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AN ABSTRACT OF THE THESIS OF John F. Bradford for the Degree of Master 

of Science in Applied Science (Structural Engineering) presented Feb-

ruary 21, 1983. 

Title: Secondary Stresses in Bowstring Timber Trusses. 

F 

Civil Engineering 

This study was undertaken in order to determine analytically the 

magnitude of the secondary (i.e., joint deflection induced) moments in 

the continuous glued-laminated chords of bowstring timber trusses. 

Traditionally, these moments have been assumed to be small and therefore 

neglected. The American Institute of Timber Construction makes no men-

tion of these moments in their recommended design procedure. 



The results of the investigation show, however, that these mo­

ments are theoretically very large--considerably larger than the pri­

mary moment. In a typical design problem, a truss designed neglecting 

the secondary moments was found to be 36% overstressed when these mo­

ments were considered. 

2 

Proposed design charts and characteristic equations which repre­

sent the secondary moments are presented for three truss configurations. 

A byproduct of the investigation was the development of a method 

to produce general characteristic equations for a specific structural 

configuration. These equations allow the designer to quickly determine 

the maximum moments, shears, deflections or other variables which may 

be affected by changing a parameter such as the moment of inertia of 

one of the members. The effect on the structure of changing a parame­

ter can be determined immediately by the use of the characteristic equa­

tions as opposed to the significant time and effort involved in running 

a complete frame analysis. The technique is primarily intended for 

standard structures, such as trusses, but might also be useful for 

structures which require a large number of iterations before obtaining 

the final design. 

A computer program for the technique which can be implemented on 

a small microcomputer is presented. 



SECONDARY STRESSES 

IN BOWSTRING TIMBER TRUSSES 

by 

JOHN F. BRADFORD 

A thesis submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE 
in 

APPLIED SC !ENCE 
(STRUCTURAL ENGINEERING) 

Portland State University 
1983 



TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH: 

The members of the Committee approve the thesis of John F. 

Bradford presented February 21, 1983. 

Engineering 

APPROVED: 

Franz N. Rad, Department of Civil Engineering 

Stanl~ E. Rauch, Dean of Graduate Studies and Research 



TO MY LOVING WIFE 

DONETA 

and 

MY FOUR CHILDREN 

JOSHUA 

KAYLA 

LARISSA 

MEGAN 



ACKNOWLEDGEMENTS 

This investigation was carried out under the supervision of 

Dr. Franz N. Rad. The author is indebted to Dr. Rad for his help and 

advice throughout this work. 

The author would also like to thank the other members of his 

thesis conmittee, Dr. Hacik Erzurumlu, Dr. M. M. Gorji, and Dr. Phil 

J. Gold for their helpful connnents and suggestions. 

The author would like to thank Mr. Dick W. Ebeling for his 

valuable input and for allowing the author to devote a considerable 

number of office hours to this work. 

Thanks are also due to Dr. Wendelin H. Mueller for his assist­

ance in the application of the frame analysis program, "RIGID", which 

he authored; also to Leon Kempner for his assistance in the application 

of the SAPIV program. 

The author would like to extend his thanks to Mrs. Sharon Ull- . 

rich for the excellent typing of this thesis. 

I am especially indebted to my dear and loving wife and to my 

four children for their understanding, encouragement and patience 

throughout the author's graduate work. 



TABLE OF CONTENTS 

PAGE 

ACKNOWLEDGEMENTS • • • • • • • • • • • • • • • • • • • • • • • • • • iv 

LIST OF TABLES • . . . . . . . . . . . . . . . . . . . . . . . . . . ix 

LIST OF FIGURES xii . . . . . . . . . . . . . . . . . . . . . . . . . . 
NOTATION •••• . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 

CHAPIER 

I INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • 1 

II 

III 

1.1 BACKGROUND. . . . . . . . . . . . . . . . . . . . 
1.2 DESIGN METHODS. . . . . . . . . . . . . . . . . . . . 

1.2.l Traditional Method . . . . . . . . . . . 
1.2.2 Computer Frame Analysis. . . . . . . . . . . . 

1.3 DESIGN PROBLEMS . . . . . . . . . . . . . . . . . . . 
1.4 SCOPE OF THIS INVESTIGATION . . . . . . . . . . . . . 
STRUCTURAL CHARACTERISTICS AND CONSTRUCTION DETAILS 
OF GLUED-LAMINATED BOWSTRING TRUSSES • • • • • • • • . . . 
2.1 STRUCTURAL CHARACTERISTICS. . . . . . . . . . . . . . 
2.2 CeJ.iMON CONSTRUCTION DETAILS • • • • • • • • • • • • • 

2.2.1 Geometry . . . . . . . . . . . . . . . . . . . 
2.2.2 Details. . . . . . . . . . . . . . . . . . . . 

COMPUTER MODELS ••••• . . . . . . . . . . . . . . . . . 
3.1 GENERAL INFORMATION . . . . . . . . . . . . . . . . . 
3.2 EIGHT PANEL TRUSS • . . . . . . . . . . . . . . . . . 

1 

2 

2 

3 

4 

5 

7 

7 

8 

8 

10 

16 

16 

16 



IV 

3.3 

3.4 

vi 

PAGE 

3.2.l Model I. • • • • • • • • • • • • • • • • • • • 16 

3.2.2 

3.2.3 

3.2.4 

3.2.5 

Model II • . . . . . . . . . . . . . . . . . . 17 

Model III. . . . . . . . . . . . . . . . . . . 17 

Loading •• • • • • • • • • • • • • • • • • • • 20 

Variations • • • • • • • • • • • • • • . . . . 20 

3.2.5.l Web Connection Bolt Slippage. • • • • 20 

3.2.5.2 Heel Joint Slippage • • • • • • • • • 22 

3.2.5.3 Heel Joint Fixity • • • • • • • • • • 22 

3.2.5.4 

3.2.5.5 

3.2.5.6 

3.2.5.7 

Bottom Chord Splice Bolt Slippage 

Bottom Chord Splice Fixity •••• 

Heel Plate Fixity, Chord Rotation 
Permitted at Bolts •••••••• 

• • 

. . 
• • 

Combinations of Effects • • • • • • • 

22 

23 

23 

23 

3.2.6 Member Properties. • • • • • • • • • • • • • • 23 

TEN PANEL TRUSS • • • • • • • • • • • • • • • • • • • 27 

TWELVE PANEL TRUSS. . . . . . . . . . . . . . . . . . 27 

PRil1ARY MOMENTS IN THE TOP CHORD . . . . . . . . . . . . . 30 

4.1 METHODS OF ANALYSIS • • • • • • • • • • • • • • • • • 30 

4.1.1 AITC Method. • • • • • • • • • • • • • • • • • 30 

4.1.2 Moment Distribution. • • • • • • • • • • • • • 31 

4.1.2.l FEM due to "Pe" • • • • • • • • • . . 31 

4.1.2.2 FEM due to External Member Loads. • • 31 

4.1.2.3 Moment Distribution . . . . . . . . . 32 

V SECONDARY MC11ENTS IN THE BOTTOM CHORD. • • • • • • • • • • 46 



vii 

PAGE 

5 .1 PARAMETERS AFFECT ING THE SECONDARY MCMENT IN 
THE BarTOM CHORD. • • • • • • • • • • • • • • • • • • 46 

5.2 ~C AS A FUNCTION OF ~C- • • • • • • • • • • • • • • 52 

5.3 THE EFFECT OF ~c ON ~c· ••••• 

5.4 ~c AS A FUNCTION OF A.re AND 1tc· • 

• • • • • • • • • 54 

. . . . . . • • • 60 

5. 5 THE EFFECT OF 1tc ON THE MCMENT IN 'i'HE BOTTOM CHORD • 6 7 

5.6 INFLUENCE OF TRUSS SPAN (L) ON ~c· • • • • • • • • • 71 

5.7 THE INFLUENCE OF LOADING ON ~C ••••••••••• 75 

5. 8 THE INFLUENCE OF THE NUMBER OF PANELS ON ~C. • • • • 7 5 

5.9 s~ • • • • • • • • • • • • • • • • • • • • • • • 79 

VI SECONDARY MOMENTS IN THE TOP CHORD . . • • • • • • • • • • 83 

6 .1 PARAMETERS AFFECTING M.rc ••••••• • • • • • • • • 85 

6.2 DEVELOPMENT OF EQUATIONS •• . . . . . . . . . . . 85 

VII VERIFICATION OF EQUATIONS DEVELOPED IN CHAPTERS V AND VI • 98 

VIII OTHER FACTORS AFFECTING THE SECONDARY MCMENTS IN THE 
CHORDS • • • • • • • • • • • • • • • • • • • • • • • • • • 102 

8.1 BOLT SLIPPAGE IN THE WEB CONNECTIONS •• • • • . . . • 102 

8. 2 HEEL FIXITY • . . . . . . . . . . . . . . . . . . . • 103 

8.3 BOLT SLIPPAGE IN THE HEEL CONNECTION. • • • • • • • • 104 

8.4 BOTTOM CHORD SPLICE • • • • • • • • • • . . . . . • • 108 

8.5 TERTIARY (P-6.) MCMENTS • . . . . . . . . . . • • 108 

IX DEVELOPMENT OF A SYSTEMATIC APPROACH TO THE DESIGN 
OF STANDARD STRUCTURES • • • • • • • • • • • • • • 

9.1 INTRODUCTION. • • • • • • • • • • • • • • • 

. . . • 110 

• • • 110 

9.2 GENERAL CHARACTERISTIC EQUATION CONCEPT • • • • • • • 110 



viii 

PAGE 

9. 3 PARAMETERS TO BE VARIED • • • • • • • • • • • . • • • • 114 

9.4 DEVELOPMENT OF A GENERAL CHARACTERISTIC EQUATION ••• 115 

9.4.1 Sunnnary •••••••••••••• • • • • • • 119 

9.5 COMPUTER rnPLEMENTATION OF THE PROCEDURE •• • • • • • 122 

9.6 EXAMPLE PROBLEM • • • • • • • • • • . . . . . . . . . 123 

9.6.1 I. Data Base Preparation. . . . • • • • • • • 123 

9.6.2 II. Development of the Characteristic 
Equations •••••••••••••• . . . . . 124 

9.6.3 

9.6.4 

III.A. Verification of Equations •• • • • • • 127 

III.B. Design Procedure ••••••• . . . . 131 

X OBSERVATIONS . . . . . • • • • • • • • . . . . . . • • • • 138 

10.1 EXAMPLE PROBLEM • • • • • • • • . . • • • • • • • • • 138 

10.2 DESIGN OPT1MIZATION • . . • • . . . . • • • . . . . . 143 

10.3 THE EFFECT OF THE SECONDARY MOMENTS ON THE WEBS ••• 144 

XI SUMMARY, CONCLUSIONS AND RECOMMENDATIONS • . . . • • • • • 145 

11.1 SUMMARY ••• • • . . . . . . . . . . . . . • • 145 

11. 2 CONCLUSIONS • • . . • • • • • • • • • • . . . . . . • 146 

11.3 RECCJ1MENDATIONS • • • • • • . . . . . . . . . • • • • 147 

APPENDIX 1 

APPENDIX 2 

APPENDIX 3 

APPENDIX 4 

REFERENCES •• 

DERIVATION AND JUSTIFICATION OF FIXED END MCMENT 
EQUATIONS FOR THE PRIMARY MOMENT ANALYSIS • • • • • • 

SUMMARY OF THE FRAME ANALYSIS COMPUTER DATA • • . . . 
148 

163 

"PINNED MEMBER" DESIGN METHOD • • • • • • • • • • • • 169 

"GENERAL CHARACTERISTIC EQUATION" METHOD COMPUTER 
PROO~. • • • • • • • • • • • • • • • • • • • • • • 171 

• • • • • • • • • • • • • • • • • • . . . . . • ••• 178 



LIST OF TABLES 

TABLE PAGE 

3.1 

3.2 

4.1 

Design Values for Structural Glued Laminated Timber 

Combination No. 3. AITC 117-79 ••••• • • • . . . . . . 
Section Properties of Chord Members • . . . . . . . . . . 
Moment Distribution for the 8 Panel Truss • . . . . • • • 

4.2 Primary Moments in the Top Chord of a 100 Ft., 8 Panel 

25 

26 

37 

Truss with lK/Ft. Loading (Obtained from Eq. 4.6 and 4.7) 38 

4.3 8 Panel Truss - Primary Moments in the Top Chord Obtained 

4.4 

4.5 

4.6 

from Computer Results • • • . . . . . . . . • • • . . . . 
Moment Distribution for the 10 Panel Truss •• . . . . . . 
Primary Moments in the Top Chord of a 100 Ft., 10 Panel 

Truss with lK/Ft. Loading (Obtained from Eq. 4.6 and 4.7) 

Moment Distribution for the 12 Panel Truss •••• . . . . 
4.7 Primary Moments in the Top Chord of a 100 Ft., 12 Panel 

38 

40 

41 

43 

Truss with lK/Ft. Loading (Obtained from Eq. 4.6 and 4.7) 44 

5.1 Principal Parameters Affecting the Secondary Moments in 

the Bottom Chord. • • • • • • • • • • • • • • • • • • • • 

5.2 Computation of ~ and CB for the Eight, Ten and Twelve 

5.3 

5.4 

5.5 

Panel Trusses using Eq. 5.4 and 5.5 • • • • . . . . . . . 
Computation of N •• . . • • • • • • • • • • • • • • • • • 

Computation of MBC using Eq. 5.11 •••••••••••• 

Computation of ~l and CBl using Eq. 5.14 and 5.15 •••• 

47 

53 

56 

61 

65 



x 

PAGE 

5.6 Computation of ~l using Eq. 5.16 • • • • • • • • • • • • 65 

5.7 Computation of kB
2

, cB2 and ~2 using Eq. 5.19, 5.20 and 

s.21 •••• • • • • • • • • • • • • • • • • . . • • . . . 
5.8 Computation of ~2 using Eq. 5.22 •••••••••••• 

72 

72 

5.9 Data for Fig. 5.9 and Computation of ~S' CBS and ~5 • • 77 

5.10 

5.11 

5.12 

6.1 

Computation of KB
5 
•••••••••••••• • • • • 79 

Summary of General Equations for the Bottom Chord Second-

ary Moments • • • • • • • • • • • • • • • • • • • • • • • 80 

Sunnnary of Explicit Equations for the Bottom Chord Sec-

ondary Moments. • • • • • • • • • • • • • • • • • • • • • 82 

General Equations for the Top Chord Secondary Moment. • • 87 

6.2 Computation of ~ and CT for an 8 Panel Truss using Eq. 

6.3 and 6.4 . . . . . • • • • • • • • • • • • • • • • • • 89 

6.3 Computation of k.ro' CTO and &ro for an 8 Panel Truss 

using Eq. 6.6, 6.7, 6.8 and 6.9 • • • . • • • • • • • • • 89 

6.4 Computation of k.rl and CTl for an 8 Panel Truss using Eq. 

6. 11 and 6. 12 • • • • • • • • • • • • • . • • • • • . • . 90 

6.5 Computation of ~2 , CT2 and ~2 for an 8 Panel Truss 

using Eq. 6.14, 6.15, 6.16 and 6.17 • • • • • • • • • • • 90 

6.6 Computation of kTS' cT5 and ~S for an 8 Panel Truss 

using Eq. 6.21, 6.22, 6.23 and 6.24 • . • • . • • • • • • 90 

6.7 Explicit Equations for the Secondary Moment in the Top 

Chord • • • • • • • • . • • • . • • . • • • . . • . • • • 91 

6.8 Calculated Data for Curve of Fig. 6.1 using Equations 

from Table 6.7. • • • • • • • • • • • • • • • • • • • • • 91 



xi 

PAGE 

6.9 Calculated Data for Fig. 6.2 Based on the Equations 

6.10 

6.11 

6.12 

7.la 

7.lb 

8.1 

9.1 

from Table 6.7. • • • • • • • • • • • • • • • • • • • • • 

Calculated Values of ~1 ••• • • • • • • • • • • • • • • 

Calculated Values of K.r 2• ••• • • • • • • • • • • • • • 

Calculated Values of ~s· •• • • • • • • • • • • • • • • 

Verification Data • • • • • • • • • • • • • • • • • • • • 

Verification Data • • • • • • • • • • • • • • • • • • • • 

Effect of Bolt Slippage in the Web Connections. • • • • • 

Parameter Data for Example Problem. • • • • • • • • • • • 

9.2 Output Data for the Chosen Variables (Obtained from the 

92 

92 

93 

95 

100 

101 

103 

123 

Computer Frame Analysis) ••••••••• • • • • • • • • 125 

9.3 Constants for the "General Characteristic Equations" for 

the Bowstring Truss Example Problem • • • • • • • • • • • 128 

9.4 General Characteristic Equation Verification Data • • • • 130 

A2.l Data for Figure 5.1 • • • • • . • • • • • • • • • • • • • 164 

A2.2 Computer Frame Analysis Data. • • • • • • • • • • • • • • 165 

A2.3a Computer Frame Analysis Data Used to Plot Fig. 6.la • • • 167 

A2.3b Computer Frame Analysis Data Used to Plot Fig. 6.lb • • . 168 



FIGURE 

2.1 

2.2 

LIST OF FIGURES 

Truss configurations considered • • • • • • • • • • • • • 

Alternate web configuration • • • • • . . . . . . . . . . 

PAGE 

9 

9 

2.3 8 panel truss geometry. • • • • • • • • • • • • • • • • • 11 

2.4 10 panel truss geometry • • • • • • • • • • • • • • • • • 12 

2.5 

2.6 

2.7 

12 panel truss geometry • • • • • • • • • • • • • • • • • 

Concentric heel connection. • • • • • • • • • • • • • • • 

Eccentric heel connection • • • • • . . • • • • • • • • • 

13 

14 

14 

2.8 Typical web connection. • • • • • • • • • • • • • • • • • 15 

2.9 

3.1 

3.3 

3.4 

3.5 

3.6 

4.1 

Typical bottom chord splice 

8 panel - Model I ("RIGID") 

. . . . . • • • • • • • • • • 

• • • • • • • • • • • • • • • 

8 panel - Model II (SAP IV) • • • • • • • • • • • 

8 panel truss - Model III ("RIGID" - Full Truss). 

Fixed heel with rotation of bottom chord at bolts 

• • • • 

. . . . 
• • • • 

10 panel - Model I ("RIGID"). • • • • • • • • • • • • • • 

12 panel - Model I ("RIGID"). • • • • • • • • • • • • • • 

Fixed end forces on a top chord panel due to 'P x e'. • • 

4.2 Fixed end forces on a top chord panel due to a concentra-

ted load. • • • • • • • • • • • • • • • • • • • • • • • • 

4.3 Free-body forces on a top chord segment . • • • • • . • • 

4.4 8 panel truss - primary moment data • • • • • • • • • • • 

4.5 Primary moment diagram for a 100 ft. span 8 panel truss 

one kip per foot. • • • • • • • • • • • • . • • • • • • • 

15 

18 

19 

21 

24 

28 

29 

33 

33 

34 

39 

39 



xiii 

PAGE 

4.6 10 panel truss - primary moment data. • • • • • • • • • • 42 

4.7 Primary moment diagram for a 100 ft. span 10 panel truss 

4.8 

4.9 

s.1 

5.2a 

5.2b 

5.2c 

5.3a 

5.3b 

5.3c 

5.4a 

5.4b 

5.4c 

one kip per ft. • • • • • • • • • • • • • • • • • • • • • 42 

12 panel truss - primary moment data. • • • • • • • • • • 45 

Primary moment diagram for a 100 ft. span 12 panel truss 

one kip per ft. • • • • • • • • • • • • • • • • • • • • • 45 

Typical bottom chord secondary moment diagrams. • • • • • 48 

8 panel truss - secondary moment in the bottom chord as a 

function of ~e and ~e • • • • • • • • • • • • • • • • • 49 

10 panel truss - secondary moment in the bottom chord as 

a function of ~e and ~e • • • • • • • • • • • • • • • • 50 

12 panel truss - secondary moment in the bottom chord as 

a function of ~e and ~e • • • • • • • • • • • • • • • • 51 

8 panel truss - secondary moment and bending stress in 

the bottom chord as computed from Equation 5.11 •• . . . 57 

10 panel truss - secondary moment and bending stress in 

the bottom chord as computed from Equation 5.11 • • • • • 58 

12 panel truss - secondary moment and bending stress in 

the bottom chord as computed from Equation 5.11 • • • • • 59 

8 panel truss - secondary moment in the bottom chord as a 

function of A.re and 1Te • • • • • • • • • • • • • • • • • 62 

10 panel truss - secondary moment in the bottom chord as 

a function of Arre and ~e • • • • • • • • • • • • • • • • 63 

12 panel truss - secondary moment in the bottom chord as 

a function of Arre and I.re • • • • • • • • • • • • • • • • 64 



xiv 

PAGE 

5.5 

5.6 

~l - Adjustment factor to ~C for variation in A.re • • • 
Secondary moment in the bottom chord as a function of ~C 

5.7 Effect of secondary moment in the chords on the axial 

forces in the members • • • • • • • • • • • • • • • • • • 

5.8 ~2 - Adjustment factor to ?\c to account for variations 

in I.re· • • • • • • . • • • • • • • • • • • • • • • • • • 

5.9 Secondary moment in the bottom chord as a function of the 

number of panels in the truss • • • • • • • • • • • • • • 

5.10 KB
5 

- Adjustment factor to ?\c to account for a varying 

number of panels in the truss • • • • • • • • • • • • • • 

6.1 Top chord moment diagrams for typical cases • . . . . . . 
6.2 8 panel truss - secondary moment in the top chord as a 

66 

68 

69 

73 

76 

78 

84 

function of 1'rc and J7c • . • • • • • • • • • • • • • • . 94 

6.3 8 panel truss - secondary moment and bending stress in 

the top chord as computed from Equations 6.2 and 6.5. • • 95 

6.4 ~l - Adjustment factor to ~C to account for variation 

in ~c· • • • • • • • • . • • • . • • • • • • • . • • . • 96 

6.5 KT2 - Adjustment factor to ~c to account for variation 

in ~c· • • • • . • • • • • • • • • . . • • • • • • • . • 96 

6.6 ~5 - Adjustment factor to M.rc to account for a variation 

in the number of panels in the truss ••• • • • • • • • • 97 

8.1 Probable stress distribution in an eccentric heel • • • • 105 

8.2 Amplification of moment in the bottom chord due to an 

eccentric heel. • • • • • • • • • • • • • • • • • • • • • 105 



xv 

PAGE 

B.3 Effect of a fully fixed heel on the bottom chord moment 

in an 8 panel truss with bolt slippage permitted in the 

Al.l 

Al.2 

Al.3 

Al.4 

Al.5 

web connections ••• • • • • • • • • • • • • • • • • • • 106 

Fixed end forces in a top chord panel • • • • • • • • • • 149 

Free-body forces on a top chord segment under fixed end 

conditions ••••• • • • • • • • • • • • • • • • • • • • 149 

Model and nomenclature used by Roark and Young. • • ••• 153 

Data for Example Al.l ••• • • • • • • • • • • • • • • • 160 

Load components for Example Al.l •• • • • • • • • •••• 160 



NOTATION 

a • • • • • • • • Reference dimension for locating a concentrated load 

on a chord segment. 

a' • • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

b • • • • • • • • Reference dimension for locating a concentrated load 

on a chord segment. 

I 
b •••••••• Intermediate coefficient used in the development of 

primary moments • 

c • • • • • • • • Cos 9. 

e • • • . . . . • Eccentricity of the top chord between panel points, 

Ft. 

f ( ) • . . • • • • A function of ••• (expression). 

~· ••••• Constant used in equation to define ~co• 

~i ••••••• Constant used in equation to define KBi' an adjust-· 

ment factor for the characteristic equation for the 

bottom chord as developed in Chapter v. 

&ri ••••••• Constant used in equation to define I<Ti' an adjust­

ment factor for the characteristic equation for the 

top chord as developed in Chapter VI. 

gijJ • • • • • • Constant used in the general characteristic equation 

to define an adjustment factor to account for the 

effect of the ith parameter on the jth variable under 
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load case f... 
j •••••••• Subscript to represent the jth variable (i.e., maxi-

mum bottom chord moment, etc.). 

kB. • • • . • • • Constant used in equation to define ~co· 

kBi • . • • • • • Constant used in equation to define KBi' an adjust-

ment factor for the characteristic equation for the 

bottom chord as developed in Chapter V. 

k.ri ••••••• Constant used in equation to define ~i' an adjust­

ment factor for the characteristic equation for the 

top chord as developed in Chapter VI. 

k .. 0 
l.J ,k 

. . . . . . Constant used in the general characteristic equation 

to define an adjustment factor to account for the 

effect of the ith parameter on the jth variable under 

load case 9.. 

J. • • • • • • • • Subscript to represent the .R th load case. 

n • • • • • . . . The total number of parameters (i.e., area of bottom 

chord, etc.). 

p •••••••• Virtual load. 

qBi ••••••• Intermediate factor used to develop gBi• 

s • • • • • • • • Sin Q. 

w •••••••• Uniform load on the top chord. 

B w • • • • • • Base value of w used to compute ~O and CBo• 

••••••• The value of a parameter (such as ~c>• 

• • 

x • 

x .• 
l. • • • • • • • The value of the ith parameter. 

(=lK/ft). 

xii • • • • • • • The lower limit of the ith parameter used to develop 

the general characteristic equation. 
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xi
2 

• • • • • • • The base value of the ith parameter used to develop 

the general characteristic equation. 

xi
3 

• • • • • • • The upper limit of the ith parameter used to develop 

the general characteristic equation. 

y •••••••• The value of a variable (such as MBe) • 

y .•• 
J 

• • • • • • The value of the jth variable. 

