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Abstract 

The use of colloidal quantum dots (QDs) for photovoltaic energy conversion is a nascent 

field that has been dominated for well over a decade by the use of 3-mercaptopropionic 

acid (3-MPA) capped PbS QDs.  These QDs are routinely deposited via an in situ solid 

state ligand exchange process that displaces the native oleate ligand on the PbS QD 

surface.  This ligand exchange procedure is wasteful of material and has been 

demonstrated to leave numerous impurities that limit electronic performance of the as-

deposited QD devices.  Until the last few years there was very little understanding in 

chemical literature as to many important aspects of QD chemistry for this material 

pairing outside the framework of a QD solid.  In this work, a colloidal suspension of 3-

MPA capped PbS QDs in DMSO was formulated and investigated to probe ligand 

dynamics and optical properties of the suspended colloid. QD bound 3-MPA was found 

to be in dynamic exchange with “free” ligand in solution by 1H-NMR spectroscopy. 

Optical properties and colloidal stability were found to be heavily dependent on the 

presence of a significant excess of free ligand. PbS QDs were also found to be highly 

photo-catalytic towards oxidative dimerization of 3-MPA to its dimer, dithiodipropionic 

acid (dTdPA). 

 After an initial colloidal suspension was achieved, attempts were made to directly 

deposit the colloid as a QD “ink” to form optoelectronic devices. While photo-switchable 

devices were obtained, ultimately it was determined that DMSO was a largely 

incompatible solvent choice for solution processing methodologies. Subsequently, 3-

MPA capped PbS QD colloids were obtained in volatile organic solvents amenable to 
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solution processing by the addition of a stabilizing ammonium salt. These QD colloids 

maintained excellently resolved optical properties and were able to form conformal 

coatings from simple evaporative deposition. The ligand chemistry of this colloid was 

extensively investigated via NMR and optical spectroscopy. These QDs were also found 

to be highly photo-catalytic towards conversion of monomer 3-MPA to dTdPA.  
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I) THESIS STATEMENT 

 3-mercaptopropionic acid (3-MPA) capped PbS quantum dots (QDs) can be 

prepared in stable colloidal suspensions with promise for optoelectronic device 

applications and as thiol oxidation catalysts. 

Specifically: 

1. Deliberate control over solvent, quantum dot, ligand, and co-ligands allows for 

the preparation of colloidally stable suspensions of 3-mercaptopropionic acid 

capped lead PbS quantum dots. 

2. Their high luminescence in suspension is reflective of their effective energy 

preservation in champion QD photovoltaic devices. 

3. 3-MPA-PbS QD colloids can be prepared in solvents amenable to solution 

processing of conformal films by addition of a stabilizing co-ligand. 

4. Dynamic exchange on the quantum dot surface of 3-mercaptopropionic acid and 

its oxidation product allows light-enhanced surface catalyzed oxidation of 3-

mercaptopropionic acid to the corresponding dithiol dimer. 
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II) INTRODUCTION 

A) Solar Energy 

1) A Statement on Energy Motivations 

The modern global energy ecology is a complex landscape of production and 

consumption with one primary observation. Despite constant changes in sources and 

consumption of energy, there is a dominant trend: we consume more energy globally as 

time progresses. Worldwide energy consumption has more than doubled between 1971 

and 2013, with the use of coal and natural gas also doubling in that timeframe to keep 

pace with demand.1 Combustible “fossil” fuels have dominated the energy landscape into 

the modern era.  

CH4 + 2 O2 → CO2 + 2 H2O 

Scheme II-1. Combustion reaction of a simple hydrocarbon releasing CO2. 

Regulation and energy efficiency improvements have led to projections that indicate 

the United States may stabilize CO2 emissions in the coming decades.2 Despite this, the 

industrially developing world is consuming massive amounts of energy, primarily using 

fossil fuels (in this case coal and oil) as manufacturing increases to unprecedented levels.3 

While the effects of CO2 on the environment are not entertained in this document, 

common-sense implies a diverse energy portfolio will likely be necessary to satisfy the 

demands of an increasing global-population. Inherently exhaustible resources that are 

inhomogeneously distributed ultimately lead to an unstable energy economy. This 

demands that we distinguish a difference between historically used exhaustible energy 

sources and renewable energy sources that are ubiquitously available.  
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2) Solar Energy as a Renewable Energy Source 

Recent statistics put annual global energy consumption at 13594.11 million tons of oil 

equivalent (Mtoe).1 To put this in a more standard unit of energy, this is equivalent to 

1581 x 102 teraWatt hours (TWh).i This puts the average rate of energy consumption at 

18.05 TW.ii Fortuitously, the sun provides a bounty of energy to the Earth’s surface in the 

form of solar radiation. Solar radiation insolates at a rate of 120000 TW, and an oft cited 

statistic from 2005 states that more energy hits the Earth’s surface in an hour than we 

consume, as a planet, in a year’s time.4 Illustrating the rapid growth of energy 

consumption, this statistic no longer holds for 2013; now only ~76 % of the energy 

consumed in a year is delivered to the Earth’s surface via insolation from the sun.iii 

Regardless, the sun still delivers an astonishing 6.649 * 105 % of the amount of power we 

demand, illustrating the massive scale of this resource.iv  

3) Challenges for Solar Energy 

Solar energy is massively and ubiquitously available, carbon neutral,v and capable of 

being captured or stored in a variety of technologies with their own unique challenges: 

direct solar-to-electric, solar fuel generation, and storage as biomass through 

photosynthesis.5 Direct energy generation works when the Sun is currently insolating an 

                                                 

 

i 1 Mtoe = 1.163 * 101 TWh. 13594.11 Mtoe * 1.163 * 101 TWh/Mtoe = 1518 * 102 TWh. 
ii Watt hours (Wh) are a unit of energy (J*s-1*3600s), while Watts (W) are a unit of power or energy per 

unit time (J*s-1). 
iii Hourly solar insolation is 120000 TWh. Annual energy consumption as of 2013 is 151800 TWh. 
iv 120000 TW / 18.05 TW * 100 % = 6.649 * 105 % 
v Not accounting for the carbon footprint of manufacturing means of capturing insolated energy. This is 

highly variant based on method of capture and rapidly shifting as photovoltaic production increases. 



 4 

area where there is a demand for power but not when power is needed at night. As such, 

it is considered a variable source of power. To address the constant need for power 

energy must be stored as a convertible source. Solar fuel generation (such as the splitting 

of water into molecular hydrogen and oxygen) requires storage of produced fuels.  

One of the larger challenges is the scale of infrastructure required to make photovoltaic 

(PV) energy conversion a viable method of producing power. Geothermal, wind, and 

solar energy currently represent ~1.2 % of global energy consumed.1 Projections indicate 

that the largest growth in renewables will be in solar and wind,2 both of which require 

large amounts of physical infrastructure with scaling. For instance, the amount of area 

needed to generate enough energy to power the United States using 10 % efficient PV 

modules has been estimated to be 1.7 % of its land area; though many argue a 

construction project of this size is not feasible, it is roughly the size of the US highway 

system and is certainly within our engineering capibilities.5 Additionally, this statistic 

utilizes relatively low efficiency PV modules, whereas crystalline silicon PV modules 

now exceed a confirmed 25 % conversion efficiency.vi,6 Solving the problem of scaling 

will require large area devices with low material cost and high efficiency. 

4) Photovoltaic Technologies, Current and Emerging  

The public is primarily familiar with solar energy conversion in the form of silicon based 

PV modules. Early silicon based p-n junction photocells reached photo-conversion 

                                                 

 

vi Conversion efficiency is defined as the ratio of the output power of the module to the power incident on 

the module surface. The figure is often given in percentage.  
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efficiencies of ~ 6 % while modern modules exceed 25 % efficiency.6,7 There are 

numerous types of direct solar-to-electric conversion technologies that utilize different 

material types with varying efficiencies; for example GaAs, CuInGaSe (CIGS), and 

multi-junction cells have shown efficiencies as high as 46 %.6 A material may be 

considered a viable candidate for typical photovoltaic applications as long as it satisfies 

some base criteria: it should be a semiconductor capable of allowing photo-excited 

charges to migrate and be collected. 

5) Principles of Photovoltaics 

The key principle of photovoltaic technology is the transduction of light energy to 

electrical energy. This is accomplished in a step-wise fashion. First, light energy is 

absorbed by a semiconductor material with a separation of electronic states. The 

separation between occupied and unoccupied states is referred to as the bandgap, Eg. 

Second, excited charges, i.e. electrons and electron-holes, separate by migrating to 

opposite ends of the device where they perform work under some external load by 

following a free energy gradient and are ultimately re-collected. This process is 

demonstrated schematically below in Figure II-1. 
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Figure II-1. Cartoon demonstrating the simplified processes of A) photoexcitation and B) charge migration 

in a photovoltaic device. The step-wise processes include (1) absorption of a photon with energy greater 

than or equal to the optical bandgap energy. This results in (2) promotion of an electron to a higher energy 

level. Excited charges (3) flow into an acceptor material and (4) travel through an external circuit where 

they perform work. Finally, electrons (5) fill in unoccupied states and return to their original energy level. 

Absorption 

During the process of absorption, a frontier orbital electron is promoted from an occupied 

state to an unoccupied state at an energy difference equivalent to the energy of the 

absorbed photon.vii In a solid these frontier orbitals function analogously to HOMO-

LUMOviii states in molecular orbitals.8 Due to the density of atoms in a solid there are a 

                                                 

 

vii Photon energy is defined as E = hν, where E is energy, h is Planck’s constant, and ν is the frequency of a 

photon. 
viii HOMO-LUMO refers to the concept of frontier orbitals in molecules. HOMO is an abbreviation for the 

highest occupied molecular orbital, whereas LUMO represents the lowest unoccupied molecular orbital. 
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large number of orbitals of sufficiently proximal energy to form an effective continuum 

that is referred to as an energy “band”. This evolution of energy bands from atomic 

orbitals is demonstrated schematically below in Figure II-2. 

 

Figure II-2. Evolution of semiconductor band structure. Energy levels combine from A) atomic orbitals into 

distributed B) molecular orbitals and ultimately C) bulk energy bands in solids. V.B. here refers to the 

valence band edge, whereas C.B. is the conduction band edge. Eg, the optical bandgap, is equal to the 

difference in energy between the two band edges. Solid circles represent occupied states, while empty 

circles represent unoccupied states. The color gradient represents density of states. 

The evolution of energy bands manifests from the linear combination of atomic orbitals 

across a framework where the number of atoms is extremely large. As a result, dense 

energy states become delocalized throughout the solid. The energy structure of these 

bands—including the energy position of the frontier orbitals as well as the value of Eg—

can be calculated with reasonable accuracy with some disagreement between empirically 

derived values due to the complexity of the calculations.9–11 The highest energy occupied 

orbital is referred to as the valence band edge, while the lowest energy unoccupied orbital 
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is referred to as the conduction band edge as shown in Figure II-2C. It is not necessary 

for an energy gap to exist between the frontier orbitals of an extended periodic solid. The 

presence and width of such an energy gap is the primary distinction between metals, 

semiconductors, and insulators.  

Charge Migration and Separation 

The dominant process for separation of charges in a photovoltaic device is charge carrier 

drift directed by a free energy gradient.9 In silicon-based photovoltaics this is 

accomplished by combining a material homo-junction of inversely doped regions to form 

a diodeix that separates free charge carriers. This junction forms kinetic pathways for 

differently signed carriers that are spatially directional and largely irreversible. This is 

typically described via a thought experiment that is illustrated in Figure II-3. The material 

boundary is referred to as the metallurgical junction; and in silicon PV these junctions are 

formed by diffusing dopant atoms in through opposite ends of the material as opposed to 

physically combining two differently doped materials. The net effect is the formation of 

an energy gradient by a phenomenon referred to as band bending.12,13 

                                                 

 

ix A diode is an electrical element that allows charge to flow easily in one direction while preventing it from 

moving in the opposite direction. 
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Figure II-3. Cartoon demonstrating the formation of a charge directing field gradient.  In this cartoon the x-

dimension relates to an un-scaled physical dimension in a solid material. A) a p-doped and n-doped 

semiconductor that have not made contact have distinct fermi levels indicated as Ef,p and Ef,n respectively.x 

Upon contact between the two materials B) electrons begin flowing from the n-doped region into the p-

doped region due to the difference in electrochemical potential. This leaves behind positively charged 

dopant atoms that have been depleted of their electrons. The inverse happens in the p-doped region, where 

acceptor atoms acquire negative charge from the migrant electrons. After equilibrating, C) a local electric 

field is established in the spatial region where depletion has occurred that modifies the local positions of the 

band edges and forms an energy gradient. This local electric field also prevents any further charge carrier 

diffusion and the semiconductor is considered at equilibrium.  

Any free carriers in the area under the influence of the established field—known as the 

depletion region—are subject to directional flow depending on their charge. Electrons 

                                                 

 

x Ef refers to the fermi level of a semiconductor. The fermi level is the energy position where there is a ½ 

probability of finding an electron at equilibrium; it is important to note that this value does not guarantee a 

state is actually present, occupied or unoccupied, at that energy position. 
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follow the energy gradient from the p-doped region to the n-doped region while holes 

(electron vacancies) flow in the opposite direction. At equilibrium the diffusion of 

carriers from the differently doped regions is opposed by the static potential of the 

accumulated charges on either side. At this point the two dominant mechanisms of charge 

transport, carrier drift and diffusion, are equally balanced and there is no net flow of 

carriers.  

Upon photoexcitation this equilibrium is perturbed and free carriers that successfully 

diffuse to the depletion region are swept across the junction due to the electric field.14 

Carriers that do not successfully diffuse to the depletion zone eventually recombine with 

an oppositely signed carrier. Because of this, PV devices rely on effective charge 

transport with extensive depletion to support long diffusion distances and charge 

migration direction, respectively. 

6) Quantum Dots as Candidates for Solar Energy Conversion 

While this example of PV operation has been given for a device consisting of an equally 

doped p-n homo-junction, the principle of operation holds true for heterojunction devices 

that combine different materials. Quantum dots (QDs) are typically employed in 

semiconductor heterojunction-type devices with a wide bandgap metal oxide (e.g., TiO2, 

ZnO, SnO) acceptor material. The National Renewable Energy Laboratory keeps a record 

of device efficiencies based on material type and architecture (Figure II-4) that shows 

progress in different areas of PV material research.15 
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Figure II-4. Chronologically ordered champion research PV cells as tracked by the National Renewable 

Energy Laboratory.  This plot is courtesy of the National Renewable Energy Laboratory, Golden, CO.15  
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Since the early 2000’s, metal oxide semiconductors sensitized with QDs have been 

aggressively pursued as an alternative candidate to silicon PV. The work described in this 

document focuses on the fabrication and characterization of an optoelectronic material 

(3-mercaptopropionic acid capped PbS QDs) used in leading efficiency QD PV 

applications. The following section describes the physics of QDs, their use to-date in PV 

applications, and challenges specific to QD PV that motivated the work presented herein. 

