plate (PL 17x19x1/2”) bolted
to the T-section beam and fillet welded to the top flange of the gravity beam.
In order to avoid the movement of both flanges along the gravity beam, C-
B connectors were introduced. Figure (5.23) shows C-A and C-B connectors

located at the second floor level.
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Figure 5.23: C-A and C-B connectors located at the second floor level.

C-B connectors consisted of a top plate (PL 17x19x1/2”), a small extension
top plate (PL 17x3 3/4"x1/2”), a plate (PL 17x9x1”) that was connected to the
HSS, a bottom plate (PL 17x23x1/2”), and an HSS (8x8x1/4”) section. The
top plates were connected to the T-section and to the HSS plate using bolts.
The connection between plate to HHS, HHS to bottom plate, bottom plate to
the bottom flange of the gravity beam, and top plate to the top flange of the
gravity beam were all done through fillet weld. Figure (5.24) shows the details
of Connector C-B.

The role of Connector C-C was to connect the T-section beam to either the
gravity column or the linked columns. Connector C-C consisted of a vertical
plate (PL 25 1/2"x8x1”) and two horizontal plates (PL 11x4 1/2”x1/2”). Both
horizontal plates were fillet welded to the vertical plate and also bolted to the

T-section beam at one end. The other end connected the vertical plate to the
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Figure 5.24: Connector C-B details.
column through fillet welds on both column stiffener and column web. Figure
(5.25) shows the details of Connector C-C.

Sliding mechanisms A and B were responsible to receive the T-section beam.
Sliding mechanism A consisted of a set of three types of plates: PL 36x11x1”
(2x), PL36x26.5x1” and PL 36x3x1 3/8”. A friction reducing grease was added
between the sliding mechanism and the T-section beam to lubricate the steel
plates. Figure (5.26) shows the sliding mechanism details as well as sliding
mechanism A at first floor level. Sliding mechanism B was two times longer
than sliding mechanism A to accommodate the T-section beam by the linked
columns. The height of the plates was the same as sliding mechanism A and
the plates were installed at the same elevation as well. The distance from the
wall was controlled by adjusting nuts on all threaded rods. Four threaded rods
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Figure 5.25: Connector C-C details.

with 1.5 in diameter connected the sliding mechanism B to the reaction wall.
Two threaded rods went through the wall and two threaded rods went through
the rib of the wall - per each elevation. The cantilevered part had two stiffeners
attached to a base plate grouted and bolted to the east side of the wall. Figure

(5.27) shows the sliding mechanism B located at the first floor level.

PL 36x11x1” (2x)

+— PL 36x26 ¥x1"

PL 36x3x1 3/8" (2x)

Figure 5.26: Sliding mechanism A at first floor level.
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Figure 5.27: Sliding mechanism B at first floor level.
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5.3.5 Completed Test Setup

A test setup was devised for testing the LCF system, which consisted of LCF
specimen, LC floor beam, GC floor beam, reaction wall, out-of-plane restraint
system, and actuators. Parts of the specimen, such as locations where yielding
was expected, were whitewashed with a lime and a water mixture intended to
flake off as the steel yields, to illustrate the sequence and distribution of strain.
During the many stages of the assemblage, the instrumentation was attached.
Figure (5.28) shows the completed test setup for the LCF-5L specimen before

testing.

5.4 Instrumentation

The response of the LCF steel system subjected to cyclic and earthquake load-
ings was measured using a total of 224 data acquisition channels. These channels
collected data from strain gages, linear variable displacement transducers, load
cells, string pots, accelerometers, and actuators using a National Instruments
data acquisition system. Many of the measurements were used to calculate
quantities such as column and link rotations, story drifts, average axial strains,
bending moments, shears and axial loads. The detailed location of instrumen-
tation points, channel numbers, cable numbers, and device types are listed in

Appendix F.

103



i .

y Il

g Actuators * ,qull

7 o
/ V Floor1
4 0 |

- Reaction

j;f‘; i‘ N ' Wall
[ - B

Restraint

Floor Beam

Figure 5.28: Completed test setup for the LCF-5L specimen before testing.
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5.4.1 Strain gages

Four types of strain gages were used, namely, general purpose uniaxial gage,
large deformation uniaxial gage, post yield uniaxial gage and rosettes. General
purpose uniaxial gage was manufactured by Vishay Measurements Group and
others by Tokyo Sokki Kenkyujo. The general purpose uniaxial gage were type
C2A-06-250LW-120, denoted hereafter as C2A, and were placed along column
flanges in both linked and gravity columns. They were also placed on top
and bottom flanges of the GBs at mid-section and near the shear connection,
totalizing six gages per GB. Additionally, ten C2A gages were placed along the
GC flanges in order to estimate the axial load and to determine if yielding had
occurred. The same approach was used in LC-1 and LC-2 with twenty six and
twenty two gages used, respectively. This was done to understand the strain
distribution and variation across the column flanges.

The large deformation uniaxial gages were type YEFLA-5-21.-120, denoted
hereafter as YEFLA, and were placed along flanges of the shear links. Three
gages were attached on top and bottom flanges of the links and two gages were
attached on top and bottom flanges of the GBs close to the moment connection.
The post yield uniaxial gages were type YFLA-5-21-120, denoted hereafter as
YFLA, with three gages attached to the top and bottom flanges of the GBs
close to the moment connection. Finally, rosettes were type YEFRA-5-21.-120,

denoted hereafter as rosette, and were placed on the link web and column web
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Figure 5.29: Strain gage layout used on LCF test assembly.

(panel zone). Their locations were the following: one rosette per link at link
web, eight rosettes on LCs web between column stiffeners, two rosettes on GC
between column stiffeners, and two rosettes per GB one at each end. For LCF-
5L specimen, a total of 139 strain gages were used as follows: 70 C2A, 38
YEFLA, 12 YFLA, and 19 rosettes. For LCF-3L, the same configuration for
GC, LCs, GBs were used and only three links were instrumented. Figure (5.29)
shows the strain gage layout used on LCF-5L specimen assembly.

Before the installation of the strain gages, a rust layer was removed from the
steel surface using a 120° Angle Air Die Grinder to make sure the strain gages

were properly attached to the base metal through a M-Bond 200 adhesive. The
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Figure 5.30: Strain gage protection.

installation itself followed the procedure given by the manufacturer. All strain
gages were protected with an air-drying polyurethane coating and also with a
butyl rubber coating followed by an electrical tape cover as shown in Figure

(5.30).

5.4.2 LVDTs

Linear Variable Displacement Transducers (LVDTs) were used to measure the
column panel zone rotations, link and column rotations, connection slippage,
and base plate slippage. The LVDTs used were Novotechnik TLH and TR
models with ranges between 1 and 20 inches. The holders for these LVDTs were
either tack-welded or C-clamped to the specimen. All LVDTs were calibrated
using Mitutoyo gage blocks (0.2 in, 0.3 in, 0.5 in, 1.0 in, 2.0 in and 5.0 in).

Figure (5.31) shows the LVDT gage layout used on LCF-5L specimen assembly.
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Figure 5.31: LVDT layout used on LCF test assembly.

5.4.3 Load Cells

The loads transfered to the specimen were measured with load cells within the
actuators while the loads transferred to the gravity column were measured with
a 6 degrees of freedom load cell provided by University of Nevada at Reno.
Reno’s load cell was positioned between the GC strong floor attached to the
strong floor and the gravity column and had the following capacity: 200 kips
for axial, 200 kips for shear, 500 kips-in for moment, and 700 kips-in for torque.
Figure (5.32) shows the load cell already installed on the gravity column and

also the load cell cross-section.
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Figure 5.32: Load cell already installed and load cell cross-section.

5.4.4 String Pots and Accelerometers

First and second stories were also instrumented with string pots to measure
story displacements. They were mounted directly to the gravity column at
each floor level. The string pots used were Celesco PT 101 models with total
movement ranges between 2 and 30 inches. Figure (5.33) shows a string pot at

the first story level.

Figure 5.33: String pot at the first story level.

109



Figure 5.34: Accelerometer used to obtain rotation.

To capture the rotation of some joints, tiltmeters were attempted to be used.
However, due to calibration issues the tiltmeters were disregarded. Six in-house
three-axes accelerometers were used instead. The gravitational acceleration
always acts perpendicular to the earth’s surface. So when the LCF system is
tilted at an angle o, part of that acceleration acts along x and y axes. Hence,
the rotation was calculated using trigonometry. Figure (5.34) shows one of the
accelerometers used and also a sketch to obtain the rotation. Accelerometers
were attached to both linked and gravity columns stiffeners as shown in Figure
(5.35). String pots and accelerometers layout used on LCF test assembly is also

shown in Figure (5.35).

5.4.5 Cameras and Video

Digital photos in different views and angles were taken and stored in a desktop
computer. Five digital single-lens reflex cameras were connected to desktop com-

puters and shot the still photos every 10 seconds continuously throughout the
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Figure 5.35: String pots and accelerometers layout used on LCF test assembly.

entire test. Digital videos of each test were also recorded. A three-dimensional
Leica high definition laser scanner was also used to capture the specimen de-
formed shape throughout the tests. Unfortunately, the laser scanner did not
work as expected. Figure (5.36) shows cameras and laser scanner used on LCF

test assembly.

5.4.6 Data Acquisition System

All test data were measured using a high performance transducer signal condi-
tioning and system control named 6000DAS. Data were displayed and recorded
using Simulink. Instruments were connected to switch boxes using cable ex-
tension as shown in Figure (5.37). These switch boxes were integrated into

a high-speed data acquisition system programmed to scan every channel and
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Figure 5.36: Cameras and laser scanner used on LCF test assembly.

record the data into a desktop computer under specified sampling rate defined
before testing.

All instruments were attached to cables in one end while the other end was
connected to the switch boxes. To expedite the process cables were grouped in
bundles. Strain gages were also connected to an intermediate device attached
directly to the LCF specimen to facilitate the connection to the switch boxes

as shown in Figure (5.38).

5.5 Cyclic Loading Protocol

Two LCF systems were tested following the loading protocol described below.

One of three loading protocols were to be used during the experimental tests:
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Figure 5.37: Switch boxes and cable extension.

Figure 5.38: Intermediate gage device attached to the LCF specimen.
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SAC, ATC-24 or FEMA 461. For steel frame structures the story yield drift is
expected to happen around 0.01 rad., which permits an approximate correlation
between SAC and ATC-24 protocols. However, during the pre-yield cyclic test,
on the LCF-5L specimen, the story yield drift was lot smaller. Therefore, the
FEMA 461 protocol was the chosen one and this protocol is also applicable to
drift sensitive structural components. FEMA 461 has a protocol named “Quasi-
Static Testing on Structural and Non-Structural Components and Systems” and
should be used for the determination of performance characteristics of compo-
nents (i.e. frame assemblies), the behavior of which is primarily controlled by
the application of seismic forces or seismic-induced displacements.

FEMA 461 protocol calls for two targets (A and A,,) and a predetermined
number of increments (n), where Ay is the targeted smallest deformation ampli-
tude of the loading history, A,, is the targeted maximum deformation amplitude
of the loading history and n is the number of steps or increments in the loading
history. For testing purposes, Table (5.1) summarizes the parameters used on
both LCF specimens while Figure (5.39) shows the loading history used on LCF
test assembly up to 0.05rad. story drift. The testing was conducted in a slow,

displacement-controlled, and predetermined manner.

Table 5.1: FEMA 461 parameters.

Specimen n  Ag (rad) Ay, (rad) Drift (%)

LCF-5L 40 0.0012 0.026 2.6

LCF-3L 51 0.0012 0.050 5.0
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Figure 5.39: Displacement-controlled loading history used on LCF test assembly.

Since the experimental behavior of the LCF system was unknown, a quasi-
static testing up to 2.6% drift was conducted first on the LCF-5L sub-system,
followed by a sequence of hybrid testing on the entire system. For the LCF-
3L specimen, hybrid testing was conducted first and then the physical LCF-3L
sub-system was tested under an ultimate cyclic loading up to 5% total drift.

Hybrid simulation is discussed in Section (5.6).

5.6 Hybrid Simulation

Over the last years, the seismic behavior of steel structures has been the subject

of extended research and several experimental tests on such structures were
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conducted. In most cases, these structures were either subjected to quasi-static
cyclic loading in which the dynamic response of the system cannot be captured
or were tested on a shaking table. Typically, it is very difficult to do a large or
full scale test using a shake table due to limitations on table capacity. Seismic
tests may also involve hybrid simulation, a combination of physical test of a
critical substructure tied to a numerical model of the building. In a hybrid
simulation test, the well understood part of the structure is modeled in a finite
element program and the critical substructure is built in the laboratory to be
tested.

Hybrid simulation offers an efficient method for assessment of dynamic be-
havior of large-scale structural systems subjected to earthquake excitation.
Compared to earthquake simulations using shake tables, hybrid simulation may
have significant advantages in terms of cost, geometry, and required physical
mass of structures and components that can be tested. By this token, a LCF sys-
tem was investigated experimentally to validate the rapid return to occupancy
performance at a system level. The hybrid simulation test setup used on LCF-
5L test assembly is illustrated in Figure (5.40). P-delta effects were included on
LCF-3L test assembly and results are discussed in Chapter (6). Ground motion
intensity was selected such that three distinct performance levels were induced
in the LCF specimen: linearly elastic, rapid return to occupancy correspond-
ing to a moderate damage state, and collapse prevention corresponding to a

significant damage state.
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Figure 5.40: Hybrid simulation setup used on LCF-5L test assembly.
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The experimental substructure consisted of a 2-story LCF frame and 1-bay
while the remainder of the building was numerically modeled. One of the goals of
this research was to apply a set of ground motions, already discussed in Chapter
(4), to the LCF in order to understand the behavior of the system during an
earthquake event. Numerical investigation indicated that due to differences on
lateral parameters between the multistory (2-story, 4-bay) and experimental
(2-story, 1-bay) models, hybrid simulation is particularly well-suited for the
experiment.

To perform the hybrid simulation, OpenSees was used as a finite element
software to model and analyze the numerical part of the system, while Open-
Fresco was used as a middleware to connect the finite element analysis software
with a control and data acquisition software. OpenFresco is an object oriented
framework which pairs computational drivers with laboratory control systems
to enable hybrid simulation. The OpenFresco experimental element, shown in
Figure (5.40) acted within OpenSees to represent the portion of the structure
that was physically tested in an experiment. Moreover, the experimental ele-
ments provided the necessary interface to the analysis procedures in the finite
element analysis software.

To run a hybrid simulation test, four interacting components are required.
The first component is a numerical model of the structure to be analyzed, which

consisted of two gravity beams and one gravity column. The second component
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Figure 5.41: Interacting components of a hybrid simulation test.

is a servo-hydraulic control system with static or dynamic actuators that inter-
acts with the specimen through structural response quantities such as forces and
displacements. The third component is the physical test specimen itself (2-story,
1-bay), including reaction wall and strong floor. Finally, the fourth component
is a data acquisition system with instrumentation that gathers all information

for post-processing analyses. These interacting components are shown in Figure

(5.41).

5.7 Test Sequence

Specimens LCF-51L and LCF-3L were both cyclically and hybrid tested. For
evaluating the LCF response, FEMA 461 was used as the loading protocol for
the cyclic testing, whereas ground motions at three different intensities; 50%,

10% and 2% probability of exceedence in 50 years for Seattle, Washington were
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used for the hybrid testing. The system overall had exhibited three distinct
performance levels; linearly elastic (£), rapid return (RR) to occupancy where
only the replaceable links would yield, and collapse prevention (C'P) where the
gravity beam components also become damaged. Table (5.2) summarizes the

test sequence on the LCF test assembly.

Table 5.2: Test sequence on the LCF test assembly.

LCF-5L specimen  Max. Drift (%) Start End Time
Cyeclic 2.6 10:05 PM 1:40 AM 3h 35 min
Hybrid E 0.5 2:05 AM 2:36 AM 31 min
Hybrid RR-1 2.0 4:05 AM 5:29 AM 1h 24 min
Hybrid CP-2 4.5 5:43 AM 6:09 AM 26 min
LCF-3L specimen  Max. Drift (%) Start End Total time
Hybrid E 0.5 6:40 PM 7:03 PM 23 min
Hybrid RR-1 1.6 7:11 PM 8:35 PM 1h 24 min
Hybrid RR-2 1.8 8:47 PM 10:15 PM 1h 28 min
Hybrid CP-1 2.4 10:24 PM  12:45 AM  2h 21 min
Hybrid CP-2 2.8 12:53 AM 4:10 AM 3h 17 min
Ultimate Cyclic 5.0 5:15 AM 9:05 AM 3h 50 min

Since this was the first time that a LCF system was being tested, experimen-
tal tests for LCF-5L specimen started with a cyclic test up to 2.6% drift followed
by a set of hybrid simulation tests reaching a 4.5% total drift limit at the end
of about 6 hours of testing. During ground motion CP-2, one of the actuators,
attached to the first floor, interlocked due to maximum force, abruptly stopping

the test with only 26 minutes of ground motion. The ability to rapidly return
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to occupancy was achieved, between LCF-5L and LCF-3L tests, through re-
placing sacrificial removable links as the gravity system remained elastic. With
the knowledge gained from specimen LCF-5F, a second round of experimental
tests were conducted on the LCF-3L specimen, starting with hybrid testing up
to 2.8% drift followed by an ultimate cyclic test until a 5.0% total drift limit
was achieved. The total time of the experimental tests for LCF-3L was about
13 hours. The total time for each experimental test did not include the time for

troubleshooting and inspection after each major event.
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Chapter 6

LCF System Performance Validation

6.1 Introduction

Cyclic and hybrid simulation tests of the linked column frame frame were con-
ducted using the loading protocol and hybrid model described in Chapter (5).
This section presents results that validates the performance of the LCF system.
The specimens are presented in the order in which they were tested and some
key aspects are discussed. Each test was conducted over the course of several
days. At key points during the experiments, actuators were paused for visual
inspection and photography. A friction test was conducted after removing shear
links and gravity beams for LCF-3L specimen. The same loading protocol used
for the ultimate cyclic loading was used in the friction test in order to maintain
the actuators speed per cycle. Results from Figure (6.1) indicate that friction
forces around 10% of the total base shear were introduced during the experi-
mental tests and all plots that use actuator forces were updated accordingly.

To the knowledge of the author, the tests that were conducted in this research
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Figure 6.1: Friction test: Base shear versus overall drift.

were the first series of experiments specifically aimed at studying the seismic

performance of full scale LCF systems constructed using realistic detailing.

