
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 12-13-2016

A Multi-Agent System for Adaptive Control of a A Multi-Agent System for Adaptive Control of a

Flapping-Wing Micro Air Vehicle Flapping-Wing Micro Air Vehicle

Michal Podhradsky ́
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons, and the Navigation, Guidance, Control and

Dynamics Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Podhradsky ́, Michal, "A Multi-Agent System for Adaptive Control of a Flapping-Wing Micro Air Vehicle"
(2016). Dissertations and Theses. Paper 3291.
https://doi.org/10.15760/etd.3282

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3291&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3291
https://doi.org/10.15760/etd.3282
mailto:pdxscholar@pdx.edu

A Multi-Agent System for Adaptive Control of a Flapping-Wing Micro Air Vehicle

by

Michal Podhradský

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Dissertation Committee:
Garrison Greenwood, Chair

Marek Perkowski
Richard Tymerski
Wayne Wakeland

Portland State University
2016

ABSTRACT

Biomimetic flapping-wing vehicles have attracted recent interest because of their numer-

ous potential military and civilian applications. In this dissertation is described the design

of a multi-agent adaptive controller for such a vehicle. This controller is responsible for

estimating the vehicle pose (position and orientation) and then generating four param-

eters needed for split-cycle control of wing movements to correct pose errors. These

parameters are produced via a subsumption architecture rule base. The control strategy is

fault tolerant. Using an online learning process, an agent continuously monitors the vehi-

cle’s behavior and initiates diagnostics if the behavior has degraded. This agent can then

autonomously adapt the rule base if necessary. Each rule base is constructed using a com-

bination of extrinsic and intrinsic evolution. Details of the vehicle, the multi-agent system

architecture, agent task scheduling, rule base design, and vehicle control are provided.

i

ACKNOWLEDGEMENTS

I would like to thank to Dr. Garrison Greenwood for his support and guidance during my

research.

This material is based upon work partially supported by the National Science Foun-

dation under Grant Numbers CNS-1239196, CNS-1239171, and CNS-1239229.

ii

TABLE OF CONTENTS

Abstract i

Acknowledgements ii

List of Tables iv

List of Figures v

Chapter 1: Introduction 1
1.1 Problem Statement . 2
1.2 Research Objectives . 5

Chapter 2: Background 6
2.1 Related Research . 6

2.1.1 Oscillators . 7
2.1.2 DC Motors . 10
2.1.3 Sensors . 13
2.1.4 Inertional Measurement Unit . 14
2.1.5 Vision Based Sensors . 16

2.2 Cyber Physical Systems . 16
2.3 Subsumption Architecture . 18
2.4 Evolutionary Algorithms . 20
2.5 Multi Agent Systems . 21

Chapter 3: Problem Definition 26
3.1 Vehicle Configuration . 26
3.2 Cycle Averaged / Split Cycle Control . 28
3.3 Experimental Setup and Environment 30
3.4 3D Printing & Vehicle Assembly . 35
3.5 Simulation . 37

iii

TABLE OF CONTENTS

Chapter 4: Approach 39
4.1 Multi-Agent Architecture . 39

4.1.1 Agent Description . 39
4.1.2 Agent Scheduling . 42

4.2 Agent Implementation . 43
4.2.1 Controller Agent . 44
4.2.2 Monitor Agent . 46
4.2.3 Diagnostic Agent . 47

4.3 Agent Online Learning . 49
4.3.1 Initial Learning . 49
4.3.2 In-Flight Learning . 50
4.3.3 Rule-base Adaptation . 51

Chapter 5: Results 54
5.1 Extrinsic Evolution . 55
5.2 Intrinsic Evolution . 57
5.3 Waypoint Following . 60
5.4 Fault recovery . 66
5.5 Obstacle Avoidance . 73
5.6 Summary . 79

Chapter 6: Conclusion & Future Work 80
6.1 Future Work . 83

Bibliography 85

Appendix A: Mechanical design 96

Appendix B: Software Architecture 104
B.1 Motor Firmware . 104
B.2 Multi Agent System . 105

B.2.1 API . 105
B.2.2 UDP Communication . 105

B.3 Pose Estimation System . 106
B.4 Graphical User Interface . 106
B.5 Application Notes . 107

B.5.1 Initialization procedure . 108

Appendix C: Additional resources 109

iv

LIST OF TABLES

Table 4.1 Required vehicle movements . 45
Table 4.2 Controller agent subsumption architecture 46

Table 5.1 Control parameters for the basic movements - extrinsic evolution . . 60
Table 5.2 Control parameters for the basic movements - intrinsic evolution . . 60
Table 5.3 Basic maneuvers performed under nominal conditions 65
Table 5.4 Basic maneuvers performed after wing damage 68
Table 5.5 Evolved fault recovery control parameters 69
Table 5.6 Basic maneuvers performed after recovery 71
Table 5.7 Modified Controller agent subsumption architecture 73

v

LIST OF FIGURES

Figure 1.1 Application examples . 3

Figure 2.1 Piezoelectric bimorph oscillator 8
Figure 2.2 Piezo-oscillator conceptual drawing 8
Figure 2.3 Piezo-oscillator in practice . 8
Figure 2.4 Resonance of the piezoelectric oscillator 9
Figure 2.5 Bode plot of linearized Robobee model 9
Figure 2.6 DC motor and wing assembly . 10
Figure 2.7 Dipteran insect’s flight thorax . 11
Figure 2.8 Simple crank mechanism . 11
Figure 2.9 Crank-slider/slider-crank transmission 12
Figure 2.10 Locust size FWMAV . 12
Figure 2.11 Gear reducer with spur gears . 12
Figure 2.12 Assembled FWMAV with gear reducer 12
Figure 2.13 Planetary gear transmission with solid linkages 13
Figure 2.14 Assembled FWMAV with planetary gear transmission 13
Figure 2.15 Telit Jupiter SE880 GPS Module 15
Figure 2.16 InvenSense MPU-9259 . 15
Figure 2.17 Cyber-Physical System . 18
Figure 2.18 Subsumption architecture control layers 20
Figure 2.19 Evolutionary Algorithm . 22
Figure 2.20 An autonomous agent and its environment 23
Figure 2.21 Basic communication paradigms 24

Figure 3.1 Orthographic view of flapping wing vehicle 27
Figure 3.2 Split-cycle results for δ > 0 . 29
Figure 3.3 Split-cycle results for δ < 0 . 29
Figure 3.4 3D model of wings . 30
Figure 3.5 Assembled vehicle . 30
Figure 3.6 Vehicle during an experiment in the water tank (top-view) 31
Figure 3.7 Vehicle during an experiment in the water tank (close-up view) . . 31
Figure 3.8 Feature matching example . 32

vi

LIST OF FIGURES

Figure 3.9 Robot tracking - initialization . 33
Figure 3.10 Robot tracking - orientation drift 34
Figure 3.11 3D printed parts . 36
Figure 3.12 3D printed parts after cleaning 36
Figure 3.13 Screenshot of the simulator . 38

Figure 4.1 Diagram of Agent-based control architecture 40
Figure 4.2 Agent scheduling example . 43
Figure 4.3 Pose density function . 48

Figure 5.1 Extrinsic evolution run for Turn left move 58
Figure 5.2 Intrinsic evolution run for Turn left and Turn right moves 58
Figure 5.3 Best found solution for forward movement 59
Figure 5.4 Autonomous waypoint following 62
Figure 5.5 Vehicle trajectory during waypoint following 63
Figure 5.6 Control inputs during waypoint following 64
Figure 5.7 Orientation during waypoint following 64
Figure 5.8 Angular rate during waypoint following 64
Figure 5.9 Box plot of turn left . 65
Figure 5.10 Box plot of turn right . 65
Figure 5.11 Box plot of waypoint . 65
Figure 5.12 Original Wing . 66
Figure 5.13 Damaged wing . 66
Figure 5.14 Histogram of turn right move . 69
Figure 5.15 Box plot of turn right move during fault recovery 69
Figure 5.16 Fault recovery example . 70
Figure 5.17 Path travelled during fault recovery 71
Figure 5.18 Control inputs during fault recovery 72
Figure 5.19 Orientation during fault recovery 72
Figure 5.20 Angular rate during fault recovery 72
Figure 5.21 Obstacle avoidance example . 76
Figure 5.22 Path travelled during obstacle avoidance 77
Figure 5.23 Control inputs during obstacle avoidance 78
Figure 5.24 Orientation during obstacle avoidance 78
Figure 5.25 Angular rate during obstacle avoidance 78

vii

CHAPTER 1

INTRODUCTION

Biomimetic flapping-wing micro-aerial vehicles (FWMAV) have been the focus of much

recent research due to their potential for both civilian and military applications. Because

of heir insect-like size and relative simplicity in comparison with more traditional un-

manned aerial systems (such as quadrotors or fixedwing airplanes), they can be made

relatively cheaply and be a part of personal equipment of soldiers, first responders, law

enforcement members etc. Probably the most well-known is their application in military

reconnaissance – a soldier launches the drone in the air to get a better view of the battle-

field, and to spot enemies and obstacles. Small pocket-size drones are already being tested

for military use [54]. Similarly, insect-like robots can be used for law enforcement and

surveillance – helping SWAT teams locate suspects, or monitor crowds. Ground robots

capable of stealthy surveillance are already available [55].

Firefighters use drones to monitor fire from above [15], but an insect-like drone can

fly inside a burning building and help access the fire damage without exposing fire crew

to danger. First responders would benefit from miniature drones that map dangerous

environments before humans step in, and that measure radiation and toxic levels in con-

taminated areas (if equipped with proper sensors) after a fire or an environmental disaster.

One application unique for miniature flapping-wing robots is artificial pollination – in the

catastrophic event that there is not enough bees available, robotic pollinators can take over

1

1.1. PROBLEM STATEMENT

and help farmers where needed [13]. Yet another, perhaps more exotic use is planetary

exploration as suggested by [11].

In either possible application area, adaptive, fault-tolerant, control and autonomous

operation is paramount. One way to achieve the desired level of autonomy is with a

Multi Agent System (MAS) – where different agents inside of the robot’s controller are

responsible for specific tasks. For example, one agent is responsible for adapting the

flight trajectory, while a second agent is responsible for monitoring the "health" of the

robot, and a third agent can help during a fault recovery. This way even a very complex

system can be split into simpler tasks. Subsumption architecture, another concept well

known in robotics described in Section 2.3, is used for prioritization over different goals,

which gives the robot the desired autonomy. The concept of MAS combined with the sub-

sumption architecture is general enough so it can be used on various robots for different

applications. In our research we use evolution algorithms, which can quickly evolve the

robotic control system and tune it for a particular application.

PROBLEM STATEMENT

In the aforementioned examples, the existing drones are remotely controlled by a human

pilot. They have some sense of autonomy (i.e. a "hold" function that keeps the drone

hovering on a spot while the operator for example pans the on-board camera), but are not

able to perform fully autonomous missions. Nonetheless, greater autonomy is not always

well-received by the public (for example see [17]), so it is important to keep the related

ethical questions in mind [49] [64].

FWMAVs, unlike their counterparts with rotating blades and fixed wings, have the

potential to be truly insect-size. The reason is that the conventional technologies used

2

1.1. PROBLEM STATEMENT

Figure 1.1: An example of applications of flapping-wing robots. Top left: Detecting
toxic materials; Top right: Measuring radiation levels in contaminated areas; Bottom left:
Mapping of dangerous environment; Bottom right: Artificial pollination

for macroscale aircrafts do not scale well, because the decreased size brings an increased

dominance of surface forces, causing revolute joints or sliding sliding surfaces (for exam-

ple propellers shafts and motor bearings) inefficient or even infeasible [12]. In addition,

the lift-to-drag ratio for fixed aerofoils decreases at small scales because of the greater

effect of viscous forces relative to lift-generating inertial forces at low Reynolds num-

bers [27].

A FWMAV qualifies as a Cyber Physical System (CPS). A CPS is a system where a

controlled physical process and information processing is tightly coupled. Working with

CPS introduces unique challenges, which is described in Section 2.2. This work describes

a MAS for adaptive control of a FWMAV. The vehicle employed in this research is similar

to a minimally-actuated FWMAV introduced by Wood [70], [67] with core control laws

introduced and subsequently refined by Doman et al. [21], [22]. Our vehicle [50], [8], [9]

3

1.1. PROBLEM STATEMENT

operates similarly to the minimally actuated vehicles considered by Wood and Doman et

al. in that all propulsion and control are provided by two wings, each of which possesses

a single active and a single passive degree of freedom. As previously mentioned [21], the

two wing configuration allows full 6 DoF control and is mimicking a bee or a fly.

Previous work employed variants of the controllers discussed in [21], [22] augmented

with adaptive wing beat oscillators [29], [30], [28] that provided adaptation at the inner-

most layer of vehicle control (wing flapping patterns). The goal of that work was to

provide adaptation not by changing control laws that related desired forces and torques

to stereotyped wing motions, but rather, to change the wing stereotyped motions to adapt

generated forces to the needs of control laws designed for undamaged wings. In other

words, the salient adaptation was that damaged wings learned to move in ways that

mimicked the force and torque generation of undamaged wings. As a result the higher

level controllers would not be able to distinguish between normal operation and damaged

wings.

In contrast to that work, this dissertation describes a design for a MAS where control

laws are directly adapted at a higher level of abstraction in the control law hierarchy. In

this system, agents are responsible for collecting and estimating vehicle pose, recording

waypoint locations for trajectory following, generating inputs needed by the split-cycle

oscillator, monitoring vehicle behaviour and, when necessary, conducting diagnostics and

adapting the control rule base. In this case the higher level control system monitors (di-

rectly or indirectly) the wing performance and adapts if necessary, while the inner-most

layer of control is fixed. The initial set of control laws is designed using a combination of

extrinsic and intrinsic evolution [32]. The ultimate vision is that both forms of adaptation

co-exist in the vehicle so that the benefits of each approach are equally available.

4

1.2. RESEARCH OBJECTIVES

RESEARCH OBJECTIVES

The former approach [50], [8], [9] focused on lower level control, and didn’t provide a

complete solution. The later approach, described in this dissertation, utilizing a MAS,

provides a complete high-level control as well as autonomy to the vehicle. In combina-

tion with evolution inspired techniques, the control system is able to adapt to different

vehicles and to different conditions (for example damaged wings). The main contribution

of our research is that it proves the viability of a MAS for a FWMAV by demonstrating

the autonomous waypoint following, and the concept of likelihood based fault detection

procedure. The major outcomes of this research are:

1. understanding the viability of a MAS for control of flapping wing vehicles

2. developing a multi-agent control system allowing the vehicle to follow trajectory in

experimental settings

3. developing fault detection and fault recovery mechanisms based on a combination

of extrinsic and intrinsic evolution

4. developing high degree of autonomy of the vehicle, including trajectory following

and fault recovery procedures

This research is supported in part by the National Science Foundation under Grant

Numbers CNS-1239196, CNS-1239171, and CNS-1239229.

5

CHAPTER 2

BACKGROUND

This Section provides background information related to our research. Basic concepts of

FWMAV as well as the state-of-the-art research in the area is discussed in Section 2.1.

Readers familiar with these concepts can skip the later sections, specifically Sections 2.2,

2.3, 2.4 and 2.5.

RELATED RESEARCH

Flapping-wing micro-aerial vehicles are relatively new research topic, with first con-

cept papers appearing in early 2000’s [59] [74] [72] [73]. To this date, the principles

of flapping-wing flight are relatively well understood, including understanding of in-

sect flight dynamics [62] [26] [19] and related aerodynamics phenomena [7] [63]. Re-

searchers were able to successfully apply system identification methods (that were used

on small-scale UAVs before, for example [35]) on insects [65], as well as on insect-size

FWMAV [24]. To this date, a free-flight of a fly-size FWMAV was achieved [16] (al-

though the power supply and data processing was external to the vehicle), as well as an

untethered flight of a locust-size FWMAV with battery, sensors, radio and control unit

on-board [56]. A comprehensive overview of modelling techniques is presented in [46].

