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AN ABSTRACT OF THE THESIS OF Ahmad Jaber for the Master of Applied 

Science presented February 18, 1983. 

Title: Analytical and Experimental Stresses in Concrete Pavements and 

Unbonded Overlays 

APPROVED BY MEMBERS OF THE THESIS COMMITTEE: 

The principal objective of this study is to determine the accuracy 

of calculating stresses in concrete pavements and unbonded overlays 

under different loading conditions. The computed stresses for the 

single layer pavements are obtained based on Westergaard theory, the 

finite-element model (ILLI-SLAB), and the elastic layered model 

(ELSYM5). For the two-layer unbonded systems, stresses are estimated 



based on the finite-element theory and the Portland Cement Association 

design method. The experimental results for the comparison were 

available from a series of tests done on model scale concrete pavements 

and unbonded overlays. The results of present investigation show that 

the computed stresses for the single layer pavement slab are in good 

agreement with the observed stresses selected for this study, when the 

slab is loaded at the interior. When the pavement slab is loaded at 

the edge, the analytical methods give lower stresses and further 

investigation is recommended. On the other hand, the unbonded overlay 

of concrete pavement is thoroughly explored. The stresses as given by 

the analytical methods are, in general, of smaller magnitude than the 

observed ones in the unbonded overlay. The difference in the magnitude 

of stresses is considered attributable to the manner in which the 

stresses are distributed in the slab through the contact area with the 

load. A revised equation for the determination of the equivalent 

contact area is suggested to bring the analytical stresses in line with 

the experimental values. This revised formula is further verified in 

its application to some of the experimental stresses obtained from 

other tests and is found to give satisfactory results. 
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CHAPTER I 

INTRODUCTION 

The economic growth of the 1950's and early 1960's was accompanied 

by rapid expansion of the existinq road network in almost all of the 

United States. Most of these roads were constructed using Portland 

Cement Concrete (PCC) as the pavement surface, especially on the 

toll-roads. Pennsylvania, Ohio, Indiana, Illinois, Colorado, Texas, 

and West Virginia employed 100% concrete on their turnpikes. Other 

states like Kentucky and Oklahoma used concrete on large portions of 

their toll-road system. And, since 1956, approximately 60% of the new 

pavem~nts established by the National System of Interstate and Defense 

Highway are constructed using concrete (Ray 1977). 

Many of those built roads are now approaching the end of their 

design life and in need of major repairs. A long employed method for 

strengthening these pavements is by overlaying them with concrete, and 

many desiqn procedures have been used for this purpose (American 

Concrete Institute, 1967; McCullough and Monismith, 1970; McComb and 

Labra, 1974; Weiss, 1979). 

1.1 STRENGTHENING CONCRETE WITH CONCRETE 

Concrete pavem~nts have a salvage value which should be used when 

-strengthening the existing pavement. This value is becoming more and 

more important with the increase in costs of material and construction. 
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Consequently, overlays are being used to provide a high level of 

structural reinforcement and for increasing the strength of existing 

pavement without abandoning the facility. These concrete overlays may 

be classified as follows: 

1.1.1 Bonded Overlays 

The principal reasons for applying bonded concrete overlays over 

old concrete pavements are to salvaqe structurally sound concrete where 

only the surface has deteriorated, to correct for grade and levelinq of 

pavement, and to increase the flexural strength. Special preparation 

of the existing pavement is needed to ensure complete bond with the 

overlay. The surface must be completely clean and etched before a 

bonding agent of sand-cement grout or epoxy mixture is used. A fairly 

effective bond may be obtained if proper surface preparation and 

construction procedures are followed. However, due to normal ageing 

and differential shrinkage and expansion characteristics of two 

different ages of concrete, especially during the early life of 

overlay, loss of bond occurs; mostly along construction joints and 

corners (Gillete 1965). 

1.1.2. Unbonded Overlays 

At the other extreme of pavement resurfacing are the unbonded 

overlays where a special effort is made to prevent bonding between the 

overlay and base pavement. This type of overlay is normally used 

whenever a new jointing arrangement is desired, or where the base slab 

is badly distorted and some type of leveling course is required. 

Unbonding between layers is usually obtained by cleaning the old 
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pavement of debris, excess joint sealent, and then covering it with a 

separation layer of polyethylene, building paper, or most commonly 

bituminous material. This separation layer tends to permit ease of 

relative movement of the two slabs of different characteristics; and 

hence, lowers the restrained warping stresses as well as keeps both 

slabs at more even temperatures than a single slab of the same 

thickness. 

1.1.3. Partially Bonded Overlays 

This type of overlay is widely used. In this case the overlay 

pavement is directly laid on the base pavement with no special effort 

being made to achieve bonding, nor to prevent it. All joints in the 

overlay should be directly over or within one foot of the joints in the 

base slab. The design thickness of this type of overlay is usually 

greater than the bonded overlay, but less than the unbonded one. The 

advantages of the partially bonded overlay are in the economy of 

material and treatment of the existing surface and in allowing some 

relative nnvement of the two slabs. 

1.2 DETERMINATION OF CRITICAL STRESSES 

A number of methods are available for the determination of 

critical stresses induced by static loading conditions. In general 

terms, the numerical solutions may be classified as: (a) use of 

equations; (b) use of small scale static load model tests; (c) use of 

-computers; and (d) use of influence charts. Methods (a) and (c) are con­

sidered different approaches since, in general terms, computers are set for 
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solving manually complex and tedious analysis procedures. 

The previously mentioned methods are regarded as alternatives and 

they may give different stress results due to the different assumptions 

made for each of them. It is the intention of this study to combine 

the first three alternative procedures so as to understand the behavior 

of concrete pavements and concrete pavement overlays. Research work 

was planned to study the following main subjects: 

1. Variations in the subgrade properties as well as the material 

used for slab construction and their effect on stress 

computation. 

2. The variation in stress results based on the theory used. 

3. The effect of the size of the bearing area on stress 

computations for a given load. 

4. The stress behavior for single layer concrete slabs versus 

those of unbonded concrete overlays over concrete slabs. 

5. The search for a comprehensive design procedure for the 

unbonded concrete overlays. 

The theoretical approach for the determination of critical 

stresses is based on two mathematical models: plate theory and layered 

theory models. In the layered theory model, a uniform circular load is 

applied to a half-space of infinite dimensions in the plane of the 

plate and to several layers of finite thickness and one of infinite 

depth in the vertical direction. In the pres~nt investigation,the 

layered theory model is represented by a computer program known as the 

Elastic Layered System (ELSYM5) developed by Ahlborn (1972). 



5 

On the other hand, the plate theory symbolizes a plate of finite 

thickness and horizontal dimensions resting on a semi-infinite 

half-space of another material. The most widely known work on this 

model is presented by Westergaard (1926). Westergaard solved for 

stresses and displacements in rigid pavements for three loading 

conditions denoted as interior, edge, and corner loading. His work, or 

modifications thereof, are still being used in concrete pavement 

design. Consequently, Westergaard equations are used throughout this 

study. 

A finite-element model called ILLI-SLAB (Tabatabaie and Barenberg, 

1980) and based on the p 1 ate theory mode 1, is used as an addition a 1 

tool in the theoretical analysis. This model is consistent with the 

Westergaard analysis and hence, is not considered in the variational 

study in the parameters that affect the computation of stresses. 

However, the importance of the computer program will be emphasized when 

considering the unbonded overlay systems. 

To support the theoretical work it has to be compared to some 

experimental data. After analyzing some of the available studies, 

research done by Lall (1969) was selected as "experimental results" for 

two reasons: the research was conducted on a pavement model; hence the 

variational characteristics of the material used were held to a 

minimum; and, secondly, the stress results obtained for unbonded 

concrete overlay systems are more extensive than any other known 

available information for one study. 



CHAPTER II 

REVIEW OF AVAILABLE THEORIES FOR CONCRETE PAVEMENT/OVERLAY DESIGN 

Concrete pavement design has been an integral part of the American 

transportation system since 1909. During that year, Wayne county, 

Michigan, built the first concrete pavement after testing concrete 

designs, brick, and other paving materials. 

Even though the design techniques for rigid pavements have 

progressed a longway since, most of the new design procedures are based 

upon Westergaard equations developed in 1926, or modification of these 

equations (Ray 1964). And, not until recently, the elastic layer 

theory approach has been used in the design of rigid pavements. 

However, both theories are reviewed so as to study their relations to 

each other and to experimental stress values. 

2.1 WESTERGAARD APPROACH 

It was not until the original Westergaard analysis was published 

that a rational theory for slab design became available (Westergaard 

1926). In this analysis it was assumed that the slab acts as a homo-

geneous, isotropic, elastic solid in equilibrium and that the reaction 

of the subgrade is vertical only and is proportional to the deflection 

of the slab. This proportionality coefficient, K, is called the 

·modulus of subgrade reaction. It is a measure of the stiffness of the 

subgrade and is given in pounds per square inch per inch of deflection 

(lb./in 2/in.). Another quantity introduced by Westergaard is called 
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the radius of relative stiffness, t, and is a measure of the stiffness 

of the slab relative to that of the subgrade. This quantity has a 

lineal dimension (in.) and is defined mathematically as: 

.!l. = f. Eh3~ J Y.tt 
l12(1-m2) K 

(2.1) 

where E = modulus of elasticity of concrete in pounds per square inch 

h = thickness of the concrete slab in inches 

m = Poisson's ratio 

Westergaard considered three cases of loading positions as shown 

in Figure 2.1. 

