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Abstract 

The tunneling fold (T-Fold) superfamily is a small superfamily of enzymes found 

in organisms encompassing all kingdoms of life. Seven members have been 

identified thus far. Despite sharing a common three-dimensional structure these 

enzymes perform very diverse chemistries.  

QueF is a bacterial NADPH-dependent oxidoreductase that catalyzes the 

reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ0) to a primary 

amine (preQ1) in the queuosine biosynthetic pathway. Previous work on this 

enzyme has revealed the mechanism of reaction but the cofactor binding 

residues remain unknown. The experiments discussed herein aim to elucidate 

the role of residues lysine 80, lysine 83, and arginine 125 (B. subtilis numbering) 

in NADPH binding. The biological role of the disulfide bond between the 

conserved residues cysteine 55 and cysteine 99 observed in several crystal 

structures is also examined.  

Characterization of QueF mutants K80A, K83, R125A and R125K revealed lysine 

80, lysine 83 and arginine 125 are required for turnover. Further analysis of 

turnover rates for R125K are consistent with this residue and both lysines being 

involved in cofactor binding presumably by interacting with the negatively 

charged phosphate tail of NADPH and are therefore involved in cofactor binding. 

Based on bond angles and energies, the disulfide bond between Cys55 and 

Cys99 was characterized as non-structural. Enzyme oxidation assays were 

consistent with the bond serving to protect QueF against irreversible oxidation of 
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Cys55, which would render the enzyme inactive. This is the only known example 

of a stress protective mechanism in the Tunneling-fold superfamily.  

QueF-like is an amidinotransferase found in some species of Crenarchaeota and 

involved in the biosynthesis of archaeosine-tRNA. The work presented here is 

focused on the preliminary characterization of this enzyme, including the 

elucidation of the natural substrate as well as the source of ammonia. The 

structure of the enzyme was solved and is also discussed.  

Substrate analysis for QueF-like indicated this enzyme is capable of binding both 

preQ0 and preQ0-tRNA and reacting to form a thioimide intermediate analogous 

to QueF but only the latter serves as a substrate for the reaction. This makes 

QueF-like the first example of a nucleic acid binding enzyme in the Tunneling-

fold superfamily. Ammonia, glutamine and asparagine were tested as nitrogen 

sources and unlike most known amidotransferases, QueF-like can only use free 

ammonia to produce the archaeosine-tRNA product. The crystal structure of P. 

calidifontis QueF-like indicates the functional enzyme is a dimer of pentamers 

pinned together by a large number of salt bridges. The structure presents a high 

degree of similarity to that of QueF albeit the higher twist of the QueF-like 

pentamers with respect to QueF results in a more compact structure.  
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Chapter 1. Introduction 

1.1. Protein superfamilies and folds 

 Understanding the global relationships between protein sequence, 

structure and function is essential to predicting the function of newly discovered 

proteins and engineering new enzymes. Currently, classifications of protein 

families and superfamilies are based on their function and/or structure1,2.  

Ultimately, the goal is to be able to determine the relationship between the 

presence of an amino acid in a protein sequence and its effect on the function 

and/or structure of the protein. That is, a protein equivalent of the codon box.3–5 

When methods capable of determining the structure of proteins were first 

developed in the 1970s, it became increasingly clear that protein structure is 

more highly conserved than sequence6,7.  Currently, over 100,000 structures 

have been solved and reported in the PDB database8.  Structural data provides 

information on the evolutionary processes that have led to increasingly complex 

protein domain combinations, resulting in the diversity of phenotypes observed9. 

As evolution takes place, proteins derived from a common ancestor 

(homologs) can undergo large changes to their sequences through mutations or 

substitutions of residues, as well as insertions, deletions, and inversions. This 

gives rise to families of proteins that have very low sequence similarities but may 

share functionalities. In other cases, relatives possess no significant sequence or 

function similarity but they share structural features (analogs)5,6. 
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The term “superfamily” was coined in 1965 by Margaret Dayhoff, who 

early on recognized the extent of sequence variation observed within families of 

proteins. We now use the term to define families of evolutionarily related proteins 

which may have low sequence similarities but share structural features10,11. While 

others have included functionality as part of the superfamily grouping,12 we will 

not do so here.  

We can further classify superfamilies as specificity diverse or 

mechanistically diverse. The first includes homologous enzymes that catalyze the 

same overall reaction with different substrate specificities, such as the serine 

proteases. Mechanistically diverse proteins catalyze different reactions with 

different substrate specificities, but typically share a common mechanistic 

attribute such as the same partial reaction, common intermediates or shared 

transition states.12–14 Examples of mechanistically diverse superfamilies include 

the enolase, nudix, haloacid dehalogenase, crotonase, amidohydrolase, n-

acetylneuraminate lyase, and terpene cyclase superfamilies.15,16 

In general, mechanistic diversity is the result of differential placement of 

catalytic residues that are not conserved throughout the family while substrate 

diversity results from variations in loops and accessory binding domains.17–19  In 

a review of 31 superfamilies based on structure, Thornton et al. found the 

conservation of reaction chemistry to be far more prevalent than the conservation 

of substrate binding.13 They also identified semi-conserved superfamilies in 

which enzyme members use a common chemical strategy in the context of 
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different overall transformations. Typically, it is the initial catalytic step that is 

conserved while the reaction paths vary, illustrating the versatility of folds.13,20  

As of 2005, 1 million protein sequences from 150 completed genomes 

were known. Of those, approximately 50,000 have been assigned to families. 

Less than 15% of protein families found in a genome were found in other 

genomes or kingdoms. Therefore, two thirds of the protein families are unique to 

an organism and/or kingdom. Whether these sequences are truly “stand alone” 

or the product of divergent evolution is unknown. 21–23  

Topology or fold describes the orientations of secondary structures in 

three dimensions and the manner in which they are connected. Despite the 

growing number of unique protein sequences, only ∼850 folds are predicted to 

exist.24 A very small percentage (about 10, <0.1%) of these folds accounts for 

nearly 40% of all sequence families in the PDB and are adopted by several 

superfamilies. These are: TIM barrel fold, αβ-barrel, Rossmann fold, three-layer, 

αβ-sandwich, αβ-plait, and two layer αβ-sandwich.2 
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1.2 The T-fold superfamily 

 The tunneling fold (T-fold) superfamily is a structural superfamily of 

proteins with diverse functions that bind planar pterin and purine substrates. The 

T-fold domain can be described by an antiparallel beta sheet of four strands, with 

two antiparallel helices layered on the concave side of the beta sheet, between 

the second and third strands  (Figure 1). These assemble into homo oligomers to 

form a β2nαn barrel, with 2 barrels joining in a head-to-head orientation to form a 

tunnel-like center 25,26 

 

The active sites of all T-fold enzymes are located at the interface of 

several subunits (at least two), with residues from each monomer contributing to 

the global architecture of the active site. Furthermore, the active site has a 

conserved glutamine or glutamate, which anchors the substrate, along with other 

conserved interactions. The T-fold superfamily has two structural subfamilies, a 

unimodular subfamily, with proteins formed by subunits containing a single T-fold 

domain repeat and a bimodular subfamily composed of proteins formed by 

subunits with tandem T-fold domains (Figure 2).26 

 

Figure 1.  Fold of the monomer of  7,8-
dihydroneopterin epimerase. The β strands and 
α helical regions are shown in blue and red, 
respectively. The connecting loops are shown 
in yellow.Figure reproduced from Ploom et al47 
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Figure 2. Single subunit structures of Unimodular B. subtilis QueF27 (left) and bimodular V. 
cholerae QueF28 (right). The Tunneling fold motif is highlighted in blue for B. subtilis. Tandem 
motifs are shown in blue and cyan for V. cholerae.  

 

To date, the T-fold superfamily has 6 known members: Guanosine 

cyclohydrolase 1A/B (GCYH-1A/B),29,30 QueD (previously ykvK)31, 7-cyano-7-

deazaguanine reductase (QueF),27,32 7,8-dihydroneopterin triphosphate 

epimerase33, 6-pyruvoyl tetrahydropterin synthase (PTPS)34, Urate oxidase 

(UOX)35 and Dihydroneopterin aldolase (DHNA)36. GTP cyclohydrolase (GCYH-I) 

catalyzes the first step of the de novo tetrahydrofolate biosynthetic pathway in 

bacteria and plants, the 7-deazapurine (Queuosine and Archaeosine) 

biosynthetic pathways in Bacteria and Archaea,37 and the biopterin biosynthetic 

pathway in Eukarya.38 GCYH-I converts GTP to 7,8-dihydroneopterin 

triphosphate (Figure 3A) via the nucleophilic attack of C8 in GTP by a zinc 

activated water molecule. Two classes of GCYH-I exist, A (unimodular) and B 

(bimodular).39 

6-pyruvoyl tetrahydropterin synthase (PTPS) is a unimodular40 zinc 

dependent enzyme that catalyzes the second step of the three-step biosynthesis 
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of the essential cofactor tetrahydrobiopterin (BH4) from GTP in mammals. PTPS 

converts dihydroneopterin triphosphate into 6-pyruvoyl tetrahydropterin in 

vertebrates. (Figure 3B).41  

QueD is a homolog of PTPS that catalyzes the conversion of 

dihydroneopterin triphosphate to 6-carboxy-5,6,7,8- tetrahydropterin (CPH4). 

E.coli QueD can also convert PPH4 and sepiapterin to CPH4.42 (Figure 3C) 

Dihydroneopterin aldolase (DNHA) catalyzes the conversion of 7,8-

dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) in the folate 

biosynthetic pathway in Bacteria and plants43,44 (Figure 3D). While mammals 

utilize folates, they cannot synthesize them because they lack the first three 

enzymes in the biosynthetic pathway, therefore, these enzymes are attractive 

targets for antibiotic development. 45,46 

7,8-dihydroneopterin triphosphate epimerase catalyzes the epimerization 

of carbon 2 of dihydroneopterin triphosphate (H2NTP) to dihydromonapterin 

triphosphate (H2MTP) in Bacteria (Figure 3E). The biological role of this enzyme 

and reaction product remains unclarified.33,47 

Urate oxidase (UOX) is a bimodular T-fold enzyme responsible for the 

conversion of uric acid to allantoin (Figure 3F).48 It catalyzes the oxidative ring 

opening of the purine ring in the purine degradation pathway. This enzyme is 

present in most fish, amphibian and mammalian species but lacking in humans. 

The absence in humans is considered an evolutionary advantage as uric acid 

provides antioxidant defense, often linked to decreased cancer rate.35,49  
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QueF is an NADPH-dependent oxidoreductase that catalyzes the 

reduction of the nitrile group of 7-cyano-7-deazaguanine (PreQ0) to a primary 

amine (preQ1, Figure 3G).32 Both unimodular and bimodular QueF enzymes 

exist.  

Three T-fold enzymes, GCYH-1A/B, QueD and QueF are found in the 

Queuosine and Archaeosine biosynthetic pathways.  
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Figure 3. Reactions catalyzed by the enzymes in the Tunneling fold superfamily. A) GCYH-1A, B) 
PTPS, C) QueD, D) DHNA, E) Dihydroneopterin epimerase, F) UOX, G) QueF. 
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 All members of the T-fold superfamily share high structural or topological 

homology (Figure 4) while presenting low sequence identity.26 

.  

Figure 4. Structure of the monomers of 7,8-dihydroneopterin triphosphate epimerase, DHNA, 
GCYH-1B, PTPS and UOX. Figure reproduced from Ploom et al.47 

 

 The functional T-fold enzymes differ in size and number of monomers that 

constitute the functional protein. GCYH-1A is a homodecamer (Dimer of 

pentamers, Figure 5A), GCYH-1B is a homotetramer, DNHA (Figure 5B) and 

dihydroneopterin epimerase (Figure 5C) are homooctamers (dimers of 

tetramers), PTPS is a homohexamer (dimer of trimers,  Figure 5D), and UOX is a 

homotetramer (Figure 5E)31,35,47,50.  
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1.3. Queuosine and Archaeosine 
 

The 7-deazaguanosine nucleosides queuosine (Q) and archaeosine (G+) 

are two of the most highly modified nucleosides found in tRNA (Figure 6).  They 

share the 7-deazaguanosine core, but differ in the extent of modification of the 

ring and their location in the tRNA. Moreover, queuosine is found in Bacterial and 

Eukaryal tRNAs, whereas archaeosine is present exclusively in Archaeal 

tRNAs.51,52  

 

Figure 6. Modified nucleosides Archaeosine (left) and Queuosine (right). 

