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ABSTRACT 

Non-coding small RNAs (sRNAs) regulate various cellular processes in bacteria. They 

bind to a chaperone protein Hfq for stability and regulate gene expression by base-pairing 

with target mRNAs. Although the importance of sRNAs in bacteria has been well 

established, the mode of origination of novel sRNA genes is still elusive, mainly because 

the rapid rate of evolution of sRNAs obscures their original sources. To overcome this 

impediment, we identified a recently formed sRNA (EcsR2) in E. coli, and show that it 

evolved from a degraded bacteriophage gene. Our analyses also revealed that young 

sRNAs such as EcsR2 are expressed at low levels and evolve at a rapid rate in comparison 

to older sRNAs, thereby uncovering a novel process that potentially facilitates newly 

emerging (and probably mildly deleterious) sRNAs to persist in bacterial genomes. We 

also show that even though EcsR2 is slightly deleterious to E. coli, it could bind to Hfq 

and mRNAs to regulate the expression of several genes. Interestingly, while EcsR2 

expression is induced by glucose, the expression of its putative targets are regulated by the 

transcription factor CRP in response to glucose, indicating that EcsR2 has been 

incorporated into the carbon regulatory network in E. coli. Collectively, this work 

provides evidence for the emergence, evolution and functions of a novel ‘young’ sRNA in 

bacteria. 
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INTRODUCTION 

Phenotypic diversity and response to environmental signals have long been attributed to 

proteins in all domains of life. However, the discovery of non-protein coding RNAs 

(ncRNAs) that bind with proteins, DNA and/or mRNAs has changed our understanding 

of gene regulation. As more sophisticated methods were developed for genetic studies, 

strong evidence for transcripts from intergenic regions (IGR) started to accumulate, 

leading to the identification of several classes of ncRNAs with diverse modes of 

mechanisms and functions in Eukaryotes, Archaea and Bacteria. In Eukaryotes, major 

classes of ncRNA include microRNA (miRNA) and small-interfering RNA (siRNA) 

that bind to target mRNAs and modulate translation (Filipowicz et al. 2005; Murchison 

et al. 2004; Bartel 2004). In Archaea, ncRNAs such as tRFs (tRNA derived fragments) 

have been found to regulate many biological roles such as adaptation to extreme 

temperature, metabolic regulation, stress response, and regulation of cellular morphology 

(Babski et al. 2014). In bacteria, post-transcriptional regulation of gene expression is 

carried out by small RNAs (sRNA), which are typically 50-500 nucleotides (nt) long and 

are encoded in IGRs. Other important classes of bacterial ncRNAs are anti-sense RNA 

(asRNA), which are transcribed from the opposite strand of the protein-coding genes 

(Georg and Hess 2011), riboswitches and RNA thermometers that are located in the 

untranslated regions of certain mRNAs (Breaker 2011; Kortmann and Narberhaus 2012), 

and intraRNAs that originate from within protein-coding genes (Miyakoshi et al. 2015).  

Bacterial sRNAs control a wide range of cellular processes, including biofilm 

production, lipopolysaccharide modification, motility and survival in harsh conditions 
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(Raghavan et al. 2015; Moon et al. 2009; Thomason et al. 2012; Jones et al. 2006). For 

example, an sRNA EcsR1 that is a part of CRP and FNR regulons impacts biofilm 

production in E. coli (Figure 1; Raghavan et al. 2015). In addition to biofilm production, 

sRNAs also control motility by sensing changes in nutrient availability. When cells reach 

stationary growth phase and the nutrient availability is scarce, sRNA McaS is highly 

expressed. The sRNA binds to and activates genes involved in enhancing biofilm and 

flagella synthesis thereby helping E. coli to obtain a sessile lifestyle (Jorgensen et al. 2013). 

Another sRNA in E. coli that mediates cellular survival by responding to environmental 

conditions is DsrA. When cells experience osmotic shock and low temperatures, DsrA is 

expressed and binds to RpoS, a general stress and stationary phase sigma factor. The 

binding of DsrA to rpoS enhances the translation of the protein thereby helping the cells 

to mediate stress (McCullen et al. 2010).  

 Most sRNAs are expressed in response to environmental cues such as availability 

of certain carbon source, nutrient concentration and cell density (Večerek et al. 2007; 

Negrete et al. 2010; Hoe et al. 2013). There are several advantages of gene regulation via 

sRNAs over gene regulation by proteins. The ability of sRNAs to directly bind to 

mRNAs causes the degradation of both sRNAs and mRNAs leading to precise control of 

gene expression. Controlling these activities through sRNA-mRNA interaction is faster 

as no translation is required, and degradation of sRNA and mRNA helps in faster 

recycling of nucleotides. sRNAs are also energetically cheaper to synthesize compared to 

proteins (Beisel and Storz 2010). Moreover, nucleotide substitutions in sRNAs can alter 
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the strength of sRNA-mRNA interaction, which is advantageous for fine-tuning gene 

expression. Such modifications are difficult to achieve in proteins, as substantial  
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Figure 1. Impact of EcsR1 on biofilm formation. Biofilm formation is influenced by 

sRNA EcsR1 (Raghavan et al. 2015). A wild-type strain, an EcsR1-deleted strain 

(ΔEcsR1), a EcsR1 strain containing pBAD with cloned EcsR1 (ΔEcsR1+pBAD-

EcsR1), and a EcsR1 strain containing empty pBAD (ΔEcsR1+empty pBAD) were 

tested. Asterisks indicate a statistically significant difference between wild-type and 

EcsR1 strains (P < 0.0001). Biofilm formation was measured at OD600. The blue circles 

show the retention of crystal violet in the biofilm. 
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nucleotide changes are required to change a protein’s function. Additionally, sRNAs can 

alter protein activity by binding directly to them. For example 6S sRNA, one of the first 

sRNAs to be discovered, accumulates in E. coli in stationary phase and binds to RNA 

polymerase to repress transcription from a σ70-dependent promoter (Wassarman and 

Storz 2000). This helps E. coli to survive when the nutrients are scarce by saving energy. 

