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Abstract 

Drought is the most costly hazard among all natural disasters. Despite the 

significant improvements in drought modeling over the last decade, accurate provisions 

of drought conditions in a timely manner is still one of the major research challenges. In 

order to improve the current drought monitoring and forecasting skills, this study presents 

a hybrid system with a combination of remotely sensed data assimilation based on 

particle filtering and a probabilistic drought forecasting model. Besides the proposed 

drought monitoring system through land data assimilation, another novel aspect of this 

dissertation is to seek the use of data assimilation to quantify land initial condition 

uncertainty rather than relying entirely on the hydrologic model or the land surface model 

to generate a single deterministic initial condition. Monthly to seasonal drought 

forecasting products are generated using the updated initial conditions. The 

computational complexity of the distributed data assimilation system required a modular 

parallel particle filtering framework which was developed and allowed for a large 

ensemble size in particle filtering implementation. The application of the proposed 

system is demonstrated with two case studies at the regional (Columbia River Basin) and 

the Conterminous United States. Results from both synthetic and real case studies suggest 

that the land data assimilation system significantly improves drought monitoring and 

forecasting skills. These results also show how sensitive the seasonal drought forecasting 

skill is to the initial conditions, which can lead to better facilitation of the state/federal 

drought preparation and response actions. 
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Chapter 1    Introduction 

Water sustainability is one of the grand challenges facing society in the twenty-

first century. With ongoing land development driven by population growth and climate 

change, many regions of the world are facing the exacerbated floods and droughts, which 

threaten the long-term sustainability of water resources. Accurate monitoring and 

forecasting of hydrometeorologic extreme events plays a significant role in developing 

appropriate policies to plan for available water resources. Despite multitude of studies 

conducted that proposed promising methods to improve extreme events monitoring and 

forecasts, the observed effects of climate change on floods and droughts across different 

regions of the globe in recent decades highlights the need for more sophisticated methods 

(Mishra and Singh 2010; DeChant and Moradkhani, 2015a; Rana and Moradkhani, 2016; 

Halmstad et al. 2012; Risley et al. 2011).  

 

1.1    Drought Background  

What is drought? Drought is a complex natural hazard and impacts hydrological, 

environmental, ecological, and social systems in many ways. Currently, no universal 

definition of drought exists (Lloyd-Hughes, 2014). The National Drought Mitigation 

Center (NDMC) at the University of Nebraska, Lincoln defines drought as: “drought is a 

protracted period of deficient precipitation resulting in extensive damage to crops, 

resulting in loss of yield”. Other definitions can also be found in Wilhite (2000), 

Keyantash and Dracup (2002), Mishra and Singh (2010), Sheffield and Wood (2011), and 

Van Loon (2015). Generally, drought can be described as a deficiency in precipitation, 
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soil moisture, and surface/ground water over an extended period, which has huge 

negative impacts on agricultural, ecological, and socio-economic systems. A drought 

event can be short, lasting for just a few months, or it can persist for multiple years. 

What causes drought? Drought is caused by natural variability (i.e., 

meteorological anomalies) or anthropogenic activities (i.e., groundwater abstraction). 

Natural variability indicates the variations of our climate system caused by natural 

factors, including external factors such as solar radiation, and internal factors such as the 

El Niño-Southern Oscillation (ENSO) or the Pacific Decadal Oscillation (PDO). 

Anthropogenic activities, such as water transfer projects or groundwater over abstraction, 

can also influence water input, storage, and output and therefore break the local water 

balance modifying the propagation of drought (Liu et al., 2015). Moreover, human-

induced global warming can further exacerbate a drought event in terms of both duration 

and severity (Ahmadalipour et al., 2016; Cheng et al., 2016; Rana et al., 2016).    

What are the types of drought? In general, drought can be classified into four 

categories: meteorological, agricultural, hydrological, and socio-economic (Figure 1-1) 

(Dai et al., 2004). Meteorological drought results from a deficiency of precipitation, such 

as the number of days with precipitation less than a specified threshold; agricultural 

drought relates to a shortage of available water in the root-zone layer for plant growth, 

and is assessed as insufficient soil moisture; hydrological drought is a deficiency in the 

surface/ground water supply, such as a dry reservoir; and socio-economic drought is 

characterized by the water and food market, such as hydroelectric power and loss of fish.  
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Figure 1-1. The description of four types of drought. 
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Why is drought important? Among all natural disasters, drought is the most costly 

extreme event (Sheffield et al., 2014) that may result in water scarcity (Jaeger et al., 

2013). For example, the North American drought in 1988 cost nearly $62 billion (in 2002 

dollars), which was more than the cost of the 1993 Mississippi River flood and Hurricane 

Andrew combined (Ross and Lott, 2003). Severe drought events can have devastating 

effects on crop production, agriculture, and even water supplies (Mishra and Cherkauer, 

2010). For instances, the 2012 summertime flash drought event across the Great Plains 

resulted in a major curtailment of crop yields, and caused about $12 billion economic loss 

(Hoerling et al., 2014). In 2015, California faced its fourth year of a multiple year 

drought event. The economic losses of this year were estimated to be $2.7 billion, which 

is equivalent to about 5% of annual agricultural production (Howitt et al., 2015). Figure 

1-2 shows the percent area of the United States under drought from January 2000 to 

October 2016, according to the NDMC. 
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Figure 1-2. Percent area of the United States in drought, 2000-2016, according to the 

NDMC. 
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How can we reduce drought risk? One possible reason for such huge losses from 

a drought event is the lack of prompt preparation and effective response actions due to 

the lack of accurate knowledge about the behavior of drought development (Figure 1-3). 

Different from other natural disasters, drought has a slow onset and develops over large 

areas, which makes it difficult to detect until severe damage has already occurred (Luo 

and Wood, 2007; Sheffield and Wood, 2011; Wood et al., 2015). Therefore, a drought 

monitoring and forecasting system that can sense drought conditions in a timely manner 

is essential for drought preparedness and risk reduction (Ahmadalipour et al., 2017; 

Madadgar and Moradkhani, 2014a, 2013a; Sheffield et al., 2014).  
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Figure 1-3. The late response to the 2011 drought in the Horn of Africa resulted in 

severe food shortage and affected more than 13 million people. (Source: Hillier & 

Dempsey, 2012) 
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1.2    Soil Moisture 

Among the four types of drought, agricultural drought, which is characterized by 

root-zone soil moisture receives special attention due to its direct relationships with crop 

yields and food security (Champagne et al., 2011; Sheffield et al., 2014). Especially for 

developing counties, an agricultural drought event can have devastating effects on the 

food supply and even the political stability. For instances, in Ethiopia and Sudan, the 

incidences of the agricultural drought events in 1983-1985 resulted in hundreds of 

thousands of deaths due to the poor plant growth and agricultural yields (Pickering and 

Owen, 1997). In 2011, the Horn of Africa experienced the most severe agricultural 

drought event of this century, which affected more than thirteen million people, with 

hundreds of thousands placed at risk of starvation and fifty to one hundred thousand 

deaths (Hillier and Dempsey, 2012). Considering the huge negative impacts of 

agriculture drought events, the focus of this dissertation is on the study of agriculture 

drought in order to improve future agricultural drought relief efforts. For the remainder of 

this dissertation, the term “drought” will be used to indicate agricultural drought only, as 

opposed to other types of drought. 

Root-zone soil moisture refers to the amount of water stored in the root-zone layer 

and is a critical variable in drought monitoring and forecasting (Brocca et al., 2012; 

Kumar et al., 2014a; Samaniego et al., 2013; Shukla et al., 2011; Xiao et al., 2016). 

Quantitative analysis of drought requires consistent and long-term time-series of root-

zone soil moisture observations (Luo and Wood, 2007; Mishra and Singh, 2011; Svoboda 

et al., 2002). Currently, three approaches are used to retrieve soil moisture: 1) in-situ 
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measurements; 2) model simulations; and 3) remotely sensed retrievals. The in-situ 

measurements can provide continuous and reliable soil moisture measurements, with an 

extended length of record. The main limitation of this approach, however, is that it is only 

available for few regions, and cannot represent the spatial heterogeneity of soil moisture 

(Figure 1-4). As an alternative, model simulations can estimate soil moisture on a 

continental or global scale, but these simulations are potentially biased due to the errors 

in model parameters, forcing data, and the deficiencies in the model structure. In the third 

approach, remotely sensed soil moisture observations (spaceborne or airborne) can 

provide an unprecedented spatial and temporal resolution of soil moisture across a range 

of scales. Recently, two L-band spaceborne sensors have been specifically designed to 

estimate soil moisture, the Soil Moisture Ocean Salinity (SMOS) (Kerr et al., 2010) and 

the Soil Moisture Active Passive (SMAP) missions (Entekhabi et al., 2010). One major 

drawback of remotely sensed observation is the sensing depth. Microwaves (C-, X-, and 

L-bands) can only penetrate the top five centimeters, retrieving only the surface soil 

moisture rather than the root-zone soil moisture (Crow et al., 2008; Jackson et al., 2010; 

Njoku et al., 2003; Yan et al., 2015). Another drawback of remotely sensed data is the 

short length of record (less than a decade of data), which makes them insufficient to 

monitor drought from a climate perspective (Yan and Moradkhani, 2016a). One possible 

solution is to use the spatial regionalization method (Yan and Moradkhani, 2016b, 2015, 

2014; Yan, 2012). 
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Figure 1-4. The TAMU North American Soil Moisture Database. Source: 

http://soilmoisture.tamu.edu/ 

http://soilmoisture.tamu.edu/
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Root-zone soil moisture is an indicator in drought monitoring and forecasting, and 

has been used in different forms, such as the root-zone soil moisture anomaly (Sheffield 

and Wood, 2008), the standardized root-zone soil moisture index (Hao and 

AghaKouchak, 2013), and the normalized root-zone soil moisture (Dutra et al., 2008). 

But the most commonly used form in hydrology community is the root-zone soil 

moisture percentile (Kumar et al., 2014a, 2014b; Luo and Wood, 2007; Mao et al., 2015; 

Mo and Lettenmaier, 2015; Samaniego et al., 2013; Shukla and Lettenmaier, 2011; Wang 

et al., 2009). The root-zone soil moisture percentile is estimated based on a historical 

reference period (normally 30-year time blocks). This historical reference period is also 

called as climatology. According to the NDMC, the drought intensity can be classified 

into five categories based on the root-zone soil moisture percentile: D0 (abnormally dry, 

percentile ≤ 30%), D1 (moderate drought, percentile ≤ 20%), D2 (severe drought, 

percentile ≤ 10%), D3 (extreme drought, percentile ≤ 5%), and D4 (exceptional drought, 

percentile ≤ 2%) (Table 1-1) (Svoboda et al., 2002). For the sake of convenience, in the 

remainder of this dissertation the term “soil moisture” will be used to indicate the root-

zone soil moisture only, as opposed to the surface soil moisture.  
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Drought Category Drought Intensity Soil Moisture Percentile 

D0 Abnormally Dry (0.2, 0.3] 

   
D1 Moderate Drought (0.1, 0.2] 

   
D2 Severe Drought (0.05, 0.1] 

   
D3 Extreme Drought (0.02, 0.05] 

   
D4 Exceptional Drought (0, 0.02] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1-1. Drought classification based on the soil moisture percentile, according to 

the National Drought Mitigation Center. 
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1.3    Limitations of the Current Systems 

In United States, there are a number of operational federal and research drought 

monitoring and forecasting systems, including the NDMC United States Drought 

Monitoring (USDM) (Svoboda et al., 2002), the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center’s (CPC’s) Seasonal Drought Outlook 

(SDO) (Steinemann, 2006), the University of Washington Experimental Surface Water 

Monitor (SWM) (Wood and Lettenmaier, 2006), the Princeton African Flood and 

Drought Monitor (AFDM) (Sheffield et al., 2014). Due to the abundance of available 

information in prior literature, the description of each system is not provided in this 

dissertation. Table 1-2 summarizes the basic information of each system. For more 

details, the above references are suggested as useful resources.  
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System USDM SDO SWM AFDM GIDMaPS 

Institution NDMC NOAA/CPC UW Princeton UCI 

  
     

Study 
Area 

U.S. U.S. 
U.S.  

and Mexico  
Africa Globe 

  
     

Drought 
Monitoring 

√ - √ √ √ 

  
     

Drought 
Forecasting 

- √ √ √ √ 

  
     

Drought  
Index 

Composite Composite 
Soil  

Moisture 
Soil  

Moisture 

Soil Moisture 
and  

Precipitation 

  
     

Updated 
Period 

Weekly Monthly Daily Daily Monthly 

  
     

Model 
CPC Soil  

Moisture  
Model 

CPC Soil  
Moisture  

Model 
VIC VIC - 

  
     

Forecasting 
Approach 

- NWP ESP NWP ESP 

  
     

Forecasting  
Period 

- 3-month 3-month 3-month 4-month 

  
     

Ensemble  
Modeling 

- - √ - - 

 

 

 

 

 

Table 1-2. Summary of the current drought monitoring and forecasting system. 
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Generally speaking, all of the above drought monitoring and forecasting systems 

are based on simulated soil moisture using dynamical hydrologic models or land surface 

models (LSMs), but coupled with different drought forecasting approaches. While the 

above systems have been well received among the federal/local agencies and research 

communities, there still exist areas for continued development. For instance, the 2012 

Central U.S. flash drought event (May-August) resulted in about $12 billion economic 

loss, but the SDO issued on 17 May 2012 did not forecast this event (Hoerling et al., 

2014). The USDM also did not capture this event until late June (Mo and Lettenmaier, 

2015). In the latest summary paper of National Oceanic and Atmospheric Administration 

(NOAA) Drought Task Force (DTF) research, Wood et al. (2015) concluded that one of 

the current critical challenges in drought study is “the development of objective, science-

based integration approaches for merging multiple information sources”.  