Queuosine contains a cyclopentenediol ring appended to an aminomethyl 

group at position 7. In some mammals, this position can be further modified by 

glycosylation with galactose in tyrosyl tRNA, or mannose in aspartyl tRNA.53,54 

Eubacterial species do not produce sugar modified queuosine but in these 

species, cyclopentene hydroxyl groups of aspartyl tRNA can be modified by the 

addition of glutamic acid at the C4'' or C5'' position.55 Archaeosine possesses an 

amidine functional group at position 7 of the deazaguanosine core.  
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Queuosine is ubiquitous in bacteria and eukarya and is located at position 

34 (wobble position) of a subset of tRNAs containing a G34U35N36 anticodon 

sequence (where N is any base) and include tyrosine, aspartate, asparagine and 

histidine. 56 These decode the dual synonymous codons NAU and NAC.57,58 Its 

location at position 34 of the tRNA suggests queuosine has a role in modulating 

translational fidelity and/or efficiency, and physiological studies are consistent 

with such a role.58–60  

Archaeosine (G+) is found quasi-universally in Archaeal tRNAs at position 

15 of the dihydrouridine loop (D-loop), a position that isn’t modified in eukaryotic 

or bacterial tRNA (Figure 3, left and center). G+ contains an imidino side chain 

on the C7 atom of the 7-deazaguanine core.61  

Archaeosine is proposed to play a critical role in the maintenance of the 

tertiary structure of Archaeal tRNAs. Position 15 of the tRNA, always a purine, 

base pairs with a pyrimidine at position 48 (Levitt base pair, Figure 7). The Levitt 

base pair involves a G:C reverse Watson-Crick interaction between the D-loop 

and the T-loop in tRNA62 and this interaction has been shown to constitute a 

general conserved mechanism for stabilization of the L-shape of tRNA.63 This is 

attributed to a stabilization of the correct 15-48 base pairing interaction.  

Archaeosine is thought to act through electrostatic interactions between the 

positively charged amidino group and the negatively charged phosphates in an 

interaction that mimics magnesium metal coordination.  
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Figure 7. Depiction of the the G:C reverse Watson–Crick (W:W trans) base pair, also known as 
Levitt base pair. 62 

1.4. Biosynthesis of Queuosine and Archaeosine 

Only bacteria are capable of de novo synthesis of queuosine. Eukaryotes 

must acquire queuosine or its free nucleobase, queuine, from the diet or the gut 

flora64,65. Both cytosolic and mitochondrial tRNA species are modified with 

queuosine.66  

GTP cyclohydrolase I, the first biosynthetic enzyme in the folate/biopterin 

pathways, is also the first enzyme in the Q/G+ pathways.67  GCYH-1A is followed 

by 6-carboxytetrahydropterin synthase (QueD),42 7-carboxy-7-deazaguanine 

synthase (QueE)68 and 7-cyano-7-deazaguanine synthase (QueC)69 enzymes, 

both in Bacteria and Archaea, to produce the common intermediate 7-cyano-7-

deazaguanine or preQ0.46,70 

In Bacteria, preQ0 is reduced to 7-aminomethyl-7-deazaguanine (preQ1) 

by the oxidoreductase 7-cyano-7-deazaguanine reductase QueF). preQ1 is then 

inserted into the tRNA by a bacterial tRNA-guanine transglycosylase (bTGT). 

preQ1 modified tRNA is further processed by S-adenosylmethionine:tRNA 



 

 14

ribosyltransferase-isomerase (QueA) and epoxyqueuosine reductase (QueG)71, 

to form queuosine. In Archaea, preQ0 is inserted directly into tRNA by archaeal 

tRNA-guanine transglycosylase or arcTGT (EC 2. 4.2.29) 72. Archaeosine 

synthase (arcS), an ATP-independent amidotransferase, catalyzes the 

conversion of preQ0-tRNA to G+-tRNA in the last step of the reaction in 

Euryarcheota73 (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 



 

 15 

F
ig

u
re

 8
. 

M
e
ta

b
o

lic
 p

a
th

w
a

ys
 t
o
 Q

u
e
u
o
si

n
e
 a

n
d

 A
rc

h
a

e
o
si

n
e

 



 

 16

1. 5. tRNA structure and function 

Transfer ribonucleic acid (tRNA) is the information adapter molecule 

between messenger RNAs (mRNAs) and the elongating peptide chains of newly 

formed proteins. It serves as an interface for the amino-acid sequence of the 

protein and the genetic information encoded in deoxyribonucleic acid (DNA). 

tRNAs have a central role in the decoding process and interact with most of the 

components that form the translation apparatus. Most tRNAs are about 75-90 

nucleotides in length and contain four arms and three loops. The acceptor, D 

(dihydrouridine), TΨC (T-pseudouridine-C) and anticodon arms are double 

helical and produce the cloverleaf structure of tRNA (Figure 9A). The cloverleaf 

undergoes further folding to form a compact L-shaped structure held together the 

stacking of the acceptor arm onto the TΨC arm and the stacking of the D arm 

onto the anticodon arm, yielding the acceptor and anticodon stems respectively 

(Figure 9B). The D, TΨC and anticodon loops are conserved in all canonical 

tRNAs but the size of the variable loop changes. 74,75
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Figure 9. Secondary (A) and tertiary (B) structure of tRNA.76  

 

In protein biosynthesis, tRNA is aminoacylated by one of the 20 different 

aminoacyl tRNA synthetases. Then the aminoacyl tRNA is carried into the 

ribosome in a complex with the appropriate elongation factor, where it interacts 

with a number of ribosomal proteins. Once the amino acid has been transferred 

to the growing polypeptide chain the tRNA is released from the ribosome. 74,77      

Transfer RNAs can also perform additional functions such as regulation of 

metabolic and cellular processes. For example, uncharged tRNAs regulate global 

gene expression in response to changing amino acid concentrations in the cell. 

Aminoacylated tRNAs are implicated in cell wall formation, labeling of proteins for 

degradation, modification of phospholipids in the cell membrane, and antibiotic 

biosynthesis.78–80 
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1.6. tRNA modification 

tRNA molecules are primarily composed of the four canonical 

ribonucleosides incorporated during transcription: adenosine (A), guanosine (G), 

cytidine (C) and uracil (U). However, posttranscriptional modification of tRNA 

produces a large number of structurally diverse modified nucleosides (Figure 10). 

By 2011, 109 modified nucleosides had been reported and collected in the RNA 

modification database.81 The extent of such modification in plants and mammals 

can be as high as 25%, whereas modification in homologous bacterial tRNAs is 

lower (2-15%).82 It is estimated that 1 to 10% of the genes in a given genome 

encode for tRNA modification enzymes, highlighting the importance of such 

modifications.83  

 

Figure 10. Modified nucleosides found in the different kingdoms of life. Figure reproduced from 
Jackman et al. 84 
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Every position of a purine or pyrimidine ring in tRNA can be 

posttranscriptionally modified. Single modifications are most common and 

include methylation, hydroxymethylation, deamination, transglycosylation, 

acetylation, reduction, thiolation, oxidation, ribosylation, isomerization and 

selenation. Hypermodification involves extensive changes that may require 

several enzymatic steps.82 

Some modified nucleosides are universally conserved in type and location 

in tRNA and they have become part of the nomenclature associated with tRNA 

structure. The most relevant examples are dihydrouridine (D), ribothymidine (T) 

and pseudouridine (Ψ), which give name to the tRNA arms and loops and are 

required for proper tRNA folding. 85 

1.6. Function of modified nucleosides.  
 

In general, modifications positioned outside the loop are thought to 

maintain the structural integrity of the tRNA molecule and act as determinants for 

tRNA-protein interaction, whereas those in the anticodon often contribute to the 

fidelity and/or efficiency of protein synthesis. 86 

Modifications found at the core of the folded tRNA can either rigidify the 

overall structure or make it more flexible. Increased rigidity may occur as a result 

of pseudouridine modification, which favors the 3’-endo sugar pucker associated 

with A-form RNA helices. In contrast, dihydrouridine promotes the opposing 2’-

endo sugar pucker, which gives conformational flexibility to the tRNA.  

Maintenance of optimal tRNA structure requires contributions from both types of 
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modifications. Recent evidence suggests that lack of modifications that reinforce 

the structural core of the tRNA leads to non-functional tRNAs in vivo.87–89  

In organisms that experience extreme temperature environments, the level 

of modification generally correlates with the need for tRNA stability and has been 

observed to change with growth temperature.90  

The translation decoding system is heavily dependent on the presence of 

modified bases. The universal genetic code has 61 codons for 20 standard 

amino acids and three stop signals (Table 1). Therefore, the genetic code is 

degenerate and most amino acids are encoded by more than one codon, some 

as many as six. Decoding relies on the interaction between mRNA’s codon triplet 

and the three anticodon bases of the cognate aminoacyl-tRNA (numbered 34, 35 

and 36 in the anticodon stem loop). Because there are only 40 distinct tRNA 

genes and 61 possible codons, amino acid specific tRNAs must recognize coding 

triplets that differ in the third letter.86  

 This notion gave rise to the Wobble Hypothesis, proposed by Francis 

Crick in 196691. Crick proposed that non-standard base-pairing might occur 

between the nucleotide base in the 5’ position of the anticodon and the 3’ 

position of the codon. Wobbling allows some tRNAs to decode different sets of 

codons which code for the same aminoacid, and some codons to be recognized 

by more than one anticodon sequence.92 We now know that 30-40% of all codon 

recognition is accomplished through the tRNA wobble recognition of more than 

one codon.92  
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Table 1. The codon table86 

The modified Wobble hypothesis, proposed in 199193, suggests that some 

modifications pre-form the anticodon structure, reducing its conformational space 

and dynamics, rather than the ribosome inducing a correct fit for the anticodon to 

fit the decoding site. Thus, modifications that occur at the Wobble position and 

adjacent to the anticodon are of particular interest.86,93 The chemistry and 

structure of the anticodon loop has evolved to achieve optimal presentation of the 

anticodon as a recognition determinant for a single cognate aminoacyl-tRNA 

synthetase, as well as accurate and efficient binding to cognate and wobble 

codons on the ribosome.94 
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In most tRNAs, position 37 is a purine that is almost always modified and 

the modifications present influence the decoding capacity of the tRNA and shown 

in Table 2.  

 

Table 2. Presence of modified nucleosides at position 37 of tRNA (Adapted from Bjork et al.95) 

 

Modifications at position 37 help maintain an open loop conformation 

blocking Watson-Crick pairing96 with neighboring nucleotides on the other side of 

the loop, especially position 33, which aids in the formation of the canonical U-

turn structure, essential for anticodon-codon pairing during decoding.84 

Modifications at the Wobble position also influence the decoding capacity 

of the tRNA. Several tRNAs, particularly tRNAGln, tRNAGlu and tRNALys contain a 

uracil at position 34. This base typically undergoes s2U thiolation and in some 

cases further modification at position C5 of the pyrimidine ring. Modifications at C5 

commonly include methylations and acetylations and in some cases 

hypermodification by addition of sugars. The presence of s2U imparts a distinct 

Codon Modifications at position 37 

1st 2nd 3rd Eukarya Bacteria Archaea 

U N N 
yW, O2yW 
i6A,  m1G 

ms2i6A, i6A, 
ms2io6A,  m1G 

m1G 

C N N m1G m1G, m2A m1G 

A N N 
t6A, mt6A, 

ms2t6A 
t6A,mt6A, 

m6A, ms2t6A 
t6A 

G N N m1G, m1I m2A, m6A m1G 
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conformation that allows for the preferential recognition of A but not G or U in 

NAA/G codons where N can be C, A or G. 76,97  

Since modifications have a direct role in maintaining tRNA structure and 

function, their loss creates an error-prone translational system.98 There are very 

few cases in which the lack of a modification leads directly to cell death99,100. 

There is evidence however, that some modifications whose absence leads to 

apparently innocuous effects may be crucial to viability under changing 

environmental conditions.101,102  

The presence of modifications is key to the viability of tRNA in the cell. 

Hypomodified tRNAs are targeted for specific degradation pathways and 

therefore modification is crucial to the maintenance of the tRNA pool. 103–105 

1.7. Research objective 

The work presented here aims to expand the information available on two 

enzymes, QueF and QueF-like. Prior work has established the mechanism for 

QueF, the only nitrile reductase known in biology, but the residues responsible 

for the binding of the cofactor are yet to be elucidated. QueF-like is a newly 

discovered enzyme involved in the biosynthesis of the tRNA modification 

archaeosine. QueF-like serves the same function as arcS, which is not a 

Tunneling-fold enzyme. The substrate, ammonia sources and mechanism of 

QueF-like are unknown.   