B) Quantum Dots 

1) Physical Description of QDs 

Quantum dots are semiconductor nanocrystals of a physical dimension that is smaller 

than the Bohr excitoni radius for the bulk material from which they are made.16 They 

have size and shape dependent optical and electronic properties with an inverse 

correlation between nanocrystal size and bandgap that were first described in the early 

1980’s.17  

                                                 

 

i An exciton is a pseudo-particle formed from a coulombically bound electron and hole pair that results 

from excitation of a valence band electron in a semiconductor into the conduction band. 
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Figure II-5. Physical representation of nanoscale crystallites. A) TEM Micrograph of a sample of oleate 

capped PbS QDs. Scale bar is 20 nm. B) Cartoon of a spherical QD and generalized binding schemes for 

common ligand types. 

QDs are particles that lie between the size of bulk solids and small molecules. The size 

range where strong quantum confinement of excitons occurs is material dependent;18 for 

PbS QDs this corresponds to a crystallite size <20 nm.19 Very small QDs are typically 

modeled as spherical particles surrounded by a ligand shell typically consisting of thiol, 

amine, or carboxylic acid containing molecules. The degree and nature of surface 

coverage by ligands is oft debated and highly contextual to the QD material and ligand 

type.20–22 At a certain size (also material dependent) the surface energy of establishing 

crystalline facets begins to dominate, resulting in pseudo-faceted crystals.23 Typical PbS 

QDs can be described as truncated cuboctahedra,24 though a number of factors affect 

crystalline shape such as: ligand identity, pre-cursor concentration, and synthesis 

temperature.25,26 
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Non-ligated surfaces of QDs are highly reactive and naturally condense to minimize 

surface energy if contact is made, ultimately forming particulate agglomerates which are 

much larger than the size where quantum confinement is experienced. This undesirable 

process must be prevented if one wishes to synthetically tune the optoelectronic 

properties of QDs to operate in a certain energy regime; as such, QDs are usually 

considered metastable materials protected by ligands bound to surface atoms. These 

ligands typically govern the QDs interactions with surrounding media—colloidal stability 

and charge transfer being two important examples of such interactions—and loss of these 

ligands can result in particle aggregation that destroys the unique properties of the QDs. 

2) Optical Properties of QDs 

QDs feature discrete quantized optical transitions that are analogous to atomic absorption 

modes as opposed to the broadband absorption of bulk semiconductors. As QD 

suspensions are always a population with various sizes and shapes, idealized discrete 

absorption lines observed in atomic optical transitions present instead as slightly 

broadened peaks.19 A typical absorption and emission spectrum from a suspension of PbS 

QDs is shown in Figure II-6. 
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Figure II-6. A) Typical absorption (solid) and emission (dotted) spectrum of a PbS QD sample.  The large 

absorption peak at ~1.45 eV is the 1st excitonic absorption at the optical bandgap energy. Another (more 

broad) peak that represents the 2nd excitonic transition can be seen at ~2.45 eV. B) Modeled optical 

bandgap energy of spherical PbS QDs by particle size.27 The bulk bandgap energy of PbS (~0.4 eV) is 

shown as a dashed line. Commonly used PbS QDs tuned for PV applications lie within the 0.9 – 1.6 eV 

range. 

Apart from the well documented size and shape dependence, QDs present a complicated 

chemical landscape with many parameters that can be further modified to tune their 

optical properties. Loss of ligands due to chemical changes at the surface can cause 

particle aggregation that may manifest as scattering artifacts in absorption and emission 

spectra. To a lesser extent, partial aggregation can also result in broadened peaks and 

slow loss of resolved excitonic transitions. Solvato- and thermochromic effects are being 

established, though the physical origin of the observed changes is often subject to 

debate.28–31 The nature of the dielectric environment surrounding QDs can also lead to 

red-shifting of both absorption and emission modes.32 Ligand identity and surface 
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coverage affect optical properties as well,33,34 with multiple studies demonstrating ligand 

concentration influences the surface structure of QDs.35–37 Ligand identity has also been 

shown to cause structural deformations at the surface of small QDs that can modify their 

optical properties.26 These observed effects on QD optical properties are each their own 

active field of interest and rely on optical spectroscopy as a complicated but useful 

diagnostic tool for probing targeted properties of QDs. 

3) PbS QDs for use in Solar Energy by Photoconversion 

Colloidally stable PbS QDs with well-defined optical properties have been reported since 

2003.38 Since then, colloidal PbS QDs capped with long aliphatic ligands such as oleic 

acid or oleylamine) are routinely prepared in narrow size dispersions ranging from 3 to 

13 nm, and show high photoluminescence quantum yields.39–42  

 

Chart II-1. Oleic acid and oleylamine are common ligands for QDs that act as colloidal stabilizers bound to 

the QD surface. 

PbS QDs are uniquely strong absorbers,27,43 which makes them a good candidate for thin 

film PV applications. They have long lived excited states,27,44 a key parameter for 

maintaining excited charge transfer through QD films operating in the diffusion regime. 

They also have a relatively large excitonic Bohr radius of approximately 20 nm that 

allows a wide range of energy tuning for a variety of spectral windows.19 Figure II-7 
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demonstrates the ability to tune QD absorption spectra for a desired source using the solar 

insolation spectrum as an example. 

 

Figure II-7. Terrestrial solar insolation spectrum with overlapping absorption profiles for differently sized 

PbS QD samples. 

Tuning of absorption bands allows for maximal overlap of absorption and emission 

profiles which means capture of more incident power for PV applications. This also 

means that energy levels of the QD are modified relative to any heterojunction acceptor 

materials that can affect charge transfer by modifying kinetic driving force for carriers 

navigating across materials.45–47 

4) PbS QD Solids for PV Applications 

A new class of PbS QD solid based photovoltaics using cross-linked PbS QDs was first 

reported in 2005 and quickly attracted significant interest.48–50 Shown in Chart II-2, 3-

mercaptopropionic acid (3-MPA) was first used in 2010 to prepare PbS QD solid 

photovoltaics with a reported energy conversion efficiency of 5.1%.45 Recently, 
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photovoltaic devices made with colloidal PbS QD solid absorbers have demonstrated 

efficiencies up to 10.8 %.51 

 

Chart II-2. 3-mercaptopropionic acid and other common ligands for cross-linking QDs 

Absorbers made from colloidal PbS QDs and 3-MPA linkers continue to be among the 

best photovoltaic devices of this class.52–63 Numerous short ligands such as 1,2-

ethanedithiol, oxalic acid, benzenedithiols, and thiostannates, also shown in Chart II-2, 

have been used to cross link lead chalcogenide QDs to form QD solids.64–68 However, 3-

MPA still remains an attractive ligand because its use results in low densities of mid-gap 

states allowing for collection of charge carriers over relatively long distances outside the 

depletion region.69 

Film Formation 

Typically, 3-MPA linked PbS QD solids for optoelectronic applications are prepared 

using in situ ligand exchange procedures.45,52,54,56,60–63,66,70–76 PbS QDs capped with long, 

electrically insulating ligands are deposited on a semiconducting substrate and ligand 

exchange is carried out on the as-deposited solid with 3-MPA containing solutions. 

Following this, metallic (Au) films are deposited on top of the QD film and on the 

substrate itself to allow electrical contacting. This process is demonstrated schematically 

in Figure II-8. 
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Figure II-8. Sequential deposition of PbS QD solids from a colloidal suspension. The process begins with 

1) spin coating PbS QDs to form a solid array followed by 2) in situ ligand exchange to replace oleate with 

3-MPA before 3) washing displaced oleate out of the film. This process is 4) repeated until the QD array 

has reached the desired thickness. 

The product is an electrically conductive semiconductor solid comprised of 3-MPA 

cross-linked PbS QDs.  

Consequences of In Situ Exchange 

Though control over 3-MPA capped PbS QD film deposition has seen recent 

advancements in application such as the transition to spray deposition,58 it has been 

demonstrated that the in situ exchange process inherently leaves complex reaction 

products as impurities in the exchanged films which have been shown to negatively affect 

the optoelectronic properties of synthesized QD solids.60,77 QD solid homogeneity is 

significantly affected by both ligand type and experimental parameters during ligand 

exchange,78 and sequential spin-coating deposition of QD solids utilizes only 1-10 % of 

the total amount of PbS QDs used to form a solid.59 The solvent typically used for in situ 

exchange has also been shown to negatively affect mid-gap state densities.60 

Furthermore, in situ deposition protocols provide little opportunity to tune 3-MPA/QD 
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interactions. The formulation of QD “inks” instead may ameliorate these unsatisfactory 

limitations of QD solids. 

5) QD “Inks” 

Just as solids are periodic atomistic assemblies, QD solid arrays are ideally well 

organized periodic assemblies. Control over inter-QD organization is highly desired for 

optoelectronic applications and has been the focus of numerous studies and reviews.79–81 

The formulation of QD “inks” for this purpose has been explored with some 

success.53,59,82–88 In such systems a native capping agent (typically a long chain organic 

surfactant) is exchanged with a new ligand while maintaining the suspended QDs in a 

volatile solvent. The goal is to obtain a colloid of QDs having the desired capping agent 

that can be deposited directly using solution processing techniques and without post-

depositional modification. In addition to leaving optoelectronically deleterious 

byproducts,60,77 post-depositional modification of QD solids routinely results in film 

cracking due to volume contraction in the ligand layer during ligand exchange that can 

disrupt inter-QD connectivity.78,89,90 

Particle assembly using solvent based techniques have shown to be a useful approach 

for building nanocrystal “superlattices” that may circumvent the effects associated with 

post-depositional ligand modification.91,92 Film formation with PbS QD inks has 

frequently been shown to be dependent on ligand type and coverage.42,93,94 Direct 

deposition of PbS QD solids for photovoltaic applications has been achieved 

previously,59,82 including one recent report of centrifugal casting of 3-MPA-capped 

QDs.53 
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“Inks” are a semantic distinction differentiable from any other suspension by virtue of 

their intended application for deposition as formulated. Generally, the desired 

characteristics of a well-characterized and stable QD suspension for optoelectronic 

applications are: narrow and well defined optical absorption and emission peaks, high 

photoluminescence yield, narrow size polydispersity, high colloidal stability, and a well-

characterized ligand shell. 

Prior Preparations of 3-MPA Capped PbS QDs 

Some preparations of 3-MPA capped PbS quantum dots through ligand exchange or 

direct synthetic routes have been reported previously. For example: 3-MPA capped PbS 

QDs from 2.5-9.9 nm have been prepared via aqueous ligand exchange by adding dried 

oleic acid capped QDs to a basic solution of concentrated 3-MPA (~8.3 M 3-MPA, pH 

adjusted to 11 with tetramethylammonium hydroxide).95 The QDs maintained excellent 

optoelectronic properties after deposition onto TiO2 single crystal substrates as evidenced 

by the subsequent multiple exciton collection studies but were not stable in suspension. 

The QDs were reported to agglomerate rapidly which prevented analysis of optical 

properties or ligand chemistry. 

3-MPA capped PbS QDs have also been prepared via aqueous synthesis.96 These QDs 

were prepared by reacting lead acetate with a basic solution (pH = 9) of 3-MPA before 

injecting a solution of Na2S and heating to grow QDs to different sizes; the resulting 

colloids had unstable luminescence and their absorption spectra were not obtained. These 

QDs were synthesized using an acetate containing precursor that is a known ligand for 

QD surfaces and no attempt at analyzing the ligand identity on the surface of the QDs 
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was made. Similarly, 3-MPA-capped PbSe QDs have been prepared by aqueous synthesis 

but did not have their optical properties or ligand chemistry characterized.97  

3-MPA capped PbS QDs have furthermore been prepared by ligand functionalization 

of pulsed laser deposited PbS QDs,98 and 3-MPA has been used to link PbS QDs to metal 

oxide surfaces.99 In both of these studies 3-MPA was exposed to the QDs after deposition 

on various substrates without preparing a colloidal suspension. In all of the 

aforementioned cases the resulting 3-MPA capped PbS QDs either did not achieve 

colloidal stability or demonstrate 3-MPA was the actual capping agent. 

Towards “Stable” Colloidal Suspensions of 3-MPA capped PbS QDs 

Very recently, centrifugal casting of colloidal 3-MPA capped PbS QDs from a DMSO 

suspension was reported with detailed analysis of the resulting 3-MPA QD solids.53 The 

focus of this report was on the optoelectronic and structural properties of the PbS QD 

solid. In this work, a suspension of 3-MPA capped PbS QDs was centrifugally deposited 

onto a substrate loaded into a centrifuge tube; centrifugal isolation of QDs is typically 

only possible when suspended QDs are partially aggregated. The as deposited QD solids 

were evaluated as the active material in photovoltaic devices wherein up to 6.1% solar 

conversion efficiency was achieved with a single step deposition process.  

Separately, we concurrently reported the preparation and characterization of colloidal 

suspensions of 3-MPA capped PbS QDs in DMSO with a focus on the optical properties 

and ligand shell chemistry.100 Oleic acid bound to PbS QDs (Oa-PbS QDs) was replaced 

by 3-MPA in dimethyl sulfoxide. It was shown that PbS QDs in dimethyl sulfoxide were 
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stabilized through dynamic binding to 3-MPA when it was present in significant excess. 

This work is covered in Chapter III. 

Ultimately, DMSO is not compatible with QD deposition techniques that rely on 

solvent evaporation (e.g., spin- or dip-coating) due to its low volatility. Furthermore, 

DMSO is also a weak oxidizing agent, capable of oxidizing thiols such as 3-MPA to the 

corresponding dithiols.86,101,102 Ideally, QD “ink” solvents are nonreactive and amenable 

to direct solution deposition through spin-coating, evaporative deposition, etc. However, 

in light of the prominent role of 3-MPA linking of PbS QD solids for optoelectronic 

applications there are still surprisingly few reports focused on the preparation of 

colloidally stable 3-MPA capped PbS QDs in solvents that are more amenable for 

solution processing. The formulation of 3-MPA capped PbS QD colloids in solution 

processable solvents is covered in Chapter IV. 
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III) COLLOIDALLY PREPARED  3-MERCAPTOPROPIONIC ACID 

CAPPED LEAD SULFIDE QUANTUM DOTS 

A) Background 

The material in this chapter is adapted with permission from: Reinhart, C.C.; Johansson, 

E., Colloidally Prepared 3-Mercaptopropionic Acid Capped Lead Sulfide Quantum Dots. 

Chem. Mater. 2015, 27 (21), 7313–7320. 

1) Delamination of PbS QDs films during in situ exchange 

The objectives of this study were to formulate and characterize a suspension of 3-MPA 

capped PbS QDs to study their optical properties and ligand chemistry as a suspension. 

Initially, while exploring in situ ligand exchange of Oa-PbS QDs with an alternate ligand, 

terephthalic acid, it was observed that under the proper solvent and ligand conditions the 

PbS QD film would delaminate from the substrate during spin coating instead of cross-

linking and leaving an exchanged PbS QD film. Terephthalic acid has very low solubility 

in its protonated state in all solvents other than DMSO. 

 

Chart III-1. Terephthalic acid, a bifunctional crosslinking candidate ligand for fabricating PbS QD thin 

films. 

Using this phenomenon with DMSO as a solvent, a colloid of 3-MPA capped PbS QDs in 

DMSO was obtained. Initially, a dry film of Oa-PbS QDs was exposed to a solution of 3-
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MPA in DMSO and gently stirred until the QDs re-suspended. After isolating a narrow 

concentration window of [3-MPA] that produced stable colloid that was suitable for 

analysis this technique was modified into a bi-phasic transfer using DMSO/hexane. After 

ligand exchange and extraction of the QDs into the DMSO phase the colloid was 

analyzed via optical and NMR spectroscopy. 

