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ABSTRACT

Panorama stitching increases the field of view in an image by assembling multiple

views together. Traditional stitching techniques are proven to be effective only

when dealing with parallax-free monocular images. Many challenges that remain

unsolved in the stitching research area include how to stitch monocular images with

large parallax, how to stitch stereoscopic images to maintain their stereoscopic con-

sistency and original disparity distribution, and how to create panoramic videos

with temporally coherent content. To provide more powerful stitching techniques

with more universality, we first develop a parallax-tolerant image stitching tech-

nique. With the help of it, we then effectively extend the stitching techniques

into the stereoscopic image and the video domain to assist users easily making

stereoscopic panoramas and video panoramas.

In this dissertation, we first introduce a parallax-tolerant stitching method,

which is a local stitching method to stitch monocular images with large parallax.

This method is based on the observation that input images do not need to be

perfectly aligned over the whole overlapping region for stitching. Instead, they

only need to be aligned in a way that there exists a local region where they can

be seamlessly blended together. We develop a randomized algorithm to search for

a local homography, which, combined with content-preserving warping, allows for

optimal stitching. Our experiments show that our method can effectively stitch

images with large parallax that are difficult for existing methods.
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After studying the problem of regular 2D image stitching, we continue to re-

search 3D image stitching in this dissertation. In particular, we develop a technique

for stitching stereoscopic panoramas from stereo images casually taken using a

stereo camera. Stereoscopic image stitching needs to address three challenges: how

to deal with parallax, how to stitch the left- and right-view panorama consistently,

and how to take care of disparity during stitching. We address these challenges by

first stitching the left images with the parallax-tolerant image stitching method to

create an artifact-free left view panorama, then stitching the disparity maps with

disparity optimization, finally warping and stitching the right images according

to the stitched disparity map and the left view panorama. Experiment results

show that our technique allows for easy production of high quality stereoscopic

panoramas that deliver a pleasant stereoscopic 3D viewing experience.

With the 3D image stitching problem addressed, we further study a more com-

plex and challenging task of video stitching. We contribute two video stitching

techniques, namely the motion map guided video stitching and the feature trajec-

tory guided video stitching. Our techniques stitch pre-synchronized videos cap-

tured from a fixed or hand-held camera array which contains multiple cameras

with fixed inter-camera configurations. One unique challenge for video stitching

is how to maintain temporal coherence. To address this problem, we propose to

consistently stitch frames with the guidance of the target camera motion path. In

particular, we develop two techniques using dense motion maps and sparse mo-

tion vectors to compute the target camera motion path. Afterwards, we warp

and stitch frames according to the target camera motion path to create panoramic

videos with temporal coherence. Experiments show that our methods can improve

the overall panoramic video stitching quality compared with existing methods.
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Chapter 1

INTRODUCTION

Stitching techniques merge multiple inputs into a single seamless wider-view out-

put. The inputs can be regular 2D images, stereoscopic 3D images or videos. Reg-

ular 2D image stitching is a well-studied topic [53], although the parallax problem

remains to be a challenge. Many software tools are available for users, such as

AutoStitch [7], Photoshop [1], PTgui [9], and Hugin [6]. On the contrary, stereo

stitching and video stitching are still very difficult tasks, and limited research has

been done on these two areas. In this chapter, we briefly introduce the motivation

and contributions of this dissertation.

1.1 MOTIVATION

Image stitching can create wide field of view panoramas; an example of image

stitching can be seen in Figure 1.1. General image stitching techniques usually

contain three basic steps, namely registration, alignment and composition. The

registration step first estimates feature correspondences among input images. Then

the alignment step estimates a 2D transformation between two images and uses

the transformation to align input images [7, 55]; this transformation is typically

a homography. Finally, these aligned images are composed together to create the

final stitching result by performing optimal seam finding, such as seam cutting [3,
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(a) Input image I1 (b) Input image I2 (c) Stitching result

Figure 1.1: Image stitching.

28] and blending [8, 39]. These techniques are proven to be effective when dealing

with parallax-free input images. Parallax is a phenomenon that when you move

your viewpoint side to side, the objects in the distance appear to move more slowly

than the objects close to you. In order to capture parallax-free images, users need

to follow either one of the following two specific shooting rules: all input images

should be taken from a fixed viewpoint, as shown in Figure 1.2(a), or the scene of

the input images should be roughly planar, as shown in Figure 1.2(b). However,

it can be rather challenging to keep the viewpoint fixed when taking multiple

images without using a tripod. In addition, scenes with large depth variation are

very common. As a result, images casually taken by hand-held cameras usually

have parallax, and it is difficult for existing image stitching techniques to perform

well in handling these images and creating artifact-free panoramas. Parallax is an

intractable problem that haunted researchers for many years, and there is still no

effective solution to solve it.

Another problem of existing stitching tools is that they are designed for stitch-

ing regular 2D images only and they cannot process stereoscopic 3D images. How-

ever, with the increasing popularity of stereoscopic 3D technologies, 3D consumer

markets have brought about the demand for stereoscopic image stitching techniques

to stitch stereo images and create more immersive 3D image viewing experiences.

Simply using existing 2D image stitching techniques to stitch stereoscopic images

would create poor results that cause visual fatigue to users. At present, there are
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(a) (b)

Figure 1.2: Two cases where existing image stitching tools work well. (a) shows

that multiple images should be taken from a fixed viewpoint. (b) shows that the

scene of the input images should be roughly planar (the image is take from [2]).

no methods available for effectively stitching multiple stereoscopic images and for

creating comfortable 3D stitching results.

In addition to images, stitching techniques can also be applied to videos. Stitch-

ing multiple videos together to create 360 degree panoramic videos now is the key

component for Virtual Reality applications. Existing techniques either create poor

stitching results with noticeable seams on the overlapping area or rely on specific

professional camera rigs which are not accessible to amateur users.

1.2 RESEARCH CONTRIBUTIONS

In this dissertation, I thoroughly explore the stitching techniques for regular 2D

images, stereoscopic 3D images and videos. My first contribution is a parallax-

tolerant image stitching method to handle images with large parallax. With the

help of such a method, a stereoscopic image stitching technique is then developed

to generate high quality stereoscopic panoramas with stereoscopic consistency and

original depth distribution. Finally, I extend image stitching into the video domain

and contribute two video stitching techniques to create panoramic videos with
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temporally coherent content. Each of these areas are briefly introduced below.

Parallax handling. The parallax-tolerant image stitching method is built upon

an observation that aligning images perfectly over the whole overlapping area is not

necessary for image stitching. Instead, the images only need to be aligned in such

a way that there exists a local region in the overlapping area where these images

can be stitched together. This stitching strategy is given a term local stitch-

ing and a method is developed accordingly to find such a local alignment that

allows for optimal stitching. The local stitching method in this study adopts a hy-

brid alignment model that uses both homography and content-preserving warping.

Homography can preserve global image structures but cannot handle parallax. In

contrast, content-preserving warping can better handle parallax than homography,

but it cannot preserve global image structures as well as homography. Moreover,

local stitching still prefers a well aligned and large local common region. How-

ever, when homography is used for aligning images with large parallax, the local

region size and alignment quality are often two conflicting goals. This problem

is addressed by using homography to only roughly align images and employing

content-preserving warping to refine the alignment.

To implement this hybrid local alignment model, a randomized algorithm is

firstly developed to search for a homography for inexact local alignment. Therein,

a prediction regarding how well the estimated homography enables local stitching

can be made by finding a plausible seam from the roughly aligned images and

using the seam cost to score the homography. Specifically, a graph-cut based

seam finding method is developed to estimate a plausible seam from only roughly

aligned images by considering both geometric alignment and image content. Once

the optimal homography is determined, it is used for pre-aligning the input images,

followed by the content-preserving warping step for refining the alignment. Finally,
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the well aligned images are composed together to obtain the stitching result.

Stereoscopic image stitching. My second contribution is a stereoscopic image

stitching method that enables users to generate stereoscopic panoramas from ca-

sually taken stereo images as conveniently as monocular ones. A good stereoscopic

stitching method should be able to handle three problems. First, it should han-

dle parallax well. No matter how a user moves a stereo camera, images from at

least one of the left and right view have parallax. If users freely move the stereo

camera, it is common that images from both views have parallax. Second, the

stitching algorithm should stitch the left and right panorama consistently. Third,

the algorithm should take care of disparity to deliver a comfortable 3D viewing

experience.

To handle the above challenges, a three-step stereoscopic image stitching method

is proposed. First, a parallax-tolerant monocular image stitching method is em-

ployed to create one of the two views of the stereoscopic panorama. To avoid loss

of generality, the left-view panorama is always selected first for stitching. Second,

the disparity maps of the input stereoscopic images are stitched together to cre-

ate the target disparity map for the stereoscopic panorama by solving a Poisson’s

equation. This target disparity map is optimized to avoid vertical disparities and

to seamlessly merge the perceived depth field of the input stereoscopic images. Fi-

nally, the right views of the input stereoscopic images are warped and stitched into

the right-view panorama according to the target disparity map and the left-view

panorama. The stitching of the right views is formulated as a labeling problem

that is constrained by the stitching of the left views to make the left- and right-

view panorama consistent. The final stereoscopic panorama then can be created

by combining the left-view and right-view panorama together.

Video stitching. Finally I contribute two video stitching techniques: the dense
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motion map guided video stitching and the feature trajectory guided video stitch-

ing. Inspired by the stereoscopic image stitching technique, the dense motion map

guided video stitching technique is developed to stitch videos with the guidance

of the motion field which is estimated from temporally consecutive frames. All

video frames are categorized into four types: independent frames, full-reference

frames, reduced-reference frames and semi-independent frames. In this way, dif-

ferent stitching methods can be selected according to frame types. Specifically,

independent frames do frame stitching independently; full-reference frames do

frame stitching based on previous frame stitching result and motion field infor-

mation; reduced-reference frames do frame stitching based on limited previous

frame stitching output and motion field information; and semi-independent frames

do frame stitching only based on motion field information. With such a method,

stitching errors caused by inaccurate motion field estimation and non-ideal cap-

turing conditions can be properly handled. To further improve video stitching

efficiency and accuracy, a video stitching technique based on feature trajectory

guidance is then developed. This method generates a desired camera motion path

using the in-between middle trajectory of two corresponding feature trajectories.

Afterwards, global homography and content-preserving warping are both used for

warping individual frames to match with the guidance of the ideal camera motion

path. Finally, alpha blending is used in order to blend all warped frames together.

This method produces more aesthetically favorable results than the dense motion

map guided video stitching technique. Aside from this, without dense motion map

estimation, this method is much faster than the first method.
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1.3 OUTLINE OF THE DISSERTATION

The structure of this dissertation is organized as follows. In Chapter 2, a brief

overview of the background for the rest of the chapters is given, beginning with an

introduction of a general 2D image stitching pipeline. The background for stereo-

scopic 3D image manipulation is also presented, as well as some basic knowledge

for video stitching.

Chapter 3 details the parallax-tolerant image stitching technique that handles

images with large parallax. The chapter describes the limitations of the existing

monocular image stitching method, as well as related work that has already been

done to handle these limitations. This is followed by the proposed local stitching

method, which uses a hybrid alignment model combining both homograph and

content-preserving warping. The chapter also includes experiments conducted to

test the stitching algorithm and comparisons of the performances from the pro-

posed algorithm with other state-of-the-art stitching algorithms.

Chapter 4 focuses on the problem of stereoscopic image stitching. The chal-

lenges of stereo stitching are firstly described, followed by an introduction of the

effective 3-step stereo stitching technique in this study to address the stereo stitch-

ing challenges. Afterwards, the chapter gives a detailed description of both a novel

disparity stitching algorithm and a seam-cutting method that can maintain stereo-

scopic consistency. The experiments that were conducted for testing the proposed

stereo stitching algorithm are included in the chapter as well.

In Chapter 5, two video stitching techniques are presented. The chapter first

introduces the dense motion map guided video stitching method which uses motion

map as the guidance to stitch videos with temporal coherence. In order to generate

panoramic video in a more reliable and faster way, another feature trajectory

based video stitching method is then developed. Finally, the chapter describes the
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experiments that were conducted using a range of videos to test the performance

of the proposed algorithms.

Chapter 6 presents the conclusion of this research; the chapter reviews the

contributions of this dissertation, and it also describes some future directions in

this research area.
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Chapter 2

BACKGROUND

In this chapter, we first briefly introduce the existing monocular image stitching

pipeline, and explain in more detail what parallax is and why it is a problem for

existing image stitching techniques. Then we introduce the necessary background

knowledge for stereoscopic image manipulation. Finally, we conclude this chapter

by discussing video stitching basics.

2.1 MONOCULAR IMAGE STITCHING

Researchers have developed a wide range of methods for image stitching [53]. Most

of these methods share the same pipeline, as shown in Figure 2.1. This pipeline

typically contains three steps, namely registration, alignment, and composition;

these three are described in more detail in the section below.

2.1.1 Existing image stitching pipeline

Registration

The first step is to register two input images, and it consists of two sub-steps.

First, feature points are detected in each image independently. Afterwards, the

feature point correspondences between the two input images are established. This

step of image registration has been well studied in computer vision, as reviewed

in [53]. Figure 2.2(a) and Figure 2.2(b) show an example.
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Figure 2.1: Image stitching pipeline.

Alignment

The second step is to estimate a projective transformation between two images

and to use the transformation to warp and align these images. Existing image

stitching techniques assume that there is a projective transformation between two

input images, and estimate the projective transformation according to the feature

point correspondences. This projective transformation can be represented as a

3× 3 transformation matrix, called a homography, shown as the matrix in Figure

2.2(d). By using a homography, image I1 can be transformed to image Î1 which

can be better aligned with image I2, as shown in Figure 2.2(e).

