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ABSTRACT

An abstract of the thesis of Shaun Andrew Marcott for the Master of Science in

Geology presented August II, 2005.

Title: A Tale of Three Sisters: Reconstructing the Holocene glacial history and

paleoclimate record at Three Sisters Volcanoes, Oregon, United States.

At least four glacial stands occurred since 6.5 ka B.P. based on moraines

located on the eastern flanks of the Three Sisters Volcanoes and the northern flanks of

Broken Top Mountain in the Central Oregon Cascades. The youngest of these

advances was the Little Ice Age (LIA) glaciation, which reached its maximum

advance 150-200 yrs. B.P. and is defined by the large sharp crested and unvegetated

moraines adjacent to the modern glaciers. In isolated locations less than 100 m

downslope from these moraines, a second set of sparsely vegetated lateral moraines

marks the Late-Neoglacial stand of the glaciers between 2.1 ± 0.4 and 7.7 ka B.P, A

third set of Early-Neoglacial end moraines is 300-700 meters downslope of the

modern glacier termini, and postdates 7.7 ka B.P. From SST temperature data (Barron

et aI., 2003) and a speleothem record (Vacco, 2003), we infer that this advance

occurred between 4.5 and 6.5 ka B.P. Finally, the Fountonnor stand is marked by

moraines 500-900 meters downslope of the modern glacier termini, and we infer these

are latest Pleistocene or early Holocene.



Modem equilibrium line altitudes (ELAs) at the Three Sisters and Broken Top

are approximately 2500 - 2600 m. During the LIA, the ELAs were 40 - 180 m lower,

requiring cooler mean summer temperatures by 0.7 - 1.0°C and winter snowfall to

increase by 10 - 60 cm water equivalent. The average Early-Neoglacial and

Fountonnor ELAs were 130 - 300 m and 290 - 320 m lower than modem glaciers,

respectively, requiring air temperatures to be 0.7 - 1.6°C and 1.5 - 1.7°C cooler

during the summer and winter snowfall to be 40 - 100 em water equivalent and 90 -

100 em water equivalent greater.
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Chapter 1: Introduction

Small mountain glaciers respond sensitively to climate (Lowe and Walker,

1997; Owen et aI., 2003), thus determining the timing and extent of past glaciation can

lead to inferences of past climate. Recent research on glacial activity during the last

deglaciation has identified several late Pleistocene and early Holocene glacial

advances in Washington, Idaho, Montana, California, and northeastern Oregon (Clark,

1997; Clark and Gillespie, 1997; Heine, 1997; Licciardi et aI., 2004; Owen et aI.,

2003; Phillips et aI., 1996; Porter and Swanson, 1998; Thackray et aI., 2004) (Figure

1). These advances occured at 17 ka, 14 ka, and 10 ka before present (B.P.) and are

peculiar because of their timing relative to dated advances elsewhere. The glacial

advance at 17 ka B.P. was 4,000 years after the "accepted" Last Glacial Maximum

(LGM) at 21 ± 2 ka B.P. (Licciardi et aI., 2004) and was followed by two smaller

advances at 14 ka and 10 ka B.P. that apparently culminated before and just after the

well-documented Younger Dryas world-cooling event at 12.9 ka - 11.6 ka B.P. These

advances may be associated with reinvigorated precipitation activity, resulting from

increased advection from the Pacific Ocean as the ice sheet retreated north (Thackray

et aI., 2004) and/or with global cooling triggered by the disruption of the marine

thermohaline circulation in the ocean caused by a large discharge of fresh water into

the North Atlantic (Heinrich events) (Clark and Bartlein, 1995; Hostetler et aI., 2000;

Licciardi et aI., 2004).

I



Tbree Slstff's
VolcaDHS

M ..... I R_ .. (13.2 & 10.9-10.0 ka BoP.)
(Hefne, 1991)

Wallowa MOlUltains (21.1, 17.0, & 10.2 lui B.P ..)
(Licciardi .. a1., 2004)

Roc-ky Momltabn (16.5 Ita B.P.)
(LicdallD" aI., 2001)

Sawtooth MountaJns (16.9 & 14.0 ka B.P.)
(Thadaay tot aJ.., 2004)

Sierra Nevada
(22.6,15.6 & IU-I3.1 ka BoP.)
(Clark, 1997; Doru et. aI, 1987)

San Bft'J1lUIhtO Mountaills
(20-18,16-15, & 13-12 ka BoP.)

(Owen et aJ.., 2003)

Figure 1: Distribution of recent researcb on dated glacial maxima in the western United States.
The dotted oval represents a geographical hole in glacial database. Numbers at each specific
location are dates of glacial extents and are measured in thousands of years before present.

Despite extensive research in the western United States, particularly in the

North Cascades and the Sierra Nevada, the glacial record has been studied very little

in the Oregon Cascades. Defining the timing and extent of past glacier change in

Oregon will help assess if the late Pleistocene to Holocene glaciations were

synchronous or varied throughout the western United States. This information can

then be used to define the regional pattern of climate change of western North

America during the last -17,000 years.

The Three Sisters volcanoes, including Broken Top mountain, of Central

Oregon contain numerous well-preserved lateral and end moraines on their eastern

slopes and are considered to be Pleistocene and Holocene in age (Dethier, 1980a, b;

2



O'Connor et aI., 2001; Scott and Gardner, 1992; Scott et aI., 1990; Sherrod et aI., in

press). Access to the eastern side of the mountains and the sparse vegetation cover,

relative to the western flanks, makes the area an ideal field site for mapping the glacial

features. The work at Three Sisters will contribute to our understanding of the glacial

record in the western U.S., particularly at the PleistocenelHolocene boundary, and will

assist in our understanding of both regional and paleoclimate patterns and perhaps

global paleoclimate systems.

The goals of this thesis are three fold: to map in detail the glacial deposits at

Three Sisters, which will help determine the magnitude of past glacial extents, to date

the glacial deposits and place- their timing in the context of other advances in the

western United States, and to infer past climatic conditions required for the past

extents. I will attempt to show that four glacial advances and/or stands occurred at

Three Sisters and that some correlate with other advances in the Pacific Northwest

while others do not.

1.1 Timing of late Pleistocene and early Holocene glacial advances in the western

United States

For consistency, all age dates listed in this thesis are reported in calibrated

years before present, whenever possible. If radiocarbon dates from other journals or

reports were given in radiocarbon year C4C), they were calibrated to years before

present with the CALIB program (Stuiver and Reimer, 1993) using the 20 confidence

interval. These dates are listed with both the calibrated years before present (B.P.) and

3



the radiocarbon dates e4q {i.e. 21.5 ka RP. (18 l4C ka B.P.)}. Surface exposure

dates, such as lOBeand 36CI, are listed in the text as cosmogenic years before present

(i.e. 22.2 ka 36CI) but are assumed to be equivalent to calibrated years before present

(B.P.).