First we will address the modelling and design of FWMAV, which is indeed very

important for development of new vehicles and improvement of the existing prototypes.

6

2.1. RELATED RESEARCH

Then we will review several different approaches to the power system of a FWMAV, and

discuss the commonalities and differences between them. Finally we will present most

common on-board sensors that are a precursor of an autonomous FWMAV flight.

The most important part of the flapping-wing vehicle are the actuators (or "flight mus-

cles"), since they provide propulsion to the robot. There are two main power technologies

used – either a brushed or brushless Direct-Current (DC) motor, or a piezoelectric oscil-

lator. The DC motors are commonly used in larger robots and MAVs, but unfavourable

scaling of magnetic forces limits the achievable power densities in small electromagnetic

motors, making them unusable for the smallest fly-size FWMAVs [12] [27]. Piezoelectric

oscillators offer a better weight-to-light ratio, and be manufactured small enough for sub-

centimetre robots. Yet they have a limited range of frequencies they can operate at, and

require relatively high voltage of at least 150 Volts [71] which makes them more difficult

to work with. DC motors are more suitable for larger FWMAVs with take-off weight of a

few grams. Piezoelectric oscillators are suitable for vehicles lighter than 1 gram. In both

cases the actuators require a transmission, because neither DC motors, nor oscillators are

suited to connect directly to the wings.

Oscillators

Piezoelectric bimorph oscillators consist of two layers of piezoelectric material, with an-

other layer of flexible material in between as shown in Figure 2.1. When sufficiently high

voltage is applied across the piezoelectric layers, one layer will expand while the other

layer will shrink, causing a bending effect. Application of sinusoidal signal will result

into oscillatory movement. Note that amplitude modulation of the driving signal changes

minimal and maximal position of the oscillator, while applying an offset voltage shifts

the middle position of the oscillator. Frequency modulation of the signal then changes

7

2.1. RELATED RESEARCH

Figure 2.1: Piezoelectric bimorph oscillator [71]. CF -Carbon Fiber, SGlass - a high
stiffness fiberglass, PZT - Lead zirconate titanate

Figure 2.2: Conceptual drawing highlight-
ing the main components of FWMAV uti-
lizing piezoelectric oscillator [71]

Figure 2.3: An assembled Robobee [71].
Note the piezoelectric oscillator taking up
most of the inner airframe.

the frequency of the oscillation [16]. All three effects are important for control as will

be shown later. Properties and design of piezoelectric bimorph oscillators were studied

in great detail, we would refer the reader for example to [40] and [71]. An example of a

FWMAV utilizing this type of actuator is shown in Figures 2.2 and 2.3.

Flapping-wing flight is energetically costly [12] as the inertia of the constantly oscil-

lating wings has to be overcome in addition to the high aerodynamic drag [34], so it is

essential to have as efficient power system as possible. One way, which was observed at

fruit flies and blowflies, of achieving high efficiency and minimizing the additional inertia

of the wings is to drive the wings at their mechanical resonant frequency, [34]. Existing

8

2.1. RELATED RESEARCH

Figure 2.4: Data and model fit for normalized
stroke amplitude for various voltages applied
to a piezoelectric oscillator. Note that for all
applied voltages the resonance peak occurs be-
tween 110 and 130 Hz. Details of the experi-
ment in [37]

Figure 2.5: A bode plot of linearized
theoretical model and identified model
of Robobee [24]. Note that in both mod-
els the resonance indeed occurs between
100 and 150 Hz which is consistent with
observations.

systems, such as [70] were indeed designed to drive the wings at their resonant frequency.

The effect of resonant frequency is most obvious at the smallest scale (i.e. fly-scale

robots), because the ratio of wings inertia to actuator inertia is large. A good example is

a Harvard Robobee [70] for which was this effect both theoretically predicted [74] and

experimentally measured (see in Figure 2.4). A linearized identified system model of

the Robobee shows identical resonance frequency, as shown in Figure 2.5 As a result, a

practical use of piezoelectric oscillators is challenging, because the oscillating frequency

of the actuator has to match the resonance frequency of wings. Changing the oscillat-

ing frequency of the actuator is non trivial and depends on the size, shape, thickness and

material of the oscillator [71]. Oscillators also require a special driving circuitry with

matched impedance for correct function [37]. Finally the transmission is directly linked,

so it changes torque ratios between the actuator and the wings, but can’t change the fre-

quency ratio (which is always 1:1).

9

2.1. RELATED RESEARCH

Figure 2.6: An example of a motor driven wing: The motor drives the wing flapping
angle through an attached gearbox. The wing passively rotates about a polyimide film
and carbon fiber flexure. A spring is attached in parallel at the gearbox and wing spar
connection. [34]

DC Motors

Using DC motors (both brushed and brushless) for wing actuation posses fewer chal-

lenges (in comparsion with the oscillators), at the cost of larger size and weight. They are

also cheaper and easier to obtain, so as a result multiple FWMAVs with DC motors are

available. The motor is connected to the wing via a transmission (typically with planetary

gears) with various transmission ratio (from 25:1 to 4:1 depending on the size and type of

the vehicle), as shown in Figure 2.6. Robots from different research groups differ mostly

in how the wing is attached to the transmission, and whether additional gearing is used.

Probably the simplest approach is having a direct sliding crank going from the trans-

mission and attached to both wings via flexible polyimide joints. That way only one

actuator is required, but the control authority is limited and additional actuators are re-

quired for steering. This solution is also similar to the Dipteran flight muscles of insects -

an example is shown in Figures 2.7 and 2.8. Needles to say, the mechanism shown in Fig-

ure 2.8 doesn’t produce enough lift for take-off and was built for demonstration purposes

only.

10

2.1. RELATED RESEARCH

Figure 2.7: Dipteran insect’s flight tho-
rax [43]

Figure 2.8: Compliant thoracic mechanism
with integrated polyimide film hinges for
elastic energy storage. As the tergum of
the thorax is depressed, its wings beat up-
wards [43]

More advanced version of the slider/crank mechanism also uses flexible polyimide

joints, but is more compact as shown in Figure 2.9. This mechanism was developed for

the previously mentioned 3.2 gram locust-size FWMAV (see Figure 2.10) that is capable

of free flights.

Although planetary gears are prevalent for adjusting the motor output torque, some

researchers employed multi stage gear reducer consisting of spur gears as the transmission

[51]. The advantage of this solution is a relative low-cost, since the gears can be 3D

printed (unlike high-precision planetary gears), but the system is more susceptible to wear

(since the gears are made form plastic) and is also more exposed to the environment.

Figure 2.11 shows a detail of the gear reducer, and Figure 2.12 shows the assembled

FWMAV.

A system proposed by [29] utilizes a planetary gear transmission to match output

torque of the DC motor (in this case a brushless), and rigid linkages to transfer rotary

motion of the motor to wings. The advantage is that the system is more resilient than the

one shown in Figure 2.11 (no need for small plastic gears), while still being relatively

low-cost since all parts except the motor and the transmission are 3D printed. The CAD

11

2.1. RELATED RESEARCH

Figure 2.9: Crank-slider/slider-crank trans-
mission [56]

Figure 2.10: 3.2 g untethered flapping-wing
micro-air vehicle for flight energetics and
control experiments [56]

Figure 2.11: CAD model of the flapping-
wing mechanism. [51] Note the gear re-
ducer, as well as additional linkages and
levers.

Figure 2.12: Flapping-wing mechanism in-
tegrated control system and battery. [51]
This robot produces enough lift to carry its
own weight.

12

2.1. RELATED RESEARCH

Figure 2.13: CAD model of the flapping
wing mechanism [23]. Motors are con-
nected to a planetary gear transmission (4:1
ratio), the output shaft of the transmission is
then connected to rigid linkages that move
the wings.

Figure 2.14: Assembled flapping wing
mechanism during tests. [23]

model of the assembly is shown in Figure 2.13 while the whole assembly is shown in

Figure 2.14.

As can be seen, a variety of FWMAVs exist, differing in the type of actuators (piezo-

electric oscillators or DC motors) with different mechanical configuration. The multitude

of designs suggests that different applications prefer unique configuration of FWMAV -

depending on size, weight, required lift, price, manufacturability and maintainability, and

many other factors. FWMAVs capable of free flight already exist, which is important

because the results of our research can be used by other teams on their FWMAVs – to add

autonomy and fault recovery functionalities. In the next section we will review on-board

sensors available for FWMAVs.

Sensors

The vast majority of experiments with FWMAVs is conducted indoors with the help of ex-

ternal vision system – popular is for example a VICON vision system [70] [56] [34]. Ex-

13

2.1. RELATED RESEARCH

ternal vision sensors are great help during development and testing, but to make FWMAV

truly autonomous onboard sensors are necessary, so the robots can explore and navigate in

unknown environment. Since the application area expects operations in GPS-denied envi-

ronments (such as inside buildings), GPS receivers cannot be used to determine position.

GPS has also limited resolution (1-10 meters), which is insufficient However, sufficiently

small and light GPS modules are already available, for example Telit SE880 [66] weight

only 80 mg (slightly more than the Hardvard Robobee) and is 4.7 x 4.7 x 1.4 mm (shown

in Figure 2.15).

Inertional Measurement Unit

Micro-Electro-Mechanical Systems (MEMS) gyroscopes and accelerometers are a good

choice for FWMAVs. MEMS technology allows the sensors to be sufficiently small [56]

- a good example is InvenSense MPU-9250 [36] which combines 3-axis gyroscope, 3-

axis accelerometer and 3-axis magnetometer in 3 x 3 x 1 mm package (see Figure 2.16).

Together these sensors form an Inertial Measurement Unit (IMU) anbd their readings

can be combined together to obtain attitude (and in some cases position) information.

As the FWMAVs are improving their flight capability, the flight area they can cover is

getting larger, which causes problems for the external camera systems that are dependent

on conveniently placed markers - because the tracked robots are so small (compared to

the area they flight in), the markers are also very small and are hard to distinguish in

the camera (because of the finite camera resolution). Even in a very simple example

of straight flight, raw gyroscope readings provided more insight into the FWMAV flight

dynamics than the VICON system [56].

Gyroscopes measure rotational rates, and are reliable at higher frequencies, but suffer

from a drift (a random walk caused by sensor noise). Accelerometers measure inertial

14

2.1. RELATED RESEARCH

Figure 2.15: Telit Jupiter SE880 GPS Mod-
ule [66]

Figure 2.16: InvenSense MPU-9250 on a
quarter dollar coin [36]

acceleration, and work well at lower frequencies, but have bias that causes errors at higher

frequencies [38]. Magnetometers measure the strength and direction of the local magnetic

field. The magnetic field measured will be a combination of both the earth’s magnetic field

and any magnetic field created by nearby objects [69]. Magnetomers are used to improve

heading (yaw) estimate.

Several sensor fusion algorithms are available. A simple, yet efficient, is a comple-

mentary filter - because gyroscopes and accelerometers are reliable at different frequen-

cies, the complementary filter eliminates the unreliable frequencies for each sensor and

then combines their output [38]. A Kalman filer (which is in fact an optimal linear estima-

tor), an extended Kalman filter (which captures some nonlinear dynamics) and a particle

filter, are popular algorithms of choice for sensor fusion [61]. A good overview of avail-

able sensor fusion techniques is provided in [3].

15

2.2. CYBER PHYSICAL SYSTEMS

Vision Based Sensors

Although gyroscopes, accelerometers and even magnetometers have their equivalents in

natural world, vision based navigation is perhaps the most familiar to us, because vision

is our primary sense (as it is for many insects). The simplest approach is using optical

flow for autonomous navigation, as was demonstrated on a 20-gram FWMAV with its

own stereo vision system [18]. Monocular optical flow was used for autonomous obstacle

avoidance at high-velocities [2]. Camera inputs can be not only used to navigate the

FWMAV in an unknown environment, they can be also used to reconstruct a map of the

environment in real time to create a model of the world around the FWMAV (in a process

called Visual Simultaneous Localization And Mapping, or V-SLAM) [6], and to display

the map to the operators so they have a better understanding of the explored area [5]. It

was also demonstrated that a miniature optical sensor mimicking the function of ocelli (a

type of a simple eye common to insects) can be carried onboard an FWMAV and used for

stabilization and control [27].

CYBER PHYSICAL SYSTEMS

The concepts presented here appeared in [31]. Interested readers should consult that paper

for more detailed information. We begin with the definition of an embedded system.

Definitions vary, but essentially it is an information processing system where the end user

is not aware a computer is present. Examples include photocopiers, microwave ovens,

engine control in automobiles and price scanners in markets and department stores. More

formally, an embedded system is an information processing system embedded into an

enclosing product.

In general purpose computing performance, such as speed or virtually unlimited mem-

16

2.2. CYBER PHYSICAL SYSTEMS

ory are major selling factors. Conversely, in embedded systems correctness is most impor-

tant. Embedded systems often perform safety-critical operations where incorrect behavior

can have dire consequences.

Embedded systems are ubiquitous. Applications include automobiles, commercial

and military aircraft, weapon systems, medical equipment, smart power grids and trans-

portation systems. They are becoming increasingly complex often including multiple

processors, sophisticated communication networks and elaborate sensor and actuator sys-

tems. Sales of low-end microcontrollers suited for embedded applications exceed that of

PC microprocessor sales and have done so for nearly 15 years.

So what exactly is a “cyber-physical system” (CPS)? Is it just another term for an

embedded system? The short answer is no. The term CPS came into popular use as early

as 2006 in large part via the efforts of Helen Gill at the U.S. National Science Foundation.

A CPS is not a traditional embedded system or sensor net. The term CPS emphasizes the

fact that computer resources (the cyber portion) are tightly integrated with a physical sys-

tem (the physical portion). Cyber capabilities could be incorporated into every physical

component. A CPS could have elaborate networks and may be reconfigurable. Control

loops can be continuous or discrete. Cyber-physical systems exist at all scales from hand-

held devices to power grids spanning large geographical areas. The commonly accepted

definition of a CPS is as follows: A cyber-physical system is the integration of computa-

tion and physical processes.

Figure 2.17 shows the abstract architecture of a CPS. Using the term "cyber-physical"

emphasizes the strong link between the cyber and the physical worlds. In a CPS the cyber

portion affects the physical system and the physical system affects the cyber portion. The

integration of the cyber with the physical is extremely tight. In fact, this integration is so

tight it may be impossible to identify whether the system behavior is due to computing or

17

2.3. SUBSUMPTION ARCHITECTURE

Figure 2.17: An abstract view of the CPS architecture. The information processing sys-
tem typically consists of one or more low-end microcontrollers. Sensors observe the
physical system state while controllers provide inputs that alter the physical system state.
Networks interconnect the physical and the cyber portions. The physical system can be
electronic, mechanical or electromechanical.

physical laws! For example, it may not be possible to tell if an unmanned aerial vehicle

maneuver was caused by computer commands or resulted from the natural governing

dynamics of the vehicle’s airframe. A CPS is not the union of the cyber with the physical

but rather the intersection of the two.

FWMAV is a CPS because it contains both the cyber portion - control loops, commu-

nication interface, path planning algorithms etc. as well as the physical portion - motors

to be rotated at a precise speed, wings to be controlled and flapped to produce light, and

environment constraining the movement of the robot.

SUBSUMPTION ARCHITECTURE

Readers familiar with the subsumption architecture may skip this section. A subsumption

architecture [10] is a very useful concept when we are dealing with:

18

2.3. SUBSUMPTION ARCHITECTURE

• multiple goals

• multiple sensor inputs

• multiple actuators

• requirements for robust and easily extensible solution

The subsumption architecture was first used to control an autonomous ground robot,

capable of independent exploration and navigation in presence of obstacles in an office

space. The main idea behind the subsumption architecture is to decompose the problem

(i.e. navigation in presence of obstacles) into independent layers, and then assign priority

to each of these layers. The layers are shown in Figure 2.18. The lower number, the higher

priority of the layer. The benefit of the subsumption architecture is that it can model a

complex behavior (such as trajectory following or navigation) by using simple rules that

are easy to develop, modify and extend.

A dynamic subsumption architecture is an extension of the concept, which allows the

layers to be dynamically changed, more specifically: a change in the priority of the layers;

add/remove layers; modify the consequents of the layers.