Composition

After image alignment, the aligned images are composed together to create the

final stitching result. There are typically two steps in image composition. The

first step is to find an optimal seam in the overlapping region of the alignment

result so that the pixel difference across the seam is minimal; this is shown as the

red curve in Figure 2.2(f). The second step is to blend the transformed image Î1
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(a) Input image I1 with feature points (b) Input image I2 with feature points

(c) Input image I1 (d) Homography (e) Align transformed image Î1

with image I2

(f) Optimal seam finding result (g) Blending result

Figure 2.2: Workflow of existing image stitching methods.
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(a) Scene with objects in different depth (b) Images taken from viewpoint A

and B

Figure 2.3: Images taken from two different viewpoints. (a) shows a scene with

objects 1, 2, 3, and 4. Different objects stay in different depth. (b) shows images

A and B have parallax. The nearby object 2 has a larger displacement than the

distant object 1. And in image A, the objects alignment order is 1 3 2 from left to

right, but in image B it becomes 1 2 3.

and image I2 together to get the final stitching result. Image blending can remove

the remaining color and luminance difference along the seam and get the final

stitching result, as shown in Figure 2.2(g).

2.1.2 Parallax problem

Existing image stitching techniques assume that the input images can be aligned

with a homography-based transformation. However, homography-based transfor-

mations cannot be used to account for the parallax between two images. Thus,

these methods cannot stitch images with parallax well. Parallax is a phenomenon
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(a) Input image pair (b) AutoStitch stitching result

Figure 2.4: AutoStitch result.

that when you move your viewpoint side to side, the objects in the distance ap-

pear to move more slowly than the objects close to you. According to the multi-

viewpoint geometry theory [53], parallax makes the homography-based transfor-

mation invalid. As a result, if the input images have parallax, existing image

stitching techniques will generate stitching results with artifacts. This limitation

can be explained with the following example. Figure 2.3 shows a scene that con-

tains objects 1, 2, 3 and 4; different objects stay in different depths. If we take two

images at two different viewpoints as shown in Figure 2.3(a), the nearby object

2 has a larger displacement than the distant object 1 as shown in Figure 2.3(b).

In addition, the objects’ alignment order is 1, 3, 2 from left to right in image A,

but the order becomes 1, 2, 3 in image B. In order to transform image A in a way

that it can be matched with image B, the right side of image A needs to be bent

so that object 2 can be inserted between object 1 and 3. However, homography-

based transformations, which can preserve straight lines in images according to

the multi-view geometry theory, cannot bend the image, and thus existing image
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(a) Scene with objects in different depth (b) Images taken from a fixed viewpoint

Figure 2.5: Images taken from a fixed viewpoint.

stitching techniques are not able to properly align these two images well aestheti-

cally. As a result, artifacts such as ghosting will be introduced into the final results.

Ghosting artifacts are a typical kind of stitching artifacts. Stitching results with

ghosting artifacts usually have blurred double imaging for partial image region.

Figure 2.4 is an unsuccessful stitching result with ghosting artifacts generated by

AutoStitch [7]. As shown in Figure 2.4(a), two images were taken from two dif-

ferent viewpoints. Using a homography-based transformation to transform image

I1 can only match the building in the two images well. As a result, the other re-

gions have ghosting artifacts. However, if we take two images at a fixed viewpoint

by rotating the camera as shown in Figure 2.5(a), the two images will not have

parallax. For example, the order and displacement of these objects are consistent

between the two images in Figure 2.5(b).



15

2.2 STEREOSCOPIC PHOTOGRAPHY BASICS

Compared to regular 2D images, a stereoscopic 3D image contains two slightly

different left and right images of the same scene. The difference between the left

and right images provides the information that our brain can use to calculate the

depth of the visual scene. This extra dimension of information is called disparity.

Specifically, disparity refers to the displacement between the corresponding points

in the left and right images. The disparities are usually in two directions: horizontal

disparity indicates the horizontal displacement of the corresponding points and

vertical disparity indicates the vertical displacement of the corresponding points.

Disparity directly affects the perceived distance of an object in a stereoscopic

image. If the disparity of an object is zero, it is perceived on the screen. If its

disparity is negative, the object pops out of the screen. On the other hand, if the

disparity is positive, the object is perceived behind the screen. Figure 2.6 shows an

example of the disparity maps of a stereoscopic image. Disparity needs to be taken

care of properly and correctly to deliver a comfortable 3D viewing experience that

cause no visual fatigue to users. Professionals often adjust the disparities carefully

to position the content of interest in the stereoscopic comfort zone [21].

Stereoscopic image editing needs to follow specific editing rules, and the viola-

tion of these rules will result in poor stereo images. There are two stereoscopic pho-

tography violations that are particularly applicable to stereoscopic image stitching:

vertical disparity violation and monocular object violation. Vertical disparities nat-

urally exist in the human visual system. However, when vertical disparity values

exceed a certain limit, they will perturb the actual depth perception process and

cause visual fatigue [45]. Monocular object violation occurs when salient visual

content only shows in one of the two views of a stereoscopic image. This can also

produce an uncomfortable viewing experience and can sometimes bring in retinal
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(a) Stereoscopic image pair

(b) Disparity maps in horizontal (left) and vertical (right) direction

Figure 2.6: Disparity maps of a stereoscopic image.

rivalry to viewers. For stereoscopic image stitching, stitching the left and right

images inconsistently would frequently cause such two stereo violations. With-

out proper handling, the stereo stitching results cannot deliver a comfortable 3D

viewing experience to users.

2.3 VIDEO STITCHING

While image stitching has been extensively studied, there is very limited research

done on video stitching topics. In contrast to images, videos have an extra dimen-

sion of time. Each point in the frame is the projection of a 3D point in the scene

at a specific time. For a fixed 3D point, the position of the projected 2D point

in each frame may vary with time. In computer vision, we use motion vectors to

represent the displacement of the same point between different frames. Motion

vectors of all points in a frame form a motion map (also known as motion field).
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Simply extending image stitching into the video domain by stitching each frame

separately completely ignores the motion field of the videos, and this would easily

introduce temporal incoherence. Temporal incoherence refers to the phenomenon

that the temporally adjacent pixels among successive frames deviate from their

original motion paths. As a result, temporal incoherence leads to flickering, wav-

ing, or ghosting artifacts in the stitched videos. Maintaining temporal coherence

is a unique challenge for video stitching.
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Chapter 3

PARALLAX-TOLERANT IMAGE STITCHING

In this chapter, we present our parallax-tolerant image stitching technique which

can handle images with large parallax. We begin by discussing the parallax prob-

lem and the limitations of existing stitching methods. We also describe related

work that tried to solve the parallax problem. We then present our parallax-

tolerant image stitching technique, which is a local stitching method using a hybrid

alignment model. We report the performance of our stitching algorithm and also

conduct comparison experiments against several state-of-the-art stitching tech-

niques.

3.1 INTRODUCTION

Image stitching is a well-studied topic [53]. Its first step is to register and align in-

put images. Early methods estimate a 2D transformation, typically a homography,

between two images and use it to align them [7, 55]. Since a homography cannot

account for the parallax between two images, existing image stitching techniques

require that the input images should be parallax-free. That is, the input images

should be taken from the same viewpoint or the scene should be roughly planar.

For images with parallax, no homography exists that can be used to align these

images, resulting in artifacts like ghosting or broken image structures. Although

advanced image composition techniques can relieve these artifacts, they cannot

address significant misalignments.
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(a) Input images (b) AutoStitch

(c) APAP [60] (d) Our result

Figure 3.1: Parallax problem in monocular image stitching. For images with large

parallax, homography-based methods, such as AutoStitch, cannot align input im-

ages and introduce ghosting artifacts (b). Spatially-varying warping methods,

such as APAP, can align images but introduce apparent visual distortion (c). Our

method can produce an artifacts-free result (d)

Recent image stitching methods use spatially-varying warping algorithms to

align input images [30, 60]. Spatially-varying warping methods better handle par-

allax than homography, but they still cannot work well on images with large paral-

lax. Figure 3.1 shows a challenging example with a significant amount of parallax

in input images. Notice the horizontal spatial order of the car, the tree, and the

chimney in the input images shown in Figure 3.1(a). In the left input image, the

chimney is in the middle of the car and the tree while in the right image, the tree

is in the middle of the car and the chimney. For this example, one image actually

needs to be folded over in order to align with the other. This is a fundamentally

difficult task for the warping methods as they either cannot fold over an image or

will bring in objectionable distortion, as shown in Figure 3.1(c).
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Our parallax-tolerant image stitching method is built upon an observation that

aligning images perfectly over the whole overlapping area is not necessary for im-

age stitching. Instead, we only need to align them in such a way that there exists

a local region in the overlapping area where these images can be stitched together.

We call this local stitching and develop a method to find such a local align-

ment that allows for optimal stitching. Our local stitching method adopts a hy-

brid alignment model that uses both homography and content-preserving warping.

Homography can preserve global image structures but cannot handle parallax. In

contrast, content-preserving warping can better handle parallax than homography,

but cannot preserve global image structures as well as homography. Moreover, lo-

cal stitching still prefers a well aligned, large local common region. However, when

homography is used to align images with large parallax, the local region size and

alignment quality are often two conflicting goals. We address this problem by us-

ing homography to only roughly align images and employing content-preserving

warping to refine the alignment.

We develop a randomized algorithm to search for a homography for inexact local

alignment first. Therein, we predict how well a homography enables local stitching

by finding a plausible seam from the roughly aligned images and using the seam cost

to score the homography. We develop a graph-cut based seam finding method that

can estimate a plausible seam from only roughly aligned images by considering both

geometric alignment and image content. Once we find the optimal homography,

we use it to pre-align the input images and then use content-preserving warping

to refine the alignment. We finally compose the well aligned images together to

get the stitching result.
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3.2 RELATED WORK

Most existing image stitching methods estimate a 2D transformation, typically a

homography, between two input images and use it to align them [7, 55]. These

homography-based methods can work well only when the input images have little

parallax as homography cannot account for parallax. When input images have

large parallax, artifacts like ghosting occur. Local warping guided by motion es-

timation can be used to reduce the ghosting artifacts [49]. Image composition

techniques, such as seam cutting [3, 14, 28] and blending [8, 39], have also been

employed to reduce the artifacts. However, these methods alone still cannot han-

dle significant parallax. The recent dual-homography warping method can stitch

images with parallax, but it requires the scene content can be modeled by two

planes [16].

Multi-perspective panorama techniques can handle parallax well [2, 13, 37, 41,

44, 48, 59, 63]. These techniques require 3D reconstruction and/or dense sampling

of a scene. They are either time-consuming or cannot work well with only a sparse

set of input images, as typically provided by users to make a panorama. The idea

behind some of these multi-perspective panorama techniques inspired our work.

That is, input images do not need to be perfectly aligned over the whole common

image region. As long as we can piece them together in a visually seamless way,

an aesthetically favorable artifact-free panoramic image can be created.

A relevant observation has also been made in a recent work that the best-fitting

homography does not necessarily enable optimal image stitching [17]. They esti-

mate a set of homographies, each representing a planar structure, create multiple

stitching results using these homographies, and find the one with the best stitching

quality. This method can successfully handle parallax for some images and also

inspired our work; however, it is slow as it needs to create multiple stitching results
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and evaluate their quality. More importantly, sometimes none of the homographies

that represent some planar structures can enable visually plausible stitching.

Recently, spatially-varying warping methods have been extended to image

stitching. Lin et al. developed a smoothly varying affine stitching method to

handle parallax [30]. Zaragoza et al. developed a technique to compute an as-

projective-as-possible warping that aims to be globally projective while allowing

local non-projective deviations to account for parallax [60]. These methods have

been shown to work well on images with parallax that are difficult for homography-

based methods. However, they still cannot handle images with large parallax, as

shown in Figure 4.1.

3.3 ALGORITHM

Our method uses a common image stitching pipeline. Specifically, we first align

input images, then use a seam cutting algorithm to find a seam to piece aligned

images together [28], and finally employ a multi-band blending algorithm to create

the final stitching result [8]. Our contribution is a novel image alignment method

which can align images in such a way that allows for optimal image stitching.

Our observation is that we do not need to perfectly align images over their

whole overlapping area. In fact, for images with large parallax, it is very difficult,

if not impossible, to align them perfectly. Our goal is to align images in a local

region where we can find a seam to piece them together. We employ a randomized

algorithm to search for a good alignment. We consider an alignment is good enough

if it can enable a seamless image stitching. Specifically, we first detect SIFT feature

points and match them between two images [32]. We then randomly select a seed

feature point and group its neighboring feature points to estimate an alignment as

our goal is to estimate an alignment that aligns images over a local region with a
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compact feature distribution. We evaluate the stitching quality of this alignment.

If this alignment is determined good enough to enable a seamless stitching, we

stop; otherwise we repeat the alignment estimation and quality evaluation. Below

we first discuss some key components of this algorithm and then provide a detailed

algorithm description.

3.3.1 Alignment Model Selection

The first question is what alignment model to use. There are two popular options:

global 2D transformation, typically homography, and spatially-varying warping,

such as content-preserving warping [31, 57]. Most existing methods use a global

2D transformation to align two images. A global 2D transformation has an impor-

tant advantage in that it warps an image globally and avoids some objectionable

local distortions. For example, homography can preserve lines and similarity trans-

formation can preserve the object shape. But they are too rigid to handle parallax.

For image stitching, while we argue that it is not necessary to align images exactly

in their whole overlapping area, it is still preferable to align images well over an as

large as possible common region. However, for images with large parallax, a 2D

transformation, even a homography, can often only align images over a small local

region. In contrast, content-preserving warping is more flexible and can better

align images, but it often introduces objectionable local distortion.