2) NMR Spectroscopy for analyzing ligands in QD suspensions 

The surfaces of QDs are a complex and dynamic chemical environment that dictate many 

aspects of their stability.90 Solution NMR has emerged as a very useful tool for 

understanding not only what molecules associate with the surface of QDs but the manner 

in which they do so.103 NMR spectroscopy offers a unique advantage for analyzing 

ligands in QD colloids in situ. Other analysis techniques such as infrared spectroscopy 

(FTIR) and X-ray photoelectron spectroscopy typically require deposition onto a 

substrate that perturbs delicate chemical equilibria of the ligand-QD interactions in a 

suspension. Furthermore, NMR spectroscopy presents a unique opportunity to non-

destructively probe complex nanocrystal suspensions with spatial resolution at the 

organic-inorganic interface. These low intensity surface signals would normally be 

masked by the aggregate sample when using techniques such as FTIR. NMR 

spectroscopy has been used with QD colloids to: quantify ligand surface density,20,104 

distinguish between free and bound ligands,104–107 observe dynamic chemical 

exchange,108,109 and probe the inorganic surface structure of QDs.110 
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B) Abstract 

Colloidally suspended PbS quantum dots stabilized with 3-mercaptopropionic acid (3-

MPA) were prepared via solution ligand exchange. The optical properties of the as 

prepared colloidal QDs were investigated by absorption and emission spectroscopy. The 

3-MPA exchanged QDs luminesced with intensities comparable to oleate capped PbS 

QDs. The nanocrystal ligand chemistry was investigated by solution 1H Nuclear 

Magnetic Resonance (NMR) spectroscopy, which indicated a dynamic ligand shell 

undergoing rapid exchange. Optical properties of the QD colloid evolved over time and 

were correlated to the oxidative conversion of 3-MPA into dithiodipropionic acid 

(dTdPA) in the presence of dimethylsulfoxide (DMSO) observed by NMR. 

C) Experimental Methods 

 Materials 

Oleic acid (OaH) (Technical Grade, Sigma, 112-80-1), 1-octadecene (Technical Grade, 

Sigma, 112-88-9), bis(trimethylsilyl)sulfide (95%, Sigma, 3385-94-2), lead oxide 

(99.999%, Sigma, 1317-36-8), anhydrous toluene (Alfa Aesar, 110-54-3), anhydrous n-

hexane (Alfa Aesar, 110-54-3), 3,3’-dithiodipropionic acid (dTdPA) (99%, Sigma, 1119-

62-6), anhydrous dimethylsulfoxide (EMD, 67-68-5), dimethylsulfoxide-D6 (DMSO-D6, 

99.9% D, Sigma, 2206-27-1), 1,4-dichlorobenzene (≥99%, Sigma, 106-46-7). All 

materials were used as received unless otherwise noted. 
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 PbS Quantum Dot Synthesis 

Oleate capped PbS quantum dots (Oa-PbS QDs) were prepared by following a modified 

procedure from literature.74 Briefly, oleic acid and 1-octadecene were heated separately 

under vacuum to 90 °C for 24 hours before being transferred into a glovebox (MBraun 

Labstar) containing less than 0.5 ppm H2O and O2. Oleic acid (9.6 mmol, 3.057 mL), 1-

octadecene (18 mL), and PbO (4 mmol, 0.8928) were added to a 3-neck round-bottom 

flask. In a separate flask 1-octadecene (10 mL) was added along with a stir bar. Both 

flasks were sealed with a stopcock, removed from the glovebox, and attached to a 

Schlenk line under nitrogen atmosphere. The flask containing PbO and oleic acid was 

heated to 120 °C and left under stirring until the solution became clear. Separately, 

bis(trimethylsilyl)sulfide (2 mmol, 0.421 mL) was added to the second flask containing 

1-octadecene (10 mL) using a syringe while maintaining an inert atmosphere. Next, the 

bis(trimethylsilyl)sulfide solution was injected into the lead oleate solution and left for 1 

minute before heat was removed and the reaction was quenched with 10 mL of toluene. 

PbS QDs were transferred to 50 mL centrifuge tubes before they were precipitated from 

the reaction mixture with acetone (1:1 by volume) and subsequently centrifuged (5 

minutes at 5000 RPM, Thermo Scientific Sorval ST16 Centrifuge with a Fiberlite F15 – 

6x100y rotor). The supernatant was decanted and the QDs were re-dispersed in toluene. 

A total of 4 precipitation/redispersion cycles were performed before the QDs were 

precipitated a final time, and the QD pellet was transferred into the glovebox. The QDs 

were ultimately re-dispersed in anhydrous hexane to a final concentration of ~ 50 mg/mL. 
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 3-Mercaptopropionic Acid Ligand Exchange 

PbS QDs capped with 3-MPA were prepared at a concentration of 2.5 mg/mL for further 

analysis. The QDs were prepared through a bi-phasic ligand exchange in a 15 mL 

centrifuge tube utilizing Oa-PbS QDs in hexane (8 mL, 1.25 mg/mL) layered above a 

lower polar phase (4 mL) of DMSO with 10% v/v 3-MPA (1.2 M). After layering the two 

phases the tube was gently and repeatedly inverted until the QDs migrated completely to 

the bottom phase, typically after less than a minute. The bottom phase was transferred to 

a clean tube, centrifuged (12,000 RPM, 5 min) as a precaution to remove any potential 

agglomerates, and the supernatant collected for further experiments; all aging 

experiments were done with solutions stored in glass vials. 

 Nuclear Magnetic Resonance Spectroscopy 

Spectra were acquired on a 400 MHz Bruker Avance 2+ NMR spectrometer with a 5 mm 

Broad Band Observe probe running TopSpin 2.1.6. Spectra were plotted separately using 

MestReNova NMR software. Quantification samples were performed in triplicate for 

error analysis. For aging of 3-MPA samples, concentrations were normalized to the 

original concentration of 3-MPA in solution via stoichiometric balance following our 

proposed reaction mechanism in Scheme 1. For Oa− quantification p-dichlorobenzene 

was used as an internal standard. In 3-MPA QD colloids the internal standard was added 

after exchange to prevent interference from any loss of the standard into the non-polar 

phase. 
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 Optical Spectroscopy 

Absorption spectra were acquired in glass fluorimetry cells (Starna cells, 9F-Q-10-GL14-

C) using a 4 mm path length. For luminescence experiments, glass cells with reduced 

path lengths were constructed from microscope slides separated by glass-bead spacers 

(<106 µm or <600 µm) in UV-cure epoxy (Loctite #349). Absorption spectra were 

acquired utilizing a Shimadzu 3600 UV-Vis-NIR spectrophotometer in dual-beam mode 

with a solvent blank and the provided UVProbe software. Luminescence spectra were 

acquired with a StellarNet Dwarf-Star InGaAs NIR spectrometer and the provided 

Spectrawiz software. The InGaAs detector was calibrated using an incandescent bulb and 

the assumption that is was a perfect black-body emitter with a temperature of 2800 K.111 

Spectra were collected with fiber-optic cable and excited using either a <35 mW 780 nm 

NIR or <40 mW 532 nm green laser for the <600 µm or <106 µm thick cells, 

respectively. Emission spectra were normalized by matching the absorbance of 3-MPA 

and Oa− capped QD sample at the excitation wavelength (780 or 532 nm). The 

absorbance at the excitation wavelength was always lower than 0.1. Relative emission 

spectra were y-scaled by normalizing to the emission maximum of the Oa− capped QD 

sample. 

 Solvent Absorption Correction of Emission Spectra 

Raw emission data taken in cuvettes for aging studies were corrected to account for the 

presence of strong DMSO absorption peaks in the emission window. The absorbance of 

the solvent was converted to a transmission value that was divided from the measured 

emission intensity to correct for lost signal. 
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𝑇(𝜆) = 10−𝐴(𝜆) 

𝐼(𝜆) =
𝐼𝑜𝑏𝑠(𝜆)

𝑇(𝜆)
 

Where T, A, I, and Iobs are normalized transmission, absorbance, corrected emission 

intensity, and observed emission intensity, respectively. T, A, I, and Iobs are all 

wavelength-dependent. 

D) Results 

 

Figure III-1. Absorption (solid traces) and luminescence (dotted traces) spectra of colloidal 3-MPA 

exchanged PbS QDs in 10% v/v 3-MPA in DMSO (2.5 mg/mL) and oleate capped PbS QDs in toluene. 

Samples were matched for absorption at the excitation wavelength (~2.5 mg/mL). Absorption spectra were 

acquired in 4 mm cuvettes whereas emission spectra were acquired in glass cells with thicknesses <106 µm 

excited at 532 nm. 

Figure III-1 shows absorption and emission spectra for the original oleate capped QDs 

and freshly exchanged QDs. Oleate capped PbS QDs were suspended in toluene, 
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exchanged QDs were suspended in 10% v/v 3-MPA in DMSO. Both absorption and 

emission peaks redshifted, approximately ~80 meV for absorbance and ~90 meV for 

emission, upon ligand exchange. Phase transfer of the PbS QDs, and stability of the 

resulting solution, was dependent on the presence and amounts of all reagents and 

reactants. Oa-PbS QDs did not migrate to the DMSO phase in the absence of 3-MPA. 

Oa-PbS QDs did not migrate into neat 3-MPA. Upon dilution of the exchanged QD 

colloid both absorption and emission spectra underwent peak broadening and red-shifting 

that was not observed in Oa-PbS QD colloids. Oa-PbS QD samples displayed decreasing 

emission yield (<10% emission intensity loss at the peak emission wavelength over 10 

seconds during episodic data collection). This did not change significantly with reduced 

laser power and was not observed for exchanged QDs. 

Table III-1. Peak fit data from emission experiments. Samples were taken in triplicate to obtain standard 

deviations on peak position, FWHM, and emission intensity. 

  eV nm  

  Peak Position FWHM Peak Position FWHM Amplitude (Counts) 

532 nm 3-MPA 1.19 ± 0.00 0.19 ± 0.00 1045 ± 4 168 ± 3 29379 ± 4364 

Oa− 1.28 ± 0.00 0.18 ± 0.00 975 ± 0 139 ± 0 21853 ± 655 

780 nm 3-MPA 1.19 ± 0.00 0.18 ± 0.01 1049 ± 1 159 ± 5 7470 ± 531 

Oa− 1.28 ± 0.00 0.19 ± 0.00 976 ± 2 145 ± 2 10426 ± 1843 

 

Table III-1 shows peak fitting data from emission experiments using the two excitation 

wavelengths. For each set an Oa-PbS QD sample was matched to absorbance values 

within 10 mO.D. at the excitation wavelength before samples were loaded into the 

emission cells. All spectra were acquired in triplicate with independent emission cells for 

each replicate. All peak fitting was performed on spectra acquired as quickly as possible 

upon exposure of the cells to the excitation light. 
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Figure III-2. 1H-NMR spectra of 3-MPA with and without the presence of PbS QDs. (A) 10% v/v 3-MPA 

in DMSO-D6 and (B) 10% 3-MPA exchanged PbS QDs in 10% v/v 3-MPA in DMSO-D6. 

Figure III-2 (A) shows the solution NMR spectrum of 3-MPA in DMSO; the assignments 

were verified by 2-dimensional correlation spectroscopy (Figure S III-1). Figure III-2(B) 

shows the spectrum of exchanged QDs in 3-MPA/DMSO. The thiol peak, typically 

presumed to be the binding functionality to Cd and Pb chalcogenide QDs,112,113 was 

significantly broadened along with mildly reduced signal. The protons on the methylene 

α to the thiol moiety changed from a well-defined quartet to a broad triplet. There was no 

significant signal reduction from the COOH functionality (~12.3 ppm) upon coordination 

of 3-MPA to the surface of the QDs despite the singlet COOH peak broadening 

significantly. 
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Figure III-3. 1H-NMR spectra of oleyl species under varying experimental conditions indicating interaction, 

or lack thereof, with PbS QDs. (A) OaH in CDCl3, (B) Oa-PbS QDs in CDCl3, (C) 3-MPA capped PbS 

QDs in 10% v/v 3-MPA in DMSO-D6, and (D) OaH in 10% v/v 3-MPA in DMSO-D6. Peaks marked “*” 

derive significant intensity from hexane transferred into the DMSO phase in (C). Resolvable peaks from 

oleyl species include the alkene (~5.33 ppm) and α-alkene (~1.98 ppm) hydrogens observable in the DMSO 

phase, other peaks from oleyl species are masked by n-hexane or hexane isomers. 

Figure III-3 shows 1H-NMR spectra of OaH in CDCl3, Oa− capped PbS QDs in CDCl3, 

3-MPA capped PbS QDs in 10% v/v 3-MPA/DMSO-D6, and OaH in 10% v/v 3-MPA in 

DMSO-D6. Residual OaH can be observed in the 3-MPA/DMSO phase after exchange 

(C). The total amount of remaining OaH in the 3-MPA/DMSO phase was approximately 

28% based on the integrated intensity of the alkene peaks (~5.33 ppm) and 29% when 

compared to the α-alkene peaks (~1.98 ppm). Full assignment of OaH is provided in 

Figure S III-2. Concentrations were quantitatively determined relative to an internal 

standard of 1,4-dichlorobenzene. Large peaks, marked “*” at 1.24 and 0.86 ppm in the 3-
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MPA capped PbS QD sample belong to hexane solubilized in the MPA/DMSO phase 

during bi-phasic transfer. 

 

Figure III-4. Absorption (solid trace) and emission (dotted trace) spectra of 3-MPA capped PbS QDs at 

different PbS QD concentrations. Spectra of diluted samples have been scaled by an amount equivalent to 

their respective dilution factor to demonstrate evolution of peak shape and red-shifting. 3-MPA QDs were 

suspended in 10% v/v 3-MPA in DMSO. Absorption spectra were acquired in 4 mm cuvettes whereas 

emission spectra were acquired in <106 µm glass emission cells. 

Figure III-4 shows the effect of dilution with 10% v/v 3-MPA in DMSO on optical 

spectra of 3-MPA capped PbS QDs originally prepared at 2.5 mg/mL. Dilution to 1.25 

mg/mL resulted in slight broadening of both absorption and emission profiles that was 

also observed while preparing 3-MPA capped PbS QDs at lower concentrations directly. 

Further dilution (0.025 mg/mL) resulted in the loss of a distinct observable excitonic 

transition and significantly broadened emission. 
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Optical spectra of exchanged PbS QD colloids evolved over time (Figure III-5). The 

absorption spectra baseline increased over time consistent with an increasingly scattering 

sample. The peak centered around ~955 nm appeared to evolve into distinct peaks, at the 

original position and at a lower wavelength. The emission spectra underwent both 

broadening and red-shifting over the same time period. 

The emission spectra for Figure III-5 only were collected using 4 mm path length 

cuvettes despite the increased self-absorption of emitted light. This was done because the 

epoxy of the thin cells degraded over ~ 24 - 48 hours when in contact with DMSO. Aging 

performed in the glovebox gave qualitatively similar results except that luminescence 

intensities were lower by approximately a factor of 2. 