6.2 Initial Cyclic Behavior Evaluation

Since this was the first time a LCF system was experimentally tested, a cyclic
behavior evaluation was performed prior running the earthquakes via hybrid
simulation. The main objective of the cyclic test was to understand how the
system would interact together as a unit and shed light to subsequent tests.
The idealized pin connection at foundation levels was studied in regards to base
rotation. A LVDT was positioned on each foundation element and rotation was

obtained from the LVDT values divided by distance from the LVDT itself to
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the center line of the pin connection. This procedure was done to linked and
gravity columns. Figures (6.2) and (6.3) show the rotation at the base versus
base shear on linked column 1, hereafter denoted as LC1, and rotation at the
base versus base shear on gravity column, hereafter denoted as GC, respectively.
The maximum base shear achieved was 200 kips while the maximum rotation
was about 0.05 rad. Both LC1 and GC had shown a similar behavior indicating
a pinching on their hysteresis plots due to a gap formed between the pin and
connection plates indicating that the machining of these elements were not

properly done.
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Figure 6.2: Base shear vs LC1 base rotation for LCF-5L specimen.

A further investigation was done in order to find out if the pinching effect

pertained to the system. This was done through studies on the rosette strain
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Figure 6.3: Base shear vs GC base rotation for LCF-5L specimen.

gage of Link 1 in order to obtain a limit for the shear strain (v = 2960 pin/in)
and to capture the time when it occurred (¢ = 1158sec.). According to the
failure theories one can express the critical value associated with each theory of
failure either in terms of o, or in terms of 7,. This means that the value of 7,
could be equal to 0.577 times the value of o, according to Von Mises theory.
Figure (6.4) shows the shear acting on both linked columns versus rotation of
Link 1 based on results given by LVDTs. For ¢t = 1158 sec. the results for shear
and rotation were 116 kips and 0.0029 rad., respectively, and no pinching was
observed when LVDT’s were used to plot this performance metric.

Another important performance metric that was investigated during the
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Figure 6.4: Shear on linked columns vs Link 1 rotation through LVDT.

initial cyclic test was related to the rotation of beam-column connections. Ac-
celerometers were positioned at the center line of each column at both floor
levels and rotation was obtained. Figures (6.5) and (6.6) indicate the base shear
versus rotation on moment and shear connections, respectively. This moment
connection is located at the node formed by the first floor and GC, whereas the
shear connection is located at the node formed by the first floor and LC1. The
behavior in terms of rotation follows the same pattern for both connections,
suggesting that beam-to-column connections (moment side) used in the seismic
force resisting system (SFRS) shall be capable of accommodating a story drift
angle of at least 0.025 rad, whereas beam-to-column connections (shear side)
used in the SFRS shall be capable of accommodating also a story drift angle of

at least 0.025 rad. As a result, this suggests that connection details could be
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the same as intermediate moment frames.
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Figure 6.5: Base shear vs moment connection rotation for LCF-5L specimen.

One of the main objectives of this dissertation was to experimentally find
the overstrength coefficient, €2y, which is a seismic performance factor. Figure
(6.7) shows the cyclic base shear versus drift for the LCF-5L specimen tested.
The LCF-5L system was designed to have a base shear closer to the design base
shear at first link yield. The nominal first significant yield occurred at 0.7%
drift and Vj;,, = 100 kips for the base shear, whereas the prescribed minimum
design seismic force level was calculated as Viegign = 109 kips. The ratio in
lateral strength (Qp) between Vi, and Viesign is close to unity. The material
overstrength (£2,/) provides an allowance for strain hardening, where yielding

is expected to occur. Code requirements have historically used a factor that

127



Base shear (kips)
°

Shear connection rotation (rad)

Figure 6.6: Base shear vs shear connection rotation for LCF-5L specimen.

varies from 1.15 to 1.25. The first beam yield happened at 2.5% drift and
Vieam = 199 kips. The system overstrength factor (€2g) could be defined as a
characteristic of a structural system where the actual strength is greater than
the design strength. This factor accounts for overstrength of the structure in
the inelastic range. For purpose of comparison, the overstrength factor used
in ASCE/SEI 7 (2010), for special moment resisting frame and eccentrically
braced frame, are €20=3.0 and §2p=2.5, respectively, whereas for the LCF tested
is 0p=2.0. This factor might be considered to provide a reasonable estimate
of the reserve strength attributable to a rapid return to occupancy level of
performance. As mentioned before, the pinching in the hysteresis loops shown

in Figure (6.7) was caused mainly by the lack of fit between the pin and the
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plates on the LC foundation element. The pinching effect is not related to the
LCF system behavior whatsoever as can be seen in Figure (6.4). No sudden

loss of stiffness on LCF system was observed.
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Figure 6.7: LCF system overstrength.

6.3 Seismic Response of LCF-5L

In order to proceed with the hybrid simulation tests, structural properties such
as mass, damping and stiffness parameters were needed. Seismic masses were
the same as those from the SAC 3-story building, 65.53 kips-sec?/ft for the first

floor and 70.90 kips-sec?/ft for the second floor. Lump masses were assigned at
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the nodes of each floor level as shown in Figure (6.8). Masses on the LCF sub-
systems were transferred to the hybrid simulation model where m;; indicates

mass at floor 7 located at bay j.

My Mzz My M3y
m m m
M 12 | M43 149
&

Figure 6.8: Lump masses for hybrid simulation test.

Rayleigh damping parameters were set equal to 0.02 for the first mode and
0.06 for the second mode of vibration. Newmark method for hybrid simulation
with fixed number of iteration was used. The factors v = 0.5 and 8 = 0.25 in
the Newmark integrating scheme were also used.

For the stiffness parameters, a stiffness test was conducted on the LCF-5L
specimen. Actuators were set to a predetermined force value and then displace-
ments were calculated at each floor level to find out the stiffness matrix of the
specimen. Figure (6.9) shows the coefficients of the stiffness matrix for the LCF-

5L specimen, while Equations (6.1) and (6.2) indicate the stiffness matrices for

130



the LCF-5L specimen and for the hybrid simulation model, respectively, where

K.

ij

indicates level ¢ force versus level j displacement.

Force [kip]

Force [kip]

K11=718

Force [kip]

K12 =-366

Figure 6.9: Stiffness test results for LCF-5L specimen.
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Once the structural properties are obtained, a family of time-stepping meth-
ods based on Newmark’s method is used. The set of Equations (6.3) provide
the basis for computing u; 1, %;41 and i;;q at time ¢ + 1 from the known dis-
placement, u;, velocity, u;, and acceleration, i;, at time ¢, where M is the mass

matrix, C' is the Raleigh damping matrix and K is the stiffness matrix.

My + Ctjpr + Kugpr = piga

(&

[(1 = 28) ti; + 2Bi;41] (6.3)

A total of three earthquakes (EE, RR-~1 and CP-2) were used on the LCF-5L
specimen. The application of the ground motions revealed a sequence of yielding
events as follows: link 1 at base, link 2 at mid-height first story, link 3 at first
story, link 4 at mid-height second story, link 5 at second story, GB at first
story, and GB at second story. During the experiment, one of the actuators
force capacity was reached in the push direction at ¢ = 6240sec on the final
earthquake run, collapse prevention level, and the test was abruptly stopped.
However, a maximum drift of 4.2% could be achieved.

Axial loads on linked columns were investigated. LC1 had twelve strain

gages attached to each face of the column, whereas LC2 had ten strain gages
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attached to each face of the column. In order to find the axial loads, a set of

strength of materials equations was used as follows:

P My
— 4 =7 A4
o A 1 (6-4)

where ¢ is the column stress, P is the unknown axial load, A is the area of the
column, M is the bending moment, y is the distance from the neutral axis to the
outer fiber, and I is the moment of inertia. Using Hooke’s law and eccentricity,

e, Equation (6.4) can be written as:

(6.5)

where F is the longitudinal modulus of elasticity. Therefore, axial load is given

by:

eAE.T

s e.qy.A (6.6)

The LC pinned connections were designed for the maximum forces generated
by the shear links. As explained in the AISC Seismic Provisions (ANSI/AISC
341, 2010), an overstrength factor of 1.5 has generally been applied to the nom-
inal strength of shear links (V, = 102 kips) to determine the design strength
of the surrounding components. However, studies on shear link hysteretic en-

ergy dissipators (Dusicka et. al., 2004") indicate that the overstrength factor
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exceeded the expected overstrength for shear links by a wide margin. Thus, for
design purposes, the overstrength factor used in the LCF system was 2.0.
Figures (6.10) and (6.11) show the seismic internal axial loads on LCs along
its height as well as the Seismic Provisions and LCF design values for com-
parison. Experimental results indicate similar behavior on both columns and
maximum values that corroborate with the overstrength LCF design factor of

2.0.
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Figure 6.10: Axial loads along L.C1 height for LCF-5L specimen

Figure (6.10) shows a well distributed axial load along the column and a
maximum axial load on the foundation of about 1,200 kips. As expected, the
increase of axial loads was obtained while changing the level of earthquake.

Using Seismic provisions overstrength factor had shown that the structure might

134



be underdesigned if this factor is used to design the foundation element. A
similar behavior was obtained in Figure (6.11) with a maximum axial load on
the foundation of about 1,300 kips. Even though an overstrength factor of 2.0
was used for the LCF design, a difference of about 27% was noted between the
LCF design value and the maximum axial load on the linked columns, suggesting
that a overstrength factor greater than 2.0 might be considered in the future,

while considering the collapse prevention performance level.
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Figure 6.11: Axial loads along LC2 height for LCF-5L specimen

Axial loads and bending moments cause normal stresses on the column and
both of them should be addressed. One of the advantages of the LCF system
over other conventional systems is that, SMFRs, for example, allow plastic

hinges on columns, while LCFs do not. In order to move closer to the goal
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of eliminating column damage, all columns in the LCF system were pinned at
the foundation level and the strong-column and weak-beam approach was also
used. The seismic internal bending moments were obtained for each level of
earthquake using a similar approach that was used to obtain the axial loads.
Figures (6.12) and (6.13) show the seismic internal bending moments on LCs
along its height and experimental results indicate no damage on columns, with
the plastic moment for a W14x132 column section being M,, = 975 kips. ft while
the maximum moment obtained on the LCs was about Mo = 230 kips. ft. As
expected, figures (6.12) and (6.13) also show higher moments at lower level
heights.
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Figure 6.12: Moments at LC1 for LCF-5L specimen.

As explained in Chapter (3), the LCF system has also idealized physical
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Figure 6.13: Moments at LC2 for LCF-5L specimen.

hinges while connecting the gravity beams to the linked columns. The outcome
of this model is to achieve flexibility in the LCF system. Lowering the moment
of inertia in the gravity beams is one means of achieving flexibility within the
system. Another effective way is to change the boundary conditions of the
gravity beams. For the LCF systems evaluated, a fully restrained moment
connection at one end of the beam and a shear connection at the other end of
the beam was used.

Figures (6.14) and (6.15) show the bending moments on the gravity beams
and indicates a proper behavior of a fixed and pinned-end connections, re-
spectively. As shown, the plastic moment for a W16x57 beam section was

M, = 5,775 kips.in and did not occur until collapse prevention performance
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level was achieved. Figures (6.14) and (6.15) also shown the same behavior and
clearly indicate an increase of bending moments while changing the levels of
earthquake. Also, the shear connection behaved as expected with almost zero
moment on its end. Results from bending moments on the gravity beams sug-
gest that the LCF system is capable of achieving a rapid return to occupancy

level of performance.
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Figure 6.14: Moments at GB1 for LCF-5L specimen.

Another way to validate the LCF performance toward rapid return to occu-
pancy is through the analysis of gravity beam flange strain distribution. Figure
(6.16) shows the gravity beam flange strain distribution for the rapid return to
occupancy and collapse prevention performance levels. The yielding strain -,

is shown by horizontal solid lines for reference and was obtained using Hookes
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Figure 6.15: Moments at GB2 for LCF-5L specimen.

law. As shown, beam flange yielding does not occur until collapse prevention
performance level is achieved. This ensures that no repairs would be necessary
and will help to minimize post event repair costs. Figure (6.16) also shows lim-
ited demands on gravity beams and this could indicate less rigorous detailing
connections. The behavior of both gravity beams was almost identical, except
that strains for the collapse performance level on GB-1 was higher than GB-2.

After analyzing some system performance metrics, component level analyses
were also analyzed. Since the replaceable shear links play an important role
within the LCF system, a study on links’ rotation along the column height is
discussed. Figure (6.17) shows link rotation for all three performance levels for

LCF-5L specimen. The link rotation demands in Link 1 at the base were greater
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Figure 6.16: Gravity beam strain distribution for LCF-5L specimen.

than in Link 5 at the second story which concur with the sequence of yielding
events mentioned previously. Whitewash on the links began flaking near mid-
span, then propagated toward the end plates as shown in Fig. (6.18). In the
collapse prevention performance level the links have larger inelastic demand
and are more likely to require replacement. The maximum rotation value on
the RR performance level was 0.02 rad, whereas for the CP performance levels
was about 0.06 rad. Cyclic results are also shown for a drift of 2.5%, indicating
results between the RR and CP performance levels. It should be noted that
none of the links failed under any ground motions used in the hybrid simulation

test.
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Figure 6.17: Link behavior along column height: LCF 5 links

Throughout the experimental program the panel zones behavior was con-
tinuously monitored. LVDTs were positioned diagonally over the panel zone
and a strain gage rosette was attached to the column web. For each test, the
maximum panel shear deformation, 7,,.., and the panel ductility, u, were deter-
mined. Ductility was calculated by dividing the absolute maximum panel shear
deformation by the deformation at panel yield. Results for earthquake CP-2
are summarized in Table (6.1). As can be noted, all panel zones sustained loads
higher than their nominal yield load. No weld fracture and no signs of distress
or stiffness degradation were observed.

In addition to the analyses of axial loads on the linked columns, an evaluation

of shear forces on the replaceable links was performed. Once the axial loads were
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Table 6.1: Panel Zone 7,4, and location.

Panel Zone  vpaz I Location
PZ-1 0.0043 1.45 GC - 2nd floor
PZ-2 0.0036 1.22 LC1 - 2nd floor
PZ-3 0.0048 1.62 GC - 1st floor
PZ-4 0.0032 1.08 LC1 - 1st floor
PZ-5 0.003 1.01 LCI1 - Link 1 level

determined through strain gage data, the next step was to calculate the shear
on the replaceable links. This procedure was done taking the difference on axial
loads between the column above and below the replaceable link. For example,
the shear on Link 1 for the collapse prevention level was obtained from the
difference between 1167 kips and 889 kips which corresponds to 278 kips. The
same procedure was done to Links 2 and 4. However, in order to capture the
correct shear on the link located at the floor levels, Links 3 and 5, the shear from
the gravity beam must be calculated as well. Figure (6.19) shows a free-body

diagram to calculate shear on links. For example, the shear on Link 3 for the
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collapse prevention level was obtained from the difference between 607 kips and
390 kips which corresponds to 217 kips. This value needs to be subtracted from
the gravity beam shear which is 20 kips. Therefore, shear on Link 3 is 197 kips.
Note that the gravity beam moments were already obtained as indicated in
Figures (6.14) and (6.15). Those moments are used to determine the shear on
the gravity beam. Figure (6.20) summarizes the shear force on links for each

level of earthquake.
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Figure 6.19: Free body diagram to calculate shear on links.

LCF-5L specimen exhibited three regions within the lateral response; elastic,
yielding of links and yielding of links as well as MF beams. Provided the links
are replaceable, these correspond to three distinct performance levels; elastic,
rapid return to occupancy and collapse prevention. No significant permanent
drift was observed during the earthquake motions. Figure (6.21) shows the

experimental test setup after the hybrid testing for LCF-5L specimen.
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Figure 6.20: Shear on links vs levels of earthquake for LCF-5L specimen.

6.4 Replaceability of Links

Replaceability of shear links was performed after the hybrid simulation test for
the LCF-5L specimen was done. Since the hybrid test aborted due to tripping
a force interlock, the permanent displacement was rather large and unrealistic
in terms of residual displacement. So, the actuators were brought to the zero
position to get the frame as close to vertical as possible for the ease of links’
replacement. And, also to straighten the gravity beams for the second test.
All links were easily unbolted without the use of any torch, however, bolts were
hammered out because they were jammed by the shear link. The lack of residual

drift helped the process of replacing the links, this could prove more difficult
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Figure 6.21: Experimental test setup after hybrid testing for LCF-5L specimen.

to achieve in a real building. According to McCormick et. al. (2008) a 0.5%
residual drift represents a limit beyond which it is more economical to rebuild
a structure than it is to repair it. Nevertheless, even when residual drift results
in the structure, the permanent deformations are locked in the shear links,
which can be removed using a plasma cutter or an oxygen-acetylene torch. For
the installation of the second set of shear links, that was used on the LCF-3L
specimen, bottom bolts of one of the linked columns attached to the base plate
had to be loosened up. The actuator side was selected for this operation. The
shear links were removed in the following order: 1) link at mid-height of second
floor, 2) link at mid-height of first floor, 3) link at second level floor, 4) link at

first level floor, and 5) link at foundation level. Removing deformed shear links
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from the system and replacing them by new ones proved to be an easy task.
The total amount of time spent in this activity was about 8 hours. Figure (6.22)
shows the LCF-5L specimen when the link at mid-height of second floor was
removed, while Figure (6.23) shows all deformed shear links after the LCF-5L

specimen was tested.

Figure 6.22: Replaceability of shear link at mid-height of second floor.
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Figure 6.23: Deformed shear links after testing the LCF-5L specimen.

6.5 Seismic Response of LCF-3L

A 2-story, 1-bay physical specimen was built in the laboratory and a hybrid
model was defined in a OpenSees tcl file. In this tcl file, two generic experimental
elements, two rigid-link trusses and a leaning column were defined. Figure (6.24)
shows the model used for the hybrid simulation. For the LCF-3L specimen,
p-delta effects were considered through introducing a leaning column in the
OpenSees model.

For the hybrid simulation testing on the LCF-3L specimen, a combined
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ground motion input time history was used as well. A total of five earthquakes
(EE, RR-1, RR-2, CP-1, and CP-2) were used on the LCF-3L specimen. The
test was conducted very slowly compared to real time and continued until the
end of the last earthquake. The experimental earthquake response is presented
in terms of total base shear versus drift. The application of the ground motions
revealed a sequence of yielding events as follows: Link A at base, Link B at
first story, Link C at second story, GB at first story, and GB at second story.
Figure (6.25) shows that the structure displaced up to 1.8% drift and 2.8% when
subjected to earthquakes RR1 & RR2 and CP1 & CP2, respectively.
Following the same approach as discussed in Section (6.3), figures (6.26) and
(6.27) show the seismic internal axial loads on LCs along its height as well as
the Seismic Provisions and LCF design values for comparison. Experimental

results indicate similar behavior on both columns and maximum values that
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Figure 6.25: Base shear versus drift.

corroborate with the overstrength LCF design factor of 2.0.