2.1.1 Corner Load 

For this case Westergaard showed that the maximum tensile stress 

occurs in the top part of the slab at a distance, from the corner along 

the corner bisector, of 

X1 = 2faiT° (2.2) 

in which 

X1 = the distance from the corner to the point of maximum stress 

measured along the bisector of the corner angle. 

ai = a/"2"is the distance from the extreme slab corner to the 

center of the area of load application with slab edge 

tangent to that area. 

a = radius of the circular area over which the load, P, is 

assumed uniformly distributed. 
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The quantitative value of this stress, Sc, is given by: 

S = 3 P.l- l (a l 0 . 6-j c :-2 - -) 
h i 

2.1.2 Interior Load 

9 

(2.3) 

The interior loading condition assumes the load to be applied at 

some distance from any edge or corner of the slab. The maximum tensile 

stress occurs on the bottom of the slab directly under the center of 

the loaded area. The analysis for the case of a wheel load at a point 

in the interior is based on two theories. For the first theory, 

designated by the ordinary theory, it is assumed that a straight line 

drawn through the slab perpendicular to the slab remains straight and 

perpendicular to the neutral axis. For pavement analysis, this theory 

leads to a satisfactory result at all points except in the immediate 

neiqhborhood of a concentrated load. For the point load case, the 

special theory applies. This theory is based on only two assumptions: 

one is that Hooke's law applies; the other is that the material keeps 

its geometrical continuity at all points. 

Based on these two theories the Westergaard equation for the 

interior loading condition is then given by 

s. 
1 [R.n ~· + 0. 6159 J 

.where Si is the max1mum critical stress 

b is defined as the equivalent radius as follows: 

b = /1.6a 2 + h2 - 0.675h for, a, less than 1.72h 

(2.4) 

(2.5) 
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for larger values of a, b is taken equal to a, that is, the ordinary 

theory may be used without correction. Equation (2.5) is based on 

experimental computation under the following assumptions: 

1. The center of load, P, is assumed to be at the center of a 

circular slab. 

2. The slab is supported at the edge in such a manner that the 

sum of the radial and tangential bending moments is zero at 

every point of the edge. 

With equation (2.4) written in terms of the equivalent radius, b, 

it is possible to express the results of the special theory in terms of 

the ordinary theory. This equation, when written in a more familiar 

form for Poisson ratio of 0.15 becomes: 

5 i = o.~126 P [ 4 log ~ + 1.069 J (2.6) 

2 .1. 3 Edqe Load 

For this case, it is assumed that the equivalent radius, b, as 

defined earlier is still valid and the maximum tensile stress, Se, 

occurs at the edge, and is parallel to the edge of the slab. The 

magnitude of this stress is: 

s e = O. ~Sf P [ 4 1 og ~ + O. 359 J (2.7) 

2.2 MODIFICATION OF WESTERGAARD THEORY 

Since the original work done by Westergaard, many investigators, 

including Westergaard himself, have improved on the methods of stress 
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computations especially for the corner loading position. These 

improvements came about after a series of tests made at different 

places in this country. The most well known is the Arlington test 

series. 

In the early 1930's the Bureau of Public Roads conducted a series 

of load tests on concrete pavements at Arlington, Virginia. In those 

tests, measurements of stresses, deflections and subgrade pressures 

from loading, as well as measurement of curling due to variation in 

pavement temperature were made to provide a check on Westergaard 

equations (Teller and Sutherland 1935A, 19358, 1935C, 1936, 1943). 

From these tests, it was recommended to use the following empirical 

formulae for the computation of the critical stresses. 

S = 3 P [ 1 al 1. 2] c ~ - (-) h R, 
(2.8) 

Si = o.~\6 P [ 4 log~ + 1.069] (2.9) 

s 0.572 p 
[ 4 log ~ + log b J = 

h2 e (2.10) 

2.3 FINITE ELEMENT MODEL ILLI-SLAB 

The finite-element model known as ILLI-SLAB is developed by 

Tabatabaie and Barenberg (1980). The model is a powerful tool for the 

analysis of concrete pavement systems. It is based on the classical 

-theory of a plate on Winkler foundation. The assumptions made with 

regard to the concrete slab, the overlay and the subgrade are: 
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1. The planes of the plate lying initially normal to the middle 

surface of the plate remain plane and normal to the middle 

surface after bending. 

2. Normal stresses in the direction perpendicular to the plate 

surface can be disregarded for the bending solution. 

3. There is no axial deformation in the middle plane of the plate 

and this plane remains neutral during bending. 

4. Deformations are small with regard to the dimensions of the 

plate. 

5. Each element of the slab acts as a homogeneous, isotropic, 

elastic solid in equilibrium. However, different elements may 

have different properties. 

6. The subgrade behaves as a Winkler foundation. 

7. In case of bonded overlay, full strain compatibility exists at 

the interface, and for the unbonded case there are no shear 

stresses at the interface. 

Among these assumptions, there are others that relate to dowel 

bars at joints, and aggregate interlock or Keyway as load-transfer 

systems. These assumptions do not relate to this thesis, and 

consequently are not included herein. 

For modeling the concrete pavement slab, the rectangular plate 

element is used. Figure 2.2 shows that at each node of the element 

there are three displacement components: a vertical deflection perpen­

.dicular to the plate surface and in the plane of loading, and two rotations 

about the axis in the plane of the plate. Corresponding to these dis­

placement components, there are force components: a vertical force and two 
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Figure 2.2 Finite-element model of pavement system 
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couples. For each element, these forces and displacements can be 

related by matrix notations: 

{P}e = [Ktop + Kbottom + Ksub ]e{D} e (2.11) 

where Kt0 p, Kbottom' and Ksub, are the stiffness matrices of the 

top layer, the bottom layer, and the subgrade respectively; {p}e is 

the force vector, and {o}e is the displacement vector of the slab 

element. The overall structural stiffness matrix [K] is then 

formulated by superimposing the effect of the individual element 

stiffnesses to obtain: 

{P} = [KJ{D} (2.12) 

in which {P} is the equivalent nodal force for a uniformly distributed 

load over a rectangular section of the concrete slab; and {D} is the 

resultant nodal displacements for the entire pavement system. 

Generalized stresses are calculated from the strain fields determined 

from the nodal displacements of the pavement. 

2.4 ELASTIC LAYER THEORY 

The elastic layer theory is derived from the mathematical theory 

of elasticity. The application of the theory to the pavement problem 

requires that a particular solution be found for a set of partial 

.differential equatibns. The full development of the solutions ~as not 

feasible until the computer age. The major advantage of this theory is 
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that it permits the complete state of stress to be determined at any 

point in the pavement structure. Its disadvantage is that the stress 

and deflection can be determined only for the interior loading case of 

pavement analysis. 

Burmister (1943) laid much of the qround work for the solutions of 

elastic layers on a semi-infinite elastic subgrade. The general 

concept of this system requires the following assumptions. 

1. The material properties of each layer are homogeneous, 

isotropic and elastic. 

2. Each layer has a finite thickness except for the bottom layer, 

and all are infinite in the lateral directions. 

3. Full friction is developed between layers at each interface. 

4. Surface shearing forces are not present at the surface. 

5. The stress solutions are characterized by two material 

properties for each layer: Poisson's ratio, and the elastic 

modulus. 

Burmister's work was first based on the solution of the two-layer 

problem. Hank and Scrivner (1948), Peattie and Jones (1962), and 

others have extended Burmister's solution to include three-layered 

pavements. And in recent years, many computer programs have been 

developed. These programs permit the determination of the complete 

state of stress and strain at any point in a pavement structure. One 

of these computer programs is used in this thesis. This program is 

known as ELSYM5 and is developed at Berkeley, California (Ahlborn, 

1972). The program is capable of finding stresses and strains, 

including the principal stress, at any point in the system for a 
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multiple-loading condition, in a very short computer time compared to 

other programs. It uses a truncated series for the integration process 

that leads to some approximation of the results at and near the surf ace 

and at points out at some distance from the load. 

One major problem with the ELSYM5, like any other program based on 

the elastic layered theory, is that stresses at the edge and corner of 

pavements cannot be evaluated. Sometimes, the stress computed by the 

elastic layer theory is adjusted so that it is equivalent to the stress 

resulting from the design load position (Treybig, H.J., et al 1977). 

However, adjustment factor is not considered in this thesis, since it 

does not give a complete picture of the analysis procedure. 

2.5 DESIGN OF CONCRETE OVERLAYS 

Several overlay design procedures have been published for concrete 

resurfacing of pavements. The Portland Cement Association (1965}, 

American Concrete Institute (1967), and the Corps of Engineers 

(Hutchinson 1966) have detailed methods. They are all similar 

modifications of existing design procedures and determine the thickness 

of Portland Cement Concrete overlay required if a single concrete slab 

is used. Determination of this thickness is arrived at by using normal 

concrete pavement design procedures and is independent of the overlay 

design. The formulae used in the overlay design procedure have been 

developed by the Corps of Engineers for airfi~ld pavements and have 
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been used for highway pavements. 

