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Abstract

Electricity is a perishable commodity; once it is generated it needs to be consumed or

stored. Electric energy storage provides both power and energy capacity. Power capac-

ity applications reduce the need for generation, while energy capacity allows for energy

consumption to be decoupled from generation. Previous research was done to develop an

algorithm for determining the power (MW) and energy (MWh) capacities of a battery energy

storage system (BESS) to mitigate the adverse impacts of high levels of photovoltaic (PV)

generation. The algorithm used a flat feeder profile, and its performance was demonstrated

on the equinoxes and solstices.

Managing feeder power leads to fewer voltage fluctuations along the length of the feeder,

potentially mitigating load management issues caused by variability of renewable generation

and load profile. These issues include lighting flicker, compressor seizing, equipment

shut-off, loss of motor torque (τ ∝ V2), frequent transformer tap changes and even voltage

collapse due to loss of reactive power support (Q ∝ V2).

The research described in this thesis builds on this algorithm by incorporating a smoothed

feeder profile and testing it over an entire year. Incorporating a smoothing function reduces

the requisite BESS energy capacity necessary to provide firming and shaping to accommo-

date the stochastic nature of PV. Specifically, this method is used to conduct a year-long

study on a per second basis, as well as a one-minute basis, for a distribution feeder. Statistical
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analytical methods were performed to develop recommendations for appropriately sizing the

BESS. This method may be used to determine the amount of PV generation that could be

installed on a distribution feeder with a minimal investment in the BESS power and energy

capacities that would be required to manage the distribution feeder power.

Results are presented for PV penetration levels of 10%-50% of the distribution feeder

capacity and show that the use of a smooth feeder profile reduces the required energy

capacity by a minimum factor of 10 when compared to a flat feeder profile. Results indicated

that it is sufficient to have a one-minute sampling rate, as it provides the necessary granularity

to model cloud-induced fluctuations. This method can be applied to any distribution feeder

where a load profile and a PV profile are available.
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1 Introduction

The electric power industry has changed dramatically over the past few years, as energy

production and energy consumption have experienced a drastic technological shift. His-

torically, power grids have relied on large thermal power plants, which can be dispatched

on-demand, and are able to generate electrical power to fulfill the load demand. Thermal

plants typically consume non-renewable resources such as nuclear fuel, natural gas, and

coal. However, non-renewable energy resources are not the only means for meeting energy

demand; recently an increasing percentage of demand has been met using a combination of

intermittent renewable energy sources and peaking power plants. Renewable energy sources

include photovoltaic (PV), wind, geothermal, bio-gas, biomass, solar thermal with storage

and ocean thermal energy conversion. [1–3] Peaking facilities include hydroelectric power

houses, turbine and reciprocating gas power plants, and energy storage units.

Recently, there has been strong interest in solar photovoltaic, likely associated with the

exponential decay of capital cost, particularly at the distribution level. The cost of solar

generation has decreased by a factor of five in the last fifteen years, and is expected to drop

by another factor of three in future. [4] As installed capacity of stochastic, non-dispatchable

electrical energy resources increases, the challenges to balancing authorities, dispatchers

and marketer’s increase. The problems become particularly acute for participants operating

within hourly or sub-hourly trading markets. [5, 6]
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Solar power generation is intermittent, meaning that the resource varies seasonally,

diurnally, and on a sub-hourly timescale. Partial shading of PV modules results in lower

energy production, which induces power fluctuations within the system. As the incident

solar radiation on a PV generating facility changes, the power generated by the facility

can change quite rapidly. The bulk-power system must be designed to provide resource

adequacy and have sufficient reserves to accommodate this variability and uncertainty. [7, 8]

System reliability of a transmission network needs to be maintained from facilities and

control systems operating within an interconnected electric energy transmission network and

electric energy from generation facilities. The availability of generating resources affects

a dispatcher's options for maintaining balance between generation and consumption, and

a marketer's ability to satisfy contractual energy delivery obligations. Consequently, more

spinning reserves, unloaded generation that is synchronized and ready to serve additional de-

mand, must be held in order to ensure reliability as the penetration level of non-dispatchable

renewable energy resources grows. [9–13]

A variety of research has been conducted on the feasibility of integration of battery

energy storage systems (BESS), as an operating reserve, to mitigate the impacts of high

levels of PV penetration. The following sections detail applications of energy storage, and

concepts of PV generation.
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1.1 Energy Storage Applications & Concepts

Energy storage surrounds us in numerous applications. These applications range from

small-scale portable electronics that use batteries, or conversely, large-scale applications

that use BESS as a supplemental operating reserve. The future of energy storage is aimed

towards: a broadly deployable asset for enhancing renewable penetration, helping reduce

coal, oil, and gas consumption. The ability to ensure the resiliency and reliability of the

electric grid, and provide smart grid benefits including optimal utilization of demand side

assets. [14]

In this section, concepts related to energy storage are discussed. In particular, the

following concepts are introduced: PV penetration, power firming, power shaping, power

and energy densities of storage, and state of charge (SOC).

1.1.1 Photovoltaic Penetration

Penetration is the ratio of the rated power output of installed PV capacity, known as

"nameplate" capacity, compared to the average daily maximum, also known as "peak load",

on a distribution feeder. A low penetration of residential PV systems, with each meeting the

proposed standard, should have insignificant effects on the utility. For utility applications,

high penetration is defined as the point where the ratio of rated power from PV to peak

load exceeds 15%. [8] As penetration level increases, at a certain point fluctuations exceed

normal load fluctuations that a utility can follow, and detrimental effects of PV generation

will arise. These effects include unusual power flows due to voltage rises, sags, and flickers.

3



Power swings of a larger magnitude may cause loss of service to some loads, which causes

a concern of grid stability and power quality that affect protection and coordination.

Figure 1.1: PV Penetration Levels - Normalized Scale Comparison of 10% PV Penetration to 50% PV
Penetration for a sample day at the Salem Smart Power Plant.

Figure 1.1 shows a comparison of 10% and 50% levels of PV Penetration at the Oxford-

Rural distribution feeder in Salem, Oregon. The effects of the cloud-induced fluctuations

are amplified. These effects could have significant operational and economic consequences

to the utility. [8, 15]

1.1.2 Firming

Capacity firming describes the process of smoothing fluctuations in the intermittent power

output of variable generation, in order to mitigate intra-hour fluctuations. Intra-hour fluc-

tuations occur on the order of seconds to minutes. Providing power firming to mitigate
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intra-hour fluctuations has a number of positive impacts. Firming reduces fluctuations

in customer voltage while concurrently decreasing wear-and-tear on voltage-regulating

equipment.

Figure 1.2 shows an ideal days insolation profile with no cloud coverage, and shows

the necessary power and energy that would be provided by energy storage to mitigate the

stochastic nature of PV generation. Therefore, reducing the need for remote generating

facilities. Thereby, opening up transmission corridors and reducing transmission losses.

These benefits, taken together, help balancing authorities better accommodate power fluctua-

tions associated with loads and renewable generation, ultimately increasing the potential

penetration level of renewables. [16, 17]

Figure 1.2: Capacity Firming - Ideally, insolation for a day with no clouds shown (in blue) has no fluctuations,
a day with cloud-induced coverage shown (in red) causes fluctuations, and shown (in solid blue) is necessary
generation provided by energy storage to mitigate the effects of the fluctuations.
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1.1.3 Shaping

BESS can be used as their own source of distributed generation (DG). This is done through

capacity shaping, which describes the process of shifting power output, in particular, inter-

hour fluctuations, which are usually associated with load shifting. Inter-hour fluctuations are

slower fluctuations that occur on the order of an hour or longer. Slower fluctuations occur as

a result of time of day, day of the week, and weather. [17]

Figure 1.3 demonstrates the ability of a BESS to mitigate inter-hour fluctuations. The

regular load profile of the plant is shown on the right. On the left, at the plant bus, the shaved

profile is shown vs the original load profile at the plant. The BESS is able to come online

as an additional generation resource that is able to provide peak shaving. These peaks are

usually associated with times where people are getting off work and consume more power

and energy.

Figure 1.3: Power Shaping - A comparison of a distribution feeder with a BESS to demonstrate the capability
of power shaping. To the right is the regular load that would be seen at the distribution feeder, and to the left is
the same load with a shaved profile due to power provided by the BESS. [18]
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Power shaping allows the power profile to be reduced at peak hours; power firming smooths

fluctuations due to intermittent power output.

1.1.4 Power & Energy Densities

Power density is the amount of power that can be delivered from a storage system on a per

unit mass or per unit volume basis. Similarly, energy density is the amount of energy that

can be stored by a storage system on a per unit mass or per unit volume basis. These are

known as gravimetric and volumetric power/energy densities, respectively.

Closely related to energy and power density are footprint and space requirements for

energy storage. These criteria are important to consider, particularly in situations where

space is valuable or limited, or if weight is an important factor. Depending on the storage

technology, space constraints may indeed be a challenge, especially in urban areas. [19] In

general, for utility applications, power and energy densities are not significant concerns.

1.1.5 State of Charge

There are a variety of BESS technologies, differentiated by their reaction chemistries.

Chemistry type affects the power and energy of a BESS. The BESS chemistry also affects

the charge and discharge rates of a BESS, and can change the operational range of a BESS.

The BESS cycle life is defined as the number of of complete charge/discharge cycles that

the battery is able to perform before its nominal capacity falls below 80% of its initial

rated capacity. The factors that affect the cycle life of a battery are time and the number

of charge/discharge cycles complete. These can be measured through the state of charge
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(SOC), which is the ratio of the BESS charge level expressed as a percentage of the nominal

capacity. Another method of quantifying a stored charge is the depth of discharge (DOD),

which is calculated as DOD = 100%− SOC. [20]

Once a battery has reached its life cycle, it is usually decommissioned. This is determined

by comparing a battery’s maximum SOC after it has been manufactured to its SOC after

several iterations of charge/discharge cycle. Figure 1.4 shows battery capacity in relationship

to cycles of a APR18650 battery cell. The illustration shows the available capacity in

coulombs. Once the maximum SOC is less than 80% of the initial SOC the battery is

decommissioned. However, it should be noted that in operation 100% DOD is not practical,

and therefore the reduction rate may be non-linear. This indicates that the battery may have

lived more cycles than the rated life cycle, before the maximum capacity drops to 80%. [21]

Figure 1.4: Battery Cycle Life of a APR 18650 - The working range of a battery is determined by the
SOC, maximum initial charge. This particular battery chemistry typically lasts around 2,000 cycles at 100%
DOD. [21]
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1.2 Photovoltaic Concepts

In this section, concepts of solar panels are explained, specifically: solar insolation profile,

atmospheric effects, and panel placement.