Figure (6.26) shows a relatively well distributed axial load along the column
and a maximum axial load on the foundation of about 720 kips. As expected,
the increase of axial loads was obtained while changing the level of earthquake.
Using Seismic provisions overstrength factor had shown that the structure might
be underdesigned if this factor is used to design the foundation element. A
similar behavior was obtained in Figure (6.27) with a maximum axial load on
the foundation of also about 720 kips. Even though an overstrength factor of 2.0
was used for the LCF design, a difference of about 18% was noted between the
LCF design value and the maximum axial load on the linked columns, suggesting
that a overstrength factor greater than 2.0 might be considered in the future,
while considering the collapse prevention performance level.

In addition to the analyses of axial loads on the linked columns, an evaluation

of shear forces on the replaceable links was performed. Once the axial loads were
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Figure 6.26: Axial loads along LC1 height for LCF-3L specimen

determined through strain gage data, the next step was to calculate the shear
on the replaceable links. This procedure was done taking the difference on axial
loads between the column above and below the replaceable link. For example,
the shear on Link A for the collapse prevention level was obtained from the
difference between 550 kips and 355 kips which corresponds to 195 kips. In
order to capture the correct shear on the link located at the floor levels, Links
B and C, the shear from the gravity beam must be calculated as well. Figure
(6.19) shows a free-body diagram to calculate shear on links. For example,
the shear on Link B for the rapid return to occupancy level was obtained from

the difference between 326 kips and 150 kips which corresponds to 176 kips.
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Figure 6.27: Axial loads along LC2 height for LCF-3L specimen

This value needs to be subtracted from the gravity beam shear which is 4 kips.
Therefore, shear on Link B is 172 kips. Figure (6.28) summarizes the shear force
on links for each level of earthquake.

Figures (6.29) and (6.30) show link rotation for all rapid return to occupancy
and collapse prevention performance levels, respectively. The link rotation de-
mands in Link A at base are greater than in Link C at second story which concur
with the sequence of yielding events mentioned above. Whitewash on the links
began flaking near mid-span, then propagated toward the end plates as shown
in Figure (6.31). In the collapse prevention performance level the links have

larger inelastic demand and are more likely to require replacement. It should
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Figure 6.28: Shear on links vs levels of earthquake for LCF-3L specimen.

be noted that none of the links failed under any ground motions used in the
hybrid simulation.

Figure (6.32) shows the gravity beam flange strain distribution for the rapid
return to occupancy and collapse prevention performance levels. The yielding
strain €, is shown by horizontal dashed lines for reference and was obtained
using Hooke’s law. As shown, beam flange yielding does not occur until collapse
prevention performance level is achieved. This ensures that no repairs would be
necessary and will help to minimize post event repair costs. Figure (6.32) also
shows limited demands on gravity beams and this could indicate less rigorous
detailing connections. LCF-3L specimen exhibited three regions within the

lateral response; elastic, yielding of links and yielding of links as well as MF
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Figure 6.29: Shear deformation versus drift for LCF-3L specimen during RR earth-
quake.

beams. Provided the links are replaceable, these correspond to three distinct
performance levels; elastic, rapid return to occupancy and collapse prevention.

No significant permanent drift was observed during the earthquake motions.

6.6 Ultimate Cyclic Loading

In the framework of the project two full scale experimental specimens could be
tested. The LCF is a new lateral system and has never been tested before, hence

after the hybrid test was finished; the physical LCF sub-system was tested under
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Figure 6.30: Shear deformation versus drift for LCF-3L specimen during CP earth-
quake.

an ultimate cyclic loading up to 5% total drift. Lateral loads were applied at first
and second story elevations using four servo-controlled hydraulic actuators, two
per floor. The displacements of both first and second story were monitored and
controlled during the entire test. Figure (6.33) shows the maximum response in
terms of hysteresis loop of the physical LCF sub-system. A maximum second
story displacement of 10.8 in. with a 200 kip base shear was obtained. In
regards to the shear links, Figure (6.33) also shows the link rotation demands
in Link A (y = 0.07rad.) are greater than in Link C (y = 0.05rad.). Web
buckling did not start to form in the web of the shear link until 4% drift. With
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Figure 6.31: Progression of damage of Link A for LCF-3L specimen.

the progression of the cycles, web buckling became more pronounced and a
crack started at mid-span followed by a crack between the top flange and web
of the link. The cracks kept propagating until 5% drift. The web began to tear
and the test was stopped. Figure (6.34) shows the behavior of Links A, B and
C; and gravity beams 1 and 2 at 5% drift. Shear links shown to be effective
in protecting gravity system and participating well past 4% drift and gravity

beams had limited damaged. The friction test apparatus used after the ultimate
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Figure 6.32: Flange strain distribution of gravity beams for LCF-3L specimen.

cyclic loading test is shown in Figure (6.35).

All in all, the LCF system exhibited three distinct performance levels; lin-
early elastic, rapid return to occupancy where only the replaceable links would
yield, and collapse prevention where the gravity beam components also became
damaged. From visual inspection, whitewash on the web links began flaking
near midspan, then propagated toward the end plates. Links yielded prior
gravity beams, all columns remained elastic, and the ultimate system failure
mode was ductile and non-catastrophic. The LCF system is a viable system
under cyclic and seismic loading, offering a ductile structural system with the

ability to rapidly return to occupancy.
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Figure 6.33: Base shear versus drift; Link shear deformation versus drift hysteresis.
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Figure 6.34: Damage in structural members at 5% drift.
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Figure 6.35: Friction test setup.
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Chapter 7

LCF Structural Mechanics

7.1 Introduction

An analytical investigation was performed on the LCF system and verified based
on results from rigorous iterative design conducted for experimental frame. This
investigation is presented based on the mechanics of the system to evaluate the
lateral stiffness of LCF buildings in order to develop closed-form equations.
The expressions developed may be used to select the geometric properties not
only for the closely spaced dual columns but also the shear links, meeting the
design inter-story drift limits. Analytically estimating the stiffness provides the
designers with tools to size structural members and provide a first estimate of
drift under earthquake loading, which is useful since the LCF system tends to
be drift controlled.

One of the main issues in regards to the LCF design is how to conduct

an efficient and accurate preliminary analysis based on elementary structural
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mechanics and select optimum member sizes to be used in the eventual com-
puter analysis portion of the design. This chapter addresses consistent and
accurate approaches for member proportioning of two-dimensional LCF multi-
story frames subjected to lateral loads. For the stiffness estimation, the first
approach, denoted hereafter as cantilever column, is based on the assumption
that the linked columns of the LCF building could be represented by a cantilever
column and is used to determine the member sizing of the linked columns. The
second approach, denoted hereafter as Vierendeel column, is based on the as-
sumption that the linked columns of the LCF building could be represented by
a rectangular configuration with rigid joints. This latter approach is used to
determine the member sizing of the links. In addition to estimating the lateral
stiffness, closed-form equations were developed to size gravity beam members
as well to estimate the axial load on the foundation element using parameters

already known by practitioners.

7.2 Cantilever Column

In order to achieve more predictable structural performance under lateral seis-
mic forces, knowledge of the ultimate structural behavior of the structure is
essential. Therefore, design factors such as drift for given hazard levels should
become part of the design process from the beginning. The important factors
affecting the behavior of LCF buildings using the cantilever column are: allow-

able story drift, story height, lateral seismic force given by the equivalent lateral
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force procedure, and modulus of elasticity.
Consider, for example, a 2-story LCF building subjected to lateral seismic
forces represented by a cantilever column shown in Figure (7.1). The lateral

deflection of the 2-story LCF building is given by Equation (7.1):

A A A,
s _t s
L/n
P7 1 P‘T 1
—_— = + E——
L/n

(i) (ii)

Figure 7.1: Cantilever column of a 2-story LCF building.

At = Ati + At“' (71)

in which L is the total height, n is the story number, 4, is the total lateral
displacement at the second story, Ay, is the lateral deflection caused by a seismic
force at the second story, and Ay, is the lateral deflection caused by a seismic
force at the first story. The total lateral displacement and considering flexure

only is obtained the equation of virtual work given by Equation (7.2):
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where M is the internal moment caused by the real load, m is the internal
moment caused by the external virtual unit load, E is the modulus of elasticity,
and [ is the moment of inertia. An external virtual unit load is applied to the
structure at the point and in the direction of the desired displacement. With
the virtual load placed and all the real loads removed from the structure, the
internal virtual moment is calculated. Using the same coordinates as those
established for the internal virtual moment, the internal moment caused only
by the real loads is determined. Therefore, for a 2-story LCF building, A;, and

Ay

(3

are given by the following equations:

P2
5P, L3
ti T A8FET (7.4)

Substituting the equations above in Equation (7.1) and applying the limits
such as P, = 2P and P, = P, the total lateral deflection at the second story of

the LCF building is given by Equation (7.5):

_ 37PL
YT UASET

162



The only unknown of Equation (7.5) is the moment of inertia which can be
used to determine what sections should be used in the linked columns.

Now consider a 3-story LCF building subjected to lateral seismic forces
represented by a cantilever column shown in Figure (7.2). The lateral deflection

of the 3-story LCF building is given by Equation (7.6):

P, P, 2u S Bty
L/n

Pﬂl P1-1

—_— —_—
L/n = + +

Pﬂ—Z Pﬂ—Z

—_— —_—
L/n

Figure 7.2: Cantilever column of a 3-story LCF building.

At - Ati + Atii + At (76)

For a 3-story LCF building, A, Ay, and Ay, are given by the following

equations:

B3
' 3FT
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Table 7.1: Partial and total displacements for different story levels.

x| Ay Ay Agisi Ay Agy Ayi Ay
PL3 | 5P L3 _ _ ~ _ 37PL3
2 3BT 48F1 48FT
3 PsL3 | 14PL3 | 12P L3 _ _ _ 113PL3
3E] SIET 243E] 81ET
4 Py L? P3L3 5P L5 | 3P L3 ~ _ 11PL3
3E] 51 481E] | 100E] 5E1
5 PsL3 | 23P4L3 | TR3L3 | 3RL3 P L3 _ 33PL3
3E]L 100E] 50E] 25E] 50E1 10E]
6 PsL3 PsL3 14P,L3 | 5P3L3 | 12P, L3 | 17P. L3 | 437PL3
3BT 4E] 81ET 48FET 243E1 | 1296EI | 100EI
3
14P, L
e T RIEI (7.8)
12P, L3
1
fet T 43E] (7.9

Substituting Equations (7.7), (7.8) and (7.9) in Equation (7.6) and applying
the limits such as P3 = 3P, P, = 2P and P, = P, the total lateral deflection at

the third story of the LCF building is given by Equation (7.10).

_ 113PL

‘=SB (710

Similar expressions for partial and total deflections can be obtained for dif-
ferent story levels. Lopes et. al. (2012%) and Malakoutian et. al. (2013) numeri-
cally analyzed 6-story LCF buildings using pushover and time-history analyses,
respectively. For completeness, the cantilever column approach is summarized

in Table (7.1) up to 6-story buildings as illustrated in Figure (7.3).
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Figure 7.3: Cantilever column of a 6-story LCF building.

Total displacement parameters have been plotted in Figure (7.4) for a vary-
ing number of stories. A power trendline was used to obtain a recurrence equa-

tion, given by Equation (7.11), for the moment of inertia of the Linked Column.

564'6PL3

TSEA (7.11)

Ite =

where I is the moment of inertia for a single linked column, x is the
number of stories and A is the story height of the LCF building. Note that the
linked columns are also known as dual columns, hence the moment of inertia
(Irc) is already divided by 2 in order to obtain the member sizing for a single

linked column.
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Figure 7.4: Total displacement versus number of stories.

7.3 Vierendeel Column

The Vierendeel column approach is based on the assumption that the linked
columns of the LCF building could be represented by a rectangular configuration
with rigid joints. Vierendeel systems take advantage of the member’s resistances
eliminating the need for diagonal members. Figure (7.5) shows a LCF Vierendeel
column where h is the distance between links, H is the length of the link and
I, is the link’s moment of inertia, which is the unknown. Assume nodes 1 and
4 are fixed and that nodes 2 and 3 move laterally, A, the same amount.

Equations (7.12) give the moments at ends i and j of a member ¢j in terms of
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joint rotations and translations at the ends of the member and also the fixed-end

moments (FEM). These equations are known as the slope-deflection equations.

A A

®H El H@>

ELc ELc h

® (&

H

Figure 7.5: Vierendeel column.

(7.12)

Using the slope-deflection equations, the end-moments for the Vierendeel

column can conveniently be expressed as the following set of Equations (7.13):
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2E] A
My = 0+ Z—22C (291 + 0y — ?7)
2E] A
My =0+ =€ (01 + 20, — ?7)
2E] A
Myz =0+ —*< (294 + 20, — 3ﬁ)
(7.13)
2 A
My, =0 LC (04 + 265 — 3%)
2E1
Mo = 0+ Z=2EC (26, + 65)
H
2E]
Mz, = 0+ th (65 + 205)

Joint rotations at nodes 2 and 3 in Figure (7.5) are evaluated by writing
equations of moment equilibrium at the joints that are free to rotate. This leads

to the following set of Equations (7.14), known as compatibility equations.

My + My =0

(7.14)
M3y + M3y =0

Substitute Equations (7.13) in Equations (7.14) and assume 0y = 03 = 0.

Thus,
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( = +2EILch)9—( o )A (7.15)

ANSI/AISC 341 (2010) specifies the shear yielding links should be capable
of developing a plastic rotation of 0.08rad, whereas flexural yielding links should
be capable of developing a plastic rotation of 0.02rad. For a preliminary member
sizing and using Equation (7.15), assume 6 = 0.02rad and also that the LCF
should meet the design intent of 2.5% inter-story drift limits. Thus the moment

of inertia of the link is accomplished by Equation (7.16).

IcH
h

I, = 0.6 (7.16)

7.4 Serviceability

In a design situation, it is common to develop approximate deflection equations
in order to allow for quicker selection of a structural member based on deflection
limitations. The gravity beams of the LCF system have got two different types
of connections: extended end-plate moment connection and double-angle shear
connection.

The indeterminate beam shown in Figure (7.6) models a LCF gravity beam
and it is subjected to a uniformly distributed load. The load tends to deflect

the beam as shown and the reactions are as follows:
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Figure 7.6: Gravity beam model for a LCF building.

Hwl

Ry = 5
3wl

Rp = I (7.17)
wl?

My = =

The bending moment equation, in function of z, from B to A in Figure (7.6)

can be written as

M(z)=—2z——-x (7.18)

where x varies from 0 to L and starts at support B.
Using the elastic curve equation and integrating twice, as well as applying
the boundary conditions to find out the constants, the deflection equation of

the beam shown in Figure (7.6) is given by Equation (7.19).
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T (7.19)

Assume the maximum displacement occurs at x = L/3 from support B.

Therefore, Equation (7.19) can be rewritten as

~ TlwL!
 1944E1T

(7.20)

Converting the units such that the moment is in kips — in, the beam length
is in feet and, also, knowing that the two basic deflection limits are L/360 and
L /240, Equation (7.20) can be modified such that the moment of inertia is

calculated as follows:

4wl?
5

Iop = (7.21)

where g, in Equation (8.7), is the required moment of inertia of the gravity
beam for L/360 and w is the live load.
Similarly, for the L/240 case,

L3
Iop = U’T (7.22)

where Igp, in Equation (7.22), is the required moment of inertia of the
gravity beam for /240 and w is summation of dead and live loads.

Equations (7.21) and (7.22) allow for quick selection of a shape based on a
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known load (dead and/or live) and beam span.

7.5 Axial Load on Foundation

One of the main goals in a preliminary analysis is to estimate the axial load at
foundations. It should be said that the behavior of systems involving structure-
foundation-soil interaction, especially when subjected to dynamic loads, is com-
plex. The procedure used herein to determine the axial load on foundation is
based upon statics.

Consider, for example, a 2-story LCF building subjected to lateral seismic
forces represented by the linked columns shown in Figure (7.7). The lateral
seismic force is obtained through the equivalent lateral force procedure and the
total base shear is considered to be absorbed by the linked columns. First,
determine the summation of moments about the center line of Figure (7.7) at
the foundation level in order to calculate R. The axial load on the foundation

element is given by Equation (7.23).

_ 5PL

= .2
R=" (7.23)

where R is axial foundation reaction for a single linked column, P is the lateral
seismic load, L is the total height of the LCF building, and H is the distance
between linked columns. Similar equations were obtained for 3-, 4-, 5- and

6-LCF buildings and results are summarized according to Table (7.2).
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Figure 7.7: LCF 2-story linked column.

Foundation reaction parameters on Table (7.2) have been plotted in Figure
(7.8) for a varying number of stories. A power trendline was used to obtain
a recurrence equation, given by Equation (7.24), for the axial force on linked

column foundations in function of the number of stories, x.

Table 7.2: Linked column axial force at foundation level.

x R
2 2H
3 14PL
3H
4 15PL
2H
5 11PL
6 9112’L
6H
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Figure 7.8: Foundation reaction parameters versus number of stories.

_ 172'°PL

r 20H

(7.24)

As a first example, consider both numerical and experimental results for a
LCF 2-story building. Numerical investigation using pushover analysis indicated
R = 509 kips, whereas Equation (7.24), for x = 2, P = 36 kips, L = 220in, and
H = 42in, provided R = 486 kips. The difference is about 4.5%. On the other
hand, experimental results had shown a value of R = 957 kips at 4% drift for
the axial load on the foundation. Now, the difference is about 50%.

This clearly indicates that an overstrength factor is necessary to realize the
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capacity design approach, which in this case is 2. If the overstrength factor is

too high, uneconomic structures will be designed, if it is too low, an undesir-

able mechanism may result. Based on the experimental results and the statics

procedure presented in this Section, Equation (7.24) can be rewritten as:
172%PL

Alternatively, consider that all shear links already achieved their plastic
shear capacity, V), as shown in Figure (7.9). For the 2-story LCF building
experimentally tested, there were five W10x45 shear links with V,, = 93 kips.
Thus, the reaction at foundation level could also be estimated by Equation
(7.26), where €2 is the foundation overstrength factor and n is the number of
shear links on the linked column. For this case, R = 930 kips, with a difference
about 4% when compared to the value obtained using Equation (7.25), R =

972 kips.

R=QnV, (7.26)

As a second example, consider the 3-story LCF building, LCF-W-L, pre-
sented in Chapter (4), there were seven W12x50 shear links with V,, = 87 kips.
For = 3, P = 25kips, L = 351.5in, and H = 60in, Equation (7.25) gives
a value for the reaction at foundation level as R = 1,212 kips, whereas (7.26)
indicates R = 1,218 kips, a difference less than 1%.
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Figure 7.9: Plastic shear links on linked columns.