Our solution is to combine these two alignment models to align images well over

a large common region with minimal distortion. Given a seed feature point, our

method incrementally groups neighboring feature points to fit a 2D transformation

(a homography by default). Here we use a slightly large fitness threshold in order

to group as many feature points as possible although this makes the homography

unable to fit these feature correspondences exactly. Relaxing the fitness threshold
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of the homography can be compensated by applying content-preserving warping

later on, as content-preserving warping is well suited to local warping refinement

without introducing noticeable distortion.

3.3.2 Alignment Quality Assessment

A straightforward way to evaluate the stitching quality of the above mentioned hy-

brid alignment is to first warp an image using the homography and apply content-

preserving warping. We can then compare the warped image and the reference

image to examine how well these two images are aligned. This approach, however,

cannot reliably predict whether a good seam can be found in the overlapping re-

gion. Furthermore, this approach does not consider the effect of image content

on stitching. For stitching, salient image features, such as edges, should be well

aligned while image regions like the sky do not necessarily need to be perfectly

aligned. Finally, this approach is slow as it needs to run content-preserving warp-

ing whenever we evaluate the alignment quality inside the randomized algorithm.

We address the above problems as follows. First, we examine the alignment

quality based on the image edges instead of the raw image directly. Second, we

only evaluate how the homography supports stitching. This simplification can

be justified by the fact that content-aware warping is very effective if only minor

adjustment to the global warping is required. But it also brings in a challenge:

the homography in our method is designed to be loose and does not align two

images exactly. Then we need to predict how well the alignment enables seamlessly

stitching from only roughly aligned images. We address this challenge by finding

a plausible seam from the roughly aligned images and using the seam cost to score

the alignment.

We first down-sample the input images to both improve speed and tolerate the
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small misalignment. We then compute the edge maps for the input images using

the Canny edge detection method [11]. The edge maps are low-pass filtered to

tolerate the small misalignment. We compute the difference between the warped

edge map and the reference image’s edge map and obtain the difference map Ed.

A plausible seam should avoid passing pixels with large values in the difference

map in order to obtain a seamless stitching result. We extend the graph-cut seam

finding method [28] to find a plausible seam. Briefly, we consider each pixel in

the overlapping region as a graph node. We define the edge cost between two

neighboring nodes s and t as follows,

e(s, t) = fc(s)|Ed(s)|+ fc(t)|Ed(t)| (3.1)

where we use an alignment confidence function fc(s) to weight the edge cost. fc(s)

is computed to further account for the fact that the homography can only align two

images roughly and content-preserving warping will be used to refine the alignment.

Specifically, if a local region has a SIFT feature point, the alignment there can

very likely be improved by content-preserving warping and thus the misalignment

from only using the homography should be deemphasized. We compute fc(s) to

deemphasize the misalignment according to the SIFT distribution as follows,

fc(s) =
1∑

Pi
g(‖Ps − Pi‖) + δ

(3.2)

where Pi is the position of a SIFT feature point and Ps is the position of pixel s.

g is a Gaussian function and is used to propagate the effect of a SIFT feature to

its neighborhood. δ is a small constant with a default value 0.01.

Based on the edge cost defined in Equation 3.1, the seam finding problem can

be formulated and solved as a graph-cut problem [28]. Once we obtain this seam,

we use the cost associated with this seam to score the alignment quality.
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Homography Screening

While some homographies can allow for seamless stitching, they sometimes severely

distort the images and lead to visually unpleasant stitching results. We detect

such homographies and discard them before evaluating their alignment quality. We

measure the perspective distortion from applying a homography H to an image I by

computing how H deviates from its best-fitting similarity transformation. Denote

Ci as one of the four corner points of the input image I and C̄i is the corresponding

point transformed by H. We find the best-fitting similarity transformation Ĥs as

follows,

Ĥs = arg min
Hs

∑
Ci

‖HsCi − C̄i‖2,where Hs =

a −b c

b a d

 (3.3)

Once we obtain Ĥs, we sum up the distances between the corner points transformed

by H and Ĥs to measure the perspective distortion. If the sum of the distances

normalized by the image size is larger than a threshold (with default value 0.01),

we discard that homography.

3.3.3 Alignment Algorithm Summary

We now describe our randomized algorithm to estimate a good alignment for stitch-

ing.

1. Detect and match SIFT features between input images [32] and estimate

edge maps for input images [11].

2. Randomly select a valid seed feature point and group its spatially nearest

neighbors one by one until the selected feature set cannot be fitted by a

homography with a pre-defined threshold. We maintain a penalty value for

each feature point to identify the times that it has been selected during the
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iteration process. When a feature point is selected, we increase its penalty

value by one. In each iteration, to be selected as a seed, a feature point

should not have been selected as a seed before and its penalty score is below

the average penalty value of all the feature points.

3. Evaluate the alignment quality of the best-fitting homography from Step 2

using the algorithm described in Section 3.3.2. If the homography meets the

pre-defined quality threshold, go to Step 4. Otherwise, if the average penalty

value is low, go to Step 2; otherwise select the best homography estimated

during the iteration process and go to Step 4.

4. Employ the optimal homography to pre-align images and use content-preserving

warping guided by the set of selected feature points to refine the alignment,

as described in Section 3.3.3.

Figure 3.2 shows the pipeline of our method. Given input images (a), our

method first finds an optimal local homography and a subset of feature points

that are loosely fit by this homography as shown in (b). We illustrate the selected

feature pairs using blue circles. Notice that the homography does not align these

features exactly. We then use content preserving warping to refine the alignment.

As shown in (c), the selected feature pairs are now well aligned. Our method finally

composes the aligned images together (d).

Content-preserving warping

Various content-preserving warping methods have been used in applications, such

as video stabilization [31] and image and video retargeting [57, 58]. While content-

preserving warping alone cannot always be used to align images over their whole

overlapping area, it is well suited for small local adjustment. Therefore, we use
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(a) Inputs (b) Optimal local alignment (c) Content-preserving warping (d) Stitching result

Figure 3.2: Stitching pipeline. Please zoom in this figure to better examine the

alignment results at (b) and (c). Given input images with large parallax (a), our

method first estimates an optimal homography that roughly aligns images locally

(b) and is predicted to allow for optimal stitching as described in Section 3.3.2.

In (b) and (c), we only blend aligned images by intensity averaging to illustrate

alignment. The red and green points are the SIFT feature points in the warped

image and the reference image, respectively. When two feature points are aligned,

they appear olive green. Only a subset of feature points, indicated by blue

circles, are selected to fit a homography loosely. Our method then locally refines

alignment using content-preserving warping (c), and finally employs seam-cutting

and multi-band blending to create the final stitching result (d).

it to further align the pre-warping result from the optimal homography to the

reference image as shown in Figure 3.2 (b) and (c).

We use I, Ī, and Î to denote the input image, the pre-warping result, and

the final warping result, respectively. We divide the input image I into an m× n

uniform grid mesh. The vertices in I, Ī, and Î are denoted using Vi, V̄i, and V̂i.

We then formulate the image warping problem as a mesh warping problem, where

the unknowns are V̂i. V̄i is known from pre-warping. This mesh warping problem

is defined as an optimization problem that aims to align Ī to the reference image

while avoiding noticeable distortions. We now describe the energy terms in detail

below.
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Local alignment term. The feature points in image I and Ī should be

moved to match their corresponding positions in the reference image so that they

can be well aligned. Since a feature point Pj is not usually coincident with any

mesh vertex, we find the mesh cell that contains Pj. We then represent P̄j, the

corresponding point of Pj in Ī, using a linear combination of the four cell vertices of

the corresponding cell in image Ī. The linear combination coefficients are computed

using the inverse bilinear interpolation method [20]. These coefficients are used to

combine the vertices in the output image Î to compute P̂j. We can then define the

alignment term as follows.

Ep =
n∑

j=1

‖
∑

αj,kV̂j,k − P̃j‖2, (3.4)

where n is the size of the selected feature set from the alignment optimization step

(Section 3.3.3), αj,k is the bilinear combination coefficient, and V̂j,k is a vertex of

the mesh cell that contains P̂j, and P̃j is the corresponding feature point in the

reference image.

Global alignment term. The alignment term above only directly constrains

warping of the overlapping image region with selected feature points. For other

regions, content-preserving warping often distorts them. As the pre-warping result

Ī has already provided a good approximation, our method encourages the regions

without feature points to be close to the pre-warping result as much as possible.

We therefore define the following global alignment term,

Eg =
∑
i

τi‖V̂i − V̄i‖2, (3.5)

where V̂i and V̄i are the corresponding vertex in the content-preserving warping

result and in the pre-warping result. τi is a binary value. We set it 1 if there is no

feature point in the neighborhood of Vi; otherwise it is 0. This use of τi provides

flexibility for local alignment.
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Smoothness term. To further minimize the local distortion during warping,

we encourage each mesh cell in the pre-warping result to undergo a similarity trans-

formation. We use the quadratic energy term from [23] to encode the similarity

transformation constraint. Specifically, consider a triangle 4V̄1V̄2V̄3. Its vertex V̄1

can be represented by the other two vertices as follows,

V̄1 = V̄2 + u(V̄3 − V̄2) + vR(V̄3 − V̄2), R =

 0 1

−1 0

 , (3.6)

where u and v are the coordinates of V̄1 in the local coordinate system defined

by V̄2 and V̄3. If this triangle undergoes a similarity transformation, its coordi-

nates in the local coordinate system will not be changed. Therefore, the similarity

transformation term can be defined as follows,

Es(V̂i) = ws‖V̂1 − (V̂2 + u(V̂3 − V̂2) + vR(V̂3 − V̂2))‖2, (3.7)

where u and v are computed from Equation 5.5. We sum Es(V̂i) over all the

vertices and obtain the full smoothness energy term Es. Here ws measures the

saliency value of the triangle 4V̄1V̄2V̄3 using the same method as [31]. We use

this saliency weight to distribute more distortion to less salient regions than those

salient ones.

Optimization. We combine the above three energy terms into the following

energy minimization problem,

E = αEp + βEg + γEs, (3.8)

where α, β, γ are the weight of each term with default values 1.0, 0.01, and 0.001,

respectively. The above minimization problem is quadratic and is solved using a

standard sparse linear solver. Once we obtain the output mesh, we use texture

mapping to render the final result.
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(a) Input images

(b) AutoStitch (c) SEAM [17]

(d) APAP [60] (e) Our result with seam

Figure 3.3: Comparisons among various stitching methods.

3.4 EXPERIMENTS

We experimented with our method on a range of challenging images with large

parallax. We also compared our method to the state-of-the-art methods, including

Photoshop, AutoStitch, as-projective-as-possible stitching (APAP) [60], and our

implementation of seam-driven stitching (SEAM) [17]. For APAP, we used the

code shared by the authors. Since that code only aligns images, we applied the

same seam-cutting and multi-band blending algorithm used in our method to the

APAP alignment results to produce the final stitching results.
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(a) Input images (b) AutoStitch

(c) Photoshop (d) SEAM [17]

(e) APAP [60] (f) Our result

(g) Our result with matching points (h) Our result with seam

Figure 3.4: Comparisons among various stitching methods.
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Figure 3.3(a) shows two input images with a significant amount of parallax.

Photoshop failed to produce any result. AutoStitch could not align two images

well using a global 2D transformation, therefore the stitching result suffers from

ghosting, as indicated by the red circle in Figure 3.3(b). The traffic light is dupli-

cated in the final result. The SEAM method did not find a local plane represented

by a homography that allows for seamless stitching, and duplicated the traffic light

too as shown in Figure 3.3(c). The APAP method creates a reasonable stitching

result as shown in Figure 3.3(d); however, as APAP tries to align two images over

the whole overlapping region, it distorts the salient image structure, such as the

pillar indicated by the red rectangle. Our method can handle this challenging

example by aligning the input images locally in a way that allows for optimal

stitching, as shown in Figure 3.3(e). We also show the stitching seam in red.

Figure 3.4(a) shows another challenging example. The two input images have a

large amount of parallax, and there is no global transformation that can align them

well over the whole overlapping region. As shown in Figure 3.4(b), the AutoStitch

result suffers from significant ghosting artifacts. While blending can relieve mis-

alignment, it causes severe blurring artifacts as indicated by the red circle. Both

Photoshop and SEAM duplicated the red structure, as shown in Figure 3.4(c) and

Figure 3.4(d). APAP bends the straight line as shown in Figure 3.4(e). Our result

in Figure 3.4(f) is free from these artifacts. Detailed alignment and seam finding

figures are shown in Figure 3.4(g) and Figure 3.4(h). By finding a local alignment

and refine the alignment with content-preserving warping, only part of the image

has been well-aligned as shown in Figure 3.4(g), but the well-aligned overlapping

region is already good enough to successfully find a plausible seam goes through

the well-aligned region and the non-salient region.

Figure 3.5(a) shows another challenging example. There is a large amount of
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(a) Input images

(b) Autostitch (c) APAP [60]

(d) SEAM [17] (e) Our result

(f) Our result with matching points (g) Our result with seam

Figure 3.5: Comparisons among various stitching methods.
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Autostitch Photoshop APAP SEAM Ours

mean 2.41 2.89 2.59 2.98 3.84

std 1.14 1.26 1.15 1.27 1.09

best 1 1 1 2 5

Table 3.1: User study results.

parallax in the input images. No global transformation can align them well over the

whole overlapping region. Figure 3.5(b) shows the AutoStitch result, which suffers

from significant ghosting artifacts. Photoshop failed to generate any result for this

example. APAP significantly bends the straight lines as shown in Figure 3.5(c)

and SEAM cannot well align the structure, causes a broken structure, as shown in

Figure 3.5(d). Our result in Figure 3.5(e) is free from these artifacts. Figure 3.5(f)

and Figure 3.5(g) show the detailed figures for this example. As shown in images,

only a local region in the overlapping area is well aligned and a large part of the

overlapping region is mismatched. But as long as the seam finding algorithm can

find a seam to enable a seamless image stitching, such as the seam in Figure 3.5(g),

a local alignment is good enough to generate an artifact-free stitching result.