The Corps of Engineers has two empirical equations for designing 

concrete overlays on rigid base pavements. These are 

ti = v{2 - c h2 
o e 

h
0 

= 1.4fh1.4 c hI-:4 
e 

where h0 = thickness of overlay slab in inches 

he = thickness of the base pavement 

(2.13) 

(2.14) 

h = full monolithic thickness of concrete pavement required for 

the design loading 

C = coefficient, depending on the condition of the existing 

pavement. The practice has been to use the following values 

of C 

C = 1.00 when the existing pavement is in good overall 

structural condition 

C = 0.75 when the existing pavement has initial joint and corner 

cracks due to loading but no progressive structural distress 

or recent cracking, and 

C = 0.35 when the existing pavement is badly cracked or 

shattered structurally 

Equation (2.13) is used where a separation course between the two 

pavements is required. A minimum thickness of 6 inches is recommended 
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for these overlays. An overlay with a separation course is the only 

type that can be placed over existing pavements with severe structural 

defects. Equation (2.14), on the other hand, is used where the overlay 

pavement is placed directly on the existing pavement, and the two slabs 

will act as an integral unit. A minimum thickness of 5 inches is 

recommended for this type of overlay, and it should only be put over 

structurally sound pavements and limited structural defects must be 

repaired prior to overlay. 

The thickness, h, of a sinqle slab having the same structural 

capacity as required of the combined base and overlay slabs is 

determined using Westergaard (1948) equation for edge loading. The 

stress computed for the design load is then reduced 25 percent, an 

allowance for load transfer at the pavement joints. 

As for bonded overlays, if a complete bond is ensured, the overlay 

and base slab act as a monolithic slab, and the equation for the 

overlay thickness is given by 

h0 = h - he (2.15) 

This type of overlay is used only over structurally sound 

pavement. However, as mentioned earlier, loss of a bond does occur, 

especially along lonqitudinal construction joints and corners. In 

addition, careful attention should be given to the joint design to 

ensure that the load at the joint in either the base or overlay slab is 

not excessive. 
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The overlay design formulae are based on the assumption that the 

flexural strength and modulus of elasticity of the overlay and base 

pavement are nearly equal. When a significant difference in flexural 

strength exists, an adjustment in the thickness of the base pavement 

should be made. This adjustment is based on Westergaard equation for a 

circular loaded area at the edge or interior of a pavement (Mellinger 

1963}, and is given by: 

e e e 
[
R h2 (l+m}(3+m )] ~ 

hee = R (l+me)(3+m) for edge load (2.16) 

and 

hee 
_ [Re h; (l+m) ]~ 
- R (1 +m~J for interior load (2.17) 

where 

hee = the equivalent thickness of the base slab 

Re = the flexural strength of the base slab 

R = the flexural strength of the overlay 

me = Poisson's ratio for the base slab 

The value of Poisson's ratio is usually modified linearly by 

assuming a chanqe of 0.020 for each 100 pounds per square inch change 

in flexural strength. Poisson's ratio for a flexural strength of 800 

pounds per square inch is taken as 0.200. 

From the previous discussion, it seems that all of the design 

procedures for concrete overlay over concrete pavement are based on 

experimental work. These procedures do give a satisfactory approach to 
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the immediate problem. However, it is said that the available formulae 

for partially bonded and unbonded overlays are sometimes very 

conservative. Consequently, there is a growing need for a rational, 

less conservative, and more clear design procedure. 



CHAPTER III 

VARIATION IN MATERIAL PROPERTY AND ITS EFFECT ON STRESS ANALYSIS 

3.1 GENERAL 

In pavement design, several empirical safety and judgement factors 

have been applied to account for the many uncertainties involved 

without quantatively considering the magnitude of these uncertainties. 

This generally has resulted in an "overdesign" or 11 underdesign 11 

depending on the situation and the level of applied safety factor. If 

the current deterministic pavement design procedures were modified so 

that the safety factors applied depended on the magnitude of the 

variation of concrete properties, supporting soil properties, 

uncertainties in traffic estimation, and other related factors, a more 

realistic design would be achieved. 

During the past few years, several investigators have suggested 

that probabilistic concepts be applied to the design and analysis of 
~ 

Portland Cement Concrete and other structures in order to establish a 

certain reliability of the results (Freudenthal et al, 1966; Darter et 

al, 1972). 

With all of these uncertainties involved it is felt that, before 

attempting to make direct comparison between computed and observed 

stresses, some background on the expected variation in the experimental 

stress results should be incorporated. Data obtained by Lall (1969) 

from the model scale tests of concrete pavements and unbonded overlays 
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is used in this study since the stress results of this experimental 

investigation are used in the comparison analysis. These model scale 

tests are selected simply because the results of the research as well 

as procedure for setting up the investigation are available. Besides, 

it is among the very few available sources in terms of giving stress 

computations for unbonded concrete overlay systems. 

A detailed description of the experimental investigation is not 

given in this thesis and the reader is referred to Lall (1969) and Lall 

and Lees (1983). However, major aspects of the model tests relating 

directly to the stress computations are considered, and are mentioned 

where, it is believed, they describe the particular situation under 

examination. 

3.2 VARIABILITY CHARACTERIZATION 

The variability approach requires estimation of the variations 

associated with the involved parameters. These variations should be 

individually estimated for each project. Since there is no specific 

estimation of the variation in the data available for Lall 's (1969) 

study, a general variation in concrete properties, slab thickness, and 

subgrade support and Poisson's ratio from other laboratory test models 

are used. This analysis is not intended to be inclusive; its purpose 

is to give a feel of the behavior of concrete slabs under the variation 

of some uncertainties. Therefore, the variational analysis is chosen 

only for the interior loading case of an average one inch thick 

concrete slab resting on a sandy subgrade. A constant load of 473.0 
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lbs. is applied on the concrete slab through a mild steel circular 

plate of radius of bearing of 1.316 inches.The average properties of 

concrete and subgrade necessary for this analysis are as follows: 

Concrete Modulus of elasticity = 6.75 x 106 lb/in 2 

Poisson's ratio = 0.15 

Subgrade Modulus of subgrade reaction = 810 lb/in 2/in 

Poisson's ratio = 0.50 

The data has been analyzed by investigating one variable at a 

time; that is, holding all others constant. By using this method, it 

is possible to determine the effect of the given variable on the 

theoretical stresses. The theoretical stresses are computed based on 

Westergaard formula for the interior loading case, and the Elastic 

Layered System denoted by ELSYM5 (Ahlborn, 1972). These theories are 

selected so as to study the variational effect through two different 

theoretical approaches: the plate theory, and the layered theory, 

respectively. 

3.3 CONCRETE PROPERTIES 

3.3.1. Modulus of Elasticity 

The variations in the modulus of elasticity of concrete has been 

measured in numerous field and laboratory studies. In laboratory 

studies, the major cause of these variations are primarily attributed 

to the non-homogeneity of ingredients, and variation in quantities of 

water and cement used during construction. As mentioned earlier, the 

average value for the modulus of elasticity reported by Lall (1969) is 
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6.75 x 106 lb/in 2• This value is the average result for three 

different tests. Kher and Darter {1973) showed that an overall 

coefficient of variation of 8.6 percent in the modulus of elasticity 

may be expected from the laboratory data. This means that the actual 

modulus of elasticity of the concrete is likely to be between 6.2 x 

106 lb/in 2 and 7.3 x 106 lb/in 2 {probability of 65%). Based on 

this range different values of this modulus are plotted showing its 

effect on the theoretical stress variation. These results are shown in 

Figure 3.1. From the figure, one can say that the average changes in 

the modulus of elasticity contribute a small variation in the 

theoretical stress. This stress variation is about 1% using 

Westergaard theory and 1.7% using ELSYM5. An important point that 

should be mentioned here is that the final critical stresses in the 

slab are dependent on the theory used as shown. This difference in 

stresses would be explained later in this work. The important aspect 

to study herein is the variation in stresses due to a specific theory 

rather than comparing theories. 

3.3.2 Poisson Ratio 

In his research, Lall {1969) assumed a value of 0.15 for the 

Poisson ratio of concrete. The assumption is made based on the fact 

that most values of Poisson ratio of concrete lie between 0.10 and 

0.20, and an average value of 0.15 seems reasonable. Yoder {1975) 

confirms the above assumption by stating that a Poisson ratio of 0.15 

is being used most commonly for cement-treated materials (soil cement, 

cement-treated base, lean concrete, and Portland cement concrete). So, 

an average value of 0.15 for Poisson ratio is selected for this work. 
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To study the effect of the variation in the magnitude of Poisson 

ratio on the computed stresses a range of values between 0.10 and 0.25 

has been selected. This range includes about 95% of the various values 

in Poisson ratio for concrete. The results are shown in Figure 3.2. 

From the figure the following conclusions may be made. 

1. A linear relationship exists between the theoretical stress 

and Poisson ratio whether using Westergaard theory, or ELSYM5. 

2. If the actual Poisson ratio for the concrete was 0.25 (an 

extreme value), a maximum error of 9.5% and 9.1% would be 

involved whether using ELSYM5 or Westergaard, respectively. 

If the effect of the variation in Poisson ratio on the edge 

stresses were analyzed, rather than the interior stress, a maximum 

percentage error of about 5% would be encountered for the same range of 

Poisson ratio. So, it appears that the percentage of 9.5% is the 

maximum error whether the load is located at the interior or the edge. 

