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ABSTRACT 
Focusing on the relationship between demography and sedentary behavior, this 

thesis explores changes to mobility strategies on the Northern Northwest Coast of North 

America between 11,000 and 5,000 cal BP. Drawing on a regional database of 

radiocarbon dates, it uses summed probability distributions (SPDs) of calibrated dates as 

a proxy for population change, in combination with syntheses of previously published 

technological, paleo environmental and settlement pattern data to test three hypotheses 

derived from the literature about the development of logistic mobility among maritime 

hunter-gatherers on the Northern Coast.   

In all, each of the hypotheses proposes that early peoples on the coast were 

foragers that utilized high levels of residential mobility, who later adopted collector 

(logistic) strategies. Two of the hypotheses emphasize the role of population growth 

and/or packing and resource distribution in this transformation, while the third 

emphasizes population replacement. Other issues addressed within this thesis are whether 

or not the forager-collector continuum, as it is used for terrestrial hunter-gatherers, can be 

applied to those in aquatic settings. Also explored, is the question of whether the 

available data is sufficient for making and/or testing claims about early mobility patterns 

in the region.  

The results of the demographic models suggest that while population levels were 

volatile, volatility declined through time and that there is no significant trend in either 

growth or decline of overall population levels throughout the region. This thesis also 
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confirmed that significant changes to mobility, as evidenced by the emergence of semi-

sedentary to sedentary living, begin to appear by ~7,000 cal BP. However, there appears 

to be little, if any correlation between the advent of more sedentary and logistic behavior 

and any of the variables tested here.  Thus this author suggests, in agreement with Ames 

(1985; 2004) and Binford (2001) that the distribution of resources and labor organization 

needs within aquatic environments are sufficient without any other drivers for the 

development and intensification of logistic mobility.  

The principle analytic contribution of this research comes from the demographic 

modeling that relied on the construction of summed probability distributions. Though 

these methods have become commonplace in other settings (namely Europe), this thesis 

presents the first application of these methods within the time period and region covered. 

Moreover, this research is one of the only of its kind to address demographic histories 

within coastal landscapes that utilizes both marine and terrestrial 14C samples. In order to 

explore possible biases within the database, comparisons of marine and terrestrial SPDs 

were made between sub-sections of the region (i.e. Haida Gwaii, Southeast Alaska and 

the Dundas Islands).  

Though patterning between each of these areas was consistent, these comparative 

methods revealed an unexpected finding; a massive population crash throughout the 

region that began between ~9,000-8,800 cal BP and lasted till around 8,400 cal BP. 

Importantly, this crash was witnessed within all of the individual sub-areas and within 

SPDs made from both the marine and terrestrial 14C samples, though the reasons behind 

this collapse and verification of its existence require future research. However, finding 
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this collapse at all further highlighted the need for use of correctly calibrated 14C dates, as 

the gap in 14C dates effectively disappears when using uncalibrated dates, which has been 

a longstanding tradition within Northwest archaeology.  
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CHAPTER 1: INTRODUCTION 
 

This thesis examines mobility pattern dynamics between ~11,000 and 5,000 cal 

BP on the Northern Northwest Coast of North America, with an emphasis on the 

relationship between the beginnings of sedentary behavior and demography. Using 

demographic modeling with radiocarbon (14C) dates as data in combination with 

syntheses of previously published analyses on paleo-environmental, settlement pattern 

and technological data from the region, this thesis evaluates test implications derived 

from three hypotheses regarding the development of logistic strategies on the Northwest 

Coast.  I use the term logistic and forager strategies as defined by Binford (1980), 

whereby, broadly speaking,  people practicing logistic movement bring resources to the 

residence  and people practicing forager strategies move their residence to resources (see 

section 2.2 for a more detailed discussion) 

The study region (see figure-1), extends from Yakutat Bay in Southeast Alaska to 

the Southern tip of Haida Gwaii (formerly the Queen Charlotte Islands). It is part of the 

northern sub-region of the Northwest Coast culture area (Suttles 1990: 5-11). The 

Northwest Coast culture area as traditionally defined by anthropologists extends from Icy 

Bay in Southeast Alaska to Cape Mendocino in northern California (Suttles 1990; Ames 

1994). The interior boundary of the northwest culture area generally follows the crests of 

various mountain ranges that parallel the coastline, starting with the St. Elias ranges in 

Alaska and extending south through the Cascade mountain range in Oregon (Suttles 

1990: 1) (see figure-1).   



  2 

 

Figure 1: The Northwest Coast culture area (light color) with northern subarea circled; Language 
groups labeled. Study areas used in this thesis highlighted in the panel on the right. 

The evolution of collector strategies among aquatic hunter-gatherers between 

11,000-5,000 Cal BP is an important archaeological issue worldwide (see Jerardinoa 

2012; Milner et al. 2007; Alvarez et al. 2011; Gutierez et al 2011; Habu et al. 2011; 

Orquera et al. 2011; Wagner et al. 2011; Goncalves et al. 2014), but is especially 

pertinent for the Northwest culture area, where aquatic resources and collector strategies 

are usually linked to the advent of social, economic, and political complexity in the Mid 

to Late Holocene among hunting and gathering peoples. While Logistic mobility and 

socio-political complexity are usually thought to be organizational responses to Middle 

Holocene environmental changes (~5,000  cal BP), authors have linked these variables in 

different ways (see Ames 1994, 1998, 2005; Fladmark, 1975; Ames and Maschner, 1999; 

Prentiss and Chatters, 2003, 2005, 2007; Matson and Coupland, 1995: 191).  In contrast, 
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Moss (2007: 500-501; 2011: 94) contends that the development of social and 

organizational complexity was independent of environmental change. While the exact 

causal mechanisms of social complexity are debated, most of these authors agree that the 

development of logistic mobility is a necessary if not solely sufficient precondition for 

the inception of social complexity (e.g. Binford 2001; Rowley-Conwy 2001, papers in 

Fitzhugh and Habu 2002; Prentiss and Chatters 2003). However, despite this crucial 

theoretical connection, little research has been devoted to the development of logistic 

mobility on the northern coast. Rather, these relationships are assumed without 

systematic evaluation (Ames 1985, 1994; 2005, 2013; Moss, 2007, 2011; Martindale et 

al. 2010), likely because, until the last decade, there was very little data against which to 

evaluate the various hypotheses.  

Over the past 10 years or so, accumulating data (e.g. McLaren 2008; Archer 2011, 

2013; Carlson 2012; Martindale et al. 2010) suggest north coast settlement and mobility 

patterns from 11,000-5,000 cal BP changed much more than originally believed. Prior to 

this recent research (see also; Martindale et al. 2009, 2010; Carlson and Baichtal 2015) it 

was suggested by some authors (see Coupland 1998; Moss 2007, 2011; Yesner 1998; 

Matson and Coupland 1995), that a change from high to low residential mobility and a 

developed maritime economy did not become widespread on the coast until after 4,500 

cal BP. However, because data from this time period was so sparse, consisting of about 

dozen sites, only about half of which had any real excavations, it was impossible to say 

anything except that people had low residential mobility after 5,000 Cal BP (see Moss 

and Erlandson 1995; Ames 1994, 1998; Ames and Maschner 1999).  
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However,  with the discovery of very early villages on the Dundas Islands 

(Martindale et al. 2010), a permanent residential structure on Lucy Island (Archer 2011, 

2013) and relatively recent data from systematic surveys of Haida Gwaii shorelines (e.g. 

Fedje et al. 2011) it is becoming clear that settlement and mobility patterns were likely 

more complex than previously realized. Utilizing these newly available data, this thesis 

examines the evolution of mobility and settlement strategies on the North coast and 

compares these findings to various hypotheses regarding the timing and causes for the 

development of logistic organization. 

As a conceptual framework for interpreting and analyzing settlement patterns and 

mobility strategies, I use Binford's (1980) Forager and Collector continuum (see section 

2.2 for description).  For the purposes of this thesis, I use settlement pattern to mean 

where people place their residences and the level of investment put into sites (e.g. how 

often visited, and size/abundance of sites). In my usage, this is distinct from mobility 

patterns, which refer to the frequency, magnitude and organization behind how people 

move across the landscape  

Using this newly available data I evaluate three hypotheses for the development 

of logistic mobility (discussed in more detail below). The first, by Binford(1990, 2001). 

Who, emphasizes the importance of aquatic resources and population stress in the 

adoption of increasingly logistical strategies,  .The second hypothesis is derived from a 

series of publications by Prentiss and Chatters (Chatters 1995; Prentiss 2005; Prentiss and 

Chatters 2003; Prentiss and Kuijt 2004; Chatters and Prentiss 2005; Prentiss 2009; 

Prentiss et al. 2014), who take a macro-evolutionary approach, arguing that punctuated 

changes within environmental regimes decimated existing foraging strategies, and 
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selected for logistic ones across the coast. Lastly, I evaluate Ames’ hypothesis (2002, 

2004), who argues that more intensive collector strategies developed out of the complex 

labor organization necessary to efficiently exploit resources that were highly disjointed in 

time and space on the northern coast.  

 

1.1: Thesis Structure and Outline 

Chapter 2 is divided into three major sections intended to give the reader the 

necessary archaeological and theoretical backgrounds to understand and contextualize the 

arguments being made and evaluated throughout this thesis.  

In chapter three I describe the data available to test the hypotheses and the 

methods employed in subsequent chapters. 

Chapter four describes the results of the demographic modeling and then provides 

the summaries and interpretations of the available settlement pattern, environmental and 

technological data. 

Lastly, chapter five first discusses how the results fit each of the hypotheses 

presented; emphasizing what aspects of each hypothesis can be corroborated or 

invalidated with the data at hand. I then explore what can be said about mobility and 

settlement pattern change between ~10,000-5,000 B.P.  And provide my own 

interpretation of the analyses. Needs for future research are then addressed.  
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CHAPTER 2: BACKGROUND 
 
2.1: Introduction 

In this chapter I briefly summarize the archaeological and theoretical information 

necessary to understand the hypotheses and data used throughout this thesis, while also 

contextualizing the research within broader regional research. First, I provide a detailed 

review of the forager and collector framework. I place special emphasis on describing 

how hunter-gatherers who exploit aquatic resources differ from the traditional (largely 

terrestrially based) forager-collector model that is more familiar.. The term aquatic, as it 

is used throughout the rest of this thesis, follows Ames’ (2002) usage, referring to hunter-

gatherers that are largely reliant on water and water craft for their subsistence, 

transportation and other resources. This term, as I use it, is purposefully broad and makes 

no distinction between people who utilize riverine, littoral, or open ocean resources. 

2.2: Foragers and collectors  

Foragers and Collectors are terms that refer to the idealized ends of a conceptual 

spectrum, and are defined by the type of mobility strategy people employ. Based on 

descriptions from Binford (1980) and Kelly (2007: 115), I define mobility strategy as 

how people organize the movements of groups, individuals and their residences to exploit 

various resources. Binford’s (1980) forager and collector concepts are used to describe 

and categorize variation in mobility organization. At the most fundamental level, foragers 

move their residence to resources and collectors move resources to their residence. 

However, these are not truly categorical distinctions and no group is ever 100% collector 

or forager. Therefore, while we categorize people as foragers or collectors, what we are 

actually doing is referring to a ratio of the behaviors, i.e. they procure resources in a 
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collector-like fashion 70% of the time and like foragers the other 30% of the time.  

Furthermore, Binford (1980, 2001) did not envision these mobility strategies as static 

states, but as fluid, conscious strategies that were adaptive under different conditions.  

Collector strategies are seen as being adaptive when various critical resources are 

spatially and temporally disjunct (usually in places with high-seasonality such as 

temperate or arctic areas), meaning that critical resources are available at the same time 

but in different places, which creates scheduling conflicts where, in order to get all 

necessary resources, people need to be in numerous places at the same time. This kind of 

resource distribution makes moving residences to resources inefficient because as you 

move closer to one resource you move yourself equally far away from other resources. 

Moreover, because many different resources must be collected in a finite amount of time, 

moving residence to one resource increasingly constricts the availability of another 

critical resource. Collector strategies solve these scheduling problems by not trying to 

move residences and large groups of people and instead sending out specialized labor or 

task-groups to each of the critical resources. This ensures that the cost of mobility 

remains as low as possible while also making sure that each of the needed resources are 

extracted.  

On the other hand, forager strategies are seen as being adaptive when resources are 

temporally and spatially homogenous, meaning critical resources are all available in the 

same space and at the same time or sequentially through time.  Usually this kind of 

resource distribution is found in warmer places such as tropical areas that have low-

seasonality. Because environments, in which resources are homogenously distributed do 

not have the same inherent scheduling problems as those mentioned above, maximum 
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efficiency and risk mitigation are best achieved by moving residences to new resource 

patches whenever necessary (Kelly 2007).  

It is important to note though that regardless of any specifics, the decision to be 

more or less residentially mobile is simply, at its core, an evaluation of whether it is more 

cost effective to move people to resources or resources to people. Therefore, while 

forager and collector strategies often coincide with the differing environments, the 

environment itself is not necessarily causally related to forager or collector strategies. 

Anything that changes variability in access to resources can cause people to adopt 

different mobility strategies, including social and demographic factors. In other words, it 

is not the variability in the resources themselves but variability in access to them that 

makes either of these strategies adaptive. This distinction is critical to keep in mind for 

the discussion of aquatic hunter-gatherers below.  

 

2.3: Aquatic Foragers and Collectors  

The need to distinguish between aquatic and terrestrial hunter-gatherers when 

discussing foragers and collectors is necessary, as many of the environmental, resource 

and mobility pressures that face terrestrial hunter-gatherers cannot be generalized to 

aquatic environments, whose attributes are often quite distinct from even immediately 

adjacent terrestrial biomes (Binford 2001: 461; Ames 2002: 47; Fitzhugh 2002). 

However, at the conceptual level there is no difference between terrestrial and aquatic 

foragers and collectors. Cost of mobility and variability in access to resources are still the 

primary determinants of mobility strategies (Binford, 1990).  
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The major differences then between aquatic and terrestrial mobility strategies 

arise from the nature of the aquatic resources themselves and access to them. The 

magnitude of  these differences is especially pronounced in northern latitudes in areas 

that are heavily forested, such as the coastal Pacific Northwest of North America, as these 

areas have much poorer terrestrial productivity than southern latitudes (Binford 2001: 83, 

166-168).  In regards to the nature of the resources themselves, aquatic resources differ in 

two primary ways from terrestrial ones; (i) aquatic resources tend to be highly clustered, 

and these clusters are often widely dispersed unevenly in space, which effectively creates 

a heterogeneous environment (Binford 2001: 368) and (ii) aquatic biomes typically 

support much higher levels of species and habitat diversity per unit of area than terrestrial 

ones. This is especially true in areas like the northern pacific coast, where the complex 

crenulated coastlines create multitudes of productive micro-environments in relatively 

small areas (Yesner 1980; Binford, 2001: 167, 366-369). Additionally, while individual 

aquatic resources may vary considerably in their seasonal availability and abundance 

(e.g. Herring or Salmon), the relatively high biodiversity in aquatic biomes typically 

means that significant amounts of subsistence resources are available year-round in the 

same general area (Yesner 1980; Binford 1990). 

In addition to differences in the nature of the resources themselves, there are 

significant differences in access between terrestrial and aquatic resources. The first is that 

access to aquatic resources tends to be much more spatially restrictive than access to 

terrestrial resources (Yesner 1980; Binford, 2001: 167, 366-369; Fitzhugh 2002: 258). 

This is because, in part, there is often much less coastline than there is inland area, thus 

there is simply less space to be utilized. Further restricting space, is the fact that not all 
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places on a coastline are created equal in regards to providing access to resources. For 

example, much of the coastline on the north coast can be made up of steep rocky cliffs, 

severe slopes, and may not have any place for people to effectively launch or dock boats 

at (Yesner 1980; Binford 1990, 2001: 167, 366-369; Fitzhugh 2002: 258). This issue of 

finding a suitable location is further exacerbated by the uneven clustering of aquatic 

resources, which means that usable coastline is first filtered by the actual existence of a 

resource cluster and then filtered again by the physical properties of the coastline in that 

area. In effect, this means that suitable residential locations in aquatic environments tend 

to be rarer and much more circumscribed than in terrestrial contexts (Yesner 1980; 

Binford 2001: 167-169). 

Furthermore, in the case of aquatic hunter gatherers who rely on marine (open 

water) resources, the effectiveness of using residential mobility to access these resources 

is heavily mitigated by the fact that people cannot move their residences into the ocean 

itself. Thus all people can do is move residences along a coastline, which does little if 

anything to actually increase access to off-shore resources (Binford 1990, Binford 2001). 

This may seem obvious, but the implications for this kind of resource distribution 

effectively canceling out many of the benefits for residential mobility and forcing some 

level of logistic procurement should not be understated.  

The combined effect of the qualities discussed above is that they greatly reduce 

the use of residential mobility as a productive strategy, by both reducing the incentive of 

moving (i.e. resource shortfalls are less likely in aquatic biomes due to the relatively high 

bio-diversity and year-round availability) and limiting the payoff of moving (i.e. 

residential moves do not increase access to resources that would be otherwise 
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unavailable). As (i) the clustered and unevenly dispersed resource distribution of aquatic 

resources means that moving residence to one cluster puts you equally far away from 

another resource cluster; (ii) the year-round availability and high biodiversity of aquatic 

biomes means that residential locations can be utilized for longer durations, and therefore 

the number of moves necessary is reduced; (iii) even if a group wanted to move, suitable 

locations for doing so are often much rarer and widely separated, thus the cost of moving 

is high;  and (iv) because marine resources cannot be moved to directly and because of 

the aforementioned uneven distribution of other resources, moving residences is largely 

ineffective for mitigating resource shortfall.  This is because any resources available after 

the move are often the same or equal to those available prior to the move.  

Therefore, people who exploit aquatic resources have much more circumscribed 

areas in which to place and move their residences and are forced to bring resources back 

to their residence as opposed to moving residences to resources (Binford 1990, 2001: 

370), thus necessarily use some level of logistical organization. As Yesner (1980) and 

Binford (1990) observe, this creates a pattern among aquatic hunter gatherers of 'tethered' 

resource procurement and results in their using much less of the total landscape than 

terrestrial hunter gatherers, while spending considerably more time in the places they do 

use. Due to this restricted nature of suitable residential locations, aquatic hunter-gatherers 

can also be expected to revisit the same sites with much more regularity and frequency 

than terrestrial hunter-gatherers do. It should be noted here that the use of boats 

essentially intensifies this effect. Because, as mentioned above, needing to find locations 

favorable to boat access further restricts potential residential sites. Furthermore, boats 

also allow people to transport resources in bulk quantities, and more efficiently make 
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long distance resource forays. Together, these qualities increase the relative effectiveness 

of logistic resource procurement, and overall make it easier to move boats to resources 

and back rather than the wholesale moving of residences to resources.  

Further pushing aquatic hunter-gatherers towards logistic organization is that 

while terrestrial hunter-gatherers do not necessarily have to use aquatic resources, aquatic 

hunter-gatherers, even if they receive all of their subsistence needs from aquatic sources, 

often still rely on terrestrial or inland landscapes for various resources such as raw 

materials for clothing, tools, etc. Because is often difficult (if not impossible when 

utilizing near ocean resources) to place residences in both aquatic and inland landscapes, 

this further creates a disjuncture in resource availability that must be coped with by 

aquatic hunter-gatherers and typically results in less residential mobility and increased 

use of logistic forays (Binford 2001: 279).  

Archaeologically, the ‘tethered’ behavior and consistent reuse of areas expected 

among aquatic hunter-gatherers tends to create much larger and continuous palimpsests 

than are typical for similar (or even much larger) terrestrial groups (Binford 1990). In 

fact, this behavior means even relatively small populations can leave behind considerable 

accumulations of archaeological material (Binford 1990).  

Aside from the nature of the resources themselves and the physical issues of 

accessing them discussed above, another restriction to access that disproportionately 

effects aquatic hunter-gatherers is technological in nature. For example, outside of 

accessing various littoral resources (discussed below) exploiting and intensifying aquatic 

resources generally requires greater tool-kit complexity and diversity (Binford 2001: 369, 

391-392; Yesner 1980). There are also minimum technological thresholds necessary 
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before exploitation of aquatic resources can begin at all (e.g. boats) (Binford 1990, 2001: 

368). This fosters an increased level of task specialization among aquatic hunter gatherers 

and often necessitates some level of task-specific groups (Binford 2001: 388-392; Yesner 

1980).  

This demand on technological and task complexity and specialization derives 

from two major qualities of aquatic resources: 1) people need specialized equipment, 

such as boats or suitable fishing line/pole, to even access useful quantities of aquatic 

resources, much less effectively procure them and 2) significant differences in the 

behavior and habitats among aquatic animals make capture technology much harder to 

generalize (Binford 2001: 390-392; Yesner 1980). For example, a bow-and-arrow is 

sufficient to exploit an extraordinary range of terrestrial animals ranging from bears and 

deer to birds and rodents. However, just to exploit various fish species, different kinds of 

poles, nets, leisters, etc. can be required, not to mention the different kinds of bait, lines 

and weights necessary to procure different species. This does not even take into account 

the wide array of different equipment needed to exploit sea-mammals (e.g. various 

harpoons and boating technology) (Binford 2001: 388-398). 

However, there are a couple significant exceptions to this rule, namely tidal and 

shell fish resources, which require little if any specific technologies or task organization. 

Indeed, as Lyman (1991: 76) notes; little technology at all (such as boats) is needed to 

exploit littoral resources. However, while I acknowledge the analytic importance for the 

distinction between littoral and open ocean resources, because the earliest peoples studied 

here are already demonstrated to have already been using boating technology and taking 
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open ocean resources by ~11,000 cal BP, my discussion lumps littoral and open ocean 

habitats together, unless specifically noted otherwise.   

As Ames (2002: 46) has noted, many of the traits associated with terrestrial 

collectors (e.g. task specific camps) may not be as apparent among aquatic collectors, 

because they often cannot field process (cannot field dress animals on a boat in the 

middle of the ocean) and the extra transport capability provided by boating technology 

allows people to bring resources back to the residence to process. This means that aquatic 

collectors may leave fewer, but perhaps more obvious archaeological signatures across 

the landscape. Because it can be expected that less field processing may be taking place, 

we may also expect to find evidence for a higher diversity of activities at residences 

among aquatic collectors (Ames 2002: 44). This expectation is further bolstered by the 

fact that logistic camps, with tool or raw material caches typical among terrestrial 

collectors, (Binford 1980) cannot be made to facilitate the harvesting of open water 

resources, as tool/equipment caches cannot be left in the middle of the ocean. Even for 

riverine resources, where logistic camps can be placed proximally, the use of boats, also 

mitigates the effectiveness of caching at logistic camps, as people can simply take their 

gear with them. 

To summarize the points above, the major differences between aquatic and 

terrestrial hunter-gatherers that are salient to this research are: 

1) Aquatic resources are usually more patchily distributed, creating more 

scheduling conflicts than is usual for terrestrial contexts. 

2) Access to aquatic resources is often more spatially restricted, resulting in 

much more intensive use of fewer places on the landscape. 
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3)  Technologies for exploiting aquatic biomes usually are more complex and 

diverse 

4) Residential mobility is overall much more constrained in aquatic contexts, 

because there are fewer options for residential movements and because of the 

more disjunct nature of aquatic resources, moving residences rarely solves 

scheduling problems in resource availability. 

5) Aquatic hunter-gatherers using boats, may leave fewer logistic camps, 

because (i) field processing of open ocean resources is difficult and (ii) 

because the bulk transport capability of boats makes investing in logistic 

camps less necessary since processing can be done back at the residence. 

These points illustrate why aquatic hunter-gatherers are almost always much less 

mobile than their terrestrial counterparts, and why they must adopt some level of logistic 

organization as a way to cope with their constraints on mobility and the nature of their 

resources (Binford 2001: 278-279; Yesner 1980). This is also why, as mentioned above, 

Binford (2001: 270-280) suggests that aquatic hunter-gatherers be viewed as moving 

along a continuum of more or less use of logistic organization, as opposed to the forager 

to collector spectrum. Overall, Binford (2001: 279) believed that the critical theoretical 

difference in using the forager and collector concepts for aquatic hunter gatherers was 

that people who rely primarily on aquatic resources probably cannot be true foragers.  

Therefore, it may be more appropriate to think of aquatic hunter gatherers as existing 

along a continuum of collector-like behavior.  

It is important to note though, that conceptually speaking, there are no 

fundamental differences in the rules that govern mobility strategies between aquatic and 
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terrestrial hunter-gatherers. At its core, the basis for being a collector or a forager is 

always about (i) solving problems of disjunction in availability of resources and (ii) 

whether or not it is more effective to move resources to residences or residences to 

resources (Binford 1980, 1990, 2001; Kelly 2007).  Therefore, the above generalizations 

should not be seen as re-writing or re-interpreting the forager-collector spectrum, it is 

simply meant to show how aquatically oriented hunter-gatherers face resource 

distribution problems and are more constrained in their solutions to them, than is often 

the case for terrestrial hunter-gatherers.  

At this point, it is important to emphasize that (whether implicitly or explicitly) 

many authors often use the generic term, ‘collector’ to mean very different things. Using 

Binford's (1980, 1990, 2001) original framework, collectors are defined by their use of 

logistic strategies; thus they were basically interchangeable terms. However, in many 

cases, authors (e.g. Prentiss and Chatters) have used the term collector to imply a very 

specific suite of traits (i.e. storage, permanent villages, etc.), even though Binford (1990) 

vehemently denies that storage is necessary for collector strategies or that storage is 

absent among foragers. Therefore, to avoid confusion or misrepresenting the intent of 

authors, from this point forward in the thesis I use "Logistic strategies" and "collector" 

strategies. "Logistic strategies" will refer to the mobility strategy itself, and "collector" 

will refer to a suite of traits (e.g. permanent housing, storage, complex social 

organization, specialization, etc.).  
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2.4: Geography of the Northwest Coast 

This section describes the geographic boundaries of the Northwest Coast culture 

area in order to contextualize the position of my research area. Furthermore, as the 

aquatic hunter-gatherer discussion above explains, many of the unique characteristics of 

aquatic hunter-gatherers are attributable to how resources are structured in aquatic 

contexts. Therefore, it is helpful to briefly review some of the geographic features of the 

north coast and how they differ from other regions of the Northwest Coast.   

The Northwest Coast region extends from Icy Bay on the Yakutat peninsula in 

Southeast Alaska to the Chetco river in Southern Oregon (Suttles 1990: 16), and is 

usually divided into three major sub-regions: the Northern Coast (from SE Alaska to the 

southern end of Haida Gwaii), the Central Coast (from the southern end of Haida Gwaii 

to the U.S./Canadian border) and the Southern Coast (the coastlines of Washington, 

Oregon. The interior extent of the Northwest coast region is largely defined by mountain 

ranges paralleling the coast. These are the St. Elias and Coast Ranges in Alaska and 

British Columbia and the Cascade Mountain Range through Washington and Oregon 

(Suttles 1990: 16).  

There are significant topographic differences along the Northwest coast that are 

particularly pronounced between the North and the Southern coast that produce 

meaningful differences in resource structure and availability. The North and Central coast 

(my study area) have crenulated and complex shorelines composed of many archipelagos 

and fjords. This complexity creates a high density of bays and estuaries that are protected 

from heavy ocean swells and which support many, productive microenvironments within 

relative small areas. On the other hand, the southern coast (mostly the coastlines south of 
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Puget Sound in Washington, Oregon and Northern California) has straight, exposed 

coastlines with little protection from ocean swells and winds. These coastlines lack the 

diverse microenvironments of the north coast, and overall support a much less productive 

marine habitat.  Productive resources patches were more clustered on the southern coast, 

but rarer and highly dispersed than on the northern coasts.  