3.4.1 User study

We also designed a user study to subjectively evaluate the user experience of view-

ing panoramas generated by our method and four state-of-the-art stitching meth-

ods including Photoshop, Autostitch, as-projective-as-possible stitching (APAP) [60],

and our implementation of seam-driven stitching (SEAM) [17]. We collected 10

input image pairs and generated five panoramas for each image pair using five

stitching methods. We obtained 50 panoramas in total.

There are 20 participants in our study, including 7 females and 13 males. They
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are students and employees covering a wide variety of background, including Com-

puter Science, Economics, Education, English, Mathematics, Physics, Psychology

etc. Their ages range from around 20 to 60 years old. They do not know how each

panorama was created. Before the study, we provided five panoramas generated

using five different methods for them to look at and to learn what typical stitching

artifacts are. In our study, we showed five panoramas generated using different

methods for each image pair to each participant one by one in a random order.

Participants can look at a panorama as long as they want. After a participant

finished looking at a panorama, we asked the participant to rate the panorama

stitching quality using a Likert scale ranging from 1 to 5, with 5 being the most

positive. After a participant finished looking at all five panoramas generated for

one image pair, we asked the participant to choose the image stitching result with

the best quality. For each image pair, we consider the most selected stitching

result as the best stitching result. We report the average scores, the standard

deviations and the number of times each stitching method has been voted to be

the best stitching method among the five in Table 3.1. Our study confirms our

hypothesis that existing stitching techniques are problematic in handling images

with large parallax and will damage the panorama viewing experience. The best

average quality score of the four existing methods is 2.98. In contrast, our method

produces better viewing experiences with an average score of 3.84. The p-values

of the paired two sample t-test between our results and each state-of-the-art re-

sults are smaller than 0.001, which shows that the difference between the two sets

of results are statistically significant. Panoramas produced by our method have

also been selected as the best stitching results for 5 times out of 10 image sets,

compared with 2 times for the second best method. In conclusion, the user study

clearly shows that our parallax-tolerant image stitching technique generates better
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(a) Homography (b) Similarity transformation

Figure 3.6: Homography vs. Similarity transformation. Our method is flexible

in choosing a 2D global transformation for initial alignment. Sometimes we can

replace the commonly used homography with a similarity transformation to reduce

distortion.

stitching results than other state-of-the-art algorithms.

3.4.2 Discussion

Our method only needs to align input images locally and fit a homography loosely,

as described in Section 3.3.2. Therefore our method can sometimes use a more

restrictive global transformation than homography to remove the perspective dis-

tortion from homography. Figure 3.6(a) shows a stitching result from our method

using homography for initial alignment, which suffers from noticeable perspec-

tive distortion. Once we replace homography with similarity transformation for

initial alignment, the stitching result suffers from less distortion, as shown in Fig-

ure 3.6(b). Our technique can also stitch more than two images. Figure 3.7 shows

a result created by stitching five images together.

We also tested how the homographies selected by our method differ from the

best-fitting ones by computing the distances between the transformed image corner

positions with our homographies and the best-fitting ones. Over 75% of the exam-

ples shared in our project website has the average corner position distance larger
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Figure 3.7: Multiple image stitching.

than 36 pixels (given an image with width 1000 pixels) . The median distance is

around 60 pixels. This confirms that our method uses different homographies than

the best-fitting ones.

Our method works well on a range of examples with large parallax as well as all

the examples reported in the recent APAP paper [60]. Meanwhile, we also found

some failure cases. Figure 3.8 shows one failure example. The input images have

very large parallax and are full of salient structures. For stitching, images must

be aligned so that there at least exists a local common region where a good seam

can be found. In images with large parallax, there is often no such a local region

that can be aligned. Our method explores the fact that non-salient areas often

need not be well aligned and considers this in searching for a good local region

alignment. But if an image has large parallax and is full of salient structures, our

method sometimes cannot work as no non-salient region exists. Our method adopts

a common image stitching pipeline. Its major novelty is in its step to align images
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(a) Input images

(b) Our result

Figure 3.8: Failure example.
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such that optimal stitching can be achieved. This step, including optimal local

homography estimation and content-preserving warping, typically takes from 20

to 40 seconds on a desktop machine with Intel i7 CPU and 8 GB memory to align

two images with width 1000 pixels. All the other steps are shared by off-the-shelf

image stitching methods.
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Chapter 4

CASUAL STEREOSCOPIC IMAGE STITCHING

In this chapter, we introduce our casual stereoscopic image stitching technique. We

first discuss the challenges of the stereo image stitching task. We also introduce

related work in the stereo stitching and parallax handling research areas. Then

we present our 3-step casual stereoscopic image stitching technique. Finally, we

conduct several experiments to test the performance of our algorithm. We conclude

this chapter by discussing the limitations of our method.

4.1 INTRODUCTION

Panorama stitching is a well studied topic and many software tools are avail-

able for users to create panoramas [54]. Most of these methods, however, are

designed for monocular image stitching. Employing a monocular image stitching

method to independently create the left and right view of a stereoscopic panorama

is problematic as the left and right panorama may not be consistent. As shown

in Figure 4.1(a), the cat in the left panorama is different from that in the right

panorama. This is because the input images are taken at different time and the

cat appears different in the input images. The left and right panorama take the

cat from different input images. The inconsistency will lead to “retinal rivalry”

and bring in “3D fatigue” to viewers [33]. Moreover, stereoscopic images have

an extra dimension of disparity, which cannot be taken care of by independently

stitching the two views. Figure 4.1(a) shows that the resulting panorama has
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(a) Independent stitching (b) Our result

Figure 4.1: Stereoscopic panorama stitching. For each column, we show the left-

view, right-view and red-cyan anaglyph of the stereo panorama. Stitching the

left- and right-view panorama independently brings in inconsistency artifacts like

monocular object (the cat) and vertical disparities (the car headlights), which will

cause “3D fatigue” to viewers. Our result is free from these artifacts.

vertical disparities in the car headlight area. This will also compromise the 3D

viewing experience of viewers. Dedicated stitching methods have been developed

for stereoscopic panorama stitching [22, 36, 43]. However, these methods require a

user to densely sample the scene using a video camera and/or follow some specific

rules to rotate the camera and cannot work well with a sparse set of casually taken

input images.

In this chapter, our research objective is to develop a technology that allows

users to create stereoscopic panoramas as conveniently as monocular ones. As

consumer stereo cameras now become more and more available to daily users, it

becomes easy for them to take stereoscopic images. We therefore aim to develop
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a stereoscopic image stitching method that enables users to generate stereoscopic

panoramas from casually taken stereo images. To achieve this goal, we need to

address three challenges. First, our method needs to handle parallax well. No

matter how a user moves a stereo camera, images from at least one of the left and

right view have parallax. As we allow users to freely move the stereo camera, it is

common that images from both views have parallax. Second, our method needs to

stitch the left and right panorama consistently. Third, our method needs to take

care of disparity to deliver a pleasant viewing experience.

We present a three-step stereoscopic image stitching method to address the

above challenges. First, we employ a state-of-the-art parallax-tolerant monocular

image stitching method to create one of the two views of the stereoscopic panorama.

Without loss of generality, we always select the left-view panorama to stitch first.

Second, we stitch the disparity maps of the input stereoscopic images to create the

target disparity map for the stereoscopic panorama by solving a Poisson’s equation.

This target disparity map is optimized to avoid vertical disparities and seamlessly

merge the perceived depth field of the input stereoscopic images. Finally, we warp

the right views of the input stereoscopic images and stitch them into the right-view

panorama according to the target disparity map. The stitching of the right views

is formulated as a labeling problem that is constrained by the stitching of the left

views to make the left- and right-view panorama consistent.

Our main contribution of this chapter is a stereoscopic image stitching method

that allows users to generate stereoscopic panoramas as conveniently as they gener-

ate monocular ones. To develop this stereoscopic image stitching method, we also

provide a novel algorithm to seamlessly stitch input disparity maps and a seam-

cutting method to stitch the right panorama that is consistent with the stitching

of the left panorama and respects the target disparity map. Our experiments show
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our method allows for easy production of stereoscopic panoramas that deliver a

pleasant 3D panoramic viewing experience.

4.2 RELATED WORK

Monocular image stitching is a well studied topic. A good survey can be found

in [54]. This section focuses on stereoscopic image stitching and techniques for

parallax handling which are most relevant to our work.

Stereoscopic image stitching. Stereoscopic panoramas require source images

for the left and right panorama to be taken from different viewpoints. These

images can be recorded using either a stereo camera or a moving monocular cam-

era [12, 22, 24, 36, 43, 47, 50]. The early PSI system uses a stereo camera rig

and rotates it horizontally around an axis passing through the optical center of

the right camera to collect a set of left images and a set of right images [22].

The left and right panorama are then created using a disparity warping technique

and a hierarchical seaming algorithm. Couture et al. [12] developed a stereoscopic

panoramic video stitching method that captures input videos by rotating a stereo

camera rig around an off camera center vertical axis. Peleg et al. [36] developed an

omnistereo panorama system that mounts a monocular camera on a rotating arm

to capture images from various viewpoints. The left and right panorama can then

be synthesized by taking proper strips from input views. Richardt et al. [43] fur-

ther improved this omnistereo method by correcting the deviations from the ideal

capture setup and addressing the insufficient sampling problem using a flow-based

ray upsampling algorithm. All these existing methods require users to densely

sample the scene using a camera and/or follow some specific rules to rotate it. In

contrast, our work only requires sparse samples of the scene casually captured by

a stereo camera.
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Parallax handling. Traditional homography-based image stitching methods can-

not handle parallax well [7, 54]. Thus, techniques like local warping [49], seam

cutting [3, 14, 28], and blending [8, 39], are developed to reduce or eliminate ar-

tifacts caused by parallax. Spatially-varying warps are recently employed to align

images for image stitching [30, 60, 61]. Since these methods are more flexible,

they can often better handle parallax than homography. Recent research shows

that images do not need to be globally aligned to produce a good stitching result.

A recent method, instead of estimating a best-fitting homography, searches for a

good homography that enables optimal stitching to align input images [17]. A

local stitching method further develops this idea and finds a local alignment that

combines homography and spatially-varying warp to better handle parallax and

allows for optimal stitching [61]. Our method builds upon these existing methods

to handle parallax. The first step of our approach uses the recent local stitching

method [61] to stitch the left view of the final stereoscopic panorama. Our method

also extends a spatially-varying warping method to transform the right views of

the input stereoscopic images according to the target disparity map in a way that

is robust against parallax.

4.3 ALGORITHM

In this section, we present our casual stereoscopic image stitching technique. Our

method takes as input a sparse set of stereoscopic images casually captured using

a stereoscopic camera and outputs a stereo panorama. We consider that a good

stereoscopic panorama has the following properties. First, both the left and right

panorama should be artifact-free. Second, the left and right panorama should

be consistently stitched to avoid “retinal rivalry”. Third, the disparity map of

the stereoscopic panorama should be carefully taken care of. Stitching should
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introduce no vertical disparities. Moreover, the horizontal disparity maps of input

images should be seamlessly stitched to ensure proper depth perception.

In order to create such a good stereoscopic panorama, our method decomposes

stereoscopic panorama stitching into three separate steps after a pre-processing

step to estimate disparity maps of input stereoscopic images.

1. Stitch the left panorama from the left views of input stereoscopic images

using a state-of-the-art monocular stitching algorithm.

2. Stitch the target disparity map of the output stereoscopic panorama from

the disparity maps of input stereoscopic images.

3. Warp the right views of input stereoscopic images and stitch the right panorama

according to the stitching of the left panorama and the target disparity map.

For simplicity, we consider the task of stitching two input stereoscopic images

I1 and I2. More images can be stitched similarly. Each stereoscopic image has a

left and right image. For example, I1,l and I1,r are the left and right image of I1,

respectively. We denote the two views of the output stereoscopic panorama as Îpl

and Îpr .

Our method pre-processes input stereoscopic images to estimate their disparity

maps. Like previous methods in stereoscopic image editing [29], we downsample

each input stereoscopic image, estimate dense correspondences from the downsam-

pled images using an optical flow method [52], and scale up the resulting optical

flow vectors as the disparities of the original image. We denote the disparity map

for the input stereoscopic images I1 and I2 as D1 and D2, respectively. We describe

each step of our method below.
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4.3.1 Left Panorama Stitching

Our method starts by stitching one of the two views of a stereoscopic panorama.

Without loss of generality, our method selects to create the left panorama first. As

our method allows a user to casually capture input stereoscopic images, there is

parallax among the left input images. Actually, no matter how the input stereo-

scopic images are taken using a stereoscopic camera, parallax exists at least in

one of the two views. Therefore, we choose to use monocular image stitching

methods [17, 60, 61] that can handle parallax to create the left panorama.

Specifically, we use our parallax-tolerant monocular image stitching method [61].

This monocular stitching method first finds an optimal local alignment that allows

for optimal stitching. The local alignment is a combination of homography-based

warp and spatially-varying warp. Once input images are locally aligned, they are

composed together using a seam-cutting algorithm [28] and a multi-band blending

algorithm [8]. This step outputs the left panorama Îpl as well as the intermediate

stitching information that will be used in later steps, including the warped left

images and the seam where the warped images are merged.