The goal of the work discussed in Chapter 3 is to determine the role of 

residues lysine 80, lysine 83 and arginine 125 of QueF in the binding of NADPH 
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and general catalysis as well as to establish the possible biological function of 

the disulfide bond between cysteine 55 and cysteine 99 (B. subtilis numbering).  

The work presented in Chapter 4 focuses on the preliminary 

characterization of QueF-like. This includes the elucidation of the primary 

substrate and source of nitrogen in the biosynthesis of archaeosine-tRNA.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 25

Chapter 2. Materials and methods 

2. 1.  Chemicals and reagents 

Buffers, salts and reagents (highest quality grade available) and gel 

filtration molecular weight standards and rNTPs, were purchased from Sigma (St. 

Louis, MO) unless otherwise stated.  DEPC (diethylpyrocarbonate) treated water 

was used in the preparation of all solutions for RNA related assays.  Dithiothreitol 

(DTT), isopropyl-β-D-thiogalacto-pyranoside (IPTG), kanamycin sulfate, β-

NADPH (β-Nicotinamide adenine dinucleotide phosphate), β-NADP+, DEPC and 

ampicillin were purchased from RPI Corporation (Chicago, IL). [8-14C]-guanine 

was obtained from Perkin Elmer (Waltham, MA). PEI cellulose TLC plates, 

Amicon Ultra 15 and 0.5 centrifugal filter units as well as NovaBlue Singles 

competent cells were acquired from EMD Millipore (Billerica, MA). Nickel-

nitrilotriacetic acid agarose (Ni2+-NTA agarose), silica TLC plates, Whatman GF-

B PVDF syringe filters and SnakeSkin dialysis tubing were purchased from 

Fisher Scientific (Pittsburgh, PA). GeneJet Plasmid Miniprep kits, Klenow 

enzyme and PageRuler pre-stained protein ladder were purchased from 

Fermentas (Glen Burnie, MD). Custom oligonucleotides were obtained from 

Integrated DNA Technologies (San Diego, CA).  All reagents for sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were purchased from 

BioRad (Hercules, CA).  SDS-PAGE analysis was carried out using 12% gels 

and visualized with Coomassie Brilliant Blue.  DNA sequencing was carried out 

at the “The DNA Services Core” at Oregon Health and Sciences University 

(OHSU), Portland, OR.   
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2.2. Instrumentation 

PCR was carried out on a 2720 Applied Biosystems cycler (Thermo, San 

Jose, California). UV-Vis spectroscopy was performed with a Varian Cary 100 

spectrophotometer equipped with a thermostated cell holder.  Fluorescence 

spectroscopy was carried out on a LS55 Fluorescence Spectrometer from Perkin 

Elmer (Waltham, MA).  HPLC was carried out using a Agilent 1100 with 

photodiode array detector, and controlled via the Agilent Chemstation software, 

Agilent (Santa Clara, CA).  Centrifugation was carried out on a bench-top 

Eppendorf 5430 R (Hamburg, Germany) or a Sorvall 5C+ (Thermo, San Jose, 

CA). SDS-PAGE was carried out on a mini Protean III system from BioRad 

(Hercules, CA).  Small molecule mass spectrometry was performed on an 

Orbitrap mass spectrometer (Thermo Electron, San Jose, CA) equipped with an 

electrospray ionization (ESI) source at the the Department of Chemistry at 

Portland State University.  Radioactivity was quantified with a Hidex 300 SL liquid 

scintillation counter (Turku, Finland).  An Amersham Biosciences Typhoon Trio + 

variable mode imager (Amersham, United Kingdom) with ImageQuant LT 

software was used for phosphorimaging.  NMR was carried out in a Bruker 400 

MHz Spectrometer (Bruker, Billerica, MA) and the data was processed using 

MestreNova (Santiago de Compostela, Spain).  

2. 3. Strains, media and growth conditions 

DH5α(F- φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, 

mk+) phoA supE4 thi-1 gyrA96 relA1 tonA) (Invitrogen), NovaBlue (endA1 
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hsdR17 (rK12– mK12+) supE44 thi-1 recA1 gyrA96 relA1 lac F′[proA+B+ 

lacIqZM15::Tn10(TetR)] (EMD Millipore, Billerica, MA), BL21 (DE3) F– ompT gal 

dcm lon hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 gene1 ind1 sam7 nin5]) (EMD 

Millipore, Billerica, MA) were used for plasmid propagation or protein over-

production, and were routinely grown in LB medium  at 37 ˚C.  Growth media 

were solidified with 15 g/L agar for the preparation of plates.  Transformation of 

E. coli was performed following standard procedures, Ampicillin (amp, 100 

μg/mL) and Kanamycin (kan, 50 μg/mL), were used as needed.  

2.4. Enzymes  

Bacterial alkaline phosphatase, Nuclease P1 from Penicillium citrinum, 

snake venom phophodiesterase I and DNase were purchased as lyophilized 

powders from Sigma and stored in 50% glycerol with the appropriate buffer at the 

recommended temperature.  PfuUltra™ DNA polymerase was obtained from 

Agilent (Santa Clara, CA).  Restriction enzymes were purchased from Fermentas 

(Glen Burnie, MD) and New England Biolabs (Ipswich, MA).  Lysozyme was 

purchased from RPI Corporation (Mount Prospect, IL) 

 

2. 5. PreQo preparation 

PreQ0 was synthesized as previously described by Klepper (yield 12%, 

purity 98%). 106,107 The product was purified by HPLC using a Luna C18 semi-

preparative column (250 x 10 mm, 5 micron) from Phenomenex (Torrance, CA). 
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The product eluted at 12 minutes using a gradient of ammonium acetate (25mM, 

pH 6.5) and acetonitrile (0 to 50% ACN over 30 minutes).  
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2.6  Expression and purification of recombinant enzymes 

2.6.1 Expression and purification of bacterial proteins: wild type His6-QueF, 

His6-QueF K80A, K83A, R125A and R125K mutants and T7 polymerase.   

Recombinant QueF was expressed in E. coli BL 21(DE3) cells with the 

plasmid pET30-ykvM32 or mutant plasmids pET30-ykvMK80A, pET30-

ykvMK83A, pET30-ykvMR125K, pET30-ykvMR125A  in LB/kanamycin medium 

(1 mM). The frozen cell stock was used to streak a plate of LB/kanamycin agar. A 

single colony was then used to inoculate a 3 mL LB/kanamycin medium. After 12 

hours of incubation at 37 ºC, a 200 μL aliquot was removed and used to inoculate 

500 mL of LB/ medium in a 2 L flask.  The cultures were incubated at 37 ºC and 

250 rpm for 12 hours (overnight).  When an OD600 of 2-3 was reached, the 

cultures were harvested by centrifugation at 9000 rcf for 20 min and 

subsequently resuspended in 500 mL of fresh LB/kanamycin medium. After 1 hr 

of incubation at 37 ºC, protein over-expression was induced by the addition of 

IPTG to a final concentration of 0.5 mM.  The cell cultures were grown for an 

additional 4 hours at which time the cells were collected by centrifugation at 

11000 rcf for 20 minutes at 4 ºC and frozen with liquid nitrogen.  Typically 15-20 g 

of cells were obtained from 2 L of media.  The cells were stored at -80 º C until 

further use.  The expression of the mutants K80A, K83A, R125A, and R125K 

was carried out identically. T7 polymerase was expressed from pT7-911Q in E. 

coli as described for the QueF wild-type protein.  
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All proteins were purified as follows: The frozen cells were thawed and 

resuspended to 250 mg/mL in 50 mM Tris-HCl (pH 8.0), 100 mM KCl, 2 mM 

βME, 1 mM imidazole, and 1 mM PMSF (lysis buffer).  Lysozyme was added to a 

final concentration of 250 µg/mL and the cells incubated at 37 ˚C for 30 minutes, 

followed by 3 intervals of freeze-thaw cycles.  DNase was added to a final 

concentration of 10 µg/mL and the cells were left at 37 ºC for an additional 30 

minutes.  The cell lysate was centrifuged at 12000xg for 30 minutes after which it 

was filtered through a low protein binding 0.45 µm PVDF filter to remove any 

present particulate. The cell free extract was loaded onto a 5 mL column 

containing Ni2+-NTA agarose equilibrated in lysis buffer. The column was washed 

with 10 column volumes of lysis buffer. Non-specifically bound proteins were 

eluted with 20 mM imidazole in lysis buffer containing no PMSF. The 

recombinant protein of interest was eluted with 200 mM imidazole in lysis buffer 

containing no PMSF. All buffers used were filtered through a 0.22 µm PVDF filter.  

The collected eluate was concentrated to about 2 mL using the Amicon Ultra YM-

10 and dialyzed overnight against 4 L of  lysis buffer without PMSF, then stored 

at -80 ºC as a 50% glycerol stock in aliquots of 100 µl. 

To remove the His tag, Factor Xa (10 µg) was added to 20 mg of purified 

QueF WT and mutant proteins and the digestion was carried out in the presence 

of 100 mM Tris-HCl (pH 8.0), 100 mM KCl, 1 mM CaCl2, and 1 mM βME, for 20 

hours at room temperature after which the digest was loaded onto a Ni2+-NTA 

agarose column that had been equilibrated in 100 mM Tris-HCl (pH 8.0), 100 mM 

KCl, and 1 mM βME (elution buffer). The cleaved wild type protein was eluted 
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with 10 column volumes of elution buffer. The protein was concentrated as 

previously described and stored in aliquots of appropriate volumes at - 80 ºC in 

the presence of 50% glycerol.  Typical yields were 20 mg of protein per liter of 

cultured media.  

2.6.2 Expression and purification of archaeal proteins: wild type His6-MjTGT 

and His6-QueF-like.  

Recombinant His6-MjTGT protein  and His6-QueFL was expressed in E. 

coli BL21(DE3) cells at 37 ºC in LB/kanamycin medium. LB/kanamycin medium 

(3 mL) was inoculated with a single colony of the cells and after 12 hours of 

incubation at 37 ºC a 1 mL aliquot was used to inoculate 100 mL of LB/kan 

medium. The cultures were incubated at 37 ºC and 250 rpm for 12 hours and a 5 

mL aliquot was taken and used to inoculate 500 mL of LB/kan medium. When an 

OD600 of 0.9 was reached protein over-expression was induced by the addition of 

IPTG to a final concentration of 0.25 mM.  The cell cultures were grown for an 

additional 4-5 hours when the cells were collected by centrifugation at 7,500 x g 

for 15 minutes and frozen with liquid nitrogen.  The cells were stored at -80 ºC 

until further use. 

The cells were resuspended to a density of 250 mg/mL in 50 mM Tris-HCl 

(pH 8.0), 300 mM KCl, 2 mM βME, and 1 mM PMSF (lysis buffer).  Lysozyme 

was added to a final concentration of 250 µg/mL and the cells incubated at 37 ˚C 

for 30 minutes, followed by 3 intervals of freeze-thaw cycles.  DNase was added 

to a final concentration of 10 µg/mL and the cells were left at 37 ºC for an 
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additional 30 minutes.  The cell lysate was centrifuged at 26,000 x g for 30 

minutes.  The CFE was heated up to 80 ºC for 15 minutes and centrifuged at 

26000x g for 20 minutes. The resulting CFE was filtered using a low protein-

binding 0.45 µm PVDF syringe filter, then loaded onto 5 mL of Ni2+-NTA agarose 

resin equilibrated in lysis buffer  The column was washed with 5 column volumes 

of buffer A followed by 5 column volumes of lysis buffer with 20 mM imidazole 

and no PMSF.  The recombinant protein was eluted with 7 column volumes of 

buffer B containing 200 mM imidazole then concentrated to about 2 mL using the 

Amicon Ultra YM-10k and dialyzed overnight against 4 L of lysis buffer with no 

PMSF at 4 ºC.  Both proteins were cleaved by Factor Xa and purified as 

previously described.  The cleaved protein was stored in 50% glycerol in 100 µL 

aliquots at -80 ºC.   

2.6.3. Expression of Selenomethionine labeled QueF-like 

Expression of QueF-like labeled with Selenomethionine was perfomed as 

previously described108 using selenomethionine solutions of 50 mg/mL added to 

the minimal media solution109 at 1 uL per mL of media. The methionine 

auxotrophic strain of E.coli B834 [genotype F- ompT hsdSB(rB - mB -) gal 

dcm met (DE3)] was a gift from Dr. Kelly Chacón (Reed College, Portland, OR). 