1.2.1 Solar Insolation

Solar irradiance is the amount of power that impinges upon a surface (W/m2). Solar

irradiation is the measure of energy density of sunlight and is measured in (Wh/m2).

Energy is power integrated over time, therefore, irradiation is the integral of irradiance.

Irradiance and irradiation relate directly to available sunlight. Therefore, these values

change based on the latitude location on the earth, the time of year, and weather conditions.

Figure 1.5 shows the solar altitude in comparison to the solar azimuth at 40◦ latitude for

different months of the year. This diagram shows a representation on how the amount of

energy impinging upon a surface changes over the year as the earth rotates around the sun

and tilts about its axis.
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Figure 1.5: Solar Azimuth and Solar Altitude Relationship at 40◦ Latitude - The sun path diagram showing
solar altitude and azimuth angles for 40◦ latitude is shown in this figure for representing different times of the
day and different months of the year. [22]

1.2.2 Atmospheric Effects on Sunlight

Sunlight that reaches the earth’s surface without scattering is referred to as direct or beam

radiation. Scattered sunlight is referred to as diffused radiation. Sunlight that is reflected

off the ground is albedo radiation. The sum of these three components is called global

radiation. These concepts are important because the amount of sunlight that gets scattered or

absorbed is dependent on the path through the atmosphere. The intensity of global radiation

is 1, 367(W/m2) at the top of the atmosphere. Once absorption has been accounted for this

value is further reduced to 1, 000(W/m2) at sea level. Equation 1.1 gives the relationship
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of intensity, I. The equation takes into account the reduction at sea level to be reduced to

70% of its value, and takes into account different air masses, airmass(AM) = 1; air mass

is less than unity at higher altitudes. [23]

I = 1367× (0.7)(AM)0.678 (1.1)

1.2.3 Panel Placement

Panels are usually south facing or west facing. The difference in placement can change the

insolation by approximately one solar hour, which alters when the maximum power point

is seen. In western Oregon, a west facing PV placement is favored if south is unavailable

because of the tendency for overcast skies in the morning (east) during summer time.

Figure 1.6 shows an example of south-facing vs west-facing panel placement taken from

Sacramento, CA. [23]
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Figure 1.6: South-facing Vs West-facing PV Panels - Comparison of power output and energy output for South-
and West-facing PV systems in Sacramento, CA. during the summer. The south-facing system produced
22,417 Wh and the west-facing system produced 22,192 Wh. (Courtesy of Roger [23])

The maximum insolation can be calculated for any direction. [22] First, the latitude, φ,

of the location needs to be determined. The solar declination, δ, can be calculated through

the use of Equation 1.2, where n is day of the year.

δ = 23.45◦sin

[
360(n− 80)

365

]
(1.2)

The time of day, in local time, for peak PV system output needs to be determined. The local

time can be converted to solar time, which is based on previously determined site latitude.

The hour angle, w, is the difference between noon and the desired time of day in terms of a

360◦ rotation in 24 hours, which can be calculated using Equation 1.3. [23]

w =
12− T
24

× 360◦ = 15 (12− T )◦ (1.3)
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Finally, the position of the sun can be tracked in terms of solar altitude, α, and azimuth

angle, ψ, through Equations 1.4 and 1.5.

sinα = sin δ sinφ+ cos δ cosφ cosw (1.4)

cosψ =
sinα sinφ− sin δ

cosα cosφ
(1.5)

1.3 Research Objectives

The Portland General Electric (PGE) Salem Smart Power Project (SSPP) features a 5 MW,

1.25 MWh lithium ion battery energy storage system (BESS), located on the Rural dis-

tribution feeder at PGE’s Oxford substation in Salem, Oregon. Since its commissioning

in 2013, the SSPP has helped establish the value of integrating BESS onto distribution

feeders. BESS are capable of providing a number of ancillary services, including frequency

regulation, economic arbitrage, voltage regulation, and the firming and shaping of power.

The objective of the work presented in this thesis is to develop tools to quantify the required

power (MW) and energy (MWh) capacities of a BESS to accommodate a particular PV

penetration level on a distribution feeder. These tools could then be used by PGE to facilitate

greater integration of renewable energy generation systems within their balancing area.

This is done by using a previously-developed SSPP plant model, SSPP load data, and

local insolation data to develop a method for determining the BESS MW and MWh capacities
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that would be required to provide firming against PV and load fluctuations while also shaping

the power profile of a distribution feeder.

1.4 Thesis Statement

The purpose of this thesis is to develop and assess a method to determine power (MW) and

energy (MWh) capacities of a battery energy storage system (BESS), given an annual feeder

loading profile and annual PV insolation data. An integration algorithm is then used to

establish the desired feeder profile (DFP). Statistical methods are used to select the MW and

MWh capacities. Variations of the integration algorithm are explored and their effects on

the MW and MWh capacities are presented.
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2 Battery Energy Storage Background

This section provides a survey of published research on BESS, including that conducted

by the Portland State University Electrical and Computer Engineering Department’s Power

Engineering Laboratory.

2.1 Previous Work by Our Group

In previous work, our group developed a BESS s-domain model and PI (proportional-

integral) compensator for the PGE SSPP. [16] The group also developed a method for

determining BESS MW and MWh capacities based on a flat DFP. [24] These are discussed

in this section.

2.1.1 BESS Model Development

In previous work, our group developed a compensation architecture and firming strategy

for the Salem BESS. [16] The compensator takes real-time inputs, specifically load and

solar generation, and makes plant output adjustments to firm power fluctuations at the

substation. In order to ensure appropriate compensation of the BESS to a time-varying

reference input signal, a model of the plant is required. With an accurate representation of

the plant, it is then possible to explore various compensator types and tune compensator

parameters. [16] The plant and PI models are shown in the closed-loop feedback control
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system in Figure 2.1; RBESS (s) is the reference signal that is provided to the control

system, shown in Equation 2.1. GPI (s) is the PI compensator designed to provide a

specific gain and phase shift, GBESS (s) is the plant model, and PBESS (s) is the power

output response from the BESS. The DFP calculation is represented in Equation 2.2, where

T represents increments of a smooth DFP.

Figure 2.1: Proposed Control Architecture for the BESS - This figure shows the feedback and control loop
proposed to control the BESS.

RBESS = DFP − (PV + Load) (2.1)

DFP =
1

T

∑
(PBESS + PV + Load) (2.2)

2.1.1.1 BESS Plant Model

A plant model, GBESS , is developed to determine the characteristics of PGE’s SSPP BESS.

A second-order transfer function, given in Equation 2.3, is used to model overshoot and

oscillations, which a first-order model cannot represent. The undamped natural frequency,

ωn, determines how fast the system oscillates during any transient response. The damping
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ratio, ξ, determines how much the system oscillates as the response decays towards toward

steady state. [25] To determine these values the SSPP BESS is subject to frequency response

tests and step response tests.

GBESS (s) =
ω2
n

s2 + 2ξωns+ ω2
n

(2.3)

For the frequency response tests, controlled outputs were measured with respect to the

reference input; a second-order transfer function is then derived that best fits phase and

magnitude data points. For the step response testing, two tests were conducted, increment

and decrement reference steps; overshoot, rise time and settling time were measured. From

these measurements two second-order transfer functions were derived, one for increment

step test and the other for the decrement step test.

The three second-order transfer functions from the tests conducted were compared, and

were found to be very similar, so the average of the three were taken as the representative

plant model. For the general second-order transfer function in Equation 2.3, the damping

coefficient used is ξ = 0.76 and ωn = 0.245 as the undamped natural frequency.

The plant model, GBESS , is specific to PGE’s SSPP BESS. The derived second-order

transfer function is used to determine the MW and MWh capacity for a BESS to compensate

PV and load fluctuations. [26]

2.1.1.2 BESS PI Compensator

The PI compensator was tuned to control the plant transient response and eliminate steady-

state step response error. The proportional controller compensates the transient charac-
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teristics while the integral controller eliminates steady-state step response error. The PI

compensator proves sufficient to demonstrate that the BESS can provide firming against PV-

and load-induced power fluctuations. [26] The general structure for the PI compensator is

given in Equation 2.4.

GPI (s) = KP +
KI

s
(2.4)

In order to determine the most robust compensator the sensitivity of the compensator

to perturbations in the plant model parameters were modeled in MATLAB and Simulink.

The proportional and integral compensator gain settings were tuned to KP = 0.39 and

KI = 0.06, respectively.

2.1.1.3 Model Performance

The model performance was tested using Simulink and MATLAB. Tests were conducted over

sample days. The tests used an existing load profile from the SSPP that was combined with

an existing PV profile for the same day. A reference input signal to the BESS was established

using 15 minute and 30 minute smoothing profiles. Figure 2.2 shows the response of the

PID (proportional–integral–derivative) compensator to the 15 minute smoothing profile. The

battery output, shown in blue, is firming the feeder profile following the 15 minute reference

input, shown in yellow. It can be seen that the battery is able to firm the power delivered

to the feeder through charging and discharging in response to the reference signal. The

output of the system for the 15 minute and 30 minute intervals, solid green and solid yellow,

respectively, do not have the jagged nature that was previously present in the combined
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PV and load data. This indicates that the PID-compensated control system has sufficient

transient response to charge and discharge the BESS in response to variations in load and

PV generation. [16]

Figure 2.2: PID Compensator Following Testing - PID output following the reference signal: The uncompen-
sated feeder power profile (solid red) represents the jagged nature of the Summed Load. The control system
is guided by a smoothed reference input signal (solid green and dashed purple). A control system with a
well-tuned compensator produces a firmed feeder power output (solid yellow and dashed blue), that follows
the reference input and contrasts sharply with Summed Load.The BESS output (solid blue) assumes the jagged
profile that would otherwise appear in the feeder power profile.

