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ABSTRACT

Neuromorphic engineering is the research field dedicated to the study and design of brain-

inspired hardware and software tools. Recent advances in emerging nanoelectronics pro-

mote the implementation of synaptic connections based on memristive devices. Their

non-volatile modifiable conductance was shown to exhibit the synaptic properties often

used in connecting and training neural layers. With their nanoscale size and non-volatile

memory property, they promise a next step in designing more area and energy efficient

neuromorphic hardware.

My research deals with the challenges of harnessing memristive device properties

that go beyond the behaviors utilized for synaptic weight storage. Based on devices that

exhibit non-linear state changes and volatility, I present novel architectures and algorithms

that can harness such features for computation.

The crossbar architecture is a dense array of memristive devices placed in-between

horizontal and vertical nanowires. The regularity of this structure does not inherently

provide the means for nonlinear computation of applied input signals. Introducing a mod-

ulation scheme that relies on nonlinear memristive device properties, heterogeneous state

patterns of applied spatiotemporal input data can be created within the crossbar. In this

setup, the untrained and dynamically changing states of the memristive devices offer a

useful platform for information processing. Based on the MNIST data set I’ll demon-

strate how the temporal aspect of memristive state volatility can be utilized to reduce
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system size and training complexity for high dimensional input data. With 3 times less

neurons and 15 times less synapses to train as compared to other memristor-based imple-

mentations, I achieve comparable classification rates of up to 93%. Exploiting dynamic

state changes rather than precisely tuned stable states, this approach can tolerate device

variation up to 6 times higher than reported levels.

Random assemblies of memristive networks are analyzed as a substrate for intrinsic

computation in connection with reservoir computing; a computational framework that

harnesses observations of inherent dynamics within complex networks. Architectural and

device level considerations lead to new levels of task complexity, which random mem-

ristive networks are now able to solve. A hierarchical design composed of independent

random networks benefits from a diverse set of topologies and achieves prediction errors

(NRMSE) on the time-series prediction task NARMA-10 as low as 0.15 as compared to

0.35 for an echo state network. Physically plausible network modeling is performed to

investigate the relationship between network dynamics and energy consumption. Gen-

erally, increased network activity comes at the cost of exponentially increasing energy

consumption due to nonlinear voltage-current characteristics of memristive devices. A

trade-off, that allows linear scaling of energy consumption, is provided by the hierarchi-

cal approach. Rather than designing individual memristive networks with high switching

activity, a collection of less dynamic, but independent networks can provide more diverse

network activity per unit of energy.

My research extends the possibilities of including emerging nanoelectronics into neu-

romorphic hardware. It establishes memristive devices beyond storage and motivates

future research to further embrace memristive device properties that can be linked to

different synaptic functions. Pursuing to exploit the functional diversity of memristive

devices will lead to novel architectures and algorithms that study rather than dictate the
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behavior of such devices, with the benefit of creating robust and efficient neuromorphic

hardware.
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1

MOTIVATION

Over the last several decades conventional computing architectures have evolved to pow-

erful systems utilizing billions of transistors on a small footprint, operating at GHz fre-

quencies and allowing large scale parallelism of independent processing units. This trend

allowed the for development of ever more powerful electronics that comprise a big part of

everyone’s present day life. Besides predicted obstacles for future developments of con-

ventional architectures [31], the ever tighter integration of electronics into the human life

has made another limitation apparent: whereas human vision, motion control, decision

making, etc., demands relatively low attention of its human subjects, the computational

demands for conventional computers for these tasks are extremely high. The problem

conventional computers face when executing algorithms mimicking neural computation,

is the mismatch between the architecture of the underlying hardware and the algorithms

themselves. While the separation of processing units and memory in a von-Neumann

architecture has given the possibility to compute any problem that can be defined algo-

rithmically, it seems to be this separation that causes neural computation to be inefficient.

The study and design of hard- and software tools providing efficient platforms for neu-

ral computation is the aim of neuromorphic engineering. High-level simulation tools al-

low the study of large neural networks of up to a few million neurons in real-time [6,7,53].

The focus of these tools is the modeling of a diverse set of functionalities observed in bi-
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ological brains and to develop a deeper appreciation of the possibilities and challenges

when computing with such large scale neural networks. These architectures lend them-

selves much better to neural computation than conventional computing architectures, i.e.,

as they account for the importance of communication between neurons. However, their

ability to model such large networks is, to varying degrees, a product of reusing aspects

of conventional architectures which imposes limitations in the ability to achieve levels of

energy-efficiency as known from biological brains. More emphasis on energy-efficiency

is given with the neuromorphic research on lower-level aspects such as the modeling of

multi-compartment neurons [46, 107, 111]. The detailed design of neurons allows mim-

icking of biological neurons at much less energy cost as compared to the higher-level

simulation tools. However, the detailed design of individual neurons shifts the challenges

to the scaling of computational performance and network size [39]. With the long-term

goal of building computers that are as powerful, and operate as efficiently as biological

brains, the mentioned limitations signify the need for architectures that combine network

scalability and the efficient utilization of hardware resources.

Emerging nanoelectronics promise to address these existing limitations. In 1971 Leon

Chua claimed the existence of a fourth fundamental electrical component [24]. Besides

the resistor, capacitor, and inductor, he described a device termed “memristor”. As the

name implies, the device exhibits two properties: it provides a resistive relation between

voltage and current and a memory of past signals applied to it. The memory is encoded

in the device’s resistance and can be altered with the application of corresponding voltage

signals. The physical emergence of memristive devices in 2008 [100] and their fabrication

in crossbar arrays (dense structures of horizontal and vertical wires) [49] offers new pos-

sibilities for the design of neuromorphic hardware platforms. The functional similarities

between memristive devices and biological synapses [20], in connection with learning
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rules such as spike-time-dependent-plasticity (STDP), provide the basis for storing and

altering the synaptic weights directly in the connections between neurons as opposed to

storing them in traditional memory. In addition to the storage aspect, a crossbar connect-

ing layers of neurons allows computation of vector-matrix operations such as the weighted

sum of neural inputs directly within the crossbar [117]. Based on these features, hybrid

designs of CMOS neurons and memristive synaptic arrays for the implementation of long-

term weight storage have been developed as a solution to further improve area and energy

efficiency of neuromorphic designs [47, 84, 95].

While memristive devices have been adopted by the neuromorphic community for

the efficient implementation of long-term memory, the importance of diverse synaptic

dynamics is not yet strongly reflected in memristor-based neuromorphic hardware plat-

forms. As an example, synapses with short-term potentiation have been shown to play

crucial roles in activity stabilization of neural circuits [102], memory consolidation [91],

and extraction of temporal information from incoming sensory inputs [35]. With memris-

tors exhibiting similar synaptic features [20, 21], my research focuses on the challenges

of exploiting memristive device properties for dynamic information processing.

An approach for computing with dynamic elements, where information is extracted

from dynamic state transitions is given by the framework of reservoir computing (RC)

[48, 74]. RC makes the assumption that an untrained dynamical system, the reservoir,

inherently performs computation. It is the task of a readout layer to interpret the reservoir

and map the computational states to target representations. Besides leading to reduced

training complexities [69], the more interesting aspect here is the ability to apply RC

to a wide range of physical substrates (i.e., a bucket of water [78]). This motivates the

consideration of memristive device properties beyond the stable long-term memory and

to build efficient neuromorphic hardware that extract information from the dynamic state
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changes of memristive devices.

My research establishes a more detailed understanding of how memristive devices can

be utilized in neuromorphic hardware. This work:

(a) introduces novel methods to neuromorphic engineering based on dynamic mem-

ristive networks,

(b) that can robustly utilize nanoscale memristive devices with nonlinear and volatile

properties,

(c) lead to hardware systems that harness different synaptic plasticity from volatile

to nonvolatile behavior,

(d) enable a wide range of applications from image and speech recognition to time-

series prediction, and

(e) reduce the overall system size and training requirements of neuromorphic archi-

tectures by exploiting intrinsic properties of memristive devices.
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2

BACKGROUND

This chapter will introduce reservoir computing, memristive devices, and memristive net-

works. Combinations of those will provide the background for my work.

2.1 RESERVOIR COMPUTING

Reservoir computing (RC) is a novel computing paradigm that harnesses intrinsic dy-

namics of untrained computational substrates. The universality of the term “untrained

computational substrate” was demonstrated in [78] by using a bucket of water for non-

linear pattern recognition problems - the application from which the term reservoir was

derived. Despite the universality, formalisms that help to study RC mostly rely on imple-

mentations of recurrent neural networks (RNN) .

In Fig. 2.1 the basic elements of RC are shown - the input layer, the reservoir and the

readout layer. The input layer applies the input signal u(t) via the fixed weight matrix Win

to the reservoir nodes. A reservoir node is the component that performs the computation,

i.e., a sigmoidal neuron. The reservoir nodes are connected among each other through the

fixed weight matrix Wres. Their time-dependent state x(t) is derived as:

x(t + 1) = f
(
Wres · x(t) + Win · u(t)

)
,

�
 �	2.1
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2.1. RESERVOIR COMPUTING

u(t)

Win Wout

Wres

y(t)

x(t)

Input layer Reservoir Readout layer

Figure 2.1: Generic reservoir illustration showing an input layer, the randomly structured
reservoir performing the computation, and the readout layer that interprets the internal
dynamics of the reservoir. Only links from the reservoir to the readout layer will be
trained, not the internal links of the reservoir.

where f is the activation function of a reservoir node (i.e., tanh). The output y(t) of the

system is produced within the readout layer by the matrix-vector product of the reservoir

states x(t) and the output weight matrix Wout:

y(t) = Wout · x(t).
�
 �	2.2

Given that Win and Wres are fixed, learning takes place by adjusting the output weight

matrix Wout only. This reduces the training complexity of recurrent neural networks to

the output matrix, which is commonly done by using regression techniques.

The definition of the weight matrices Win, Wres, and Wout underlies no restrictions and

the number of input connections, internal reservoir connections, and reservoir to readout

connections are parameters that can be set application specific.

RC simultaneously emerged in two variations, echo state networks (ESN) [48] and

liquid state machines (LSM) [74]. Both approaches rely on the basic principle of us-

ing a computational substrate, a reservoir, that creates a higher-dimensional representa-
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tion from which information can be extracted by a linear readout layer. Founded on the

same principles, differences in their implementation have given them slightly different

focus areas. The focus of ESN, which was influenced by classical machine learning, was

to present an architecture that addresses the complexity of training weights in a recur-

rent neural network. By assuming that a RNN inherently produces a higher dimensional

space of applied inputs, the only task is to train a linear readout layer to interpret a reser-

voir’s response to a given input. Common application areas for ESN are speech recog-

nition [105, 106], motor control [94], and forecasting problems [25] to name just a few.

More details on background, training and applications of ESN can be found in [70]. LSM

drew more inspiration from neuroscience and argued that biological brains contain neu-

ral micro-circuits that are not trained for a single purpose, but provide a computational

substrate for various sensory information. The proximity to neuroscience also informed

LSM to utilize spiking neurons (ESN typically uses leaky integrator neurons). Besides

applications that have also been addressed with ESN (i.e., spoken digit recognition [109]),

LSM provides a framework to further study neural computation [14]. In [72] theory of

LSM and resulting applications are discussed.

2.1.1 Extreme Learning Machines

Extreme learning machines (ELM) [44] are a class of feed-forward neural networks that

are based on untrained random weights between the input and the hidden layer of the net-

work. Under the assumption that the random weight matrix produces uncorrelated vec-

tors, connecting each hidden layer neuron to the inputs, random weight matrices extract

independent features from the input and provide good generalization performance. In

comparison to fully trained feed-forward neural networks, ELMs typically require more

hidden layer neurons to achieve comparable performance [44]. However, this comes with
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a significantly reduced training complexity (typically linear regression).

ELM differs from reservoir computing as it does not implement a memory of past

inputs. In RC typically achieved through recurrent connections, the feed-forward ar-

chitecture of the ELM in connection with memory-less hidden nodes does not provide

memory. Therefore, ELM is not suited for temporal classification or prediction prob-

lems. Implementation of hidden neurons with memory was shown to circumvent such

a limitation [104]. The possibility of implementing memory as well as reduced training

complexity through random, fixed weights then provides a framework that is similar to

RC and a relevant benchmark implementation to the research presented here.

2.2 MEMRISTIVE DEVICES

Memristive devices (also called memristor) were first discovered based on symmetry con-

siderations of the fundamental electronic circuit elements resistor, inductor, and capacitor

by Leon Chua in 1971 [24]. Each of these devices links two electric phenomena. The

resistance is a function of voltage and current, the inductance of voltage and flux, and

the capacitor of current and charge. Chua characterized memristance (resistance of a

memristor) as linking flux and charge (Fig. 2.2a).

M(q) =
dφ
dq

�
 �	2.3

Memristors are based on metal-oxide materials, i.e. TiO2, and their memristance is de-

fined by the oxygen vacancies distribution within the metal oxide. The distribution of

oxygen vacancies is equivalent to the charge of the device. Substituting charge q with its

time integral q =
∫

t
Idt explains how an applied current controls the memristance. The
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(a) Fundamental circuit elements
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(b) Memristor voltage and current
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(c) Typical I-V plot
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Figure 2.2: Memristor fundamentals. (a) The memristor as the fourth two-terminal circuit
element (reprinted from [100]); (b) the nonlinear dependent current through a memristor;
(c) the resulting hysteresis loop in the IV plane; (d) the resistance change over time. (b,c,d,
created from the model presented in [86]).

9



2.2. MEMRISTIVE DEVICES

whole memristance equation can be rewritten in terms of voltages and currents as:

M(q) =
dφ/dt
dq/dt

=
V(t)
I(t)

�
 �	2.4

As the memristance is time-dependent, it follows that the resistance of a memristor rep-

resents a memory of the history of the applied signals. Nonvolatile memristance is the

result of the oxygen vacancies distribution being input signal dependent. In the absence

of a signal (I(t) = 0) the charge will not change.

In Figures 2.2b-2.2d, I show the fundamental characteristics. An applied input signal

(here a sine wave) will result in a nonlinear relationship to the current through the device

(linear relationship for a resistor). This reflects the internal state change of the device,

which is represented by a varying resistance. The memory property can be better under-

stood when looking at the hysteresis loop, which implies that for a given voltage V , the

device current I will depend on the previously applied inputs.

The fabrication of the first physical memristor in 2008 [100] has started a wide vari-

ety of research aimed to integrate memristive devices into future architectures. The pre-

dicted form factors of 10nm in connection with their nonvolatile memory property, and

fast switching times fueled the research on memristors as the basic component of future

memory solutions that provide higher memory density at lower energy costs [36]. The

same properties make memristors a possible candidate to implement digital logic and it

was shown how two memristors suffice to compute any given Boolean logic function [65].

A very different direction of research is motivated by the close link of memristive devices

and biological synapses [20, 21]. By utilizing the analog value range of memristors, it

is possible to use them for the emulation of synaptic connectivity between neurons. The

convincing advantage of this approach over conventional computing architectures is that
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synaptic weights can be stored directly in the memristive devices, which at the same time

is the physical connection between the neurons. Conventional architectures store weights

in RAM and weights have to be fetched each time they are used. Considering two layers

of neurons, this allows the computation of the weighted sum of inputs for all neurons in a

single step. More details on this architecture will be provided in section 2.3.3

2.3 BASICS OF INFORMATION PROCESSING IN MEMRISTIVE NETWORKS

2.3.1 Terminology

Throughout this document I will use words such as “node,” “weight,” and “state.” As

some of this terminology is used in both, machine learning and electrical networks, I will

first present an overview of how I will use relevant terminology.

Node

In reservoir computing, typically implemented as recurrent neural networks, a neuron

is referred to as node. A node performs the processing of its inputs with the attached

weights. In addition, a node can apply an activation function to the weighted sum of

inputs. When talking about a node in the context of reservoir computing, I will refer to

it as reservoir node. For the sake of clarity, in some cases I might simply use neurons to

describe reservoir nodes, or nodes of neural networks in general.

In electrical networks the notion of a node is different. A node is a point in the elec-

trical network in which electrical components (i.e., resistor, memristor) connect. A node

does not perform any computation. It can be seen as intersections of wires and defines the

topology of the network. When talking about nodes in the context of electrical networks

I will refer to it as network node.
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Weight

Weight is a common term in all neural network architectures. A weight is typically asso-

ciated with an input signal to a neuron and defines a scaling factor to determine an input’s

significance. From a graph point of view, a weight is an attribute of an edge.

Often the memristive state, which is a unit-less parameter determining the resistance

of a device, is referred to as weight or abbreviated as w due to its functional similarity

with biological synapses. In memristive networks, the state of a memristor (weight) can

have two functions: (a) in connection with an applied voltage, the resistance is used to

scale the current through the device, (b) in a larger network, the resistance of a memristor

determines the device’s voltage drop in proportion to the total network resistance.

Weight Update

In neural networks a weight update is performed based on algorithmic rules. I.e., back-

propagation determines the network error and propagates the error back [92]. Depending

on a signal’s contribution to the error, the weight will be adjusted to reduce the error for

this data sample.

In neuromorphic memristive networks, where the weight is equivalent to a device’s

resistance, spike-time dependent plasticity (STDP) rules are applied to update memristors

according to the timing of neuron activities [1, 10, 33] .

Input Signal

In neural networks an input signal (either network or node input) is directly associated

with a weight and applied to one or more nodes that perform computation on that signal.

It carries information of sensory data or outputs of preceding neurons and is typically
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unit-less.

In memristive networks an input signal is applied to a network node (wire intersection)

and instead of being applied only to the directly connected devices, it spreads throughout

the entire network. In my work an input signal to memristive networks will always be a

voltage with unit [V]. Every memristive device in the network will experience a voltage

drop proportional to its weight (memristive state / resistance).

Network

In a neural network, such as a liquid state machine (LSM) and echo state network (ESN),

the network is a composition of nodes and links. A link is a connection between neurons

providing node inputs and corresponding weights, which define the signal flow and the

computation within the network.

A memristive network, equivalent to resistive networks, is a composition of memris-

tive devices connected in any possible topology. It differs from neural networks as signal

flow and computation are no obvious properties of such a network.

Network State

In neural networks, a network state is the result of a neuron’s computation (node output).

Depending on the network’s connectivity, it is either passed onto other neurons as input

and/or in case of RC used by a readout layer to determine the network response to an

applied input signal.

For memristive networks we have to differentiate between the device and the network

state. While a device state is defining a memristors contribution to the network activity, it

cannot always be accessed due to physical constraints: (a) if a memristive state functions

as current scaler (see above), then the resulting current is a function of the device state and
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Neural Network Memristive Network
Network composition of nodes and links

of neurons
composition of memristive de-
vices

Node Neuron Intersection of wires
Weight Scaling factor Current scaling / voltage propor-

tional to input
Weight Update Algorithmically Dynamic / untrained
Input Affecting connected nodes Spreads throughout whole net-

work proportional to device
states

State Node output Current / network node voltage
Memristive state N/A Resistance

Table 2.1: Memristive network terminology overview

can be used as network state. (b) in case a memristor is connected in a network where it

determines a proportional voltage drop, then the exact state of the device cannot be easily

inferred and the network node voltage serves as network state.