A • • • • • • • • Area of a member, sq. in. 

~e • • • • • • • Area of the bottom chord, sq. in. 

B 
ABe ••••••• Base value of ~e· 

~e ••••••• Area of the top chord, sq. in. 

B 
Ate • •••••• Base value of A.re· 

B • • • • • • • • Intermediate coefficient used to define g. 

B •. n 
1.J~ 

• • 

• • 

. . • • 

• • • • 

Value of B for case ij/. 

Intermediate coefficient used in the development of 

primary moments. 

BHH • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

BHM • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

BHV • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

BMH. • . . • • • • Intermediate coefficient used in the development of 

primary moments. 

BMM • • • • • • • Intermediate coefficient used in the development of 



x-ix 

primary moments. 

BMV • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

BW • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

BVM • • • • • • • Intermediate coefficient used in the development of 

primary moments. 

BVV • • • • • • • Intermediate coefficient used in the development of 

primary moments • 

BC •• • • • • • • Bottom chord of the truss - used as a subscript. 

CB •••••••• Constant used in equation to define ~co• 

CBi ••••••• Constant used in equation to define ~i' an adjust-

ment factor for the characteristic equation for the 

bottom chord as developed in Chapter v. 

CT •••••••• Constant used in equation to define ~co• 

CTi ••••••• Constant used in equation to define K.ri' an adjust-

ment factor for the characteristic equation for the 

top chord as developed in Chapter VI. 

C .. n •••••• Constant used in the general characteristic equation 
1J,A 

to define an adjustment factor to account for the 

effect of the ith parameter on the jth variable under 

load case j. 

co •• • • • • • • Carry over factor for moment distribution method. 

DF •• . . . . • • Distribution factor for moment distribution method. 

DFL • • • • • • • Douglas Fir/Larch. 

E • • • • • • •• Modulus of elasticity, psi. 



Fb 
x-x • • • • • • Allowable bending stress about the x-x axis. 

Fe •• • • • • • • Allowable compression stress. 

Ft •• • • • • • • Allowable tension stress. 

FEM • • • • • • • Fixed end moment. 

FEMA (Pe) •• • • 

I • • • • • • • 

~c •••• • • 

B 1Bc • 
I.re • 

• • • • • 

• • • • • 

~c • • • • • • 

• Fixed end moment at point A produced by an axial 

load acting on a curved member. 

M f i 
. . 4 • oment o nert1a, in • 

• Moment of inertia of the bottom chord, in
4

• 

• Base value of 1ac• 
• Moment of inertia of the top chord, in4 • 

• Base value of ~c· 

xx 

K • • • • • • • • Member stiffness factor used in the moment distribu-

tion method of analysis. 

~i • • • • • • • Adjustment factor to the moment in the bottom chord 

to account for variation in parameter i. 

~i • • • • • • • Adjustment factor to the moment in the top chord to 

account for variation in parameter i. 

L • • • • • • • • Span length of truss, ft. 

12 •• • • • • • • Material grade for Lam stock. 

L2D • • • • • • • Dense grade of L2 Lam stock. 

LFH ••••••• Load factors used in developing the primary moment 

equations--as defined by Roark and Young, Formulas 

for Stress and Strain, Fifth Edition. 

LFM • • • • • • • Load factors used in developing the primary moment 

equations--as defined by Roark and Young, Formulas 



for Stress and Strain, Fifth Edition. 

LFV ••••••• Load factors used in developing the primary moment 

equations--as defined by Roark and Young, Formulas 

for Stress and Strain, Fifth Edition. 

. . . . • • Moment at point i. 

~c •••• • • • Maximum moment in the bottom chord, located at the 

first panel point from the end of the truss. 

xxi 

~co• •••••• Value of ~C when all parameters are at base values 

except ~c· 

•• Base value of ~c· 

. . . • Maximum moment in the top chord, located at the 

first panel point from the end of the truss. 

M.rco· •••••• Values of ~C when all parameters are at base values 

except ~c· 

N • • • • • • • • Power coefficient used in Chapter V to correlate the 

effect of IBC on ~c· 

NP. . . . . . • • Number of panels in the truss. 

p • • • • . . . • Axial force in a member. 

Q •• 
l. • • • • . . . Intermediate coefficients used in the development of 

primary moments. 

R • • • • • • • • Radius of the top chord (center line), ft. 

VA •••••••• Shear at point A. 

Wl •• • • • • • • Web number 1. 

y .• 
J • • • • ••• Final value of the jth variable (such as ~C), 

accounting for the chosen values of all parameters. 

B 
Yj •••••••• Value of Yj using base values for all parameters. 



xx ii 

Y. /J • • • • • • • Value of Y. for load case R • 
J.A J 

5
1

• • • • • • • • (DELTA) Tangential deflection of the roller support 

of an arch section (see Fig. Al.3). 

~ • • • • • • • • (ETA) Angle measured from the vertical line through 

the centroid of the top chord radius of the truss to 

the center of the top chord segment being considered. 

~ • • • • • • • • (LAMBDA) Horizontal projection of a top chord panel 

length, ft. 

f • • • • • • • • (RHO) Radius of curvature of a member subjected to 

bending. 

0 • • • • • • • • (PHI) Angle measured from the upper end of a top 

chord segment to the point i on the top chord. 

t . . . . . . . . (PSI) Vertical projection of a top chord panel 

length, ft. 

~- • • • • • . . (DELTA) Joint deflection. 

Q • • • . . . . . (THETA) One half of the included angle formed by the 

arc of a top chord panel. 

• • • • • • • (PI) Sequential Product operator. 

• • • • • • • (SIGMA) Sequential Summation operator. 

BP. • • • • • • • Eight panel truss. 

lOP • • • • • • • Ten panel truss. 

12P • • • • • • • Twelve panel truss. 

01TC23 •••••• Designation assigned to the frame analysis computer 

runs were the 0 indicates that ~c=A0 (see Table 3.2), 

the 1 indicates IBC=I
1

, TC2 indicates ~c=A2 , and 3 



xx iii 

indicates that ~c=I3 • 



CHAF'.CER I 

INTRODUCTION 

1.1 BACKGROUND 

The bowstring truss is a truss with a curved top chord, located 

so that it follows the force line of an arch with the bottom chord act­

ing as the tie. The webs of the truss are required only to provide 

stability and to distribute concentrated and unbalanced loads which im­

part substantial bending into an arch. The webs carry very small 

forces which results in a very efficient truss, particularly for uni­

form loads such as roof loads. 

The early designs, used for many years, used three basic 

methods to form the top chord. One method used dimension lumber re­

sawn on one edge to the curved shape. The pieces were lapped approxi­

mately one half of their length which resulted in a semi-continuous 

segmented top chord--thus the term "segmental chord" bowstring was used 

to describe these trusses. 

A second method used small dimension lumber (2x4 or 2x6's) nail 

laminated into a continuous curved chord with staggered butt splices 

between pieces. They were sometimes built with one or two wider lami­

nations to provide a ledger for the roof joists. The most common name 

for this type of truss was the "Summerbell" truss. 



The third method used large members resawn to a radius and butt 

spliced at web joints. They were usually called "monochord" trusses. 

With the advent of glued laminated timber (glu-lam) 1 engineers 

began designing the trusses using truly continuous curved glu-lams for 

the chords. The analysis of these trusses continued to assume "pin­

jointed" members, recognizing the continuity of the chords only to re­

distribute the already small primary bending moments. 

1.2 DESIGN METHODS 

Currently, two methods are known to be used in the industry to 

analyze these trusses: the method mentioned above which will be re­

ferred to as the traditional method; and by the use of a relatively 

large capacity computer to perform a "frame analysis". 

1.2.l Traditional Method 

Traditionally, the most conunon method involves modeling the 

truss assuming pinned joints and straight top chord segments between 

panel points. A graphical technique known as the Maxwell diagram(l) 

2 

is normally used to compute member forces. Small microcomputers or 

even progranunable calculators may also be used to compute member forces 

using matrix or joint analysis techniques. 

The moments in the top chord are computed using semi-empirical 

equations such as those found in the AITC Timber Construction Manual~Z) 

These equations use superposition to combine continuous beam moments 

with moments induced by the eccentricity of the curved chord ('Pe' 

effects). This moment is assumed to be distributed in the same manner 
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as the moment produced by the vertical loads. 

Traditionally, secondary bending stresses induced by the deflec­

tion of the truss have been ignored. Thus, the bottom chord has been 

designed for pure tension (except when ceiling or other loads are ap­

plied directly to the bottom chord). The top chords are designed using 

the axial load and moments as described above. 

The assumption has been that the secondary stresses are rela­

tively small and therefore not worth the fairly large effort required 

to compute them. As will be demonstrated in this study, however, the 

secondary stresses may indeed be quite large. In a few cases investi­

gated, the top chord moment at the critical location was found to be 

several times larger than the primary moment, with the total bending 

stress exceeding 60% of the stress allowed for pure bending. Previous­

ly they were usually computed to be less than 10% when neglecting the 

secondary stress. The result is that trusses designed by this method 

may actually be overstressed by as much as 50% in some cases. 

1.2.2 Computer Frame Analysis 

The second method utilizes relatively large computers to ana­

lyze the truss using a conventional matrix displacement frame analysis, 

or a finite element analysis program. This method, therefore, does 

take into account the effects of the "secondary" moments. 

The "secondary" moments as referred to here are actually pri­

mary moments in frame analysis, i.e., moments caused by joint deflec­

tion. What would be called "secondary" moments in frame amalysis ter­

minology (i.e., P- ~effect) will be denoted as "tertiary" moments here. 



1.3 DESIGN PROBLEMS 

To accurately model the curved chord of the truss the chord 

must be broken up into several segments between each panel point. As 

a result, a typical truss will have over 100 members in the model. 

This poses several problems. Extensive time is required for model 

development and data input. The coordinates of the top chord segments 

must be accurately computed and correctly entered. This is a tedious 

task which lends itself to errors. A minor error in coordinate input 

can have drastic effects on the top chord moments. 

4 

The input of the loads is also a laborious task. Due to the 

curvature, the horizontal projection of the members is different for 

each member. Every joint in the top chord must therefore have the load 

computed and input separately. The task of considering multiple load 

cases, such as unbalanced loading which is critical for the design of 

the webs in bowstring trusses, increases the task considerably. 

These problems can be reduced by the use of a sophisticated pro­

gram which has cylindrical coordinate and load generation capabilities. 

Use of a small 8-bit microprocessor for such a task would be un­

duly cumbersome, time consuming, and indeed impossible without a sophis­

ticated program utilizing a mass storage device for storing the large 

matrices. Matrix partitioning techniques would be required to manipu­

late these large matrices. Programs of this sophistication are not 

readily available for 8-bit machines. Even if a program were avail­

able, the accuracy would be highly suspect for a structure with such 

small member offsets. 
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Programs with these capabilities do exist for use on several 

minicomputers. However, these machines (and the software) are much 

more expensive than the smaller machines and are not found in most 

small design firms. Even with such a system, or a large inhouse time­

shared system, the time element and its associated cost is restrictive, 

especially if the job has only a few trusses of a specific design. 

In addition to design office practicality problems of the com­

puter analysis method, the analysis itself can be misleading and the 

degree of accuracy may be unjustified. As will be seen later in the 

study, several factors such as bolt slippage can have a major effect 

on the induced moments. With the type of web connection normally used 

in these trusses (strap and pin), bolt slippage is highly probable. A 

small amount of bolt slippage in the web connections can reduce the mo­

ments in the chords by as much as 50%. 

In light of this and the highly unpredictable nature of loading 

and strength of the member, it seems unnecessary and indeed undesirable 

to require an analysis of such "precision". As mentioned previously, 

however, the secondary moments are substantial and should be accounted 

for by some method of reasonable accuracy, even if the method results 

in "overly precise" answers. 

1.4 SCOPE OF THIS INVESTIGATION 

Three major areas of study which will affect the design of these 

and other types of trusses are needed. The first of these, which this 

paper addresses, is to establish a method of computing the primary and 

secondary moments in continuous chords of bowstring timber trusses. 
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Charts which enable the secondary moments to be determined are 

proposed for a specific set of truss configurations. These moments can 

then be superimposed on the primary moments computed using the tradi­

tional method or using a more refined method presented in Chapter IV. 

An additional study is needed to quantify the beneficial effect 

of bolt slippage in the web connections in reducing the secondary mo­

ments. This effect is introduced, but not fully investigated in this 

paper. 

The third area of study would deal with the interaction equa­

tions for combined tension or compression plus bending. The author of 

this paper feels that the equations currently being used in the major 

design codes have several shortcomings which could have a significant 

affect on the sizing of the chords. This area of study is beyond the 

scope of this paper, however. 

A new design method is proposed in which "characteristic equa­

tions" for a given structural configuration are systematically develop­

ed. Intended primarily for "standard" structures such as trusses, the 

results of a series of frame analyses are used to establish the influ­

ence of various parameters on the structure. The resulting equations 

can be utilized to quickly generate designs for an unlimited number of 

parameter combinations, using design charts, programmable calculators, 

or small microcomputers. A simple computer program is presented for 

this procedure. The data from which the design charts of Chapters V 

and VI were developed was utilized to verify the reliability and demon­

strate the use of this method. 



CHAPTER II 

STRUCTURAL CHARACTERISTICS AND CONSTRUCTION 
DETAILS OF GLUED-LAMINATED 

BOWSTRING TRUSSES 

2.1 STRUCTURAL CHARACTERISTICS 

A bowstring truss essentially performs as a tied arch. Under 

balanced uniformly distributed load the webs will have very little 

force in them. The top chord carries the loads like an arch to the 

bearings with the bottom chord providing a tension tie. The webs are 

used to distribute unbalanced and concentrated loads, as well as to re-

duce the buckling length of the top chord. Tied arches, of course, are 

designed to carry these unbalanced loads also. This is achieved by 

greatly increasing the size of the arch member to give it substantial 

bending capability. By introducing webs, the requirement for large 

bending capacity is reduced. 

The web members restrict the deformations that the arch would 

otherwise undergo, even under uniform load. This is reflected somewhat 

by a pin-jointed truss analysis which results in small forces in the 

webs. The webs near the ends of the truss greatly interfere with these 

deformations and as a result impart substantial secondary moments into 

both top and bottom chords. This problem which is not reflected by a 

pin-joint analysis, and has traditionally been ignored, is the focal 

point of this study. 



2.2 CC!1MON CONSTRUCTION DETAILS 

2.2.l Geometry 

A bowstring truss is a truss in which the top chord is a curved 

member. This curve normally is a circular arc with the radius equal 

to the span of the truss. Some designs utilize larger radii in order 

to reduce the depth of the truss. This results in larger chord size 

and therefore increased cost. Parabolic curves have also been used in 

an attempt to more closely obtain pure arch action. The difference in 

shape between a parabolic and circular curve is so slight that the re­

finement is normally not warranted. 

Various web configurations have been used. The most commonly 

used configurations are shown in Figure 2.1. The configuration shown 

in Fig. 2.2 was used a great deal for the old segmental chord trusses. 

Truss configurations shown in Fig. 2.1 are investigated here. 

8 

The number of web members in the truss is normally selected so as to 

keep the top chord panel lengths between 8 to 12 ft. Keeping the 

panel lengths short reduces the primary moments thus minimizing the 

size of the top chord required. However, it will be shown later that 

the secondary moments can be nruch larger than the primary moments. In 

addition, the secondary moments increase as the number of web members 

increases. This suggests then that fewer webs may actually provide a 

stronger, more efficient truss. This point will be discussed further 

in later chapters. 

The trusses considered herein have a 100 ft. span with the cen­

ter line radius equal to the span. The geometry is as shown in Figures 
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8 PANEL TRUSS 

10 PANEL TRUSS 

12 PANEL TRUSS 

Figure 2.1 Truss configurations considered. 

I I I 
I I I · 
I I I 

Figure 2.2 Alternate web configuration. 



2.3, 2.4 and 2.5. All dimensions are to the center line of the mem­

bers. 

2.2.2 Details 

10 

Figure 2.6 shows one type of heel connection being used. An­

other similar type, shown in Fig. 2.7 has been commonly used. This 

heel has the problem of inducing partial fixity into the bottom chord 

as a result of the eccentric bearing. The effect of eccentric bearing 

is studied in Chapter VIII. 

Figure 2.8 shows a typical "strap and pin" web connection com­

monly used. As can be seen, some joint slip in this connection would 

be unavoidable. Fortunately, this will actually help relieve some of 

the secondary moments by allowing the deflected shape to change to a 

smoother curve. 

Figure 2.9 shows a typical center line splice detail. Very 

little curvature is found to exist at the center of the truss when de­

flected. As a result, fixity or lack of fixity induced by the large 

side plates is found to have negligible effect on the bending moments. 

in the bottom chord. 
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l" '/J bolts 
Center of reaction is concentric 
with intersection of chord center lines. 

Steel side plates 

Figure 2.6 Concentric heel connection • 

..... .P.--Center of reaction is eccentric 
with intersection of chords. 

Figure 2.7 Eccentric heel connection. 
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Figure 2.8 Typical web connection. 
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Figure 2.9 Typical bottom chord splice. 
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CHAPTER III 

COMPUTER MODELS 

3.1 GENERAL INFORMATION 

Computer models were developed for the three configurations 

shown in Figure 2.1. These will be referred to as 8 panel, 10 panel 

and 12 panel trusses in respect to the number of top chord sections or 

"panels" they contain. 

A basic 100 ft. span truss with the radius of the top chord 

equal to the span was used for each configuration. In order to model 

the curved top chord, each top chord panel was divided into four equal 

straight segments. All loads were applied at the nodes. 

The bottom chord panels were divided into two segments in order 

to allow evaluation of tertiary (P-~) moments. 

3. 2 EIGHT PANEL TRUSS 

The eight panel truss was modeled in three different ways, using 

two computer programs. 

3.2.l Model I 

A truss and frame analysis program entitled "RIGID"(3) was util­

ized for this model. One half of the truss was modeled, with vertical 

roller supports provided at the truss center line. A horizontal roller 

support was used to model the column bearing support at the end of the 
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truss. The model is shown in Fig. 3.1. 

The chords are modeled with beam elements to reflect the contin-

uous nature of the chords. A double roller support with a rigid truss 

link between them was used at the heel to artificially provide the 

member end releases. As can be seen from Fig. 2.6, the top chord is 

essentially free to rotate in the connection. An internal hinge would 

therefore seem appropriate. This technique provided the ability to 

model heel joint slippage and joint fixity. 

The peak connection was also modeled as a pinned joint. The 

top chord of these trusses is normally spliced at the peak to facili-

tate fabrication and shipping. The connection is normally not substan-

tial enough to be considered capable of transferring moment. 

All webs are modeled as truss elements i.e., no bending capacity 

(I=O). Therefore, all web to chord connections are in essence pinned, 

which is obviously the case in the real truss. (See Fig. 2.8.) 

3.2.2 Model II 

The second model considered was very similar to the first model, 

except that it was developed using "SAP IV"(4) finite element program. 

The same half truss was modeled with similar supports. This was used 

as an independent check on the input/output information that was 

gathered from the first model. Fig. 3.2 shows the model which was used. 

3.2.3 Model III 

This model, using the program "RIGID", modeled the entire truss. 

The purpose for this model was to observe unbalanced conditions, which 

was not possible with the half truss of the first model. The diffi-
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culty encountered here was created by the fact that the current version 

of the program does not provide for member end releases. Therefore, 

modeling the internal hinge at the center of the top chord proved cum• 

bersome. The member release was obtained by installing a short rigid 

link at the center. In order to transfer shear across the joint, two 

artificial web members were included in the model, as shown in Fig. 

3.3. 

This provided reasonable results when using the actual web areas 

(no joint slippage). When providing for joint slip, however, the arti­

ficial webs disrupted the deflections of the truss substantially. This 

data is therefore not considered valid. 

3.2.4 Loading 

The loading assumed a one kip per foot uniform load on the top 

chord, under fully balanced conditions. This load was converted to 

concentrated loads to be applied to the truss at the node points. 

The bottom chord of the truss was assumed to have no external 

loading. 

3.2.5 Variations 

Several variations were made using Model I, to briefly study the 

effects of several potential physical variations from the "ideal" model. 

Effects of joint slippage, heel and bottom chord splice fixity were 

considered. 

3.2.5.1 Web Connection Bolt Slippage. As mentioned previously, 

the type of connection shown in Figure 2.8 will be subject to joint 

slippage, both at the pin bolt and also in the double bolt connection 
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to the web itself. This effect was modeled by "softening" the web (re­

ducing the area) to provide an additional 1/16 in. to 1/8 in. member 

shortening or elongation. No attempt was made to establish an exact, 

uniform amount of slip in all joints. The required area was back cal­

culated from the member loads obtained from the first series of runs 

using actual member areas. The resulting elongation did not exactly 

yield the slip assumed due to redistribution of forces changing the 

member forces. Further refinement seems unjustified in light of the 

highly unpredictable nature of the slippage. Member misfit during fab­

rication, hole size and straightness, temperature, moisture content and 

residual stresses in the chords during fabrication will all affect the 

amount of slip actually occurring in the real structure. This general 

influence and its potential magnitude is what is of importance. 

3.2.5.2 Heel Joint Slippage. The effect of joint slippage in 

the heel connection was modeled by "softening" the rigid link connect­

ing the two support rollers at the heel location. 

3.2.S.3 Heel Joint Fixity. Some heel designs have the poten­

tial of inducing full or partial fixity into the bottom chord at the 

heel connection. This was modeled by fully fixing the roller connect­

ing the bottom chord member. This therefore would simulate the worst 

condition, providing an upper bound to examine the effect of fixity in 

the heel. 

3.2.S.4 Bottom Chord Splice Bolt Slippage. Joint slippage in 

the center splice joint was modeled by specifying a specific horizontal 

support displacement (.006 ft.) at the vertical roller at the bottom 

chord. 
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3.2.5.S Bottom Chord Splice Fixity. The normal model assumes 

the bottom chord to be pinned at the center. The effect of fixity 

which may well be the case in the real truss was modeled by providing 

rotational fixity to the roller joint. 

3.2.S.6 Heel Plate Fixity, Chord Rotation Permitted at Bolts. 

The possible, but unlikely, occurrance of the heel assembly being fixed 

on the column, while the chord rotates at the bolted connection was 

considered. The physical condition is shown in Fig. 3.4. This was 

modeled by extending the length of the "rigid" link from .001 ft. to 

2.5 ft. The area of the link was then reduced to simulate joint slip 

in addition to the rotation. 

3.2.S.7 Combinations of Effects. Web slippage combined with 

heel slippage plus fixity was examined by combining the techniques used 

above. Similar combinations were used for the center splice. 

3.2.6 Member Properties 

The chords of the truss were taken as Douglas Fir/Larch combin­

ation no. 3 as defined under the AITC 117-79 Specifications. (S) 

The design values given are shown in Table 3.1. 



free to 
rotate about centroid 
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Figure 3.4a Physical condition. 

. 
L , 
Figure 3.4b Computer model. 

Figure 3.4 Fixed heel with rotation of bottom 
chord at bolts. 
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TABLE 3.1 

DESIGN VALUES FOR STRUCTURAL 
GLUED LAMINATED TIMBER 

COMBINATION NO. 3 
AITC 117-79 

Species DFL 

Grade L2D 

E l.8(106)psi 

Ft 1450 psi 

Fe 2300 psi 

Fb 2000 psi 
xx 

25 

Combination no. 3 is connnonly used in trusses built in the Pac-

ific Northwest because it combines several desirable properties. Doug-

las Fir/Larch is the most readily available high strength material in 

this region. Of the DFL combinations, only combination no. 5 has high-

er design values for tension, compression and bending. The advantage 

of combination no. 3 is that in addition to high strength, L2D lamina-

ting stock (which is used in this grade) is a dense grained material 

which permits the use of higher allowable connector loads. L2D stock 

can be extracted from commonly supplied L2 stock, since a considerable 

amount of the L2 stock meets the dense grade requirement. 

The web members were assumed to have an E value of 1.6 (106) 

psi. 

The chord member areas and moments of inertia (I values) were 

the principal parameters varied in developing the data. The areas and 

I values were varied independently in order to produce correlations 
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based on the four parameters. This was the approach taken on all three 

truss configurations. The values of these four parameters were varied 

as shown in Table 3.2 

TABLE 3.2 

SECTION PROPERTIBS OF CHORD MEMBERS 
(VARIED INDEPENDENTLY) 

Area (in2) I (in4) 

AO = 50 IO = 250 

Al = 75 Il = 800 

A2 = 100 12 = 1800 

A3 = 125 I = 3600 
3 

A4 = 99999 

The computer runs were labeled as follows: 

OOTCOO 

ft_ Indicates I.re = I
0 

L_____Indicates A.re = A0 

Indicates IBC = 10 

Indicates ~c = A0 

The TC simply indicates that the second two numbers refer to 

the top chord. 

These properties are not indicative of any specific member 

sizes, but were selected to represent the range of sizes used in prac-

tice. The extremely large area was used in order to verify the primary 

moments in the top chord by providing very small deflections, which 
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results in very small secondary moments. 

3.3 TEN PANEL TRUSS 

The 10 panel truss was modeled as a half truss similar to the 

8 panel Model I, using the RIGID program. See Fig. 3.5 for the model 

description. 

The same member properties and parameter variations were made 

for the 10 panel as for the 8 panel Model I. 