2.1.2 Flat Desired Feeder Profile

In our previous work, our group used a simple, flat desired feeder profile (DFP) as the target

feeder power profile. [24] A flat DFP means that the feeder power is constant throughout

the day. When loading exceeds the DFP, the BESS discharges, thereby coming online as

an additional generation resource to balance the load. When feeder loading falls below the
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desired feeder profile, the BESS provides extra loading, drawing power from the feeder as it

charges.

The flat DFP was calculated using the average of the net load for a representative day

in a season. This straight-line average represents the ideal target value at which the gross

energy consumed by the BESS would equal the gross energy produced by the BESS over a

day. This straight line DFP is shown in Figure 2.3. The role of the BESS is to charge and

discharge in order to balance the stochastic load and generation profiles against the constant

DFP.

Figure 2.3: Flat DFP - Given a flat DFP, as well as the net loading (PV plus load) for a particular season, a
BESS reference signal can be generated. The BESS reference signal then drives the BESS controller to make
up the difference between the desired feeder profile and the net load. From these curves, we can determine the
optimal PV penetration for a particular feeder and the MW and MWh capacity required of a BESS to achieve
that penetration. Key: load (blue), PV (red), net load (green), desired feeder profile (DFP, dash blue), BESS
input reference signal (yellow) and BESS response (black).

Figure 2.3 shows the feeder load, PV generation, net load, DFP, and the BESS input

reference signal. The flat DFP balances the MWh capacity required to charge the BESS
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against that to discharge the BESS. The difference between the DFP and the net load (load

minus PV) determines the BESS reference signal, RBESS (s) , which is fed into the BESS

plant model. As seen in Figure 2.3, the controlled signal, PBESS (s) , closely follows the

reference signal, which indicates that the BESS is able to accommodate the PV and load

fluctuations.

This BESS reference signal mirrors the curve of the net load. However, as the net load is

balanced with respect to the DFP, the BESS reference signal is balanced with respect to a

straight line with a zero value. Thus, ideally the periods of charging and discharging should

be nearly equivalent.

The flat DFP provides both firming and shaping by smoothing out cloud-induced intra-

hour fluctuations and providing inter-hour energy shifting. Which, accommodates the

stochastic effects of renewable energy generation. This aforementioned work used a solar

insolation envelope profile, which was calculated based on the peaks of the solar data

obtained, and did not adequately represent the local insolation profile. As well, the analysis

was applied to just four "representative" days of the year, one from each solstice and equinox,

to test the MW and MWh sizing strategies. This analysis was insufficient, as a season average

does not provide adequate insight into the selection of MW and MWh BESS capacities.

Nor is a flat DFP ideal. For this thesis work, it was hypothesized that a desired feeder

profile (DFP) more closely shaped to approximate the net load would be able to facilitate

the integration of high levels of PV penetration with less MW and MWh capacities for the

BESS. This work focuses on developing DFPs that provide firming, but much less shaping,
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by integrating the past 15 to 90 minutes of feeder power demand to provide a projection

for future power demand on a minute-by-minute basis. Focusing on firming eliminates

short-term fluctuations of customer voltage profiles. Intra-hour voltage fluctuations will

still occur, but doing so should result in less required BESS capacity, particularly energy

capacity. [26]

2.2 Published Research

This section provides a summary of widely referenced work pertaining to BESS implementa-

tions. It also provides a summary of the techniques used to implement the statistical analysis

portion of this study.

2.2.1 BESS Implementations

Engineers at PGE subjected the SSPP BESS to battery inverter system (BIS) tests to verify

possible integration with the grid and to understand the system’s ability to respond to

transactive incentive signals (TIS) for charging and discharging. The tests demonstrated

that the SSPP BESS had a larger capacity than for what it was rated. This is a result of the

manufacturer adding safety margins in order to ensure that the Lithium ion battery chemistry

does not degrade under any charge or discharge schema. Lithium ion battery discharge and

charge should remain within 20%-80% SOC, to avoid degradation. Tests concluded that the

actual available energy is approximately 1800-2000 kWh, not the nameplate rating of 1250

kWh. However, PGE does not have access to this additional energy due to manufacturer

control set-points. [27]
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Zheng, et al, investigate the development of coordinated control tools for next generation

PV installations; these consist of PV arrays, BESS (referred to as Energy Storage Units,

ESU) and super-capacitors (SC). [28] The objective of their control system is to supply

desired active and reactive power to the grid simultaneously to mitigate effects of PV through

coordinated control of power electronics. They describe three different coordinated control

structures and approaches for grid integration of PV, BESS, and SC. Their description of a

typical grid connected PV consists of: solar arrays, BESS, SC, power converters, and an

integrated controls system.

The reasoning for adding SCs is that unlike batteries SCs store energy in an electrostatic

field. Therefore, they are able to provide faster charge and discharge rates. They claim that

the combination of the two is crucial for diverse energy storage needs to meet inter-hour

and intra-hour fluctuations. They also classify BESS as having high energy density with

"relatively slow response speeds."

An advantage of their design is that they are able to integrate high PV penetrations with

the use of their subsystem. However, they do not develop an approach for sizing BESS to

integrate a certain level of penetration. The system that they develop contains added costs.

SCs are expensive, and the self-discharge rate of SCs are much higher than BESS.

Jayasekara, et al., develop a real power management optimization method that improves

voltage profiles of a test feeder with finely distributed PV to minimize losses. [29] They

claim that their technique may not be practical for widespread installations of distributed

generation, as size and location of the DG units is dependent on customer choice. Their
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storage technique utilizes old car batteries that have over 80% SOC remaining. The batteries

are integrated with uniformly distributed PV. They determine the number of batteries and

locations to be installed using a random number generator to mimic the uncontrolled nature

of customer choice. They use a Fourier series approach to represent the battery SOC profile

24 hours ahead of time. They predict the instantaneous battery power needed, SOC, and

the peak load demand. Their results, based on day-ahead battery SOC, are sufficient to

demonstrate benefits of storage in peak shaving and on the voltage profile of the test feeder

when accommodating distributed PV systems.

Jewell, et al. investigates the effects of moving clouds on electric utilities with dispersed

PV generation. [8] The paper presents the results of simulations to determine the effects of

cloud-induced fluctuations. The approach utilizes different penetration levels of aggregate

PV over different areas covered by a utility. Simulations vary over different percentages of

the sky being covered, different cloud speeds, and the optical transmission properties of

different cloud types.

The study concluded that the percentage of possible change drops as the area increases if

the geographical density of the PV systems is dispersed. For larger areas, maximum changes

in PV output occur within 1-2 minutes. Other important factors noted were: that squall

lines, a group of thunderstorm clouds, cause 100% loss in PV generation. They noted that

these are not as important as cumulus clouds due to the ease in prediction of such cloud

formations. The most important note made is that the maximum PV changes occur during

peak insolation times. It was noted the operating penetration varies due to diurnal effects of
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PV generation and load profiles. PV penetration becomes significant at the point where the

utility has to change its operating practices to accommodate for effects of PV. The swings

may cause operation problems, which will more than likely increase operation costs.

Oudalov, et al., presents a sizing methodology and an optimal operation strategy for a

BESS to provide peak shaving capabilities. [18] The research conducted is aimed at an in-

dustrial level customer to provide a reduction in energy for the customer. The recommended

optimal size of the BESS was 0.25 MW for power capacity and 0.75 MWh capacity for

energy capacity, and assumed batteries had a life cycle of 20 years. The proposed method

was tested with a real industrial customer load profile. However, the proposed solution only

offered an annual electricity bill reduction by 8% of the power demand in comparison to a

situation without a BESS.

Gurganus presents in his thesis the feasibility of using BESS to decrease the ramp rates

of PV power plants on a utility scale level. [30] Simulation techniques of grid-connected

PV arrays and a BESS were developed that can be parametrized to different PV setups

and different battery chemistries. The main objective of the thesis is to determine the most

feasible parameters for a utility by finding: chemistry of BESS, energy capacity of the

BESS, energy to be initially stored by the BESS before outputting to the grid, and how much

variability the system should attempt to mitigate. One limitation that was mentioned is that

the model is not intended to address issues such as reactive power and frequency response.

The contribution of the thesis is not intended on providing a cost-benefit analysis of a BESS.

The main aim of the research is to find configurations of a potential BESS that would result
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in a desirable system output when a BESS is coupled with a utility scale PV plant.

The metrics used in the research for a reasonable configuration of BESS parameters are

absolute leveling, reactive leveling, and time-shifting. The absolute leveling application

is a scenario similar to that of a flat DFP, where the utility would want a constant output

over a certain period of time. The resultant output to the grid would be less during mid-day

than the raw PV output, but would be greater in the morning and later in the afternoon.

Reactive leveling requires that the worst variations in output be mitigated; this method

requires less energy to be stored. Finally, time-shifting represents the times when there is

a large difference between peak and off-peak power costs to incentivize storing off-peak

power to discharge during peak times.

Results indicated that existing grid connected PV systems are likely to be brought to

profitability by installing a BESS. Choice of battery chemistries that resulted in the highest

additional revenue were: Sodium Sulfur, Vanadium redox flow batteries, and lead-acid cells.

Battery choice is affected by variability in energy capacity measured at approximately 50%

of the hourly peak power output of the PV array, and a power output leveling target of

approximately the same size. Gurganus concluded that the savings in costs associated with

infrastructure and maintenance will begin to grow as we begin to harness energy closer to

where we use it.

Nagarajan presents in his thesis the development of a model for the analysis of distri-

butions feeders with high penetration levels of PV generation. [31] The objective of the

thesis provides a generalized deployment of Li-Ion BESS to increase the benefits of PV
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on a distribution feeder. An approach for sizing and scheduling of the BESS alongside

micro-turbines is proposed for reliable operation.