Finally, as a third example, consider a 4-story LCF building with the follow-
ing design for shear links: three W14x145 with V,, = 272 kips and two W10x45
with V), = 98 kips. For x = 4, P = 13 kips, L = 624in, and H = 60in, Equa-
tion (7.25) gives a value for the reaction at foundation level as R = 2,112 kips,
whereas (7.26) indicates R = 2,029 kips, a difference about 4%. All in all, either
Equation (7.25) or Equation (7.26) allows for quick estimation of axial load on
the foundation with parameters already known by practitioners. This 4-story

LCF building will also be discussed in Chapter (8).
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7.6 Analytical Examples

The following example examines the behavior of a 2-story LCF building, us-
ing both Cantilever and Vierendeel column approaches. The results are then
compared with the design that was made prior experimentally testing the LCF
specimen and the design was based on pushover analisis (Lopes et. al., 2014).
The building layout is shown in Figure (7.10). A 2-story LCF building with
a total height of 2204n, story height of 110¢n and length of the link equals
to 421in is considered for a total base shear of 216 kips. The total base shear
was obtained using the equivalent lateral force procedure as per ANSI/AISC
341 (2010). The location of the building was in Seattle, Washington. Another
assumption is that all lateral load contribution is being taken care of by the
linked columns with 50% of the base shear contribution going to each linked
column. The building is then considered fixed at the base and is analyzed for a

base shear of 108 kips as shown in Figure (7.11).

144
—»

72
—»

AN VAWAS AN VAWAN VA

Figure 7.10: 2-story LCF building layout.

In order to limit the total building drift, the LCF system should meet the

design intent of 2.5% inter-story drift limits. The moment of inertia of the
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Figure 7.11: Cantilever model for a 2-story LCF building.

linked columns is then calculated from the recurrence relation given by Equation
(7.11). The drift limit and the required moment of inertia are 5.5in and 911 in*,
respectively.

Using the Design Dimension Tables in the AISC Manual AISC (2011), one
might select a W14 x90, the lightest W14 that has at least the required moment
of inertia. However, W14x90 is considered to be a non-seismically compact
member. Table (7.3) summarizes a set of possible members that could be used
in order to proceed with the computer analysis. The other three available
sections are also non-seismically compact members.

For seismically compact sections, the width-thickness ratios of the elements
of the cross-section cannot exceed \,s as defined in Table I-8-1 per ANSI/AISC
341 (2010). The next lightest section available is W14x132, which was the
section used for the experimental tests. At the time, the criterion to choose the

section, however, was based upon pushover analyses.
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Table 7.3: Linked Column Member Sizing for a 2-story LCF Building.

W Section | I, (in?)

Start with this section
W14x90 999 D E—

W14x99 1,110

W14x109 1,240

W14x120 | 1,380

Final design
W14x132 1,030 | «—

W14 x145 | 1,710

Knowing the moment of inertia of the linked column member, one obtains
the moment of inertia of the link through Equation (7.16). Thus, I; = 208in?
which is the minimum required moment of inertia of the link that should be used
in the more refined computer analysis. The links in the experimental design had
I;, = 248 in*.

Figure (7.12) shows a 3-story LCF building with a total height of 348in,
story height of 116 in, length of the link equals to 60 in, and a total base shear
of 300 kips. The assumptions stated in the previous example are still valid. The
building is then considered fixed at the base and is analyzed for a base shear of
150 kips as shown in Figure (7.13).

The drift limit and the required moment of inertia of the linked column
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Figure 7.13: Cantilever model for a 3-story LCF building.

given by Equation (7.11) are 8.8in and 2,996 in*, respectively. Using the De-
sign Dimension Tables in the AISC Manual AISC (2011), one might select a
W14x233, the lightest W14 that has at least the required moment of inertia,
whereas Malakoutian et. al. (2013) designed a 3-story LCF building with a

W14x257 for the linked columns as indicated in Table (7.4).
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Table 7.4: Linked Column Member Sizing for a 3-story LCF Building.

W Section | I, (in?)
W14x176 2,140
W14x193 2,400
W14x211 | 2,660
W14x233 3,010
W14x257 | 3,400
W14 x283 | 3,840

Once the moment of inertia of the linked column member is obtained,
the moment of inertia of the link is calculated using Equation (7.16). Thus,
I;, = 930 in* which is the minimum required moment of inertia of the link that

should be used in the more refined computer analysis. The links designed by

Malakoutian et. al. (2013) had Iy, = 1,3304n".

As a third and final example, Figure (7.14) shows a 6-story LCF building
with a total height of 756 in, story height of 126 in, length of the link equals to
80in, and a total base shear of 336 kips. The assumptions stated in the previous

example are still valid. The building is then considered fixed at the base and is

Start with this section
—

Final design

—

analyzed for a base shear of 168 kips as shown in Figure (7.15).

The drift limit and the required moment of inertia of the linked column

given by Equation (7.11) are 18.94n and 13,860in?, respectively. Using the
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Figure 7.14: 6-story LCF building layout.

Design Dimension Tables in the AISC Manual AISC (2011), one might select
a W14x730, the lightest W14 that has at least the required moment of inertia
which is the same cross section chosen by Malakoutian et. al. (2013) as indicated
in Table (7.5).

Table 7.5: Linked Column Member Sizing for a 6-story LCF Building.

W Section | I, (in?)

W14x550 | 9,430

W14x605 | 10,800

W14x665 | 12,400

Final design
W14x730 | 14,300 | «—

Similarly to the previous examples, once the moment of inertia of the linked

column member is obtained, the moment of inertia of the link is calculated
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Figure 7.15: Cantilever model for a 6-story LCF building.

using Equation (7.16). Thus, I;, = 5,280in* which is the minimum required
moment of inertia of the link that should be used in the more refined computer
analysis. The links designed by Malakoutian ef. al. (2013) had I, = 5,680in?.
Table (7.6) summarizes the member sizing using both Cantilever and Vierendeel

approaches and compares to the LCF buildings that were already designed.

Table 7.6: Summary of the member sizing.

LCF number I1c(int) I (in%)
of stories Cantilever | Design | Vierendeel | Design
2 911 1,530 208 248
3 2,996 3,400 930 1,330
6 13,860 14,300 5,280 5,680

LCF systems were investigated analytically via structural mechanics in order
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to select preliminary member sizes to be used for computer model generation,
which would subsequently be used for more detailed design. An apparently
simple formulation was presented for the development of closed-form expressions
of the lateral stiffness of the linked column steel frame system and also to size
gravity beam members. In regards to the lateral stiffness, two approaches were
presented based on classical methods of structural analysis.

The analytical examples demonstrated that the prediction of the member
sizes is reasonable and illustrated the applicability and accuracy of the proposed
formulations. By the same token, expressions developed for a quick estimation
of the axial reaction on the foundation element were also presented. Although
the apparent advantage of the approaches presented lies in the use of simple
equations, member sizes should be adjusted accordingly to satisfy strength cri-

teria.
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Chapter 8

Design Practice for LCF

LCFs combine the advantages of high ductility and lateral stiffness by limiting
the inelastic behavior to ductile links and by keeping the rest of the frame
essentially elastic. LCF's are designed so that yielding during a seismic event is
restricted primarily to the ductile links. The overall goal of this chapter is to
develop guidelines for preliminary LCF design that will result in configurations
where linked columns and links are likely to satisfy capacity design requirements.
Also, a step-by-step design example is presented in order to take advantage of

an existing structural design practice.

8.1 System Geometry

The building architectural design plays a major role in determining the build-
ing’s seismic performance. Ratios of span to height can often be relied upon
to provide a guide and a starting point from which further refinement can be
made. A reasonable solution is often required as a computer input. However,

the validity of the computer output should always be verified.
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8.1.1 Floor Height

From experience, it has been observed that the practical limit of floor height

for conventional steel structures is about 13 inches.

8.1.2 Span Length

For most steel frames, the span length varies between 20 and 30 feet.

8.1.3 Number of Linked Columns

The number of linked columns, N¢ is defined by Equation (8.1)

NBays

Nic = 5

(8.1)

where Npgys is the number of bays and Ny should be equal to as least one.

8.1.4 Link Length

Selection of link length is often restricted by architectural restraints. In the
absence of those restraints, preliminary link length is calculated using Equation

(8.2)

Ly =02Lgp (8.2)

where Lgp is the gravity beam length.

186



8.1.5 Steel Floor Systems

In steel floor systems, reinforced concrete slabs with shear connection on steel
beams are often used with thickness of slabs in the range of L/30 to L/15 of the

span.

8.2 Loading Conditions

One of the most difficult and yet important steps in the overall process of design
is the definition of the loads. The loads that were considered in the LCF design
can be grouped in three categories: dead load, live load and earthquake load.
All loads could be combined before the analysis is performed and, for LRFD,

the required strength is determined from Equation (8.3).

P,=12D+05L=+1.0E (8.3)

where P, is the required strength, D is dead load, L is live load, and F
is earthquake load. The first phase of structural design consists of estimat-
ing the loads acting on the structure. This is done using the load values and
combinations presented in ASCE/SEI 7 (2010).

In regards to earthquake loading, usually, the distribution of lateral forces is
associated with the first mode of vibration of a structure modeled as a cantilever.
Thus, the equivalent lateral force procedure (ASCE/SEI 7, 2010) is an option.

This procedure consists of determining the base shear in function of the seismic
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response coefficient, C's, and the effective seismic weight, W, including the total
dead load of the building, according to Equation (8.4). The idea behind the
equivalent lateral force procedure is to position static loads on a building with
values and direction that approximate the effects of dynamic loading caused
by earthquakes. For the LCF design, the proportion of structural members is

performed once the lateral force distribution is completed.

V= CsW (8.4)

8.3 Proportion Structural Members

The LRFD method of proportioning structural members and their connections
is used. The method consists of using load and resistance factors such that no
applicable limit state is reached when the structure is subjected to appropriate

load combinations.

8.3.1 Linked Columns

The moment of inertia of a single linked column is obtained using Equation

(8.5)

$4'6Ph3
SEA

Ine = (8.5)

where I is the moment of inertia for a single linked column, z is the
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number of stories, P is the lateral seismic force, h is the story height of the
LCF building, E is the modulus of elasticity, and A is the lateral deflection
caused by a seismic force. The derivation of Equation (8.5) is based on the LCF

Cantilever Method.

8.3.2 Links

The moment of inertia of a shear link is obtained using Equation (8.6)

 0.6I,0H

Iy N

(8.6)

where [, is the moment of inertia for a link and H is the length of the link.
The derivation of Equation (8.6) is based on the LCF Vierendeel Method. Also,

links should be designed as shear links for eccentrically braced frames.

8.3.3 Gravity Beams and Gravity Columns

The gravity beams are primarily loaded in bending about a primary axis of the
member. However, depending on the lateral loads of the system there are beams
with axial loads as well. The basic design checks for beams includes checking
bending, shear and deflection. The typical design procedure for beams involves
selecting a member that has adequate strength in bending and shear, and ade-
quate stiffness for serviceability. The loading conditions and beam configuration

will dictate which of the preceding design parameters controls the size of the
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beam. A practical equation to determine the required moment of inertia of the

gravity beam for L /360 is given by:

4wl?
5

Iop =

where w is the live load and L is the length of the beam.

As mentioned before, the LCF structural members are subjected to com-
bined axial and bending loads, and such members are called beam-columns.
Because of the many variables involved, no simple design procedure is likely to
account for such varied behavior. The design of beam-columns is essentially
a trial-and-error process, as such AISC (2011) formulas for beam-columns are
of the interaction type. Interaction equations come closer to describing the
true behavior since they account for stability situations commonly encountered.
For practical purposes, once the linked column size is determined consider the

gravity column having the same cross section.

8.4 Strong Column and Weak Beam Design

When a building sways during an earthquake, the distribution of damage over
height depends on the distribution of lateral drift. If the building has weak
columns, drift tends to concentrate in one or a few stories. However, if columns

are stronger than the beams, drift will be more uniformly distribute. Figure
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(8.1) shows two different mechanisms: (a) story mechanism and (b) beam mech-
anism. The former mechanism should be avoided at all costs during the LCF
design while the latter mechanism is preferable in order to spread inelastic re-
sponse over several stories. ANSI/AISC 341 (2010) adopts a strong-column and
weak beam design approach that requires that the summation of column flex-
ural strengths at each joint exceed the summation of beam flexural strengths.
Practitioners may want to increase columns sizes, beyond the code requirements
in order to obtain better performance in severe earthquake events and to avoid
the need of web stiffeners and doubler plates, but will increase, however, the

total weight of the steel used on the project.
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Figure 8.1: (a) story mechanism and (b) beam mechanism.
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8.5 Serviceability and Drift

For beams, deflections must be limited such that the occupants of the struc-
ture recognize that the structure is safe. The deflection equations for common

loading conditions are found in IBC (2012) and are summarized in Table (8.1).

Table 8.1: Deflection limit for beams.

Member description  Live Load  Dead + Live Load

Roof: supporting plaster ceiling L/360 L/240
Roof: supporting non-plaster ceiling L/240 L/180
Roof: not supporting plaster L/180 L/120

Floor members L/360 L/240

Sizing of columns in LCF systems typically is controlled by consideration of
drift. The stiffness of the LCF system must be sufficient to control the drift of
the building at each story within the limits specified by the building code. Drift
limits in ASCE/SEI 7 (2010) are a function of both type of structure and risk
category. The drift of the structure is to be calculated using the factored seismic
load, amplified by Cy, when comparing it with the values in ASCE/SEI 7 (2010).
Therefore, practitioners should adjust member sizes accordingly checking inter-
story drifts. Should drift criteria not be met, increase the stiffness of the shear

links and linked columns first before increasing the stiffness of the gravity beams.
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8.6 Pushover Analysis

A preliminary pushover analysis is often necessary to enable comparisons with
inelastic time-history analysis. However, there are still some reservations about
the inelastic time-history analysis, which are mainly related to its complexity
and suitability for practical design applications due to its sensitivity to the
characteristics of the input motions. On the other hand, pushover analysis
involves only a predefined lateral load pattern which is distributed along the
building height, a target displacement and a chosen level of performance. The
expectation is that the results will provide a sequence of yielding and failure on
the structural members, as shown in Figure (8.2), as well as the progress of the
overall capacity curve of the structure in order to predict the inelastic force-
deformation behavior of the structure. Pushover analysis is selected because
of its applicability to performance-based seismic design approaches. Moreover,
pushover analysis is one of methods described and recommended in FEMA 440

(2005).

Figure 8.2: LCF building sequence of yielding: links and then gravity beams.
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8.7 Performance Levels

New structural systems are needed to target specific performance levels espe-
cially for lower than maximum expected events. The LCF system is a new lateral
load resisting system with inherent specific target performance levels and the
ability for rapid return to occupancy following an earthquake while maintaining
the appeal of non-braced frame system. There are three design performance
levels, as shown in Figure (8.3), in regards to suitability of the LCF building

for occupancy and function:

1. Immediate occupancy where the system remains linearly elastic. No dam-
age has occurred and repair is not required. 50% of exceedence in 50

years.

2. Rapid return to occupancy where only the shear links would yield. Mod-
erate damage has occurred and is limited to parts of the structure. Repair
is required in terms of removing and replacing any permanently deformed
shear links to restore the self-centering mechanism. In other words, the

building would be repairable at low costs. 10% of exceedence in 50 years.

3. Collapse prevention where the gravity beam components also become dam-
aged. Moderate and severe damage had occurred. Building is unsafe for
occupancy and would be repairable, although not economically. 2% of

exceedence in 50 years.
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Figure 8.3: Limit states of a LCF building.

The effectiveness of the rapid return to occupancy performance level depends
on the relative transitions from elastic to plastic response of the LC and of the
MF. Relative displacements, given by Equation (8.8), should be computed in
order to guarantee the potential for rapid return to occupancy performance

level.

Are VieKur

= <1 8.8
Avr  VurKico (8.8)

Ratios less than unity describe structural systems in which LC reaches plas-
ticity at lower displacements than MF, thereby helping the system to achieve
the rapid return to occupancy performance level. Should relative displacements
not be met, increase the stiffness of the shear links and linked columns first
before increasing the stiffness of the gravity beams.

At this point, several pushover analyses were already carried out and the
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output is a pushover curve (drift or displacement vs base shear). From the
pushover curve for the LCF system first yield point of the shear link is ob-
tained. This value is then compared to the base shear design computed using
the equivalent lateral force procedure. Ratio approximate to unity indicates

lower foundation forces. A practical value of 1.2 is still acceptable.

Vie

V;iesign

~ 1.2 (8.9)

Hence, LCF systems are designed to have a base shear closer to the design at
first link yield. This also ensures a reduction of the system overstrength factor,
g, since the first beam yield would be reduced as well. One of the advantages
of the LCF system is that the practitioners have control of this parameter.
Quantification of the actual overstrength can be employed to reduce the forces

used in the design, therefore, leading to more economical structures.

8.8 Design Example

The advantage of using a LCF system relies on the combination of traditional
structural elements, such as beams and columns, and the use of an existing
structural design practice. The construction of the LCF system is not difficult
and, despite of being novel, the system is still implementable. The design of a
typical LCF system can be performed by following the flowchart given in Figure

(8.4) and is illustrated through an example of a 4-story steel frame building with
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LCFs for its lateral force resisting system.
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Figure 8.4: Linked Column Frame Flowchart.
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System Geometry

The LCF sample building site is located in Seattle, Washington. The floor
plan of this 4-story building consists of 4-bays in the North-South direction and
4-bays in the West-East direction.

The building is square in plan with a total plan area of 14,400 ft? and the
plan consists of a 30 ft by 30 ft typical bays. The building plan and LCF
elevation are shown in Figures (8.5) and (8.6), respectively. The LCF studied

has a story height of 13 ft and spacing between linked-columns of H = 5 ft.

120

| 120" |

Figure 8.5: Plan view of LCF sample building.
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4 floors @ 13'
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4 bays @ 30' with H=5'

Figure 8.6: Elevation view of LCF sample building.

Loading Conditions

The loading used for the analysis of the LCF system is based on the details given

in FEMA 355-C (2000), which results in the following floor load distribution:

Floor dead load for weight calculations : 96psf
Floor dead load for mass calculations : 86psf
Roof dead load . 83psf
Reduced live load per floor and for roof : 20psf
Roof seismic mass : 70.90 kips-sec? /ft

Floor seismic mass : 65.53 kips-sec? /ft

Corresponding seismic hazard parameters are given in Table (8.2).
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Table 8.2: Seismic design parameters for the LCF sample building.