Previous work of glacial advances in the western U.S. shows that alpine

glaciers advanced during five or six different time intervals between the late

Pleistocene (25 ka B.P.) and early Holocene (8 ka B.P.) (Figure 2). The largest and

oldest advance considered in this analysis is the last glacial maximum (LGM) at

approximately 19 ± 1 ka B.P., based on lOse and 36CI radiometric dates, collected

from boulders of lateral and end moraines in California and Washington (Table 1)

(Owen et aI., 2003; Phillips et aI., 1996; Porter, 2004). Two dates differ from the 19 ±

1 ka RP. date, one from organic matter removed from rock varnishes of several

moraine boulders at Pine Creek in the eastern Sierra Nevada (22.6 ± 1.1 ka B.P.)

(19,050 ± 420 l4C yrs RP.) (Dorn et aI., 1987) and the other from surface exposure

dates from moraine boulders taken elsewhere in the Sierras (25 ± 1 ka 36Cl) (Phillips et

aI., 1996).

4
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A second alpine advance followed 3,500 years later during the break up of the

Laurentide Ice Sheet in the North Atlantic. This second advance, at -16.5 ± I ka B.P.,

has been linked to global cooling associated with the Heinrich I event (-17 ka B.P.) in

the North Atlantic that weakened thermohaline circulation in the world's oceans

(Clark and Bartlein, 1995; Licciardi et aI., 2004). Porter and Swanson (1998) and

Thackray et al. (2004) suggested that reinvigorated moisture transport from the Pacific

Ocean that was previously weakened by the Cordilleran and Laurentide ice sheets

could have also caused this advance. Evidence of the Heinrich I advance has come

from lake cores and cosmogenic dates from moraine boulders collected in

Washington, Oregon, Montana, and California (Table 1) (Dorn et aI., 1987; Licciardi

et aI., 2004; Licciardi et aI., 2001; Owen et aI., 2003; Phillips et aI., 1996; Porter,

2004; Thackray et aI., 2004).

The next three glacial advances occurred at the end of the Pleistocene or early

Holocene. Lake cores and cosmogenic dates from Canada, Washington, Idaho, and

California (Clark, 1997; Clark and Gillespie, 1997; Porter, 2004; Stuiver and Reimer,

1993; Thackray et aI., 2004) stand as lines of evidence of the pre-YD advances, while

a lake core in Washington (Heine, 1997) and cosmogenic dates from Oregon

(Licciardi et aI., 2004) infer a post- YD advance of the alpine glaciers (Table 1).

However, despite the majority of the advances occurring pre- or post- YD, other

advances in Canada, Washington, and California (Bilderback, 2004; Owen et aI.,

2003; Stuiver and Reimer, 1993) suggest a YD advance (Table 1), thus implying

synchroneity with glacial advances recorded in Europe (Berglund, 1979; Larsen et aI.,
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1984; Mangerud, 1987) and Greenland (Stuiver and Grootes, 2000). The final

advance during the early Holocene occurred near 8,200 years B.P. and was recorded in

the Coast Mountains of British Columbia (Menounos et aI., 2004). Whether this

advance is exclusive to this single locality in Canada or appears elsewhere in western

North America still remains to be tested.

1.2 Field Site

1.2.1 Field Area:

The Three Sisters mountains are composite lava cones located in the Southern

Cascades of central Oregon (44°08' N, 121°47' W) (Figure 3 - Figure 6). With a

maximum elevation of nearly 3150 m, six major glaciers (Collier, Diller, Hayden, Lost

Creek, Prouty, and Renfew) currently survive on the mountains. These glaciers cover

an area of 4.5 krn2 with a total volume of 0.09 krrr' (Driedger and Kennard, 1986).

Separation and White Branch creeks drain the majority of the glaciers on the west side

(e.g. Collier, Lost Creek, and Renfew) into the McKenzie River. Glaciers on the

eastern side (e.g. Diller, Hayden, and Prouty) drain to Squaw and Fall creeks, empty

into Sparks Lake, and, eventually, run into the Deschutes River (Driedger and

Kennard, 1986).
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Figure 3: Location map of Three Sisters volcanic center and Broken Top mountain. Boxes depict
detailed location maps for Figures 4 - 6.
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Figure 4: Digital elevation map with 100 m contours displaying present glaciers, snowfields and
notable topographic features at North and Middle Sister, Oregon Cascades.
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Figure 5: Digital elevatiou map with 100 m contours displaying present glaciers, snowfields and
notable topographic features at South Sister, Oregon Cascades.
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Figure 6: Digital elevation map with 100 m contours displaying present glaciers, snowfields and
notable topographic features at Broken Top mountain located approximately 3 km east of South
Sister.

1.2.2 Geologic Setting of Three Sisters Volcanoes:

The age of the Three Sisters volcanic center is not well constrained, but its

formation is thought to be restricted to the Pleistocene (Scott and Gardner, 1992).

North Sister is the oldest volcano of the Three Sisters and is a basaltic-andesite lava

cone overlying an older, basaltic shield volcano. South Sister is the youngest of the

three composite volcanoes and is composed of andesite, dacite, and small rhyodacite

flows (Taylor, 1990). The most recent summit eruption on South Sister occurred

during the latest Pleistocene, when the mountain was still covered by a regional ice
12



cap (Driedger and Kennard, 1986; Scott, 1977). Flank eruptions of basaltic-andesite

have occurred on South Sister between 6 and 15 ka B.P. and rhyodacite approximately

1,700 to 2,100 (2,000 to 2,300 14C yr B.P.) years ago on both the south and northeast

sides (Scott, 1987; Scott and Gardner, 1992). The age of Middle Sister is between its

two "siblings" and has a diverse composition similar to both South and North Sisters,

ranging from basaltic-andesite to rhyolite (Scott and Gardner, 1992; Taylor, 1990).

Because there has been little detailed mapping of the glacial deposits at Three

Sisters, the glacial history has been inferred based on work by Scott (1974; 1977) in

the adjacent Metolius River area. On the eastern slopes of Mount Jefferson, Mount

Washington and Three Finger Jack, Scott (1974; 1977) mapped glacial deposits of the

late Pleistocene and Holocene. These deposits are separated into the Abbott Butte,

Jack Creek, Cabot Creek and Jefferson Park Formations, which represent five glacial

advances. The oldest formation is the Abbott Butte, which consists of weathered till

and thick, well-developed soils, and is thought to characterize several glacial advances

between 200 and 900 ka B.P. (Scott, 1977). The Jack Creek glaciation is the oldest

glacial event with preserved moraines and may be correlative with the Hayden Creek

glaciation in Washington, which occurred approximately 140,000 years ago (Sherrod

et aI., in press). The Cabot Creek glaciation followed during the latest Pleistocene

(Scott, 1977) and is divided into the older Suttle Lake and younger Canyon Creek

advances. The Suttle Lake advance may be correlative with the Evans Creek stade of

the Fraser glaciation in Washington (-20 ka B.P.), while the Canyon Creek stade may

be correlative with the Hyak advance (11.0 - 12.5 ka B.P.) (Porter et aI., 1983). The

13



Jefferson Park event is separated into two phases and is the youngest advance

described by Scott (1977). The two glacial advances were restricted to cirques valleys

on both Mount Jefferson and Three Finger Jack and are most likely Neoglacial

advances, based on their sharp moraine crests and lack of soil development (Scott,

1977).

Work at the Three Sisters by Dethier (1980a; 1980b) and O'Connor et al.

(2001) have differentiated at least three Neoglacial age deposits. O'Connor et al.