Nagarajan demonstrated the possibility of performing long-term transient analysis using

phasors and differential algebraic equations. The work proposed, and validated, the use

of active power filters for mitigating the effects of unbalanced PV generators. The work

also proposed and implemented optimization methods for sizing and scheduling BESS and

micro-turbines using Benders’ decomposition. A lithium-ion based energy storage system

of 0.5 MW for power, and 1.5 MWh for energy was used for the study. Two scenarios were

run: energy shifting and a solar smoothing scenario. Energy shifting scenario was expected

to guarantee minimal variation in the charge/discharge rate for the BESS, thus leading to a

longer life-time. A solar smoothing scenario was designed to allow the BESS to monitor

solar PV output and react immediately to mitigate effects of PV generation. However, both

studies were conducted for a single day, December 6th 2012, for the geographic location

of Flagstaff, AZ. The BESS accommodated the PV variability in solar smoothing, whereas

during the energy shifting scenario the grid fulfilled the PV variability. BESS charged from

the PV source and started discharging during the rapid changes in the PV output caused by

the cloud-induced fluctuations; grid power drawn to mitigate the load was minimized.

Final results specific to the distribution feeder indicated that the kWh rating of the energy

storage system was large for a typical winter month, compared to the rating for a summer

month. For the energy shifting scenario, capacities of 0.2 MW and 2.3 MWh were proposed.

For the smoothing scenario, capacities of 0.2 MW and 1.7 MWh were proposed. The BESS
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were used in conjunction with micro-turbines. However, Nagarajan acknowledges that these

values are specific to one day analysis, and concludes that the micro-turbines should be

employed to mitigate the variability of PV generation.

Omran, et al., investigate methods to mitigate power fluctuation generated from large

grid-connected PV systems. [32] Their methods focus on the use of BESS, the use of

dump loads, and the curtailment of generated power by operating the PV system below

the maximum power point. The economical aspects are explored, and revenues gained

are estimated using a linear programming optimization. Their results concluded that there

would be a loss of revenue when fluctuating power from PV is not smoothed. There was

a use of different limits of power fluctuation leniency, and it was found that the loss in

revenue is higher as the limit is decreased. This was attributed to increases in both power

and energy ratings of the BESS. Dumping excess power to satisfy power fluctuation limits

and curtailment of the maximum power point resulted in lower revenue losses than with the

use of BESS to mitigate the fluctuations. The final recommendation, as to what was most

economically viable, is the use of a BESS with power curtailment.

Hirst, et al., define intra-hour and inter-hour load swings. [17] As electricity consumption

varies, the grid starts exhibiting load swings on the order of seconds, fast fluctuations, or

slower fluctuations that can occur on the order of an hour or longer. Total load is split up in

three categories: base load, load change from hour to hour, and finally random fluctuations

in load. The focus of the paper is on the latter two.

They define intra-hour load changes as short-term fluctuations, and inter-hour fluctua-
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tions are those that occur on a larger time scale. Inter-hour load swings (in MW) have a

much greater magnitude than intra-hour changes; the difference is a factor of 15 to 40. The

rate of change (MW/min) is much greater for intra-hour changes than for inter-hour changes,

with a factor of 3 to 5. The frequency change (sign of the ramp rate), is much greater for

intra-hour changes than for inter-hour changes, with a factor of 100.

Yeng, et al., propose a sizing strategy for distributed BESS with high penetration of

PV for voltage regulation and peak load shaving. [21] They define problems that high

penetration of PV cause, and offer a solution of integrating BESS into PV systems in order

to achieve a flexible real power control. The purpose of their research is that the optimized

BESS has not been considered, and therefore most research usually leads to over-sized BESS,

which results in extra cost. They develop a method where the BESS usage, lifetime, and

system performance in terms of battery size are analyzed on a set of distribution feeders

with existing PV.

The approach uses real annual load profile, PV power profile, and temperature profile;

the method is applied on a modified General Electric model. A physical model of a LiFPO4

(lithium-ion phosphate) battery with aging effects was also developed. The cost-benefit

analysis is based on a three-step cycle. The profiles are fed into the distribution power

system model, which are then compared by the energy management system to bus voltages,

SOC. The cost of each battery is calculated under every possible battery size with different

PV penetration levels. The cost-benefit BESS size is then derived.

The study focuses on simulations to a single feeder. The feeder length is 6 miles and
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the total peak load is 11 MVA. The loads are split up into seven feeders, which, represent a

mixture of residential and commercial peak loads, that ran from 0.3 MW to 5MW, with a

power factor of 0.92. The seven buses had BESS and hybrid PV connected to them. Four

case studies are performed: Case A: System performance with and without a BESS, Case

B BESS lifetime and usage, Case C highlight use of on-load-tap-changer and step voltage

regulators stress tests with BESS, and finally, Case D is a BESS cost analysis. The proposed

method is able to obtain BESS cost and benefits of each bus under different PV penetration

levels for any selected BESS size. This makes the trade-off between economic profits and

operational benefits quantifiable.

Teng, et al., design an optimal charging/discharging scheduling for BESS. [33] This

is done such that line loss of distribution systems interconnected with high levels of PV

generation can be minimized. They propose mitigation of the intermittent nature of PV

generation. This is achieved by charge/discharge scheduling that would be arranged within

the hourly market with respect to load variations and intermittent outputs of PV. The

proposed mathematical model uses the SOC variation to determine the charging state by

determining constant current or constant voltage. Optimal scheduling is then calculated

based on solar irradiance. The system was successfully implemented, using C++, and

tested with a distribution feeder from Taiwan Power Company. Test results showed that the

proposed method has potential in analysis of other BESS applications such as regulation

services, voltage support, peak-load shifting, and reliability improvement.

Obi, et al., propose a methodology for calculating the levelized cost of electricity (LCOE).
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Specifically, the algorithm is geared towards utility-scale energy storage systems. [12] They

found that existing LCOE algorithms are not suitable for storage technologies and do not

provide the proper range of inputs needed to assess LCOE for energy storage. LCOE is

a means for standardizing metrics when comparing costs of energy systems. The study

focused on clarifying cost parity for utility-scale energy storage against the traditional

gas peaking facilities. Pumped hydro energy storage, compressed air energy storage, and

lead-acid energy storage systems have the most competitive LCOE when base-lined against

simple-cycle combustion turbines (SCCT).

SCCT was chosen as a baseline because they determined it as the technology with

which utility-scale storage systems must compete. SCCT are used to provide ramping and

frequency regulation services for mitigating the stochastic nature of wind and PV generation.

Several model variations were conducted, which provided insight on technology-specific

impacts on LCOE, such as power and energy capacities.

A sensitivity analysis was conducted demonstrating that the LCOE values have strong

sensitivity to three parameters, in particular: storage efficiency, purchasing, and selling price

of electricity. Other values that were moderately sensitive were power and energy capital

costs, and the capacity factor of a plant. It was recommended that analysts comparing cases

take note of these six parameters due to their strong influences on the LCOE algorithm.

It was concluded that battery systems designed to provide bulk energy storage require

more energy capacity than systems designed to provide frequency regulation support, or

have a higher life cycle than the battery systems and need less replacement. In comparison
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to the SCCT baseline set, it was concluded that few battery technologies are currently price

competitive.

2.2.2 Data Stratification

The load data used in this thesis work has a bi-modal distribution for the capacity require-

ments. We hypothesize that this bi-modality results from differences in load between

weekdays and weekends. This difference in load consumption may be occurring due to

industrial processes being halted during the weekends; almost 26% of energy consumption

in Oregon is due to industrial processes. [34] This difference in load would be sufficient

enough to cause dual processes resulting in a bi-modal distribution. This is further discussed

in Section 5.1

Reichard classifies stratification techniques into two groups: a hybrid type technique

used with heterogeneous data; data that belong to different clusters should be as different

as possible. The second approach is utilized: the approach is to divide the population into

strata or levels, each of which is more or less homogeneous, and then take samples from

each stratum. A random sample is drawn from each stratum and then combined with proper

weighting into an estimate for the population. With more accurate estimates for each stratum,

the estimate of the entire population should be more accurate for a given sample size. [35]

A potential drawback with stratification is that one or more of the sub-samples may be

small in size, leading to problems with the reliability of the estimates. Also, the results for

each sub-sample are generalizable to only a part of the sample population.
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To develop a practical stratified sampling scheme, Särndal, Swensson, and Wretman

note that the following three questions must be answered: [36]

1. What variables are to be used for stratification?

2. How should the strata be demarcated?

3. How many strata should there be?

It is important to note that the selection of stratification variables is subjective and based

in part on prior knowledge, and subject matter expertise. [36, 37] These questions will be

further addressed in Section 4, where discussion of techniques for statistical analysis of the

BESS performance and results take place.

2.3 Summary of this section

This section provided a summary of the work done by our group to develop a control

architecture for the BESS, the work done to show the model performance of the BESS, and

the testing of the proposed model using a flat feeder profile to provide seasonal insight. Work

done by other researchers were also presented, which included: tests conducted on BESS

to determine SOC, various methods to mitigate the effects of inter-hour fluctuations of PV

generation using energy storage, sizing and optimization strategies of a BESS, and LCOE

algorithms specific to energy storage. Finally, a summary of data stratification techniques

that will be utilized in the analysis portion of the data is also presented.
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3 Research Methodology

This section pertains to the method for determining the power and energy storage require-

ments for a BESS. This is done by acquiring load and PV profiles for 365 days. The PV and

load profiles obtained had a sampling rate of one-minute. The method proposed was con-

ducted for a one-second sampling rate and a one-minute sampling rate. Two sampling rates

are used to determine if a lower PV sampling rate is necessary to represent cloud-induced

PV fluctuations. A 365 day analysis is conducted utilizing a smoothed feeder profile to

establish a reference signal to the BESS. The BESS energy and power capacities are then

calculated with variance in PV penetration level, 10% to 50% in increments of 5%, based

on the feeder size, and variations of the smoothing algorithm. Figure 3.1 shows the process

flow diagram of the methodology.
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Figure 3.1: Methodology Flow Chart - This flow chart shows the procedure conducted for an annual analysis
to recommend MW and MWh capacities to accommodate different PV generation penetration levels on a
distribution feeder.

The following sections will be split up in the following manner: load and PV data

preparation, the smoothed desired feeder profile, and the calculation of the power and energy

requirements.
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3.1 Load & PV Data Preparation

The required MW and MWh capacities for a BESS are directly related to the load profile

of the system and the PV generation profile. The load profile and PV generation profile

are comprised of data covering an entire year. Figure 3.2 details the method used for data

preparation of the these profiles.