2.5: Archaeological Background of the Northwest Coast  

Though this study focuses on the development of logistic mobility and collector 

strategies on the Northern coast, answering this question has been a concerted focus for 

archaeologists all across the Northwest coast (NWC)  (See Prentiss and Kuijt 2004, 2012; 

Ames 1998; 2004; Moss 2007, 2011;  Matson and Coupland 1995; Ames and Maschner 

1999). Therefore, it is necessary to review a basic sequence mobility patterns across the 

entire (NWC). The sequence is generalized and neither reflects local histories nor 

captures the variability across the Northwest Coast. Rather, it places my specific research 

within the context of regional-scale changes in mobility strategies.  

The traditional view of mobility and settlement pattern history on the Northwest 

Coast, which has never been rigorously evaluated, has been broken into three major 

periods with high residential mobility peoples during the earliest period and then a 

transition to a poorly understood mobility strategy that appears much more sedentary, and 

lastly the appearance of ‘classic’ collector strategies and low residential mobility in the 

later periods.  

The period between ~11,000-5,700 cal BP has been characterized by high 

residential mobility (forager), with relatively small populations who invested little in 

permanent structures and left relatively small and discontinuous assemblages at sites 
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(Ames 2003). These early sites also show a focus on living in ecotones near bays, 

estuaries, lakes and rivers (Ames and Maschner, 1999; A. Mackie and Sumpter 2005). 

Subsistence is characterized as wide ranging, with people utilizing the full range of 

available fauna (probably flora as well) to some degree (Ames and Maschner, 1999: 42-

48). Although regional variation in subsistence practices is apparent along the coast; 

analyses of artifact and faunal assemblages at early sites such as Kilgii Gwaay (Fedje et 

al 2005: 200-203), Namu (Carlson 1995; Cannon 2000) and Glenrose Cannery (Matson 

1996: 112-118) show that these differences are superficial when variability in 

environmental conditions and resource availability are taken into account. Therefore, 

differences in early coastal assemblages probably reflect regionally specific adaptations 

instead of fundamentally different cultural traditions or places of origin (Ames and 

Maschner, 1999: 66-68; Carlson 1996; Matson 1996: 115-118; Matson and Coupland 

1995: 81).  

Around 8,000 cal BP microblade technology almost completely replaces bifacial 

technology on the Northern Coast, while on the southern and central coasts bifacial 

technology undergoes a significant decline around 7,000 cal BP. However, this decline in 

in bifacial technology does not coincide with an equivalent increase in microblade 

technology, as on the north coast.  After 7,000 cal BP, there is a significant but poorly 

understood regional diversification of technologies, that is most pronounced on the 

southern and central coasts, where diversification of form/style of bifaces increases 

considerably between regions (Carlson 1996: 3-10; Ames and Maschner 1999). These 

localizations of technologies and the replacement of bifaces by microblades are probably 
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indicative of important changes to mobility and settlement patterns, even if what those 

changes were are hard to infer from the available data.  

Since 1975 (Fladmark 1975) archaeologists, have viewed the period between 

5,700 and 3,500 Cal BP as transformative, when, at least in some places, residential 

mobility significantly declines and investment in residential sites begins to increase 

substantially (e.g. Ames and Maschner 1999; Matson and Coupland 1995). However, 

others such as Moss (2011) and Moss et al. (2007) contend that timing of these changes is 

more apparent than real. These authorsuggests that sea-level change is responsible for the 

apparent changes in settlement and mobility patterns following 5,700 cal BP, by masking 

continuity with earlier patterns. They also argue that firm evidence for substantial 

changes in mobility and settlement patterns (i.e. large shell-middens) actually appears 

much later, around 4,300 cal BP. However, while keeping in mind Moss’ and others 

critiques is important, we cannot evaluate hypothetical data that has been lost to sea-level 

change. And while very large shell-middens and perhaps region-wide evidence for 

significant changes to mobility and settlement patterns may not happen until later, there 

are many sites that indicate substantial changes were taking place between 5,700 and 

5,000 cal BP. 

Outside the North Coast area (covered in more detail later), the beginning of this 

period is marked by the first substantial evidence for large scale dwellings, intensive 

processing camps, significant storage facilities and an overall much more sedentary 

lifestyle. Significant sites for this period include the Maurer (~5,000 Cal BP), the Hatzic 

Rock (~5,700 Cal BP), the St. Mungo Cannery site (~5,000 Cal BP) and The Katzie site 

(~ 5,300 Cal BP). It is also possible that the Namu site on the Central Coast of British 
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Columbia may also represent a shift to sedentary behavior as early as 7,000 Cal BP 

(Cannon and Yang 2006), but is not discussed here because of debate over the evidence 

(see Monks and Orchard 2006). All of these sites (excluding Namu) are located along the 

Fraser River in British Columbia. The Katzie and St. Mungo Cannery sites are located in 

a near coastal setting, while the Maurer and Hatzic Rock sites are located further inland 

on the Lower Fraser valley. 

The Maurer and Hatzic Rock sites both contain remains of semi-subterranean, 

post and beam houses that are ~7 x 11m in size (Mason 1994; Schaepe 2003), and show 

considerable investment, indicating that they were intended to be permanent or semi-

permanent structures (Schaepe 2003: 145-150).  This is attested to especially well at the 

Hatzic Rock site where there was evidence for multiple rebuilding episodes (Mason 

1994: 113). As expected for sedentary to semi-sedentary sites, they also exhibited bulky 

pieces of site furniture, such as stone anvils, large hearth complexes and extensive use of 

expedient tools made from local sources (Mason 1994: 90-92, 101, 113; Schaepe 2003: 

145-146). The St. Mungo Cannery site (Ham et al. 1986) is much less discussed than 

these others, but is interpreted as a small fishing village (>4 houses present), that was 

seasonally occupied in ~2 month intervals over 1,000 years.  

While all of these sites are interpreted as representing at least semi-sedentary 

behavior (Mason 1994: 101-113; Schaepe 2003: 152), it is hard to say exactly what kind 

of mobility strategy was employed by the people living at them. These sites appear 

relatively isolated compared to the large villages that appear later 1. Though, the 

similarities between the newly reported Katzie site (discussed below) and the St. Mungo 
                                                 
1 However, at both sites evidence was found that indicates there may have been one or more contemporary 
stuctures associated with these houses (Mason 1994: 39; Schaepe 2003: 147).  
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Cannery site opens interesting questions regarding the extent of these patterns. These 

sites also lack definitive storage features and there is insufficient faunal data to determine 

seasonality of occupation at Maurer and Hatzic Rock (Mason 1994: 124). Therefore, it is 

possible that these sites represent a form of tethered or serial foraging, with weak logistic 

organization as is hypothesized for similar early house sites on the Canadian and 

Columbia Plateau (see Ames 2000, 2012; Chatters 1995; Prentiss and Chatters2003). 

Unlike the Maurer and Hatzic Rock sites, the recently reported Katzie site (KDC 

Archaeology 2014)  shows some of the earliest evidence for unambiguous collectors on 

the coast, including multi-family plankhouses and intensive processing and storage 

facilities at around 5,300 Cal BP (KDC Archaeology 2014: 233-238). Other sites 

showing evidence of lower residential mobility and more attachment to specific places 

for the early part of this period include the early burial component at the Pender Canal 

site at ~5,000 Cal BP (Carlson and Hobler 1993), the Glenrose Cannery site (Matson 

1996) and its associated fish weir features (Eldridge and Acheson 1992) at ~4,800 Cal BP 

and at the Namu site by at least 5,000 Cal BP and possibly as early as 7,000 Cal BP 

(Carlson 1996, 1998; Cannon and Yang 2006).    

Overall, during this time, deposits at sites become much larger, richer and show 

significant increases in their longevity and continuity of use. Artifact assemblages also 

become more taxonomically diverse and aquatic resource intensification more 

pronounced (Ames and Maschner 1999: 88-97). Altogether, this evidence is taken as 

indicating a substantial decrease in residential mobility.  

Interestingly, there does not seem to be a proliferation of sites like St. Mungo, 

Maurer, Hatzic Rock and Katzie after they appear; instead we find an odd archaeological 
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gap between this early evidence for sedentism and logistic organization and the next firm 

evidence, which does not appear outside the North Coast until sometime after 3,500 cal 

BP, with widespread evidence not appearing until ~2,500 Cal BP.   

 While the foregoing discussion is oversimplified, it is a sadly accurate portrayal 

of how little is known about the evolution of mobility systems on the NWC. Thus while 

many details were omitted, including them would not change the general interpretation 

that people on the NWC were foragers until they were collectors, with a poorly 

understood middle period. Thus, the history of mobility strategies on the Northwest Coast 

appears much more dichotomous than it actually was.  

2.6: North Coast Sub-Region Archaeological and Environmental Background 

Southeast Alaska 

The early Holocene in Southeast Alaska is best represented by the excavations at 

Hidden Falls, component 1 (~12,200 to 9,600 cal BP)) (Davis 1989), Ground Hog Bay 2, 

component 3 (~10,400 cal BP) (Ackerman 1968) Chuck Lake (~9,200 to 8,200 cal BP) 

(Ackerman et al. 1985) and On Your Knees Cave (~10,400 Cal BP) (Dixon 1999, 2008). 

These sites are usually characterized by a microblade/core and unifacial lithic industry 

(Davis 1990). However, the on Your Knees Cave site also features well-made, leaf 

shaped bifaces similar to the early bifacial technology on Haida Gwaii (Dixon 2008; 

Fedje et al. 20 08). Faunal data at these sites also indicate a marine subsistence and 

economic focus, especially the Chuck Lake site, which has the earliest evidence for a 

shell midden in all Southeast Alaska (Ackerman et al. 1985). Isotope analyses on human 

bone, which measures the percentage of marine foods in a diet, from On Your Knees 

Cave further corroborates this maritime focus by showing that people relied extensively 
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on marine sources for their subsistence (Dixon 1999).  People also seem to have 

emphasized a broad spectrum diet, using all available resources in the area in direct 

proportion to their actual abundance (Ackerman 1968; Davis 1989; Ackerman et al. 

1985). Based upon the use of exotic obsidians from very distant sources and the 

appearance of sites on islands only accessible by boats, it is also inferred that people 

during this period practiced very high levels of mobility and had access to boating 

technology (Moss 2004; Ames 2005; Carlson 2012; Carlson and Baichtal 2015).  

 

Figure 2: Map of Southeast Alaska sub-region, showing location, name and site number for a 
selection of significant sites that date between 11,000 and 5,000 cal BP. 

 There is a gap in the archaeological record of Southeast Alaska between ~9,000-

6,000 cal BP, which has only recently begun to be filled (see Carlson 2012; Carlson and 

Baichtal 2015). This gap makes it very difficult to link developments during this early 
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period with that following. Around 5,000 cal BP there is evidence for significant changes 

to artifact and faunal assemblages within Southeast Alaska, where we see an increasing 

use of shell fish resources and ground stone/slate technologies and more complex bone 

tool technologies (Davis 1990: 198-199; Moss 2004; Arndt et al. 1987). This period is 

almost entirely known from component 2 of the Hidden Falls site, which dates between 

~5,300 cal BP and 3200 cal BP (Davis 1989). Excavations of this component also 

revealed more than 37 post-holes outlining a structure approximately 3x4m in size as 

well as numerous pit features (Lightfoot 1989: 199-208).  

Davis (1989, 1990) uses this data to infer that around 5,000 cal BP, the number 

and permanence of structures increases in Southeast Alaska and hypothesizes that this, 

along with the coinciding increase in ornamentation objects such as labrets, use of 

groundstone (including slate) technologies, and more complex organic tools indicates a 

shift to logistic strategies and low residential mobility within Southeast Alaska. However, 

evidence for this shift is sparse and comes almost entirely from excavations from 

component 2 at Hidden Falls. There is also limited information from sites such as Lake 

Eva, Coffman Cove and Rosie’s Rock shelter for this period (Arndt et al. 1987; Davis 

1990; Moss 2004; Ames 2005). However, these sites are mostly lithic scatters and 

midden sites, and do not corroborate the interpretation that this time period saw region-

wide changes to more sedentary living (Moss 2004).  

Dundas and Lucy Islands  

The Dundas Islands are northeast of the northern tip of Haida Gwaii, south of 

Southeast Alaska and about 24km west of Prince Rupert Harbor (see figure 3). This 
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location positions the Dundas Islands at a very dynamic historical crossroads between 

Tlingit, Haida and Tsimshian territories. Ethnographically and historically they were used 

mostly by the Tsimshian for seasonal procurement of resources such as sea mammals, 

fish and shell fish (Haggarty 1988). The Lucy Islands are a small group of tiny islands 

~19km West of Prince Rupert Harbour. The largest of these islands (~240m by 760m) 

contains the known archaeological sites (Archer 2011). George McDonald began work at 

Lucy in 1968; his work showed that Lucy contained large shell middens, dating to ~2,500 

years ago (McDonald and Inglis 1981). However, recent testing and excavations by 

David Archer (2011, 2013) pushed the antiquity of occupation at these sites to over 9,000 

years ago (Archer 2011: 8). The discovery of a substantial (8.2x4.3m) residential 

structure (~6,300 Cal BP) and its associated midden burials (~5,800 and 5,300 Cal BP) 

also showed that the Lucy Islands may have been used more intensively in the past than 

during the ethnographic period, where they acted as a short-term logistic station for the 

collection of shell fish, birds and fishing (Halpin and Seguin 1990: 271).  
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Figure 3: Map of Dundas and Lucy Island’s showing location, name and site number of 
significant sites that date between 11,000 and 5,000 cal BP 

 

Unlike the earliest sites on Haida Gwaii and in Southeast Alaska, which lack 

substantial shell middens, the earliest Dundas sites, such as Far West Point (~9,000 cal 

BP) and Lucy Island (~9,000 cal BP) sites show extensive early use of shell fish and the 

formation of dense shell middens (Martindale et al. 2010; Archer 2011; Archer and 

Mueller 2013). Recent dates run for this thesis (see appendix I) confirm the presence of 

one of the oldest currently known permanent structures (6845-6670 Cal BP) (and 

probable village) on the North Coast at site GdTq-3. This site is located on a tiny island 

in the Dundas group, lying south of Dundas Island and north of Baron Island and consists 

of four similarly sized houses (only one was dated) with associated moderately sized 

shell middens, overlooking a paleo-estuary.  
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Preliminary faunal evidence from the Dundas Islands points to an interesting 

subsistence picture. The midden and village sites were occupied year-round and when 

compared with the Prince Rupert Harbor middens, the Dundas Island sites contained 

exceptionally low amounts of non-shellfish material (Martindale et al. 2010; Hallman et 

al. 2013). However, despite their low abundance, the types and relative abundance of fish 

present were quite similar to the Prince Rupert Harbor middens (e.g. salmon, rockfish, 

and herring) (Martindale et al. 2010). This led Martindale et al. (2010) to suggest that 

these assemblages cannot be accurate representations of diet as such an extraordinary 

reliance on shellfish is not possible nutritionally. However, the question of how and why 

Dundas has such a disproportionate reliance on shellfish remains unanswered.  

The relatively large shell middens at Lucy Island and and the Far West Point site 

on the Dundas Islands, show that substantial use of shellfish occurs much earlier than 

previously believed (See Fladmark 1975; Yesner 1998; Ames and Maschner 1999; 

Matson and Coupland 1995). The early permanent structure on Lucy (6529-6185 cal BP) 

is also one of the earliest so far on the coast. However, despite the early appearance of 

permanent structures on Dundas, village aggregations do not appear to become common 

there until sometime after 5,000 cal BP, and especially after 3,500 cal BP, which follows 

a pattern similar to histories of Prince Rupert Harbor and Southeast Alaska. 

Unfortunately, inferences relevant to this thesis about hunting, processing and other 

activities related to technology are impossible to make at this point. There is currently 

little artifactual data for either the Dundas or Lucy Islands (Archer 2011: 20-21; 

Martindale et al. 2010), in part because of a lack of excavation. For example, the 2005-

2007 projects (Martindale et al. 2010) used coring for their surveys, with only limited 
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excavation at sites GdTq-3 and GcTq-4. However, the lack of artifacts is also the result of 

extremely low artifact densities within the sites, similar to many other sites around Prince 

Rupert Harbor.  

Haida Gwaii   

Haida Gwaii (a.k.a the Queen Charlotte Islands) is a large archipelago located off 

the west coast of Northern British Columbia separated from the mainland by Hecate 

Strait and from Southeast Alaska by Dixon Entrance (figure 1). It is the traditional 

homeland of the Haida. Systematic archaeological work in Haida Gwaii began with 

George MacDonald (1969), and continued with foundational work by Fladmark (1970, 

1975, 1989), followed by Severs (1974), Acheson (1982, 1998) and Fedje and 

Christiansen (1999). A thorough review of archaeology on Haida Gwaii is presented in 

Fedje and Mathewes (2005). These investigations and those following revealed many 

significant sites for understanding early hunter-gatherer adaptations to this coastal 

landscape (see Kilgii Gwaay and Richardson Island). In contrast to other regions on the 

north coast though, much more is known about Haida Gwaii pre-5,000 cal BP than post 

(Fedje and Mackie, 2005: 156).  

The earliest cultural complex on Haida Gwaii is called the ‘Kinggi Complex” 

(Fedje and Mackie 2005) (>11,000 to ~9,800 cal BP). The earliest sites (>11,000 cal BP) 

from this period are the Gaadu Din and K1 Karst Caves sites, which are bear hunting 

sites associated with variations of large leaf-shaped bifaces (Fedje et al. 2004, 2008: 19-

25). The latter half of the Kinggi complex is best known by work done at the Richardson 

Island and Kilgii Gwaay sites (figure-4) (Fedje and Mackie 2005: 158; Fedje et al. 2008). 
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However, other important sites such as Arrow Creek 1 and 2 (Fedje et al. 1997); Collison 

Bay (Q. Mackie et al. 2011: 72) and the Lyell Bay sites (Q. Mackie et al. 2011: 73) are 

also representative of the Kinggi complex 

Figure 4: Map of Haida Gwaii showing the locations, names and site number of significant sites 
dating between 11,000 and 5,000 cal BP. 

The Kingii Complex is characterized by a mobile people using generalized tool-

kits (Fedje and Mackie 2005:158). From the Kilgii Gwaay wet-site, we also know that 

people made extensive use of organic tools such as bone awls and barbed points, as well 

as cordage, and various wooden tools and wood working tools (Fedje et al. 2001; Fedje 

and Mackie 2005: 158). Subsistence was diverse with people using seemingly every 

available resource (e.g. shell fish, black bear, salmon, deer, caribou, rock-fish, halibut, 
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etc.). Evidence from faunal assemblages (i.e. halibut) also suggests that people were 

making routine use of boating technology to take open water fishes.  

Based upon the number and complexity of features, site location, and seasonality 

studies at the Kilgii Gwaay and Richardson Island sites, various authors (see Fedje et al. 

2001, 2005; Storey 2008; Q. Mackie 2011) have also suggested that these sites represent 

logistically oriented basecamps, focused around exploiting wide ranges of aquatic 

resources. However, despite this logistic orientation, the short term (but regular visits) to 

these sites indicate that residential mobility was still very high during this period. In other 

words, it seems that people may have moved residences often (at least seasonally based 

on faunal evidence), to the same series of locations throughout the year, but once at these 

locations used logistic forays to acquire resources. Thus, residential moves though 

frequent, were not made to resources themselves, but to centralized nodes that provided 

access to wide varieties of critical resources.  

The “Moresby Tradition” (~10,000-5,700 cal BP) is best known from sites such 

as Lyell Bay, Lawn Point, Richardson Island and Cohoe Creek. The transition from the 

Kinggi tradition to the Moresby traditions is mostly marked by the replacement of 

bifacial technology with microblades. However, this replacement takes place over ~1,000 

years (~9,000-8,000 cal BP) and stratigraphic evidence from Richardson Island shows 

that the two technologies co-occur in the same strata (Fedje and Mackie 2005: 159; 

McLaren and Smith 2008) . There also seems to be no other change to the tool-kit with 

the adoption of micro-blades, which is taken to further indicate a local adoption of micro-

blade technology (Carlson 1996; Magne 2004; Storey 2008: 2).  
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Overall, the Moresby Tradition shows continuity with Kinggi Tradition sites, the 

faunal assemblages look the same (sans black bear from earlier sites), all lithics are made 

from local material, and sites retain a marine focused positioning and economy (Fedje et 

al. 2008). The later portion of this period (~6,800-5,700 cal BP), which is represented 

primarily at the Cohoe Creek site does show significant difference from earlier portions 

of the period (~10,000-8,000 cal BP). At the Cohoe Creek site after ~6,100 cal BP we see 

the accumulation of the first significant shell middens, compact and discrete living floor 

surfaces, large scale caching/storage of raw materials and subtle changes in subsistence, 

the most noticeable of which is the appearance of relatively large amounts of caribou and 

jack mackerel (Christensen and Stafford 2005: 272). However, Christensen and Stafford 

(2005) argue that these differences are due more too local availability than any change in 

subsistence strategy. It should be noted that these changes may be much older at the 

Cohoe Creek site, but features associated with components older than 6,100 cal BP were 

either destroyed or  have little certainty in their provenience  (Christensen and Stafford 

2005: 245-273).  

Based on seasonality studies from shell fish and fish from Cohoe Creek, 

Christensen and Stafford (2005: 259) also suggest that it was occupied on a semi-

sedentary basis through winter, marking a critical change in mobility patterns in Haida 

Gwaii during this time. These authors further suggest that the lithic assemblages from 

Cohoe Creek are transitional between early and late period sites. Overall, the Cohoe 

Creek site does indicate that at least in some places, by the end of the Moresby period 

people were investing more in place (i.e. larger midden accumulation, more permanent 

structures and storage), and living in places for longer periods. However, it should also be 
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noted that Cohoe Creek is the only well excavated site on Haida Gwaii that represents the 

period between 6,500 cal BP and ~5,000 cal BP. 

The late period for Haida Gwaii is termed the “Graham Tradition” (~5,700-200 

Cal BP). The early portion of this period is almost completely unknown on southern 

Haida Gwaii and is only known from Cohoe Creek (Ham 1990; Christensen and Stafford 

2005), Skoglund’s Landing (~4,700 cal BP) (Fladmark, 1986; 1990) and Blue Jackets 

Creek (~5,100 to 4,000 cal BP) (Severs 1974) on northern Haida Gwaii (Graham Island). 

However, besides Cohoe Creek these sites are poorly reported or have had little analysis 

done, making any detailed reconstruction for this part of Haida history unreliable. In fact, 

the same can be said for this entire period up until ~2,000 cal BP.  

Despite the small number of site records, some broad statements about the early 

Graham Tradition (~5,700-4,500 Cal BP) can be made. During this time midden deposits 

increase in size and abundance, indicating an increased reliance on shellfish. Other 

aspects of faunal assemblages remain similar to earlier periods except for an increase in 

halibut and salmon. Some technological change is apparent as microblade technology is 

phased out in favor of groundstone and bipolar flaking technologies. There is also an 

increased use of harpoons and organic tool technology, as well as the first appearance of 

adornment items (e.g. combs and pendants) (Mackie and Acheson 2005; Fedje et al. 

2008). There is also an increase in permanent residential structures (evidenced by 

increased size and abundance of post molds, compact living surfaces and more complex 

stratified deposits (Ham 1990; Christensen and Stafford 2005; Fedje and Mackie 2005), 

with later appearances of cemeteries/burials like those seen at Blue Jackets Creek 

(~5,100-4,500 Cal BP) (Severs 1974; Breffitt 1993). 



  34 

The increase in permanent residential structures, groundstone and bipolar flaking 

suggests a movement towards increasing sedentism and lower residential mobility, while 

the increasing relative abundance of salmon, halibut and shellfish suggests that task-

specialization may have been becoming more common. The combined appearance of 

these traits is interpreted as representing a shift to logistically oriented strategies and the 

beginnings of sedentary living.   

2.7: Theory and Hypotheses:  

In this section I develop the hypotheses being evaluated, and their respective test 

implications. While I try to capture the foundational elements or core essence of each 

hypothesis, this discussion presents generalized summaries, leaving out many nuances 

and complexities. This is done in order to create coarse grained test-implications and a 

broad level coherence that fit the scale and precision of the available data (see table 1 for 

summaries of hypotheses and test implications).  

Binford:  

Summarizing Binford’s most recent hypotheses (Binford 2001)  regarding the 

development of logistic mobility; population packing is the prime determinant in 

predicting its development. As population densities increase, the cost of residential 

mobility also increases (Binford 2001: 420). This rising cost is manifested in two primary 

ways: 1) larger populations increase the frequency at which a group has to move (which 

means paying the cost of moving more often), because larger populations consume 

resources faster than smaller ones and 2) larger populations are altogether just more 

difficult to move and therefore more costly (Binford 2001: 267). Therefore, larger 
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populations not only cause groups to pay increasingly high costs for moving residences, 

but require that groups pay this cost more frequently. This process continues until moving 

residences to a new place is no longer a tenable strategy. When this happens people will 

adopt logistic/collector mobility strategies to offset mobility costs. Therefore, we should 

expect collector strategies to emerge where population levels relative to resource patch 

access exceeds a certain threshold (Binford, 2001: 438).  

Binford also believed population size and density were not purely intra-group 

pressures (2001: 442). Instead, population sizes at a regional scale were just as, if not 

more, likely to force logistic mobility. For example, looking at cost #1 above, as 

populations’ increase, the rate at which they consume resource patches and the number of 

times they have to move also increases. This means groups become increasingly likely to 

encounter each other or consume each other’s resources, which pushes people into 

smaller and smaller areas a process Binford (2001: 442) describes as “packing” whereby 

a group’s subsistence range is reduced because of regional population increases. It is 

important to note here that the two costs discussed above operate differently on a group. 

The first is a relative increase in cost, where what is a ‘large’ population is different 

depending on the environmental productivity and heterogeneity of resource availability. 

The second however is an absolute cost. Regardless of environmental productivity or 

resource incongruity, the actual costs to move a set number of people do not change with 

scale. Therefore, Binford suggests that there is a threshold of total people where the only 

way to mitigate increasing mobility costs is to either fission the group or adopt logistic 

mobility. (Binford 2001) 
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While Binford demonstrates that the above description is generally true for all 

hunter-gatherers, he also makes special cases for hunter-gatherers who exploit or have 

access to aquatic resources in temperate or arctic environments and argues that aquatic 

hunter-gatherers in these cases will differ from the above model in a number of specific 

ways (Binford 2001: 444); (i) hunter-gatherers in temperate/arctic settings will switch 

from terrestrial strategies and adopt the use of aquatic resources very early; (ii) these 

hunter-gatherers will focus on aquatic resources long before population packing takes 

hold; and (iii) access to and the nature of aquatic resources creates an inherently 

heterogeneous environment, making at least low-level logistic mobility strategies 

necessary (i.e. cannot move residence into the middle of the ocean, so you have to move 

resources to residences). However, it is important to note that while Binford believed that 

aquatic hunter-gatherers, regardless of other conditions, would almost have to be 

logistically organized; characteristics often associated with a ‘classic’ collector pattern 

(i.e. permanent structures, significant site furniture, extensive use of storage, etc.) would 

not be adopted until population levels made immediate return subsistence strategies 

untenable (Binford 2001: 341).  