2.3.2 Random Memristive Networks

To provide a better understanding of the terminology and its application, I present two

examples for neural and memristive networks in Fig. 2.3. Fig. 2.3a depicts a neural

network with nodes N an input signal u, weights wi, j with i and j denoting the connected

node numbers, and network states xi with i referring to the node that computed the state.

For simplicity, the nodes compute only the weighted sum of their inputs and do not apply

an activation function. Let’s assume u = 1 and wi, j = 0.5, then the network states will

result in x1 = 0.5, x2 = 0.75, x3 = 0.25, x4 = 0.5. Next, I will discuss a memristor network

and then highlight the important differences.

Fig. 2.3b shows a memristor network consisting of memristors M, input voltage u,

network nodes n, and device voltages VM. If we assume u = 3V and M1 = M3 = M4 =
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N1

N2
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N4wu1

wu2
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w34
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(a) Simple neural network

n1

n2

n3
u M1

M2

M3 M4

M5

0V

VM1

VM2

VM3
VM4

VM5

(b) Simple resistive network

Figure 2.3: Basic elements for computation (a) network of artificial neurons picturing
input, weights and network states; (b) resistive network highlighting the relevant network
nodes and corresponding voltage potentials for memristive devices.

M5 = 1kΩ and M2 = 2kΩ we can calculate node voltages n. Following resistive net-

work theory by considering the memristive states to be not changing, the total network

resistance MNet = 3kΩ. A node voltage is then computed as portion of the input signal

proportional to the ratio of the resistance from node n to ground (0V) and MNet. This

results in the following equations:

n1 =
(M2||(M3 + M4)) + M5

MNet
u, n3 =

M5

MNet
u, n2 =

M4

M3 + M4
(n1 − n3)

and node voltages of n1 = 2V, n2 = 1.5V, n3 = 1V .

I will now briefly discuss the fundamental differences that are important to understand

how I’ll later exploit memristive networks for computation. In a neural network, node

signals (input, node outputs) propagate throughout the network and experience scaling by

the corresponding weights. In a memristive network, signals spread out instantaneously

corresponding to the resistances between nodes. This leads to a few differences. First,

it introduces a strong node interdependency as the change of a single memristor will

affect all node voltages (states). Second, having shown that node voltages can depend on

multiple memristive devices, individual device dynamics might be reflected in the node
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(a) Memristive network states when
measuring absolute node voltages toward

ground. Average correlation of signals in this
example is 0.854.
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(b) Memristive network states when
measuring relative memristor voltages.

Average correlation of states in this example is
0.645.

Figure 2.4: Memristive mesh network states measuring either absolute node voltages or
relative memristor voltages when exposed to a sine wave. By measuring relative signals
rather than with respect to a common ground the individual memristive state changes
better reflect the network dynamics.

voltage much alleviated.

These alleviated node dynamics are the result of measuring their absolute voltage

with respect to ground (i.e., n1 reflects the collective states of M2 − M5 relative to M1).

This method was applied in the first publication on memristive reservoir computing by

Kulkarni and Teuscher in 2012 [62]. An improved method that better reflects the device

dynamics is by measuring relative voltages VM [17]. This is done by subtracting the

absolute voltages found on both sides of a memristive device (i.e. VM3 = n1 − n2). An

example is given in Fig. 2.4. Here a memristive mesh network is driven with a sine

wave and absolute and relative voltages are measured. While there is still strong signal

correlation in both setups due to the mentioned reasons, measuring relative voltages VM

can create less correlated signals.
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Nanowire

Memristor

Row input

Column output

Figure 2.5: Standard crossbar setup with row inputs, memristive devices formed at every
intersection of nanowires, and column outputs.

2.3.3 Memristive Crossbars

In Fig. 2.5 a schematic of a memristive crossbar in a neuromorphic architecture is shown.

The memristors emerge at intersections of nanowires and enable full connectivity between

two layers of neurons, the input neurons (shown in red) and the output neurons (shown in

green). The memristive state of each device defines the connection strengths between an

input neuron (row) and output neuron (column). In hardware terms, this setup allows the

multiplication of an input vector u, encoded as voltages, with the synaptic weight matrix

W, represented as resistances, to result in the output vector y that is physically present as

currents:

y(t) = W · u(t).
�
 �	2.5

Also implied by the mathematical formulation, it is worthwhile to mention the par-

allelism within the architecture. A row input applies to all memristive devices along the

given row in equal strength. In electrical terms, all columns connected to a specific row

represent the same node (see Table 2.1 for the definition of node).
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2.4 RELATED WORK

A general, in some ways even philosophical, motivation for my research was well de-

scribed by Crutchfield et al. in their editorial to a focus issue on information processing

in dynamical systems [26]. The raised issue of usefulness with respect to the output of

computation implies questions on the design of a computing architecture. Designed com-

putation is the omnipresent approach in which we build computers to this day, for the

reason that the output of the processing is directly useful to us. On the contrary, intrinsic

computation does not imply the very same understanding of usefulness. Instead, it needs

to be studied how intrinsic properties of given computational substrates can be harnessed

for computation that is useful. With this in mind, we then have the possibility to appreci-

ate engineered as well as natural computation and build “faster, less expensive, and more

energy efficient” systems.

Before the “rediscovery” of the memristor by Strukov et al. [100] (after the initial

formulation in 1971 [24]), the crossbar architecture was already considered for fabri-

cating emerging molecular/nanoscale electronics in dense arrays [23, 40, 66]. Soon af-

ter the physical implementation of a memristor [100], first implementations of memris-

tive crossbar arrays were demonstrated, feeding the promises of future dense memory

arrays [49, 58, 67]. Subsequent research efforts produced memristive devices that dif-

fered in the used materials, their switching characteristics, and their electrical proper-

ties [21, 32, 38, 54, 60, 116]. The functional similarities between memristive devices and

synapses encouraged neuromorphic applications to consider these emerging devices for

more area and energy-efficient architectures [22, 39, 47, 95].

A very recent publication discusses the plasticity of memristive devices for spiking

neural networks [93]. The authors argue that the range of existing memristive devices
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offers a range of different applications, and that researchers should embrace diversity

rather than limiting applications to nonvolatile storage.

The possibility of temporal processing with volatile memristive devices was discussed

by Berdan et al. [8]. Based on a physical device implementation, they have linked the

device dynamics to that of biological short-term synaptic plasticity. This short-term plas-

ticity is argued to enhance the discrimination of spatiotemporal patterns. More recently

similar propositions were made for another device implementation [71]. However, both

articles focused on the device dynamics and did not present an architecture as a functional

verification of a system employing short-term synaptic plasticity.

An alternative architecture to crossbar structures was shown to be the random assem-

bly of memristive devices [4, 27, 96, 98]. Due to the simplicity and cost-effectiveness of

the fabrication of these random structures, they pose an interesting substrate for com-

putation. The authors highlight the suitability of such architectures for reservoir com-

puting [48, 74]. The complex network structures and device dynamics provide emerging

collective network properties from which dynamic state transitions can be harnessed for

computation.

Validated by the ability to fabricate random memristive networks, the first demon-

stration on computing with such networks was published by Kulkarni and Teuscher in

2012 [62]. They have shown the basic suitability of random memristive networks, func-

tioning as reservoir, for simple pattern classification tasks. This work has shown how the

frequency dependent state changes of memristive devices can be utilized for nonlinear

computation and served as the starting point for my own research presented here.

In [19], a simple connection of memristors in series was shown to utilize inherent

device variation to create diverse device responses to an input signal. However, with

one current source for each memristive device the architecture is neither scalable nor
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does it lend itself to utilize complex network dynamics. A traditional echo state network

approach with memristive devices as synapses was presented in [76] and a continuation

where memristors implement the trainable weights at the readout layer in [61]. A compre-

hensive system that not only discussed memristors as synapses, but also presented them

detailed within the architecture and provided algorithms to train them was shown in [28].

In all three papers memristive devices were used as synapses that get updated during an

initialization or training phase. The overall architecture and computation follows more

closely other neuromorphic architectures and does not present a memristive reservoir as

for example understood by [4, 62].
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3

MEMRISTIVE CROSSBARS AS DYNAMICAL SYSTEMS

In neuromorphic hardware systems the most widely discussed memristive architecture is

the crossbar, which can provide efficient synaptic weight storage [3, 22, 57, 84, 95]. The

regularity of the nanowire placements allows for controllability and scalability of the fab-

rication process [34]. It is also a scalable architecture in the sense that all devices within

a crossbar are directly placed in-between an input and an output neuron. Hence, the lack

of device interdependencies, as discussed in section 2.3, does not limit the size of the

crossbar and an arbitrary amount of synaptic weights can be implemented by increas-

ing crossbar sizes (other fabrication restrictions such as wire length or resistance might

apply).

However, is the simple storage of synaptic weights with occasional, ideally linear,

state updates everything that memristive crossbars offer for computation? With respect to

Crutchfield et al.’s considerations on intrinsic computation [26], is the memristive device

behavior complex enough to exhibit nonlinear dynamics that support useful information

processing? This question was addressed in publications were memristive devices are

considered suitable candidates for nonlinear computation in non-crossbar architectures

[4, 16, 17, 30, 62].

We can consider a memristive device as a component that harnesses intrinsic non-

linear device properties. Then, by computing in a higher dimensionality based on non-
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linearity [5], the memristive device can potentially pose a more efficient processing unit as

compared to the current use as simple synaptic weight storage. While an individual device

holds potential for computation, the crossbar, as a collection of many individual devices,

is not an obvious candidate for a dynamical system. A dynamical system is characterized

by operating in a high dimensional state space with a mathematical function being able

to determine the transitioning through such a space [112]. Yet, the only equation relevant

for the crossbar is one for the memristive state updates - a single variable equation with

a low dimensional state space. In order to evaluate if the crossbar can pose a viable dy-

namical system that exhibits reservoir computing principles such as fading memory and

random structure for heterogeneous computing, we have to consider the broader archi-

tecture within which the crossbar operates to overcome limitations, such as the lack of

device-interdependencies and the feed-forward flow of data.

The research in this chapter will introduce an interpretation of the crossbar useful

for dynamic and heterogeneous computing. I will present the physical and mathematical

basics that allow computation within crossbars. The first set of experiments will answer

research questions on the general feasibility of the approach as well as give insights on

relevant system parameters. In a second set of experiments I will then address relevant

components in much more detail and present a comprehensive analysis of computing

within memristive crossbars.

At the end of this chapter it will be clear how input data is processed within a crossbar,

how to extract relevant information from the memristive devices and how it compares in

terms of resources and computational performance (accuracy and speed). The research

presented in section 3.4 has been published in [18].
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3.1 RESEARCH QUESTIONS

In this section I will briefly outline the concrete research topics that motivated the investi-

gation of memristive crossbars for dynamic computation. Each topic is briefly motivated

by pointing to existing work. The formulated questions will then serve as the central

themes throughout the chapter.

Research Topic 1. Architecture and Information Retrieval

Neurophysiological experiments highlight the importance of short-term plasticity for com-

putation of spatiotemporal patterns [35]. A software-based neuromorphic implementa-

tion for spatiotemporal feature detection mimicking dendritic computation has been pre-

sented [104]. Given a set of volatile memristive devices in a crossbar architecture, which

is inherently homogeneous in its structure and functionality, the initial work is focused on

methods to create within, and extract from the crossbar a heterogeneous representation of

the applied input data that is suitable for further processing.

Question 1.1. How can the crossbar structure, where all columns are functionally

identical and subject to the same input data, exhibit diverse patterns within it’s

columns?

Question 1.2. As accessing large amounts of individual memristive devices within

a crossbar is impractical, how can one retrieve the state patterns present within the

crossbar?
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Research Contributions

These research questions lead to an original architectural and algorithmic implementation

of memristive crossbars that can be used beyond weight storage. A successful demon-

stration of creating heterogeneous crossbar states as a function of spatiotemporal input

data will: a) demonstrate how state volatility can be harnessed for computation as short-

term memory rather than being considered a negative device property, and b) constitute a

scalable architecture for nonlinear (pre)-processing of data.

Research Topic 2. Formalizing Dynamic Crossbar Computation

The work presented in [18] relied on exploiting different features in spatiotemporal pat-

terns by applying the same input data in different rotations and combinations to the cross-

bar rows and columns. For the used data set, this method produced satisfying results.

However, as no formalisms were presented, the scalability and viability of this approach

for other data sets cannot be predicted reliably. Therefore, the second proposed research

contribution aims to answer the following questions:

Question 2.1. Given the mathematical descriptions for an individual device, how

can bias matrices for the crossbar columns be designed to best utilize a crossbar of

individual memristive devices as a dynamical system?

Question 2.2. How can a bias matrix be designed in order for some input features

to have an excitatory and other an inhibitory effect on the resulting individual device

states?

Question 2.3. With the fixed connectivity within the crossbar, a single memristive
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device cannot combine random features from the whole data sample, but is limited

to access a subset of it. How strongly does this limit the utility of the crossbar as

dynamical system for feature extraction?

Question 2.4. While the crossbar achieves a high dimensional state representation

of the applied inputs, accessing these states requires transferring them into an output

vector, which causes strong dimensionality reduction. How well can information be

preserved in the lower dimensional space?

Research Contributions

As an already established contribution, [18] has been the first example of utilizing a mem-

ristive crossbar as a dynamical system for computation. The research questions make

contributions by providing formalisms that help to study the computational capacities

and limitations of this approach. This work will extend the methods in neuromorphic

computation in memristor based architectures, providing the ability to create more area

efficient hardware implementations and reduced training complexity by integrating a dy-

namical system based on short-term synaptic plasticity. While my research focuses on

memristive devices, the proposed methods are independent of a specific device and may

also be applicable to a wider range of volatile nanoscale devices.

Research Topic 3. Parameter Variations

In hardware implementations, any proposed architecture has to consider device character-

istics that might cause divergence from the simulation results. With memristors being pro-

duced at the nanoscale, variations in their behavior is an inevitable characteristic [32,77].

25



3.2. VOLATILE MEMRISTIVE DEVICES

Question 3.1. Device variation describes the behavioral differences of individual

devices. Based on realistic statistical distributions of device parameters, what extent

of device variation can this approach tolerate?

Question 3.2. Given a single memristive device in a fixed state, cycle variation de-

scribes the statistical variations in the device’s response to an applied input signal.

What is the level of cycle variation that can be tolerated?

Research Contributions

I provided an understanding that any hardware implementation at the nanoscale will in-

herently exhibit variation. This research provides an understanding of: (a) how sensitive

memristive crossbars as dynamical systems are to variation in the devices, (b) what de-

vices are suitable based on known statistical distributions in their properties, and (c) how

the design of the reference matrix can increase variation tolerance by increasing noise

margins.

3.2 VOLATILE MEMRISTIVE DEVICES

In this section, I will discuss intrinsic memristive device properties. While being unfavor-

able to simple weight storage, these properties have potential in the field of dynamic and

temporal processing.

Generally speaking, reservoir computing principles require two properties: a) a dy-

namic system to map an input signal to a higher dimensional space by means of nonlinear

transformations and b) to exhibit fading memory, which provides a short-term memory

and ensures that a system’s response is only depending on inputs applied over a time

frame that corresponds to the temporal nature of the applied input data [48, 74]. Here I
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3.2. VOLATILE MEMRISTIVE DEVICES

will present a volatile memristive device that implements these properties at the device

level. We will use this device as the foundation to dynamic computing within crossbars.

Such a memristive device has been presented in [21] and was described mathemati-

cally in more detail in [22]. Equation 3.1 describes the nonlinear integration of applied

voltages (λsinh(ηV)) and the gradual state decay over time (−w/τ). The parameters λ, η,

and τ are constants derived to match experimental data. Fig. 3.1 demonstrates the non-

linear state changes as function of applied voltage pulses as well as of the inherent state

decay.

dw
dt

= (1 − ek)λ ∗ sinh(ηV) −
w
τ

�
 �	3.1

with k:

k =


−1+w

0.5 if V > 0

−w
0.6 if V < 0

�
 �	3.2

I(t) = (1 − w(t))α
[
1 − exp (−βV(t))

]
+ w(t)γ sinh (δV(t))

�
 �	3.3

R(t) =
V(t)
I(t)

=
V(t)

(1 − w(t))α
[
1 − exp (−βV(t))

]
+ w(t)γ sinh (δV(t))

�
 �	3.4

Given the memristive device from equation 3.1, nonlinear integration and inherent

state decay allows us to map different temporal sequences to different state representations

of the same memristor. The memristive state w is a unit-less variable in the interval

w ∈ [0, 1] that determines the physical device resistance. By applying a read voltage

V (a sub-threshold voltage that does not alter the device state) to a memristive device,

the state-dependent resistance will determine the device current I (equation 3.3). Again,

α, β, γ, δ are curve-fitting constants to match experimental data. This ability will be the
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Figure 3.1: Dynamics of a volatile memristive device, as defined by equation 3.1) when
applying positive, negative, and no pulses. Positive pulses lead to an increased conduc-
tivity, no pulses allow a non-linear state decay, and negative pulses speed up the state
decay.

basis for employing individual memristive devices in a crossbar to function as elements

of a dynamical system.

To get an intuitive understanding on the relevance of the described properties I demon-

strate the mapping of temporal sequences to memristive states in Figure 3.2. Let’s as-

sume a set of binary streams S of length ten, with two out of ten bits active (i.e., s1 =

0010000010). With all bit streams containing the same number of active bits, any possi-

ble information content has to be encoded in the bit positions. Figure 3.2a is showing the

nonlinear state surface that results out of the temporal distances of the active bits. The in-

herent state decay gives the possibility to intrinsic processing of spatiotemporal patterns,

such as speech. The temporal aspect of these devices presents a possibility to implement a

short-term memory without the complexity of recurrent connections as typically present

in reservoirs with memory-less nodes. In contrast, Fig. 3.2b shows the mapping of the
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(b) Memristive state without state decay

Figure 3.2: Memristive states as a result of various bitstreams. (a) x and y axis define the
position of the pulses within the ten steps long bitstream. Due to the nonlinear integration
and the state decay the bitstreams are mapped to a nonlinear plane of the memristive state.
(b) without state decay, the same setup results in simple integration of two out of ten bits
and the bit positions do not affect the result.
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same bit streams for a memristive device with no state decay. With integration of input

bits only and no state decay, no temporal information can be extracted from input data.

3.3 MATHEMATICAL INTERPRETATION OF CROSSBAR DYNAMICS

In this section we will consider the discussed memristive device within a crossbar and

expand our considerations to computational aspects on the architectural level. At first we

will have a look at the crossbar architecture and the relevant application of data. In Fig.