Following this trend, there exists three ways to improve the current drought 

monitoring and forecasting systems: 1) improve the quality of soil moisture estimation by 

integrating remotely sensed observations (for drought monitoring); 2) develop new 

objective, science-based drought forecasting approach (for drought forecasting); and 3) 

objectively quantify the uncertainty of initial conditions (for drought forecasting). The 

following three paragraphs explain or illustrate each point in details. 

1). The quality of soil moisture estimation. There are three main uncertainty 

sources affecting the quality of simulated soil moisture: the forcing data, the model 

parameter, and the model structure (DeChant and Moradkhani, 2014a; Moradkhani and 

Sorooshian, 2008). Addressing each of these uncertainties is beyond the scope of this 
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dissertation, and several recent progresses can be found in DeChant and Moradkhani 

(2014b), Samaniego et al. (2013). Only the model parameter uncertainty issue is briefly 

discussed here, since an interesting distinction exists on the model parameter estimation 

between the LSM and hydrologic modeling communities. For LSMs, these parameters 

are typically set to default values or estimated using look-up tables based on similarity 

between sites as a function of soil and vegetation (Clark et al., 2015; Mendoza et al., 

2015). However, sensitivity analysis suggests that this methodology is overly simplistic 

and can lead to significant errors in flux estimations, including soil moisture (Rosero et 

al., 2010). For dynamical hydrologic models, the parameters are often calibrated based on 

streamflow observations using sophisticated optimization techniques (Duan et al., 1994). 

Although after intensive calibration, the simulated streamflow can match the observed 

streamflow, but other fields (i.e., soil moisture) may be significantly biased (Yan and 

Moradkhani, 2016a). The “parameter equifinality” (Beven, 2006), where multiple 

parameter sets satisfy the observations, further complicates the parameter calibration 

problem. It is possible that multiple parameter sets give the same results for a given cost 

function, but give different results when using other cost functions (Gupta et al., 2008). 

Specifically, finding robust model parameters, that are able to produce reliable flux 

estimations is still one of the grand challenges of contemporary hydrology (Wood et al., 

2011). As a result, questions still remain regarding the quality of the simulated soil 

moisture in these systems. 

2). The drought forecasting approaches. The drought forecasting approaches used 

in the aforementioned systems can be classified as climatological forecasts (including the 
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SWM and GIDMaPS) or numerical weather prediction (NWP) forecasts (including the 

SDO and AFDM). The climatological drought forecasting approach relies on the 

ensemble streamflow prediction (ESP) framework, which originated from probabilistic 

streamflow forecasting at National Weather Service (NWS) (Day, 1985). The ESP 

resamples the climatological stochastic forcing to it to run dynamical hydrologic 

models/LSMs or the climatological soil moisture directly to forecast future drought 

conditions. However, the main limitation of this approach is that the sampled forcing/soil 

moisture are not necessarily representative of the future climate, especially under a non-

stationary world (Demirel and Moradkhani, 2016; Milly et al., 2008; Pathiraja et al., 

2016a, 2016b; Yan and Edwards, 2013). As an alternative, instead of using the 

climatological data, the NWP drought forecasting approach seeks the use of NWP 

products, such as the Climate Forecast System version 2 (CFSv2) or the North American 

Multimodel Ensemble (NMME) (Yuan et al., 2011). Although the NWP products can 

provide future climate information, the current NWP products are subject to high 

uncertainty and exhibit low skill beyond a one month lead time (DeChant and 

Moradkhani, 2015b, 2014b; Hayes et al., 2005). So far, the NWP drought forecasts have 

met with mixed success, and the major stumbling block is the low skill of forecasting 

precipitation (Hayes et al., 2005). As a result, the World Climate Research Program 

(WCRP) identified seasonal drought forecasting as one of the major research gaps, and 

the development of an objective, reliable, and cost effective drought forecasting approach 

is still an undergoing research (Madadgar and Moradkhani, 2014a, 2013a; WCRP, 2010). 
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3). The role of initial condition on drought forecasting. Besides the 

aforementioned forecasting approaches, another important factor playing a crucial role in 

drought forecasting is the initial condition (DeChant and Moradkhani, 2015, 2014a, 

2011a; Koster et al., 2010; Li et al., 2009; Shukla and Lettenmaier, 2011; Wood and 

Lettenmaier, 2008; Yossef et al., 2013). Initial condition refers to the land surface states 

or storage (i.e., soil moisture) at the initialization date of each forecasting, providing a 

starting point for trajectories in changes of the earth system states. For instances, Shukla 

et al. (2013) suggested that soil moisture predictability at seasonal lead times (one to six 

months) is sensitive to initial conditions. DeChant and Moradkhani (2015) emphasized 

that better estimates of the initial conditions could lead to improvements in drought 

forecasting skill. Currently, characterization of initial condition is performed through 

model simulations, or called as the “spin-up” period, where historical forcing data are 

available up to an initialization date of a forecast (Sheffield et al., 2014; Wood and 

Lettenmaier, 2006). As a result, the “spin-up” initial conditions are potentially biased due 

to the errors in forcing data, model parameter estimation, and the deficiencies in model 

structure. In addition, these “spin-up” initial conditions are treated as deterministic 

quantities and the epistemic uncertainties associated with them are not accounted for. The 

initial condition uncertainty that arises from the properties of the earth chaotic system is 

unavoidable due to the inability to accurately observe land surface states (Stainforth et 

al., 2005). Without quantification of the initial condition uncertainty, though such 

systems lead to probabilistic drought forecasts, these forecasts are generally over-
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confident and underestimate the drought forecasting uncertainty (DeChant and 

Moradkhani, 2014b; Wood and Schaake, 2008).  
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1.4    Proposed Solutions  

In order to improve the current drought monitoring and forecasting skills, this 

study attempts to propose three possible solutions to address the three challenges of the 

current systems discussed in the previous section. In the following three paragraphs, each 

proposed solution is discussed in details. It is noted that the proposed solutions are 

resulted from the recent improvements in computational resources, algorithm 

developments, and data availability. 

1). Assimilation of remotely sensed surface soil moisture observations. A 

plausible approach to improve the quality of simulated soil moisture is to exploit the soil 

moisture observations to update the model states (Brocca et al., 2012; De Lannoy et al., 

2012; Han et al., 2014; Li et al., 2010; Q. Liu et al., 2011; Massari et al., 2015; 

Moradkhani, 2008; Reichle and Koster, 2004; Yan and Moradkhani, 2016a; Yan et al., 

2015). This method of integrating model simulations and observations is referred to as 

data assimilation (DA) (Doucet and Johansen, 2011; Evensen, 1994; Moradkhani et al., 

2005a, 2005b). Recently, the advent of satellite microwave observations has created for 

the first time the possibility of large-scale soil moisture monitoring, which has led us to 

the era of “big data”, or the “fourth paradigm” as described in Jim Gray’s book The 

Fourth Paradigm: Data-Intensive Scientific Discovery (Table 1-3) (Hey et al., 2009). The 

remotely sensed big data provide newly emerging opportunities for DA applications in 

both soil moisture estimations and drought monitoring. Ahmadalipour et al. (2017) 

suggested that remotely sensed soil moisture played an important role in improving the 

current drought monitoring skill based on hydrologic models/LSMs. Yan and 
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Moradkhani (2016a) compared the root-mean-square-error of soil moisture prediction 

before and after assimilating satellite data, and found out that the soil moisture prediction 

biases were reduced significantly after data assimilation (Figure 1-5). 
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Science  
Paradigms  

Date Category  Description 

1st Thousand years ago Empirical Describing natural phenomena 

    

2nd 
Last few hundred 

years 
Theoretical Using models, generalizations 

    
3rd Last few decades Computational Simulating complex phenomena 

    

4th Today 
Data 

exploration 
Unifying theory,  

experiment, and simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1-3. The four science paradigms according to Jim Gray. 
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Figure 1-5. The root mean square error (m3/m3) between the simulated soil moisture and synthetic truth with/without 

assimilation of the satellite soil moisture (Yan and Moradkhani, 2016a).  
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2). Implementation of statistical drought forecasting approach. Soil moisture 

shows a distinctive characteristic called persistence, as it exhibits much less variability 

relative to climate variables (Seneviratne et al., 2010). Due to this persistence property, 

the drought states of a location at a particular time are affected by their earlier status to 

some extent. The persistence property directly motivates the use of the Markov network 

to model soil moisture in drought forecasting system instead of relying on the low skill 

climatological/future climate as implemented in the current system (Madadgar and 

Moradkhani, 2016, 2014b, 2013b; Mishra and Desai, 2005; Nicolai-Shaw et al., 2016; 

Pan et al., 2013; Wood et al., 2015). Recently, Madadgar and Moradkhani (2013a) 

proposed a newly statistical drought forecasting approach based on multivariate copula. 

They indicated that compared against the ESP approach a statistical copula-based model 

could lead to better seasonal drought forecasting skill. Madadgar and Moradkhani 

(2014a) further emphasized the importance of persistence in drought forecasting, and 

suggested that the persistence property played a key role during monthly to seasonal time 

scales. 

3). Quantification of initial condition uncertainty. Accurate characterization of 

initial condition uncertainty is a challenge, but much progress has been made in the field 

of ensemble DA (DeChant and Moradkhani, 2015b, 2014b, 2011b; Leisenring and 

Moradkhani, 2012; Moradkhani, 2008; Moradkhani et al., 2012). A number of studies 

have investigated the ability of the ensemble DA to estimate soil moisture uncertainty 

showing promising results (Figure 1-6)  (Yan and Moradkhani, 2016a; Yan et al., 2015). 

In addition, DeChant and Moradkhani (2011a) combined the ESP framework with the 
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initial condition uncertainty quantified through ensemble DA, and suggested that 

accounting for initial condition uncertainty improves the reliability of hydrologic 

forecasts.  
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Figure 1-6. Assimilation of synthetic AMSR-E soil moisture (temporal resolution: one day) for 

quantifying soil moisture initial condition uncertainty (Yan et al., 2015).  
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1.5    Objective of Dissertation  

Based on the above discussions, the objective of this dissertation is to improve the 

current drought monitoring and forecasting skills through the assimilation of remotely 

sensed surface soil moisture. Besides the proposed drought monitoring system through 

ensemble DA, another novel aspect of this dissertation is to propose a dynamical-

statistical hybrid drought forecasting framework using both ensemble DA and 

multivariate copula. In the hybrid framework, this dissertation seeks the use of ensemble 

DA to improve soil moisture initialization by quantifying the initial condition uncertainty. 

It is hypothesized that ensemble DA would lead to an improved simulated soil moisture 

field, which translates into a drought monitoring skill; a more accurate quantification of 

initial condition uncertainty would lead to an improved drought forecasting skill.  

After the brief introduction, the rest of the dissertation is organized as follows. 

Chapter 2 presents the framework of the proposed drought monitoring and forecasting 

system, including the dynamical hydrologic modeling, DA algorithm, the parallelization 

of DA, and the probabilistic multivariate copula. Chapter 3 illustrates the proposed 

system with two drought case studies in Columbia River Basin and Contiguous United 

States. Chapter 4 and 5 present and discuss the synthetic and real case study results for 

the Columbia River Basin case study, respectively. Chapter 6 and 7 present and discuss 

the synthetic and real case study results for the Contiguous United States case study, 

respectively. Finally, Chapter 8 concludes the dissertation and discusses future studies.  
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Chapter 2    Methodology  

The proposed drought monitoring and hybrid drought forecasting systems are 

composed of three main parts: 1) dynamical hydrologic modeling, 2) ensemble DA, and 

3) probabilistic multivariate copula model. First, the hydrologic model is calibrated for 

the study region. Next, the remotely sensed surface soil moisture observations are 

assimilated into the calibrated model through the ensemble DA. At this point, better 

drought monitoring skills can be achieved with the updated soil moisture field. For each 

forecasting date, the soil moisture initial condition uncertainty can be quantified through 

a probability density function (PDF) estimated using the ensemble DA. Last, the initial 

conditions sampled from the PDF are used in the probabilistic multivariate copula to 

generate drought forecasts. Figure 2-1 illustrates the framework of the proposed drought 

monitoring and forecasting systems. 
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Figure 2-1. The framework of the proposed drought monitoring and forecasting systems. 



30 

 

2.1    VIC Model 

The Variable Infiltration Capacity (VIC) model is a physically based and semi-

distributed macroscale hydrologic model. As such, it shares several basic features with 

other LSMs that are usually coupled with global circulation models (GCMs). The VIC 

model was developed by Liang et al. (1994) and later improved by Lohmann et al. 