Thus there is a huge array of known sRNA functional mechanisms, and as more sRNAs 

are discovered, this spectrum is bound to expand.  

 As diverse mechanisms of sRNA functionality have become apparent, novel 

methods to detect sRNAs have also been developed. Examples of such methods are 

functional genetic screenings, microarrays, co-purification with proteins, ortholog gene 

searches between related species, northern blots and computational predictions. Although 

these techniques have been fruitful in discovering large number of sRNAs, they also have 

a lot of shortcomings. For example, genetic screening relies highly on strong phenotypic 

features of bacteria, is labor intensive, and many sRNAs that are expressed under special 

conditions may not be identified. Computational analysis is another powerful approach in 

finding new sRNAs but it requires a list of experimentally confirmed sRNAs in related 

species. Detection by co-purification with proteins requires sRNAs to be bound to 

proteins throughout the purification process, and for northern blots to work, the 

expression of the sRNA has to be high enough to show up on the blot (Vogel and 

Sharma 2005). Such shortcomings make these methods less reliable for detecting novel 

sRNAs. Additionally, because traditional sRNA detection methods rely on high 
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expression and conservation across species, they overlooked most novel sRNAs that have 

low expression levels and/or are present only in few species. 

 With the recent development of high-throughput sequencing technologies 

(RNA-seq), bacterial transcriptomes could be interrogated at great depth, and novel 

sRNAs could be identified without requiring any prior information about sRNA 

sequence or structure (Wilderman et al. 2004). Using RNA-seq, our lab was able to 

identify several novel sRNAs in enteric bacteria (Raghavan et al. 2011, 2012, 2015).  

 While the importance of sRNAs to bacterial gene regulation is well established, 

the mechanisms through which sRNAs originate remain largely unknown. One of the 

main impediments in studying sRNA origination is that, unlike protein-coding genes, 

sRNA genes evolve at a rapid rate, which has made it difficult to identify their original 

sources (Gottesman and Storz 2011). One approach to circumvent this impediment is to 

utilize recently evolved i.e., ‘young’ sRNAs; however, because such sRNAs are 

phylogenetically restricted, they have been largely overlooked by previous studies. By 

combining structural and evolutionary genomics approaches with transcriptomics data, 

we were able to identify several ‘young’ sRNAs in E. coli and Salmonella enterica 

(Raghavan et al. 2015). One of the sRNAs present only in E. coli is EcsR2. The goal of 

this project is to (1) characterize the origination of EcsR2, (2) define the expression 

pattern of EcsR2 and (3) identify potential mRNA targets of EcsR2. 
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MATERIALS AND METHODS 
 

Bacterial strains and plasmids 

The plasmids and strains used in this study are described in Table 1. When present, 

antibiotics were used at following concentrations: ampicillin 100 µg/mL; kanamycin 25 

µg/mL; chloramphenicol 25 µg/mL. For pC2 plasmid construction, EcsR2 gene was 

amplified from E. coli wild-type MG1655 chromosome using primer set yagU3'-nheI_F 

and yagU3'-HindIII_R containing NheI and HindIII restriction sites respectively. EcsR2 

PCR product and pBAD24 were digested with NheI and HindIII (ThermoFisher) and 

gel purified. The purified digestion products were ligated at 1:1 ratio at room 

temperature using Rapid DNA Ligation kit (ThermoFisher). The ligation reaction was 

chemically transformed in to E. coli JM109 strain (Promega) by following manufacturers 

instructions and plated on LB agar plates supplemented with ampicillin. Colonies with 

correct plasmid constructs were confirmed by PCR and DNA sequencing. For pBH 

plasmid construction, primer set BH_F and BH_R was used to amplify entire pC2 

plasmid except nucleotides at positions 50-80 of EcsR2 by using Phusion High-Fidelity 

PCR kit (ThermoFisher). The amplified product was ligated using Rapid DNA Ligation 

Kit (ThermoFisher) and transformed in to E. coli JM109. Colonies with correct plasmid 

constructs were confirmed by PCR and DNA sequencing. Plasmids pC2, pBH and 

pBAD24 were extracted from E. coli JM109 strains by Midiprep (ThermoFisher) and 

electroporated into EcsR2-deletion (RL_001) strain. EcsR2-deletion (RL_001) and hfq-

deletion (RL_005) MG1655 strains were constructed using λ Red-mediated 
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recombination (Datsenko and Wanner 2000). Table 2 lists the sequences of all the 

primers used in this study. 
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Table 1: List of plasmids and strains used in this study. 

Plasmids  Description  Reference or 
source 

pBAD24 Ampr; araBAD promoter-based expression vector with a 
pACYC origin  

Guzman et al. 
(1995)  

pC2 
EcsR2 coding region (158 bp) cloned into the NheI and 
HindIII sites behind the arabinose-inducible promoter on 
pBAD24 

This study 

pBH 
EcsR2 missing 50-80 nts (96 bp) cloned into the NheI and 
HindIII sites behind the arabinose-inducible promoter on 
pBAD24 

This study 

Strains   
MG1655 Wild-type E. coli Courcelle Lab, PSU 
RL_001 MG1655 ΔEcsR2::cm This study 
RL_002 RL_001, pBAD24 This study 
RL_003 RL_001, pC2 This study 
RL_004 RL_001, pBH This study 
RL_005 MG1655 Δhfq::cm This study 
BW25113 F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, 

Δ(rhaD-rhaB)568, hsdR514 
CGSC Yale 

JW5720-4 F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, Δcrp-
765::kan, rph-1, Δ(rhaD-rhaB)568, hsdR514 

CGSC Yale 

JW1328-1 F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, Δfnr-
771::kan, rph-1, Δ(rhaD-rhaB)568, hsdR514 

CGSC Yale 

JW0662-2 F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), 
ΔnagC725::kan, λ-, rph-1, Δ(rhaD-rhaB)568, hsdR514 

CGSC Yale 

JW1586-1 F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, 
ΔdgsA742::kan, rph-1, Δ(rhaD-rhaB)568, hsdR514 

CGSC Yale 

 
 
 

 

 

 

 

 

 



	 10	

Table 2: List of primers and oligonucleotides used in this study. 