Such change can be event triggered (e.g. a sudden change in the environment), or

action triggered (i.e. the robot decides to change its behavior based on some internal

state). Dynamic subsumption architecture allows the robot to react to changes in the

environment (e.g. strong wind), in the robot itself (e.g. a damage to actuators, or low

fuel), or in the mission (e.g. the mission was terminated by an operator); and its use for

autonomous robots was already proven.

Although the subsumption model was used for navigation and control of ground

robots [41, 47], it hasn’t been used for flapping wing vehicles. Utilizing this powerful

19

2.4. EVOLUTIONARY ALGORITHMS

Figure 2.18: Control is layered with higher level layers subsuming the roles of lower level
layers when they wish to take control. [10]

concept, we can easily develop and adapt the desired robot behavior. Note that the sub-

sumption architecture was successfully applied in commercial products such as Roomba

robot, scientific devices such as Sojuner Mars Rover and in military bomb disposal robots.

EVOLUTIONARY ALGORITHMS

In Evolutionary Algorithms (EA) the new solutions to a problem are evolved from existing

solutions by emulating Neo-Darwinistic evolution found in nature. Highly fit solutions –

i.e. those providing the best solution for the problem – are preserved and further evolved,

while solutions with low fitness are removed from the population. There are two types

of evolution relevant for CPS – intrinsic and extrinsic [31]. The difference between in-

trinsic and extrinsic evolution is in how the fitness is determined. In extrinsic evolution

a computer model of the CPS is used, while in case of intrinsic evolution the solution is

downloaded to the CPS and physical tests are conducted. As a result, extrinsic evolution

is suitable for rapid evolution (because it can be run faster than real-time), but its accuracy

depends on the model. Intrinsic evolution on the other hand is more precise, but slower,

20

2.5. MULTI AGENT SYSTEMS

because it has to be conducted on a physical device.

An EA consists of a population of individuals, where each individual represents a par-

ticular solution to a given problem. New individuals are created from existing individuals

via random mutation and recombination, but only the highly fit ones will survive. The

fitness formula is dependent on the problem being solved. An EA runs for a fixed number

of generations, at the end of the run the fittest individual is the final solution. The EA

steps are shown in Algorithm 1.

Algorithm 1 A basic evolutionary algorithm
1. Randomly generate the initial population;
2. Evaluate the fitness of the initial population;
while max number of generation not reached do

i. Select the best individuals for reproduction;
ii. Generate new individuals via random mutation and recombination;
iii. Evaluate the fitness of new individuals;
iv. Discard the least fit individuals;

end while

To better show the idea, we present an example of a CPS with an EA: an evolvable

hardware – a circuit that can be reconfigured to perform certain tasks, for example band

pass filtering. In this case the fitness is determined by the filter performance (i.e. how pre-

cise is the band pass). The solution is encoded as a bitstring - representing configuration

of the circuit. In case of extrinsic evolution, a simulation is used to evaluate the fitness,

while in case of intrinsic evolution the response of the physical circuit is measured. Fig-

ure 2.19 shows the concept in detail.

MULTI AGENT SYSTEMS

To give the reader a better understanding of MAS, we define an agent as follows [60]: An

autonomous agent is a system situated within and a part of an environment that senses

21

2.5. MULTI AGENT SYSTEMS

Figure 2.19: Evolutionary Algorithm used in a CPS: evolving a bandpass filter on a re-
configurable hardware [31].

that environment and acts on it, over time, in pursuit of its own agenda and so as to

effect what it senses in the future. An agent receives percepts from the environment, and

generates actions that might or might not depend on the percepts. Figure 2.20 illustrates

this idea. The agents can have different types, but for the purpose of our research we

considered only Reactive agents. These agents react to changes in the environment in a

stimulus-response fashion by executing the simple routines corresponding to a specific

sensor stimulation. A famous reactive agent architecture is the previously mentioned

subsumption architecture [60].

Since multiple agents are used, they interact in some way. For our purposes we use

cooperative agents – i.e. agents that work together to achieve some common goal (such

as moving a robot to a certain place). Other interactions are also possible (some agents

can be competitive against each other), but not suitable for our research. The agents can

22

2.5. MULTI AGENT SYSTEMS

Figure 2.20: An autonomous agent and its environment [60].

communicate in multiple ways. The basic communication paradigms are these four [60]

(Figure 2.21 illustrates the idea):

• Peer-to-peer communication: messages are sent directly to specific agents. This

is usually done by identifying the partners, for instance with an email-like ad-

dress (message-passing-like communication). It is also possible that an interme-

diate channel takes charge of the transmission of the data, and that the partners of

communication do not know each other.

• Broadcast communication: a message is sent to everybody in the MAS. Interested

agents can evaluate the received data or ignore it.

• Multicast communication: A message is sent to a specific group of agents.

• Generative communication: communication is realized through a black-board: agents

generate persistent objects (messages) on the black-board, which are read by other

23

2.5. MULTI AGENT SYSTEMS

Figure 2.21: Basic communication paradigms: a) peer-to-peer, b) broadcast, c) multi-cast
and d) generative communication. [60].

agents. The reading can be done independently of the time of the message genera-

tion; thus the communication is fully uncoupled.

In summary, a MAS relies upon a number of agents (actors) that communicate with

each other and typically cooperate in order to complete a certain task, such as target

tracking [33] or mapping [42]. Although a MAS were successfully used for path planning

of UAVs [58] [14], convoy protection [20] or flood monitoring [1], it was never used for

a control of a FWMAV.

This section showed the reader the bigger picture and research related to our work.

In short, FWMAVs are more and more popular and there are many designs available, all

utilizing two types of actuators - either a piezoelectric oscillator or a DC motor. Various

24

2.5. MULTI AGENT SYSTEMS

modelling techniques exist, so it is possible to simulate the performance of a FWMAV

before it is built, assuming we have enough information about individual subsystems. A

multitude of sensors exist, as well as a wide range of sensor fusion algorithms for position

and attitude estimation – which can be applied on FWMAVs in a similar way as on larger

UAVs (once sensors with sufficiently small footprints become available). A subsumption

architecture has been used in robots before, achieving relative sophisticated intelligence

with a simple set of rules. A MAS has never been used for a control of a FWMAV,

although a MAS were also used in robotic applications. The next chapter formally defines

the problem our research is solving, and provides details about the developed FWMAV

and our experimental setup.

25

CHAPTER 3

PROBLEM DEFINITION

This chapter formulates more precisely the problem we are solving, and provides infor-

mation about the design of our FWMAV, as well as the experimental setup. The intended

mission of the vehicle is to continuously follow an arbitrary trajectory. The trajectory is

represented as a set of waypoints connected in straight lines. The trajectory is pre-defined

and static during the mission. The vehicle will determine what is the best way towards the

next waypoint and what control action needs to be taken to get there. The mission ends

after reaching the last waypoint. In case obstacles are present, the vehicle is required to

avoid them autonomously and resume the desired trajectory. The biggest challenge is the

allocation of the control inputs, i.e. finding out what control action is needed. The vehicle

is also required to automatically recover from faults that could occur during the mission,

such as wing damage and control system malfunction.

VEHICLE CONFIGURATION

A conceptual vehicle closely related to those described by Wood [70], [67] and Do-

man [21], [22], is presented in [29]. Our vehicle is an upgraded version of a FWMAV

described in [50] [8] [9] and has two wings providing all propulsion and control forces.

It approximates a passively upright-stable version of the vehicle from [29] operating

near its hover wing flapping frequency. The wings are mounted in the Yb–Zb body plane

26

3.1. VEHICLE CONFIGURATION

Figure 3.1: Orthographic view of a FWMAV [29]. Both wing spars are restricted to
rotational motion about their joints with the body and in the Yb–Zb plane. The range of
those rotations is [−1 . . . 1] radians, α is between π/6 and π/2 radians. Note that the
dimensions are for orientation purposes only, and differ on the actual vehicle which is
larger.

(see Figure 3.1). These wings are actively actuated within the range of ±φ radians. As the

spars rotate, dynamic air pressure lifts the triangular wing platforms (membranes) up to

an angle of α radians under a base vector embedded in the Yb–Zb plane. Individual wing

flaps produce independent lift and drag forces at each of the two wing roots (points of

attachment of the wings to the body). These can be resolved into body frame forces and

torques and cause changes in the whole vehicle’s position and pose in three-dimensional

space.

27

3.2. CYCLE AVERAGED / SPLIT CYCLE CONTROL

CYCLE AVERAGED / SPLIT CYCLE CONTROL

The cycle averaged control is based on estimates of what forces a wing would produce, on

average, over a single wing beat. For example, a cycle-averaged altitude controller might

compute the error between current and desired altitude, use an error feedback control law

to compute the desired force to apply to the body, and finally use a model of the vehicle’s

wings to compute the parameters of a single wing beat that, when adopted by both wings,

produces the desired force (on average) during the whole wing beat. Cycle-averaged

control wraps a feedback control law around the whole wing beat as an atomic constructs

rather than around finer-scaled micro-motions of wings. The desired wing motions are

"communicated" to the wings once per wing beat as a small number of shape parameters

that define how the wing will move during that wing beat.

Split-cycle control is a special case of cycle-averaged control in which wing beats

are composed of two half-cosine waves, one each to govern the wing’s upstroke (front

to back) and downstroke (back to front). The shape parameters communicated to each

wing are a flapping frequency (ω [rad/s]) and an upstroke/downstroke transition param-

eter (δ [rad/s]). Advancing the upstroke (and consequently impeding the downstroke)

produces a forward force while keeping the wing beat frequency constant. Formally,

φU = cos((ω − δ)t) and φD = cos((ω + σ)t) where σ is dependent on δ. From [22]

we know that δ ∈ [−∞ . . . ω/2] although certain value ranges are particularly important.

If δ = 0 the upstroke is symmetrical to the downstroke and a regular wingbeat occurs.

However, if δ > 0 the upstroke is impeded and the downstroke is advanced, as shown

in Figure 3.2. As a result, a force is generated in the direction of the downstroke. Con-

versely, if δ < 0 then the downstroke is impeded and the upstroke is advanced, as shown

in Figure 3.3, resulting in a force in the direction of the upstroke. These lateral forces act

28

3.2. CYCLE AVERAGED / SPLIT CYCLE CONTROL

Figure 3.2: Split-cycle results for δ > 0 Figure 3.3: Split-cycle results for δ < 0

on the vehicle’s body via a moment arm producing an angular momentum. Put simply,

by applying the split cycle the vehicle can turn. See [22] for a derivation and a proof of

split-cycle operation.

A conventional application of a split-cycle control to our vehicle might entail an "outer

loop" of multiple body axis controllers (e.g., one that computes altitude error and deter-

mines a flapping frequency for the wings, one that computes a roll axis angle error and

computes antagonistic shifts to produce a roll moment, etc.), and an allocator that har-

monizes all of the flapping frequency and shift commands made by the various axis con-

trollers for presentation to an "inner loop" controller that would ensure the wings follow

the correct cycle averaged trajectories. Control would then consist of an outer loop that,

based on vehicle state, provides ωs and δs that should produce forces required to effec-

tively correct position and pose errors and an inner loop that, receiving those δs and ωs,

would ensure the wings moved as required.

29

3.3. EXPERIMENTAL SETUP AND ENVIRONMENT

Figure 3.4: 3D model of wings with link-
ages and motors. Video showing moving
wings is available from [23]

Figure 3.5: Assembled vehicle—note
wings in the middle, LiPo batteries on sides,
the power distribution board in the back and
the control board in front.

EXPERIMENTAL SETUP AND ENVIRONMENT

All experiments are to be conducted in a large (5′ × 5′) water tank. The vehicle is re-

stricted move on a two-dimensional plane and rotate around its Xb axis, which simulates

operation around hover. The vehicle consists of a pair of wings (shown in Figure 3.4 and

is equipped with a pair of Lithium Polymer batteries, a power distribution board and a

main computer, as shown in Figure 3.5. All hardware is mounted on a carbon-fiber plat-

form, attached to a floating Styrofoam puck, which keeps the robot on the surface. The

water surface acts as a mechanical low-pass filter, slowing down the vehicle movement

and dampening disturbances, which allows us to test our control system without the need

for expensive high-speed cameras. A camera is placed above the water tank, so its field-

of-view encompasses the entire water tank. The camera locates and records the vehicle

position. A sample capture view from the camera is shown Figure 3.6.

During the development of the image processing pipeline that reliably tracks the ve-

hicle in the whole area of the water tank we examined a number of different approaches:

30

3.3. EXPERIMENTAL SETUP AND ENVIRONMENT

Figure 3.6: Vehicle during an experiment in
the water tank (top-view). Note the color
markers used for machine vision pose esti-
mation. The four white squares are reflec-
tions of the ceiling lights and are not related
to the experiment.

Figure 3.7: Vehicle during an experiment
in the water tank (close-up view). Note the
color markers used for machine vision pose
estimation.

1. Color Markers - using color markers of specific color and dimensions is a very

common method, but suffers from changing light conditions. Typically the image

is converted into HUV (Hue-Saturation-Value) color space because it is more robust

than RGB color space, and then filtered so only the markers are left in the image.

The position and orientation is then calculated using a simple geometry. Figure 3.7

shows the robot with color markers.

2. Lukas Kanade Tracker (LKT) [44] – LKT uses optical flow (mentioned in Sec-

tion 2.1.5) to track an object within the image. LKT needs a template of the object

to start with (for example an image of the robot), but can track changing object (i.e.

when the lighting changes), which would be suitable for our application. Unfortu-

nately LKT by itself cannot determine the orientation of the object, which means we

would know only position of the robot. To obtain orientation, additional methods

need to be used.

31

3.3. EXPERIMENTAL SETUP AND ENVIRONMENT

Figure 3.8: An example of feature matching between a template picture (top left) and
recorder camera image. The features found in both images are circled in color and con-
nected by colored lines. The green square represents the calculated orientation and posi-
tion of the robot (in this case roughly 60 deg counter clockwise)

3. SURF feature matching – SURF detector [4] finds suitable features in the image,

that can subsequently be matched by FLANN based matcher [45]. Once the match

between the original object and the template is established, homography can be

calculated using RANSAC algorithm [25], which is then used to calculate the pose

of the robot - an example of this process is shown in Figure 3.8. The drawback is

higher computational complexity because of the matrix transformations involved.

We combined the LKT with SURF detector and subsequent feature matching to pro-

vide a tracker capable of following the robot across the whole water tank (even when the

vehicle was partially occluded), but because the pose was estimated incrementally (i.e. we

were looking at the pose difference from the last estimated pose) the algorithm suffered

from integration errors and as a result drifted in orientation estimate. Running algorithm

is shown in Figures 3.9 and 3.10. These issues could have been indeed resolved, but since

32

3.3. EXPERIMENTAL SETUP AND ENVIRONMENT

Figure 3.9: An example run of the tracking algorithm based on LKT and SURF: Shortly
after the initialization the azimuth estimate is precise (0 deg means the robot is facing
directly towards the right)

the computational complexity of the algorithm was already fairly high (around 100 ms to

process one camera frame on a regular laptop), it wouldn’t be viable for real-time tracking

at 30 Hz and we opted out for a simpler approach using color markers.

After a careful calibration the markers were recognizable in most of the water tank, but

in some places the light reflection leads to intermittent loss of tracking. Nonetheless the

color markers worked reliable despite for our experiments despite this disadvantage. The

processed video is recorded for reference, and the estimated pose is sent to the onboard

MAS via a WiFi link.

33

3.3. EXPERIMENTAL SETUP AND ENVIRONMENT

Figure 3.10: An example run of the tracking algorithm based on LKT and SURF: As
the integration error accumulates, the estimated azimuth quickly drifts. In this case the
estimate is around 170 deg, while the true orientation is around 80 deg)

34

3.4. 3D PRINTING & VEHICLE ASSEMBLY

3D PRINTING & VEHICLE ASSEMBLY

The original parts for the vehicle were printed using a high-end industrial 3D printer.