(1998), and Liang and Xie (2001). The VIC model includes both water-balance and 

energy-balance parameterizations and two types of runoff-yielding mechanisms. 

The land surface is modeled as a grid of large, flat, and uniform cells. The VIC 

model balances both surface energy and water over each grid cell. The VIC model 

represents sub-grid variability in soils, topography, and vegetation. This allows for the 

representation of the non-linear dependence of the partitioning of precipitation into 

infiltration and direct runoff, which is determined by soil moisture in the upper soil layer 

and its spatial heterogeneity. The VIC model partitions the vadose zone into three soil 

layers. The first soil layer has a fixed depth of 10 cm, and responds quickly to changes in 

surface conditions and precipitation. The second and third soil layer depths are spatially 

varied, which is the same as in the Land Data Assimilation System (LDAS) retrospective 

simulations (Maurer et al., 2002). Moisture movement between the three soil layers is 

governed by gravity drainage, with diffusion from the second to the first layer allowed in 

unsaturated conditions. Water drained from the second layer to the third layer is entirely 

controlled by gravity. Base flow is a non-linear function of the soil moisture content of 

the third layer (Shukla et al., 2011).  
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The minimum meteorological forcing data for VIC model are the time series of 

daily or sub-daily precipitation, maximum and minimum air temperature, and wind 

speed. In this dissertation, the root-zone soil moisture is estimated as the total column soil 

moisture (sum of the three soil layers). Figure 2-2 presents the spatial variability of root-

zone soil depth (the combination of three soil layers) across the Contiguous United 

States.  
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Figure 2-2. The VIC root-zone soil layer depth across the Contiguous United States. 
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2.2    PRMS Model 

The Precipitation-Runoff Modeling System (PRMS) (Leavesley et al., 1983) is a 

modular deterministic, distributed-parameter, and physical-process watershed model 

(Markstrom et al., 2008). The land surface hydrologic process simulated by PRMS 

includes the evapotranspiration, runoff, infiltration, interflow, snowpack, and soil 

moisture.  

Instead of delineating a watershed into uniform grid cells, the PRMS partitions a 

watershed into hydrologic response units (HRUs) that are based on the physical attributes 

of the watershed such as land-surface elevation, slope and aspect, vegetation type, soil 

type, and spatiotemporal climate patterns (Markstrom et al., 2015). The physical 

attributes and hydrologic response of each HRU are assumed to be homogeneous. The 

meteorological forcing data for PRMS are precipitation, and minimum and maximum 

temperature. Excess runoff is routed to the outlet through the cascade and Muskingum 

routing methods. 

The PRMS version 4.0.1 (PRMS-IV) released on March 15, 2015 is used in this 

study. The PRMS-IV takes soil moisture into account in three reservoir systems: the 

preferential-flow reservoir, the capillary reservoir, and the gravity reservoir. The 

preferential-flow reservoir represents the water content between preferential-flow 

threshold and total soil saturation; it is available for fast interflow and Dunnian surface 

runoff. The capillary reservoir represents the moisture content between wilting point and 

field capacity; it is only available for evapotranspiration and not for drainage. The gravity 

reservoir is limited to the water content between field capacity and preferential-flow 
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threshold. The water content in this reservoir is available for slow interflow, groundwater 

recharge, and Dunnian surface runoff (Markstrom et al., 2015). In this dissertation, root-

zone soil moisture is estimated as the total column soil moisture (sum of the three soil 

reservoirs). 
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2.3    Data Assimilation Algorithm  

Currently the most commonly used DA method in the hydrologic community is 

the ensemble Kalman filter (EnKF) (Evensen, 1994; Kumar et al., 2016, 2014a; Reichle 

and Koster, 2004; Reichle et al., 2008). Although the EnKF is popular for hydrologic 

applications, many studies have shown that the Gaussian error assumption of the EnKF is 

often violated in hydrologic modeling, and suggest that the particle filter (PF) is a more 

robust technique (DeChant and Moradkhani, 2014a, 2012; Dong et al., 2015; Montzka et 

al., 2011; Moradkhani et al., 2012, 2005a; Plaza et al., 2012; Yan et al., 2015). Compared 

with the popular EnKF, the advantage of PF is that it relaxes the Gaussian assumption for 

error distributions, potentially characterizing multimodal or skewed distribution in state 

variables. Therefore, it can quantify a more complete representation of the posterior 

distribution for a non-linear non-Gaussian system. In addition, instead of updating the 

state variables as EnKF, the PF resamples the ensemble states and thus can maintain 

water balance. The PF ensemble DA is based on the sequential Bayesian theory and is 

described in the following paragraphs.  

Following Moradkhani (2008), the state-space models that describe the generic 

earth system are as follows: 

   𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑢𝑡 , 𝜃) + 𝑤𝑡 (1) 

 𝑦𝑡 = ℎ(𝑥𝑡) + 𝑣𝑡 (2) 

where 𝑥𝑡 ∈ ℝ𝑛 is a vector of the uncertain state variables at current time step, 𝑦𝑡 ∈ ℝ𝑚 is 

a vector of observation data, 𝑢𝑡 is the uncertain forcing data, 𝜃 ∈ ℝ𝑑 is the model 

parameters, ℎ(∙) is a non-linear function that relates the states 𝑥𝑡 to the observations 𝑦𝑡, 
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𝑤𝑡 represents the model error, and 𝑣𝑡 indicates the observation error. The errors 𝑤𝑡  and 

𝑣𝑡 are assumed to be white noise with a mean of zero and covariance 𝑄𝑡 and 𝑅𝑡, 

respectively. The white noise implies that a model or observation error follows a 

Gaussian distribution with a mean of zero and a diagonal covariance matrix. 

Under the assumption of independence in time series, the posterior distribution of 

the state variables 𝑥𝑡 given a realization of the observations 𝑦1:𝑡 is as follows:  

 
𝑝(𝑥𝑡|𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑦1:𝑡−1, 𝑦𝑡 ) =

𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)

𝑝(𝑦𝑡|𝑦1:𝑡−1)

=
𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)

∫ 𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡

 

(3) 

   𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 =

∫ 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 

(4) 

where 𝑝(𝑦𝑡|𝑥𝑡) is the likelihood, 𝑝(𝑥𝑡|𝑦1:𝑡−1) is the prior distribution, and 𝑝(𝑦𝑡|𝑦1:𝑡−1) is 

the normalization factor. The marginal likelihood function 𝑝(𝑦1:𝑡) can be computed as: 

 

𝑝(𝑦1:𝑡) = 𝑝(𝑦1) ∏ 𝑝(𝑦𝑘|𝑦1:𝑘−1)

𝑡

𝑘=2

 (5) 

where the normalization factor 𝑝(𝑦𝑡|𝑦1:𝑡−1) is: 

 
𝑝(𝑦𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑦𝑡, 𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡 = ∫ 𝑝(𝑦𝑡|𝑥𝑡) 𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡 (6) 

Equation (3) shows mathematically that a posterior conditional probability 

distribution of model predicted states 𝑥𝑡, given all previous observations 𝑦1:𝑡−1 and the 

current observation 𝑦𝑡 can be computed sequentially in time. In practice, Equation (3) 

does not have an analytic solution except for a few special cases. Instead, the posterior 
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distribution 𝑝(𝑥𝑡|𝑦1:𝑡) is usually approximated using a set of Monte Carlo (MC) random 

samples as: 

 

𝑝(𝑥𝑡|𝑦1:𝑡) ≈ ∑ 𝑤𝑡
𝑖+𝛿(𝑥𝑡 − 𝑥𝑡

𝑖)

𝑁

𝑖=1

 (7) 

where 𝑤𝑡
𝑖+ is the posterior weight of the 𝑖𝑡ℎ particle,  𝛿 is the Dirac delta function, and 𝑁 

is the ensemble size. The normalized weights are calculated as follows: 

 
𝑤𝑡

𝑖+ = 𝑤𝑡
𝑖−

𝑝(𝑦𝑡|𝑥𝑡
𝑖 )

∑ 𝑤𝑡
𝑖−𝑝(𝑦𝑡|𝑥𝑡

𝑖)𝑁
𝑖=1

 (8) 

where 𝑤𝑡
𝑖− is the prior particle weights, and 𝑝(𝑦𝑡|𝑥𝑡

𝑖) can be computed from the 

likelihood 𝐿(𝑦𝑡|𝑥𝑡
𝑖). Generally, a Gaussian distribution is used to estimate 𝐿(𝑦𝑡|𝑥𝑡

𝑖):  

 
𝐿(𝑦𝑡|𝑥𝑡

𝑖) =
1

√(2𝜋)𝑚|𝑅𝑡|
𝑒𝑥𝑝 [−

1

2
(𝑦𝑡 − ℎ(𝑥𝑡

𝑖))
𝑇

𝑅𝑡
−1 (𝑦𝑡 − ℎ(𝑥𝑡

𝑖))] (9) 

To obtain approximate samples from 𝑝(𝑥𝑡|𝑦1:𝑡), a resampling operation is necessary in 

order to address the weight degeneration issue (all but one of the importance weights are 

close to zero). Moradkhani et al. (2005a) suggests to resample the particles with a 

probability greater than the uniform probability. After resampling, all the particle weights 

are set equal to 1 𝑁⁄ .  

To further reduce the weight degeneration problem in large-scale applications, the 

particle filter with a sampling importance resampling (PF-SIR) algorithm can be 

combined with a Markov chain Monte Carlo (MCMC) move (Moradkhani et al., 2012). 

The recently developed particle Markov chain Monte Carlo (PMCMC) (Andrieu et al., 

2010) is used in this dissertation for large-scale DA drought applications. The PMCMC is 
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an extension of the PF-SIR and uses the PF-SIR to design efficient high-dimensional 

proposal distributions for the MCMC algorithm.  

The PMCMC consists of the following three steps: 1) Initialization (𝑗 = 0): run 

PF-SIR targeting 𝑝(𝑥𝑡|𝑦1:𝑡), sample 𝑋𝑡(0)~𝑝(𝑥𝑡|𝑦1:𝑡) and let 𝑝(𝑦1:𝑡)(0) denote the 

corresponding marginal likelihood estimate. 2) Iteration (𝑗 ≥ 1): sample 𝑋𝑡
∗~𝑝(𝑥𝑡|𝑦1:𝑡) 

again and let 𝑝(𝑦1:𝑡)∗ denote the corresponding marginal likelihood estimate. 3) 

Calculate the acceptance ratio as: 

 
𝑚𝑖𝑛 {1,

𝑝(𝑦1:𝑡)∗

𝑝(𝑦1:𝑡)(𝑗 − 1)
} (10) 

and set 𝑋𝑡(𝑗) = 𝑋𝑡
∗ and 𝑝(𝑦1:𝑡)(𝑗) = 𝑝(𝑦1:𝑡)∗; otherwise set  𝑋𝑡(𝑗) = 𝑋𝑡(𝑗 − 1) and 

𝑝(𝑦1:𝑡)(𝑗) = 𝑝(𝑦1:𝑡)(𝑗 − 1).  
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2.4    Code Parallelization  

Dynamical distributed hydrologic models (such as the VIC and RPMS models) 

are usually very computationally expensive and often need to be run on high-performance 

computing (HPC) clusters. Especially for simulations that are performed on a large-scale 

with a high spatial resolution, code parallelization is an essential requirement to reduce 

computational times. Fortunately, the natural parallelism in the ensemble DA algorithm 

can be used to implement parallel programming, since each ensemble state can be 

simulated independently from the others.  

Generally, there are two parallelization strategies for ensemble DA algorithm: the 

model decomposition (Figure 2-3) and the domain decomposition (Figure 2-4). The 

model decomposition schema is to distribute the ensemble members of DA over all 

available processors. However, it would lead to a significant amount of data 

communication between different processors in each state updating step of DA. 

Therefore, the model decomposition schema is more suitable for small-scale DA 

applications using multi-processing strategy (i.e., OpenMP) in a single computer system 

with shared-memory. As an alternative, the domain decomposition implementation gains 

more popularity in the community due to the avoidance of the huge amount of data 

passing. The domain decomposition distributes the large scale study region over all 

available processors. As a result, each processor only updates the domain states that 

belong to its own, and other domain states can be updated concurrently. Currently, 

domain decomposition is the standard parallelization strategy in the large-scale 

dynamical models using Message Passing Interface (MPI) (Nerger and Hiller, 2013). 
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Figure 2-3. The schematic framework of the model decomposition parallelization 

strategy. 
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Figure 2-4. The schematic framework of the domain decomposition parallelization 

strategy. 
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Besides the two DA parallelization strategies, there are also two strategies to 

couple the hydrologic model and DA algorithm: online coupling and offline coupling 

(Kurtz et al., 2016). For online coupling implementation, the DA algorithm is a 

subroutine of the dynamical model routines and they are all compiled into a single 

program. Data is exchanged via the main memory. The main advantage of the online 

coupling is that it is computationally more efficient since the exchange of data using files 

can be avoided. In addition, the model only needs to execute the start-up phase once and 

there is no additional start-up cost. However, the online coupling schema requires 

modification to the model source code in order to be compatible with the DA subroutine. 