 

Figure III-5. Absorption (A) and luminescence (B) spectra of 3-MPA capped PbS QDs at 2.5 mg/mL across 

a seven day period of aging under both dark and light conditions stored in an ambient environment. 

DMSO has been shown to participate in oxidative reactions with thiols; a previously 

proposed reaction scheme is shown below (Scheme 1).101,102 In DMSO-D6 the reaction 

would generate a dimer of 3-MPA, dithiodipropionic acid (dTdPA, shown in Figure S 
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III-3), deuterated dimethylsulfide, and protonated water. Solutions of 10% v/v 3-MPA in 

DMSO-D6 were aged. A water peak (not displayed) was observed to grow along with the 

dTdPA peak at a quantitative ratio consistent with the proposed reaction scheme 

stoichiometry. Conversion rate was not affected by illumination. Both the thiol and the 

peak β to the thiol (2.33 and 2.53 ppm, respectively) shifted as the solution aged but did 

not evidence any difference in quantification of dimer formation (Figure S III-4). 

 

Scheme III-1. Oxidative dimerization of 3-MPA to dTdPA. 

DMS formed in DMSO-D6 would, according to the proposed scheme, be deuterated and 

not appear in the 1H spectral region. To test the proposed formation of DMS, 3-MPA was 

also aged in protonated DMSO to allow evolution of a signal from DMS (Figure S III-5). 

DMS formation was verified. 
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Figure III-6. 1H-NMR spectra of 3-MPA exchanged QDs in DMSO-D6 under different aging conditions. 

(A) Freshly prepared, (B) aged 24 hours in the dark, and (C) aged 24 hours exposed to light. (D) NMR 

spectrum of DMS in DMSO-D6. (E) shows the difference in molecular conversion between light and dark 

environments when PbS QDs are present. 

Figure III-6 shows the evolution of 1H-NMR spectra from QDs stored in the dark and 

under illumination. Here, illumination affected the reaction; the 3-MPA thiol peak 

decreased more rapidly and the dTdPA increased more rapidly under illumination. 

Furthermore, DMS-H6 formation was observed, as opposed to DMS-D6 formation as 

proposed by Scheme 1 (Figure S III-6).  

E) Discussion 

3-MPA capped PbS QD colloids were prepared by biphasic ligand exchange that replaced 

the original oleate ligand. 3-MPA is presumed to be an X-type ligand that undergoes 

proton transfer to bound oleate, releasing free oleic acid.114 3-MPA was present in large 

excess (~210 fold excess concentration) compared to surface bound oleate in the original 
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QD samples, and PbS QDs interacted with a majority of 3-MPA on the time scale of 

NMR experiments. This was evidenced by the observed broadening of the peak assigned 

to S-H and the change in splitting from a quartet to a triplet of the methylene α to the 

thiol at 2.64 ppm in Figure III-2.104,115 Broadened resonances in 1H-NMR of bound 

species have been attributed to an inhomogeneous magnetic environment on the QD 

surface,116 and peak broadening is less pronounced for species farther from the QD 

surface.108,117 The change in splitting from a quartet to a triplet of the methylene α to the 

thiol suggests dynamically exchanging thiol hydrogen. The observed broadening of the 

peak assigned to S-H was dependent on the presence of QDs and thus not a result of the 

formation of reaction intermediates proposed in Scheme 1. Thus, 3-MPA interacted with 

the QDs by the thiol group. This observation is in line with previous studies of binding of 

short carboxy-terminated thiols, including 3-MPA, to CdS that have been shown through 

IR studies to bind through the thiol moiety.112,113  

The presence of QDs also affected the signal attributed to COOH. However, there is 

no unambiguous evidence of binding by the COOH moiety. The peak assigned to COOH 

broadened in the presence of QDs but did not decrease in intensity. There was no direct 

coupling between the carboxylic acid proton on 3-MPA and the protons β to the thiol. As 

such, these protons would not see any change in split pattern with the protonation state of 

the carboxylate group. However, Oa has been shown to bind to CdSe by the deprotonated 

carboxylate.107 1H-NMR spectra of Oa capped QDs reconfirmed this to be the case with 

PbS as well (Figure S III-2). From this, we can expect the COOH moiety on 3-MPA to 

bind in the deprotonated carboxylate form. The spectral features here assigned to S–H 
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and COOH have previously been linked to dynamically stabilized CdTe QDs with fast 

exchanging alkylamine ligands.118 Similar to our observations, those colloids became 

unstable at lowered ligand concentrations. 

Residual oleic acid (Figure III-3) was detected by 1H-NMR at reduced levels (~28-

29% of original concentration). A closer examination of the 3-MPA capped PbS QDs in 

DMSO-D6 revealed that the peaks assigned to the oleic acid alkene hydrogens and the 

hydrogens α to the alkene hydrogens showed resolvable peak splitting. The positions and 

splitting of the peaks were consistent with free OaH in 10% v/v 3-MPA in DMSO-D6, but 

in contrast to Oa− bound PbS QDs (Figure S III-2) and PbSe QDs.104 Thus, the signals 

that were observed were consistent with the presence of free oleic acid. Taken together, 

the data is consistent with colloidally stable PbS QDs with a dynamic 3-MPA ligand shell 

with free oleic acid present in the solution. 

As-prepared 3-MPA-capped PbS QDs were luminescent. The luminescence of other 

metal chalcogenide QDs capped with 3-MPA has been reported previously. 3-MPA 

capped CdSe QDs have been studied in detail.119–121 3-MPA to CdSe association was 

found to lead to emissive deep trap formation on the surface of the QDs. While various 

ligands have been shown to modulate PL both negatively and positively after replacing 

native ligands on CdSe QDs, thiols were consistently seen to decrease 

photoluminescence.122,123 In a related study with alkane thiols of varying length capping 

the surface of PbS QDs, surface mobility of capping molecules was found to correlate to 

trap-state emission.124 PL from solids prepared by centrifugally casting 3-MPA QDs has 

been studied, but no comparison was made to emission intensity from similar films of 
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oleate capped PbS QDs.53 It is interesting to note that the 3-MPA-capped PbS QDs 

studied herein luminesced with intensities comparable to oleate capped PbS QDs and 

showed relatively narrow emission when freshly prepared (Figure III-1). A relative 

luminescence quantum yield for 3-MPA capped vs. oleate capped PbS QDs was 

calculated using equation 1.125 

Equation III-1. 

Φ𝑠 = Φ 𝑟
𝐹𝑠(1 − 10−𝐴𝑟)𝑛𝑠

2

𝐹𝑟(1 − 10−𝐴𝑠)𝑛𝑟
2
 

Where Φs is the luminescence quantum yield of the sample; Φr is the luminescence 

quantum yield of the reference; Fs and Fr are the integrated intensities of the sample and 

reference spectra, respectively; As and Ar are the absorbances at the excitation 

wavelength for the sample and reference, respectively; ns and nr are the refractive indices 

of the sample and reference solutions, respectively. To understand the effect of ligand 

exchange on luminescence intensity Φr is taken to equal 1. The will give Φs as 

luminescence quantum yield relative to Oa-PbS QDs. For freshly prepared samples the 

shape of luminescence spectra from 3-MPA and Oa-PbS QDs are similar, and peak 

intensities are substituted in place of peak areas. Typical absorbances of the two samples 

at the excitation wavelength were <0.1. Finally, the refractive index of toluene (used here 

due to lower volatility in thin cell emission experiments) was taken as 1.4969; the 

refractive index of 10 % v/v 3-MPA/DMSO was measured as 1.4783 using a 

refractometer. This gives Φs as 1.31 or 0.69 using the 106 µm (λex = 532 nm) and 600 µm 

(λex = 780 nm) luminescence cells, respectively. While the numbers are not in absolute 

agreement, they both suggest that the 3-MPA capped QDs luminesced with intensities 
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comparable to oleate capped PbS QDs. An additional factor, not accounted for here, that 

will have affected the measurement is the effect of refractive index on luminescence 

lifetime.29 Luminescence lifetime decreases as refractive index increases. In the present 

study, the reference solvent for Oa-PbS QDs had a higher refractive index, compared to 

sample solvent for 3-MPA capped QDs. A decreased luminescence lifetime would 

increase luminescence yield by more effectively competing with non-radiative relaxation 

mechanisms. The result in this case would be an underestimation of the relative 

luminescence quantum yield of the sample compared to the reference since the 10 % v/v 

3-MPA/DMSO had a lower measured refractive index than toluene. 

Attempts at diluting or cleaning the colloid modified the optical properties of the as 

prepared QDs. 3-MPA QDs could not be prepared by bi-phasic exchange with 1% v:v 3-

MPA in DMSO; the QDs precipitated when lower concentrations of 3-MPA were used. 

Furthermore, although diluting the QDs while maintaining a constant concentration of 3-

MPA in DMSO resulted in changes to the optical properties consistent with 

agglomeration, no aggregates were observed by dynamic light scattering studies (Figure 

S III-7). Concentration dependent aggregation has been observed previously for other 

QD-ligand systems.126 It was shown that ligand–QD affinity, solvent dielectric constant, 

solvent Lewis acidity and basicity, and ligand solvation propensity all determined 

whether colloidal stability could be achieved. It is assumed that some solvent system 

exists in which 3-MPA capped PbS QDs can be prepared without a large excess of free 3-

MPA.  
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The optical spectra of 3-MPA capped PbS QD colloids changed over time and was 

correlated to the formation of dimerized 3-MPA, dTdPA. The rate of dTdPA formation 

was modulated by the presence of QDs and in that case also illumination; illumination 

did not matter in the absence of quantum dots. The change in concentration of 3-MPA 

over 72 hours in the absence of QDs was approximately 0.2 M. The change in 

concentration of 3-MPA over 72 hours that can be attributed to the presence of QDs 

under illumination was approximately 0.038 M. Using quantitative NMR data the 

concentration of Oa− was approximately 0.005 M. Assuming that 1 Oa− corresponds to 1 

surface site the change in concentration of 3-MPA was greater than the concentration of 

QD surface sites. It follows that QD surface sites were not passivated when 3-MPA was 

converted to dTdPA; each surface site was able to promote several dimerization events. 

The formation of non-deuterated DMS in DMSO-D6 suggests that the reaction 

mechanism involving QDs was significantly different than proposed in Scheme 1 for 

oxidation of 3-MPA in DMSO. The observed influence of light on dithiol formation is 

consistent both with studies of PbS QDs stabilized by short ionic ligands in water,127 and 

studies of CdSe nanocrystals photo-oxidizing thiols. Disulfides have decreased affinity 

for CdSe nanoparticles compared to thiol groups.128 Photocatalytically formed dithiols 

have been observed previously with CdSe QDs, leading to QD precipitation.129 dTdPA 

also has the possibility of binding to QD surfaces via the carboxylate group and may 

additionally be capable of cross-linking QDs. To examine dTdPA as a ligand, PbS QDs 

were directly exposed to dTdPA under identical conditions used for biphasic ligand 

exchange with 3-MPA. The QDs immediately aggregated at the liquid/liquid interface 
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without successful suspension in either phase. Centrifugation of aged samples of 3-MPA 

capped QDs recovered absorption spectra more closely resembling freshly prepared 

solutions but still consistent with a significant fraction of agglomerated quantum dot 

species present. Taken together, one possibility these observations suggest is that slow 

formation of dTdPA in solution or on QD surfaces results in eventual precipitation from 

suspension due to cross linking of QDs; Aggregates did form when the colloids were 

aged, consistent with observed formation of dTdPA in solution. This is consistent with 

the observed degradation of colloidal stability that was correlated to dithiol formation as 

well as particle aggregation, seen in Figure S III-7. Consistent with this, centrifugation of 

aged samples recovered absorption spectra more closely resembling freshly prepared 

solutions but still consistent with a significant fraction of agglomerated quantum dot 

species present. 

F) Conclusions 

Oa-capped PbS QDs were converted to colloidal PbS QDs stabilized by a dynamic 3-

MPA ligand shell. 3-MPA was shown to interact with PbS QDs by the thiol group. 

Binding of 3-MPA to the surface of the QDs via the carboxylate moiety was likely but 

could not be demonstrated definitively. 3-MPA capped QDs were colloidally stable only 

with a substantial excess of 3-MPA; this, taken with the population averaged changes to 

the 1H-NMR spectra of 3-MPA exchanged QDs, was consistent with fast exchange 

where 3-MPA readily detaches and reattaches to the QD surface as a weakly bound 

ligand. As prepared 3-MPA capped QDs luminesced with intensities comparable to oleate 

capped PbS QDs. Optical spectra of 3-MPA exchanged QDs evolved over the course of 
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days with both absorption and emission spectra maintaining resolvable signal. This aging 

was correlated to oxidation of 3-MPA to dTdPA. Conversion of 3-MPA to dTdPA was 

observed to be independent of illumination in the absence of QDs but modulated by 

illumination when QDs were present. The ability to perform ligand exchange and QD 

colloidal stability were found to be highly dependent on solution identity and component 

(QD/ligand) ratios. 
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G) Supplementary Material 

 

Figure S III-1. NMR spectra for full assignment of 3-MPA in DMSO-D6. (A) One dimensional 1H-NMR, 

(B) 1H-1H Correlation spectrum (COSY) showing cross peaks between coupled proton environments on 3-

MPA, (C) 13C-NMR spectrum, and (D) 1H-13C heteronuclear single-quantum correlation spectrum (HSQC). 

* in (C) shows signal from the solvent, DMSO. There is no correlation to the proton environment at ~2.3 in 

(D) since the proton at that position is attached to sulfur instead of carbon. 
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Figure S III-2. 1H-NMR of OaH (A) and Oa-PbS QDs (B) in CDCl3 with assignments labeled relative to 

the displayed structure of oleic acid.  Of particular note is the absence of any COOH signal in the Oa-PbS 

QD spectrum, indicating binding through a carboxylate functionality which has been demonstrated 

elsewhere for oleic acid on CdSe QDs.107 Spectra were acquired in CDCl3. 1H-1H COSY spectrum of (C) 

oleic acid and (D) Oa-PbS QDs in CDCl3. Each different ppm region of the 1-dimensional 1H spectra has 

been y-scaled independently to focus on the peak of interest in that region. 
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Figure S III-3. 1H-NMR Spectra in DMSO-D6 showing identification of dTdPA growth during aging.  (A) 

3-MPA, (B) dTdPA, (C) Aged 3-MPA, (D) Aged 3-MPA spiked with dTdPA. DMSO can be seen in (B) at 

2.5 ppm marked and has been labeled (*). 

Figure S III-3 shows 1H-NMR of 3-MPA (A) and the dimer, 3,3’-dithiodipropionic acid 

(dTdPA) (B). A solution of 3-MPA in DMSO-D6 that had been aged for 336 hours (2 

weeks) showed peaks corresponding to the dimer (C). The origin of the additional peaks 

in the aged sample was verified by spiking said sample with dTdPA. This increased the 

relative intensity of the new peaks vs those belonging to 3-MPA without introducing 

additional peaks (D). 
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Figure S III-4. (A) 1H-NMR spectra of 3-MPA in DMSO-D6 during aging and (B) calculated 

concentrations of 3-MPA and dTdPA. 