2.6.4 Size exclusion chromatography   

Size exclusion chromatography was used to determine the quaternary 

structure of QueF and QueF-like like using a BioSep-Sec-4000 column 

(Phenomenex, Torrance, CA) with an isocratic mobile phase of 25 mM 
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phosphate (pH 7.2), 25 mM KCl, at a flow rate of 1 mL/min. The protein was 

monitored for a change in retention time upon addition of PreQ0. For that 

purpose, the protein was pre-incubated with PreQ0 at least 15 min and the 

presence of the thioimide intermediate was assessed by UV-vis spectroscopy 

prior to gel filtration analysis. A standard curve was determined using the Sigma 

Molecular weight filtration kit MWGF200 which includes: Blue Dextran (2000 

kDa), Albumin (66 kDa), Alcohol Dehydrogenase (150 kDa), β-amylase (200 

kDa), carbonic anhydrase (29kDa) and Cytochrome C (12.4 kDa).  

2.7. Mutagenesis PCR 

Mutagenesis was performed as described by the Quickchange 

mutagenesis kit from Agilent Technologies according to manufacturer 

instructions (Santa Clara, CA, USA). The primers used were the following: 

R125K, Forward primer: 5’ - GGG GCA AAT TCA CGC CAA AAG GCG GAA 
TTT CCA – 3’ 

R125K, Reverse primer: 5’ - TGG AAA TTC CGC CTT TTG GCG TGA ATT TGC 
CCC – 3’ 

R125A, Forward primer:  5’ - GGC AAA TTC ACG CCA GGA GGC GGA ATT 
TCC – 3’ 

R125A, Reverse primer: 5’ - GGA AAT TCC GCC TCC TGG CGT GAA TTT 
GCC – 3’ 
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2.8. NADPH 7-cyano-7-deazaguanine oxidoreductase  

2.8.1. Substrate titration studies 

Titrations of QueF with preQ0 were monitored in the absence of NADPH. 

PreQ0 (3 mM in DMSO) was titrated into a solution of wild-type QueF or QueF 

mutants (20 µM) containing 100 mM tris (pH 7.5), 100 mM KCl and 1 mM DTT, 

while monitoring the absorbance from 230 to 450 nm. The titration was continued 

until there was no further increase in absorbance. The concentration of DMSO 

did not exceed 5% of the total volume.    

2.8.2. Steady-state kinetic measurements 

NADPH dependent kinetics 

Changes in absorbance at 340 nm as a result of NADPH consumption 

were monitored using a Cary 100 spectrophotometer equipped with a 

temperature controller. Using a quartz microcuvette, 200 µL reactions containing 

800 nM wild-type, K80A (80 uM), K83A (80 uM), R125A (80 uM) or R125K (8 

uM) and 100 mM phosphate (pH 6.5), 50 mM KCl, 20mM MgCl2, 1 mM DTT, 20 

µM preQ0 and varying concentrations of NADPH were incubated at 37 ˚C for 15 

min. The data was linearly fitted and the slope was used to calculate the velocity 

of the reaction.  

PreQ0 dependent kinetics 

Reactions 300 µL in volume containing 400 nM wild-type or 4 µM mutant 

QueF enzyme, 100 mM phosphate (pH 6.5), 50 mM KCl, 20mM MgCl2, 1 
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mM DTT, 180 µM NADPH, and varying concentrations of PreQ0 were incubated 

at 37 ˚C and 50 µL aliquots were taken at varying times and quenched with an 

equivalent volume of HCl. After 10 minutes, a 50 µL aliquot of the quenched 

reaction was taken and treated with 200 µL of NaOH and allowed to develop in 

the dark for at least 3 hours. A standard curve was generated with varying 

concentrations of NADP+ in the presence of the same NADPH concentrations 

used in the reactions. The standards were treated identically to the reaction 

samples taken.  

Both samples and standards were analyzed using a Perkin Elmer L55 

fluorometer. The excitation wavelength used was 360 nm and the emission was 

scanned from 430 – 520 nm. If necessary, the slit opening was varied for each 

NADPH concentration to ensure sufficient signal and prevent saturation. After a 

slit change, a standard set was re-analyzed to recalculate the fit (concentration 

NADP+ vs. RFU). 

2.8.3. H2O2 oxidation of wild-type and C99A/S enzymes 

Oxidation of wild-type QueF and mutants C99A/S (generated by Spencer 

Cohen) was performed as depicted in Figure 11. A stock enzyme solution 

containing 100 mM phosphate (pH 6.5), 50 mM KCl, 20mM MgCl2, and 36 uM 

protein was prepared and a 20 uL aliquot was taken. To this, 5 uL of a solution of 

1 mM hydrogen peroxide was added to the enzyme solution and was allowed to 

react for 0, 15, 30, 45, 60 or 75 seconds. At each timepoint, a 20 uL aliquot was 

removed from the reaction and added to a solution containing 12 units of 
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catalase and 1 mM DTT and mixed thoroughly to achieve full quenching of the 

hydrogen peroxide. The quenched solution was then transferred to a 200 uL 

microcuvette and PreQ0 and NADPH were added to a were added to a final 

concentration of 36 µM and 180 µM respectively, to initiate turnover. The 

absorbance of the reaction at 340 nm was monitored over a period of 20 min to 

determine the initial velocity110.  

 

Figure 11. Oxidation assay of QF enzymes with hydrogen peroxide 

 

2.8.4. Activity recovery of oxidized QF enzymes 

Wild type and C99A/S mutant enzymes of QueF were oxidized for 45 

seconds prior to rescue treatment. To ensure accurate measurement of 

recovered activity, a control experiment was performed in which the activity of 

each enzyme was measured after oxidation as described in the prior section. 

Non control samples were subject to oxidation and quenched with a solution 

containing 12 units of catalase and either 10 mM DTT or 5 equivalents of 
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thioredoxin. After 60 minutes, the solution was transferred to a microcuvette and 

PreQ0 and NADPH were added to a final concentration of 100 µM and 180 µM  

respectively, to initiate turnover. The absorbance of the reaction at 340 nm was 

monitored over a period of 20 min to determine the initial velocity110 

2. 9.  QueF-like 

2.9.1. tRNA transcription and modification 

In Vitro transcription of M thermo tRNAGln  

Duplex DNA templates for in vitro transcription were synthesized from two 

single-stranded oligodeoxynucleotides containing a complementary overlap 

duplex region, as previously described.111   

 

The oligonucleotide sequences used were: 

5′-

GCAGTAATACGACTCACTATAGGTCCCGTGGGGTAGTGGTAATCCTGCTG

GGCTTTG- 3′ 

5′-

TGGTAGTCCCGAGCGGAGTCGAACCGCTGTCGCCGGGTCCAAAGCCCA

GC- 3′ 

The underlined region represents the T7 RNA polymerase promoter 

sequence. Milligram quantities of each tRNA were transcribed with the Del(172–

173) variant of T7 RNA polymerase. Transcription reactions were performed as 
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previously described,111 loaded onto a Urea-PAGE gel and after electrophoresis 

(80W, 60 min), the band was excised and extracted overnight in  100 mM 

ammonium acetate (pH 6.5) containing 1 mM EDTA. The gel was then discarded 

and the RNA precipitation from the remaining solution with ethanol, and 

resuspended in 100 mM succinate (pH 5.5), 1 mM EDTA at −20 °C to be used in 

the preQ0-tRNA exchange reaction described below. Alternatively the tRNA was 

stored dried at -80 °C.  

Preparation of PreQ0-tRNA 

PreQ0 was inserted into the tRNA transcript using recombinant wild-type 

M. jannaschii arcTGT.  A solution of tRNA in succinate buffer (100 mM, pH 5.5) 

was refolded before use.112 An aliquot of MjTGT (10 µM) was added to a 1 mL 

solution containing 50 mM succinate (pH 5.5), 20 mM MgCl2, 100 mM KCl, 2 mM 

DTT, 100 µM M. Thermo tRNAGln, and 1 mM preQ0. After 45 minutes at 80 ºC, 

the reaction was terminated by the addition of one-tenth volume of 2 M NaOAc 

(pH 4.0) followed by one volume of water-saturated phenol and one fifth volume 

chloroform:isoamyl alcohol (49:1).  After vortexing for 20s, the solution was 

centrifuged in a fixed angle rotor at 9000xg for 1 minute.  The aqueous phase 

was recovered and mixed with an equal volume of chloroform:isoamyl alcohol. 

After vortexing for 20 s, the solution was centrifuged in a fixed angle rotor for 1 

min at 9000xg . The aqueous phase was recovered and concentrated using an 

Amicon Ultra4 centrifugal concentrator.  Subsequently, the preQ0-tRNAGln was 

precipitated from the eluate by the addition of 3 volumes of ethanol and cooling 

at -20 ºC for 2 hours.  The solution was centrifuged at 20,000x g for 20 minutes at 
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4 ˚C, the supernatant removed, and the RNA pellet washed with 70% cold 

ethanol.  After centrifugation again at 20,000x g the supernatant solution was 

removed and the preQ0-tRNA was resuspended in 3 mM sodium citrate (pH 6.3) 

and stored at -20 ºC. 

2.9.2. Guanine incorporation assay 

In order to quantify preQ0 incorporation into tRNAGln, a control reaction 

was run in which [8-14C]-guanine (50 mCi/mmol;1.85 GBq/mmol) was first loaded 

into the tRNA using M. jannaschii arcTGT under the same conditions described 

above (section 2.9.1). Aliquots of the reaction can be taken every five minutes to 

show the rate of incorporation over time. The reactions were terminated by the 

addition of one-tenth volume of 2 M NaOAc (pH 4.0)  followed by one volume of 

water-saturated phenol and one fifth volume chloroform:isoamyl alcohol (49:1). 

chloroform:isoamyl alcohol (49:1). After vortexing for 20s, the solution was 

centrifuged in a swinging bucket rotor at 700 x g for 20 minutes and the tRNA 

was pipetted into Whatman GF/B glass filters. The filters were then sandwiched 

in between larger filters (to secure them) and washed with cold ethanol in a 

vacuum filtration system so as to remove any unbound radioactive material. 

Once dry, the filters were placed in 7 mL scintillation vials with the appropriate 

scintillation cocktail and the radioactivity was measured by scintillation counting.  
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2.9.3. Substrate titration studies 

Titrations of QueF with preQ0 or preQ0-tRNA were monitored in the 

absence of a nitrogen donor. PreQ0 (3 mM in DMSO) or preQ0-tRNA (20 µM) 

was titrated into a solution of QueF-like (20 µM) containing 100 mM phosphate 

(pH 6.5), 50 mM KCl, 20mM MgCl2, and 1 mM DTT, while monitoring the 

absorbance from 230 to 450 nm. The concentration of DMSO did not exceed 5% 

of the total volume.  

2.9.4. Amidinotransferase assays 

Assays of amidinotransferase activity were carried out using QueF-like (20 

µM) in 100 mM phosphate (pH 6.5), 50 mM KCl, 20 mM MgCl2, and 1 mM DTT, 1 

mM preQ0 or 10 µM preQ0-tRNA in the presence of NH4Cl (100 mM), glutamine 

(1mM) or asparagine (1mM). QueF-like was incubated with preQ0 for 15 minutes 

at 37ºC. The solution was then filtered through a centrifugal concentrator 

(Amicon) in a fixed angle rotor at 8500 rcf for 10 minutes to remove excess 

preQ0. The remaining solution was reconstituted with buffer and 

NH4Cl/glutamine/asparagine was added while monitoring the loss of covalent 

thioimide adduct at 376 nm.  