Therefore, according to Binford (2001), we can expect that a switch from a 

terrestrial to an aquatic focus should take place very early in the archaeological record 

and that high levels of logistic mobility will be seen after significant increases in 

population levels. In summation, some evidence of low-level logistic mobility can be 

expected throughout the sequence, but evidence for high-levels of logistic mobility 

should coincide with increasing population levels.   
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Ames:   

Similar to Binford, Ames views collector mobility as an adaptive strategy for 

solving complex labor and communication problems resulting from temporally and 

spatially incongruous resource availability, where critical resource distributions 

overlapped in time but not space (Ames, 1981, 1985: 155-158). Therefore, Ames has 

argued that early peoples on the coast were aquatic foragers with high residential 

mobility, using boats for maintaining social networks and accessing critical resources. 

Over time, the patchy nature of resource distribution on the coast effectively expedited 

the adoption of less residential mobility, which led to a kind of ‘tethered foraging’ (Ames 

2003). Overall, to this point Binford and Ames’ hypotheses are extremely similar. 

However, moving from here I emphasize a couple of distinctions which I slightly 

exaggerate for the purposes of distinguishing between the two.   

With this in mind, a key distinction between Binford and Ames is that unlike 

Binford, Ames suggests that external stimuli (i.e. environmental conditions) may force 

the initiation of more sedentary and/or logistic mobility among aquatically oriented 

peoples, but these stimuli are not responsible for the continued development of these 

strategies.  Instead, Ames argues that logistic mobility itself creates a need to further 

increase the complexity of labor organization. In short, logistic mobility arising out of the 

naturally disjointed character of coastal resources, may actually amplify the disjuncture 

of resource availability by hindering the ability of the group to move to different 

resources (Ames 2004, 1985: 174). As such, Ames views the development of highly 

complex logistic mobility as a process of continual development from less complex, but 

still logistic mobility patterns (Ames, 1985: 165-167, 2002). Furthermore, Ames argues 
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that local demographic pressures are probably insufficient to push people towards less 

residential mobility and thus packing must occur at the regional level in order to force 

more sedentary and logistical mobility (Ames 1985: 172-174; 2004).  

Following this argument, logistic organization may be expected to increase 

gradually until a demographic threshold is reached. At this point, organizational 

demands, causes the intensification of logistic organization by making the fluid or 

flexible use of foraging strategies impractical. As discussed above, Ames’ also suggests 

that the more logistic strategies are used the more complex they become. Therefore, 

following possibly slow and gradual increases in logistic organization, once reached this 

threshold may cause a kind of positive feedback loop, which leads to a swift and 

punctuated appearance of much more complex organization.  

Following Ames’ argument then, we should expect to see a continuous, if not 

necessarily gradual proliferation of redundant sites across the landscape (Ames 2004, 

1985: 165-167), with later ones perhaps exhibiting more evidence of specialized tool-kits 

that represent the more specific catchment goals of an increasing specialized labor force 

and a general continuity in positions of sites on the landscape. We should also expect to 

see evidence for regional population packing coinciding with any major changes to 

organizational complexity and intensification of logistic strategies.    

Prentiss and Chatters – Brief Plateau Background: 

Prentiss and Chatters (2003) (See also Chatters and Prentiss, 2005; Prentiss et al. 

2006; Prentiss, Kujit and Chatters, 2009; and Prentiss et al. 2014) present a very different 

hypothesis for the development of collector strategies across the Northwest. Their 

hypothesis draws from ‘punctuated equilibrium’ and belongs to a theoretical school 
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called ‘Macroevolution’ (Prentiss 2009: 111-113; Prentiss and Chatters 2003). Although 

their arguments have changed subtly through time, their core argument has changed little. 

Prentiss and Chatters maintain that collector strategies evolved first on Haida Gwaii then 

spread across the Northwest replacing forager systems which had been decimated – gone 

extinct as strategies - because they failed to adapt to sharp environmental changes 

Prentiss and Chatters say occurred around 5000 years ago. As mentioned previously, 

because their argument is rooted in their studies in the Northwest Plateau culture area, I 

provide an extremely brief background on mobility changes on the Plateau to 

contextualize their argument below. 

 

Brief Plateau Background: 
 
 Generally speaking, prior to approximately 6,000 cal BP, people on the plateau 

are characterized as using high residential mobility, investing little in sites and practicing 

an overall foraging pattern. After 6,000 cal BP, we begin to see mobility changes with the 

appearance of a large structured pit-house at the Johnson Site, in Oregon (Ames 2012: 

172). However, it is not until about 5,000 cal BP that pit-houses, such as at Hatwai (Ames 

and Marshall 1981) and the Baker site (Wilson et al. 1992), become widespread on the 

plateau (Ames 2000; 2012: 172; Harris 2012: 54; Chatters and Prentiss 2005). 

Chatters (1995) and Chatters and Prentiss (2005) argue that these early pit-houses, 

that were located in highly productive eco-tones and lacked discernable storage features 

were occupied by people practicing a sedentary or tethered foraging mobility strategy. 

They suggest that the highly productive eco-tones provided year-round access to many 

resources, which were subject to low seasonal variance in availability. These qualities 
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allowed people to practice immediate return strategies (typical of foragers) while staying 

in the same location year-round. Thus, despite their sedentary living, these people 

remained foragers.  

Between 4,200 and 3,800 cal B.P. this pattern disappears across the plateau. 

When pit-houses reappear around 3,800-3,600 cal BP they occur in clusters or villages, 

individual houses are much smaller than before and are associated with numerous and 

large storage cache pits. In all, these features clearly indicate that people are practicing 

classic collector strategies (Ames 2000, 2012: 178; Prentiss and Kujit, 2012: 55-62).  

Prentiss and Chatters argue that the disappearance of pit-houses around 4,200 cal 

BP is the result of sudden climatic events that drastically decreased the productivity and 

increased the variance of resources within the ecotones mentioned above. This change 

made the sedentary foraging strategies dependent on stable and productive ecotones 

untenable. Because this environmental change is hypothesized as being very sudden, 

people on the Plateau would not have time for their RMS to cope; therefore people either 

died out or moved to the coast. Prentiss and Chatters then argue that this would have left 

an empty niche on the Plateau that could have only been filled (due to environmental 

constraints) by people practicing a logistically organized RMS. A critical point here is 

that Prentiss and Chatters believe that collector strategies did not evolve in response to 

environmental change, but replaced failed forager systems.  

Prentiss and Chatters Hypotheses:  
 

Critical to their argument is Prentiss and Chatters’ belief that mobility strategies 

are a foundational aspect of what they term a group’s “Resource Management Strategy” 

(RMS). They define a RMS as a shared set of ideas for behaving within a social and 



  41 

community context. It includes peoples’ strategies for subsistence pursuits, labor 

management, task scheduling, mobility, and maintenance of social networks (Chatters 

and Prentiss 2005). Because they see all of these elements of the RMS as fundamentally 

connected, both with each other and with the environment, Prentiss and Chatters argue 

that change to one piece of the RMS (i.e. mobility strategy) creates a cascade of changes 

to the other pieces. Therefore, switching between a forager and collector strategy can 

only be done with wholesale upheaval of the rest of the social system. In turn, this 

prevents people from switching mobility strategies quickly and thus during times of rapid 

environmental change, it is argued that foragers do not have time to become collectors 

(Prentiss and Chatters 2003; Chatters and Prentiss 2005)  

 The key distinction between these authors’ arguments and Ames’ and Binford’s is 

that Prentiss and Chatters do not attribute the development of logistic strategies to in-situ 

adaptations. Instead, collector strategies are one of many equally viable strategies present 

in the Northwest through the Holocene, which just happened to be better adapted when 

the environment changed. Because they attribute the spread of collector strategies largely 

to chance, they spend very little time discussing why collector strategies developed in the 

first place. In fact, Prentiss (2009) herself says that these authors have little to say about 

why or how a collector strategies first developed. 

Despite this, these authors argue that the origin of collector strategies was on 

Haida Gwaii, and probably appeared around 5,000 cal BP specifically citing Skoglunds 

Landing and Blue Jackets Creek as proof that the first collectors appeared here. Prentiss 

and Kujit (2012: 53) actually argue that there is no evidence for collectors anywhere on 

the north coast until after 4,000 cal BP, which they suggest demonstrates that collector 
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strategies are too complex to have developed in-situ from people practicing forager life-

ways. Prentiss and Kujit (2012: 54) also argue that the lack of change on Haida Gwaii 

after 3,600 cal BP shows that people living here had already perfected collector 

adaptions. However, this is a bit of a spurious argument, as there is effectively no data 

from Haida between 4,000 and 2,000 cal BP (Mackie and Acheson 2005: 287).  

Although Prentiss and Chatters claim little can be said about the initial appearance 

of collector strategies, Prentiss (2009: 119) suggests that we can make the following 

generalizations about their beginnings (i) collector strategies appeared first in places that 

were isolated (ii) collector strategies arose first in areas with significant resource 

abundance and (iii) that the shift to a collector strategy was very abrupt. Prenitss (2009: 

119) then suggests that collector strategies arose because the isolation on Haida Gwaii 

made high mobility strategies less attractive and that they evolved in order to take 

advantage of the abundant resources on Haida Gwaii.  

Overall, following Prentiss and Chatter’s arguments on the North Coast, we 

should expect to see the development of collectors on Haida Gwaii first, and a variety of 

different mobility strategies employed elsewhere (none collectors though). Following the 

appearance of collectors on Haida Gwaii we should then see sharp population declines in 

the Southeast Alaska and Dundas Sub-regions, which is then followed by the relatively 

abrupt appearance of collector strategies in these areas and we should not see any major 

population declines on Haida Gwaii. Meanwhile, as evidence for collector strategies 

spreads throughout the North Coast, the artifact assemblages, settlement patterns and 

overall site-structure for these new collector sites should look similar to the ones that 

were first present in Haida Gwaii. Lastly, Following Prentiss’ (2009) and Prentiss and 
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Kuijt’s (2012) comments we should also expect to see a very abrupt transition to collector 

strategies.      

 What should be apparent when comparing these hypotheses is that Ames and 

Binford appear to have very similar ideas about the evolution of complex logistic 

strategies. Both stress that demographic pressures and resource distribution are critical in 

its development. In both cases it is also clear that while environmental changes can 

certainly be influential, they are usually more tertiary as a causal mechanism, especially 

among aquatic hunter-gatherers. However, a notable distinction between these authors is 

that Ames’ stresses the role of internal social pressures in shaping and causing more 

complex logistic organization, while Binford tends to view this development as more 

reactionary to external stimuli.  

 Compared to Ames and Binford, Prentiss and Chatters’ hypotheses are very 

different. This difference stems mostly from Prentiss and Chatters’ adherence to Macro 

evolutionary principles, which emphasize a competitive theoretical framework, whereby 

changing environments (or any top-down selective pressure) place new selective 

pressures on existing social structures, causing some to fail and die out and others to 

succeed and replace. Thus, within this competitive environment, widespread social 

change must be abrupt as people are either replaced or adopt, wholesale, the new and 

most efficient organizational strategy allowing them to survive and/or compete. In this 

framework, due to the deep interconnectedness with the entire social system, mobility 

strategies cannot evolve quickly in-situ. In turn, this makes adaptation to sudden 

environmental changes almost impossible.    
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Table 1: Showing summaries of current hypotheses and their respective test implications 
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CHAPTER 3: METHODS 
 

3.1: Introduction to Radiocarbon Methods and Analysis 

 To investigate demographic patterns I use the relative frequency of radiocarbon 

(14C) dates through time as a proxy measure for changes in relative population levels. 

This method was first formalized by Rick (1987) and with various methodological 

refinements, has proven to be a powerful tool for understanding demography.  The 

method has since become widely used across the world to investigate population 

dynamics (e.g. Timpson et al. 2014; Richter et al. 2013; Kelly et al. 201; and see Downey 

et al. 2014 and Woodbridge et al. 2014 for a more thorough proof-of-concept discussion). 

The utility of this method, especially for the North Coast, cannot be overstated, as the 

availability 14C dated sites constitutes the only source of data prior to ~4,000-5,000 cal 

BP that has large sample sizes and has been sampled relatively equally between multiple 

areas throughout the region. Given the strength of the 14C data and the weaknesses within 

the available environmental, technological and settlement pattern data, the 14C data from 

which the demography work is based forms the most regionally comparable, 

representative and overall most robust set data for any of the analyses.  

 In the following sections I discuss how data was collected and audited, and the 

sample sizes available. I then give a detailed account of the method used to construct 

summed probability distributions (SPD), the problems associated with using SPDs to 

proxy demography and how these problems are addressed.   
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3.2: Data Collection and Sample Discussion 

In the first part of this chapter I describe how I gathered radiocarbon data for the 

demographic analysis. I also discuss quality control for the data and the nature of samples 

for the study region as a whole and the sub-regions within. Section 3.3 then provides a 

step-by-step walkthrough and justification of the methodology I employ to reconstruct 

demographic trends using 14C data. 

The radiocarbon data used includes dates collected from several sources: the 

Canadian Archaeological Radiocarbon Database (CARD), dates produced by ongoing 

research projects mentioned above, and from an exhaustive review of journal articles, 

theses/dissertations, CRM (Cultural Resource Management) reports and various other 

kinds of published and unpublished sources. Locating articles, theses and dissertations 

was initially not done systematically. Lack of access, ignorance and time constraints most 

certainly resulted in missing some sources of data and information. To counter these 

problems, a more strategically efficient literature search focused on obtaining theses and 

dissertations from institutions that are known to have a research focus on the Northwest 

Coast. Personal communication with researchers working in the area also guided my 

literature search. Bibliographies from these sources were then used to help locate more 

sources. Effective redundancy in data collection was decided after significant 

expenditures of time no longer produced any new data. Time spent on data collection 

started in 2012, and the dates used throughout this thesis are all those found as of 

2/28/2015.  
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CRM reports for the research area were investigated in a much more systematic 

way, although the search cannot be said to be truly exhaustive. Since CARD stopped 

operating in full capacity in 2005, and since my previous research found that most dates 

from Canadian sites taken prior to 2005 were already in CARD, I focused on reports that 

were produced since 2005. Using my access to the British Columbia Heritage system, 

every report that was registered as part of the ‘North Coast’ area from 2005 to present 

was downloaded and combed for radiocarbon dates. Individual site reports and older 

CRM reports were also used to clarify any issues from dates already in CARD. Though 

SE Alaska is outside Canada, many sites and 14C data from this area were also found in 

CARD. The SE Alaska data was also supplemented by literature research following the 

same methods as described above. A point that needs to be made about the SE Alaska 

data is that I did not have access to the Alaska state database or any other direct access to 

CRM or non-publically available research reports. While many reports were made 

available in physical copy through Dr. Ames’ personal library, it needs to be noted that 

due to these constraints, the SE Alaska data is probably less complete than other regions.  

As a part of collecting radiocarbon dates, I also recorded context, stratigraphy, 

material dated, and quality information among other details (see supplemental material). 

Dates lacking sufficient context or recorded information to insure their relationship with 

human activity were then culled from my data base. This process often required finding 

multiple sources for dates as the needed information was unreported or inconsistently 

reported in published literature. These inconsistencies and missing data were not just 

limited to the literature search. A substantial portion of dates already in CARD also 

needed to be ‘fixed’ and updated with meaningful contextual information. While it is 
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impossible for me to quantify the amount of data that I may be missing, the thoroughness 

and time spent looking for any missing data allows me to be fairly certain that any data 

that are missing would not have a significant effect on the results of analysis.  

Overall, for the North coast area my sample includes 93 (32 marine) 14C dates 

from Alaska, 143 from Haida Gwaii (43 marine) and 91 (53 marine) from the Dundas and 

Lucy Island area for a total sample of ~330 dates. Appendix I and II lists the dates used 

for this research, presents a streamlined version of the database used, as the information 

contained within the actual database does not fit within these pages. However, the full 

version used will be available in digital form from me by request or through online 

supplemental material, available through PDX Scholar.   

 

3.3: Demographic Analysis  

To reconstruct demographic patterns I make use of summed calibrated 

radiocarbon date distributions. Summed probability distribution (SPD) plots are 

constructed by plotting the probability ranges of calibrated dates along a time-scale and 

summing together all overlapping probability distributions, such that increasing overlap 

between distributions creates increasingly large peaks on the plot. The logic of using 

these as a population proxy is based on the assumption of a monotonic relationship 

between the relative number of radiocarbon dates recovered and population size (Rick 

1987; Collard et al. 2010). The monotonic aspect of this relationship, means that while 

the relationship between population and 14C dates remains constant (i.e. increase in one 

leads to an increase in the other), the magnitude of this relationship is not constant; 
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meaning that while the number of 14C dates always increases with population, how much 

these increase together can vary through time.  

This method was first used by Rick (1987) and has since been used extensively to 

proxy population dynamics elsewhere (see Williams, 2012; Selden, 2012; Shennan and 

Edinborough, 2007; Riede and Edinborough, 2012; Shennan et al. 2013). This process 

relies on an inferential chain that makes three major assumptions 1) More dateable 

deposits will be left when populations are larger 2) larger deposits of material will be 

relatively more visible archaeologically than smaller deposits, and 3) more preserved 

material will lead to more 14C dates (Rick 1987)  

Though the process described above is widely used across the world, the utility of 

SPDs as a proxy for demography has been strenuously debated. I do not address this 

debate directly and instead refer the reader to the following sources: Bamforth and 

Grund, 2012; Buchanan et al. 2010; Collard et al. 2010; Contreras and Meadows 2014; 

Downey et al. 2014; Kerr and McCormick, 2014; Shennan et al. 2013; Steel, 2010; 

Timpson et al. 2014 and Williams, 2012. However, the major criticisms of the SPD 

method can usually be broken down as follows; (i) that differences in the number of 14C 

dates from any given time-period or site are not reflective of population, but instead 

reflective of researcher bias, differences in available funding, availability of dateable 

material, etc. (ii) that the shape of SPDs is strongly driven by vagaries in the calibration 

curve and thus are not meaningful reflections of population change and (iii) a general 

skepticism that SPDs relate to population levels at all, or a skepticism that even if they 

do, that archaeological sampling and production of 14C dates is too skewed to make 
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accurate inferences from SPDs. The specifics of these issues are discussed in more detail 

below.  

With the above general issues in mind, it is clear that before making reliable 

inferences from SPDs, there are methodological issues that need to be addressed in order 

to accurately proxy demographic changes through time (Surovell et al. 2009; Bamforth 

and Grund, 2012; Williams, 2012; Shennan et al. 2013). Some of these problems include 

taphonomic loss, sampling bias, adequate sample size, use of marine samples, and the 

effects of the calibration curve itself.  

The lower limit of appropriate sample size for SPD analysis is hotly debated (see 

Timspon et al. 2014; Shennan et al. 2013 and Williams, 2012 for good discussions). In 

reality though, this debate has much more to do with the quality of sampling as opposed 

to any real magic number of samples. For example, while Williams (2012) suggests a 

minimum sample size of 500, his conclusion is based on reconstructing demography over 

a 50,000 year period. However, Shennan et al (2013) and Hintz et al. (2013) demonstrate 

that much smaller sample sizes (~100-200) can accurately capture demographic trends 

over a couple thousand years. In both papers though, the authors demonstrate that the 

‘law of large numbers’ does play out in archaeological sampling and enough samples will 

eventually overcome research bias and create an accurate reflection of the true 

distribution for the time-period and area under question. With this in mind, I have a 

sample of ~330 dates for my region that covers about 6,000 years. If William’s (2012) 

suggested sample size of 500 for a 50,000 year period was shown to be representative, we 

can be fairly certain that the size of my sample is sufficient.  
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 Sampling bias is a more insidious problem. This problem can refer to any kind of 

sampling bias, but for demographic reconstruction, it usually refers to certain time-

periods or types of sites receiving more attention than do others. Consequently, these 

areas (which may be more or less likely to yield radiocarbon dates) may be 

disproportionately represented because of research focus, not because of past human 

behavior.   

The calibration curve itself can also introduce significant biases into this kind of 

analysis. These biases result from ‘peaks’ and ‘plateaus’ in the calibration curve, which 

either compress a wide range of dates into a single spot (peak) or spread a series of 

closely clustered dates across a wide range (plateau).  As a result, peaks in the calibration 

curve can give us a false signal for a growing population and a plateau can smooth away 

any variation and give a false signal of stability and continuity (Williams, 2012; 

Bamforth and Grund, 2012; Shennan et al. 2013). In order to help correct for sampling 

bias and the effects of the calibration curve I used various methods put forth by Shennan 

et al. (2013), Williams (2012), and Collard et al. (2010). 

Within sampling bias, there are two major problems that affect the use of SPDs (i) 

‘intellectual bias’, when certain kinds of sites are overrepresented. An example of this can 

be burial features; because researchers tend to focus more on these and they are more 

likely to be dated, variation in the SPD can come to reflect changes in relative frequency 

of burial practices instead of demography and (ii) ‘Oversampling’ results when some 

sites are more intensely dated than others. An example of oversampling would be if one 

researcher had money to obtain 10 dates while another 40. In this case, using an SPD, we 

would make the inference that site two had four-times the population, when in reality we 
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are actually tracking that one researcher had four-times the money. In both cases, 

variation within the SPD can be caused by researcher tendencies as opposed to real 

demographic trends.   

To help control for these problems, radiocarbon dates go through a process of 

‘binning’ and ‘summing’. The first process of ‘binning’ involves segmenting time into 

chunks (or bins) and then fitting radiocarbon dates into these bins based on their age for 

each site. Once binned, the dates that fall into each bin are ‘summed’. The summing of 

radiocarbon dates effectively combines all the radiocarbon dates within a set interval (200 

years here) from each site. A weighted average of the age and error is then created from 

all of the dates that fit within each interval to create a ‘summed’ date. Together, these 

processes normalize the different sampling intensities between sites, while also making 

sure each time segment has a sufficient sample size (see Williams, 2012; Shennan and 

Edinborough, 2007; Collard et al. 2010; for a much more detailed discussion).  

For this research, binning was done first by grouping all the dates from each site 

together and then ordering them from youngest to oldest. Within each site (using un-

calibrated ages, see appendix III for explanation as to why) I created a new bin whenever 

a date was more than 200 years older than the first date in the bin. 200 year bins were 

chosen because in simulation studies this was the length of time that showed to be most 

robust for offsetting the effects of research bias while still capturing meaningful variation 

within the SPD (Shennen et al. 2013; Kevan Edinborough personal communication 

2014). The ‘summing’ process was done using the ‘R_Combine’ command in the OxCal 

program on the uncalibrated dates. This command creates an average of all the dates 

being combined. However, as opposed to simple averaging of the ages and standard 
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errors, R_Combine creates a weighted average for the date and standard error by taking 

into account the full range of probabilities within each date. While the mathematics 

behind R_Combine command function can be technically complex, effectively it is just 

creating a more accurate weighted average of all the dates than a simple average would 

be (see Ramsey 2009 for a full description). As noted in Collard et al. 2010, using 

R_Combine in this fashion can introduce slight distortions to the data, as this function 

tends to underplay the actual variability within the combined 14C dates. However, this 

distortion is usually slight and the benefit of being able to create a true average of the 

dates within each bin as opposed to simply picking a single date from it (which usually 

systematically biases bins) vastly outweighs this issue.  

Once all of the uncalibrated dates are summed and binned, they must then be 

calibrated. Calibration of the dates is essential for accuracy. This is because uncalibrated 

dates are not ‘real’ dates but actually a scale-free measure for the relative amount of 14C 

in an object (Ramsey 2008, 2009). As a result, uncalibrated dates are not particularly 

meaningful in any other context except very broad, ordinal ranking of events. Dates for 

this study were calibrated using the program OxCal 4.2.4 (Ramsey 2009, 2014) and the 

Marine13 and IntCal13 calibration curves for marine and terrestrial samples respectively 

(Reimer et al. 2013). Once calibrated, the dates were then summed, producing a SPD.  

 In order to offset the effects of peaks and plateaus in the calibration curve I used 

a 200 year rolling moving average. A ‘moving-average’ is calculated by averaging the 

value of each point on a scale with those closest to it over a defined number of periods. 

Moving averages are used to smooth out volatility (or noise) within a dataset in order to 

better understand real trends. For SPD analysis, the wiggle effects of the calibration curve 
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are the ‘noise’ that a moving average is used to smooth out.  A 200 year moving average 

was chosen for this analysis because as Timpson et al (2014), Williams (2012) Collard et 

al (2010) and Shennan et al. (2013) have demonstrated, the volatility of the Northern 

Hemisphere calibration curve (IntCal13) is most pronounced on a scale below 200 year 

intervals, therefore a 200 year moving average should mostly smooth out all but the most 

pronounced effects the calibration curve.  

Once a moving average removes most of the small, spurious fluctuations in the 

SPD, the very large effects of the calibration curve can then be addressed by using a 

comparative simulation approach. Originally proposed by Ramsey (2001) and reiterated 

by Bamforth and Grund (2012) and Weninger et al. (2015), this method creates an SPD 

from simulated 14C data to create a kind of null-hypothesis from which to compare our 

actual SPD. This simulation gives us a picture of what an SPD based on completely 

unchanging relative frequency of 14C dates through time would look like. Therefore, any 

peaks and valleys observed in this simulation are entirely the result of the calibration 

curve and random sampling. If the SPD from the real data looks much like the simulated 

one, either no inference about population change can be made, or we can say that 

populations were probably very stable.   

Next, because almost half my 14C data set is from marine dates, it is important to 

address the comparability issues between marine and terrestrial samples for use in SPDs. 

The major problems stem from two sources; the first is that marine samples must be 

calibrated using a ‘Delta_R’, which is a localized correction factor that must be applied to 

marine samples coming from the region in question. The use of a local Delta_R is 

necessary because the carbon reservoir for marine sources can be very different than 



  55 

terrestrial ones and these reservoirs are substantially impacted by very localized 

oceanographic conditions (Ramsey 2008). Delta_R’s for Haida Gwaii and Southeast 

Alaska were obtained from Southon and Fedje (2003) and Carlson and Baichtal (2015) 

respectively, while the Delta_R for the Dundas and PRH sub-region has recently been 

updated (Ames and Martindale 2014). The need for the Delta_R is discussed in detail 

below.  

However, even if a perfect Delta_R is constructed, the bigger compatibility issue 

between terrestrial and marine samples arises because they must be calibrated using 

entirely different calibration curves (e.g. IntCal and Marine Cal). Because these curves 

are fundamentally different, it is incredibly difficult to create a single SPD using both 

marine and terrestrial samples 2; there is no solution to this problem at this time (see 

section 3.3 for explanation). However, a useful approach to help address this problem is 

to model the SPD’s for marine and terrestrial samples separately and then overlay them 

on each other to search for where and why they illustrate the same or different patterning 

through time. Once this is done a qualitative assessment of their composite pattern can be 

made for interpreting demographic trends (Kevan Edinborough, personal communication, 

2014) (See below for further discussion).   

The bulk of this radiocarbon analysis can be done using OxCal (Ramsey 2009) or 

CalPal (Weninger 2015), which are free software platforms and have built in programs 

designed specifically for radiocarbon analysis. However, fitting the data to an exponential 

                                                 
2 This is not the same as using a ‘Mixed Curve’ of the IntCal and Marine calibration curves to calibrate 
samples (e.g. human bones), which have high marine content and partial terrestrial signatures.  
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model and applying a moving average is done using PAST software, all of the SPD 

figures were also produced with this software (Hammer et al. 2001). 

It is important to note here that none of the SPDs presented throughout the thesis 

are adjusted for taphanomic effects. Without question, taphanomic processes have 

significant effects on the shape and interpretations of SPDs, and important work has been 

done to help accurately correct for these processes in mainland European applications of 

SPD analysis (see Van Andel 2003; Surovel 2007; Shennan et al. 2013). The basic (and 

simplified) assumption of these corrections is that there is an exponential loss of sites 

through time, and by weighting younger sites less than older ones in SPDs we can correct 

for this effect. However, as others have noted (see Munoz et al. 2010; and Peros et al. 