During the assembly and necessary repairs of the vehicle, it was needed to print additional

spare parts. The 3D printing technology advanced very rapidly since the first prototype

of the vehicle was built, and we were able to use successfully a consumer grade 3D

printer (Mojo 3D) to print all necessary linkages. Detailed 3D CAD models of the whole

assembly are available, so the whole vehicle can be easily reproduced.

In batch we can print enough parts for three pairs of wings. The price for one batch is

around $6. Figure 3.11 shows the printed parts right after they were printed. The printing

took around two hours. The printed parts have to be cleaned in a solution (to remove

the support material), and in hand (to remove print imperfections). The cleaned parts are

shown in Figure 3.12.

After the parts are cleaned, the wing linkage can be carefully assembled. It is a very

tedious process, taking up a few hours. The individual parts have to be sanded off for a

precise fit; sometimes the holes have to be cleaned with a hand drill and brass bushings

have to be inserted to reduce friction between parts. Fortunately, the assembly and repair

process is well documented, including a video with a detailed description of the process.

We have shown that new parts can be printed very easily, and a multitude of wing

assemblies can be put together relatively quickly, which is important because the ABS

plastic isn’t very rigid, quickly wears off and bends under stress, hence repair-ability is

a crucial aspect of the design. The complete vehicle assembly, however, requires special

motors, encoders and custom printed circuit boards and neither of those can be obtained

quickly or cheap. More details about the vehicle, including part numbers, mechanical

drawings and software architecture can be found in Appendix A.

35

3.4. 3D PRINTING & VEHICLE ASSEMBLY

Figure 3.11: 3D printed parts. Notice the
couplers on the left, and the left and right
rockers on the right. Left and right rockers
are identical.

Figure 3.12: 3D printed parts after cleaning.

36

3.5. SIMULATION

SIMULATION

A simulator of the vehicle is used for extrinsic evolution during initial learning (see Sec-

tion 4.3.1 for details). The simulator contains a simplified model of the vehicle with 3DOF

– a two-dimensional movement on the water surface plus a rotation around vehicle’s z-

axis. The simplified model assumes no external disturbances, such as wind. It assumes a

perfect control over wing position (i.e. no slip in the linkages). It assumes a perfectly bal-

anced vehicle, moving on a frictionless plane. The simulator, however, can be extended

to include full 6DOF movement of a flying vehicle, and additional disturbances can be

modelled too.

The simulator calculates cycle averaged lift and drag forces, meaning the produced

lift and drag forces are averaged over one full wingbeat. The produced forces are then

propagated to the body model, creating moments and change in orientation and position

of the vehicle. Cycle averaged forces are a good approximation, because the low level

controller cannot change the δ and ω parameters more often than at the beginning of the

wing beat. As mentioned previously, the simulator is not intended to perfectly model the

vehicle, but to provide a reasonably accurate initial values for the learning algorithms and

their verification.

The core of the simulator is a Java library containing vehicle dynamics model, and

performing all necessary lift and drag calculations. The library was developed by the re-

search group participating in this project. The agents are implemented using the MASON

toolkit [57], which is also used as a visualization front end. The MASON toolkit is used

to verify the MAS architecture—e.g. to make sure that the correct rules from the rulebase

are firing in right order, and to check the correctness of the scheduler by moving the ve-

hicle along predefined test trajectories. A screenshot of the running simulator is shown in

37

3.5. SIMULATION

Figure 3.13: FWMAV Simulator. Left: main window representing the flight area (in
our case the water tank), the blue arrow is the FWMAV, the gray trace is the flight path,
the blue circle is the desired waypoint (can be repositioned during the flight), the axis
labels are only for reference. Top right: control window with settings and start/stop/pause
button. Bottom left: Live plot of simulation data, in this case the orientation of the vehicle.

Figure 3.13. Other robotics simulators, such as Gazebo, could be used for modelling and

simulation, but developing it was beyond the scope of this project.

The next chapter describes how we approached the problem and the MAS we de-

signed, together with the fault recovery mechanism.

38

CHAPTER 4

APPROACH

MULTI-AGENT ARCHITECTURE

In this section we describe the multi agent control architecture and the various agents

involved in the vehicle control. The vehicle is assumed to be moving in an enclosed,

wind-free environment with no obstacles (other than the area boundaries). It is required

to follow a set of predefined trajectories specified by a sequence of waypoints. This

architecture was first proposed in [53].

Agent Description

The MAS consists of five agents. A collection agent receives pose information x, y, ψ

from the camera (or simulator), and runs smoothing and averaging algorithms to compute

the estimated pose x′, y,′ ψ′. A monitor agent observes vehicle behavior and requests

vehicle diagnostics if the behavior has deteriorated too much. The strategy agent keeps

a list of desired waypoints, and provides them upon request to a controller agent. The

controller agent determines the split-cycle oscillator control inputs (a δ and ω for each

wing) based on the vehicle pose. Finally, a diagnostic agent runs vehicle diagnostics and

determines if a fault occurred and ultimately decides whether the controller agent’s rule

base has to be adapted. The MAS diagram is shown in Figure 4.1. Each agent is further

39

4.1. MULTI-AGENT ARCHITECTURE

Figure 4.1: Diagram of Agent-based control architecture. Detailed information about
each agent is provided in Section 4.1.1. More info about the simulator (SIM) can be
found in Section 3.5. Note that the arrows between the agents do not reflect inter-agent
messages—the communication is done by event processing, as described in Section 4.1.2

described below.

Collection Agent

Precepts: x, y, ψ

Outputs: x′, y′, ψ′

Tasks: Collects high-speed data x, y, ψ from either simulator or the camera, and

computes smoothing and averaging of the data. Outputs estimated pose data x′, y′, ψ′

at a lower rate. There are several filtering options under consideration, e.g. an ex-

ponential moving average filter.

Monitor Agent

Precepts: x′, y′, ψ′, active rule from rulebase

Outputs: issue diagnostics command

40

4.1. MULTI-AGENT ARCHITECTURE

Tasks: Receives estimated position data from the collection agent, and movement

being executed from the controller agent. Monitors performance of the vehicle, and

in the case of unsatisfactory results, directs diagnostics agent to run diagnostics.

Strategy Agent

Precepts: none

Outputs: W j

Tasks: Stores list of waypoints. Sends next waypoint W j upon request.

Controller Agent

Precepts: x′, y′, ψ′,W j

Outputs: δL, δR, ωL, ωR

Functions: Consists of one or more agents. Responsible for determining control

inputs δL, δR, ωL, ωR based on the vehicle pose x′, y′, ψ′ and the desired position W j.

When the vehicle reaches a waypoint, the agent requests new waypoint coordinates

from the strategy agent. Runs maneuvers for diagnostics testing.

Diagnostic Agent

Precepts: x′, y′, ψ′,W j

Outputs: computes likelihood of fault

Functions: Initiates diagnostics testing. Computes likelihood of failure. Deter-

mines if behavior must be adapted to compensate for faults.

41

4.1. MULTI-AGENT ARCHITECTURE

Agent Scheduling

The scheduler is responsible for specifying when individual agents execute their assigned

tasks. In this application scheduling is event-oriented rather than time oriented. Our

scheduler is loosely based on the scheduler used in the RePast agent-based toolkit [48].

The scheduling process can be abstractly thought of as a sequence of hooks on a wall

(see Fig 4.2). An agent is "hung" on a hook if it is supposed to execute some task at some

future time. However, time is relative, not absolute–i.e., hooks are not associated with

some specific time nor does hook spacing reflect time intervals; hooks merely establish a

partial ordering of agent tasks. For example, if agents x, y, and z are hung on hooks three,

four and seven respectively, this simply says agent x performs some task before agent y

which performs some task before agent z. Hooks therefore just order agent behaviors with

respect to each other. Only one agent can be hung on a particular hook because agents

do not execute tasks concurrently. We say an agent is stepped if it is directed to perform

some action or task.

The entire scheduling process is event driven. A first-in-first-out (FIFO) buffer is

used as an event queue. As agents perform assigned tasks—i.e., they are stepped by

the scheduler—they may post events in the FIFO, which might cause other agents to be

stepped at a later time. Events have a header and a body. The header tells which agent

posted the event, the event type and possibly a timestamp. The body contains attributes

unique to the event.

The scheduler unloads the buffer, analyzes the events, and processes events by step-

ping a specific agent. Events are pulled from the FIFO as quickly as possible, but stepping

agent is deferred while the FIFO is not empty. All the scheduler does at this time is to de-

cide upon which hook to hang the event. Some shuffling of agents already hung on hooks

42

4.2. AGENT IMPLEMENTATION

Figure 4.2: An example showing agents hanging on hooks waiting to be stepped by the
scheduler. The left-to-right order reflects the relative ordering of the agent stepping.

may occur depending on the priority of the event. When the FIFO is empty, the scheduler

starts pulling agents off of hooks in a "first-hung-first-pulled" order and steps them. A

stepped agent may be provided information from the body of the event that prompted it

being stepped.

A simple example will help to clarify. Suppose the controller agent has just output

new δ and ω values. This agent would post a “new δ/ω output” event in the event queue.

The body of this event would identify which rule in the rule base fired, so the commanded

vehicle movement is recorded. When offloaded from the FIFO the scheduler would hang

a monitor agent tag on a hook along with the rule ID extracted from the event body. Once

the FIFO is empty, the scheduler pulls the monitor agent tag off of the hook and steps the

monitor agent to commence observing the vehicle movement. The monitor agent would

be informed at that time which rule fired.

AGENT IMPLEMENTATION

This section describes each of the agents mentioned above in more depth, including the

implementation details.

43

4.2. AGENT IMPLEMENTATION

Controller Agent

This agent computes the δ and ω values needed to move the vehicle between waypoints.

The vehicle will typically have to adjust its course as it moves along a trajectory. However,

that does not mean new δ values are needed at the beginning of each wing beat.

There are four control inputs to the vehicle available (specifically δL, δR, ωL, ωR), but

only two actuators (the left and right wing) thus the control inputs are not independent.

This situation can be described as under-actuated vehicle, which means we cannot con-

trol the position and course independently, and that creates a greater challenge for the

controller agent. For example, if the vehicle is moving forward and is heading slightly

left off the desired course, it can’t turn right without affecting the forward motion.

An arbitrary position and orientation can be achieved by a combination of linear mo-

tion (forward/backward movement) and rotation of the robot. Forward motion is done by

increasing both δL and δR while rotation is achieved by increasing δL and decreasing δR

and vice versa. Note that although backward movement is possible, it is not used in this

case. Required movements are summarized in Table 4.1.

The vehicle is required to make two distinct turns – a "hard" turn – a rotation of 90 deg

that is used for evasive maneuvers, and a "partial" turn, used for slight course corrections.

Each turn requires different values of δL, δR, but the direction of change in δ is the same

for both turns. The values of δ will be stored in a look-up table. Increasing ωL or ωR

(while keeping the same relative value of δ) creates stronger moments and forces, which

might be necessary for faster movement, especially rotation. Suitable values for ωL and

ωR have yet to be determined.

The vehicle must make specific movements to follow a trajectory and a rule base

determines which movements will be needed. These rules are organized in a subsumption

44

4.2. AGENT IMPLEMENTATION

Movement Control Input

Move Forward δL ↑ & δR ↑ (identical)

Left Turn δL ↓ & δR ↑ (opposite)

Right Turn δL ↑ & δR ↓ (opposite)

Idle δL = δR = 0

Increase velocity ω ↑

Decrease velocity ω ↓

Table 4.1: Required vehicle movements. ↑, ↓ indicate direction of change, not its magni-
tude.

architecture [10] (see Section 2.3 for details). Under this architecture, all control rules

have an IF-THEN syntax. The rule base consists of the rules shown in Table 4.2. Each

movement indicated in a rule’s consequent has an associated set of δ and ω values, which

are extracted via a table lookup.

A subsumption architecture consists of a series of layers where lower layer rules pro-

duce simple, critical behavior such as avoiding obstacles while higher levels produce more

sophisticated behavior needed for trajectory following. Higher level behavior subsumes

lower level behavior. A subsumption architecture is ideal for navigation control in dy-

namic physical environments. It permits reactive behavior without resorting to prior path

planning because there is no world model required.

Layer one has the highest priority. If the vehicle reaches the borders of the perimeter

(in this case walls of the water tank), it will turn right to avoid the collision. The second

highest priority detects whether the vehicle reached the desired waypoint W j
1. At that

time, the controller agent acquires the coordinates of the next waypoint on the trajectory

1The vehicle reaches waypoint W j if it is within distance ε of that waypoint.

45

4.2. AGENT IMPLEMENTATION

Layer Behavior

6 if true then Idle

5 if heading left then Partial right turn

4 if heading right then Partial left turn

3 if heading at waypoint then Move forward

2 if at waypoint W j then Get new waypoint W j+1

1 if outside perimeter then Hard right turn

Table 4.2: Scheme of Controller agent subsumption architecture, Layer 1 has the highest
priority.

W j+1 from the strategy agent.

A new waypoint should be requested promptly to prevent the vehicle from unnec-

essary course corrections and large control actions. The third layer ensures that if the

vehicle is pointing at the waypoint, it will move towards the waypoint. If it is not pointing

in the right direction, layers four and five will turn the vehicle until it is pointing right at

the waypoint, so the third layer (i.e. “move forward”) takes control. Finally, if there is

nothing better to do, the vehicle idles at its current location until it gets new commands.

Monitor Agent

This agent is responsible for monitoring the vehicle’s performance. During normal ve-

hicle operation, the controller agent posts an event every time a new δ and/or ω value is

sent to the split-cycle oscillator. That event identifies the specific rule that fired, so the

monitor agent knows the expected movement (e.g., hard right turn) and, when stepped by

the scheduler, begins tracking the movement. If the vehicle’s movement doesn’t match

the expected movement, the monitor agent will post a “poor performance” event in the

46

4.2. AGENT IMPLEMENTATION

event queue. No event is posted if the behavior is okay. The scheduler will process this

poor performance event by stepping the diagnostic agent to run diagnostics.

Diagnostic Agent

This agent assesses the vehicle’s reliability. The vehicle has no specific fault detection

and isolation capability. It is worth noting that under such circumstances there is, from a

behavioral standpoint, no real difference between a vehicle mechanical failure or a sensor

failure since both produce the same outcome—an inability to follow the desired trajectory.

Nevertheless, rather simple diagnostic routines can identify degrading behavior even if the

exact cause is not known.

Diagnostics could be performed at regular intervals. For example, every 5 minutes

of flight time the vehicle could temporarily idle and then quickly run the diagnostics.

However, a more practical approach is to exploit the online learning performed by the

monitor agent. The monitor agent will trigger the diagnostics if and only if a degraded

performance is observed.

Faults are detected using a Bayesian type of behavior monitor where likelihood func-

tions give a qualitative measure of maneuver capability. The idea behind diagnostics is

simple: command the vehicle to perform some maneuver and see if it can do it within

a prescribed time frame. A rotation through some angle—e.g. π/2 radians—is a simple

and non-trivial maneuver since it requires δL , δR. The precise δ values are stored in a

table as described previously. Note that a complete diagnostic would require the vehi-

cle to rotate in both directions. Pose samples Ψ̂n = (ψ̂1, ψ̂2, . . . , ψ̂n) can be recorded by

diagnostic agents over some time window and the associated sample mean and sample

variance are easily computed. This information is sufficient to construct a Gaussian pose

density function:

47

4.2. AGENT IMPLEMENTATION

Figure 4.3: Calculation of likelihood of getting the expected pose from a pose density
function centered at the sample mean of the n rotation estimate data samples Ψ̂n

f (ψ̂) =
1

σψ

√
2π

exp

− (ψ̂ − ψ)2

2σ2
ψ

 �
 �	4.1

where ψ is the sample mean and σ2
ψ is the sample variance.

The control agent outputs a specific δL and a δR, which are expected to produce some

change in pose. Thus, the control agent has some expected pose movement E[ψ] in mind.

A diagnostic agent uses the pose density function f (ψ̂) to compute the likelihood of E[ψ]

given the pose data samples Ψ̂n. This concept is illustrated in Figure 4.3.