QueF-like and preQ0-tRNA were incubated in the presence of NH4Cl for 1 

hr at 37ºC and the tRNA was then precipitated using ethanol and digested using 

Nuclease P1, snake venom phosphodiesterase and alkaline phosphatase and 

the nucleoside products of the reaction were analyzed by HPLC as previously 

described 73,113, using a Phenomenex Gemini 5 uM C18 110A 250 x 2 mm, with a 
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mobile phase comprised of a linear gradient from 100% 25 mM NH4OAc (pH 6.3) 

to 85% 5 mM NH4OAc/15% acetonitrile developed over 30 minutes up to 50% 

acetonitrile at 45 min. Flow was maintained at 0.3 mL/min. LCMS analysis of 

nucleosides was performed on an Orbitrap-LTQ mass spectrometer (Thermo 

Electron, San Jose, CA) utilizing electrospray ionization (ESI). The ESI interface 

was operated in the positive mode using the following settings: end plate offset 

−500 V, capillary voltage −4500 V, nebulizer gas 1.6 bar, dry gas 4 L/min, dry 

temperature 200˚C, funnel 1 RF 350 Vpp, funnel 2 RF 350 Vpp, hexapole RF 

400 Vpp, collision energy 10 eV and collision RF 300 Vpp.  

2.9.5. Amidinotransferase activity with radiolabeled glutamine 

[5-14C]-L-glutamine (1.85-2.22 GBq/mmol) was tested as a substrate in 

reactions containing 1 mM DTT, 20 mM MgCl2, 100 mM phosphate pH 6.5, 10 

 µM QueF-like, 10 um preQ0-tRNA, 19 µM 14C-glutamine in a total volume of 20 

µL. The reactions were incubated at 37°C and 2 µL aliquots were taken at 30, 60, 

120, 180. 300 and 420 min and then quenched with 4 µL of 8 M ammonium 

acetate. A pre-wetted PEI cellulose TLC was used to separate 2 µL spots of the 

quenched reactions and analyzed as previously described.114 
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 Chapter 3: Characterization of 7-cyano-7-deazaguanine, QueF 

3.1. Introduction 

QueF is an NADPH-dependent oxidoreductase that catalyzes the 

reduction of the nitrile group of 7-cyano-7-deazaguanine (preQ0) to a primary 

amine (preQ1).32 The discovery of the QueF family of enzymes expanded the 

chemistry of known nitrile metabolizing enzymes, which at that point included, 

hydrolysis, oxidation and cleavage115. It was also a new addition to a group of 

enzymes classified as NAD(P)+ dependent four-electron-transfer 

dehydrogenases, which includes UDP-glucose-dehydrogenase, histidinol 

dehydrogenase and 3-hydroxy-3-methylglutaryl-coenzyme-A reductase.116–118 

Sequence and structural analysis of QueF revealed that this enzyme 

belongs to the Tunneling fold (T-fold) superfamily.  As previously discussed, the 

T-fold superfamily has two structural subfamilies, a unimodular subfamily, with 

proteins formed by subunits with a single T-fold domain, and a bimodular 

subfamily  composed of proteins formed by subunits with tandem T-fold 

domains.26 The QueF family includes both unimodular and bimodular 

enzymes.119  

The unimodular family is represented by the Bacillus subtilis enzyme, and 

it contains a signature QueF motif (E(S/L)K(S/A)hK(L/Y)(Y/F/W)), where h is an 

hydrophobic amino acid, bracketed on the N- and C-terminal sides by an 

invariant Cys and Glu, respectively. This cysteine is also universally conserved in 

the guanosine cyclohydrolase family29 where it serves as a ligand for the required 
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zinc/manganese cofactor, while the glutamate is characteristic of the entire T-fold 

superfamily.26 

  The bimodular family is represented by the Escherichia coli enzyme and it 

contains two tandem T-fold domains. In this case, the QueF motif and the Cys 

and Glu residues are spatially separated and located in the homologous N- and 

C- terminal T-fold domains, respectively.28 

The predicted mechanism119 of the reaction begins with the binding of 

preQ0 to the enzyme, followed by nucleophilic attack of the thiol of Cys55 (B. 

subtilis numbering) on the nitrile group of preQ0, forming a thioimide intermediate 

(Figure 12). Subsequently, NADPH binds to the enzyme and reduces the 

intermediate rendering a new covalent adduct, the thiohemiaminal. The first 

NADPH molecule is then released, a second NADPH cofactor molecule binds, 

and collapse of the thiohemiaminal followed by reduction, yields the preQ1 

product. Mutation of the Cys55 residue to alanine or serine results in complete 

loss of activity. These experiments support the key role of this residue in 

catalysis.119 His96 and Asp 62 are the acid/base catalytic residues proposed to 

participate in the reaction. 119  

The crystal structure of the B. subtilis QueF reveals a nonsymmetric 

homodecamer of two head-to-head facing pentamers (a dimer of pentamers), 

which comprise the classic T-fold architecture (PDB ID 4F8B, Figures 13 and 

14).27  The active site encompasses three subunits, two from adjacent subunits in 

the same pentamer and one from the opposite pentamer.  
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Figure 13. Top view of the crystal structure of the QueF.27 Subunits are color coded  A (orange), 
B (cyan), C (blue), D (green), E (magenta). Substrate PreQ0 is depicted in red. 

Figure 14. Side view of the crystal structure of the QueF.27 Coloring as in Figure 13. 
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The location of the QueF motif suggests that the residues in this motif are 

involved in binding NADPH and a docking model generated by Manal Swairjo 

(Figure 15, unpublished) shows a single NADPH molecule (pink) binding at the 

interface of four subunits, two from each pentamer, spanning two active sites. 

Moreover, the NADPH diphosphates are within close proximity to Arg125, Lys80 

and Lys83 (orange), coming from two subunits, one from each pentamer.  
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3.1.2. Non-structural disulfide bonds 

A disulfide bridge was observed in crystal structures of the QueF mutant 

E78A, between Cys55 and Cys99 (Figure 16, Manal Swairjo, unpublished data). 

Cys99 is located in the alpha helix at the bottom of the active site and is 

conserved throughout the QueF family, suggesting selection pressure to retain it.   

 

 

Figure 16. Cys55-Cys99 QueF disulfide bond. 

 

Disulfide bonds in proteins can be considered structurally as involving six 

atoms linking the two α-carbons of the cysteine residues: Cα-Cβ-Sγ-Sγ'-Cβ'-Cα'. 

Rotation about the bonds linking these six atoms defines five chi (χ) angles, 

which can be positive or negative, resulting in 20 possible disulfide bond 
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configurations. By convention, there are 3 basic types of disulfide bonds: Spirals, 

hooks, and staples. Further characterization as right- or left-handed is a function 

of whether χ3 is positive or negative.120,121  

The –LHSpiral (left handed) configuration is the most common and has 

the lowest dihedral strain energy, making it the primary structural disulfide. Most 

catalytic disulfides that have been structurally characterized have a -/+ RHHook 

(right handed) (χ1, χ2, χ3, χ’2, χ’1, are +,-,+,+,- respectively) configuration whereas 

allosteric disulfides are typically –RHStaple, (χ1, χ2, χ3, χ’2, χ’1, are -,-,+,-,+ 

respectively) or –LHHook (χ1, χ2, χ3, χ’2, χ’1 are -,-,-,+,-, respectively).120 These 

bonds have a higher potential energy and are more easily cleaved than bonds 

with lower stored energy, which is consistent with their functional role.122–124 

A defining feature of both catalytic and allosteric bonds is the close 

proximity of the α-carbon atoms of the two cysteine residues. These are 4.3 Å 

apart on average vs. the 5.6 Å mean for all disulfides121. This shorter bond is the 

result of linking secondary structures. About 60% of –RHStaple bonds link 

adjacent strands in the same β-sheet. The proximity of the strands causes them 

to pucker in order to accommodate the bond, adding strain to it. 123,125   

Analysis of the chi angles of the five bonds comprising the QueF Cys55-

Cys99 disulfide present shows that four of the five bonds had measurements 

consistent with the –LHHook configuration  (-,-,-,+,- ; Table 3). 
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Subunit 
containing 

Cys55-
Cys99 

χ1 χ2 χ3 
Distance 

(Å) 
χ2' χ1' 

Disulfid
e Strain 
Energy 

(kJ/mol) 

Bond 
class 

A -53.64 -130.82 -104.16 2.05 173.30 -65.06 14.67 -LHHook 

B -107.05 138.74 96.37 2.06 74.64 -106.34 40.93 -RHSpiral 

C -56.22 -129.79 -104.29 2.04 167.78 -67.52 15.45 -LHHook 

D -51.38 -133.63 -97.82 2.05 167.94 -71.56 14.52 -LHHook 

E -51.13 -124.15 -100.67 2.00 173.17 -76.26 17.11 -LHHook 

 

Table 3. Analysis of chi angles of the Cys55-Cys99 bond of QueF. 

 

These results indicate four out of five disulfide bonds present in QueF can 

be classified as allosteric whereas one of them is consistent with a structural role. 

The latter however, corresponds to an unstructured part of the crystal structure 

and the results were not taken into consideration. 

3.1.3. Objective 

The work described in this chapter aims to test the hypothesis that the residues 

lysine 80, lysine 83 and arginine 125 in QueF are involved in binding of NADPH 

as well as to establish the possible biological function of the disulfide bond 

between cysteine 55 and cysteine 99.  
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3.2. Results and discussion 

3.2.1. Binding of NADPH 

The model for NADPH binding into QueF (Figure 16) shows residues 

Arg125, Lys80 and Lys83 in close proximity to the cofactor, suggesting they are 

involved in its binding. To test this model site directed mutagenesis was therefore 

performed to test if these residues were important for binding of NADPH. 

Arginine 125 was mutated both to alanine and lysine and lysines 80 and 

83 were both mutated to alanine. Those mutants were then tested for turnover by 

monitoring the change in NADPH concentration as a function of time (as 

described in Chapter 2).  This was achieved by continuously measuring the 

absorbance of reaction solutions containing the wild-type or one of the mutants, 

at 340 nm.  

Figure 17 presents a sample plot of absorbance over time for a control 

reaction (blank) and reactions each containing either K80A (80 µM), K83A (80 

µM), R125A (80 µM), R125K (8 µM), or the wild-type enzyme (800 nM). The 

traces for mutants K80A, K83A and R125A overlap with that of the control, 

indicating no significant activity was observed for these mutant proteins. Note 

that in these experiments the mutant enzyme concentrations were present at 

100-1000 fold higher than the wild-type enzyme. Mutant R125K however, 

demonstrated significant activity as compared to the control.  While these results 

are consistent with impaired NADPH binding, mutagenesis can also compromise 

the 3D structure of the enzyme, which in turn would prevent turnover. 
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Figure 17. Relative activity of QueF (orange) and mutants R125K (green), R125A (red), K80A 
(navy), K83A (black) and a blank solution (cyan). 

 

In order to determine if the mutant enzymes are capable of forming the 

active homodecamer they were analyzed for their ability to undergo reaction with 

preQ0 and form the covalent thioimide intermediate. Enzymes with the correct 

structure will bind preQ0 to form a thioimide intermediate between the thiol of 

Cys55 and the nitrile group of the substrate. This intermediate possesses a 
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characteristic absorbance at 376 nm (ε = 4400) and can be monitored by UV-Vis 

spectroscopy.119 

The data for the thioimide assays are presented in Figure 18, where 

absorbance at wavelengths 230-450 nm is depicted. The region of the graph 

around the thioimide absorbance maxima has been expanded for clarity in Figure 

19. The concentration of wild-type QueF and all QueF mutants was 20 µM and 

preQ0 was present at 100 µM. 

Figure 18. Formation of thioimide intermediate for wild-type QueF and mutants K80A (orange), 
K83A (maroon), R125A (green) and R125K (navy). 
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Figure 19. Expanded view of the formation of thioimide intermediate for wild-type QueF (black) 
and mutants K80A (orange), K83A (maroon), R125A (green) and R125K (blue). 

 

The characteristic thioimide absorbance peak was observed in mutants 

K80A, K83A, R125A, and R125K. Differences in the relative absorbance are 

consistent with different preQ0 binding affinities for each mutant. These results 

demonstrate that all mutant enzymes are capable of binding the substrate to form 

the thioimide intermediate and therefore have the correct tertiary structure. Thus, 
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the absence of turnover for the K80A, K83A and R125A mutants is consistent 

with disruption of cofactor binding and/or the reaction.   

The results obtained from the thioimide formation and substrate specificity 

assays indicate that loss of activity upon introduction of the mutations K80A, 

K83A and R125A can be directly attributed to the loss of specific residues 

required for catalysis. This result is consistent with the notion that both lysines 80 

and 83 and arginine 125 are required for the proper binding of NADPH.  

Mutant R125K displayed significant levels of activity with respect to the 

wild type. Mutation of arginine to lysine reduces the length of the amino acid 

lateral chain but maintains the basic nature of it. It can then be inferred that a 

basic residue is required at this position to maintain catalytic activity.  

The effect of this mutation on catalysis can be quantitatively measured. To 

do so, kcat and KM for both preQ0 and NADPH were determined under steady 

state conditions for both the wild type and R125K and then compared to one 

another.  