The composition of solutions of 10% 3-MPA in DMSO was further investigated as a 

function of time. Figure S III-4 shows that two triplets emerge, at ~2.88 ppm and ~2.62 

ppm. The second peak overlaps with the signal from the methylene α to the thiol moiety 

of 3-MPA. The peak at ~2.88 ppm evolves at a ~1:2 quantified ratio of growth to signal 

loss compared to the peak at ~2.53 ppm. 
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Figure S III-5. 1H-NMR spectra of 3-MPA aging in DMSO. A) Freshly prepared 50% v/v of 3-MPA and 

protonated DMSO and the same sample B) after 24 hours. C) shows the same sample as in B) with an 

addition of DMS that would increase [DMS] by 1 M. DMSO-H6 is visible as a large peak at 2.5 ppm. 

Figure S III-5 shows an emergent signal consistent with DMS formation (singlet, 1.88 

ppm) and spiking the sample with neat DMS showed increased signal without 

introducing additional peaks. 
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Figure S III-6. 1H-NMR spectra of 3-MPA exchanged QDs in DMSO-D6.  (A) Freshly prepared, (B) aged 

24 hours in the dark, and (C) aged 24 hours exposed to light. (D) NMR spectrum of DMS in DMSO-D6. 

Samples with formed DMS (A-C) are at similar concentrations of 3-MPA and QDs, the signal intensity 

reflects different amounts of formed DMS while the DMS in DMSO-D6 sample (D) was prepared 

independently. The figure on the right shows scaled spectra (A-C) to demonstrate small changes in 

chemical shift with changing concentration. This effect is also observed for the SH peak in Figure S III-4 

(2.325 ppm). 
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Figure S III-7. Dynamic light scattering of freshly prepared (three overlapping solid lines) and 24 hr aged 

(dotted lines) samples of 3-MPA QDs in 10% v/v 3-MPA in DMSO-D6 at different QD concentrations. 

Figure S III-7 shows particle size analysis of freshly prepared samples. The samples at 

2.5, 1.25, and 0.25 mg/mL were free from aggregates as resolved by DLS. After 24 hours 

formed aggregates were observed by DLS.  
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IV) COLLOIDAL 3-MERCAPTOPROPIONIC ACID CAPPED LEAD 

SULFIDE QUANTUM DOTS IN A LOW BOILING POINT 

SOLVENT 

A) Background 

1) Photovoltaic device preparation using Colloidally Suspended 3-MPA capped PbS 

QDs in DMSO 

After successfully preparing a colloidal “ink” of 3-MPA capped PbS QDs in DMSO,100 

attempts at direct deposition and fabrication of photoactive devices (TiO2/QD 

heterojunction solar cells) were made. A typical device, following the architecture 

described in Chapter II-B-IV was the model for these attempts. Direct deposition proved 

difficult for a number of reasons: DMSO is a non-volatile solvent that is not amenable to 

evaporative spin-coating, the solvent was too viscous and did not wet the surface of TiO2 

substrates used as a wide bandgap acceptor material, the solvent proved difficult to 

remove under vacuum and did not provide conformal films.  
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Figure IV-1. Comparison of 3-MPA capped PbS QD films on a transparent TiO2/Fluorine doped SnO/SiO2 

substrate. Similar total amounts of 3-MPA capped QDs were deposited on each substrate. A) shows a 

vacuum deposited film of pre-exchanged QDs while B) shows a standard in situ exchanged film deposited 

through spin coating. 

Figure IV-1 shows a vacuum deposited film of 3-MPA capped PbS QDs with visible 

cracking from the deposition process. This is compared to a conformal film deposited via 

standard in situ spin coating deposition that shows homogenous coating of the substrate. 
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Figure IV-2. Absorption spectra of deposited films. OA capped PbS QD films were deposited directly by 

spin coating. Pre-exchanged 3-MPA capped PbS QD films were deposited via vacuum deposition. In situ 

exchanged 3-MPA capped PbS QD films were deposited via spin coating as described previously. Baseline 

differences are attributed to inhomogeneous substrate induced scattering. 

Figure IV-2 shows that both types of films maintained a well resolved excitonic peak 

indicating that QDs survive the vacuum deposition process without destruction of their 

tuned properties. Red-shifting of excitonic absorption peaks upon cross-linking of QDs 

has been observed previously and is consistent with the difference between the two 3-

MPA capped PbS QD samples;64,130–132 that is, pre-encapsulation with 3-MPA may 

preclude the ability to cross-link extensively and thus may affect energetic coupling that 

leads to red-shifting in films. 
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Figure IV-3. SEM micrographs of 3-MPA capped PbS QD films on TiO2 substrates. Cross sectional SEM 

(top) and angled (bottom) micrographs of an in situ deposited film and a vacuum deposited film using pre-

exchanged 3-MPA capped PbS QDs suspended in DMSO. White lines in the top images highlight the PbS 

QD film atop the substrate. 

Figure IV-3 shows scanning electron micrographs of pre-exchanged 3-MPA capped PbS 

QD films vacuum deposited from DMSO onto TiO2/Fluorine doped SnO/SiO2 substrates 

that revealed extensive cracking and disruption of the QD film. Films were dramatically 
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thicker than expected given the mass of PbS QDs deposited over a measured area; 

contrasting this is the thickness of an in situ film deposited using a similar amount of 

QDs that are expected to be extensively crosslinked due to the bifunctional nature of 3-

MPA. Inter-QD distance is a large determinant for energy transfer between QDs with 

greater distances resulting in poorer electronic coupling.81,133,134 Additionally, the use of 

ligands with terminal moieties that contain dissociable protons leads to the possibility of 

electrostatic separation increasing inter-QD distances in films; while speculative as to its 

role in the large volume of deposited QD films, it was noted that colloids of 3-MPA 

capped PbS QDs in DMSO were subject to electrostatic separation while suspended. E.g., 

small droplets of DMSO containing 3-MPA capped PbS QDs could be drawn from 

solution using a charged surface such as a rubber balloon that had been vigorously rubbed 

with felt. 

Despite these problems, photoactive devices were successfully fabricated. Figure 

IV-4 shows summary optoelectronic performance of the best performing prototype from 

a directly deposited 3-MPA capped PbS QD photoactive device. 
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Figure IV-4. Cyclic voltammetry and open circuit potential of a directly deposited 3-MPA capped PbS QD 

photovoltaic device. 

Prototype devices had a notably large apparent open circuit potential from cyclic 

voltammetry experiments, typical “benchmark” devices do not exceed ~450-500 mV 

under illumination. It was observed that a significant portion (~300 mV) of the total 

potential (~680 mV) was present in the dark and thus not from a photo-origin. 

Nevertheless, the device was photo-switchable despite the aforementioned film formation 

problems. 

 In contrast to this is the performance of a standard in situ exchanged PbS QD 

photovoltaic device as seen in Figure IV-5. 
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Figure IV-5. Cyclic voltammetry and open circuit potential of an in situ deposited 3-MPA capped PbS QD 

photovoltaic device. 

This is normal behavior from a standard “benchmarking” device. The true discrepancy 

between the two is best observed when the performance from both devices is plotted on 

same scale axes as seen in Figure IV-6. 
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Figure IV-6. Simultaneously plotted cyclic voltammetry and open-circuit potential from prototype and in 

situ films. 

While photoswitchability was achieved, prototype devices using the as formulated 3-

MPA PbS QD suspension in DMSO were exceedingly substandard. The inability to 

provide densely packed QD films using a vacuum assisted deposition process prompted 

the decision to attempt to formulate QD suspensions in solvents that were more amenable 

to direct ambient deposition using evaporative solvent loss, i.e. volatile organic solvents. 

2) Colloidal Stabilizers 

All previous attempts at solvent switching with 3-MPA capped PbS QDs to alternate 

solvents with comparable solvent parameters resulted in immediate aggregation of the 

QDs and subsequent settling of the suspension. Mixing solvent with DMSO, even at 

volume ratios of 1% had the same effect. Literature reports at this time suggested that 

increased acidity of labile protons on ligands intended to replace natively bound oleate on 

PbS QDs led to more successful exchange.87 Separately, it has been suggested in 
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literature that ligand exchange in polar solvents causes ready desorption of bound species 

ultimately leading to agglomeration.135 In these reports, the addition of an organic base 

(triethylamine and oleylamine, respectively) reportedly increased the binding strength of 

the ligands by perturbing the acid base equilibria of the ligand to favor conjugate base 

formation of the incoming ligand.  

Initial experiments with sec-butylamine, shown in Chart IV-1, as a stabilizing 

additive revealed that OA-QDs exposed to 3-MPA that had agglomerated could be re-

suspended upon addition of the amine with excellent recovery of resolved excitonic 

absorption and emission spectra. Figure IV-7 shows that secBA itself induced a mild 

blue-shift in absorbance spectra and significantly decreased emission yield of OA-PbS 

QDs.  

 

Figure IV-7. Absorption and emission spectra of OA-PbS QDs after exposure to solutions of secBA and 3-

MPA in CHCl3.  
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Amines are normally observed to effect blue-shifts in optical spectra of QD suspensions, 

even when they do not induce ligand exchange.121,123 Additionally, while amines are 

possible QD ligands they are typically thought to be less preferential for binding metal 

chalcogenide QD surfaces relative to thiols.136 

 

Chart IV-1. Sec-butylamine and didodecyldimethylammonium bromide (dDDdMABr), two of the 

stabilizing additives used to suspend 3-MPA capped PbS QDs in volatile organic solvents. 

Despite these initial successes in obtaining a suspension of 3-MPA capped PbS QDs in a 

volatile organic solvent a decision was made to shift the stabilizing additive to a 

quaternary amine, didodecyldimethylammonium bromide (dDDdMABr, shown in Chart 

IV-1). The motivations for this change were: complexation of sec-butyl amine and 3-

MPA resulted in a highly viscous ionic liquid that was itself difficult to remove from 

deposited films of QDs, quaternary ammoniums have pH independent charging and 

would thus simplify complications of acid-base interactions between 3-MPA and the 

stabilizer, dDDdMABr is a non-volatile solid but has been demonstrated to be thermally 

degradable in QD films without destroying ordered QD arrays,137 while amines are well 

known QD ligands quaternary ammoniums are not expected to complex QD surfaces. 
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3) Spatially resolved multi-dimensional NMR 

Multi-dimensional NMR can be utilized to identify which species in solution participate 

at the surface of QDs. Both diffusion-ordered NMR spectroscopy (DOSY) and nuclear 

Overhauser effect spectroscopy (NOESY) have been used to great effect to identify 

ligands in complex solutions where multiple possible ligands are present.103,106,138 Both 

techniques take advantage of the fact that molecules associated with QDs have motional 

parameters similar to that of large particles instead of those of free molecular species. 

While DOSY resolves NMR signal by diffusion coefficient, it offers a weighted average 

signal in the diffusion dimension if molecules are in fast chemical exchange on the NMR 

time scale. For dynamically exchanging ligand shells where ligand species spend 

residency both on the QD surface and free in solution DOSY can provide difficult to 

interpret results when other factors may influence diffusion speed such as molecular 

complexation in acid-base reactions or ionic interactions. 

 2-dimensional NOESY is a through-space polarization cross-relaxation transfer 

NMR technique that utilizes the differences in rotational correlation time,ii 𝜏𝑐, between 

species in solution. In general, small species rotate more quickly in solution than large 

species while large particles rotate slowly. NOESY takes advantage of the fact that 

molecules rotating more quickly than the critical rotational correlation time of a given 

spectrometer, 𝜏𝑐
𝑐𝑟𝑖𝑡 , generate weak and positively signed cross-peaks while molecules 

rotating more slowly generate strong and negatively signed cross-peaks.139 Molecules 

                                                 

 

ii Average time taken for a molecule to rotate 1 radian.139 
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with 𝜏𝑐 near 𝜏𝑐
𝑐𝑟𝑖𝑡 generate null signal or weakly signed cross-peaks that are quickly lost 

in baseline noise. 𝜏𝑐 and 𝜏𝑐
𝑐𝑟𝑖𝑡 are defined in Equation IV-1 and Equation IV-2. 

Equation IV-1. Critical rotational correlation time of a spectrometer of a given frequency, ω0. 

𝜏𝑐
𝑐𝑟𝑖𝑡 = |

√5

2𝜔0
| 

Equation IV-2. Rotational correlation time for a small spherical particle experiencing isotropic rotation is 

given by the Stokes-Einstein relation.118 𝜂 is solvent microviscosity, 𝑘𝑏 is Boltzmann’s constant. 

𝜏𝑐 =
4𝜋𝜂𝑟3

3𝑘𝑏𝑇
 

For QD based NMR applications this largely divides molecules of interest into two 

separate regimes; free ligands act like small molecules while bound ligands rotate at 

speeds similar to large particles. 

𝜏𝑐  ≪ 𝜏𝑐
𝑐𝑟𝑖𝑡, small free molecule behavior, weak positive signal 

𝜏𝑐  ≫ 𝜏𝑐
𝑐𝑟𝑖𝑡, large particle behavior (bound ligands), strong negative signal 
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Figure IV-8. Rotational correlation time, 𝜏𝑐, vs radius via the Stokes-Einstein relation for small spherical 

objects.118 The critical rotational correlation time, 𝜏𝑐
𝑐𝑟𝑖𝑡, for a 600 MHz NMR spectrometer is displayed as a 

vertical dashed line. Species rotating slower than this constant (larger 𝜏𝑐) generate strong negatively signed 

signal while species rotating faster (smaller 𝜏𝑐) generate weak positively signed signal. 

This is advantageous in solutions where many 1H-containing species are present that can 

obfuscate small and broadened signal from ligands attached to the surface of QDs as only 

molecules that are attached to slowly rotating QDs generate strongly signed cross-peaks. 

The phenomenon of NOESY differentiating free vs bound molecules with differently 

signed signal is demonstrated in Figure IV-9.  
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Figure IV-9. Projected 2-dimensional spectra showing differentiation of free vs bound ligand signal signing 

in NOESY type experiments. A) The 1-dimensional 1H spectrum of oleic acid. The polarization transfer of 

the alkene protons to the α- and β-alkene positions resolves as B) weakly positive (opposite sign to main 

diagonal alkene peak) when free in solution and C) strongly negative (same sign as main diagonal alkene 

peak) when present as oleate bound to the surface of PbS QDs. Both spectra have the same concentration of 

oleyl species. 

B) Abstract 

Colloidal 3-mercaptopropionic acid (3-MPA) capped Lead Sulfide quantum dots were 

prepared in a variety of organic solvents stabilized with a quaternary ammonium halide 

salt. The stabilized colloids’ optical properties were studied through optical absorption 

and emission spectroscopy and found to be dependent on both the concentration of new 

ligand and stabilizer, and sample age. Nanocrystal ligand chemistry was studied through 
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a combination of 1H-NMR and 2-dimensional Nuclear Overhauser Effect Spectroscopy 

(NOESY) which revealed full displacement of the original oleate ligand with a 

dynamically exchanging ligand shell. The colloids were studied optically and via NMR 

as they aged and revealed a quantitative conversion of monomeric 3-mercaptopropionic 

acid to its dimer, dithiodipropionic acid (dTdPA). 