3.3.3. Slab Thickness 

Because of construction variations, the thickness of concrete slab 

has always been found to vary throughout a given project. However, 

coefficients of variations were generally small and averaged about 4.7% 

for field projects (Kennedy, 1976). For this model, an average value 

of 4% variation is assumed. The assumption is based on the fact that 

the slab is relatively thin (1 inch), and any slight variation in 

thickness would incur the 4% error. The thickness variation is. found 

·to induce a maximum stress error of 5.8% and 6.5% using ELSYM5 and 

Westergaard theory, respectively. 
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3.4 SUBGRADE PROPERTIES 

The performance of any pavement is affected by the characteristics 

of the subgrade. The ideal subgrade assumed by most theories is 

perfectly elastic, and its vertical deformation varies as a linear 

function of the vertical pressure exerted on its surface. Such a 

subgrade does not exist and the problem becomes one of determining by 

some test procedure, how nearly the soil under a given pavement 

approaches the ideal, and the corresponding values of the soil 

parameters needed for the analysis purposes. The soil parameters 

analyzed here are the modulus of the subgrade reaction and Poisson 

ratio. 

3.4.1. Modulus of the Subgrade Reaction and Modulus of Elasticity 

Among all pavement parameters, the subgrade reaction is the chief 

governing factor. Due to the effect of loads, repetition of loading, 

time of loading, and moisture content of the subgrade; and because the 

subgrade is by no means an ideal system a variation of up to 35% in the 

modulus of the subgrade reaction may be encountered (Kher and Darter, 

1973). For the average value of 810 lb/in 2/in for the modulus of the 

subgrade measured by Lall (1969}, a range value 530 - 1100 lb/in 2/in is 

assumed. 

To study the variation in computed stress using ELSYM5 program, it 

was necessary to assign a value for the modulus of elasticity of the 

_subgrade, Es, based·on the subgrade modulus of reaction. Vaswani and 

Krishna (1967) recommended the following equation: 

Es = 1.18 Ka ( 3 .1) 
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For a standard plate bearing test, the plate radius is 15 inches, 

and the corresponding modulus of elasticity is: 

Es = 17. 7 K {3.2) 

Hence, the average value for the modulus of elasticity of the subgrade 

is 14350 lb/in 2 while a range of values between 9300 lb/in 2 and 19400 

lb/in 2 is expected. 

Figure 3.3 shows the effect of the variation in this modulus on 

the theoretical stresses. From the figure it can be concluded that a 

maximum variation in stress of 5.3% and 8.2% are obtained whether 

Westergaard equation or ELSYM5 are used. Another statement that can be 

made based on this figure is that, even though the maximum percentage 

of error is higher for the elastic theory, the trend in the stress 

variations for both approaches is about the same. 

3.4.2. Poisson Ratio 

The value of Poisson ratio of the subgrade is not required for the 

computation of stresses when using Westergaard equation. However, to 

be able to solve for stresses using the elastic layered theory a value 

must be assigned to it. Typical values of the Poisson ratio for the 

subgrade vary from 0.30 to 0.50 with most values around the 0.50 

range. To check the effect of variation, different values were 

selected with the corresponding stress evaluated using ELSYM5. These 

.values are shown in Table 3.1. From these tabulated stresses it seems 

that the maximum stress increases with the increase in the Poisson 

ratio up to a value of m = 0.45. For a value of Poisson ratio 



• -

eoo 

560 

"' A. 520 
I 

"' "' w 
a: ... 
"' 4(1) 

440 

'°' '~ 
'-o... .. --0 

'n.... 
~, 

........... 0-
...... --0..... .... '"().... 

~, 
~~ 

~'~ 
' 

30 

P-..473 b. 

E..--6.75 E06 psi. 

h:1 IR. 

&:1.316 n. 
m::0.15 

o WESTERGAARD 
~ELSYMS 

400 -
400 800 800 1CD) 1200 1400 

MODUWS OF THE SUBGRADE REACTION-PCI. 

Figure 3.3 Stress versus modulus of subgrade reaction -
interior load 



31 

of 0.45 and up the maximum stress starts decreasing. However, in 

general terms, the stress variation due to different values for the 

Poisson ratio is very small, and if a value of 0.50 is chosen, the 

maximum percentage error would be less than 1 percent for all of the 

Poisson ratio less than this value. And since the value of the modulus 

of elasticity derived in Equation 3.1 is based on the value of 0.5 for 

Poisson ratio, a value of 0.5 is selected. 

TABLE 3.1 

EFFECT ON THE VARIATION OF MAXIMUM 
STRESS VALUES DUE TO DIFFERENT POISSON RATIO 

POISSON RATIO 
m 

0.20 
0.30 
0.45 
0.50 
0.60 

MAXIMUM STRESS 
LB/IN2 

448 
452 
454 
453 
444 

3.5 OVERALL VARIATION 

Based on the effect in the variation of each of the variables 

mentioned earlier, a percentage variation in the computed stress is 

presented. 

Due to this variational error, it is impossible to find the exact 

relationship between theoretical and experimental results, and some 

discrepancy is always present. This discrepancy is evaluated in this 

·section due to the effect of all of the aforementioned parameters and 

the interaction among them. Two extremes are chosen for this purpose. 
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The upper and lower anticipated possible values in the variation of 

these parameters are considered, so as to calculate the maximum and 

minimum probable magnitudes for the maximum theoretical stresses 

computed by Westergaard equation and ELSYM5. These parameteric values 

with their corresponding stresses are shown in Table 3.2 along with the 

average values. From these results, it may be stated that the maximum 

percentage errors obtained are 14% for Westergaard Theory and 27% for 

ELSYM5. The percentage error computed using ELSYM5 is much higher than 

the error encountered in using Westergaard theory and may be due to the 

following: 

1. The average stress value based on ELSYM5 is much lower than 

that computed by Westergaard (13.7%). Therefore, even if both 

theories have the same trend in stress variations, the ELSYM5 

percentage error would normally be higher. 

2. A linear relationship is assumed to occur between the modulus 

of the subgrade reaction and the modulus of elasticity. This 

may not be true and some error would result. 

However, in general terms, it may be concluded that the percentage 

error in the use of the elastic layer theory is higher compared to the 

use of Westergaard Theory. 

By the same procedure, it is possible to estimate the maximum 

percentage error due to the variation in the above parameters when the 

load is located at the edge of the slab. This variational error is 

.calculated using eq~ation 2.7 and found to be around 16%, which- is 

slightly higher than the variation in stress due to the interior 

load. So it seems that an average variation of up to 16% may be 
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present when comparing the observed stress results with the Westergaard 

Theory. Similarly, if the observed stresses are compared with ELSYM5 

results, an average variation of up to 27% may occur. 

As it has been shown, almost every measurable factor used in 

pavement design has some level of uncertainty. These uncertainties 

should be carefully analyzed so as to obtain the extent ·of their effect 

on the design of pavements. The results are a means of understanding 

the safety factors involved in the design procedure, so as to avoid 

overdesigning and underdesigning. Strict reliance on these results 

should not be exercised unless they are accompanied by sound 

engineering judgement. 



CHAPTER IV 

STRESSES IN SINGLE LAYER CONCRETE SLABS 

4.1 GENERAL 

The Westergaard equations for the computation of deflections and 

stresses in concrete pavements formed the basis of pavement design. 

These equations, in many instances, gave satisfactory results; and they 

were largely applied to concrete pavement structures. With the rapid 

growth of the computer industry, the reliance on these equations has 

decreased drastically. However, due to their importance, it is decided 

that the relations between computed and experimental stresses should 

include a comparison with Westergaard's work as well. 

The stress comparisons are made for the models of 1 inch and 1.33 

inch thick slabs laying on the sandy subgrade. The material properties 

of concrete and subgrade are given in chapter three. The actual 

horizontal dimensions of the model were chosen based on Westergaard 

(1926) work; which implies that if the length of the slab is greater or 

equal to eight times the radius of relative stiffness, then it would 

behave as a slab of infinite length. For properties and thicknesses of 

slabs as given, a slab model of 4.4 ft x 9.1 ft was selected by Lall 

(1969). These dimensions would enable the plate to act as if it were a 

.slab of infinite dimensions when loaded at the interior, and 

semi-infinite behavior for edge loading case. 
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For the finite-element model a 6.5 ft x 6.5 ft square slab is 

assumed. A square slab is selected to keep the symmetry in stress 

calculations for the interior loading case. The theoretical dimensions 

are assumed because if the actual model dimensions were to be used then 

the theoretical tangential stresses at the long edge of the slab may be 

high enough to offset the infinite behavior assumption when the slab is 

loaded at the interior. 

As mentioned previously, the actual load is distributed over a 

circular area. The finite-element program, however, considers a 

rectangular distribution of the load. This distribution is assumed so 

that the evaluation of the equivalent nodal forces of the load would be 

simple; and relies on the same matrix components used for the 

evaluation of the stiffness matrix of the rectangular element of the 

slab. To reduce the effect of this difference in this load 

distribution on the stress computations, the circular load used is 

assumed equal to a rectangular load of the same area. 

4.2 EFFECT OF BEARING AREA 

One of the early steps in this analysis was to study the effect of 

the radius of bearing area, over which the load is distributed, on 

maximum stress for both the interior and edge loading cases. 

4.2.1. Interior Loading 

Figure 4.1 shows the effect of the size of the bearing area on the 

maximum stress observed at the interior, when the load is applied in 

this position. The applied load is taken constant and shown on the 
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figure. The figure shows that the relative variation of stress seems 

compatible and within acceptable experimental results for the different 

theories used. Stress computations based on Westergaard formula, for 

example, agree closely with the experimental results. On the other 

hand, the elastic layered theory results of ELSYM5 are in the lower 

range with an almost identical curvature as Westergaard. This stress 

difference may be attributed to the following: 

1. The value of the modulus of elasticity of the subgrade is 

estimated from the modulus of the subgrade reaction using 

equation 3.2. The actual value of this modulus may be less 

than estimated. Consequently, the corresponding stress 

calculations based on ELSYMS may be higher than what the 

figure shows. 