3.3 we can see all relevant components to this approach. X represents the input data in

a spatiotemporal representation. Y is called the reference matrix and, just as X, has a

spatiotemporal representation. The function of the reference matrix will be explained in

the following paragraphs. W is the crossbar matrix in which each element w represent the

state of a memristive device.

A requirement for the crossbar being useful as a dynamical system is that it can,

similar to conventional reservoir computing approaches, process input data in a higher

dimensionality. Reservoir computing, and artificial neural networks in general, typically

employ kernel methods at the neuron level to process in a higher dimensionality [5, 13].

A kernel method can be described as:

k = fk(< x, y >)
�
 �	3.5

Here x and y are input vectors in Rm, fk is the kernel function, and k is the resulting

scalar computed in Rn. A well-known example is a perceptron where x would represent

the applied input vector and y the corresponding weight vector assigned to the inputs

[90]. The weighted sum of the inputs is then processed by a kernel function (activation

function), i.e., tanh. The computation in a higher dimensionality is carried out by the
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W

Figure 3.3: Relevant components for the mathematical interpretation of the crossbar as a
dynamical system. X is the input data, Y the reference matrix, and W the crossbar matrix
composed of memristive devices.
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nonlinear kernel function fk.

Given the nonlinearity of memristive devices we can consider them as providing a ker-

nel function. However, the mathematical definition of a memristive kernel function differs

from the general form. It has to be looked at as a two-step process. First, the integration

part (Eq. 3.1), followed by an inference step that retrieves the current memristive state

(Eq. 3.3). The reason for outlining the intricacies of a memristive kernel function is not

to conclude on a specific functional difference, but to give an idea on how the memristive

state, which is how we encode information, is depending on the components outlined in

Fig. 3.3 and how the memristive states are retrieved for further processing.

In terms of kernel notation the non-linearity is not applied to a weighted sum of vec-

tor elements, but the memristive state is the sum of non-linearity applied to each vector

element.

wT =

T∑
t=1

fm(xt, yt,wt−1)
�
 �	3.6

In this equation, w is the memristive state, xi is an element of the input data X, and yi

is an element of the reference matrix Y. The memristive kernel function fm was described

by eq. 3.1 and can be rewritten for the kernel method as:

wT =

T∑
t=1

λsinh(η(xt − yt)) −
wt−1

τ

�
 �	3.7

This equation highlights, that the effective input signal to a memristive device is the

voltage potential between x and y. Given that at any specific time the crossbar is driven by

an input vector x and a reference vector y, the matrix defining the device specific voltage

potentials can then be computed by the outer product of the two vectors (V = x ⊗ y).

Assuming we want a heterogeneous computation of the applied input vector x. With

the outer product defining the array of device specific voltages V in the crossbar, it then
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becomes apparent that the reference vector y can be used to create a heterogeneous set of

voltages in V.

To retrieve a memristive state for further computation after the application of the input

matrix X, a read voltage has to be applied. This read operation causes a current through

the memristive device and is a representation of the device state (Eq. 3.3). We now have

an understanding of the mathematical background that provides the ability to harness

memristive devices as nonlinear computing elements, an understanding of how to use the

overall architecture to force heterogeneous nonlinear state changes, as well as to retrieve

the states from the devices for further computation.

3.4 VOLATILE MEMRISTIVE DEVICES AS SHORT-TERM MEMORY

The sections on volatile memristive devices and the mathematical interpretation of dy-

namic crossbars has prepared us to answer research questions 1.1 and 1.2. We have estab-

lished that the key to heterogeneous processing of input data is within the design of the

reference matrix. Furthermore, accessing a memristive state is done by applying a readout

voltage. Within this section I will verify these concepts and investigate the internal repre-

sentations within the crossbar, discuss methods to efficiently access memristive states and

show how to interface the crossbar to subsequent classifiers. At the end of this section we

will have a better understanding of the overall approach as well as what open questions

we have to answer to further develop the concept of computing within crossbars.

3.4.1 Architecture

The design of a crossbar architecture useful to computation is informed by the mathemat-

ical background given above. However, first I want to create a deeper understanding of an

inherent obstacle to computation within the crossbar architecture - parallelism. Given a
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m×n crossbar, each row input xm is connected to n columns that experience the same input

signal xm, and hence would experience the same state transitions. This would result in all

n columns to exhibit the same state transitions and resulting state patterns, which creates

a redundancy that is not useful to computation. With respect to the mathematical basics

presented in section 3.3, the effective input signal to a memristor is not the voltage applied

to one of its terminals, but the voltage difference (potential) across both device terminals.

This creates the possibility of computing a row input xm applied to n column memristors

in n different ways by modulating the crossbar columns with a reference signal pattern y

of length n.

Utilization of a memristive crossbar for computation requires the combination of ar-

chitectural as well as algorithmic methods. In the following paragraphs I will outline

architectural aspects. Some of them will only make complete sense once the algorithmic

aspects have been introduced in section 3.4.2.

In Figure 3.4 I present the memristive crossbar architecture in two different versions.

Both of them consist of the crossbar itself and different methods of how to interface the

crossbar states to a subsequent classifier. In this setup the classifier is a multi-layer per-

ceptron (MLP). This was chosen as to compare the crossbar approach, as a pre-processing

step, to existing classifier implementations operating on the raw data with similar train-

ing complexity. The X and Y matrices represent the spatiotemporal input and reference

matrices respectively. I will now go into the differences between the two architectures.

Figure 3.4a considers a single crossbar driven by input X and a reference Y. After

the application of an input sample the crossbar exhibits a state pattern made up of the

individual memristive states. The information stored as the sum of all memristive states

should provide a reference of obtainable classification results. This approach makes the

assumption that all memristive states can be accessed and forwarded to the MLP. Under
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Figure 3.4: Memristive crossbars functioning as dynamical systems by integrating the
applied spatiotemporal pattern. (a) to evaluate the preservation of the input information I
directly apply the memristive states to the readout layer (MLP). (b) Under the assumption
that memristive device states cannot efficiently be accessed, applying a readout vector
transfers the crossbar states into a lower dimensional output vector, which is used by the
MLP.
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this assumption I can directly use the memristive states, which are encoded as values in

the interval [0, 1]. However, this approach is only for understanding the computational

capacities of the architecture, but not feasible for a hardware implementation. In hard-

ware, we do not have direct access to all memristive states, but would rely on a sequential

procedure to read them row-wise. This step is time- and memory-demanding and would

defeat the purpose of real-time computation.

A second approach that allows to transfer states to the readout layer in a single step is

shown in Fig. 3.4b. Here, after the application of the spatiotemporal data, a readout vector

with uniform voltages is applied to the crossbars. This step computes the inner product

of the voltage-encoded readout vector with the matrix representing the memristive states

in terms of conductances, and results in an output vector of currents (I = V × G). The

resulting currents are then converted to linearly scaled voltages in the interval [0, 1] and

applied to the MLP. As this produces a much lower dimensionality, this setup utilizes four

crossbars 1, all driven by different combinations of the input/reference data.

3.4.2 Methodology

Some aspects of this approach have already been introduced during the discussion of the

architecture. Here, I will justify them more from an algorithmic point of view. The input

data used in this set of experiments is the MNIST data set [64]. Typically MNIST is not

considered to be a spatiotemporal problem. Instead, the digit images are flattened into 1D

vectors applied in a single step to the architecture of choice. MNIST was chosen here for

two reasons. It presents a compact data set with images of size 28 × 28 pixels and pixel

intensity can be considered binary without a real loss in information. The application of

1This initial work relied on the manual selection of input data combinations and four was chosen to be a
reasonable trade-off to show the computational principle and competitive performance results. Future work
will focus on a more generalized procedure.
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Figure 3.5: Spike representation of MNIST data. The x-axis represents time and the y-
axis space. Given the MNIST size of 28 × 28 pixels, each digit is applied column by
column to a crossbar with 28 inputs over 28 time steps.
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MNIST data is done as spikes and allows the adjustment of the spike amplitude and width

to optimally utilize the memristive state range. A different interpretation of the MNIST

data set, one that intuitively makes it easier to recognize the data as a spatiotemporal

problem is shown in Fig. 3.5. Columns are applied one at a time over 28 time steps (in

case of MNIST) and each dot represents a spike. From a hardware point of view, this

approach was also motivated by a significantly reduced number of input neurons, which

would lead to area savings.

After applying an MNIST image over space and time, a readout operation is per-

formed to transfer the crossbar states to a lower dimensional output vector. Electrically,

the readout vector is a set of uniform sub-threshold voltages that results in memristive

currents determined by the individual device resistances (modeled by their internal state

w). The individual device currents are summed up along the crossbar columns and pro-

vide the output of the readout operation. Under the assumption of constant and uniform

readout voltages device current (equation 3.3) and device resistance (Eq. 3.3) become

linearly correlated to the device state w. Computationally this step is then performed as

the inner product of the readout vector and the state matrix W.

Contrary to most RC implementations using a linear readout layer, here I use a multi-

layer perceptron, allowing for nonlinear transformations (tanh) within the MLP. In the

results section, the implications of the crossbar architecture on the MLP will become

more clear. Training of the MLP is done with back-propagation and is based on the

MNIST training set containing 60, 000 samples. Testing is based on a separate set of

10, 000 samples.
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Figure 3.6: MNIST classification performance: (a) 28 × 28 images applied to 28 × 28
crossbar. Resulting states are applied to MLP. (b) 28 × 28 images applied to multiple
independent crossbars. Crossbar states are transferred to 28 element output vector per
crossbar for classification by MLP. For 4 crossbars the 784 dimensional images are re-
duced to 112 dimensions without performance loss comapred to (a).
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3.4.3 Results

As mentioned, the architecture shown in Fig. 3.4a was chosen to investigate how well

the integration of signals over time into memristive devices preserves information. As

input data as well as reference matrix we are using the MNIST data with 784 pixels

(28× 28). The used crossbar is of size m× n with m = 28 representing the spatial domain

of the input and n representing the number of columns in the crossbar. To study the

impact of the crossbar size n will be scaled from 1..28. In its 28 × 28 setup, the crossbar

contains 784 devices which is the same dimensionality as the MNIST samples. Figure

3.6a shows the classification results as a function of crossbar columns and size of the MLP.

For the setup with 784 devices (n = 28), a single readout layer reaches a classification

performance of 85% and different MLP implementations of up to roughly 90%. The

benchmark published in [64] reached about 95.3% with a MLP of size 784× 300× 10. A

memristor based hardware proposal of the same system size could achieve a classification

rate of 93.5% [84]. Using larger MLPs, the classification performance of this approach

could not be significantly improved anymore. Hence, I conclude that the integration by

memristors over time did not preserve the information perfectly. A likely reason for that

can be found in Fig. 3.2a. While the temporal patterns can be projected on a concave

trajectory, this mapping is not unique for all temporal patterns.

The following paragraphs will answer research questions 1.1 on creating diverse state

patterns and 1.2 on accessing those patterns and forward them for further processing.

The second architecture shown in Figure 3.4b uses a realistic approach to access the

memristor states by transferring them into a lower dimensional output vector. The first

research question is concerned with the creation of diverse state patterns in the crossbar

architecture where all columns are exposed to the same input data. This was attempted
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Figure 3.7: Example of a rotation- and direction-dependent representation of a digit “3”
within the memristive crossbars. Different rotations and directions allow the individual
crossbars to extract different temporal and spatial information and to improve classifica-
tion accuracy.

by modulating the crossbar columns so that different columns experience different voltage

potentials. An example of how different modulation causes diverse state patterns is shown

in Figure 3.7. In this figure four crossbars were driven with a sample of a digit 3 from the

MNIST data set. The difference in the state patterns were achieved by applying the digit
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in different rotations to the different crossbars. There are two aspects to highlight. First,

if we look at only one crossbar, we can see varying state patterns along the columns (the

coloring represents memristive states in the range w ∈ [0, 1]). This is the outcome of how

the input matrix and the reference matrix coincided. The variety in state patterns gives

rise to the assumption that we can exploit this in terms of information processing. The

second aspect considers the variety of patterns across all 4 crossbars. By changing the

order in which the spatiotemporal patterns are applied we create different combinations

of input and reference signals (V = X ⊗ Y) and hence different state patterns.

The classification results are shown in Figure 3.6b and are almost identical to the

ones from the first architecture. However, in its largest setup, only 112 neurons were

interfaced to the MLP, which is a significantly lower dimension compared to 784. Be-

ing able to achieve comparable results with a lower dimensional vector implies that the

state correlation in the lower dimensionality is smaller. This is the result of applying the

data samples in different rotations to the crossbars which allows to extract different spa-

tiotemporal patterns by each of the four crossbars. Training the MLP over 10 iterations,

this approach achieved the same performance (93.6%) as the mentioned memristor-based

feed-forward neural network implementation [84]. However, operating the crossbar as a

dynamical system, this classification performance is achieved at a much reduced hard-

ware cost, which is expressed by the number of neurons and synapses required. Table 3.1

gives an overview of performances based on different system setups.

The crux of this approach is the inherent state decay of volatile memristive devices.

Out of this, another question that arises is: what is the optimal rate of state decay? In

order to understand how sensitive our approach is to the value of the time constant, we

ran a set of simulations evaluating the classification performance as a function of the time

constant. Fig. 3.8 shows the results of running a 4 crossbar setup with a 100 × 50 × 10
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Table 3.1: Complexity and performance comparison for the presented architectures. Bold
numbers refer to MLP sizes.

Setup Neurons Weights Epochs Accuracy
Input + Network

[64] 784 + 300 235,200 20 95.3%
[83] 784 + 300 235,200 3 93.5%
10 112 + 122 1,120 3 82.5%

25x10 112 + 147 3,050 3 87.2%
50x10 112 + 172 5,700 3 88.8%

50x50x10 112 + 222 8,200 3 88.9%
100x50x10 112 + 272 15,900 3 89.5%
100x50x10 112 + 272 15,900 10 93.6%

MLP and a variety of time constants. In the figure the value of the time constant is

normalized to the time step a single data set is applied for. τ = 1 refers to τ being as long

as applying a single column. With increasing τ the decay slows down and the memristive

state represents a longer range of input signals.

The figure highlights three important issues. First, the memristive devices have to sat-

isfy a minimum time constant that allows the memristive state to represent more than just

the last (or the last few) signals applied to them. Second, the classification performance

goes slightly down again due to the memristive devices functioning only as non-linear

adders without relevant state diffusion. This means that the temporal information inher-

ent in the pixel positions cannot be exploited. Third, the most important message: if we

allow for slightly lower than maximum classification rate, we can observe a plateau of

decay rates that are suitable. This is important for dealing with device variation as well

as to relax the fabrication constraints for those devices.
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Figure 3.8: Diffusion time constant vs. classification accuracy. Strong state decay (small
values) does not allow devices to combine features over the full temporal range and hence
does not provide a base for good classification. Too slow state decay (large values) prac-
tically implements a device that cannot extract temporal information, but turns the system
into a spike-rate encoding where devices only count the number of applied spikes.
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3.4.4 Discussion

In this section I have introduced an approach that utilizes memristive crossbars composed

of volatile devices to process spatiotemporal input patterns. The first research question to

be addressed was on the ability to create diverse representations in a homogeneous archi-

tecture. This was answered by expanding the view to the overall architectural setup and

creating diversity by modulating the homogeneous architecture with a reference signal

that created heterogeneity. The second research question dealt with a feasible method of

interfacing the crossbar to subsequent elements in the architecture. I’ve outlined that di-

rect access to the states is not practical and shown that by performing a readout operation

following the matrix-vector product, one can retrieve a lower dimensional representation

within a single time step. In combination with diverse state patterns this dimensionality

reduction still offered a good base for training a classifier.

3.5 OPTIMIZATION OF CROSSBAR UTILIZATION

The novel approach outlined in the previous section has demonstrated the ability to utilize

intrinsic features of memristive devices for nonlinear computation and harnessing state

decay to extract temporal features from applied input data. However, a few conclusions on

the limitations can be drawn that lead to the methods introduced throughout this section.

When it comes to generalizing this approach, the major limitation is that we relied

on using the input data as reference signals to extract features. Moreover, we did rely on

manually selected rotations and combinations of the input images. This approach does not

lend itself to develop a generalized method of creating the reference signals applicable to a

wider range of data sets. Another aspect to the manual selection of reference signals is the

lack of scalability. In case one would need more crossbars to improve, i.e., classification
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rates, what other combinations of input signals could be realistically created and provide

a blueprint for other data sets. In this section I will show different methods to create

efficient reference signals that are both, aware of the actual input data distributions and

scalable. Such a reference matrix should lead to more efficient utilization of the crossbar.

This section will address research questions 2.1 on the design of the reference matrix,

2.2 discussing the implementation of excitatory and inhibitory features, and 2.4 provide

methods to balance dimensionality reduction and the information content used for classi-

fication.

3.5.1 Characteristic Features of Input Data

In the next paragraphs I will outline how to derive a reference matrix based on input data

statistics. Demonstrated on the base of MNIST it provides a general approach that is not

limited to this data set. Three methods will be presented: a method that aims to find class

specific mean representations, a principal component analysis (PCA) based method, and

a random generation of the reference matrix. I will discuss the full approach based on the

class mean representations as it offers a more intuitive visual representation along the way

as compared to the PCA. The described methods will, as already mentioned, discuss how

to derive a Y matrix as well as how to implement features acting excitatory or inhibitory.

Hence I will address research questions 2.1 and 2.2.

For the class mean representations as well as the PCA approach I use the MNIST

training set of 60, 000 samples to obtain the reference matrix. The same reference matri-

ces are then used during the testing phase based on a separate 10, 000 sample test set.
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Method 1: Class Mean Representations

The first method to create a reference matrix Y aims to extract characteristic features

from the input data and translate them into a reference matrix that allows extraction of

said features. At the core of this approach is to find a method that can produce a set of

characteristic features based on available training data.

In a first method I’ll extract characteristic features based on class differences. The

question I ask here is: what, on average, separates a given digit best from other digits?

The first step is to compute the average digit for each class.

mi =
1
N

∑
x∈Ci

x
�
 �	3.8

The mean values mi of each class Ci appear to be some blurry example of the corre-

sponding class samples. The next step creates characteristic features by subtracting the

mean across all classes, but the target class from the target class.

Di = mi −
1

C − 1

∑
∀m , mi

�
 �	3.9

The result of this subtraction can be seen in Fig. 3.9. Red represents areas in which a

given class is statistically more present than the average of other classes. Blue represents

areas in which other classes statistically show more activity. In other words, if we can

control the crossbar to integrate the red and blue areas we gain statistical information on

the target class. Here, red areas are considered excitatory and blue areas inhibitory signals

with respect to determining a class label.