Figure 3.2: Data Preparation Flow Chart - This flow chart shows the procedure to prepare the PV profile and
the load profile to obtain a combined PV and load profile at different PV penetration levels.

The following sections give specifics for data preparation for a one-second sampling rate

and a one-minute sampling rate.

3.1.1 One-Second Sampling Rate

If the PV data sample rate is too low the data cannot represent cloud-induced changes in

energy generation. Therefore, high sample-rate data are needed in order to better determine

the MW and MWh capacities to compensate rapid load and PV fluctuations. [26] For analysis
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purposes, the time span and sample rate of these data sets must align. To deal with the

discrepancies in the sampling rate between load and PV generation profiles, a time scale of

86,400 seconds per day was used to represent the load and solar irradiance data. This rate is

sufficiently fast to model cloud-induced PV power fluctuations.

Modeling these data sets involved data expansion, interpolation, normalization, and

scaling. Once the data were processed, the MW and MWh requirements are determined for

365 days. The following sections discuss the conditioning and processing of the load data,

PV data, and the combination these data sets.

3.1.1.1 Load Data

Figure 3.3 shows the procedure conducted to the load profile to obtain a one-second granu-

larity load profile.

Figure 3.3: Load Data Preparation Flow Chart - This flow chart shows the procedure conducted to obtain a
load profile with one-second granularity.

Load data were obtained from PGE’s Oxford-Rural feeder for the year of 2012. Oxford is

the closest substation to the SSPP BESS, which is on the Rural feeder. The load data are
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given in one minute increments from January to December of 2012. The data constitute

1440 data points per day for 366 days; since 2012 was a leap year the last day was omitted

to make the data set 365 days. This data set is relevant in order to establish a base line for

the feeder to which the SSPP BESS is connected. This gives us an idea of the daily average

maximum load that occurs, which can then be used to simulate the effects of variations of

PV penetration on the feeder.

The data were prepared for a full year to a time scale of 86,400 seconds a day. This

was done by expanding the 1440 points that represented a minute; an assumption was

made that the value given from a data set was the constant value over a 60 second scale.

(1440× 60 = 86, 400pts). This process was done for 365 days to create a load profile that

has 86,400 seconds per day. The data set was then normalized to be used with other data

sets.

3.1.1.2 PV Data

Figure 3.4 shows the procedure conducted to the PV profile to obtain one-second granularity

data of the Salem PV profile.
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Figure 3.4: PV Data Preparation Flow Chart - This flow chart shows the procedure conducted to obtain a PV
generation profile with one-second granularity.

Data were obtained from the University of Oregon Solar Radiation Monitoring Laboratory

station located near the SSPP. The Salem PV profile has a sampling rate of one-minute and

a range from January to December of 2014; this constitutes 1440 data points per day, for

365 days. [38]

Data were also obtained from an irradiance monitoring station in Oahu, Hawai’i. Oahu
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PV data provide a one-second sampling rate, and corresponds to data from 5AM to 8PM.

The data set used was from April 2010 to March 2011. [39] Since the sampling rate of the

Salem PV data is not fast enough to represent rapid fluctuations such as cloud events, the

Oahu PV data were used in combination with the Salem data to provide this level of detail.

The Salem data provides the general daily generation shape and the Oahu data provide the

rapid fluctuations.

For the Salem PV data processing, the following steps were taken. The first step

was extracting data from 5AM to 8PM for 365 days. This is done to match the Oahu

provided data. The extracted data are then normalized. A PV envelope was generated, then

normalized using location details of SSPP. This was done using the National Renewable

Energy Laboratory (NREL) Solar Position (SOLPOS) calculator for the 365 days for the year

of 2012. [40] The calculator computes the solar position and intensity from time and place,

based on the user inputs. This provides insight that is important for determining the gross

behavior of solar irradiance over a year. Figure 3.5 shows a sample day of the generated

envelope with the PV profile for that day. For this analysis generation is represented as

negative and load consumption as positive.
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Figure 3.5: This figure shows the PV envelope that was generated by SOLPOS [40], in blue, and the PV data
collected from the SSPP [39] with one-minute granularity, shown in red.

The fluctuations of Oahu were calculated by finding the average over the sampling rate

period. The change that occurs is then calculated over the period of the sampling rate. The

following MATLAB code shows how this is done:
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y=1; %day

while y < 365+1

x=1:60; % seconds

t=1;

while t <901

OahuMean_60(x,y)=mean(Oahu(x,y));

% Find the average of the data over the

% sampling rate of original data

x=x+60;

t=t+1;

end

y=y+1;

end

% Find the rate of change between Oahu Data set,

% and the average over the sampling rate

OahuDiff_60= -(Oahu - OahuMean_60) ./ OahuMean_60;

% Multiply the Salem PV data by the % error from

% SalemPV, and then add back to original Salem PV.

% This is how the fluctuations are imposed.

SalemFluct= (SalemNormalized .* -OahuDiff_60) + SalemNormalized;

Figure 3.6 shows the procedure conducted to SalemFluct to accommodate for the Oahu,

HI and Salem, OR differences in solar insolation profiles.
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Figure 3.6: PV Data Preparation Flow Chart Showing Accommodation of Oahu and Salem Differences- This
flow chart shows the procedure conducted to ensure that the Salem PV data was preserved when the Oahu data
was imposed to obtain one-second granularity.

The Salem PV Envelope is used to ensure that these fluctuations do not rise over the

maximum solar insolation that can be achieved in Salem. The assumption is that these

fluctuations are less geographically dependent than the envelope profile, but they are still
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important enough to include in the PV data model in order to help determine proper BESS

capacity sizing for a particular feeder. Figure 3.7 shows the imposed fluctuations.

Figure 3.7: This figure shows the PV envelope that was generated by SOLPOS [40], in blue. The PV data
collected from the SSPP [39] with the imposed one-second cloud-induced fluctuations provided by Oahu data,
shown in red.

Developing a PV profile for every day of the year allows for the data to be combined

with the load profile. Prior to combining the PV profile with load data, the profile is scaled to

different levels of PV penetration, as a percentage of the feeder size. Equation 3.1 represents

the scaling. This step was iterated for 10%-50% penetration in increments of 5%.

SalemPV Scaled = SalemPV F luctuations × PVPenetration × FeederDailyAverage (3.1)
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3.1.1.3 Combined PV and Load Data

The normalized load and PV profiles are then combined for 365 days. This is done by

subtracting the PV profile from the load data for 365 days, giving the net load on the system,

pnet(t), Equation 3.2. This method is visually represented in Figure 3.8 for a sample day.

pnet (t) = pload (t)− pPV (t) (3.2)

Figure 3.8: Normalized data - in red is Salem PV data with imposed Oahu fluctuations. In blue is normalized
Oxford Feeder load profile. In green are the effects of a 35% PV penetration.
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3.1.2 One-Minute Sampling Rate

Both the load profile obtained and the PV generation profile obtained had a sampling rate of

one-minute. An assumption was made that one-second granularity in the data is required for

a BESS to compensate the cloud-induced fluctuations. To provide a source of comparison, a

one-minute sampling rate is also used. The same procedure outlined in Figure 3.2 is used

for data preparation of the load and PV generation profiles to provide BESS MW and MWh

capacity recommendations.

3.1.2.1 Load Data

Since the sampling rate of both data sets had a one-minute granularity the only procedure

performed on the data set is normalization of the data, in order to combine the data.

3.1.2.2 PV Data

Similar to the load data, the only procedure performed was the normalization of the data set.

The PV data is then scaled in the same manner as in Section 3.1.1.2 using Equation 3.1 to

provide 10%-50% penetration levels in increments of 5%.

3.1.3 Combined PV and Load Data

The normalized load and PV data are then combined, as was done in Section 3.1.1.3, for the

different levels of PV penetration.
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3.2 Smoothed Desired Feeder Profile

The smoothed desired feeder profile (DFP) is an algorithm that takes the combined PV and

load profiles and smooths the data based on a specified window size. A for loop is used in

MATLAB to create a best fit curve over the 86,400 second day.

First, polyfit(X,Y,N) finds the coefficients of a polynomial P(X) of degree N, that fits the

data Y best in a least-squares sense, over the specified window size. A first degree polynomial

is used for the smoothed DFP. Then, polyval(P,X) returns the value of a polynomial P

evaluated at X. P is a vector of length N+1 whose elements are the coefficients of the

polynomial in descending powers.

Y = P (1)×XN + P (2)×X(N−1) + ...+ P (N)×X + P (N + 1)

This algorithm is iterated for the full 86,400 second day, for 365 days. The window sizes

were picked in the following manner for the one-second sampling rate: 900 points (pts),

1800 pts, 3600 pts, and 5400 pts, which are 15 minutes (min), 30 min, 60 min, and 90 min

window sizes, respectively. For the one-minute sampling rate: 15, 30, 60, and 90 minutes

were picked as window sizes.

The following code is used as the function:

A = PVplusLoad; % Summed PV & Load

C = A';

% Start a for loop to smooth the PV Plus Load over the specified window

% value, parfor is used in this case to utilize parallel processes.
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% Regular for loop can be used if maximizing speed is not an issue.