2011) because these taphanomic corrections were created using data from European 

mainland contexts, there may be some issues when transplanting them to North American 

contexts. This is especially true in coastal regions that have highly complex and localized 

sea level histories (i.e. the Northwest Coast). Data from the northern Northwest Coast is 

also much more subject to significant influence by researcher bias because of the 

comparatively few people who do research in the region. For various practical and 

intellectual reasons, this bias has greatly emphasized periods prior to ~8,000-9,000 cal 

BP and after 5,000 cal BP. Thus, almost the entirety of my study period (11,000-5,000 cal 

BP) has been categorically overlooked by archaeologists.  Because of these factors, while 

taphonomic corrections are used successfully elsewhere, I felt that it is currently unclear 

what needs correcting for the time-period and region covered here and that it was best not 

to introduce any further distortion to the data.  
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3.4: Problem Solving the Marine Curve and Delta_R's: 

Marine samples, especially shell fish, must be calibrated using a marine curve 

(instead of the terrestrial calibration curve) because the carbon cycle in the ocean works 

in a very different way than on land. The primary cause of this difference is from the 

slow mixing and exchange of carbon from deep and surface waters (Ramsey 2008). Deep 

waters cycle carbon much slower than the atmosphere, therefore when shells absorb 

carbon from deep water sources, they are actually absorbing carbon that is already 

hundreds of years old. Therefore, shells have a carbon signature of something that is 

much older and thus produce a 14C date that is older than it should be. The marine curve 

controls for this by accounting for the slow carbon mixing in oceans and calibrates 

marine samples accordingly. Usually this amounts to around a 400 year correction, 

though it varies through time.  

Because the marine curve must account for different carbon cycling than the 

terrestrial one, the marine curve is constructed using coral growth as opposed tree-ring 

comparisons. As a result of using different proxies, the shape of each curve is 

intrinsically different. This difference is also not systematic and the magnitude of 

differences between curves changes through time. Overall, this means that, on a 

fundamental level, marine and terrestrial samples cannot be combined for the purposes of 

creating SPDs.  

However, this does not mean that terrestrial and marine samples cannot be used 

together effectively. In fact, there are actually methodological advantages in not 

combining these data sets. Because most marine samples are not taken for the purposes of 
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being paired with terrestrial samples 3, marine and terrestrial data sets often track different 

things, and fill in apparent gaps that might exist in one data set or another. This helps us 

understand where sampling bias can be artificially inflating sections of our SPD and can 

be used to avoid invalid interpretations made by just using one data set or another.  

For example, if we look at our SPDs from terrestrial and marine sources and find 

they have very different patterning, we can use this to investigate the data and see why. 

This process can be critical for avoiding spurious inferences from a single data set, 

especially if the marine and terrestrial data have inversely correlated patterns. To 

illustrate this problem, imagine that shell middens become more common through time 

and thus shell/marine material becomes more likely to be dated than rarer charcoal 

samples. If one had just looked at the terrestrial SPD it would appear as if populations 

plummeted as middens became more common. And had we just looked at the marine 

SPD it may appear that populations sky-rocketed with the appearance of middens. 

However, by looking at the two together, a more nuanced picture occurs, that may 

suggest populations were more static than either SPD suggests and that a change in site-

type is affecting sampling. In these cases, where the data say very opposing things, it is 

hard, if not impossible to make any definitive statements about the patterns without an in-

depth exploration of the data, except that we should be cautious in our interpretations of 

demographic changes. 

Ideally, what we are looking for is a general agreement in the patterning of events 

between the marine and terrestrial SPDs. If the two data-sets match up very well and both 

                                                 
3 Delta_Rs are constructed by comparing terrestrial and marine samples that date (roughly) the same event 
and then looking at the difference between the two. Dates taken for this purpose are referred to as paired 
samples.  
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have robust sample sizes, inferences about population dynamics become much stronger, 

especially since preservation and sampling biases surrounding marine and terrestrial 

samples can be very different.  

However, as mentioned above, establishing if there is a good fit between these 

data is further complicated by having to use Delta_R corrections for marine samples. A 

Delta_R is a correction that accounts for localized variations in carbon absorption by 

marine samples and is applied to a marine sample after the global marine correction has 

already been applied. It is important to note that Delta_Rs are not trivial and range 

anywhere on the Northwest coast from -200 to -800 years (meaning the sample is 200 to 

800 years younger than it appears) and therefore are a critical component to any use of 

marine 14C dates. Delta_Rs can also vary significantly between even very proximal 

locations. For example, the newest Delta_R for the Prince Rupert Harbor region is 

estimated at around -288 years. However, just north in Southeast Alaska, Delta_Rs are 

estimated to be between -550 and -800 years. With local corrections being so volatile, yet 

so critical for the correct calibration of marine samples, it is easy to see why they have 

the potential to make temporal comparisons between marine and terrestrial SPDs very 

difficult.  

Knowing this about Delta_Rs and knowing that the marine calibration curve is 

constructed differently and has a different shape than the terrestrial one also cautions 

against reading too much into small differences in timing between terrestrial and marine 

based SPDs. Thus, when I say that the patterns should match well, I am referring to the 

shape of the SPD, more than a correlation in the exact timing between curves. How much 

allowance one should make or expect when correlating the patterns between marine and 
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terrestrial SPDs is a fairly subjective endeavor and expectations must be adjusted for each 

research context. As there is no a priori reason that the marine and terrestrial SPDs 

should match, much less correlate perfectly. For example, differences in soil and other 

preservation conditions may favor the survival of shell fish as opposed to other organics. 

Moreover, changes in subsistence can dramatically change the relative abundance of 

marine and terrestrial dateable material. Thus, while a strong correlation between SPDs 

can help corroborate patterns; little correlation does not necessarily invalidate a pattern. 

These problems should also caution against interpretations made by analysts using this 

method who have little or no background in the area they are analyzing.  
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CHAPTER 4: ANALYSIS 
 

In this chapter I apply the methods described above to the actual data in a step-by-

step process. I also introduce, describe and summarize the environmental, technological 

and settlement pattern data (Section 4.4 and subsections within).  

Section 4.1 looks at the comparability of the marine and terrestrial SPDs after 

accounting for possible biases and errors being introduced from different Delta_R effects 

(see appendix VI) 4.2 investigates the effects of the marine and terrestrial calibration 

curves on the marine and terrestrial SPDs. Section 4.3 then discusses the demographic 

trends seen in the SPDs after controlling for the effects of the calibration curves and the 

differences between the marine and terrestrial SPDs. Lastly, to account for spurious 

oscillations caused by the calibration curve and overrepresentation of data from certain 

sites, the 14C dates went through  the process of summing/binning. Afterwards a 200 year 

moving average was then applied to the SPDs. For the sake of brevity I do not show these 

steps below, instead all SPDs based on the actual archaeological data shown below have 

already undergone these processes. For a short example of this process please see 

Appendix V. Appendix VI further provides detailed analyses regarding the effects of 

using different Delta_R corrections as well as exploring how the different sub-regions are 

effecting the overall shape of the region-wide SPDs and whether or not the region-wide 

SPDs are being significantly biased by one of the sub-regions.  
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4.1: Comparability of Marine and Terrestrial SPDs 

Figure-5 below demonstrates the good overall match between the SPDs generated 

for the marine and terrestrial samples. Analysis detailed in Appendix VII further shows 

that the patterns within these SPDs are not overly biased by any particular sub-region 

within my study area and that the Delta_Rs used appear to be fairly accurate.  

Figure 5: Showing similarity comparison between marine (red) and terrestrial (black) SPDs. 
Circles highlight specific areas of congruent patterning. 

The good match in patterning between marine and terrestrial SPDs shown in 

figure-4 is significant because it suggests that neither pattern is being largely driven by 

differences in sampling strategies between researchers (e.g. some researchers are more 

willing to date shell than others) and that they are not tracking entirely separate sequences 

of events. With this in mind, I now turn to examining how patterning within the marine 

and terrestrial SPDs may be being driven by the calibration curve. 
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4.2: Effects of the Calibration Curve 

In this section I look at the effects of the calibration curve on the shape of SPDs. 

As many authors have noted (See Williams 2012, Timpson 2014; Weninger et al. 2015) 

the shape of any SPD will be influenced by the shape of the calibration curve itself. For 

example, peaks on the calibration curve will either create artificial ‘spikes’ in the SPD or 

exaggerate existing ones. Meanwhile, plateaus on the calibration curve will smooth away 

any volatility in the SPD and create artificial periods of stability (a flat line) on the SPD.  

As discussed in the methods section, rolling averages are used to mitigate the 

influence of the calibration curve, but to more accurately address these influences it is 

important to compare my constructed SPDs to what are effectively null-models, which 

will reflect (i) what no change in relative density of radiocarbon would look like over the 

study period. It is important to note that there will almost always be portions of the SPD 

exaggerated by the calibration curve. Therefore, it is important to look past short term 

wobbles being exaggerated and instead examin whether or not the calibration curves 

create artificial patterns of growth, decline or stability. This comparison will be done for 

both the terrestrial and marine samples. Though I use GLM (generalized linear models) to 

illustrate patterns within the SPDs, I do not discuss any of the statistical values for the 

GLM model in detail as the GLM in this section is used for illustrative purposes only. 

The reasons for this are given in Appendix VII. It should be noted here though that while 

the GLM shows growth in both the marine and terrestrial SPDs created from the actual 

archaeological data, none of GLMs were statistically significant (P = .219; for marine and 
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P= .903; for terrestrial) meaning that we cannot say with any certainty that they depart 

from zero trend.   

 

 4.3: Marine Sample Analysis  

Figure-5 below shows what an SPD using the marine curve would look like if 

there was no change in the relative amount of 14C dates through time and serves as a sort 

of null hypothesis. This SPD was constructed by simulating a radiocarbon date for every 

calendar year in 70 year intervals with a 30 year error. These simulated radiocarbon dates 

were then calibrated and used to construct the SPD. Since multiple 14C dates can calibrate 

to the same calendar date, the simulation randomly generates one of the possible options. 

This process is reiterated hundreds of thousands of times. The final figure below shows 

the most likely outcome of these generated dates.  

Figure 6: Showing SPD created from a simulated, uniform distribution of calendar dates using 
the Marine13calibration curve. The red line shows a best-fit GLM line (P=.987), indicating that 
there are no significant trends through time 
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As figure 6 shows, there is volatility in the SPD even when there is no change in 

relative density in real or calendar time. The red line through the graph is a fit line from a 

generalized linear model (GLM), which indicates that despite the volatility, the mean 

density remains stable through time.  

Figure 7: Total marine SPD from the actual archaeological data. Red line shows best fit GLM 
(P=.219). Though GLM is statistically insignificant, Note that the signal of growth is much 
stronger in this SPD than the control sample. 

This SPD (figure 7) created from the actual (marine) archaeological data is very 

unlike the null model above (see figure 8 below for direct comparison). Not only does it 

have much less short term volatility, its peaks and valleys are in entirely different places. 

Another significant difference between the real SPD and the null models is that the real 

one shows a stronger signal of growth over time, indicating that whatever the effects of 

the calibration curve, they are overridden by the signal in the actual data. However, the 

calibration curve is also clearly exaggerating certain aspects of the marine SPD. On a 

closer comparison major increases in the actual marine SPD at 6,500 and 5,400 
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correspond very closely to similar peaks in the null-models, meaning that the magnitude 

of their increase is probably much less than is apparent. In general, this is why you cannot 

read too much into oscillations between high and low peaks on an SPD, as these are 

almost always exaggerated by the nature of the calibration curve itself (Weninger et al. 

2015). Some have argued that these short-term oscillations represent demographic boom 

and bust cycles. However, given the effects of the calibration curve and sampling issues, 

these short term spikes are probably spurious and do not reflect any real demographic 

events.  

 
Figure 8: Direct comparison between uniform density control (red) and archaeological (black) 
marine SPDs. 

Comparison between the marine null-model and the actual marine SPD suggests 

that while the marine SPD is obviously influenced by the calibration curve, it also differs 

considerably in many ways and demonstrates a stronger increase in its central tendency 

than is represented in the null-models. Therefore, we can conclude that on a broad level, 

general patterning in the marine SPD is not simply an artifact of the calibration curve.  
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4.4: Terrestrial Sample Analysis:  

Figure-8 below displays the results of the same random sampling simulation used 

for the marine null-model (see figure-7), but uses the terrestrial curve instead. As with the 

marine control sample, we can see that there is a lot of volatility with this graph. Again 

though, this volatility centers around a stable central tendency, as the GLM fit line shows 

there is no meaningful change in the central tendency throughout. 

 

 
Figure 9: Null-model of SPD created from a simulated, uniform distribution of calendar dates 
and using the IntCal13 calibrations curve. Note that GLM best fit line (P=.903) shows there is no 
change in relative probability through time. 

Figure-9 shows the shape of the terrestrial SPD using the actual archaeological 

data. When compared with the previous null-model we again see that there is little 

similarity in their overall patterns. The actual terrestrial SPD has important noticeable 

features such as the dramatic dip at ~8,800-8,400 that is not present at all in the null-
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model. The general increase in stability following 8,400 is also much stronger in the real 

SPD than in the control sample. With these comparisons in mind I feel that it is safe to 

infer that patterning within the terrestrial SPD is not totally attributable to the effects of 

the calibration curve.  

To better illustrate the differences between the control and actual terrestrial SPD 

figure-11 overlays the two. Again, looking at this figure it becomes very clear that 

patterns present in the actual SPD are not driven by the calibration curve.  

 
Figure 10: Showing terrestrial SPD created from the actual archaeological data.  Note that GLM 
(P=.903) indicates that there is no change over time. 
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Figure 11: showing comparison between control (red) and real (black) terrestrial SPDs. 
Highlighted areas show places where calibration curve is likely exaggerating shape of real SPD. 

 

4.5: Summary of Comparisons 

In both the marine and terrestrial cases, there is little reason to believe that the 

general patterning of SPDs is significantly driven by the shape of the calibration curve 

itself. However, this does not mean that various parts of both SPDs were not being 

exaggerated by the shape of the calibration curve, which cautions against reading too 

much into any of the individual peaks and valleys. The GLM method employed here 

suggests that there are differences in the central tendencies between the real and control 

SPDs, which is shown by a weak but noticeable growth in the relative probability density 

of radiocarbon dates in the actual SPDs through time. 

 

4.6: Assessing Demographic Trends  
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Having examined the SPDs for various internal biases, analysis of the overall 

marine and terrestrial SPDs for demographic trends can proceed. Keeping in mind the 

various problems and biases discussed above, some interesting demographic trends are 

apparent within these SPDs. However, directly interpreting SPDs is trickier than it seems, 

and is somewhat intuitive. This is why the previous steps in the analysis were essential, 

as they allow us to better understand what is 'noise' and what is real within the SPD.  In 

general, as demonstrated recently by Weninger et al. (2015), peaks are much more likely 

to be exaggerated than valleys, and sharp peaks are almost always artifacts of the 

calibration curve and sampling. Therefore, considerable caution should be taken when 

interpreting sharp peaks or valleys as increases or declines in population, since these 

peaks would often be much more muted if the calibration curve was perfect.  
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Figure 12: Terrestrial SPD with GLM detailing significant demographic events. The GLM shows 
a slight signal of growth, but is statistically insignificant at the .05 level. 

Figure 12 displays the total terrestrial SPD with significant changes in 

demographic patterns highlighted. The first of these patterns is in the early Holocene, 

where population levels reach heights similar to those seen throughout the middle 

Holocene. However, there is some dramatic variance within the period between ~11,000 

and 9,000 cal BP, which is best indicated by the much wider nadirs between SPD spikes 

for this time. The period between ~9,000 and 8,400 Cal BP, indicated by a red circle in 

figure-11, highlights an area of massive population collapse with a probability density 

close to approaching zero. This crash is the most pronounced of any trend throughout the 

whole period under study, is seen in every sub-region and in both the marine and 

terrestrial SPDs. Moreover, this drop occurs when there is a peak in the control sample 

(see figure-10), further strengthening the inference that this population collapse is real. 

The last trend (post 8,400 cal BP), which follows the collapse, shows a region wide 
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recovery in population, that reaches heights greater than seen in the early Holocene. 

Unlike the early Holocene peaks, however, the population nadirs following 8,400 cal BP 

are not as severe and much shorter lived. The peaks during this later period, once the 

influence of the calibration curve is accounted for, are also not as high relative to the 

nadirs. Taken together, this indicates that while there is an overall (slight) increase in 

population, this is almost entirely accounted for by stabilization in population size and 

not necessarily by higher absolute populations at any given time. To test the validity of 

this stabilization, coefficient of variation (CV) statistics were calculated for periods prior 

to and after the population collapse. The CV value prior to collapse is 51.79, while CV 

post-collapse is 32.42. A Fligner-Kileen (Fligner and Kileen 1976) test for equality of 

variance was then run to see if the differences between these values were statistically 

significant. This test found that CV values were significantly different at the .0001 level. 

Since a lower CV value indicates less variation, this test suggests that variance in 

population levels decreased significantly following 8,400 cal BP.   

This stabilization in the terrestrial SPD following ~8,400 Cal BP may be 

interpreted as simply reflecting more stable populations. However, it may also be 

suggestive of a region-wide shift in use of the landscape, which may (i) indicate 

population packing and (ii) be masking a stronger signal of growth. For example, if 

people changed their mobility strategies to focus on the use of fewer sites more often (as 

in residential movements become focused around fewer sites) and for longer periods 

(time spent at each site increases) this would, overall, create a pattern of fewer, but more 

continuous and archaeologically visible sites. In turn, these larger and more visible sites 

are usually more likely to be investigated archaeologically and therefore to be dated. As a 
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result, the decrease in variance seen in the SPD may be more a reflection of decreased 

variance in archaeological sampling detecting sites due to their increased visibility.  

By this same line of reasoning, an increased number of people utilizing fewer 

numbers of sites per time period will not be reflected as population growth in an SPD 

(which uses number of sites as a proxy for population) even though the number of people 

on the landscape may have increased significantly. Given that there actually is a slight 

growth in the terrestrial SPD and a significant decrease in variance, I find this suggestive 

that the SPD is reflecting a change in mobility patterns towards more structured use of 

the landscape and towards longer term use of sites probably brought about by a packing 

of the landscape reducing the utility of residential mobility as a tool for risk mitigation. 

With this in mind, I would also argue that there may be much more population growth 

than is currently being detected by the SPD as well. This hypothesis that is further 

bolstered by the fact that the period between ~8,500 and 6,500 Cal BP has had 

comparably much less sampling effort than earlier or later periods on Haida Gwaii (Fedje 

et al. 2011) and Dundas Islands (Martindale et al. 2010), which may further hide a signal 

of increasing population levels.  

Aside from the population collapse in the middle, it is important to note that 

observed growth in population is probably quite minimal, though the increase in stability 

is significant. Therefore, it would be more accurate to picture this time period as one of 

remarkable continuity in the average population levels, with decreasing amounts of 

variance through time. Figure 13 shows that the marine SPD has a very similar trend to 

the terrestrial, though the marine SPD has a slightly stronger signal for growth during the 

latter period.  
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Figure 13: Showing marine SPD with GLM highlighting significant population events. Note that 
GLM shows moderate signal of growth, but signal is insignificant at the .05 level. 
 

Brief Summary of Major Results 

 The figures above paint a picture of boom and bust cycles that center on a 

relatively stable population mean. However, while still a tentative finding it does appear 

that populations after ~8400 Cal BP are subject to much less severe oscillations, which 

may be a product of population packing, and show a stronger signal of growth.   

The major exception to this overall trend is the catastrophic population collapse 

between ~8,800 and 8,400 Cal BP. This collapse was found in every sub-region and was 

present in both the marine and terrestrial samples and thus is likely a region-wide 

phenomenon. To date this is the first mention of this collapse. Interestingly, after this 

region-wide collapse, populations recover quickly to previous population levels. This 

suggests that something either greatly accelerated the natural growth rate of the people 

who survived the crash or that people moved back into the area after 8,400 cal BP. 
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Currently, there is little evidence regarding the possible causes or effects of such a 

population collapse. While it enticing to relate it to a strong cold snap that happened at 

~8,400 cal BP (discussed below in more detail), the timing of these events are offset 

substantially. The localized timing of climate events, however, can be prone to fairly 

large errors. Thus the population collapse and environmental change may correlate better 

than initial analysis suggests.  It is also possible that this collapse is a product of sea-level 

changes obscuring sites of this age. Though, given how localized sea-level histories are in 

the area and that all sub-regions in the study area were effected, this seems somewhat 

unlikely.  

The oddity of this event is further enhanced by the fact that there are no major 

differences in the material record between sites proceeding and those coming 

immediately after the crash. Moreover, there is currently no genetic evidence (see 

Cybulski 2001; Cui et al. 2013) for a population replacement in any part of the region for 

this time period, which makes a population replacement event unlikely. Therefore, while 

this event clearly requires further research, for now, I am left without much to say in 

regards to its causes or possible effects on mobility patterns. 

 
4.7: Environmental, Technological and Settlement Pattern Summaries 

4.7.1: Synthesizing Environmental Data: 

Because the hypotheses being evaluated cite environmental pressures as a 

significant factor in changes to mobility and because studies of hunter-gatherers are often 

intrinsically linked to environmental variables (see Kelly 2007) a synthesis of the 

available environmental data for the study area is provided below. As with any historical 
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dataset, paleo-environmental data must be carefully evaluated and can be extraordinarily 

difficult to summarize coherently. Among other, broader issues (i.e. sample 

representativeness), cohesion in environmental syntheses is difficult to obtain largely 

because paleo-environmental data comes from very different sources, which all proxy 

environmental change in different ways and at potentially very different scales (Cronin 

2010: 28-38; Elias 2010). Temporal resolution among the proxies is conditioned by two 

major components in environmental data (i) the speed at which a variable responds to 

change and (ii) the amount of detail or nuance the proxy is capable of capturing (Evans et 

al. 2001: 55).  For this research I rely on previous studies that have emphasized three 

different proxies: 1) pollen and macrobotanical data, 2) glacial expansion and contraction 

data, 3) the GISP2 ice-core data from Greenland. Although not an environmental proxy, I 

also provide a very brief illustration and description of sea level change between 11,000 

and 5,000 cal BP>  

  

Pollen/Macrobotanical Data 

The data from pollen/macrobotanical sources often come from cores taken from 

lakes and bogs/mires. These proxies track climate changes through shifts in vegetation 

and soil development or sedimentation. The strength of this proxy is that it can provide 

excellent detail about changes in the actual resource availability for humans, but is 

probably the slowest proxy for tracking change. The slow tracking of this proxy is 

because change of species composition in forests, especially in dense forests with long 

lived trees (like the Northwest coast), is inherently a slow process. Trees can be 

extremely long lived and can be quite tolerant of variation in environmental conditions, 
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especially if the climatic variation comes in short intervals. This means that not only does 

climate change have to be particularly large in magnitude, but it must also persist for 

extended periods of time in order to force plant composition change in long-lived, dense 

forests (Elias 2010; Heinrichs et al 2002). Our ability to detect this change is further 

complicated because of the extended time it takes for new species to stand out in an 

archaeological context. Because of these factors, pollen and macro-botanical data can lag 

hundreds and up to a thousand years behind initial climate change (Elias 2010). 

 

Glacier Data 

Glacier data, which tracks the advance and retreat of glaciers, can have much 

greater temporal resolution than pollen data, even getting at a decadal level scale. 

However, glacial data provides much more limited information about resource 

availability than pollen/macrobotanical data. Broadly speaking, changes in glacier 

activity track changes in temperature and moisture, with advances happening during cold 

and moist conditions and glacial retreat happening during warm and dry conditions. This 

picture is muddled by climate changes that do not fit into these two states. Thus it is 

possible for glacial advance to occur when moisture increases but there has been no 

change in temperature and vice versa. Elevation must also be taken into consideration 

when extrapolating from glacier data, as glacial histories mostly reflect changes at higher 

altitudes and may not always be reflective of climate change experienced at lower levels 

(Clapperton and Seltzer 2001; Luckman and Villalba 2001) 
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Greenland GISP2 Ice-Core Data 

This data set tracks temperature (among various other variables) at extremely fine 

scales (up to 1-3 years in some special cases), by measuring changes in chemical 

compositions trapped within the Greenland ice-sheets. However, while this is probably 

the most globally precise and accurate of any of the environmental proxies, it can lack 

precision when used to infer changes within localized contexts (O'Brien et al. 1995).  

This is because the GISP2 data is more or less an aggregation of changes happening 

across the world (Peltier and Fairbanks 2006). For example, this means that if Europe 

begins to experience a spike in cold temperature, but North America stays the same, the 

GISP2 may still show a cold event, even though certain regions across the world never 

experienced it.  

 

Sea Level Data 

 Sea level change is an important variable to understand when interpreting the 

archaeological history of coastal areas due to its effects on habitability and site visibility. 

However, because sea level histories have shown to not only be highly complex, but also 

incredibly localized (McLaren 2008; Carlson 2012; Fedje et al. 2005; Shugar et al. 2014) 

I cannot give a detailed account of sea level change for each sub-region. This problem is 

further compounded by the fact that the regional and local sea level histories for the 

North Coast area have only recently begun to be systematically studied and as such we 

have quite varied information between areas and time periods making regional 

comparisons difficult (Shugar et al. 2014). With these qualifications in mind, below I 

give a very brief and generalized view of broad trends in sea level change.     
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Interpreting Proxies 

With aforementioned in mind, it is imperative that any environmental 

reconstruction use multiple proxies that are constructed through different methods Cronin 

2010; Evans et al. 2001) and are the effects of different kinds of change. Furthermore, 

trends observed regionally, can play out very differently at local scales. It is also 

important to recognize the differences in lag between these proxies when making 

interpretations (Cronin 2010: 38-39; Evans et al. 2001). For example, if the glacier and 

GISP2 data point to a climate warming about 2,000 years ago, but the 

pollen/macrobotanical data shows a warming at 1,500 years ago, it is likely that they are 

tracking the same event, as pollen/macro-botanical data will almost always lag (Cronin 

2010: 38-39; Elias 2010) Therefore, it should be completely expected that different 

proxies will, at first glance be contradictory or offset.  

For example, if we see glacier advance as signaling a cold/moist period and the 

expansion of trees that indicate warmer temperature at the same time, instead of 

interpreting this as a clear contradiction we should seek to understand the other 

possibilities, such as; we know that glaciers will advance with an increase in moisture, 

not just a decrease in temperature. So it is possible that this is signaling a change to a 

warmer and moister climate, but not one that got so warm as to inhibit the freezing of the 

increased moisture. In my environmental synthesis, I emphasize that each proxy records 

different things at different scales. Instead of focusing on discrepancies, I focus on 

highlighting congruence. The following section summarizes the data from each proxy and 

then combines them together in a generalized, synthetic format at the end. The temporal 
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data for all environmental proxies is presented as calendar years before present (1950). 

Any 14C dating that was used has also been calibrated and presented as such.  

 
4.7.2: Pollen Data 

The following synthesis is based on the work by LaCourse and Mathewes (2005), 

Hebda et al. (2005), McLaren (2008), Pellatt and Mathewes (1997), Turunen and 

Turunen (2003), Hetherington et al. (2003), Banner et al. (1983) and Cronin (2010: 

Chapter 8). All of these studies took place or drew data from the North coast region. Data 

is primarily from pollen and macrobotanical data gathered from lake sediments, 

bogs/mires, and intertidal sediment cores. Because pollen and macrobotanical studies can 

be, by their nature, extremely localized, this data set was by far the most ambiguous and 

contradictory on a regional level. For the purposes of coherence the following synthesis 

has qualitatively averaged many of the beginning and end dates for inferred climate 

changes.  