A high likelihood suggests the vehicle mechanical hardware and sensor hardware

are normally operating while a low likelihood indicates something is wrong. Divid-

ing the likelihood function value by the sample mean (or equivalently just ignoring the

1/(σψ

√
2π) coefficient in Eq. 4.1) makes L(E[ψ]|Ψ̂) ∈ [0, 1]. Then ’high’ and ’low’ like-

lihoods are defined by a threshold parameter λ on the unit interval. That is, L(·) < λ

48

4.3. AGENT ONLINE LEARNING

indicates a low likelihood the vehicle can maneuver properly, and some corrective action

is required. The only possible recovery mechanism is to adapt the vehicle’s behavior by

modifying the rules in the rule base. The next section describes how this adaption is done.

AGENT ONLINE LEARNING

There are two times when online learning is required. Learning is used to identify appro-

priate δ and ω values needed for control of the vehicle. This section discusses the details

of the learning process.

Initial Learning

Every vehicle is slightly different due to inherent non-linearities such as slip between

linkages and manufacturing imperfections. Thus, the same δ and ω values cannot be used

for every vehicle; they must be learned. First the vehicle learns values needed to execute

the basic movements in Table 4.1. These values are then linked to rule consequents from

Table 4.2. The δ and ω values will be determined during this initial learning phase using

a combination of extrinsic and intrinsic evolution. The needed parameters will be evolved

using a (1,10)-ES. The genotype is

{δL, δR, ωL, ωR ; σ1, σ2, σ3, σ4}

where the first 4 parameters are object parameters and the second 4 parameters, are strat-

egy parameters used to control the mutation step size. The object parameters are mutated

independently using a normal distribution and the appropriate strategy parameter. The

equation for production of a new individual y from a single parent x is given as:

49

4.3. AGENT ONLINE LEARNING

δLy = δLx + N(0, σδL)
�
 �	4.2

where N(0, σδL) is a normally distributed random variable with zero mean and a stan-

dard deviation of σδL . The other object parameters with their respective strategy param-

eters are mutated the same way as described in the Equation 4.2. Most likely a linear

reduction schedule will be sufficient for adapting the strategy parameters.

The vehicle will be placed in its operational environment – i.e. a water tank – and

object parameter values will be intrinsically evolved for each movement. The initial object

parameter values will be evolved extrinsically using an in-house developed simulator.

The monitor agent observes the behavior of each evolved object parameter set and

terminates the evolutionary algorithm for a particular rule when acceptable behavior is

achieved. The goal here is not to achieve optimal movements but rather smooth and

repeatable correct movements. Thus, fitness will be computed from the average behavior

over a small number of trials. After learning is completed, the evolved values will be

stored in a library (i.e. a look-up table). Once all rules are evolved the vehicle is ready for

trajectory following.

In-Flight Learning

Rules learned during the initial learning phase perform well during normal flight, but in

the presence of faults, it will be necessary to adapt them. This online learning phase

is performed continuously. Each time a rule fires the monitor agent is informed, so it

knows what maneuver was commanded. The monitor agent observes the x′, y,′ ψ′ pose

parameters and determines if the performance is within limits or is degrading. Thus, the

monitor agent continuously learns about how the vehicle is performing. If the observed

50

4.3. AGENT ONLINE LEARNING

behavior deviates too much from the expected behavior, then diagnostics are run. If the

diagnostics confirm the behavior has degraded below some threshold, then the rule base

is adapted. Adaption, described below, entails modifying rules’ consequents to restore

vehicle’s functionality.

Rule-base Adaptation

Given the size and weight restrictions, which don’t allow us to use conventional fault

recovery methods such as redundant hardware, it is not possible to recover from every

possible fault. We, therefore, restrict the adaption to cover only a small subset of prede-

fined faults. The recovery mechanism relies on adapting new consequents for rules from

Table 4.2 so that the desired motion (i.e. Partial left turn) is still achievable. These new

δ and ω values will be intrinsically evolved just like the initial online learning was done.

The question is how do we intrinsically evolve new parameters for specific faults?

We will borrow concepts used in conventional failure modes & effects testing (FMET).

In this type of testing, a set of predefined faults is inserted into the system under test one

at a time, and their effect is observed. This testing is always conducted in a laboratory

environment where the effects are closely monitored and controlled to prevent damage to

the system. In this particular research effort, "faults" such as using different wing sizes or

a stuck linkage will be intentionally put into the vehicle, and an evolutionary algorithm

will then evolve new parameter values. As before, this evolutionary algorithm will run

using onboard hardware resources. The evolved values will be added to the rule base

library.

Under normal operation, a single set of δL, δR, ωL andωR values is sufficient to perform

the maneuvers shown in Table 4.1. However, under faults most likely a sequence of δ and

ω values will be required, with a new set generated every few hundred wingbeats (because

51

4.3. AGENT ONLINE LEARNING

of the slow vehicle dynamics). This sequence of values can be intrinsically evolved too.

In this case, the genotype described earlier must be expanded to handle multiple δ and ω

values for each maneuver.

Of course prior to initiating fault recovery operations fault detection & isolation (FDI)

must be done. This process detects if a fault exists and tries to isolate it to a specific sub-

system or component. Since the ability to recover from faults on the vehicle is severely

limited, isolation is unnecessary. Fortunately, detection is rather straightforward. As

stated above, the monitor agent is continuously learning about the vehicle capabilities;

it can, therefore, detect poor performance by comparing observed behavior against ex-

pected behavior. If the behavior is poor, it will post an event in the event queue. The

scheduler would then step the diagnostic agent to start diagnostics. Diagnostics should

be able to confirm both degraded performances and identify which of the pre-defined

faults is present. The abstract sequence of commands used during FDI is summarized in

Algorithm 2.

Algorithm 2 The abstract sequence of commands used during FDI
1. Monitor Agent (MA) detects unsatisfactory performance and posts an event in event
queue;
2. Diagnostics Agent (DA) is scheduled to perform diagnostics;
3. DA posts a diagnostic event. Controller Agent (CA) stops waypoint following and
enters diagnostics mode;
4. CA starts the test maneuver;
5. MA monitors test progress and passes results to DA;
6. DA computes the likelihood of a fault;
7. If DA detects no problem, it posts a regular operation event. CA resumes waypoint
following;
8. If DA detects a problem, it posts a faulty operation event. CA extracts new rule base
from the library;

Essentially we will build a library of rules for both the fault-free and the faulty vehicle.

Once FDI is finished fault recovery begins. Recovery only requires replacing the current

52

4.3. AGENT ONLINE LEARNING

controller agent’s rule base with the appropriate pre-stored rule base associated with the

identified fault from the library. Thus, fault recovery can be done very quickly.

In this chapter we presented the MAS and explained how we use it to solve the prob-

lem of autonomous waypoint following and fault recovery. In next chapter we will de-

scribe the experimental results of our work.

53

CHAPTER 5

RESULTS

This section presents the findings and results of our research. First, the MAS as described

in Chapter 4 Figure 4.1 was implemented. After testing the MAS in the simulator (de-

scribed in Section 3.5), it was deployed on the actual robot. In order to do that, we had to

check the functionality of the hardware. After several tests, it turned out that the moments

of inertia of the robot were too large given the size of wings and magnitude of forces and

moments they generated. As a result, the robot wasn’t agile enough for our size of the

water tank – in other words, the experimental area we had was too small for testing. Since

increasing the size of the test area was not feasible, we resolved the problem by making a

second version of the robot, and significantly reduced its weight and size. We were able

to decrease the weight of the robot by 55% (from 406 g to 180 g), and the diameter by

30%, all by optimizing the mechanical and electrical components. The actuators and the

wings were unchanged. The second version of the robot had significantly lower moments

of inertia, and as a result was much swifter. For more details about the robots we would

refer the reader to Appendix A.

The next step was to find good δ and ω values for maneuvers described in Table 4.1.

The robot’s hardware limits max value of ω to 30 [rad/s] (minimum is 1 rad/s), and

δ ∈ (−10, 10) [rad/s], while the split-cycle control requires |δ| ≤ ω/2 (see Section 3.2

for more details), so these values were used as lower and upper bounds for randomly ini-

54

5.1. EXTRINSIC EVOLUTION

tialized individuals in the (1,10)-ES algorithm (described in Section 4.3.1). The strategy

parameters were empirically determined to be σi ∈ (3, 6) where i = 1, 2, 3, 4.

As mentioned before, in this phase of the research effort, we used an evolutionary

algorithm to search for the optimal values of δ and ω. Other optimization algorithms

might be useful but whether or not that is true would require a detailed analysis of the

solution space morphology which we did not do1.

Our choice of an evolutionary algorithm to conduct the search was two-fold. First,

evolutionary algorithms are usually considered optimization algorithms but basically they

are search algorithms. Evolutionary algorithms can search any solution space regardless

of morphology. Thus evolutionary algorithms allow us to optimize without conducting a

solution space analysis. Secondly, and more importantly, every vehicle is slightly different

due to inherent nonlinearities in the linkages and other manufacturing differences (such

as a slightly different size of wings, etc.). As a result, optimal values for one vehicle will

not be optimal for another. The goal here is not to achieve generally optimal movements

but rather smooth and repeatable correct movements. Consequently, we needed a search

method rather than an optimization method. Evolutionary algorithms allow us to search

for good solutions by evaluating actual vehicle behavior, which cannot be accomplished

using classical optimization algorithms. Two types of evolution - extrinsic and intrinsic

were used, as described below.

EXTRINSIC EVOLUTION

Because the lifespan of linkages at the vehicle is limited, it is reasonable to first execute

extrinsic evolution of control parameters δ and ω to 1) verify the correctness of the evo-

1However, our experiments did show small perturbations in δ/ω had no observed behavioral changes
which suggests gradient-based optimization algorithms would not be very effective.

55

5.1. EXTRINSIC EVOLUTION

lution algorithm; 2) get the initial estimate of satisfactory control parameters. A more

precise model of the vehicle produces a better estimate. However, obtaining a precise

(first-principle) model of the flapping wing system is very complicated, especially be-

cause of the small forces and torques that would have to be measured to correctly identify

the model [24]. Modelling non-linearities such as linkage slip also poses a significant

challenge [46]. However a simplified model that treats the vehicle as a point mass body

and aggregates the generated forces and torques is a sufficient approximation, because it

will exhibit similar behavior albeit on a different time scale.

For the purpose of the extrinsic evolution, we started with the following assumption.

The faster the wings beat (i.e. higher ω), the more force is generated (because the wing

acceleration is higher). The higher split cycle shift (higher |δ|), the more force is generated

(because the difference between upstroke and downstroke is higher). The higher force

results into faster movement.

The best solution completes the basic movement in the shortest time, and is within

the imposed constraints. Thus in our simple model we use to evaluate fitness of candidate

solution we employ the following equation:

fit(x) = KL · δLx · ωLx + KR · δRx · ωRx

�
 �	5.1

where KL,KR are adjustable weights, in the simplest case:

• KL = KR = 1 for Move forward

• KL = 1; KR = −1 for Turn right

• KL = −1; KR = 1 for Turn left

We ran the EA for 20 generations in each run, for 20 runs total. The expected optimal

56

5.2. INTRINSIC EVOLUTION

solution would converge to maximal ω for both wings and maximal values for δ but with

opposite signs in case of turns. The results are shown in Figure 5.1. Notice in all cases

the runs converged to (or at least very close to) the global optimum. The best evolved

values for our simple model are summarized in Table 5.1, and they are consistent with

our expectations.

INTRINSIC EVOLUTION

During the intrinsic evolution we used the actual vehicle for evaluating fitness of the

candidates. The major difference was that for Turn left and Turn right fitness is defined

as f = 1/T where T is the time needed for the vehicle to turn by 360 degrees from its

initial position. For Move forward the fitness is defined as f = 1/(α ·Twp + β · dwp), where

Twp is time needed to reach x-coordinate of the waypoint p (located approximately 30 cm

in front of the vehicle), dwp is the distance from the y-coordinate of the waypoint p when

its x-coordinate is reached. α = 100 and β = 1 are weights to scale the different units

(seconds and pixels).

Because the hardware has a limited lifespan, we only ran the EA once and for only 20

generations. This is limiting in the sense that we can reach suboptimal results, but if we

were to run more runs as was the case for extrinsic evolution, the linkages could wear out

prematurely and would have to be replaced, in which case the learning would have to be

done again from the beginning.

The incremental improvements in turn times for evolved control parameters are shown

in Figure 5.2. For the forward motion, the vehicle actually was not able to reach the de-

sired waypoint (its y-coordinate) in vast majority of tries. In such case the experiment was

stopped after 2 minutes and the fitness of given individual was marked as zero. Effectively

57

5.2. INTRINSIC EVOLUTION

Figure 5.1: Extrinsic evolution run for Turn
left move. Notice that the algorithm in
almost all cases reaches global optimum
f = 600

Figure 5.2: Time needed to complete Turn
left and Turn right moves during intrinsic
evolution. Notice that left turn takes longer
to finish, which is caused by non-linearities
in the hardware. The fitness is inversely
proportional to the turn times.

this reduced the EA to a random search, until a viable solution was found. The best so-

lution after 20 generations (and the only one found that had non-zero fitness) is shown in

Figure 5.3. The best values of control parameters found for our vehicle are summarized

in Table 5.2. The best intrinsically evolved values are very similar to the values found by

extrinsic evolution (compare with Table 5.1). This validates the model used for extrinsic

evolution, and makes it usable for the initial estimate. The differences in control param-

eters are caused by imperfections and non-linearities in real hardware, and indeed, those

were not included in our model. The intrinsically evolved values, recorded in Table 5.2,

were used for further experiments.

58

5.2. INTRINSIC EVOLUTION

Figure 5.3: Best found solution for forward movement Blue: Initial position of the ve-
hicle, Green cross: waypoint the vehicle was commanded to reach. The experiment was
stopped once the center of vehicle crossed the y-axis of the waypoint. The four white
rectangles are reflections of the ceiling lights and are not related to the experiment.

59

5.3. WAYPOINT FOLLOWING

Movement
δL δR ωL ωR

[rad/s]

Move Forward 10 10 30 30

Left Turn -10 10 30 30

Right Turn 10 -10 30 30

Idle 0 0 0 0

Table 5.1: Control parameters for the
basic movements obtained from extrinsic
evolution. The values that differ from those
obtained by intrinsic evolution are bold.
Values for Idle (which simply stops the
actuators) were not evolved.

Movement
δL δR ωL ωR

[rad/s]

Move Forward 12 14 25 30

Left Turn 0 12 12 30

Right Turn 12 0 25 12

Idle 0 0 12 12

Table 5.2: Control parameters for the ba-
sic movements obtained from intrinsic evo-
lution. Values for Idle were determined em-
pirically and based on the hardware initial-
ization procedure (default values). The val-
ues for Left Turn, Right Turn, and Move For-
ward differ from those obtained by extrinsic
evolution are bold.

WAYPOINT FOLLOWING

Once the control parameters for the basic moves were learned, it was possible to pro-

ceed towards waypoint following. Two waypoints were placed to the opposite sides of

the water tank, and the vehicle was expected to go back and forth between them. Two

waypoints were sufficient because following them required all basic maneuvers. The ve-

hicle was able to follow successfully the waypoints, as can be seen in Figures 5.4 and

5.5. The vehicle is as large as the dotted circle shown around waypoints in Figure 5.5, so

once the center of the vehicle reaches the dotted circle, the waypoint is considered to be

reached. Figure 5.6 shows control inputs and rules that fired during the experiment. We

can see that all three rules (Turn Left, Turn Right, Go Forward) are used a similar amount

of time. Figure 5.7 shows the heading of the vehicle (there is a wrap-around at 180 and

-180 deg). We can see that the heading is relatively steady, changing between ∼ 10 de-

60

5.3. WAYPOINT FOLLOWING

grees and ∼ −170 degrees as the vehicle goes back and forth between the waypoints. The

spikes indicate turn-arounds after reaching the waypoints. The rate of change is within

±10 [deg/s] during the whole experiment, as shown in Figure 5.8. This indicates that the

vehicle is moving as fast as possible and that its dynamics are relatively slow.