% Window sizes:

% 15 min = 900 % 30 min = 1800 % 60 min = 3600 % 90 min = 5400

parfor i = (window + 1): 86400 % max number of points to analyze

% 86,400 gets replaced with 1,440

% for the one-minute sampling rate

t = (i-window): i-1; % Rolling window size decreasing

extracted_window = C(i-window:i-1);

% Extracts window size from transposed PVplusLoad

B = polyfit(t, extracted_window, 1);

% Creates best-fit curve for PV+Load data

% 'polyfit(x,y,n)' returns coefficients for

% polynomial p(x) of degree n that is a best-fit

% in a least-squares sense) for the data

% Coefficients in p are in descending powers,

% and the length of p is n+1

A(i,:) = polyval(B,i);

% 'polyval(p,x)' returns the value of a polynomial

% of degree n evaluated at x

% Input argument p is a vector of length n+1,

% with elements that are coefficients in

% descending powers of the polynomial

% 'polyval' evaluates B at each element of i
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end % loop ends when i > 86400

The smoothed profiles are presented in Figure 3.9. It can be observed that the 15 minute

smoothed profile follows the combined PV and load the closest, followed by 30 minute, 60

minute, and then 90 minute, respectively.
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Figure 3.9: Smooth DFP Comparison - This plot shows the combined PV+Load profile (Black), smoothed 15
minute DFP (Red), smoothed 30 minute DFP (Green), smoothed 60 minute DFP (Magenta), smoothed 90
minute DFP (Blue). It provides a comparison of the different variations of the smooth DFP, and shows how it
follows the load profile combined with PV generation.
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3.3 Power and Energy Requirements

Once the smooth DFP is established, the BESS reference signal, rBESS (t), can be calcu-

lated; Figure 3.10 shows the reference input signal to the BESS. This is done by subtracting

the DFP from the combined PV and Load profiles, as demonstrated in Equation 3.3

rBESS (t) = pDFP − pnet (t) (3.3)

When loading exceeds the desired feeder profile, the BESS modulates output as an

additional generation resource to balance the load. When feeder load falls below the desired

feeder profile, the BESS provides extra load, drawing power from the feeder in proportion to

the error. Equation 3.4 shows the calculation for the MW capacity for the BESS, BESSMW ,

which is determined by calculating the maximum of the absolute value of the BESS reference

signal curve for each day.

BESSMW = max(|rBESS (t)|) (3.4)

The MW capacity is calculated for 365 days using the smoothed DFP, with 15 minute, 30

minute, 60 minute, and 90 minute smoothing window.

The MWh capacity for a BESS is computed using the negative of the BESS reference

signal curve, given in Equation 3.5. A cumulative trapezoidal numerical integration is then

applied to rBESSneg. The peaks are then added to determine energy consumption over a 24

hour period. To obtain MWh the value calculated is then divided by 3,600 for the one-second

data set, or 60 for the one minute data.
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rBESSneg (t) = pnet (t)− pDFP (3.5)

The MATLAB code describing the process is found below:

rBESSneg= PVplusLoad - A;

CumTrapz_MWh=cumtrapz(rBESSneg);

MW24hr=max(CumTrapz_MWh)+abs(min(CumTrapz_MWh));

MWhr=MW24hr/3600; % 3,600 for one second data, 60 for one minute data

The MWh capacity is calculated for 365 days using the smoothed DFP, with 15 minute,

30 minute, 60 minute, and 90 minute smoothing window. This is done for different penetra-

tion levels to make a recommendation for the MWh capacity requirement to accommodate a

given load at different PV penetrations.

52



Figure 3.10: Smooth DFP and BESS Response - Shown are load, PV and BESS power profiles for a sample
day at a 35% PV penetration level. Key: load (blue), PV (red), net load (green), desired feeder profile (DFP,
magenta), BESS reference input signal (yellow) and BESS response (black).
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4 Results

In this section, results from a 365 day analysis of BESS energy and capacity requirements

for accommodating various levels of PV penetration and smoothed DFPs are presented.

Analysis is performed to determine necessary capacities to accommodate the worst case

scenarios for a full year on the Oxford-Rural distribution feeder. In a normal distribution

a standard deviation is the measure of variation between data points, where the mean is µ.

Sigma, σ, is the measure used to quantify the amount of variation in a data set based on the

probability of occurrence. The worst case scenario is determined by calculating, +2σ, of a

normal distribution. Which is the point where approximately 95% of the distribution falls

within 2 standard deviations of the mean, µ± 2σ.

This section presents the final results of the variations of the smoothed DFP, alongside

the varied PV penetration. The results are presented using a box plot technique, followed by

violin plots that show the kernel distribution of the results, and finally a table with MW &

MWh capacity recommendations.

4.1 Box Plots

The variance in PV nameplate capacity provided a means for analyzing the necessary

megawatt and megawatt-hour requirements for the BESS under differing amounts of re-

newable penetration. The resulting data were first observed using a box plot and batch
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comparison technique. From a box plot, we can pick out the following features of a batch:

the location, spread, skewness tail length, and any outlying data points. [41] Figure 4.1 - Fig-

ure 4.2 show the generated MW and MWh capacities of the PV penetrations and smoothed

DFP, respectively. For this section the y-axes are set to the same limits for the different

smoothing scenarios; this is done for ease of comparison.

Figure 4.1 shows the generated box plot results for a 15, 30, and 60 minute smoothed

DFP, for power and energy requirements of a BESS. The MW data had a long tail, which

indicates skewness in the data set. The MWh data have a considerable amount of outliers.
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Figure 4.1: Box plots showing MW & MWh capacity for 10%-50% penetration levels using a 15, 30, and 60
minute smooth DFP.
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Figure 4.2 shows the generated box plot results for 10%-50% penetration for a 90 minute

smoothed DFP.

Figure 4.2: Box plots showing normalized MW & MWh capacity for 10%-50% penetration levels using a 90
minute smoothed DFP.

More level of detail is provided in Appendix B with box plots having independent y-axes

limits. From the results skewness can be observed, and a considerable amount of outliers.

This warrants further investigation.

4.2 Violin Plots

For further investigation, a kernel density plot was used to represent the data. [42] The

resulting data has a bi-modal distribution. This is the reason there were so many outliers

presented in the box plots. Figure 4.3 shows violin plots representing the kernel distribution

of a 15, 30, and 60 minute smoothing function, for 10%-50% PV penetration.
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Figure 4.3: Violin plots showing MW & MWh capacity for 10%-50% penetration levels using a 15, 30, and 60
minute smoothed DFP.
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Figure 4.4 shows violin plots representing the kernel distribution of a 90 minute smooth-

ing function, for 10%-50% PV penetration.

Figure 4.4: Violin plots showing MW & MWh capacity for 10%-50% penetration levels using a 90 minute
smoothed DFP.

In order to deal with discrepancies, stratification methods are used to obtain capacity

recommendations for sizing the BESS.

4.3 Distribution Fitting

The variables used for stratification are the MW and MWh capacity requirements. The strata

are shown in Figure 4.5, which are generated using visualization tools from the MATLAB

Distribution fitting toolbox. There are two strata: these are defined by the limits of the

bi-modal distribution, of which we are only concerned with confidence intervals from the

upper strata. In this section, only two sample plots for MW and MWh are presented. The

rest of the plots appear in Appendix C. The bi-modality is further discussed in Section 5.1.
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Figure 4.5: Density plots showing MW & MWh capacities with a fitted normal distribution.

4.4 MW & MWh Recommendations

Table 4.1 show the results of the various smoothing versus different levels of PV penetration

for a one second granularity.

Table 4.1: Photovoltaic integration by percentage of feeder size - One-Second Granularity - This table shows
the power and energy capacity maximums for an annual simulation over various PV penetration levels,
indicated as percentages of the feeder size. The results are presents for a Flat DFP, 15 Minute Smooth DFP, 30
Minute Smooth DFP, 60 Minute Smooth DFP, and 90 Min Smooth DFP

BESS Sizing Recommendation - One Second Granularity
PV Nameplate Flat DFP 15 Min Smoothing 30 Min Smoothing 60 Min Smoothing 90 Min Smoothing

(% of) MW MWh MW MWh MW MWh MW MWh MW MWh
Feeder Size Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity

10 3.03 4.41 3.50 0.24 3.55 0.49 3.51 0.98 3.96 1.48
15 3.28 3.87 3.50 0.25 3.56 0.49 3.52 0.98 3.97 1.48
20 3.53 4.08 3.51 0.25 3.57 0.49 3.54 0.99 3.98 1.49
25 3.81 4.70 3.51 0.24 3.58 0.49 3.56 0.99 4.00 1.50
30 4.09 5.76 3.51 0.26 3.59 0.49 3.58 0.99 4.02 1.50
35 4.32 7.07 3.52 0.26 3.60 0.49 3.61 1.00 4.02 1.51
40 4.54 11.81 3.53 0.25 3.62 0.49 3.64 1.00 4.04 1.52
45 4.70 13.15 3.54 0.25 3.66 0.50 3.65 1.01 4.09 1.53
50 4.94 13.85 3.55 0.25 3.74 0.50 3.79 1.02 4.20 1.53

Table 4.2 show the results of one minute granularity of the BESS.
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Table 4.2: Photovoltaic integration by percentage of feeder size - One-Minute Granularity - This table shows the
power and energy capacity maximums for an annual simulation over various PV penetration levels, indicated
as percentages of the feeder size. The results are presents for a Flat DFP, 15 Minute Smooth DFP, 30 Minute
Smooth DFP, 60 Minute Smooth DFP, and 90 Min Smooth DFP

BESS Sizing Recommendation - One Minute Granularity
PV Nameplate Flat DFP 15 Min Smoothing 30 Min Smoothing 60 Min Smoothing 90 Min Smoothing

(% of) MW MWh MW MWh MW MWh MW MWh MW MWh
Feeder Size Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity

10 3.06 4.16 3.50 0.26 3.66 0.54 3.53 1.14 3.97 1.54
15 3.36 3.98 3.52 .027 3.68 0.54 3.57 1.13 4.01 1.50
20 3.69 4.49 3.54 0.30 3.71 0.56 3.61 1.08 4.03 1.55
25 4.02 5.74 3.52 0.28 3.76 0.56 3.68 1.03 4.04 1.56
30 4.31 6.91 3.53 0.28 3.71 0.56 3.71 1.04 4.06 1.54
35 4.63 7.89 3.56 0.28 3.70 0.56 3.72 1.05 4.16 1.59
40 5.02 10.21 3.58 0.28 3.68 0.55 3.79 1.06 4.16 1.60
45 5.29 11.95 3.58 0.28 3.66 0.54 3.86 1.05 4.01 1.60
50 5.48 13.66 3.64 0.30 3.72 0.55 3.88 1.05 4.04 1.62

To provide a source of comparison, results from the Flat DFP are presented in Table 4.3 for

one-second granularity.

Table 4.3: BESS Seasonal Capacity Recommendation for a Flat DFP with One Second Granularity - This
table provides the seasonal MW and MWh capacities (Cap) requirements for the various PV penetration levels,
indicated as percentages of the feeder size. The one-second granularity is achieved by using Oahu PV data and
Salem PV data.