(2001) describes a Little Ice Age advance at Three Sisters that reached its maximum

extent roughly 100 - 300 yrs. B.P. while the reconnaissance study at South Sister and

Broken Top by Dethier (1980a; 1980b) revealed two minor Neoglacial advances or

stands occurring between 2.1 and 7.7 ka B.P., which may correlate with the advances

in the Metolius River area. Additional work by Sherrod et al. (in press) and Scott and

Gardner (1990) have differentiated some late Pleistocene and Holocene deposits that

also seem to correlate with the drifts at Mount Jefferson and Washington. My

remapping of the glacial deposits at Three Sisters and Broken Top will help refine

previous work by Dethier (1980a; 1980b), Taylor et al. (1987), Taylor (1990), Scott

and Gardner (1992), O'Connor et al. (2001), and Sherrod et al. (in press).
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Chapter 2: Glacial Deposits and Stratigraphic Sections

2.1 Glacial Deposit Mapping

2.1.1 Methods:

To better identify the glacial deposits and associated glacial landforms on the

eastern flanks of the Three Sisters volcanoes and the northern flank of Broken Top

mountain in the Three Sisters Wilderness area of central Oregon, I focused my

mapping efforts on the deposits associated with Linn, Hayden, Diller, Prouty, Lewis,

and Bend glaciers. Field mapping was compiled on I :24,000 scale USGS topographic

quadrangle maps, and refined in the office using aerial photographs and digital

pictures from the field. To temporally separate the moraine deposits, I used their

stratigraphic position, plant/tree/lichen cover, shape and sharpness of crests, height,

and surface deposits of tephra. The four most prominent tephra encountered were the

Collier Cone, Devil's Hill, Rock Mesa, and Mount Mazama deposits. The Collier

Cone tephra is a basaltic tephra, which erupted from Collier Cone (on the nothern

flank of North Sister) approximately 1300 to 1700 yrs. RP. (1600 ± 100 14Cyr B.P.)

(Sherrod et aI., in press). Both the Devil's Hill and the Rock Mesa are local rhyolitic

tephra from numerous vents on South Sister that were deposited in two episodes

between 1700 and 2500 yrs B.P. (2000-230G 14Cyrs B.P.) (Scott, 1987). Because the

Rock Mesa and Devil's Hill tephra are so similar in appearance and mineralogy, as

well as age, I did not try to differentiate between the two. The Mazama tephra

originated from Mount Mazama, the volcanic peak that once occupied present-day
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Crater Lake (-120 km southeast of the Three Sisters). The Mazama tephra is

approximately 7.7 ka yrs B.P. (6845 ± 50 14C yrs RP.) (Bacon, 1983) and provides a

good age marker because of its regional extent and distinctive character of coarse,

yellow ash with fine lapilli (Scott et aI., 1990).

2.1.2 Results: Moraine Deposits:

Four or five moraine sets off of the eastern flanks of the Three Sisters record

varying positions of the glaciers during the last 14 ka RP. (Table 2). The innermost

moraines are approximately 60 m high and are sharp-crested with little to no

vegetation on their slopes (Figure 7 and Figure 8). Moraine material ranges from

coarse silt (0.02 mm) to boulders (3 m), has nearly no soil development, and exhibit

high erosion rates at the crests and along the flanks. These moraines likely record a

Little Ice Age (LlA) advance (150-250 yrs. B.P.) of the glaciers, based on local tree

ring chronologies and their stratigraphic position and morphology (O'Connor et al.,

2001).

Table 2: Moraine characteristics on the eastern slopes of the Three Sisters and the northern slope
of Broken Top monntain. DHRM is Devil's Hill I Rock Mesa tephra. MZ is Mazama tephra,

Vegetation
Morphology Soil Thickness Cover Elevation

Tephra
Cover

Little Ice Age 60 m tall 0 - 5 em < 5% 2200 - 2600 m None

Late-Neoglacial 20 - 30 m tall 0 - 5 em 5 - 10% 2200 - 2300 m DHRM

Early-Neoglacial 15 - 30 m tall 30 - 45 em 10 - 25% 2100 - 2300 m DHRM

Fountonnor 10 - 20 m tall' > 45 em >25% 2000 - 2100 m DHRM, MZ
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Figure 7: Aerial photograph of North Sister. The black lines outline the area of the photograph
from Figure 8. The camera symbol indicates the location of the picture and the arrows depict
moraines crests downslope of Linn glacier.
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Figure 8: Northeast flank of North Sister with LlA moraines from Linn glacier. For scale, the
moraines are approximately 60 m in height. Arrows depict the moraine crests. Picture in upper
right-hand corner is a close-up of a LlA moraine. Andy Urich in foreground.

Locally, less than 100 m downslope from these moraines, a second set of

mostly lateral moraines are found at South and Middle Sister and Broken Top. These

moraines are 20 - 30 m tall and have steep rounded crests with small shrubs and

lichen growing on their slopes (Figure 9 and Figure 10). The moraine material ranges

from coarse silt (0.02 mm) to boulders (4 m), has some soil development «5 ern), and

is generally stable along the crests but unstable along the steeper flanks. These Late-

Neoglacial moraines are blanketed with the Devil's Hill! Rock Mesa tephra on their

18



slopes (-2100 ± 400 yrs. B.P.) but are not covered with the Mazama tephra (-7.7 ka

yrs. B.P.).

Figure 9: Aerial photograph between Middle and South Sister. The black lines ontline the area of
the photograph from Figure 10. The camera symbol indicates the location or the picture and the
dashed lines depict moraines crests.
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Figure 10: Camp Lake between South and Middle Sisters with LlA, Late-Neoglacial, and
Fountonnor moraines extending down the slopes from Carver glacier. Notice differences in
vegetation cover and moraine positions. Also, notice that Early-Neoglacial moraines are absent in
this moraine set. For scale, the LlA moraines are 60 m high and the Fountonnor moraines are .-.s
m. Picture in upper right-hand corner is a close-up of a Late-Neoglacial moraine.

Beyond these moraines, a third set exists that is 200-600 m downslope of the

modern glacier termini, This set is 15 - 30 m tall and the moraines are nearly flat-

crested, with small trees/shrubs and lichen growing on their slopes (Figure 11 and

Figure 12). Moraine material ranges from fine silt (0.01 mm) to boulder (I m), has

more soil development than the younger moraines (30-45 em), and is more stable than

the younger moraines along the crests and flanks. These Early-Neoglacial moraines

20



are also blanketed with the Devil's Hill / Rock Mesa tephra on their slopes (~2100 ±

400 yrs. B.P.) and lack Mazama tephra (7.7 ka yrs. B.P.) (Dethier, 1980a, b).

Figure II: Aerial photograph for Middle Sister. The black lines outline the area of the
pbotograph from Figure 12 and 13. The camera symbol indicates the location of the picture and
the dashed lines depict moraines crests.
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Figure 12: East flank of Middle Sister displaying an Early-Neoglacial end moraine. Notice
vegetation cover on moraine flanks and crest. For scale, the moraine is approximately 30 m high.
Pictures in upper right-hand corner are close-ups of an Early-Neoglacial moraine.