3.4 TWELVE PANEL TRUSS 

A half truss was modeled using RIGID, similar to the 8 panel 

Model I. See Fig. 3.6 for the model description. The same member 

properties were used as for the 8 panel Model I. Heel and splice slip 

and fixity were not considered in this model. 
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CHAPTER IV 

PRIMARY MOMENTS IN THE TOP CHORD 

4.1 METHODS OF ANALYSIS 

In order to assess the secondary moments in the top chord, we 

must first determine the primary moments which exist as part of the 

moments computed by the computer analysis. 

4.1.1 AITC Method 

The existing design methodology as outlined in the AITC Timber 

Construction Manual(2) uses the method of superposition when computing 

the top chord bending moments. The moments for a continuous, straight 

beam are added algebraically to the ''Pe" moments, assuming that the 

''Pe" moments are distributed in the same manner as the uniform load 

moments. The "Pe'' moment is the moment induced by the axial force, P, 

in the chord acting through the eccentricity, e, of the curved member. 

Secondary moments (i.e., those caused by joint displacement) are ne-

glected. 

For example, for an 8 panel truss, the beam moment at the first 

panel point would be computed as 

M_ - - • 1071w i\ 2 
-~eam -

which is 85.68% of the simple span moment (.8568xl/8w A 2). The .1071 

factor is the moment coefficient for a four span continuous beam with 

uniform load on all spans. 
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Thus, 

M = .8568 [w8~
2J - .8568 Pe 

2 
= .107lw ~ - .8568 Pe 

This method is expected to give reasonably accurate results, 

however a more accurate analysis is necessary here in order to accu-

rately separate the primary from the secondary moments (i.e., from 

joint deflection induced moments). 

The following method has been used for this purpose, and is pro-

posed for general use. 

4.1.2 Moment Distribution 

The moment distribution method requires that "fixed end" moments 

be determined for each "span" of the continuous curved chord. These 

"fixed end" moments (FEM) will consist of the moments induced by the 

external loads applied to the member acting as a continuous beam, plus 

the moments induced by the "Pe" effect. The equations for these FEM's 

are as follows. The derivation of the equations is provided in Appendix 

1. 

4.1.2.l FEM due to "Pe". Referring to Figure 4.1, 

(4.1) 

4.1.2.2 FEM due to External Member Loads. The FEM due to the 

loads on the member can be calculated assuming the beam to be a straight 

beam with its length equal to the projected distance between the two 

end points, A and B1 measured perpendicular to the axis of the load. 
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For example, for a vertical load, the length used to compute the 

FEM's would be the horizontal distance from A to B. This is the same 

technique used to compute FEM's on a straight sloped beam. For a uni-

form vertical load, w, the total FEM's will be, 

FEMA = PAR (ta~ 9 
-1) - ~(R sin Q sin71) 

2 

FEMB = -FEMA 

(4. 2) 

(4.3) 

For a concentrated vertical load, such as in Figure 4.2, the 

FEM' s will be, 

FEM = p R (tan Q 
A A Q -1) ra2b 

4(R sin Q sin 1/) iJ (4.4) 

Ffil\ = p AR (ta~ Q -1) ~ 2 
sin71.) i] + Pab 

4(R sin Q (4.5) 

Any other loading can be computed in a similar manner. 

4.1.2.3 Moment Distribution. Once the fixed end moments have 

been computed, a conventional moment distribution is performed. The 

actual arc length of the members should be used when computing distri-

bution factors. 

Once the end moments are computed, the moment of any point on 

the member can be found by summing moments on the free-body diagram 

about the point in question. Referring to Fig. 4.3 and including the 

member loads, 

M. = L (M
1
. of external loads) - MA - P AR(l- cos ;,) - VAR sin ;, 

l. (4.6) 

The shear, VA' can be found by summing moments about point B. 
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Figure 4.1 Fixed end forces on a top chord panel due to 'P x e'. 

p 

a b 

Figure 4.2 Fixed end forces on a top chord panel due to a 
concentrated load. 



k--.eMA _r- R sin fl 
i G/"~ L~ R(l-cos 0) 

0 

VA·~ 

P. 
]. 

Figure 4.3 Free-body forces on a top chord segment. 
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Thus, 

l~ external loads) - MA - ~ - PAR{l - cos 2Q) 

R sin 2Q (4. 7) 

The procedure is demonstrated on the following pages where the 

primary moments in the 8, 10 and 12 panel trusses subjected to a uni-

form vertical load are computed. 

Figure 4.4 provides the loading and geometrical data required 

for determining the primary moments in the top chord of an 8 panel 

truss. The axial forces listed in the figure are those in the chords 

as obtained from a pin jointed analysis assuming straight line seg-

ments between panel points. 

Table 4.1 shows the moment distribution calculations for the 

top chord of the 8 panel truss. The fixed end moments listed are com-

puted from Equations 4.2 and 4.3. For clarity, the fixed end moments 

due to "Pe" and due to the external loads are calculated and listed 

separately. 

The moment at intermediate points along the top chord of the 8 

panel truss were computed using Equations 4.6 and 4.7. These values 

are listed in Table 4.2, and plotte~ by a solid line in Fig. 4.5. 

Data obtained from a computer frame analysis (Model I) in which very 

large member areas were used is plotted as a dashed line in Fig. 4.5. 

As discussed in Chapter III, the use of large member areas nearly elim-

inates the secondary moments induced from the deflection of the truss 

joints. Some slight deflection still occurs, owing to both the axial 

deformation of the members and to the moments acting on the curved top 
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chord. Therefore some small amount of secondary moment will exist in 

the computer data. As will be seen in later chapters, the secondary 

moments are positive along the entire length of the top chord. From 

this, it would be expected that the moments obtained from the computer 

analysis would be slightly greater (more positive) than the actual pri-

mary moment. 

As can be seen from Fig. 4.5, the computer produced moments do 

plot slightly higher than, but very close to the moments computed using 

the method proposed in this chapter. 

Figure 4.6 together with Tables 4.4 and 4.5 provide the data 

required to produce the primary moment diagram for the 10 panel truss 

which is plotted in Fig. 4.7. This data is computed in the same manner 

as for the 8 panel truss. 

The procedure is repeated for the 12 panel truss. Fig. 4.8 and 

Tables 4.6 and 4.7 provide the necessary data. The diagram for the 

primary moment in the top chord of the 12 panel truss is plotted in 

Fig. 4.9. 

The data produced in this chapter will be used in Chapter VI to 

separate the primary moment out of the total moments in the top chord 

obtained from the computer analyses. This will be done in order to 

study the magnitude of the secondary (joint movement induced) moments. 
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"' 
o.oo 
1.25 
2.50 
3.75 
5.00 
6.25 
7.50 

"' o.oo 
1.875 
3.75 
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TABLE 4.2 

PRJMARY MOMENTS IN TOP CHORD OF 100 FT. 
EIGHT PANEL TRUSS WITH 1 K/FT LOADING 

OBTAINED FROM EQUATIONS 4.6 AND 4.7 

7l= 3.75 11 = 11. 25 11.= 18.75 
1st Panel 2nd Panel 3rd Panel 

o.oo -1.09 -0.32 
0.71 -0.53 -0.33 
1.04 -0.22 -0.29 
1.01 -0.10 -0.11 
o.63 -0.12 0.30 

-0.08 -0.21 1.04 
-1.09 -0.32 2.21 

TABLE 4.3 

PRlMAR.Y MOMENTS IN THE TOP CHORD 
OBTAINED FRCM COMP'UTER RESULTS 

FOR AN EIGHT PANEL TRUSS 

1st Panel 2nd Panel 3rd Panel 

o.oo -1.01 -0.20 
0.97 -0.25 -0. ll 
1.ll 0.04 0.14 
0.39 -0.02 0.82 

-1.01 -0.20 2.39 
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'2 = 26. 25 
4th Panel 

2.21 
-0.21 
-1.96 
-2.95 
-3.03 
-2.09 
o.oo 

4th Panel 

2.39 
-0.92 
-2.73 
-2.59 
o.oo 
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Figure 4.5 Primary moment diagram for a 100 ft. span 8 
panel truss - one kip per ft. 

39 



K
 DF
 

Fn
<P

e)
 

FE
n(

•t 
TO

T. 
FE

ft 
DI

ST
. 

1 
co

. 
l 

DI
ST

. 
2 

co
. 

2 
DI

ST
. 

l 
C0

.3 
DI

ST
. 

4 
co

. 
4 

DI
ST

. 
5 

co
. 

5 
DI

ST
. 

6 
co

. 
6 

DI
ST

. 
1 

co
. 

1 
DI

ST
. 

8 
co

.a 
DI

ST
. 

9 
co

. 
9 

DI
ST

. 
11

 BE
GI

Nl
NG

 
JO

IN
T 

TA
B

LE
 
4

.4
 

M
OM

EN
T 

D
IS

T
R

IB
U

T
IO

N
 F

O
R

 T
H

E 
1

0
 P

A
N

EL
 

TR
U

SS
 

"O
". 

Dl
ST

.-C
ON

TI
NU

OU
S 

BE
A"

S 

SP
AN

 I
 

SP
AN

 2
 

SP
AN

 3
 

SP
AN

 4
 

SP
AN

 5
 

I 
.I

 
.I

 
.1

 
.l

 
.l

 
l 

.5
 

.5
 

.5
 

.s 
.5

 
.5

 
.5

 
.5

 
l 

I 
8.

59
6 

-8
.5

96
 

8.
59

9 
-8

.5
99

 
8.

62
 

-8
.6

2 
8.

59
5 

-B
.5

95
 

8.
93

2b
7 

-8
.9

32
07

 
I 

-9
.1

15
33

 
9.

11
53

3 
-8

.9
87

 
8.

9t
7 

-8
.5

19
 

8.
51

9 
-7

.9
58

 
7.Y

58
 -

7.
24

86
7 

7.
24

86
b7

 
I 

-.5
19

33
 

.5
99

33
 

-.3
18

 
.3

88
 

.l
tl

 
-.

lt
l 

.6
37

 
-.6

37
 l

.b
84

~j
3 

-1
.b

84
 

.5
89

33
 -

.1
8t

ob
S 

-.
lt

t6
b5

 
-.2

14
5 

-.2
t4

5 
-.2

68
 

-.2
bB

 -
.5

23
51

2 
-.5

23
51

2 
l.b

84
 

-.1
58

33
3 

.2
54

66
5 

-.1
12

25
 -

.1
5t

33
3 

-.1
34

 
-.1

12
25

 -
.2

b1
75

l 
-.1

34
 

.8
42

 -
.2

61
75

1 
.t5

tl3
25

 -
.1

76
28

8 
-.1

76
28

8 
.8

92
16

63
 .

t9
2l

66
l 

.l
82

tt
t4

 .
18

21
19

4 
-.3

54
 

-.
l5

4 
.2

6l
75

f8
 

-.1
38

18
4 

.1
25

16
63

 .
14

61
83

1 
-.1

38
1i

4 
.1

91
88

12
 .

84
61

83
1 

-.1
77

 .
89

18
18

2 
.1

31
87

54
 

-.1
77

 
.1

38
11

38
 -

.8
35

62
5 

-.1
35

62
5 

-.1
26

44
8 

-.t
2b

44
8 

.t6
54

58
4 

.1
65

45
84

 -
.1

11
93

8 
-.1

18
93

8 
.1

77
 

-.1
17

81
2 

.1
19

85
19

 -
.8

13
22

4 
-.8

17
81

2 
.1

32
72

92
 -

.1
13

22
4 

-.I
S5

4b
9 

.1
32

72
92

 
.i8

85
 -

.t5
54

b9
 

.tl
78

12
3 

-.8
82

91
4 

-.8
12

91
4 

-.t
t7

45
8 

-.1
87

45
8 

.8
34

34
65

 .
83

43
46

5 
-.t

6t
61

5 
-.•

61
61

5 
.1

55
46

89
 

-.t
t1

45
7 

.1
18

91
62

 -
.8

83
72

9 
-.8

81
45

7 
.8

17
17

33
 -

.tt
37

29
 -

.8
31

38
7 

.1
17

17
33

 .
12

77
34

5 
-.

tJ
t3

f7
 

.1
11

45
69

 -
.8

82
58

8 
-.8

12
58

8 
-.t

t7
85

8 
-.1

17
85

8 
.1

17
11

83
 .

11
71

18
3 

-.1
22

45
4 

-.1
22

45
4 

.t3
t3

t7
3 

-.1
11

29
4 

.1
88

72
85

 -
.1

83
92

9 
-.8

11
29

4 
.1

18
51

91
 -

.1
13

92
9 

-.1
11

22
7 

.1
18

58
91

 
.1

15
15

37
 -

.1
11

22
7 

.1
11

29
42

 .
18

16
18

3 
.1

11
68

83
 -

.1
13

61
7 

-.1
83

61
7 

.tt
75

7B
t 

.1
17

57
81

 -
.1

11
83

1 
-.

tt
lB

ll
 .

lll
22

b9
 

.tt
t8

81
2 

.1
88

64
71

 -
.8

i1
8t

4 
.1

88
8t

t2
 .

81
37

89
1 

-.1
81

81
4 

-.8
85

91
6 

.8
t3

78
9f

 .
tt5

61
35

 ·
.8

15
91

6 
-.

tt
t8

11
 .

18
85

78
3 

.8
88

57
83

 -
.tt

22
95

 -
.1

12
29

5 
.1

13
85

97
 .

11
38

59
7 

-.8
14

71
1 

-.t
l4

71
1 

.1
85

91
57

 
.1

11
20

92
 -

.e
~j

4t
t 

-.
es

tt
47

 .
tt8

28
92

 .
11

19
29

9 
-.

tt
ti

4
7

 -
.1

12
35

1 
.tt

t9
29

9 
.1

82
95

78
 -

.1
12

3s
1 

-.1
88

28
9 

.1
81

77
37

 .
88

87
73

7 
-.

tl
ll

lt
 -

.1
81

11
1 

.1
11

74
91

 .
11

17
49

1 
-.8

12
44

4 
-.f

t2
44

4 
.1

82
35

tb
 

.lt
i3

B
b8

 -
.S

!l1
45

 -
.8

88
55

5 
.8

88
38

68
 .

11
18

74
5 

-.1
11

55
5 

-.8
81

22
2 

.8
18

87
45

 .
t•

lt
75

3 
-.t

•1
22

2 
-.1

88
38

7 
.1

89
34

97
 .

18
83

49
7 

-.1
18

63
1 

-.1
88

bl
l 

.1
88

88
83

 .
18

18
88

3 
-.

t~
lt

25
 -

.t
tl

t2
5

 .
11

12
21

9 
.8

18
17

48
 -

.~
~i

l9
3 

-.1
88

31
5 

.t
tl

l7
48

 .
18

14
44

2 
-.1

18
31

5 
·,f

jl
51

2 
.1

1~
44

42
 

.1
11

61
11

 -
.i

it
5l

2 
-.1

18
17

5 
.1

11
25

44
 .

11
12

54
4 

-.1
11

31
8 

-.1
81

31
1 

.1
88

41
39

 .
81

14
11

9 
-.

lt
i5

28
 -

.f
tt

52
8 

.ll
t5

12
4 

FIN
AL

 n
o"

. 
I 

.6
8~

31
36

 
-.b

f3
31

4 
.8

38
61

19
 -

.1
38

61
1 

-.
l~

b5
SB

 
.1

36
55

79
 -

1.
71

65
9 

l.7
tb

58
8 

I 
.i;

:..
 

0 



"' 
a.so 
0.75 
1.50 
2.25 
3.00 
3.75 
4.50 
5.25 
6.00 

TABLE 4.5 

PRlMARY MCMENTS IN TOP CHORD OF 100 FT 
TEN PANEL TRUSS WITH 1 K/FT LOADING 
OBTAINED FROM EQUATIONS 4.6 AND 4.7 

7{=3.0 ?(=9.0 7l=l5.0 17=21.0 
First Second Third Fourth 
Panel Panel Panel Panel 

o.oo -0.60 -0.04 0.14 
0.27 -0.33 -0.09 -0.10 
0.43 -0.13 -0.15 -0.26 
o.so -0.002 -0.21 -0.31 
0.46 0.07 -0.25 -0.24 
0.33 0.09 -0.25 -0.03 
0.10 0.07 -0.20 0.35 

-0.21 0.02 -0.08 0.92 
-0.60 -0.04 0.14 1.71 

41 

11=27 .o 
Fifth 
Panel 

1.71 
0.37 

-0.70 
-1.48 
-1.94 
-2.04 
-1.78 
-1.10 
o.oo 
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Figure 4.7 Primary moment diagram for a 100 ft. span 10 
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0 

o.oo 
0.63 
1.25 
1.88 
2.50 
3.13 
3.75 
4.38 
5.00 

TABLE 4.7 

PRlMARY MCMENTS IN TOP CHORD OF 100 FT. 
TWELVE PANEL TRUSS WITH 1 K/FT LOADING 

OBTAINED FROM EQUATIONS 4.6 AND 4.7 

1l =2.5 'T/. =7 .5 11=12.5 7l=l7.5' ?1=22.5 
First Second Third Fourth Fifth 
Panel Panel Panel Panel Panel 

o.oo -0.50 -0.25 0.06 0.09 
0.21 -0.25 -0.12 -0.05 0.01 
0.35 -0.06 -0.04 -0.15 -0.06 
0.40 0.05 0.02 -0.23 -0.08 
0.37 0.10 0.04 -0.28 -0.05 
0.27 0.09 o.05 -0.28 0.04 
0.08 0.02 0.05 -0.22 0.21 

-0.17 -0.09 0.05 -0.11 0.48 
-0.50 -0.25 0.06 0.09 0.85 
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~=27 .5 
Sixth 
Panel 

0.85 
0.14 

-0.43 
-0.85 
-1.09 
-1.14 
-0.99 
-0.61 
o.oo 
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Figure 4.9 Primary moment diagram for a 100 ft. span 12 
panel truss - one kip per foot. 
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CHAPTER V 

SECONDARY MOMENTS IN THE BOTTOM CHORD 

As defined earlier, the secondary moments are "support settle­

ment" type moments induced into the continuous chord as the truss de­

flects under load. In this case, the secondary moment in the bottom 

chord will be equal to the total moment since we have assumed a 

straight bottom chord with no direct loading on the bottom chord mem­

bers. 

5.1 PARAMETERS AFFECTING THE SECONDARY MOMENT IN THE BOTTOM CHORD 

The principal parameters affecting the secondary moments in the 

bottom chord are the values of the area and moment of inertia of both 

the top and bottom chords, the load intensity, truss span and the num­

ber of panels. 

These parameters are designated as shown in Table 5.1. As indi­

cated in Chapter III, the A and I values were varied independently over 

a range of values encompassing the normal range of member sizes used in 

practice. This range was listed in Table 3.2. 



TABLE 5.1 

PRINCIPAL PARAMETERS AFFECTING THE SECONDARY 
MOMENTS IN THE BOTTOM CHORD 

Parameter 

Area of Bottom Chord 

Area of Top Chord 

I of Bottom Chord 

I of Top Chord 

Truss Span 

Load Intensity 

Number of Panels 

Designation 

'\c 

~c 

~c 

1tc 
L 

w 

NP 
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Additional parameters affecting the moment in the bottom chord 

are joint slippage and heel and splice fixity. These effects will be 

discussed in Chapter 8. 

The influence of ~C' IBC' ~C and I.re on the moment in the bot­

tom chord are studied independently in a series of plots for each truss 

configuration (8, 10 and 12 panel). The data for these plots can be 

found in Appendix 2. 

Figure 5.1 shows plots of the moment in the bottom chord for 

several combinations of ABC and !Be• As can be seen, the critical sec­

tion for designing the bottom chord occurs at the first panel point 

from the heel in all cases. 

The moment at this location will be designated ~C and is plot­

ted as a function of '\c and IBC in Figures 5.2a,b, and c. 
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point 

8 Panel 
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u 
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Heel 
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point 
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Figure 5.1 Typical bottom chord secondary moment diagrams. 
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Figure S.2a 8 panel truss - secondary moment in the bottom 
chord as a function of ABC and IBc• 
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Figure S.2b 10 panel truss - secondary moment in the bottom 
chord as a function of ~C and !Be• 
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Figure 5.2c 12 panel truss - secondary moment in the bottom 
chord as a function of ~C and ~c· 



As would be expected, the value of 1:sc has a much more pro­

nounced effect on the induced moment than does the area, ~c· 

5. 2 MBC AS A FUNCTION OF ~C 

52 

The area of the bottom chord affects the net deflection of the 

truss according to the virtual. work expression 

(5.1) 

The resulting change in deflection caused by varying ABC affects 

a change in the curvature of the deflected continuous chord member. 

The change in curvature results in a change in moment due to the flex-

ural deflection, that is 

1 M 
Curvature = --p- = EI 

EI 
M =-r or (5. 2) 

As ~C is increased with all other parameters remaining constant, 

the secondary moments will decrease. This can be seen in Figure 5.2. 

The moment will not approach zero as ~C goes to infinity, however. 

The deformations of the top chord and the webs also contribute to the 

deflection of the truss. The moment, therefore, approaches asymptoti-

cally a value greater than zero, which is dependent on the other para-

meters. 

The curves of Figure 5.2, which relate ABC to MBC' can be approx­

imated by an equation of the form: 

(5.3) 

The "O" subscript on ~C indicates that this is the moment 
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obtained when all parameters except ~C are fixed at "base" values. 

This "base" value of ~C will subsequently be adjusted to account for 

variation in the other parameters. 

Equation S.3 suggests that ~CO would approach infinity as ~C 

approaches zero, which seems reasonable since zero area would produce 

infinite deflections. 

The values of ~C obtained from a series of computer frame ana­

lyses in which all parameters are held constant except ~C are utilized 

to compute the constants ~ and CB of Equation S.3. Since there are 

two unknowns, two analyses will be required. Designating the two ana-

lyses as case 1 and 2 and subscripting ~C and the resulting ~C accord­

ingly, the following expressions are obtained by substituting the known 

values into Equation S.3 and solving for the constant: 

and 

~Cl ~Cl - ~C2 ~C2 
~Cl - ~C2 (S.4) 

(S.S) 

These constants will vary as ~C varies. The computed values 

of ~ and CB and the data from which they were computed are listed in 

Table 5.2. 

Truss 

BP 
lOP 
12P 

TABLE S.2 

COMPUTATION OF ~ AND CB FOR THE EIGHT, 

TEN AND TWELVE PANEL TRUSSES USING 
EQUATIONS S.4 AND S.S 

~co ABCl ABC2 ~Cl ~C2 CB 

3600 50.0 12S.O 21.07 lS.67 12.0700 
3600 so.a 12S.O 23.98 17.79 13.6633 
3600 so.a 125.0 2S.43 19.2S lS.1300 

kB 

450.0000 
51S.8333 
SlS.0000 
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It should be noted that although Equation 5.3 very closely pre-

diets ~' it is not exact, and care should be taken if extrapolation 

beyond the existing data is attempted. The accuracy within the range 

of data appears well within nonnal engineering tolerances however. 

Equation 5.3 provides a relationship between MBC and ~C' with 

all other parameters constant. ~C will be affected by the other para­

meters as well. In order to account for these effects, an adjustment 

factor, ~i' for each parameter will be developed, resulting in an 

equation as follows: 

(5.6) 

The following parameters will be considered here: 

~o = f (~c) (I of Bottom Chord) 

~l = f(~c) (Area of Top Chord) 

~2 = f <I.re) (I of Top Chords) 

~3 = f (L) (Truss Span) 

KB4 = f (w) (Load Intensity) 

~5 = £(number of panels) (8 panel, 10 panel or 12 panel) 

5.3 THE EFFECT OF ~c ON ~c 

The effect of the moment of inertia, I , has a much more pro­
BC 

nounced effect than does the area, as was anticipated. Equation 5.2 

would suggest a linear relationship between IBC and ~c· The computer 

results confirmed this to be nearly true. A slight nonlinearity re-

sults from the axial forces in the members being changed slightly as 

~C varies. The deflections of the truss are therefore not a linear 
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function of IBC' which results in ~C being slightly nonlinear. 

Various approaches to representing the variation of ~C with 

~C were considered, including a power curve fit of the form 

( ~C )N 
~o = ~co (5. 7) 

As mentioned above, the relationship is nearly linear over the 

range of normal chord sizes. Thus N will be very nearly equal to one. 

The value of N can be determined by considering the following 

equation 

or 

~c 
N 

= m1Bc 

m = MBC 

~c 
Using two values of ~C' we obtain 

or 

Thus 

~Cl ~C2 
-N- =-N-

1Bc1 1Bc2 

(~C2 )N 

~Cl 
~2 

=~Cl 

The calculations for N are found in Table 5.3. 

At this point we have the following: 

(5.8) 

(5. 9) 

(5 .10) 
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TABLE 5.3 

COMPUTATION OF N 

8 Panel 10 Panel 12 Panel 

Designation 1 OlTCll OlTCll OOTC12 
Designation 2 03TC11 03TC11 03TC12 

~Cl 800 800 250 

1BC2 
3600 3600 3600 

~Cl 4.97 6.01 2.13 

MBC2 21.07 23.98 25.43 

N .960343 .920029 .929732 

(5.11) 

Equation 5.11 yields the variation of ~C with ~C and ABC for 

a specific value of w, L, number of panels, 1tc and ~c· Figures 5.3a, 

b, and c show ~C as a function of actual chord sizes using Equation 

5.11. The values of kB and CB are computed from the data on Figures 

5.2a,b, and c, using Equations 5.4 and 5.5. The computed values are 

listed in Table 5.2; computed values of N are found in Table 5.3; and 

computed values of ~C using Eq. 5.11 are listed in Table 5.4. 