Seasonal BESS Sizing Recommendation - One Second Granularity
PV Nameplate SPRING SUMMER FALL WINTER Maximum

(% of DFP MW MWhr DFP MW MWhr DFP MW MWhr DFP MW MWhr MW MWhr
Feeder Size) [MW] Cap Cap [MW] Cap Cap [MW] Cap Cap [MW] Cap Cap Cap Cap

10% 2.3 0.46 3.1 2.0 0.74 4.1 2.3 0.55 2.9 2.4 0.51 3.3 0.74 4.1
15% 2.3 0.45 2.5 2.0 0.68 3.7 2.2 0.55 2.4 2.4 0.52 3.0 0.68 3.7
20% 2.3 0.45 2.1 1.9 0.63 3.2 2.2 0.56 2.0 2.4 0.54 2.7 0.63 3.2
25% 2.2 0.45 1.7 1.9 0.57 2.9 2.2 0.58 1.9 2.4 0.56 2.5 0.58 2.9
30% 2.2 0.47 1.8 1.8 0.54 2.5 2.1 0.59 2.0 2.3 0.58 2.4 0.59 2.5
35% 2.1 0.49 1.9 1.8 0.50 2.3 2.1 0.61 2.1 2.3 0.60 2.4 0.61 2.4
40% 2.1 0.51 2.1 1.7 0.50 2.1 2.0 0.62 2.3 2.3 0.65 2.5 0.65 2.5
45% 2.0 0.54 2.4 1.7 0.59 2.1 2.0 0.64 2.6 2.3 0.77 2.6 0.77 2.6
50% 2.0 0.60 2.7 1.6 0.67 2.1 1.9 0.68 2.8 2.2 0.89 2.8 0.89 2.8

Table 4.4 provides results for a one-minute granularity of the seasonal analysis.

61



Table 4.4: BESS Seasonal Capacity Recommendation for a Flat DFP with One-Minute Granularity - This
table provides the seasonal MW and MWh capacities (Cap) requirements for various PV penetration levels,
indicated as percentages of the feeder size.

Seasonal BESS Sizing Recommendation - One Minute Granularity
PV Nameplate SPRING SUMMER FALL WINTER Maximum

(% of DFP MW MWhr DFP MW MWhr DFP MW MWhr DFP MW MWhr MW MWhr
Feeder Size) [MW] Cap Cap [MW] Cap Cap [MW] Cap Cap [MW] Cap Cap Cap Cap

10% 2.2 0.52 1.6 2.1 0.66 3.1 1.9 0.49 1.5 2.4 0.63 2.4 0.66 3.1
15% 2.1 0.55 1.1 2.0 0.55 2.4 1.8 0.53 1.6 2.4 0.97 2.4 0.97 2.4
20% 2.0 0.59 2.3 1.9 0.70 2.4 1.7 0.58 2.3 2.4 1.32 2.5 1.32 2.5
25% 1.9 0.82 3.8 1.7 0.94 2.8 1.6 0.81 3.6 2.3 1.67 2.6 1.67 3.8
30% 1.7 1.08 5.2 1.6 1.18 3.9 1.5 1.04 4.8 2.3 2.02 2.7 2.02 5.2
35% 1.6 1.33 6.6 1.5 1.48 5.1 1.4 1.27 6.1 2.3 2.37 2.8 2.37 6.6
40% 1.5 1.59 8.1 1.4 1.78 6.5 1.3 1.50 7.4 2.3 2.72 2.9 2.72 8.7
45% 1.4 1.85 9.5 1.2 2.08 7.9 1.2 1.73 8.8 2.3 3.06 3.0 3.06 9.5
50% 1.3 2.12 11.0 1.1 2.38 9.3 1.1 1.96 10.1 2.2 3.41 3.1 3.41 11.0

A plot of these tables is provided in Figure 4.6, for a visual comparison. The plot shows

results for 10%-50% levels of PV penetration and a variance of smoothing profiles for BESS

power recommendation for a one minute and one second sampling rate.
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Figure 4.6: PV Penetration VS MW & MWh for various DFPs- These figures provide a comparison of one
minute granularity and one second granularity for a Flat DFP, 15, 30, 60, and 90 minute Smooth DFPs.

Table 4.5 and Table 4.6 provide a breakdown of a weekday vs a weekend analysis for the

MW and MWh recommendations presented in Tables 4.2.

Table 4.5: Weekend vs Weekday Analysis - One-Min Granularity - Power Capacity (MW)

Weekend vs Weekday Analysis - One Min Granularity - Power Capacity (MW)
PV Nameplate Flat DFP 15 Min Smoothing 30 Min Smoothing 60 Min Smoothing 90 Min Smoothing(% of)

Feeder Size Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend
10% 252 102 22 11 24 4 26 5 19 3
15% 253 102 24 4 24 4 25 5 19 2
20% 251 102 29 5 25 5 22 3 19 3
25% 255 102 24 2 25 5 19 2 19 3
30% 255 102 23 4 24 4 19 2 19 2
35% 232 189 23 4 35 7 19 2 20 3
40% 222 89 29 6 33 6 20 3 21 3
45% 245 96 39 7 37 9 18 2 20 3
50% 243 96 36 6 37 9 25 5 21 4
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Table 4.6: Weekend vs Weekday Analysis - One-Min Granularity - Energy Capacity (MWh)

Weekend vs Weekday Analysis - One Min Granularity - Energy Capacity (MWh)
PV Nameplate Flat DFP 15 Min Smoothing 30 Min Smoothing 60 Min Smoothing 90 Min Smoothing(% of)

Feeder Size Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend
10% 82 18 67 11 82 18 82 18 82 18
15% 82 18 67 11 82 18 82 18 82 18
20% 83 20 67 11 82 18 82 18 83 18
25% 80 17 66 11 84 20 85 20 68 13
30% 71 16 65 11 100 23 92 22 101 23
35% 71 16 65 13 93 18 73 16 74 16
40% 54 10 76 11 95 19 78 16 85 18
45% 47 8 23 8 118 22 92 18 138 34
50% 36 7 254 102 97 18 134 31 155 39

These results and the comparison of these tables will be further discussed in Section 5.2.
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5 Analysis & Discussion

This section discusses the results presented in Section 4. The following sections present

discussion of the source of the bi-modal distribution, utilization of boxplots, violin plots,

data stratification technique, the final recommendations, and the assumptions that were

made.

5.1 Bi-Modal Distribution

Figure 5.1 shows a bar plot of the Oxford-Rural load consumption over 365 days for the year

of 2012. This reveals what is believed to be the main source of the bi-modal distribution in

the resultant data. It can be observed that this data set has a base load and spikes that occur

approximately every five days. It has been confirmed that the source of the spikes in load

are weekdays, while the reduced loads occur on the weekends.
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Figure 5.1: Plot showing load consumption on the Oxford-Rural feeder for 366 calendar days. There were days
of missing data that create gaps in the load consumption data. In specific, the following days were missing:
221-224, 249-254, and 366.

Figure 5.2 shows a bar plot of the resultant data of the MW capacity for 10% PV

penetration for a 15 minute smoothing function. The source of the bi-modal distribution

can be observed here as well; there are clearly two different processes occurring. The lower

portion of the plot serves to show the base load that is expected throughout the year, while

the spikes are more representative of worst case scenario days. The worst case scenario days

are occurrences that affect the sizing capacity of the BESS.
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Figure 5.2: Plot showing MW capacity for 365 calendar days for a 10% PV Penetration level using 15 minute
smooth DFP. Days with data missing were: 224, 250-253.

Figure 5.3 shows a bar plot of the resultant data of the energy capacity for 50% PV

penetration for a 15 minute smoothing function. The source of the bi-modal distribution

can be observed here as well, there are clearly two different processes occurring. The lower

portion of the plot serves to show the base load that is expected throughout the year, while

the spike are more representative of worst case scenario days.
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Figure 5.3: Plot showing MWh capacity for 365 calendar days for a 50% PV Penetration level using 15 minute
smooth DFP. Days with data missing were: 67, 74, 101, 221, 223, 224, 249-254.

5.2 Flat DFP VS Smooth DFP

Table 4.1 provides the values established for energy and power capacity for different

variations of the smoothing function over 10%-50% PV penetration levels. As a comparison,

Table 4.3 is provided to compare the annual study to the seasonal study. From these tables,

it can be deduced that the energy requirements go down by more than a factor of 10 when

the smoothing function is utilized in comparison to the flat feeder profile. This then begs the

question of why the power capacities are higher. The reason the power requirements are

higher is that in an annual study the worst case scenarios can be truly observed, while there

was a limiting factor of the four representative days in the seasonal study. Figure 5.2 shows
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that there were cases where the MW capacity stayed within the operating base, and did not

spike; which brings us to the conclusion that the representative days from the seasonal study

must have fallen within that base.

Figures 4.6 show the plots of the of the results for 10%-50% levels of PV penetration and

a variance of smoothing profiles for a one-minute and one-second granularity. It should be

noted that for the MW comparison, the data appears to be linearly increasing for the various

smoothing profiles and that there is an overlap between the 30 minute smooth DFP, and the

60 minute smooth DFP. The cause of the overlap occurs due to the smoothing algorithm.

The smoothing algorithm utilizes poly-fitting to achieve the smoothing, which may cause

the discrepancy in overlap. Overall, there were no major differences between one-second

and one-minute granularity analysis.

Figure 5.4 shows the BESS capability of providing firming for a sample day with cloud-

induced fluctuations. The blue line is the combined PV generation output (at 50% PV

penetration level) and load profiles. Shown in green is the smoothed desired feeder profile,

and in red is the reference signal to the BESS. When the reference signal falls below zero it

indicates the BESS is used as an extra generation resource to mitigate for fluctuations. On

the other hand, when the reference signal goes above zero it indicates that the BESS can be

used to store the extra generated capacity.
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Figure 5.4: BESS Firming Capability - This plot shows a BESS capability of providing firming. Shown (in
blue) is the Combined Load and PV for a sample day. Shown (in green) is the smoothed desired feeder profile.
Shown (in red) is the reference signal to the BESS to accommodate for fluctuations.