C) Experimental Methods 

1) Materials 

Oleic acid (OaH) (Technical Grade, Sigma, 112-80-1), bis(trimethylsilyl)sulfide (95%, 

Sigma, 3385-94-2), 1-octadecene (Technical Grade, Sigma, 112-88-9), lead oxide 

(99.999%, Sigma, 1317-36-8), anhydrous n-hexane (Alfa Aesar, 110-54-3), anhydrous 

toluene (99,8%, Alfa Aesar, 108-88-3), anhydrous chloroform (EMD, 67-66-3), 1,4-

dichlorobenzene (≥99%, Sigma, 106-46-7), didodecyldimethylammonium bromide 

(dDDdMABr, 99%, Acros, 3282-73-3), dodecylamine (DDA, 98%, Sigma, 124-22-1), 

sec-butylamine (99%, Sigma, 13952-84-6), N,N-didodecylmethylamine (dDDMA, 

>85%, TCI, 2915-90-4), 3,3’-dithiodipropionic acid (dTdPA, 99%, Sigma, 1119-62-6), 3-

mercaptopropionic acid (3-MPA, 99%, Alfa Aesar, 107-96-0), DMSO-D6 (99.9% D, 

Sigma, 2206-27-1), CDCl3 (99.8% D, Acros. 865-49-6). All materials were used as 

received unless otherwise noted. 

2) Synthesis of oleate capped PbS quantum dots (Oa-PbS)  

PbS quantum dots (QDs) were synthesized following a previously reported procedure,100 

which was adapted from existing literature.38,74 Briefly, oleic acid (9.6 mmol, 3.057 mL), 
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1-octadecene (18 mL), and PbO (4 mmol, 0.8928 g) were combined in a 3-neck flask in a 

glovebox (Mbraun Labstar). A separate flask containing 1-octadecene (10 mL) was also 

prepared in the glovebox. Both flasks were sealed and moved to a nitrogen filled Schlenk 

line outside the glovebox. The flask containing PbO was heated to 120 ºC and left stirring 

until it became clear. Bis(trimethylsilyl) sulfide (2 mmol, 0.421 mL) was added under 

nitrogen to the flask containing only 1-octadecene. The bis(trimethylsilyl) sulfide 

solution was transferred rapidly to the stirred solution of PbO and oleic acid in 1-

octadecene and left for 1 minute before the heat source was removed. The freshly 

synthesized Oa-capped PbS (Oa-PbS) QDs were precipitated with acetone in a 50 mL 

conical centrifuge tube and then centrifuged (5 minutes at 5000 RPM, Thermo Scientific 

Sorval ST16 Centrifuge with a Fiberlite F15 – 6x100y rotor) to separate the QDs from 

the reaction mixture. The supernatant was decanted and the QDs redispersed in toluene. 

A total of 4 precipitation/redispersion cycles were performed under ambient conditions. 

This was followed by a final precipitation cycle and transfer of the QD pellet into the 

glovebox. Inside the glovebox QDs were dispersed in anhydrous n-hexane to a 

concentration of ~25 mg mL–1 and stored. Dilutions with n-hexane to ~0.5 mg/mL were 

done inside the glovebox. 

3) Ligand Exchange 

1 ml of Oa-PbS QDs (0.5 mg/mL) in n-hexane were transferred to a glass vial and 

removed from the glovebox. The solvent was removed under vacuum, which yielded an 

Oa-PbS QD film. Same volume (1 mL) solutions of equimolar amounts of 3-MPA and 

dDDdMABr in CHCl3 were added to the vial to resuspend the QDs. The total molar 
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amount of added 3-MPA and dDDdMABr was varied to prepare solutions having 

different molar ratios of added 3-MPA and dDDdMABr to initial molar amount of oleate 

(Oa–). Initial molar amounts of Oa– (present as Oa-PbS) were quantified using nuclear 

magnetic resonance spectroscopy (see below). 

4) Nuclear Magnetic Resonance Spectroscopy 

1H-NMR spectra were acquired on a 600 MHz Bruker Avance III with a 5 mm TXI probe 

using TopSpin 3.1. MestReNova was used to plot NMR spectra. Quantification of oleate 

was performed in triplicate for error analysis using p-dichlorobenzene as an internal 

standard. 

5) Optical Spectroscopy 

Absorption spectra were acquired in reduced volume glass fluorimetry cells (Starna cells, 

9F-Q-10-GL14-C) using a 4 mm path length. Absorption spectra were acquired using a 

Shimadzu 3600 UV-Vis-NIR spectrophotometer in dual-beam configuration with a 

solvent blank and the provided UVProbe software. Luminescence spectra were acquired 

with a StellarNet Dwarf-Star InGaAs NIR spectrometer and the provided Spectrawiz 

software. Samples were held in the same cuvettes as used for absorption spectra and were 

excited using a <40 mW 532 nm green laser. The InGaAs CCD detector was calibrated 

using an incandescent bulb and the assumption that it was a perfect black-body emitter 

with a temperature of 2800 K.111 

D) Results 
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Figure IV-10. Absorption (solid) and emission (dashed) spectra of Oa-PbS QDs in CHCl3 and Oa-PbS QDs 

resuspended in various organic solvents with 3-MPA and dDDdMABr present in a 20:20:1 ratio of [3-

MPA]:[dDDdMABr]:[Oa–]. Vertical lines represent the fit position of the emission peak (dashed) and first 

excitonic absorption (solid) for each spectrum. 

Figure IV-10 shows absorption and emission spectra of Oa-PbS QDs in CHCl3 as well as 

dry Oa-PbS QD films resuspended in CHCl3, toluene, and hexane, all containing 3-MPA 

and dDDdMABr in a 20:20:1 ratio of [3-MPA]:[dDDdMABr]:[Oa–]. Optical properties 

of the colloidal suspensions were only minimally dependent on the solvent used for re-

suspension. Absorption and emission peaks were red-shifted compared to Oa-PbS QDs, 

with larger apparent stokes-shifts for less polar solvents. Oa-capped PbS QDs had 

emission peaks centered around 1.26 eV. Emission peaks for exchanged colloids were 

centered around 1.22 eV independent of solvent choice, while absorption peaks exhibited 

a minor dependence on solvent choice. Addition of only dDDdMABr produced colloidal 

suspensions, but resuspension to form colloidal suspensions were unsuccessful in the 

presence of 3-MPA without dDDdMABr (Figure S IV-1). 
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Figure IV-11. A) Representative absorption (solid) and emission (dashed) spectra from Oa-PbS QDs 

resuspended in solutions of equimolar amounts of 3-MPA and dDDdMABr in CHCl3. 0.25:1 means 0.25 

molar equivalents each of 3-MPA and dDDdMABr to 1 molar equivalent of Oa–, present originally as the 

QD ligand. Vertical lines represent the average fit position of the given peak from triplicate samples. B) 

Fitted peak location (black traces, left axis) and full width at half maximum (FWHM, dashed traces, right 

axis) from absorption (top) and emission (bottom) spectra of Oa-PbS QDs resuspended in solutions of 

equimolar amounts of 3-MPA and dDDdMABr in CHCl3, expressed as equivalents of Oa– originally 

present (bottom axis). All data points are the average of 3 separate experiments, and uncertainties are 

presented as one standard deviation. No error bars are displayed in cases where the fitted peak positions 

from separate experiments were identical within the limit of resolution (0.01 eV). 

Resuspension of Oa-PbS QDs in CHCl3 was studied in detail. Figure IV-11 shows the 

absorption and emission spectra of dry films of Oa-PbS QDs resuspended with solutions 

of varying concentrations of 3-MPA and dDDdMABr in CHCl3. Concentrations are 
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expressed in relation to oleate ([Oa–]) present in the sample, originally as the QD ligand. 

A wide range of concentrations of 3-MPA and dDDdMABr yielded colloidal solutions 

and in all cases well-resolved excitonic absorption peak and primary emission peak were 

preserved while colloids were suspended. Resuspension consistently resulted in a red-

shift of both the lowest-energy exciton absorption and emission peaks compared to Oa-

PbS QDs. The amount of red-shift was dependent on the molar ratios of 3-MPA and 

dDDdMABr to Oa–. However, observed Stokes shifts were not strongly dependent on the 

molar ratios of 3-MPA and dDDdMABr to Oa–. Colloidal stability was also dependent on 

the ratio of [3-MPA] and [dDDdMABr] to [Oa–]. While all solutions initially re-

suspended the QDs successfully, solutions with ratios of [3-MPA and dDDdMABr]:[Oa–] 

from 1:1 to 4:1 precipitated within 15 minutes, forming visibly scattering solutions. 

Solutions with sub-stoichiometric ratios (0.25:1 and 0.5:1) and large excess (20:1) of [3-

MPA and dDDdMABr]:[Oa–] remained in colloidal suspension for weeks. 

 

Chart IV-2. Oleic acid (OaH), 3-mercaptopropionic acid (3-MPA), and didodecyldimethylammonium 

bromide (dDDdMABr). Each molecule’s distinguishable 1H environments are labeled. 
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Figure IV-12. 1H NMR spectra in CDCl3 of 3-MPA and dDDdMABr resonances. A) 3-MPA, B) 

dDDdMABr, C) a 1:1 [3-MPA]:[dDDdMABr] solution, and D) an exchanged QD colloid with a 20:20:1 

mixture of [3-MPA]:[dDDdMABr]:[Oa−]. 

Figure IV-12 shows 1H NMR spectra of a dry film of Oa-PbS QDs resuspended with a 

20:20:1 solution of 3-MPA and dDDdMABr in CHCl3. The spectral window covers 3 

hydrogen resonances from 3-MPA (Chart 1); the thiol hydrogen resonance (10), α-thiol 

hydrogen resonance (9), and β-thiol hydrogen resonance (8). In the absence of 

dDDdMABr and PbS QDs (Figure IV-12A) (10) was a well-defined triplet, (9) a quartet, 

and (8) a triplet. In the presence of dDDdMABr (Figure IV-12C) the peaks remained 

qualitatively the same but (10) was overlapping the β-ammonium peak from dDDdMABr 

(14); the resolution and peak splitting of resonances owing to dDDdMABr proximal to 

the amine center (12, 13, and 14) were not strongly affected by the presence of 3-MPA 

(Figure IV-12B and C). When 3-MPA was in the presence of both dDDdMABr and PbS 
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QDs, the S-H resonance (10) was clearly suppressed, the α-thiol resonance (9) switched 

from a resolved quartet to a triplet. 

 

Figure IV-13. 1H NMR spectra of oleyl resonances. A) OaH, B) Oa-PbS QDs, C) OaH with dDDdMABr in 

a 20:1 ratio of [dDDdMABr]:[OaH], and D) Oa-PbS QDs with 3-MPA/dDDdMABr added in a 20:20:1 

ratio of [3-MPA]:[dDDdMABr]:[Oa–]. The concentration of Oa is the same in all spectra. A peak attributed 

to water is present in some samples and marked with “*”. 

Figure IV-13 shows 1H NMR spectra of a dry film of Oa-PbS QDs resuspended with a 

20:20:1 solution of 3-MPA and dDDdMABr in CHCl3. The spectral window focuses on 

hydrogen resonances from oleyl species that present as 5 separate peaks; the α- and β-

carboxylate hydrogen resonances (1 and 2), the α-alkene hydrogen resonance (4), the 

alkene hydrogen resonance (5), and, excluding the carboxylate and terminal methyl 

hydrogen resonances, the remaining hydrogen resonances overlapping around 1.3 ppm 

(3). Free OaH presented distinctly different peaks from Oa– bound to the surface of PbS 

QDs (Figure IV-13A and B), and the presence of dDDdMABr did not affect free OaH 
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resonances (Figure 4C). Oleyl hydrogen resonances from Oa-PbS QDs resuspended with 

3-MPA/dDDdMABr had splitting patterns and chemical shifts consistent with free OaH. 

 

 

Figure IV-14. NOESY spectra demonstrating ligand interaction with PbS QDs. A) 3-MPA and dDDdMABr 

in a 1:1 [3-MPA]:[dDDdMABr] ratio in CDCl3 and B) an exchanged QD colloid with a 20:20:1 mixture of 

[3-MPA]:[dDDdMABr]:[Oa−]. The concentration of 3-MPA and dDDdMABr is the same in both spectra. 

Figure IV-14 demonstrates the effect on NOESY spectra of adding 3-MPA and 

dDDdMABr to a suspension of Oa-PbS QDs. A 1:1 mixture of 3-MPA and dDDdMABr 

only built weak positive NOE cross peaks in the absence of QDs (Figure IV-14A). In the 

presence of QDs 3-MPA and dDDdMABr generated strong negative cross peaks both for 

hydrogens on the same molecule but separated by several C-C bonds (Figure S IV-2 e.g., 

13/16), and for hydrogens on different chemical species (Figure IV-14B, e.g., 9/16). 

2-dimensional NOE spectra from solutions of free OaH in CDCl3 and a colloidal 

suspension of Oa-PbS QDs in CDCl3 were different from each other. Free OaH showed 
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weak positive or antiphase cross peaks (Figure S IV-2, e.g., 3/5, 4/5 cross peaks). Oa-PbS 

QDs under the same conditions and total oleyl concentration showed strong negative 

cross peaks consistent with surface bound oleate species (Figure S IV-2). Oa-PbS QDs 

resuspended with 3-MPA/dDDdMABr showed weak antiphase cross-peaks (Figure 

IV-14B 1/2, 3/4 and Figure S IV-3 3/5, 4/5). 

 

Chart IV-3. Dithiodipropionic acid (dTdPA) with distinguishable proton environments labeled. 

 

Figure IV-15. 1H NMR spectra and quantification of dTdPA formation from colloids of Oa-PbS QDs with 

3-MPA/dDDdMABr added in a 20:20:1 ratio of [3-MPA]:[dDDdMABr]:[Oa–] in CDCl3. Samples were 

kept in the dark (dotted lines) or under ambient light (solid lines) and allowed to age for 16 days. 

Representative spectra of A) a freshly prepared sample, B) a sample stored in the dark for 16 days, C) a 

freshly prepared sample subsequently stored in ambient light for 16 days, D) Concentrations of 3-MPA and 
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dTdPA of samples stored in different light conditions throughout the aging process were determined by 

comparing integrals from 3-MPA (9 & 8) to the well resolved singlet α-amine of dDDdMABr (12). 

3-MPA/dDDdMABr stabilized PbS QDs facilitated the conversion of 3-MPA to 

dithiodipropionic acid (dTdPA) (Figure IV-15 and Figure S IV-4). In the absence of PbS 

QDs approximately 10% of all available 3-MPA was depleted from the solution and 

small amounts of dTdPA were observed (Figure S IV-5) over the course of 16 days. In 

the presence of PbS QDs, the concentration of 3-MPA decreased significantly. In the 

dark, the concentration of 3-MPA had decreased to less than half of the original 

concentration after 16 days. Under ambient illumination almost all 3-MPA had been 

removed from the solution within 9 days. The decrease in the concentration of 3-MPA 

was correlated to an increase in the concentration of dTdPA. However, the concentration 

reached a maximum and the solution became saturated with dTdPA within 50 hours of 

aging in the presence of PbS QDs and under ambient illumination. This was concurrent 

with the formation of crystals (Figure S IV-6). The crystals were removed from solution, 

and found to be dTdPA via NMR analysis (Figure S IV-7); by NMR, no other species 

were detected in the re-dissolved crystalline sample. The QDs remained in colloidal 

suspension for the duration of the experiment, but absorption and emission peaks were 

observed to shift, and trend with the concentration of 3-MPA (Figure S IV-8). A marked 

blue shift was observed over the first 50 hours but peak positions stabilized after the first 

50 hours. 
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E) Discussion 

1) Optical Properties 

PbS QDs originally capped with oleate were resuspended with solutions of 3-MPA and 

dDDdMABr in CHCl3, toluene, and hexane. Absorption and emission peaks shifted 

slightly upon resuspension. The magnitude of the excitonic peak position redshift for 

stable suspensions with 20:20:1 [3-MPA]:[dDDdMABr]:[Oa−] was similar to previously 

observed red-shifting seen during bi-phasic ligand exchange to form 3-MPA-capped PbS 

QDs in DMSO.100 Oa-capped PbS QDs had emission peaks centered around 1.26 eV. 