Given a set of representations that indicate dominant features of each digit, in the

next step I reduce the dimensionality in order for the Y matrix to become selective to the
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Figure 3.9: Characteristic features of digits as computed by the class mean representation.
Red features are characteristic (excitatory) for a given class. Blue features are discourag-
ing (inhibitory) the detection of a given class. Features were obtained from the MNIST
training set.

dominant features. Thresholding is applied to features in order to keep only the dominant

ones. A result for a threshold value of 0.85 of the maximum can be seen in Fig. 3.10. The

subplot in the lower right corner is a plot of all features added in one image to illustrate

the different shapes and locations of the features.

The next question is how to translate the features selected by thresholding into a ref-

erence matrix Y. Spatial features of the input data appear within a specific column, while

rows contain temporal features. In contrast, the reference matrix’ temporal domain is

encoded in its columns, while rows represent the spatial distribution of features.

Assuming that the computed features are descriptive of the target classes, they can

be translated to form the reference matrix. In Figure 3.11 I show the feature matrices

from Figure 3.10 concatenated into a single vector. To address the different orientation of

spatial and temporal features between the input data and the reference matrix the features
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Figure 3.10: Thresholded features of digits in the order from 0 to 9. Red coloring rep-
resent excitatory features toward a specific class label, blue coloring represent inhibitory
features. The lower right plot shows all features within a single plot.

Figure 3.11: Single Y matrix comprised of transposed image features.

49



3.5. OPTIMIZATION OF CROSSBAR UTILIZATION

0 10 20 30 40 50 60 70
Spatial features

0

5

10

15

20

25

T
e
m
p
o
ra
l 
fe
a
tu
re
s

(a) Thresholded excitatory and inhibitory features

0 10 20 30 40 50 60 70
Spatial features

0

5

10

15

20

25

T
e
m
p
o
ra
l 
fe
a
tu
re
s

(b) Resulting reference matrix with separated excitatory and inhibitory features

Figure 3.12: Reference matrix features. (a) Reference matrix containing all features with-
out empty columns. (b) final reference matrix that spatially separates excitatory and in-
hibitory features to allow separate recognition of such features. The resulting black fea-
tures represent a spatiotemporal code for when and where the crossbar integrates the input
signals applied to it.
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within Y are the transpose of the originals.

In a last step to create the reference matrix Y, I’ll address how to make the best use

of the excitatory and inhibitory signals present in the characteristic features of each digit.

As the output signal of a crossbar is derived by the inner product of a uniform row vector

with the weight matrix W, specific weight distributions across a crossbar column can

get lost within the sum over all elements. Same is true for a single memristive device

integrating excitatory and inhibitory signals. Based on the resulting state, one might not

be able to distinguish between the presence of both, excitatory and inhibitory signals, or

an absence of both. Hence, I separate excitatory and inhibitory features into independent

reference matrix columns to allow independent integration of both signals. This can be

seen in Figure 3.12.

Method 2: Principal Component Analysis

In a second approach, and maybe even a bit more intuitive one, I am using principal

component analysis (PCA) to extract the most descriptive features [81]. This approach

differs to the first one as it is agnostic of specific classes in the sense that it doesn’t

require any knowledge about class labels. To do so, I flatten the MNIST data into a two

dimensional array with the rows containing the different samples and the columns the

784 variables (pixels). The PCA results in a 784 × 784 output matrix with each row

containing a principal component. With the principal components giving a representation

of the MNIST data that are as much as possible linearly uncorrelated these components

promise to provide features that are useful to extract relevant information from the MNIST

data.

The components are ordered in order of most descriptive to least descriptive and in

Figure 3.13 I’ll show the 16 most descriptive principal components. After deriving the
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Figure 3.13: Set of principal components of MNIST digits. While the PCA approach
is agnostic of the class labels, it does provide sets of excitatory and inhibitory features
characteristic of the given data set similar to the class mean approach. Features were
obtained from the MNIST training set.

principal components thresholding is applied to extract the dominant features and the Y

matrix is created just as in the previous example for the class mean representation. The

features itself appear, visually, to be similar to the mean features. Hence, for the sake of

brevity no further figures are shown for the PCA approach.

Method 3: Random Feature Selection

In a third approach I will utilize randomness to create the Y matrix. In [44] randomness

was described as providing good generalization properties in the context of extracting

features by means of a random, fixed weight matrix. In Fig. 3.14 such random matrix

is shown. The design of the matrix is controlled by a sparsity term that determines the

amount of matrix elements that would allow integration of the applied input signal X. The

shown matrix has a sparsity of 0.1 which means that 10% of the matrix elements (black
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Figure 3.14: Random Y matrix with black dots indicating the spatiotemporal code for
when a crossbar can integrate an input signal.

dots) allow integration of the input data. To reiterate, the position of a black dot along a

row defines what crossbar column will integrate an input signal. The position of a black

dot along a specific column in Y defines at what time step the corresponding crossbar

column is receptive to an input signal.

3.5.2 Crossbar Architecture

The architecture used here follows the same principles as in section 3.3. At the center

of the approach is a crossbar with volatile memristive devices. The devices are driven

by spatiotemporal input data and a reference matrix is applied to the crossbar columns

to achieve heterogeneous integration of the input data across the crossbar. The focus on

optimizations of the crossbar utilization also has a few implications on the architecture. I

will briefly mention them here and explain them more detailed in the results sections as

to maintain concise descriptions of the different experiments conducted.

The creation of a generic reference matrix that does not rely on manual choices of

the design allows to work with a single memristive crossbar whose number of columns is

defined by the amount of columns within the reference matrix. In addition, contrary to the

architecture presented in section 3.4.1 I will use a ridge regression classifier, which allows

to better attribute any potential increase in classification rate to the data representation
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obtained from the crossbar, rather than from possible further nonlinear mappings within

a multi-layer perceptron.

3.5.3 Experiments

Throughout this section I will present different experiments and their impact on the classi-

fication rate based on the MNIST data set. Each subsection is more or less self-contained

and the results presented do not directly compare as the individual experiments explored

different setups (crossbar sizes, number of readouts, reference matrix design, etc.). Each

subsection will outline one aspect of optimizing the computation with memristive cross-

bars. At the end I will present results that combine the lessons learned from all the sub-

sections.

Crossbar Readout

So far the readout of the crossbar matrix W was performed by the inner product of a

row vector r and W itself (o = 〈r,W〉). Given W of dimension Rm×n with m rows and

n columns this operation results in a dimensionality reduction from Rm×n to Rn. This

leads to the question if one can derive a mathematical approach to estimate the impact

of dimensionality reduction and in turn trying to optimize it based on a given objective

function?

There exist mathematical theorems on dimensionality reduction, i.e., compressive

sensing, Johnson-Lindenstrauss lemma (JLL), random down-projections [11, 13, 29, 52].

The specific set of constraints imposed due to maintaining hardware plausibility of this

architecture imply limits to the degrees of freedom with which one can perform dimen-

sionality reduction. In the following paragraphs I’ll briefly relate these constraints to the

mentioned general methods.
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The basic concept motivating the JLL is to preserve relative distances when reducing

dimensionality of a vector. If we would treat the crossbar as a single vector in RW (W =

m × n), then the JLL could give an estimate about the introduced error when reducing

the dimensionality to Rn. However, the given crossbar approach reduces dimensionality

not by (randomly) selecting individual elements, but by summing whole columns into a

scalar value. This does not allow to directly apply the JLL to study the error introduced

by the readout operation of the crossbar as we cannot preserve the relative distances when

compressing the crossbar columns into scalars.

With respect to compressive sensing, while the sampling faces the same issue as just

discussed, the assumption of sparsity in the higher dimensional representation (crossbar

states) is dependent on the input data distribution and cannot be safely assumed. In the

case of the MNIST data and a random reference matrix with 10% active elements (sparse),

70% of crossbar elements were in average non-zero. Hence, the crossbar approach does

not implement the sparsity constraint of compressive sensing required to correctly recon-

struct a signal in an underdetermined system.

Similarly to the JLL, random down-projections also assume individual access to el-

ements in the higher dimensionality to be directly mapped to the lower dimensionality.

Based on the raw MNIST data applied to a classifier this works (also thanks to the amount

of redundancy in the data). Trained on all 784 pixels, a ridge regression classifier achieved

86% classification rate. A random down-projection (random subset) of 300 elements lead

to an average of 85%. In order to employ random down projections, one needs to read

out one column/row at a time and repeat that step until a sufficient number of devices are

read. However, with the readout being column/row-wise the random selection of elements

needs to be performed after most of the crossbar has been read. Reading all/most devices

of the crossbar only to afterwards narrowing it down, contradicts the goal of a time and
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r1
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Figure 3.15: Two step readout process of crossbar. The first step applies a uniform readout
vector r1 to the crossbar which produces o1. This step practically sums up the memristive
states along the crossbar columns. In a second step readout vector r2 is applied to the
crossbar columns. This step sums up the memristive state along the crossbar rows and
produces output vector o2.

resource efficient operation of the crossbar.

Given the limited applicability of existing mathematical approaches, I’ll not aim to

find a mathematical solution to the problem of how much information we can preserve

from one dimensionality to the other, but rephrase the problem at hand to how we can

increase the amount of information obtainable from the crossbar.

To approach this question I reinterpret the functionality of the crossbar array. The

crossbar dynamically integrates input data governed by the reference matrix. This im-

plies that the input data is stored in a different representation within the crossbar. The

two-dimensional distribution of the individual memristive states is then what encodes the

applied input and which we want to get a lower-dimensional image from. A very similar

problem to that is that of error checking and correcting codes (ECC) in dense memory

arrays [50]. ECCs aim at detecting precise positions of bit flips that would cause mem-
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Figure 3.16: Classification rate as a function of the number of columns within a crossbar
for different readout methods. Reading out the crossbar along its row inputs results in
very poor classification. Reading out along the columns shows a significant improvement.
Most importantly, though, is that the combined classification rate is more than the sum of
the two readout methods and allows to further improve classification rate as the number
of crossbar columns increase.

ory corruption. In the general sense detecting a bit flip and detecting a pattern of stored

data are very similar applications. While many ECC techniques are designed to recover

single bit failures, detecting and correcting multi-bit failures typically infers large over-

head [55, 56]. A 2D ECC approach was shown to be able to recover multi-bit errors

over large memory arrays with only slight overhead increases as compared to single-bit

recovery schemes.

In this work I will introduce a 2D crossbar readout that, similarly to the ECC, can give

a much better coverage of the distributions of device states within the crossbar array. The

2D readout is a two-step process in which first all memristive states along columns are
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summed up into an output vector and following we sum up all memristive states along

the rows of the crossbar. Mathematically the two output vectors o1, o2 are obtained by

o1 = 〈r1,W〉 and o2 = 〈r2,WT〉. In hardware this can be easily realized by applying

the readout vector to the crossbar rows and reading at the columns to obtain o1, and by

applying the readout vector to the columns and reading along the rows to obtain o2. An

illustration of the process is given in Fig. 3.15.

The results of investigating the 2D readout operation are shown in Fig. 3.16. The

experiment assumed a crossbar with 28 rows, according to the dimensions of the MNIST

data set and an increasing number of columns. The reference matrix was chosen to be

random with 10% active elements. In a first step a 1D readout was performed along the

columns (o1 = 〈r1,W〉). We can observe that the maximum classification rate of around

60% was achieved rather quickly after a crossbar size with 20 columns. Any additional

increase in the number of columns didn’t further increase the classification rate. This can

be explained by the lack of access to different distribution along the crossbar columns.

Summing up along the columns eliminates any information on which elements within a

column was most informative and reduces the information to be encoded in the amplitude

of the output signal. The same experiment was performed for summing along the crossbar

rows (o2 = 〈r2,WT〉). We can see that the classification rate with that approach is just

slightly above chance. First of all, an increasing number of columns has less of an effect

here as the total number of outputs is determined by the crossbar rows, not the columns.

Second, if we look back at Fig. 3.7 it becomes clear that there is typically less variation

in the memristive states along a specific row than there is for the columns. However, if

we combine the two approaches we can significantly increase the classification rate. Two

things are noteworthy here. First, the resulting classification rate is more than simply the

sum of the two 1D approaches. Second, the classification rate increases, slowly, with
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additional crossbar columns. This supports the approach of the ECC methods where a 2D

readout can achieve a much better image of a 2D array with little overhead as compared

to a 1D approach.

Multiple Independent Readout Operations

As we have just seen the effect of scaling the number of crossbar columns quickly stag-

nates and does not lead to a significant continuous increase in classification accuracy.

While the crossbar itself might hold more information as the number of columns in-

crease, the “inner-product style” dimensionality reduction along rows/columns cannot

necessarily capture additional information. An explanation to that is given with the con-

centration of measure theory. In [103] it is described as “a random variable that depends

(in a “smooth” way) on many independent variables (but not too much on any of them)

is essentially constant.” The random variable here is our crossbar output, the independent

variables are the crossbar elements along a column/row (depending on the readout direc-

tion), and the fact that the output does not depend more on one element than on others is

given by summing all values with equal significance. While the reference matrix of the

crossbar ensures that different elements of the crossbar are integrating different input data,

the more of these elements get “lumped together” to a scalar value, the less informative

this scalar is with respect to recognizing, the different classes of the applied input data.

In other words, increasing the number of elements that get compressed to a scalar

will lead to an output vector in which the scalars that comprise that vector have less

variance and are therefore less informative about the more detailed distributions within

the crossbar. To better capture the state distributions within the crossbar we need to break

up the vector in smaller sections to capture distribution differences for different input

data. Here I will present two approaches that are realizable computationally as well as in
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Figure 3.17: Crossbar readout. a) independent crossbars with two-step readout. b) single
crossbar with multi-step readout to extract different signal distributions. The trade-off

lies withing hardware resources and time steps to obtain data. Independent crossbars
require more hardware but can be read out in two steps. Single crossbar can reuse the row
inputs, but requires multiple time steps to get similar fine-grained readout as independent
crossbars.
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hardware. Fig 3.17a shows a set of independent crossbars of a fixed size along it’s rows

and columns. In such a setup each crossbar has it’s own set of input neurons and output

neurons and can be read out in two time steps. One step to compute o1 = 〈r1,W〉 and

another one for o2 = 〈r2,WT〉 were o1, o2 are the outputs of a particular crossbar. The

advantage of this approach is the reduction of vector lengths that allows to address the

limitation formulated within the concentration of measure concept as well as the two-step

readout to obtain all crossbar outputs. These advantages come at the cost of multiple sets

of input neurons to the independent crossbars. A second approach harnesses a readout

vector length reduction just as well, but saves input neurons by taking more time steps

to readout the crossbar. In 3.17b a single large crossbar is depicted, which could be

scaled arbitrarily. To obtain the distributions of the information stored in the crossbar

readout vectors of length r with r < n are applied (here n is the total number of columns).

Different subsets of the crossbar are obtained by choosing the length and location of the

readout vectors. This approach allows combining arbitrary sections of the crossbar and

the amount of information obtainable will be determined, among others, by how many

readout steps the system design allows.

An experiment was setup as follows. The first approach of defining physically inde-

pendent crossbars was implemented as four crossbars of size 28× 25 each. Each crossbar

is exposed to the same input data, but has it’s own random reference matrix. The crossbars

are then read out in two steps as explained in the previous paragraphs. Each crossbar will

result in 53 output signals (28 + 25) which are used to train the ridge regression classifier.

Based on the whole MNIST data set this led to a classification rate of around 75%. The

second implementation used a single crossbar of size 28×100. So in terms of memristive

states it is identical to the first setup. In Fig. 3.18 I then show the classification rate as a

function of the number of readout operations performed and used for classification. The
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Figure 3.18: Classification performance as a function of independent readout operations.
The crossbar had 100 columns and was read in chunks of 25. The dashed red line indi-
cates four readout operations which covered all columns. Performing further readouts by
combining random columns into chunks of 25 further increases the performance until it
converges after around 18 readout operations (550 data points).
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first four readouts were identical to the first setup, as they were non-overlapping readouts

of size 25 as to cover all columns (similar to time steps t2-t4 in Fig. 3.17b). Further read-

outs were than performed by random combinations of 25 out of the 100 total columns.

This was done in order to combine various features across the crossbar. The dashed red

line indicates four readout operations for which the first and second setup were identical

in terms of signals extracted from the crossbar(s) and also showed identical classifica-

tion rates. However, the important message is that we can further increase classification

rate as we introduce more readout operations that implement different combinations of

crossbar columns. This is an important finding as it allows to better balance future im-

plementations with respect to the inherent trade-offs between classification rate, hardware

resources, and computation time.

Y Matrix Features

In section 3.5.1 I have discussed different methods to create the reference matrix Y. Two

methods based on the input data statistics and a random approach. I’ll compare the dif-

ferent methods from two different angles. The first one is to determine, based on the

same size of the reference matrix, which method performs best. The second aspect is to

understand the scalability of the different methods.

The control of the reference matrix size varies among all three approaches which I

will outline now. In the simplest case, the random reference matrix, the size is deter-

mined straight forward by defining the target amount of columns. For the two approaches

that derive features from the training data the reference matrix size can only be defined

indirectly. The class mean method creates one set of features per class (Fig. 3.9). For

each class a thresholding parameter θ is applied in order to extract only the most signif-

icant features with respect to what separates a class from others (Fig. 3.10). Therefore,
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Figure 3.19: Classification accuracy for different methods to create the reference matrix
as a function of matrix columns. The class mean approach extracting class specific fea-
tures performs slightly better than the PCA approach that extracts features without class
awareness. With a sparsity of 0.1 the random reference matrix achieves competitive clas-
sification accuracy.
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as this method only creates one set of features per class, the parameter to control the size

of the reference matrix (the amount of features represented) is the threshold factor θ. A

high threshold will lead to few significant features and smaller reference matrices. Lower

thresholds lead to a wider set of features, including less descriptive ones, but to a larger

reference matrix. The PCA method creates a principal component per input dimension.

Hence, in case of the MNIST data set this leads to 784 principal components. While a

threshold factor also determines the feature extraction of a single principal component,

this parameter can be fixed and the reference matrix can be set by choosing the amount of

principal components to use.

While varying the size of the reference matrix, the experiments also incorporated the

methods established above. A 2D readout is performed to obtain a better coverage of the

crossbar state patterns. To avoid the concentration of measure limitation for large readout

vectors, the crossbar is read out in sections of 10 columns. I.e., for a crossbar 100 columns

this would result 10 readout operations along the columns.

Based on the results in Figure 3.19 the first conclusion to draw is that the overall

concept is rather agnostic to how the reference matrix is designed. All three methods to

create a reference matrix lead to results of within 1% classification rate on the MNIST

data. The random matrix, created without any knowledge of the input data achieved up

to 91%. In [44] it was argued based on an extreme learning machine implementation that

randomness has good generalization features and can lead to competitive classification

rates. This assumption also holds true for the crossbar approach. However, the ability

to extract signals efficiently with the random reference signals depends on the sparsity of

the random matrix. This can be seen in Fig. 3.20. Sparse reference signals lead to the

highest classification rates, while a loss of sparsity causes the classification rate to drop.