A fourth set of moraines 400-900 m downslope of the modem glacier termini

pre-date -7.7 ka yrs. B.P., based on the surficial Mazama ash deposit. Devil's Hill /

Rock Mesa tephra (- 2100 ± 400 yrs. B.P.) was also present on the surface of the

moraines. These moraines are more weathered and have more soil development (> 45

em) than the moraines previously described. These moraines are 10-20 m tall, with

nearly flat crests and I - 3 m tall shrubs and trees on their crests and flanks (Figure 10,

Figure II and Figure 13). The moraine material ranges from [me silt (0.01 mm) to

boulders (I m), has medium soil development (5-35 em), and is generally stable along

22



crests and slopes. In the following text, r refer to these moraines as the Fountonnor

(fown-ton-er) moraine set, to simplify writing within this paper.

Figure 13: East flank of Middle Sister with LIA, Fountonnor, and pre-Fountonnor moraines
extending down the slopes from Diller Glacier. Notice the difference in vegetation cover and
deflated moraine heights between the three moraine sets. For scale, the LIA moraines are 60 m
high while the Fountonnor moraine is -20 m. Picture in upper right-hand corner is a close-up of
a Fountonnor moraine.

A fifth and perhaps sixth set of moraines exists 700-1500 m downslope of the

modem glacier termini. These moraines are more weathered than all the previous

moraines, with more forest cover on their slopes. Their crests are < 5 m tall and are

subtle in both the field and aerial photographs (Figure 11 and Figure 13). The moraine
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material ranges from clay (0.05 mm) to boulder (4 m) in size, has substantial soil

development (> 50 em), and is the most stabilized, due to the abundant tree and

vegetation cover. These moraines are overlain by Mazama and Devil's Hill / Rock

Mesa tephra. Because detailed mapping and stratigraphic analysis of these moraines is

incomplete, and are not a major focus in this thesis, they will not be discussed in detail

within this thesis.

2.1.3 Glacial Deposit Maps:

The glacial deposits corresponding to the LIA, Late- and Early-Neoglacial

(pre-LIA and post-Mazama) and Fountonnor (pre-Mazama) moraines were mapped

for the eastern flanks of the Three Sisters and the north flank of Broken Top Mountain

(Figure 15 - Figure 18). The LIA and some Late-Neoglacial moraines were originally

mapped by O'Connor et al. (2001). The Early-Neoglacial and Fountonnor moraines,

which were crudely mapped and not separated into distinct glacial advances/stands by

Taylor (1987), Scott and Gardner (1992), and Sherrod et al. (in press) but mapped in

detail at Broken Top and parts of South Sister by Dethier (1980a; 1980b), were also

further revised. The Fountonnor and Early-Neoglacial deposits corresponding to

present Hayden, Diller, Prouty, and Bend glaciers were mapped more completely than

the other glaciers on the eastern flanks and have been used to infer the glacial

advances/stands for other locations in the Three Sisters study area.
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Figure 14: Geomorphologic map of glacial deposits and timing of glacial advanceslstands for the
Three Sisters and Broken Top mountain.
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Figure 15: Geomorphologic map of South Sister including current glaciers and snowfields, glacial
deposits, and moraine crests on the south, east, and north flanks. Contour interval is 50 m.
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Figure 16: Geomorphologic map of Middle Sister including current glaciers and snowfields,
glacial deposits, and moraine crests on the south and east flanks. Contour interval is 50 m.
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figure 17: Geomorphologic map of North Sister including current glaciers and snowfields, glacial
deposits, and moraine crests on the east and north flanks. Contour interval is 50 m.

28



Figure 18: Geomorphologic map of Broken Top including current glaciers and snowfields, glacial
deposits, and moraine crests on the north and south flanks. Contour interval is 50 01.
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2.2 Chronology

2.2.1 Methods:

The stratigraphy and sedimentology of the glacial deposits at the Three Sisters

and Broken Top were interpreted from 8 auger holes, from stream cutbank exposures

along the North Fork of Squaw Creek, and from a sediment core from Camp Lake,

located between Middle and South Sisters. The collection sites were recorded on

USGS topographic 7.5' quadrangle maps and the auger holes were located with a

Garmin® global positioning system (eTrex Legend), with an error of ±15 m. The

stratigraphy was described in the field, and samples were collected and stored in

cotton bags labeled with site location, sample number, date, and a brief description of

notable, nearby landmarks. Organic material and organic-rich deposits collected at the

sites were stored in plastic sample bags in the field, frozen or refrigerated upon return

to the laboratory, and finally thawed, dried, and analyzed. Lake sediment cores were

collected and stored in steel tubes in the field. After returning from the field, the lake

cores were removed from the metal tubes, encased in plastic kitchen wrap, and placed

into split PVC pipes for storage. The cores were then refrigerated at 4-8°C until they

were finally split, photographed, analyzed, and sampled. Half of each core was

archived and stored in a refrigerator at the same temperature.

Auger sites were chosen to maximize the likelihood of obtaining dateable

material. The majority of the sites chosen for augering were in bogs, meadows, and

other flat areas adjacent to the glacial deposits. These bogs and meadows probably are

remaines of former moraine-dammed lakes directly fed by the pre-existing glaciers,
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similar to present day Camp Lake, where the lake core was recovered (Figure 16). By

assuming a simplified depositional environment at these moraine-dammed lakes

(Figure 19), I could infer a minimum and maximum age of the glacial deposits.

UPS10~ UPSIO~

Moraine A Moraine A

Moraine A

Moraine C

Moraine B

Moraine B

Maximum Age

Minimum Age

Moraine B Minimum Age

M.udmumAge

Moraine B

Moraine C Moraine C

;; Lake Sediments

~ Glacial Outwash and Moraine Deposits

Figure 19: Schematic of two sceuarios of a simplified depositional environment associated with
two moraiue-dammed lakes (adapted from Heine, 1997). In the left scenario, lake sediments that
are directly upslope of the moraines are at or near the surface. Lake sediment collected behind
moraines Band C are easily obtained and a minimum date of the moraine's deposition can be
established. Lake sedimeuts upslope of moraine C can also give bracketing dates of moraine B's
deposition, assuming the glacial outwash associated with moraine B can be penetrated. In the
right scenario, outwash and morainal material directly upslope of the moraines is at or uear the
surface. Iu this situatiou, lake sediment samples collected behind both moraine Band C cannot
be obtained because outwash from the upslope moraines is typically too coarse to penetrate.

Sediment cores were collected from Camp Lake during April of 2005, while

the lake was still frozen, so the ice could act as a platform for coring. The cores wer~

obtained using a Livingston Corer, provided and operated by Dr. Doug Clark and Ms.

Niki Bowerman of Western Washington University (Figure 20). The corer had a 1m
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long, Scm diameter, stainless steel core barrel with a piston inside. The corer was

connected to the surface by a series of magnesium-zircon core rods and the piston was

connected with a thin steel cable. The magnesium-zircon core rods were used to

drive the core barrels into the sediment in 1m increments. As the corers were driven

into the lake sediments, the piston was held in place at the top ofthe barrel by the steel

cable. This created a vacuum in the barrel and held the sediments in place during

extraction. Once the steel barrel was full, the core barrel was brought to the surface,

switched with a new barrel, and the procedure was repeated until the corer hit refusal

within the sediments.
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Figure 20: Lake coring photographs from Camp Lake during April of 2005. Doug Clark and
Niki Bowerman of Western Washington University shown operating the Livingston corer.