Emission peaks for exchanged colloids were centered around 1.22 eV independent of 

solvent choice, while absorption peaks exhibited a minor dependence on solvent choice. 

Solvatochromic effects of similar magnitude have previously been observed for dispersed 

QDs in solvents of varying dielectric constants.28 

Ligand exchange to form colloidally stable solutions was not possible in CHCl3, 

toluene, or hexane using only 3-MPA. The addition of 3-MPA alone resulted in 

immediate agglomeration to form a clear supernatant solution within minutes. Despite 

rapid agglomeration, it was possible to obtain emission spectra within the first minute 

that revealed a more extensive red-shift than combined 3-MPA/dDDdMABr solutions 

(Figure S IV-1). Extended red-shifting of optical spectra has previously been observed as 

a result of enhanced particle-particle coupling in QD solids,87,91 and is consistent with 

increased coupling due to agglomeration. This was further supported by the loss of any 

clearly resolvable exciton peak in the absorption spectra. The observed emission intensity 

of 3-MPA only suspensions was ~12% of suspensions with 3-MPA and dDDdMABr 
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together. The addition of dDDdMABr by itself induced a minor red-shift in both the 

absorption and emission peak positions with the QDs remaining in colloidal suspension. 

This is consistent with previously observed spectral changes with PbS QDs that have 

undergone ligand exchange from organic surfactants such as oleate to a halide shell.59,140–

142 

Exchanged QDs were allowed to age while following changes in optical properties 

(Figure S IV-8). A blue-shift over time was observed as the colloids aged; this shift 

roughly followed the depletion of 3-MPA in the colloids observed during NMR aging 

studies (Figure IV-15). However, the suspensions maintained well-defined emission and 

absorption peaks throughout extended aging and the nanocrystals remained in 

suspension. Small amounts of light scattering were observed as crystals formed inside the 

solutions due to photo-enhanced catalytic conversion from monomer 3-MPA to dimer 

dTdPA (Figure S IV-6). 

2) Ligand Chemistry 

Both one-dimensional and two-dimensional NMR has been used to successfully identify 

ligands on the surface of nanocrystals by taking advantage of differences in chemical 

shifts and the rotational correlation time between free molecular species and those bound 

to a nanocrystal surface.40,103,115,118,143 This approach was used to further investigate the 

ligand chemistry resulting from exposure of Oa-PbS QDs to 3-MPA/dDDdMABr 

solutions. 
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3) Resuspension Gave 3-MPA Stabilized PbS QDs 

3-MPA replaced surface-bound Oa− to give OaH when Oa-PbS QD films were 

resuspended with 3-MPA and dDDdMABr in CHCl3. Specifically, the data suggest that 

3-MPA interacted with the PbS QDs via the thiol moiety in a dynamic fashion, and that 

dDDdMA+ associated with the 3-MPA-capped PbS QDs. 1H-NMR (Figure IV-12D) 

showed loss of the 3-MPA thiol protons, and, consistent with this, the α-thiol protons (9) 

changed from a quartet to a triplet. NOE spectra showed that both 3-MPA and 

dDDdMABr spent time in close proximity to one another while associated with the QD 

surface (Figure IV-14). Both 3-MPA and dDDdMABr generated strong negative NOE 

cross-peaks consistent with attachment to a QD surface and significant cross-relaxation 

between 3-MPA and dDDdMABr was observed (Figure IV-14). This is consistent with 

previous observations of dynamically capped 3-MPA-PbS QDs in DMSO.100 

dDDdMABr by itself did not cause the above-described spectral changes. When 3-

MPA and dDDdMABr were mixed in a 1:1 ratio (Figure IV-12C) there were no 

significant changes to the observed splitting patterns of 3-MPA. The normalized 

integration of the convoluted peak combining resonances 10 (thiol of 3-MPA, one 

proton) and 14 (β-amino of dDDdMA+, 4 protons due to symmetry) sum to their proper 

value representing 5 protons. The COOH resonance of 3-MPA (11) shifted, broadened, 

and its integral was reduced to approximately half (Figure S IV-10) compared to 3-MPA 

alone, typical behavior for a COOH peak in exchange. Figure IV-14 shows NOE spectra 

demonstrating that a 1:1 solution of 3-MPA/dDDdMABr did not generate negative cross 
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peaks associated with slow tumbling molecules or have significant through space 

intermolecular cross-relaxation in solution when QDs were not present. 

4) Ligand Exchange Released Free OaH 

QD surface bound Oa− was released to yield free oleic acid (OaH) in an overall X-type 

ligand exchange.114 Figure S IV-2 demonstrates the differences between free OaH in 

solution and Oa– bound to the surface of PbS QDs. Most notably for bound vs. free Oa-, 

the alkene peak near 5.4 ppm (5) became less resolved and shifted upfield, and the α-

carboxylate peak (1) was significantly broadened and shifted upfield. Figure IV-12A and 

D reveal that oleyl resonances had the same splitting patterns, broadening, and chemical 

shift as free OaH when Oa-PbS QD films were resuspended with 3-MPA and 

dDDdMABr in CHCl3. This indicates that Oa– was completely displaced from the QD 

surface. NOE spectra show that oleyl species released into solution as a free species and 

did not associate strongly with the QD after ligand exchange (Figure S IV-2). Free oleyl 

species generated either weak positive NOE buildup or anti-phase peaks in cases where 

scalar coupling was present (e.g., cross-peaks 1/2, 3/4). In contrast, Oa– bound to the 

surface of PbS QDs generated strong negative NOE cross-peaks. The same observations 

have been made previously for Oa– bound to PbSe QDs wherein only bound ligands built 

up a strong negative NOE signal.118 After ligand exchange, strong negative NOE cross 

peaks were absent, and in agreement with NOESY data for free oleyl species (c.f. 3/4 and 

1/2 cross peaks in Figure IV-14 and Figure S IV-2). 

The identity of the released form of oleyl species was likely the free acid form, OaH; 

the chemical shifts associated with oleate complexation with amines (to form 
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carboxylate/ammonium ion pairs) seen in Figure S IV-11 were not observed when Oa-

PbS QDs was re-suspended with 3-MPA/dDDdMABr in CHCl3. Instead, the oleyl 

resonances were identical to those of OaH, which did not have significant interaction 

with dDDdMABr on its own (Figure IV-13C); when dDDdMABr and OaH were mixed 

in a 20:1 ratio of [dDDdMABr]:[OaH] Figure S IV-9C) the OaH resonances appeared 

identical to that of free OaH. 

5) dDDdMABr displaces oleate from Oa-PbS when 3-MPA is not present 

dDDdMABr facilitated the overall 3-MPA for Oa− ligand exchange, and by itself 

interacted with Oa-PbS QDs. One-dimensional 1H-NMR spectroscopy of a 20:1 ratio of 

[dDDdMABr]:[OaH] (or Oa–) further explored changes to Oa– resonances as a result of 

interaction between OaH and dDDdMABr in solution (Figure S IV-9). In samples 

without dDDdMABr the α-COOH protons (1), β-COOH protons (2), and alkene protons 

(5) of oleyl species were severely broadened when attached to PbS QDs (Figure S IV-9B) 

but had well resolved splitting when present as free OaH (Figure S IV-9A). In contrast to 

this, Figure S IV-9D shows that the dDDdMABr in a 20:1 ratio of [dDDdMABr]:[Oa–] 

affects the broadening and changes the chemical shift of Oa– resonances when in the 

presence of Oa-PbS QDs such that the signal does not fit that of either free OaH/Oa− or 

Oa− bound at the surface of PbS QDs. When dDDdMA+ was introduced to suspensions of 

Oa-PbS QDs at a 20:1 ratio of [dDDdMABr]:[Oa–] the strong negative cross-peaks Oa– 

demonstrated when on the surface of PbS QDs (Figure S IV-2) were not observed. 

Instead, the cross peak of Oa– belonging to transfer between resonances 4/5 (strongly 

negative in suspensions of Oa-PbS QDs) resolved as an antiphase peak while the 3/5 
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cross-peak was not resolved. This indicates that the strong Oa-QD bond was disrupted by 

the addition of dDDdMABr. Figure S IV-12 shows that dDDdMA+ built up weakly 

positive or scalar-coupled antiphase cross-peaks when alone in solution and when in the 

presence of PbS QDs. This indicates that dDDdMA+ did not directly associate with the 

PbS QDs like a bound molecular species, and that oleyl species were neither freely 

diffusing or bound to PbS QDs after exposure to dDDdMABr. 

Halides, including bromide, have been shown to act as QD ligands.59,140–142 Bromide 

may interact with Oa–QDs, and would not be observable in 1H NOESY spectra as a 

bound ligand. Br− can be considered an anionic X-type ligand.114 Typically a proton 

would be required to release OaH,107 but the formation of ion pairs is an alternate 

explanation that has support in the literature.135 dDDdMA+ stands as an alternative 

counter-ion to balance the release of Oa− upon exchange with Br− at the surface of the 

QD, and vesicle formation between OaH and dDDdMABr has previously been 

observed.144 Hence, we explored the hypothesis that oleate was displaced to yield either 

free oleyl species, or as a lead oleate complex. 

Mixtures of OaH and either didodecylmethylamine (dDDMA) or dodecylamine 

(DDA), to form Oa−/dDDMAH+ or Oa−/DDAH+ were used to probe the release of Oa− 

from Oa-PbS QDs as an ion pair with dDDdMA+ (Figure S IV-11) by examining changes 

to oleyl resonances in the presence of amines. The formation of Oa−/dDDMAH+ and 

Oa−/DDAH+ strongly affected the broadening and chemical shift of the α-COOH (1), β-

COOH (2), and alkene (5) resonances of oleyl species. However, there was not sufficient 

overlap of these spectra to assign such a complex as the origin of the signal observed for 
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oleyl species when dDDdMABr was mixed with Oa-PbS QDs in the absence of 3-MPA 

(Figure S IV-9D).  

Mixtures of Pb(Oa)2 and dDDdMABr were used to probe whether QD-bound oleate 

was released as a lead oleate complex. Metal carboxylate displacement has been observed 

due to L-type ligand assisted desorption in metal chalcogenide QDs.22 While there are no 

L-type ligands present in combinations of dDDdMABr and Oa-PbS QDs, we combined 

Pb(Oa)2 with dDDdMABr to probe the possibility of this as a mechanism of displacement 

as oleyl species were clearly not attached to the QD surface (Figure S IV-9F-G). A 

combination of Pb(Oa)2 and dDDdMABr in a 20:1 ratio of [dDDdMABr]:[Oa−] showed 

oleyl signal remarkably close to that of Oa-PbS QDs with dDDdMABr (Figure S IV-9D) 

but is not identical. Computational surface studies have indicated that the surface of Oa-

PbS QDs is substantially different than that of Cd analogues in that only one Oa− 

molecule per excess Pb2+ atom is present on the surface of the QDs.21 Other quantitative 

studies of lead chalcogenide QDs have also found a 1:1 ratio between excess (non-

stoichiometric to chalcogen atoms) lead atoms and surface bound oleate.104 As surface 

bound OH−
 has been shown to also be present, it may be that [Pb(Oa−)(OH−)] was 

released. 

In solutions where 3-MPA is present proton transfer from 3-MPA to Oa− complexed 

with dDDdMA+ (forming a 3-MPA−/dDDdMA+ complex) is still a viable route for the 

incorporation of Br− into the QD ligand shell. This is not considered problematic for the 

formation of QD “inks”, as the addition of halides to the ligand shell of QDs has been 
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shown to be an effective means of minimizing shallow trap states deleterious to QD 

photovoltaic device performance and has become a routine synthetic procedure. 

6) Co-stabilization is required for 3-MPA capped PbS QDs in non-polar solvents 

Addition of 3-MPA without dDDdMABr present led to immediate precipitation of the 

QDs while addition of 3-MPA with dDDdMABr present allowed for extended colloidal 

suspension. Similar behavior requiring co-stabilization has been observed in HfO2 and 

ZrO2 nanocrystals, where both a carboxylic acid and an alkylamine were required to be 

present to support colloidal suspension of the nanocrystals in non-polar media.105 In that 

report, the alkylamine was determined to act as a Brønsted base causing deprotonation of 

the carboxylic acid, allowing it to replace a dissociated Brønsted acid already present on 

the natively synthesized nanocrystals. Subsequent purification steps allowed isolation of 

the nanocrystals without the presence of the alkylamine. A key difference in this report is 

the lack of obvious acid/base reactivity of the quaternary ammonium salt dDDdMABr. 

PbS QDs have also been demonstrated to be stabilized by arenethiolates mixed with 

amines.86,87 In those reports the replacement of native Oa– was attributed to the increased 

acidity of arenethiols relative to alkylthiols that is enhanced further in the presence of an 

amine. The use of a quaternary amine in this report rules out the possibility of such 

complicated acid-base interactions, though we do note that stabilization of PbS QDs with 

3-MPA and simple amines is also possible. The re-suspension of Oa-PbS QDs with 3-

MPA and sec-butylamine (Figure S IV-13) gave similar shifts in optical spectra as 

observed with dDDdMABr as a supporting co-stabilizer. In this case, the stability of the 

colloid was found to be dependent on the concentration of amine. With a 20:20:1 ratio of 
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[secBA]:[3-MPA]:[Oa−] the colloid was mildly aggregated. With a 40:20:1 ratio of 

[secBA]:[3-MPA]:[Oa−] the colloid was fully stabilized with no scattering artifacts in the 

absorption spectra. 

7) 3-MPA to dTdPA Catalysis 

The conversion of thiols to dithiols is an important chemical transformation used to, for 

example, remove thiols from petroleum fractions.145 It was previously observed that 3-

MPA-PbS QDs suspended in DMSO catalyzed the conversion of 3-MPA to its dimer, 

3,3’-dithiodipropionic acid (dTdPA).100 DMSO was likely the oxidant.101,102 Thiols, 

especially those bearing carboxylic acid moieties including 3-MPA, have previously been 

observed to be photo-catalytically dimerized on the surface of CdSe QDs.146 In this study 

it was observed that after 24 hours small crystalline precipitates formed in samples of 

PbS QDs suspended with 3-MPA/dDDdMABr present and aged under ambient light. The 

solid was collected, re-suspended in DMSO-D6 and confirmed as dTdPA by spiking the 

sample with dTdPA. No special care was taken to exclude O2, which is a likely candidate 

as the oxidant. Colloidal suspensions of PbS QDs with ratios of 20:20:1 [3-

MPA]:[dDDdMABr]:[Oa–] were allowed to age under dark and ambient light conditions 

while collecting NMR spectra to observe formation of dTdPA further. Figure IV-15A 

shows a representative spectrum prior to any aging occurring. After aging in the dark 

there is significant depletion of resonances 9 and 10 from loss of 3-MPA due to dimer 

conversion while resonances 18 and 19 did not increase in intensity further after ~24 

hours due to saturating the sample in CDCl3. Figure IV-15B shows the dependence of the 

conversion of 3-MPA to dTdPA on both light conditions and the presence of QDs. With 
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no QDs present, there was no statistically relevant difference in the conversion rate of 3-

MPA to dTdPA. With QDs present the conversion rate was significantly increased and 

dependent on illumination. The conversion of 3-MPA to dTdPA trended similarly to the 

blue-shift in optical spectra as the colloid aged (Figure S IV-8). This is consistent with 

the reversal of the ligand induced red-shift upon ligand exchange with 3-MPA. The high 

purity of collected dTdPA and reasonable conversion rate suggests that the system 

warrants further investigation. 