For a rectangular member, we can compute the bending stress as: 

fb {psi) = 
72000 ~C (Ft-K) 

b (in) (d (in)) 
2 

fb is also plotted in Figures 5.3a,b, and c. 

(5 .12) 
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The moments computed in Table 5.4 are based on the specific top 

chord parameters noted on Figures 5.3a,b and c. To account for other 

values of A.re and 1Tc' another set of correlations will be developed 

to relate the size of the top chord to ~c· 

5. 4 ~c AS A FUNCTION OF A.re AND 1tc 

Figures 5.4a,b and c relate ~C as a function of A.re and 1tc' 

in a manner similar to Figures S.2a,b and c. In this case, the bot-

tom chord is held constant. 

The influence of I.re is quite small. Doubling 1tc decreases 

M_sc only about 3%. The area, ~C' however, has essentially the same 

influence on ~C as did ~c· This is to be expected since the area of 

the top chord affects the deflections of the truss nearly the same as 

the area of the bottom chord. 

As before, we can relate ~C to A.re as follows: 

(5 .13) 

where ~Cl ~Cl - '\c2 ~C2 
= 

~Cl - A.:rc2 (5 .14) 

and 
(5 .15) 

The computed values of CBl and kBl along with the data used to 

compute them are listed in Table 5.5. Letting ~C be defined as the 

value of A..rc used when developing the coefficients of E~uation 5.11, 

an adjustment factor to adjust Equation 5.11 for a variable ~C can be 

developed as follows: 



61 

TABLE 5.4 

COMPUIATION OF ~c USING EQUATION 5.11 

8 Panel 
Deoth b = 5.125 b = 6.75 

6 .791317 .894895 
7.5 1.340090 1.538890 
9 2.080040 2.418210 

10.5 3.035920 3.565400 
12 4.232140 5.012530 
13.5 5.692810 6.791200 
15 7.441750 8.932620 
16.5 9.502520 11.467700 
18 11.898500 14.426900 
19.5 14.652700 17 .840500 
21 17.788200 21.738500 
22.5 21.327700 26.150700 
24 25.293700 31.106500 

10 Panel 
Deoth b = 5.125 b = 6.75 

6 1.045550 1.168350 
7.5 1.722290 1.954270 
9 2.613490 3.002310 

10.5 3.742280 4.342910 
12 5.131200 6.005570 
13.5 6.802210 8.019020 
15 8.776790 10.411300 
16.5 11.076000 13.209700 
18 13.720300 16.441200 
19.5 16. 730100 20.132000 
21 20.125300 24.308000 
22.5 23.925300 28.994600 
24 28.149600 34.217000 

12 Panel 
Deoth b = 5.·125 b = 6.75 

6 1.056760 1.192480 
7.5 1.762230 2.019110 
9 2.700940 3.132490 

10.5 3.900020 4.568210 
12 5.385880 6.360880 
13.5 7.184390 8.544250 
15 9.320820 11.151300 
16.S 11.820000 14.214400 
18 14.706300 17.765400 
19.5 18.003800 21.835300 
21 21. 736000 26.455000 
22.5 25.926300 31.654700 
24 30.597600 37.464300 
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(5.16) 

This is simply a ratio of ~C found from Figure 5.4 to the 

"base" value of ~C when ~C equals ~c· Figure S.S is a plot of KBl 

as a function of A.re• The computed values are listed in Table 5.6. 

Truss 

SP 

lOP 

12P 

~c 

~Cl 

1800 

1800 

1800 

~c 

TABLE 5.5 

CCMPUTATION OF ~l AND CBl USING 

EQUATIONS S.14 AND S.15 

A.rc1 A.rc2 ~Cl MBC2 

so 75 12.12 9.13 

50 100 14.20 8.80 

75 125 12.08 8.78 

TABLE 5.6 

COMPUTATION OF ~l USING 

EQUATION 5.16 

CBl 

3.1500 

3.4000 

3.8300 

~l 

448.50 

540.00 

618. 75 

8 Panel 10 Panel 12 Panel 

= 75.0 9.130 10.600 12.080 

25 2.130 2.358 2.366 

so 1.327 1.340 1.341 

75 1.000 1.000 1.000 

100 0.836 0.830 0.829 

125 0.738 0.728 0.727 
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5. 5 THE EFFECT OF I.re ON THE MOMENT IN THE BCTrTOM CHORD 

Though the effect is small, a variation of ~C does influence 

~c· Figure 5.6 shows the variation of \c as a function of I.re· 
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Note that the curves for each truss are based on different areas. 

variation of ~C between trusses is not of concern at this point. 

variation of ~C with 1i-c is what is being considered here. 

The 

The 

The curves of Figure 5.6 appear to intersect the M axis at 

finite values. The principal influence of the continuity of the top 

chord is to pull some of the load "off" of the truss--that is, it 

attempts to act as a beam, carrying some of the load by shear. As 

will be shown in the next chapter, the entire top chord of the truss 

ends up with positive moments. As can be seen in Figure 5.7, positive 

moment at the first top chord joint results in a positive shear in the 

end panel. In effect, an upward load equal to the shear is applied to 

the truss at the first joint, reducing the axial forces in the members, 

thus reducing deflections. 

From this it would be expected that the deflection and there­

fore the secondary moments will decrease as the stiffness of the top 

chord increases. This is indeed the case as was seen in Figure 5.6. 

Therefore, the bottom chord secondary moment will be at a maximum but 

finite value when ~C equals zero. The same effect will occur in other 

types of trusses, even if a net negative moment exists at the joint. 

The deflection would still tend to make the moment increase in the pos­

itive direction. 

Several types of curves can be passed through the points of 
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Figure 5.6. A logarithmic curve of the form 

M = k ln I + C 

can be made to fit quite well over a reasonable bound of I, however 

extrapolation could be unreliable since this curve approaches infinity 

as I approaches zero, as well as eventually going negative at very 

large values of I. 

An inverse equation of the form 

k M=-+C 
I 

as used before could also be made to fit fairly well, however this 

also approaches infinity as I approaches zero. A variation of this 

curve, requiring three points to establish, could be written as fol-

lows: 

M = ~2 + C 
(~C + ~2) B2 (5 .17) 

This type of curve is plotted in Figure 5.6. 

This form of equation meets the requirements of the boundary 

conditions and fits the data quite well. Therefore, this form of equa-

tion will be proposed for development of a top chord stiffness adjust-

ment factor, ~2 • 

Three points are required to establish this equation, due to 

the presence of the three unknown constants. 

Three equations can be written: 

CB2 = 
<1tc1 + gB2)MBCl - <1tc2 + ~2)MBC2 

~Cl - 1
TC2 

(5 .18) 

CB2 = 
<~c2 + ~2)?\c2 (~C3 + gB2)~C3 

l.rc2 - l.rc3 
(5 .19) 
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(5. 20) 

Setting Equation 5.18 equal to 5.19, and separating variables, 

we obtain: 

gB2 
= _ [~Cl 

where 

~Cl - ~C2 1TC2) - qB2 ~C2 ~C2 - ~C3 
~Cl - ~C2) - qB2 (MBC2 - ~C3) 

~Cl - 1rc2 

~C2 - ~C3 (5. 21) 

cB
2 
an~ kBZ are obtained by substituting gB2 as computed in 

Equation 3.21 into Equations 5.18 and 5.20. 

Using the value of ITC used in computing ~ and CB of Equation 

5.11 as a base value, the following adjustment factor can be proposed: 

~2= 

(5. 22) 

where gB2 can be obtained from <Equation 5.21, ~2 from F.quation 5.20 

and cB 2 from ~uation 5.19. 

Using data from Figure 5.6, ~2 , ~2 and cB2 are computed in 

Table 5.7. Computed values of ~2 are listed in Table 5.8 and plotted 

in Figure 5. 8. 

5.6 INFLUENCE OF TRUSS SPAN (L) ON ~C 

Assuming the same loading intensity per lineal foot, the second-

ary moments will not be affected appreciably. That is, an 80 ft. truss 

with 1 K/ft loading will have nearly identical secondary moments to a 

100 ft. truss with the same chord sizes and carrying 1 K/ft of load. 



Truss 

A.rco 

ITCl 

ITC2 

~C3 

MBCl 

MBC2 

~C3 

~2 

CB2 

kB2 

TABLE 5.7 

COMPUTATION OF ~2 , CB2 AND gB 2 USING 

EQUATIONS 5.19, 5.20 AND 5.21 

8 Panel 10 Panel 

50 100 

250 250 

800 1800 

1800 3600 

~c 
I = 0 

250 
500 
800 

1000 
1500 
2000 
3000 
4000 

12.88 9.39 

12.46 a.so 

12.12 8.30 

993.9914 8796.167 

11.51004 5.356620 

1704.215 36486 .63 

TABLE 5.8 

COMPUTED VALUES OF ~2 USING 

EQUATION 5.22 

8 Panel 10 Panel 

800 800 

1.061361 1.037757 
1.033708 1.025240 
1.015309 1.013397 
1.000000 1.000000 
0.992353 0.991520 
0.978601 0.971776 
0.969443 0.953857 
o. 958005, 0.922576 
o. 951147 0.896184 

12 Panel 

125 

250 

1800 

3600 

9.55 

8.78 

8.14 

8184.518 

4.589949 

41835.64 

12 Panel 

1800 

1.104955 
1.087699 
1.071437 
1.053117 
1.041568 
1.014783 
0.9906284 
0.9487978 
0.9138334 
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This can be shown by considering the primary factors involved. 

As noted earlier, the secondary moments are due to the deflection of 

the truss forcing the continuous chords to bend. This deflection is a 

function of span, loading, member areas, modulus of elasticity, and to 

a small extent the moment of inertia of the chords. Neglecting the 

influence of I, 

~= f ( 2:~ ) (5. 23) 

since P = f (wL) 

we have 

or, assuming all other parameters constant, 

(5. 24) 

The moment in the continuous chord is given by the slope deflec-

tion equation as 

(5. 25) 

Substituting Equation 5.24 into 5.25, we obtain 

(5. 26) 

which reduces to 

(5. 27) 

The moment is therefore neither a function of E nor of L. 

It can be seen from Figure 5.7 that if M were to remain un-

changed when L is varied, then the shear in the member would be affect-

ed, thus redistributing the axial forces slightly. Therefore, if the 
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influence of I.re and ~C are not neglected, the moment will be slightly 

influenced by varying L. This effect will be quite small and will be 

neglected in this chapter. 

Therefore, the span adjustment factor will be defined in this 

chapter as: 
= 1 (5. 28) 

5. 7 THE INFLUENCE OF LOADING ON ~C 

The structure has been modeled as a linearly elastic structure; 

the effect of changing the magnitude of the uniform load will simply be 

linear proportional. Thus, for a uniform load on the top chord, 

w 
~4 =B 

w 
(5. 29) 

Changing the loading pattern, however, will change the deflect-

ed shape of the truss which would have a direct effect on the secondary 

moments. Therefore, Equation 5.6 will only be valid for the loading 

pattern considered. A separate set of coefficients for Equation 5.6 

will need to be developed for each loading pattern desired. 

5. 8 THE INFLUENCE OF THE NUMBER OF PANELS ON ~C 

Changing the number of panels in the truss changes the struc-

tural configuration, whereas the parameters studied to this point only 

changed the member properties. Due to the structural similarity, how-

ever, this parameter can be treated in the same manner as the other 

parameters. 

Plotting ~C versus the number of panels results in the curve of 

Figure 5.9. An equation of the form 
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~c= 
~5 

(5. 30) 

seems appropriate. 

The adjustment factor thus becomes 

(5 .31) 

The factors for this equation are computed by use of equations 

similar to Equations 5.18 through 5.21, replacing ~C with NP. These 

computations are summarized in Table 5.9. Values of ~5 are computed 

from Equation 5.31, summarized in Table 5.10 and plotted in Figure 5.10. 

Note that these values plot as a near straight line function. A sim-

plified equation for ~5 can be written to fit this line. Thus, from 

Figure 5.10, 

~5 = .33 + .081 NP 

TABLE 5.9 

DATA FOR FIGURE 5. 9 AND COMPUTATION OF 

kBS' CBS AND ~5 

Parameter Data Frame Analysis Results 

~c = 75 NP
1 

= 8 ~Cl = 9.13 

~c = 1800 NP
2 = 10 ~C2 = 10.63 

Arre = 75 NP3 = 12 MBC3 = 12.08 

I.re = 1800 
Com:euted Values of the Constants 

kB5 = -10266.0 ~5 = 108.0 CBS = 97.63 

(5. 32) 
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TABLE 5.10 

COMPUTATION OF ~5 

NP KS 

4 0.6540 

6 0.8299 

8 1.0000 

10 1.1643 

12 1.3231 

14 1.4767 

16 1.6254 

5.9 SUMMARY 

The moment in the bottom chord of a bowstring truss with a web 

configuration of the types considered in this paper can be computed 

from the following equation: 

where; 

~ = ~oi)i1 i)i2i)i3KB4 l)i5 ( ~c + CB) 

1SJo ( ~ + CB) is computed for the 8 pane 1 truss or found from 

Figure 5.2a and 5.3a. 

KBl is the top chord area adjustment factor which can be 

computed from Equation 5.16 using data from Table 5.5 

for an 8 panel truss, or taken from Figure S.S. 

KB
2 

is the top chord moment of inertia adjustment factor 

from Equation 5.22 using data from Table 5.7 for an 8 

panel truss, or taken from Figure 5.8. 
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is the truss span adjustment factor, and is taken as 1.0. 

is the load intensity factor, 

w 
~4=l =w 

~5 is the adjustment factor for the number of panels in 

the truss, computed from Equation 5.31 using Table 5.9 

or using the simplified Equation 5.32 or Figure 5.10. 

Table 5.11 provides an easy to use summary of the above infer-

mation. Using the data from Tables 5.2 through 5.10, explicit equa-

tions for each factor were computed. These equations are presented 

in Table 5.12. Verification of the equations is provided in Chapter 

VII. 

Coef. 

~c 

?\co 

kB 

CB 

KBO 

N 

TABLE 5.11 

SUMMARY OF GENERAL EQUATIONS 
FOR THE BGrTOM CHORD 

SECONDARY MOMENTS 

General Equation 

~co<~OKB1KB2KB3KB4~5) 

~ 
~C +CB 

~Cl ~l - CB) 

~Cl~Cl - ABC2~C2 
~Cl - ~C2 

(~c r 
IBCO 

ln~C2/MBC1) 

ln <I_sc 2/ IBC 1) 

EQ. No. 

5.6 

5.3 

s.s 

5.4 

5.7 

5.10 



81 

TABLE 5.11 continued 

Coef. General EQuation Ea. No, 

~1 
~i1"rc + CBI S.16 B 
~i1ATc + cBl 

kBl C?\c1 - CBl)~Cl s.1s 

CBI 
A.rc1~c1 - ~C2MBC2 S.14 

~Cl - ~C2 

~2 
kB/ <1tc + ~2) + CB2 

s.22 B 
~2/(J:Tc + ~2) + CB2 

kB2 (MBCl - CB2)(ITC1 + gB2) s.20 

CB2 
<I.rc2 + gB2)MBC2 - ~C3 <I.rc3 + ~2) 

5.19 
<I.rc2 - 1tc3) 

gB2 
-[<Mac1 l.:rc1 - l\c2l.:rc2> - qB2 <Miic2l.:rc2 - MBc3l.:rc3j 

(~Cl - ~C2) - qB2(~C2 - ~C3) 
s.21 

1tc1 - 1tc2 5.21 qB2 
1tc2 - 1tc3 

~3 1.0 5.28 

~4 
B 

(w/w ) 5.29 

~5 
~S/(NP + ~S) +CBS 

S.31 
B 

~S/(NP + gBS) +CBS 

kBS C?\c1 - CBS)(NPl + ~5) ----

CBS 
(NP 2 + gBS) Cl\c2) - (NP 3 + ~s)~C3 

(NP2 - NP ) ----
3 



Coe£. 

~5 

qBS 

Coef. 

l\c 

?\co 

KBO 

KBl 

KB2 

KB3 

KB4 

KB5 

TABLE 5.11 continued 

General Eauation 

-t~ClNPl - ~C2NP2) - qBsO\czNPz - ~C3NP3)j 
~Cl - ~C2) - qB5 <M:sc2 - ~C3) 

NPl - NP2 
NP2 - NP3 

TABLE 5.12 

SUMMARY OF EXPLICIT EQUATIONS 
FOR THE BarTCM CHORD 

SECONDARY MOMENTS 
(BASED ON 8 PANEL TRUSS) 

Equation 

l\co<KBOKB1KB2KB3KB4KB5) 

((450.00)/~c + (12.010)) 

(I /(3600))(.960343) 
BC 

((49.124)/~c + (0.3450)) 

((136.78)/(1tc + (993.99)) + (.9238) 

1.0 

w 

((-1124.4)/(NP + (108)) + (10.693) 
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CHAPTER VI 

SECONDARY MCMENTS IN THE TOP CHORD 

The secondary moments in the top chord i.e., the usupport 

settlement" type moment resulting from the displacement of the joints, 

have the potential of being quite large depending on the values of the 

parameters involved. Figure 6.1 shows the moment diagram of the top 

chord for an 8 and 12 panel truss for two combinations of parameters. 

These diagrams are plotted from data obtained from the computer frame 

analyses. For each case, the primary moment has been sub~racted out 

of the total moment to provide a plot of the secondary moment for the 

respective cases as well. 

As can be seen from Figure 6.1, the critical location for the 

design of the top chord will be at the first panel point from the end 

of the truss, as was the case for the bottom chord. The secondary mo­

ment at this location will be designated as M.rc· 
It should also be noted that the primary moments are generally 

small as compared to the secondary moments. The traditional assumption 

that the secondary moments are small enough to be neglected, as implied 

by the AITC manual, is obviously incorrect. As will be shown by an ex­

ample in Chapter X, this assumption can lead to a substantially under­

designed structure. 



f Truss 1st panel 
point 

Figure 6.la 8 panel truss 

Note the small contribution of the primary 
moment as compared to the secondary moment. 
The difference between the total moment and 
the secondary moment represents the primary 
moments. 

I Case 1) t~tal moment 
I Case 1) second,ry moment -t----_,;:~ 
I 

Heel 

Case 2) total moment • --------~ 
Ca~econdat moment __ 

i'~ ~--=--

f Truss 

Figure 6.lb 12 panel truss 

1st panel Heel 
point 

Figure 6.1 Top chord moment diagrams for typical cases. 
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6 .1 PARAMETERS AFFECTING M.rc 

The principal parameters affecting the secondary moments in the 

top chord are the same as those affe.cting the bottom chord, as listed 

in Table 5.1. 

An additional step must be taken prior to developing the char­

acteristic equations and figures if the secondary moments are to be in­

vestigated alone. The "primary" moments must first be separated from 

the computer g~nerated moments. This is done in Appendix A2, Table 

A2.2, using the values of the primary moment computed in Chapter IV. 

The ability to predict the moments in the bottom chord in the 

10 and 12 panel trusses from the 8 panel datum by use of ~5 (Equation 

5.31) was demonstrated in Chapter V. Therefore, only the 8 panel data 

will be developed in this chapter, except when developing the ~5 ad­

justment factor. 

6.2 DEVELOPMENT OF EQUATIONS 

Based on the reasoning in Chapter V, the following equation is. 

proposed. 

(6.1) 

The general equations for the individual parameters are present­

ed in Table 6.1. The coefficients are calculated in Tables 6.2 through 

6.6. 

Explicit equations are developed by inserting the coefficients 

into the general equations of Table 6.1. These explicit equations are 

presented in Table 6.7. Tables 6.8 through 6.12 develop the data re-
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quired for Figures 6.2 through 6.6. 

We thus have the means, by either Table 6.7 or Figures 6.2 

through 6.6, for determining the secondary moment in the top chord of 

a bowstring truss of 8, 10 or 12 panels with a uniform load on the top 

chord. 

Figure 6.2, which is analagous to Figure 5.2 for the bottom 

chord, represents ~C as a function of A.re and I.re with all other para­

meters held constant at the values listed in the figure. Fig. 6.3 

transforms this data to represent actual chord sizes and also plots 

the bending stress produced by the calculated moment acting on the 

given section. 

Figure 6.4 provides an adjustment factor to modify the values of 

~C and fb obtained from Fig 6.2 or 6.3 to account for a variation in 

~c· Figure 6.5 adjusts 11.rc for ~C' and Fig. 6.6 adjusts 11.rc for 

trusses with other than 8 panels. Figure 6.6 should be considered 

valid only for 8, 10 and 12 panel trusses since other values would re­

quire extrapolation beyond the available data. Since NP is not a con­

tinuous function, KT
5 

would more appropriately be taken from Table 6.12. 

Figure 6.6 makes it clear however, that increasing the number of panels 

in the truss significantly increases the secondary moments which are 

induced into the chord. 



Coe£. 

M.rc 

M.rco 

kT 

CT 

K.ro 

&ro 

<Lro 

CTO 

kTO 

KTl 

~1 

TABLE 6.1 

GENERAL EQUATIONS FOR TOP CHORD 
SECONDARY MOMENT 

General Eauation 

l<..roK.r1KT2KT3KT4KTS(MTCO) 

~ +c 
A.re T 

~Cl CM.rel - CT) 

~c1~c1 - A.rc2~c2 
~Cl - ~C2 

~o + c 
~c + ~o TO 

~o 
B + CTO 

1Tc + &.ro 

_ [CM.rc1 l.rc1 - ~c2l.rc2) - <Lro CM.rc2l.rc2 - ~c3l.rc3j 
%c1 - ~c2) - <tro%c2 - ~c3> 

~Cl - 1tc2 

1tc2 - l.rc3 

<I.rc1 + &ro>~c1 - <I.rc2 + &ro>M.rc2 

l.rc1. - 1TC2 

CM.rel - CTO) (~Cl + ~2) 

kTl 

~C + CTl 

~1 
B+ CTl 
ABC 

~Cl ~Cl - CTl) 
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Ea. No. 

6.1 

6.1 

6.3 

6.4 

6.5 

6.6 

6.7 

6.8 

6.9 

6.10 

6.11 
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TABLE 6.1 continued 

Coef. General Equation Eq. No. 

CTl 
'\c1~c1 - '\c2~c2 6.12 

~Cl - ABC2 

k.r2 + c 

K.r2 
~C + &r2 T2 

6.13 
k.r2 

B + CT2 
1Bc + &r2 

&r2 
-t<M.rc1 \c1 - M.rc2

1
BC2) - <Lr2 (MTC2

1
BC2 - M.rc3l.rc3j 

CM.re 1 - M.rc 2) - 'Lr 2 CM.re 2 - M.rc 3) 
6.14 

<l.r2 

1
BC1 -

1
BC2 

6.15 1
BC2 -

1
BC3 

CT2 
<~cl + &r2)~c1 - <~c2 + &r2)M.rc2 

6.16 
~Cl -

1
BC2 

k.r2 CM.rel - CT2) (~Cl + &r2) 6.17 

l<.r3 1.0 6.18 

~4 
_J!__ 

6.19 B 
w 

~5 
NP + + CTS 

~5 
&rs 

6.20 
k.rs 

B + CTS 
NP + &rs 

&rs 
_ [ CM.rc1NP1 - M.rc2NP 2) - Cl.rs CM.rc2NP 2 - M.rc3NP 3)j 

CM.rc1 - M.rc2) - Cl.rs CM.rc2 - 1\-c3) 
6.21 

Cl.rs 
NPl - NP2 

6.22 NP
2 

- NP
3 



Coef. 