2. The ELSYMS program assumes full friction to occur at the 

interface. In constructing the model a sandy subgrade was 

used which is known to reduce the effect of the friction force 

(Timms, 1963; Lepper and Kim, 1963). Therefore, stresses in 

the actual model would be higher than predicted by ELSYM5. 

3. The elastic layered theory, for the model dimensions used, may 

give low stress values. This may be due to the thinness of 

the slab model. 

As for the results based on the ILLI-SLAB program, they seem 

slightly conservative. This variation could be due to'one of two 

reasons: 

1. The horizontal dimensions used for the finite element are 

assumed as 6.5 ft by 6.5 ft while the actual dimensions of the 
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model are 4.4 ft by 9.1 ft. Again, the square slab of the 

above dimensions is used to ensure the infinite behavior of 

the slab for the interior loading conditions. 

2. The actual load applied to the slab is distributed over a 

circular area. This area is replaced theoretically by a 

square section of the same area under the same loading 

conditions to be used by the finite element program. 

4.2.2. Edge Loading 

The effect of the size of the bearing area on the maximum stress 

when the slab is loaded at the edge is shown in Figure 4.2. The figure 

shows that the trend in the variation of all three curves is identical 

for both the 1 inch and 1.33 inch concrete slabs. However, the 

exper~mental stress results are higher than that predicted by 

Westergaard and the ILLI-SLAB. The difference could be attributed to 

the warping of the slabs. Because of moisture gradient an upward 

curling at the corners and edges of the slabs is observed by Lall 

{1969) and Lall and Lees {1983). This moisture differential may have 

affected the state of stress through restrained warping of the slab 

{Teller and Sutherland 1943). 

To summarize, one may state that regardless of the theory used 

for the determination of stress for different radii of bearing area, 

the following conclusions may be drawn: 

1. Under the same loading conditions, stress decreases with the 

increase in the radius of bearing area whether dealing with 

the interior or edge loading case. 
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2. The critical stresses in the 1.33 inch slab are lower than 

those of the 1 inch slab, even when the loading on the thicker 

slab is higher than the thinner one. This statement seems 

valid for both the interior and edge loading cases, for the 

magnitude of loading considered. 

3. The ILLI-SLAB results are, in general, higher than those 

computed by Westergaard. The reason may be due to the 

difference in the load distribution. The Westergaard theory 

relies on a semi-circular load distribution, while the 

finite-element program assumes a full circular load. 

4. The ELSYM5 results give the lowest range of all theories used. 

5. Any of the previously mentioned approaches describes fairly 

well the stress behavior due to different radii of bearing for 

the interior case. However, these approaches give low 

stresses for edge loading and more investigation may be 

necessary. 

4.3 LOAD-STRESS RELATIONSHIP 

4.3.1. Interior Loading 

A direct comparison between the observed and computed stresses for 

the interior loading case for the 1 inch and 1.33 inch slabs are shown 

in Figures 4.3 and 4.4, respectively. The observed stresses shown are 

the maximum critical values when the loads are applied at a consid­

erable distance from any of the edges. These values were computed by 

Lall (1969) through strain measurement, made directly under the load in 

the radial and tangential directions using the following relations: 
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Sx = ~ (e + m e ) 
1-m x Y 

(4.1) 

S - E ( Y - :-z-1 ey + m e ) 
-m x 

(4.2) 

Sx and Sy are stresses in the directions of the x-axis and 

the y-axis, respectively. 

ex and ey are the strain measurements along the x-axis and 

the y-axis. 

The theoretical stress values are based on Westergaard formula, 

ELSYM5, and ILLI-SLAB. From Figures 4.3 and 4.4 the following 

conclusions may be made. 

1. The stress in the pavement slab is directly proportional to 

the applied load for a given contact area. 

2. The ILLI-SLAB stress results either match the observed 

stresses or are slightly higher. 

3. The elastic layer theory stresses are lower than the other 

theories. However, these results are consistent with the 

observed stresses and for all practical purposes are 

accept ab 1 e. 

4. The Westergaard formula gives stress results very comparable 

to the observed ones for all cases, except where the radius of 

bearing area is 2.63 inches, and the pavement thickness is 

1.33 inches. For this case all theoretical stresses are 

higher. 

From the previous observations, it could be stated that when the 

loads are applied at the interior of the slab the observed and 
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theoretical stresses are close and any of the above theories would 

represent the stress behavior in this region. 

4.3.2. Edge Loading 

Figures 4.5 and 4.6 present the load-stress relations for the 1 

inch and 1.33 inch slabs, respectively, when the load is applied at the 

edge of the slab at a distance from any corner. The figures show a 

direct comparison between observed and theoretical streses. The 

theoretical stresses are based on Westergaard formula and the finite­

element program. The observed stresses seem much higher than either 

theory. The loss of the subgrade support due to the differential 

moisture warping of the slabs reported by Lall (1969) and Lall and Lees 

(1983) may be the main reason for this big difference. Another reason 

could be due to the following. 

The Westergaard analysis (1926) for the edge loading case assumes 

that the loads are applied on a semi-circular area with the center at 

the edge. Lall 's (1969) work, on the other hand, is based on a 

circular bearing area of radius equal to that suggested by Westergaard, 

and the circumference touching the edge of the slab. The strain gauges 

used were located at the center of the smallest and largest contact 

areas used and parallel to the edge. This difference in the bearing 

area and the locations of the center of that area may have been 

responsible for the stress variation. 

Similarly, for the ILLl-SLAB program a square plate of bearing 

.area equal to that used is assumed, but one edge of the plate coincides 

with the edge of the pavement. This different load distribution may 

have given different stress results. 
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To accommodate for this difference in the radius of bearing area 

when a full circular plate is used for loading at the edge case, 

Vaswani and Krishna {1967) introduced a modified Westergaard equation 

based on observations given by: 

s = 6.25 Po.a [4 109 ~ + log b - a.a] 
e h2 (4.3) 

This equation is not used for comparison in this study, because 

many other modifications for Westergaard formula have been attempted. 

Most of these modifications give satisfactory results for the specific 

situation and not to all rigid pavements. Moreover, this equation 

exaggerates the shape of the observed curvatures shown in the figures. 

Based on this analysis of the single slab laying direclty on the 

subgrade it may be concluded that, within the limits of investigation 

presented, the actual behavior of the pavement could be described 

fairly accurately by any of the methods discussed earlier, when the 

pavement is loaded at the interior. On the other hand, when a circular 

load is applied at the edge of the pavement, the conventional methods 

seem to give low stress values and caution must be exercised in 

evaluating these stresses. 



CHAPTER V 

STRESSES IN TWO-LAYERED SYSTEMS 

5.1 GENERAL 

The design of overlays for existing pavements has presented a 

formidable task for engineers. Many unpredictable parameters control 

the interaction between overlay, base pavement and subgrade, including 

warping of the slab and continuity at both interfaces. In discussing 

/the analysis of a single slab placed directly on the subgrade warping 

and break of continuity are assumed to may have occurred. For the two 

layered-system the problem becomes more complex and most of the 

existinq design procedures are empirical. These procedures are 

modifications of the desiqn methods for determining the thickness of 

the overlay required as if a single slab were used. The design of 

concrete pavement overlay over concrete pavement is no different. The 

determination of this overlay thickness is arrived at by using the 

Portland Cement Association {PCA, 1965) procedure and is independent of 

the overlay design. This procedure may be fairly sound for well bonded 

overlays, where both the overlay and underlay are theoretically 

replaced by a single slab of same load-carrying capacity, assuming a 

continuity in stress at the interface. However, when speaking of 

partially bonded and unbonded overlays the equivalent thickness method 

is no longer correct and equations 2.13 and 2.14 given earlier are 
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assumed to yield overlay thicknesses that are conservative. In 

addition, this method does not design for critical stresses in the 

underlay, which may control especially in situations where the modulus 

of rupture of the base pavement is low compared to the overlay. 

In the following pages a comparison is made between the observed 

and computed stresses in the overlay for an unbonded system. Again, 

the experimental results are based on Lall's (1969) research while the 

theoretical stresses are mainly based on the ILLI-SLAB program. The 

Portland Cement Association design method is also included. The 

results are taken for (1/1) and (1/1.33) overlay systems, where the 

number in the numerator represents the thickness of the overlay, in 

inches; and the denominator describes the thickness of the existing 

slab, in inches. 

5.2 INTERIOR LOADING 

Figures 5.1 and 5.2 present the load-stress relationship for (1/1) 

and (1/1.33) overlay systems, respectively, when the load is applied at 

the interior. For each radius of contact of the bearing area four 

curves are shown and are denoted by "OBSERVED", "PCA", "ILLI-SLAB", and 

"ILLI-SLAB(l)". The "OBSERVED" stress curve is based on Lall 's (1969) 

work. The "PCA" curve is based on the Portland Cement Association 

method of equivalent thickness design. The stress values for this 

curve are derived as follows. 