For offline coupling schema, there are two separate programs used for model execution 

and DA, respectively. Data is then exchanged via the input/output (I/O) files of the 

model. Obviously, the offline coupling is more ad hoc since there is no need to modify 

the model source code. In addition, the offline coupling is the only option when the 

source code of the model is not available or not open source. One limitation of the offline 

coupling is that it generates a large amount of files on the local drive, and it produces a 

lot of I/O overhead. One simple solution is to use the RAM disk to catch these I/O files.  

In general, an ideal parallel DA framework should provide a generic DA 

environment that can be coupled with any hydrologic model. Therefore, the offline 

coupling schema and domain decomposition strategy is used in this study to provide a 

generic parallel DA framework for VIC model. Figure 2-5 describes the detailed 

PMCMC-VIC offline coupling interface in this study. Similar flowchart can be used for 

PMCMC-PRMS offline coupling too. 
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Figure 2-5. The particle filter-VIC offline coupling interface. 
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2.5    Probabilistic Multivariate Copula 

A newly developed probabilistic drought forecasting method based on copula 

functions is used here which is coupled with the initial condition uncertainty through DA 

(Madadgar and Moradkhani, 2014a, 2013a). The core of this forecast model is to apply a 

multivariate distribution function to forecast future drought conditions given the current 

drought status. 

Following Sklar (1959), the joint cumulative distribution function (CDF) of two 

temporal continuous state variables (i.e., soil moisture) 𝑃(𝑥𝑡, 𝑥𝑡+1) could be written as: 

 𝑃(𝑥𝑡, 𝑥𝑡+1) = 𝐶[𝑃(𝑥𝑡), 𝑃(𝑥𝑡+1)] = 𝐶[𝑢𝑡 , 𝑢𝑡+1] (11) 

where 𝐶 is the CDF of the copula and 𝑃(𝑥) is the marginal CDF of 𝑥 denoted by 𝑢. Then 

the PDF of the copula is: 

 
𝑐[𝑢𝑡, 𝑢𝑡+1] =

𝜕2𝐶[𝑢𝑡 , 𝑢𝑡+1]

𝜕𝑢𝑡𝜕𝑢𝑡+1
 (12) 

and the joint PDF of 𝑝(𝑥𝑡, 𝑥𝑡+1) is calculated as: 

 𝑝(𝑥𝑡, 𝑥𝑡+1) = 𝑐[𝑢𝑡 , 𝑢𝑡+1]𝑝(𝑥𝑡)𝑝(𝑥𝑡+1) (13) 

the conditional PDF of 𝑥𝑡+1 given 𝑥𝑡 is: 

 
𝑝(𝑥𝑡+1|𝑥𝑡) =

𝑝(𝑥𝑡, 𝑥𝑡+1)

𝑝(𝑥𝑡)
= 𝑐[𝑢𝑡 , 𝑢𝑡+1]𝑝(𝑥𝑡+1) (14) 

Using Equation (14), the probabilistic forecast of drought states in time 𝑡 + 1 given the 

drought condition at time 𝑡 can be examined. The mode of the 𝑝(𝑥𝑡+1|𝑥𝑡) is 

correspondent to the maximum likelihood estimation (MLE) of 𝑥𝑡+1. 

Figure 2-6 illustrates how the copula drought forecasting model works using a 

seasonal drought forecasting example. In this example, the future drought condition in 
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spring is forecasted using the drought statuses in the past winter. In Figure 2-6, the five 

distributions of drought condition in spring conditional on the drought statuses in winter 

have been developed. Each curve represents the PDF associated with a particular drought 

status in winter (D0-D4). More red color means that more severe drought happened in 

winter. For instances, if a D4 drought occurred in winter, the MLE drought statuses in the 

coming spring is a D1 drought; while if a D0 drought occurred in winter, it is most likely 

to have a normal condition in spring.  
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Figure 2-6. The conditional distributions of spring drought given winter drought status. 
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2.6    Monthly to Seasonal Forecasting Framework 

Figure 2-7 describes the proposed monthly to seasonal drought forecasting 

framework. Based on Figure 2-7, the drought forecasting framework composes of three 

components: monthly (short-term), bimonthly (middle-term), and seasonal forecasts 

(long-term). The “stars” indicate the sampled initial conditions through the PDF of the 

initial conditions. The “arrow” directs the corresponding PDF of drought forecast. The 

drought forecast can be generated from whether one sampled initial condition (i.e., 

posterior mean) or multiple sampled initial conditions as shown in Figure 2-7. If multiple 

initial conditions are used to generate drought forecasts, the final forecast can be the 

average of each drought forecast, as the “thick line” shown in the figure. 

The probabilistic drought conditions in each monthly/bimonthly/seasonal are 

forecasted using the drought status in the previous month/bimonth/season. The drought 

forecast initializes on the first day of each month (i.e., 1 January and 2 February), and 

provides three forecasting products for decision-makers and water resources managers. 

The monthly forecasting products can provide drought information for the following 

month, and can be used for irrigation, reservoir operations, and water supply plans. The 

bimonthly and seasonal forecasting products offer the seasonal drought information 

sooner (up to three-month preparation time), and can be used for drought risk assessment 

and drought preparation. 
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Figure 2-7. The monthly to seasonal drought forecasting framework using the multivariate copula model. 
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Chapter 3    Study Area and Data Sources   

3.1    Case Study 1: Study Area and Drought Event  

The first case study area of this dissertation is the regional scale analysis. The 

Columbia River Basin (CRB), located in the Pacific Northwest (PNW), covers about 

674,500 km2 of U.S. (~85%) and Canada (~15%). In the U.S., the CRB spans seven 

states, including Washington, Oregon, Idaho, Montana, Utah, Wyoming, and Nevada 

(Figure 3-1). The CRB encompasses a wide range of physiographic provinces and 

ecoregions ranging from semiarid in central plateaus to wet forests in the Cascade 

Mountains (Omernik and Bailey, 1997). The mean annual precipitation ranges from 

about 200 mm in the central plateaus to about 3,550 mm in the Cascade Mountains. The 

Columbia River is the 4th largest river in North America, originating in the Rocky 

Mountain and flowing to the Pacific Ocean, with a mean annual discharge of 247 million 

cubic meters. More than 450 dams have been built on this river system to provide 

hydroelectricity, flood control, irrigation, and stream regulation. The Columbia River is 

dominated by snow hydrology: snow accumulating in winter and melting in spring. It 

generally shows a characteristic of low flow in winter and peak flow in spring (Hamlet 

and Lettenmaier, 1999). 

Recently, the CRB droughts have received increasing attention due to the low 

snowpack and rising temperature. Two drought events are studied in this dissertation. 1) 

In spring 2013, drought declarations were issued for nine counties in the southern Idaho. 

Three months later, a total of 19 counties in Idaho issued drought emergence. 2) In winter 

2015, the PNW received historically low snowpack conditions. In June 2015, the 
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Washington State Governor Jay Inslee declared the statewide drought and Oregon State 

Governor Kate Brown declared drought emergencies for 19 out of 36 Oregon counties 

(about 80% of the state’s landmass). The Washington Department of Agriculture (2015) 

calculated that the economic loss of the 2015 state drought was more than $335 million.   
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Figure 3-1. The location of the Columbia River Basin. 
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3.2    Case Study 2: Study Area and Drought Event  

The second case study area of this dissertation is the continental scale analysis. 

The Contiguous United States (CONUS) (25˚–53˚N, 125˚–67˚W) consists of the 48 states 

on the continent of North America and occupies an area of about 3,119,884.69 square 

miles, which is equal to about 1.6% of the total surface area of Earth. The greatest 

distance in CONUS domain is about 2,802 miles between the Florida and Washington 

states. The state-wide averages of annual precipitation range from a high of 60.1 inches in 

Louisiana to a low of 9.5 inches in Nevada. The annual average amount of precipitation 

over CONUS domain is about 30.2 inches. The CONUS domain is divided into 13 river 

basin oriented regions (Figure 3-2). They are: 1) Northwest and Columbia (CRB); 2) 

California (CALI); 3) Great Basin (GRB); 4) Colorado River (COLOR); 5) Rio Grande 

(RIO); 6) Missouri River (MO); 7) Arkansas-Red (ARK); 8) South Central (GULF); 9) 

Great Lakes Drainage (GLAKES); 10) Upper Mississippi (UP); 11) Lower Mississippi 

(LOW); 12) Ohio (OHIO); and 13) East Coast (EAST). 

The 2012 summertime (May-August) drought over Central U.S. is selected as the 

case drought event in this dissertation. The 2012 drought event developed rapidly in May 

and reached peak intensity in August. The two main causes for this drought event were 

the precipitation deficits and high temperatures. The rainfall season for Central U.S. 

occurs mostly during May-August, however, in 2012 the rainfall failed. The combination 

of substantial precipitation deficits and high temperatures caused the soil moisture to 

decrease rapidly, and the drought type propagated from meteorological drought to 

agricultural drought quickly. According to the USDM, during May-August, over three-
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quarters of CONUS experienced at least D0 drought conditions and the Central U.S. 

experienced D2-D4 drought conditions.  

This drought event attracts attention due to two reasons. First, it was the most 

severe seasonal drought in 117 years. It caused significant economic loss, and heavily 

impacted food security and commodity prices (PaiMazumder and Done, 2016). Second, 

the current drought forecasting systems failed to capture this drought event (Hoerling et 

al., 2014; Mo and Lettenmaier, 2015).  
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Figure 3-2. The CONUS domain and the 13 basins. 
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3.3    Meteorological Forcing Data 

The precipitation, maximum and minimum temperature, and wind speed data 

(January 1, 1979 to present) are acquired from the Phase 2 of the North American Land 

Data Assimilation System (NLDAS-2) (Xia et al., 2014). The NLDAS-2 is originally 

from the first phase of NLDAS (NLDAS-1) project, which is initiated to generate reliable 

initial land surface states to coupled atmosphere-land models to improve weather 

predictions. The NLDAS is an interdisciplinary project with participants from the NOAA 

National Centers for Environmental Prediction (NCEP), the NOAA NWS Office of 

Hydrologic Development (OHD), the NOAA Environmental Satellite, Data, and 

Information Service (NESDIS), the NOAA Climate Prediction Center (CPC), the 

National Aeronautics and Space Administration (NASA) Goddard Space Flight Center 

(GSFC), and several universities including the University of Washington, the University 

of Maryland, the Princeton University, and Rutgers University.   

The majority of NLDAS atmospheric forcing data is derived from the North 

American Regional Reanalysis (NARR) which features a 32-km spatial resolution and a 

3-hour temporal resolution. Besides the precipitation, temperature, and wind speed, the 

NARR forcing data also include the specific humidity, surface pressure, incoming solar 

radiation, and incoming longwave radiation. The NLDAS software is used to interpolate 

the coarse-resolution NARR data to the finer-scale 1/8° NLDAS grid, and to the one-hour 

NLDAS temporal resolution (Xia et al., 2012). In this dissertation, the hourly NLDAS-2 

primary forcing data are aggregated into daily time step for DA applications. Figure 3-3 

shows an example of the daily 1/8° NLDAS-2 metrological forcing data (precipitation, 
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minimum and maximum temperature, and wind speed) over CONUS domain for 

December 31, 2015.  
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Figure 3-3. The daily 1/8° NLDAS-2 meteorological forcing data for December 31, 2015. 
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3.4    Remotely Sensed Surface Soil Moisture  

The blended microwave soil moisture climate change initiative (CCI) products 

v02.2, which were released on February 2016 and the Advanced Microwave Scanning 

Radiometer2 (AMSR2) soil moisture products are used in this dissertation (Imaoka et al., 

2010; Y. Y. Liu et al., 2012, 2011). The CCI soil moisture are merged from four passive 

and two active microwave products, including the Scanning Multichannel Microwave 

Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), Tropical Rainfall 

Measure Mission (TRMM) Microwave Imager (TMI), Advanced Microwave Scanning 

Radiometer for Earth Observing System (AMSR-E), Advanced Microwave Instrument 

(AMI), and Advanced Scatterometer (ASCAT). The AMSR2 is onboard the Global 

Change Observation Mission1-Water (GCOM-W1) satellite, which was launched in May 

2012 by the Japan Aerospace Exploration Agency (JAXA).  

According to Y.Y. Liu et al. (2012), the CCI merged soil moisture products are 

obtained by rescaling the active and passive retrievals into a common Noah simulated 

soil moisture climatology in the Global Land Data Assimilation System version 1 dataset 

(GLDAS-1-Noah) with the use of cumulative distribution function (CDF) matching 

approach (Madadgar et al., 2014; Reichle and Koster, 2004). This methodology consists 

of three steps: 1) merging the four passive products into one dataset from 1978 to 2014; 

2) merging the two active products into one dataset from 1991 to 2014; 3) blending both 

merged products into one final dataset from 1978 to 2014. In the final blended soil 

moisture, passive and active merged products are used for sparsely and moderately 

vegetated regions, separately. The average of both products is taken for transition areas 
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where passive and active show similar performances. In this way, the blended soil 

moisture can take both the advantages of active and passive microwave sensors, as active 

products have higher accuracy over moderately vegetated regions while passive produces 

show better performance over sparsely vegetated regions (Albergel et al., 2009; Wagner 

et al., 2013, 2007). 