Primers Sequence (5' to 3') Description Sites in 
blue 

yagU3'-nheI_F ATGCTAGCGCAGATAGT
CAGTGAGTATATC 

Amplify EcsR2 from MG1655 
wild-type 

NheI 
restriction 
site 

yagU3'-aatII_F GACGTCGCAGATAGTCA
GTGAGTATATC 

Amplify EcsR2 from MG1655 
wild-type 

AatII 
restriction 
site 

yagU3'-
HindIII_R 

AAGCTTATTGCACTGCC
CCGCCAGCG 

Amplify EcsR2 from MG1655 
wild-type 

HindIII 
restriction 
site 

pBAD_F CTGTTTCTCCATACCCG
TT 

Verify inserts cloned into pBAD24 
plasmid   

pBAD_R1 CTCATCCGCCAAAACAG 
Verify inserts cloned into pBAD24 
plasmid   

sRNA2-KO-
new_F 

CAAATACAGCGCCATTT
TTATAGGTTAAAAACAT
TGCTTTCATATGAATAT
CCTCCTTAG 

Region flanking EcsR2, to amplify 
cat gene from pKD3 for deleting 
EcsR2 

Binds to 
pKD3 

sRNA2-KO-
new_R 

ATACGGGCTGACACCGT
TATAAACATACAATAAT
TAATTGGTGTAGGCTGG
AGCTGCTTC 

Region flanking EcsR2, to amplify 
cat gene from pKD3 for deleting 
EcsR2 

Binds to 
pKD3 

sRNA2-
flank_F 

GCGGCTGTTTATACCTT
TGC 

Amplifies region on MG1655 
gDNA flanking EcsR2 IGR   

sRNA2-
flank_R 

GACGATGCTGGCGGTAC
TAT 

Amplifies region on MG1655 
gDNA flanking EcsR2 IGR   

hfq-KO_F 
AAGGTTCAAAGTACAAA
TAAGCATATAAGGAAAA
GAGAGACATATGAATAT
CCTCCTTAG 

Region flanking hfq gene, to amplify 
cat gene from pKD3 for deleting 
hfq 

Binds to 
pKD3 

hfq-KO_R 
AGGATCGCTGGCTCCCC
GTGTAAAAAAACAGCCC
GAAACCGTGTAGGCTGG
AGCTGCTTC 

Region flanking hfq, to amplify cat 
gene from pKD3 for deleting hfq 

Binds to 
pKD3 

hfq-flank_F TTCGTTGCGTGGGTTAT
CGC 

Amplifies region on MG1655 
gDNA flanking hfq gene   

hfq-flank_R ACTGCTTTACCTTCACC
TAC 

Amplifies region on MG1655 
gDNA flanking hfq gene   

BH_F CGGATCTACATCATCCT
GAA 

Amplifies C2 without 50 to 80 nts 
of EcsR2   

BH_R GGCAAATAGAAGAAGTA
TCG 

Amplifies C2 without 50 to 80 nts 
of EcsR2   

sRNA2-
Biotintarget-
oligo 

mGmCmGmCmGmAmUmAm
UmAmCmUmCmAmCmUmG
/iBiodT//iBiodT//
iBiodT//3iBiodT/ 

Biotin T's binds to the neutrvidin 
beads; complementary to 6-22 
nucleotides of EcsR2 

  

EcsR2_qPCR_
F 

ATCGCGCTACTTCAGGA
TGA 

Quantify EcsR2 expression levels 
from cDNA by qPCR   

EcsR2_qPCR_
R 

CAGCGATAATAGCGGGG
CTT 

Quantify EcsR2 expression levels 
from cDNA by qPCR   
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16s_F GCAGCCATGCCGCGTGT
ATG 

Quantify 16s expression levels from 
cDNA by qPCR   

16s_R AATGAGCAAAGGTATTA
ACT 

Quantify 16s expression levels from 
cDNA by qPCR   

frdA-Ec-
qPCR_F 

GGCCCGGAAACTCCGCT
GGG 

Quantify frdA expression levels 
from cDNA by qPCR   

frdA-Ec-
qPCR_R 

GTGACGCAAGTCGAGAT
AAA 

Quantify frdA expression levels 
from cDNA by qPCR   

ansB-Ec-
qPCR_F 

TCCTCTGGGTTACATTC
ACA 

Quantify ansB expression levels 
from cDNA by qPCR   

ansB-Ec-
qPCR_R 

GAAGATCGGATGCGTTA
GCG 

Quantify ansB expression levels 
from cDNA by qPCR   

ygiB-Ec-
qPCR_F 

GTTCCGCAAAAACTGGA
GCG 

Quantify ygiB expression levels 
from cDNA by qPCR   

ygiB-Ec-
qPCR_R 

CTTTTGCCTGGGTTTGC
AGC 

Quantify ygiB expression levels 
from cDNA by qPCR   
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Growth Assay 

For growth analysis, E. coli MG1655 and RL_001 were grown overnight in M9 minimal 

medium (Amresco) supplemented with 0.2% glycerol or in Lysogeny Broth (LB). 

Overnight growths were diluted 100 fold in fresh media and growth was measured every 

hour at OD600 using a Bio-Rad SmartSpec 3000. 

 

Crosslink-seq 

E. coli strains RL_002 and RL_003 were grown aerobically to OD600 value of 0.5. 

Cultures were supplemented with arabinose (0.2%) for 10 minutes to transiently induce 

the expression of EcsR2, and washed twice with phosphate buffered saline (PBS). Cells 

were resuspended in 8 mL PBS and incubated on ice. 4’-aminomethyl-trioxsalen (AMT) 

(Cayman Chemicals) was added to the cells at a concentration of 0.2mg/mL and cells 

were incubated on ice for 10 minutes. 3.2 mL cells treated with AMT were irradiated 

with long wavelength ultraviolet (UV) light at 365 nm for 1 hour on ice. The cells were 

then washed once with PBS and total RNA was isolated using TRI reagent (Ambion). 