Consider the (1/1) overlay system in Figure 5.1. This sytems is 

represented by an equivalent single layer of thickness, he, which equals 
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he = ~2 + ho2 

he = 1.414 inches 

The critical stress for this imaginary single slab, when loaded at 

the interior, is given by equation 2.6 and repeated here for 

convenience 

s. = 0.316 P [4 log~+ 1.069] 
1 I 2 

Using properties of concrete and subgrade as before, the radius of 

relative stiffness ,t,is then calculated as 6.695 inches. The 

corresponding stress equation becomes 

Si = 0.158 P [4 log 6·f95 
+ 1.069] 

For any value of the radius of bearing, a, the linear load-stress 

relationship may be drawn. 

The 11 ILLI-SLAB 11 curve is again derived from the ILLI-SLAB model 

with the same theoretical horizontal dimensions and square plate as 

used in the single layer placed on the subgrade. Stress computations 

are based on the assumption that no shear occurs at the interface 

between the slabs. This is considered equivalent to the unbonded 

overlay system conitructed by Lall (1969). Bondage is reduced in the 

model by using an "M.G.A. 11 pad which acted as a "slip layer" and is 

reported to be very effective. 

As for the 11 ILLI-SLAB(1) 11 stress results shown, they are a 
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modification of the load-stress relationship done by the author, and 

will be explained in detail later in this thesis. 

From Figures 5.1 and 5.2, it seems that the computed stress 

results are far below the observed ones, with the difference between 

theoretical and experimental values decreasing with the increase in the 

contact area. Computed stresses, on the other hand, seem very 

compatible and fairly close to each other. The figures also show that 

the critical stress decreases with the increase in the radius of 

bearing regardless of the approach used. 

Comparing Figure 5.1 to 5.2, it shows that the maximum stresses in 

the overlay for the (1/1.33) system are somewhat higher than the (1/1) 

overlay system for the same loading conditions. Part of this high 

stress in the thicker system may be attributed to the lack of support 

between the overlay and base pavement. This condition is confirmed by 

Lall (1969) in stating that the underlying slab for the (1/1.33) system 

did not experience any stress until an averaqe load of 200 lbs. was 

exerted on the system. This observation indicates the possibility of 

existence of a gap between the two slabs and hence an upward warping of 

the overlay at the interior. 

The other reason for the high stress in the (1/1.33) overlay may 

be due to the effect of load spreading characteristics of the system. 

This point needs further investigation and is discussed in detail as 

follows. 

5.3 STRESS BASED ON THE ORDINARY THEORY OF SLABS 

The reason for higher stresses in the (1/1.33) overlay than the 
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(1/1) system, and in general high observed stresses in the overlay 

relative to the computed ones, may be best explained by Westergaard 

{1926) analogy of the special theory of slabs as opposed to the 

ordinary theory. But before this analogy is attempted a review of the 

basic common assumptions used in the derivation of Westergaard theory 

and the ILLI-SLAB model is recommended. Both theories rely on the 

following assumptions: 

1. The concrete slab acts as a homogeneous, isotropic, elastic 

solid in equilibrium. 

2. The reactions of the subgrade are vertical only and they are 

proportional to the deflection of the slab. 

3. The small-deformation theory is used, with the assumption that 

a line normal to the middle surface in the undeformed slab 

remains straight and perpendicular to the neutral surface. 

So, the analysis of pavement slabs is based on the ordinary theory 

for both approaches. This theory is found to give satisfactory results 

at all points except in the immediate neighborhood of a concentrated 

load, and leads to a satisfactory determination of the deflection at 

all points. For the concentrated load case Westergaard suggested to 

use the special theory of slabs. 

5.4 STRESS BASED ON THE SPECIAL THEORY OF SLABS FOR A SINGLE LAYER 

The derivation of the special theory of slabs rests on two 

assumptions: one is that Hooke's law applies; the other is that the 
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material keeps its geometrical continuity at all points. The special 

theory of slabs, because of its complexity relative to the ordinary 

theory of slabs, is usually avoided except when dealing with the local 

effects around a concentrated load. 

To make stress computations easier the results of the special 

theory are usually expressed in terms of the ordinary theory in the 

following manner: The tensile stress produced by a uniformly 

distributed load at the bottom of the slab and under the center of the 

loaded area is the critical stress. This is always true except when 

the radius of the loaded area is so small that some of the vertical 

stress near the top of the slab becomes more important. In this case 

one can still use the ordinary theory by assuming the load to be 

uniformly distributed over the area of the circle with the same center, 

but with a fictious radius, b. For a single concrete slab lying on the 

subgrade Westergaard used Equation 2.5 for the modification of the 

radius of bearing and is repeated here for clarification: 

b = /1.6a2 + h2 - 0.675h 

This equation is based on numerical computations obtained by Nadai 

in 1928 (see Westergaard, 1926) and is found to give satisfactory 

results especially when a concentrated load is concerned. 

Since the ILLI-SLAB program and Westergaard equations are derived 

.with the same basic· assumptions, it may be concluded that the 

equivalent radius of bearing based on the special theory of slabs, is 
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applicable to the ILLI-SLAB program as well. To further demonstrate 

the validity of this conclusion a concentrated load of p = 600 lbs. is 

assumed to act at the interior of a 4.05 inch thick concrete slab. 

Based on the special theory of slabs, the equivalent radius is 

calculated using Equation 2.5 and found as 1.316 inch. The horizontal 

dimensions of the slabs and properties of the concrete and the subgrade 

are assumed to have the same values as Lall 's model (E = 6.75 x 106 

lb/in 2 , m = 0.15, K = 810.0 lb/in 2/in). This information gives stress 

values of 60.87 lb/in 2 and 59.996 lb/in 2 whether using Westergaard's 

equation or the finite-element model, respectively. 

The application of the equivalent radius of bearing for the edge 

loading case cannot be properly checked for a concentrated load because 

the center of pressure for the equivalent circular load used by 

Westergaard is different from the rectangular plate used by the 

ILLI-SLAB proqram. Besides, when dealing with the edge loading case 

for a single slab system it has been shown that the finite-element 

program gives hiqh stress values compared to Westergaard. With this in 

mind stress values of 95.33 lb/in 2 and 127.07 lb/in 2 for Westergaard 

and ILLI-SLAB systems, respectively, are anticipated. 

5.5 STRESS BASED ON THE SPECIAL THEORY FOR A TWO LAYER SYSTEM 

For a bonded overlay system one could treat the whole system as a 

monolithic slab, and consider a concentrated load as if it were on a 

single layer laid directly on the subgrade. For the unbonded concrete 

pavement system the above relationship does not appear to hold true; 
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perhaps due to the overlay-base pavement interaction. However, based 

on the same analogy for the single slab, one could assume a certain 

re1ationship to exist between the imaginary radius of bearing, b, the 

actual radius, a, and some combination of the overlay-underlay 

thicknesses. This relationship is estimated as: 

b = /i.6a2 + h2 - 0.3375 a h 

where h is the total thickness of concrete slabs 

a is the ratio of the overlay thickness, h0 , to that of 

the existing pavement, he. 

(5.1) 

Equation 5.1 is derived assuming that the overlay and underlay 

slabs have the same elastic properties. This equation is used in the 

ILLI-SLAB program in such a way that the actual radius of bearing is 

replaced by the equivalent radius carrying the same stress and has the 

same center of pressure. 

Although the above equation is estimated so as to best fit the 

experimental results, two questions still come to mind. First, on what 

basis is this equation arrived at, and second, for what values of the 

radius of bearing area, a, does the ordinary theory apply. 

As for the first question, the equivalent radius of bearing area 

is estimated based on the reasoning that the same hyperbolic relation, 

given by Equation 2.5, that applies to the one layer system may apply 

.to the two layer system. The constant, a, is introduced because it has 

been found that, for any constant loading conditions, the thinner the 
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overlay gets with respect to the underlay, the larger the equivalent 

radius of bearing area has to be estimated. This may be attributed to 

the increased effect of the vertical stresses at the top of the 

overlay. For the range of contact radius values where the ordinary 

theory applies, one should keep in mind that for the one layer system, 

these values are derived theoretically by setting the equivalent radius 

of bearing, b, equal to the actual radius. This value was calculated 

as 1.724h. By the same reasoning the limits for Equation 5.1 where the 

ordinary theory applies is: 

a = h[l.125 a/2 - /o.5062a2 - 1.675] (5.2) 

For values of a less than 1.82 the term under the square root is 

negative. This means that the value of the equivalent radius of 

bearing derived from equation 5.1 should be used instead of the actual 

radius. In other words, Equation 5.1, in this case, is always used in 

modifying the actual radius of bearing area, a. On the other hand, 

when a is greater or equal to 2.97 the ordinary theory applies and no 

modification is necessary. For the values of thickness ratio, a, 

between 1.82 and 2.97 Equation 5.2 is used to find the limit necessary 

for the modification based on the special theory. For example, if the 

ratio of the thickness of the overlay to the underlay is 2.0 then, from 

Equation 5.2 the critical value of the radius of bearing, a, is 1.716 

h. This means that·for the actual radius of bearing less than 1.716 h 

the special theory applies, and the equivalent radius is used. For 

other values of the radius of bearing area, the ordinary theory holds. 
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Stress factor charts, for full friction at the interface, derived 

by Peattie and used by Yoder and Witczak (1975) show that the effect of 

the vertica1 stress decreases as the ratio of the thickness ,a, 

increases. For the case when the overlay and underlay have the same 

elastic properties with the modulus of elasticity much higher than the 

subgrade, then the effect of the vertical stresses may be neglected 

when a is greater than four. However, the theoretical values for the 

limits suggested by Equation 5.2 are used to assure continuity in the 

radius of bearing area between the ordinary and special theory. 