The AMSR2 soil moisture products, generated by using the Land Parameter 

Retrieval Model (LPRM) developed by Vrije Universiteit Amsterdam and NASA 

Goddard Space Flight Center (GSFC) (Owe et al., 2008), are also employed in this 

dissertation to study the drought event in 2015. Both the CCI and AMSR2 products have 

a spatial resolution of 0.25° and a daily time step. Quality flags of both soil moisture is 

used to mask pixels affected by snow cover, temperatures below 0 °C, dense vegetation, 

and pixels where the soil moisture retrieval failed (Dorigo et al., 2015).  

It is noted that the CCI and AMSR2 soil moisture products are selected in this 

study due to the data availability, since this dissertation focuses on the drought events in 

2012 (case study 2), 2013, and 2015 (case study 1). In addition, the blended CCI product 

can have a greater number of observations than any single sensor product (higher 

temporal resolution), which leads to a better performance of DA application (Montzka et 

al., 2011; Yan et al., 2015). The latest SMAP L-band soil moisture products issued from 

March 31, 2015 will be used for future operational drought monitoring and forecasting. 

Figures 3-4 shows an example of the daily 0.25° CCI surface soil moisture for December 

31, 2014.  
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Figure 3-4. The daily 0.25° CCI soil moisture over global for December 31, 2014. 
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Chapter 4    Case Study 1: Synthetic Study  

To objectively assess the potential benefit of assimilation of satellite surface soil 

moisture, a synthetic study is first conducted through a procedure called observing 

system simulation experiment (OSSE) or synthetic study (Moradkhani, 2008). The 

synthetic study includes the following four steps: 1) a “truth” run of the hydrologic model 

with the pre-calibrated model parameters; 2) simulated satellite surface soil moisture 

observations, which are generated from the truth run by incorporating the observation 

errors; 3) an open-loop (OL) run with the perturbed forcing data without DA; and 4) the 

DA step that assimilates the simulated surface soil moisture observations from step 2 to 

the model. Then the OL and DA results are compared against the truth simulation to 

evaluate the impact of satellite surface soil moisture assimilation. 

It is noted that the definition of OL is slightly different in the synthetic study and 

real case study. In the synthetic study, the OL results are generated by running the model 

(after model calibration) using the perturbed forcing data without assimilation of satellite 

data. Therefore, OL is an ensemble run in the synthetic study. While in the real case 

study, the OL is defined as the model forward run (after model calibration) without 

assimilation of satellite data. In this time, the OL is a deterministic run since the 

perturbation of forcing data is not required. Figure 4-1 presents the flowchart of the 

synthetic study in this dissertation using the PRMS model. 

 

 

 



 

 
6

2 

 

 

Figure 4-1. The flowchart of the synthetic study using PRMS model. 
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4.1    PRMS Model Calibration   

Due to the CRB’s significant extent into British Columbia, the HRU delineation is 

completed in two ways. The HRUs for the U.S. portion are provided by the PRMS 

Geospatial Fabric (Viger, 2014). For the area of the CRB inside British Columbia, the 

Environmental Systems Research Institute (ESRI) ArcMap 10.3.1 is used along with a 

digital elevation model to produce stream segment lines as well as watershed 

delineations. Due to a lack of data to calibrate the Canadian portion of the CRB, the 

HRUs are rather large, relative to the U.S. portion. The two spatial shapefiles (U.S. and 

Canadian) are then stitched together to ensure that there are no overlapping HRU areas, 

and to ensure the continuity between stream segments along the U.S. and Canadian 

border. As a result, a total of 7,739 HRUs and 4,019 stream segments are delineated for 

the CRB (Figure 4-2). 
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Figure 4-2. The location of the Columbia River Basin, the delineated 7,739 HRUs., 

and the delineated 4,019 stream segments. 
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Calibration of the PRMS is performed on a daily timescale utilizing a 

combination of unregulated U.S. Geological Survey (USGS) streamflow data, as well as 

No Regulation No Irrigation (NRNI) streamflow data provided by Bonneville Power 

Administration (BPA) (https://www.bpa.gov/power/streamflow/). The BPA-NRNI data 

cover daily streamflow from the period July 1, 1928 to September 30, 2008, and is 

generated in a joint effort between the U.S. Army Corps of Engineers (USACE) and the 

Bureau of Reclamation (BOR). The NRNI datasets emulate daily discharge gauges, 

typically at manmade control structures, where estimated and measured inputs and 

outputs can be summed to produce daily streamflow data. 

In this study, 146 NRNI data sets are used as the primary control points for 

calibration along with over 300 selected USGS streamflow gauges. The NRNI data from 

January 1, 1979 to December 31, 2000 are used for calibration, and January 1, 2001 to 

September 30, 2008 for validation. Calibrations for USGS streamflow gauges vary in 

length due to lapsing streamflow gauge operation, however only data within the range of 

January 1, 1979 to December 31, 2010 are used for calibration/validation. Monthly 

averaged normal incident solar radiation atlas data 

(http://www.nrel.gov/gis/data_solar.html), and monthly averaged evaporation atlas 

(Farnsworth et al., 1982) are used for calibration of solar radiation (SR) and potential 

evapotranspiration (PET) parameters in the U.S. portion of the model. The SR and PET 

parameters for the Canadian portion of the CRB are extrapolated from the U.S. portion.  

A combination of two programs created by the USGS is used in calibration, 

LUCA and LUMEN (Hay and Umemoto, 2006). LUMEN assists in model structure 

https://www.bpa.gov/power/streamflow/default.aspx
http://www.nrel.gov/gis/data_solar.html
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during calibration so that the model can more easily be calibrated using a top-down 

approach. LUCA uses the Shuffled Complex Evolution (SCE) global search algorithm to 

calibrate the 31 model parameters (Duan et al., 1994). Figure 4-3 presents the Kling-

Gupta efficiency (KGE) (Gupta et al., 2009) values for the 146 NRNI control points from 

January 1, 1984 to September 30, 2008. The majority of the gauges show the KGE values 

greater than 0.7, which indicates the good performance of the calibrated model.  
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Figure 4-3. The location of the Columbia River Basin and the Kling-Gupta efficiency 

(KGE) values for the 146 No Regulation No Irrigation (NRNI) streamflow gauges. 
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4.2    Data Assimilation Implementation  

The DA is performed by assimilation of the synthetic satellite surface soil 

moisture for the period of October 1, 2014 to September 30, 2015. This dissertation 

focuses on hindcasting the drought events in 2015 since the CRB received historically 

low snowpack in that year and drought emergences had been declared in Oregon and 

Washington states in spring 2015. Considering the satellite data availability, the CCI soil 

moisture products are used for DA in 2014, and AMSR2 retrievals are used for 2015. 

Contrary to the small ensemble size (12~20) used in the majority of previous satellite soil 

moisture DA studies  (De Lannoy et al., 2012; Kumar et al., 2009; Pan and Wood, 2010; 

Reichle et al., 2010), a large ensemble size of 200 is used in this dissertation to fully 

quantify the soil moisture posteriors. For the purpose of better visualization, all PRMS 

simulation results are downscaled/upscaled into NLDAS 1/8th degree grid cells. Results 

are presented only for the U.S. portion of CRB in this study. The PMCMC modular is 

written in Python script and all the simulations are run on the Linux Hydra Cluster (13 

nodes, 208 processors) located at the Office of Information Technology (OIT), Portland 

State University (PSU). 

In the DA implementation, the precipitation is perturbed with a lognormal 

distribution with a coefficient of variation of 0.25, and the minimum and maximum 

temperature are assumed to follow normal distribution with a coefficient of variation of 

0.25. These values are suggested to account for errors in meteorological measurements 

due to spatial heterogeneity and sensor errors (Yan and Moradkhani, 2016a; Yan et al., 

2015). The white noise (standard deviation) for the CCI and AMSR2 soil moisture are 
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0.04 and 0.08 m3/m3, respectively (Kumar et al., 2014b). Prior to DA, the CCI and 

AMSR2 satellite error standard deviations are scaled by the ratio of the soil moisture time 

series standard deviation of the PRMS model to that of the CCI and AMSR2 real data 

(separately for each HRU), as suggested by Reichle et al. (2007) and Q. Liu et al. (2011). 

After scaling, the synthetic satellite soil moisture observations are generated by 

perturbing the synthetic truths with a normal distribution with the scaled standard 

deviation.  

In order to assess the DA performance on soil moisture prediction, the normalized 

information contribution (NIC) metric (Kumar et al., 2014a) is used in this dissertation. 

The NIC for root-mean-square-error (RMSE) is defined as follows: 

 
𝑁𝐼𝐶 =

𝑅𝑀𝑆𝐸𝑂𝐿 − 𝑅𝑀𝑆𝐸𝐷𝐴

𝑅𝑀𝑆𝐸𝑂𝐿
 (15) 

where 𝑅𝑀𝑆𝐸𝑂𝐿 indicates the RMSE values between OL and synthetic truth, 𝑅𝑀𝑆𝐸𝐷𝐴 

indicates the RMSE values between DA and synthetic truth. If NIC > 0, the DA improves 

the OL skill; if NIC = 0, the DA does not add any skill; if NIC < 0, the DA degrades the 

OL skill; and if NIC = 1, the DA achieves the maximum skill. 
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4.3    Drought Monitoring Results  

Figure 4-4 presents the NIC values in the surface and root-zone soil moisture and 

their spatial distributions across the CRB. The majority of the grid cells show positive 

NIC values indicating the added-value of the DA. Generally, the improvements in the 

surface soil moisture field are consistent with the improvements in the root-zone soil 

moisture field. For surface soil moisture, the daily domain-averaged RMSE (m3/m3) for 

the OL is 0.021, and it decreases to 0.011with DA. Similarly, the daily domain-averaged 

root-zone soil moisture RMSE value decreases from 0.019 in the OL to 0.012 after DA. 

The improvements in surface field are higher than root-zone field, which is consistent 

with the previous soil moisture synthetic studies (Kumar et al., 2014a, 2009). 
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Figure 4-4. The normalized information contribution (NIC) value. The positive value 

indicates that the DA improves soil moisture prediction against OL; negative value 

indicates the degradation over the OL. 
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In Figure 4-4, it is also noted that several grid cells show negative NIC values. 

This may be caused by the inappropriate quantifications of the uncertainty in synthetic 

observations and model forecasts (Leisenring and Moradkhani, 2012, 2011). In the 

implementation of the DA, the identifications of model and observations errors are very 

unintuitive, and the experience estimates of forcing error may lead to over/under-

confident soil moisture predictions (Y. Liu et al., 2012; Thiboult and Anctil, 2015). 

Properly quantifying the uncertainty in observations and forecast models is still the open 

question in the hydrologic DA community, and it is one of the major obstacles in 

operational hydrologic DA forecasting (Y. Liu et al., 2012). Especially for large-scale 

DA applications, it is not feasible to conclude on a single ideal manner to identify an 

optimal error implementation, and some degradation cells are always unavoidable 

(Kumar et al., 2014a). 

In this study, drought is characterized with the soil moisture percentile and 

drought intensity is classified based on the National Drought Mitigation Center. Five 

categories are defined: D0 (abnormally dry, percentile ≤ 30%), D1 (moderate drought, 

percentile ≤ 20%), D2 (severe drought, percentile ≤ 10%), D3 (extreme drought, 

percentile ≤ 5%), and D4 (exceptional drought, percentile ≤ 2%). The root-zone soil 

moisture generated from the OL and DA seasonal integrations are compared against the 

corresponding synthetic truth percentiles. It is noted that the percentiles from the OL and 

DA in these comparisons are generated using the ensemble mean estimates. Figures 4-5 

and 4-6 present the spatial distribution of drought intensities, and the drought extent bias 

(%) for five different drought (D0-D4) categories. The four seasons in the PNW (fall: 
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OND; winter: JFM; spring: AMJ; summer: JAS) are considered for the period of October 

1, 2014 to September 30, 2015. The severe drought events in spring and summer of 2015 

across the PNW can be seen in the synthetic truth. In all comparisons, the DA estimates 

show systematic improvements over the OL estimates. For fall 2014, the OL 

underestimates the intensity of drought across Washington and Idaho states whereas DA 

improves these representations. The drought extent bias (%) for D0-D4 between the OL 

and synthetic truth is 4.33%, and it decreases to 1.24% with DA. For winter and spring 

2015, the OL underestimates the intensity of drought across PNW, and DA helps to 

reduce these large biases. Similarly, drought extent biases (%) decreases from 3.46% and 

3.13% in the OL to 1.20% and 0.42% in the DA, respectively. Although the majority of 

grid cells in Washington and Oregon states show relatively high root-zone soil moisture 

values in summer 2015, the DA still helps reduce these biases. The drought extent bias 

(%) decreases from 20.13% to 13.71%. These results are consistent with the trends in 

Figure 4-4, which show the improvements obtained by data assimilation. 
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Figure 4-5. Comparison of the drought monitoring skill between the OL and DA for fall 

2014 and winter/spring/summer 2015. 
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Figure 4-6. The absolute bias of drought extent (%) against the synthetic truth in the 

U.S. portion of the CRB. 
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4.4    Drought Forecasting Results  

Prior to investigating the drought forecasting results, it is necessary to compare 

the initial conditions generated by the OL and DA. This comparison can be seen in Figure 

4-7. In this figure, the initial conditions for seasonal drought forecasting beginning on 

January 1 (winter forecasting), April 1 (spring forecasting), July 1 (summer forecasting), 

and October 1, 2015 (fall forecasting) are presented. Each sub-plot contains the basin-

averaged daily root-zone soil moisture for the synthetic truth, shown as a single value; the 

OL and the DA, shown as a distribution of values, which represent the probability 

distribution of initial root-zone soil moisture values. From Figure 4-7, it is observed that 

the OL and DA display very different behavior for each season. For all four seasons, the 

DA root-zone soil moisture reduce the uncertainty of OL estimations, and the mean root-

zone soil moisture is closer to the synthetic truth for the DA.  
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Figure 4-7. Comparison of the basin-averaged daily root-zone soil moisture (m3/m3) by the open-

loop (OL) and data assimilation (DA) for fall 2014 and winter/spring/summer 2015 across the CRB. 