The second conclusion addresses scalability. All three methods continue to see modest
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Figure 3.20: Classification rate with differently sparse random reference signals. Con-
trary to the PCA and class mean methods for creating the reference signals, the classi-
fication with random references is sensitive to sparsity. Loosing sparsity will not allow
the crossbar to extract descriptive features and the crossbar columns exhibit more linear
dependency.
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classification rate increases as the size of the reference matrix grows.

Neuron Activation Function

So far all results have assumed that the crossbar output is simply the inner product of a

readout vector and the crossbar matrix W. However, neural networks typically employ an

activation function to the weighted sum of the neuron inputs. As was outlined in section

3.3 the nonlinear memristive kernel function is operating element wise on the applied

inputs. The actual state of an output neuron is the linear sum of the the element wise

nonlinear operations. Based on the same experimental setup as used for evaluating the

reference matrix features, I have applied a tanh activation function to the linear sum of

the crossbar outputs. This additional function helped to increase the classification rate in

average by 1% and in its maximum setup from 92% without activation function to 93%

with activation function.

3.5.4 Discussion

Throughout this section I have demonstrated various ways in which to better utilize mem-

ristive crossbars for computation. Research question 2.1 was answered based on utilizing

either a class mean approach or principal component analysis. By extracting discrimina-

tive features from the training data, a reference matrix could be designed that allowed the

crossbar to capture discriminative features as they appeared over time. Also part of the

design method for the reference matrix was the separation of excitatory and inhibitory

features which was the topic of research question 2.2. By creating the reference matrix

columns in way that they contained either excitatory or inhibitory features it was possi-

ble to capture such features separately. Research question 2.3 dealt with the issue of the

combining random features from the input data when the crossbar architecture does not
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provide a random structure. It was shown that by creating random readout operations one

can combine random sections of the crossbar and further increase the classification rate.

All methods combined (2D readout, short readout vectors and multiple crossbars/readout

operations, a reference matrix derived based on the training data, and an activation func-

tion) a classification rate of above 91% could be achieved with an untrained crossbar

and a single linear output layer. In terms of hardware a hardware implementation that

does not need to simulate memristive devices, this would provide an extremely compact

implementation with minimum training complexity.

3.6 DEVICE AND CYCLE VARIATION

In this section I will investigate the impacts of device variation (research question 3.1)

and cycle variation (3.2) and to which extent they affect the results presented in section

3.5.3 when assuming ideal devices.

Device variation [2, 59], will be an inherent part of memristive devices. On a phys-

ical level these devices will experience spatial variation, which is a result of thickness

irregularities in the different physical layers [32]. First simulations on device variation

in connection with mesh networks have shown the general reservoir computing immu-

nity to a significant level of variation [17]. The crossbar approach relies on the nonlinear

integration of states and the state decay. It is likely that the crossbar approach is very

robust to device variation, because it does not rely on a uniformity of the devices, but

on the dynamical state changes instead. In this context device variation can be consid-

ered a manifestation of heterogeneity among devices and variation might be useful to the

dynamic computation [51, 72, 87, 88].

However, a second type of variation that memristors are subject to is cycle variation
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or temporal variation, which describes stochastic switching behavior [32]. Given a single

memristor, an initial device state, and a fixed pulse applied, the resulting device response

can vary to a certain degree. In other words, the device behavior is not completely deter-

ministic. Cycle variation is not only a phenomenon found in nanoelectronics, but also in

biology. In [41] the stochasticity of synapses is described as an effect caused by random

variations in the release of neurotransmitters responsible for the magnitude of a post-

synaptic current. As the crossbar approach relies on mapping the same input samples to

the same state representations, it is necessary to investigate the impact of cycle variation

on the stability of the classification performance.

3.6.1 Modeling

Device variation is modeled by modifying the internal parameters of the device models.

All memristive devices were modeled individually with their own set of parameters. The

variation of those parameters is based on experimental data of the relative standard devia-

tion (RSD). To investigate the impact of device variation on the classification performance

we use the RSD and multiply it with a range of factors to model varying degrees of device

variation.

Cycle variation [32, 77, 113], has not been presented with specific numbers based

on an existing device. Typically it is just mentioned that cycle variation should be as

low as possible. However, the degree of realistic device variation can be estimated from

results presented in [2]. They presented a training algorithm that allowed the tuning of a

memristive device state up to 1% accuracy. The achieved tuning accuracy did not derive

from algorithmic limitations, but reflects cycle variation. The 1% accuracy reflects the

variation in device response with respect to otherwise constant parameters. In [77] it is

suggested to model cycle variation following a Gaussian distribution.
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Figure 3.21: Classification performance as a function of device and cycle variation. Result
based on physical data is shown at a value of one. Only when exceeding reported device
variation by more than 6 times will the performance start degrading. Cycle variation
causes small, gradual performance losses for variation less then 1.5% and more drastic
losses for cycle variation larger then that.

3.6.2 Results

The results for modeling device variation are shown in Fig. 3.21. The data implies that

the presented architecture is highly tolerant to device variation. The performance is stable

for a wide range of variation and only starts slowly dipping after a variation factor of 6 (6

times higher than experimental data indicates). As was argued in [17], where memristive

networks were used for simple pattern classification, device variation was beneficial as

long as the devices offered non-linear transitions in their state. For the same reasons,

our approach is device-variation-tolerant as we do not rely on precisely trained weights,

but on the dynamic transitions of the synaptic efficacy. The drop in classification rate

after 6 times higher variation than experimentally reported coincides with the narrowing
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dynamic range for which the memristive devices exhibit nonlinear state changes and state

decay.

Cycle variation has been reported in [2] to be between 0% and 1%. To account for

other devices that might exhibit a larger range, we have simulated cycle variation between

0% and 25%. The results in Fig. 3.21 indicate a gradual performance loss from 89.36%

to 84.82% for devices with up to 1% cycle variation. Beyond 1%, performance starts

to drop at a quicker rate with falling below 80% performance for more than 1.5% cycle

variation. If physical devices have a normally distributed cycle variation with more values

closer to the mean, performance loss will be slightly alleviated. Overall, the presented

results on device and cycle variation make a strong case for the presented architecture.

Whereas reported levels of device variation have no negative impact on performance,

cycle variation based on experimental data causes only a small loss of performance.

3.6.3 Discussion

Device variation, as reported in [22], is not a problem as the presented approach relies on

dynamic state changes and not on precise values across all devices. This allowed to show

that device variation can be dealt with. It also provided the background for showing at

what levels device variation would become a problem. Once variation is large enough,

devices with a significantly lower resistive range will dominate the output vector results,

hence not allowing the equal extraction of data.

Cycle variation, however, poses a problem as it introduces non-deterministic behavior.

The important question is at what level cycle variation becomes a problem. This level

will be closely related to the efficient use of the memristive crossbar and the separation

property [74] that defines how easy data sets can be separated from one another.

Variation can also be found in synaptic functions of biological brains [82]. As an
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artifact of synaptic variation, Rigotti et al. have shown the importance of diversity in

neural responses [88]. For reservoir computing, Maass has highlighted the benefits of

heterogeneous reservoirs providing the theoretical context for increased computational

power [72]. Based on these references, one can believe that memristive device variation

also holds the potential to be beneficial to computation. However, as Maass put it, it

only provides the theoretical context for being beneficial to computation. To harness

variation its extent as well as its integration into the larger system has to be studied.

Without variation increasing the feature representation or without the long-term memory

being able to harness the diversity, variation will not be able to improve computational

capabilities.

By answering research questions 3.1 and 3.2, I provided an understanding of the sensi-

tivity of this approach to device parameters. As was mentioned in [59], device variation is

a trade-off with memristive switching characteristics. An improved controllability of the

state switching will decrease cycle variation of a single device, but will lead to increased

variation across devices. In the bigger picture this trade-off will guide the selection of de-

vices for hardware implementations of memristive short-term memory and hence, enable

more robust hardware.

3.7 BENCHMARKING

In this section I will put the presented methods and results into a bigger context. First,

I will compare the presented results on the MNIST data set to an ELM implementation

which compares well with respect to the training complexity of the network. In the second

part of this section I will introduce another data set and, based on the very same meth-

ods, demonstrate the general feasibility of utilizing dynamic crossbars for spatiotemporal
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pattern recognition.

3.7.1 Dynamic Crossbar vs. Extreme Learning Machines

So far, all introduced methods were evaluated based on the same architecture and same

data set. To get a better feeling how the presented methods compare to other approaches,

I will take an extreme learning machines setup as reference. For the MNIST data set

there exist a myriad of published classification results. Here I will compare the presented

approach to an ELM implementation as this is a good reference with respect to having

similar network and training complexity. ELM is a feed-forward network with a fixed

weight matrix between the input and hidden layers and training happening at the output

layer only. While similar in complexity to the crossbar approach, it was also shown that

ELM is comparable to state-of the art methods with respect to classification rates on the

MNIST data set [75].

For this experiment I have trained a series of ELM with varying sizes of the hidden

layer. Starting with N=100 hidden layer neurons, I increased N in steps of 100 up to

2,500. Increasing the number of hidden layer neurons directly reflects into increasing

classification accuracy. The number of hidden layer neurons is equivalent to the number

of inputs to the output layer and determines the amount of trainable weights. To create

a comparison with the crossbar approach, I implemented varying sizes of the reference

matrix. As the reference matrix is created based on features from the input data set, I

varied the number of principal components to be used for the creation of the reference

matrix. Increasing numbers of principal components increase the amount of features and

hence the number of columns in the reference matrix. The crossbar was read out in chunks

of 10 columns to avoid the concentration of measure limitation (see section 3.5.3).

The results in Figure 3.22 compare the size/classification rate relationship of the two
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Figure 3.22: Classification rate as function of readout layer inputs. For the ELM approach
the number of inputs to the readout layer is given by the number of hidden nodes. For the
crossbar we increased the amount of principal components used to create the reference
matrix. With increasing number of principal components the reference matrix grows,
and hence the number of inputs to the classifier. The ELM results are plotted along the
standard deviation due to random weight matrices. The crossbar approach does not show
error bars as it is deterministic and does not contain random components.
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approaches. For a smaller number of signals passed to the output layer, the crossbar

achieves better performances. However, the ELM approach scales better with respect to

further performance increases. The reason is to be found in the different dimensional-

ity mappings happening for both approaches. For an ELM with few hidden nodes (i.e.,

N = 100) a down-projection from 784 dimensions to 100 dimensions is performed. With-

out a trained weight matrix between the input and hidden layer this strong dimensionality

reduction does not capture enough information from the input data for the classifier to

reach good results. Contrary, the crossbar approach, while also passing only a small num-

ber of crossbar outputs to the classifier, does integrate all 784 dimensions of the input

data and the data that is passed to the classifier contains that information in a compressed

form. While for a few neurons, the crossbar approach has advantages by integrating the

full dimensionality of the input and compressing them to a smaller dimensionality, for

larger N this compression becomes a disadvantage. The ELM scales better with N as

each neuron can capture a different set of input combinations and add to a heterogeneous

representation in a higher dimensionality. While outperforming the ELM for small N,

the compression of memristive states into row and column vectors creates an underde-

termined representation from which different crossbar state patterns cannot be precisely

distinguished. However, in defense of the crossbar approach it is worth remembering that

we are first integrating over time (one MNIST column at a time), while the ELM approach

did not underlie such a constraint.

3.7.2 Jittered Spike Trains

In this section I will apply the presented methodology of dynamically computing within

a crossbar to a spatiotemporal data set of jittered spike patterns. The benchmark used

here has been introduced by Maass et al. [37, 73] as a general method to verify neural
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Figure 3.23: Example Poisson spike trains with 10 channels and a length of 50 time steps.
(a) Base pattern for one class. (b) Jittered version of base pattern. For each class 2000
different jittered versions were created. (c) Jittered version with added noise in red. This
example contains as much noise as signal spikes.
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microcircuits which serves as the biological reference for the liquid state machine [74].

Neural firing patterns are commonly modeled by Poisson distributions, i.e., [45, 110].

Based on Poisson spike trains an artificial spatiotemporal data set was created as described

by algorithm 1.

Algorithm 1 Jittered Spike Patterns
for i = 1 to n_classes do

create base pattern
for s = 1 to n_samples do

create jittered sample
add noise

end for
end for

The created data set contained ten different classes with 2,000 samples each. Each

sample had ten channels and the length of the sample was 50 time steps (which relates to

50ms in the simulation). The creation of the base patterns was controlled by a sparsity

parameter that determines the spike rate per channel. The jitter is added by moving each

spike with a distance drawn from a Gaussian distribution with zero-mean and standard

deviation σ = 4. Noise is added to each sample by adding a randomly created sparse

matrix of the same dimensions as the jittered sample. A noise factor determines the

amount of noise created. Example spike patterns are shown in Figure 3.23.

For comparison, an existing echo state network implementation for classification of

spatiotemporal signals was used. As part of the Oger framework [108], an echo state net-

work reservoir consisting of leaky integrator neurons was provided for the classification

of analog speech signals. Spatiotemporal speech signals are applied to a reservoir with

N nodes and a ridge regression classifier is trained based on the states of the N reservoir

nodes. The same setup is used for the classification of the jittered spike trains. To com-

pare the crossbar and the ESN classification performances, I design the ESN size (number
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(a) Crossbar
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(b) ESN

Figure 3.24: Jittered spike pattern classification for different sparsity and noise levels: (a)
dynamic crossbar (b) echo state network. The crossbar approach has a slower decay of
classification rate as noise increases.
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of reservoir nodes with fixed connectivity) as to match the number of inputs to the ridge

regression classifier in both approaches.

The results of using a crossbar and an ESN for the classification of jittered spike

patterns are shown in Figure 3.24. The presented data was obtained based on the method-

ology described above, with a σ = 4. This level of jitter was chosen as to achieve near

perfect classification results for sparse patterns with no noise added. With that as a refer-

ence point, the impact of added noise and decreasing sparsity (more spikes) is evaluated.

The first, and most encouraging outcome of the classification is the ability of the cross-

bar approach to achieve competitive classification results in comparison to established

reservoir computing architectures. Both plots exhibit similar classification rates for the

extreme cases (i.e., no noise / 50% noise). However, the intermediate parameter space is

where the crossbar approach outperforms the ESN. This is shown in Figure 3.25. This

plot shows the difference in classification rates, with positive values indicating the dif-

ference in classification rate in favor of the crossbar approach. While in the absence of

noise (left part of the figure), the difference between the two approaches is minimal for

most sparsity levels, with added noise the crossbar approach achieves significantly better

classification rates. In the extreme case of 50% noise, both approaches start to fail and

hence exhibit similar classification rates gain.

An explanation to the performance difference can be found in the utilization of the

reference matrix. Both presented methods to create this matrix (PCA, class mean) act

as a filter as they are looking for dominant features that separate classes. Noise added

from a uniform distribution is not exhibiting any specific local concentration of spikes. In

contrast, the distribution of data spikes, inherent in the definition of what constitutes data

samples belonging to a certain class, will result in a set of features that are spatially and

temporally more pronounced than uniformly distributed noise. The thresholding of these
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Figure 3.25: Difference map of classification rates of crossbar and ESN (warmer colors
indicate better classification accuracy of the crossbar approach). In the absence of noise
(near perfect classification) or with close to 50% of possible spikes being noise (low clas-
sification accuracy) both systems perform equal. For noise levels in between the extreme
cases the crossbar approach performs better as the reference matrix allows targeted inte-
gration of data signals and to some extend prevents integration of noise signals.
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features than assures that the reference matrix will contain mostly features present in the

input data and prevent the crossbar from integrating noise (see sections 3.3 and 3.5.1 for

details on when the crossbar integrates and how the reference matrix is created based on

the input data).

Another aspect determining computational performance in such systems is memory

capacity. In [43] the memory capacity of memristive devices was discussed and concluded

that inherent state decay offers high-level biological behaviors. For traditional reservoir

computing approaches a detailed analysis of memory capacity as a function of reservoir

time constants and size was shown in [42]. Increasing the number of reservoir nodes can

counteract increased noise levels. This could also be verified for the jittered spike patterns

used here. Hence, the difference in classification rate between the crossbar and the ESN

can partly be attributed to insufficient memory capacity in case noise is present.

3.8 DISCUSSION

In this chapter I have presented my research on utilizing an existing and well studied

architecture, the memristive crossbar, for dynamic computation. The use of MNIST as

the main data set throughout the chapter was mostly of historical nature. It was an easily

available data set with a myriad of architectures to compare to. The initial experiments

using different the MNIST data as inputs as well as as reference signals has shown the

general ability to utilize a memristive devices for dynamic computation. The optimization

techniques presented have introduced a variety of options to generalize the design of the

reference matrix and to retrieve information from the crossbar. All these methods function

as parameters to define a desired trade-off between the computational capabilities as well

as the attached hardware costs. In addition to the presented methodology, the investigation
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on variation has demonstrated that the approach can is robust for the published results on

device and cycle variation.

The benchmarking has then expanded the view and allowed to gain a better under-

standing of how this approach compares to other implementations. By utilizing temporal

features of the memristive devices, the crossbar approach can pose a very compact im-

plementation for spatiotemporal pattern recognition. This is indicated by outperforming

other approaches for small system sizes. The fact that scaling up system sizes does not re-

flect in computational capacities, brings up a few considerations. Because of the compact

system size the crossbar could serve as a complementary implementation and promote

systems that harness heterogeneous methods to achieve a common objective function (i.e.

classification).

Beyond any conclusions based on the MNIST data set, the jittered spike patterns have

strengthened the case for computing in crossbars. The introduced methods to derive ref-

erence matrices have proven functional. More importantly though, were the results on the

general noise immunity of this approach. Deriving the reference matrix from non-noisy

training data and creating a reference matrix based on that, provides a spatiotemporal

code that prevents the crossbar from integrating large portions of the noise. This relaxes

the constraints for a subsequent classifier to distinguish between signals and noise.

Based on all presented results, I consider memristive crossbars as a viable platform to

go beyond weight storage in neural networks, but to actually utilize the intrinsic device

properties for computation. I believe while having had very limited access to spatiotem-

poral data sets, that the next step is to examine this approach on a set of diverse applica-

tions. Especially interesting would be an extension that does not require a fixed temporal

frame size (number of time steps before reading out the crossbar). Larger reference ma-

trices with repeated, but temporally shifted features and a scheme to continuously transfer
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crossbar patterns into output nodes, should be the two design aspects to achieve this.
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4

COMPOSITION AND MORPHOLOGIES OF RANDOM MEMRISTIVE

NETWORKS

In this chapter I will outline my research on random memristive networks. The ability to

randomly grow nanowires, and in turn assemble memristive networks, has been demon-

strated by [4,96,98]. With respect to neuromorphic engineering, these random assemblies

are claimed to present structures with highly complex connectivity and network dynamics

similar to neuron assemblies in biological brains [96].