Parameter Value
R 8
Q 2
Ca 5.5
Occupancy Category 1.0
Importance Factor 1.0
Soil Profile Type B
Swms 13¢g
Swm1 0.443 g
Sps 0.867 g
Sp1 0.295 g
Building Height 39 ft
Cs 0.02
X 0.75
Approximate Period 0.39 sec
Cs 0.095 g
Building Area 14,400 ft2

Effective Seismic Weight 5,342 kips
Base Shear 260 kips

Maximum Drift Ratio 2.5%

Since most structures are multiple degrees-of-freedom systems with several
modes of vibration, the distribution of the seismic lateral force is a combination

of the contributions from all significant modes of vibration of the structure.
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The force distribution to each level is a function of the seismic weight, at that
level, the height of the structure and the predominant mode of vibration. The
corresponding lateral force distribution is given in Table (8.3). The previous
calculations, based on the equivalent lateral force procedure, were necessary in

order to obtain a value for the base shear.

Table 8.3: Lateral Force Distribution Calculations for the LCF sample building.

Level — wy(kips) > w(kips) hx(kips) h(kips) wxhy %  Fx(kips)

Roof 1196 1196 52 13 62192 37 96
Floor 3 1382 2578 39 13 53898 31 82
Floor 2 1382 3960 26 13 35932 21 56
Floor 1 1382 5342 13 13 17966 11 26

> 5342 - - - 169,988 100 260

Proportion Structural Members

Proportioning linked columns and shear links is performed after the lateral force
distribution is obtained. Figure (8.7) shows a 4-story building layout with its
corresponding lateral forces. Note that at foundation level all supports are
considered to be pinned and the total base shear is 260 kips.

The next step is to isolate each LCF sub-system and divide the base shear
equally among all LCF sub-systems. Figure (8.8) shows the cantilever model for
a 4-story LCF building with a total total base shear of 130 kips. Note that at

foundation level, on the cantilever model, supports were changed from pin to fix
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support. The value of P acting on the first floor of the building is P = 13 kips.

k
96

Frrrrd Frrrr s b d

a8ty — &y —»
ax, 4 SN —
28 3: - 28 : = —»
B, o: 13, i P=13t,

B FIT777T77

Figure 8.8: Cantilever model for a 4-story LCF building.

For the sake of understanding, equations developed in Chapter (7) are used
to determine the preliminary sections for columns, links and beams, as follows.
First, determine the target displacement at the top of the building to be used
in Equation (8.11) in order to calculate the moment of inertia of a single linked
column.

25 2.5

A=22p =22 (624) = 15.64 8.10
100 et = 7g0 (624) m (8.10)
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24Ph3  446(13) (156)°
Ic = = =8,020in* 8.11
LCTTSEA T 8(29,000) (15.6) ™ (8.11)

The next step is to proportion the shear links in function of the moment of
inertia of a single linked column. Thus, the moment of inertia for a shear link

is given by:

_0.6I,cH  0.6(8,020) (60)

I
L h 156

= 1,8504n* (8.12)

For the gravity beam, use the following equation based on serviceability:

AW 4(0.03) (27.5)°
===

I = 500 4n* (8.13)

With these moments of inertia, previously obtained, choose a proper section
from the Design Dimension Tables in the AISC Manual AISC (2011).

Table (8.4) summarizes a set of possible seismically compact wide flanges,
denoted hereafter as first model, that could be used in order to proceed with
the computer analysis. Note that the moments of inertia are slightly greater
than the ones calculated. A total of three numerical models were analyzed in

order to optimize the LCF design.

Table 8.4: First model sizing for a 4-story LCF Building.

W Section I, (in?)
W14x500 8,210
Widx159 1,900
W16x40 018
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Strong Column and Weak Beam Design

The strong column and weak beam design requires that, at a node, the sum-
mation of the column’s plastic moment capacities exceed the summation of the
beam’s plastic moment capacities, based on simple moment equilibrium at the
node.

Consider, for example, the sizing members for the first model. Hence, the
acceptance criteria is given by Equation (8.14) and calculations are shown in

Figure (8.9).

7.115
>1.0=- =

= rc S R 14
S Mp, 1495 O (8.14)
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— Subject: Strong column / Weak beam check
§ Location:
= Type 1is good for shear links (Wide Flanges) and linked column
“ Beam Wi14x159
A Column @ node i|  W14X500
Column @ node k|  W14X500
w DL= 0.12 kips/in
-‘g LL= 0.025 kips/in
- Factored = 0.1565 kips/in | 1.2*DL+0.5LL
_ ASTM Designation A992 beam A992 column @ node i
'g Fy= 50 ksi Fy= 50 ksi
g Fu= 65 ksi Fu=| 65 |ksi
Ry = 1.1 Table I-6-1 (Seismic Provisions) Ry = 1.1 Table I-6-1
Zxb = 287 in*3 Plastic modulus of the beam
Ixb = 1900 in"4 Moment of inertia of the beam
= 60 in Beam length (center to center)
= 15 in ok Depth of the connecting beam
tfh = 1.19 in ok Thickness of beam flange
bfb= 15.6 in ok Width of beam flange
Cpr= 1.15 <1.2 ok
Cpr= 1.15 enter Cprvalue
twhb = 0.745 in Thickness of beam web
Mpr = 18152.75 kips-in  Probable maximum moment @ plastic hinge
£ L'= 40.4 in Assume plastic hinge occurs at column face
3
= 2Mpr/L'=  898.6509901 Kips
Vg = 3.1613 Kips
Vh=901.8122301 Kips Shear force @ node i
Vh'= -895.4836901 Kips Shear force @ node k
Mpr = 18152.75 kips-in  Plastic moment of the beam
Mv= 8837.760443 kips-in  Additional moment @ nodei
Mv'= 8775.7983063 kips-in  Additional moment @ node k
Mpb* = 26990.51044 kips-in  total moment @ node i
Mpb'* = 26928.54896 kips-in  total moment @ node k
EMpb*= 53915.05941 kips-in
Pu= 1371 kips factored axial load from analysis @ node i
Ag= 147 inf2 Column area @ node i
di= 19.6 in Depth of column @ node i
dj= 19.6 in Depth of column @ node k
> Zxc = 1050 in"3 Plastic modulus of column @ node i
B bfc= 17 in Width of column flange
é, twe = 2.19 in Thickness of column web
E tfe= 3.5 in Thickness of column flange
% Ixc= 8210 in"4 Moment of inertia of the column
o Pu/Ag= 9.326530612 ksi
Mpc* = 42707.14286 kips-in  total moment above node i
Mpc'™ = 42707.14286 kips-in  total moment below node i
EMpc*= 85414.28571 kips-in
Strong colum / weak beam check = | 1.6 ok

Figure 8.9: First model strong column and weak beam design calculations.
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Serviceability and Drift

In addition to being safe, a structure must be serviceable. The gravity beam
was already chosen considering serviceability requirements, which means that
deflections were limited to avoid vibration problems and also to avoid very
flexible beams.

A two-dimensional analysis of the structure was performed under the loading
conditions, previously described, and to account for accidental torsion, the mass
of each level was assumed to be displaced from the center of mass by a distance
equal to 5% of the building dimension perpendicular to the direction of force.

Rigid diaphragms were assigned at each level as well as rigid-end offsets
were defined at the ends of each member. Also, P-A effects were considered in
the lateral analysis. The lateral displacements of the design example building,
computed elastically under the distributed lateral forces of Table (8.3), are
shown in Table (8.5), where h is the story height of the building, d,. is the
elastic displacement, A, is the elastic drift, §, is the design drift, and A, is the

drift limit.
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Table 8.5: First model drift analysis for the LCF sample building.

h (Sze Aa:e 6w Aa %

Roof 156 2.11 047 259 39 50

Floor 3 156 1.64 0.54 297 39 31

Floor 2 156 1.10 0.56 3.08 3.9 27

Floor1 156 0.54 0.54 297 39 31

For the first model, shear links were placed only at story levels and all of them
were wide flanges. Should drift limits are not satisfied, increase the stiffness of
links and linked columns before increasing beams. Another option is to increase
the number of links, for example, place extra shear links at mid-height story
levels.

Table (8.5) indicates that the first model satisfied the drift limit, however, the
difference between A, and ¢,, at roof level, is about 50%. This difference shows
that the structure should be optimized in order to obtain a more economical
LCF structure. Thus, two additional models are presented regarding structural
optimization. The main difference between them is that one model has variable
wide flange shear links along the height of the LCF building, denoted hereafter
as second model, while the other one has variable built-up sections for shear
links, denoted hereafter as third model. Figure (8.10) shows the labeling that

were used in the analyses.
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Figure 8.10: LCF substructure labeling.

Note that labeling presented in Figure (8.10) represents only one LCF sub-
structure. The remaining of the building was still modeled and cross section
members for the moment frame, that connects the two LCF substructures, have
the same section properties. Table (8.6) presents the member sizing that were
used in all analyses while Table (8.7) presents the shear link section properties

used on the third model.
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Table 8.6: Member sizing for the LCF sample building.

Member 15 model  27% model  3"¢ model

GC W14x500 W14x605 W14x605
LC1 W14x500 W14x605 W14x605

LC2 W14x500 W14x605 W14x605

GB W16x40 W18x46 W18x46
LNK1 W14x159 W14x145 A
LNK2 W14x159 W14x145 A
LNK3 W14x159 W14x145 A
LNK4 W14x159 W10x45 B

LNK5 W14x159 W10x45 B

Table 8.7: Third model link dimensions (in)

4-story LCF sample building

Links hw tw bf tf

A 10 05 174 1.5

B 6 05 174 1.0

The same elastic analysis that was performed for the first model was also
conducted for both second and third models. Table (8.8) indicates that the
second model satisfied the drift limit, but now the difference between A, and
0., at roof level, was reduced to about 7%. First, second and third floor levels
differences were 6%, 14% and 24%, respectively. The more the difference is
close to zero, more the structure tends to be optimal. Unfortunately, wide

flange sections are not versatile enough to minimize those differences.
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Table 8.8: Second model drift analysis for the LCF sample building.

h

616

AIE

0z

Aq

%

Roof

Floor 3

Floor 2

Floor 1

156

156

156

156

2.52

1.86

1.19

0.57

0.66

0.67

0.62

0.57

3.63

3.69

3.41

3.14

3.9

3.9

3.9

3.9

14

24

Built-up sections become practical to control the strength of the shear link
while controlling the drift of the system. They also offer flexibility in regards
to thickness of the flange and web, and also the depth of the section to desired
values. The difference between A, and 9, was analyzed for the third model
which consisted of built-up sections along the height of the LCF building. As
expected, the third model not only satisfied the drift limit, but also reduced the

difference between the inter-story drifts to less than 5% in all floors, as indicated

in Table (8.9).

Table 8.9: Third model drift analysis for the LCF sample building.

h 5me Ame 57" Aa %o

Roof 156 2.76 0.67 3.71 39 5
Floor 3 156 2.09 0.70 3.85 39 1
Floor 2 156 1.39 0.71 390 39 0
Floor 1 156 0.68 0.68 3.74 3.9 4
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Pushover Analysis

Nonlinear static pushover analyses were conducted for LCF behavior evaluation
purposes. The response for three numerical models, ranging from a preliminary
LCF structure which used the same shear links along the height of the building
to an optimized model that incorporated built-up sections as shear links, is
evaluated.

The effect of modeling assumptions is highlighted using nonlinear pushover
curves for the different models. First yield link and first yield gravity beam,
obtained by subjecting the different models to a target displacement, are com-
pared do evaluate the influences of different types of LCF structures toward
to rapid return to occupancy. Figure (8.11) shows the normalized base shear
versus the normalized drift response for the different models.

This comparison forms the basis for the selection of a representative model to
be used in a more refined dynamic time-history analysis, which is not the scope
of this research. However, pushover analysis provide information in regards to
inelastic deformation of the structure which cannot be studied in detail from
a time- history analysis perspective. The nonlinear static pushover analysis
procedure has been shown to provide a reasonable estimate of the deformation
response for LCF structures. Differences on performance levels for the different

models are discussed in the next section.
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Figure 8.11: Pushover curves for the LCF sample building.

Performance Levels

The main goal of the LCF system is to achieve performance levels that could
result in post-event rapid return to occupancy. This is only possible due to
ductile steel shear links that limit the demand on the rest of the structure and
also to dissipate energy.

Under extreme lateral earthquake loads, the relative displacements of the
linked columns engage the links which are designed to yield in shear to dissi-
pate energy, control drift and limit the forces transferred to the surrounding
structural members.

The pushover curves for the LCF sample building shown in Figure (8.11)

indicate that there were similarities and differences in the response of the three
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different models. The elastic stiffness of all models is almost identical, indicating
that 10 performance level, where the system remains linearly elastic, is almost
the same. The range of the RR performance level is almost identical as well.
However, the first yield link for the third model had a base shear (V' = 294 kips)
closer to the design base shear (Vgesign = 260 kips) when compared to the first
and second models, V' = 460 kips and V' = 420 kips, respectively. Also, the first
yield of the gravity beam for the third model had a base shear of V' = 511 kips
whereas the base shear for the first and second models were, V' = 712 kips and
V' = 625 kips, respectively, indicating a foundation demand reduction from the
first to the third model. This shed light on the system overstrength factor, €2y,
that varied from 1.96 to 2.74, a difference about 40%, indicating a controlled
flexibility on this seismic parameter. Table (8.10) indicates the performance

parameters for the LCF sample building using different models.
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Table 8.10: Performance parameters for the LCF sample building.

Parameters 1%t model 27? model 37 model

Arc 3.66 in 3.71 in 2.83 in
Vie 460 kips 420 kips 294 kips
Yorc 0.59% 0.59% 0.45%
Ayr 14.88 in 15.27 in 14.81 in
Vur 712 kips 625 kips 511 kips
Yomr 2.38% 2.44% 2.37%
RR 1.79% 1.85% 1.92%
Qo 2.74 2.40 1.96
Vie/Vur 0.65 0.67 0.58
Kio/Kur 2.60 2.79 3.05
Arc/Anmr 0.25 0.24 0.19
Vi /Viesign 1.77 1.61 1.13
FR 1835 kips 1245 kips 930 kips

Lateral performance ratio parameters were also calculated and compared.
Base shear ratios, Vic/Vyr, and stiffness ratios, Kpc/Kyr, were almost the
same, leading to a relative displacement ratio, Apc/Apr, between 0.19 and
0.25 which indicates a potential system for rapid return to occupancy. Should
the deformation ratio greater than unity, increase the stiffness of links and
linked columns before increasing beams. Ratio between first yield link and
base shear design, Vic/Viesign, and foundation axial reactions on LC2 were also

determined.
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The first model presented a ratio of, Vic/Viesign = 1.77, and a founda-
tion reaction of F'R = 1835 kips, whereas the third model presented a ratio of,
Vic/Viesign = 1.13, and a foundation reaction of F'R = 930 kips, also indicating
a significant foundation demand reduction. LCF structures present the advan-
tage of controlling the demand on the foundation elements, just changing the
link layout. As expected, all three models presented a reasonable RR level of
performance and none of them exhibit column yielding. All in all, the third
model had a better performance and is more economical when compared to the

other two models.

216



Chapter 9

Seismic Performance Assessment

9.1 Introduction

This chapter presents the results of a structural seismic performance assessment
using ASCE/SEI 41 (2013) procedures utilizing LCF as the lateral force resist-
ing system. The main goal of this assessment was to find out if LCF build-
ings provide consistent levels of performance according to this relatively new
standard (not a code) for seismic evaluation and retrofit of existing buildings.
ASCE/SEI 41 (2013) replaces the seismic evaluation ASCE/SEI 31 (2003) and
the seismic rehabilitation ASCE/SEI 41 (2006) design standards. In order to
seismic evaluate a building, target building performance levels shall be selected,
such as Imediate Occupancy (10) Building Performance Level, which is a seis-
mic hazard with a 50% probability of exceedance in 50 years, Life Safety (LS)
Building Performance Level, which is a seismic hazard with a 20% probability
of exceedance in 50 years and Collapse Prevention (CP) Building Performance

Level, which is a seismic hazard with a 5% probability of exceedance in 50
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years. The seismic performance assessment was conducted using a linear anal-
ysis procedure and assessment calculations for beams, shear links and columns

are presented.

9.2 Analysis Procedure Selection

There are four types of analysis stated in ASCE/SEI 41 (2013) that could
potentially be used for both the evaluation of an existing building and the
design of retrofit measures, as follows: 1) Linear Static Procedure (LSP), 2)
Linear Dynamic Procedure (LDP), 3) Nonlinear Static Procedure (NSP) and 4)
Nonlinear Dynamic Procedure (NDP). Each of those methods have their own
requirements and limitations.

In general, static procedures are appropriate where the first mode of vibra-
tion dominates the response of the structure, whereas dynamic procedures are
required for buildings that have significant contributions of higher modes and
for buildings with torsional irregularities. Linear analysis obeys Hooke’s law
and has a linear stress-strain relationship, whereas nonlinear analysis has an
inelastic response.

LCF systems tend to be short-to-mid height buildings and for the cases
presented, in this research, the buildings do not have torsional irregularities.
For these reasons, the LSP seems to be appropriate. However, the magnitude
and distribution of inelastic demands for existing components shall be defined

by demand-capacity ratios (DCRs) and calculated according to Equation (9.1).
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pep - Qo (9.1)

Qce

where QQup is the force caused by gravity loads and earthquake forces and
Qo is the expected strength of the component. If a component DCR is greater
than 3.0, then linear procedures are not applicable and shall not be used. Should
DCR values remain below the threshold, an acceptance criteria must be establish
in terms of the various response quantities obtained from the analysis.

If the LSP is selected, forces and deformations in components shall be cal-
culated for a pseudo seismic force calculated in accordance with ASCE/SEI 41
(2013). This pseudo seismic force is similar to the base shear used in the equiva-
lent lateral force procedure defined in ASCE/SEI 7 (2010). For a LCF building,

the LSP can be performed by following the flowchart given in Figure (9.1).

9.3 Linear Static Procedure

An outline of the step-by-step Linear Static Procedure applied to a LCF building
is presented. Even though the procedure is so called linear static, nonlinear
and modal analyses should be performed prior using this method, in order to
find parameters to calculate pseudo seismic forces distributed throughout the
building. The idea behind the pseudo seismic force, V', is when applied to

the structure, it results in displacement amplitudes approximating maximum
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Figure 9.1: Flowchart for the LCF linear static procedure.

displacements expected during the selected target performance levels. The step-

by-step is presented as follows:

1. Define the LCF building location. Once the building site is selected, sev-
eral parameters should be established. The United States Geological Sur-
vey (USGS) - US Seismic Design Maps Application - provides the values
of the response acceleration parameters, Sg and S;. For the given site

class and the values of Sg and S, the site coefficient parameters, F, and
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F,, are determined. Site class factor, a, varies from 130 (site class A or B)
to 60 (site class D, E or F). Also, §, which is the effective viscous damping

ratio is chosen.