RNA was treated with DNase I (Fermentas) to eliminate any DNA contamination. 

DNase treated RNA was mixed in hybridization buffer (20 mM HEPES pH 8, 5 mM 

MgCl2, 300 mM KCl, 0.01% NP-40, 1 mM DTT) and heated at 80°C for 2 minutes 

followed by immediate cooling on ice. Biotinylated antisense oligo (10 nmol) that binds 

to EcsR2 (Table 2) was added to the RNA and incubated at room temperature overnight. 

150 µL of NeutrAvidin agarose resin (50% slurry) was washed twice in WB100 buffer 

(20 mM HEPES pH 8, 10 mM MgCl2, 100 mM KCl, 0.01% NP-40 1 mM DTT) 
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followed by blocking the beads for 2 hours (blocking buffer: WB100, 50 µL BSA 

[10mg/mL], 40 µL tRNA [10 mg/mL], 10 µL glycogen [20 mg/mL]). The blocked 

beads were once again washed with fresh blocking buffer and added to the hybridized 

RNAs bound to the biotinylated oligo. The sample was incubated for 4 hours at 4°C. 

Next, the samples were washed five times with WB400 buffer (20 mM HEPES pH 8, 10 

mM MgCl2, 400 mM KCl, 0.01% NP40, 1 mM DTT). The hybridized RNAs bound to 

the beads were isolated using TRI reagent (Ambion). EcsR2-mRNA hybrid RNAs were 

un-crosslinked by short wavelength UV light at 254 nm on ice for 15 minutes. The RNA 

samples were deep-sequenced at Oregon Health and Science University Massively 

Parallel Sequencing Shared Resource (Illumina HiSeq, 100 cycles, single-end), and the 

trimmed reads were mapped to E. coli MG1655 genome to determine the genes that were 

enriched in test samples (expressing EcsR2) in comparison to controls (no EcsR2). 

 

Conservation of EcsR2 in E. coli 

A local BLAST database of genome sequences of all E. coli strains from NCBI was 

created. Local megablast of the intergenic region (IGR) that contains EcsR2 along with 

30 bp flanking sequence was performed. The resulting yagU-ykgJ IGR sequences from all 

the genomes were aligned using Clustal Omega (Goujon et al. 2010). For investigating 

the conservation of yagU-ykgJ IGR, yagU and ykgJ orthologs were identified in closely 

related enteric species using reciprocal BLAST best-hit approach. The genomic locations 

of the orthologs were determined on NCBI graphical user interface to confirm presence 

or absence of the IGR. 
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EcsR2 expression assay and target verification 

For measuring EcsR2 expression, E. coli MG1655 was grown aerobically in M9 minimal 

medium (Amresco) supplemented with 0.2% glycerol to OD600 value of 0.2, 0.5, 1.0 and 

1.5. Total RNA was extracted from 20 mL of culture using TRI reagent (Ambion). 5 µg 

of RNA was treated with DNaseI (Fermentas) to eliminate DNA contamination. 500 ng 

of DNase treated RNA was used to generate cDNA using RevertAid First Strand cDNA 

Synthesis Kit (ThermoFisher), and semi-quantitative PCR (22 cycles) was done to 

measure EcsR2 expression. For measuring the effect of hfq deletion on the expression of 

EcsR2, E. coli MG1655 and RL_005 strains were grown aerobically in LB to OD600 value 

of 0.5. For testing the impact of glucose on expression of EcsR2, BW25113 strain was 

grown aerobically in LB and LB+glucose (0.2%) to OD600 value of 0.5.  For EcsR2 target 

validation, strains RL_002 (control), RL_003 and RL_004 were grown aerobically to 

OD600 value of 0.5. Cultures were supplemented with arabinose (0.2%) for 10 minutes to 

transiently induce the expression of EcsR2 and cDNA was generated as described above. 

EcsR2 and target gene expression levels were quantified by qRT-PCR and were 

normalized to 16s rRNA gene expression levels. 

 

Evolution and expression of sRNAs 

Using blastn (≥30% identity, ≥60% length) we identified the homologs of 81 sRNAs 

(Raghavan et al. 2011) in 85 E. coli genomes. Sequences were aligned using Clustal 

Omega (Sievers et al. 2011), and single nucleotide polymorphisms (SNPs) were 
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quantified using the nucleotide polymorphism index π (Nei 1987) with DnaSP 5.10 

(Librado and Rozas 2009). To determine whether the sRNAs are present in other enteric 

bacteria, all sRNAs were searched (blastn, ≥30% identity, ≥60% length) against the 

following genomes: Yersinia enterocolitica (NC_008800.1), Klebsiella pneumoniae 

(NC_011283.1), Enterobacter aerogenes (NC_015663.1), Citrobacter freundii 

(NZ_CP007557.1), Serratia marcescens (NZ_HG326223.1), and Salmonella enterica 

Typhimurium SL1344 (NC_016810.1). sRNAs were assigned to one of three groups 

based on presence in the seven genomes, and Kruskal-Wallis test (non-parametric 1-way 

ANOVA) and Dunn's test for multiple comparisons were conducted in SAS Studio 3.5 

to test for differences in the three groups in sRNA expression and nucleotide 

polymorphism index π. 
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RESULTS 
 
EcsR2 is a novel sRNA unique to E. coli that originated from a degraded prophage gene. 

We performed a directional RNA-seq analysis on E. coli to determine whether any of the 

species-specific IGRs contained highly transcribed regions. After mapping sequencing 

reads onto the E. coli genome, we detected a transcriptional peak, that indicated the 

presence of an sRNA, in yagU-ykgJ IGR in E. coli (Figure 2) (Raghavan et al. 2015). 

Transcripts mapping to the corresponding location in the E. coli genome have been 

observed in previous microarray based studies (Tjaden et al. 2002; Chen et al. 2002) 

further verifying their transcriptional status, and there were no potential open reading 

frames (ORFs) of substantial length within the transcript, indicating that they represent 

an sRNA. A modified 3’-RACE experiment was performed to confirm the size of the 

EcsR2 transcript (genomic location 302905–303070) (Raghavan et al. 2015). 