We investigated random memristive networks for the first time in [17, 62]. In these

publications the memristive network’s ability to perform simple pattern classification was

shown. While these publications have presented a case for the possibility of harnessing

intrinsic computation, they also made limitations apparent. In section 2.3 I have dis-

cussed the basic processing capabilities of memristive networks and concluded that due

to the passive nature of these electrical networks, they suffer from limited computational

scalability and strong correlation across the nodes as was described in section 2.3.

The publications on physical implementations of random memristive networks fo-

cused on the manufacturing of individual networks and contained experiments that indi-

cated fundamental computational capabilities relevant for reservoir computing [96]. The

details given on the manufacturing process also implied the ability to fabricate such net-

works in a modular way.
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In this chapter, with reference to the physical assemblies and to the demonstrated basic

computational capabilities of random memristive networks, I will present a comprehen-

sive analysis on how to further increase the computational capabilities of this novel ap-

proach. Based on a simple creation of random structures, I will demonstrate a hierarchical

approach that treats individual memristive networks as reservoir nodes in an underlying

reservoir computing architecture [16]. The modularization of memristive networks allows

the creation of independent networks with different random connectivity. This in turn pro-

vides a way to overcome scalability limitations and strong signal correlation in favour of

computational capabilities. In a second step, I investigate the role of the network mor-

phology. Instead of the simple network creation that does not follow specific hardware

constraints, I will present a network modeling approach that allows a detailed analysis

of network morphologies and their influence on the computational capabilities of random

memristive networks [15]. A third aspect to this research is the switching characteristics

of memristive devices. I will highlight the important characteristics necessary to harness

memristive devices for reservoir computing. This work was partly done in collaboration

with Alireza Goudarzi, PhD student at UNM, and was published in [15, 16].

4.1 RESEARCH QUESTIONS

Random memristive networks are another type of memristive networks that have been

published [4, 96, 98]. The networks were shown to exhibit nonlinear dynamics and mem-

ory, which are fundamental characteristics of reservoir computing. With the possibility to

randomly assemble networks of memristive devices, the following questions will address

issues around scalability, network topologies and switching dynamics.

85



4.1. RESEARCH QUESTIONS

Research Topic 4. Physical and Computational Scalability

Given random memristive networks [4], the analysis of similar networks [17, 62] has

shown limitations in their computational capacities due to strong internal signal correla-

tion. These limitations are related to the dynamics in purely passive resistive networks.

Therefore scalability is not simply achieved by increasing the amount of devices used

within a random network (in contrast to artificial neural networks, where increasing the

amount of neurons within a layer often improves computational performance).

Question 4.1. What are physical possibilities to create less correlated network states

that improve computational capacities and allow for scalability?

Research Contributions

While so far all published results of random memristive networks have emphasized their

overall computational potential based on device and emerging network dynamics, appli-

cation to a complex task has yet to be shown. Demonstrating an architecture that, by

increasing its physical resources, scales in computational performance is fundamental to

the mastering of more complex tasks.

Research Topic 5. Memristive Network Topology

Network topology is defined by the number and physical location of network nodes and

their connections established by memristive devices. With all memristive networks being

created randomly [16], we can assume that from a set of different networks not all net-

works will be computationally useful to the same degree. First investigations of utilizing

exact copies of the same memristive network in a hierarchical structure have shown a

link between reservoir performance (measured as NRMSE on the NARMA-10 task) and
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network topology. However, it is not yet clear what constitutes a computationally useful

network topology.

Question 5.1. Network topology is defined by the device density, the locality of con-

nections, and the placement of the interface nodes. How do these parameters have to

be designed to achieve a computationally useful memristive network topology?

Research Contributions

Evidence of what defines good random networks will guide the fabrication of these net-

works. Having some control over the network properties of random memristive net-

works [96], fabrication processes can be improved to create networks that are more likely

to exhibit target properties. This will utilize the available chip area more efficiently, pro-

duce more deterministic results, and improve average performance by increasing the num-

ber of computationally useful memristive networks.

Research Topic 6. Memristive Switching Characteristics

In [16] it is shown that by adjusting system parameters that directly affect the switching

dynamics within the memristive networks, it is possible to optimize the system’s output

with respect to match a target output. Tasks that required the generation of higher fre-

quency components performed best under frequent state switching. Memory-intensive

tasks performed better with slower dynamics in the memristive networks.

Question 6.1. How do the task dependent switching characteristics of memristive

networks relate to the intrinsic device properties and what device types should be

chosen for a given task?
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Research Contributions

The research will provide an understanding of the correlation between intrinsic device

properties, switching characteristics of the memristive networks, and the reservoir’s util-

ity for varying tasks. These results will serve as a design guide for selecting memristive

devices, defining aspects of the memristive networks itself, as well as for the larger reser-

voir system with input scaling and weight matrix design. Such generalized relations will

open the system design to a broader range of researchers without in-depth knowledge of

the memristive networks switching dynamics.

4.2 HIERARCHICAL COMPOSITION OF MEMRISTIVE NETWORKS

4.2.1 Architecture

The random assembly of memristive devices was physically realized and presented in

[4,96,98]. Figure 4.1a shows an image of such an assembly where the nanowires forming

memristive devices evolve around underlying wires that interface the random assembly

to CMOS circuitry providing signal input and output. The physical extent (network size)

and density (number of devices) is controlled by the underlying wires. This is the basis

for the presented architecture.

I will first discuss the memristive devices, which are the basic elements. Section 2.3

discussed the memristive state transitions to be the key for nonlinear mapping. Equations

4.1 and 4.2 describe the nonlinear memristive state change.

dw
dt

= (1 − ek)λ(η1sinh(η2V) −
w
τ

),
�
 �	4.1
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(a) Random assembly of memristive devices
(reprinted from [96]).
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Figure 4.1: Hierarchical reservoir of memristive networks. (a) physical assembly of
nanowires forming memristive devices. The network size and density is guided by the
underlying larger wires and pads. (b) memristive switching characteristics as used in this
work. (c) example graph of a random memristive network. The red circles are network
nodes and the links represent memristive devices. (d) simple cycle reservoir structure
with memristive networks places inside of reservoir nodes.
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with k:

k =


−1+w

0.5 if V > 0

−w
0.6 if V < 0

�
 �	4.2

The state change dw is a function of the device state w(t) and the applied voltage V(t).

α, β, γ, δ, λ, and η are constants that were determined to match experimental data. τ

describes the speed of the state decay of the device. Figure 4.1b shows the device current

plotted against sine waves of different amplitudes. It highlights the differences in device

switching based on the applied input signal. Given that the range of device voltages (the

voltage experienced by a single device) is diverse throughout a network, meaning that

devices experience different voltages, this also implies a variety of switching dynamics

that can be harnessed for nonlinear computations.

In Figure 4.1c, an example graph of a random assembly is shown where circles rep-

resent network nodes (voltage nodes for input and output) and the links represent the

memristive devices. Given that such networks can be assembled around a set of wires,

this provides the possibility of treating them as individual units. These units are phys-

ically and electrically isolated from each other and hence, do not experience the strong

signal correlation like single memristive networks, as described in section 2.3. There-

fore scalability is achieved by creating multiple of such networks, physically separated

from each other. Electrical separation is achieved by CMOS circuitry that only probes the

network activity, without influencing it. This leads to the proposed architecture shown in

Fig. 4.1d. Here I present a classical neuron-based reservoir approach with a few modifica-

tions. First, instead of a traditional activation function, the memristive networks perform

the computation and replace an activation function. The second modification is motivated

by an investigation on the required network complexity of an ESN [89]. It was shown

that instead of random connectivity in the reservoir, a simple cycle reservoir (SCR) can
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achieve similar performance (correlation between a target and the computed output) on

a variety of tasks. I relate to that work as the simplicity in the connectivity of reservoir

nodes lends itself well to hardware implementations. Reducing the wiring costs by relying

on a deterministic and minimal connectivity of in-degree K = 1 (number of connections

per node) allows simple wire routing.

4.2.2 Methodology

In accordance to the Simple Cycle Reservoir (SCR) shown in [89], the input signal is

applied to all reservoir nodes with a weight v and a sign following a Bernoulli distribution.

The reservoir nodes are connected in a ring structure with uniform weights w equal to the

spectral radius of the reservoir weight matrix Wres. Each reservoir node produces one

output state that is the voltage difference between two memristive network nodes and

forwarded to the readout layer for training. Measuring the output signal as a differential

voltage follows the established knowledge of device voltages producing less correlated

results as compared with node voltages (chapter 2.3).

This architecture is numerically simulated in software, but is based on the physical

realization of random assembly as shown in [96]. Therefore, I validate this architecture

on a first set of three examples of Higher harmonic generation (HHG) that were shown

for the physical assembly. HHG is a nonlinear process in which a dynamical system is

excited by a signal with frequency f and in turn generates signals with other frequencies

not present in the input. The first example is a sine wave generation. For this task, the

reservoir is driven with a sine wave at frequency f and the output is trained to produce a

sine wave at frequency 2 f . The second example is a triangle wave generation. For this

task, the reservoir is driven with a sine wave and the output is trained to produce a triangle
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wave given by:

x(t) =
8
π2

∞∑
k=1

(−1)k sin(2π(2k + 1) f t)
(2k + 1)2

�
 �	4.3

The third example is a square wave generation where the reservoir is driven with a sine

wave and the output is trained to produce a square wave given by:

x(t) =
4
π

∞∑
k=1

sin(2π(2k − 1) f t)
(2k − 1)

�
 �	4.4

For these tasks, I compare the results from [96] with a single memristive network as well

as a SCR using multiple memristive networks. A visualization of the tasks is given in the

following results section.

After verifying the ability to solve the HHG task that requires nonlinear transforma-

tions but no memory, I will evaluate this architecture based on the NARMA-10 problem.

Nonlinear autoregressive moving average 10 (NARMA 10) is a discrete-time temporal

task with 10th-order time lag. To simplify the notation we use yt to denote y(t). The

NARMA 10 time series is given by:

yt = αyt−1 + βyt−1

n∑
i=1

yt−1 + γut−nut−1 + δ,
�
 �	4.5

where n = 10, α = 0.3, β = 0.05, γ = 1.5, δ = 0.1. The input ut is drawn from

a uniform distribution in the interval [0, 0.5]. This task presents a challenging problem

to any computational system because of its nonlinearity and dependence on long time

lags. Calculating the task is trivial if one has access to a device capable of algorithmic

programming and perfect memory of both the input and the outputs of up to 10 previous

time steps. This task is often used to evaluate the memory capacity and computational

power of ESN and other recurrent neural networks.
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Architecture Task MSE (stdev) v

Single network
20Hz sine 0.0617(0.0191) 2
triangle 0.0015(2.45e−4) 2
square 0.0521(0.0029) 12.5

SCR
20Hz sine 0.0111(0.0064) 2
triangle 8.14e−4(1.62e−4) 2
square 0.0307(0.0037) 12.5

[96]
20Hz sine 0.02 2
triangle 0.04 10
square 0.125 7

Table 4.1: The best observed MSE for HHG tasks and corresponding parameters for
systems passing 16 values to the readout layer.

4.2.3 Results

We first compared single memristive networks with the memristive SCR architecture.

Both setups are compared based on the number of signals extracted from them and for-

warded to the readout layer. Table 4.1 shows the best results from setups comparable

to [96]. The single memristive network had 16 output nodes and contained 120 memris-

tive devices. The SCR was made up of 16 nodes with each node providing one signal and

utilizing memristive networks of approximately 50 devices. Figure 4.5a shows a more

detailed representation of the waveform generation performance of a single memristive

network as a function of increasing input biases. Similar to [96], we observe the best gen-

eration of the sine wave for v = 2V and the square signal for larger voltages. Besides some

similarities we can also observe clear discrepancies, such as the absolute MSE values and

the minimal error for generating the triangle wave. Without having absolute certainty, we

suspect differences in the memristive devices, constraints on the network topology, and

the application/reading of input/output signals to be likely causes of these differences.

Figure 4.5b compares the combined MSE (sine, triangle, square) of single memristive

networks and of the memristive SCR. The x-axis shows the number of signals read from
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Figure 4.2: Higher harmonics generation of a sine wave with double the frequency of the
input signal.
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Figure 4.3: Higher harmonics generation of a triangle wave with perfect match between
output and target signal.
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Figure 4.4: Higher harmonics generation of a square wave highlighting the higher fre-
quency components as over- and undershoots.

the corresponding architecture. For the SCR this is the same as the number of nodes. We

can observe that the signals read from the SCR allow a better generation of the target sig-

nals. Due to the physical separation of the SCR nodes, the signals are less correlated and

provide more features compared with signals all read from the same memristive network.

The NARMA-10 task, due to the need of memory, poses a difficulty that single mem-

ristive networks, as presented here, are not capable of dealing with. Experiments to verify

this were done for different single memristive network sizes (75 to 350 devices) with best

resulting NRMSE values of around 10 indicating this difficulty. The reasons are found in

the dynamics of passive electrical networks. With increasing network sizes each the rel-

ative device voltages will be reduced and state correlations increase. A possible solution

to increase the performance of single networks is by applying input signals to multiple

distant network nodes to increase individual device voltages. However, the additional
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Figure 4.5: (a) Wave generation MSE of single memristive network with 16 readout
nodes. The curves for the individual signals are in shape similar to the ones published
in [96], even though the scale is different. (b) Comparison of cumulative MSE of single
memristive network with single cycle reservoir of memristive networks as a function of
readout signals. The SCR, due to the physical separation of the memristive networks, can
produce less dependent signals and achieve better performance.
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Figure 4.6: NARMA performance for increasing SCR sizes. The dashed lines are ob-
tained with regular sigmoidal neurons (ESN) and v = 0.01 and λ = 0.75. The memristive
SCR (MSCR) data was obtained based on v = 0.5. λ = 1.7, and 52 memristive devices in
average per node.
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resources on the CMOS level would likely not provide any area benefits over a modular

approach.

Figure 4.6 compares the results for our memristive SCR and a regular sigmoidal neu-

ron SCR. The low input signal range implies that the nodes of both implementations

behave mostly linearly. However, due to a spectral radius greater than one and the result-

ing signal amplification, memristive networks experience some low frequency internal

device state changes (at a lower rate than the input signal), which adds some nonlinear

processing to the reservoir. As a result of this, with a growing number of nodes, the mem-

ristive SCR continues to improve while the sigmoidal SCR plateaus at around 100 nodes.

We attribute this continuous performance improvement for increasing reservoir sizes to

the heterogeneity of the input-output mappings (activation functions) of the memristive

networks, the low frequency memristive state changes, and the resulting diverse signals

used by the readout layer.

4.2.4 Discussion

The presented results give answer to research question 4.1 on a scalable random mem-

ristive architecture. By utilizing a set of small scale random memristive networks that

are connected by an underlying CMOS area one can achieve more heterogeneous signals

and harness the different topologies of the individual networks. The presented results

have shown that the hierarchical approach allows for further scaling of the computational

capabilities of random memristive networks. The results for the higher harmonics task

correlate with the results published in [96] except for the triangular signal. This might be

an outcome of the different memristor model used, some network dynamics that cannot be

described by modeling individual devices only, and/or a difference in network topologies.

The results for the NARMA-10 task indicate that random memristive networks provide
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both, computation and memory. Memory is implemented on the individual memristive

network level as well as by the simple-cycle-reservoir structure in the underlying CMOS

layer. This two-level implementation could explain the improved performance in com-

parison to the ESN SCR implementation.

4.3 MEMRISTIVE NETWORK MORPHOLOGIES

In this section I will present a modeling and simulation framework that enables a detailed

analysis of resistive switch network morphologies as determined by nanowire lengths, dis-

tributions, and density. The computational capabilities of different network morphologies

are analyzed with respect to the compressibility of the measured network signals. I put

the computational capabilities into perspective by comparing to corresponding energy-

consumption data. This comparison outlines a trade-off between computation and en-

ergy consumption. Based on the used modeling parameters, future fabrication of random

memristive networks can be guided to achieve a desired trade-off between computational

capacity and energy consumption.

4.3.1 Network Modeling

While the application of memristive networks to reservoir computing was simulation

based [16, 17, 62], physical assemblies of atomic switch networks (atomic switches are

a sub-category of memristive devices) were reported in [4, 27, 96, 98, 99]. A simple mod-

eling approach with focus on localized conductance changes of such networks was shown

in the supplementary documentation of [96].

Here we expand the modeling of such networks with the aim to investigate the re-

lation between network morphologies, computational capabilities, and energy consump-

tion. Network morphology is defined by the average length of nanowires. Their density
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can be controlled by the underlying copper seed posts (Fig. 4.1a. In [96] the effects of

copper seed posts’ shape, size, and pitch on the network’s nanowire length and density

were described. Smaller seed posts lead to long wires while larger seed posts lead to more

fractal local structures. The pitch of the seed posts is a control parameter for the network

density.

The connection of the random assembly of nanowires with the size of the seed posts

implies that the distributions of the nanowire lengths can be described in terms of some

probability density function. Large seed posts would cause more localized connections

while small seed posts would result in long-range connections. Hence, we use a prob-

ability density function (PDF) that can capture different distributions. We use a beta-

distribution for our purposes. A beta-distribution B produces values in the interval of

[0, 1] and is controlled by the parameters α and β that define the mean value and the

skewness around the mean.

P(x, α, β) =
1

B(α, β)
xα−1(1 − x)β−1 (PDF)

µ =
α

α + β
(Mean value)

S =
2(β − α)

√
α + β + 1

(α + β + 2)
√
αβ

(Skewness)

�
 �	4.6

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx is a normalization factor ensuring that P(x, α, β) is a proba-

bility measure.

We use this PDF to model the distribution of the relative nanowire lengths within

a random network. To translate the PDF into nanowire lengths, we create a map with

normalized Euclidean distances ([0, 1]) from every seed post within the network. Starting

from an initial node, we add a nanowire to the network by drawing a value from P(x, α, β)
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Figure 4.7: Different beta distributions and the resulting relative nanowire lengths. The x-
axis represents the normalized nanowire length and the y-axis the probability of creating
a nanowire of that length.

that determines the nanowire length. Beta-distributions with a focus on local connections

(α < β) will produce more fractal structures as nanowires branch out around the selected

starting node for the wire. Distributions favoring long-range connections (α > β) will

connect distant parts of the underlying grid of seed posts. In Fig. 4.7 we show some

examples of P(x, α, β) as a function of the control parameters α and β.