5.6 STRESS RESULTS BASED ON THE MODIFIED THEORY 

5.6.1 Interior Loading 

Figures 5.1 and 5.2 presented earlier show the stress results 

based on the modified theory along with the curves defined earlier. 

The modified load-stress curve is denoted by ILLI-SLAB (1) since it is 

based on the analysis made using the finite-element program. This 

curve is derived on the same information used for the derivation of the 

ILLI-SLAB stress curve, except for the value in the radius of bearing 

area. This value is estimated from Equation 5.1 and its value is shown 

in the figure as b. On the same figure the actual value of the radius, 

a, is shown. 

From Figure 5.1 one may state that the observed and ILLI-SLAB (1) 

stress results are very close and for all pr~ctical purposes equal . 

. The figure also shows that the modified stress values decrease with the 
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increase in the radius of bearing area; with the results approaching 

those of ILLI-SLAB. This last statement is confirmed in Figure 5.2 by 

showing the same behavior. The stress results from Figure 5.2, 

however, seem somewhat lower than the experimental results. But, if 

the upward warping at the interior of the overlay, which is reported 

earlier, is taken into consideration, one may say that the ILLI-SLAB 

{1) stress results are able to predict the behavior of the overlay 

system. 

5.6.2 Edge Loading 

Figures 5.3 and 5.4 show the load-stress relationship for the 

{1/1) and {1/1.33) overlay systems. In these figures the observed 

stresses are compared with the "theoretical" ones. The theoretical 

stresses are again based on the PCA, ILLI-SLAB, and ILLI-SLAB {1). 

Hence, the derivation of these curves need not to be explained here, 

except in the calculation of the equivalent effective radius of bearing 

for the ILLI-SLAB (1). 

The equivalent radius of bearing, b, calculated from Equation 5.1 

has the same magnitude as calculated for the interior loadinq case. 

This equivalent radius is larger than the true radius, a. Therefore, 

when the concrete overlay is loaded at the edge, part of this 

equivalent circle lies outside the slab edge and considered ineffective 

as shown in Figure 5.5. The effective area would be that part of the 

equivalent circle that is located on the pavement itself and may be 

·calculated from the geometry of the figure. 
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Figure 5.5 Effective bearing area for the edge loading case 
of an overlay system. 



Effective area = area (AOCNA) + area (AOCBA) 

Effective area = nb 2B/360 + alb 2-a2 

but 8 = 360 - 2'1' 

8 = 360 - 2 cos- 1 (a/b) 

Then, effective area = [360-2cos-l(a/b)]nb 2/360 + alb 2-a 2 
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(5.3) 

The numerical value of this effective area is denoted by, A, as 

shown in Fiqures 5.2 and 5.3. This new area is finally modified to a 

rectanqular area to be used in the finite-element program. The area is 

located at the edge of the plate in such a way that the center of 

pressure of this area coincides with that of the original circular 

plate. That is, the centroid of this rectangular plate is located at a 

distance from the edge equal to the true radius of the bearing area. 

With the dimensions of this plate calculated, the load-stress 

relationship for the ILLI-SLAB (1) is obtained as shown in Figures 5.3 

and 5.4 From these figures the followinq conclusions may be made. 

1. The maximum value of the stress decreases with the increase in 

the radius of bearing area. This statement seems valid 

whether observed or theoretical stresses are concerned. 

2. The stress results based on the Portland Cement Association 

(PCA) method seem to give the lowest range of values of the 

critical stresses. This may be due to the actual distribution 

of the load. The load used was a circular plate, while the 

PCA method of stress computations is based on a semi-circular 

load distribution as suggested by Westergaard (1926). 
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3. As expected, the ILLI-SLAB stress values are generally low 

compared to the experimental ones; and the equivalent load 

distribution procedure is recommended. 

4. In spite of the fact that the ILLI-SLAB (1) stresses seem 

somewhat lower for the (1/1) system, and higher for the 

(1/1.33) system, when compared to the actual stresses, they 

seem to give a better prediction of the boserved stress 

behavior. As a matter of fact, the explanation for the stress 

differential can be sought in Lall 's (1969) observation of the 

upward and downward warpings of the (1/1) and (1/1.33) overlay 

systems, respectively. Due to the upward edge warping of the 

(1/1) overlay system, a gap is reported to exist between the 

overlay and base pavement. This in return would increase the 

observed stress in the overlay because of the lack of support. 

Similarly, the downward warping at the edge of the (1/1.33) 

overlay may have received full, or more than full support, causing 

lower observed stresses. The downward warping of the (1/1.33) system 

will create a gap between the layers at the interior. This gap, in 

return, will cause a high observed stress due to the loss of contact 

between the overlay and underlay. Figure 5.2 as reported earlier, 

shows that the observed stresses for the (1/1.33) overlay system, when 

loaded at the interior, is actually higher than predicted. 

5.7. EFFECT OF THE RADIUS OF BEARING AREA 

To better understand the behavior of an overlay system, its stress 



67 

variation in terms of the radius of bearing should be analyzed. This 

stress behavior is shown in Figures 5.6 and 5.7. The figures deal with 

the interior and edge loading cases, respectively. The applied loads 

are assumed constant and equal to 600 lb. for the interior loading 

case, and 300 lb. for the edge case. Each loading case is divided into 

two parts, (A) and (B) for the (1/1) and (1/1.33) overlay systems, 

respectively. For each overlay system three curves are shown. The 

depicting observed stresses and those computed by the finite-element 

model and are denoted by ILLI-SLAB and ILLI-SLAB (1). 

From Figure 5.6 the following conclusions may be made: 

1. The stress reduction with the increase in the radius of 

bearing area, based on ILLI-SLAB is very slight and linear. 

The stress variation is less than 15% when the radius of 

bearing area is doubled. 

2. The stress results of the ILLI-SLAB are very low compared to 

the observed ones. 

3. In general terms, it could be stated that the stress decreases 

with the increase in the radius of the bearing area. 

4. The ILLI-SLAB (1) stress results describe more accurately the 

behavior of the stresses in the overlay than the ILLI-SLAB 

model. 

5. The ILLI-SLAB (1) stresses have the same trend as the observed 

ones and seem compatible. 

6. The ILLI-SLAB (1) curve approaches that of the ILLI-SLAB with 

the increase in the radius of bearing. That is, the ILLI-SLAB 

results are asymptotic with the ILLI-SLAB (1). 



Figure 5.6 Stress versus radius of bearing - interior load 
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As for Figure 5.7 the same conclusions made from Figure 5.6 apply 

with two modifications: The stress variations based on the ILLI-SLAB 

results are linear but not as minimal as the interior loading case; and 

it could be clearly stated that the ILLI-SLAB curve is asymptotic with 

both the ILLI-SLAB (1) and observed stresses. 

One important note may be made when comparing the interior and the 

edge curvatures for the same overlay. A close examination of the 

observed and ILLI-SLAB (1) curves for the (1/1.33) overlay for example, 

shows that the average behavior of the observed stresses is very 

compatible with the modified theoretical stresses. That is, when the 

difference between the computed and observed stresses is high for a 

loading case, say the edge loading case of the (1/1.33) system, then 

this difference is low for the other case, which would be the interior 

loading case of the (1/1.33) overlay system in this example. This 

difference, as mentioned earlier, is attributed to the warping effect. 

5.8 COMPARISON OF THE SPECIAL THEORY WITH THE PORTLAND CEMENT 
ASSOCIATION 

The stress results based on the Portland Cement Association method 

are shown in Figures 5.1 and 5.2 for the interior loading case, and 

Fiqures 5.4 and 5.5 for the edge loading case, respectively. From 

these figures it seems that these stresses are much below the observed 

stresses and by no means conservative. This low stress may be due to 

the ratio of the thickness of the overlay and the base pavement, a, 

·between the model used and actual field pavements. Mellinger (1963) 

describes the unbonded overlay design as: 
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"A nonbonded design requires a greater thickness of overlay (than 

the bonded) and generally is used when the existing pavement is 

relatively thin in comparison with the thickness of the overlay, 

or when the base pavement contains numerous cracks." 

This statement implies that the overlay thickness is, at least, 

twice as much as the base pavement, when the later has the same 

properties. Consequently, the effect of the equivalent radius of 

bearing may be neglected. To further explore this point, consider an 

example of a 1.36 inch overlay laid over a base pavement of 0.64 inches 

thick, and assume that both slabs and the subgrade have the same 

properties as the model used by Lall (1969). Moreover, assume that a 

load of 300 lb. is applied at the interior with a radius of bearing 

area, a, of 1.26 inches. The load, radius of bearing area, and the 

concrete overlay and underlay thicknesses are all dimensions of a model 

for the problem of designing the concrete overlay for the Air Force 

facility in Southern California, at Palmdale (Vallerga and McCullough 

1969). The feasibility study based on the Corps of Engineers design 

method suggested the use of a 19 inch overlay over a 12 inch thick 

concrete pavement. Due to the structural conditions of the underlay of 

coefficient, C, of 0.75 is used. These thickness values of the overlay 

and underlay would give an equivalent thickness of 21.6 inches based on 

Equation 2.13. The maximum design loading of 1,000,000 lbs. for a 

B-2070 jumbo jet of which a truck tire load of 59375 lbs. and pressure 

of 228.0 lbs/in 2 are specified. 