To determine the kcat and KM for NADPH activity assays were carried out 

by monitoring NADPH oxidation at 340 nm. The results obtained for the wild-type 

enzyme are shown in Figure 20. Reaction velocities in nM/min units are plotted 

against µM concentrations of NADPH. Error bars indicate the standard deviation 

for triplicate repeats of reactions with the same NADPH concentration.  
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The data obtained can subsequently be fitted to the Michaelis-Menten 

equation in order to obtain kcat and KM values as shown in Figure 18. From this fit 

it was determined that Vmax = 1.2 ± 0.4 µM/min, KM = 59.7 ± 5.2 µM, kcat = 1.44 

sec-1, kcat/KM = 0.024 µM/sec. These values are consistent with the previously 

published constants.119  

Figure 20. Steady-state reaction velocities for wild-type enzyme with varying concentrations of 
NADPH. Consumption of substrate in nM/min is plotted against µM concentrations of NADPH and 
Michaelis-Menten fit is shown in red. 

The same experiment was performed for the mutant protein R125K but in 

this case the mutant concentration was 10-fold that of the wild-type to ensure 

velocities for low concentrations of NADPH were within the detection limit of the 

instrument. The triplicate results with standard deviation values are summarized 

in Figure 21. The data obtained was fit to a Michaelis-Menten equation and the 

resulting values were Vmax = 5.2 ± 0.4 µM/min and KM= 189 ± 12 µM, and kcat = 

0.65 sec-1, kcat/KM = 0.0034 µM/sec .  
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Figure 21. Steady-state velocities reactions of mutant enzyme R125K with varying 
concentrations of NADPH. Consumption of substrate in µM/min is plotted against µM 
concentrations of NADPH and Michaelis-Menten fit is shown in red. 

 

Kinetic constants for preQ0 must be determined by an indirect method due 

to the lack of any distinctive and measurable substrate properties such as 

fluorescence or absorbance. Additionally in order to achieve velocities near Vmax, 

the concentration of NADPH has to be kept at approximately 10 fold the KM. 

Under these conditions the absorbance of the solution is too high to accurately 

measure small changes in NADPH concentration via the continuous assay and 

we employed an indirect fluorescence assay instead. The results obtained 

however were inconsistent with previously reported values and they are reported 

in the appendix.  
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3.2.2. Cofactor specificity 

The binding model for NADPH shows lysine 80, lysine 83 and arginine 

125 in close proximity to the phosphates of the cofactor, and while the mutants 

K80A, K83A and R125A are capable of binding preQ0 to form a thioimide 

intermediate, the lack of turnover is consistent with impaired binding of NADPH. 

Because NADH lacks a 2’-phosphate but is otherwise identical to NADPH we 

hypothesized that it might be able to substitute for NADPH in these mutants. To 

test this, NADH was used as the cofactor in reactions containing the wild-type or 

mutant QueF and turnover was monitored at 340 nm and compared to a control 

reaction containing no enzyme (Figure 22). Neither the wild-type nor the mutant 

enzymes demonstrated any significant catalytic activity with NADH, indicating it is 

not a suitable cofactor for the QueF reaction. 
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Figure 22. Continuous monitoring of NADH consumption in the WT QueF reaction. Absorbance 
of NADH at 260 nm is measured as a function of time. 

 

 

3.2.3. Functional disulfides 

Analysis of bond lengths and angles for QueF Cys55-Cys99 observed in 

the structure of the E78Q mutant of QueF are indicative of a non-structural 

disulfide. As previously shown,27 Cys55 is required to bind preQ0 and therefore 

loss or inactivation of this residue results in loss of activity of the enzyme.  
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Oxidative stress is common in the cellular environment and as shown in 

Figure 23, when a single cysteine is present, the thiol can be successfully 

oxidized to a sulfenic acid, sulfinic acid and sulfonic acid. The latter two are 

irreversible under cellular conditions. However, when two cysteines are present, 

oxidation can lead to the reversible formation of a disulfide bond.  

 

 

Figure 23. Reversible and irreversible oxidation of thiols. 
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To determine the role of Cys99 in catalysis, this residue was mutated to 

both alanine and serine. The change in NADPH absorbance as a function of time 

was monitored for C99A and C99S and both enzymes displayed catalytic activity 

of a comparable magnitude to that of the wild-type (Figure 24).  This indicates 

Cys99 is not required for turnover. We then hypothesized the role of the disulfide 

bond to be the protection of Cys55 against irreversible oxidation. 

 

Figure 24. Activity of wild-type QueF (black), mutants C99A (red) and C99S (blue) 
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To test this hypothesis, the enzyme was treated with hydrogen peroxide 

and the oxidation was subsequently quenched using catalase. QueF was then 

tested to determine remaining activity. About 90% of activity is lost within 15 

seconds of treatment and the enzyme is essentially inactive after one minute 

(Figure 25), demonstrating that it is sensitive to oxidative conditions.  

 

Figure 25. Inactivation of QueF upon treatment with hydrogen peroxide. 

 

 To reduce the enzyme and rescue activity the oxidized enzyme was 
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thioredoxin, which is a redox protein present in all organisms, significant 

reactivation of the enzyme (∼50% of initial activity) was observed (Figure 26). 
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Figure 26. Recovery of oxidized wild-type enzyme activity upon treatment with thioredoxin. The 
percentage recovery achieved is shown as a function of thioredoxin treatment time. 

 

If the recovery of activity is made possible because the enzyme is oxidized 

to a Cys55-Cys99 disulfide bond and not sulfenic and sulfonic acids, then QueF 

enzymes missing Cys99 should be unable to recover activity. To test this, 

mutants C99A and C99S were tested in the same manner as the wild-type.  
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An example of the results is shown in Figure 27 where activity is shown as 

the loss of absorbance of the cofactor (NADPH) at 340 nm over time. Activity of 

the wild type enzyme (orange) can be recovered to about 50% of the initial 

activity (WT control, black) upon treatment with thioredoxin. However, both 

mutant enzymes C99A (blue) and C99S (red) remained inactive even after 60 

min of treatment with thioredoxin.  

 

Figure 27. Activity recovery after 60 min treatment with thioredoxin. 
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3.3. Conclusions 

 The role of residues K80, K83 and R125 in catalysis was evaluated by 

mutating them to K80A, K83A, R125A and R125K. All mutant enzymes were 

capable of binding the substrate preQ0 and forming the thioimide intermediate, 

demonstrating that the native structure was intact.  

 When mutations K80A, K83A or R125A were introduced the resulting 

enzyme was inactive. Since substrate binding was still possible in these cases 

and both residues are shown in close proximity to NADPH in the binding model, it 

is likely that these residues are required to bind the cofactor. Whether they are 

involved in direct binding of the cofactor or retaining the correct structural 

configuration of the active site is unknown. Further investigation will be 

necessary to ascertain the exact role of these residues.  

The mutant R125K was found to have significant activity with a kcat/KM 

approximately 10x less that of the wild-type enzyme. The docking model for 

NADPH shows two Arg125 from two different subunits come together in the 

active site and are in close proximity to the negatively charged phosphates of 

NADPH. The results obtained are indicative of the need for a positively charged 

residue at this position, which can form an ion pair with negatively charged 

phosphate. Further analysis will be required to definitively establish the role of 

this arginine in catalysis. 
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Analysis of dihedral angles of the disulfide linkage between Cys55-Cys99 

along with the results obtained in the oxidation experiments indicate a functional 

role for the disulfide bond in preventing the enzyme from being inactivated under 

oxidative stress conditions.  

While DTT was not effective at rescuing activity, significant recovery was 

observed when the biological redox protein thioredoxin was used. It is 

reasonable to believe that full recovery is not possible as treatment with 

hydrogen peroxide unselectively damages amino acids in the enzyme that can’t 

be rescued by the addition of reducing agents.  

Lack of recovery in the C99A and C99S mutants further highlights the 

need for Cys99 in order to effectively prevent irreversible oxidation of Cys55, 

which could potentially render the enzyme unable to turnover. 
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Chapter 4. QueF-like 

4.1 introduction 

4.1.1 Archaeosine biosynthesis 

Archaeosine is one of the rare tRNA modifications conserved quasi-

universally in Archaea.52,126  This hypermodification is found at position 15 of all 

tRNAs in every sequenced Archaea with the exception of Haloqadratum 

walsbyi.127 This degree of conservation is also observed for ArcTGT, the enzyme 

that catalyzes the exchange of guanine for preQ0 at position 15 of archaeal 

tRNAs. The gene encoding for arcTGT, tgtA, is in fact used as a signature gene 

family for Archaea. 

All Euryarchaeota and four Crenarchaeota (Sulfolobus tokodaii, Sulfolobus 

solfataricus, Ignococcus hospitalis, and Hyperthermus butylicus) sequenced to 

date contain the gene that encodes for Archaeosine synthase (arcS), the enzyme 

that catalyzes the conversion of preQ0-tRNA to archaeosine-tRNA in the last step 

of the archaeosine biosynthetic pathway128 (Figure 28). This conversion is not 

ATP dependent and therefore does not require hydrolysis of the nitrile to an 

amide. Instead NH3 is added directly from glutamine (or asparagine) hydrolysis.73  
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Figure 28. Archaeosine-tRNA biosynthetic pathway. 

 

4.1.2 Amidotransferases 

Glutamine amidotransferases (GATs) catalyze the removal of the 

ammonia group from glutamine and the transfer of this group to a new substrate, 

forming a new carbon-nitrogen bond.129 The GAT domain can exist as a separate 

unit or part of a larger polypeptide fused to a synthase domain. In the latter case, 

hydrolysis of glutamine in the glutaminase domain yields ammonia and this is 

subsequently channeled through a tunnel 10 to 40 Å long into the synthase 

domain130. The substrate differs for each GAT129. 

GAT enzymes are further classified based on the catalytic residues used 

to perform the chemistry. Class I or triad class use histidine, cysteine and 

glutamate to activate the cysteine thiol group. In Class II or N-terminal 

nucleophile (Ntn) the catalytic cysteine is at the N-terminus and its thiol is 

activated by the alpha-amino group. Structurally, class I GATs have a common 

open alpha/beta fold whereas class II are composed of antiparallel beta 

sheets130.  
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Another large class of ammonia transferring enzymes are the tRNA 

dependent amidotransferases. These include the heterotrimeric GatCAB 

enzymes which catalyze the conversion of the misacylated Glu-tRNAGln/Asp-

tRNAAsn to Gln-tRNAGln/Asn-tRNAAsn  utilizing glutamine or asparagine as 

ammonia sources, and the heterodimeric GatDE enzymes which convert Glu-

tRNAGln to Glu-tRNAGln in archaea and use glutamine as the source of ammonia. 

Both of these families of enzymes are ATP dependent and they phosphorylate 

the gamma-carboxyl of the Glu/Asp residue attached to the tRNA prior to 

amidation.  

QueF-L and arcS are both unrelated to all of the class I and II and tRNA-

dependent amidotransferases. 

4.1.3. G+ biosynthetic enzymes 

ArcS is not conserved in all Crenarchaeota (Figure 29) and the amidino 

group of archaeosine must therefore be introduced by other non-homologous 

enzyme families in these organisms. Comparative genomic analysis showed that 

QueC proteins from several Crenarchaeal species are much larger than those 

found in most Archaea (470 residues vs. 270). These enzymes contain an 

additional N-terminal domain homologous to proteins from the glutamine 

amidotransferase class-I family. However, GAT-QueC homologs are not found in 

all Crenarchaeota that lack ArcS.128  
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Figure 29. Conservation of archaeosine metabolism enzymes in Archaea.128 

 

Another gene family was identified that exhibits a complementary 

distribution pattern to ArcS and GAT-QueC and contains a member that 

physically clusters with the queC gene in Aeropyrum pernix. This gene family 

encodes a protein family homologous to QueF, and was annotated as QueF-like 

(QueFL).  
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To test the hypothesis that GAT-QueC and QueF-like enzymes are 

functionally analogous to ArcS in the archaeosine pathway, the genes encoding 

for these proteins from Sulfolobus todokaii and Pyrobacculum calidifontis 

respectively were introduced into E. coli. The bulk tRNA produced by both strains 

was then analyzed and found to contain archaeosine at position 34 of the tRNA, 

consistent with both enzymes functioning as ArcS analogs.  

Bacterial TGT can utilize preQ0 as a substrate and therefore it is possible 

that GAT-QueC and QueF-L enzymes modify preQ0-tRNA in the same manner 

as arcS even though preQ0 in the E.coli tRNA is present at position 34 instead of 

position 15. However, given the homology of QueF-like to QueF, it’s also 

possible that QueFL catalyzes the conversion of preQ0 to G+-base. Because the 

bacterial Tgt has evolved to utilize preQ1 as the substrate, which like G+-base 

possesses a positively charged nitrogen group, it might be capable of utilizing 

G+-base as a substrate.   