For the modeling of the underlying seed post grid we define two post types. Inter-

face seed posts allow the application and reading of network voltages. These posts are

established at a more coarse-grained pitch. The second grid is a supporting grid and more

fine-grained than the interface grid. This supporting grid improves the formation of fractal

structures for localized wire growth [27] and the establishment of more complex struc-

tures between the interface nodes; without a supporting grid establishment of multiple

devices between two interface nodes will not be favourable, which limits the morpholog-
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Figure 4.8: Example graph of modelling a random 162 memristive/atomic switch network
with α = 2, β = 5, and ξ = 4. The large circles represent the interface nodes to the un-
derlying CMOS layer. The small circles create a narrower supporting grid that guides the
density and morphology of the network structure. The graph edges represent memristive
devices and the edge width is an indicator for the connectivity range, with increasing edge
widths representing longer-range connections between nodes.
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Table 4.2: Examples of network parameters

ID α β ξ Connection length Density
N1 1 1 2 uniform sparse
N2 1 10 8 short dense
N3 10 1 4 long semi-sparse
N4 10 10 6 medium (small σ) semi-sparse
N5 5 5 2 medium (medium σ) sparse

ical diversity (the supporting grid does not exist physically, but only in the simulation).

The density of a network is defined by the indegree ξ of a node. The parameter ξ defines

the average number of devices connected to each grid node. The number of resulting de-

vices, and hence the density, is then given by the total number nodes in the supporting grid

multiplied by ξ. The fabrication of networks with different densities was demonstrated

in [96]. In Fig. 4.8 we show an example network model with 16 interface nodes, a sup-

porting grid at a third of the pitch of the interface grid, and a mix of short and long-range

connections. For all simulations we have used 16 interface nodes arranged in a 4 × 4 grid

as shown in Fig. 4.8. If not mentioned otherwise we have used a supporting grid at half

the pitch of the interface grid. Throughout this chapter I will refer to this network as of

size 161, meaning that it has 16 interface nodes and one node between two interface nodes

(half the pitch).

For a more intuitive understanding of how the defined network parameters inter-relate,

we give five examples and describe the resulting network morphology (Table 4.2). In

Fig. 4.9 and 4.10, we added the network IDs to the presented results to illustrate the

relation between network morphology and information processing capacities.

We simulate the memristive networks by treating them as temporarily stationary re-

sistive networks that can be solved efficiently using the modified nodal analysis (MNA)

algorithm [68]. After calculating one time step using the MNA, we update the memristive
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devices based on the node voltages present in the network to account for the dynamic

state changes of memristors.

4.3.2 Computational Capacities

As was outlined by Demis et al. [27], the structural similarities of atomic switch networks

(ASN) and biological brains (i.e., fractal branching similar to dendritic trees) suggests that

complex random assemblies provide hardware platforms for efficient brain-inspired com-

puting. A characteristic feature of cognitive architectures is the nonlinear transformation

of an input signal into a high-dimensional representation more suitable for information

processing [14, 85]. In particular, for N > M, the input signal u ∈ RM is transformed

to x ∈ RN by the dynamics of the cortical microcircuits driven by sensory inputs. In the

case of random memristive networks, this means that the measured signals at the interface

nodes are ideally nonlinearly related to the input signal and then provide a platform for

brain-inspired computing.

A suitable transformation of the input requires rich dynamics that can preserve rele-

vant distinctions between different input signals in the high-dimensional space [74]. This

property is attributed to the dynamics of a system in the critical regime where the dis-

tinctions between states do not diverge or converge [9, 63, 97]. To provide such a rich

dynamics, the activity of the nodes should show the least amount of redundancy. In other

words, the dynamics of the nodes should be as uncorrelated as possible. The question is

how one could measure that and how this measure would be related to the parameters of

the system.

Here we introduce a simple measure that can describe the dynamics of random net-

work signals in a way that is meaningful in the context of information processing. We

study the compressibility of the network dynamics as a proxy for its richness. Specifi-
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cally, we use principal component analysis (PCA) to transform the system dynamics into

a principal component space [12].

The distribution of variations in the principal component space indicates the amount

of redundancy between the different dimensions of the original system. The variation

in each principal component is given by the corresponding normalized eigenvalue of the

covariance matrix of the system. To calculate these, we record the network dynamics on

all interface nodes as a result of an applied network input. All network signals are ex-

pressed in the network state matrix X. The covariance matrix of the network dynamics is

then given by C = XT X, and the eigenvalues are obtained by diagonalizing, C = UΛU−1.

The diagonal elements of Λ, {Λ1,Λ2, . . . ,ΛN}, are the eigenvalues of the corresponding

dimension i and can be normalized as λi = Λi∑N
i=1 Λi

. Since λi are normalized as a probability

measure, we can describe their evenness using a single number H = −
∑N

i=1 λi log2(λi).

This is an entropy measure and describes how evenly the λi are distributed. In one ex-

treme case, where the system nodes are all maximally correlated, only one Eigenvalue

will be one and the rest will be zero, and the resulting entropy will be H = 0. In the

other extreme case, where the nodes are maximally uncorrelated, the Eigenvalues will be

identical and equal to 1
N , and the resulting entropy will beH = log2 N. In the latter case,

every node in the network represents something unique about the properties of the input

signal that cannot be described by a combination of the rest of the nodes.

In the following we present entropy measurements as a function of the network mor-

phology. As outlined in section 4.3.1, the morphology is modeled based on a beta dis-

tribution with parameters α and β as well as the indegree ξ that defines the device den-

sity. We apply a 5Hz sine wave to the upper left interface node of a 161 network and

connect the lower right node to ground (0V). Fig. 4.9 shows the network entropies as a

function of α, β, and ξ. Across all densities, the highest entropies, and hence the least
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Figure 4.9: Entropy as a function of the network topology defined by the beta distribution
values α, β and the indegree ξ (v = 8V). Independent of the density, best entropies are
achieved for more globally connected network morphologies described by α ≥ β (lower
triangles of the plots). With respect to the network density an indegree of ξ = 6 has re-
sulted in best entropies. Lower ξ values provide fewer signal paths and hence less network
activity. Beyond ξ = 6, additional connections do not contribute any further to the effec-
tive network morphology. Average numbers of network devices were 150, 250, 350, 450
for ξ = 2, 4, 6, 8, respectively. Markers Nx refer to table 4.2.
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linearly-dependent network states are achieved with a majority of the nanowires being

equal or longer than half the normalized maximum euclidean distance (lower left trian-

gles in Fig. 4.9 where α ≥ β). Long-range connections spatially distribute the input signal

across the network without much voltage drop. Hence, different areas of the network

experience a sufficient bias voltage to exhibit switching dynamics useful to information

processing. Increasing network densities, which in other words describes the number of

devices per area, creates more signal paths and due to device parallelism also higher con-

ductive connections. This also leads to better distribution of the input signal and to an

expansion of the morphologies for which larger entropies can be achieved.

Besides the network morphology, the amplitude v of the input signal also greatly

affects the network dynamics due to the exponential dependence of applied bias and either

activation energy to form an atomic bridge (for atomic switches) or the velocity of ionic

drift (for memristive devices). In Fig. 4.10 we show the entropy as a function of α, β, and

v for networks with an indegree ξ = 6. It can be seen that the average entropy increases as

we increase v. This is related to larger voltages enabling more devices to exhibit switching

activity and hence affect the network dynamics. The similarity in the plots as compared to

Fig. 4.9 implies that increased input voltages also allow better spatial distribution of the

input and more areas of the network to exhibit switching activity. Note that these plots

present qualitative results on the dependence of v and entropy, but the absolute values of

v are device-dependent and can change for devices with different threshold behavior.

We also studied network sizes 160 and 162. The 160 networks have shown very similar

results to the 161 networks. The morphological similarity between the 160 and the more

globally connected 161 networks is that they do not form many local fractal structures.

Contrary, the 162 networks are characterized by more complex morphologies between

the interface nodes. While this might closely resemble complex structures in biological
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Figure 4.10: Entropy as a function of the network topology defined by the beta distribution
values α, β and the input signal amplitude v (ξ = 4). Increasing signal amplitudes v lead
to higher bias voltages for individual network devices and results in higher switching
activity. Highest entropies are again achieved for more globally connected networks with
α ≥ β (lower triangles of the plots). Markers Nx refer to table 4.2.
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brains, in the context of passive electrical networks, these fine-grained fractal structures

with many devices in between interface nodes lead to alleviated individual switching dy-

namics. While this could be circumvented in simulations by increasing the input ampli-

tude v, in practice this is not a viable approach for reasons of safe operation and energy

consumption.

4.3.3 Energy Consumption

In the previous section we have shown that best computational capabilities are achieved

for dense, globally connected networks (α ≥ β) and larger signal amplitudes v. The viabil-

ity of these results has to be evaluated with respect to the energy that would be consumed

by such networks. Based on the application of a 5 Hz sine wave with amplitude v, we

calculate the total energy consumption of a network over time T as E(t) =
∫ T

i=0
Vi(t)Ii(t)dt,

with V(t) being the time-dependent signal amplitude and I(t) the current drawn by the

network. As the energy consumption is very application-specific, we consider our find-

ings as qualitative measures that highlight the general relations between the network pa-

rameters and the consumed energy. Absolute energy numbers presented here are not of

relevance, only the information on how drastically energy consumption changes with net-

work parameters. Fig. 4.11a shows the resulting energy consumption for different α and

β, averaged over different ξ and v. The distributions of the energy data across the α and

β plane resemble the entropy distributions seen in Fig. 4.9 and 4.10, which confirms that

high entropies come at the cost of high energy consumption (relative to the consumption

at low entropies) caused by high conducting paths in denser networks. This finding is

further supported by plotting energy vs. entropy (Fig. 4.11b). Here we plot the averaged

energy against the averaged entropy for corresponding setups. We can see how entropy

grows with energy. However, as the energy grows exponentially, increasing entropy can
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(b) Energy vs. Entropy

Figure 4.11: Energy consumption in random resistive switch networks. (a) Averaged
energy consumption for different network morphologies expressed as log10(E). Energy
grows exponentially when transitioning from locally connected (α = 1, β = 10) to more
globally connected networks (α ≥ β). The link between energy and entropy is shown in
(b). Entropy grows linearly with exponential energy increase.

lead to over-proportional energy consumption.

4.3.4 Applying Hierarchical Networks

As the computational performance of a single random network is limited by exponentially

increasing energy consumption or strong linear dependence at low energies, we will out-

line an approach to increase entropy with linear growth of energy. In [99] a hierarchical

approach of ASN was presented that combined multiple small-world networks on a single

chip. Similarly, we have shown a hierarchical approach that embedded independent net-

works (similar sizes as presented here) in a reservoir computing architecture and showed

that a memory and computationally demanding application could be solved [16].

The concept relies on extracting only a subset of signals from each independent net-

work. This allows harnessing the different processing caused by the different random
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Figure 4.12: Examples of networks and node signals. (a) Example 162 network with
α = 2, β = 5, and ξ = 4 indicating the 16 interface nodes. (b) 16 Signals measured from
a single 161 network with the input applied to node 1 and the ground node connected
to node 16. The presented signals have an entropy of 0.37. The numbers correspond
to the physical location of the nodes within the network. (c) Signals measured from 16
independent 161 networks. The entropy for this example is 1.79. Signals were measured
as the difference between interface nodes 2 and 9. The numbers represent the network
number. All networks were created with α = 1, β = 5, ξ = 4, v = 2V
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structures of the independent networks. Furthermore, in [16] we have extracted a dif-

ferential signal from each network. By retrieving a network output as the difference of

two network nodes, differences in the spatial and temporal dynamics within networks

can be better captured than using signals measured with respect to a common ground.

In Fig. 4.12 we show two examples of 16 network signals. Fig. 4.12b shows signals

obtained from a single random network (qualitatively comparable to signals presented

in [27]). Readouts from a single network show some nonlinearities; however, they are

mostly characterized by strong linear dependence across the signals (low entropy of 0.37).

In contrast, with 16 independent networks exposed to the same input, we can significantly

increase the richness of the measured signals. In this example the entropy is 1.79. The to-

tal energy consumption of the hierarchical independent networks scales linearly with the

number of networks. Considering the gain in entropy, this approach poses a much more

viable approach for brain-inspired information processing than relying on single networks

with high density and high signal amplitudes. A comparison of how energy and entropy

relate in the two presented setups is shown in Fig. 4.13. The plotted data represents col-

lected data from single networks as well as for the 16 networks approach with ξ = 4 and

increasing v. The circled areas approximately mark the energy and entropy data obtained

with a 2 V input signal. The average energy difference is 16 which corresponds to the

number of networks used. However, compared with single networks that exhibit similar

energy consumption (around v = 4..6) significantly higher entropies can be achieved.

4.4 MEMRISTIVE SWITCHING CHARACTERISTICS

The results so far have shown that depending on the task, adjusting system parameters

that effect the memristive switching dynamics has a strong impact on the task-dependent

112



4.4. MEMRISTIVE SWITCHING CHARACTERISTICS

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

log
10

(E) [J]

E
n

tr
o

p
y

 

 

Single Network

16 Networks

Figure 4.13: Energy vs. entropy for single networks and a hierarchical approach with 16
independent networks. The circled areas highlight an example of networks with the same
network parameters (v = 2, ξ = 2). Scaling up the number of independent networks is
more energy- as well as computationally-efficient as compared to increasing the entropy
of a single network by means of scaling up either density or voltage. Data obtained with
v = 2 and ξ = 2 . . . 8.
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performances. I could show that the higher harmonics generation tasks worked better

with larger input voltages and hence more internal switching (Fig. 4.5). On the NARMA-

10 task the reservoir performed better with lower voltages and less switching (Fig. 4.6).

While the network modeling approach has shed light onto the network morphologies, it

is not clear yet what the individual device dynamics within a network really look like. In

this section I will discuss memristive device characteristics, their modeling, and how they

affect the internal network dynamics.

4.4.1 Second-order Device Model

In this section I will describe the device model used in our simulations. Our focus is

on capturing the fundamental switching characteristics of the discussed devices, not on

precisely reproducing empirical data obtained from a specific device. As outlined in the

preceding section, memristive devices are characterized by history-dependent nonlinear

conductance changes and state decay.

We adopt a memristor model as presented for WOx devices in [20,22]. In the original

model the conductance as well as the state change are defined as follows:

G =
[
(1 − w) ε

[
1 − exp (−θV)

]
+ wγ sinh (δV)

] 1
V

�
 �	4.7

dw
dt

= λ sinh (ηV) −
w
τ

�
 �	4.8

Here the internal device state is modeled by w, V is the applied input bias, ε, θ, γ, δ, λ, η, τ

are the model parameters calculated from the experimental data (detailed experimental

data is property of authors of [20, 22] and has not been released to the public). The non-
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Figure 4.14: Atomic switch resistance changes based on formation and dissolution of the
atomic bridge. Based on two state variables, only when an atomic bridge is established
internally (first variable) will the external resistance (second variable) change measurably.
(Image taken from [38].)

linear switching, as explained by the exponential ionic drift model [101], is modelled

by the sinh term. This model captures well the nonlinear switching as a function of the

applied input and the current state.

However, such a first-order model, using only one variable to describe the device

conductance, does not capture effects such as Ag+ cation concentration changes. Such

a change affects a device’s response to future bias signals, but does not reflect into the

actual device conductance. In [38] this difference was described as the memristor using a

single variable to model the size of an ion-doped area, while the atomic switch uses two
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variables, one to model the height of an Ag protrusion, and another to model the width of

the atomic bridge that emerges after the Ag protrusion has reached a sufficient height (see

Fig. 4.14). Recently a second-order memristor model was presented that follows a similar

modeling approach to the atomic switch [60]. Here the second variable that functions as

an enabler for a subsequent change in conductance is the internal device temperature.

Application of an applied bias signal increases the internal device temperature due to

Joule heating, which in turn affects drift and diffusion processes described earlier.

To account for effects such as Joule heating or Ag protrusions, we use equation 4.8

to model an internal state w′ that does not directly reflect in the device conductance.

Furthermore, we extend the model to implement the different state decays based on the

device state. As shown in [21, 80], the rate of dissolution of the atomic bridge or the

diffusion of ions to an equilibrium state is state-dependent and enables short- and long-

term memory within a single device. We adopt equation 4.8 as well as describe state

variable w, which models the device conductance as:

dw′

dt
= λ sinh (ηV) −

w′

τ
(1 − w′)

�
 �	4.9

w = f (w′)
�
 �	4.10

For our entropy and energy simulations we employed a binary switching function f

that thresholds w′ to create two distinct conductances. Binary behavior of atomic switches

was shown in [80] and is also found in some other memristive devices [32]. Different

levels of sub-surface Ag+ concentrations are required to establish or dissolve an atomic

bridge (length and width of Ag protrusion) [79]. This implies different threshold values
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Figure 4.15: Second-order device model. Top: Applied sequence of positive and negative
signals. Middle: Internal device state that is a direct function of the applied signals and
their timing. Bottom: Resistive state of a binary device depending as a function of the
internal device state. The resistive state here is a unit less number where 0 and 1 represent
maximum and minimum resistance respectively.
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for the internal state variable w′ to perform device switching. We model this by applying

a hysteresis function to w′. In the next sections we will compare different variations of

the presented device model.

4.4.2 Switching Resolution

Based on the second-order device model, I will now discuss network behavior as a func-

tion of different switching characteristics. For this, three different models will be defined:

(a) an analog switching model, (b) a binary model, and (c) a model with 10 resistive

states. In the case of the analog model the resistive state of the device, that is the state

relevant to the network dynamics, directly follows the internal device state. Every small

change in the internal state will directly reflect in the measurable device resistance. Con-

trary, the binary device only exhibits two distinct resistive values, while the internal state

is still modeled analog. Internal state changes don’t necessarily reflect into the device’s

resistance right away, but require to pass a threshold level. The model with 10 resistive

states functions similar to the binary model in the sense that it can experience internal

state changes that don’t directly reflect in the resistance. However, with more possible

states and hence a higher resolution the resistive state of this model is more responsive to

the internal state.

In Figures 4.16, 4.17, and 4.18, I compare the network dynamics for the three different

models when the network is driven with a constant input bias. The constant bias ensures

that network devices have the required electrical signal to perform switching, but that the

network state changes are not a result of a change in the input bias itself, but rather of

the internal network dynamics. The results for the analog model (Fig. 4.16) show that the

network states (voltages measured at the interface nodes), briefly after the application of

the bias, settle at constant levels. These levels are a function of the network’s topology
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Figure 4.16: Voltages and current for a network with analog devices exposed to a con-
stant input bias. The analog switching allows the internal devices to immediately update
their state according to the applied signal. This direct, immediate response results in an
equilibrium state.
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Figure 4.17: Voltages and current for a network composed of second-order binary devices.
While internal device states integrate the applied bias, the binary switching function effec-
tively implements a delayed/filtered response to the bias. With many devices competing
for the applied bias, this results in a non-equilibrium state.
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Figure 4.18: Voltages and current for a network with a 10-step second-order device model.
Similar to the binary model with the difference that due to the increased amount of de-
vice states, more frequent resistive changes result in less pronounces voltage and current
fluctuations.