 We investigated the uniqueness of yagU-ykgJ using BLAST in related bacteria 

and found that yagU-ykgJ IGR is present in all strains of E. coli but is absent in any 

closely related enteric bacteria such as Salmonella, Citrobacter or Klebsiella (Figure 3A). 

The arrangement in which yagU neighbors ykgJ is found only in E. coli. An alternate gene 

order (yciC–ykgJ–ompW ) is detected in other enteric bacteria, including in Escherichia 

albertii, E. coli’s closest relative,  indicating that ykgJ moved to its current location in E. 

coli after the two bacteria split from a common ancestor (Figure 3B). Additionally, ykgJ 

ORF is smaller in E. coli than in E. albertii, and a ~90 bp remnant of the gene’s 3’ end is 

still recognizable in the yciC-ompW IGR in E. coli, confirming that ykgJ was translocated 

recently to its current location in E. coli to create the unique yagU-ykgJ IGR (Figure 3B). 
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Figure 2. Detection of EcsR2 in yagU-ykgJ IGR in E. coli. RNA-seq analysis of EcsR2 

(sRNA) transcript levels in yagU-ykgJ IGR (Raghavan et al. 2015). 
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Figure 3. Conservation and formation of yagU-ykgJ IGR in E. coli. (A) Phylogenetic tree 

showing presence or absence of yagU-ykgJ IGR among enteric bacteria. (B) Arrangement 

of yciC-ykgJ-ompW in E. albertii. Relocation of ykgJ leading to formation of novel yagU-

ykgJ IGR in E. coli. Genomic locations of yagU and ykgJ in both bacteria are also shown. 
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 It is usually difficult to trace the ancestry of sRNAs due to their rapid rate of 

evolution (Gottesman and Storz 2011). However, because EcsR2 emerged in an IGR 

that was formed recently, we were able to identify through sequence alignment that the 

sRNA evolved from the 3’ end of a vestigial bacteriophage gene. We determined that a 

major portion of the 5’ end of EcsR2 (107/166 nts) shared very high similarity (~76%) 

with a prophage tail fiber assembly gene tfaR, while the 3’ end of the sRNA, where the 

intrinsic terminator is located is only ~50% similar to tfaR (Figure 4A). Interestingly, two 

other pseudogenized copies (tfaD and tfaX) of the same phage tail fiber gene that consists 

of varying lengths of its 3’ end are also present in E. coli, indicating that EcsR2 originated 

from a similarly truncated non-functional version of the phage gene through the 

accumulation of point mutations (Figure 4B). We also located a putative sigma-70 

promoter associated with EcsR2. As shown in Figure 13, nucleotides centered around -

10 and -35 positions are very close to the sigma 70 consensus sequence TATAAT and 

TTGACA respectively (Malhotra et al. 1996). From this data, it is clear that EcsR2 

originated by combining the remnants of a degraded phage gene with a sigma-70 

promoter. To investigate the conservation of EcsR2, its promoter and terminator, we 

scanned all the available genomes of E. coli in the RefSeq database. This analyses showed 

that EcsR2, its promoter and terminator are conserved across all strains expect in 

Enterotoxigenic E. coli (ETEC) H10407. In this strain, a putative transposase has 

disrupted the sRNA.  
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Figure 4. Model for origination of EcsR2 from a protein-coding gene. (A) IGR with 

encoded EcsR2, sigma-70 promoter and terminator. Region of sRNA similar to the 

phage tail assemble gene highlighted in red. (B) Representation of origination of EcsR2 

from a vestigial protein-coding gene. 
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EcsR2 is a ‘young’ and fast-evolving sRNA that is slightly deleterious to E. coli. 

EcsR2 is expressed highest at exponential phase (OD600 values of 0.2 and 0.5) and its 

expression decreases as the cells reach stationary phase (OD600 values of 1.0 and 1.5) 

(Figure 5). To test whether EcsR2 has any physiological effect on E. coli, we measured 

the growth of wild type and EcsR2 deletion strains in LB and in M9 minimal media 

supplemented with 0.2% glycerol as a carbon source. Interestingly, while both wild-type 

and EcsR2-deletion strains grew at comparative rates in LB, the wild-type strain displays 

a delay in growth in minimal medium (Figure 6). This data signifies that EcsR2, a newly 

evolved sRNA, is slightly deleterious to E. coli. Additionally, the low expression of EcsR2 

might compensate for its slight toxicity, as observed for newly originated miRNAs in 

eukaryotes (Jovelin 2014). 

 To test whether low expression is a feature that is common to all newly evolved 

sRNAs, we compared the expression of 82 sRNAs in E. coli (Raghavan et al. 2011), to 

their phylogenetic distribution. As shown in Figure 7A, phylogenetically restricted i.e. 

‘young’ sRNAs have significantly lower expression than sRNAs that are conserved in 

several species of enteric bacteria i.e. ‘old’ sRNAs. In addition, we also determined that 

‘young’ sRNAs are evolving at a significantly faster rate than ‘old’ sRNAs (Figure 7B). 

Collectively, our data indicate that low expression and rapid evolution could delay the 

elimination of slightly deleterious ‘young’ sRNAs, thereby enabling their integration into 

regulatory networks. 
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Figure 5. Expression of EcsR2 at different growth phases. Expression of EcsR2 during 

E. coli growth in M9 minimal medium supplemented with 0.2% glycerol. cDNA was 

amplified by PCR (20 cycles) and ran on 3% agarose gel. 
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Figure 6. Mildly deleterious effect of EcsR2 in minimal medium. (A) E. coli wild-type 

and EcsR2-deletion strains grown in LB. (B) E. coli wild-type and EcsR2-deletion strains 

grown in M9 minimal medium. 
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Figure 7. Young sRNAs have low expression and high SNPs. Phylogenetically restricted 

sRNAs have low expression (A) and rapid evolution (B). X-axes: I = sRNAs conserved in 

1-3 genomes, II = sRNAs conserved in 4-5 genomes, III = sRNAs conserved in 6-7 

genomes. 
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EcsR2 is a functional base-pairing sRNA that is integrated into the carbon metabolism 

regulatory network. 