 

Table 2: Summary of pollen/macrobotanical data, all dates given as calendar years before 1950. 

11,000-10,000: End of the Younger Dryas event. The end of this period sees 
significant warming and stabilization of the Holocene climate in general.  
10,000 - ~8000: Post 10,000, the weather is much warmer and drier than modern 
and the environment was much less forested than today, with open plains and 
parkland much more prevalent. This period is sometimes referred to as the 
"Holocene Xerothermic" 
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~8300-7500: A dramatic cold period begins here. This cooling is much more 
severe and long lasting than that experienced in the little-ice age. Terrestrial 
productivity plummets during this time, as very wet and cold conditions facilitate 
rapid buildups and expansions of bog and mire systems across the North coast. 
This time was much colder than modern. To date, this neoglacial cooling event 
(palynologically) is poorly understood, but is widely corroborated across the 
entire northwest of North America. The exact timing of this event is highly 
variable between studies. The duration shown here represents the total range of 
begin/end dates for this event from different studies.  Up until ~8300-8000 
climate studies are remarkably consistent across the North coast area. This period 
marks the beginning of highly localized and regionally discordant climate change 
that is characteristic of the middle through late Holocene. 
7500-7100: After the cold event, a maximal warm and wet period takes hold. The 
Holocene has yet to be this warm again.  

7100-6900: Maximal warming ends and a cooling trend begins. Rainfall and 
moisture remains similar to the previous period. 

6900-5000: Gradual cooling trend continues. However, temperatures remain well 
above modern. Evidence indicates that forest and terrestrial productivity begin to 
recover at ~6900. 
~8300-7500: cooling event. Sometime between 6500-5000 temperature cooled to 
modern levels. This same period is also when we see the proliferation of Western 
Red Cedar. Moisture remained high throughout this time. Around 5000 we also 
see that forests and terrestrial productivity returned to pre-8000 levels. 

 

4.7.3: Glacial Data 

The following is a synthesis and summary of Denton and Hughes (1981), Peltier 

and Fairbanks (2006), Banner et al. (1983), Harvey (1980) and Cronin 2010) and is based 

on data from St. Elias mountain range, the Yukon area, the Canadian Rockies, White 

River Valley AK, and Baffin Island in NE Canada. It should be noted that data from 

Alaska and the Yukon were given precedence in interpretations and research further from 

my study area (Peltier and Fairbanks and Miller) were used to fill in missing data gaps.  
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Table 3: Descriptive summary of glacial data, all dates given as calendar years before 1950 

11,000-10,000: This period marks the beginning of the Holocene and the Younger 
Dryas, which is a return to full glacial conditions and is indicated by a major glacial 
re-advance of glaciers across the northern hemisphere. This period is significantly 
colder than any other time in the Holocene.  
10,000-8400: This period is not well documented in glacial studies. However, it is 
uniformly understood to be a time of significant warming that was in stark contrast 
to the preceding Younger Dryas. The period immediately after 10,000 cal BP also 
marks a general stabilization of the climate, when the magnitude of variance is 
minimal compared to that of the Pleistocene and the Pleistocene-Holocene 
transition. 
8400-8000: This period is characterized by a dramatic drop in temperatures and 
widespread glacial advances. Other than the Younger Dryas this is by far the most 
pronounced cold regime so far experienced in the Holocene. However, the timing 
and duration of this cold period is quite variable across studies. Different studies 
from different regions have it originating between 8700-8200 and ending sometime 
between 8000-7800. It is possible that all of these are true, as glacier activities can 
be highly variable in different parts of the world. The St. Elias and White River data 
are most consistent with one another and show that this cold spike lasted between 
8200-7900 BP.  
7900-5300: A significant warming event called the Hypisthermal began ~7900 BP 
and is characterized by much warmer and possibly drier conditions than present 
today. The reconstructed magnitude and length of this event vary widely among 
researchers. There is actually a lot of variability in temperatures (and perhaps 
moisture) during this period, but the coolest points never reach modern ranges. This 
has caused some researchers to signify this entire time range (some even as recent as 
4900) as the Hypisthermal. Others, however, divide this period into multiple 
segments to better reflect its variability, especially the time period between ~7100-
7400 which may have seen significant warm spike that exceeded anything else 
known throughout the Hypisthermal.  
5300-4900: A significant cold spike begins during this period and lasts until ~5000-
4900 when another warmer and possibly moister regime begins. It is about this time 
that mean annual temperatures and variability in them approach those present today.  

 

4.7.4: Ice-Core Data 

The ice-core data I present here comes from the GISP2 ice cores. There actually 

4-6 major sources for ice-core data, those offer slightly different data and measure 

different chemical compositions. However, the GISP2 is one of the most commonly used 
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and graphically, the most easily interpretable. With this being said, the actual GISP2 ice-

core image (see figure 14), is not necessarily an accurate representation of climate trends 

as it does not reflect the statistical error (2-3%) that derives from the counting statistics 

used when measuring chemical compositions of the ice sheets. Therefore, while the 

image itself is a useful, quick and relatively reliable guide to climate changes throughout 

the Holocene, one must refer to actual analyses of the ice-core data when making detailed 

comparisons.  The synthesis presented here comes from work by O'Brien et al. (1995), 

Denton and Karlen (1973), Harvey (1980) and Peltier and Fairbanks (2006). 

 
Figure 14: Graphical representation of fluctuating temperatures from GISP2 Ice Core from 
CalPal software (Weninger 2015) 
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Table 4: Descriptive summary of GISP-2 ice core data, all dates given as calendar years before 
1950 

11,000-10,000: End of Younger Dryas and establishment of more stable Holocene 
climate 
10,000-9500: Significant warming period throughout North coast. 
9500-9000: A relatively volatile period that sees significant oscillation between 
warm and cold periods. It should be noted that these 'cold' periods are still warmer 
than modern temperatures. 
9000-8400: Marked by a stable warm period that lacks the significant oscillations 
characterizing the previous period. 
8400-7800: This period is characterized by a massive cold regime that lasts several 
hundred years. The period between 8400-7800 also sees a temporary cessation in 
global, eustatic sea-level rise (Peltier and Fairbanks 2006). This cold regime begins 
at ~8400, but it most pronounced between 8300- ~7800 
7800-7500: Shortly after 8,000 there was a significant burst in warming that lasted 
for ~200-300 years. This period is considerably warmer than today, and may be the 
warmest period so far known throughout the Holocene.  

7500-6900: A gradual cooling trend begins, though temperatures remain well above 
modern.  
6900-6600: A slight return to warmer temperatures is indicated here, though they 
remain far below the maximal temperatures seen around 7500.  
6600-5400: A gradual cooling trend, very similar to the one seen between 7500-
6900, is seen. This cooling trend continues apace until ~5400 when another 
dramatic cold regime, on par with the little ice-age takes hold. 

5400-3500: After the cold regime that lasts between ~5400-5100, we see a very 
slight warming. Though temperatures remain colder than any sustained period prior 
to this time. By approximately 5,000 the climate regime is believed to be analogous 
to the modern climate. Oscillations during this period are very small and no other 
significant perturbance is seen until ~3500 when another dramatic cold spike, very 
similar to the 5400-5100 is seen.  

 

4.7.5: Sea Level Change  

The following synthesis is based upon work done by Duncan McLaren (2008) and 

McLaren et al. (2011); Carlson (2012); Fedje et al. (2005) and Shugar et al. (2014). 

Generally speaking, these figures show that Haida Gwaii and the Alexander Archipelago 

in Southeast Alaska have very similar sea level histories. In both cases sea levels from 
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~14,000-11,500 Cal BP were far below modern and that sea levels after 14,000 Cal BP 

rose dramatically reaching a peak (maximum marine transgression) around ~11,000-

10,000 Cal BP. Since this time sea levels have been dropping steadily until coming close 

to modern levels around ~5,000 Cal BP. This sea level history means that coastal sites 

dating prior to 11,500 are submerged and far from the modern shoreline, while sites 

dating he modern coastline (Carlson 2012; Carlson and Baichtal 2015; Fedje et al. 2011).  

 

 
Figure 15: Showing relative sea level change across the North Coast area. Picture on left is taken 
from McLaren 2008 and is redrawn to reflect calibrated 14C ages instead of uncalibrated. Picture 
on right shows sea level curve for the Outer Alexander Archipelago 
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Figure 16: Shows illustrative example of sea level change and available landmass between 
11,000 and 5,000 cal BP. Based on published sea level fluctuations found in Shugar et al. 2014. 
Modeling and illustrations done by Robert Gustas (2015). Note that sea level was much higher at 
8,000 cal BP than 5,000 Cal BP.  

 
 Interestingly, the picture for the Dundas Island group shows much less dramatic 

variance in its sea levels history. Sea levels have been relatively stable on Dundas for 

much of the Holocene, though it has been slowly dropping for thousands of years (Figure 

15). Therefore, the oldest sites are further inland than younger sites, which are closer to 

(or on) the modern coastline. Archer ‘s (2011; Archer and Mueller 2013) work on the 

Lucy Island group has shown that the Lucy Islands share the same sea level history as the 

Dundas Islands.    

 

4.7.6: Environmental Summary 

Overall, there is a remarkable concordance among these different environmental 

proxies. In all cases the general patterns of change and timing of change are in strong 

agreement (Table 2). The largest incongruities among these proxies seem to be in the 

timing of events within the period of 7,800-5,500. For example, while the ice-core data 
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shows the end of the ~ 8,300 cold spike sometime between 8000-7800 and a subsequent 

maximal warming, the pollen data indicate that these events did not happen for another 

300-500 years. Moreover, the ice-core data indicates a significant cold spike around 

5,300, while the pollen and glacier data see this period as a gradual continuation of a 

cooling trend. In general, the pollen data indicates climate change on a 200-300 year lag, 

which as discussed by S.A. Elias (2010:77) is entirely expected.  If we allow for expected 

discrepancies in the exact chronology between proxies, given that the trends in climate, 

while offset, never actually contradict one another, I am confident of making the 

following generalizations about climate events across the North coast during my study 

period. 

1. A substantial warming period followed the end of the Younger Dryas; which 

coincides with dramatic sea-level change resulting from the fast melting of glaciers 

and isostatic rebound 

2. ~8,400 to 7,800 (depending on proxy) there is a massive cold spell, the most severe 

known throughout the Holocene outside the Younger Dryas. The end of this cold 

spike coincides, and is suggested to be causally related to, a substantial decline in 

terrestrial productivity due to the spread of mire and bog systems. It is not until 

sometime after 6,900 that we see evidence for terrestrial productivity beginning to 

recover. It is important to note here that some studies such as Pellatt and Mathewes 

(1997) and Mann et al. (2001) have suggested that this cold spike was experienced 

differently at different times on the coast, and that on the North Pacific, the 

transition to this event may have been earlier and much faster than in other places.  
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3. After 7,800 the climate stabilizes and shows very little volatility. Generally this 

period is characterized as a gradual cooling from a very warm period that 

immediately proceeded the cold spell, but temperatures always remain above 

modern until sometime between ~6,000-5,300 when another cold spell (similar in 

severity to the Little Ice Age) happens followed by a return to temperatures (after 

~100-200 years) that are analogous to the modern climate   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  89 

Table 5: Descriptive summary of different environmental proxies 

 
 

4.4.7: Technological Data Synthesis  

Technological analysis can be an extremely powerful tool for understanding 

settlement and mobility dynamics across a landscape (See Binford 1979, 1980; Chatters 

1987; Kelly 2007). Therefore, it is necessary to review and synthesize the available 

technological data on the North coast. It is important to note that the following section 
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does not introduce new data. I simply summarize previous analyses and raw data, then 

relate these to regional questions of settlement and mobility pattern change.  

It is important to reiterate here that this section does not present any novel 

analyses and is simply summary of already published analysis. Furthermore, it is not a 

synthesis of all available analyses, and instead focuses technological data as it pertains to 

mobility or settlement patterns. With this in mind, the secondary goal of this section is to 

highlight how little is actually known about technological change through this time 

period. Lastly, despite the serious limitations in the technological data, it is covered here 

because Prentiss and Chatters hypotheses rely extensively on technological relationships 

and because Ames and Binford both see technological changes as key indicators of 

changing mobility strategies.  

At first glance the amount of technological data available for the period between 

~11,000-5,000 cal BP seems considerable. There are literally hundreds of lithic bearing 

sites recorded throughout Southeast Alaska and Haida Gwaii (See Carlson 2012 and 

Fedje and Mathewes 2005). However, the majority of these sites are isolated finds with 

little context. Furthermore, prior to ~4,000 cal BP on the North coast, technological data 

comes almost entirely from lithics; which, while very useful, paint only partial pictures of 

people’s economic strategies (Croes 2003: 51). 

It should also be noted that technological data from this period comes largely 

from Haida Gwaii, with much smaller assemblages coming from Southeast Alaska. 

Meanwhile, effectively no technological data exists from the Dundas Islands, Lucy 

Islands and the Prince Rupert Harbor area. For these reasons, the data from Haida Gwaii 

dramatically biases the following synthesis. . This problem is further exacerbated after 
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~8,000 cal BP when excavations from just Haida Gwaii represent almost 100% of the 

technological data for this time period. In general, technology for the period between 

8,000-5,000 cal BP is poorly known across the North Coast. Therefore, any inferences 

based upon the data discussed above should be regarded as (1) tentative at best and (2) as 

a reflection of what was happening on Haida Gwaii. However, the few excavated sites in 

Southeast Alaska that are contemporaneous with those on Haida Gwaii show many 

similarities, which hopefully mitigates some of the interpretive biases from such a Haida 

Gwaii heavy dataset (see table-6).  

 

Technological summary and  synthesis 

The earliest known technological data on the coast are found in Southeast Alaska 

and Haida Gwaii dating to ~11,000 cal BP and are characterized by a leaf-shaped style, 

bifacial projectile point technology, which is very similar between the two regions 

(Carlson 2012; Storey 2008: 2; Ackerman 1996; Fedje and Christensen 1999; Fedje et al. 

2004, 2005: 232-237). Where preservation permits, sites dating to this early period (e.g. 

Kilgii Gwaay) have also produced well developed bone and wood technologies, including 

bone awls, unilaterally barbed bone points, bone percussors, splinter awls, and other 

miscellaneous worked bone (Fedje et al. 2001. Kilgii Gwaay also produced evidence of 

basketry, fiber clothing and rope (Fedje and Mackie 2005). After ~9700 cal BP (10,000 

in SE AK), bifacial technology begins to be replaced by a microblade technology (Storey 

2008; Fedje et al. 2005: 232-237). This transition is best seen at the Richardson Island 

site, on Haida Gwaii, where extremely detailed and well dated stratigraphy shows this 

transition with a very fine-grained resolution (Magne 2004). This site demonstrates that 
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microblades and bifaces co-existed and were experimented with between ~9700 cal BP 

and 8800 cal BP, after which microblades come to dominate lithic assemblages. While 

Southeast Alaska lacks this fine grained temporal resolution, the general picture there 

corroborates the findings on Haida Gwaii, except that these transitions tend to occur ~ 

300 years earlier (R. Carlson 1996). 

An interesting aspect of this transition is that multiple analyses have found almost 

no difference between microblade and bifacial assemblages, except for the relative 

abundance of bifaces and microblades (Fedje et al. 2005: 239; Storey 2008; Carlson 

1996). In both types of assemblages simple unifacial tools are actually the most dominant 

tool form (Storey 2008). Furthermore, both microblade and bifacial assemblages are 

found with abundant scrapers, scraper planes, adzes, cobble choppers, gravers, large 

unifaces and spokeshaves (Storey 2008). At Richardson Island, Storey's (2008) analysis 

of the unifacial technology also shows that aside from microblades and bifaces, there is 

little standardization among tool types and most appear to be made expediently and from 

locally available material (Storey 2008; Fedje et al. 2011). Both Storey's (2008) and 

Magne and Christensen’s (2005) studies also show that the only appreciable changes to 

tool-kit composition on Haida Gwaii before ~5,700 cal BP was the increasing size of 

cobble and spall tools (which replaced scraper planes) at ~9,000 Cal BP and a switch to 

using entirely local materials. The next evidence for meaningful technological change 

comes from the middle components of the Cohoe Creek site (5,700-5,100 Cal BP), on 

Haida Gwaii, where a proliferation of bone and antler technology is seen, along with the 

introduction of bipolar flaking techniques. The organic tools at Cohoe Creek were found 

to be very similar to those found at Kilgii Gwaay, but show increased diversity and 
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complexity in their design. The organic tools at Cohoe Creek also show clear affinity to 

similar designs found in the later components at the Blue Jackets Creek site (Christensen 

and Stafford 2005). 

In general, Southeast Alaska follows the same pattern as Haida Gwaii, with 

microblades becoming dominant after ~10,000 cal BP, and having well-developed 

organic tool industry very early. Southeast Alaska also shows a general increase in size of 

cobble and chopper tools (Carlson 1996; Ackerman 1996, 1985). However, sites in 

Southeast Alaska appear to have less emphasis on unifacial tools, and tools tend to be 

made from high-quality, exotic materials more often (Ackerman 1996; Carlson 2012).  

 
Table 6: Raw artifact data from select, well excavated contexts on Haida Gwaii and Southeast 
Alaska 
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Technology Conclusions 

Overall, early assemblages were locally diverse but regionally homogenous and 

showed a very flexible tool-kit, whose composition and proximity to the ocean suggests 

generalized coastal foraging (Willis and Lauriers, 2011: 118). Besides the widespread 

adoption of microblade technology around 8,800 cal BP and bipolar flaking at ~5,600-

5,000 cal BP, there are little if any functionally significant changes in the lithic tool-kit 

assemblages through the Holocene on the North coast. Even the adoption of microblade 

and bipolar flaking is debatably related to functional, performance attributes. As 

Fladmark (1975) has noted, microblades and bipolar flaking do not necessarily produce 

functionally different tools as much as they relate to the conservation of raw materials.  

The organic tool data available is intriguing, given that sites like Kilgii Gwaay 

show a well-developed industry involving the use of tools similar to ones seen thousands 

of years later on the North Coast. However, the finds at Cohoe Creek do show an 

evolution in the complexity and specialization of organic tools starting ~6,100 cal BP. 

Still, the tool-kit assemblages do retain a generalized quality through time.  
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Table 7: Descriptive summary of technological data through time. 

 
  

4.4.8: Settlement Pattern Data Synthesis 

The following analysis and synthesis of settlement patterns on the North coast 

combines data from three different kinds of sources: (i) site-location analyses, which aim 

to show how people have positioned themselves on the landscape; (ii) site type analyses, 
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which show changing patterns in types and size of sites; (iii) seasonality studies that 

primarily use shell fish and other faunal material to show what seasons the sites might 

have been occupied. Generally speaking, all the analyses and syntheses presented here 

comes from various chapters within Fedje and Mathewes (2005), Steffen (2006), Storey 

(2008) Carlson (2012), Carlson and Baichtal (2015), McLaren (2008), McLaren et al. 

(2009), and Martindale et al. (2010) unless otherwise noted in text.  

In total, there has been very little settlement pattern analysis on the north coast 

that relates to the period between 11,000-5,000 cal BP. To date, I am only aware of a 

single study done by A. Mackie and Sumpter (2005) that has systematically looked at site 

location and site type change through time, and was done solely for Haida Gwaii. This, 

combined with biased, judgmental sampling that has focused on shorelines and the 

inconsistent reporting of environmental context for sites that date to this period make 

interpreting patterns during this period highly problematic. Despite these issues, though, 

recent work by Carlson (2012) and Carlson and Baichtal (2015), McLaren (2008) and 

Martindale et al. (2010) have produced sufficient data for us to make some broad level, 

region-wide statements about settlement dynamics between 11,000 and 5,000. Table-8 

below highlights key information of sites discussed in the following sections. 
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Table 8: Summary of ages and significant data for select sites mentioned throughout text 

Location Site Name/# Age Span 
(cal BP)* 

Significant 
Features/Data 

AK 
Hidden Falls  

49-SIT-119 (comp. 
1) 

11,600-9,600 

Temporary camp, with 
possible hearth. Lithic 

concentration. 
Unifacial/microblade 

technology 

AK 
Hidden Falls   

49-SIT-119 (comp. 
2) 

5,300-3,200 

Association of 
artifacts/features with 
earliest dates of this 

component is unclear. 
Spring camp. Postholes 

(3x4m structure), ground 
slate/stone, labrets, 

complex organic tools, 
fauna shows increased 

reliance on halibut/salmon. 
End of microblade use. 

AK Chuck Lake   
49-CRG-237 9,200; 8,200 

Temporary camp, lithic 
scatter. Bone tool 

(harpoon), oldest shell 
midden in SE AK. Fauna 
showing marine focus. 

AK Groundhog Bay - 
JUN-037 (Lvl-3) 

10,400-9,200; 
8,300-6,000 

Temporary camp, lithic 
scatter, hearth feature 

AK On-Your-Knees-
Cave 49-PET-408 10,600 

Human remains. Isotope 
analysis shows diet was 
almost entirely marine 

AK 
MitKof Island Fish 

Weir  
 49-PET-456 

5,600 

Earliest fish weir. 
Evidence of site 

investment/more sedentary 
behavior 

Dundas GdTq-3 7,100-5,300 

Large shell midden. 
Earliest structure known 

on North Coast with 
central hearth, possibly 
inhabited year-round. 
Possibly whole village 

only 1 of 4 houses in a row 
were dated 
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Lucy Lucy Island   
GbTp-1 9,000-4,500 

Early isolated shell 
middens (9,000-4,500); 
Early house - 8.3x4.2m 
(6,500-6,200; 5,400); 

formal burials of related 
people associated with 
house (5,700-5,300) 

HG Arrow Creek 2 
925T 

10,000-9,200; 
8,200-7,800; 

6,500 

Possible hearth, possible 
fish trap (small rock wall 

feature) 

HG Arrow Creek 1  
766T 

11,300- 
10,000 

Lithic concentration. Short 
use site. 

HG Lyell Bay East/South  
1354T and 1355T 

10,200-8,200; 
7,500; 6,100-

5,800 

Lithic concentrations. 
Short term camps 

HG Richardson Island  
1227T 11,000-9,200 

Hearths, drying racks, 
large lithic assemblage, 

possible pit-house. Shows 
long term, planned 

annual/seasonal re-use of 
site. Diverse faunal data. 
Seasonal use base camp 

HG Kilgii Gwaay  
1325T 

10,800-
10,400 

Organic tools preserved; 
presence of basketry, 
drying racks, cordage, 

bone/wooden tools. Shell 
midden, diverse faunal 

assemblage emphasizing 
fish and black bear. 

Seasonal use base camp 

HG Cohoe Creek  
FjUb-10 7,000-4,900 

Large shell midden. Early 
winter village, stratified 

living floor surfaces, 
postholes, complex 

hearths, storage features, 
diverse faunal assemblage. 
More complex bone/antler 
tools than seen previously. 

Appearance of bipolar 
reduction on Haida. 

Inhabited between 4-6 
months at a time (possibly 

all year long). 



  99 

HG Blue Jackets Creek 
FlUa-4 ~5,000 

Extensive cemetery. 
Substantial evidence for at 

least semi-sedentary 
behavior. Attachment to 

place 
*Age span is an approximation based upon the calibrated median ages of   14C dates from each 
site and/or component. Multiple spans were assigned when large gaps between 14C dates were 
encountered.  

 

Settlement Pattern Summary 

11,000-8,000 cal BP: Almost all known early sites are found on relic shorelines, in areas 

that would have been near protected estuaries, bays or riverine environments proximal to 

the ocean. The location of these sites emphasized ecotones that maximized diversity in 

available resources and show an obvious marine focus (Carlson 2012; A. Mackie and 

Sumpter 2005).  For example, the Kilgii Gwaay, Richardson Island and Chuck Lake sites, 

were positioned to access shorebirds, open ocean resources, shell fish, riverine fish (such 

as salmon), and sea and terrestrial mammals.   

The vast majority of sites dating to this time are known from Haida Gwaii and 

Southeast Alaska; though recent research by Martindal et al. (2010) and Archer (2011) 

have uncovered numerous sites of this age on the Dundas and Lucy Islands as well. On 

Haida Gwaii, most are simple lithic sites that show broad ranging activities and a short 

term use (Fedje et al. 2011; Mackie et al. 2011). However, sites such as Arrow Creek 1, 

the Lyell Bay south and east, Richardson Island and Kilgii Gwaay all show very dense 

deposits, with continual re-use and/or substantial or site investment. Specifically, the 

Richardson Island and Kilgii Gwaay sites display much more consistent and long term re-

use and often have more complex features (Steffen 2006)  than anything known in 
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Southeast Alaska for this time period (Fedje et al. 2013; Fejde and Mackie 2005). For 

example, multiple post-hole features, interpreted as drying racks, were found at both 

Richardson Island and Kilgii Gwaay (Steffen 2006: 226; Fedje et al. 2011) and possibly 

the structural remnants of a small pit-house also present at Richardson Island (Steffen 

2006; Storey 2008; Fedje et al. 2005). The hearth complexes, especially at Richardson 

Island, show multiple re-use episodes over hundreds of years (Steffen 2006: 216), further 

suggest intensive use of particular spots on the landscape and an altogether more 

structured seasonal round than typically associated with high mobility foragers.  

Interestingly, there are no currently known analogues for these kinds of sites in 

southeast Alaska, which may indicate that residential mobility was much higher there. 

This is further indicated by the differences in material use, where exotic, high quality 

materials were routinely used in Southeast Alaska (Ackerman 1996; Carslon 2012),while 

almost exclusively local materials were used across Haida Gwaii (Storey 2008; Fedje et 

al. 2011) 

However, much of the research targeting this time period in SE Alaska (i.e. 

Carlson 2012) has had much more limited excavations, thus absence of evidence for more 

complex sites is to be expected. Regardless though, based upon the relatively thin 

stratigraphy and limited horizontal extent at most these sites, it is very possible that the 

differences mentioned above will hold true as more data is added.  

A possible exception to the general trend of utilizing productive riverine and 

estuary locations is from Lucy Island and possibly Far West Point on the Dundas Islands, 

where consistent shell fish exploitation and seemingly little else was being done on an 

isolated island, which, must have been accessed by boat (Archer 2011; Archer and 
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Mueller 2013). As opposed to the Haida and Alaska sites, these sites emphasized the 

exploitation of a single resource and would have been accessed by specific, planned 

forays for this resource. This makes the Lucy island site and early middens on Dundas, 

such as Far West Point, possibly the earliest evidence for logistic forays on the North 

coast. However, it is also possible that these sites represent resource areas that were 

seasonally exploited by people practicing a sequential foraging pattern, whereby foraging 

people revisited the exact same locations for specific resources during different times of 

the year. In this way, these sites may have been part of a similar seasonal round as that 

seen at Richardson Island, where a specific spot was utilized extensively over a very long 

period of time.  

  

8,000-7,000 cal BP: Sites become much more common across the coast, especially shell-

midden sites on Dundas and Lucy Islands. No other appreciable change from the previous 

period is noted here.  