The error bars show the 95% prediction intervals. 
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Leaving out the first five years as model spin-up period, the copula drought 

forecasting model is developed based on the true simulations from January 1, 1984 to 

December 31, 2014. The probabilistic forecast of drought status in the following season 

given the drought condition in the current season is examined using root-zone soil 

moisture for each gird cell. The dependencies between aggregated root-zone soil moisture 

are modeled by a Gaussian copula while their marginal distributions are modeled with 

lognormal distributions as suggested by Madadgar and Moradkhani (2014b). It is noted 

that the OL and DA initial conditions are sampled as the posterior mean values. 

Figure 4-8 presents the spatial distributions of seasonal drought forecasting 

probabilities of OL and DA for winter/spring/summer/fall 2015. The probabilistic 

drought conditions in each season are forecasted using the root-zone soil moisture in the 

previous season. The absolute drought extent bias (%) between the synthetic truth and 

MLE forecasted droughts are shown in Figure 4-9. Generally, compared with the 

synthetic truth, both OL and DA seasonal forecasting products show high probabilities 

(>30%) for the major drought locations in the following seasons. These results indicate 

the efficiency of the copula model in seasonal drought forecasting. Based on the drought 

extent bias for the four seasons, the DA estimates show systematic improvements over 

the OL estimates. For instances, the drought extent bias between the MLE-OL and 

synthetic truth is 29.87% for winter 2015 forecasting, and it decreases to 20.71% with 

MLE-DA. Similarly, drought extent bias decreases from 4.73% with MLE-OL to 0.95% 

with MLE-DA for 2015 summer. 
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Figure 4-8. Seasonal probabilistic drought forecasting for both OL and DA for 

different seasons in 2015 given the drought status in each of the previous seasons. 



80 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9. The absolute drought extent bias between the OL/DA and synthetic truth 

for the seasonal forecasting for winter/spring/summer/fall 2015. 
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Chapter 5    Case Study 1: Real Case Study  

When assimilating the real satellite soil moisture data, the systematic biases 

between the satellite-based and model-based soil moisture cannot be avoided (Reichle 

and Koster, 2004). Proper treatment of these systematic biases is important, as the DA 

algorithm is designed to work with errors that are strictly random (Dee and Da Silva, 

1998; Doucet and Johansen, 2011; Evensen, 1994). The most common approach, the 

CDF-matching (Reichle and Koster, 2004), is implemented in this dissertation to rescale 

the satellite observations to the model’s climatology. The CDF-matching approach can 

correct all the moments of the distribution regardless of its shape. Leaving out the first 

five years as the model spin-up period, the CCI soil moisture products are rescaled from 

1984-2014. The AMSR2 soil moisture products are rescaled from 2012-2015. For real 

data study, the perturbation errors are the same as the synthetic study except for the 

model error. The model error is normally distributed with a coefficient of variation of 

0.15 (Yan et al., 2015). 

Since no “true” drought data exist for real case study, the state drought 

declarations are used as the references to assess the drought forecasting skill (Shukla et 

al., 2011). Two case studies are presented here to indicate the added-value of DA for 

improving drought forecasting skill. (1) In spring 2013, drought declarations were issued 

for nine counties in the southern Idaho. Three months later, a total of 19 counties in Idaho 

issued drought emergence. (2) In winter 2015, the PNW received historically low 

snowpack conditions. In June 2015, the Washington State Governor Jay Inslee declared 

the statewide drought and Oregon State Governor Kate Brown declared drought 



82 

 

emergencies for 19 out of 36 Oregon counties (about 80% of the state’s landmass). As a 

result, the DA is performed by assimilating the real satellite surface soil moisture over a 

six-month period until the forecast initialization date (July 1, 2013 and April 1, 2015). 
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5.1    Drought Monitoring Results 

Figures 5-1 and 5-2 present the drought conditions in spring 2013 and winter 

2015 and the detected drought areas with OL and DA. For spring 2013, the OL misses the 

drought events in parts of southeast Idaho, however, the DA helps to correct these biases. 

The detected drought areas of CRB for OL and DA are 73.17% and 81.43%, respectively. 

For winter 2015, the OL underestimates the drought events in parts of Oregon and Idaho 

whereas DA improves these representations. The detected drought areas increase from 

36.37% in the OL to 58.85% after the DA, respectively. The DA provides a more 

accurate estimate of drought areas, and is more consistent with the state drought 

conditions. In summary, compared with the OL, the DA improves the drought monitoring 

skill for both 2013 and 2015. These results demonstrate the added-value of DA to 

facilitate the state drought response actions. 
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Figure 5-1. Spatial assessment of drought for 2013 and 2015 before and after DA. 



85 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2. Drought extent for spring 2013 and winter 2015 drought events before 

and after data assimilation. 
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5.2    Drought Forecasting Results 

 With the copula-based seasonal drought forecasting system, the drought 

conditions of the PNW in summer 2013 and spring 2015 can be predicted based on the 

drought conditions in spring 2013 and winter 2015. The DA can further improve the 

drought forecasting skill as demonstrated in the synthetic study. Similarly to the synthetic 

study, and prior to investigating the seasonal drought forecasting results, it is necessary to 

compare the initial conditions of OL and DA. In Figure 5-3, the initial conditions for 

seasonal drought forecasting beginning on July 1, 2013 (summer forecasting) and April 1, 

2015 (spring forecasting) are presented. Each sub-plot contains the basin-averaged daily 

root-zone soil moisture for the OL, shown as a single value; and the DA, shown as a 

distribution of values, which represent the probability distribution of initial root-zone soil 

moisture values. For both seasons, the DA root-zone soil moisture shows lower values, 

which is more consistent with the real drought situations.  
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Figure 5-3. Comparison of the basin-averaged daily root-zone soil moisture 

(m3/m3) by the open-loop (OL) and data assimilation (DA) for spring 2013 and 

winter 2015 across the CRB. The error bars show the 95% prediction intervals. 
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Figure 5-4 presents the spatial distributions of seasonal drought forecasting 

probabilities and MLE forecasted droughts for summer 2013 and spring 2015, 

respectively. The MLE forecasted drought extent (%) over the U.S. portion of the CRB 

between the OL and DA is shown in Figure 5-5. Given the initial conditions in spring 

2013, the basin-averaged forecasted drought probabilities for summer 2013 are 51.80% 

and 54.64% for OL and DA, respectively. The forecasting drought probabilities for 

spring 2015 are 32.86% and 49.58% for OL and DA, respectively. For both cases, the DA 

suggests a higher probability of drought in summer 2013 and spring 2015, which is more 

consistent with the state declaration. The MLE forecasted drought extents increase from 

64.67% and 25.85% in the OL to 70.57% and 52.83% in the DA for summer 2013 and 

spring 2015, respectively. Especially for the spring 2015, the OL forecasts underestimate 

the severe drought conditions for Washington and Oregon. In terms of both forecasted 

probabilities and MLE forecasted drought extents, the DA is much more consistent with 

the state declaration. In summary, compared with the OL, the DA improves the drought 

forecasting skill for both summer 2013 and spring 2015. These results demonstrate the 

added-value of DA to facilitate the state drought preparation and declaration at least three 

months before the official state drought declaration.  
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Figure 5-4. The seasonal probabilistic drought forecasts for summer 2013 and spring 

2015 given the drought status in spring 2013 and winter 2015, respectively. The top-

panel shows the forecasted drought areas based on MLE and the bottom-panel 

indicates the forecasted drought probabilities. 
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Figure 5-5. The forecasted drought extent between the OL and DA based on MLE 

across the CRB. 
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Chapter 6    Case Study 2: Synthetic Study  

To objectively assess the potential benefit of the assimilation of satellite surface 

soil moisture, a synthetic study is first conducted through a procedure called observing 

system simulation experiment (OSSE) or synthetic study (Moradkhani, 2008). The 

synthetic study includes the following four steps: 1) a “truth” run of hydrologic model 

with the pre-calibrated model parameters; 2) simulated satellite surface soil moisture 

observations, which are generated from the truth run by incorporating the observation 

errors; 3) an open-loop (OL) run with the perturbed forcing data without DA; and 4) the 

DA step that assimilates the simulated surface soil moisture observations from step 2 to 

the model. Then the OL and DA results are compared against the truth simulation to 

evaluate the impact of satellite surface soil moisture assimilation. Figure 6-1 presents the 

flowchart of the synthetic study in this dissertation using VIC model. 
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Figure 6-1. The flowchart of the synthetic study using VIC model. 
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6.1    Retrospective Simulation  

In this dissertation, the VIC model is performed to simulate the soil moisture and 

reconstruct the 2012 drought conditions over the CONUS domain, at a 1/8° spatial 

resolution. The model parameter files, including the elevations, soil properties, and 

vegetation cover, are acquired from the VIC retrospective land surface dataset 

(http://www.hydro.washington.edu/SurfaceWaterGroup/Data/VIC_retrospective/index.ht

ml) (Maurer et al., 2002). For instance, Figure 6-2 presents the spatial distribution of 

mean cell elevation across CONUS.  

For synthetic truth simulation, the VIC model is run using the NLDAS-2 forcing 

data from January 1, 1979 to December 31, 2015 to produce long-term girded surface and 

root-zone soil moisture. In this dissertation, the VIC model is run in water balance mode, 

which means that the surface temperature is set equal to the surface air temperature rather 

than iteratively solving the surface energy budget. The OL simulation is run with the 

perturbed NLDAS-2 forcing data for the period of January 1, 2012 to December 31, 

2012. The ensemble size and perturbation errors in the OL simulation are the same as the 

DA, which is discussed in the following section.  

 

 

 

 

 

http://www.hydro.washington.edu/SurfaceWaterGroup/Data/VIC_retrospective/index.html
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Figure 6-2. The mean elevation of each grid cell cross CONUS. 
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6.2    Data Assimilation Implementation  

The DA is performed by assimilating the synthetic satellite surface soil moisture 

for the period of January 1, 2012 to December 31, 2012. Contrary to the small ensemble 

size (12~20) used in the majority of previous satellite soil moisture DA studies (De 

Lannoy et al., 2012; Kumar et al., 2009; Pan and Wood, 2010; Reichle et al., 2010), a 

large ensemble size of 100 is used in this dissertation, in order to fully quantify the soil 

moisture posteriors. The PMCMC modular is written in Python script, and all the 

simulations are run on the Linux Hydra Cluster (13 nodes, 208 processors) located at the 

Office of Information Technology (OIT), Portland State University (PSU). 

In the DA implementation, zero-mean, normally distributed with a coefficient of 

variation of 0.35 additive perturbations are applied to the minimum and maximum 

temperature. The precipitation and wind speed are perturbed with a lognormal 

distribution with a coefficient of variation of 0.35. These values are suggested by 

DeChant and Moradkhani (2014b) to account for errors in the forcing data due to the 

sensor errors and spatial heterogeneity. The white noise (standard deviation) for the CCI 

satellite soil moisture is set to 0.04 m3/m3 (Kumar et al., 2014b). Prior to DA, the CCI 

satellite error standard deviations are scaled by the ratio of the soil moisture time series 

standard deviation of the VIC model to that of the CCI real data (separately for each grid 

cell), as suggested by Reichle et al. (2007) and Q. Liu et al. (2011). After scaling, the 

synthetic CCI soil moisture is generated by incorporating the scaled observation errors.   
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6.3    Drought Monitoring Results  

Figure 6-3 presents the NIC values in the surface and root-zone soil moisture and 

their spatial distributions across the CONUS. The majority of the grid cells show the 

positive NIC values indicating the added-value of the DA. Generally, the improvements 

in the surface soil moisture field are consistent with the improvements in the root-zone 

soil moisture field, with more prominent improvements in the surface soil moisture field. 

The improvements in surface field are higher than root-zone field, which is mainly 

caused by the weak and highly non-linear cross covariance between the two layers. This 

finding is also consistent with the previous synthetic soil moisture DA studies (Kumar et 

al., 2014a, 2009). For surface soil moisture, the daily domain-averaged RMSE (m3/m3) 

for the OL is 0.0042, and it decreases to 0.0027 with DA. Similarly, the daily domain-

averaged root-zone soil moisture RMSE (m3/m3) value decreases from 0.0034 in the OL 

to 0.0024 after DA.  

In Figure 6-3, it is also noted that several grid cells show negative NIC values. 