To get a better estimate about the time required to reach a waypoint and to turn left or

right, the waypoint following experiment was repeated ten times. The times for each run

as well as averaged times are summarized in Table 5.3. We can see that the two waypoints

can be reached on average in 5 minutes. The large range (from 2 min 31 seconds to 7 min

2 seconds) is mostly due to varying initial conditions.

We also measured intervals needed for Turn left and Turn right in order to have a

baseline of the robot’s performance. Both turns were by 360 deg and were measured ten

times from zero initial conditions (i.e. the vehicle wasn’t in motion). The results are in

Table 5.3 which provides data necessary for construction of the pose density function.

Figures 5.9, 5.10 and 5.11 show the box plots for each of the performed manoeuvres.

Box plots show the interquartile range (IQR) between 25th and 75th quartile, IQR hence

represents 50% of the cases (blue box). The median is displayed in red, min and max val-

ues are in dashed black. Any outliers (past lower/upper quartile or ±2.698σ interval) are

shown in red. These baseline measurements are important for fault recovery mechanism

as is shown in the next section.

61

5.3. WAYPOINT FOLLOWING

Figure 5.4: Autonomous waypoint following. The blue dot is the desired waypoint; the
vehicle is marked with a bright green dot and a green line pointing towards the front of
the vehicle. In the top left corner of the screen is shown the rule that fired. Top left:
Initial position of the vehicle; Top right: First waypoint achieved, the vehicle is turning
around; Bottom left: Approaching the second waypoint; Bottom right: Second waypoint
achieved, moving back to the first waypoint.

62

5.3. WAYPOINT FOLLOWING

Figure 5.5: Vehicle trajectory (blue) during waypoint following. Two waypoints being
followed are marked with red dots, with distance threshold pictured around them. The
vehicle itself is as large as the circle around the waypoints. Purple: start position, Light
blue: end position, Blue arrows: indicate orientation of the vehicle

63

5.3. WAYPOINT FOLLOWING

Figure 5.6: Control inputs during waypoint following. Top: δ values, Middle: ω values,
Bottom: rule that fired.

Figure 5.7: Heading of the vehicle during
waypoint following. Note the wrap-around
at ±180 deg. 0 deg is in the direction of
positive x-axis, ±180 deg is in the direction
of negative x-axis. The values were filtered
with an exponential moving average low-
pass filter with α = 0.05

Figure 5.8: Angular rate of the vehicle’s
heading during waypoint following. The
values were filtered with an exponential
moving average low-pass filter with α =

0.05 The peaks are residuals from wrap-
arounds at ±180 deg.

64

5.3. WAYPOINT FOLLOWING

Turn Left Turn Right Waypoints
[mm:ss.ss] [mm:ss.ss] [mm:ss.ss]

1 00:52.00 01:53.00 05:01.00
2 00:52.00 01:36.00 07:02.00
3 00:42.00 01:25.00 N/A
4 00:46.00 01:07.00 N/A
5 00:39.00 01:02.00 06:18.00
6 01:02.00 01:15.00 05:46.00
7 00:38.00 00:56.00 04:33.00
8 00:45.00 01:18.00 03:55.00
9 00:39.00 01:13.00 06:12.00

10 01:01.00 01:14.00 02:31.00
Mean: 00:47.00 01:17.90 05:09.75
Max: 01:02.00 01:53.00 07:02.00
Min: 00:38.00 00:56.00 02:31.00

Table 5.3: Basic maneuvers performed under nominal conditions with control parameters
intrinsically evolved. Turn Left and Turn Right times are for a 360 deg rotation from zero
initial conditions. Waypoints are two at the opposite sides of the water tank, the vehicle
starts at waypoint 1 and the time is running until it reaches Waypoint 2

Figure 5.9: Boxplot of
Turn Left times.
Median: 45.5[s]
25th percentile: 39[s]
75th percentile: 52[s]

Figure 5.10: Boxplot of
Turn Right times.
Median: 74.5[s]
25th percentile: 67[s]
75th percentile: 85[s]

Figure 5.11: Boxplot of
Waypoint following times
Median: 323[s] (5:23)
25th percentile: 254[s] (4:14)
75th percentile: 375[s] (6:15)

65

5.4. FAULT RECOVERY

Figure 5.12: Detail of the original left wing Figure 5.13: Detail of the damaged left
wing, roughly 30% of the surface area was
removed

FAULT RECOVERY

Fault detection and recovery is an important feature, as was mentioned in Chapter 4.3.

Without a loss of generality we set up a fault detection and recovery mechanism for one

fault - a damage of the left wing. In a similar manner a damage of the right wing can be

detected and consequently recovered. In practice, the damage could occur after a collision

with an obstacle. In the experimental setup the wing was cut down by around 30% (see

Figures 5.12 and 5.13). Because the tip of the wing produces most of the aerodynamic

forces, we can expect an even higher loss of performance. After damaging the wing,

identical maneuvers as with undamaged wing were performed (i.e. no adaptation of δ

and ω parameters occurred). The times are recorded in Table 5.4. Since the left wing

was damaged, we expect Turn Right turn to be mostly impacted, and as a result waypoint

following ability will be affected too.

For Turn Right we observe 44% increase in the average time to perform the turn (from

1:17 to 1:51), while Turn Left is impacted only minimally (increase by 6% from 00:47

66

5.4. FAULT RECOVERY

to 00:50 on average). Interestingly, the vehicle is still able to follow the waypoints albeit

with worse performance. Note that the waypoint following was executed only once to

avoid excessive strain on linkages and premature wear of the vehicle.

In order to detect the fault, the vehicle - after it initializes - performs a 360 deg Turn

Right and measures the time T it takes. If T > Tmax where Tmax = 94[s], then the

Left Wing Damaged fault is triggered. We work under a reasonable assumption that the

damaged vehicle will not be any faster than during normal operation, hence only Tmax is

considered. The Tmax was calculated as 1σ (standard deviation) from the mean2 of the

baseline performance of Turn Right. One standard deviation covers 68% of cases, which

is a reasonable for our purposes. Figure 5.14 shows the histogram of Turn Right times as

well as the standard deviation. Indeed the distribution is normal.

To recover from the fault, we had to again intrinsically evolve the δ and ω parameters.

Note that the initial assumption was that this fault is recoverable - i.e. with a proper

control input full function of the vehicle is possible. Other faults, for example a broken

linkage or a stuck motor would not be recoverable. We run the ES algorithm in the same

way as for determining the original values (see Section 5.2 for details). After running the

intrinsic evolution for 20 generations the evolved δ and ω values were stored in Table 5.5.

Once the recovery values were found, it was possible to test their effect. The average

times as well as individual trial times for all the basic maneuvers are shown in Table 5.6.

With the updated control values the times for Turn Left and Turn Right are comparable

with the undamaged wings, and so is the waypoint following. Once again, to conserve the

hardware only two iterations of waypoint following were performed. Figure 5.16 shows

2Using median instead of mean for calculating σ would be justifiable in this case, because only 10
samples is a fairly low number and thus median represents the average value better. As the number of
samples increase, mean and median would become closer and closer. However, the difference of around 4
seconds between the mean and median times is very insignificant given the slow dynamics of our vehicle.

67

5.4. FAULT RECOVERY

Turn Left Turn Right Waypoints
[mm:ss.ss] [mm:ss.ss] [mm:ss.ss]

1 00:45.00 02:12.00 06:15.00
2 00:51.00 01:42.00 N/A
3 01:14.00 01:39.00 N/A
4 00:48.00 01:25.00 N/A
5 00:44.00 01:18.00 N/A
6 00:55.00 01:55.00 N/A
7 00:42.00 01:43.00 N/A
8 00:42.00 02:12.00 N/A
9 00:49.00 02:24.00 N/A

10 00:49.00 02:03.00 N/A
Mean: 00:50.00 01:51.30 06:15.00
Max: 01:14.00 02:24.00 N/A
Min: 00:42.00 01:18.00 N/A

Table 5.4: Basic maneuvers performed after left wing damage (control parameters un-
changed).

the fault recovery experiment, Figure 5.17 shows the tracked path of the vehicle, and Fig-

ures 5.19 and 5.20 show the orientation and angular rates of the vehicle. The control

inputs are shown in Figure 5.18, the long period of Turn Right at the beginning of the

experiment is when the diagnostics agent is running the test for presence of a fault. In a

similar fashion Right Wing Damaged fault could be detected and recovered from, assum-

ing only one fault occurs at a time. Figure 5.15 compares the Turn Right times between

original, damaged and recovered conditions. We can clearly see that the recovered turn

time is comparable to the original time (within interquartile range or ±0.6745σ), and as a

result the fault recovery was successful.

68

5.4. FAULT RECOVERY

Movement
δL δR ωL ωR

[rad/s]

Move Forward 14 14 30 30

Left Turn 0 14 12 30

Right Turn 14 0 30 12

Idle 0 0 12 12

Table 5.5: Evolved fault recovery control parameters. Values for Idle were determined
empirically and based on the hardware initialization procedure (default values). The val-
ues for Left Turn, Right Turn, and Move Forward differ from the undamaged values are
bold.

Figure 5.14: Histogram of the original Turn
Right times, overlaid with a fitted normal
distribution. Light blue depicts 1σ interval
from 61 to 94 seconds

Figure 5.15: Box plot of original, damaged
and recovered Turn Right. Median origi-
nal: 74.5[s], Median damaged: 109[s], Me-
dian recovered: 83[s]

69

5.4. FAULT RECOVERY

Figure 5.16: Fault recovery example. The obstacle is the green line located in the middle
of the water tank, the waypoint the wehicle follows is marked light blue. Top left: the
vehicle is initializing its wings (takes around 30 sec at the beginning of each experiment),
Top right: the diagnostic agent initiates the diagnostics and starts a 360 deg right turn,
Middle left: diagnostics in progress, Middle right: diagnostics was finished, the diagnos-
tics agent found a presence of a fault and loaded the evolved fault-recovery control values,
Bottom left: the vehicle is progressing towards the second waypoint, Bottom right: Final
approach towards the waypoint

70

5.4. FAULT RECOVERY

Turn Left Turn Right Waypoints
[mm:ss.ss] [mm:ss.ss] [mm:ss.ss]

1 01:22.00 01:32.00 04:33.00
2 00:57.00 01:32.00 03:20.00
3 01:00.00 01:26.00 N/A
4 00:52.00 01:22.00 N/A
5 N/A 01:19.00 N/A
6 N/A 01:24.00 N/A
7 N/A 01:20.00 N/A
8 N/A 01:38.00 N/A
9 N/A 01:22.00 N/A

10 N/A 01:11.00 N/A
Mean: 01:02.75 01:24.60 03:56.00
Max: 01:22.00 01:38.00 N/A
Min: 00:52.00 01:11.00 N/A

Table 5.6: Basic maneuvers performed after recovery left wing damage with updated
control parameters.

Figure 5.17: Path travelled during fault recovery maneuver from Figure 5.21. Purple:
start position, Light blue: end position, Green line: the obstacle, Blue arrows: indicate
the orientation of the vehicle

71

5.4. FAULT RECOVERY

Figure 5.18: Control inputs during fault recovery. Top: δ values, Middle: ω values,
Bottom: rule that fired. Note the 30 second initialization period at the beginning of the
experiment (rule: Idle), and the diagnostics phase with Turn Right command.

Figure 5.19: Heading of the vehicle dur-
ing fault recovery. Note the wrap-around
at ±180 deg. 0 deg is in the direction of
positive x-axis, ±180 deg is in the direction
of negative x-axis. The values were filtered
with an exponential moving average low-
pass filter with α = 0.05

Figure 5.20: Angular rate of the vehicle’s
heading during fault recovery. The values
were filtered with an exponential moving
average low-pass filter with α = 0.05. The
large peak is a residual from a wrap-around
at ±180 deg.
.

72

5.5. OBSTACLE AVOIDANCE

Layer Behavior

6 if true then Idle

5 if heading left then Partial right turn

4 if heading right then Partial left turn

3 if heading at waypoint then Move forward

2 if at waypoint W j then Get new waypoint W j+1

1 if obstacle ahead then Avoid Obstacle

Table 5.7: Modified Scheme of Controller agent subsumption architecture with updated
rule for Layer 1 (Layer 1 has the highest priority).

OBSTACLE AVOIDANCE

During the experiments it became apparent that a modification of the rule base from Ta-

ble 4.2 is necessary. Specifically, the rule number 1: if outside perimeter then Hard right

turn never occurs, because the robot cannot physically get outside the perimeter (there

are walls in the water tank). Limiting the size of the operating area, so the robot is not

allowed to hit the walls, is impractical, because of the extra space limitation. More practi-

cal response would be avoid hitting the wall or more generally avoid obstacle. Hard right

turn is also not distinguishable from a Partial right turn, because the vehicle is already

operating at its maximal capability, and is turning as fast as possible. A modified rule

base that contains these changes is shown in Table 5.7.

The Avoid Obstacle routine needs to be more complex than the other rule consequents.

In this case the position of the obstacle is explicitly known, which is sufficient if we want

the vehicle to avoid walls of the water tank and/or obstacles that are imposed in the water.

The routine goes is summarized in Algorithm 3

73

5.5. OBSTACLE AVOIDANCE

Algorithm 3 Updated Obstacle Avoidance routine
if WP2 behind the obstacle then

move WPtmp in front of the obstacle on the |WP1,WP2| line;
end if
while !wp_reached(WPtmp) do

wait;
end while
shift WPtmp right (vehicle side) until after the obstacle ends;
while !wp_reached(WPtmp) do

wait;
end while
shift WPtmp forward (vehicle side) behind the obstacle;
while !wp_reached(WPtmp) do

wait;
end while
shift WPtmp left (vehicle side) on the |WP1,WP2| line;
while !wp_reached(WPtmp) do

wait;
end while
follow WP2 & return;

where WP1 is the initial waypoint, WP2 is the final waypoint, and WPtmp is an inter-

mittent waypoint that the vehicle follows while avoiding the obstacle. An example will

better explain this - a run with an obstacle in the middle of the water tank is described

in Figure 5.21, and Figure 5.22 shows the path the vehicle travelled. The most common

rule is Turn Right and Go Forward. Figures 5.24 and 5.25 show the heading and the

angular rate of the vehicle during the experiment. As can be seen, the vehicle was able to

successfully avoid the obstacle.

This obstacle avoidance routine can be improved, because at the moment it covers

only cases where a waypoint is behind the obstacle (so going straight ahead is not possi-

ble). However, our experience from conducting the experiments has shown that in order

to avoid occasionally hitting the walls of the water tank, a more nimble vehicle with more

control authority is needed. For example, in several occasions the control system was

74

5.5. OBSTACLE AVOIDANCE

issuing the correct commands to avoid hitting the wall (e.g. Partial right turn), but the

vehicle already had too much momentum from the previous movement that it couldn’t be

turned and stopped in time before the collision. Other example included improper initial-

ization of the vehicle, and consequent malfunction of the control system. In both cases a

better obstacle avoidance routine wouldn’t have helped.

75

5.5. OBSTACLE AVOIDANCE

Figure 5.21: Obstacle avoidance example. The obstacle is the green line located in the
middle of the water tank, the waypoint the wehicle follows is marked light blue. Top left:
vehicle starting at WP1, moving towards the obstacle. Top right: vehicle reached WPtmp

in front of the obstacle and moved it above the obstacle. Middle left: WPtmp is behind
the obstacle. Middle right: WPtmp is on the |WP1,WP2| line. Bottom left: end of Avoid
Obstacle routine, the vehicle follows WP2. Bottom right: the vehicle is about to reach
WP2

76

5.5. OBSTACLE AVOIDANCE

Figure 5.22: Path travelled during obstacle avoidance maneuver from Figure 5.21. Pur-
ple: start position, Light blue: end position, Green line: the obstacle, Blue arrows: indi-
cate the orientation of the vehicle

77

5.5. OBSTACLE AVOIDANCE

Figure 5.23: Control inputs during obstacle avoidance. Top: δ values, Middle: ω values,
Bottom: rule that fired. The large segment of Idle in the middle of the experiment is
caused by a momentary loss of tracking of the algorithm.