The modulus of the subqrade reaction, modulus of elasticity, 

Poisson's ratio, and the total thickness of concrete overlay-underlay 
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system of 2 inches are assumed as given, so as to simplify the 

selection of the involved parameters between the model and the 

prototype, and to be able to compare the results with the (1/1) overlay 

system. The selection of the radius of bearing, and the load value are 

computed as suggested by Lall (1969) under the following equations 

am = a (hm/h)3/4 (5.4) 

and 

Pm = P( hm/h) 2 (5.5) 

where the subscript m refers to the model, and quantities with no 

subscript refer to the prototype. 

With all of the above parameters computed the maximum critical 

stress based on the Portland Cement Association is then computed as 175 

lb/in 2
• When the load is applied at the interior of the (l.36/0.64) 

overlay system. 

The ILLI-SLAB (1) approach depends mainly on the equivalent radius 

of the bearing area. The value of the limit above which the radius of 

bearing does not need modification is calculated from Equation 5.2 as 

0.827 inches, for the total thickness of 2 inches. Since the actual . 

magnitude of the radius of bearing used is 1.26 inches which is higher 

than the limit value, no modification is necessary, and a radius of 

1.26 inches is used. The stress calculation based on the ILLI-SLAB is 

then 164 lb/in 2
• This shows that the Portland Cement Association 

design method does give good results when the overlay is thick compared 

·to that of the underlay. Otherwise, modification is necessary. 
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5.9 COMPARISON OF THE SPECIAL THEORY WITH CHILDS RESULTS 

The verification of the equivalent radius of the bearing area 

suggested in this thesis, with other experiments is fairly difficult 

due to the lack of experimental stress values for the unbonded concrete 

overlay systems. The only available data found is through the 

comparison of strain results obtained by Childs (1963, 1967). These 

strains are converted into stress values by the author using Equation 

4.1, and based on the assumption that the maximum strain, reported by 

Childs, is the same along the longitudinal and transverse directions. 

This assumption is considered valid for the interior loading case. 

Hence, stress comparison is considered only for the interior loading 

case, performed by Childs. 

The test was conducted on a 3 inch concrete slab built on a 6 inch 

cement-treated subbase. The interlayer treatment was a 4-mil 

polyethylene film to prevent bond. The average modulus of elasticity 

of concrete slabs and cement-treated subbases were found to be 5.7 x 

106 lb/in 2 and 1.6 x 10 6 lb/in 2
, respectively. Poisson's ratio of the 

concrete slab and cement-treated subbases were assumed to be 0.15 and 

0.25, respectively. An average value of 82 lb/in 2 is assumed for the 

subgrade. Load on the slab was applied through a 16 inch diameter 

plate. The maximum critical strain obtained for this system was 83 x 

106 for a 9-kips load located at the interior. This strain is 

equivalent to a stress of 556.6 lb/in 2 based on Equation 4.1. 

For the stress computations based on the ILLI-SLAB programs the 

loads are assumed to apply over a 14.2 inch square plate that having 

the same area as the 16 inch diameter plate. The maximum critical 
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stress is then found to be 331.3 lb/in 2. 

To verify the equivalent radius of bearing area suggested, it is 

first necessary to convert the cement-treated cement into an equivalent 

concrete underlay with the same properties as the overlay. This is 

accomplished on the basis of the flexural stiffness method (Ullidtz and 

Peattie, 1980}. This method states that if two layers of moduli, E1 

and E2, and thicknesses, h1 and h2, respectively, are to have the same 

flexural stiffness then 

El hi E h3 = 2 2 
1 - m2 -1 ---:-2" 1 - m 2 

(5.6) 

The equivalent thickness of the cement-treated subbase is found to 

be 3.98 inches. This means that the 6 inch cement-treated subbase, may 

be theoretically replaced by a 3.98 inch concrete overlay with 

properties the same as the overlay. The ratio of the overlay to 

underlay is then calculated as a= 0.754, and the equivalent radius of 

bearing, based on Equation 5.1, is b = 10.52 inches. This equivalent 

radius corresponds to a square plate of edge 18.64 inches. The stress 

value for this radius is calculated by using the finite-element model 

as 523.63 lb/in 2. Note that equivalent thickness method is used only 

for the calculation of the equivalent radius of the bearing area. The 

properties of the cement-treated subbase are used as is in the 

finite-element program. 

This comparison shows that, based on the equivalent radius of the 

bearing area, stress results check closely with the available 
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experimental results, and should be used, especially when the ratio of 

the thicknesses of the overlay to the underlay is less than two. 

5.10 STRESS IN THE UNDERLAY 

In this analysis of the concrete overlay systems stresses in the 

underlay have not been considered so far. This is not to say that 

these stresses are not important. In fact, in some cases, stresses in 

the underlay slab may control the design if their value is higher than 

the allowable stresses in the base pavement. In this research, 

however, since both the overlay and underlay slabs have the same 

properties including the modulus of rupture; and since stresses in the 

underlay pavement are less than the overlay, these stresses have not 

been analyzed in this thesis and their effect on the design is 

considered secondary. 

One comment about the stresses in the underlay slab that is worth 

mentioning is that the observed stresses in these slabs are less than 

predicted by the theory, whether the load is applied at the interior or 

the edge. These results are not shown here and may be obtained from 

Lall 's (1969) work and the finite-element solutions. The reason for 

this higher theoretical stress may be attributed to the 

overlay-underlay interaction. Because of the effect of load· 

distribution on the system, the increase in the stress value in the 

overlay is accompanied by a decrease in the underlay. In other words, 

the increase in the equivalent radius of the bearing ~ea on the 

overlay may contribute to a decrease in the effective radius of bearing 

on the underlay. 



CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

The design procedures for concrete pavements and concrete overlays 

spring primarily from the theories developed by Westergaard and 

Burmister. Some of these design approaches are based on the empirical 

modification of the original theories, others are mere 

simplifications. The main objective of this study has focussed on 

comparing the experimental stresses in concrete pavements and unbonded 

overlays with some of the available procedures. However, before this 

comparison is made, the effect in the variation of the properties of 

material on the computation of stresses is analyzed. The results of 

this investigation may be summarized as follows. 

6.1 VARIATION IN THE PROPERTIES OF THE MATERIALS 

1. The percentage of error in stress computations based on the 

ELSYM5 is higher than Westergaard's equation. This leads to 

the conclusion that the theory used for predicting stresses in 

the pavement plays an important role in estimating the 

percentage error expected due to the variation in the material 

property. 

2. The trend in the stress variation, due to the change i~ magni­

tude in the involved parameters, whether using the elastic­

layered theory or the Winkler foundation model is the same. 
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3. An average value of 0.5 for the Poisson ratio of the subgrade 

seems reasonable, since minor variation in this ratio hardly 

offset the stress values. 

4. Reliance on the safety factor is better understood in terms of 

the variation in the properties of the material used. 

6.2 SINGLE SLAB ON SUBGRADE 

6.2.1 Interior Loading 

1. For a given load the magnitude of the stress in the slab 

decreases with the increase in the area of contact regardless 

of the approach used. 

2. For a given radius of bearing area, the maximum tensile stress 

is directly proportional to the applied load. 

3. The computed stresses when considering the foundation as an 

elastic medium are lower than those obtained by Westergaard, 

or the finite-element model, and in general less than the 

observed stresses. 

4. Good agreement is achieved between the observed stresses and 

those obtained by Westergaard and the ILLI-SLAB methods. 

6.2.2 Edge Loading 

1. The maximum critical stress in the concrete slab decreases 

with the increase in the radius of bearing area for a given 

load. 
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2. The maximum observed stresses are higher than predicted by 

theory; this difference is most likely due to warping of the 

slab. 

3. Stresses based on the finite-element model are ·higher than 

those obtained by Westergaard's method. The cause may be due 

to the way the load is distributed through the slab; 

Westergaard assumes a semi-circular load distribution, while 

the finite element model uses a rectangular contact area. 

6.3 OVERLAY SYSTEM 

1. Stress results between the finite-element model and the 

Portland Cement Association method are in good agreement. 

However, these stress values are low compared to the observed 

ones. The reason is perhaps because of the effect of the 

transverse shear. The transverse shear, for the slab 

dimensions used, is fairly high and should not be neglected. 

2. The maximum stress decreases with the increase in the radius 

of the bearing area. This statement is valid for both the 

overlay and underlay stress behavior. 

3. The equivalent radius of bearing area concepts suggested by 

the author gives a good approximation of the actual stress 

behavior in the overlay slab. 

4. The stresses results computed by the ILLI-SLAB program for the 

underlay are slightly higher than the observed ones. The 
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increase in the magnitude of the stress in the overlay slab 

due to the effect of the transverse shear may cause a 

reduction of stress in the underlay. 

6.4 SUGGESTIONS FOR FUTURE WORK 

1. A comprehensive approach for the estimation ·of error in stress 

and deflection calculations in pavements, and due to the 

variational characteristic of the material properties, should 

be advanced. 

2. Stress analysis for the single layer concrete pavement should 

be further investigated for the case when a full circular 

load is applied at the edge of the pavement. 

3. Tests should be conducted on a wider range of ratios of 

existing pavement and overlay slab thicknesses. 

4. Further verification of the equivalent radius of the bearing 

area concept is recommended. 

5. A theoretical approach to the analysis of an overlay system 

based on deflection criteria should be investigated. 

6. The magnitude of the stress in the underlay should be 

theoretically analyzed with respect to the equivalent radius 

of bearing concept. 

7. The effect of actual load in redistributing itself on the 

overlay and underlay pavements should be analyzed. 
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