. Typically, a 2-5% damping ratio is implicit in the code-specified earth-
quake forces and design spectrum. The damping factor, By, is calculated

according to Equation (9.2).

4

B p—
' 5.6 — In (1008)

(9.2)

. Determine the design spectral response acceleration parameters, Sxg and

Sx1, according to the following set of Equations (9.3):

Sxs = F, Ss

SXlevsl

. Once Sxg and Sx; are established, a general horizontal response spectrum

shall be develop as shown in Figure (9.2).

Determine values for Ty and Ts using Equations (9.4) and (9.5), respec-

tively.
Ty = 02T (9.4)
Sx1
Tg = — 9.5
5~ Sxs (9:5)



T, T, 1.0 T,

Figure 9.2: General Horizontal Response Spectrum.

5. Determine the effective seismic weight of the building, IV, and the effective
mass factor, C,,, while performing a LCF modal analysis in order to obtain

the period of the structure, T'.

6. Perform a LCF nonlinear static analysis and determine the yield strength

of the building, V.

7. Determine the spectral response acceleration, .S,, as follows:

For the short period region, 0 < T' < Tj, known as acceleration sensitive

region, S, is given by

S, = KB% _ 2) TES + 0.4} (9.6)

For the intermediate period region between points Ty and T, known as
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velocity sensitive region, S, is calculated according to

~ Sxs

Su=g (9.7)

Finally, the region period region between points Ts and T7, is called dis-
placement sensitive region because structural response is related most di-
rectly to ground displacement. LCF tends to be drift controlled structures.
Therefore, for this region, S, becomes

_ Sn

Sa
BT

(9.8)

. By now a pushover analysis was already performed. Determine the ratio of
elastic strength demand to yield strength coefficient, fisyengen, in function
of yield strength of the building and mass parameters. jigrengin shall be

calculated in accordance with:

Sa
st th — ——C (99)
streng (‘/y/ ) m
. Determine the modification factors C; and C5, where C is the modifi-
cation factor to relate expected maximum inelastic displacements to dis-
placements calculated for linear elastic response. For fundamental peri-

ods less than 0.2 sec, C; need not be taken as greater than the value at

T = 0.2 sec. For fundamental periods greater that 1.0 sec, C; = 1.0. C} is
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the modification factor to represent the effect of pinched hysteresis shape,
cyclic stiffness degradation, and strength deterioration on maximum dis-
placement response. For fundamental periods greater than 0.7 sec, Cy =

1.0. €7 and C5 are given by the following Equations, respectively.

Mstrength — 1

Cr=1+ s (9.10)

1 [u W—1)2
-1 - strengt 11
=1+ 50 ( T ) (9:11)

10. Finally, determine the pseudo lateral force according to Equation (9.12).

V=CCoCp S, W (9.12)

Once the pseudo lateral force is obtained, the lateral forces are distributed
throughout the building in a similar way as the equivalent lateral force proce-
dure. The pseudo seismic force analysis for the LSP of a typical LCF system can
be performed by following the flowchart given in Figure (9.3) and its application

is illustrated in Section (9.7).
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Figure 9.3: LCF pseudo seismic force flowchart for linear static procedure.

9.4 Load Combination

For the linear static procedure, the following actions caused by gravity loads
shall be considered for combination with actions caused by seismic forces: dead
and live loads. The effects of gravity loads and seismic forces are additive. The

component gravity load combination used in the analysis for the LCF buildings
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is given by Equation (9.13).

Qe =11(Qp +Qr) (9.13)

where (¢ is the action caused by gravity loads, ()p is the action caused by dead
loads and @y, is the action caused by live loads, equal to 25% of the unreduced
live load. Therefore, the coefficients for the load combination are as follows:
®Qp =11 QL =0.28 and Qg = 1.0. If the actions of gravity loads and seismic

forces are counteracting, ¢, shall be obtained according to Equation (9.14).

Qe =0.9Qp (9.14)

9.5 Strength of LCF components

The capacity of LCF components to be used in Equation (9.1) is defined by
its strength according to the limit states for each structural member. This
section summarizes the calculations that were used in the LCF design process

for beams, shear links and columns.

9.5.1 Beams

The expected flexural strength (Qcg) of flexural deformation-controlled mem-
bers shall be the lowest value obtained for the limit states of local flange buck-

ling, local web buckling, moment yielding, lateral-torsional buckling, or shear
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yielding. The procedure for computation of expected flexural strength for com-

pact wide-flange sections bent about the = axis is summarized as follows.

1. Check local flange buckling.

b |E
<038,/ = 9.15
2 F, (9.15)

where b is the flange width, ¢ is the thickness of the flange, £ is the

modulus of elasticity, and F} is the yield stress.

2. Check local web buckling.

h
<245 (9.16)

F,
where h is the distance from inside of compression flange to inside of

tension flange and t,, is t,, is the web thickness.

3. Determine the unbraced beam length (L), given from the geometry of
the LCF building, the largest unbraced beam length for which lateral-
torsional buckling will not occur (L,) and the unbraced beam length at
which elastic lateral-torsional buckling will occur (L,).

E
Y
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where 7, is radius of gyration about the y axis.

E Jc 0.7F,S.ho \ 2
L, =1.95r,,—— 1 1+6.76 —X=— 9.18
"0.7F, \ Soo +\/ * ( BJc ) (9.18)

where 74, is the radius of gyration about the weak axis of a flexural member
for a portion of the cross section consisting of the compression flange and
one third of the compressed part of the web, J is the polar moment of
inertia, c is a constant for critical lateral torsional buckling stress, .S, is the
elastic section modulus for x axis, and hg is the distance between W-shape

flange centroids.

. For L, < L,, beam is fully supported and can fail becoming fully plastic.
Therefore,

M, = M, (9.19)
where M,, is the nominal bending strength and M, is the plastic moment.

. For L, < Ly < L,, beam can fail through inelastic lateral-torsional buck-

ling. For this case M, is given by

Ly— L
M, = Cy | M, — (M, — 0.7F,S,) (ﬁ)} < M, (9.20)
r p

where (), is the moment gradient factor for lateral-torsional buckling

strength.
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6. For L, > L,, beam can fail through elastic lateral-torsional buckling.

Thus,

M, = F.,5, < M, (9.21)

where F,, is the critical bending stress and is given by

Cym?E Je (Lb)2
J— 1+0.078 — 9.22
<& 2\/ thO Tts ( )
7. Check shear
V, =0.6F,A,C, (9.23)

where V,, is the nominal shear strength, A, is the nominal area of the web

and C), is the ratio of critical web stress to shear yield stress.

9.5.2 Replaceable Links

Replaceable links shall be considered as deformation-controlled actions. The
procedure for computation of the expected shear strength is summarized as

follows.

1. Determine the plastic moment (M),)

M, = F,Z, (9.24)

where Z, is the plastic section modulus for x axis.
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2. Determine the shear force for shear yielding in the web (V)

V, = 0.6F,A, (9.25)

3. In order to be a shear link, check if the length of the link (e) is limited as

follows:

(9.26)

4. Check if the link strength is governed by the shear strength of the unstiff-

ened web given by

418

h
— < 9.27
tw - /Fy ( )
5. Determine Vi in accordance with Equation (9.28).
QCE = VCE = O'6FyeAw (928)

where Ve is the expected shear strength and F). is the expected yield

strength of the material.

9.5.3 Columns

The lower-bound strength (Q¢y) of steel columns under axial compression shall

be the lowest value obtained for the limit states of local flange buckling, local
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web buckling or column buckling. The procedure for computation of the lower-
bound strength for nonslender element compression members is summarized as

follows.

1. Check local flange buckling.

b |E
L <056, = 9.29
% = F (9.29)

2. Check local web buckling.

h FE
— <149,/ = 9.30
AERELN (9.30)
3. Determine the effective slenderness ratio.
KL
— <200 (9.31)
Ty

where K is the effective length factor for compression members and L is

the member length.

4. Calculate Euler buckling stress (F.)

F, = (9.32)

5. In order to calculate the critical compressive stress (F..) according to
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Equation (9.47), check the following ratio

Otherwise, (F,.) is given according to Equation (9.35)

F.. =0.877F,

6. Determine the nominal compressive strength (F,)

P, = F., A,

where A, is the gross area of the column.

(9.33)

(9.34)

(9.35)

(9.36)

For the structural members that are subjected to axial tensile forces, the

expected axial strength of a column in tension, Trg, shall be computed in

accordance with Equation (9.37):

Ty = A,F,
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9.6 Acceptance Criteria

The performance of a LCF building is assessed based on demand-capacity ratio
values. When the ratio is less than or equal to 1.0, then the structural com-
ponent is expected to behave elastically at a target performance level. On the
other hand, an inelastic response to the earthquake ground shaking is achieved
when the ratio is greater than 1.0.

Before selecting the corresponding acceptance criteria, LCF structural mem-
bers shall be classified as primary or secondary components, where the primary
component is the one which is required to resist seismic forces and accommo-
date deformations for the structure to achieve a selected performance level.
Also, LCF structural members shall be classified as deformation or force con-
trolled depending on its actions (internal forces, deformations, drift, stiffness).
For the LSP, flexure on beams and shear on links are considered deformation-
controlled actions, whereas axial load on columns could be either deformation
or force-controlled action. For a LCF building, the acceptance criteria can be
performed by following the flowchart given in Figure (9.4).

The acceptance criteria for flexure beam and shear on a short link are given

by Equations (9.38) and (9.39), respectively.

Myp

DCR= ———
km Mcg

(9.38)

where My p is the flexure demand acting on the beam, Mg is the flexure beam
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Figure 9.4: LCF acceptance criteria flowchart.

strength, x is a knowledge factor used to reduce component strength based
on the level of knowledge obtained for individual components during data col-
lection, and m is the component demand modification factor to account for
expected ductility associated with this action at the selected structural perfor-
mance level.

Vup

DCR=——F— 9.39
kmVeg ( )

Vup is the shear demand acting on the short link and Vg is the strength of the

short link.
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The acceptance criteria for steel columns under combined axial compression
and bending stresses could be considered either deformation or force-controlled
actions, depending on the ratio of %, where Pyr is the compression demand
acting on the column and Py is the column strength.

For 0.2 < % < 0.5, the acceptance criteria shall be evaluated by Equation

(9.40).

Pep *y

Pyr 8 M,
km Mcg

] <1.0 (9.40)

where M, is the moment demand in the member for the x-axis.

For % < 0.2, the acceptance criteria shall be computed by Equation (9.41).

PUF M:c
QPCL /-cmMCE

< 1.0 (9.41)

And, finally, for % > (.5, the acceptance criteria shall be considered force

controlled for both axial loads and flexure and is determined by Equation (9.42).

< 1.0 (9.42)

Steel columns under combined axial tension and bending stresses shall be

considered deformation controlled and evaluated by Equation (9.43).

T M,

+
kmyTcp  kmy Mcog

< 1.0 (9.43)
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where T is the tensile load demand on column, m; is the value of m for the
column in tension and m, is the value of m for the column bending about
the x-axis. Equations (9.40) through (9.43) play an important role on the
assessment of the linked-columns, since the columns would perform either on

the compression or tension sides.

9.7 Assessment Example

This section presents an example detailing the linear static assessment calcu-
lations for the following primary structural members: gravity beams, linked
columns and shear links. The LCF system analyzed was the 2-story building
(LCF-5L), experimentally tested, with its specifications given in Chapter (4).
After several analyses and design iterations, prior to the LCF experimental test,
the final member sizes for the LCF 2-story building are shown in Figure (9.5).
GB-SA, LC-SA and LNK-SA are selected for hand calculations, whereas the rest
of the building labeled as shown in Figure (9.6) would be evaluated afterwards.
A LSP was performed on the LCF 2-story building and the corresponding seis-

mic hazard parameters are given in Table (9.1).
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GB-SA = W16x57

_|LC-SA = W14x132

LNK-SA = W10x45 (4

P77

Figure 9.5: Seismic assessment for structural members on the LCF 2-story building.
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Figure 9.6: LCF 2-story building labeling for seismic assessment.
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Table 9.1: Seismic design parameters for the LSP on the LCF 2-story building.

Parameter Value
Ss 0.498 ¢
S1 1.287g
F. 1.0
Fy 1.5

a 60

Jé] 2.0%

B, 0.82
Sxs 0.75 g
Sx1 1.287 g
Ty 0.12sec
Tg 0.58 sec

T 0.80 sec
W 2,857 kips
Cm 1.0

Vy 210 kips
Sa 1.14g

Hstrength 7.8

Cy 1.18
Co 1.0

\% 1922 kips
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9.7.1 Beams
9.7.1.1 Flexure Demand

Flexure actions in the gravity beam are considered deformation controlled and

shall be calculated according to Equation (9.44)

Qup = Q¢+ Qp (9.44)

where Qup is the deformation controlled action caused by gravity loads and
earthquake forces, ()¢ is the action caused by gravity loads and Qg is the
action caused by the response to the selected seismic hazard level. Thus, the

maximum moment reported on GB-SA was:
Myp = 2,959 kips.in

9.7.1.2 Flexure Strength

For the determination of the flexure strength of component GB-SA, the proce-

dure described in Section (9.5.1) was used

1. Check local flange buckling.
b FE 29000
L <038/ = =4.98<0.38/—— =915 = v
2, F, 50
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2. Check local web buckling.

h E 29000
<245, = =33<245/T—— =59 = v
tw F, 50

3. Determine Ly, L, and L,.

L, = 288 in

| B 29000
)

E Jc 0.7F,S,ho\ >
L, =195r,,——1/——4|1 1+6.76 —2L=—
0.7, \ Sog +\/ - ( BJc )

L, =220
4. Since Ly > L,, GB-SA could fail through elastic lateral-torsional buckling.

Thus,

M, = Z,F, = (105) (50) = 5,250 kips.in
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Tts

Cym2E Je <Lb>2
F, =2 /1+0.078 il
(& 2\/ SzhO T'ts

(1.14) 2 (29000) (2.22) (1.0) [ 2882
For = (2587 \/1 008 0 ) (15.7) (1.92)

F.. =28kst

M, = F..5, = (28) (92.2) = 2,582 kips.in < M, = Mcp = v

5. Determine shear

V, = 0.6F,A,C, = 0.6 (50) (6.44) (1.0) = 193 kips

9.7.1.3 Acceptance Criteria Check

The m factor for GB-SA defined as primary component is taken from ASCE /SEI
41 (2013) as per the acceptance criteria for linear procedures - structural steel
components. In order to choose the proper m factor, the following conditions

must be satisfied:

b 2 2
;o0 :4.9855—:7.35:>\/

2% = JF, V/50
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hooo41 41
< 8 g3 o112 v

N/

Therefore, the m factor for the CP performance level is m = 8. Since the
2-story LCF building has testing records that are available to substantiate the
design drawings, the knowledge factor, k, is considered to be 1.0.

The acceptance criteria check for GB-SA is given below, which satisfies the

CP acceptance criteria.

Myp 2,959
DCR = = =0.14<1.0
wm Mos  (1)(8) (2,582) <L0=v

Table (9.2) indicates the DCR values for gravity beams shown in Figure
(9.6).

Table 9.2: DCR values for gravity beams on the LCF 2-story building.

Beams Myp DCR
GB 2 2621 0.13
GB 1 2959 0.14

9.7.2 Replaceable Links
9.7.2.1 Shear Demand

Shear actions in short links are considered deformation controlled and shall be

calculated according to Equation (9.45)

Vip =Ve+ Ve (9.45)
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where Vyp is the deformation controlled action caused by gravity loads and
earthquake forces, Vi is the action caused by gravity loads and Vg is the action
caused by the response to the selected seismic hazard level. Thus, shear reported
on LNK-SA was:

VUD =544 k’zps

9.7.2.2 Shear Strength

The flexural and shear strength of LNK-SA is determined as follows:

Moy = M, = F,Z, = (50) (54.9) = 2, 745 kips.in

Vep =V, = 0.6F,A, = 0.6 (50) (3.10) = 93 kips

1.6M 1.6(2,74
e < 0 p:42in<M

- (93

=47in = V

9.7.2.3 Acceptance Criteria Check

The m factor for LNK-SA defined as primary component is taken from ASCE /SEI
41 (2013) as per the acceptance criteria for linear procedures - structural steel
components. In order to choose the proper m factor, the following condition

must be satisfied:

Therefore, the m factor for the CP performance level is m = 13.

The acceptance criteria check for LNK-SA is given below, which satisfies the
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CP acceptance criteria.

Vb 544
DCR = = =045 < 1.0 v
kmVer (1) (13) (93) s

Table (9.3) indicates the DCR values for shear links shown in Figure (9.6).

Table 9.3: DCR values for shear links on the LCF 2-story building.

Links VUD DCR
LNK5 226 0.19
LNK 4 298 0.25
LNK 3 390 0.33
LNK 2 458 0.38
LNK1 544 0.45

9.7.3 Columns
9.7.3.1 Axial Demand

The axial force in column LC-SA, Pyr, is considered to be force-controlled and

shall be calculated according to Equation (9.46)

Py
CCoJ

Pyr =P+ (946)

where J is the force-delivery reduction factor. The value of 2.0 was selected
because the building is considered to be in a zone with a high level of seismicity.

Thus, the axial force in column is:

1351
Pyp =304 —————— = 602 kips
(1.18) (1) (2)
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9.7.3.2 Axial Strength

For the determination of the axial strength of component LC-SA, the procedure

described in Section (9.5.3) was used

1. Check local flange buckling.

b E 29000
L <056y = =715 <056/ "= = 1349 = v
2 F, 50

2. Check local web buckling.

h E 29000
— <149y = =177 <149/ T—— =35.88 = v
tw F, 50

3. Determine the effective slenderness ratio.
— <200 = —4— =117 <200 = V

4. Calculate Euler buckling stress (F.)

m™E 7 (29000)
(ﬂ)r (11.7)?

F, = — 2,088 ksi

5. Calculate the critical compressive stress (Fp,)

Fy 5
F, = <0.658F7> F, = (0.6582’#)%) (50) = 49.5 ksi
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6. Determine the nominal compressive strength (F,)

Poy = P, = F,, A, = 49.5(38.8) = 1921 kips

7. Check the ratio between Pyr and Pop,

Pyr 602

— =——=0.31<0.50

Per 1921
For steel columns under combined axial compression and bending stresses,
where the axial column load is less than 50% of the lower-bound axial

column strength, the column shall be considered deformation controlled

for flexural behavior and force controlled for compressive behavior.