This may be caused by the inappropriate quantifications of the uncertainty in synthetic 

observations and model forecasts (Leisenring and Moradkhani, 2012, 2011). In the 

implementation of the DA, the identifications of model and observations errors are very 

unintuitive and the experience estimates of forcing error may lead to over/under-

confident soil moisture predictions (Y. Liu et al., 2012; Thiboult and Anctil, 2015). 

Properly quantifying the uncertainty in observations and forecast models is still the open 

question in hydrologic DA community, and it is one of the major obstacles in operational 

hydrologic DA forecasting (Y. Liu et al., 2012). Especially for large-scale DA 
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applications, it is not feasible to conclude on a single ideal manner to identify an optimal 

error implementation, and some degradation cells are always unavoidable (Kumar et al., 

2014a).  

 

 

 

 

 

 

 

 

 

 

 



98 

 

 

Figure 6-3. The normalized information contribution (NIC) value between the OL and 

DA (Eq. 15). The positive value indicates that the DA improves soil moisture 

prediction against OL; negative value indicates the degradation over the OL. Top: 

surface soil moisture filed. Bottom: root-zone soil moisture filed. 
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In this dissertation, drought is characterized with the soil moisture percentile and 

the drought intensity is classified based on the five categories from NDMC: D0, D1, D2, 

D3, and D4. Leaving the first year as the model spin-up period, the soil moisture 

climatology is the truth soil moisture simulations from January 1, 1980 to December 31, 

2015. Then, the soil moisture percentiles generated from the OL and DA monthly 

integrations are compared against the corresponding synthetic truth. For instance, to 

estimate the monthly soil moisture percentile in October 2010, one must first take all soil 

moisture October values over 1980-2015 to construct the climatological distribution for 

each grid cell. Then, for any specific grid cell soil moisture value in October 2010, the 

corresponding soil moisture percentile can be estimated from the climatological 

distribution.   

Figures 6-4 and 6-5 present the spatial distribution of drought intensities and the 

drought extent bias (%) for five drought categories (D0-D4) over CONUS. The severe 

drought events from May-August 2012 across the Central U.S. can be clearly seen in the 

synthetic truth. In all comparisons, the DA estimates show systematic improvement over 

the OL estimates. For the May 2012 case, the OL underestimates the intensity of drought 

across the Nevada, Utah, Colorado, and New Mexico states whereas DA improves these 

representations. The drought extent bias (%) for D0-D4 between the OL and synthetic 

truth is 5.11%, and it decreases to 1.28% with DA. For the June and July 2012 cases, the 

OL underestimates the intensity of drought across the Central U.S. (i.e., the Kansas, 

Nebraska, and Colorado states), and DA helps to reduce these large biases. Similarly, 

drought extent biases (%) decrease from 5.25% and 4.69% in the OL to 1.02% and 0.53% 
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in the DA, respectively. Although several grid cells in the Central U.S. show relatively 

high soil moisture values in August 2012, the DA still helps reduce these biases. The 

drought extent bias (%) decreases from 3.02% to 0.34%. Overall, these results are 

consistent with the trends in Figure 6-3, which show the improvements obtained by data 

assimilation. 
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Figure 6-4. Comparison of the drought monitoring skill between OL and DA for May-August 2012. 
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Figure 6-5. The absolute bias of drought extent (%) against the synthetic truth over 

the CONUS. 
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6.4    Drought Forecasting Results  

Prior to investigating the drought forecasting results, it is necessary to compare 

the initial conditions generated by the OL and DA. This comparison can be seen in Figure 

6-6. In this figure, the average initial conditions (May-August) for monthly drought 

forecasting beginning on May 1, June 1, July 1, and August 1, 2012 are presented. Each 

sub-plot represents the initial conditions in one grid cell of each basin, including the cell-

averaged daily soil moisture for the synthetic truth (shown as a single value); the OL and 

the DA (shown as a distribution of values) represent the probability distribution of initial 

soil moisture values. From Figure 6-6, it is observed that the OL and DA display very 

different behavior for each basin. In general, for all basins, the DA soil moisture reduces 

the uncertainty of OL estimations, and the mean soil moisture is closer to the synthetic 

truth for the DA.  

 

 

 

 

 

 

 

 

 

 



104 

 

 

 

 

 

 

 

Figure 6-6. Comparison of the cell-averaged daily root-zone soil 

moisture (m3/m3) by the OL and DA for May-August 2012. The error 

bars show the 95% prediction intervals.  

 



105 

 

Leaving out the first year as model spin-up period, the copula drought forecasting 

model is developed based on the truth simulations from January 1, 1980 to December 31, 

2015. Given the drought condition in the current month/season, the probabilistic forecast 

of drought status in the following month/season is examined using soil moisture for each 

grid cell. The dependencies between monthly/seasonal aggregated soil moisture are 

modeled by a Gaussian copula while their marginal distributions are modeled with 

lognormal distributions as suggested by Madadgar and Moradkhani (2014a). For each 

forecast initialization date, the initial condition uncertainty through DA is characterized 

by estimating the PDF through the ensemble members, while the initial condition of OL 

is treated as deterministic values (posterior mean).  

In this dissertation, the PDF of initial condition is assumed to be Gaussian, and is 

estimated by using the first two moments, mean and variance. It is noted that the 

Gaussian distribution is used here for its efficiency to represent the ensemble distribution 

and its simplicity for sampling algorithm (Hut et al., 2015); other non-parametric PDF 

estimation methods, such as kernel density, can also be applied. After the estimation of 

the PDF, the initial condition of the DA is sampled and the monthly to seasonal drought 

forecasts are generated. Then, the copula forecasted monthly/seasonal drought conditions 

are compared against the corresponding synthetic truths. 

Figure 6-7 presents the spatial distributions of monthly drought forecasting 

probabilities of OL and DA for May-August 2012. The probabilistic drought conditions 

in each month are forecasted using the soil moisture in the previous month. Generally, 

compared with the synthetic truth, both OL and DA monthly forecasting products show 
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high probabilities (>30%) for the Central U.S. in the following months. These results 

indicate the efficiency of the multivariate copula model in forecasting the summer 

drought of 2012. In the July 2012 case, the OL-based drought forecasts underestimate the 

severity of drought in the Central U.S. such as the Kansas, Oklahoma, Arkansas, 

Missouri, and Nebraska states, and DA helps to correct these biases. Similarly, in the 

August 2012 where the drought event achieves the peak intensity, the OL underestimates 

the intensity of drought over areas of the Central U.S. whereas DA improves these 

representations. The absolute drought extent bias (%) between the synthetic truth and 

MLE forecasted droughts are shown in the top panel of Figure 6-8. Based on the drought 

extent bias, the DA estimates show systematic improvement over the OL estimates over 

the four months. For instances, the drought extent bias between the OL and the synthetic 

truth is 15.89% for May 2012, and it decreases to 13.05% with DA. Similarly, drought 

extent bias decreases from 16.10% with OL to 4.21% with DA for August 2012. 
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Figure 6-7. Monthly probabilistic drought forecasts between OL and DA for May-August 2012. 
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Figure 6-8. The forecasted drought extent bias between OL and DA based on MLE 

across the CONUS. Top: monthly drought forecasting bias for May/June/July/August 

2012. Bottom: monthly to seasonal drought forecasting bias for May (short-

term)/May-June (middle-term) /May-July (long-term) 2012 (according to the 

framework shown in Figure 2-7). 
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Besides the monthly drought forecasts, Figure 6-9 also shows the spatial 

distributions of bimonthly to seasonal drought forecasting probabilities of OL and DA for 

May-June/May-July, 2012. Similar to the monthly drought forecasts, both of the 

bimonthly and seasonal drought forecasts issued on May 1 based on DA show higher 

drought probabilities in the Central U.S. than the forecasts based on OL. These results 

can demonstrate the added value of DA to forecast the drought event across the Central 

U.S. in summer, providing early warning and drought preparedness time for decision 

makers.  

The absolute drought extent bias (%) between the synthetic truth and MLE 

forecasted droughts are shown in the bottom panel of Figure 6-8. Similar to monthly 

drought forecasts in Figure 6-7, the DA forecasts show systematic improvements over the 

OL forecasts. For OL, the drought extent bias for the short- (monthly), middle- 

(bimonthly), and long-term (seasonal) forecasts are 15.89%, 32.97%, and 44.10%, 

respectively. While for the DA-based drought forecasts the drought extent bias decreases 

to 13.05%, 24.59%, and 38.55%, respectively. It is also noted that the drought extent bias 

between OL and DA decreases from short- to long-term, indicating that the drought 

forecast skills are dominated by initial conditions in short lead times (monthly), and 

become less sensitive to initial conditions in long lead times (seasonal). This finding is 

also consistent with other previous studies (DeChant and Moradkhani, 2015b; Koster et 

al., 2010; Yuan et al., 2016). 
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Figure 6-9. The monthly (short-term), bimonthly (middle-term), and seasonal (long-term) drought forecasts between 

OL and DA for May/May-June/May-July 2012 (according to the framework shown in Figure 2-7). 
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Chapter 7    Case Study 2: Real Case Study  

When assimilating the real satellite soil moisture data, the systematic biases 

between the satellite-based and model-based soil moisture cannot be avoided (Reichle 

and Koster, 2004). Proper treatment of these systematic biases is important, as the DA 

algorithm is designed to work with errors that are strictly random (Dee and Da Silva, 

1998; Doucet and Johansen, 2011; Evensen, 1994). The most common approach, the 

CDF-matching (Reichle and Koster, 2004), is implemented in this dissertation to rescale 

the satellite observations to the model’s climatology. The CDF-matching approach can 

correct all the moments of the distribution regardless of its shape. Leaving out the first 

year as the model spin-up period, the CCI soil moisture products are rescaled from 1980-

2014. For real data study, the perturbation errors are the same as the synthetic study 

except for the model error. The model error is normally distributed with a coefficient of 

variation of 0.1 (Yan and Moradkhani, 2016a; Yan et al., 2015).  

The DA is performed by assimilating the rescaled real satellite surface soil 

moisture from February 1 to August 31, 2012. This DA period can be divided into two 

parts: 1) The DA from February 1 to April 31 is used to characterize the soil moisture 

initial condition uncertainty until the monthly/bimonthly/seasonal forecast initialization 

date on May 1, 2012. Since the NOAA CPC’s SDO issued on 17 May 2012 failed to 

forecast this event, it is important to examine whether the proposed monthly/seasonal 

drought forecasting products can successfully forecast this drought event. 2) The DA 

from May 1 to August 31 is used to improve the soil moisture prediction, which translates 

into a drought monitoring skill. Since the USDM did not capture this event until late 
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June, it is important to investigate whether the proposed monthly drought monitoring 

products can better capture this drought event, especially in May. 

Since no “true” drought data exist for the real case study, the state-of-the-art 

USDM and drought economic loss are used as the references to assess the OL and DA 

drought monitoring and forecasting skill. According to the USDM, during May-August 

2012, over three-quarters of CONUS experienced at least D0 drought conditions and the 

Central U.S. experienced D2-D4 drought conditions (Figures 7-1, 7-2, 7-3, 7-4). During 

the same period of time, the summer drought intensity can be classified as D4 since it 

resulted in major curtailment of crop yields, and caused about $12 billion economic loss 

(Hoerling et al., 2014). 
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Figure 7-1. The USDM weekly drought monitoring for May 2012. The drought in Central U.S. is missed. 
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Figure 7-2. The USDM weekly drought monitoring for June 2012. The severe drought in Central U.S. is 

captured since June 26. 
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Figure 7-3. The USDM weekly drought monitoring for July 2012. 
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Figure 7-4. The USDM weekly drought monitoring for August 2012. 



117 

 

7.1    Drought Monitoring Results 

Figure 7-5 presents the OL and DA monthly drought monitoring results across 

CONUS in May/June/July/August 2012. Note that the drought monitoring from the DA 

in these comparisons is generated using the posterior means. For the purpose of 

comparing drought intensity, the USDM weekly monitoring results are also presented in 

Figure 7-5. It is noted that the USDM results are not the “truth”, since they are largely 

based on subjective information and did not capture the 2012 Central U.S. drought event 

until June 26, 2012 (Mo and Lettenmaier, 2015; Xiao et al., 2016).  

Figure 7-5 illustrates the added impact of assimilation of remotely sensed soil 

moisture for improving drought monitoring skill. For the May 2012 case (the onset of the 

2012 summer drought), the USDM completely missed the drought onset in the Central 

U.S. (such as Arkansas, Missouri, Oklahoma, and Kansas). Although the OL shows some 

improvements over the USDM, the soil moisture DA provides a better estimate of 

drought severity, especially for D0 and D1 categories (over Nebraska and Tennessee). 

For the August 2012 case (the 2012 drought event reached peak intensity in August), the 

USDM successfully captures this severe drought events in the Central U.S. whereas the 

OL underestimates the drought intensity and DA provides similar results as the USDM. 