Radiocarbon dates for the collected organic material were analyzed by BET A

Analytic Inc. Radiocarbon ages were calibrated using the CALlB program (Stuiver

and Reimer, 1993) and were reported using the 20 confidence interval. Tephra
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deposits collected from the auger pits and river exposures were identified on the basis

of descriptions by Scott (1987) and Scott et aI. (1990).

2.2.2 Auger Pit and River Exposure Stratigraphy:

Auger cores were typically 100 em deep with the modem soil comprising the

first 5-30 em and the rest of the core consisting of sand to gravel sized outwash

(Figure 21). The cores typically contained no organic materials and were almost

always underlain by impenetrable gravel and cobble-sized glacial outwash or moraine

deposits. Tephras found in the cores were either from the local South Sister vents (-

2100 ± 400 yrs. B.P.) or from the ancient Mount Mazama eruption (- 7.7 ka yrs. B.P.).

The stratigraphy from these cores follows the idealized depositional environment from

the left scenario of Figure 19, where an impenetrable cobble layer limited the depth of

each core. The only exception was at Site 18, where the core was limited by the

collapsing core walls. The majority of the sediments collected from these cores were

sand to gravel in size. These sediments were likely glacial outwash and alluvial

deposits from the LIA and modem glaciers.
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Figure 21: Stratigraphic columns from six auger cores recorded near South and Middle Sisters.
No organic rich lake deposits were found in these cores. Detailed stratigraphic sections of these
cores are in Appendix.
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The auger cores from Sites 16 and 43, and the river exposures of the North

Fork of Squaw Creek, were deeper and revealed more of the stratigraphy than the

other cores (Figure 22). The auger cores were 150 to 330 em deep, with silt- to clay-

sized particles making up the bulk of the core sediments. The stratigraphy from these

auger cores follows the idealized depositional environment from the right schematic of

Figure 19, where the cores were far enough away from the glacial outwash of the

younger moraines that the lake sediments could be sampled.
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Figure 22: Stratigraphic columns from two auger cores (Sites 16 & 43) and river exposures (Sites
05 & l5) recorded near Middle Sister and Broken Top Mountain. The only organic rich lake
sediments were found at Site 43. Detailed stratigraphic sections of these cores are in Appendix.
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The core at Site 16 near Camp Lake is directly downslope of the Fountonnor

glacial deposits. The core collected at the site had a distinct tephra horizon of the

Devil's Hill and/or Rock Mesa eruptions (-2100 ± 400 yrs. B.P.) at 20 cm depth and

small pieces of detrital wood near the bottom of the core (150 em), These wood

fragments dated to 80 ± 60 yrs. B.P. and 230 ± 10 yrs. B.P. If the tephra deposit was

in-place, then the organic materials were likely contaminated for radiocarbon analysis

during transport to the lab or are younger materials that fell into the core during

augering. Alternatively, the tephra deposit could be reworked from the adjoining hills,

which would make the dates of the wood fragments valid.

The core at Site 43 near Broken Top Mountain is directly upslope of the Early-

Neoglacial deposits and probably represents the location of a prehistoric, moraine-

dammed lake. The core contained no distinct tephra horizon, and instead abundant

organic materials (grass) were found at 60 to 180 em depth. Dates from the grass

within the organic-rich mud rendered varying ages. I interpret the date of 875 ± 85 yr.

B.P. as more representative of the actual age of the organic material rather than the

post-1950 date, which was most likely from collapsed sediments near the top of the

hole. Regardless, neither of these dates can be used as a minimum age of the Early-

Neoglacial moraines because the core never reached lakebed deposits. At

approximately 180 em depth, the mud layer liquefied as it came into contact with the

water table, making further extractions impossible.

The river exposures along the North Fork of Squaw Creek ranged from a few

meters in the upper reaches (Site 05) to several meters further downslope (Site 15).
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The river exposure at Site 05 has a distinct Mazama tephra layer that underlies a

glacial outwash deposit. Several silt, sand, and gravel beds underlie the tephra layer.

From 130 cm to 225 ern, the sediments grade from gravel at the base to silt at the top.

These gradational beds may represent a time when Squaw Creek was meandering

across the surface before it incised the path it follows today. Laminated silt deposits

sit below the gradational beds. These silts were likely part of the moraine-dammed

lake deposit. Macroscopic organic matter in the silt layers was absent precluding

radiometric dating. Approximately 600 m downslope of Site 05, the exposure of river-

cut sediments increased to -10m. At Site 15, a clearly visible Mazama tephra deposit

directly overlies what [ have interpreted as a Fouritonnor till, thus giving a perfect

relative age marker for the moraine deposit (Figure 23).
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Figure 23: Photograph of Fountonnor till directly overlain with Mazama tephra (arrow).
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2.2.3 Lake Core Stratigraphy:

A single lake core was collected between Middle and South Sister at Camp

Lake, which is dammed by a Fountonnor end moraine (Figure 24). The core was 160

em long and was composed of fine silt- and clay-sized lake sediments and sand- to

gravel-sized tephra deposits (Figure 25). No apparent organic material for

radiocarbon dating was recovered from the core (e.g. sticks, leaves, seeds, etc.). The

first 45 cm of the core was composed of lake muds that alternated in color from light

to dark brown (Munsell color code: 10YR - 2/2, 3/2, 3/3, 3/4, 4/3, and 4/4) (Figure

26). This alternating color pattern indicates that there was little or no mixing in the

lake, otherwise the deposits would be more massive and uniform. A small (-5 em)

deposit of fine sand at -15 em depth, with sharp contacts, was found within the mud

layer. Directly underlying the lake muds between 45-50 em depth was a basaltic

tephra probably erupted from Collier Cone near North Sister at 1500 ± 200 yrs. B.P.

(Figure 27) (Scott, 2005). Below the basaltic tephra deposit was 5 em of lake muds,

followed by 45 em of Devil's Hill / Rock Mesa tephra (50 - 95 em depth) that was

deposited 2100 ± 400 yrs. RP. The rhyolitic tephra contained small pieces «1 em) of

red cinters below -70 em depth (Figure 28). The remainder of the core (95-155 em)

was composed of red oxidized mud (2.5YR - 3/4 and 3/6), with faint remnants of

alternating color bands, similar to the mud at the beginning of the core, but faded due

to the oxidation (Figure 29). The oxidation of these lake sediments was most likely

caused by the lake drying up, thus exposing the sediments to the surface where they

began to oxidize. Because Camp Lake is glacier-fed, this drying of the lake may
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indicate a glacial retreat. The large increase in the magnetic susceptibility through the

bottom-most mud layer is consistent with the oxidized state of the core. The very

boltom of the core contained some gravel-sized pieces of basalt that were

impenetrable during coring.