Figure 5.24: Heading of the vehicle during
obstacle avoidance. Note the wrap-around
at ±180 deg. 0 deg is in the direction of
positive x-axis, ±180 deg is in the direction
of negative x-axis. The values were filtered
with an exponential moving average low-
pass filter with α = 0.05

Figure 5.25: Angular rate of the vehicle’s
heading during obstacle avoidance. The
values were filtered with an exponential
moving average low-pass filter with α =

0.05 The peaks are residuals from wrap-
arounds at ±180 deg.

78

5.6. SUMMARY

SUMMARY

In this chapter we demonstrated a successful implementation of the MAS from Chapter 4

and the EA for determining the values of control parameters δ and ω. We have shown that

the vehicle is capable of autonomous waypoint following, which was repeated multiple

times, as well as fault detection and recovery - which was demonstrated with a damaged

left wing. On top of that, we updated the rule base (see Tables 4.2 and 5.7) to better suite

our needs, and implemented obstacle avoidance routine. The implications of this work

and a conclusion of our efforts is discussed in the next chapter.

79

CHAPTER 6

CONCLUSION & FUTURE WORK

In Chapter 1 we have shown that Flapping-Wing Micro Aerial Vehicles (FWMAVs) have

potential for many applications, ranging from military reconnaissance in the battlefield,

through search & rescue for mapping dangerous environments and helping during disas-

ters, to artificial plant pollination. In order to fully explore their potential, autonomous op-

eration and fault tolerance is required. Chapter 2 provided theoretical background needed

for understanding the concept of FWMAVs and their design, testing and control. This

work was published in two publication - a conference proceeding [53] and a journal pa-

per [52]. The expected outcomes of our research were defined in Chapter 1:

1. understanding the viability of multi-agent system (MAS) for control of flapping

wing vehicles

• Based on the state-of-the-art research summarized in Chapter 2, we showed

that a MAS is suitable for the control of a FWMAV. Its main advantage over

conventional control systems is the fact that no model of the vehicle is needed

- and obtaining an identified model of a small FWMAV can be tedious and

requires specialised measurement equipment. On top of that, each vehicle

is slightly different due to manufacturing imperfections and inherent non-

linearities, so the model would have to be updated for each individual vehicle.

80

• The need for a model is mitigated by the use of Evolutionary Algorithm (EA)

to find a good set of control inputs for given vehicle. Although we cannot

guarantee the optimality of the found solution (because the EA doesn’t al-

ways converge to the global optimum), we can say – based on our data – that

the control inputs found by the EA are satisfactory and can be used in experi-

ments.

2. developing a multi-agent control system allowing the vehicle to follow trajectory in

experimental settings

• a MAS has never been used for the control of a FWMAV before. We devel-

oped a MAS capable of control, navigation and fault recovery of our FWMAV.

Our MAS is decribed in detail in Chapter 4. This system can be used on other

FWMAVs, for example those mentioned in Chapter 2 or others not developed

yet. That way the researches can have a jump-start using our results and the

existing code (publicly available) to quickly develop their own autonomous

vehicles.

• The use of the subsumption architecture for autonomous operation of the ve-

hicle is not new, and have been already successfully applied in many research,

industrial and commercial projects. Using a proven concept gives us a ro-

bust solution, and future users can easily extend our rule-base to add new

behaviours - such as target identification, swarming, autonomous return to the

base etc.

3. developing fault detection and fault recovery mechanisms based on a combination

of extrinsic and intrinsic evolution

81

• The fault detection and recovery system mechanism is a part of the developed

MAS. Extrinsic evolution is used for initial estimate of the control values of

the FWMAV, while intrinsic evolution is used to fine-tune those values for

each individual vehicle. We successfully tested the fault detection and recov-

ery mechanism for a recovery after a wing damage - which is arguably the

most common fault we can expect (can occur for example after a collision

with an obstacle). Giving the vehicle the fault recovery ability, we certainly

broadened its operational envelope.

• The identical concept of fault detection/recovery can be extended to capture

other types of faults (motor overheating, power system issues, etc.), but its

implementation would require additional hardware - such as sensors and re-

dundant components in the power system.

4. developing high degree of autonomy of the vehicle, including trajectory following

and fault recovery procedures

• The high degree of autonomy was achieved by using subsumption architecture

in conjunction with a MAS. On top of trajectory following and fault recovery

our system includes an obstacle avoidance routine, which allows the vehicle

to operate in presence of obstacles.

• The obstacle avoidance algorithm we developed prevents the vehicle from col-

liding with obstacles within the experimental area. It can be further improved

and extended, to for example incorporate inputs from onboard sensors or from

other vehicles (in case of swarm flight).

In summary we were able to meet and exceed all expected results, and deliver a work-

ing prototype of an autonomous fault tolerant vehicle. The approach we pioneered can

82

6.1. FUTURE WORK

be used for new types of FWMAVs and other research projects can use our research as a

jump start for their own implementation. Although certainly not a complete off-the-shelf

solution, this dissertation provides a good foundation for future research in this domain.

The code used is freely available and can be easily extended should it be used on differ-

ent FWMAVs. Our system can be also used on other types of robots with complicated

motion, such as walking robots.

FUTURE WORK

One area that could be explored in deeper details is the evolution of control parameters.

We used Evolution Strategy, but the evolutionary algorithm used in this work is only

one of many existing evolutionary algorithms. More sophisticated algorithms, such as

Artificial Bee Colony [39] or Particle Swarm Optimization [68] can be used and compared

and evaluated.

The most natural next step would be to focus on hardware of the robot, and remove

the restriction to 2 dimensional movement. Flapping wing platforms of comparable size

that are able to carry their own weight already exist (for example [34]) so research in this

direction would be promising. Another option is to aim for free-flying platforms with

on-board sensors, such as [56], and integrate attitude & position estimation algorithms to

establish a truly autonomous vehicle.

Flapping-wing and other insect-inspired robots will likely be more and more common

in coming years, and in foreseeable future we can expect availability of such robots for

mass scale applications. We may even see insect-like robots to be used during Mars

exploration, because of their autonomous capabilities and very small size.

We can expect many more flapping-wing insect-like robots in the coming years, and

83

6.1. FUTURE WORK

we are very happy that we were able to contribute to knowledge in this area.

84

Bibliography

[1] M. Abdelkader, M. Shaqura, M. Ghommem, N. Collier, V. Calo, and C. Claudel.

Optimal multi-agent path planning for fast inverse modeling in UAV-based flood

sensing applications. In Proceedings of the International Conference on Unmanned

Aircraft Systems, ICUAS, pages 64–71, 2014.

[2] A. J. Barry and R. Tedrake. Pushbroom Stereo for High-Speed Navigation in Clut-

tered Environments. 3rd Workshop on Robots in Clutter: Perception and Interaction,

pages 2–8, 2014.

[3] J. D. Barton. Fundamentals of Small Unmanned Aircraft Flight. Johns Hopkins

APL Technical Digest, 31(2):132–149, 2012.

[4] H. Bay and A. Ess. Speeded-Up Robust Features (SURF). Technical Report

September, 2008.

[5] M. Bibuli, M. Caccia, and L. Lapierre. Autonomous, Vision-based Flight and Live

Dense 3D Mapping with a Quadrotor Micro Aerial Vehicle. In IFAC Proceedings

Volumes (IFAC-PapersOnline), volume 7, pages 81–86, 2007.

[6] M. Bibuli, M. Caccia, and L. Lapierre. Monocular-SLAM–Based Navigation for

Autonomous Micro Helicopters in GPS-Denied Environments. In IFAC Proceedings

Volumes (IFAC-PapersOnline), volume 7, pages 81–86, 2007.

85

BIBLIOGRAPHY

[7] J. M. Birch and M. H. Dickinson. Spanwise flow and the attachment of the leading-

edge vortex on insect wings. Nature, 412(6848):729–733, 2001.

[8] S. Boddhu, H. Botha, B. Perseghetti, and J. Gallagher. Improved Control System

for Analyzing and Validating Motion Controllers for Flapping Wing Vehicles. In J.-

H. Kim, E. T. Matson, H. Myung, P. Xu, and F. Karray, editors, Robot Intelligence

Technology and Applications 2, volume 274 of Advances in Intelligent Systems and

Computing, pages 557–567. Springer International Publishing, 2014.

[9] H. Botha, S. Boddhu, H. McCurdy, J. Gallagher, E. Matson, and Y. Kim. A Re-

search Platform for Flapping Wing Micro Air Vehicle Control Study. In J.-H. Kim,

W. Yang, J. Jo, P. Sincak, and H. Myung, editors, Robot Intelligence Technology

and Applications 3, volume 345 of Advances in Intelligent Systems and Computing,

pages 135–150. Springer International Publishing, 2015.

[10] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1):14–23, mar 1986.

[11] R. a. Brooks and A. M. Flynn. Fast, Cheap and Out of Control: a Robot Invasion of

the Solar System. Journal of The British Interplanetary Society, 42:478–485, 1989.

[12] M. Buck, S. Razavi, R. Derose, T. Inoue, P. a. Silver, P. Subsoontorn, D. Endy,

Y. Gerchman, C. H. Collins, F. H. Arnold, R. Weiss, M. C. Jensen, C. D. Smolke,

L. Wroblewska, L. Prochazka, Y. Benenson, J. J. Tabor, C. a. Voigt, C. Lou, A. Tam-

sir, B. C. Stanton, M. Wieland, M. Fussenegger, I. Deese, N. Publishing, G. New,

S. K. Lee, J. D. Keasling, a. P. Arkin, D. D. Vecchio, and W. Brattain. Controlled

Flight of a Biologically Inspired, Insect-Scale Robot. Science, (May):603–607,

2013.

86

BIBLIOGRAPHY

[13] Business Insider. Tiny Flying Robots Are Being Built To Pollinate Crops Instead

Of Real Bees, 2014.

[14] X. Chen, W. He, and Z. Wu. Research of UAV’s multiple routes planning based

on Multi-Agent Particle Swarm Optimization. In Proceedings of the International

Conference on Intelligent Control and Information Processing, ICICIP, pages 765–

769, 2013.

[15] Chicago Tribune. Drone helped Gurnee firefighters assess propane-storage blaze,

2016.

[16] P. Chirarattananon, K. Y. Ma, and R. J. Wood. Adaptive control of a millimeter-scale

flapping-wing robot. Bioinspiration & Biomimetics, 9(2), 2014.

[17] Daily Mail. Death from a swarm of tiny drones: U.S. Air Force releases terrifying

video of tiny flybots that can can hover, stalk and even kill targets, 2013.

[18] C. De Wagter, S. Tijmons, B. D. W. Remes, and G. C. H. E. De Croon. Autonomous

flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision sys-

tem. In Proceedings - IEEE International Conference on Robotics and Automation,

pages 4982–4987, 2014.

[19] M. H. Dickinson and K. G. Götz. The wake dynamics and flight forces of the fruit

fly Drosophila melanogaster. The Journal of experimental biology, 199(Pt 9):2085–

2104, 1996.

[20] X. C. Ding, A. R. Rahmani, and M. Egerstedt. Multi-UAV convoy protection:

An optimal approach to path planning and coordination. IEEE Transactions on

Robotics, 26(2):256–268, 2010.

87

BIBLIOGRAPHY

[21] D. B. Doman, M. W. Oppenheimer, and D. Sigthorsson. Dynamics and control of a

minimally actuated biomimetic vehicle: Part I-aerodynamic model. Proceedings of

the AIAA Guidance, Navigation, and Control Conference, pages 10–13, 2009.

[22] D. B. Doman, M. W. Oppenheimer, and D. O. Sigthorsson. Dynamics and control

of a minimally actuated biomimetic vehicle: Part II-control. In Proceedings of AIAA

Guidance Navigation Control Conference, pages 10–13, 2009.

[23] ECliPSE. The CyberPhysical Systems Engineering Group, 2016.

[24] B. M. Finio, N. O. Pérez-Arancibia, and R. J. Wood. System identification and linear

time-invariant modeling of an insect-sized flapping-wing micro air vehicle. IEEE In-

ternational Conference on Intelligent Robots and Systems, pages 1107–1114, 2011.

[25] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm for

Model Fitting with Applications to Image Analysis and Automated Cartography.

Communications of the ACM, 24(6):381–395, jun 1981.

[26] S. N. Fry. The Aerodynamics of Free-Flight Maneuvers in Drosophila. Science,

300(5618):495–498, 2003.

[27] S. B. Fuller, M. Karpelson, A. Censi, K. Y. Ma, and R. J. Wood. Controlling free

flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. Jour-

nal of the Royal Society, Interface / the Royal Society, 11(97), 2014.

[28] J. Gallagher, L. Humphrey, and E. Matson. Maintaining Model Consistency during

In-Flight Adaptation in a Flapping-Wing Micro Air Vehicle. In J.-H. Kim, E. T.

Matson, H. Myung, P. Xu, and F. Karray, editors, Robot Intelligence Technology

88

BIBLIOGRAPHY

and Applications 2, volume 274 of Advances in Intelligent Systems and Computing,

pages 517–530. Springer International Publishing, 2014.

[29] J. C. Gallagher, D. B. Doman, and M. W. Oppenheimer. The Technology of

the Gaps: An Evolvable Hardware Synthesized Oscillator for the Control of a

Flapping-Wing Micro Air Vehicle. IEEE Transactions on Evolutionary Compu-

tation, 16(6):753–768, dec 2012.

[30] J. C. Gallagher and M. W. Oppenheimer. An improved evolvable oscillator and basis

function set for control of an insect-scale flapping-wing micro air vehicle. Journal

of Computer Science and Technology, 27(5):966–978, 2012.

[31] G. Greenwood, J. Gallagher, and E. Matson. Cyber-Physical Systems: The Next

Generation of Evolvable Hardware Research and Applications, pages 285–296.

Springer International Publishing, 2015.

[32] G. Greenwood and A. M. Tyrrell. Introduction to Evolvable Hardware: A Practical

Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press, 2006.

[33] J. Han, C. H. Wang, and G. X. Yi. Cooperative control of UAV based on Multi-Agent

System. In Proceedings of the IEEE 8th Conference on Industrial Electronics and

Applications, ICIEA, pages 96–101, 2013.

[34] L. Hines, D. Colmenares, and M. Sitti. Platform design and tethered flight of a

motor-driven flapping-wing system. In IEEE International Conference on Robotics

and Automation (ICRA), pages 5838–5845, 2015.

[35] N. V. Hoffer, C. Coopmans, R. R. Fullmer, and Y. Chen. Small low-cost unmanned

aerial vehicle System identification by Error Filtering Online Learning (EFOL) en-

89

BIBLIOGRAPHY

hanced least squares method. In International Conference on Unmanned Aircraft

Systems, ICUAS 2015, pages 1355–1363, 2015.

[36] Inven Sense. MPU-9250, 2016.

[37] N. T. Jafferis, M. A. Graule, and R. J. Wood. Non-linear resonance modeling and

system design improvements for underactuated flapping-wing vehicles. In IEEE

International Conference on Robotics and Automation (ICRA), pages 3234–3241,

2016.

[38] A. Jensen, C. Coopmans, and Y. Chen. Basics and guidelines of complementary

filters for small UAS navigation. In International Conference on Unmanned Aircraft

Systems, ICUAS 2013 - Conference Proceedings, number August, pages 500–507,

2013.

[39] D. Karaboga and B. Basturk. A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (ABC) algorithm. Journal of Global

Optimization, 39(3):459–471, 2007.

[40] M. Karpelson, G. Y. Wei, and R. J. Wood. Driving high voltage piezoelectric actu-

ators in microrobotic applications. Sensors and Actuators, A: Physical, 176:78–89,

2012.

[41] S. Kefi, I. Kallel, and A. M. Alimi. Hybrid planning approaches for multirobot

systems: A review and a proposal of a MultiAgent subsumption simulation. In 4th

International Conference on Hybrid Intelligent Systems (HIS), pages 285–290, dec

2014.