While the canonical arcTGT cannot utilize archaeosine base as a 

substrate, structural comparison of this enzyme with the catalytic domains of 

arcTGT enzymes from Crenarcheota that lack ArcS, reveal differences in their 

active site. Substrate recognition determinants for preQ0, including the 

recognition feature for the cyano group, that are present in the canonical arcTGT, 

are missing in crenarchaeal organisms. These include Met102 (Leu in all 

crenarcheal arcTGT), and Val198 (Thr in crenarchaeal arcTGT), which are 

located in the helix that harbors the major antideterminants against recognition of 

preQ1. The modified active site could allow for accommodation of archaeosine, 
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making preQ0 a possible substrate for the QueFL enzyme. Therefore both preQ0 

and preQ0-tRNA could be considered substrates for QueFL (Figure 30). 
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Figure 30. Possible biosynthetic routes from PreQ0 to archaeosine-tRNA. 

To gain insight into substrate binding and catalysis, a sequence alignment of 

QueFL and QueF enzymes was generated to compare both families of enzymes 

(Figure 31). This revealed that residues of the preQ0 binding pocket of QueF 

such as Cys55, Tyr70 and Glu97, as well as Asp62 are strictly conserved in 

QueFL enzymes. The alignment also shows the absence of the QueF motif, the 

basis for the annotation as QueFL and not QueF.  
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Figure 31. Sequence alignment of Unimodular (uni) and bimodular (BiC) QueF and QueF-like 
(QueFL). Invariant residues of the substrate binding pocket are highlighted in red. Conserved 
residues from the QueF and QueF-like binding pockets are marked with a blue and black asterisk 
respectively. The QueF motif in unimodular QueF is boxed in blue and the QueF-like motif is 
boxed in pink. Secondary structure elements from the V. cholerae QueF crystal structure and 
from the P. calidifontis QueF-like homology model are shown above and below the sequences, 
respectively.128 

 

The sequence homology was consistent with QueF-like being a T-fold 

family member. A homology model was generated based on the crystal structure 

of Bacillus subtilis QueF27 (Manal Swairjo, unpublished data) (Figure 32).  
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Figure 32. Modeled QueF-like structure superimposed on QueF B. subtilis structure. QueF is 

shown in gray and blue, QueF-like is shown in green. Conserved positions are shown in red and 

QueF motif in blue. Residues are labeled black (QueF) and green (QueF-like).  

As expected, the result is a QueF-like structure model that is nearly 

superimposable with QueF. The QueF-like counterparts to key QueF catalytic 

residues (Cys21, Asp28, His62, Glu63 and Tyr35) are located at the same 

position. This model lead to the hypothesis that residues which play a key role on 

QueF catalysis may function similarly in QueF-like.  

4.1.4. Objective 

The work presented in this chapter aims to characterize the newly 

discovered enzyme QueF-like. First the substrate for the reaction as well as the 

nitrogen source required for the formation of archaeosine-tRNA must be 

determined. As previously discussed, both preQ0 and preQ0-tRNA are candidate 

substrates. Many amidotransferases are capable of using several sources of 

nitrogen and therefore glutamine, asparagine and ammonium chloride must all 
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be tested as sources of ammonia. The crystal structure of the enzyme is also 

elucidated  
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4.2. Results and discussion 

4.2.1 Expression and purification of QueF-like 

The gene encoding for Pyrobacculum calidifontis QueF was expressed in 

E. coli and the protein was purified by Ni-NTA affinity chromatography. SDS-

PAGE analysis of the purification is shown in Figure 33.  

 No protein was observed in the flowthrough (lane 3) or the 20 mM 

imidazole fraction (lane 4), indicative of tight binding to the Ni-NTA resin. 

Cleavage of the tag can be inferred from the molecular weight difference 

between the 200 mM imidazole fraction (lane 5) and the post Factor Xa cleavage 

fraction (lane 6), yielding the expected 12 kDa product.  

 

Figure 33. SDS-PAGE analysis of QueF-like purification.  Lane 1: molecular weight ladder, lane 
2: cell free extract, lane 3: flowthrough, lane 4: 20 mM imidazole fraction, lane 5: 200 mM 
imidazole fraction, lane 6:  QueF-like after Factor Xa cleavage.  
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4.2.2. Expression and purification of Methanococcus janaschii TGT. 

 The gene encoding for archaeal tRNA transglycosylase from 

Methanococcus janaschii (MjTGT) was expressed in E. coli and the protein was 

purified by Ni-NTA affinity chromatography.72 SDS-PAGE analysis of the 

purification is shown in Figure 34 No significant impurities are found in the 

purified protein (200 mM imidazole fraction). A fraction of the protein was lost in 

the 20 mM imidazole fraction, possibly a result of column overloading. The 

purified protein yielded the expected size of 78 kDa 

 

Figure 34. SDS-PAGE analysis of MjTGT purification.  From left to right lanes are 1: ladder, 2: 
cell free extract, 3: flowthrough, 4: 20 mM imidazole fraction, 5: 200 mM imidazole fraction. 
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4.2.4. Production of M. thermoautotrophicus preQ0-tRNAGln 

The tRNAGln corresponding to the CTG anticodon for Methanobacterium 

thermoautotrophicus was produced by T7 RNA polymerase transcription and 

purified by urea-PAGE gel (Figure 35) 

 

Figure 35. Urea-PAGE purification of in vitro transcribed M. Thermoautotrophicus tRNAGln . Full 
length tRNA product is indicated with an arrow. Bands underneath show incomplete transcripts 
and remaining rNTPs. 

The product was extracted in ammonium acetate/EDTA buffer overnight and then 

precipitated with ethanol. The purified product was modified using MjTGT to 

incorporate preQ0 at position 15 of the tRNA. Exchange of the unmodified base 

for preQ0 can be observed via the guanine exchange assay. In this reaction, 

radiolabeled guanine is exchanged for cold preQ0 and the DPM counts of the 

modified tRNA decrease over time. (Figure 36). 
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Figure 36. Loss of radiolabeled guanine during the MjTGT exchange reaction. 

 

Incorporation of preQ0 can then be confirmed by enzymatic digest of the 

resulting preQ0-tRNA and subsequent chromatographic analysis. Figure 37 

shows the HPLC trace for the analyzed tRNA digest products.  

Peaks correspond to nucleosides cytidine (8 min), uridine (10.2 min), 

guanosine (17.8 min) and adenosine (18.2 min) respectively. PreQ0 nucleoside 

elutes at a retention time of 24 minutes.  
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Figure 37. HPLC analysis of digested preQ0-tRNA. Peaks correspond to cytidine, uridine, 
guanosine, adenosine and preQ0 nucleoside. 

 

4.2.3. QueF-like substrate identification 

In the homology model QueF-like Cys21 is located at a structurally 

equivalent position to Cys55 in QueF. This led to the hypothesis that Cys21 could 

form a thioimide intermediate with preQ0 and/or preQ0-tRNA. To test the 

hypothesis, each candidate substrate was titrated into the enzyme under 

appropriate buffer conditions and changes in absorbance around the thioimide 

absorbance maxima (376 nm) were monitored by UV-Vis spectroscopy (Figure 

38).   
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 An increase in absorbance around the 376 nm region is observed upon 

subsequent additions of substrate indicating preQ0 is capable of binding and 

reacting to form the covalent thioimide intermediate. The figure inset shows this 

region expanded for clarity.  

Figure 38. UV-Vis spectroscopy of preQ0 addition to QueF-like. The thicker lower trace 

corresponds to the protein (20 µM) absorbance prior to substrate addition. The finer traces 
correspond, from bottom to top, to preQ0 concentrations of 10, 20, 40, 60, 80, and 120 µM 
respectively. 
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Figure 39 is a summary plot of the increase in absorbance as a function of 

preQ0 concentration.  

Figure 39. Increase in 376 nm absorbance as a function of PreQ0 concentration. 

 

 

 

 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120 140

A
b

so
rb

a
nc

e
 @

 3
7

6
 n

m

[PreQ
0
] / µM



 

 83

To test if preQ0-tRNA was also capable of binding to QueF-like and 

forming the thioimide intermediate, QueFL was titrated with preQ0-tRNA to probe 

for thioimide formation. The results of this experiment are presented in Figure 40.  

As shown, an increase in absorbance was also observed in this case, indicating 

the ability of the enzyme to bind both the preQ0 base and the preQ0 modified 

tRNA.  

Figure 40. UV-Vis spectroscopy of preQ0-tRNA addition to QueF-like. Inset shows the region 
around 376 nm expanded for clarity. 
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Determining whether preQ0 or preQ0-tRNA can be turned over by QueFL 

was somewhat problematic as archaeosine base readily deaminates in water, 

reverting back to preQ0, making it difficult to monitor in enzyme assays.  

Figure 41. Loss of thioimide intermediate absorbance as a function of reaction time. Ammonium 
chloride, control reaction, glutamine and asparagine absorbance at 376 nm are plotted from top 
to bottom as a function of time. 

 

However, the disappearance of the thioimide bond upon reaction with 

ammonia in principle can be utilized as a tool to track the fate of the thioimide 

intermediate. In this experiment the thioimide must be pre-formed followed by 

removal of excess preQ0 or preQ0-tRNA so new intermediates can’t form and 

then react to form the product.  Figure 41 shows the results of this experiment 

when preQ0 base is used as a substrate and ammonium chloride, glutamine and 

asparagine are used as nitrogen sources, respectively.  
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Over the course of 25 minutes no difference was observed between the 

control sample and those containing one of the three nitrogen sources, 

suggesting that while preQ0 does react to form the thioimide intermediate, it does 

not turnover.  

 To test if preQ0-tRNA is the substrate for the production of G+-tRNA,  the 

thioimide intermediate was also similarly monitored using ammonium chloride, 

glutamine or asparagine as nitrogen donors (Figure 42).  

 Similar to the case with preQ0 , when asparagine (dotted line) or glutamine 

(dashed line) was used as a substrate, no changes in absorbance quickly 

decreased, consistent with turnover to form G+-modified tRNA.  

Figure 42. Loss of thioimide absorbance at 376 nm for the reaction of QueF-like with preQ0-tRNA 
and ammonium chloride (solid), glutamine (dashed) and asparagine (dotted) respectively. 
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Figure 43 shows absorbance scans between 300-460 nm at 0, 30 and 60 

minutes when the nitrogen source is ammonium chloride.  

 

Figure 43. Loss of thioimide absorbance when preQ0-tRNA and ammonium chloride are used as 
substrates for archaeosine formation. Top trace corresponds to 0 min, middle trace to 30 min and 
bottom trace to 60 min. 

To confirm that G+-modified tRNA was being formed in the reaction with 

ammonium chloride, and to probe whether Gln and Asn were indeed incapable of 

supporting turnover, QueFL was allowed to react with preQ0-tRNA and one of the 

three sources of nitrogen followed by LCMS analysis of product tRNA. The tRNA 

product was first isolated and digested down to nucleosides using nuclease P1 

(endonuclease), snake venom phosphodiesterase (5’ exonuclease), and alkaline 

phosphatase.  
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Preliminary HPLC analysis from the ammonium chloride reaction was 

found to contain products with retention times consistent with preQ0 (31 min) and 

archaeosine (32 min), as well as the canonical nucleosides cytosine (8 min), 

uridine (10 min), guanosine (18 min) and adenosine (24 min). (Figures 44 and 

45).  

Figure 44. HPLC of digested tRNA from the reaction between QueFL, preQ0-tRNA and 
ammonium chloride. 
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Figure 45. Absorbance spectrum of HPLC peaks at 31 min (left) and 32 min (right) for the 
product of the reaction between QueFL, preQ0-tRNA and NH4Cl. 

 

 

Subsequent, HPLC coupled with positive mode ESI-mass spectrometry 

was performed. The m/z ratios for the 18.4 minute peak are shown on the top 

portion of Figure 46, where the main ion is 325.12. This ratio is consistent with 

the predicted values for archaeosine nucleoside shown at the bottom of the 

figure. No archaeosine was found in the digests corresponding to reactions 

where glutamine or asparagine had been used as nitrogen sources.  
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Figure 46. ESI-MS analysis of the digested tRNA product from the reaction between QueF-like, 
preQ0-tRNAGln  and ammonium chloride. Top shows the mass of products that elute at 32 
minutes. Bottom corresponds to the predicted m/z for archaeosine nucleoside. 
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4.2.5. Crystal structure of QueF-like.  