CTS 

kT5 

TABLE 6.1 continued 

General Equation 

(NPl + Srs)~Cl - (NP2 + &rs)M.rc2 
NPl - NP2 

<Mi:rc1 - CTS)(NPl +&rs) 

TABLE 6.2 

COMPUTATION OF ~ AND CT FOR 

AN 8 PANEL TRUSS USING 
EQUATIONS 6.3 AND 6.4 

Designation 1 12TC02 
Designation 2 12TC12 

~co = 1800 

A.rc1 = so 

A.rc2 = 75 

~Cl = 12.80 

l\ic 2 = 9.78 

CT = 3.7400 ~ = 453.00 

TABLE 6.3 

COMPUTATION OF k.ro, CTO AND Sro FOR 

AN 8 PANEL TRUSS USING EQUATIONS 
6.6, 6.7, 6.8 AND 6.9 

Designation 1 12TCOO 
Designation 2 12TC01 
Designation 3 12TC02 

1rc1 = 250 ~Cl= 2.10 

~C2 = 800 M.rc2 = 6.02 

~C3 = 1800 ~C3 = 12.80 

&ro = 30,011.s CTO = 221.70 ~o = -6,645,492.8 

89 
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6.23 

6.24 



TABLE 6.4 

COMPUIATION OF ~l AND CTl FOR 

AN 8 PANEL TRUSS USING 
EQUATIONS 6.11 AND 6.12 

Designation 1 03TC11 
Designation 2 33TC11 

~Cl = 3600 

~Cl= 50 M.rcl = 4.93 

~C2 = 125 M.rc2 = 3.77 

CTl = 2. 9967 ~l = 96.6667 

TABLE 6.5 

COMPUIAT ION OF kT 2, CT 2 AND ~ 2 FOR AN 

8 PANEL TRUSS USING EQUATIONS 
6.14, 6.15, 6.16 AND 6.17 

Designation 1 OOTCll 
Designation 2 02TC11 
Designation 3 03TC11 

IBCl = 250 ~Cl = 5.81 

~C2 = 1800 ~C2 = 5.38 

~C3 = 3600 ~C3 = 4.93 

&:r2 = 30,294.12 CT 2 = -3.0935 kT2 = 271,949.55 

TABLE 6 .6 

COMPUIATION OF ~5 , CT5 AND ~5 USING 

EQUATIONS 6.21, 6.22, 6.23 AND 6.24 

Designation 12TC12 

A.re = 75 NP = 1 8 M.rc1 = 9.78 

I.re = 1800 NP = 2 10 M.rc 2 = 10. 34 

~c= 75 NP = 3 12 ~C3 = 12.15 

~c = laoo 

~5 = -13. 7920 s 5 = 8.1182 ~5 = -6.1497 
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Coef, 

M.rco 

KTO 

KTl 

~2 

~3 

~4 

~5 

~c 

TABLE 6.7 

EXPLICIT EQUATIONS FOR THE SF.cONDARY 
MOMENT IN THE TOP CHORD 

Exolicit Eauation 

<4~~0) + (3. 74) 

-519,179 
1Tc + 30,011.5 + 17.3233 

<2~~55 ) + (.6992) 

(50,548. 2) + (-0.5750) !BC + (30,294.12) 

1.0 

w 

(-.6288) 
NP+ (-13.792) + (• 8912) 

~0~1~2~3~41<.r5~co 

*Figures 6.la,b and c represent ~0K.r5~CO 

Arre 
25* 
50 
75 

100 
125 

TABLE 6.8 

CALCULATED DATA FOR CURVE OF 
FIGURE 6.1 USING EQUATIONS 

FROM TABLE 6.7 

~c = 250 ~c = 800 ~c = 1800 

3.651 10.340 21.860 
2.138 6.054 12.800 
1.633 4.626 9.780 
1.381 3.912 8.270 
1.230 3.483 7.364 

*Extrapolated 

~c = 3600 

86.747 
24.03 
18.357 
15.523 
13.822 
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Fi~re 

6.la* 
6.lb 
6.lc 

6.2 

6.3 

6.4 



Depth 

6 
7.5 
9 

10.5 
12 
13.5 
15 
16.5 
18 
19.5 
21 
22.5 
24 

TABLE 6.9 

CALCULATED DATA FOR FIGURE 6.2 BASED 
ON THE EQUATIONS FROM TABLE 6.7 

5.125 Wide 6.75 Wid~ 

~c f b ~c f b 

1.07831 420.804 1.12114 332.189 
1.68606 421.105 1.79003 339.443 
2.48152 430.398 2.67095 351.731 
3.47394 442.673 3.77643 365. 369 
4.67062 455 .671 5.11492 378.883 
6.07545 468.327 6.68973 391.534 
7.6883 480.05 8.49798 402.867 
9.50446 490.454 10.5303 412.575 

11.5145 499.273 12.7709 420.441 
13.7042 506.319 15.1977 426.321 
16.0552 511.466 17.7834 430.135 
18.5452 514.643 20.4967 431.865 
21.1489 515.826 23.3036 431.548 

TABLE 6.10 

CALCULATED VALUES OF l<.rl 

1tc = 1800 

~c = 75 

~c = 1800 

~c l<.r1 
25 1.601 
50 1.15 
75 1.00 

100 0.925 
125 0.880 
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TABLE 6.11 

CALCULATED VALUE OF ~2 

~c = 1aoo 
~c= 75 

~c= 75 

~c ~2 
200 1.083 
400 1.072 
800 1.051 

1200 1.030 
1600 1.010 
1800 1.000 
2000 0.9903 
2400 o. 9711 
2800 0.9525 
3200 0.9342 
3600 0.9134 

TABLE 6.12 

CALCULATED VALUES OF ~5 

NP ~5 

8 1.000 
10 1.057 
12 1.242 
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CHAPTER VII 

VERIFICATION OF EQUATIONS DEVELOPED 
IN CHAPTERS V AND VI 

In order to check the equations developed in Chapters V and VI, 

the equations of Tables 5.12 and 6.7 were written into a small computer 

program. Computation of ~C and ~C were made for each combination of· 

parameters for which a frame analysis had been run. The results were 

compared with the values of M C and M obtained from the frame analy-
B TC 

sis runs. 

Table 7.la compares the moment in the bottom chord as computed 

by the equations developed in Chapter V (Table 5.12) denoted by "M BC 

equation" against the moment obtained from the frame analysis denoted 

by "M computer". The column labeled "Ratio" lists the ratio of the 
BC 

two, that is 

~C equation 
Ratio = 

~C computer 

Table 7.lb compares the secondary moment in the top chord in a 

similar fashion. 

It can be seen that the equations generally predict the moments 

with 1% or 2%. A few cases have up to nearly a 10% discrepancy. 

This range of accuracy is considered quite acceptable. The 

bending stress resulting from the secondary moments is generally in the 

range of 20% of the allowable bending stress. Therefore, a 10% error 
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in computing the moment will result in only a 2% error in the combined 

stress equation which is well within accepted engineering accuracy. In 

addition, it will be seen in Chapter VIII that bolt slippage in the web 

to chord joints can reduce the secondary moments by as much as 60% in 

some cases, which further justifies the acceptability of the accuracy 

obtained. 

The cases which showed the greatest discrepancy were in the 

most part unlikely combinations of parameters, such as case 12TC30 

which has the following parameters: 

~c = 75 

A.re = 125 

~c = 1800 

\.c = 250 

Greater accuracy would likely have been obtained if the para­

meters used to develop the various constants had "bounded" the range 

of data. This was not always done which results in some extrapolation 

being required. 

Chapter IX will present a systematic approach to choosing para­

meters and developing characteristic equations which greatly simplifies 

and improves reliability over the techniques used to develop the equa­

tions of Chapters V and VI. 
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TABLE 7.la 

VERIFICATION DATA 

MBC MBC 
Designation Equation Comput!r Ratio 

BP OOTCll 1.62633 1.57 1.035880 
20TC11 1.27899 1.23 1.039830 
30TC11 1.20952 1.16 1.042690 
OlTCll 4.96964 4.97 0.999927 
02TC11 10.82780 10.94 0.989745 
03TC11 21.06850 21.07 0.999927 
33TC11 15.66890 15.67 0.999927 
llTCll 4. 26205 4.26 1.000480 
12TCOO 12.74280 12.88 0.989351 
12TC01 12.32730 12.46 0.989351 
12TC02 11.99090 12.12 0.989351 
12TC12 9.03273 9.13 0.989346 
12TC23 7.40468 7.36 1.006070 

lOP OOTCll 1.89354 1.93 o. 981111 
lOTCll 1.62394 1.65 0.984203 
20TC11 1.48913 1.51 0.986180 
30TC11 1.40825 1.42 0.991725 
OlTCll 5. 78619 6.01 o. 962760 
02TC11 12.60690 12.91 0.976522 
03TC11 24.53020 23.98 1.022940 
33TC11 18.24340 17.79 1.025480 
12TC02 13.96110 14.20 0.983178 
12TC12 10.51690 10.63 0.989358 
12TC20 9.34623 9.39 0.995339 
12TC21 9.04147 9.13 0.990303 
12TC22 8.79475 8.80 0.999403 
12TC23 8.62133 8.30 1.038710 

12P OOTC12 2.09313 2.13 0.982692 
30TC12 1.55669 1.61 0.966887 
03TC12 27 .11580 25.43 1.066290 
12TC12 11.95150 12.08 0.989366 
31TC12 4. 75684 4.96 0.959041 
32TC12 10.36420 10.54 0.983319 
33TC12 20.16630 19.25 1.047600 
12TCOO 16.86050 17.68 0.953649 
12TC03 15.55280 14.68 1.059450 
12TC11 12.28680 12.74 0.964428 
12TC12 11. 95150 12.08 0.989366 
12TC30 9.37334 9.55 0.981502 
12TC31 9.06769 9.22 0.983481 
12TC32 8.82026 8.78 1.004590 
12TC33 8.64634 8.14 1.062200 
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TABLE 7.lb 

VERIFICATION DATA 

MTC MTC 
Designation Equation Computer Ratio 

BP OOTCll 5.59679 5.810 0.963303 
20TC11 4.46999 4.640 0.963359 
30TC11 4.24463 4.400 o. 964688 
OlTCll 5.44508 5.650 0.963731 
02TC11 5.18257 5.380 0.963303 
03TC11 4.74908 4.930 0.963303 
33TC11 3.60172 3.770 0.955364 
llTCll 4. 71424 4.900 o. 962090 
12TCOO 2.07127 2.100 0.986321 
12TC01 5.87251 6.020 0.975500 
12TC02 12.44710 12.800 0.972430 
12TC12 9.51037 9.780 0.972430 
12TC23 15.05110 15.400 o. 977344 

lOP OOTCll 5.91733 6.160 o. 960606 
lOTCll 5.12311 5.250 0.975830 
20TC11 4.72599 4.790 0.986638 
30TC11 4.48773 4.510 0.995062 
OlTCll 5.75693 5.910 0.974101 
02TC11 5.47939 5.510 0.994444 
03TC11 5.02108 4.890 1.026800 
33TC11 3.80800 3.610 1.054850 
12TC02 13.16000 13.820 0.952242 
12TC12 10.05510 10.340 0.972442 
12TC20 1.41488 1.130 1.252110 
12TC21 4.01150 3.890 1.031230 
12TC22 8.50259 8.560 0.993293 
12TC23 15.91310 16.060 0.990854 

12P OOTC12 14.73810 15.467 0.952871 
30TC12 11.17740 11.670 0.957790 
03TC12 12.50580 12.700 0.984708 
12TC12 11.81560 12.150 0.972474 
31TC12 10.87440 11.270 0.964900 
32TC12 10.35020 10.630 0.973675 
33TC12 9.48444 10.080 0.940917 
12TCOO 2.57332 2.610 0.985948 
12TC03 28.94210 28.460 1.016940 
12TC11 5.57455 5.900 0.944838 
12TC12 11.81560 12.150 0.972474 
12TC30 1.48047 1.630 0.908261 
12TC31 4.19744 4.400 0.953963 
12TC32 8.89670 8.970 0.991829 
12TC33 16.65070 16.070 1.036140 



CHAPI'ER VIII 

arHER FACTORS AFFECTING THE SECONDARY 
MOMENTS IN THE CHORDS 

In addition to the primary factors listed in Table 5.1 which 

affect the secondary moments in the chords, there are several other 

influencing factors. These factors, though not treated as "primary" 

factors, can have significant effect. Some of these factors include: 

1. Web joint slippage 
2. Heel fixity of the bottom chord 
3. Heel bolt slippage 
4. Center line bottom chord splice fixity/slippage 

The effects of these parameters are briefly treated in the fol-

lowing sections. 

8. 1 BOLT SLIPPAGE IN THE WEB CONNECTIONS 

Bolt slippage in the web to chord connection allows significant 

relief of the induced moments. The effect of bolt slippage was simu-

lated by reducing the area of the webs in a single step iteration in 

order to approximate a 1/16 in. to 1/8 in. slip displacement. This 

procedure was discussed in section 3.2.S.l. Table 8.1 provides a com-

parison of the maximum moment in the top and bottom chord for a few 

cases with and without the simulated joint slippage. The colunms 

labeled % represent the ratio 

with slip * lOO% 
without slip 
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As can be seen, for the range of parameters considered, the bot-

tom chord moment is reduced from 30% to 60%, with the average reduction 

being approximately 44%. The top chord moment is likewise reduced from 

40% to 60% with the average reduction about 50%. 

This is a very brief study, so no conclusive recommendations can 

be made at this time. It does appear, however, that a 30% reduction 

could be safely assumed for the bottom chord and a 40% reduction for 

the top chord. 

In general, the combinations which result in large moments gen-

erally appear to have the greater reduction when joint slippage is per-

mitted. 

MBC 
Designation No Slip 

8 Panel 

OOTCll 1.57 
12TC12 9.13 
33TC11 15.67 

10 Panel 

OOTCll 1.93 
03TC11 23.98 
30TC11 1.42 
33TC11 17.79 

TABLE 8.1 

EFFECT OF BOLT SLIPPAGE IN 
WEB CONNECTIONS 

~c ~c 
With Slio % No Slip 

1.06 67.5 8.02 
5.27 57.7 11.99 
8.37 53.4 5.98 

1.31 67.9 7.87 
11.37 47.4 6.60 
o.85 59,9 6.22 
6.92 38.9 5.32 

8.2 HEEL FIXITY 

~c 
With Slio % 

4.76 59.4 
5.42 45.2 
3.33 55.7 

4.17 53.0 
3.22 48.8 
2.79 44.9 
2.18 41.0 

If the heel column connection is such that any degree of fixity 

is imposed on the bottom chord, significant moments will be introduced 
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into the bottom chord. The heel design shown in Figure 2.7, which has 

had considerable usage, has the potential for this problem when the 

colunm is large. 

The moment at the end of the truss might be computed simplistic­

ally as R x e where e is the eccentricity based on member center lines. 

In reality, however, the probable stress distribution shown in Figure 

8.1 would result in a moment of R x e' where e' is the more probable 

eccentricity based on reaction force lines. 

Regardless of the actual moment, it will affect the bottom chord 

as shown in Figure 8.2. The moment transfered to the first joint will 

be additive with the deflection induced moment based on a pinned heel 

joint. This increase in moment can be seen in Figure 8.3 where the mo­

ment in the bottom chord based on output from computer analysis of the 

8 panel truss is plotted. The conditions shown represent the boundar­

ies i.e., fully fixed versus a purely pinned connection. 

In the actual structure, complete fixity is highly unlikely. 

The maximum moment achievable would be equal to Rx e', which would 

most likely be less than the "fixed" moment. 

The amplification of the moment at the first joint, which is al­

ready the critical point, suggests that care should be taken to avoid 

eccentric heel connections in these trusses. The connection detail of 

Figure 2.7 should therefore be avoided in favor of a detail similar to 

that shown in Figure 2.6. 

8.3 BOLT SLIPPAGE IN THE HEEL CONNECTION 

As discussed in section 3.2.S.2, bolt slippage was simulated by 
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reducing the area of the "rigid" link that was modeled into the heel of 

the truss (see Figure 3.1). The area was reduced an amount necessary 

to increase the axial deformation of that element by 1/8 in. 

In most cases, several bolts ·are required in this connection. 

The change of slippage occurring is therefore thought to be small. In 

a design that contains only a few bolts or otherwise allows for signi-

ficant movement in the joint, consideration should be given to the 

effects of this possibility. 

Bolt slippage in this connection has the adverse effect of in-

creasing the secondary moment in both top and bottom chords by a signi-

ficant amount. The brief study made in this investigation indicates 

that a 1/16 in. joint slip will increase the moments by an amount equal 

to approximately 

M= 
.16EI 

R2 

where ~ is the length of the end bottom chord panel (i.e., J. = L/7 for 

an ·a panel truss). 

Translated into bending stress, for a rectangular section, this 

becomes 

fb = .08Ed 

~2 

For a 100 ft. truss with a 13-1/2 in. deep chord, a 1/16 in. 

joint slip will induce approximately 70 psi of additional bending into 

the chord. This represents an approximate 16% increase in bending 

stress for this case. 
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8.4 BOTTOM CHORD SPLICE 

The effect of joint fixity and joint slippage in the center line 

splice is negligible. The effect at the end pArtal joint, Yhieh has 

been shown in Chapters V and VI to be the critical location on the 

chord, is nominal and appears to be of little concern in terms of in­

duced stresses. 

8. 5 TERTIARY (P-/::J.) MCJ:1ENTS 

If the bottom chord is fabricated nearly straight, it will be 

forced into a slightly curved shape when the truss is loaded. Ter­

tiary, or P-/::J., moments will result from the tension acting on the cur­

ved member. 

This possibility was considered briefly in order to determine 

if this was of serious concern in the design of the trusses. 

For the cases considered, the moment in the bottom chord was 

found to be amplified by 2% to 9%, which represents less than a 1% 

change in the unity equation. 

This does not appear to be of enough significance to be of con­

cern in the design. This is especially true when·considering the fact 

that the truss is normally fabricated with a camber in it. Under maxi­

mum loading, the bottom chord is expected to be nearly straight. For 

these reasons, no further consideration has been given to the tertiary 

moments in the bottom chord. 

When considering tertiary moments in the upper chord, we are 

dealing with the P-/::J. moments resulting from the axial load acting 
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through the change of curvature of the chord. The moment resulting 

from the original eccentricity of the chord has been accounted for in 

the primary moment analysis (see Chapter IV). 

Tertiary moment in the upper chord would only be considered cri­

tical if the curvature increased under load, thus amplifying the origi­

nal eccentricity. As was made clear in Chapter VI, however, the upper 

chord, due to secondary moment (i.e., support settlement type moments 

caused by the downward joint deflections) is subject to positive moment 

(compression on top) along its entire length. Therefore the curvature 

will be decreased slightly which will result in the tertiary moments 

tending to decrease the total moment. This slight advantage should 

conservatively be neglected in the author's opinion. 

In light of the above discussion, tertiary moments were not 

studied any further. 



CHAPTER IX 

DEVELOPMENT OF A SYSTEMATIC APPROACH TO THE 
DESIGN OF STANDARD STRUCTURES 

9.1 INTRODUCTION 

To this point our approach has been to start with a mass of 

data and proceed to develop a series of characteristic equations from 

that data by which to design a structure. The complexity and tedious-

ness of the ensuing equations with their multitude of variables and co-

efficients cry for a systematic approach which can be applied to a 

structure in a productive way. 

This chapter will attempt to develop such a method. In develop-

ing and implementing such a method, three questions must be considered. 

1. What degree of accuracy is required or desired? 
2. What analytic tools are available to the analyst/designer? 
3. Is the problem being considered a single use design case 

or is it a standard structural configuration being de­
veloped? 

A general method will be outlined here which can be applied to 

a range of situations for structures of varying types. From that point, 

a specific approach will be developed for the design of timber trusses, 

with emphasis being placed on the design of continuous glu-lam chords 

of bowstring trusses. 

9.2 GENERAL CHARACTERISTIC EQUATION CONCEPT 

The design of a statically indeterminate structure using a 
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computer for analysis normally proceeds in an iterative method. A 

structural configuration is developed for which initial trial sections 

are chosen for the members. The structure is then modeled and the re-

quired input data entered into the computer. 

At this point an analysis is made of the trial design using a 

standard analysis program. The computed forces and moments are used to 

check the chosen members for adequacy or oversizing. This may be done 

by hand, or by the computer if a more extensive design program is avail­

able. New sizes are then selected and the process repeated until a 

satisfactory design is obtained. 

This basic iterative technique is certainly valid and indeed de­

sirable when good engineering judgment is incorporated into the process. 

No proposal is made here to change the iterative process. 

The most serious drawback to the iterative process is the ex-

pense and time requirement for running many analysis iterations, par-

ticularly for standard structures such as trusses. The use of inhouse 

terminals and an interactive program such as GTSTRUDL(6) or the availa­

bility of an inhouse computer with interactive capabilities goes a long 

way to reduce the extensive time periods associated with overnight batch 

processing. The cost of working interactively is expensive, however. 

This is of particular concern when dealing with "standard" 

structures because the client, such as a truss manufacturer, may need 

the design "that afternoon" to prepare a bid. Even with single use 

problems, the number of iterations is often kept small in order to save 

cost and time. A "that is good enough" design is used rather than try­

ing a few more refinements or alternatives in an effort to optimize the 
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structure. 

The attempt then, will be to reduce the number of analyses re­

quired. A specific set of analysis runs will be made, from which "char­

acteristic equations" of the structure can be developed. Sufficient 

runs must be made in order to provide the data required for developing 

the equations. Thus, the use of the large computer is not eliminated. 

For a single use project, the development of the characteristic equa­

tions may not be justified, since nearly as many iterations may be re­

quired in many cases. For the standard structure, or for a structure 

in which many iterations are desired for optimization, the use of the 

characteristic equations can be of significant usefulness. 

A proposed procedure would be to use a large computer, such as 

through a service bureau, to analyze a specific set of "designs" to pro­

vide a data base. The section properties need not represent any actual 

member sizes and therefore eliminate the need for an "initial" design. 

The data base can then be transfered to a small microcomputer, or even 

a programmable calculator, for the development of the characteristic 

equations. 

An iterative technique can then be performed using the "charac­

teristic equations" to develop the design or designs. Note that struc­

tural dimensions can be included as a parameter in the development of 

the equations. This would be quite useful for "standard structures", 

such as trusses, in which span and loading intensity may vary over a 

wide range. 

One must begin then, by selecting the parameters that are to be 

varied. This will be a judgment decision based on many factors which 
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will be tempered by the answers to the three questions asked earlier. 

In addition, the type of structure will have a marked influence on the 

decision. For example, a low rise moment frame with no bracing will be 

only marginally affected by axial de'formations. Therefore, one may 

wish to vary the I values only and not refine the equations to account 

for varying the areas. In multistory frame, one may choose to have all 

beams of the same section for fabrication economy. Therefore, the beam 

I's do not need to be varied individually, but as a whole. Similar 

reasoning is usually applied to the design of columns in buildings. 

One would most likely consider changing section at every two floors for 

example. 

In truss designs, both area and moment of inertia have a signifi­

cant impact on the induced moments. Therefore, both A and I should be 

varied. However, the chord dimensions would most likely remain con­

stant throughout the truss, so once again only a few parameters must 

be varied. 

The desired degree of accuracy will also affect the decision. 

For example, if a particular parameter is expected to only affect the 

results by 4% or 5%, it may not be worth the effort to include that 

parameter in the equations. 

The availability and cost of the computer will also have an im­

pact on the number of parameters to be varied and the number of points 

to be used to develop the equations. In general, the more parameters 

to be varied, the more computer runs necessary. 

It should be noted that the "characteristic equations" need not 

be "exact" equations, and in many cases would not be. Their function 
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is to provide numbers which can be used as a guide in designing the 

structure. Once developed, the equations should be back checked to 

test their reliability. For a single use problem, this would entail 

making a final frame analysis computer run using the proposed final de-

sign as a check on the design. For a standard structure, a typical de-

sign or even arbitrary properties could be used in a few runs to check 

the results. 

Once the parameters to be studied are chosen, the input for the 

computer runs must be logically selected to provide a usable data base. 

The following procedure is proposed. 

1. Select a "base" value for each parameter. 
2. One run should be made with all "base" values. 
3. All runs should utilize the "base" parameters except 

for the particular parameter being varied. 

Three points are required to establish a curve which will reason-

ably represent the structure. The "base" run will provide one of these 

points for each parameter. For many parameters, one of the points can 

be determined inductively from an understanding of structural behavior. 

Specifically, often one can determine if the function will approach 

zero or infinity as the value of the parameter goes to zero. If this 

is the case, then two of the three points are established and only one 

additional run need be made. If the limit is not zero or infinity, an 

additional run must be made in order to describe the curve. 

9.3 PARAMETERS TO BE VARIED 

The possible parameters to be varied can be more than just the 

area or moment of inertia of a member. The span or other dimensions, 
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modulus of elasticity, Poisson's ratio, temperature effects, web stiff-

ness (which would allow for the inclusion of joint slippage), and nearly 

any other quantity that is part of the model input data might be varied. 

For each parameter selected to be varied, two computer runs will be re-

quired. Thus, the importance of a parameter should be considered care-

fully before selecting it as a variable. 

It was shown in Chapter V that it is possible to correlate the 

effect of the number of webs in the truss (8 panel, 10 panel, 12 panel, 

etc). Thus, to an extent, even the structural configuration itself can 

be varied. 

9.4 DEVELOPMENT OF A GENERAL CHARACTERISTIC EQUATION 

In general, it has been found that an equation of the form 

k 
y = + c 

x + g (9.1) 

can be used to describe the variation of a variable (y), such as the 

moment at a specific point, with respect to the variation of a specific 

parameter (x). 

In Equation 9.1, 

y = variable being considered 
x = the parameter being varied (such as the area of 

the top chord, for example) 
k,g and C are constants which define the curve for 

the specific parameter. 

Since there are three unknown constants involved, three data 

points (or "boundary conditions") are required to determine them, as 

discussed previously. 

Three data points, to be obtained from the computer runs, may be 



defined as follows: 

x
1 

= lower limit of the parameter 

x
2 

= base value of the parameter 

x
3 

= upper limit of the parameter 

y
1 

y
2 

& y
3 

= the value of the variable obtained from the 
computer run associated with x1 , x 2 and x 3 
cases. 

Thus, Equation 9.1 may be written as 

k 
Y1 = + + C xl g 

k 
y 2 = x2 + g + C 

k + c 
Y3 = x3 + g 

Combining Equations 9.2 and 9.3, 

therefore, 

k =[ 1 y 2 - y 3 1 ] 

(x2 + g) (x3 + g) 

or, 

(

y - y ) 
k = x: - x~ (x2 + g)(x3 + g) 

Similarly, combining Equations 9.3 and 9.4, 

Combining Equations 9.5 and 9.6, 
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(9. 2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 



or, 

( :: : :~ ) ( ~ ~ : ~ ~ ) = (:~ : : ) 

Let B = ( :: ~ :~ ) ( : ~ - : ~ ) 
then 

g = 

or g = 
x - x /B 

3 1 
l/B - 1 

C can be written as 

k c = y - ~-------
2 (x

2 
+ g) 

In general 
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(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

where all x 'I: xi are constants taken as their respective "base" 
values. 

This equation can be normalized by dividing yB {the value of y 

for the case where all x =base values). Thus, a coefficient 

is obtained. 

y. f (x.) 

Ki = ~ = ~ 
y y 

A separate coefficient is obtained for each parameter, x1• 

We can now write 
n 

y. = YB TI (Ki) 
J i=l 

(9 .12) 

(9 .13) 



n 
where TI represents the cumulative product of K

1 
through Kn. 

i=l 
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An equation such as 9.13 will be obtained for each variable, y. 