Figure 24: Geomorphologic map of glacial deposits and moraine crests near Camp and Chamber
Lakes between Middle and South Sisters. The black dot is where the sediment core for Camp
Lake was collected. Contour interval is 50 m.
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Figure 27: Photo of Collier Cone tephra deposit underlying lake muds (45-50 em).
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mud tayer.
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Because no organic material was found within the mud units, an alternative

method of dating the core has been used. Assuming that the deposition of the first 45

em of the lake mud was constant, and that the sand unit within the mud was deposited

from a short-lived event, such as a flood, the average rate of deposition for the top-

most mud unit was 0.028 ± 0.004 cm/yr., using the Collier Cone date of 1500 ± 200

yrs. B.P. If the rate of deposition was the same for the bottom mud unit, then the lake

sediments were deposited in 2210 ± 320 years, making the bottom of the oxidized mud

about 4310 ± 720 yrs. B.P., using the Devil's Hill! Rock Mesa date of2100 ± 400 yrs.

B.P. This date is likely a minimum date because it neglects the time it would have

taken the bottom mud unit to oxidize to its current state. If the bottom of the core is -

4300 ± 700 yrs. B.P. and the bottom-most mud unit was oxidized from the lake drying

up due to glacial retreat, then the Early-Neoglacial stand of the glaciers must have

occurred between the Mazama Ash deposit (7.7 ka B.P.) and some time after the lake

dry up at 4300 ± 700 yrs. B.P.

2.3 Summary

Based on moraines at Three Sisters and Broken Top mountain, the LIA glacial

advance at Three Sisters extended 1- 2 km from the glacial headwalls. Several small

recessional type moraines inside the larger lateral moraine sets suggest other small

standstills of the glaciers as they retreated to present positions. Locally, the deposits

are similar geomorphically and stratigraphically to the LIA moraines described at Mt.

Hood by Lillquist (1988), the phase 1 and 2 moraines of the Jefferson Park advance at
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Mt. Jefferson (Scott, 1974), the LIA moraines of Mount Bachelor (Scott et aI., 1990),

the Neoglacial II deposits at Mt. McLoughlin (Carver, 1972) and the Lathrop phase 1

and 2 moraines of Mt. Thielson (LaFrenz, 2001). In these local studies the moraine

deposits lack Mazama tephra, have little to no soil development, are within 0 - 300 m

of modem glacier termini, and are well developed with sharp crests. This closely

matches the LIA deposits found at Three Sisters, where the lateral and end moraines

lack Devil's Hill / Rock Mesa (2,100 ± 400 ka B.P.) and Mazama (7.7 ka B.P.) tephra,

have poorly developed soil horizons, are typically within 50 m of modem glacier

termini, have sparse vegetation cover on their slopes, and are -60 m high with sharp

crests. These LIA deposits are also analogous to young glacial deposits observed in

other regions of the western United States such as Washington (Burrows et aI., 2000;

Crandell, 1969; Miller, 1969) and Utah (Anderson and Anderson, 1981; Madsen and

Currey, 1979). From local tree ring records and other land based temperature data, the

LIA advance at Three Sisters likely took place within the last 150 - 200 yrs.

(O'Connor et aI., 2001; Wiles et al., 1996), consistent with the previously mentioned

local and regional studies.

The remnant Late-Neoglacial moraines are isolated to only a few localities on

the Three Sisters and Broken Top mountain and are difficult to reconstruct and

correlate with other advances in the western United State because of the lack of

existing morainal material. The moraines could represent a still stand of the glaciers

during the retreat from the Early-Neoglacial or Fountonnor moraines but confirming

this is difficult. What is known about the moraines is that they formed between -2
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and 8 ka B.P. based on the presence of Devii's Hill / Rock Mesa tephra (- 2100 ± 400

yrs. B.P.) overlying the moraines, the lack of Mazama ash (7.7 ka yrs B.P.) on the

moraine slopes, and the small degree of morainal weathering and vegetation cover.

Based on the Early-Neoglacial moraines at Broken Top and South Sister, the

glaciers were more extensive than during the LIA and Late-Neoglacial periods, with

the glaciers extending 2-3 km from the glacial headwalls. From the well-developed

lateral and end moraines, the glaciers likely stayed at their maximum positions for a

prolonged period (> 100 yrs.) before retreating upslope. The Early-Neoglacial stand at

Three Sisters occurred during the mid to early Holocene (2.5 - 8.0 ka. B.P.) based on

the presence of Devil's Hill and/or Rock Mesa tephra and the lack of Mazama ash on

the moraine slopes (Dethier, 1980a, b). Locally, the Early-Neoglacial moraines are

similar to the Neoglacial Ideposits at Mt. McLoughlin (Carver, 1972). Both deposits

lie stratigraphically above Mazama tephra, are covered with large amounts of lichen

and tree cover, do not have much soil development, and are < 3 km from the termini

of modern glaciers.

Based on the moraines at Middle Sister, the Fountonnor stand at Three Sisters

was the furthest the glaciers had been since the latest Pleistocene with the ice

extending 3-4 km from the glacial headwalls. The multiple end and lateral moraines

that have been preserved from this stand suggest that the glaciers were at their

maximum positions for an extensive period (> 100 yrs.). Locally, the Fountonnor

deposits are stratigraphically and geomorphically similar to the Canyon Creek drift of

the Cabot Creek advance at Mt. Jefferson (Scott, 1974) and the Zephyr Lake drift in
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the Mountain Lakes Wilderness (Carver, 1972). Both the Canyon Creek and Zephyr

Lake drifts are covered with Mazama ash and both sets of moraines have soil

development of 15-45 em, similar to the Fountonnor deposits at Three Sisters. The

Fountonnor stand was pre-Mazama and based on the incorporation of the Mazama

tephra in the soil deposits and the amount of weathering of the Fountonnor moraines,

the stand may have been within the last 10,000-12,000 years. Consequently, the

Fountonnor stand may correlate with the post Younger Dryas advances found at Mt.

Rainier (10.4 ± 0.5 ka B.P.) and the Wallowa Mountains (10.2 ± 0.5 ka B.P.) (Heine,

1997; Licciardi et aI., 2004) to Younger Dryas advances in British Columbia (11.5 ±

0.3 ka B.P.), the Enchantment Lakes Wilderness (> 11.3 ka RP.) and the San

Bernadino Mountains (12.5 ± 0.5 ka B.P.) (Bilderback, 2004; Owen et aI., 2003;

Reasoner et aI., 1994).
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Chapter 3: Equilibrium Line and Paleoclimate Reconstructions

The balance between glacier extent and climate is 'based on the equilibrium

line altitude (ELA) of a glacier. Reconstructing the glacier's position with time allows

inferences about climate change to be made. The ELA represents the boundary on a

glacier between the zone of annual net accumulation (mass gain) and the zone of

annual net ablation (mass loss) (Patterson, 2001). The position of the ELA is

controlled by annual climate based on spatial variations in snow accumulation and

mass loss through the surface energy balance. Simplified, the change in the ELA can

be attributed to winter precipitation and summer temperature changes (Leonard, 1989;

Ohmura et aI., 1992; Porter, 1977). Changes in the ELA position through time

represent changes in snow accumulation and temperature. By reconstructing the

ELAs of pre-existing glaciers and comparing them with modern ELAs, aspects of the

former climate can be inferred.