In enteric bacteria, majority of the functional sRNAs requires an RNA chaperone protein 

Hfq for its stability and optimal function (Delay et al. 2013). Hfq is an RNA-binding 

protein with structural similarities to eukaryotic Sm proteins (Zhang et al. 2002; Møller 

et al. 2002). To investigate whether Hfq plays a role in the functioning of EcsR2, we 

measured its expression in E. coli MG1655 and hfq-deletion strains at exponential phase 

and found that EcsR2 expression decreases around seven fold in hfq-deletion strain as 

compared to in wild-type strain (Figure 8). This suggests that EcsR2 has gained the 

ability to bind to Hfq, an important milestone in sRNA evolution (Peer and Margalit 

2014). 

 Identification of mRNA targets of sRNAs is one of the biggest challenges in the 

field. Several target prediction software are available (Kery et al. 2014; Wright et al. 

2013), but most of them are not very reliable due to the inherent challenges of predicting 

RNA-RNA interactions. A GFP-based reporter system is also available to experimentally 

determine the targets of an sRNA; however, this method is very labor intensive and 

hence is not suitable for high-throughput analysis (Urban and Vogel 2007). To overcome 

these difficulties, we developed a novel genome-scale technique, that we call Crosslink-

seq, to identify mRNAs targeted by an sRNA (Figure 9; see Materials and Methods). To 

distinguish mRNAs that bind to EcsR2, we identified genes that were significantly 

enriched in the test samples (E. coli expressing EcsR2) when compared to the control 
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samples (E. coli without EcsR2). We identified three genes, ansB, frdA and ygiB that were 

enriched greater than three times in the test samples. These potential targets were 
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Figure 8. Hfq stabilizes EcsR2. Expression of EcsR2 in E. coli MG1655 (Wild type) and 

hfq-deletion strains measured in fold change. Wild type and hfq-deletion trains were 

grown to OD600 value of 0.5 in LB. cDNA was synthesized from 500 ng of total RNA 

and EcsR2 expression was measured by qPCR. 
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Figure 9. Crosslink-seq. AMT crosslinks EcsR2 to mRNAs in the presence of UV (365 

nm), which were purified using affinity selection. mRNAs were uncrosslinked using UV 

(254 nm) and quantified using RNA-seq to identify those enriched in strains containing 

EcsR2 (test) in comparison to strains without EcsR2 (control). 
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validated by qPCR. We predicted the potential sRNA-mRNA binding regions using 

IntaRNA (Wright et al. 2014), and to confirm that the predicted interaction sites are 

indeed functional, we transiently expressed a mutant version of the sRNA that did 

not contain a region (nucleotide positions 50- 80) that showed complementarity with 

the targets (Figure 10). Expression of all three targets increased around two fold in the 

presence of the mutant Ecsr2 in comparison to the full-length EcsR2 (Figure 11). 
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Figure 10. Predicted EcsR2-target mRNA interactions. Green denotes the nucleotide 

positions relative to the start sites of genes, blue represents the target genes, yellow 

denotes EcsR2 and red shows the potential base pairing between EcsR2 and target 

mRNA. 

                    -44                               -19
                     |                                 |
ansB    5'-AGA...ACAGA    A G                          ACGUA...UCC-3'     
                      GCUA G GAUAAUGC         GUAGCGUUC
                      ||:| | :|:|||||         |||||||||
                      CGGU C UUGUUACG         CAUCGCAAG
EcsR2   3'-UAA...AUAAA      G        GAGAGAAGA         AAGCC...ACG-5'     
                     |                                 |
                   +84                               +51

                    +862            +878
                     |               |
frdA    5'-ACC...UCCAC       A       AGGCC...UGA-3'                       
                      GCGACAA GUCUCUC
                      ||:|||| |:|||||
                      CGUUGUU CGGAGAG
EcsR2   3'-UAA...ACGGU       A       AAGAC...ACG-5'                       
                     |               |
                    +80             +64

                    +125              +143
                     |                 |
ygiB    5'-GAU...GAUGA              A  AAAAU...UGA-3'                     
                      AACAGUGUCUCUCU UC
                      ||||:||:|||||| ||
                      UUGUUACGGAGAGA AG
EcsR2   3'-UAA...GGUCG                 ACAUC...ACG-5'                     
                     |                 |
                    +78               +61

                    -44                               -19
                     |                                 |
ansB    5'-AGA...ACAGA    A G                          ACGUA...UCC-3'     
                      GCUA G GAUAAUGC         GUAGCGUUC
                      ||:| | :|:|||||         |||||||||
                      CGGU C UUGUUACG         CAUCGCAAG
EcsR2   3'-UAA...AUAAA      G        GAGAGAAGA         AAGCC...ACG-5'     
                     |                                 |
                   +84                               +51

                    +862            +878
                     |               |
frdA    5'-ACC...UCCAC       A       AGGCC...UGA-3'                       
                      GCGACAA GUCUCUC
                      ||:|||| |:|||||
                      CGUUGUU CGGAGAG
EcsR2   3'-UAA...ACGGU       A       AAGAC...ACG-5'                       
                     |               |
                    +80             +64

                    +125              +143
                     |                 |
ygiB    5'-GAU...GAUGA              A  AAAAU...UGA-3'                     
                      AACAGUGUCUCUCU UC
                      ||||:||:|||||| ||
                      UUGUUACGGAGAGA AG
EcsR2   3'-UAA...GGUCG                 ACAUC...ACG-5'                     
                     |                 |
                    +78               +61
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Figure 11. Down regulation of target genes by EcsR2. Expression of ansB, frdA and ygiB 

is repressed by EcsR2. (A) Fold change in gene expression in E. coli expressing EcsR2 

compared to E. coli without EcsR2. (B) Fold change in gene expression in E. coli 

expressing EcsR2 without the seed region (nucleotide positions 50-80) in comparison to 