Thus, by denoting y as subscripted y , and defining the 11 base11 value of 
j 

B y. as Y., we obtain 
J J B n 

Y. = (Y.) TIK .. 
J J i=l l.J 

Using Equation 9.1 for f(x), we obtain 

or, 

n 
y. = (Y~) II 

J J i=l 

k .. 
l.J c 

+ + .. x. g. . l.J 
1 11 

y~ 
J 

y. = (Y~51-n) n ( k!; + c. ·) 
J J • 1 x. g.. 1J 

i= l. l.J 

(9 .14) 

(9.15) 

It must be noted at this point that Equation 9.15 is not an 

exact equation. It assumes that all of the data curves are of the form 

of Equation 9.1 which in some cases will be inaccurate. In most cases, 

the error is believed to be small for values of x between x
1 

and x
3

• 

The error may become appreciable, however, if the curves are extrapo-

lated beyond the limits of x
1 

and x
3

• It is therefore important to 

choose x
1 

and x
3 

as expected minimum and maximum values for the para-

meter. 

If more than one loading pattern is to be analyzed, a set of 

equations for Y. will be obtained, with one equation for each loading 
J 

pattern. The further subscript R will be added toy, Y, k, g, and C, 

with ~ going from 1 to p, therefore 

(9 .16) 



9.4.1 Swmnary 

The implementation of the method is summarized below. 

I. DATA BASE PREPARATION 

1. Select the structural configuration. 

2. Select all parameters (x .) to be varied (e.g. 
1 

area of top chord of a truss). 

3. Select "base" values for each parameter (xi2) • 

The base values should preferably be a medium 

value from the expected range of possible values 

for the parameter. 

4. Select minimum and maximum expected values for 

each parameter (xil and xi3 respectively). 

5. Using base values for all parameters, analyze the 

structure for each loading case utilizing a stand-

ard frame analysis computer program. 

6. Two additional computer runs will be required for 

each parameter for each loading case as follows: 

For each loading case: 

For i = 1 to n 

a. All "base" values except change xi to xi1• 

b. All "base" values except change xi to xi
3

• 

II. DEVELOPMENT OF CHARACTERISTIC EQUATIONS 

1. Study the results from the frame analysis made in 

part I. Determine the location of the critical 

points in the structure which will or potentially 

can govern the design of the members and/or 
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connections, such as the point of maximum moment. 

2. With the information above, select the "vari-

ables" (y .. ) to be studied. These might be 
l.JR 

the moment at the critical location, axial loads, 

shear, reactions, deflections or other results 
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which are of concern to the designer. Results which 

are not affected by varying any of the parameters 

need not be included at this point. 

3. Obtain the values of the variables from the out-

put files of the frame analysis made in part I, 

B 
(y ijR' y ijlR' and y ij3R) • 

4. Compute the constants of Eq. 9.16 for each vari-

able (j) for each parameter (i) for each load case 

(~). The constants are kijj (from Eq. 9.5), gij~ 

(from Eq. 9.9) and C .. (from Eq. 9.10). 
l.JQ 

5. Save the values of the constants for use in the 

design process. 

III. VERIFICATION OF EQUATIONS AND THE DESIGN PROCEDURE 

A. VERIFICATION OF EQUATIONS 

1. Once the constants for Eq. 9.16 are com-

puted, Eq. 9.16 can be used to compute 

the values of the variables (i.e., maximum 

moment, etc.) for any combination of para-

meter values (e.g., A, I, etc.) the designer 

selects for the specific design. 

2. If design data for a standard structure is 
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being developed, such as for a specific truss 

type, the characteristic equations should be 

checked by running a complete frame analysis 

for a few typical designs until the designer 

is confident that the equations predict the 

values of variables within acceptable preci­

sion. Once the equations are verified, step 

III.B.l can be used repeatedly by simply enter­

ing the values of the parameters into Eq. 9.16 

for each variable and checking the design in 

the usual iterative process. 

3. If the problem is a one time solution situa­

tion, the final design obtained from step 

III.B.l can be checked by a complete frame 

analysis using the final design values of the 

parameters. 

B. DESIGN PROCEDURE 

1. The traditional iterative design process is 

used, except Eq. 9.16 is used in place of run­

ning a complete frame analysis for each itera­

tion. Trial values of each parameter are se­

lected and the values of the variables (i.e., 

moment in bottom chord, etc.) are computed 

using Eq. 9.16. The adequacy of the members 

as well as other considerations such as de­

flections are checked and adjustments ma.de to 



the trial sizes. This procedure is repeat­

ed until a satisfactory design is obtained. 

9.5 COMPUTER IMPLEMENTATION OF THE PROCEDURE 
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This procedure can be easily programmed into a microcomputer to 

make the process nearly completely automatic. The procedure is highly 

interactive, quick and inexpensive, which allows the designer to try 

several combinations of parameter values in developing the design. 

To demonstrate and test the procedure, a program was written 

for use on a microcomputer. The program is written in the Microsoft­

Basic language and is listed in Appendix 4. The program actually con­

sists of three programs, corresponding to the three sections of the 

summary. The first program enters the parameter and variable names and 

the base and extreme values of the parameters, corresponding to steps 

I.2,3 and 4. The program then sets up combinations of parameters to 

use in the frame analysis, according to steps I.5 and I.6 of the summary. 

At this point, the structure would be modeled for the frame ana­

lysis and the runs would be batch processed (steps I.5 and 6). Once the 

data is obtained from the series of frame analyses, a second program de­

velops the characteristic equations and automatically saves the con­

stants on disc files. 

This data is then available for use by program number three 

which uses the characteristic equations (i.e., Eq. 9.16) to compute the 

value of each variable ~C' ~C' etc.) for the set of parameter values 

specified by the designer during the interactive process of using pro­

gram three. This corresponds to step III.B.l of the summary. Program 
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three is the only one needed during the design process. 

9.6 EXAMPLE PROBLEM 

The three truss configurations studied in the previous chapters 

(i.e., the 8, 10 and 12 panel trusses shown in Figure 2.1) will be used 

to examplify the procedure and to verify that the procedure produces 

acceptable results. 

9.6.1 I. Data Base Preparation 

Step 1. The truss configuration of Figure 2.1 will be used. 

This will be considered as a single configuration with the number of 

panels to be taken as one of the uparameters". The geometry for the 

trusses is shown in Figures 2.3 through 2.5. 

Step 2. The parameters to be varied are the area and moment of 

inertia of the top and bottom chords and the number of panel points, as 

listed in Table 9.1. 

Steps 3 and 4. The base values for each parameter as well as 

the minimum and maximum expected values are listed in Table 9.1. 

TABLE 9.1 

PARAMETER DATA FOR EXAMPLE PROBLEM 

Base Value 
Parameter Name xil (xi2) xi3 

xl ~c (in2) 50 75 125 

x2 ~c (in4) 250 1800 3600 

x3 A.re (in2) 50 75 125 

X4 ~c (in4) 250 1800 3600 

XS NP (no. of panels) 10 8 12 
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Step 5. At this point a computer frame analysis would be run 

using "base" values for all parameters. For this example, data al­

ready obtained in previous work will be utilized. Since the values of 

the parameters used in this earlier work (i.e., Chapters V and VI) were 

not selected using the structured format that this procedure utilizes, 

appropriate values will be computed using the characteristic equations 

developed in Chapters V and VI. 

Step 6. Two additional computer runs would be made for each 

parameter. In our case, having five parameters, ten additional runs 

are required. Each run will utilize "base" values for all parameters 

except for the specific parameter being studied which will be changed 

to xil or xi3• As mentioned in step five, however, previously acquired 

data will be used in this example. 

Program number one (see Appendix A4) is designed primarily to 

interactively enter the parameter data (Table 9.1) into the computer 

for use by the second and third programs. In addition, it produces an 

organized list of required combinations of computer runs to be made in 

steps I.5 and I.6. 

The second program is now used to compute the constants (k, g 

and C) for the characteristic equations. 

9.6.2 II. Development of the Characteristic Equations 

Step 1. The output from the frame analysis computer runs are 

now studied in order to determine the critical points in the structure. 

As was found in previous chapters, the critical point for designing the 

top and bottom chords occurs at the first panel point in from the end 
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of the truss. 

Step 2. We will therefore select the moment at the top chord at 

the critical location <Mi:rc = Y
2

) and the critical moment in the bottom 

chord ~C = Y
1

) as our variables. The axial load has only minor vari­

ation and therefore will not be considered a variable in this example. 

Step 3. The values of the variables (i.e., ~C and ~C) are now 

extracted from the frame analysis output listings. In our case, as 

mentioned before, the data is obtained from the characteristic equa-

tions of Chapters V and VI. This data is listed in Table 9.2. It 

should be noted that this data is not truly accurate since it is ob-

tained from the approximate characteristic equations. For this reason, 

TABLE 9.2 

OUTPlIT DATA FOR THE CHOSEN VARIABLES 
(OBTAINED FRCM COMPlITER FRAME ANALYSIS) 

Case Y l = MBC (Ft-K) y2 = M.rc (Ft-K) 

Base* 9.13 9.78 

~Cl ** 10.64 11.00 

~C3 7.58 a.so 

~Cl 1.35 10.42 

~C3 17.60 8.83 

"rc1 11.94 12.80 

~C3 6.57 7.20 

l.rc1 9.41 1.65 

~C3 8.68 18.20 

NPl 10.63 10.34 

NP3 12.08 12.15 

*Computer run using all parameter "base values. 

** Computer run using2all "base" values except setting ~C 
equal to ~Cl (=50 in in this case). 



this example problem will produce less accurate results than would 

otherwise be obtained. The equations of Chapters V and VI are accu-

rate enough, however, that the results should be reasonable. 

Step 4. Compute the constants kij 

and cij (Eq. 9.10). 

(E q • 9 • 5) , g . . 
l.J 

(Eq. 9.9) 

Effects of ~C (i=l) on ~C (j=l) for Load Case 1 ( =1). 

From Table 9.1, 

from Table 9.2, 

using Eq. 9.9, 

y
1 

= 10.64, y
2 

= 9.13, y3 = 7.58 

= x3 - xl/B 
l/B - 1 

where 

B m = ( :: - : ~ ) ( ~ ~ : ~ ~ ) = (i ~5 - -
5~ 5 ) ( 

9.13 - 7.58 ) 
10.64 - 9.13 

= o.513245 

the ref ore 

= ( 125 - 50/ .513245 ) 
glll 1/.513245 - 1 = 29.0816 

using Eq. 9.5 

km = ( :~ ~ :~ ) (xl + gm) (x2 + gm) 

= ( 107~4--5~· 13 ) (50 + 29.0816)(75 + 29.0816) 

the ref ore 

klll = 497.149 
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Using Eq. 9.10 

( 
497 .149 ) -= 9.13 - 75 + 29.0816 - 4.35347 

The constants for all other combinations of i, j and t are com-

puted in the same fashion. This is done automatically by the second 

computer program (see Appendix A4). The computed values of kijR' giji 

and C .. for this example are listed in Table 9.3. 
l.J~ 

Step 5. The constants computed in the previous step are saved 

for use in the design process using Eq. 9.16. 

9.6.3 III.A. Verification of Equations 

At this point, in a typical situation, a few frame analyses 

would be run using an actual loading and typical member sizes. Ac-

tually, these runs could be made at the same time as the other cases 

were run. The characteristic equations (Eq. 9.16) are used to compute 

the values of each variable using the same parameter values of the test 

case. If satisfied that the computed values are within acceptable accur-

acy, the equations can now be used to design structures. 

In our example, all of the computer runs used in Chapters V and 

VI will be used to test the results of the equations. The computed 

values are listed along with the actual (as computed by the frame analy-

sis program) values in Table 9.4. 

Program three computes MBC and M.rc using Eq. 9.16. ~C for case 

"OOTCll" (See 3.2.6 for explanation of the case designation.) will be 

calculated by hand to demonstrate the procedure. All other cases are 



TABLE 9.3 

CONSTANTS FOR THE "GENERAL CHARACTERISTIC 
EQUATIONS" FOR THE BOWSTRING 

TRUSS EXAMPLE PROBLEM 

Input Data Constants 

"ec:BASE. l ): q.ll 8 ( l ' l ' l ~: .513245 6 ( l f l I l l = 29. 181& 

"TC~B~SE, l )• 9.78 K ( l , l ' 
l ): 497.14, (( 1 ' l ' 1 }: 4.35347 

"BC'.~BC l LD l >= tt.64 
"TC<HBC l lD 1 l• il B< 2 I l ' 1 ): .q37482 61 2 ' 1 ' l ): 4qq94,7 

~BC·ABC 2 LD l l• 7.58 kl 2 , l , 1 1a-l.3tS73E~t1 c ( 2 , l ' 

"TC'.~ac 2 LD t != e.s 
~BC;IBC 1LD1 >= 1.35 B< l , 1 ' 1 ): ,455516 6( l ' l ' 1 l= 12.7451 
"rcqec 1 LD l la lt.42 k( 3 ' l , 1 }: 618.827 C< l , 1 , l l • 2.li745 
~ac:1sc 2 LD t >• 17.o 
"TCilBC 2 LD 1 l= 8.Bl 8( 4 • l , 1 ): 1. 38393 6! 4 ' 1 ' 1 l=-12325.6 
"BC•ATC 1 LD 1 ): 11.94 K ( 4 , 1 , l I= 22%1. 4 C< 4 , 1 , 1 J• 11.3114 
~TC{ATC 1 LD ! l= 12.8 
~BC(AT~ 2 ~D l )• 6.57 8 ( s ' l ' 1 l: • q93333 6( s ' l ' 1 ): 118 
"TC(AT~ 2 LD 1 Js 7.2 Kl S , l , 1 l=-1t2b6 c ( s ' l ' l ) = 97. b20~ 
~BCmc l LD l }: 9.41 
"TCiITC 1 LD 1 )• 1.65 B ! l , 2 , l l = • 52•591 6 ( 1 ' 2 ' 1 ) = 32. 7588 
~~Ct!iC 2 LO 1 ): B.oe K ( l , 2 I 1 l = 435. 198 C( l , 2 , l ): 5.74131 
"TC(!TC 2 LD 1 )z 18.2 
"~C :NP 1 LD 1 l= ~I.bl 8( 2 ' 2 ' 1 ): l.27821 6( 2' 2' 1 !=-l~b41.1 
"TCiNf 1 LD l l= 11.34 K( 2 I 2 ' 1 ): 87%f.4 c ( 2 ' 2 ' 1 ) = lb.1l5 
"BC:NP 2 LD i J= 12.tB 
"TC\NP 2 LO 1 ): 12.15 8( 3 I 2 ' 1 ): • 4~7153 &l 3, 2, 1 ): 5.9241H 

(( 3 I 2 f l ) : 540. 717 C< l , 2 , 1 >= 3.12427 

8( 4 ' 2 ' i 1= .sq1e21 6( 4 ' 2 ' 1 ): 273~8.~ 
K( 4 , 2 , 1 )•·4.225SBE•f6 C( 4 , 2 , 

I ( 5 , 2 , 1 l • 2. 11 bl7 6( s , 2 , 1 )=-13. 1n 
l( 5, 2, 11•-6.14n C( 5, 2, 1 l= 8.71824 
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1 i= 2bt.276 

l }: 154.646 
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computed using program three. 

Case OOTCll ~C(Xl) = 50 . 2 
~C(X2) 250 . 4 

in = in 

NP(X5) = 8 A.re (X3) = 75 in2 lrrc (X4) = 800 in
4 

Load case 1 ( R. = 1) ~c (j = 1) n = 5 

(Eq. 9 .16) 

Thus 

(see Table 9.2) 

See Table 9.3 for values of k, g and C. 

- (1-5) ( 497 .149 ) 
~C(Yll) - 9•13 50 + 29.0816 + 4 •35347 

x (- l.30573(E + 07) + 261 276 ) 
250 + 49984.7 • 

x ( 75.~1!·~;~ 7451 + 2.07745) 

x ( 2 2 2 96 0• 4 + 11 3114 ) 
800 - 12,325.6 • 

x ( - 10,266.0 + 97 6299) 
8 + 108.0 • 

= 9.13(-4)(10.64)(1.350)(9.13)(9.319)(9.13) 

:::::::> ~C = 1.606 Ft-K 

This compares quite well with the 1.57 value computed by the 

frame analysis program. 

As shown in Table 9.4, the results compare favorably. Seventy 

percent of the cases are within 3% and nearly 90% of the cases are 

within 5%. It should be kept in mind that the data used to develop 

the equations was approximated to begin with using the equations de-
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veloped in Chapters V and VI. The original data did not bound the 

range of parameter values in all cases. Thus, some of the data was 

based on extrapolation. It would be expected then that the use of 

original, accurate data to develop the characteristic equations would 

produce very reliable results. The results should be more than accu-

rate enough in light of the discussions in Chapter VIII. 

8 Panel 

OOTCll~* 
20TC11 
30TC11 
OlTCll 
02TC11 
03TC11 
33TC11 
llTCll 
12TCOO 
12TC01 
12TC02 
12TC12 
12TC23 

10 Panel 
OOTCll 
lOTCll 
20TC11 
30TC11 
OlTCll 
02TC11 
03TC11 
33TC11 
12TC02 
12TC12 
12TC20 
12TC21 
12TC22 
12TC23 

TABLE 9.4 

GENERAL CHARACTERISTIC EQUATION 
VERIFICATION DATA 

~Cle 
Actualt Actual t 

~c Ratio ~c" ~c 

1.606 1.57 1.02 5.557 5.81 
1.239 1.23 1.01 4.557 4.64 
1.144 1.16 0.99 4.294 4.40 
4.955 4.97 1.00 5.444 5.65 

10.860 10.94 0.99 5.216 5.38 
20.937 21.07 0.99 4.709 4.93 
14.916 15.67 0.95 3.639 3. 77 
4.252 4.26 1.00 4.840 4.90 

12.306 12.88 0.96 2.160 2.10 
12.188 12.46 0.98 6.069 6.02 
11. 940 12.12 0.99 12.800 12.80 

9.130 9.13 1.00 9 .. 780 9.78 
7.193 7.36 0.98 15.233 15.40 

1.865 1.93 0.97 5.876 6.16 
1.600 1.65 0.97 5.224 5.25 
1.438 1.51 0.95 4.817 4.79 
1.328 1.42 0.94 4.540 4.51 
5.753 6.01 0.96 5.756 5.91 

12.645 12.91 0.98 5.514 5.51 
24.308 23.98 1.01 4.979 4.89 
17.317 17.79 0.97 3.847 3.61 
13.901 14.20 0.98 13.533 13.82 
10.630 10.63 1.00 10.340 10.34 
9.079 9.39 0.97 1.460 1.13 
8.992 9.13 0.98 4.104 3.89 
8.809 a.so 1.00 8.654 8.56 
8.375 8.30 1.01 16 .106 16.06 

Ratio 

0.96 
0.98 
0.98 
0.96 
0.97 
0.96 
0.97 
0.99 
1.03 
1.01 
1.00 
1.00 
0.99 

0.95 
1.00 
1.01 
1.01 
0.97 
1.00 
1.02 
1.07 
0.98 
1.00 
1.29 
1.06 
1.01 
1.00 



TABLE 9.4 continued 

Actual Actual 
12 Panel ~c MBC Ratio ~c ~c Ratio 

OOTC12 2.082 2.13 0.98 14.56 15.47 0.94 
30TC12 1.483 1.61 0.92 11. 251 11.67 0.96 
03TC12 27.139 25.43 1.07 12.338 12.70 0.97 
12TC12 12.080 12.08 1.00 12.150 12.15 1.00 
31TC12 4.575 4.96 0.92 11.022 11.27 0.98 
32TC12 10.029 10.54 0.95 10.560 10.63 0.99 
33TC12 19.334 19.25 1.00 9.534 10.08 0.95 
12TC00 16.282 17.68 0.92 2.683 2.61 1.03 
12TC03 15.019 14.68 1.02 29.592 28.46 1.04 
12TC11 12.330 12.74 0.97 5.761 5.90 0.98 
12TC12 12.080 12.08 1.00 12.150 12.15 1.00 
12TC30 S.959 9.55 0.90 1.509 1.63 0.93 
12TC31 8.873 9.22 0.96 4.241 4.40 0.96 
12TC32 8.693 8.78 0.99 8.945 8.97 1.00 
12TC33 8.264 8.14 1.02 16.646 16.07 1.04 

* As.computed from Eq. 9.16 using the computer program of Appen­
dix 4. 

t From frame analysis. 

"*1l"Frame analysis computer run designation (see section 3.2.6 
for description). 

9.6.4 III1 B. Design Procedure 
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The equations are now ready to be used to aid in the design of 

a structure. The traditional iterative procedure is used, using the 

characteristic equations to compute the values of the variables rather 

than running full frame analyses. 

For our example, a 100 ft., 8 panel truss with the configuration 

shown in Figure 2.3 will be designed to carry 930 lb/ft. on the top 

chord using AITC-117-79(5) and the 1982 NDS specifications. 

Use 5-1/8 in. wide, combination number 3 glu-lam for the chords. 
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Top Chord: From Figures 4.4 and 4.5, 

_ ( 100 ft ) ( 9 3 o 1 b If t ) = 
pmax - 96 •79 100 ft 1000 lb/ft 90.0 K 

and 

M.rc (primary) = 2.21 { 1~~g) = 2.06 Ft-K (at first joint from the end) 

Bottom Chord: The tension in the bottom chord can be obtained 

from a stress diagram or from the canputer frame analysis runs. For 

our example, T = 84.4 K at the first joint. 

Initial trial, 

5-1/8 x 12 bottom chord 
5-1/8 x 10-1/2 top chord 

Program three is executed. The following parameter values are 

entered when requested: 

ABC = 61.5 in
2 

A.re = 53.8 in
2 

~c = 738 in
4 

lrrc = 494.4 in 
4 

NP = 8 

The following results are obtained from the program: 

M = 4.94 Ft-K 
BC 

M.rc = 3.84 + 2.06 = 5.90 Ft-K 

Allowable stresses for combination number 3 (from AITC 117-79, 

Table 2): 

6 E = 1.8(10 ) psi 

Fb = 2000 psi 
xx 

Ft = 1450 psi Fe = 2300 psi 

15% increase for snow load 

The members will be checked against the "unity" equations of the 

NDS~7 ) section 3.10, for combined flexural and axial loading. 



Top Chord: 

(x - x axis)pe!d = (13.l ft)(l2 in/ft)/(10.S in) 

= 14.97 > 11 

1800 
K = 0.671 J FEc = 0.671 (x - x axis) (2.3) (1.15) 

= 17.50 

11 < Rid< 17 .S, therefore 
use intermediate column equation 

' [ (2 /d) 4] Fc(x-x) = Fe 1 - 1/3 -i--

= 2, 3 (1.15) [1 - 1/3 (i~:;6) ~ 
= 2.173 Ksi 

J = g,d - 11 
x K - 11 

14. 97 - 11 = 17 .so - 11 

= 0.611 

Determine allowable bending stress: 

n = l.92n = 1.92(2.0 ft)(l2 in/ft) Xe Xu 

= 46.1 in 

therefore, 

c = J 46 • 1 ( 10• 5) = 4. 2 9 2 < 10 
s (S.125) 2 

therefore, 

' Fb = Fb = 2.0(1.15) = 2.30 Ksi xx 
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NPS Ref Section 

3. 7. 3 .1 (b) 

3.7.3.l(b) 

3.10.2.l 

3.3.3.4 

3.3.3.4 



therefore, 

( 
ld2) 1/9 < 1 

CF = 

CF = 1.0 

fc = 90.0K/53.8 in2 = 1.673 Ksi 

fb = (5.90 ft-K)(l2 in/ft)/(94.17 in3) = 0.752 Ksi 

Unity equation (x-x axis) 

f~ + f~ < 1 
Fe Fb - J f c 

x x 

1.673 0.752 
2.173 + (2.30 - (0.611)(1.673)) 

= 0.770 + 0.589 = 1.36 >> 1.0 No Good 

Although this member is not adequate, we will 

also check the unity equation considering buckling 

about the y-y axis in order to demonstrate the 

method used in subsequent calculations which are 

computed using a documented programmable calculator 

program. (8) 

Rcy-y)/d = (2.0 ft)(l2 in/ft)/5.125 in= 4.68 < 11 

therefore, 

' Fe =Fe = 2.30(1.15) = 2.65 Ksi 
yy 

therefore, the unity equation becomes: 

--¥- + f~ ~ 1 
Fe Fb 

yy 

= 1.673 + 0.752 
2.65 2.3 
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= 0.63 + 0.33 = 0.96 Ok 

For the second iteration, try a 5-1/8 x 13-1/2 

BC and a 5-1/8 x 12 TC. 

The following parameters are now used in the 

characteristic equations (we will use the computer 

program): 

~c = 69.2 . 2 
~c 1050.8 in4 in 

A.re 61.5 in 2 
1Tc 738 in4 = = 

The following results are obtained: 

M = 6.07 Ft-K 
BC 

M.:rc = 4.82 + 2.06 = 6.88 Ft-K 

NP = 

The calculator program yields the following 

results for the top chord: 

8 

(x-x axis): 0.62(axial) + 0.37 (bending) = 0.99<1.0 

(y-y axis): 0.55 + 0.29 = 0.85 < 1.0 Ok 

Now check the bottom chord. 

Assume a connector at the joint to consist of 

a 3/4 in. diameter bolt with two 4 in. shear plates. 