The ELAs for the modern and pre-existing glaciers on the east and north flanks

of the Three Sisters volcanoes and the north flank of Broken Top mountain were

calculated using both the accumulation area ratio (AAR) (Meier and Post, 1962) and

the balance ratio methods (BR) (Furbish and Andrews, 1984). Typical AAR values

for modern glaciers in a steady-state condition range from 0.5 to 0.8 (Meier and Post,

1962). Following previous work in Oregon by Scott (1977), Carver (1972), and Bevis

(\ 995), I used an AAR value of 0.65 ± 0.1 to determine present and past ELAs. The

BR method with a net-balance ratio of 2, which is representative of maritime mid-

latitude glaciers (Furbish and Andrews, 1984), was implemented. Both the AAR and
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BR methods account for the area of the glacier residing in the ablation and

accumulation zone, but the BR method goes a step further and better accounts for the

distribution of glacier area with altitude. The BR method has been proven most useful

for glaciers that have a "complex" shape (Benn and Gemmell, 1997; Furbish and

Andrews, 1984). Because most of the glaciers at Three Sisters and Broken Top have

"complex" geometries that resemble ice cap type glaciers, the BR method was viewed

as a better tool in determining the ELA of the glaciers, and its values were utilized in

this study. Differences in elevation between the ELAs estimated with the AAR and

BR methods averaged 80 m with the AAR consistently predicting lower ELAs.

Using the BR method (Furbish and Andrews, 1984), the glaciers' ELAs were

calculated,

(1)

where dbnJdz is the net mass-balance gradient in the ablation zone (yr"),

dbnc/dz is the net mass-balance gradient in the accumulation zone (yr"), z, is the area-

weighted mean altitude of the ablation zone (m), Zbis the area-weighted mean altitude

of the accumulation zone (m), Ac is the area of the accumulation zone (rrr') and Ab is

the area of the ablation zone (rrr). For temperate glaciers, the left hand side of

equation (1) is approximately 2 (Furbish and Andrews, 1984). To determine the ELA

of any given glacier, one needs to know the area distribution with elevation. For the

right hand side of equation (1), one begins by assuming that the ELA is the mean
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elevation of the glacier, which renders values for Zclb and Aclb. If these values do not

satisfy equation (1), then a new ELA is chosen and tested. One continues this trial and

error process until the right hand side of equation (1) equals the left (i.e. 2). I used a

computer spreadsheet developed by Benn and Gemmell (1997), which automated this

process through a series of iterations. To determine the area distribution with

elevation for both the BR and AAR methods, the area of the glaciers were broken up

into 60 m elevation segments (Figure 30- Figure 31). To find the ELA using the AAR

method, a cumulative area plot versus elevation was constructed for each of the

glaciers and, using an AAR value of 0.65 ± 0.1, the ELAs of the glaciers were

determined.
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Figure 30: Shape protile used to calculate the area for modern, Little Ice Age, and Early-
Neoglacial at Diller and Hayden glaciers (top), Prouty glacier (middle), and Bend glacier
(bottom).
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Figure 31: Shape profile used to calculate the area for modern and Little Ice Age at Lewis glacier
(top) and Linn glacier (bottom).

The modern glaciers' areas were mapped using black and white aerial

photographs taken during the summer of 1995 (GEO, 2005). The reconstructed

glaciers for the LlA, Early-Neoglacial, and the Fountonnor extents were mapped using

7.5 minute topographic maps. The Late-Neoglacial glaciers were not reconstructed

because the moraines were so few. To determine the glacier contours, [ used modern

contours from the topographic maps for both the present and LlA glaciers. [used

existing bedrock elevations for the paleo-contour topography of the Early-Neoglacial

and Fountonnor glaciers. This method constructs a zero thickness glacier. While a
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more realistic geometry could be constructed, I felt that the relatively steep and

uniform slope of the volcano flanks did not warrant a more realistic reconstruction.

Although this approach results in estimated ELAs that are likely -100 m too low, it is

sufficient because my interest here is ELA change, not absolute ELA.

The results for the balance ratio and accumulation area ratio methods are

shown in Table 3 and Table 4. The average ELA increased 40 - 200 m from the LIA

to present for all the glaciers. Since the Early-Neoglacial and Fountonnor glaciations,

the ELA has increased significantly. From the Early-Neoglacial to the present, the

ELAs appear to have increased 130 m at South Sister and 300 m at Broken Top. From

the Fountonnor glaciation, the ELAs have increased 290 - 320 m at Middle Sister.

These changes in the ELAs could indicate a major shift in climate over the last 10,000

years.

Table 3: Equilibrium Iiue altitudes (BR method) for the glaciers at Three Sisters and Broken Top
during the modern, Little Ice Age, Early-Neoglacial, and Fountonnor glacial periods.

Modern
Glacier

Early-Neoglacial
Glacier ELA

(m)

Fountonnor
Glacier ELA

(m)
Diller

Hayden
Bend

Prouty
Lewis
Linn

Diller
Hayden

2291
2318

Bend 2332
Prouty 2362

Average (m) ~ 2627
Standard Deviation = 101

2545
78

2347
21

2305
19
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Table 4: Equilibrium Iiue altitudes (AAR method) for the glaciers at Three Sisters and Broken
Top during the modern, Little Ice Age, Early-Neoglacial, and Fouutonnor glacial periods

Modern Little Ice Age Early-Neoglacial Fountonnor

Glacier ELA Glacier ELA Glacier ELA Glacier ELA
(m) (m) (m) (m)

Diller 2487 ± 30 Diller 2363 ± 35 Diller 2188±55
Hayden 2551 ± 40 Hayden 2452± 60 Hayden 2248± 110
Bend 2380±20 Bend 2342 ± 20 Bend 2298 ± 25

Prouty 2579 ± 30 Prouty 2437 ± 35 Prouty 2272 ± 30
Lewis 2687 ± 20 Lewis 2566 ± 70
Linn 2573 ± 10 Linn 2365 ± 30

Average (m) = 2543 ± 30 2452 ±40 2285 ± 30 2218 ± 80
Standard Deviation = 103 84 18 42

To determine the paleoclimate necessary to maintain the lowered ELAs for the

Little Ice Age, Early-Neoglacial, and Fountonnor glaciers, I followed the methods

described by Leonard (1989). By plotting the highest monthly mean accumulation

(em water equivalent (weq.) against mean summer temperatures (0C) (June - August)

at the equilibrium line of 32 modern glaciers (Figure 32), a relationship between

summer temperature and winter accumulation is defined for modern climates

(Leonard, 1989; Loewe, 1971; Sutherland, 1984). This relationship was

mathematically defined using Kotlyakov and Krenke (1982),

A = l.33(T + 9.66)285

A = l.33(T + 6.66)285 (2)

where A is winter accumulation (mm weq.) and T is the mean June-August

summer temperature (0C), who bound the scatter in the data with two lines (Figure
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32). The envelope between the lines defines the range of conditions for modem

glaciers.

400

-g.
; 300
Eu-c
0
:;l
.!!! 200:::l
E
:::l
U

~..
S 100c
i

O=~-r---,----,--~~~~-,-J
-2 0 2 4 6 8 10 12

Summer Temperature (OC)

Figure 32: Winter accumulation versus mean summer temperature (June - August) at the
equilibrium lines of 32 glaciers with worldwide distribution (Leonard, 1989).