E. coli expressing full-length EcsR2. 
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 CRP and FNR are transcriptional regulators that affect the expression of ansB 

and frdA depending on glucose levels in the medium (Tseng et al. 1994). We tested the 

effect of glucose on EcsR2 and found that its expression was significantly induced (~27 

fold) when LB was supplemented with 0.2% glucose (Figure 12). We also found a 

putative binding site in the promoter region of EcsR2 for Mlc (Figure 13), which is a 

glucose dependent transcription factor that is controlled by CRP (Plumbridge 2001; 

Perrenoud and Sauer 2005). As shown in Figure 13, the putative Mlc binding region 

(shown in red) is very similar to the consensus Mlc binding sequence 

aTtaTTTcgctgcgcgAAAttaa (Plumbridge 2001). The regulation of ansB and frdA by 

CRP and FNR, the induction of EcsR2 expression by glucose, and the presence of Mlc 

binding site in its promoter region, collectively indicate that EcsR2 has been integrated in 

to the carbon regulatory network in E. coli. 
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Figure 12. Glucose induces EcsR2 expression. Induction of EcsR2 sRNA in wild type E. 

coli in Lysogeny broth supplemented with 0.2% glucose. 
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Figure 13. Mlc binding site. Putative Mlc binding site is shown in red. Sigma-70 

promoter region is shown in green. The numbers are labeled corresponding to the 

transcription start site of EcsR2. EcsR2 transcription start nucleotide is shown in bold. 
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DISCUSSION 

One of the fundamental gaps in knowledge in bacteriology is the understanding of how 

new genes originate. Gene duplication and horizontal transfer are two known paths that 

amplify and improve upon already formed genes (Wilderman et al. 2004; Pichon and 

Felden 2005); but the source and mechanism of origination of novel genes in bacteria is 

still elusive. In this study, we identified a degraded protein-coding gene as a source for 

the origination of a new non-coding RNA in E. coli. We also show that ‘young’ sRNAs 

such as EcsR2 are expressed at low levels and evolve at a rapid rate, thereby explaining 

how newly emerged sRNAs could gain enough time to evolve functions that enable their 

retention in bacterial genomes.  

 Many sRNAs function in conjunction with transcription factors. Their activity 

can enhance or repress expression of various genes at transcriptional and 

posttranscriptional levels (Sharma et al. 2007). Thus sRNAs have been established as key 

players in large regulatory networks. Environment signals often trigger responses that 

require transcription factors. Fine-tuning these responses with variable speed and 

strength is possible through sRNAs. For example, sRNAs can modulate one gene by 

direct base-pairing or multiple genes by controlling a transcription factor. To function 

with such versatility, there are certain features that an sRNA must possess. Presence of a 

Rho-independent terminator is one of the signature features of base-pairing sRNAs 

(Chen et al. 2002). EcsR2 has a Rho-independent terminator (Figure 14), which in 

addition to terminating the transcript, could bind to Hfq (Chen et al. 2002) and provide 

resistance to degradation by ribonucleases (Ishikawa et al. 2012).  
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Figure 14. Predicted secondary structure of EcsR2. Green shows the seed region, gray 

represents double stranded region, yellow denotes the AU-rich region that binds to Hfq 

and red denotes the GC-rich stem of the Rho-independent terminator region. The 

secondary structure was predicted by using mFold software. 
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 Another characteristic of a functional sRNA is the region where binding with 

target mRNA occurs. This sequence called the ‘seed region’ is usually single stranded 

(Fröhlich et al. 2013; Shao et al. 2013; Srikhanta et al. 2013). In Figure 14, the 50-80 nts 

of EcsR2 that binds to AnsB and FrdA is predicted to be a highly unstructured region. 

This mostly single stranded sequence is an ideal seed region. On mRNAs, sRNAs are 

known to bind either to 5’ UTR, coding region or 3’ UTR. In two of the three targets, 

EcsR2 binds to the coding region (frdA and ygiB) and for the third target (ansB), the 

sRNA seed region binds in the 5’ UTR (Figure 10). Additionally, sRNAs also contain 

double-stranded regions that provide structural stability and proper orientation of the 

seed region. This proper orientation allows the Hfq binding region and the seed region to 

be easily accessible for binding to the target mRNAs or proteins (Updegrove, Shabalina 

and Storz 2015). Figure 13 shows that EcsR2 has three stem-loops with the tallest stem-

loop consisting of the seed region followed by the double stranded region which might 

allow the seed region to interact with mRNAs (Chen et al. 2002). Moreover, the mRNA 

binding region of EcsR2 has become more unstructured i.e. more accessible, and the 

region that contains the Rho-independent terminator has become more structured, in 

comparison to the original tfaR mRNA.  This pattern of sRNA structural change is 

similar to what has been observed in eukaryotes, where, the evolution of a spurious 

transcript into a functional ncRNA has been associated with changes in the RNA 

structure (Heinen et al. 2009). Collectively these characteristics confirm that EcsR2 is a 

functional sRNA. 
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 Two of the three genes that are down regulated by EcsR2 belong to the carbon 

metabolism and anaerobic pathways. The ansB gene codes for L-asparaginase II that 

permits E. coli to grow on glycerol and asparagine under anaerobic condition to 

synthesize fumarate. Fumarate acts as an electron acceptor during growth in absence of 

oxygen (Russell and Yamazaki 1978). Expression of ansB is under catabolite repression 

and is induced under anaerobic conditions (Cedar and Schwartz 1968; Jennings and 

Beacham 1990; Tseng et al. 1994). It was also reported that L-asparaginase II synthesis 

was inhibited by glucose, and since EcsR2 is significantly induced by glucose, we suspect 

that repression of L-asparaginase II by glucose is mediated through EcsR2. Another 

EcsR2 target frdA is also expressed optimally under anaerobic conditions. It was reported 

that under aerobic conditions, frdA was expressed lowest during rapid growth and the 

expression increased as the growth rate decreased (Tseng et al. 1994). The reason for this 

differential expression was that the product of frdABCD operon is functional only under 

anaerobic conditions. Interestingly, the expression pattern of EcsR2 is completely 

opposite to that of frdA in aerobic conditions, suggests that E. coli might have evolved a 

mechanism to shut down ansB and frdA transcription under aerobic conditions using 

EcsR2. Furthermore, Hfq stabilizes EcsR2 and a glucose-sensitive transcriptional factor 

(Mlc) putatively regulates this sRNA, indicating that EcsR2 has been integrated into the 

carbon metabolism regulatory network. In total, our data show that a vestigial 

bacteriophage protein-coding gene has evolved to into a functional sRNA in E. coli. 