Ac (= Projected Area of the connector) = 8.29 in2 

therefore, 

Net Area = 69.2 - 8.29 = 60.9 in2 

ft = 
84•4 K = 1.386 Ksi 
60.9 in

2 
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fb = (6.88 Ft-K)(l2 in/ft) = o. 530 Ksi 

155.7 in
3 

Since ft is much larger than fb, only the bot-

tom face of the member will be checked. The top 

face will not be subjected to bending compression 

buckling, which can occur if the bending stress 

dominates. 

Thus, the unity equation becomes: 

ft (net) + fb ~ 1 Ft Fb 

= 1.386 + 0.530 
1.45(1.15) 2.0(1.15) 

= 0.83 + 0.23 = 1.06 > 1.0 

The next trial will use a 5-1/8 x 12 TC and a 

5-1/8 x 15 BC. 

~c = 76.88 in
2 

~c = 61.50 in
2 

~c = 1441.4 in
4 

~c = 738.0 in
4 

NP = 8 

The computer program yields the following re-

sults: 

~C = 7.916 Ft-K. 

~C = 4.60 + 2.06 = 6.06 Ft-K 

Using the calculator program, 

Bottom chord: 0.74 + 0.21 = 0.96 < 1.0 Ok 

Top chord: 0.62 + 0.32 = 0.94 < 1.0 Ok 
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Therefore, a 5-1/8 x 12 TC and a 5-1/8 x 15 BC would provide an 

adequate structure. Referring to Chapter VIII, however, it was suggest­

ed that a 30% reduction in bending moments caused by secondary effects 

would be reasonable due to bolt slippage in the web connection. If the 

designer chooses to take this into account, the second trial, using a 

5-1/8 x 13-1/2 BC and a 5-1/8 x 12 TC could be considered an accept­

able design. The unity equation for the bottom chord would become: 

0.83 + (.7)(0.23) = 0.99<( 1.0 Ok 

Additional trials using other member sizing such as a 6-3/4 in. 

wide truss could easily be tried in a matter of minutes. Changing the 

number of panels could be done just as easily. 

The method as presented in this chapter used an equation for 

f(x) having the form of Equation 9.1 to describe the variation of y 

with respect to x. The method would be equally valid for most any 

other form of equation. Equation 9.1 works well for most applications. 

It should be noted however, that this equation becomes undefined if the 

relationship is a linear function. For this reason, the computer pro­

gram in Appendix 4 has included a check for linearity and provides a 

linear equation for f (x) in that instance. Other equation types could 

be included just as easily if the user desires. 

The design program as it stands now is in a primitive state, 

providing only the minimum data. This program could easily be combin­

ed into a larger program which would provide automatic code check for 

the type of member involved, thus making the design procedure even 

simpler. 



CHAPTER X 

OBSERVATIONS 

Several observations can be made from the information in 

the previous chapters. The most important item to note is that the 

"secondary" moments in both the top and bottom chords can be substan­

tial. These moments have been assumed small in the past and have tra­

ditionally been neglected. The following example compares the "tradi­

tional" design neglecting secondary moments with a design which in­

cludes these moments. 

This example is for the same conditions used in the example 

presented in the previous chapter, except a 10 panel truss configura­

tion will be used instead of the 8 panel used before. 

Given: 

10.1 EXAMPLE PROBLEM 

100 ft. span truss, R = L (see Figure 2.4) 

w = 930 lb/ft. on top chord 

No bottom chord load 

Use 5-1/8 in. wide, combination number 3 glu-lam chords 

15% stress increases allowed for snow load. 

a.) Design the top and bottom chords for the given truss. Use a 

10 panel configuration and neglect secondary moments. Con­

sider balanced load condition only. 
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b.) Design the chords again, except this time include secondary 

moments. Check the degree of overstress in solution "a.)". 

c.) Compare the 10 panel design to the 8 panel truss designed in 

Chapter IX. 

Solution: 

The compression and tension forces in the top and bottom chords 

are obtained from a conventional "pin-jointed" truss analysis. For our 

case, these are found to be 

C = 92.3 K (at end panel) 

T = 87.5 K (max at center of truss) 

Top Chord: 

As mentioned in Chapter IV, the AITC manual simply approximates 

the primary moment in the top chord by assuming a continuous beam with 

(in the case of a 10 panel truss) 5 equal spans equal to the horizontal 

projection of the end panel. For a 5 span beam with uniform load on 

all spans, the moment at the first support can be found from standard 

beam tables to be 

M... = -.1053w 2 
-oeam 

which is 84.24% of the simple beam moment. Using this fornrula, 

M... = -.1053(.93)(9.77) 2 = -9.35 Ft-K -oeam 

The AITC manual recommends assuming that the 'Pe' moments (mo-

ment resulting from the axial force acting on the curved member) be 

distributed in the same manner as the beam moments. 
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From Figure 2.4, 

e = 0.00137 R 

= 0.00137(100) = 0.137 ft. 

therefore, 

(P x ~(simple) = 92.3(.137) = 12.65 Ft-K 

Taking the same percentage of the simple moment as used for the 

beam moment (i.e., 84.24%) we obtain 

(P x ~(dist) = .8424(12.65) = 10.66 Ft-K 

The final moment is, therefore 

M.rc = 10.66 - 9.35 = 1.31 Ft-K 
(primary) 

Trial Design: 

Try a 5-1/8 in. x 9 in. top chord. 

Using the calculator program to solve the unity equation for 
I 

combined stress as was done in Chapter IX, we obtain (using ~e = 10.l ) 

x-x axis: 0.86 + 0.15 = 1.00 Ok 

Bottom Chord: 

The maximum tension occurs at the center panel of the bottom 

chord. Assume the bottom chord splice will consist of 1 in. diameter 

bolts, with a maximum two bolts at one section (see Figure 2.9). Thus 

the connectors will reduce the area of the chord by 

(1.0625 in.)(5.125 in.)(2 bolts) = 10.89 in2 

Therefore, the gross area of the chord required will be 

;t + 10.89 in
2 
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= l.~~(i.~5) + 10.89 = 63.36 in
2 

A 5-1/8 x 13-1/2 (A = 69.2 in2) would be selected. Therefore, 

use 5-1/8 x 9 Top Chord (at 100%) 

5-1/8 x 13-1/2 Bottom Chord (at 90%) 

Using the procedure developed and demonstrated in Chapter IX, 

the truss chords will be redesigned including the secondary moments. 

First, check the design produced in part a: 

5-1/8 x 9 TC ~c 46.13 in 2 
~c 311.3 in4 = = 

5-1/8 x 13-1/2 BC ~c = 69.19 in2 
~c = 1050.8 in4 

As shown in Chapter VI, when considering secondary moments, the 

critical location for combined stresses occurs at the first web joint 

from the end. At this point, the axial tension is found to be 85.0 K 

for our case. 

Entering the parameter data into the computer program (Program 

III, Design), we obtain 

~C = 8.60 Ft-K 

~C = 2.86 Ft-K 
(secondary) 

From Figure 4.7, the primary moment equals 

1.71(.93) = 1.59 Ft-K 

thus 

M.rc = 2.86 + 1.59 = 4.45 Ft-K 

Using the calculator program, the unity equation becomes: 

Top Chord: x-x axis: 0.86 + 0.50 = 1.36 > > 1.0 



Bottom Chord: (Use Area of connector - 8.29 in. at the first 
panel point - 1-3/4 in. diameter bolt with 2 4-in diameter 
shear plates) 

0.84 + 0.29 = 1.13 > 1,0 
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Note that under the previous design, the bottom chord was only 

stressed to 90% of capacity. Had it been stressed to 100%, it would 

actually be 26% overstressed when considering secondary moments. As 

can be seen, a truss designed neglecting the secondary moments can be 

significantly overstressed (36% in this case). Even if bolt slippage 

is accounted for, the top chord could be 20% overstressed. 

Try a 5-1/8 x 10-1/2 top chord and a 5-1/8 x 15 bottom chord. 

The computer program yields 

check TC: 

check BC: 

~C = 10.09 Ft-K 

~C = 3.70 + 1.59 = 5.29 Ft-K 

* x-x 0.70 + 0.33 = 1.03 Say Ok 

* 0.74 + 0.27 = 1.02 Say Ok 

*The small overstress is considered acceptable since we have 

neglected the effect of joint slip in the web/chord connection. 

Summary: 

Use 5-1/8 x 10-1/2 TC and 5-1/8 x 15 BC. 

The final design of the 8 panel truss done in the example of 

Chapter IX consisted of a 5-1/8 x 12 TC and 5-1/8 x 13-1/2 BC when 

joint slippage was considered. As can be seen, the 8 panel and 10 
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panel use essentially the same amount of chord material. The 8 panel 

truss reduces the bottom chord size by one lamination and increases the 

top chord by one lamination as opposed to the 10 panel design. 

The 8 panel truss is preferred over the 10 panel for at least 

three reasons, however. First, the two chords are better balanced 

(i.e., nearly the same size). Second, the 8 panel truss will be more 

economical due to the reduced cost in the webs. And third, the larger 

top chord will provide increased stability during erection. 

10.2 DESIGN OPl'lMIZATION 

It should also be noted from Figures 5.3 and 6.3, that the bend­

ing stress in the chords increases as the depth increases. This would 

suggest that the use of wide, shallow members will result in greater 

economy than narrow deep members. In terms of chord material, this is 

true, however wider web members and longer bolts will be required which 

may cancel any savings. In addition, the L/d ratio of the top chord 

will influence the top chord depth. Shallower chords will reduce the 

size of web strap plates required, thus improving economy. As a result, 

no general statement can be made as to the optimum width. This will 

vary with the specific situation with time and with the individual fab­

ricator. 

The more striking impact on economy is the effect of varying the 

number of panels in the truss. Increasing the number of panels results 

in greatly increasing the secondary moments (see Figures 5.10 and 6.5). 

The primary moment in the top chord decreases as the number of panels 

is increased. The secondary moments, however, are generally much more 
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significant. The economy of decreasing the number of panels is signi­

ficant. Not only are the sizes of the chords possibly reduced, but the 

savings in material and labor in the web members and connections is sub­

stantial. 

Infonnal studies by this author suggest that the 8 panel truss 

may be the optinrum configuration in terms of fabrication cost for 

trusses ranging from 60 ft. to 150 ft. The exception might be lightly 

loaded trusses, which may be more economical with 10 panels since the 

buckling length of the top chord may become a controlling factor. 

There is also concern, however, that 8 panel trusses greater than 120 

ft. may be difficult to "tilt" up from flat on the ground to an up­

right position during construction. 

10.3 THE EFFECT OF THE SECONDARY MOMENTS ON THE WEBS 

The last item to be discussed briefly is the influence of the 

secondary moments in the chords on the two webs at the end of the 

trusses. A traditional "pin-jointed" analysis results in very small 

forces in these webs. The secondary moments in the chords increase 

the forces substantially, however. Figure 5.7 shows how these moments 

force loads into these members. The forces in these members would be 

recommended "variables" to be included in the systematic design proce­

dure discussed in Chapter IX. 



CHAPTER XI 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

11.1 SUMMARY 

This study has focused on three major factors influencing the 

design of bowstring trusses with continuous glue-laminated timber 

chords. These are: 

1) the primary moments in the top chord, resulting from the 

applied member loads and the axial force acting at the ends of a 

curved member. Chapter IV presented a rational technique using the 

moment distribution method. An equation was derived for computing the 

FEM's resulting from the axial forces. 

2) The major effort was spent on developing a relationship be­

tween the member properties (area and moment of inertia) and the se­

condary moments induced into the top and bottom chords as the truss de­

flects under loads. These moments, which in the past have normally 

been assumed negligible, are found to be quite significant. Trusses 

designed neglecting these moments may actually be as much as 50% over­

stressed. In reality, due to bolt slippage in the web connections, the 

overstress probably does not exceed 30%. However, this is still of 

great concern. 

Charts and tables have been proposed in Chapters V and VI for 

use in determining these moments for the specific type of trusses con-
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sidered in this report. 

3) In order to provide a useful, less tedious method for de­

veloping such design charts for other parameters or other structural 

configurations, a method for easily ·generating characteristic equations 

for a structure was developed. This method is easily adapted to a 

small microcomputer which makes the procedure very easy to use. A 

primitive program has been provided in Appendix 4 for this purpose. 

Other factors which affect these moments and other elements of 

the truss were-briefly discussed, such as joint slippage, eccentricity 

in the heel to column connection and tertiary (P-~) moments. 

11.2 CONCLUSIONS 

This study makes it clear that special attention should be given 

to the "secondary" moments which can be present in bowstring trusses. 

Other truss types may have the same concern, although in most other 

types of trusses the problem will only involve the bottom chord. In 

most truss types the secondary moment will uhelp" the top chord since 

they act opposite to the primary moment. As was shown, this is not 

true in the bowstring. 

Fortunately, in bowstring trusses, any bolt slippage that may 

occur in the web connections will relieve at least a part of the mo­

ments, which may account for the fact that few if any failures have re­

sulted from this situation. 

The "General Characteristic Equation'' method would appear to be 

very useful to the designer for designing standard structures. This 

method allows secondary stresses and other internal force redistribu-
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tion resulting from static indeterminancy of the structure to be inclu­

ded in the analysis without having to model and analyze every condition 

with a frame or finite element analysis program. Once the initial data 

is developed and entered into the program, the design/analysis process 

becomes very simple using this method. 

11.3 REC<l-™ENDATIONS 

Further work would be helpful to determine to what extent the 

bolt slippage of the web connections can be relied upon to reduce the 

secondary moments. Additional computer modeling, possibly using the 

"generalized characteristic equations'' approach, together with some 

physical testing would be useful. 

Additional work should be done on the "general characteristic 

equation" method to determine its reliability and usefulness to a var­

iety of structures. The method has the potential for being useful for 

structures of most any configuration and of any material. It is not 

limited to timber trusses. The possibility of extending the program 

to allow automatic data transfer from the analysis files to the program 

files would be very helpful, if possible. 



APPENDIX 1 

DERIVATION AND JUSTIFICATION OF THE FIXED 
END MOMENT EQUATIONS USED TO 

COMPUTE THE PRIMARY MCMENTS 
IN THE TOP CHORD 

Al.l DERIVATION OF FEM{Pe) 

The fixed end moments at the ends of a curved top chord segment 

resulting from the axial load acting on the curved member was given in 

Chapter IV as 

FEM = P R ( tan Q - 1 ) 
A A Q 

(Eq. 4.1) 

The following assumptions were made: 

1. Both ends are fixed against rotation; 

2. Both ends are restrained from translation in the radial 

direction; 

3. The upper end is free to translate tangentially; 

4. Axial deformations are neglected; and 

5. Shear deformations are neglected. 

Equation 4.1 can be derived by referring to Figure Al.l. Taking 

moments about point 'O', we obtain 

2:M
0 

= o = FEMA + FEM + P R - P R (Al. l) 
B A B 

From Figure Al.2, taking moments about point 'i', 

LM. = 0 = FEMA + M. + PAR(l-cos 0) + V R sin 0 
i i A (Al. 2) 
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Figure Al.l Fixed end forces in a top chord panel. 

0) 

0 

Figure Al.2 Freebody forces on a top chord segment under 
fixed end conditions. 
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or 

Rearranging, we obtain 

Swmning moments about point 'B' on Figure Al.1, 

_L:~ = 0 = FEMA + F~ + PAR(l-cos 2~) +VAR sin 2Q 

[

FEMA + F~ PA(l-cos 2Q)J 
VA = - R sin 2Q + --.;;;_s i-· n_2_Q __ 

150 

{Al .3) 

(Al.4) 

Substituting Equation Al.4 into Equation Al.3, we obtain 

[

FEMA + FEMBJ PA(l-cos 2Q) 
M. = -FEMA - PAR(l-cos 0) + . 29 (sin 0) + . 29 R sin 0 

i sin sin {Al.S) 

In order for the change in slope of the member at point 'A' to 

be equal to zero (fixed), 

For a constant EI, 

1
2Q 

0 

~ d0 = 0 
EI 

Inserting Equation Al.S into Equation Al.6, we have 

(Al.6) 

1
2Q 2Q 

FEMA 
O = -FEMA d0 + sin 29 ( 

o Jo 1
2Q 

FEM 
sin 0<10 + sinB29 0 sin 0d0 

p R (29 

cos 0<10 + s~n 29(1-cos 29)}

0 

sin 0d0 
(Al. 7) 
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By observation of synmetry, it can be seen that 

FEMA = -FE~ 

Therefore, 

29 29 29 29 

_ ( p A.R ) 
= -PAR(0) +PAR sin 0 sin 29 (1-cos 29)cos ~ 

0 0 0 0 

which becomes 

or 

FEM = -P R + P R (sin 29) + p R {sin 29 ) ( 1-cos 29) 
2 

A A A 29 A 29 sin 29 {Al.8) 

Further reduction yields 

FEMA = PAR (-1 + si~929 + si~929(tan29)) 

=PAR (si~929(tan29+1) -1) 

a PAR [ ( 2 sin 2~ cos 9 )( co>Q) -1 J 
or 

FEM = P R ( tan 9 - 1 ) 
A A 9 

(Eq. 4.1) 

which is the desired result. 

Al.2 JUSTIFICATION OF THE EXTERNAL LOAD INDUCED FEM's 

In order to handle the case of the external member loads (which 

may be unsymmetrical), we must satisfy the following three equations: 
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f B ~ = $ cos 9 
EI I 

A 
(Al. 9) 

r B MxdX =-b sin g 
EI I 

A 
(Al.10) 

(Al.11) 

The notation and tabular format used by Roark and Young in 

their book Formulas for Stress and Strain, fifth edition(9) will be 

used to organize the complex equations involved and to allow unusual 

loading conditions to be considered. A few variables will be rede-

fined as noted below in order to facilitate the special case being 

considered here. 

The case being considered is described by reference number 13 of 

Table 18 in Roark and Young. 

Referring to Figure Al.3, the normal force at point 'A' has been 

defined as VA and the tangential force as PA. The angle ~ , as defined 

by Roark and Young, will be equal to -9 in this case. Thus, the equa-

tions given in Table 18, item 13 of Roark and Young become 

SI(E:~c))= VA (BHV(c) + BHH(s)) + BHM (:A) - LFH (Al.12) 

(Al.13) 

(Al .14) 



Figure Al.3 Model and nomenclature used by Roark and 
Young. 
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where 

s = sin Q 

c = cos e 

E = Modulus of Elasticity 

I = Moment of Inertia 

R = Radius of Arch 

B = Q + 29c
2 

- 3sc 
RH 

2 
B - B = 2s - 2Qsc RV - VH 

BHM = BMH = 2s - 29c 

2 
B = Q + 29s - SC w 
B = B = 29s 

VM MV 

B = 29 
MM 
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LFH, LFV and LFM are load factors which are defined for specific 

load cases in Roark and Young, Table 18, ref. Sa through Sn. 

also let, 

1) 

2) 

2 
Bl = BHV(c) + BHH(s) = Qs - s c 

B
2 

= BW(c) + BVH(s) = Qc - sc
2 

+ 2s
3 

B3 = BMV(c) + BMH(s) = 2s
2 

a'= ( :n (c) 

b' = ( :n (s) 

We can therefore write, 

( BVM) M = LF 
R A V 

(Al. lS) 

(Al.16) 
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3) (Al.17) 

After performing Gaussian elimination on this set of equations, 

we obtain 

M = 
A 

which can be rewritten as, 

M = 
A 

(
LFH LFv) 

a! + b' 

further manipulation yields, 

(Al.18) 

(Al.19) 

Defining the denominator as Q
2

, we have, after algebraic manip­

ulation, 

Q2 = 2s
2 

- ( ~ ) 
2 

+ 9 ( ~ - 2sc) (Al. 20) 

Also, defining 

(Al. 21) 

We thus have 

(Al. 22) 
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Similarly, we can write, 

_ LFM -B~(t) 
VA - B 

3 
{Al. 23) 

and 

~ = _l [cv )B + B (MA) - LF J I b A 2 VM R V (Al.24) 

Letting 

Q
5 

= (L _ 1 _ ~) 
2s 2 2s

3 

and 

we then obtain, 

R3 ~ LFV (MA)~ = - (Q )LF + - + Q -I EI 5 M s 6 R (Al. 25) 

Now, knowing MA and VA' and assuming PA= O, we can obtain an 

equation for~ by sunnning moments about point 'B'. 

Thus, 

~ = -M -[LFM - ~ MAJ R sin 29 + _L(Moments of external loads 
A B3 ~about point 'B') (Al.26) 

which reduces to 

Letting 

( 
R sin 29) ~ 

2s
2 LFM +~(MB of external loads) 

'.J (Al. 27) 

Q
3 

= 9 si~ 29 _1 
s 

29 
tan 9 -1 and 



we can then write, 

R sin 2Q 
Q4 = 2s2 = 

R 
tan Q 

~ • [ Q3MA - Q4 (LFM) +~~of loads)] 
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(Al. 28) 

Since we are dealing with elastic deformations, we add loadings 

by the theory of superposition. 

We therefore have, in summary, 

(Al. 29) 

(Al.30) 

(Al.31) 

where, 

s = sin Q 

c = cos Q 

R = Radius of the Chord 

1 (g 3 ) Q = - ~ + cs - c /s 
1 2 2 

s 

Q
2 

= 2s
2 

- (9/s)
2 + 9(c/s - 2sc) 

Q3 
2Q 

1 = tan e 

Q4 = R/tan g 

2 ec 
Qs 

c 
=-2 -1 --

2s 2s
3 
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LFH, LFV and LFM are load factors obtained from Table 18, cases 

Sa through Sn of Roark and Young, Fornru.las for Stress and Strain, 

5th edition. 

Now, consider a specific case in order to demonstrate that Equa-

tions Al.29 and Al.30 give the same answers as simply assuming the num-

ber to be a straight sloped beam, with the 'Pe' moment given from Eq. 

4.1. 

Al.2.1 Example Problem 

The member shown in Fig. Al.4 is subject to a uniform vertical 

load of 1 Kip per foot. 

Since Table 18 of Roark and Young does not cover the specific 

case loading shown, we must obtain the answers by superposition of 

load cases Sd, Se and Sf. 

Case Sd is a concentrated tangential load applied at an angle 0 

from the center axis. In our case, 0=0, therefore, the equations for. 

LFH,LFV and LFM as stated in Roark and Young become, 

_ sc
2 

_ s _ c
2

s ) 
2 2 

2 
- 2s - SC ) (Al.32) 

similarly, 

2 2 
LFVl = PA(c - 3s9 + (3/2)c(s -c) + c/2) = 

2 
PA (3) (cs -s9} (Al.33) 

and 

(Al.34) 
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The uniform load can be broken into its normal and tangential 

components as shown in Figure Al.S; for the normal loading, from Se of 

Table 18, Roark and Young, 

(Al.3S) 

[ ( ) 
2 Qs 2 2 J LFV

2 
= WR 2Qs - 3/2 s c + ~(s -c ) (Al.36) 

[
Q 2 SC] 

LFM2 = WR Z + Qs - 2 (Al.37) 

For the tangential loading, from Sf of Roark and Young, Table 

18, 

[
Q 3 ( ) 23 3 SC J LF = WR - - 3 / 4 Qc - Qc + 7 I 4 s - -s - -H3 2 12 2 (Al.38) 

and 

LFM3 = WR [ s -(7 /4) sc +(3/4) 9 - 9s
2 J (Al.40) 

Substituting the values for this specific case into Eq. Al.32 

and Al.40, we have 

LFHl = -1.4770(10-S) 
-s 

LFH2 = 1.3710(10 ) 
-7 

LFH3 = 1.0220(10 ) 
~ -7 L..LFH = -9.6780(10 ) 

-2 
LFMl = -1.7970(10 ) 

-2 
LFM2 = 1.6680(10 ) 

LFM
3 

= 1,0880(10-4) 

L LFM = -1.1810(10-
3
) 

LFVl = -1.4110(10-
3

) 
-3 

LFV
2 

= 1.3090(10 ) 

LFV
3 

= 3.3180(10-
6
) 

,L:LFV = -9-8680(10-S) 



Given: 

PA = 93.95 K 

W = 1 K/ft. 

7l = 210 

9 = 3° 

R = 100 ft. 

0 

Figure Al.4 Data for Example Al.l. 

W o sin!l. 
R(l-cos 9) 
= 25.553 K/ft. 
(tangential 
component) 

[
I--; I - - 11.-11 
1.....J -1 .L ___ _i_ l._ LJ W = 1 K/ ft. 

I I 
I 

2 W cos 11, = .872 K/ft. 
(radial component) 

= 9.772' 

Figure Al.5 Load components for Example Al.1 
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now computing the Q factors, 

Ql = 6.9724(10-
2
) 

Q2 = -1.8234(10-3) 

Q3 = 9.982(10-
1
) 

Q4 = 1.908(10
3

) 

Q = -1.3322 
5 

Q6 = 3.4887(10-
2

) 
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substituting these values and the values of LF into Eq. Al.29 and Al.30, 

we obtain the following moments: 

For 'Pe' only, 

FEM = 8.5904l-k 
A 

1-k Ffil\ = -8.5998 

For the uniform load only, 

FEMA = -7.692 

FEMB = 8 .. 032 

Using Eq. 4.1 for the 'Pe' moment, we obtain 

FEMA = 8.595ll-k 

Ffil\ = -8.595ll-k 

The fact that FEMA I -F~ when computed using the Roark and Young 

method is attributed to round-off error resulting from the numerous ca~ 

culations required. The average value of these moments is 

FEM = 8.5904 ; 8.5998 = 8•5951 
average 
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which is precisely the value obtained using the simplified method of 

Eq. 4.1. Thus Eq. 4.1 appears valid for the assumptions made. 