9.7.3.3 Flexure Demand

The flexure demand on LC-SA from the controlling load combination was re-
ported as follows:

Myp = 6,119 kips.in
9.7.3.4 Flexural Strength

For the determination of the flexure strength of component LC-SA, the proce-

dure described in Section (9.5.1) was used
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1. Check local flange buckling.

b E 29000
L <038 /= =7.15<0.38/—— =915 = v
2y F, 50

2. Check local web buckling.

h E 29000
<245, = =177 <245/ = =59 =
tw F, 50

3. Determine Ly, L, and L,.

Ly =44in

| B 29000
Y

L, =672in

4. Since Ly < L,, LC-SA could fail by reaching the plastic moment. Thus,

Mgy, = M, = Z,F, = (234) (50) = 11,700 kips.in
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9.7.3.5 Acceptance Criteria Check

For 0.2 < ;’j—f < 0.5, combined strength is considered to be deformation con-
trolled. In order to choose the proper m factor, the following conditions must

be satisfied:

b 52 52
< =715< —=— =735 = v
20~ /F, 50

ho 2 41

—< 60:17.7§—8:36.77:>\/
tw ~ /F, V50

Therefore, the m factor for the CP performance level is given by Equation

(9.47)

m =12 (1 - éi) (9.47)

m =12 {1 - g (0.31)} —=5.7

The acceptance criteria for LC-SA regarding combined strength shall be

evaluated as follows, which satisfies the CP acceptance criteria.

602 , 8 6,119
1,921 ' 9 | (1)(5.7) 11,700

1:0.39<1.0:> v

Tables (9.4) and (9.5) indicate the DCR values for columns shown in Figure

(9.6), subjected to compression and tension forces, respectively.
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Table 9.4: DCR values for columns subjected to compression forces on the LCF 2-
story building.

LC-2 PUF PCL PUF/PCL m MUF DCR
C5 104 1910 0.05 8 4156  0.07
8
8

C4 231 1910 0.12 4768  0.11
C3 408 1921 0.21 5444  0.27
C2 602 1921 0.31 5.7 6119  0.39
C1 791 1935 0.41 3.8 5312 0.51
GC2 25 1822 0.01 8 2353 0.03
GC1 54 1822 0.03 8§ 2113 0.04

Table 9.5: DCR values for columns subjected to tension forces on the LCF 2-story
building.

LC-]. T mt MUF DCR

T5 199.0 5 4158  0.07

T4 496.0 5 4921 0.14

T3 856.0 5 5540 0.18

T2 1314 5 6119 0.24

T1 1857 5 5309  0.28

9.8 Observations

Even though ASCE/SEI 41 (2013) is a performance-based engineering stan-
dard, some of the factors used toward seismic assessment are irrational factors,
and caution must be exercised. To put things in perspective, modern codes
have a response modification factor, R, which reduces the demands, whereas
ASCE/SEI 41 (2013) have a component modification factor, m, which increases

the demands. R is related to the system while m is related to component level.
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At the end of the seismic assessment, a building will be categorized into pass or
fail in regards to the component level response and this might not be the proper
way to seismically assess a building.

A LCF building was evaluated by current performance-based engineering
guidelines, and although the acceptance criteria for beams and columns were
within the acceptable margin and corresponded to what was observed during
the LCF experiments, the results for the replaceable shear links indicated the
contrary when compared to the LCF experimental results in terms of failure,

suggesting that further investigating is needed.
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Chapter 10

Design Recommendations

This chapter provides design recommendations for LCF buildings. These rec-
ommendations are based on the analyses conducted for this research combined
with the author’s practical experience. First, seismic performance factors found
for the LCF system is compared to conventional systems, followed by a proposed
LCF section for the current seismic provisions and, finally, structural detailing

for horizontal diaphragm, replaceable link and foundation, are presented.

10.1 Seismic Performance Factors

According to FEMA P-695 (2009) seismic performance factors are used in cur-
rent building codes and standards to estimate strength and deformation de-
mands on seismic-force-resisting systems that are designed using linear methods
of analysis, but are responding in the nonlinear range. Malakoutian (2012) nu-
merically quantified two seismic performance factors for LCF buildings using a
recommended methodology (FEMA P-695, 2009) for reliably quantifying build-

ing system performance and response parameters for use in seismic design. The
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seismic performance factors numerically quantified were: the response modifi-
cation factor, R = 8.0, and the deflection amplification factor, Cy = 5.5. Those
values are comparable to SMRFs coefficients.

One of the main objectives of this dissertation was to experimentally de-
termine the overstrength coefficient, €}y, which is also a seismic performance
factor. Chapter (6) has shown that, for the LCF-5L specimen tested, Qg was
equal to 2.0, which is lower than those for SMRFs and EBFs, which are €20=3.0
and €2y=2.5, respectively. The overstrength coefficient might be considered to
provide a reasonable estimate of the reserve strength attributable to a rapid
return to occupancy level of performance. Table (10.1) indicates the summary

of seismic performance factors recommended for LCF buildings.

Table 10.1: Seismic performance factors for LCF buildings.

System R Cj Q
LCF 80 5.5 2.0

10.2 Proposed LCF Section for the Seismic Provisions

1. Scope
Linked Column Frames (LCF) of structural steel shall be designed in
conformance with this section.

2. Basis of Design

LCF designed in accordance with these provisions are expected to provide
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significant inelastic deformation capacity through flexural yielding of the
beams and shear yielding of links. LCF shall be limited to low and mid-
rise buildings. Linked columns shall be designed to remain elastic under
the forces that can be generated by the fully yielded and strain-hardened

replaceable link.

3. Analysis

The required strength of columns, beams, replaceable links, and connec-
tions in LCF shall be based on the load combinations in the applicable
building code that include the amplified seismic load. In determining
the amplified seismic load, the effect of horizontal forces including over-
strength, F,,;, shall be taken as the forces developed in the member as-
suming the forces at the ends of the replaceable links correspond to the
adjusted replaceable link shear strength. The adjusted replaceable link
shear strength shall be taken as R, times the replaceable link nominal
shear strength, V},, given in Section F.5b(2a) multiplied by 1.8 for I-shaped

replaceable links.
4. System Requirements

(a) Displacement Ratio

The following relationship shall be satisfied while designing the LCF

system:
Ayre VieKur

Aymr -~ VurKre
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where A,rc is the first yield displacement at the replaceable link,
Aynprp is the first yield displacement at the gravity beam on the
moment frame, V; o and Vj,r are the idealized lateral strengths, and
K¢ and Kjyp are the lateral stiffness values of Linked Column (LC)

and Moment Frame (MF) subcomponents, respectively.

User Note: Ratios less than unity describe structural systems
in which LC reaches plasticity at lower displacements than MF,
thereby providing the potential for rapid return to occupancy
performance level. The larger the difference between the yield
displacements, the larger the drift range in which rapid return to

occupancy can occur.

(b) Link Rotation Angle

The replaceable link rotation angle shall not exceed 0.08 rad for links
of length 1.6M,/V), or less, where M, is the nominal plastic flexural
strength and V), is the nominal shear strength of an active replaceable

link.

5. Members

(a) Basic Requirements
Beam and column members shall satisfy the requirements of Section

D1.1 for highly ductile members, unless otherwise qualified by tests.
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Structural steel beams in LCF are permitted to be composite with a

reinforced concrete slab to resist gravity loads.

Expected Vertical Axial Strength of Linked Column

The expected vertical axial strength of the linked column, P,, shall

be:

P, =QnV, (E7-X)

where (2 is the overstrength factor and is taken equal 2.0, n is number

of replaceable links and V}, is the plastic shear yield strength.

Replaceable Links

Replaceable links designed as short links positioned between the
linked columns shall be provided. The replaceable link shall be con-
sidered to extend from column face to column face for link-to-column
connections. Replaceable links shall be I-shaped cross sections and
shall satisfy the requirements of Section D1.1 for highly ductile mem-
bers. Use of parallel web stiffeners are permitted for the replaceable

link components.

User Note: The use of parallel web stiffeners is an effort to
provide elastic connections that shift plastic strains away from
critical welds, thereby avoiding some of the failures observed
in past tests on similarly detailed link-to-column eccentrically
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braced frames.
(d) Protected Zones
The region at each end of the gravity beam (moment side) subjected
to inelastic straining shall be designated as a protected zone, and
shall satisfy the requirements of Section D1.3. The extent of the pro-
tected zone shall be as designated in ANSI/AISC 358, or as otherwise
determined in a connection prequalification in accordance with Sec-
tion K1, or as determined in a program of qualification testing in

accordance with Section K2.

User Note: The plastic hinging zones ate the ends of LCF
beams (moment side) should be treated as protected zones. The
plastic hinging zones should be established as part of a prequali-
fication or qualification program for the connection, per Section
E3.6¢c. In general, for unreinforced connections, the protected
zone will extend from the face of the column to one half of the

beam depth beyond the plastic hinge point.

Replaceable links in LCFs are a protected zone as well, and shall

satisfy the requirements of Section D1.3.

6. Connections

(a) Demand Critical Welds
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The following welds are demand critical welds, and shall satisfy the

requirements of Section A3.4b and 12.3:

(1) Groove welds at column splices.

(2) Complete-joint-penetration groove welds of gravity beam flanges
to gravity column, unless otherwise designated by ANSI/AISC
358, or otherwise determined in a connection prequalification in
accordance with Section K1, or as determined in a program of

qualification testing in accordance with Section K2.

(3) Partial-joint-penetration groove welds of replaceable links con-

necting flanges to end-plate connections.

User Note: Weld access hole or rat hole in not permitted

on flange welds.

(4) Partial-joint-penetration groove welds of replaceable links con-

necting web to end-plate connections.

(b) Beam-to-Column Connections (Moment Side)

Beam-to-column connections (moment side) used in the seismic force
resisting system (SFRS) shall be capable of accommodating a story
drift angle of at least 0.025 rad. Beam-to-column connections (mo-
ment side) and link-to-column connections shall be fully restrained

moment connections and shall use extended end-plate connections.

(c) Beam-to-Column Connections (Shear Side)
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Beam-to-column connections (shear side) used in the SFRS shall be
capable of accommodating a story drift angle of at least 0.025 rad.
Beam-to-column connections (shear side) shall be shear connections.
Link-to-Column Connections

Link-to-column connections shall be fully restrained (FR) moment
connections and shall satisfy the following requirements:

(1) The connection shall be capable of sustaining a link rotation

angle of 0.08 rad.

(2) The shear resistance of the connection, measured at the required
link rotation angle, shall be at least equal to the expected shear

strength of the link, R,V,, as defined in Section F3.5b(2).

Link-to-column connections shall be extended end-plate moment con-
nections with parallel web stiffeners.

Panel Zone

Panel zone criteria shall comply with the requirements of Section
E3.6e.

Continuity Plates

Continuity plates shall be provided in accordance with the provisions
of Section E3.6f.

Column splices

Column splices shall be provided in accordance with the provisions
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of Sections D2.5 and E3.6g.

10.3 Horizontal Diaphragm Load Transfer

Roof and floor framing systems have the primary function of supporting the
gravity loads and to transfer these loads to the lateral system. In this regard,
roof and floor framing systems, used primarily to resist gravity loads, are also
designed as horizontal diaphragms. For analysis purposes diaphragms are clas-
sified as rigid, flexible and semi-rigid based upon the relative rigidity between
the horizontal diaphragm and the lateral resisting element.

In general, diaphragms made of metal deck with concrete fill is considered to
be rigid. The common standard width for metal deck is usually 36 in. center to
center of the end flutes and the common practice is for the deck to be fastened
to the steel framing member using 5/8 in. diameter puddle welds in the flutes
or simply utilize steel headed-stud anchors.

For a LCF building, the load path goes from the gravity beam to the linked
column, which in turn goes to the foundation element. The connection between
the gravity beam and the linked column was considered to be a shear connection
subjected to combined shear and axial load. In order to transmit these loads
to the linked column, it is required to design drag struts or collectors as rec-
ommended in Figure (10.1). The idea is to decouple shear and axial forces, the

shear force is transmitted to the steel stem through the double angles, whereas
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the axial force is transmitted via threaded rods on each side of the GB connect-
ing the gravity beam itself to the steel stem, which in turn is connected to the

linked column.

Linked
Column

Kol
O Tl

Gravity Beam ] h  Stem Shear
—O Link
Kol

I

Threaded rod

Figure 10.1: Horizontal diaphragm load transfer.

10.4 Replaceable Link

The behavior of shear dominated links on EBFs have been comprehensively
studied considering link and beam sections as a unit. However, very limited
research on the design of EBFs with replaceable links has been done to date.
This dissertation was the first time that several replaceable links were tested
all together within the LCF system. The intent of using this concept was to

isolate the formation of plastic shear hinge through practical connection details
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(Lewis, 2010) for the replaceable link components in an effort to provide elastic
connections that shift plastic strains away from critical welds, thereby avoiding
some of the failures observed in past tests on similarly detailed link-to-column
EBFs. Unlike EBFs, the replaceable shear links are bolted to the columns
to facilitate post-earthquake replacement. Even when residual drift results in
the structure, the permanent deformations are locked in the replaceable shear
links, which can be removed using a plasma cutter or an oxygen-acetylene torch.
Figure (10.2) shows the recommended detailing for the replaceable shear link,
where the parallel web stiffener (on both sides) has the same thickness of the
web and is fillet welded to the link web, partial-joint-penetration groove welding
is used to connect flanges to end-plate connections and also to connect web to
end-plate connections.

m ENDPLATE 7RO\ [

TT WEBTO \ ]
END PLATE NN

..\. N

=/ / 1

0/ / ]
/ /

—! L WEB STIFFENER y L

BOTH SIDES, TYP. /

¢ TYP. END
- STIFFENER

Figure 10.2: Replaceable shear link.
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10.5 Foundation

A critical consideration for the satisfactory LCF performance is the proper de-
sign of the foundation elements. LCF experimental tests had shown large axial
forces on foundation elements and design of such elements needed to be ad-
dressed. The selection of a foundation type involves not only structural consid-
erations, but also geotechnical factors. In general, a pile foundation is required
when the soil does not have bearing capacity for the structure to withstand or
when the imposed loads are very heavy.

This section discusses a suggested pile foundation detailing for LCF build-
ings. A LCF pile foundation consists of three components: pile cap, group of
piles and base plate/anchor rods. Figures (10.3) to (10.5) give a typical general
layout for this type of foundation. For practical considerations, a single pile
cap is suggested for both linked columns. The pile cap is a reinforced concrete
block on the head of a group of piles, to transmit the load from the LCF sys-
tem to the group of piles and then to the soil. Suggested plane dimensions and

corresponding main bar and secondary steel details are shown in Figure (10.3).
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Figure 10.3: Pile cap plan view.

The number of piles depends on the axial load from the linked columns and
the piles are arranged in a symmetric way with respect to the load. The linked
columns are connected to the pile cap which helps the pile group act as an
integral unit. Figure (10.4) shows the lateral view for the pile cap in which the
linked columns are welded to a base plate, which is in turn bolted to the pile cap
through anchor rods. The anchor rods are not shown for clarity. LCF system
is designed in a way that plastic hinges are avoided on the columns. Attaching
an extra plate connecting the linked columns may introduce a fixed condition
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on the foundation. This explains why the linked columns are welded directly to

the base plate in order to simulate a pinned foundation.
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Figure 10.4: Pile cap lateral view without anchor bolts.

The anchor bolts are necessary to connect the base plate to the pile cap in
order to avoid any uplift during the seismic event. The anchor bolts contain
minimum bolt aspect ratio and minimum bolt/joint stiffness ratio. These re-
quirements generally result in anchor bolts close to 1 in. diameter. In addition
to the anchor bolts, it is suggested to include a plate at the end of each anchor
bolt to increase the anchorage capacity of the anchor bolts. Also, the anchor bolt

should be at least 1 meter long. Figure (10.5) shows the base plate plan view
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for the pile cap indicating anchor bolts and corresponding plates (3”x5”x1”) at

the ends of the anchor bolts, while Figure (10.6) shows the pile cap lateral view

with anchor bolts.
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Figure 10.5: Base plate pan view for the pile cap.
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Whenever possible, the LCF system should be placed on soils with high bear-

ing capacity to avoid long piles until they reach stronger strata. Additionally,

it is recommended to position the base plate of the pile cap at least 1 m below

the ground level and, most likely, the first replaceable shear link will be buried.

Figure (10.7) shows the pile cap front view with anchor bolts. Even though the

presented detailing is neither a pinned connection nor a fixed connection, all

attempts should be made to avoid large moments at the foundation levels.
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Figure 10.7: Pile cap front view with anchor bolts.
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Chapter 11

Conclusions and Future Studies

11.1 Conclusions

This study illustrated that a viable non-braced frame alternative is possible
with the LCF as a lateral system with potential performance advantages over
the more conventional SMRFs. Numerous designs of LCF buildings were com-
pleted, numerical system level analyses conducted to evaluate their performance,
full-scale experimental tests were performed, and analytical equations were de-

veloped. For the cases considered, the following conclusions can be drawn:

e The LCF system takes an innovative step forward by separating the shear
link from the framing system, acting as a seismic dissipater. In addition,
the link can now be easily replaced and with less disruption after extreme

events.

e LCF systems have the potential for effective repair in the rapid return to

occupancy performance level.

e Drift criteria controlled the LCF designs based on equivalent static lateral
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loads for a moderate to high seismic areas.

e Inter-story drift of the LCF is most effectively controlled by the LCs in
the first story and MF beams in the higher stories. However, a design

strategy of controlling drifts with LC resulted in lighter structural frame

systems than SMRF.

e The LCF's in which the design utilized the LCs to control drift exhibited
rapid return to occupancy performance level over a drift range of at least
twice the first yield. This performance advantage can be lost if MF are

used to control drift during the design process.

e Should drift criteria not be met, increase the stiffness of the links and

linked columns first before increasing moment frame beams.

e Unlike SMRFs, LCF systems have the potential for effective repair in the
rapid return to occupancy performance level because no gravity members
would be damaged. Unlike EBF's, the shear links are bolted to the columns
to facilitate post-earthquake replacement. Even when residual drift results
in the structure, the permanent deformations are locked in the shear links,
which can be removed using a plasma cutter or an oxygen-acetylene torch.
And, the elasticity of the MF component of the LCF system would provide

restoring forces upon removal of the permanently deformed links.

e The LCF system’s ultimate base shear capacity can be significantly lower
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than SMRF designs, resulting in lower demands and improved economy
of the foundation. The lower base shears for the LCF's translates to lower
demand on the foundation, which results in potential cost savings for the

building.

The LCF strength could be refined by using links as built-up sections/wide
flanges such that flexural stiffness of the links is minimally affected while

decreasing the strength to reduce foundation forces.

Using built-up shear links allows for greater design choice to suit the

system response over wide-flange sections.

Parametric studies successfully identified the controlling frame members
of the LCF structural system thereby affording the designer precise control

over the system as a whole.