90

BIBLIOGRAPHY

[42] M. A. Kovacinal, D. Palmer, G. Yang, and R. Vaidyanathan. Multi-Agent Control

Algorithms for Chemical Cloud Detection and Mapping Using Unmanned Air Ve-

hicles. In Prcceedings of the IEEURSJ Intl. Conference on Intelligent Robots and

Systems, number October, pages 2782–2788, 2002.

[43] G. K. Lau, Y. W. Chin, J. T. W. Goh, and R. J. Wood. Dipteran-Insect-Inspired

Thoracic Mechanism With Nonlinear Stiffness to Save Inertial Power of Flapping-

Wing Flight. IEEE Transactions on Robotics, 30(5):1187–1197, 2014.

[44] B. D. Lucas and T. Kanade. An iterative image registration technique with an appli-

cation to stereo vision, 1981.

[45] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic al-

gorithm configuration. In In VISAPP International Conference on Computer Vision

Theory and Applications, pages 331–340, 2009.

[46] V. M. Mwongera. A Review of Flapping Wing MAV Modelling. International

Journal of Aeronautical Science & Aerospace Research (IJASAR), 2(2):17–26, 2015.

[47] F. Nagata, A. Otsuka, and K. Watanabe. Network-based subsumption architecture

for multiple mobile robots system. In Joint 6th International Conference on Soft

Computing and Intelligent Systems (SCIS) and 13th International Symposium on

Advanced Intelligent Systems (ISIS), pages 187–192, nov 2012.

[48] M. North, N. Collier, and J. Vos. Experiences Creating Three Implementations of the

REPAST Agent Modeling Toolkit. ACM Transactions on Modeling and Computer

Simulation, 16(1):1–25, 2006.

91

BIBLIOGRAPHY

[49] M. Özartan, S. Akgül, and B. Akça. A different view to future use of un-

manned aerial vehicles. In International Conference on Unmanned Aircraft Systems

(ICUAS), pages 167–172, may 2013.

[50] B. Perseghetti, J. Roll, and J. Gallagher. Design Constraints of a Minimally Ac-

tuated Four Bar Linkage Flapping-Wing Micro Air Vehicle. In J.-H. Kim, E. T.

Matson, H. Myung, P. Xu, and F. Karray, editors, Robot Intelligence Technology

and Applications 2, volume 274 of Advances in Intelligent Systems and Computing,

pages 545–555. Springer International Publishing, 2014.

[51] H. V. Phan and H. C. Park. Remotely controlled flight of an insect-like tailless

Flapping-wing Micro Air Vehicle. In 12th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI), pages 315–317, oct 2015.

[52] M. Podhradsky and G. Greenwood. An Evolutionary Approach to Tuning a Multi-

Agent System for Autonomous Adaptive Control of a Flapping-Wing Micro Air

Vehicle. International Journal of Robotics and Automation Technology, 198(3):7–

15, 2016.

[53] M. Podhradsky, G. Greenwood, J. Gallagher, and E. Matson. A Multi-Agent System

for Autonomous Adaptive Control of a Flapping-Wing Micro Air Vehicle. In IEEE

Symposium Series on Computational Intelligence, pages 1073–1080, dec 2015.

[54] Proxdynamics. PD-100 Black Hornet, 2016.

[55] Reconrobotics. Throwbot XT, 2016.

[56] M. H. Rosen, G. Pivain, R. Sahai, N. T. Jafferis, and R. J. Wood. Development of

a 3.2g Untethered Flapping-Wing Platform for Flight Energetics and Control Ex-

92

BIBLIOGRAPHY

periments. In IEEE International Conference on Robotics and Automation (ICRA),

pages 3227–3233, 2016.

[57] L. Sean, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Ballan. MASON: A Multi-

Agent Simulation Environment. In Transactions of the society for Modeling and

Simulation International, volume 7, pages 517–527, 2005.

[58] T. Shima, S. Rasmussen, and A. Sparks. UAV cooperative multiple task assignments

using genetic algorithms. Proceedings of the American Control Conference, pages

2989–2994, 2005.

[59] E. Shimada, J. Thompson, J. Yan, R. Wood, and R. Fearing. Prototyping millirobots

using dextrous microassembly and folding. In Symposium on Microrobotics ASME

Int. Mechanical Engineering Cong. and Exp, pages 1–8, 2000.

[60] J. Siekmann, J. Hartmanis, and J. V. Leeuwen. Lecture Notes in Artificial Intelli-

gence. 1814.

[61] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-

proaches. Wiley, 2006.

[62] R. Stevenson, K. Corbo, L. Baca, and Q. Le. Cage size and flight speed of the

tobacco hawkmoth Manduca sexta. The Journal of experimental biology, 198(Pt

8):1665–72, 1995.

[63] S. Sunada and C. P. Ellington. A new method for explaining the generation of aero-

dynamic forces in flapping flight. Mathematical Methods in the Applied Sciences,

24(17-18):1377–1386, 2001.

93

BIBLIOGRAPHY

[64] H. Syse. Military Robots: Mapping the Moral Landscape. Journal of Military

Ethics, 14(3-4):287–288, 2015.

[65] G. K. Taylor and A. L. R. Thomas. Dynamic flight stability in the desert locust

Schistocerca gregaria. The Journal of experimental biology, 206(Pt 16):2803–2829,

2003.

[66] TelIt. Jupiter SE880 GPS module, 2016.

[67] Z. E. Teoh, S. B. Fuller, P. Chirarattananon, N. O. Prez-Arancibia, J. D. Greenberg,

and R. J. Wood. A hovering flapping-wing microrobot with altitude control and pas-

sive upright stability. In International Conference on Intelligent Robots and Systems

(IROS), pages 3209–3216, oct 2012.

[68] K. Uosaki and T. Hatanaka. Evolution Strategies Based Particle Filters for Fault

Detection. In IEEE Symposium on Computational Intelligence in Image and Signal

Processing, CIISP, pages 58–65, apr 2007.

[69] Vectornav. Embedded Navigation Solution, 2016.

[70] R. Wood. The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE

Transactions on Robotics, 24(2):341–347, 2008.

[71] R. Wood, E. Steltz, and R. Fearing. Optimal energy density piezoelectric bending

actuators. Sensors and Actuators, 119(October 2004):476–488, 2005.

[72] R. J. J. Wood and R. S. S. Fearing. Flight Force Measurements for a Microme-

chanical Flying Insect. Proceedings 2001 IEEE/RSJ International Conference on

Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the

Next Millennium (Cat. No.01CH37180), pages 355–362, 2001.

94

BIBLIOGRAPHY

[73] J. Yan, S. Ayadhanula, and M. Sitti. Thorax Design and Wing Control for a Mi-

cromechanical Flying Insect. Technical report.

[74] J. Yan, R. Wood, S. Avadhanula, M. Sitti, and R. Fearing. Towards flapping wing

control for a micromechanical flying insect. In Proceedings 2001 ICRA. IEEE Inter-

national Conference on Robotics and Automation (Cat. No.01CH37164), volume 4,

pages 3901–3908, 2001.

95

APPENDIX A

MECHANICAL DESIGN

Mechanical drawings of our FWMAV are shown in Figures A.1 – A.6. Pictures of the

assembled vehicle are shown in Figures A.8 and A.9, showing top and side view of the

vehicle. Figure A.10 shows the sealed and marked shaft, which was a necessary measure

to prevent the shaft from slipping under higher loads (such as during change from δ to

−δ). Figure A.11 shows the correct initial position of the wings that is necessary because

there is no absolute position sensor of the motor angle. The user has to place the wings

into the initial position at the beginning of each experiment.

The first iteration of the vehicle was built at Wright State University (WSU). The sec-

ond (modified) version was build at Portland State University (PSU). The motors and the

wing assembly is identical for both versions, and could be further improved. The second

version contains smaller control electronics (this was achieved by tightly packaging the

electronic components), a smaller and lighter battery, and a smaller flotation device made

from a lighter foam. All components in the second version are more tightly packaged,

resulting in a more compact and more nimble vehicle.

Properties of both versions are compared in Table A.1. The second version is lighter

and more agile. It can follow the trajectory faster than the first version. The custom PCB

boards for power distribution and control could be further improved in future iterations.

Both versions are using two brushless DC motors Faulhaber series 1028_B, product

96

Property 1st iteration 2nd iteration Comments
Weight 406 g (14.3 oz) 180 g (6.3 oz) 55% decrease
Diameter TBD cm (TBD in) TBD cm (TBD in) 30% decrease
Current cons. ≤ 1A At max speed of 40 rad/s (6.2 Hz)
Peak cur. cons. 3 A Immediately after start
Battery 2 cell 3Ah 2 cell 300mAh 3hrs→ 20 min flight

Table A.1: Electrical and Mechanical Characteristics of the vehicle, for both 1st and 2nd
iteration

Figure A.1: Top view of the actuator assembly (actual size)

code 1028S006BIEM3-1024. The motor is 10 mm in diameter, 6.0 V coil and 1.2 mm

diameter output shaft. The mechanical drawing of the motor is shown in Figure A.7. The

motor assembly includes series IEM3, integrated 3 channel magnetic incremental encoder

with 1024 Counts-Per-Revolution (CPR) resolution. The motor uses planetary gearhead

10/1 with 4:1 ratio.

97

Figure A.2: Isometric view view of the actuator assembly (actual size)

Figure A.3: A base (isometric view, not to scale)

98

Figure A.4: A coupler (isometric view, not to scale)

Figure A.5: A crank (isometric view, not to scale)

99

Figure A.6: A rocker (isometric view, not to scale)

100

Figure A.7: Faulhaber series 1028_B brushless DC motor, product code
1028S006BIEM3-1024; The motor can be ordered at http://www.micromo.com/
1028s006biem3-1024.html

101

http://www.micromo.com/1028s006biem3-1024.html
http://www.micromo.com/1028s006biem3-1024.html

Figure A.8: Side view.

Figure A.9: Top view.

102

Figure A.10: Sealed shaft with markers to prevent shaft slippage

Figure A.11: Starting position of the wings

103

APPENDIX B

SOFTWARE ARCHITECTURE

The code is split into four main layers. Currently different programs contain separate

layers, but in the future all layers can be used in one embedded program while keeping

the functionality. The code has these layers:

1. Motor firmware – directly controls the motors by driving FET transistors

2. Multi Agent System – controls the vehicle (see Section 4

3. Pose estimation System – captures raw image from a video camera and applies

clever image processing algorithms on it to find out the vehicle’s pose (see Sec-

tion 3.3)

4. Graphical User Interface (GUI) – to let user command (start, stop, restart) the vehi-

cle and to show telemetry from the vehicle

Each layer is further described below.

MOTOR FIRMWARE

This is the low level code that directly gives commands to the motors and reads the outputs

of the encoders. This code runs on PIC micro controllers (MCU) – two PICs for each

104

B.2. MULTI AGENT SYSTEM

motor – and typically the user don’t interact with it. The firmware was developed and is

maintained by Hermanus Botha1.

MULTI AGENT SYSTEM

Is the implemented MAS from Chapter 4. It determines desired control inputs δ and ω

based on the state of the vehicle and its pose. It uses two sub-layers: Application Pro-

gramming Interface (API) to connect with the motor firmware and UDP communication

to connect with the Pose Estimation System.

API

The API is running on the embedded Linux on Gumstix Overo, and is setting wing beating

frequency and delta values. API gives commands to the PICs over SPI, the PICs then

translate these commands into signals for the motors. The API, developed by Hermanus

Botha, consists of several functions that can be called from user application. The most

important ones are:

• set_frequency(), set_delta() which sets ω, δ for corresponding wings

• init() initializes the motors before they can be used

• close() closes the communication with motors in an orderly manner

UDP Communication

The highest layer of communication takes place over WiFi network, and can be fully

defined by the user. It requires a server (typically running on a laptop), and a client

1wkjid10t@gmail.com

105

B.3. POSE ESTIMATION SYSTEM

program (running on the robot). The server waits for an incoming connection from a

client, and once it is established it keeps communication with the client alive. The clients

tries to connect with the server, and if successful it initializes the wings and waits for

commands from the server. In the most basic example there are two UDP packets:

• Server→ Client: four float numbers with desired values of δL, δR, ωL, ωR in rad/s

• Client→ Server: four float numbers with actual2 values of δL, δR, ωL, ωR in rad/s

The desired values of δ, ω can be passed to the server either from a user application

running on the same machine (typically a laptop), or directly from the user - for example

from the console.

POSE ESTIMATION SYSTEM

This system is written in C++ and uses OpenCV library for image processing. The algo-

rithm is in detail described in Section 3.3. Although developed separately (mostly for the

ease of testing), it is now integrated into the GUI. That way the user can easily control

the pose estimation system (for example start/stop recording the video), and the whole

program is more compact (no need to pass data between two separate processes).

GRAPHICAL USER INTERFACE

Currently we have two user programs that can communicate with the vehicle. One is

a sample server with console, so the user can set the δ, ω values manually by typing

commands. The other program is build using Qt framework, and allows the user to set

the desired values using sliders (in the manual mode), or to control the MAS and the

2i.e. the values that API gets from PICs

106

http://www.qt.io/

B.5. APPLICATION NOTES

Figure B.1: Qt GUI with camera feed on the left, user controls in the top right and console
on the bottom right.

pose estimation system (in the autonomous mode).. This Qt application also reads data

from the camera, localizes the vehicle in the watertank and will run the basic evolution

algorithms to determine the basic movements. The GUI is shown in Figure B.1.

APPLICATION NOTES

One might ask why we are not using Matlab, since it makes developing learning algo-

rithms very simple. The main problem is that server example is running in Linux (Ubuntu

12.04) and Matlab available at the university doesn’t support using webcams in Linux 3.

We are using Qt GUI.

3http://unix.stackexchange.com/questions/\87001/connection-error-for-linux\
-webcam-driver-for-matlab

107

http://unix.stackexchange.com/questions/\87001/connection-error-for-linux\-webcam-driver-for-matlab
http://unix.stackexchange.com/questions/\87001/connection-error-for-linux\-webcam-driver-for-matlab

B.5. APPLICATION NOTES

Initialization procedure

The procedure to initialize the vehicle needs to be done before the experiments can be

conducted, and goes as follows:

1. Turn on the WiFi router

2. Connect laptop to WiFi

3. Turn on the vehicle

4. Establish SSH connection

5. Loop through:

(a) Reset PICs using reset switch (vehicle)

(b) Align wings to their apexes (vehicle)

(c) Start the server (laptop)

(d) Start the client (vehicle)

(e) Wait for initialization (vehicle)

(f) Send commands (laptop)

(g) When done close the server

6. Disconnect everything

Steps 1 – 4 are needed only once per session, steps 5 – 6 have to be done before each

new measurement.

108

APPENDIX C

ADDITIONAL RESOURCES

Additional resources (such as source code, recoreded data and video) are available at

http://podhrmic.github.io/

109

http://podhrmic.github.io/

	A Multi-Agent System for Adaptive Control of a Flapping-Wing Micro Air Vehicle
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Objectives

	Background
	Related Research
	Oscillators
	DC Motors
	Sensors
	Inertional Measurement Unit
	Vision Based Sensors

	Cyber Physical Systems
	Subsumption Architecture
	Evolutionary Algorithms
	Multi Agent Systems

	Problem Definition
	Vehicle Configuration
	Cycle Averaged / Split Cycle Control
	Experimental Setup and Environment
	3D Printing & Vehicle Assembly
	Simulation

	Approach
	Multi-Agent Architecture
	Agent Description
	Agent Scheduling

	Agent Implementation
	Controller Agent
	Monitor Agent
	Diagnostic Agent

	Agent Online Learning
	Initial Learning
	In-Flight Learning
	Rule-base Adaptation

	Results
	Extrinsic Evolution
	Intrinsic Evolution
	Waypoint Following
	Fault recovery
	Obstacle Avoidance
	Summary

	Conclusion & Future Work
	Future Work

	Bibliography
	Mechanical design
	Software Architecture
	Motor Firmware
	Multi Agent System
	API
	UDP Communication

	Pose Estimation System
	Graphical User Interface
	Application Notes
	Initialization procedure

	Additional resources