  

7,000-5,500 cal BP: This period is characterized by the beginnings of substantial 

settlement changes across the study area. Shell midden sites continue to become more 

common and larger. The earliest evidence of large, permanent structures is at site GdTq-3 

on the Dundas Islands. This house may date as early as ~7,000 cal BP, is rectangular in 

shape and has a central hearth (Martindale et al. 2010). This house is also one of four that 

are grouped together, likely representing an early village. Shortly after, another structure 

similar to the one at GdTq-3 is present on Lucy Island and dates as early as ~6,500 cal 

BP (Archer and Mueller 2013). Furthermore, the house floors, structures and stratified 
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hearth features at Cohoe Creek on Haida Gwaii, are firmly dated to between 6,300-5,700 

cal BP, but older deposits at the site date back to more than 7,000 cal BP (Christensen 

and Stafford 2005: 251-254); it also important to note that GdTq-3, Lucy Island and 

Cohoe Creek are all associated with sizeable shell middens. Furthermore, formal burials 

associated with the structure on Lucy Island date between ~5,900-5300 cal BP (Archer 

2011; Archer and Mueller 2013) and the earliest dated fish weir on Mitkof Island (49-

PET-456) in Southeast Alaska, dates to 5,600 cal BP (Moss and Erlandson 2000). The 

presence of this tended facility and the formal burials on isolated islands further suggests 

a changing mobility system by showing that people were making significant social and 

economic attachments to specific spaces on the landscape (Schulting 1995: 14-19).  

Seasonality studies at GdTq-3 and Cohoe Creek also point to a considerable 

change in residential pattern. GdTq-3 may have been inhabited year-round (Hallman et 

al. 2012, Burchell et al. 2013), while Cohoe Creek was occupied throughout winter and 

possibly through the spring (between 4-6 months) (Christensen and Stafford 2005), which 

indicate that a change to semi-sedentary (possibly fully sedentary) lifestyles had taken 

place by this point. Furthermore, the longevity or continued use of these sites was 

dramatically greater than earlier sites. GdTq-3 was occupied between ~7,000 and 5,000 

cal BP; Cohoe Creek between 6,700- 4,700 cal BP (although Christensen and Stafford 

(2005) suggest possibly as early as 7,100 cal BP) and the Lucy Island house was at least 

occupied intermittently between 6,500 and 5,000 cal BP. Although long-term use of sites 

is not unprecedented, given older sites like Richardson Island, multi-season occupation is 

novel at these sites, and the overall duration of occupation is also greater than previously 

seen throughout the area. Thus, while Richardson Island is proposed to represent low 
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levels of logistic organization (Steffen 2006: 220) and demonstrates a clear antecedent to 

later mobility and settlement patterns, it lacks many of the features indicating substantial 

investment in place seen after 7,000 cal BP.  

The curated mass capture features, such as the earliest known fish weir on Mitkoff 

Island, in Southeast Alaska dating to ~5,600 Cal BP (Moss and Erlandson 2000)  in 

combination with the substantial storage/caching features found at the Cohoe Creek site 

also indicate changes to long term planning and intended reuse of the site for specific 

activities. These attributes are important as they are commonly associated with 

logistically oriented residential and base camps, and further suggest increasing 

attachment to place and significant changes to mobility patterns (Binford 1980, 2001; 

Kelly 2007). However, despite major changes in apparent mobility strategies during this 

time, it is interesting that no appreciable change in site-location was seen at any of these 

sites. And, the fine grained excavations at Cohoe Creek showed no meaningful 

differences in subsistence between it and much earlier sites, once environmental context 

was controlled for (Christensen and Stafford 2005).  

 

5,500-5,000: Interestingly, this period does not see a proliferation of houses or villages, 

though all of those mentioned above were occupied through this time period. However, 

the village and expansive cemetery features at the Blue Jackets Creek site on Haida 

Gwaii, may date as early as 5,300 cal BP (Severs 1974). Excluding the cemetary, this site 

is similar in many respects to the Cohoe Creek site, but shows more intensive occupation 

and tools recovered (especially wood/bone ones) were much more varied and complex. 

Blue Jackets Creek is poorly reported though, and no final report analyzing site features 
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has been published. Thus the association of any of the features with the earliest dates is 

uncertain.  

It is also possible that villages, such as GcTq-4 on Dundas, which has an early 

component dating between 5,500-5,300 cal BP could date to this period (Martindale et al. 

2010). However, the oldest component has not been securely related to any house 

features (Ruggles 2007; Martindale et al. 2010).  It should also be noted genetic studies 

from the burials found on Lucy Island, has not only demonstrated them to be directly 

related to modern Tsimshian populations, but have also shown that the individuals were 

closely related each other (Cui et al. 2013). Between the Lucy Island burials and those at 

Blue Jackets, this period does see a continuation of evidence that is showing increasing 

attachment to place and perhaps early indications of territoriality.  

 

Settlement Pattern Conclusions 

         Table 9 below outlines the general trends of settlement and mobility patterns 

through time as described in the analysis section. As a general summary, we can break 

down settlement patterns into four major trends.  
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Table 9: Summary of settlement pattern changes through time. 

 

1. As evidenced by sites such as Kilgii Gwaay and Richardson Island, early peoples 

are practicing high levels of residential mobility but are tethered to certain locales 

and appear to be at least loosely organized in a logistic fashion. Thus re-use of 

locations and some level of tethered or logistic mobility is in use throughout the 

early Holocene on the North Coast. 

2. The types of locales utilized remained remarkably consistent through time, with 

people positioning themselves within protected bays, estuaries and riverine 

locations that maximized access to a diverse set of resources. The possible 

exception to this is the middens and structure at Lucy Island, whose isolation makes 

it currently somewhat distinctive along the North Coast. While the use of these 
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kinds of locales may seem trivial, given that they are expected to be used, it should 

be noted that after 5,000 cal BP settlement patterns become very different in many 

places across the Northwest Coast (Maschner 1997; Q. Mackie 2003; Martindale 

and Supernant 2009; A. Mackie and Acheson 2005), with people emphasizing very 

different kinds of locations, such as long linear shorelines and defensible positions. 

Thus, it is important to highlight that sedentism on the North coast is not related to 

settlement pattern change.  

3. After 8,000 cal BP there is an increase in size and abundance of shell midden sites 

throughout the area especially on the Dundas and Lucy Islands. This trend seems to 

continue through the Holocene in all of the sub-regions. 

4.  After 7,000 cal BP we see the proliferation of more permanent structures (e.g. 

GdTq-3) and much higher investment in place. The caching and storage features 

common at the Cohoe Creek site are especially significant as they not only point to 

long-term planning, and increased attachment to space, but also demonstrates that 

people were using substantial portions of their time at Cohoe Creek to gear up for 

later subsistence activities. As highlighted in section 2.2 above, this suggests that 

specialized and complex subsistence pursuits were taking place, and overall further 

corroborates a logistically organized seasonal round for people at Cohoe Creek. 

Along with the appearance of fish weirs, the burials at Lucy Island and at Blue 

Jackets may also be significant in showing the evolution of increasing attachment, 

investment and/or ownership of place during this time (Schulting 1995: 14-18). 
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CHAPTER 5: DISCUSSION 

I now return to addressing the questions posed at the beginning of this thesis. The 

first of these questions was; given the analyses presented here which of the hypotheses 

put forward best fits with the data. I then explore what other statements can be said about 

the timing, nature and causes for the development of logistically organized mobility on 

the North Coast. In order to best answer these questions the following discussion is 

divided into three parts; (i) Can any changes in mobility patterns be observed between 

11,000 and 5,000 cal BP on the North Coast; and what were they?; (ii) of the three 

hypotheses presented here, which (if any) best matches the available data?, and; (iii) 

given the limitations, ambiguity and sparseness of the record for this period what can we 

confidently say about the development of logistic mobility?  

I begin by asking; can any changes in mobility patterns be observed between 

11,000 and 5,000 cal BP on the North Coast; and what were the changes, if any? 

Given some leeway in interpreting the results, mobility patterns on the North Coast 

between 11,000 and 7,000 cal BP appear to closely adhere to what we would expect for 

aquatic hunter-gatherers utilizing a loosely logistical or possibly tethered mobility system 

and had relatively high levels of residential mobility. Subsistence focus was clearly on 

marine and riverine resources, though supplemented by terrestrial resources (i.e. black 

bear and caribou).  The technological data for this time also indicates a broad spectrum 

economy with little evidence for meaningful resource specialization (though Dundas 

Island sites remain an enigma in this regard) and no apparent investments in permanent 

structures or substantial site furniture. Furthermore, as expected for aquatic hunter-
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gatherers, the location of many sites (e.g. Richardson Island and Lucy Island) along with 

their routine re-use over very long periods of time, suggest a very structured and planned 

use of the landscape  

I argue, that by at least 7,000 cal BP with the appearance of the permanent 

structures (and possible village) at GdTq-3, that we see the adoption of an aquatic based, 

logistically dominated mobility pattern, though probably lacking a full-scale collector 

pattern. Though I acknowledge that using the appearance of houses as a proxy for logistic 

mobility can be problematic (see Ames 2000), I believe that the level of investment 

needed for permanent structures (and likely a whole village) and the possibility that 

houses at GdTq-3 were inhabited year-round, effectively necessitated that people 

employed a high level of logistical organization.  

While it may be argued that these sites reflect people practicing a tethered or serial 

foraging strategy, I do not believe this to be the case for the following reasons. To start, 

the Cohoe Creek , Lucy Island structure and GdTq-3 site are occupied or consistently 

reoccupied for centuries (if not millennia), moreover Cohoe Creek and possibly GdTq-3 

look to be have been occupied for significant portions of the year and possibly for the 

entire year (Christensen and Stafford 2005: 259; Martindale et al. 2010). The multi-

season (if not year-round) occupation of these sites, in combination with their overall 

longevity, argues against their interpretation as base camps for groups of ‘tethered 

foragers’ as immediate return subsistence strategies focused on proximally located 

resources would have presented significant issues for coping with the inherent variance 

and patchy structure in resource availability in North Pacific climates  
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As discussed previously, while aquatic resources are generally abundant, this 

abundance exists in dispersed clusters that can vary widely in productivity year-to-year. 

Thus, sedentism without logistic forays would likely be untenable over multiple seasons, 

due to the unpredictability in resource abundance for any specific area, much less over 

hundreds of years as seen in the sites discussed here.   

As detailed in section 2.2, the limited usefulness of residential mobility in northern 

aquatic settings is not due to the absolute abundance of resources in any given spot. 

Instead it is limited because at any given time, people must be in multiple locations at 

once to efficiently exploit aquatic resources. Thus, unlike what Chatters (1995) and 

Prentiss and Chatters (2003) hypothesize for the early appearance of pithouses on the 

plateau; it appears that people on the North Coast were not ‘lured’ into low residential 

mobility by super productive ecotones, but instead forced to adopt it.  This interpretation 

is further evidenced very early use of at least semi-logistical strategies in the region. As it 

seems even during warmer climate regimes, with more productive terrestrial habitats and 

probably smaller populations, people found logistic strategies necessary for coping with 

aquatic landscapes. Therefore, it is much more likely that increased sedentism and site 

investment indicate an elaboration and further commitment to pre-existing organizations 

rather than an adoption of a completely different mobility system, such as tethered 

foraging. 

Furthermore, as previously discussed the later appearance of tended facilities, such 

as fish weirs, storage features (at Cohoe Creek) and of formal burials at Lucy Island (and 

possibly the cemetery at Blue Jackets Creek) indicate a sense of territory with 

pronounced social and economic attachments to specific places on the landscape 
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(Schulting 1995: 19).  In fact, Binford (2001: 258) has shown that these features are 

almost universally associated with territorial ownership and intensive use of logistic 

strategies. This is especially true for mass capture features, such as fish weirs, which 

were found only among people who relied on storage and who almost completely relied 

on logistic organization. In all, these data along with the duration and seasonality of 

occupation at these sites are all much more typically associated with people using logistic 

organization and low residential mobility than those utilizing foraging strategies.  Thus 

by ~7,000 cal BP there is persuasive evidence for a region-wide shift to extensive 

reliance on logistic mobility.   

In reality though, the distinction between people being either ‘tethered foragers’ or 

logistically organized may be semantic, as it is often unclear in the literature what being a 

‘tethered’ forager actually is. If tethered foraging is intended to mean logistically 

organized people who do not practice or rely extensively on storage, then it is perfectly 

analogous to the kind of mobility I believe is represented by the sites discussed above 

(though storage features are present at Cohoe Creek). However, if tethered foraging is 

meant to indicate low residential mobility people who make no (or very little) use of 

logistic forays, than I believe this is quite different from what is being seen on the North 

Coast.  

 

5.1: Hypothesis Evaluation 

Given the inference that people were largely reliant on logistically organized 

mobility by at least 7,000 cal BP, how do the various hypotheses discussed previously 
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match up to the data presented here?  Below I briefly summarize the key arguments for 

each hypothesis and then compare them with the data 

  

5.2: Binford's Hypothesis Evaluation: 

1. Demographic Predictions: Binford argues that logistic mobility should result from 

either absolute population growth or from population packing.  

a. Currently, the demographic data does not support the notion that large scale 

population growth preceded the development of logistic mobility on the North 

Coast. However, the stabilized population levels post 8,000 cal BP and the 

noted impoverishment of the terrestrial resource base (Cronin 2010: 218-220; 

Turunen and Turunen 2003; Banner et al. 1983) in the region may have forced 

people to rely more heavily on aquatic resources, thus population levels 

relative to the number of good access points could have dramatically 

increased the population 'packing' in the region even without an increase in 

absolute population levels. Therefore, the data does not preclude the 

possibility that a packing threshold was reached just prior to the adoption of 

logistic organization.  

2. Settlement Pattern Predictions: Here Binford expected that aquatic resources would 

become a stable resource base as soon as they were available and their subsequent 

adoption would have inevitably led to at least low-levels of logistic mobility. 

a. Almost all of the early sites known in the region are indeed located near the 

shore in prime areas to take advantage of aquatic resources. However, as 

discussed previously, the coastal landscape is the only place archaeologists 
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have systematically surveyed for early Holocene sites. Faunal and isotopic 

evidence in the region also suggest that people made wide ranging use of 

aquatic resources, which seemingly confirm the first part Binford’s 

predictions. Evidence for low levels of logistic mobility is also attested to with 

the Richardson Island and Kilgii Gwaay sites possibly being logistic base 

camps (Storey 2006; Fedje and Mackie 2005; Fedje et al. 2005) and the early 

midden sites on Lucy Island arguably representing logistic field camps, which 

further confirms Binford’s expectations. .  

3. Technological Predictions: Binford suggested that technological changes to more 

specialized and complex tools should be expected to coincide with increasing levels 

of logistic mobility.  

a. Because no analyses regarding technology change as it related to mobility 

have been completed and because data is effectively only available from 

Haida Gwaii; at present, this expectation cannot be accurately evaluated. 

However, the currently available data suggests that large-scale changes to 

tool-kits did not take place until almost 1,000 years after the first evidence for 

significant increases to logistic organization at GdTq-3. This is also true of for 

the oldest curated, site-facilities, such as the Mitkoff Island fish weir dated to 

5,600 cal BP. Thus, the available data does not support this expectation. 

4. Environmental Predictions: Binford made no specific predictions regarding the role 

of the environment in the adoption of logistic mobility among aquatically oriented 

hunter-gatherers. However, he did suggest that any environmental change which 

creates disparity in the relative productivity between aquatic and terrestrial 
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resources should increase the level of logistic organization. He also argued that 

once logistic mobility was the primary mobility strategy, environmental change 

should have no effect on mobility strategies in aquatic environments (Binford 2001: 

279, 366, 369). 

a. Given that evidence for increased levels of logistic mobility appeared shortly 

after the impoverishment of the terrestrial environment, I feel that Binford's 

expectations are well corroborated by the data. The fact that logistic 

organization continued and proliferated throughout the rest of the Holocene 

despite further environmental changes and the recovery of terrestrial 

productivity, also supports Binford's expectations.  

  

5.3: Ames’ Hypothesis Evaluation:  

1. Demographic Predictions: While Ames does not make any specific demographic 

predictions, he does argue that there is a minimal population threshold necessary to 

practice logistic organization. Once this minimal level is reached, Ames argues that 

the fixation of logistic strategies is related to the ratio between access to resources 

and population levels, where the more disjointed and rare resource patches are, the 

smaller the populations necessary to force logistic organization would be. With this 

in mind we should expect to see a rise in population levels or a change in resource 

availability.   

a. The evidence does suggest that there may have been slightly higher 

population levels during the advent of logistic mobility compared to earlier 
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periods and population levels were also much less variable during this time. 

Neither of these findings contradict Ames; predictions.  

2. Settlement Pattern predictions: Because Ames focuses on the importance of 

continuity on the North Coast, he suggests we should expect to see an increasing 

proliferation of redundant sites across the landscape. While new kinds may be 

added, we should not see a sudden drop off of any older types. 

a. As mentioned above, almost all of the early evidence suggests an aquatically 

oriented population making extensive use of boats and a wide variety of 

marine and riverine resources. There is also a remarkable continuity in site 

location and function through time. Even the appearance of the permanent 

structures coincides with the types of locations already in use for thousands of 

years. The available faunal evidence also suggests that resource extraction 

was the same despite the residential shift. Overall, Ames' predictions are well 

supported by this data. However, as with the technological data, no systematic 

study of settlement patterns have been completed for this region, so this 

support should be seen as tentative.  

3. Technological Predictions: Ames' suggested that we should see continuity in 

technological traditions, though increased levels of technological specialization and 

complexity should coincide with increasing logistic mobility.  

a. As mentioned above, there is enough evidence to accurately evaluate 

technological shifts as they relate to mobility in the region. With that said, 

Fedje and Mackie (2005), Fedje, Magne and Christensen (2005) and Storey 

(2008) claim that there is no apparent discontinuity in tool-kit assemblages 
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between early sites and later ones. It should be noted though that the increase 

in tool complexity seen at Cohoe Creek and Blue Jackets Creek is consistent 

with Ames’ predictions.  

4. Environmental Predictions: Similar to Binford’s in many respects, Ames 

environmental predictions differ in emphasis more than kind. Ames stresses that 

disjuncture (and therefore anything that increases creates disjunction) in the spatio-

temporal access to resources will push people towards more logistically oriented 

strategies. While Binford acknowledges this as an important point, aquatic 

resources were often assumed to already be disjointed, so he seems to have placed 

more emphasis on differences in the relative productivity between terrestrial and 

aquatic resources. 

a.  The specific distribution of resources or changes therein cannot be addressed 

with the currently available data. Therefore, while the data does not contradict 

Ames’ prediction it does not necessarily support it either. However, because 

northern latitudes generally, already have poor terrestrial productivity, any 

increases in population levels may have pushed people past a threshold 

whereby residential groups could no longer support themselves through 

exploiting terrestrial resources, and thus were forced to focus more and more 

on aquatic resources. This, in combination with the fact that access to aquatic 

resources is usually more spatially constrained than terrestrial ones, would 

have effectively created a disjuncture of resource availability by limiting 

locations for residential moves. Thus, access to resources would have declined 

relative to the number of people taking them.   
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5.4:  Prentiss and Chatters’ Hypothesis Evaluation: 

1.Demographic Predictions: They argue that a punctuated population collapse in the 

region should open up niches for collectors to inhabit. We should see the region 

where collectors came from maintain population levels though. 

a. There is a major population collapse between 8,800-8,300 cal BP and 

evidence for some degree of logistic organization does appear after this 

collapse. However, populations across the region rebound well before the first 

evidence of logistic organization and logistic organization does not appear 

until ~1,400-1,000 years after the population collapse. Every sub-region tested 

also experienced this population collapse at the same time, meaning that there 

is no evidence that a pre-existing collector strategy survived and then spread 

throughout the region.  This does not mean that the region was not filled by 

people who developed logistic strategies outside of the North Coast area. 

However, this is unlikely, as genetic evidence (Cui et al. 2013; Cybulski 

2001) shows that three different genetic lines from outside the North Coast 

would have had to independently inhabit Haida Gwaii, Southeast Alaska and 

the Dundas/PRH area immediately afterwards. Overall, the available data does 

not support these predictions and in many ways directly contradicts them.  

2. Settlement Pattern Predictions: Prentiss and Chatters argue that logistic oriented 

settlement patterns should closely match wherever they originated and be 

fundamentally different from those preceding them. Prentiss (2009) further argues 

that settlement pattern change should be a punctuated event, and the origin of 
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logistic mobility should be in places that are isolated with abundant resource 

availability.  

a. Because there has not been a systematic evaluation of settlement patterns on 

the North Coast, especially one that details the similarities and differences 

between regions. For the time period in question, these predictions cannot be 

definitively refuted or supported.  However, the available data does not 

support their hypotheses. There are no apparent abrupt changes in settlement 

patterns in any of the regions and settlement patterns across all of the sub-

regions have many similarities from very early on. Moreover, sites with the 

earliest evidence for strong logistic organization on Haida Gwaii (Cohoe 

Creek) and on the Dundas Islands (GdTq-3) are positioned in the exact kinds 

of locales as earlier sites. When combined with the overall continuity in site-

location, this suggests that high levels of logistic mobility did not spread from 

a single origin. Instead, I argue that this evidence points to largely 

independent and in-situ developments of logistic organization.  In general 

support of Prentiss (2009), however, it can be argued that Haida Gwaii and the 

Dundas Islands represent ‘isolated’ locales with have abundant resources. As 

well, possible support for Prentiss’ and Chatters’ hypothesis may exist in 

Southeast Alaska. There is no evidence of permanent structures or intensive 

logistic organization within the Southeast Alaska region for my study period, 

thus it is difficult to say that the later appearance of more sedentary living and 

logistic organization seen in Southeast Alaska did not result from people 

moving in from the south.  
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3. Technological Predictions: Prentiss and Chatters argue that the technological 

tradition that spreads with logistic mobility should be consistent with its place of 

origin. 

a. As with others research hypotheses. However, the available data tends to paint 

a picture of continuity and in-situ development instead of sudden replacement 

or significant borrowing. In fact the only evidence for major technological 

change comes from the replacement of bifaces by microblades, but this 

process begins well before the aforementioned population collapse, or any 

evidence of strong logistic behavior. However, this data is almost entirely 

from Haida Gwaii, so if logistic mobility originated there, it would only make 

sense that technology there would be internally consistent. To date though, 

there is not enough comparable data from the other sub-regions to make any 

firm conclusions about technological diffusion/replacement. It should also be 

noted that even if there was a historical, ancestral relationship between 

technologies, these would be incredibly difficult to link due to the very 

different raw material constraints between the sub-regions (especially between 

Southeast Alaska and the Dundas/Lucy Islands).  

4. Environmental Predictions: To facilitate the spread of logistic strategies Prentiss 

and Chatters argue that pre-existing foraging strategies must have become 

untenable, probably due to severe environmental change. 

a. There is evidence of a severe cold-snap at ~8,500 cal BP that also may be 

responsible for the dramatic impoverishment of the terrestrial environment 

and broadly coincides with the population collapse that began ~500 years 
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earlier. Since logistic strategies only appear after this event, climate change 

could be said to support Prentiss and Chatters’ prediction. However, the 

earliest evidence of mobility strategy change does not happen for ~1,000 years 

after the end of the cold-snap. Therefore, while environmental change could 

be related to the adoption of logistic mobility, it does not appear to be related 

to a region-wide replacement of mobility strategies. Altogether then, there is 

only weak support for this argument.    

 

5.5: Hypothesis Evaluation Summary and Discussion 

Overall, Binford’s and Ames’ predictions are more congruent with the data 

presented here than are Prentiss and Chatters’. However, our ability to precisely evaluate 

these hypotheses is hindered by the limited available data and analyses.  This is 

especially true for the technological data, which is severely lacking. Most technological 

studies have focused on metric descriptions and intra-site comparisons, or are too focused 

on a very narrow range of tool classes (i.e. microblade core reduction sequences) to be 

useful for region-wide questions regarding mobility strategies. The dearth of 

technological data for long periods of time and for entire regions is particularly 

problematic. Frustratingly, there is no easy solution to this comparative analysis problem, 

as outside of Haida Gwaii, there simply is no material to study, due to the lack of sizeable 

excavations within Southeast Alaska and the Dundas/PRH area. 

Furthermore, while predictions derived from Ames' and Binford's hypotheses 

better match the available data, the analyses presented here do not confirm their 

hypotheses as much as it does not contradict them.  However, the analysis presented here 
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provides minimal support for the macro-evolutionary hypothesis of Prentiss and Chatters 

(2003, also see Prentiss et al. 2014). There is little evidence of a punctuated event, change 

over time is relatively slow and shows clear evolution from antecedents. I would argue 

that there is no evidence of any top down 'selection' from environmental or outside social 

forces (e.g. population replacement or competition) that led to the development of logistic 

mobility.   

  

5.6: The Evolution of Logistic Mobility and Organizations on the North Coast  

As described in the preceding sections, each line of data is highly problematic for 

making inferences in regards to the evolution of mobility patterns on the Northern Coast. 

To date, differences in research focus, sampling intensity, and understanding of sea-level 

changes have led to largely biased and often difficult to compare data sets between the 

sub-regions of this area. However, I do not mean to suggest that nothing can be said 

because of these problems, only that the data in its current state greatly inhibits a more 

detailed understanding of the North Coast. Indeed, while each individual dataset may be 

problematic, the fact that all of archaeological data points to little substantial change in 

either population levels, subsistence, technology or settlement strategies between 11,000 

and 5,000 cal BP is significant in itself. Therefore, taking the demographic analysis at 

face value; given so little change, how can we best explain the advent of sedentary and 

logistically reliant behavior?  However, as discussed in chapter 4, I believe that 

population levels grew more than is currently seen.  

 I believe that the most parsimonious explanation comes from using a combination 

of Ames and Binford’s ideas. Basically, it seems that population packing brought on by 
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the impoverishment of the terrestrial landscape, caused by the region wide expansion of 

bog and mire systems, pushed people further onto an aquatic landscape, which was 

already limited in suitable residential locations. Therefore, not only was residential 

mobility becoming less effective (due to loss of terrestrial resources and patchy structure 

of aquatic ones), it was also becoming less possible at the same time, due to the more 

circumscribed space for accessing aquatic biomes. If true, this may explain why the 

earliest appearance of sedentism and houses are on the Dundas Islands, as their already 

marginal terrestrial resources would have forced this switch earlier than other places.  

Extrapolating this further, the apparent lag in the appearance of these features 

between Southeast Alaska and Dundas and Haida may suggest that terrestrial 

productivity in Alaska did not suffer as much during this time period. Meaning that 

population packing took longer to occur and the need to fully adopt aquatic resources and 

subsequent logistic organization would have been slowed. It is important to note though 

that this lag is most likely exaggerated by the lack of research in Southeast Alaska 

compared to these other regions. This is partially evidenced by the earliest known 

appearance of fish weirs in Aslaka dating to ~5,600 cal BP, which is similar in age to 

components at Cohoe Creek and the later house date at Lucy Island. Using ethnographic 

data, Binford (2001) strongly correlated features such as these to storage and sedentism. 

Therefore, it seems very possible that similar sites to Cohoe Creek and GdTq-3 existed at 

least by at least 5,600 cal BP, but are as of yet undiscovered in Southeast Alaska. 

As people became increasingly reliant on the aquatic landscape, it is quite 

possible that the wholesale adoption of sedentism and logistic reliance happened 

extremely quickly. Not only would these traits have been highly effective in these 
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environments, but the fact that people in the region had already been exploiting all kinds 

of aquatic resources and using some logistic organization, meant that sedentism and 

logistic organization would have simply been extensions to pre-existing lifeways. As 

discussed above, the long-term use of boats in the region would have further facilitated 

this transition by making increasing use of logistic forays relatively easy.  

 The lack of change in subsistence pursuits, demography and technology 

coinciding with the appearance of logistically reliant strategies, indicates that mobility 

pattern change happened prior to and were not caused by population growth. Had 

mobility pattern change been a response to absolute population growth it seems likely 

that we would see technological changes or changes in the faunal data that reflected 

intensification of resources or an expansion of diet breadth, neither of which are currently 

seen (Binford 2001; Fitzhugh 2004). However, following Ames (1985, 2004), I 

hypothesize that the continued investment, elaboration and proliferation of these 

strategies is directly related to population growth following their initial adoption. 