The structural layout was suitable for entire frame validation using hybrid

simulation.

The LCF moment frame remained elastic until rapid return to occupancy
performance level was achieved, while links yielded and deformed plasti-

cally.

Shear links shown to be effective in protecting gravity system and partic-

ipating well past 4% drift.
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e Limited demands on gravity beams could indicate less rigorous detail-
ing connections. LCF systems tested had a maximum interstory drift of
0.025, suggesting that connection details could be the same as intermedi-

ate frames.

e From experimental results, replaceable links can be achieved using web

end stiffeners and extended end plate connections.

e LCF specimens exhibited three regions within the lateral response; elastic,
yielding of links and yielding of links as well as MF beams. Provided the
links are replaceable, these correspond to three distinct performance levels;

elastic, rapid return to occupancy and collapse prevention.

e Replaceable links yielded prior gravity beams, all columns remained elas-
tic, and the ultimate system failure mode was ductile and non-catastrophic.
The LCF system is a viable system under cyclic and seismic loading, of-
fering a ductile structural system with the ability to rapidly return to

occupancy.

e The linked column frame effectively protects the gravity beams as well as
the columns such that the structure could rapidly return to occupancy

through link replacement.

e The system performance depends in large part on the ability of the link

to deform without premature failure.
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e Results have indicated that the LCF systems capability to achieve spe-
cific target performance levels and demonstrated the components potential

ability to concentrate the desired plasticity within the link.

e Even though an overstrength factor of 2.0 was used for the LCF design, a
difference of about 27% was noted between the LCF design value and the
maximum axial load on the linked columns, suggesting that a overstrength
factor greater than 2.0 might be considered in the future, while considering

the collapse prevention performance level.

e LCF system allowed the replacement of the shear links with minimal dis-

ruption.

e A design methodology was developed for low-to-medium height buildings.

e A simple formulation was presented for the development of closed-form
expressions of the lateral stiffness of the linked column steel frame system
and also to size gravity beam members. In regards to the lateral stiffness,
two approaches were presented based on classical methods of structural

analysis.

e The analytical examples demonstrated that the prediction of the member
sizes is reasonable and illustrated the applicability and accuracy of the
proposed formulations. By the same token, expressions developed for a

quick estimation of the axial reaction on the foundation element was also
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11.2

presented.

A LCF building was evaluated by current performance-based engineering
guidelines, and although the acceptance criteria for beams and columns
were within the acceptable margin and corresponded to what was observed
during the LCF experiments, the results for the replaceable shear links
indicated the contrary when compared to the LCF experimental results

in terms of failure.

Suggestions for Future Studies

System level approaches for taller buildings. One could potentially use a
belt truss on the top of the building and use of more linked columns along

the building in order to change the stiffness of the entire building.

Change of boundary conditions within the system in order to better trans-

mit the diaphragm loads into the linked columns.

Potential use of concrete-filled steel tube column for the linked columns.

Use of replaceable shear link designs in conventional EBF systems or as
external energy dissipaters for other self-centering systems that may be

based on rocking principals.

Development of structural optimization models in regards to cost and

weight.
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Include shear deformation on the analytical equations for lateral stiffness.

Development of economic studies to compare initial cost versus life cycle

cost.

Development of detail connection for foundation due to large axial forces.

Intermediate or long links are also potentially possible in LCF designs,
however the effects on meeting drift criteria and building member sizes

had not been investigated in this research.

Further refinement of the system could be realized through greater inte-

gration of experimental and numerical data.
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sl Monday, July 20, 2015 4:01 PM

# File: Numerical Model for LCF system

# units kips and inches

# Crested: 05/2013

S —

# Start of model generation
P ————

# create ModelBuilder (with two-dimensions and 3 DOF/node)

model BasicBuilder -ndm 2 -ndf

source LibUnits.tecl
source Weection. tel

# INPUTS

set masel |

set mass2 o

set xDamp O # damping ratio

# NODES

node 1

node —mags 1.
node = “mass 1.
node 1 -mass 1.
node 5 —mags 1.
node & -mass 1.
nade 7 [expr = [expr :.0*5Local]  -mass 1.

# BOUNDARY CONDITIONS
fix 1 1 0
i 0
fix 4
Tix
fix 7 0

1
1
1
1
1

# CONSTRAINTS
@gqualbQF
equalldF 2 4 1;
equallQF & &
equalDOF 5 7 1;

# COLUMN MATERIAL, SECTION AND ELEMENT

#material

# Steel Young's Modulus

set nu 0.3;
aet G2 [expe SEsfi.f[expe 1+5nu]); + Tocsienal stiffness Modulus
seat Bg 0.01; # strain-hardening ratio

# control the transition from elastic te plastic branches
# control the transition from elastic te plastic branches

1w
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el Maincay, July 20, 2015 4:01 P
set cRE 0.15; # contrel the transitien from elastie te plastic branches
set Hiza O
set Hkin
set matTagC 1
uniaxialMaterial Hardening SmatTaal SEs SFy SHiso

Hkin

w

# section
# column sections: WL4x176
set de? [expr 15.
set bfc? [expr 15.7%5
set tfck [expr 1.
set twe? [expr O

# depth

# flange width

# flange thickness
# web thickness

set nfdwe? 15; # number of fibers along dw
set nitwci # number of fibers along tw
set nfbfe? 15; # number of fibers along bf
set nfcfol I # number of fibers aleng tf

set ColSecTagIn 1;
Waection SCalSecTagln SmatTagC Sd

2 Snfewe2 Snfb Snftfe?

felement
set maxlters

set IDColTransfl 1; # bottom column
set IDCalTranafl 2; # top column

geamTransf Copotatienal SIDCalTransfl -jntOffser O
geamTransf Coratational SIDCalTransf2 =jntQffset O

$IDCalTransfl -iter Smaxlters Stolj
SIDColTransf? =iter SmaxIters Stol;

element nonlinearBeamColumn 1 1 3
element nonlinearBeamColumn 4 5 &

3 §CalSec
wColSe

# BEAM MATERIAL, SECTION AND ELEMENT

# material

set elb [expr SFy/iEs)

set Flb [expr CA*pow {Selb, . 111)]
set FIb [expr 1.1563%5Flb]

set Fib [expr 5Fib]

set elb [expr pow ((FF2nfl04.1),0
set eib [expr 0.1]
set PinchXlb [expe O
set PinehYlb [expr 0
set damagelb [expr O
set damagelb [expr
set matTagB I

set matTagBF
uniaxialMaterial Hysteretic SmatTagB §Flb Selb §F
Sdamagellh Sdamage

b §e3b =5Flp =§elb =5F

-Sedn  $Pir

set m A58
set ED 6
uniaxialMaterial Fatigue SmatTagBF SmatTagB =E0 $EO0 =m §m

wln

289



el Moncy, July 20, 2015 4:01 PM
#zection

# beam sections: WIGXKST

set dl [expr 16.4%*5in); # depth

set bfl [expr 12%5in); # flange width

set £fl [expr 15%*5in); # flange thickness

set twl [expr 3%5in); # web thickness

set nfdwl 16; # number of fibers along dw

set nftwl # number of fibers along tw

set nfbfl # number of fibers along bf

set nfefl I; # number of fibers along tf

set BeamSecTag 1

Weection $BEeamSecTag $matTagBF S5dl Sbfl 5cfl Stwl Snfdwl Snftwl Snfbfl Snfefl
felement

set IDBeamTransfl =; & left beam

set IDBeamTransf2 4; # cight beam

geamTransf Corotational 5SIDEeamTransfl -jntOffset

geamTransf Coratational SIDBsamTransfl -jatQffsset

element nanlinearBeamColumn 2 ~iter Smaxlters Stolj
element nonlinearBeamColumn 3 =iter JmaxIters Stol;
element nanlinearBeamColusmn S -iter Smaxlters Stali
element nonlinearBeamColumn o 3IDBeamTransf2? =iter SmaxIters jStol;

# EXPERIMENTAL SUBSTRUCTURE
loadPackage OpenFresce

expControl SCRAMNet 1 SELC

expSetup NoTransformation 1 -control 1 -dir 1 2 -sizeTrialQut 2 2
expSite LocalSite 1 1
# Define experimental elements

# left and cight columns

# expElement tweNedeLink SeleTag SiNede $iNode -dir Sdirs -site SsiteTag -inieSeif SKi§

<-arient <5xl Sx2 Sxd» Syl Sy2 Sy3> <-pDelta Mratios» <-iMed» <-mass Sm>

expElement generic 7 -nade ¥ 5 -daf 1 -dof 1 -site 1 -initStif 14

# GROUND MOTION
set dr 0.

set SCALE [expr O
set nsteps &

set aocelSeries "Path =filePath sel5CM_txt =dt §dt =factor [expr 1.0*$SSCALE]"

# pattern UnifermExcitation Spatterntag $dir -aceel

(TimeSeriesType arguements) <=well

svelld>

i
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ezl

Monday, July 20, 2015 4:01 PM

pattern UniformExcitation 1 1 =accel 52

# DAMPING

set MpropSwitch 1
set KeurrSwitch
set KeommSwitch
set KinitSwitch 1

set nEigenl 1; # mode 1
set nEigent I; # mode 2
set lambdaN [eigen [expe
set lambdal [lindex 51am:
set lambdad [lindex 51

set omegal [expr pow(sla
set omegad [expr pow(sla

set alphaM [expr SMor
damping; D = alphaM*M

set betaKcurr [expr SHourrSwitch*: *5xDampf (Somegal+fomeaad)];
+beatKcure*KCurrent

set betaKcomm [expr SKcommSwitch#*:. *5xDampf (Somegal+Somegad)]s
+betaKcomm*KlastCommite

set betaKiniv [expr SKir
initial-K; +beatKinit*Kini

1LESwi

A (Somegal+Somegad)];

rayleigh SalphaM Sbetak

urr jhetakKinit Sbeta

# AMALYSIS
# Create the system of equations
system BandGeneral;

# create the DOF numberer
numberer RCM;

# create the constraint handler
constraints Transformation;

# create the convergence test
test FixedNumIter 10;

# create the integratien scheme
integrator NewmarkHSFixedNumIter 0.5 O

# create the solution algorithm
algorithm Newtan;

# create the analysis object
analysis Transient;

# RECORDERS

# experimental nodes

#intial stifness proportional damping

# eigenvalue analysis for nEigend modes
# eigenvalue mode §
# elgenvalue mode j

1Swi teh*SxDamp® (2. *Sonegal*Sonegad) f (Somegal+fomegad) ) ; # M-prop.

# current-K;

# last-committed K;

# RAYLEIGH damping
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ezl

Manday, July 20, 2015 4:01 P

# caleulated recorders

recorder Hode -file
recorder Node =file
recorder Node -file
recorder Hode -file

# control recorders
expRecorder Contral
expRecorder Contral
expRecorder Control

recorder Element -file
recarder Element -file

Hode Dep.out -time
Hode Rat.out -time
Node Vel.out -time
Hode Acc.out -time

=node 1
=nade 1

=node 1 :
-nade 1 :

=dof
=dafl
=dof
=dof

digp
disp
vel
accel

-file Control_ctrlDsp.out -time -contral 1 etelDisp
~file Control_dagDsp.out -time -contral | dagDisp

~file Contral_dagqFrc.out -time -control

recorder Element -file Beamforces.out

# apen eutput file for writing
set outFileID [open elapsedTime. txt w]
# perform the transient analysis

set dtanalysis
set tTot [time |

for {set i 1} {

set ¢ [time

puts "step Siv

puts SautF

H

puts "\nElapsed Time = §tTot \n"

# clase the sutput
close 5o
wipe
exit

file

Exp_Elmt_ Frc.out -time -ele
Calumnfopees sut -time -ele

~time -ele @

i =} {imee i} {
{analyre 1 [expr Sdt

forces
1 farces

56 forces

dagForce
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M 550 4151 Sieet 510) 420-8180
M Osklend, CA 94808 FAX: (510] 420-8166
a-mail: info @ appriateng.com

* ﬂll - §EELIED MATERIALS & ENGIHEERING, MG,
T

INSEECTION REPORT

EROJECT MO, : 112629T TYPE OF INSPECTICH PLACE OF IMSFECTION
FROJECT: Portland Universily
1 Parr Blwd

Rlckmend, ch Ultrasonic Testing Jobsite

CLIENT: AMI Matal Fabricators

DATE 5/18/12
HOURS 9
INSPECTOR D, Jackson

REPORT: Heported to Andy at the jobsite,

performed ultrasonic inspection of complete jolnt penetration groowve welds on wide
flange peam end connection plates at plece mark M7 (2).

A total of 4 welds inspected with ne rejectable indication debecled,
Inspection performed &5 per AWS Dl.L.

MOTE: Satisfactory. UT Only.
Work inspocted was in compliance with approved job plans and specifications.

Reviewad By:

W Fimmodan

Dushyant Manmohan

go:  J. Muela
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211 Parg Buvo,
Rrorsone, CA gglor
PromE s1o-234-1414.
A S Euxt gra-236-1917
AMT MrTar FABRICATORS, INC. WU AMTMETALS.COM
ey T = g0 [ICEMAER [25004

e

Inspaction Sheet Date: @18/2012
[Project®:  P1011% . Typea of Ingpaction

[Project” ~ TestFrame

Customer.  Portland State University

inspecior. Michael R. Turpen

CWI 10060401
Description of Inspected ltem: B
_ Base Plate Assembly M5 (new)
___ Heat# see Nowell reparts

Connection Plates ASTM A §72-50

YES NO COMMENT
1 |Approved Drawings | I [ S
2 |Check mill papers against Specifications | x o 1 I
| 3 | Veerify Weld procedures = Weiding per AWS D11 |
4 iCheck Welders Quallfication Papers LI prequaliied welds ~
5 |Inspect Fit-up and Prep to spec. %
6 |Check Welding electrode to spec. o - T .
Tlweiding | | ] o .
_____|single Pass I R R i R
- Multi Pass - % | 38" PP - Graove -
oo 1.1/4" PP Groowe: ]
& | Type of Wald 1 1 1 112" Fillet | N
| IFist L L x | [2"PP Groove o
i Groove | | r i
9 |Partiai Penstration I B _jmbasamﬁa R
10[Full Penatration Plate to plate [

Inspactor  Michael R Turpen

Michael R Turpen
CWI 10060401
QC1EXP B1/2013
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o ? e e
AMT MeTar Fapricarors, Inc.
a8 | o

INCE. 1570

211 Parr Bovo,
RacHmonn, CA 94800
PHORE §10-256-1414.
Fax gro-a16-1417

W AMTHEETALS. COM
Con LiceNses 123004

Inspaction Shest Date: SHEE02
Proct®. _ P10119 - Typeofinspection |
|Project: ___TestFrame T wisisTEEL X

UTAVIS

|Inspecior:

CW¥I 10080401

Description of Inspacted ltem:

| Base Plato Assembly M8 (new}
Heat # sae Nowell reports.

Connection Plates ASTM A 572-50
YES NO COMMENT
7 |Aipproved Drawings | I ] e |
| 2 |Check mill papers against Specifications x 1
3 | Verify Weld procadures [ .= Weiding par AWS D1.1
| 4 [Check Welders Qualification Papars % prequalified wedds | |
| 5 [Inspect Fit-up and Prep to spec. x R
| 8 |Check Welding electrode to spec.| B A T —
| 7 | Welding 4
______|Single Pass S I S
ulti Pass R % _
o X
. .- S
% Earpiatestobasaplats
x 1
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atr Parn v,
Ricmmono, CA 94801
/ TPHOME §10-236-1414
o | S T §1e-236-1407
ETAL Fagricators, INc. WL AMTMETALS, COM
Sl:iflsi& 1 i Cst Lrcemse# 1z3i08

Ingpection Sheet Date: 1812012
[Project® _ P10118 '

[Project  TestFrame

CW| 10050401
Description of Ing \tem: [N — .
Beam MK M7 - WIBK 57 (new) _ Alltwo (2) Link Beams
Heat # 22630230 SO — - .
ASTI A 82 —
Connection Plates ASTM A 572-50 .
YES NG COMMENT

E

proved Drawings | ] X
Check mill papers against Specifications X
Verly Weld procedures [ X
u

x

[

Welding per AWSO1.1
__|prequalified wekds |

|Check Welders Qualification Papers
|Inspact Fit-up and Prep o spec.
Check Welding elactrode o spec.

Welding | [ N ISR E— £
ISingle Pass 1 = ] |58 fillatat webs |

[ a e

[dulti Pass| I ) -

'8 [Type of Weld

| 9 |Partial Penetration |
0

Full Penetration

| Welder - Martin Ramirez

o T ———
__see attached UT report by AME

Inspector  Michael R Turpen

Bichael R Turpen
W 10080401
QCY EXP 8172013
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e s
AMT MeraL Esp

RICATORS, INC.
o Smemwgn ) o
s |

21t Parg Bovo,
Racamonn, CA g48o1
Prore 10-236-1414
Fax g1o-2316-1417
WA AMTMETALS. (0
Cot Licewsed# 123105

Inspection Sheet Date: ar202012
[Project#  P10118 — o Typa of i
[Project _ TestFrame T VISSTEEL

__Utvis

Customer: __Parfiand State University

linspector. MichaelR. Tupen

CW| 10060401

Desctiption of Ins| d Itam:

— Beam MK # M3 - W10 x45 (new) Al FIVE (5) Link Beams
- Heat # 59061082 -
ASTM A 992 T

Connectlion Plates ASTM A 572-5

[Approved Drawings |

L.
Check mill papers against Specifications
Werify Weld precedures
Check Welders Qualification Papers

" |Weiding per AWS D1.1
_|prequalified welds:

[Inspect Fit-up and Prep to spec. |

(Check Welding electrods to spec,

Welding | -
... Singls Pass

THraranets ||

" MUt Pass|

3 fillets
|

Type ofWeld
. [Fillet
|Groove

=}

| 9 |Partial Penetration

10]Full Penetration

Report:__
| Welder - arin Ramiez

Final welding of assemblies
__Welds acceptable

309

ingpacior  Michael R Turpan

@

Michael R Turpen
CWIE 10060401
QC1 EXP 62013



A s
m\{?yhimu Fasricarors, Inc.

cragse |

Inspection Sheet

Date:

art Page Bavn,
Rrcnmonm, CA 94801
Prrome §10-236-1414
Tnx s10-236-1407

W AMTHMETALS, COM
Csr License® rz3nog

90812012

Projgct®.  P10119

Type of Inspection

Test Frame

WIS/STEEL X

Picject

UTVIS

Customer.  Portiand State University

T

PT

Inspector: Michesal R. Turpen

RT

CV| 10060401

OTHER

Description of Inspectad lterm:

COLUMN MK # C1 - W14 X 132 (new)
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