121



4.4. MEMRISTIVE SWITCHING CHARACTERISTICS

and the respective distribution of resistances that govern the distribution of voltages. This

behavior is the result of the network’s ability to balance any competing memritive states

due to the immediate response of these devices and reach an equlibrium state where all

competition for voltage has been settled. The network composed of second-order binary

device models exhibits very different behavior. Even under constant input bias the net-

work does not reach an equilibrium state. This behavior is caused by delayed as well

as abrupt changes in device resistances. While the internal device states are directly af-

fected by the applied voltage, a thresholding function with two distinct resistive states

causes sudden redistribution of voltages when individual devices switch. In turn, these

re-distributions of voltages ensure the continuing oscillation of network voltages. Simi-

larly, this is the case for the model with ten different resistive states (Fig. 4.18) where the

network states do not reach an equilibrium state either. In contrast to the binary model,

the overall magnitudes of voltage changes measured at the network nodes as well as the

fluctuations in the current consumed by the network are lower. This can be explained by

the smaller step sizes and a less delayed response of resistive changes.

After having shown how different device models affect network dynamics under a

constant bias, I will discuss the physical plausibility and computational implications.

While many memristors are described by first-order models, a second-order model cap-

tures more realistically a device’s response to a wider variety of applied signals. Many

models were designed with respect to a pre-defined signal with the aim to match experi-

mental data with a mathematical description. However, when the shape, duration, magni-

tude, etc. of the input signal changes, not all models will remain accurate. The reason lies

in the internal switching dynamics of memristive devices. In case of the atomic switch

(gap-type device) [80] this can be illustrated as a metal atomic bridge having to be es-

tablished first between the two terminals before the resistive state of the device changes.
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Figure 4.19: Entropy violin plot of simulations with different device models. Each violin
is represents 25,000 data samples over a variety of network parameters. We can see that
the medians (red line inside the violins) as well as the maximum values increase as the
switching resolution decreases. The median values for the analog, the 10-step, and the
binary model are 0.26, 0.27, and 0.29 respectively.
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Hence the behavior shown by the analog model (first-order) is not physically plausible

according to more recent publications on memristive switching and I argue that using

second order models that don’t behave perfectly analog should be preferred. From a com-

putational point of view we are interested if the different switching characteristics affect

the network performance. I illustrate such effects based on a violin plot in Fig. 4.19. This

plot indicates minimum, maximum, median, and the general distribution of the sampled

data. We can see that the median and maximum entropies are lowest for the analog model.

Furthermore the widest part of the violin, indicating the most likely entropies, is further

to the bottom of the plot. In contrast, the binary model shows a higher median entropy

and a distribution that indicates the most likely entropy for a random network close to the

median. Based on the physical plausibility for device models that do not exhibit arbitrary

small resistive state changes as well as on the higher entropy values, I conclude that de-

vices with a few stable resistive states are favourable for random memristive networks to

exhibit nonlinear dynamics that can be harnessed by the reservoir computing approach.

4.4.3 State Volatility

Another important aspect of memristive device characteristics is the state volatility. In

the more researched field of applications where memristors are used as synaptic weight

storage, state volatility is an undesired property as it would require periodic refreshing

of the memristive states. In contrast to using memristors for storage and inference of the

stored information, the memristive reservoir approach relies on extracting information

based on state changes of memristors, not constant states. Hence, intuitively devices that

exhibit volatility should lend themselves better to this approach. In this section I will

present some data that underlines the need for volatile devices.

In Fig. 4.20, I show recorded network states for networks composed of memristive
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Figure 4.20: Influence of the memristive volatility on the entropy. (a) Network states of
a network composed of memristors with a fast state decay (τ = 1e−5). The fast decay
reflects in fast competition over network voltages which is shown by the high frequency
components modulated onto the sine wave input. (b) Network states when using devices
with τ = 1e0. This network exhibits significantly less high frequency switching. (c)
Network states when using devices with τ = 1e5. All non-linear dynamics within this net-
work derive from actual state switching when a signal is applied and not from state decay.
(d) Entropy as a function of τ. Data collected and averaged over 25,000 experiments with
a variety of network and input signal settings.
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4.5. DISCUSSION

devices that differ in their state volatility. Comparing very fast state decay rates (τ = 1e−5)

to slower ones (τ = 1e0), and to practically non-existing state decay (τ = 1e5) we can see

how faster state decay imposes more high frequency components onto the network states.

Applying the entropy measure to these signals, high frequency components lead to less

correlation and hence larger entropy values (Fig. 4.20d). I will explain the presented data

on why faster decay leads to higher entropies on a short example. If a memristive device

withing the network experiences enough of a voltage drop to switch it’s state to a low-

resistive state, the voltage drop over this device is suddenly much smaller. Hence, with

no state decay this device would remain in that state and not further contribute directly to

the network dynamics. With faster state decays, devices can perform more switching and

therefore contribute more frequently to the competition and redistribution of voltages that

leads to the dynamics of a network. However, this is just a general discussion. Optimal

values for the state decay will depend on the applied input signal and the task at hand that

determine the relevant time-constants.

4.5 DISCUSSION

In this chapter I have presented various aspects of utilizing random memristive networks

for computation. This work has shed light onto relevant architectural design choices

and computational capabilities of such networks when used in a reservoir computing

paradigm.

The limited value of strong signal correlation within a single memristive network can

be circumvented by applying a modular approach to memristive reservoir computing. Ex-

tracting signals from modular networks enhances the richness of the measured networks

outputs, which benefits from the different random structures that determine a network’s
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response to an input signal. Comparing 16 signals extracted from a single network to

one signal extracted from 16 networks, 17.5% average increase in the richness could be

observed at the same energy consumption. With the ability of modular fabrication [99]

future work can move toward the integration of on-chip memristive networks as well as

further study methods to increase the richness of the network signals.

With respect to the network morphology it was shown that by influencing the distri-

bution of nanowire lengths one can control the computational capacities as well as the

energy consumption of a network. The presented modeling approach has been the most

detailed to this date and provides the basis for future work. With respect to the variation

in the presented results for the same network morphologies, a much closer look at the re-

sulting networks can be taken to determine the cause for variation. This will likely extend

the understanding of the broader parameter exploration presented here and provide more

insights into sub-parameter spaces and best/worst-case scenarios.

For switching resolution as well as the memristive state volatility we have seen that

binary devices with fast state decays create the most diverse representations of an applied

input signal. The increased entropies are a result of higher frequency components being

part of the resulting signals. In future work it has to be evaluated if these higher frequency

components can be efficiently harnessed for computation or if they turn out to represent

noise rather than information.
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CONCLUSION

The motivation for my research arose out of the growing possibilities of employing emerg-

ing nanoelectronics in neuromorphic hardware. With the long-term goal of building elec-

tronics that compare in computational complexity and energy consumption with that of

biological brains, I saw potential in the use of memristive devices beyond synaptic weight

storage. This evaluation led to my interest in defining architectures and algorithms that ex-

ploit memristive device properties, that are typically not considered desirable for synaptic

weight storage, for information processing.

MEMRISTIVE CROSSBARS

In chapter 3, I set out to investigate the possibilities of computing within memristive

crossbars. Device level fabrication primarily considering the crossbar structure will make

this a mature architecture that can serve as the base for storage as well as computation.

To this day, primarily used as synaptic weight storage, the regular and parallel structure

of the crossbar is not a natural fit for dynamic information processing due to every device

operating independent from all others. Based on state volatility of some memristive de-

vices, which is a concept similar to synapses that provide temporal feature extraction [35],

I presented a simple architecture that applies data to the crossbar rows and modulates the

128



crossbar columns in order to achieve heterogeneous processing of the applied input data.

Compared to another memristor-based architecture [83] my approach achieved the same

classification rate of 93% on the MNIST data set while requiring 3 times less neurons and

15 times less weights to train.

Next, I focused on generalizing this approach as to better understand the details that

contribute to the overall approach as well as to make it applicable to other data sets.

Multiple aspects were shown to be important in utilizing the crossbar efficiently. The spa-

tiotemporal code that the reference signal provides is essential to the feature extraction

from input data. Deriving the reference signal from training data, PCA and class mean

representations offer scalable methods to extract features and increase classification rates

of up to 93% when utilizing a tanh activation function in connection with the readout

operation. Using random reference signals can achieve identical classification rates if the

sparsity constraint is chosen accordingly. Too sparse reference signals do not allow to

extract enough features, while less sparse signals create features that are less descriptive

of the applied input. While the design of the reference signals determines the integra-

tion of input data, methods to efficiently extract information from the crossbar for further

processing have been presented. As a readout operation conflates multiple independent

device states, a two-dimensional readout operation was introduced that allows to retrieve

a more informative representation of the crossbar states. With one-dimensional readout

operations along rows or columns leading to 14% and 60% correct classifications, re-

spectively, a two-dimensional readout achieved 78% (smaller setup used than for the 93%

classification rate). In addition to performing a two-dimensional readout it was shown

that multiple readout operations with shorter readout vectors rather than a single readout

with one long vector lead to better classification results. The reason is again found in the

conflation of memristive states. The fewer devices involved in a readout operation, the
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more accurate the crossbar states can be retrieved.

While the computational considerations have introduced relevant methods and achieved

competitive results, the viability of any architecture based on emerging nanoelectron-

ics has to be evaluated considering the effects of physical device imperfections. Device

variation describes the functional differences between different devices. Cycle variation

describes a non-deterministic behavior of a single device over repeated application of

the same signal. Relying on reservoir computing principles of exploiting dynamic state

changes rather than predefined states, device variation is not a problem for the crossbar

approach. I have shown that the classification rate remains stable up to 6 times the level of

device variations reported so far. Beyond that, the drop of classification rate is attributed

to a loss of nonlinear behavior that the memristive devices experience [17]. Cycle varia-

tion is more critical, yet within random fluctuations of up to 1% [2], as was shown for one

memristive device, classification rates remain nearly constant. However, with the lack

of available data on the phenomenon of cycle variation it remains to be evaluated for a

broader set of devices.

As computing within crossbars is a new concept that has been introduced here, all

work so far focused on the design and optimization of the used methods. The next steps

expand the horizon by comparing to other methods and data sets. A benchmark experi-

ment has been performed with an extreme learning machine implementation. Based on

the same number of signals applied to a trainable readout layer, the crossbar approach

shows advantages for smaller system sizes of less than 750 signals. However, the clas-

sification rates scale more favorably with the ELM approach and achieve better results

beyond using 750 signals. It has to be noted though that the crossbar approach only re-

quires 28 input neurons by utilizing MNIST as a spatiotemporal data set, while the ELM

approach relied on 784 input neurons to the system. Another benchmark was performed
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to validate the crossbar approach on a different data set and compare it to an echo state

network implementation. Based on 10 classes of jittered spike trains with added noise,

the classification rates of the crossbar and the ESN were compared. Performing nearly

identically for data samples containing sparse activity and no noise (0%) or almost only

noise (50% of possible spikes), the crossbar approach achieves classification rates of up to

20% higher than the ESN for a wide range of signal sparsity and noise levels in-between

the extreme cases of 0% and 50%. While all noise contained in the input data will enter

and circulate within the ESN, the reference signals determining the spatiotemporal code

for the crossbar to be receptive to input signals allows for most noise signals to not enter

the crossbar and hence not corrupt the integrated signals.

A limitation of this approach has been shown in the scalability comparison with the

ELM. In case of implementations with memory-less hidden neurons, such as the ELM

that receives input data in a purely spatial manner, increasing the number of neurons

allows for an increasing number of input feature combinations. In contrast, the fixed con-

nectivity of the crossbar restricts each memristive device to input data along the temporal

domain only. Another limitation concerns the input data format. All experiments consid-

ered binary input signals where information is encoded in the spike location and timing.

This allowed to utilize state decay for temporal feature extraction. In analog encoded

signals the information density is likely to be too high as for the crossbar to efficiently

detect and extract relevant features. Therefore, this approach provides a viable solution

to spatiotemporal spike detection as well as to complement other information processing

architectures by providing a unique way to extract meaningful features in a compact ar-

chitecture. Possible applications are inherently spatiotemporal problems such as speech

recognition (encoded in spikes). In applications of image classification / object detection,

where an applied image produces a sparse spiking activity over a range of neurons, the
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crossbar approach can also implement order-selective detection of these spikes to con-

clude on target features. In general, the scalability of the crossbar structure allows for a

wide range of input data representations and hence for a wide range of data sets.

RANDOM MEMRISTIVE NETWORKS

A second architecture for computing with random assemblies of memristive devices was

shown in chapter 4. Preliminary simulations and physical assemblies have demonstrated

their ability for simple pattern classification and generation. Based on the introduction to

memristive networks in section 2.3.2, it became clear that memristive networks are facing

limitations in their ability to create a higher dimensional representation of the input data

that could then be used to train a readout layer. I have introduced a hierarchical archi-

tecture that utilizes a set of small-scale memristive networks that are interconnected by

an underlying CMOS layer. Information processing is done within the memristive net-

works. Signal amplification and routing is done in the CMOS layer. Based on the higher

harmonics generation tasks that were shown for single memristive networks I demon-

strated the hierarchical architecture’s ability to benefit from independent networks with

different topologies, and hence different transformations of the input data. For all three

signals, sine, square, and triangle, the hierarchical approach achieved up to 6 times lower

mean-square errors as compared to a single network. Based on the time-series prediction

task NARMA-10, a task too complex for a single memristive network, I compared the

hierarchical memristive network to a echo state network implementation. Based on the

same number of signals extracted, the heterogeneity of the memristive networks allows

to continuously improve the prediction error while the ESN approach stagnated. In its

largest setup with 400 signals the memristive reservoir approach achieved 0.15 NRMSE
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while the ESN approach achieved 0.35. While these results made a strong case for com-

puting with memristive reservoirs, it did not provide insights into how different network

morphologies affect the computational results.

Based on physical factors, such as the size, shape, and the distance of electrodes

that guide the fabrication of random networks, I presented a comprehensive modeling

approach that can control different network morphologies with a few parameters. A beta-

distribution was used as probability density function to define the ratio of short and long

range connections with the network. A grid approach allowed to control the growth of

nanowires with a more fine-grained grid leading to more fractal structures. Following

this modeling approach I investigated computational capacity and energy consumption of

these networks. Computational capacity was described as the richness of the extracted

network signals. A network has a rich set of signals if these are linearly uncorrelated so

that each signal contains information that cannot be obtained by any other signal. It was

shown that the highest computational capacities are obtained for networks that are more

globally connected. Global connections allow the applied input signal to more evenly

spread throughout the network and cause more devices to exhibit switching activity. The

downside of this increased switching activity is the resulting energy consumption. As the

voltage-current relationship of memristive devices follows nonlinear characteristics, the

linear growth in computational capacities causes exponential growth in energy consump-

tion. A solution to this problem is given by the hierarchical architecture. Relying on fewer

signals per memristive network, but implementing more networks allows to harness the

different morphologies and to increase computational capacities in average of 17.5%, as

compared to single networks, at linear growth in energy consumption.

To create a complete picture of contributing factors to computational capacities, I took

a look at the memristive switching characteristics. I implemented different switching be-
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havior in order to gain an understanding how it impacts computational capacities. An

analog model, where every change in the internal state causes a change in the measurable

device resistance was compared to second-order devices. Such devices use two variables

to model possible switching. One variable models the internal state, while the second

variable maps the internal state to the external device resistance following a specific func-

tion. Here I used a binary as well as a denary (ten states) function. Under the application

of a constant bias signal, I observed the network states. The analog model results in a fast

equilibrium of the network states as it allows to immediately mediate between all com-

peting voltage levels within the network. The binary and denary models exhibit ongoing

network activity as a result of sudden memristive state changes and resulting redistribu-

tions of voltages within the network. Such a behavior is similar to synaptic activity in

biological brains under constant external stimuli. However, while a difference in compu-

tational capacities could be observed, the differences were minor (entropies of 0.26, 0.27,

0.29 for the analog, denary, and binary model, respectively). Hence, more important to

an efficient design of random memristive networks is the network morphology and the

hierarchical utilization of independent networks.

The computation with hierarchical memristive networks involves design parameters

determining the connectivity between memristive networks, the connectivity within mem-

ristive networks, device characteristics, input signal encoding, and network signal extrac-

tion. Due to this design complexity further research is required before the full potential

of memristive reservoir computing can be understood. Based on the results presented

here, that have shown memristive reservoirs to outperform an ESN implementation on

the NARMA-10 task, we assume that this approach holds further potential. While it was

shown that more globally connected networks lead to richer network activity, a more de-

tailed look has to be taken at the randomness in the network creation that is likely to
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cause the deviations in the network behaviors. Once the network creation is fully under-

stood, this approach can be applied to other applications. I.e., an ESN implementation for

speech recognition was shown to lead to competitive results. Based on the hierarchical

architecture, the scalability of this approach certainly permits tasks of such complexity.
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5.1. LIST OF CONTRIBUTIONS

5.1 LIST OF CONTRIBUTIONS

General

• My work is the first that was going significantly beyond the simple recognition of

memristive devices as storage elements by showing combinations of architectural

and algorithmic considerations demonstrating working examples of computing with

memristive devices.

• This research extends possibilities of neuromorphic hardware architectures to op-

erate more efficiently by exploiting inherent device properties.

• The demonstration of harnessing diverse device properties allows memristive de-

vice research to see value in device properties that in conventional architectures

would be considered undesirable.

Memristive Crossbar

• With a mathematical interpretation of memristive crossbars that outlined relevant

components to create heterogeneous state patterns within a highly parallel struc-

ture, a novel computing architecture based on emerging nanoelectronics has been

presented.

• By considering intrinsic device properties as a potential for efficient computation,

state volatility was shown to not be an undesired property, but one that can effi-

ciently extract temporal information from input sequences.

• This approach was shown to work for inherently spatiotemporal problems as well
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as provide the opportunity to reduce the system size for applications with high-

dimensional spatial input data.

• Utilizing nonlinear integration and state decay for computation, the crossbar per-

forms useful pre-processing that allows to significantly reduce the training com-

plexity.

• The reference matrix implements noise robustness in a unique way. As the spa-

tiotemporal reference signal determines when the crossbar integrates an input sig-

nal, most noise won’t even alter the memristive states.

• By utilizing the dynamic range of the device states rather than fixed predefined

states, the crossbar approach provides an implementation that is indifferent toward

realistic levels of device variation and even robust under realistic levels of non-

deterministic cycle variation.

Random Memristive Networks

• I have introduced a scalable hierarchical approach that harnesses the dynamics of

memristive networks for nonlinear transformations of input signals, and that avoids

alleviated dynamics of large networks.

• Scalability and heterogeneous network morphologies have allowed to significantly

increase task complexities to; (a) new levels for memristive reservoir computing

and (b) to competitive levels among the general reservoir computing field.

• The detailed modeling framework of network morphologies has provided a clear

understanding of the relations between network dynamics and energy consumption.
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• Different device models and volatility rates have on the one hand demonstrated the

effect on network dynamics and on the other hand provided an understanding of

switching characteristics beneficial to memristive reservoir computing.
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