Computing the fixed end moments for a beam using the standard 

formula for straight, sloped beams gives, 

W 
~ 2 )2 

F '' w(9.i;2 -- -7.9581-k FEMA = - ~ = - 12 = - - -

which is within 3% of the answer obtained using the Roark and Young 

formulas. Thus, we conclude that the simplified method is sufficiently 

accurate. 

Actually, the fixed end moments for the member loads will not be 

precisely of equal magnitude. The tangential component of the load 

will produce an unbalanced condition. This can be considered negligi-

ble in the geometries used in bowstring trusses as can be seen by the 

relative magnitude of the LF factors of case 3 versus 1 and 2. The 

net influence on the total unity equation for the member will be on the 

order of 0.1%. 

The curvature was found to have a small effect on the carry over 

factor (CO) used in the moment distribution. The CO was computed to be 

.5061 for an eight panel truss rather than the .50 which applies to a 

straight beam. This is not considered to be of enough significance to 

be considered and will be neglected. It should also be noted that the 

chord is unrestrained against axial deformations and thus fixed end 

axial forces do not affect the moments in the chord. 



APPENDIX 2 

SUMMARY OF THE 
FRAME ANALYSIS CCMPUTER DATA 
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TABLE A2.l 

DATA FOR FIGURE 5.1 

ABC IBC ATC ITC M M2 M M4 Designation NP 1 3 

20TC11 100 250 75 800 8 1.23 0.23 o.o 
02TC11 50 1800 75 800 8 10.94 2.92 o.o 
12TC12 75 1800 75 1800 8 9.13 2.27 o.o 
12TCOO 75 1800 so 2SO 8 12.88 2.26 o.o 
12TC23 7S 1800 100 3600 8 7.36 2.23 o.o 
33TC11 12S 3600 75 800 8 lS.67 3.37 o.o 

20TC11 100 250 7S 800 10 1.Sl 0.19 0.45 o.o 
02TC11 so 1800 75 800 10 12.91 2.93 4.31 o.o 
12TC12 - 75 1800 75 1800 10 10.63 2.42 3.40 o.o 
12TC20 7S 1800 100 250 10 9.39 1.94 3.09 o.o 
12TC23 7S 1800 100 3600 10 8.30 2.so 2.92 o.o 
33TC11 125 3600 75 800 10 17.79 4.00 5.30 o.o 

31TC12 125 800 75 1800 12 4.96 0.91 1.06 1.09 
03TC12 so 3600 7S 1800 12 2S.43 9.25 7.08 7.40 
12TC12 75 1800 7S 1800 12 12.08 3.15 2.89 3.04 
12TCOO 75 1800 so 250 12 17 .68 3.00 3.78 3.73 
12TC32 7S 1800 12S 1800 12 8.78 2.68 2.30 2.48 
33TC12 12S 3600 75 1800 12 19.25 S.71 4.50 4.74 
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TABLE A2.2 

COMPUTER FRAME ANALYSIS DATA 

* 
~c 1

Bc MBC MIC To al 
~c Secondary 

8 Panel 

OOTCll 50 2SO 1.57 8.02 5.81 
20TC11 100 250 1.23 6.85 4.64 
30TC11 125 250 1.16 6.61 4.40 
OlTCll so 800 4.97 7 .86 5.65 
02TC11 50 1800 10.94 7.59 5.38 
03TC11 50 3600 21.07 7.14 4.93 
33TC11 125 3600 lS.67 5.98 3. 77 
llTCll 7S 800 4.26 7 .11 4.90 
12TCOO so 250 12.88 4.31 2.10 
12TC01 so 800 12.46 8.23 6.02 
12TC02 50 1800 12.12 lS.01 12.80 
12TC12 7S 1800 9.13 11.99 9.78 
12TC23 100 3600 7.36 17 .61 15.40 

10 Panel 

OOTCll so 250 1.93 7.87 6.16 
lOTCll 7S 2SO 1.65 6.96 S.25 
20TC11 100 2SO 1.Sl 6.50 4.79 
30TC11 12S 250 1.42 6.22 4.Sl 
OlTCll so 800 6.01 7.62 S.91 
02TC11 so 1800 12.91 7.22 S.Sl 
03TC11 so 3600 23.98 6.60 4.89 
33TC11 12S 3600 17.79 5.32 3.61 
12TC02 so 1800 14.20 1S.S3 13.82 
12TC12 7S 1800 10.63 12.05 10.34 
12TC20 100 250 9.39 2.84 1.13 
12TC21 100 800 9.13 S.60 3.89 
12TC22 100 1800 8.80 10.27 8.56 
12TC23 100 3600 8.30 17.77 16.06 

12 Panel 

OOTC12 so 2SO 2.13 16.32 15.467 
30TC12 12S 2SO 1.61 12.s2 11.67 
03TC12 so 3600 2S.43 13.55 12.70 
12TC12 75 1800 12.08 13.00 12.15 
31TC12 125 800 4.96 12.12 11.27 
32TC12 125 1800 10.54 11.48 10.63 
33TC12 12S 3600 19.2S 10.93 10.08 
12TCOO so 250 17 .68 3.46 2.61 



TABLE A2.2 continued 

* 
~c IBC ~c T~~l ~c Secondary 

12TC03 50 3600 14.68 29.31 28.46 
12TC11 75 800 12.74 6.75 5.90 
12TC12 75 1800 12.08 13.00 12.15 
12TC30 125 250 9.55 2.48 1.63 
12TC31 125 800 9.22 5.25 4.40 
12TC32 125 1800 8.78 9.82 8.97 
12TC33 125 3600 8.14 16.92 16.07 

* ~C(Secondary) = ~C(Total) - ~C(Primary) where 

M.rc(Primary) (found from Figures 4.5, 4.7 and 4.9) 

for each truss is as follows: 

8 Panel -- ~C(Primary) = 2.21 Ft-K 

10 Panel 

12 Panel 
" 
" 

= 1. 71 Ft-K 

= 0.85 Ft-K 
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Primary 
Location Moment 

J23 o.oo 
J25 
J26 1.01 
J27 
J28 -1.09 
J31 
J32 -0.10 
J33 
J34 -0.32 
J37 
J38 -0.11 
J39 
J40 2.21 
J41 
J42 -2.95 
J43 
J44 o.oo 

TABLE A2.3a 

COMPUTER FRAME ANALYSIS DATA * 
USED TO PLOT FIGURE 6.la 

8 PANEL TRUSS 

12TC12 12TC23 
Tot Mom Sec Mom Tot Mom 

o.oo o.oo o.oo 
1.80 2.37 
2. 73 1. 72 3.87 
2. 77 4.46 
2.10 3.19 4.34 
2.53 4.74 
2.44 2.54 4.61 
1.96 4.07 
1.32 1.64 3.34 
3.68 6.61 
5.90 6.01 9.67 
8.25 12.82 

11.19 8.98 16.50 
6.13 10.20 
2.27 5.22 5.04 
0.06 1.47 
o.oo o.oo o.oo 

*Data from Model III, Full Truss 
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Sec Mom 

o.oo 

2.86 

5.43 

4.71 

3.66 

9.78 

14.29 

7.99 

o.oo 



Location 

Jl 
J2 
J3 
J4 
JS 
JlO 
Jll 
Jl2 
Jl3 
Jl6 
Jl7 
Jl8 
J19 
J22 
J23 
J24 
J25 
J28 
J29 
J30 
J31 
J33 
J34 
J35 
J36 

Primary 

TABLE A2.3b 

CCMPUTER FRAME ANALYSIS DATA 
USED TO PLOT FIGURE 6.lb 

12 PANEL TRUSS 

12TC12 
Moment Tot Mom Sec Mom 

o.oo o.oo o.oo 
0.35 1.09 0.74 
0.37 1.81 1.44 
0.08 2.25 2.17 

-0.50 2.35 2.85 
-0.06 2.69 2.75 
0.10 2. 72 2.62 
0.02 2.48 2.46 

-0.25 2.05 2.30 
-0.04 2.46 2.50 
0.04 2.75 2.71 
0.05 2.91 2.86 
0.06 3.15 3.09 

-0.15 3.01 3.16 
-0.28 2.87 3.14 
-0.22 2.96 3.18 
0.09 3.30 3.21 

-0.06 5.38 5.46 
-0.05 7.64 7.69 
0.21 10.17 9.96 
0.85 13.00 12.15 

-0.43 8.75 9.18 
-1.09 5.06 6.15 
-0.99 2.08 3.07 
o.oo o.oo o.oo 
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12TC33 
Tot Mom Sec Mom 

o.oo o.oo 
1.52 1.17 
2.66 2.29 
3.52 3.46 
4.03 4.53 
4.36 4.42 
4.37 4.27 
4.11 4.09 
3.65 3.90 
4.07 4.11 
4.37 4.33 
4.54 4.49 
4.78 4. 72 
5.02 5.17 
5.24 5.52 
5.69 5.91 
6.35 6.26 
8.65 8.71 

11.12 11.17 
13.87 13.66 
16.92 16.07 
11.69 12.12 
7.01 8.10 
3.05 4.04 
o.oo o.oo 



APPENDIX 3 

"PINNED MEMBER" DESIGN METHOD 

The classical method of considering secondary stresses in 

trusses consists of computing the joint deflections based on a pin­

jointed truss analysis. These deflections are then used as support 

settlements for the continuous chord which allows the moments to be 

computed. This method is only approximate, but is reasonably accurate 

for most design work. It should be noted that the deflection perpen­

dicular to the top chord should be used when computing top chord mo-

ments. 

The slight error in this method stems from the fact that the 

secondary moments cause some redistribution of axial forces in the mem­

bers which will affect deflections. In bowstring trusses, an addition­

al error is introduced by the fact curved top chord changes length not 

only due to the axial stress deformation, but also as a result of the 

bending moments ( SI' derived in appendix 1). 

The & I value for primary moments is generally small compared to 

the axial deformation. However, as was shown, the secondary moments 

may be much larger than the primary moments. These moments will be 

positive moments (tending to decrease curvature) and as a result will 

tend to lengthen the member. 

The redistribution of forces in the end two webs is also signi­

ficant which tends to smooth the deflected shape. 
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These two factors result in deflections computed assuming 

straight pinned end members being greater than will actually occur. 

Thus, the secondary moments computed by this technique will be conser­

vative. In most cases, however they will represent the actual stress­

es accurately enough for design purposes. 

Joint slippage can be introduced in this method in any of the 

conventional ways, normally by including a fixed internal deflection 

component into the virtual work sunn.nation process, or if a matrix ana­

lysis is used,- the member areas can be artificially modified to affect 

a larger member deformation. 



APPENDIX 4 

''GENERAL CHARACTERISTIC EQUATION'' METHOD 
COMPUTER PROGRAMS 



PROGRAM I. DATA BASE PREPARATION 

10 PRINT "NUMBER OF PARAMETERS" 
20 INPUT N 
30 OPEN 11 0°,•t, 11 COUNTER.DAT" 
50 PRINT •t,N 
60 DIM X<N,3> 
70 DIM XNAMESCN> 
80 FOR 1•1 TO N 
90 PRINT "X<";I;">NAME ?" 
100 INPUT XNAMES<I> 
110 NEXT I 
120 PRINT 11 NUMBER OF VARIABLES?" 
130 INPUT M 
150 PRINHH, M 
170 DIM YNAMESCM> 
180 FOR I=l TO M 
190 PRINT 11 YC";I;">NAME?" 
200 INPUT YNAMES<I> 
210 NEXT I 
220 PRINT "ENTER BASE VALUES" 
230 FOR 1=1 TO N 
240 PRINT XNAMESCl>; 11 2=" 
250 INPUT X<I,2> 
260 NEXT I 
270 PRINT "ENTER THE OTHER VALUES FOR EACH PARAMETER" 
280 FOR Icl TO N 
290 PRINT XNAMES<I>;"1=" 
300 INPUT X<I,1> 
310 PRINT XNAMES<I>;"3=" 
320 INPUT X<I,3> 
330 NEXT I 
340 INPUT "NO. OF LOAD CASES";NL 
360 PRINT#1,NL 
370 CLOSE #1 
380 REM 
390 REM DETERMINE ALL REQUIRED COMPUTER RUNS 
400 REM 
410 PRINT 
420 PRINT "COMPUTER RUNS REQUIRED" 
430 PRINT 
440 PRINT "BASE VALUES: 
450 FOR I=l TO N 
460 PRINT XNAMES<I>;"="IX<I,2> 
470 NEXT I 
480 PRINT 
490 PRINT 
50'21 PRINT ," RUN","ALL BASE VALUES" 
5UJ PRINT , " NUMBER 11

, "EXCEPT LET:" 
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520 PRINT "------------------------------------" 
530 PRINT , " BASE" 
540 FOR 1=1 TO N 
550 PRINT , XNAME4*<I>;"1",XNAME4*<1>;"=";X<I,1>, 
560 FOR LD=l TO NL 
570 PRINT "LD"i <LD>, 
580 NEXT LD
590 PRINT 
600 PRINT , XNAME4*<I>;"3",XNAME4*<I>;"=";X<I,3>, 
610 FOR LD=l TO NL 
620 PRINT "LD";LD, 
630 NEXT LO 
640 PRINT 
650 NEXT I 
660 PRINT 
670 PRINT 
680 PRINT "MODEL THE STRUCTURE AND COMPLETE COMPUTER" 
690 PRINT 11 RUNS FOR EACH OF THE ABOVE CASES" 
700 PRINT 
710 OF·EN 11 0 11

, 4t2, "PARAMETR. DAT" 
720 FOR I=l TO N 
730 FOR CASE=1 TO 3 
740 PRINT4t2,X<I,CASE> 
750 NEXT CASE 
760 NEXT I 
790 FOR Iz1 TO N 
800 PRINT4t2,XNAME4*<I> 
810 NEXT I 
840 FOR J=1 TO M 
850 PRINT4t2,YNAME4*<J> 
860 NEXT J 
880 PRINT "EXECUTION COMPLETE" 
885 END 
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PROGRAM II. DEVELOPMEl'n OF CHARACTERISTIC EQUATIONS 

09121 r;~M TH l S f.·POGF:.~M DE'.'E:UJF'ES THE CONSTANT FOR THE 
081 REM CHARACTERISTIC EQUATIONS 
985 Ii'JF'UT "F'RINfER CONNECTED (1 ORY: YES>":F'F:• 
89\!J OF'EN II I ... • 1 • II COUNTER. DAT II 

•7,~H~t INPUT # 1 • N 
9~tZJ I NF'UT it 1 , M 
q4~J I NF'UT tH. ML 
95!!1 OF'EN II I 11 '#:2. "F'AF'AMETR. DAT" 
970 FOR I= 1 TO N 
975 FOR CASE =1 ro 3 
98L";f ItlPUT #2. X ( ! . C.:ASE > 

1 ~1~>1z1 NE X T CASE 
1~H 5 NEXT I 
10~0 FOR 1=1 TO N 
1030 INPUT #2~XNAME$CI> 
1•!14!2t NEXT I 
1060 FOR J=l TO M 
1070 INPUT #:~YNAME$(J) 
Hl8(3 NEXT J 
1090 DIM BCN.M~NL> 
1100 DIM G<N,M.NL> 
1110 DIM k<N.M.NL> 
1120 DIM C<N,M.NL) 
1130 DIM YB<M.NL> 
1135 DlM YCN.2.M,NL> 
1140 DIM TY<M.NL> 
1 1 5 ~!J D I M T 0 TY .: M ) 
11 6 et D I M T X < N > 
11 7 ~!J 0 p EN II 0 II ' # 3 ' II E QUA T I ON • DAT II 
1180 FOR LO= 1 TO NL 
1200 FOR J=1 TO M 
1 2 UZJ pp I NT y NAME$ ( J ) ; II <BA SE !' II ~ L D; II ) =? " 
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1220 INPUT YBCJ.LO> 
123~3 PRINT#3, YB CJ, LD>: IF F'R$= 11 l '' OR PR$="Y" THEN LF'F:INT 

YNAME$ ( J) ; " <BASE. II ; LD; II ) =" ; YB ( J 'LO) 
124~!J NEXT J 
1241 NEXT LD 
1243 FOR L0=1 TO NL 
1245 FOR I=l TO N 
1247 FOR CASE =1 TO 2 
1249 FOR J=l TO M 
1251 F'F:INT YNAME$<J>; II~"; XNAME$(!) ;CASE; 11 L0 11 :LD= 

11

)?" 

1253 INPUT Y<l.CASE~J.LD> 
1254 IF F'F:S="l" OR PR!="Y" THEN LF'RINT il'JAMES(J):" ( 
11 ; XNAMES (I>: CASE: "LO"; LO">=": Y <I, CASE. J ~LO' 
1255 NEXT J 
1257 tJEXT CASE 



1259 NEXT I 
12fr~I NEXT LD 
127iZI IF PR$= II 1 II OR F'R$= II y II THEN LF'F: I NT 
1 :Sf2J I F F'F\'$ = II 1 II OR p F: $ = II y II THEN L F'R I NT 

131g FOR LD=i TO NL 
13:?!21 
133Ql 
13.32 
13:.5 
1336 
1337 
1338 
134l2l 
134:2 
1344 
1 :A6 
1 :::5i2! 

FOR J=l TO M 
FOR 1=1 TO N 

FRINT XNAME$<l).YNAME$(J)."LOAD CASE ";LD 
~****************•**•••***~•···*••••**************** 

CALCULATION OF CONSTANTS FOR THE 
GENERAL CHARACTERISTIC EQUATIONS 

~*********•4••*·~··*•••****•***4*•••·••************* 
Sl= ~YB (J .. LD) -Y (I. 1. J. LD:1 > / ( X: I. :2) -X (I !I 1) > 
S:?=<Y<I.:? •. J~LD~-YBi:J.LD) >...-('a' I~ 3)-X <1.2)) 
IF 51=0 THEN B=l ELSE B=S~'Sl 
IF I NT i. El• 11~l·JQ!) I l •?\•J1Z!= 1 THEN I>= 1 

I F F' R $ = II 1 II 0 R F' F: $ = " y II THEN L F F: I NT " B ( II ~ I ; II .. " : J ' II " 

";LD; ")=":B. 
1351 
1:.ss 
136QI 
1362 
1364 
1 :.:~~j 
F:INT 
1 .:.: . . ! 1 
1378 

F'F:INT "B=": B 
I F E<= 1 GOT 0 1 36 4 
G ( I , \.1 • LD > = ( X < I • 3;. - X ( I • 1 :i / B:. / 1

' l / B-1 > 

GOTO 137.:Z! 
G(l,.J.LD)=1E+30 
F' f;• ItH # 3 • G ( I • J • L D ) : I F F' F' $ = II 1 '. 0 F: F' F: $ = II y II THE l'J L p 

II G ( II ' I ; II ' II : J; II .. ,, ; LD; II ) =II' G ( I • ,J • LD) 

F'Rlt·ff "G="; G (I. J. LO> 
IF B= 1 G1JTO 1 ::;94 

1 3 8 ~25 V ( I • J .. L [• 1 = ( Y B \ J • L D ) - Y ( I • 2 • ,J • L [i ) ) I ( X ( I ~ 3 ) - X ( I , 2 > ) 

* ( X < I , ~ > +G < ! .. J .. Lr•.' ) • ( >: <I" 3 > +G ( I .. \.1. LD) i 
1 38'.2 GOTO 1 :;9~~1 
1384 ~:i'.l.J.LD·=Sl 

13·1~2j F'R I nT#3. ~,· ·'.I. J. LD > : IF PF:$-= 11 1 " OR F'F:$= .. v 11 THEN LP 
F: I NT II v ( " : I ; II • II ; .:,T ~ II • 

11 
: L D : II ) = " : ~. ( I • J • L [\ ) • 

1 ::._91 FRir.Jl 1
• k= '';I<; I. J ~ L.D> 

1398 IF 8=1 GOTO 1404 
14 1 ~1~2! 

14!~12 

14(14 
1410 
F:INT 
1411 
1415 
14:s?I 

c: I • J. L[1
' =YB I J" LD) -~:: i, I" J. LD) / 1'. x (I. 2) +G (I~ J. LD) } 

GOTO 14 L~! 
C<I.J.LD>=Y<J.1.J .. LD>-Sl•X<J.1) 
F'F:INT .. 3.C<I,J.LD>: rr= F'R$="1" OR F'P$="Y" THEN LP 

II c ( t:; I ; II. ti: J: II" "; LD' 01 
) = 11

: c ( I "J. LD) 
F'RINT "C='': C' I. J. LD> 

IF F'R$==" 1" OF: F'Rt= 11 Y~ 1 THDJ LPF:INT ELSE Ir-Jr:·UT GNXL 
t-JEXT I 

! 4 :.i'.I NE ·r:T J 
1 4 4 :J NE X T L D : 
145•.~> CL.CSE ~-:, 

l •lc!~1 Et>JD 
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PR<X;RAM III. DESIGN PROCEDURE 

2~:,~!l!!l OF'EN II 1 " ... 3 .. "EOUAT ION. OAT
11 

~(~'1'~' ,_:PEN II I II c tt2. 11 F'AhA~1ETF:. DAT" 
:2 i~' ·.: \!J Cl F' EN " I I' • " 1 ' II c 0 u NT ER . DAT II 
2~!1-~)~I I NFUT 1t 1 , N 
2!!'4~~1 !r-lF'U T tt 1 • M 
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2~~15!-~1 i r-JF'UT 1+ 1. NL 
::051 DlM GCN.M.NL).K<N.M,NLl4CtN.M~NL).Y8CM,NL>.TY<M~NL 1 .T 
OTYCM>,TXCN>.XNAME$CN>,YNAME$CM> 
2052 FOR I=l TO N 
2053 FOR CASE= 1 TO 3 
2054 INPUT #2.~0THING 
::055 NEXT CASE 
'.2 ~~! 5 6 NE X T I 
::>J6•-:I FCJR I= 1 TO N 
2070 INPUT #2.XNAME$(l) 
:2!'.18;~t NE)( T I 
2090 FOR J=1 TO M 
2100 INPUT #2.YNAME$(J) 
2 1 l 1ZJ NE "'. T J 
~1:0 DIM PLD <NL> 
2130 FOR LD=l TO NL 
2140 FOR J=l TO M 
2150 INPUT #3,YB(J,LD> 
21Ml NEXT J 
21 7~21 t-JE ~: T LD 
2180 FOR LD=l TO NL 
2190 FOR J=1 TO M 
2200 FOR I=l TO N 
2210 INPUT #3,G(l,J.LD> 
2220 INPUT #3,k(I,J,LO):INPUT #3.C<I,J,LD> 
223QJ NEXT I 
224!!1 NEXT J 
225~:~) ~.:E :1~ T LO 
2260 REM DESIGN SECTION 
2265 DL$= 11 Y11 

2270 FOR I= 1 TO N 
2 2 8<.ZI F' ~: I MT II T F: ! AL II ; x NAME$ ( I ) ; II = II ; 

229!~; I NF'UT T 
2292 IF T=0 THEN 2300 
2294 T"/.(I>=T 
2:.i!\~~J t·JE :X T I 
2"3i~i5 r F OL $=" 1 " OF: OL $=" Y" THEN GOTO 23 u~j ELSE GOTO 2:::4121 
2310 FOR LD=l TO NL 
2 3 1 5 p R I NT II~~ LOAD c A SE I I = L D ; 

2320 INPUT PLDCLO> 
233•:!1 tJEXT LO 
2340 FOR J=1 TO M 



238~1 

2:.92 
2::.9\!t 
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rorv < J > =\!t 
FOR LO= 1 TO NL 
TY<J.LD>=Y0\J.LD> <1-N) 

FOR I=l TO N 
IF G <I. J. LO> =1E+"31~ THEN GOTO ~:,94 
TY< J. LO> =TY~ J, LO> • ( t- <I. J. LO> I <TX < I> +G < I. 

J. LO> > +C \ I , J. LO> > 
2::92 
2394 

GOTO 24\~h!' 
TY<J,LD>=fY(J.LD>•<K'l.J,LD>*TX<I>•C<I~J 

, LO>; 
24 i~l\3 
24!~S5 

241 ~3 
242(.!f 

NEXT I 
TY<J.LD>=TY<J.LD>•PLD<LD> 
F'RINf YNAMES~J): '' <LD":LD~ ")=": TY<J~LD' 
TOTY\J>=TOTY<J>+TY<J,LD> 

24 3<~ NEXT LO 
2 4 4(!'5 F' F: I NT y NAME$ \ J ) ; " = II ; T 0 Ty ( J ) : .. T 0 T AL II 

2451!t t·JE X T J 
246~3 INPUT II CHANGE F'AF:AMETEF:S II; QCS 
2465 I NF'UT ''CHANGE LOAD I NG'': QL·S 
247!~• IF lJS="Y" OR Q$= "YES" OR Q$=" 1" THEN GOTO 227~3 
2490 FOR I= 1 TO N 
25·'.1(3 LPF:INT XNAMES (I);"=": TX\ I>. 

2510 NEXT I 
2515 LF'F:INT 
2520 FOR LD=l TO NL 
25-:Q• LF'F: I NT "I. LOAD CASE II: LD: ti= •. : F'LD ( LD) ' 

2540 NEXT LD 
2545 LF'F: I NT 
2550 FOR J=l TO M 
256i2f LPR I NT 't'NAME$ ( J) ; II=,, ; TOTY ( J) 

257\!J NEXT J 
2575 INPL!T "CHANGE FAF:AMETERS":; OS 
2576 IF 0$="Y" OR Q$= 11 YES 11 OR Q$="1" THEN GOTO 2270 

258l~ END 
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