4.3.2 Target Panoramic Disparity Map Estimation

A stereoscopic image has an extra dimension of disparity, which controls the per-

ceived depth [33]. To generate a good stereoscopic panorama, we need to not only

stitch the input images, but also seamlessly stitch the disparity maps of input im-

ages to ensure proper 3D depth perception. We stitch the disparity maps in the

disparity gradient domain using a Poisson blending method [39] and obtain the

target disparity map D̂p of the stereoscopic panorama. Specifically, we minimize

the following energy function that aims to preserve the disparity gradients of the
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(a) Input left images

(b) Input disparity maps

(c) Left panorama

(d) Target disparity map

Figure 4.2: Target panoramic disparity estimation.
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input stereoscopic images I1 and I2.∑
d̂i

∑
j∈Ni

‖(d̂i − d̂j)− ddi,j‖2, (4.1)

where ddi,j =

 d1,i − d1,j if li = 1

d2,i − d2,j if li = 2

where d̂i and d̂j are the target disparities at neighboring pixels i and j of the

left panorama Îpl and Ni is the four-connected neighborhood of pixel i. ddi,j is

the disparity difference between pixel i and j in the proper input stereoscopic

image. If pixel i in the left panorama comes from the input image I1,l, which

is indicated by its label li = 1, ddi,j takes the disparity difference in the input

stereoscopic image I1. These labels come from the seam-cutting step in creating

the left panorama. Similarly, if pixel i comes from the input image I2,l, ddi,j

takes the disparity difference in the input stereoscopic image I2. Here the input

disparity values like d1,i can be obtained by finding the corresponding pixel in the

input image according to the warping applied to create the left panorama and

taking the corresponding disparity value. Finally, we set the boundary condition

of the above energy minimization problem by keeping the original disparities of

the pixels that originally come from I1,l and are out of the overlapping region.

Figure 4.2 shows an example of target panoramic disparity estimation.

Since a panoramic image typically contains a large number of pixels, the above

Poisson’s equation involves a large number of variables. To make this step effi-

cient, we divide the left panorama into a uniform grid mesh and only compute the

disparities for the grid vertices. Our experiments show that the mesh cell size of

5 × 5 pixels works well. This step outputs D̂p, the target disparity map of the

final panorama (even before we create it). A user can further edit this target dis-

parity map to manipulate the stereoscopic 3D viewing experience using tools like
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non-linear disparity mapping [29]. The disparity maps of all the results in this

chapter are directly from the above Poisson blending algorithm and they are not

post-edited unless otherwise noted.

4.3.3 Right Panorama Stitching

After we obtain the target disparity map D̂p of the stereoscopic panorama, we first

warp the right images I1,r and I2,r of the input stereo images according to the target

disparity map. This warping step aligns the right input images as they are warped

accordingly to the same target disparity map. Compared to the common method

that aligns images based on the feature correspondence between these images, this

approach has an important advantage in that the alignment result better respects

the target disparity map and avoids introducing vertical disparities. Once we warp

the right input images, we stitch these warped images using an extended seam-

cutting method guided by the left panorama to create the right panorama.

Right input image warping

All the right input images are warped in the same way. For simplicity and clarity,

we omit the subscripts {1, 2} here. For each grid vertex in the left panorama, we

first find its corresponding point in the corresponding left input image by inverting

the warping used to align left images to create the left panorama. We then find

its corresponding point in the right image according to the input disparity map.

In this way, we obtain a set of control points in the right image, denoted as {pr,i}.

Their corresponding points in the left panorama are {p̂p
l,i}. The disparities of these

control points are known from D̂p. Our method uses these control points to guide

the warping of each right image.

Various spatially-varying warp methods have been developed to warp an image
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guided by a set of control points [27, 29, 31, 60, 61]. We extend these methods to

warp each right input images guided by the set of control points. Specifically, we

divide each right image into a uniform grid mesh and formulate image warping as a

mesh warping problem, where the unknowns are the coordinates of mesh vertices.

The mesh warping problem is defined as a quadratic minimization problem that

enforces the disparities of the control points and minimizes visual distortion. We

describe the energy terms below.

Disparity term. Our method encourages the control points to have the target

disparities so that the stereoscopic panorama can deliver proper depth perception

to viewers. Since each control point pr,i in the right-view image is not necessarily

a grid vertex, we first find the grid cell that encloses the control point in the

right image and then represent it as a linear combination of the four vertices of

the cell. The combination coefficients wj are computed using the inverse bilinear

interpolation method [20]. These coefficients are then used to combine the vertices

v̂j in the output image to compute the location of the control point in the output

image. We define the disparity energy term below.

Ed =
∑
pr,i

‖
∑
j

wjv̂j − p̂p
l,i − d̂i‖2 (4.2)

where d̂i is the target disparity vector of the control point pr,i, taking the form

d̂i = [d̂i 0]T , where d̂i is the target (horizontal) disparity and the vertical disparity

is set 0. p̂p
l,i is the corresponding point of pr,i in the left panorama.

Global alignment term. The disparity term only directly constrains warping

of the image region with control points. These control points, however, only exist

on one side of the stitching seam in the left image that is finally selected to make

the left panorama, as illustrated in Figure 4.3. For the regions with no control

points, warping often distorts them. To solve this problem, we first estimate the
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Figure 4.3: Control points. The control points only exist on one side of the stitching

seam. Thus a part of the right-view image (with the light-red points) has no

disparity constraint and will be distorted during warping if not taken care of.

best-fitting homography according to the control points and then employ this best-

fitting homography to pre-warp the right input image. As the pre-warping result

often provides a good approximation, our method encourages the regions without

control points to be as close to the pre-warping result as possible. We define the

global alignment term as follows

Eg =
∑
i

τi‖v̂i − v̄i‖2 (4.3)

where v̂i and v̄i are the corresponding vertex in the warping result and in the

pre-warping result. τi is a binary value. We set it 0 if there is a control point in

the neighborhood of v̂i; otherwise it is 1.

Smoothness term. To minimize visual distortion, our method encourages each

grid cell to undergo a similarity transformation. We use the quadratic energy term

from [23] to encode the similarity transformation constraint.

Es =
∑
v̂i

wi‖v̂i − (v̂j + u(v̂k − v̂j) + vR(v̂k − v̂j))‖2 (4.4)

where v̂i, v̂j, and v̂k are every three vertices of a grid cell in the output mesh. wi

is the average saliency value inside the triangle defined by the three vertices and
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Figure 4.4: Seam-cutting for the right panorama. The labels, 1 or 2, from the

left-view seam-finding result are propagated to the corresponding pixels in the

right view (bottom). Pixels (in purple) in the monocular region in the right view

will not have recommended labels from the left view. Propagated labels from the

left panorama (top) are encoded as soft constraints in Equation 4.6 to tolerate

left-right matching errors or make trade-off for the monocular stitching quality in

Equation 4.7.

is computed using the same method as [31]. u and v are the coordinates of vi in

the local coordinate system defined by vj and vk, where vi, vj, and vk are the

corresponding vertices in the input mesh of the right image. R =

 0 1

−1 0

.

We combine the above energy terms and obtain the following linear least squares

problem.

E = Ed + λEg + γEs (4.5)

where λ and γ are weights with default values 0.7 and 0.4, respectively. We solve

this energy minimization problem using a sparse linear solver. The outputs from

this step are the warped right images Î1,r and Î2,r according to the target disparity

map of the stereoscopic panorama.
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Seam-cutting for right panorama stitching

We develop a seam-cutting method to stitch the warped right images Î1,r and Î2,r

guided by the seam-cutting result in creating the left panorama. The goal is to

create the right panorama such that it is consistent with the left panorama. We

extend the seam-cutting method for monocular image stitching [28] with an extra

energy term to handle the stereo consistency problem. Specifically, we formulate

this seam-cutting problem as a labeling problem. For each pixel in the overlapping

region, we aim to assign it with a label either 1 or 2, indicating the pixel coming

from Î1,r or Î2,r. We now describe the energy terms for this labeling problem.

Stereo consistency term. Our method encourages pixels in the right panorama

to take the same labels as their corresponding pixels in the left panorama, as

shown in Figure 4.4. Therefore, for each pixel that a corresponding pixel in the

left panorama can be found for, we encourage it to take the same label as the

corresponding pixel in the left view.

Esc(L) =
∑
i∈S

ρiδ(li! = lli) (4.6)

where S is the set of pixels in the right panorama that we can find corresponding

pixels in the left panorama for.

L is the labeling map for pixels in the right panorama, li is the label for pixel i,

and lli is the label of the corresponding pixel in the left panorama. δ(li! = lli) is an

indicator function that takes value 1 if li! = lli and 0 otherwise. ρi is a weight that

measures the confidence of matching pixel i between the left and right view, which

is computed based on the color difference between pixels/patches or is available

from the output of many optical flow and stereo matching algorithms.

Monocular color term. To create a seamless right panorama, our method aims

to minimize the color difference between the overlapping regions of the Î1,r and Î2,r
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along the seam. Consider two adjacent pixels i and j in the overlapping region. If

these two pixels take different labels, the color difference between Î1,r and Î2,r at

pixel i and j should be as small as possible.

Emc(L) =
∑
i,j

(d(i, Î1,r, Î2,r) + d(j, Î1,r, Î2,r))δ(li! = lj) (4.7)

d(i, Î1,r, Î2,r) = ‖Î1,r(i)− Î2,r(i)‖2

where d(i, Î1,r, Î2,r) is the color difference at pixel i between Î1,r and Î2,r, and

δ(li! = lj) is an indicator function, taking value 1 if li! = lj and 0 otherwise.

We combine the above terms and get the following minimization problem that

aims to find an optimal labeling map.

E(L) = αEsc(L) + Emc(L) (4.8)

s.t. lk =

 1 if k ∈ Îm1,r
2 if k ∈ Îm2,r

where α is a parameter with default value 0.5. Îm1,r denotes the non-overlapping

region in Î1,r where pixels take label 1. Similarly, pixels in the non-overlapping

region Îm2,r take label 2. We solve the above labeling problem using a standard

graph-cut algorithm. After we find the seam, we use the seam and the multi-band

blending algorithm [8] to compose the final right panorama.

4.4 EXPERIMENTS

We experimented with our stereoscopic image stitching methods on a variety of

images taken by stereo cameras Fujifilm FinePix 3D W3 and Panasonic HDC-

Z10000. These input stereo images were casually taken by these handheld cameras

and therefore both the left images and right images exhibit large parallax. We

compare our method to a baseline solution that employs a state-of-the-art monoc-

ular stitching method to stitch the left and right panorama independently [61].
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(a) Baseline result (Independent stitching) (b) Our result

Figure 4.5: Comparison between independent stitching results and our results. In

each column, we show the left-view, right-view and red-cyan anaglyph of the stereo

panorama.

Since the baseline method creates the left and right panorama independently, the

disparity distribution is often problematic. For the panoramas from the baseline

method, we manually shifted the left and right panorama vertically so that there

is as small vertical disparities as possible in the main object. We also shifted them

horizontally so that the horizontal disparities in the main object are as similar to

the corresponding panoramas created by our method as possible. Our results were

not adjusted.

Figure 4.5 shows the left, right, and red-cyan anaglyph versions of the stereo-

scopic panoramas stitched by the baseline solution and our method. The baseline
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(a) Baseline result (Independent stitching) (b) Our result

Figure 4.6: Comparison between independent stitching results and our results. In

each column, we show the left-view, right-view and red-cyan anaglyph of the stereo

panorama.

method independently creates the left and right panorama and thus cannot en-

sure the consistency between the two panoramas. For example, a person in red

T-shirt appears in the left panorama but disappears in the right one, as shown in

Figure 4.5(a). This inconsistency brings in the “monocular object violation” [33].

This is because different seams are used to stitch the left and right panorama. Our

method stitches the right panorama constrained by the left panorama and is free

from this monocular object violation, as shown in Figure 4.5(b).

Figure 4.6 shows another example. Although we manually aligned the left and

right panorama of the baseline result, significant vertical disparities still exist, as

shown in Figure 4.6(a), which will cause “3D fatigue” [33]. Since our method warps
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(a) Baseline result (Independent stitching) (b) Our result

Figure 4.7: Comparison between independent stitching results and our results. In

each column, we show the left-view, right-view and red-cyan anaglyph of the stereo

panorama.

the right input images according to the target panoramic disparity map, our result

is free from the vertical disparity artifacts, as shown in Figure 4.6(b).

Figure 4.7 shows the third example. Since the baseline method cannot consis-

tently stitch the left and right images, a monocular object has been introduced

into the stereo stitching result. The waitress in the left and right stitching results

show two different postures, as shown in the top two images in Figure 4.7(a). Such

inconsistency will cause severe retinal rivalry and lead to visual fatigue. In con-

trast, our method can generate consistent left and right stitching result, as shown

in Figure 4.7(b), which delivers comfortable viewing experience.
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4.4.1 User Study

We conducted a user study to evaluate the user experience of viewing stereoscopic

panoramas created by our method and the baseline method. Our study displayed

stereoscopic panoramas on an ASUS VG236H 3D monitor with shuttered glasses.

We selected 10 sets of input stereo images. For each set, we created two stereoscopic

panoramas, one using our method and the other using the baseline solution. We

obtained 20 stereoscopic panoramas in total.

There were 10 participants in our study, including 4 females and 6 males.

They are students from various departments, including computer science, civil

engineering, chemistry, biology, etc. They all have normal stereopsis perception.

They do not know how each panorama was created. Before the study, we provided

four panoramas, two from each method, for them to look at to get used to viewing

stereoscopic panoramas. In our study, we showed the 20 stereoscopic panoramas

mentioned above to each participant one by one in a random order. Participants

can look at a panorama as long as they want. After a participant finishes looking

at a panorama, we ask three questions.