 Because EcsR2 evolved from an erstwhile prophage gene, it is not clear whether 

the whole evolutionary process occurred in its current genomic location or whether it 
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occurred while the nascent sRNA was still part of a bacteriophage genome. Nevertheless, 

phages seem to have had a large impact on shaping sRNA repertoires in bacteria, with 

several sRNAs located within prophages, pathogenicity islands, or next to phage insertion 

sites (Pichon and Felden 2005; Sittka et al. 2008; De Lay and Gottesman 2009). This 

observation is not surprising because high rate of recombination, rapid evolution, and 

profuse genetic exchange make bacteriophages powerful engines of genetic innovation 

(Daubin and Ochman 2004; Raghavan and Minnick 2009). 

 EcsR2 and other young sRNAs are expressed at low levels in comparison to 

evolutionarily older sRNAs probably because their promoters are not yet fully functional. 

In bacteria, promoter-like sequences arise spontaneously through point mutations, 

especially in IGRs (Stone and Wray 2001; Mendoza-Vargas et al. 2009), and inefficient 

transcription from these promoters are one of the causes for pervasive transcription i.e., 

RNAs originating from all across the genome (Dornenburg et al. 2010; Raghavan et al. 

2012; Thomason et al. 2015). The functions, if any, of these genome-wide transcripts are 

not yet understood, however, they could serve as the raw material for the emergence of 

new functional RNAs (Gottesman and Storz 2011; Lybecker et al. 2014; Wade and 

Grainger 2014). Pervasive transcription has been observed in all domains of life, and 

recently it was shown that new functional RNAs could evolve from such transcripts in 

humans (Ruiz-Orera et al. 2015). In the current study, our data also points towards such 

a scenario where the emergence of a promoter-like sequence resulted in the transcription 

of a stable RNA that evolved into EcsR2 by gaining Hfq-binding sites and an intrinsic 

terminator. Furthermore, low expression and rapid evolution have also been observed for 
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young eukaryotic miRNAs (Chen and Rajewsky 2007; Jovelin and Cutter 2014; Lyu et 

al. 2014), indicating that this is a universal phenomenon that facilitates the emergence of 

new functional RNAs in all domains of life. 
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APPENDICES 

A. Role of MgrR in polymyxin B resistance. MgrR is an sRNA that modulates resistance 

against the antibiotic polymyxin B in E. coli. It was found that an mgrR-deletion strain 

was significantly resistant to the antibiotic polymyxin B (Moon and Gottesman 2009). 

We identified a homolog of mgrR in E. fergusonii, which contained a 50 bp insertion 

sequence. To study the role of MgrR in polymyxin B resistance, we generated an mgrR-

deletion E. fergusonii strain. Wild-type and mgrR-deletion E. fergusonii strains were 

grown in LB to an OD600 of 0.5, 

challenged with final concentration of 

4 µg/mL of polymyxin B for 30 

minutes, and colony forming units 

were counted. Three independent 

trials of the experiment were 

conducted. We found that E. 

fergusonii wild type strain was resistant to polymyxin B whereas the mgrR-deletion strain 

was susceptible to polymyxin B (Figure 1). The additional 50 nt in MgrR of E. fergusonii 

reverses the effect of polymyxin B in E. fergusonii compared to its effect in E. coli. 

 

 

 

 

WT                                             Δ mgrR 

Figure 1 
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B. Function of a novel sRNA. We 

discovered a novel sRNA in E. coli 

called EcsR1, which influences 

biofilm formation (Raghavan et al. 

2015). Due to genome 

rearrangement, the sRNA was lost 

in Salmonella by splitting into two 

pieces, making EcsR1 unique to E. 

coli. To study the effect of EcsR1 

on biofilm formation, the sRNA was cloned into the NheI and HindIII sites behind the 

arabinose-inducible promoter on plasmid pBAD using PCR. EcsR1-deletion strain of E. 

coli was constructed using λ Red-mediated recombination (Datsenko and Wanner 2000).  

E. coli or Salmonella strains grown overnight at 37°C in LB (or LB with 100 µg/mL 

ampicillin) were diluted 1:100 in fresh media and grown in 96-well microtiter plates for 

48 h at 28°C without shaking. Planktonic growth (OD600) of E. coli and Salmonella strains 

measured on a Victor X5microplate reader (Perkin Elmer) did not significantly differ 

from each other. Supernatants containing non-adhered cells were discarded, and samples 

were washed twice with distilled water and the attached biofilm in each well was stained 

with 0.1% crystal violet for 30 minutes. Unbound stain was removed by washing with 

distilled water. To quantify biofilm production, the crystal violet associated with biofilms 

was dissolved in 100% ethanol and absorbance (A600) was measured, and normalized to 

the OD600 value of each strain, as described previously (Gualdi et al. 2008). Average 
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intensity of biofilm formation for each strain was generated from at least four replicate 

experiments. As shown in Figure 2, biofilm production is significantly reduced (p < 

0.0001) in wild-type E. coli when compared to the EcsR1-deleted strain. Reintroduction 

of a plasmid-borne copy of EcsR1 into the deletion strain restored biofilm formation to 

the same level as that of the wild-type strain (Figure 2), indicating that biofilm-inhibition 

is an sRNA-specific phenotype. Biofilm production is important to virulence of enteric 

pathogens, so we tested the effects of EcsR1 on biofilm production in Salmonella by 

reintroducing the sRNA in an expression vector. There was no significant difference in 

biofilm production between the wild type and EcsR1-overexpression strains. 
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