Whereby, social and organizational stresses brought on by growing populations would 

have led to the intensification of existing logistic strategies. 

 This scenario would also help explain why we do not see increasing numbers of 

sites such as Cohoe Creek and GdTq-3 after they appear. Because, if they did not arise 

out of a response to absolute population growth, there is no reason for people to splinter 

off and create houses elsewhere, as moving elsewhere would have done nothing to solve 

resource distribution issues.  Furthermore, as Ames (1985, 1996, and 2004) argues, 

logistic organization requires larger populations than foraging strategies. Thus, 

splintering and the creation of new houses/villages would have been greatly constrained 
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until certain population thresholds were reached. After which, elaboration and increased 

complexity of logistic organization would have been the only way to handle new stresses 

arising from growing populations. Along these same lines, the appearance of tended 

facilities may indicate such a response to growing populations. While the later presence 

of burials as symbolic markers of territory and attachment to place may not have been 

necessary until population levels reached a point where the overlapping of social space 

became an actual concern and worked to reify concepts of ownership.  

 Interestingly, Fitzhugh (1995, 2002, and 2004) reached a similar conclusion based 

on his research in the Kodiak Islands, noting the same patterns of site-use and settlement 

pattern changes as people made more and more use of aquatic resources. However, 

because Fitzhugh's study focused on time periods much later than mine within a much 

smaller area, and used much more fine grained data, making a direct comparison between 

our results difficult. However, regardless of direct comparability, it is noteworthy that the 

behavior or aquatic hunter-gatherers between different cultural, environmental and 

temporal contexts are quite consistent.  
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CHAPTER 6: CONCLUSIONS 
 

 Using previously published technological, environmental and settlement pattern 

data in combination with novel demographic analysis, this study set out to better 

understand the historical development of logistic organization on the North Coast 

between 11,000-5,000 cal BP. In order to do this, available data was systematically 

evaluated and compared to various hypotheses that have attempted to explain the causal 

mechanisms behind the appearance and spread of logistic mobility. Secondarily, the goal 

of this study was to highlight the biggest gaps in the data sets and explore how to better 

conceptualize aquatic hunter-gatherers within the forager-collector spectrum.  

 Sites such as Kilgii Gwaay, Richardson Island, Lucy Island and possibly Far West 

point, demonstrate that highly structured and seasonal patterns of mobility were utilized 

by 11,000 cal BP. Furthermore, features, artifact assemblages, location and fauna at these 

sites suggest that people were making use of logistical movements to procure resources 

(though residential mobility remained high). Intensification of logistic organization and 

use of aquatic resources is indicated by ~7,000 cal BP on Dundas Islands, and possibly 

and at least by 6,300 cal BP Haida Gwaii at the Cohoe Creek site.  

Analysis of settlement patterns indicates that types of locations used remained 

unchanged throughout the early and middle Holocene. Technologically, while we do see 

various changes, i.e. development of microblades and later bipolar flaking with more 

complex organic tools, these changes happen long before (microblades ~9,000 cal BP) 

and after (bipolar and more complex organic tools between 5,000-6,000 cal BP) the 

appearance of sedentary living and extensive logistic organization (~7,000-6,500 cal BP). 
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Available dietary evidence also suggests no minimal changes took place during this time. 

Demographically, while volatile, the overall average population levels remain stable 

throughout the study period, with a significant decrease in variability following ~8,400 

cal BP. However, as mentioned above, there is reason to believe that ongoing work will 

reveal that populations following ~8,000-7,000 cal BP probably grew much more than is 

currently seen. Environmentally, warming and cooling episodes seem to have little direct 

correlation with any evidence for mobility pattern changes, with a possible exception 

being the bog/mire expansion and impoverishment of terrestrial productivity across much 

of the study area after 8,000 cal BP, which may have been a critical force in the 

intensification of aquatic resources and logistic mobility (and also may relate to the 

increase in midden size/density on the Dundas Islands during this time).  

Therefore it seems that the shift to low residential mobility and increasing reliance 

on logistical organization may have happened independently of any change to settlement 

pattern, technology, demography or diet. Thus it is likely that mobility changes were 

brought on by internal social pressures in the form of organizational stress that resulted 

from a changing resource structure. More specifically, I argue here that decreased 

terrestrial productivity forced people to utilize already limited aquatic areas even more 

than they had already had been as seasonal or permanent use of the terrestrial 

environment would have been greatly constrained. Therefore, as residential mobility 

became more untenable as a solution to resource availability, the only recourse would 

have been to intensify the use of logistic mobility. Furthermore, as discussed in section 

2.2 movements along a coastal landscape does little to change resource availability; there 

would have been little incentive to move, thus, sedentism and the increased use of logistic 
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mobility. In this way, while environmental changes and distribution of aquatic resources 

may have been the ultimate causal mechanism, the proximal cause of sedentism and 

logistic mobility would have been the intensified social stresses inherent in organizing 

tasks among groups who could no longer use residential mobility as an effective tool.  

With this in mind, I return to exploring how archaeologists should conceptualize 

aquatic hunter-gatherers within the forager-collector framework. It is important to 

highlight here that this research largely corroborates the general expectations for aquatic 

hunter-gatherers set forth by authors such as Yesner (1980), Binford (1990; 2001) and 

Ames (2002), despite the fact that much of their work was based upon ethnographic data. 

This demonstrates that certain qualities of managing access to aquatic resources are so 

intrinsic that basic organizational principals are extremely difficult to overcome even as 

technology and social structures change.  

 With this in mind, I suggest, as do these authors, that we should not expect 

aquatic hunter-gatherers to organize themselves in entirely analogous ways to terrestrial 

ones. This research also suggests that mobility among aquatic hunter-gatherers may be 

best thought of as a gradation within logistic organization. Therefore, in corroborating the 

thoughts of the authors mentioned above these results further stress that archaeologists 

are in considerable need of refining empirical expectations and theory for mobility 

patterns among aquatic hunter-gatherers. Until this is done, we will be left with 

subjective and often uninformative qualifications such as ‘low’ and ‘high’ amounts of 

logistical organization. Moreover, better detailing this gradation may reveal a litany of 

mobility strategies that are undocumented or poorly understood which in turn may shed 
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light on how and why cultures took different trajectories in adapting to the interplay 

between resource access and internal social forces.  

However, going back to the hypotheses discussed and evaluated earlier, the above 

discussion should make it clear that we can actually say very little about the causal 

mechanisms of logistic organization on the North Coast, much less accurately test 

hypotheses that rely on a complex interaction of variables. Even when combining all of 

the sub-regions, the quality of data and availability of regional analyses is quite poor and 

this problem is only exacerbated when looking at the sub-regions individually. This not 

only means that the model, presented above, for the advent of logistic reliance is likely to 

change, but also that many of our theories regarding the evolution of social and economic 

structures on the NWC may need to be re-evaluated. Especially as a better region-wide 

understanding of sea level histories have allowed archaeologists (for the first time) to 

specifically target early and middle Holocene sites (See McLaren 2008; Carlson 2012; 

Letham et al. 2015). Despite this, the demographic analysis presented here is the most 

robust of its kind and utilizes unprecedented amounts of data for this time period and 

region. Therefore, while changes to this demographic picture are certain, the general 

patterns uncovered here likely reflect real and critical trends in population histories for 

the region. 

 Besides the regional synthesis of previously available data and analyses, this 

thesis also provides unique and significant contributions to our understanding of the 

period between 11,000-5,000 cal BP on the North Coast. The dates taken from the GdTq-

3 site as part of this research, which is currently the oldest known site of its kind in the 
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region and has pushed back the appearance of permanent structures (also likely villages) 

to almost 7,000 cal BP.  

While this is significant in itself, pushing back the appearance of archaeological 

features, without drawing in context from other data does little to advance theory 

regarding the evolution of mobility strategies, which highlights perhaps the most 

substantial and novel contribution of this research, which is the demographic analyses. 

This analysis showed that while overall population levels may not have grown 

significantly during much of the early and middle Holocene, there is evidence that 

population volatility decreased significantly after ~8,400 cal BP, which suggests that 

population pressure was not responsible for the decrease in residential mobility and 

intensification of logistic organization seen later. This also suggests that population 

volatility may play a larger role in mobility patterns than previously discussed by 

archaeologists. It also begs the question about how and why populations suddenly 

stabilized and whether or not it is simply a pattern born from eustatic sea-level change 

stopping around this same time. A thorough investigation that systematically analyzes 

changes in size, density and occupation length between sites dating before and after 

~8,400 cal BP could shed light on this issue in the future, as will more sampling effort 

focused on shorelines that date between 8,000 and 6,000 cal BP.  

The demographic analyses presented above also uncovered evidence for a region-

wide, massive population collapse, which to my knowledge has never been observed in 

North Coast data. However, the causes and effects of this collapse are not yet understood 

and require future work. Though it’s possible temporal correlation with a world-wide 

cold spike is suggestive of a causal relationship between the two. The demographic data 
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was by far the most robust set of data available for the region. It was the most evenly 

sampled data, had the largest sample size and in aggregate was less prone to individual 

researcher bias or intellectual focus. These advantages come from the comparatively little 

effort it takes to date a site compared to excavations or site-level analysis of features and 

artifact assemblages. While not perfect, and subject to its own limitations, the 

demographic analysis presented above highlights the exceptional utility of using 14C 

dates as data. At a regional level we can explore trends in settlement patterns, population 

histories, and changes to intensity or longevity to site use. These methods also allow us to 

compare relationships and patterning between any of these variables on scales that would 

have otherwise been prohibitively cumbersome. In other words, even if not used directly 

as a population proxy, these methods are extremely useful as a tool for pattern 

recognition and for generating questions.  

   

Future Work 

 The major goal of this research was to highlight what we can actually say about 

mobility patterns on the North Coast prior to 5,000 cal BP. However, the secondary goal 

was to use this research as a way to illustrate where our largest gaps in understanding are 

and what kind of data can be used to answer them. The following suggestions of future 

work are done with this in mind.  

 Overall, it should be emphasized that more data is needed from individual sites if 

we are to better assess the nuances in mobility strategies between regions and understand 

how sub-regionally specific environmental, demographic and social variables influenced 

the adoption and evolution of logistically organized mobility and how these strategies 
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may have differed between regions . To date, sites dating to the period covered here have 

largely been uncovered through paleo-shoreline surveys that have focused on site 

discovery, but have forgone excavations due to financial limitations and the individual 

goals of researchers. While this work is what made this thesis possible and is paramount 

for the demographic analyses, without contextualizing the dates of these sites with more 

detailed data, there are severe limits to the inferences we can draw from them. This issue 

is especially problematic in Southeast Alaska, where, anecdotally speaking, I feel that we 

may be seeing a very different mobility pattern than seen in Haida Gwaii or the Dundas 

regions. I believe that populations within Southeast Alaska were much more mobile and 

riverine focused, while making more extensive use of terrestrial resources.  

 With this in mind, I also highlight the need to specifically excavate sites dating 

between 8,000 and 6,000 cal BP, in order to better understand the region-wide transition 

to more sedentary living. At the moment, this transition is inferred only by the 

appearance of permanent structures and very preliminary seasonality analyses. Without 

more detailed subsistence, technological and site formation data, little more can be made 

of this event or its connections with social or environmental factors. Moreover, efforts to 

investigate or even locate sites on the interior need to be taken as a complete 

understanding of this transition may remain elusive if data from interior regions stays as 

negligible as it is today.  

 The population collapse lasting between ~8,800 and 8,400 cal BP also requires 

further investigation. There is some circularity in using 14C data to track this event, due to 

the linkage between global environmental changes and 14C production, which means that 

other lines of evidence outside of 14C dating need to be used to corroborate this event. 
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The implication of this collapse and the exceedingly fast recovery from it, hold massive 

potential for elucidating a possibly extraordinary and widely shared event throughout the 

entire region’s history.  

 Lastly, this thesis research has brought attention to the importance of using 

calibrated 14C dates, instead of simply using the raw 14C date, when discussing the 

timing and temporal relationship between events. This issue is pervasive in literature 

from the North coast and poses serious problems for analysis. As discussed in section 3.1 

uncalibrated 14C dates are not actually dates, they are ratios regarding the amount of 14C 

in an object. Therefore, when we say “radiocarbon years before present” we are not 

actually specifying any amount of time, as “radiocarbon” years are not years. A 

radiocarbon year is not a standard measurement, as each individual radiocarbon year 

represents a different amount of time (i.e. an object five radiocarbon years older is not 

five calendar years older, and how much older an object is changes through time). This 

means that, at best, uncalibrated 14C dates can be used to represent an ordinal order of 

events. For a more detailed illustration of this problem see appendix IV.  

 Further adding to this issue is that uncalibrated 14C dates are not comparable to 

dates coming from other dating techniques. For example, ‘years BP’ from luminescence, 

ice-core, tree ring or obsidian dates are not equivalent to an uncalibrated radiocarbon 

date; they are scaled to calendar years and therefore comparable only to calibrated 14C 

dates. 

 The problems that result from the lack of calibration are not trivial and can result 

in dramatic misinterpretations or inability to see patterning in temporal data. An example 

of this is the population gap discovered in this research. Part of the reason this gap has 
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not been discovered before may have been because it does not exist in terms of 

uncalibrated dates (see figure-17 below) and much of the literature for the North coast 

uses uncalibrated dates when discussing the chronology of events. Outside of this gap, 

literature review for this thesis also revealed many examples where confusion or 

inappropriate inferences in regards to the timing and tempo of archaeological and paleo-

environmental events and their correlation had resulted from the use of uncalibrated 

dates. The inconsistent, or lack of acknowledgement in using uncalibrated or calibrated 

dates has also led to some confusion where calibrated (or calendar scale) data is 

compared to uncalibrated.  

 There are critical problems in the use of uncalibrated dates, and this discussion 

has not even included the extra problems coming from using uncalibrated marine dates 

and their comparability issues. There is also little reason to use uncalibrated dates, as 

calibration software is free (though sometimes tricky) and widely available. Furthermore, 

while dates older than 10,000 BP were initially problematic to calibrate due to a lack of 

calibration data for this time period, this issue has mostly been resolved with the last few 

iterations of the IntCal curve (See Reimer et al. 2013).   
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Figure 17: Histogram showing frequency of uncalibrated dates from the North Coast study 
region, through time. Note that the gap in the histogram is much less severe than observed in the 
SPD made from calibrated dates. 

 Altogether then, with the extensive list of caveats and need for more research in 

mind. There does not appear to be any straightforward connection between mobility 

change and any of the variables discussed throughout this thesis. While a more direct 

relationship may be revealed with more data, I believe that this research indicates that 

there are no meaningful (at a population level) organizational, technological or 

population barriers, which prohibit the development of sedentism and logistic mobility. 

Instead, it seems all that is needed is a lack of mobility options. Whereby, as Ames’ 

hypothesizes, the demands of organized labor drive its own complexification. Therefore, 

as proposed by Scarborough and Burnside (2010) changes to labor organization that 
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increase efficiency of pursuits may be more easily accomplished and more effective than 

is currently conceptualized by archaeologists.  
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Appendix A: Terrestrial 14C Dates Used Throughout Thesis  
 

Site Name Site 
Number** 

Location 
Code 

Lab # Conventional 
Age 

STD Calibrated Age 
Range* 

Material 

Rosie's 
Rockshelter 

 CRG236 AK WSU-3238 4150 80 4850-4445 charcoal 

Wolf's Lair  CRG381 AK Beta-74861 4440 60 5288-4872 wood 

Wolf's Lair  CRG381 AK Beta-_75463 4360 70 5280-4828 wood 

Wolf's Lair  CRG381 AK Beta-_75462 4120 70 4835-4441 wood 

Ground Hog 
Bay 2 

 JUN037 AK WSU-_412 10800 800 15065-10519 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK SI-2112 9220 80 10578-10234 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK I-__6304 9130 130 10656-9914 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK I-__7057 8880 125 10236-9565 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK I-__6395 8230 130 9520-8783 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK I-__7058 7545 185 8858-7966 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK SI-2106 6755 110 7826-7433 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK SI-2107 5770 95 6790-6323 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK SI-2105 5360 90 6300-5937 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK SI-2109 4180 65 4850-4530 charcoal 

Ground Hog 
Bay 2 

 JUN037 AK I-__7056 4155 95 4864-4427 charcoal 

Coffman 
Cove 

 PET067 AK SI-4478 4105 75 4829-4437 charcoal 

Coffman 
Cove 

 PET067 AK SI-4475 4100 75 4827-4437 charcoal 

On Your 
Knees Cave 

 PET408 AK CAMS-_43990 9210 50 10506-10248 charcoal 

On Your 
Knees Cave 

 PET408 AK CAMS-_43989 9150 50 10486-10225 charcoal 

On Your 
Knees Cave 

 PET408 AK CAMS-_43991 8760 50 10115-9555 charcoal 

On Your 
Knees Cave 

 PET408 AK CAMS-31069 5210 60 6182-5768 deer bone 

Lake Eva  SIT170 AK SI-5576 5780 90 6793-6354 charcoal 

Lake Eva  SIT170 AK SI-5578 5520 100 6533-6011 charcoal 

Lake Eva  SIT170 AK SI-5580 5500 70 6445-6125 charcoal 
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Kanalku Coal 
Claim Weir 

 SIT329 AK Beta-_46336 5550 50 6438-6279 wood 

-  SUM042 AK Beta-_13923 4240 80 5029-4530 charcoal 

Hidden Falls  XPA119 AK SI-4360 10345 95 12530-11825 wood 

Hidden Falls  XPA119 AK SI-4354 10075 75 11978-11320 wood 

Hidden Falls  XPA119 AK SI-4352 10005 75 11805-11246 wood 

Hidden Falls  XPA119 AK SI-3776 9860 75 11609-11165 wood 

Hidden Falls  XPA119 AK SI-4359 9690 70 11235-10785 wood 

Hidden Falls  XPA119 AK SI-3778 9410 70 11068-10425 wood 

Hidden Falls  XPA119 AK SI-4355 9405 75 11069-10412 wood 

Hidden Falls  XPA119 AK SI-4358 9290 70 10660-10264 wood 

Hidden Falls  XPA119 AK SI-4353 9080 70 10491-9953 wood 

Hidden Falls  XPA119 AK Beta-__7440 9060 230 11058-9543 charcoal 

Hidden Falls  XPA119 AK SI-4356 8750 65 10125-9546 wood 

Hidden Falls  XPA119 AK SI-4357 8640 70 9885-9495 wood 

Hidden Falls  XPA119 AK SI-4340 7900 90 9007-8541 wood 

Hidden Falls  XPA119 AK SI-3777 7175 155 8321-7701 wood 

Hidden Falls  XPA119 AK Beta-__7442 4620 110 5589-4976 charcoal 

Thorne River CRG-177 AK WSU-3618 7650 160 8978-8168 Charcoal 

Thorne River CRG-177 AK WSU-3679 7560 90 8540-8189 Charcoal 

Thorne River CRG-177 AK WSU-3681 7440 90 8403-8046 Charcoal 

Chuck Lake CRG237 AK WSU-3241 8220 125 9494-8780 Charcoal 

Chuck Lake CRG237 AK WSU-3242 7360 270 8931-7657 Charcoal 

Logjam Creek 
Falls 

CRG-578 AK Beta-264553 5160 40 5995-5755 Charcoal 

Rice Creek CRG-592 AK Beta-264554 9090 50 10396-10182 Charcoal 

Rice Creek CRG-592 AK Beta-264580 8330 50 9473-9142 charcoal 

Rice Creek CRG-592 AK Beta-264579 6100 50 7159-6805 charcoal 

Canoe Point CRG-595 AK Beta-268998 8220 50 9397-9025 Charcoal 

Canoe Point CRG-595 AK Beta-268997 8130 50 9255-8992 Charcoal 

Canoe Point CRG-595 AK Beta-264080 7240 50 8167-7970 Charcoal 

Canoe Point CRG-595 AK Beta-268996 7190 50 8159-7936 Charcoal 

Staney Creek CRG-600 AK Beta-269000 6890 40 7831-7656 charcoal 

Staney Creek CRG-600 AK Beta-269001 6840 40 7757-7591 charcoal 

Staney Creek CRG-600 AK Beta-268999 6350 40 7415-7174 charcoal 

Staney Creek CRG-600 AK Beta-269003 6100 40 7158-6861 charcoal 

Staney Creek CRG-600 AK Beta-269002 4530 40 5314-5046 charcoal 

Falls Creek CRG-603 AK Beta-283337 7030 40 7954-7763 charcoal 

Falls Creek CRG-603 AK Beta-283338 6860 40 7787-7615 charcoal 

Falls Creek CRG-603 AK Beta-283339 6840 40 7757-7591 Charcoal 

Cape Pole CRG-606 AK Beta-283011 7250 40 8167-7983 charcoal 
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Cape Pole CRG-606 AK Beta-283013 6390 40 7420-7260 Charcoal 

Cape Pole CRG-606 AK Beta-283012 5570 40 6435-6291 Charcoal 

Cape Pole 
Easy 12m 

CRG-609 AK Beta-283016 5760 40 6659-6454 Charcoal 

Cape Pole 
Easy 12m 

CRG-609 AK Beta-283017 5590 40 6443-6299 Charcoal 

Cape Pole 
30m 

CRG-610 AK Beta-283015 5130 40 5986-5749 Charcoal 

Rice Creek 2 CRG-611 AK Beta-286823 8660 40 9697-9539 Charcoal 

Cape Pole 
12m  

CRG-612 AK Beta-283347 4170 40 4835-4578 Charcoal 

Cape Pole 
12m  

CRG-612 AK Beta-283346 4100 40 4820-4446 Charcoal 

Warm Chuck CRG-669 AK Beta 337147 7110 50 8016-7841 Charcoal 

Black Beauty CRG-670 AK Beta 337149 8080 40 9128-8780 charcoal 

Black Beauty CRG-670 AK Beta 338254 8060 40 9089-8775 charcoal 

Black Beauty CRG-670 AK Beta 337148 5570 30 6406-6301 charcoal 

Sunny Cove CRG-708 AK Beta 357144 8400 40 9502-9304 Charcoal 

Trout Creek PET650 AK Beta-288260 9130 40 10407-10222 Charcoal 

Trout Creek PET650 AK Beta-286822 8980 40 10234-9930 Charcoal 

Trout Creek PET650 AK Beta-288621 8900 40 10190-9896 Charcoal 

Trout Creek PET650 AK Beta-288619 8860 40 10165-9774 Charcoal 

Trout Creek PET650 AK Beta-264082 8730 50 9890-9554 Charcoal 

Trout Creek 
18m 

PET-650 AK Beta 288621 8900 40 10190-9896 Charcoal 

Trout Creek 
18m 

PET-650 AK Beta 286821 8840 40 10156-9710 Charcoal 

Trout Creek 
18m 

PET-650 AK Beta 264082 8730 50 9890-9554 Charcoal 

  GcTq-2 D UCIAMS 
28009 

6930 20 7823-7689 Charcoal 

Far West 
Point 

GcTr-6 D UCIAMS 
28008 

9690 30 11204-10885 Charcoal 

Far West 
Point 

GcTr-6 D UCIAMS 
30930 

6940 20 7829-7698 Charcoal 

Far West 
Point 

GcTr-6 D UCIAMS 
21984 

6925 50 7920-7667 Charcoal 

Far West 
Point 

GcTr-6 D TO-13292 6800 60 7784-7566 Charcoal 

Far West 
Point 

GcTr-6 D UCIAMS 
30931 

6490 20 7440-7326 Charcoal 

Far West 
Point 

GcTr-6 D UCIAMS 
30932 

6185 20 7165-7006 Charcoal 

  GdTq-3 D D-AMS 
007908  

5928 30 6845-6670 Charcoal 
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Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-76670 9850 40 11326-11199 charcoal 

Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-70704 9460 50 11068-10568 caribou 
bone 

Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-76666 9430 50 11057-10515 charcoal 

Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-77248 9410 50 10757-10511 charcoal 

Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-79684 9340 40 10680-10427 charcoal 

Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-79682 9260 40 10562-10290 charcoal 

Kilgii Gwaay  FaTs 
(1325T) 

HG CAMS-76668 9230 50 10545-10251 charcoal 

Sedgewick 
Bay 

FbTv-
(791T) 

HG CAMS-10597 8080 60 9248-8729 plant 
remains 

Poole Inlet 
West  

FcTt-
(1359T) 

HG CAMS-26261 8270 60 9435-9034 charcoal 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 9968 9900 90 11711-11180 charcoal 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 8382 9840 100 11709-10873 charcoal 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 9984 9810 190 11968-10685 bone 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-10844 9750 70 11307-10795 wood 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-10855 9720 70 11252-10788 bone 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-10600 9580 200 11591-10268 wood 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-10847 9430 100 11104-10404 wood 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 9986 9410 60 11061-10439 wood 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-10846 9320 60 10692-10298 wood 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-10599 9280 60 10649-10264 wood 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 8381 9240 60 10560-10254 plant 
remains 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 8380 9150 60 10495-10218 plant 
remains 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 9987 9150 100 10645-9975 charcoal 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 4113 9100 90 10520-9938 plant 
remains 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 8377 9010 160 10560-9632 charcoal 
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Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS- 4114 8890 70 10202-9737 wood 

Arrow Creek 
1  

FcTv- 
(925T) 

HG CAMS-33909 8880 50 10182-9779 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG TO- 2622 8200 80 9407-9004 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG TO- 2623 8200 90 9439-8990 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG CAMS-33908 8150 60 9288-8992 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG CAMS-33906 7410 60 8374-8050 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG CAMS-33907 7000 50 7939-7711 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG CAMS- 4111 5650 70 6628-6301 charcoal 

Arrow Creek 
1  

FcTv- 
(925T) 

HG CAMS- 4112 5650 70 6628-6301 charcoal 

Lyell Bay 
East 

FdTv-
(1355T) 

HG CAMS-33913 8810 60 10158-9632 charcoal 

Lyell Bay 
East  

FdTv-
(1355T) 

HG CAMS-33912 8610 60 9731-9486 charcoal 

Lyell Bay 
East  

FdTv-
(1355T) 

HG CAMS-26257 7540 50 8423-8205 charcoal 

Lyell Bay 
East  

FdTv-
(1355T) 

HG CAMS-33911 5350 60 6281-5993 charcoal 

Lyell Bay 
East  

FdTv-
(1355T) 

HG CAMS-33910 5030 40 5896-5661 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-42481 9070 50 10378-10170 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-33917 8450 60 9541-9309 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-42480 8230 50 9400-9029 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-33916 8170 60 9294-8999 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-26256 8110 60 9269-8780 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-33915 8060 60 9132-8660 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-33914 7940 60 8992-8610 charcoal 

Lyell Bay 
South  

FdTv-
(1355T) 

HG CAMS-26255 6630 60 7591-7429 charcoal 

Dodge Point  FeTu-
(1131T) 

HG CAMS- 9979 5490 80 6449-6020 charcoal 

Echo Bay FeTw-
(1127T) 

HG CAMS- 9977 8580 60 9682-9475 wood 
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Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-39877 9590 50 11145-10742 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-39875 9290 50 10648-10286 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-39876 9290 50 10648-10286 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26270 9220 60 10552-10245 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26269 9160 60 10496-10226 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26268 9080 60 10476-10158 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-16202 9010 60 10257-9918 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26266 8980 60 10241-9915 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26267 8960 60 10233-9910 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS- 9975 8850 60 10173-9705 wood 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26264 8850 60 10173-9705 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-16201 8750 60 10119-9547 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26265 8700 60 9888-9543 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-16200 8690 70 9901-9536 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26263 8640 50 9732-9527 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS- 9974 8550 70 9680-9437 plant 
remains 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-16199 8490 70 9560-9307 charcoal 