Two crystal structures for Pyrobacculum calidifontis QueF-like were 

determined by Manal Swairjo (submitted manuscript). The crystal structure of the 

enzyme with preQ0 bound was determined using the selenium-multiwavelength 

anomalous dispersion method. The apo structure was then solved by molecular 

replacement using a single protein subunit from the preQ0-bound structure 

(Figure 47). The overall structure is formed by a symmetric tunnel-fold 

homodecamer of two head-to-head facing pentamers with 10 active sites located 

at the interface between monomers. Each monomer is a T-fold β4α2 domain 

composed of an amphiphatic beta sheet and two antiparallel α-helices layered on 

the concave side.  

The central tunnel is 24 Å wide and 58 Å long and is lined by 60 salt 

bridges protruding from the hydrophilic face of the beta barrel and originating 

from adjacent beta strands within each subunit and between subunits (Figure 

46). These salt bridges presumably confer additional structural stability at high 

temperatures, which could be required to stabilize QueFL.  
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Figure 47. Top (left) and side (right) view of the QueFL homodecamer. Each monomer is colored 
differently and the preQ0 bound molecules are depicted in green. Salt bridges are shown in red 
and blue as stick models.  

 

The cleft between two subunits of the same pentamer forms the preQ0 

binding pocket. The left wall is formed by the loops that connect helices α1 and 

α2 (Ser54-Leu61), strands β1 and β2 (Cys21-Thr26), and strands β3 and β4 

(Tyr90-Val93), as well as helix α2 (Leu61-Asn78) and strand β4(Val93-Gly103), 

from the same subunit. The right and back of the cleft are formed by the N-

terminal part of strand β1 (Val11-Arg16) and helix α1 (Ala44-Lys49) as well as as 

an N-terminal polypeptide portion from an adjacent subunit (Val4-Ser9). The 

sulfur atom from the conserved active site Cys21 forms a bond with the nitrile 

carbon from preQ0 (Figure 48). As in QueF and other members of the superfamily 

the binding pocket is at the interface of both subunits. The Glu63 from one of the 

subunits forms hydrogen bonds with N1 and N2 of preQ0 and the amine group of 
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His62 hydrogen bonds O6. Coming from the same subunit, Asp28 forms a 

hydrogen bond with the thioimide nitrogen. The side chain oxygen from Glu46 

from the adjacent subunit and the carbonyl oxygen from Leu43 hydrogen bond 

with N9 and N2 of preQ0, respectively. Two hydrophobic patches sandwich the 

guanidine ring of preQ0. One patch is formed by Ile23 and Leu61 from one 

subunit and Leu2 from the next subunit. The other includes Tyr90 from one 

subunit and Ile45 from the neighboring one. The preQ0 binding pocket of QueFL 

is very similar to that of QueF.  

 

Figure 48. Formation of thioimide intermediate in QueF-like. 

QueF-like is the only known tunneling fold enzyme that binds a nucleic 

acid. To predict the putative tRNA binding site, docking of P. horikoshii tRNAVal 

was modeled using the Haddock webserver. The resulting model shows the D-

loop in an extended conformation with the negatively charged phosphate 

backbone bound to the positively charged inter-subunit interface and the 
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nucleobase at position 15 buried in the active site. The bases of the D-loop point 

towards the solvent and don’t interact with the protein.  
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4.3. Conclusions 

The gene encoding for Pyrobacculum calidifontis QueF-like was 

successfully expressed in E.coli to produce a 12 kDa protein which can be 

purified by Ni-NTA affinity chromatography.  The expressed protein is capable of 

binding preQ0 and forming a covalent thioimide adduct with both preQ0 and 

preQ0-tRNA.  

The thioimide intermediate can be used to monitor the reaction between 

the enzyme and its possible substrates. No changes in absorbance and therefore 

no reactivity was observed when preQ0 was tested as a substrate along with 

ammonium chloride, glutamine or asparagine as sources of nitrogen.  

Disappearance of the thioimide bond was observed when the substrate was 

preQ0-tRNA and the source of nitrogen was ammonium chloride, but not 

glutamine or asparagine. Production of archaeosine-tRNA was confirmed by 

HPLC-MS of the digested reaction products, indicating that these are indeed the 

correct substrates for QueF-like. This makes QueF-like the first known 

Tunneling-fold enzyme that binds a nucleic acid.  

The crystal structure of QueF-like was determined to be a dimer of 

pentamers with a large number of salt bridges pinning the two pentamers 

together. As it is the case for other members of the superfamily, the preQ0 

binding pocket of QueF-like is formed by two subunits and it is very similar to that 

of QueF.  
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Chapter 5: Diverse chemistries in a common fold 

As discussed in Chapter 1, T-fold proteins are present in all kingdoms of 

life and catalyze an array of chemical reactions: hydrolysis, cleavage of a carbon-

carbon bond, cleavage of a carbon-oxygen bond, epimerization, oxidation, and 

as shown in Chapter 4, transfer of an amidino group. Their substrates are 

different purines and pterins, positioned in the active site by a glutamine or 

asparagine conserved in all members of the superfamily.26 

The chemistry performed by these enzymes is diverse and the reaction 

mechanism utilized by each enzyme of the superfamily is significantly different. 

GCYH-1B is Mn2+ dependent39, QueE is Mg2+ dependent68, and PTPS is both 

Zn2+ and Mg2+ dependent34. No metals are required for catalysis by 7,8-

dihydroneopterin triphosphate epimerase47, Urate oxidase48, QueF27, or QueF-

like. No common mechanistic steps are shared between the previously 

discovered T-fold enzymes. However, we now know that both QueF and QueFL 

form a thioimide intermediate through the reaction of QueF Cys55 and QueFL 

Cys21 and their respective substrates, preQ0 and preQ0-tRNA.   

In terms of structure, each of these proteins contains a Tunneling-fold 

domain but the number of subunits required to form a functional enzyme varies47. 

GCYH-1A, unimodular QueF and QueF-like all form decamers (dimers of 

pentamers). Bimodular GCYH-1B is a tetramer.  
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QueF and QueF-like present the closest degree of structural similarity of 

all T-fold enzymes. These two enzymes belong to different branches of life,   

Bacterial and Archaeal respectively. The sequence similarity between these two 

families is low, with only a few residues universally conserved. However, the 

shared features between these two families are indicative of a close evolutionary 

relationship. Existing phylogenetic information is however insufficient to establish 

this relationship.  

The structural similarities between the two enzymes are shown in Figure 

49 (submitted manuscript), which depicts the structures of Vibrio cholerae (V. 

cholerae) QueF (A), Bacillus subtilis (B. subtilis) QueF (B) and Pyrobacculum 

calidifontis (P. calidifontis) QueF-like (C). In QueF-like over 60 salt bridges pin 

together the top and bottom pentamer. In B. subtilis QueF, the C-terminal Mg2+ 

sites contribute to this function. In QueFL the helix that is equivalent to that of the 

QF motif is shifted to the left. These distinctive structural features make the 

QueFL pentamer twisted with regards to QF, resulting in a narrower tunnel.  
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Figure 49. Structural comparison of V. chloreae QueF (A), B. subtilis (B), and P. calidifontis 
QueF-like (C). The subunits from different pentamers are depicted in different shades of gray, the 
helix harboring the QueF motif is shown in purple, and the loops defining the NADPH binding 
pocket are shown as purple spheres. PreQ0 is shown in green and NADPH in V. cholerae is 
shown in cyan. The residues indicated in red and blue form salt bridges that pin together the top 
and bottom pentamer. 
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Based on the shared structural features between QueF and QueFL, a 

reaction mechanism was proposed for the amidinotransferase (Figure 50). In this 

mechanism, binding of preQ0-tRNA is facilitated by interactions with Glu63 and 

Glu46. The substrate is anchored in the active site by Glu63 (the conserved T-

fold glutamate) through interactions with N1 and N2 of the preQ0 whereas Glu46 

serves as the proton donor for N9, preventing the delocalization of the lone pair 

and increasing the electrophilicity of the nitrile carbon to facilitate the nucleophilic 

attack that produces the thioimide intermediate.  

The ammonium cation is bound in a pocket created by Asp28 and the π-

system of Tyr90 and deprotonated by Asp28, which allows ammonia to attack the 

thioimide carbon from the face of preQ0 that is facing the core of the protein. 

Proton transfer is then possibly facilitated by a water molecule which is hydrogen 

bonded to His62 and the thioimide nitrogen. Cleavage of the carbon-sulfur bond 

results in collapse of the diaminothioorthoester producing archaeosine-modified 

tRNA.  
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Figure 50. Proposed mechanism for the QueF-like reaction.  

The remarkable similarity between QueF and QueF-like in terms of 

structure and substrate requirements, offer a great opportunity to further 

understand how enzymes adapt to serve new functions. Determining the full 

reaction mechanism for each enzyme will allow for further elucidation of the 

residues which play a key role in catalysis and those that are responsible for the 

maintenance of the dimer of pentamers quaternary structure. The work 

presented herein aims to deepen our understanding of the enzymes QueF and 

QueFL within the context of the Tunneling Fold superfamily and highlights how 

small differences within a fold can produce catalytic diversity.  
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Appendix A - QueF: how to measure kinetic constants for preQ0 

 

The NADP+ product of the reaction can be treated with sodium hydroxide 

to yield a fluorescent decomposition product, the concentration of which can be 

measured at varying time intervals in order to determine the reaction velocity at 

different concentrations of substrate. To do so, a standard curve is used to 

correlate relative fluorescence units to the concentration of NADP+ (Figure 1).   

 

The data obtained for this assay are summarized in Figure 2. Fitting the 

data to a Michaelis-Menten equation provides the kinetic values, Vmax = 18.8 ± 

0.7 nM/min, KM = 0.27 ± 0.03 µM, Kcat = 0.17 sec-1.  
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Figure 2. Michaelis-Menten fit of wild-type steady-state kinetics for variable PreQ0 
concentrations. Velocity in nanomolar per minute is plotted against PreQ0 concentrations in 
micromolar. 

 

Mutant R125K presents a significantly higher NADPH KM than that of the 

wild-type enzyme. In an attempt to be consistent in the way kinetic values for 

preQ0 are measured, a reaction was performed at NADPH concentration 10x that 

of the KM. However, the background fluorescence that results from the 

contaminating NADP+ was found to be too high to reliably measure nanomolar 
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concentration changes in the reaction. When the concentration of NADPH was 

lowered to 5x KM and 2.5x KM, the error was too high to obtain reliable 

measurements.  It was concluded that the changes in preQ0 KM that result from 

the R125K mutation will have to be determined by measuring the rate of preQ0 

binding to the mutant enzyme as compared to that of the wild-type. As arginine 

125 has been predicted to be involved in the binding of NADPH, it is expected 

that the effect on preQ0 binding will be minimal. 
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Appendix B - QueF-like: Glutamine as a nitrogen source for the QueFL 

reaction 

To further assess the viability of glutamine as a nitrogen source in the 

QueFL reaction with PreQ0-tRNA, [14C]-glutamine was used as a substrate, and 

the reaction was monitored by thin layer chromatography. Appropriate control 

reactions were also performed. The results are shown in Figure 3 below. The 

darker TLC spot corresponds to glutamine (by retention factor) and the lighter 

spot to glutamate. No difference in glutamate formation was observed between 

the reaction containing all the components and those used as a control. The 

small amount of glutamate formed in all reactions can be attributed to hydrolysis 

of glutamine. Glutamine was therefore deemed not a substrate for the reaction.  

 

 

 

 

As previously discussed, glutamine amidotransferases utilize a cysteine in 

the active site in order to remove nitrogen from glutamine. QueF-like contains a 

Figure 3. Radioactive glutamine as a source of nitrogen 
for the QueFL reaction. From left to right, TLC traces 
correspond to Gln + buffer + QueFL + PreQ0-tRNA (left) 
and controls Gln + buffer, Gln + buffer + QueFL, Gln + 
buffer + QueFL + PreQ0 and Gln + buffer + PreQ0-tRNA 
(right) respectively. Legend is shown below TLC to 
indicate approximate DPM in the reactions. 



 

 114

single conserved cysteine and it has been shown here that this cysteine binds 

PreQ0 and is therefore not available for nitrogen removal.   

Radiolabeled asparagine was not available to perform an equivalent 

experiment as the one described above for glutamine.  
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