Similar results can also be found in June and July 2012 cases. Overall, the DA estimation 

predicts more intense drought over the Central U.S. and does capture very well the spatial 

pattern of the intense drought relative to the OL. 
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Figure 7-5. Comparison of the drought intensity over CONUS from OL, DA, and USDM. 
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Figure 7-6 summarizes the detected drought areas over CONUS based on OL, 

DA, and USDM. For the May 2012 case, the USDM missed the drought events in parts 

of the Central U.S., however, the DA helps to correct these biases. The detected drought 

areas over CONUS for OL and DA are 43.82% and 47.91%, respectively. For the August 

2012 case, the OL underestimates the drought intensity whereas DA improves these 

representations. The detected drought areas increase from 48.17% in the OL to 62.66% 

after the DA, respectively. Similarly, the DA adds the drought monitoring skills for the 

June and July 2012 cases, from 55.27% and 54.45% by OL to 62.49% and 65.73% by 

DA. As a result, the DA provides a more accurate estimate of drought areas, more 

consistent with the USDM map, and the significant economic loss of this drought event.  

In summary, compared with the OL, the DA systematically improves the drought 

monitoring skill for 2012 drought event from May to August. Compared with the USDM, 

the DA can better capture the drought onset in May and provide similar results in August. 

These results demonstrate the added-value of DA to facilitate the state drought 

preparation and effective response actions.  
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Figure 7-6. Comparison of the drought extent (%) over CONUS from OL, DA, and 

USDM. 
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7.2    Drought Forecasting Results 

Since the NOAA CPC’s SDO issued on 17 May 2012 failed to forecast the 2012 

summer drought event, it is necessary to examine whether the proposed monthly/seasonal 

drought forecasting products can successfully forecast this drought event. Similar to the 

synthetic study, prior to investigating the monthly/seasonal drought forecasting results, it 

is necessary to compare the initial conditions of OL and DA. It is noted that the OL 

simulation in real case study is the synthetic truth in the synthetic study. 

In Figure 7-7, the initial conditions (from February to April 2012) of the 13 basins 

for seasonal drought forecasting beginning on 1 May 2012 are presented. Each sub-plot 

contains the basin-averaged daily soil moisture for the OL, shown as a single value; and 

the DA, shown as a distribution of values, which represent the probability distribution of 

initial soil moisture values. Compared with the OL, the DA ensemble mean soil moisture 

mainly show lower values in basin 3 (GRB), basin 4 (COLOR), basin 6 (MO), basin 7 

(ARK), basin 11 (LOW), and basin 13 (EAST), leading to higher drought risk in the 

Central U.S. and the Southeast in May-August 2012, which is more consistent with the 

real drought situations (Figures 7-1, 7-2, 7-3, 7-4). 
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Figure 7-7. Comparison of the 13 basin-averaged daily root-zone soil moisture 

(m3/m3) by the open-loop (OL) and data assimilation (DA) for February to April 2012. 

The error bars show the 95% prediction intervals. 

 



123 

 

The same as the synthetic study, the multivariate copula model is developed based 

on the OL soil moisture simulation from 1 January 1980 to 31 December 2015. Given the 

drought condition in the current month/season, the probabilistic forecast of drought status 

in the following month/season is examined using soil moisture for each grid cell. The 

dependencies between monthly/seasonal aggregated soil moisture are modeled by a 

Gaussian copula while their marginal distributions are modeled with lognormal 

distributions. The method of sampling initial conditions from the estimated PDF is the 

same as in the synthetic study. Figures 7-8, 7-9, 7-10 present the spatial distributions of 

monthly (short-term), bimonthly (middle-term), and seasonal (long-term) drought 

forecasting probabilities, and the corresponding MLE forecasted drought types for 

May/May-June/May-July 2012, respectively. The MLE forecasted drought extent (%) 

over the CONUS between the OL and DA is shown in Figure 7-11. 
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Figure 7-8. The monthly probabilistic drought forecast between OL and DA for May 2012. Top: the drought 

forecasting types based on MLE. Bottom: the probabilities under drought. 
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Figure 7-9. The bimonthly probabilistic drought forecast between OL and DA for May-June 2012. Top: the 

drought forecasting types based on MLE. Bottom: the probabilities under drought. 
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Figure 7-10. The seasonal probabilistic drought forecast between OL and DA for May-July 2012. Top: the 

drought forecasting types based on MLE. Bottom: the probabilities under drought. 
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Figure 7-11. The forecasted drought extent between OL and DA based on MLE 

across CONUS for monthly (short-term), bimonthly (middle-term), and seasonal 

(long-term) forecast (according to the framework shown in Figure 2-7). 
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Based on Figure 7-8, for the May 2012 case, the DA suggests a high probability 

of drought across the Southwest (over Nevada, Utah, Arizona, and New Mexico) and the 

Central U.S. (over Colorado, Kansas, Iowa, Nebraska, and Arkansas). The OL forecasts 

underestimate the drought conditions over these regions whereas DA improves these 

representations. The Arkansas-Tennessee belt shows a probability of drought around 90% 

in May, indicating a higher risk of drought events. Therefore, the DA-based drought 

forecasts can improve the detection of the 2012 summer drought onset in May. In Figure 

7-11, the MLE forecasted drought extents increase from 32.16% in the OL to 57.36% in 

the DA for May 2012. Similar patterns of improvements can also be observed in the 

bimonthly and seasonal drought forecasts in Figures 7-9 and 7-10. For the May-June 

2012 case, the OL forecasted drought probability around the Arkansas-Tennessee belt is 

round 40%, and it increases to about 80% with DA. For the May-July 2012 case, the 

forecasted drought probability around the Arkansas-Tennessee belt increases from about 

40% in the OL to 70% in the DA.  

Based on these figures, it is also noted that several drought events in parts of the 

Central U.S. are also missed in the DA based MLE forecasted products, such as the 

Oklahoma and Kansas. This is mainly due to the model structure deficiency of the copula 

model, which means that the persistence of the soil moisture cannot predict the summer 

drought event in these regions. Although the drought events in Oklahoma and Kansas are 

underestimated among the monthly, bimonthly, and seasonal MLE forecasts, the DA still 

suggested higher drought probabilities (about 40%) in these regions than the OL forecasts 

(around 30%). From the Figure 7-11, the MLE bimonthly and seasonal forecasted 



129 

 

drought extents increase from 23.98% and 15.73% in the OL to 46.76% and 33.65% in 

the DA. It is also noted that both the OL and DA forecasted drought extents decrease 

from short- (monthly) to long-term (seasonal), indicating that the forecasting uncertainty 

increases from a short lead times (monthly) to a long lead times (seasonal).  

Lastly, the comparison of the proposed DA seasonal drought forecast and the 

NOAA CPC’s SDO is presented in Figure 7-12. From Figure 7-12, it is observed that 

both the SDO and the proposed drought forecast capture well the drought events in the 

Southwest (over south California, Nevada, Utah, Arizona, New Mexico, and parts of 

Texas) and the Southeast (over Florida, Georgia, North and South Carolina). However, 

there are three key differences between these two forecasts.  
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Figure 7-12. Comparison of the NOAA CPC’s SDO and the proposed seasonal 

drought forecast based on MLE. 
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1). The SDO only forecasts drought persistent areas and drought ongoing areas, 

and does not provide the probability of under drought and the maximum likelihood 

drought intensity. The proposed drought forecast system can generate both the 

probabilities for areas under drought and the possible severity of future drought events. 

These two drought products can provide much more flexibility and information for 

decision makers and water resource managers. For instance, while the SDO forecasted 

the drought event in Arizona in summer 2012, decision makers did not have any more 

information about this future drought event. How much water should be cut from the 

reservoir release is still a question. However, this question can be better answered from 

the proposed drought forecast. The probability of under drought in Arizona in summer 

2012 ranges from 40% to 80%, and the MLE forecasted drought event is classified as D1 

category in most parts of Arizona. If the drought emergence plan of a reservoir can be 

classified into five categories (level 1 to level 5), then the decision maker can select the 

level 2 drought emergence plan.  

2). The SDO completely misses the summer drought event in the Central U.S., 

while the proposed seasonal drought forecast partially captures this drought event. It is 

observed SDO forecasts normal/wet conditions in South Dakota, Nebraska, Kansas, 

Oklahoma, Iowa, Missouri, Arkansas, Tennessee, and Illinois, whereas DA improves 

these representations. Especially over the South Dakota, Nebraska, Iowa, Illinois, and 

Tennessee, the proposed system forecasts the D0 to D1 drought events in these regions. 

Although the seasonal forecast still does not capture the drought events in Kansas, 

Oklahoma, Missouri, and Arkansas, the predicted drought probabilities for these regions 
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are about 30%-40%, which still can give an early warning for decision makers to some 

extent. 

3). The SDO was issued on May 17 where the drought event had already occurred 

and was developing, while the seasonal MLE drought forecast was issued on May 1 

where the drought event had not occurred. Therefore, it is more difficult to forecast the 

summer drought event on May 1 than May 17, which demonstrates the efficiency of the 

proposed drought forecasting system from another perspective. In addition, only the 

seasonal MLE drought forecast is presented in Figure 7-12, however, there are other two 

drought forecasting products: monthly and bimonthly. Due to the persistence of soil 

moisture, the forecasting uncertainty is reduced from a seasonal product to a monthly 

product and the accuracy is in reverse (Figure 7-11). As discussed in the above 

paragraphs, the monthly drought forecasting products can detect the severe drought 

condition in most parts of the Central U.S. in May. Further, the three drought forecasting 

products can be used for three different purposes as mentioned in Section 2.6. The 

monthly forecasting products can be used for irrigation, reservoir operations, and water 

supply plans. The bimonthly and seasonal forecasting products offer the seasonal drought 

information in an earlier time manner (up to three-month preparation time), and can be 

used for drought risk assessment and drought preparation. 

In summary, in terms of both forecasted probabilities and MLE forecasted 

drought extents, the DA forecasts show the improved estimation of drought onset in the 

Central U.S. and are more consistent with the USDM map and the significant economic 

loss. Compared to OL forecasts, the DA monthly, bimonthly, and seasonal drought 
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forecasts show higher drought extents across the Central U.S. DA systematically 

improves the probability of detection for the onset of drought and the severity of the 

drought event. Compared to the CPC’s SDO, the proposed DA-based drought forecasting 

products can better capture the drought events in the Central U.S., and they also allow for 

greater flexibility in the decision making process. These results demonstrate the added-

value of DA to facilitate the drought detection, preparation, and effective response, at 

least one month before the severe damage occurs. 

Lastly, there exists one issue which should be paid attention. The “false alarm” or 

“false positive”, which indicates that the system over-forecasts the drought severity or 

forecasts a drought event while the drought event does not occur. Considering the huge 

negative impact of a “false negative” in the 2012 summer drought case, it is therefore that 

the primary objective of this dissertation is to investigate whether the proposed system 

can successfully forecast this drought event. However, since the study region is the 

CONUS, the “false positive” issue can also be examined at the same time. For instance, 

the 2012 summer drought did not cover the PNW Region. From Figure 7-10, it is noted 

that the Oregon, Washington, and Idaho States are forecasted to have very few drought 

regions in May-July 2012, and both OL and DA generate similar drought forecasts. From 

Figure 7-12, it is also noted that the NOAA SDO and the proposed system provide 

similar drought forecast in PNW and almost all the areas in PNW are forecasted to have 

non-droughts. These results further support the efficiency of the proposed system in 

drought forecasting. It is also noted that in this dissertation, the proposed system is only 
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examined using two drought case studies. Obviously, more studies are need to further 

verify the drought forecasting skills.  
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Chapter 8    Conclusions and Future Study    

In this dissertation, a land data assimilation based drought monitoring system and 

a hybrid dynamical-statistical drought forecasting system are proposed to improve the 

drought monitoring and forecasting skill. Besides the drought monitoring system, the 

hybrid drought forecasting system is a combination of dynamical and statistical 

framework. The dynamical hydrologic modeling is coupled with the copula-based 

statistical forecasting. Moreover, the ensemble data assimilation technique is used to 

improve state initialization in the copula-based probabilistic forecasting framework by 

allowing for uncertainty in the initial condition. These proposed drought monitoring and 

forecasting systems are implemented over the Columbia River Basin and Contiguous 

United States. The impact of assimilating remotely sensed surface soil moisture on 

improving soil moisture predictions and drought monitoring; quantifying the initial 

condition uncertainty; and their subsequent contributions toward an improved forecasting 

of agricultural droughts are examined. Results from both synthetic and real case studies 

suggest that the proposed drought monitoring and forecasting system significantly 

improve agricultural drought monitoring and the seasonal agricultural drought forecasting 

skills, and can facilitate the state drought preparation and declaration. Similar to what has 

been explained here, other satellite or in-situ data, e.g. precipitation and total water 

storage, can also be assimilated in the same way to improve the forecasting of 

meteorological and hydrological droughts. 

One limitation of this study is the multiscale issue, where the spatial resolution of 

the assimilated satellite observations (coarse resolution ~25 km) is different from the 
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model output resolution (fine resolution ~10 km). To further improve the DA 

performance and the drought forecasting skill, a machine learning technique can be 

incorporated in the system to downscale the satellite data from coarse resolution to fine 

resolution (Piles et al., 2011; Rodriguez-Fernandez et al., 2015). Another improvement 

that can be added to the proposed system is to use vine copula model in the drought 

forecasting model (Kurowicka, 2010). The advantage of vine copula is the capability to 

establish a high-dimensional multivariate probabilistic model. In this way, the drought 

statuses in the future can be inferred from the current drought statuses from multi-aspects, 

such as precipitation anomaly and soil moisture, leading to a higher drought forecasting 

skill.  
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