Richardson 
Island  

FeTw-
(1127T) 

HG CAMS-26262 8470 60 9547-9320 charcoal 

Kasta FgTw-4 HG S- 677 6010 100 7161-6652 charcoal 

Kasta FgTw-4 HG GaK-3511 5420 100 6403-5950 charcoal 

Lawn Point FiTx-3 HG S- 679 7400 140 8451-7952 charcoal 

Lawn Point FiTx-3 HG GaK-3272 7050 110 8154-7666 charcoal 

Lawn Point FiTx-3 HG GaK-3271 5750 110 6785-6311 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-54599 6980 50 7932-7696 charcoal 

Cohoe Creek FjUb-  10 HG Beta-25179 6150 70 7248-6861 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50948 5680 100 6714-6289 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50956 5590 50 6468-6292 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50952 5380 40 6284-6009 charcoal 
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Cohoe Creek FjUb-  10 HG CAMS-19017 5370 70 6295-5955 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-16204 5320 60 6274-5943 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50960 5290 40 6187-5943 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50962 5260 40 6180-5928 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50950 5230 40 6177-5912 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50954 5090 50 5935-5715 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-16207 5000 70 5899-5609 charcoal 

Cohoe Creek FjUb-  10 HG RIDDL-1227 4990 110 5987-5482 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-16206 4970 60 5891-5596 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-50958 4930 40 5735-5594 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-16205 4900 80 5891-5470 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-16209 4420 60 5285-4860 charcoal 

Cohoe Creek FjUb-  10 HG CAMS-16208 4390 70 5284-4842 charcoal 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-19023 5740 60 6667-6407 charcoal 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-19019 5330 60 6276-5949 charcoal 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-16203 4520 60 5437-4972 charcoal 

Skoglund's 
Landing 

FlUa-   1 HG GX-1696 4165 130 5045-4297 charcoal 

Bluejackets 
Creek 

FlUa-   4 HG GaK-5093 5260 440 7156-4986 charcoal 

Bluejackets 
Creek 

FlUa-   4 HG GSC-1554 4290 130 5290-4526 charcoal 

Bluejackets 
Creek 

FlUa-   4 HG S- 676 4160 120 5038-4305 charcoal 

Bluejackets 
Creek 

FlUa-   4 HG S-2776 4160 140 5212-4250 charcoal 

Bluejackets 
Creek 

FlUa-   4 HG S- 936 4150 90 4857-4437 charcoal 

Ridley Island GbTn-19 PRH S-1672 4890 80 5891-5335 charcoal 

Ridley Island GbTn-19 PRH S-1671 4610 60 5574-5053 charcoal 

Dodge Island GbTo-18 PRH S-1410 5555 140 6658-6003 charcoal 

Dodge Island GbTo-18 PRH S-1409 4875 125 5900-5324 charcoal 

Dodge Island GbTo-18 PRH GaK-1879 4790 100 5729-5311 charcoal 

Dodge Island GbTo-18 PRH GaK-1880 4130 90 4845-4435 charcoal 

Boardwalk GbTo-31 PRH S- 752 4230 220 5449-4157 charcoal 

Lachane GbTo-33 PRH S- 843 4630 105 5589-4982 charcoal 

Lachane GbTo-33 PRH S-1148 4455 80 5302-4871 charcoal 

Kitandach GbTo-34 PRH S- 924 4970 100 5924-5483 charcoal 

Kitandach GbTo-34 PRH S- 927 4460 120 5463-4831 charcoal 

Kitandach GbTo-34 PRH SUERC-44466 4218 29 4853-4645 charcoal 
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Kitandach GbTo-34 PRH SUERC-44475 4216 27 4851-4646 charcoal 

Kitandach GbTo-34 PRH SUERC-44468 4182 27 4836-4620 charcoal 

Kitandach GbTo-34 PRH SUERC-44470 4176 27 4833-4616 charcoal 

Kitandach GbTo-34 PRH S-1408 4100 140 4968-4162 charcoal 

Paul Mason GdTc-16 PRH SFU- 259 5050 140 6181-5485 charcoal 

Paul Mason GdTc-16 PRH S-2336 4745 195 5908-4892 charcoal 

Paul Mason GdTc-16 PRH S-2337 4655 130 5644-4971 charcoal 

Paul Mason GdTc-16 PRH S-2334 4395 130 5447-4624 charcoal 

Paul Mason GdTc-16 PRH SFU- 261 4350 320 5738-4090 charcoal 

Paul Mason GdTc-16 PRH WSU-2923 4280 95 5271-4530 charcoal 

Paul Mason GdTc-16 PRH SFU- 258 4270 200 5454-4291 charcoal 

Paul Mason GdTc-16 PRH SFU- 257 4250 100 5260-4447 charcoal 

  T416-1 PRH D-AMS 
007904  

6211 28 7242-7008 Charcoal 

  T416-1 PRH D-AMS 
007903  

4504 30 5299-5046 Charcoal 

  
*Calibrated at 2-Sigma (95%) range using OxCal 4.2 and IntCal13 Calibration Curve. In the case of multiple intercepts, the highest 
probability range is represented here. 
** Some site numbers for Haida Gwaii such as FdTv-(1355T) do not have typical Borden numbers because they are not registered 
with the national heritage database in Canada, due to the wishes of the Haida First Nations. Therefore, while the FdTv does represent 
the general Borden block where the site is located, the numbering that follows is the Haida Gwaii Park Service internal numbering 
system for sites and does not represent the locality of the site.  The site number T416-1 is a temporary site number and is awaiting an 
official designation.  

Appendix B: Marine 14C Dates Used Throughout Thesis 
 

Site Name Site 
Number 

Location 
Code* 

Lab # Conventional 
Age 

STD Calibrated Age 
Range** 

Material 

Thorne 
River 

 CRG177 AK WSU-3618 7650 160 7924-7290 marine 
shell 

Rosie's 
Rockshelter 

 CRG236 AK WSU-3234 4460 100 4225-3588 marine 
shell 

Rosie's 
Rockshelter 

 CRG236 AK WSU-3236 4230 140 4008-3228 marine 
shell 

Chuck Lake 
1 

 CRG237 AK WSU-3243 8180 130 8383-7817 marine 
shell 

Chuck Lake 
2 

 CRG237 AK WSU-3245 5140 90 5169-4499 marine 
shell 

Chuck Lake 
3 

 CRG237 AK WSU-3244 5240 90 5273-4674 marine 
shell 

On Your 
Knees Cave 

 PET408 AK CAMS-
_42381 

10300 50 9825-9245 bone 

On Your 
Knees Cave 

 PET408 AK CAMS-
_32038 

9880 50 9562-9024 Human 
bone 
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On Your 
Knees Cave 

 PET408 AK CAMS-
_29873 

9730 60 9428-8926 Human 
bone 

Chuck Lake CRG-237 AK WSU-3243 8180 130 8383-7817 marine 
shell 

  GcTq-4 D Beta 
215178 

6830 70 7261-6802 Marine 
shell 

  GcTq-4 D Beta 
215179 

5290 40 5562-5123 Marine 
shell 

  GcTq-5 D TO 13600 8829 60 9411-8973 Marine 
shell 

  GcTq-5 D TO 13599 4620 50 4770-4227 Marine 
shell 

  GcTr-3 D Beta 
215176 

4440 50 4442-3965 Marine 
shell 

Far West 
Point 

GcTr-6 D UCIAMS 
21881 

7510 20 7841-7556 Marine 
shell 

Far West 
Point 

GcTr-6 D UCIAMS 
31730 

7300 30 7644-7380 Whale 
bone 

Far West 
Point 

GcTr-6 D Poz 30563 7005 44 7413-7057 Marine 
shell 

Far West 
Point 

GcTr-6 D Poz 30562 6900 43 7306-6928 Marine 
shell 

  GcTr-8 D TO-13289 7000 60 7415-7020 Marine 
shell 

  GcTr-8 D XA 5803 6306 31 6616-6281 Marine 
shell 

  GcTr-8 D XA 5804 6192 36 6496-6166 Marine 
shell 

  GdTq-1 D TO 13593 6190 70 6555-6102 Marine 
shell 

  GdTq-1 D TO 13594 5140 70 5400-4865 Marine 
shell 

  GdTq-1 D Beta 
215174 

4780 40 4845-4447 Marine 
shell 

  GdTq-1 D TO 13595 4640 70 4790-4235 Marine 
shell 

  GdTq-3 D Beta 
215180 

6890 50 7303-6907 Marine 
shell 

  GdTq-3 D Poz 27700 6600 50 6989-6558 Marine 
shell 

  GdTq-3 D Poz 30561 6540 41 6899-6494 Marine 
shell 

  GdTq-3 D D-AMS 
008142  

6474 29 6804-6432 Marine 
shell 
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  GdTq-3 D Poz 30560 6435 42 6772-6391 Marine 
shell 

  GdTq-3 D D-AMS 
008141  

5990 29 6265-5934 Marine 
shell 

  GdTq-3 D Poz 30559 5821 38 6140-5720 Marine 
shell 

  GdTq-3 D Poz 25879 5537 38 5825-5445 Marine 
shell 

  GdTq-3 D Beta 
215183 

5230 60 5505-4978 Marine 
shell 

Lucy Island GbTp-1 D2 Beta 
345573 

8680 40 9231-8715 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
345571 

7800 40 8154-7810 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
292552 

7500 40 7851-7534 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
292555 

7220 40 7573-7284 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
292551 

6910 40 7311-6940 marine 
shell 

Lucy Island GbTp-1 D2 Beta 
292554 

6900 40 7304-6931 marine 
shell 

Lucy Island GbTp-1 D2 Beta 
292553 

6230 40 6541-6196 marine 
shell 

Lucy Island GbTp-1 D2 Beta 
292550 

6220 40 6529-6185 marine 
shell 

Lucy Island GbTp-1 D2 Beta 
317343 

5710 40 5952-5602 Human 
bone 

Lucy Island GbTp-1 D2 Beta 
345575 

5560 40 5841-5467 marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
345577 

5500 30 5745-5362 marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
345570 

5440 30 5648-5314 marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
294715 

5330 40 5580-5223 Human 
bone 

Lucy Island GbTp-1 D2 Beta 
292549 

5290 40 5562-5123 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
345572 

4960 30 5193-4710 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
345574 

4950 30 5186-4688 Marine 
Shell 

Lucy Island GbTp-1 D2 Beta 
345576 

4780 30 4845-4450 Marine 
Shell 
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Kilgii 
Gwaay 

FaTs 
(1325T) 

HG CAMS-
76669 

10140 40 11035-10647 marine 
shell 

Kilgii 
Gwaay 

FaTs 
(1325T) 

HG CAMS-
76667 

10040 50 10919-10514 marine 
shell 

Kilgii 
Gwaay 

FaTs 
(1325T) 

HG CAMS-
79683 

10040 40 10900-10528 marine 
shell 

Kilgii 
Gwaay 

FaTs 
(1325T) 

HG CAMS-
79681 

10020 50 10890-10492 marine 
shell 

Kilgii 
Gwaay 

FaTs 
(1325T) 

HG CAMS-
79685 

9270 40 9881-9524 marine 
shell 

Arrow Creek 
2 

FcTv- 
(925T) 

HG CAMS-
10853 

10020 60 10920-10479 marine 
shell 

Arrow Creek 
2 

FcTv- 
(925T) 

HG CAMS- 
9969 

9970 70 10864-10370 marine 
shell 

Arrow Creek 
2 

FcTv- 
(925T) 

HG CAMS-
10856 

9930 60 10756-10330 marine 
shell 

Arrow Creek 
2 

FcTv- 
(925T) 

HG CAMS-
10845 

9900 70 10717-10266 marine 
shell 

Arrow Creek 
2 

FcTv- 
(925T) 

HG CAMS- 
8376 

9870 60 10661-10259 marine 
shell 

Arrow Creek 
2 

FcTv- 
(925T) 

HG CAMS- 
8373 

9860 70 10662-10240 marine 
shell 

Arrow Creek 
2  

FcTv- 
(925T) 

HG CAMS-
10848 

10030 100 11025-10405 marine 
shell 

Echo Bay FeTw-
(1127T) 

HG CAMS- 
9978 

9640 70 10461-9959 marine 
shell 

Echo Bay FeTw-
(1127T) 

HG CAMS-
14438 

9270 100 10075-9472 sea otter 
bone 

Richardson 
Island 

FeTw-
(1127T) 

HG CAMS-
16953 

9390 100 10160-9560 marine 
shell 

Richardson 
Island 

FeTw-
(1127T) 

HG CAMS-
10854 

9250 60 9899-9487 marine 
shell 

Richardson 
Island 

FeTw-
(1127T) 

HG CAMS-
16955 

8960 80 9525-9115 marine 
shell 

Richardson 
Island 

FeTw-
(1127T) 

HG CAMS- 
9976 

8850 60 9413-9025 marine 
shell 

Richardson 
Island 

FeTw-
(1127T) 

HG CAMS-
16954 

8750 60 9340-8928 marine 
shell 

Richardson 
Island 

FeTw-
(1127T) 

HG CAMS-
19290 

8540 60 9002-8589 whale 
bone 

Cohoe Creek FjUb-  10 HG CAMS-
50957 

6350 40 6660-6368 marine 
shell 

Cohoe Creek FjUb-  10 HG CAMS-
50949 

6340 40 6650-6353 marine 
shell 
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Cohoe Creek FjUb-  10 HG CAMS-
50959 

6240 40 6533-6268 marine 
shell 

Cohoe Creek FjUb-  10 HG CAMS-
50951 

6150 40 6429-6180 marine 
shell 

Cohoe Creek FjUb-  10 HG CAMS-
50961 

6020 40 6285-5999 marine 
shell 

Cohoe Creek FjUb-  10 HG CAMS-
50953 

6000 40 6274-5988 marine 
shell 

Cohoe Creek FjUb-  10 HG CAMS-
16957 

5990 60 6281-5948 marine 
shell 

Cohoe Creek FjUb-  10 HG CAMS-
50963 

5980 50 6270-5955 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
50955 

5890 40 6175-5896 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
19018 

5790 60 6115-5717 marine 
shell 

Cohoe Creek FjUb-10 HG RIDDL-
1228 

5715 90 6061-5592 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
16958 

5650 60 5904-5593 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
16959 

5570 50 5861-5551 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
16960 

5550 60 5845-5485 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
16962 

5020 60 5246-4835 marine 
shell 

Cohoe Creek FjUb-10 HG CAMS-
16961 

4890 70 5111-4579 marine 
shell 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-
19022 

6000 50 6285-5975 marine 
shell 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-
19024 

5990 70 6291-5930 marine 
shell 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-
19020 

5810 60 6142-5741 marine 
shell 

Strathdang 
Kwun High 

FkUb-  16 HG CAMS-
16956 

5240 60 5511-5066 marine 
shell 

Bluejackets 
Creek 

FlUa-   4 HG S-2352 5055 155 5475-4645 Human 
bone 

Bluejackets 
Creek 

FlUa-   4 HG S-2351 5005 150 5430-4603 Human 
bone 

Bluejackets 
Creek 

FlUa-   4 HG S-2349 4675 145 4956-4145 Human 
bone 

Garden 
Island 

GbTo-23 PRH S-1596 6330 80 6711-6260 Human 
bone 
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Kitandach GbTo-34 PRH SUERC-
44467 

4898 29 5032-4597 marine 
shell 

Kitandach GbTo-34 PRH SUERC-
44469 

4886 27 5016-4587 marine 
shell 

Kitandach GbTo-34 PRH SUERC-
44474 

4854 29 4959-4542 marine 
shell 

Kitandach GbTo-34 PRH SUERC-
44465 

4852 27 4955-4543 marine 
shell 

Kitandach GbTo-34 PRH OS-108926   4600 30 4684-4216 marine 
shell 

Kitandach GbTo-34 PRH OS-108968   4570 25 4605-4166 marine 
shell 

Kitandach GbTo-34 PRH OS-108925   4320 30 4275-3838 marine 
shell 

Kitandach GbTo-34 PRH OS-109689 4300 20 4235-3825 marine 
shell 

Kitandach GbTo-34 PRH SUERC-
44456 

4242 29 4154-3719 marine 
shell 

  GbTo-59 PRH OS-108829   4470 25 4478-4056 marine 
shell 

  GbTo-66 PRH OS-101348   4810 30 4887-4496 marine 
shell 

  GbTo-66 PRH OS-101352   4780 25 4844-4475 marine 
shell 

  GbTo-66 PRH OS-101344   4650 40 4775-4296 marine 
shell 

  GbTo-66 PRH OS-101350   4230 30 4141-3711 marine 
shell 

  GcTn-9 PRH OS-119878 4250 25 4169-3735 marine 
shell 

  GcTo-27 PRH OS-101360   4380 25 4366-3926 marine 
shell 

McNichol 
Creek 

GcTo-6 PRH OS-101646   5780 35 6081-5669 marine 
shell 

McNichol 
Creek 

GcTo-6 PRH OS-101555   4490 30 4498-4077 marine 
shell 

  T416-1 PRH D-AMS 
007887  

6951 46 7371-6982 marine 
shell 

  T627-2 PRH OS-101563   4860 25 4965-4552 marine 
shell 

  T627-2 PRH OS-101562   4310 30 4260-3827 marine 
shell 

  GaTp-10 SI D-AMS 
007883  

9133 30 9695-9335 marine 
shell 
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  GaTp-10 SI D-AMS 
007882  

6275 26 6589-6261 marine 
shell 

* AK dates calibrated using Delta_R of 545+-60 (Carlson and Baichtal 2015); Dundas, Lucy and PRH dates calibrated using Delta_R 
of 288 +-69; Haida Gwaii dates calibrated using Delta_R of 265 +-45 (Southon and Fedje 2003) 
**Calibrated at 2-Sigma (95%) range using OxCal 4.2 and Marine13 Calibration Curve. In the case of multiple intercepts, the highest 
probability range is represented here.  
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Appendix C: The Importance of Calibrating 14C Dates and Why 
Combine Them Prior to Calibration 
 

To create 'bins' or weighted averages of multiple 14C dates, the averaging process 

should be done on the uncalibrated dates and then calibrated (Ramsey 2001, 2008, 2009). 

The reason for this is partially for consistency, as the results will be different depending 

on whether you average before or after calibration. However, the primary reason to 

average before calibration is because doing so gives a much more accurate reflection of 

the true calendar age and associated error for the sample (Weninger et al. 2015). This is 

because the calibration curve changes the underlying probability distributions of 14C 

samples in a non-linear way, which introduces chaotic effects to every date being 

calibrated. Therefore, when you average calibrated dates you are stacking or 

compounding these effects in the end result. Thus, your average is not just an average of 

the 14C samples, but also an average of the calibration curve. This is why (CalDate A + 

CalDate B)/2 is not equal to the calibrated age of 14C sample A + 14C sample/2 

(Weninger et al. 2015; Ramsey 2009).  

Combining dates before calibration alleviates this issue by creating a single date 

and associated error from the normally distributed isotopic ratios in the 14C samples to 

calibrate, which in turn means that the effects of the calibration curve are incorporated 

only once into the final result (Ramsey 2001, 2009). Besides avoiding the compounding 

effects of the calibration curve, the reason to average beforehand is to make sure the 

correct effects of the calibration curve are captured in the calibration. Because the 

calibration curve is not linear, and its effects are not constant (14C ages can stay the same, 

get older, or younger depending on where in the calibration curve they fall), 14C ages do 

not have a one-to-one relationship to calibrated calendar ages. As table 10 shows while 

the 14C dates are evenly spaced at every 60 years, the calibrated ages have very different 

intervals, changing the relative relationship between dates considerably. The importance 

of this difference, which demonstrates the importance of calibrating dates, is best 

illustrated by comparing the span of dates between the two columns.  The span of the 

uncalibrated dates is 240 years, while the calibrated span is almost half that at 130 years.  
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Table 10: comparison of calibrated and uncalibrated age spans 

Sample # 14C Age STD Cal Age STD 

1 500 50 552 50 

2 560 50 581 49 

3 620 50 602 43 

4 680 50 622 53 

5 740 50 685 37 
  

Because of the curve’s fluctuations, not all 14C years represent the same amount 

of time and the only way to capture the accurate relationship between 14C time and 

calendar time is to make sure the right atmospheric fluctuations are accounted for in the 

averaging process and averaging prior to calibration assures we do this (see Weninger et 

al. 2015 for more discussion). This does not mean that calibrated results will not be 

similar, only that there is no way to know until calibration is complete.  It should also be 

noted that this discussion does not even take into account how to average calibrated dates 

when there are multiple high-probability calibrated ranges or how to weight different 

lengths of calibrated ages with one another.  
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Appendix D: Creating Control Samples with OxCal 
 

Using OxCal version 4.2, the code below was used to simulate a 'control sample' 

from which to compare the actual SPDs. This code creates a series of randomly 

generated 14C dates, in systematic intervals with a randomly generated error for the 

period between 11,000 and 4,000 cal BP. It then calibrates each of these simulated dates 

and sums them together to create an SPD. This was done twice, once using the terrestrial 

curve and a second time using the marine curve (Intcal13 and Marine13 respectively). 

The coding for using the marine curve is the same but options are set to use the marine 

instead of the default terrestrial curve. Copying and pasting this code directly into OxCal 

will allow someone to create their own control samples. The picture to the right of the 

code gives a quick description of what each part of the coding is doing. A similar process 

can be done using the "Make Set" function on CalPal software (Weninger 2015), which is 

available, for free, upon request from Dr. Weninger.

Plot() 
 { 
  var(a); 
  Sum("Sim-rand") 
  { 
   a=12000; 
   while(a>=4000)  
   { 
    // calibrate the date 
 R_Simulate(calBP(a),30) 
    a=a-25; 
   }; 
  }; 
 

 
 
 

This command tells is to randomly generate 
dates according to a uniform distribution.  
Sum command tells it to sum the 
probabilities from the simulation. 
 
Oldest limiting date 
Youngest limiting date 
 
Command to calibrate simulated dates 
 
Command for simulating a 14C date for a 
given calibrated/calendar date. 
Error associated with dates 
 
Interval between dates  
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Appendix E: Illustrative Example Showing the Effects of Using a 
Rolling Mean 
 

The figure below is an illustrative example of the effects of using a rolling mean 

or moving average. Note how it smooths away many of the exaggerated spikes and dips, 

which are usually a product of the calibration curve. It is also important to note that using 

a moving average does move certain events in time slightly. However, this movement 

should not be understood as a tradeoff between reducing noise and precision, as the 

timing of events in the pre-MA graph are not more 'correct'. The timing and spikiness of 

events is a product of both the real timing of events and the shape of the calibration 

curve, thus the moving of events that happens during the smoothing process may both 

better reflect the actual timing of events and eliminate noisy variations.  

 

 
Figure 18: Showing effects of using a rolling mean to smooth data. Note: this is an illustrative 
example and timing of events may differ slightly compared to the other SPD figures. 
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Appendix F: Comparison of Sub-regional effects on the overall 
SPDs.   
 
Comparing compatibility of Marine and Terrestrial samples: 
 

Like other coastal sites across the world, shell middens and other marine sources 

(e.g. sea-mammals, fish, etc.) make up a major portion of dateable material and site-types 

available to archaeologists. Therefore, many sites may only have dates from marine 

sources such as shell fish. Since it is extremely difficult to accurately combine marine 

dates with terrestrial ones in the creation of SPD's, I use comparative methods to 

understand their respective patterning.  The goal of the following comparisons is to 

understand if, when and why there are major differences among the SPDs to better 

understand if there are there significant biases affecting the terrestrial and marine SPDs. 

The first comparison (figure-19) is between the overall terrestrial SPD and the 

overall marine SPD that was created using the most up-to-date Delta_Rs I could find for 

each sub-region. Note that these two SPDs show remarkable consistency between one 

another. In fact they have almost the exact same pattern. The only places where any real 

discrepancies occur is between 9,000-8,400 Cal BP, where the dip in the marine SPD is 

not as significant. After which, the marine SPD also takes much longer to recover 

(~7,800 cal BP) than the terrestrial, which recovers around 8,400 Cal BP. At ~5,400 cal 

BP we also see an inversion between the SPDs where a spike in growth of the marine 

SPD is opposite a decline in the terrestrial. However, given the discussion of 

comparability above (see section 3.3), these differences are quite minor and the overall 

pattern between the two SPDs is very strong.  
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Figure 19: Showing comparison of marine and terrestrial SPDs 

 

Sub-Regional Comparison-Marine: 

 In this section I compare the overall marine and terrestrial SPDs with SPDs 

created for each of the sub-regions in order to better understand how each sub-region is 

effecting the total shape of the SPD. This step also helps identify how certain patterns or 

timing of events are being overly biased by a single sub-region. Figure-20 below, 

compares the marine SPDs.  
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Figure 20: Compares SPD generated for each sub-region to the overall marine SPD. Blue = 
Whole SPD; Red = Dundas; Green = Alaska and Black = Haida Gwaii. All were done using local 
corrections 

 
 Overall, figure-20 clearly demonstrates that certain peaks in the overall SPD are 

being driven by a single sub-region. However, most of these peaks correspond to peaks 

from other regions as well, thus the actual pattern seems fairly robust. Interestingly, 

Haida Gwaii is conspicuously absent for almost 2,000 years between 8,500 and 6,500 cal 

BP and then sees a dramatic increase in representation. This feature highlights a point 

made throughout the thesis, that this time-period has received proportionately little 

sampling effort until very recently compared to much earlier and later sites. This graph 

also shows that samples from the Dundas and PRH regions have a much more 

pronounced signature on the SPD post 7,500 cal BP than either Alaska or Haida Gwaii. 

This may be an effect of the Dundas/PRH region being much more reliant on shell fish, 

which is probably true to some extent given the lack of other subsistence resources on the 

Dundas Islands. However, surveys specifically looking for sites of this age have also 

been much more prevalent on the Dundas Islands (see McLaren 2008; Martindale et al. 

2009, 2010; Letham et al. 2015). In all, while certain sub-regions are more represented in 

certain time periods than others, such as early Alaska, the lack of Haida Gwaii samples 
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between 8,500-6,500 and a possible overrepresentation of sites from the Dundas Islands 

following 7,500, the overall marine SPD is being shaped by samples from multiple sub-

regions throughout the entire period. Therefore, with the above caveats in mind, I feel 

that the region-wide SPD is fairly representative of the region as a whole and is not being 

grossly distorted by any single region.  

  

Sub-regional Comparison of the Terrestrial SPDs 

As with the marine comparisons it is important to compare the total terrestrial 

SPD to the individual sub-regions SPDs, in order to see where and how different sub-

regions are disproportionately affecting the shape of the SPD. 

   

 
Figure 21: showing SPDs from each sub-region, Haida Gwaii (Blue), Alaska (Green) and 
Dundas (Red), compared to the whole terrestrial SPD (black). Note, except for early absence of 
terrestrial dates from Dunas/Lucy area, each sub-region is well represented throughout sequence. 

Figure-21 (above) shows that, similar to the marine samples, the early period is 

much better represented by Haida Gwaii and Alaska than by the Dundas/PRH region. 

However, this difference is much more pronounced in the terrestrial SPD. This can be 

explained by the sampling methods so far employed within the Dundas/PRH region 

where all of the early sites are shell midden sites. Post 8,500 cal BP though; there is 
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relatively even representation within each of the sub-regions. Allowing for expected 

variation between the regions, the terrestrial SPD is a good representation of the region as 

a whole and is not being overly biased by any single sub-region. This does not 

necessarily mean that the shape of the SPDs or trends within it is not affected by research 

or preservation biases, just that these biases are regionally consistent.  
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