1. Is it easy for you to perceive 3D?

2. Do you feel comfortable viewing the panorama?

3. Are you satisfied with the quality of the panorama?

The participant rated each question using a Likert scale ranging from 1 to 5, with

5 being the most positive. We report the average scores (µ) and the standard

deviations (σ) in Table 4.1. Our study confirms our hypothesis that independently

creating the left and right view of a stereoscopic panorama is problematic and will

damage the stereoscopic 3D viewing experience. The average comfort rate for the

baseline results is 2.68. In contrast, our results deliver a more comfortable 3D
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3D Comfort Quality

mean std mean std mean std

Ours 4.10 0.52 4.19 0.61 3.84 0.45

Baseline 3.78 0.72 2.68 0.46 2.70 0.62

Table 4.1: User study results.

viewing experience with the average rate 4.19. Similarly, users are more satisfied

with our results (µ=3.84, σ=0.45) than the baseline results (µ=2.70, σ=0.62).

The p-values of the paired two sample t-test between our results and the baseline

results for both comparisons are smaller than 0.001, which shows that the difference

between the two sets of results are very significant.

The stereoscopic panoramas from both our method and the baseline method

can allow users to easily obtain 3D perception and our results (µ=4.10, σ=0.52)

are easier for users than the baseline result (µ=3.78, σ=0.72). The p-value for the

study is 0.123, which shows that the difference between the two sets of results is

not statistically significant.

The post-study informal feedback shows that participants complained most

that they cannot fuse the left and right view to obtain 3D perception for some

regions in some panoramas. We found that this problem is due to the inconsistency

between the left and right panorama. For example, a visually salient object only

appears in one of the two views, which brings in “retinal rivalry”. The inconsistency

problem only occurs in the baseline results.

4.4.2 Discussion

Compared to the monocular stitching method [61], our three-step approach adds

two extra steps besides a standard pre-processing step to estimate disparity maps
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of input images: target panoramic disparity map stitching and right panorama

stitching. Our method solves a Poisson’s equation to stitch the target disparity

map. On two input images with size about 900 × 600, this step takes less than

1 second using a desktop machine with Intel i7 CPU and 16 GB memory. Right

panorama stitching has two main computational steps: spatially-varying warping

and seam-cutting using graph-cut. These two take less than 1 second in total.

Our method relies on the disparity maps of input stereo images to take care

of disparity and consistency issues during stitching. The input disparity maps

sometimes contain errors; however, we found that our method is robust against

the disparity errors. For example, we use input disparities to establish the left-

right correspondences and propagate the labels from the left panorama to the

right one. When a pixel in the right panorama is mapped onto a wrong pixel in

the left panorama, the label recommended for it will mostly be corrected still as

neighboring pixels in the left panorama often share the same label except across

the stitching seam. Moreover, our method encodes labeling propagation as a soft

constraint. The errors can usually be corrected by the other energy term in the

optimization. Similarly, while the warping of the right images is guided by the

target disparity map, disparity errors in a few pixels will be corrected by the

smoothness term of the warping energy function.

The first step of our method uses our parallax-tolerant image stitching tech-

nique to stitch the left panorama [61]. While this monocular stitching method can

handle parallax well in general, when the parallax among images from the same

view is very large, it sometimes suffers from alignment artifacts. As our method

builds upon this first step to produce the right panorama, the right panorama pro-

duced by our method also shares similar artifacts. Since our three-step approach

is flexible, it can easily replace the monocular stitching method that is currently
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used with a more advanced monocular stitching method in future.
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Chapter 5

VIDEO STITCHING

The previous chapters explore both regular 2D and stereoscopic 3D image stitching

techniques. In this chapter, we discuss an important extension of image stitching:

video stitching. We present two techniques to tackle the video stitching problem.

5.1 INTRODUCTION

SLR cameras, smart phones, action cameras and video surveillance systems all

provide video recording functions. Users can conveniently take multiple videos

using a multi-camera bracket mount. Stitching them together to create wide field

of view videos would not only meet the entertainment needs of general users, such

as virtual reality (VR) exploration, but it also would better assist scene analysis

and explorations, such as suspicious activity detection.

This dissertation intends to develop a stitching technique that can stitch mul-

tiple pre-synchronized videos. The input videos can be captured from a camera

array which contains multiple cameras with fixed inter-camera configurations. Dif-

ferent lenses and camera models are allowed, and the camera array can be either

fixed at a tripod or hand-held by users. Figure 5.1 shows the multi-camera capture

system where two cameras are mounted using a dual camera bracket; one camera

is Nikon D800, the other one is Sony NEX3N. A great degree of freedom was given

in building the multi-camera capture system to make the video stitching technique

applicable to amateur users.
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Figure 5.1: Dual camera capture system.

Different from stereoscopic images which have an extra dimension of depth,

videos have an extra dimension of time. Similar to stereoscopic images, treat-

ing video stitching as a batch image stitching task to stitch every video frame

independently and combine them together to create video panoramas is problem-

atic as different frame stitching results may lead to incoherent frame transitions.

Several alternatives can be used to stitch videos with better quality. For exam-

ple, panoramic videos can be stitched by consistently picking pixels from specific

cameras in the overlapping region. In this way, temporal coherence can be well

maintained in the panoramic video results. Nevertheless, the panoramic videos

will suffer from severe broken structure artifacts in the overlapping region since

no alignment has been involved in the stitching process. Another alternative is

to estimate a reference alignment and use the same alignment to stitch every

frame. However, for videos with significant movements, the same alignment could

not work for all frames. Misalignments can be easily introduced into the results.

Therefore, stitching results created using this method often suffer from ghosting

artifacts, broken structure artifacts or temporal incoherent frame transitions. Fig-

ure 5.2 shows one frame of a panoramic video demo created using VideoStitch

Studio [51]. We can see clear ghosting artifacts shown in the red rectangle. Tem-

poral incoherence and frame inconsistency could largely compromise the viewing
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Figure 5.2: Video panorama created by VideoStitch Studio.

experience, especially for 3D content such as virtual reality videos. Thus, main-

taining temporal coherence and frame consistency is crucial for delivering a high

quality video stitching result. Google Jump and Facebook 360 both provide 360

panoramic stereoscopic video capture solutions; however, their stitching algorithms

rely on specific camera setups which are not accessible to amateur users. Most im-

portantly, their solutions require that the camera array must be fixed on either a

tripod or a moving rig with constant velocity in a straight line. If users violate

such shooting guidelines, artifacts could be introduced into the final results.

5.2 RELATED WORK

Extensive research has been done in the image stitching area, but not enough work

has focused on stitching media content in the video domain. Traditional techniques

use panoramic video capture systems [10, 19] to create video panoramas. However,

these systems rely on specific camera arrays and cannot handle parallax well, and

thus they can only work properly when dealing with scenes that do not have

close objects in the overlapping area. New approaches such as OMNICAM [46],

GoPano [18] and FullView [15] can handle parallax in a better way, but these

approaches still rely on specific mirror rigs [34, 35]. All those solutions are limited
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by their flexibilities and are not accessible by amateur users.

Rav-Acha et al. [42] created dynamosaics, in which events that happened at

different times all play simultaneously, using videos captured by a moving cam-

era scanning a dynamic scene. Agarwala et al. [4] developed a method to create

panoramic video texture which has an infinitely playing panoramic video with peri-

odic and localized motion. Tompkin et al. [56] and Pirk et al. [40] embedded video

clips into panoramic contexts to allow users to explore panorama scenes better.

These methods have been proven to work reasonably well on videos that contain

objects with localized and periodic movements, but they cannot handle videos with

significantly moving objects.

Zhi et al. [62] presented a Depth-Based Dynamic Mosaic (DMB) approach

which performs foreground-background segmentation first, and then it projects

foreground dynamic objects onto the stitched background panorama plane accord-

ing to their depth estimation for temporal coherence maintenance. This method

can effectively handle videos with a single moving object but cannot work well

for videos with complex scenes and motion patterns. Perazzi et al. [38] presented

an algorithm that uses weighted extrapolation of warps in non-overlapping regions

to ensure temporal coherence; the algorithm also relieves the global deformation

using constrained relaxation. Jiang et al. [25] proposed using a spatial-temporal

local warping method to maintain temporal coherence.

5.3 MOTION MAP GUIDED VIDEO STITCHING

In this section, we present a dense motion map guided video stitching technique.

We take a set of pre-synchronized videos captured from a fixed or hand-held camera

array as input. The camera array contains multiple cameras with fixed inter-

camera configurations. Our output is a stitched wide field of view panoramic
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Figure 5.3: Naive video stitching pipeline.

video. One naive way to stitch videos is to stitch every frame separately and then

combine them together. Since each frame stitching may use completely different

transformations, it is impossible to maintain temporal coherence with this method.

A better solution is to estimate transformations among the first frames and then

use the same transformations for every other frame. This method could work on

occasion if the visual scene is static or the scene only contains very few moving

objects of a small size. However, video content may change largely frame by frame

if the shooting camera is moving or salient objects in the scene are moving. As a

result, fixed transformations cannot handle different frame content alignments.

Inspired by our stereoscopic stitching method, we propose to maintain the

temporal coherence of the original input videos by preserving the motion field of

the input videos. As shown in Figure 5.3, a naive 3-step video stitching method

can be summarized as follows.

Start from the kth frame and with k=1 by default,

1. Stitch the current frame of input videos using a parallax-tolerant image
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stitching technique to obtain the current frame panorama and use it as the

reference panorama.

2. Estimate the motion field between the current frame and its successive frame

for each video. Then use the same warping function that was applied to the

current frame to warp the motion fields. After that, stitch the warped motion

field together seamlessly with the guidance of the reference panorama seam

finding result to create the target panoramic motion map.

3. Warp and stitch the successive frame of each input video to create a successive

panorama according to the target panoramic motion map and the reference

panorama. Update the reference panorama with the new generated successive

panorama. Then repeat step 2 and 3 to stitch the rest of frames.

However, this method can only maintain temporal coherence in theory: it needs

to address several challenges to achieve temporal coherence in practice. First, this

method needs to handle accumulated motion estimation errors. In particular, the

left frame and the right frame can be aligned very well with parallax-tolerant image

stitching at the first frame. However, when using the target panoramic motion map

to guide the successive frame warping, motion estimation errors of the input videos

are often introduced into the results. Such motion errors could be accumulated

across frames and eventually cause noticeable misalignment in the stitching result.

Second, since users are allowed to freely move their shooting camera array, the

cameras in the array actually cannot maintain perfect relative position. An extreme

example is that one camera in the array remains fixed, and the other one rotates

with the fixed camera as the rotating axis. Under this condition, the motion fields

of the two videos are not consistent with each other. Two inconsistent motion fields

will lead to different warping strength for two videos; in the end, the video with
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a greater warping strength would have more distortion and it cannot be matched

with the other one.

To solve these problems, we improve our naive video stitching method by in-

troducing four types of frames: independent frame (I), full-reference frame (F),

reduced-reference frame (R), and semi-independent frame (S). Different stitching

types can be selected according to frame types rather than using the same way for

all frames. The particular features of each are described below:

• I-frames conduct frame warping independently and do not rely on any other

frame warping results or motion fields. The stitching result created by in-

dependent frames is the leading panorama, which sets up the fundamental

alignment model for the video stitching. One video stitching task only has

one leading panorama.

• F-frames warp frames based on the previous frame warping result, the original

motion fields and the target panoramic motion map between current frame

and previous frame.

• R-frames do frame warping based on the original motion fields and target

panoramic motion map. In a video, most of the frames are reduced-reference

frames.

• S-frames do frame warping only based on target panoramic motion map. Since

they rely on very limited reference information, they do the warping al-

most independently. At the same time however, they still take the previous

frame warping result into consideration to maintain temporal coherence. The

stitching result created by semi-independent frames are semi-leading panora-

mas.
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Figure 5.4: Video stitching frame dependencies.

The frame dependencies of the video stitching task is shown in Figure 5.4. In

this way, motion estimation errors and the poor effects of inconsistent warping

strength can be reset to zero every few frames, and thus cannot lead to any notice-

able artifacts. The method is described in detail below. For simplicity, we consider

the task of stitching two input videos Vl and Vr. More videos can be stitched sim-

ilarly. Each input video has several frames. For example, f 1
l , f 2

l ,..., fn
l , are frame

1,2,..., n of Vl, respectively. We denote each frame stitching result of the output

video panorama as O1, O2,..., On.

Our method pre-processes input videos to estimate the motion field between

every two consecutive frames. We downsample each input video, estimate the

motion field using the optical flow method [52], and scale up the resulting optical

flow vectors to get the motion maps. To remove the perspective distortion, all our

video frames are projected to a cylindrical plane before the stitching is performed.

5.3.1 Independent Frame Stitching

Our method starts with stitching fk
l and fk

r of Vl and Vr, by default k = 1.

The first frame of input videos would always be stitched as I-frames. As the

shooting camera array has multiple cameras with a certain baseline, parallax has

been introduced into video frames. Therefore, we use our parallax-tolerant image

stitching technique which can handle the parallax problem well enough to create

first frame stitching result Ok as the leading panorama, as well as the intermediate
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stitching information that is used in later steps, including the warped frame f̂k
l

and f̂k
r of Vl and Vr, and the seam where the warped frames f̂k

l and f̂k
r are merged.

5.3.2 Target Motion Map Estimation

Videos have an extra dimension of time. To make high-quality video panoramas, it

is necessary to ensure the temporal coherence is maintained among all frames in the

stitched video. Given two input motion maps Mk
l and Mk

r , we achieve this goal by

stitching the motion maps in the motion gradient domain using a Poisson blending

method [39] to obtain the target motion map Mk
O for frame fk

l and fk
r . Specifically,

we minimize the following energy function that aims to preserve motion field of

the input videos.