Table 4.5 and Table 4.6 provide a breakdown of a weekday vs a weekend analysis for

the MW and MWh, respectively. Recommendations presented shows that the worst case

scenarios for the recommended BESS capacity fall within weekdays, which are the days

that the utility would be most concerned with covering.
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5.3 Assumptions

This section discuses the assumptions made to proceed with the data processing, the out-

comes of these assumptions, and validation for the method used for the data stratification

procedure.

5.3.1 Missing Data

Initially when the data were processed, there were a few discrepancies that were not dealt

with in the most appropriate fashion, according to Pearson. [37] The collected Salem PV

data for the year had days missing; these values were asserted as zeros, and were not

changed. According to Pearson, this data is considered "non-ignorable missing data", and

the missing days should be assumed close to those days preceding it or the days that follow

it. Computationally, these days appeared as outliers in the system, since we know that

there was PV generation occurring that day, and that the error is a system measurement

failure. This could lead to significant biases in the analysis of the results. Missing data

is an extremely common anomaly in large data-sets. Corresponding values that should

be present in a data-set, but are absent for various reasons. A common source of missing

data is measurement system failures, which can occur in either manual or automated data

collection systems. Non-ignorable missing data generally correspond to systematically

missing data values from a data-set. The consequences are more severe, since it often

introduces significant biases into our analysis results. However, in this case the missing data

that were assumed as zero created a skew of outlying data that appeared at zero.
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5.3.2 Misalignment

As noted previously, the data collected was from a span of several years; Salem PV profile

(2014), Oahu PV profile (2010-2011), and the Oxford load profile (2012). It so happens that

2012 was a leap year, providing 366 days of data while the other data sets contained 365

days of data. Therefore, the final day from 2012 was omitted from the analysis.

The Oxford data contains more than one process as shown in Figure 5.1. A quick visual

frequency analysis shows that the data have 52 peaks associated with discrepancy between

weekend and weekdays. When a kernel probability distribution is plotted, the result is a

bi-modal distribution, as was shown in Figure 4.3.

The weekdays have been associated with more energy consumption than the weekends.

This derives from the understanding that there are less industrial processes operating during

the weekend; Oregon’s industrial energy consumption makes up nearly 26% of the overall

energy generated. [34]

When an analytical comparison is done between the days associated with higher energy

consumption, it was found that these days correlated with weekdays, therefore the deduction

was correct. However, the process utilized data from several years; this creates misalignment

in the final results. While there is still a bi-modal distribution occurring, there was no

perseverance in which days were weekends or weekdays. Recommendations for future

studies would be to match load data, and PV data from the same year in order to get

meticulous sizing recommendations, along with performing a weekday study independently

from weekends. This being said, no conspicuous reason has been presented that there is
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lapse in the analysis of the results.

5.3.3 Outliers

It is important to emphasize that undetected data anomalies can arise from gross measure-

ment errors and other highly unreliable sources, and that the effects of these anomalies can

be catastrophic. However, in this case, the outliers have been identified to be occurring as a

result of an underlying process.

5.3.4 Data Stratification

In order to make a statistically valid recommendation for battery energy and power capac-

ities, part of the data were eliminated from the data set. The battery power and energy

recommendations are geared towards worst case scenarios. Therefore, including data from

the lower strata would be redundant because those cases would be covered by the recom-

mendation for battery size during worst case scenarios. These worst case scenarios are

associated with weekdays. The visual representation showing the data that was considered

as part of this analysis is provided in Appendix C.

5.4 Recommendations

For the reproducibility of this work, I recommend that annual load and PV profiles collected

be from the same year. This would then allow further analysis into the diurnal effects. I also

recommend, to not ignore missing data due to errors in data collection methods. The use of

the previous day or the following day would make a valid assumption, and would produce
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less skewness in results; in reality we know that there was energy consumed and energy

produced those days, therefore, omitting those days from the study is not the best course of

action. A one-minute sampling rate was found to be sufficient in modeling the effects of

cloud-induced fluctuations, and BESS capacity recommendations did not vary greatly.
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6 Conclusion

As society continually grows and expands the demand for power and energy consumption

grows as well. With the technological advances being made, renewable energy is a significant

part of the electric grid infrastructure. With any growth opportunity there can be positive

and adverse effects. This thesis aims to provide a solution for mitigating electrical grid

issues that arise with high levels of PV penetration on a distribution feeder.

The proposed solution to mitigate the negative effects of PV generation is to utilize a

BESS, regulated using a smooth feeder profile. The methodology described in this thesis

aims to provide insight on providing the BESS with a control system, Figure 2.1, that is

able to provide firming and shaping to the electric grid. Figure 2.2 showed the response of

the PID-compensated control system, and indicates that the proposed control system has

sufficient transient response to charge and discharge the BESS in response to variations in

load and PV generation. [16] Figure 3.9 showed the differences in smooth DFPs, and the

ability to follow the combined load. Figure 5.4 showed insight on how the BESS can be

utilized to provide firming capability, by providing a reference signal to the BESS.

The BESS should be sized appropriately for the distribution feeder. This thesis provides

the methodology for sizing MW and MWh capacities for the BESS. The study performs

a year-long analysis on existing load profiles from previously collected data, and a PV

profile to provide a reference signal to the BESS that is able to provide firming of power.
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This method is demonstrated for different percentages of PV penetration associated with

the distribution feeder, as well as variations of the smoothed feeder profile as reference to

the BESS. This method is conducted using a one-minute sampling rate and a one second

sampling rate. Statistical analytical methods are then used to determine appropriate sizing

to accommodate the stated high PV penetration levels for worst case scenarios.

With the utilization of different lengths of smoothing DFPs, energy and power capacities

of the BESS varied between 3.50 MW - 4 MW, and 0.24MWh -1.53 MWh, respectively.

These values are sufficient to accommodate high levels of PV penetration on the Oxford-

Rural distribution feeder, as was presented in Table 4.1. Figure 4.6 shows the comparison

of a one-minute sampling rate to that of one-second, it was concluded that the one-minute

sampling rate is sufficient to provide the level of detail necessary to make recommendations

for BESS capacity requirements. This method is applicable to any distribution feeder to

provide BESS energy and storage capacity as long as the necessary load profile and PV

profile are present.
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Appendix A: Code Repository

The codes used will be provided as part of a github repository.

https://github.com/osamammansour/BESS-Thesis
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Appendix B: Box Plots

This section contains the same box plots provided in Section 4.1 with defined y-limits.

This is done in order to provide further visual depth in the data sets. Figure B.1 shows the

generated box plot results for 10%-50% PV penetration for a 15 minute smoothed DFP. The

MW data had a long tail, which indicates skewness in the data set. The MWh data had a

considerable amount of outliers.
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Figure B.1: Box plots showing MW & MWh capacity for 10%-50% penetration levels using a 15, 30, and 60
minute smoothed DFP.

Figure B.2 shows the generated box plot results for 10%-50% penetration for a 90 minute
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smoothed DFP. Similar to the 60 minute of smoothing, both MW and MWh capacities have

a considerable amount of outliers.

Figure B.2: Box plots showing normalized MW & MWh capacity for 10%-50% penetration levels using a 90
minute smoothed DFP.

84



Appendix C: Distribution Fitting

This section contains the plots showing a visual representation of the data stratification

process for MW & MWh recommended capacities. Figure C.1 shows the plots for 15 minute

smoothing for 10%-35% PV penetration MW Capacity.

Figure C.1: Fitted Distribution 15 minute smoothing 10%-35% MW Capacity
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Figure C.2 shows the plots for 15 minute smoothing for 40%-50% PV penetration MW

Capacity, and 10%-20% PV Penetration MWh capacity.

Figure C.2: Fitted Distribution 15 minute smoothing for 40%-50% PV penetration for MW Capacity, and
10%-20% PV Penetration MWh capacity.
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Figure C.3 shows the plots for 15 minute smoothing for 25%-50% PV penetration MWh

Capacity.

Figure C.3: Fitted Distribution 15 minute smoothing 25%-50% MWh Capacity.
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Figure C.4 shows the plots for 30 minute smoothing for 10%-35% PV penetration MW

Capacity.

Figure C.4: Fitted Distribution 30 minute smoothing 10%-35% MW Capacity.
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Figure C.5 shows the plots for 30 minute smoothing for: 40%-50% PV penetration MW

Capacity, and 10%-20% PV Penetration MWh capacity.

Figure C.5: Fitted Distribution 30 minute smoothing: 40%-50% MW Capacity and 10%-20% MWh Capacity.
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Figure C.6 shows the plots for 30 minute smoothing for 25%-50% PV Penetration MWh

capacity.

Figure C.6: Fitted Distribution 30 minute smoothing 25%-50% PV Penetration MWh Capacity.
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Figure C.7 shows the plots for 60 minute smoothing for 10%-35% PV penetration MW

Capacity.

Figure C.7: Fitted Distribution 60 minute smoothing 10%-35% MW Capacity.
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Figure C.8 shows the plots for 60 minute smoothing for 40%-50% PV penetration MW

Capacity, and 10%-20% PV Penetration MWh capacity.

Figure C.8: Fitted Distribution 60 minute smoothing 40%-50% MW Capacity and 10%-20% PV Penetration
MWh capacity.
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Figure C.9 shows the plots for 60 minute smoothing for 25%-50% PV penetration for MWh

Capacity.

Figure C.9: Fitted Distribution 60 minute smoothing 25%-50% MWh Capacity.
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Figure C.10 shows the plots for 90 minute smoothing for 10%-35% PV penetration MW

Capacity.

Figure C.10: Fitted Distribution 90 minute smoothing 10%-35% MW Capacity.
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Figure C.11 shows the plots for 90 minute smoothing for 40%-50% PV penetration for MW

Capacity, and 10%-20% PV Penetration MWh capacity.

Figure C.11: Fitted Distribution 90 minute smoothing 40%-50% PV penetration MW Capacity and 10%-20%
PV penetration MWh Capacity.
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Figure C.12 shows the plots for 90 minute smoothing for 25%-50% PV penetration MWh

Capacity.

Figure C.12: Fitted Distribution 90 minute smoothing 25%-50% PV penetration MWh Capacity.
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