F) Conclusion 

Didodecyldimethylammonium bromide stabilized colloidal 3-MPA capped PbS QDs 

were prepared in CHCl3, toluene, and hexane. 1-D 1H-NMR and 2-D NOE spectra were 

consistent with complete displacement of the original oleate ligand as free oleyl species 

(either oleic acid or oleate), likely forming oleic acid in an overall X-type ligand 

exchange by proton transfer from 3-MPA. 1-D 1H-NMR and 2-D NOE spectra were 

consistent with 3-MPA dynamically exchanging between being surface bound and free in 

solution. This is similar to our previous literature report of 3-MPA capped PbS QDs in 

DMSO.100 dDDdMA+ associated with the QD surface in colloids containing both 3-MPA 

and dDDdMABr, though it was ultimately unclear if it participates directly at the QD 

surface or is merely associated with 3-MPA bound to the surface of the QD. Separately, 

the 3-MPA capped PbS QDs were observed to photo-catalyze the conversion of 3-MPA 

into its dimer, dTdPA. The rate of conversion was affected dramatically by both the 

presence of QDs and the light environment. 
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G) Supplementary Material 

1) Synthesis of lead oleate, Pb(Oa)2 

Lead(II) oleate was prepared via two separate methods. Both methods yielded 

qualitatively similar results via 1H-NMR analysis. 

Method 1 

Lead(II) oxide and oleic acid in a 1:2 mol:mol ratio were refluxed under nitrogen until a 

non-scattering slightly yellow oil was obtained. The oil was put under vacuum and dried 

overnight at 120 °C. The formed oil was highly viscous and flowed only under applied 

heat from a heat gun. 

Method 2 

Lead(II) nitrate and sodium oleate (1:2 mol:mol) were each dissolved in separate vials via 

sonication in a 1:1 v:v mixture of water and ethanol. The solution containing lead was 

added dropwise to the sodium oleate solution under vigorous stirring; the addition 

immediately caused flocculation of a white precipitate. The sample was allowed to stir 

for ~5 minutes and then sonicated for ~5 minutes to disperse the flocculate. The 

flocculate was allowed to settle and the supernatant was removed via pipette. The left-

over solid was dispersed in ethanol via sonication before being flocculated once again by 

addition of water; after flocculation the suspension was sonicated for 5 minutes to 

disperse the flocculate as much as possible. The solution was centrifuged (1500 rpm, 5 

minutes) to form a pellet with the supernatant water decanted. The pellet was again 

dissolved in ethanol and the flocculation with water was repeated to wash the product 

before being centrifuged again. After a 2nd wash cycle, the resulting solid was a loose 
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paste with water present. The paste was dispersed in toluene, becoming clear, and 

centrifuged (5000 rpm, 5 minutes) to separate the water:toluene phases. The toluene 

phase was removed and lyophilized to yield a white powder. 

2) Supplementary Figures 

 

Figure S IV-1. Absorption (solid) and emission (dotted) spectra of Oa-PbS QDs demonstrating excitonic 

preservation upon addition of a stabilizing additive. Spectra displayed include: Oa-PbS QDs, Oa-PbS QDs 

re-suspended with dDDdMABr in CHCl3 in a 20:1 ratio of [dDDdMABr]:[Oa−], Oa-PbS QDs re-suspended 

with 3-MPA and dDDdMABr in CHCl3 in a 20:20:1 ratio of [3-MPA]:[dDDdMABr]:[Oa−], and Oa-PbS 

QDs re-suspended with 3-MPA in CHCl3 in a 20:1 ratio of [3-MPA]:[Oa−]. Vertical lines represent the fit 

position of the emission peak (dashed) and first excitonic absorption (solid) for each spectrum. The 

absorbance spectra of Oa-PbS QDs with 3-MPA was not fit as it presented a broad peak from an 

aggregated suspension. A large spike at ~1.17 eV in the emission spectrum for the suspension with 3-MPA 

alone is due to scattered light from the fundamental harmonic of the 532 nm laser used for excitation of the 

samples. 
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Figure S IV-2. NOESY spectra of oleyl species with and without QDs present. A) a solution of OaH in 

CDCl3 and B) a colloidal suspension of Oa-PbS QDs in CDCl3. Strong negative (same sign as main 

diagonal) cross peaks indicate species with a critical rotational correlation time similar to that of a QD sized 

particle whereas weak positive (opposite sign as main diagonal) or antiphase (both negative and positive) 

cross peaks indicate free molecular species. 

Figure S IV-2 demonstrates the differences observed between free species and species 

bound to QD surfaces as observed by 2-dimensional NOESY. Free molecular species 

such as OaH seen in Figure S IV-2A show weak positive or antiphase cross peaks (e.g., 

3/5, 4/5 cross peaks). Figure S IV-2B shows Oa-PbS QDs under the same conditions and 

concentration of oleyl species (either OaH or Oa–). Strong negative cross peaks are 

associated with bound species. 
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Figure S IV-3. NOESY spectrum of an exchanged QD colloid with a 20:20:1 mixture of [3-

MPA]:[dDDdMABr]:[Oa−]. This expanded figure focuses on the near noise level cross-peaks from the 
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alkene moiety of released oleyl species originally present when bound to Oa-PbS QDs.  

 

Figure S IV-4. 1H-NMR spectra of Oa-PbS QDs with 3-MPA/dDDdMABr added in a 20:20:1 ratio of [3-

MPA]:[dDDdMABr]:[Oa–]. Spectra were acquired on freshly prepared suspensions and then allowed to age 

in ambient room lighting for the displayed time. 
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Figure S IV-5. 1H NMR spectra of 3-MPA/dDDdMABr solutions in a 1:1 ratio in CDCl3. Samples were 

kept in different light environments and allowed to age for 16 days. A) Freshly prepared sample stored in 

ambient light, B) stored in ambient light for 16 days, C) freshly prepared stored in dark conditions, D) 

stored in dark conditions for 16 days. 
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Figure S IV-6. Photograph of Oa-PbS QDs with 3-MPA/dDDdMABr added in a 20:20:1 ratio of [3-

MPA]:[dDDdMABr]:[Oa–] after ~48 hours of aging. The suspension remains optically transparent (left), 

while faceted crystals of dTdPA are observed floating in solution if the focal plane is aimed inside the 

cuvette (right).  
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Figure S IV-7. 1H NMR spectra in D6-DMSO of (blue) precipitated solid from aging experiments in CDCl3 

and (red) a similar solution spiked with a small grain of commercially obtained dTdPA. Residually 

protonated DMSO is present at 2.5 ppm and marked with “*”. 

Figure S IV-7 shows 1H-NMR spectra of a recovered crystalline precipitate from aging 

experiments in CDCl3. The crystal was washed three times with CDCl3 (dTdPA has low 

solubility in CHCl3/CDCl3) to remove any free contaminants before being suspended in a 

2 mL solution of DMSO. The solution was split into two samples and a small grain of 

dTdPA was added as an internal spike to one of the aliquots. The intensity of each peak 

assigned to dTdPA increased upon addition of the spike. The peak assigned to H2O 

increased as well, which is likely due to water brought in with the spike as the added 

dTdPA was not extensively dried and is mildly hygroscopic. As a comparison, the 
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intensity of the DMSO peak did not change qualitatively or quantitatively in any 

significant manner. 

 

Figure S IV-8. Absorption (solid) and emission (dashed) spectra of Oa-PbS QDs with 3-MPA/dDDdMABr 

added in a 20:20:1 ratio of [3-MPA]:[dDDdMABr]:[Oa–]. The colloid was allowed to age for ~9 days with 

spectra taken in intervals to follow changes in optical properties. Vertical lines represent the fit position of 

the emission peak (dashed) and first excitonic absorption (solid) for each spectrum. 
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Chart IV-4. Didodecylmethylamine (dDDMA) and dodecylamine (DDA). Each molecule’s distinguishable 

1H environments are labeled. 

 

Figure S IV-9. Expanded 1H NMR spectra of oleyl resonances under varying exchange conditions. A) OaH, 

B) Oa-PbS QDs, C) OaH with dDDdMABr in a 20:1 ratio of [dDDdMABr]:[OaH], D) OA-PbS QDs with 

dDDdMABr added in a 20:1 ratio of [dDDdMABr]:[OA], E) Oa-PbS QDs with 3-MPA/dDDdMABr added 
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in a 20:20:1 ratio of [3-MPA]:[dDDdMABr]:[Oa–], F) Pb(Oa)2, and G) Pb(Oa)2 with dDDdMABr added in 

a 20:1 ratio of [dDDdMABr]:[Oa−]. 

 

Figure S IV-10. 1H-NMR in CDCl3 of expanded oleyl species focusing on carboxylic acid resonances. A) 

OaH, B) 3-MPA, C) dDDdMABr D) a 1:1 mixture of 3-MPA/dDDdMABr, E) Oa-PbS QDs, F) QDs with 

dDDdMABr added in a 20:1 ratio of [dDDdMABr]:[OA], and G) Oa-PbS QDs with 3-MPA/dDDdMABr 

added in a 20:20:1 ratio of [3-MPA]:[dDDdMABr]:[Oa–]. The concentration of oleyl species is the same in 

all spectra. 
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Figure S IV-10 is vertically expanded to highlight COOH and exchangeable proton peaks 

present in some of the samples. Both 3-MPA and OaH have acidic carboxylic acid groups 

that can deprotonate. Oa-PbS QDs in Figure S IV-10E do not have any resolvable acidic 

protons, consistent with previous reports of carboxylate binding.107 Figure S IV-10F does 

not show any resolvable acidic protons, indicating that dDDdMABr does not release free 

OaH in a significant enough magnitude to observe free OaH. 
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Figure S IV-11. Expanded 1H NMR spectra of oleyl resonances upon addition of amines. A) OaH, B) Oa-

PbS QDs, C) OA-PbS QDs with dDDdMABr added in a 20:1 ratio of [dDDdMABr]:[OA], 

Didodecylmethylamine (dDDMA) with OaH in D) a 1:2, E) 1:1, F) 2:1, G) 20:1 ratio of [dDDMA]:[OaH], 

and Dodecylamine (DDA) with OaH in H) a 1:2, I) 2:1, J) and 20:1 ratio of [DoDA]:[OaH] respectively. 

The concentration of oleyl species is the same in all spectra. A mobile peak attributed to either water or 

water/amine exchange in samples with amines is present in some samples and marked with “*”. 
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Figure S IV-12. NOESY spectrum of A) a solution of dDDdMABr in CDCl3 and B) an OA-PbS QD colloid 

in CDCl3 with dDDdMABr added to solution in a 20:1 [dDDdMABr]:[Oa−] ratio. The concentration of 

dDDdMABr and Oa− is the same in both spectra. 
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Figure S IV-13. Absorption (solid) and emission (dashed) spectra of Oa-PbS QDs upon exposure to 3-MPA 

and sec-butylamine in CHCl3. Spectra displayed are: Oa-PbS QDs, Oa-PbS QDs re-suspended with secBA 

added in a 20:1 ratio of [secBA]:[Oa–], Oa-PbS QDs re-suspended with secBA/3-MPA added in a 20:20:1 

ratio of [secBA]:[3-MPA]:[Oa–], and Oa-PbS QDs re-suspended with secBA/3-MPA added in a 40:20:1 

ratio of [secBA]:[3-MPA]:[Oa–]. Vertical lines represent the fit position of the emission peak (dashed) and 

first excitonic absorption (solid) for each spectrum. 
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V) CONCLUSIONS AND FUTURE DIRECTIONS 

A) Conclusions 

Colloidal suspensions of 3-MPA capped PbS QDs were investigated in a variety of 

organic solvents with the aim of formulating a directly depositable 3-MPA capped PbS 

QD “ink”. Initial suspensions in DMSO proved to be difficult to use for solution 

processing. Colloids of 3-MPA capped PbS QDs were subsequently obtained in volatile 

organic solvents that are more amenable to common solution processing techniques for 

the formation of QD solids arrays. In both cases, the PbS QDs were highly catalytic 

towards the photo-driven conversion of monomer 3-MPA to dimerized dTdPA. 

Ultimately, the addition of a stabilizing amine/ammonium allowed preparation of 3-MPA 

capped PbS QD colloids in a variety of solvents that were able to form conformal 

coatings in single step deposition processes (e.g., spin coating, drop-cast evaporative 

deposition); initial attempts to use this “ink” in preparing solar devices have yet to be 

explored extensively. While successful inks were obtained, the lack of significant cross-

linking in directly deposited films may ultimately hinder highly coupled film formation. 

B) Future Directions 

1) Thermal Processing 

The addition of dDDdMABr as a stabilizer re-introduces a problem for optoelectronic 

applications. Long alkane surfactants, typically used to confer stability in low-polarity 

solvents by direct ligation to a QD surface, are electronically insulating and mitigate 

facile charge transport in QD films. dDDdMABr has previously been thermally removed 
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from QD films without disrupting film order.137 Thermal processing of directly deposited 

films remains a viable option for removing stabilizing additives while maintaining film 

order and offers a simple approach to device fabrication. 

2) Alternate stabilizers 

Sec-butylamine and dDDdMABr were chosen as exploratory options for colloidal 

stabilization of 3-MPA capped PbS QDs in organic solvents but are merely part of a 

larger library of possible stabilizers. A wide spectrum of amine based additives present 

themselves readily. Long chain primary amines have been shown to increase binding 

strength of carboxylic acid based QD ligands.24 Additionally, volatile NH4
+ ions have 

also been used to charge balance anionic ligand shells.67,68 Given the variety of possible 

amine/ammonium based additives, a massive library of application focused chemical 

combinations remains. 

C) Final Thoughts 

The limitations of an “ink” based approach to QD solid formation for optoelectronic 

applications do not escape the author: The formulated inks, while colloidally stable, 

demonstrate photocatalytic consumption of the ligand of interest for PV applications; the 

lack of significant cross-linking in QD films precludes the opportunity for bifunctional 

ligand coupling of QDs; the addition of an organic stabilizer allows for direct deposition 

but may interfere with optoelectronic performance of as deposited devices. These 

problems, and others, are viewed as smaller obstacles for device engineering in the face 

of the newly developed ability to provide solution processability to a previously 

unobtained colloidal QD-ligand that has largely driven a new field of PV devices in the 
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last decade. That is, colloidal control is viewed as a pre-requitiste condition for any 

successful “bottom up” assembly approach. 
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