∑
m̂i

∑
j∈Ni

‖(m̂i − m̂j)− dmi,j‖2, (5.1)

where dmi,j =

 ml,i −ml,j if li = l

mr,i −mr,j if li = r

where m̂i and m̂j are the target motion vectors at neighboring pixels i and j of Ok,

and Ni is the four-connected neighborhood of pixel i. dmi,j is the motion difference

between pixel i and j in the proper input video. If pixel i in Ok comes from fk
l ,

which is indicated by its label li = l, dmi,j takes the motion difference between

frame fk
l and fk+1

l . These labels come from the seam-cutting step in creating

the leading panorama. Similarly, if pixel i comes from fk
r , dmi,j takes the motion

difference estimated between frame fk
r and fk+1

r . Here the input motion vectors

such as ml,i can be obtained by finding the corresponding pixel in fk
l according

to the warping function applied to create the leading panorama and taking the

corresponding motion vector. Finally, we set the boundary condition of the above

energy minimization problem by keeping the original motion vectors of the pixels
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that originally come from fk
l and are out of the overlapping region.

5.3.3 Full-reference Frame Stitching

In this step, we first estimate the warp guidance for fk+1
l and fk+1

r (successive

frames of fk
l and fk

r ) according to the leading panorama and motion maps. Then

we warp fk+1
l and fk+1

r using content-preserving warping. Once we get the warped

successive frames f̂k+1
l and f̂k+1

r , we stitch them together using an extended seam-

cutting method guided by the previous seam finding result to create the successive

stitching result Ok+1.

Full-reference frame warping

Frames fk+1
l and fk+1

r are warped in the same way. For simplicity and clarity, we

omit the subscripts {l, r} here. As shown in Figure 5.5, (1) we first set a number

of control points in the previous panorama Ok. For each control point {pk,i
O }, (2)

we find its corresponding point in fk by inverting the warping used for aligning fk

to create the previous panorama Ok. We denote them as {pk,i}. After that, (3)

we find its corresponding point in fk+1 according to the input motion map Mk.

In this way, we obtain a set of control points in fk+1, denoted as {pk+1,i}. (4) We

also find their corresponding points in the target panorama {pk+1,i
O }, which are

computed by adding the motion vectors of these control points which are known

from Mk
O to {pk,i

O }. Finally, (5) our method uses these control points to guide the

warping of fk+1
l and fk+1

r .

Specifically, we divide fk+1
l and fk+1

r into a uniform grid mesh and formulate

frame warping as a mesh warping problem, where the unknowns are the coordinates

of mesh vertices. The mesh warping problem is defined as a quadratic minimiza-

tion problem that enforces the motion of the control points and minimizes visual
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Figure 5.5: Full-reference frame warping (green hexagons represent the step num-

ber). (1) Setup control points in stitched panorama; (2) obtain corresponding con-

trol points for original inputs; (3) and (4) obtain corresponding control points for

successive original inputs and their stitched panorama by adding original motion

vectors and target motion vectors; (5) warp successive original inputs according to

control point positions and stitch them to get the successive panorama.

distortion. We describe the energy terms below.

Motion term. Our method encourages the control points to move according

to the target motion vectors so that the temporal coherence of the input videos

can be preserved. Since each control point {pk+1,i} in fk+1 is not necessarily a

grid vertex, we first find the grid cell that encloses the control point in fk+1 and

represent it as a linear combination of the four vertices of the cell. The combination

coefficients wj are computed using the inverse bilinear interpolation method [20].
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These coefficients are then used to combine the vertices v̂j in the output frame

to compute the location of the control point in the output frame. We define the

motion energy term as follows:

Em =
∑
pk+1,i

‖
∑
j

wjv̂j − pk,i
O − m̂i‖2 (5.2)

where m̂i is the target motion vector of the control point pk+1,i, taking the form

m̂i = [ĥmi ˆvmi]
T , where ĥmi is the horizontal motion vector and ˆvmi is the vertical

motion vector. {pk,i
O } is the corresponding point of pk+1,i in the reference panorama

Ok.

Smoothness term. To minimize visual distortion, our method encourages each

grid cell to undergo a similarity transformation. We use the quadratic energy term

from [23] to encode the similarity transformation constraint.

Es =
∑
v̂i

wi‖v̂i − (v̂j + u(v̂k − v̂j) + vR(v̂k − v̂j))‖2 (5.3)

where v̂i, v̂j, and v̂k are every three vertices of a grid cell in the output mesh. wi

is the average saliency value inside the triangle defined by the three vertices and

is computed using the same method as [31]. u and v are the coordinates of vi in

the local coordinate system defined by vj and vk, where vi, vj, and vk are the

corresponding vertices in the input mesh of the right image. R =

 0 1

−1 0

.

We combine the above energy terms to obtain the following linear least squares

problem.

E = λEm + γEs (5.4)

where λ and γ are weights with default values 1 and 0.3 respectively. We solve

this energy minimization problem using a sparse linear solver. The outputs from

this step are the warped successive frame f̂k+1
l and f̂k+1

r according to the target

panoramic motion map of the reference panorama Ok.
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Motion vector screening

We use the optical flow method [52] to estimate motion field. When pixel displace-

ments between frames are very large, the optical flow method usually fails to give

an accurate motion vector estimation. Motion estimation errors may also occur in

textureless regions. To compensate motion estimation errors, we compute a motion

confidence map and use it to eliminate control points with low confident motion

vectors. Given two frames f 1, f 2 and the estimated motion map m1 between

them, for each pixel pi in f 1, we use m1 to compute its estimated corresponding

pixel position p̂i in f 2. After this, we calculate the color difference between these

two corresponding pixels. The larger the color difference is, the more inaccurate

the estimated motion vector is. Apart from this, occlusion also happens in video

frames. Due to occlusion, some pixels in f 1 may not have corresponding pixels

in f 2. For this reason, we estimate an occlusion map using the method described

in [5]. Specifically, if two or more pixels in f 1 are mapped to the same pixel in f 2,

the pixel with the largest motion vector value is the occluder while the rest are

occluded. The computation produces an binary occlusion map O. If O(i, j) = 1,

pixel (i, j) is an occluded, otherwise occluding pixel.

Temporal coherent seam finding

The same extended seam-cutting method as described in Chapter 4 is used here

for stitching the warped successive frame f̂k+1
l and f̂k+1

r with the guidance of

the seam-cutting result in creating Ok. The goal is to create Ok+1 such that it

is consistent with Ok. Specifically, we formulate this seam-cutting problem as a

labeling problem. For each pixel in the overlapping region, we encourage pixels in

the successive panorama Ok+1 to take the same labels as their corresponding pixels

in the reference panorama Ok. To create a seamless successive stitching result, we
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Figure 5.6: Reduced-reference frame warping. (1) and (2) Use the same control

points obtained from full-reference frame warping step as the control points for

original inputs and stitched panorama; (3) and (4) obtain corresponding control

points for successive original inputs and their stitched panorama by adding origi-

nal motion vectors and target motion vectors; (5) warp successive original inputs

according to control points and stitch them to get the panorama.

minimize the color difference between the overlapping regions of the f̂k+1
l and f̂k+1

r

along the seam. We solve the above labeling problem using a standard graph-cut

algorithm. After the seam is located, we use the seam and the multi-band blending

algorithm [8] to compose the final k + 1 panorama. We omit the mathematical

equations here for the sake of space (refer to Chapter 4 for a detailed explanation

on the equations).
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5.3.4 Reduced-reference Frame Stitching

After obtaining the newly generated stitching result Ok+1, instead of finding a

new set of control points by inverting the last frame warping results, we use the

same set of control points that warped fk+1
l and fk+1

r to warp fk+2
l and fk+2

r . As

shown in Figure 5.6, for each control point {pk+1,i} in fk+1
l and fk+1

r , (1) we use

the input motion map Mk+1 to get their positions in fk+2
l and fk+2

r . For their

corresponding points {pk+1,i
O } in Ok+1, (2) we use the target motion map Mk+1

O to

get their positions in Ok+2. Then (3) we use the same content-preserving warping

technique described in the last section to warp fk+2
l and fk+2

r , and use the temporal

coherent seam finding method to stitch the warped frames together to create the

successive stitching results.

5.3.5 Semi-independent Frame Stitching

Simply relying on only one leading panorama and motion estimation to perform

successive frame warping could have problems, because motion estimation errors

can be accumulated so that tiny misalignments caused by motion estimation er-

rors can eventually become large misalignments. To address this problem, a simple

solution is to update the leading panorama every few frames using independent

frame stitching. However, this method completely ignores the previous stitching

result and could lead to temporal incoherence. Therefore, we use semi-independent

frame stitching to generate semi-leading panoramas every few frames. The semi-

independent frame interval number is experimentally set to 30 for videos with

slow camera movement and 10 for videos with fast camera movement. A good

semi-leading panorama should 1) preserve the geometric structures of the previous

frames as much as possible to ensure a smooth transition between the previous
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Figure 5.7: Semi-independent frame warping (green hexagons show the step num-

ber). (1) Estimate feature correspondences between current frame panorama and

successive original input frames as the control points; (2) obtain target control

points for successive stitched panorama by adding target motion vectors; (3) warp

successive original inputs according to control points position and stitch them to

get the successive panorama.

reduced-reference frame stitching result and the semi-leading panorama; 2) elimi-

nate the matching errors that caused by accumulated motion estimation errors. To

achieve these goals, different from independent frames which generate the leading

panorama without using any reference information, semi-independent frames take

the previous stitching results into consideration to maintain the temporal coher-

ence. To decrease the poor effects of accumulated errors as much as possible, we
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(a) (b) (c)

Figure 5.8: Comparisons between two video stitching methods. From left to right,

the close-ups show comparisons to the methods: (b) Autopano Pro, (c) our result.

Autopano Pro result has misalignment around the advertisement sign area. In

contrast, our result does not introduce misalignment.

stitch the semi-independent frames using as little reference information as possi-

ble. Specifically, as shown in Figure 5.7, we (1) estimate feature correspondences

between Ok+31 and fk+32
l , Ok+31 and fk+32

r using SIFT, and use those feature

correspondences as the control points to warp fk+32
l and fk+32

r . With the target

motion map Mk+31, (2) we can get the target positions of the control points in

Ok+32. In this way, the misalignments caused by accumulated motion estimation

errors can be reset to zero, at the same time, (3) content-preserving warping warps

frame fk+32
l and fk+32

r with the guidance of the control points to maintain temporal

coherence.

5.3.6 Experiments

In this section, we first introduce our multi-camera capture system. We then

experimented with our method on a range of challenging videos with parallax and

moving objects. We also compared our method to the state-of-the-art methods,

including VideoStitch Studio [51] and Autopano Pro [26], which are commercial
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software for panoramic video generation.

Multi-camera capture system

Two cameras were mounted using a dual camera bracket: one camera is Nikon

D800, and the other one is Sony NEX3N. Our video stitching technique allows a

flexible multi-camera system setup, and camera models can be replaced with other

types (refer to Figure 5.1 for our camera capture system).

Results

Figure 5.8 shows comparisons between two video stitching methods. The input

videos are taken from GCW dataset [38]. Autopano Pro cannot consistently align

two frames well, therefore the frame stitching result suffers from broken structure

artifacts, as shown in Figure 5.8(b). Both the building and the advertisement sign

have been broken into two parts. On the other hand, our result is free from any

artifact as shown in Figure 5.8(c).

Figure 5.9 shows comparisons among three video stitching methods. VideoS-

titch Studio cannot consistently align two frames well, and therefore the frame

stitching result suffers from ghosting artifact, as shown in the red rectangle in

Figure 5.9(b). Autopano Pro has the same problem, and thus it leads to broken

structure artifacts. Both the building and the car have been broken into two parts

in the stitching result, as indicated in Figure 5.9(c). On the other hand, our result

is free from any artifact, as shown in Figure 5.9(d).

Figure 5.10 shows comparisons between two video stitching methods. The

input videos are taken from GCW dataset [38]. VideoStitch Studio cannot consis-

tently well align two frames, and ghosting artifacts have been introduced into the

stitching result, as shown in Figure 5.10(b). The road lines are duplicated due to
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(a) Input frames

(b) VideoStitch Studio result

(c) Autopano Pro result

(d) Our result

Figure 5.9: Comparisons among three video stitching methods.
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(a) (b) (c)

Figure 5.10: Comparisons between two video stitching methods. From left to

right, the close-ups show comparisons to the methods: (b) VideoStitch Studio, (c)

our result. VideoStitch Studio introduces misalignment into the results, result in

ghosting artifacts. No misalignment occurs in our result.

misalignment. On the other hand, Our result is free from any artifact as shown in

Figure 5.10(c).

5.3.7 Discussion

Our method relies on the optical flow method to compute the motion field, which

are time-consuming and unreliable; therefore, a confidence map was incorporated

for the optical flow method to compensate motion estimation errors so that inac-

curate motion vectors would have a lower weight in affecting the warping strength.

However, the side effect of such a method is that some regions with many inac-

curate motion vectors will completely lose control on the warping step, and this

would lead to distorted results. To reduce the effects of accumulated motion esti-

mation and frame warping errors, semi-independent frames are used for resetting

the accumulated errors to zero every few frame. Nevertheless, semi-independent

frame warping can only warp the frame as similar as possible to the previous stitch-

ing result. Minor differences can be observed across semi-independent results and
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their previous frame stitching result. Since the video frame warping is dependent

on previous stitching result, a poor stitching result would affect all the subsequent

frame stitching.

5.4 FEATURE TRAJECTORY GUIDED VIDEO STITCHING

The motion map guided stitching method works well on a range of examples.

However, this approach highly relies on dense motion maps to calculate frame

warping functions. Optical flow based motion estimation methods often introduce

errors into motion maps in textureless regions or regions with significant moving

objects. Furthermore, this approach depends on previous frame stitching results

to stitch successive frames, which accumulates errors across frames. Finally, this

approach is slow as frame dependency makes parallel processing impossible. To

stitch videos in a more reliable and faster way, instead of using motion maps as

the stitching guidance, we develop a method that uses sparse feature trajectory

as the guidance. To do this, we first estimate the target motion trajectory for the

stitched video output. Then we warp each frame view according to the trajectory

guidance. Finally, we blend the warped views together to get the stitched frames.

The key components of this algorithm are discussed below.

5.4.1 Target camera motion trajectory estimation

Dense motion map or sparse motion vector?

To obtain a temporal coherent output panoramic video, it is necessary to stitch

every set of input video frames in a consistent manner. This is usually achieved by

using a target camera motion path as the guidance so that frames are consistently

warped and stitched together. A straightforward way to create a target camera

motion trajectory is to use the dense motion maps of the input videos as what was
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done in the previous method. However, motion maps cannot be used directly; the

motion maps of each input video must be stitched in order to create a panoramic

motion map as the guidance. This step introduces stitching dependency since

motion map stitching is based on the seam finding result of the previous frame

stitching. Getting consistent seam finding results is extremely difficult for video

stitching. Although our improved graph cut seam finding method maintains certain

consistency, it tends to be brittle when input videos contain fast moving objects.

In addition, the dependency on previous seam finding results introduces accuracy

and efficiency issues. Warping and stitching errors accumulated across frames. No

parallel processing can be incorporated into video stitching.

Due to the above reasons, sparse motion vectors are used instead of dense

motion maps for creating target camera motion trajectory. With SIFT feature

detection and KLT tracking algorithms, we can get the motion trajectories of the

sparse features for each individual input video. Then a desired camera motion

trajectory for the output panoramic video can be generated using such sparse

feature motion trajectories. The next question is how to generate the desired

camera motion trajectory for the output video before it is even generated. To

address this problem, it is necessary to first discuss the parallax removal issue in

video stitching.

Parallax removal

A reasonable stitching result requires that the two neighboring views have wide

enough overlapping region. For this reason, we set the baseline for two neighboring

cameras to be less than 12 cm. Parallax would be introduced into the neighboring

views with such separation of two cameras. Cylindrical/spherical projection or

homography cannot account for such parallax, and the stitching result will suffer
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from ghosting artifacts or broken structures. Local homography based methods

such as parallax-tolerant image stitching can handle parallax well, but this method

relies on seam finding to obtain reasonable results. However, inconsistent seam

finding creates issues for maintaining temporal coherence in video stitching tasks.

Therefore, we decide to avoid using a stitching method based on seam finding to

perform individual frame stitching. As a side benefit of having an inter-camera

configuration that is “less than 12 cm”, there would be no inputs with extensive

parallax as the examples in parallax-tolerant image stitching. Thus, it would be

possible to eliminate the parallax between neighboring views with proper image

warping.

Specifically, we first estimate feature correspondences between two neighboring

views. We then need to account for parallax and align the neighboring views to-

gether. The alignment model chosen to handle parallax in a better way is global

homograph with content-preserving warping. We use global homography to glob-

ally and roughly align the whole overlapping area, and then use content-preserving

warping to refine the alignment result. To align the neighboring views, a direct

way is to apply the warping function on only one view so that it can match with the

other. This approach can use the estimated feature correspondences directly with

no extra computation. However, it forces one view to warp significantly to match

up with the other to eliminate the parallax. This introduces imbalanced warping

effects which could cause misalignment in regions with large displacement. We

address this problem by conducting warping operations on both views. We first

estimate the in-between middle positions for all feature correspondences. We then

warp both views to match up with the in-between middle virtual view to reach

the alignment. Our solution warps both views with equal strength, and thus can

eliminate parallax and align images in a better way.
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Afterwards, we create the ideal target camera motion trajectory for the output

panoramic video with the above idea. Starting from frame 1, we first estimate

feature correspondences between two neighboring views. Following this step, we

estimate the in-between middle positions for all corresponding features and use

them as the ideal motion position for frame 1. To obtain motion trajectories

with temporal coherence, we use KLT tracking to find the corresponding feature

points in the successive frames and get middle positions. Certain image content

would disappear and new image content would be added into the video frames

during camera motion. To ensure consistent control for all image regions, we esti-

mate SIFT feature correspondences for each individual frame pairs and continually

adding the features that lie on the newly added region.

5.4.2 Frame stitching

After obtaining the target camera motion trajectory, we can then warp each indi-

vidual frame and stitch them together. We use global homograph with content-

preserving warping as the alignment model. To remove perspective distortion and

reduce the warping effect as much as possible, we first project all views onto a

cylindrical surface to roughly align the images. We describe the detailed frame

warping steps below.

For simplicity, we consider the task of stitching two input videos Vl and Vr.

More videos can be stitched in the same way. We use f 1
l and f 1

r to denote the first

frame of two input videos.

Data term. The feature points in frame f 1
l and f 1

r should be moved to match

their in-between middle target positions in the virtual frame so that they can be

well aligned. Since a feature point P j is not usually coincident with any mesh

vertex, we find the mesh cell that contains P j and use a linear combination of the
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four cell vertices to represent it. The linear combination coefficients are computed

using the inverse bilinear interpolation method [20]. These coefficients are then

used to combine the vertices in the warped frame f̂ 1
l to compute P̂ j. We can then

define the alignment term as follows.

Ed =
n∑

j=1

‖
∑

αj,kV̂j,k − P̃ j‖2, P̃ j = (P j
l + P j

r )/2

where n is the number of feature points, αj,k is the bilinear combination coefficient,

and V̂j,k is a vertex of the mesh cell that contains P̂j, and P̃ j is the target feature

point in the in-between middle position of the virtual frame.

Smoothness term. To further minimize the local distortion during warping,

we encourage each mesh cell to undergo a similarity transformation. We use the

quadratic energy term from [23] to encode the similarity transformation constraint.

Specifically, consider a triangle 4V̄1V̄2V̄3. Its vertex V̄1 can be represented by the

other two vertices as follows,

V̄1 = V̄2 + u(V̄3 − V̄2) + vR(V̄3 − V̄2), R =

 0 1

−1 0

 , (5.5)

where u and v are the coordinates of V̄1 in the local coordinate system defined

by V̄2 and V̄3. If this triangle undergoes a similarity transformation, its coordi-

nates in the local coordinate system will not be changed. Therefore, the similarity

transformation term can be defined as follows,

Es(V̂i) = ws‖V̂1 − (V̂2 + u(V̂3 − V̂2) + vR(V̂3 − V̂2))‖2, (5.6)

where u and v are computed from Equation 5.5. We sum Es(V̂i) over all the vertices

to obtain the full smoothness energy term Es. Here ws measures the saliency value

of the triangle4V̄1V̄2V̄3 using the same method as [31]. We use this saliency weight

to distribute more distortion to less salient regions than those salient ones.
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Global alignment term. The data term above only directly constrains warp-

ing of the overlapping image region with feature points. For other regions, content-

preserving warping often distorts them. To solve this problem, we first estimate

the best-fitting homography according to the control points and then employ this

best-fitting homography to globally pre-warp the frame. As the pre-warping result

often provides a good approximation, our method encourages the regions without

control points to be as close to the pre-warping result as possible. We therefore

define the following global alignment term,

Eg =
∑
i

τi‖V̂i − V̄i‖2, (5.7)

where V̂i and V̄i are the corresponding vertex in the content-preserving warping

result and in the pre-warping result. τi is a binary value. We set it to 1 if there is

no feature point in the neighborhood of Vi; otherwise it is 0. This use of τi provides

flexibility for local alignment.

Optimization. We combine the above three energy terms into the following

energy minimization problem,

E = αEd + βEg + γEs, (5.8)

where α, β, and γ are the weight of each term with default values 1.0, 0.7, and

0.3, respectively. The above minimization problem is quadratic and is solved using

a standard sparse linear solver. Once we obtain the output mesh, we use texture

mapping to render the final result.

5.4.3 Further temporal coherence improvement

The above method usually can generate reasonable results. However, the feature

set for each frame could be different from its successive frame set due to camera
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motion, which could cause the global alignment that is estimated from the feature

set to be different across frames. This could result in temporal incoherent frame

transition in the non-overlapping area. To compensate for this incoherence, we

estimate the global alignment for the first frame set, and then use the same global

alignment for the rest of the frames. This global alignment approximation can per-

form well enough because we have already used cylindrical projection to pre-align

all input video frames and remove major horizontal and vertical misalignment.

Under such a condition, the frame warping in the non-overlapping region can be

propagated into the rest of the frames to keep the temporal coherence.

5.4.4 Experiments

We use the same camera array setup as described in the last section for the fea-

ture trajectory guided video stitching. We experimented our method on several

challenging videos. Figure 5.11 shows frame results of three panoramic videos

generated from three different stitching algorithms: (b) VideoStitch Studio, (c)

Autopano Pro and (d) our result. VideoStitch Studio has severe ghosting artifacts

around the tree area, as indicated by the red rectangle in Figure 5.11(b). Autopano

Pro result suffers from broken structure artifacts around the window region, as in-

dicated by the red rectangle in Figure 5.11(c). Our result is free of artifacts, as

shown in Figure 5.11(d).

Figure 5.12 shows another stitching result comparison. VideoStitch Studio

introduces ghosting artifacts around the house ceiling area, as indicated by the red

rectangle in Figure 5.12(b). Autopano Pro breaks the wooden panel, as indicated

by the red rectangle in Figure 5.11(c). Our result is free of any artifact, as shown

in Figure 5.12(d).

Our algorithm can also be extended to handle multi-camera video stitching
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(a) Input frames

(b) VideoStitch Studio result

(c) Autopano Pro result

(d) Our result

Figure 5.11: Comparisons among three video stitching methods.
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(a) Input frames

(b) VideoStitch Studio result

(c) Autopano Pro result

(d) Our result

Figure 5.12: Comparisons among three video stitching methods.
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(a) Input frames

(b) Our result

Figure 5.13: Multi-video stitching result.
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tasks. Figure 5.13 shows an example of stitching three input videos. The input

videos are taken from GCW dataset [38].

5.4.5 Discussion

Our method uses sparse feature trajectories as the guidance to warp and stitch

frames consistently. As a result, our method preserves all the camera movements

such as rolling shutter artifacts in the input videos. However, our method can be

easily extended to generate stabilized panoramic videos by smoothing the desired

camera motion path before frame warping and stitching. One limitation of our

method is that since our algorithm eliminates parallax by warping the neighboring

two views to match with the in-between middle virtual view, we can only handle a

reasonable amount of parallax. If there are objects that are in front of the camera

within one meter, our algorithm could introduce ghosting artifacts into the results.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 RESEARCH CONTRIBUTIONS

In this dissertation, we focus on the problem of stitching images and videos that

existing techniques cannot handle well. We first contribute a parallax-tolerant

image stitching technique to stitch 2D images with large parallax. Traditional

stitching techniques that use homography-based transformations to stitch images

cannot generate seamless stitching results. Our method is developed based on

the observation that input images do not need to be perfectly aligned over the

whole overlapping area. Instead, they only need to be aligned in a way that there

exists a local region where they can be seamlessly blended together. We develop

a randomized algorithm to search for a local homography, which, combined with

content-preserving warping, allows for optimal stitching.

We also develop a technique for stitching stereoscopic panoramas from stereo

images casually taken using a stereo camera. Stereoscopic image stitching needs

to address three challenges: how to deal with parallax, how to stitch the left-

and right- view panorama consistently, and how to take care of disparity dur-

ing stitching. We address these challenges by first stitching the left images with

the parallax-tolerant image stitching method to create the left view panorama,

then stitching the disparity maps with a disparity optimization, finally warping

and stitching the right images according to the optimized disparity map and the

stitched left view panorama.
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We then extend the image stitching problem into the video domain and present

two techniques to stitch pre-synchronized videos captured from a fixed or hand-held

camera array which contains multiple cameras with fixed inter-camera configura-

tions. To generate stitched videos with temporal coherence, we first develop a

dense motion map guided video stitching technique that warp frames according to

target motion maps. We categorize video frames into four different frame types. In-

dependent frames do frame warping independently; full-reference frames do frame

warping based on previous frame warping result and motion field information;

reduced-reference frames do frame warping based on limited previous frame warp-

ing output and motion field information; and semi-independent frames do frame

warping only based on motion field information. In this way, we can stitch videos

with temporal coherence. After that, we then develop a video stitching technique

based on feature trajectory guidance. Such a method uses frame feature trajecto-

ries to generate a desired camera motion path and then uses global transformation

with content-preserving warping to warp individual frames to match with the ideal

camera motion path. Finally, we use alpha blending to blend all warped frames

together to create final panoramic videos.

6.2 FUTURE DIRECTIONS

To better analyze the parallax problem for image stitching tasks, one future di-

rection is to create a benchmark dataset for parallax related research. In such a

benchmark dataset, we could provide accurate parallax measurements and stitch-

ing results for different scenes in order to analyze how parallax affects the image

stitching process and improve the stitching techniques to handle parallax in a

better way.
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For panoramic video stitching, currently we do not incorporate video stabiliza-

tion process into the video stitching technique. But the feature trajectory guided

video stitching method we presented in chapter 5 can be extended to generate

panoramic videos with temporally coherent and stabilized video content. This

can be done by smoothing the desired camera motion trajectory to remove the

wobbling artifacts before frame warping and stitching.

Another future direction is to extend the current video stitching technique

into the stereoscopic video domain to create high-quality stereoscopic panoramic

videos. In addition, we require users to fix the inter-camera configuration in this

dissertation for the video stitching task. More flexible use cases could be explored

so that users can create video panoramas in more casual ways.
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