Assuming that the equation (2) developed by Kotlyakov and Krenke (1982)

applies to past climatic conditions, I can estimate the paleoclimate. First, the present

mean summer temperature (0C) and the highest monthly mean accumulation (em

weq.) at the paleo and modem ELAs were identified. To establish the temperature and

accumulation at Three Sisters, linear lapse rates for mean summer temperature and

highest monthly mean accumulation were derived using meteorological stations

located at lower elevations. The mean summer temperature lapse rate was calculated
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using historical climate data from 1971-2001 (WRCC, 2005) from six sites in the

central Cascades of Oregon between elevations of 451 and 1972 m (Figure 33).

Because altitude and temperature have a high degree of correlation, the six sites

chosen for the mean summer temperature were selected according to their elevation

and distance from Three Sisters and not whether their position was east or west of the

Cascade crest. The lapse rate for the summer temperature versus elevation is 0.53°C /

100 m, which is close to the wet adiabatic lapse rate. The mean summer temperature

regression line accounted for 96% of the variance in temperature and was statistically

significant within 1% (p = 0.01).

20 y = ..Q.0053z + 20.993
R' = 0.958
P = 0.01

•
•

1000 1500 2000 2500

Elevation 1m)

Figure 33: Liuear regressiou Iiue for meau summer temperature ("C) versus elevation (m) for six
meteorological stations uear the Three Sisters Volcanoes.
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Table 5: Meteorological stations used to calculate linear regression line for mean snmmer
temperatnre (1971-2001) (WRCC, 2005).

Average Summer
SNOTELName Latitude and Longitude Elevation Temperatnre

(Degrees, Minutes) (m) (OC)

McKenzie 44° II', 122° 07' 451 18.6
Belknap 44° 18', 122° 02' 655 17.1
Sisters 44° 17', 122° 33' 969 15.8
Bend 44° 04', (122° 17' & 122° 19') 1\13 16.2

Santiam 44° 25', 122° 52' 1448 12.6
Crater Lake 42° 54', 122° 08' 1972 10.6

Because winter accumulation is sensitive to small changes in local topography

and aspect, and not strictly changes in altitude, meteorological stations chosen for the

accumulation gradient were east of the Cascade crest and within -30 Ian of the Three

Sisters and Broken Top to account for the rain shadow effect. The winter

accumulation lapse rate was calculated using historical climate data from 1971-2000

(NRCS, 2005) from four SNOTEL and snow course sites between elevations of 1585

and 1951 m (Figure 34). The accumulation gradient for the winter accumulation

versus elevation is 32.13 ern I 100 m. For the winter accumulation, 96% of the

variance was accounted for and was statistically significant within 2.5% (p = 0.025).
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Figure 34: Linear regression line for highest monthly mean winter accumulation (em weq.) versus
elevation (m) for four meteorological stations east of the Three Sisters Volcanoes.

Table 6: Meteorological stations used to calculate linear regression line for mean winter
accumulation (1971-2000) (NRCS, 2005).

SNOTELor
Snow Course Name Latitude and Longitude

(Degrees. Minutes)
Elevation

(m)

Highest Monthly
Mean Snowpack

(em weq.)

Three Creek Butte
Tangent

Three Creeks Meadow
New Dutchmau Flat #3

44° 09', 121°38'
44°01',121°34'
44°09',121° 38'
44° 00',121° 42'

1585
1646
1722
1951

19.3
50.6
49.2
140.7

Using the modern lapse rate for temperature and the accumulation gradient, the

modern climate at the paleo and modern ELAs were determined (Table 7; Figure 35).

For the modern glaciers at Three Sisters, the predicted climate conditions were in

close agreement with Figure 32. To determine the past climates required at the ELAs,

the current climate for the LIA, Early-Neoglacial and Fountonnor ELAs were plotted
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onto Figure 32 (Figure 36). These points were then adjusted for the climate required

to sustain a glacier with that ELA.

Table 7: Estimated modern climate conditions at present and past glacier equilibrium lines
(balance ratio).

Glacier ELA Summer Temperature Winter Accumulation
Modern Glaciers (m) ('C) (em weq.)

Diller 2577 7.3 338
Hayden 2633 7.0 356

Bend 2466 7.9 303
Prouty 2667 6.9 367
Lewis 2768 6.3 400
Linn 2652 6.9 363

LlA Glaciers (m) ('C) (em weq.)
Diller 2466 7.9 303

Hayden 2541 7.5 327
Bend 2428 8.1 291

Prouty 2542 7.5 327
lewis 2648 7.0 361
Linn 2476 7.9 306

Early-Neoglacial (m) ('C) (em weg.)

Bend 2332 8.6 260
Prouty 2362 8.5 269

Fountonnor 1m) I'C) (em weq.)
Diller 2278 8.9 247

Hayden 2298 8.7 255
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Kotlyakov and Krenke (1982) and illustrated in Leonard (1989).
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Figure 36: Winter accumulation versus mean summer temperature at the equilibrium lines of
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The difference between the modem climate conditions at the present glaciers

and those of the LIA is small. The mean summer temperature would need to decrease

by 0.2 - 1.0°C and increase in winter accumulation by 10 - 60 em weq. (Figure 36).

Climate conditions at the Early-Neoglacial equilibrium lines would need to either

/decrease mean summer temperature by minimum of 0.7°C (0.7 - 1.0°C) or increase

mean monthly winter accumulation by a minimum of 40 cm weq. (40 - 60 em weq.)

to plot on the bottom climate curve (Figure 36). For the climate at the Early-

Neoglacial glaciers to reach a similar value as the present glaciers, mean summer

temperature needs to decrease by a minimum of 0.7°C (0.7 - 1.6°C) and mean

monthly winter accumulation needs to increase by a minimum of 40 em weq. (40 -

100 em weq.). For the Fountonnor glaciers to plot on the bottom of the curve, mean

summer temperature needs to decrease by a minimum of 1.2°C (1.2 - 1.5°C) or

increase mean monthly winter accumulation by a minimum of 70 em weq, (70 - 80

em weq.) (Figure 36). For the climate at the Fountonnor glaciers to reach a similar

value as the present glaciers, a mean summer temperature needs to decrease by a

minimum of 1.5°C (1.5 - 1.7°C) and mean monthly winter accumulation needs to

increase by a minimum of90 cm weq. (90 - 100 em weq.).
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Chapter 4: Discussion and Conclusions

4.1 Discussion

The modem glaciers on the east flanks of the Three Sisters Volcanoes and on

the north flank of Broken Top Mountain (Linn, Diller, Hayden, Prouty, Lewis, and

Bend glaciers) are on average -0.60 km2 in area, covering a total area of -3.50 km2

(Driedger and Kennard, 1986). Maximum ice thicknesses measured with ground-

penetrating radar are between 45-75 m yielding a total ice volume of -0.07 km3

(Driedger and Kennard, 1986). The glacier extent is bounded by 2100 and 3100 m

elevation. The average ELA is -2627 m (balance ratio) or 2543 ± 30 (accumulation

area ratio), which corresponds well with ELAs measured on the east side of Mt.

Jefferson and Three-Fingered Jack (2590 ± 35 m) using a similar AAR value of 0.65 ±

0.1 (Scott, 1977).

Based on both lateral and terminal moraines, the LlA glaciers (Linn, Diller,

Hayden, Prouty, Lewis, and Bend) primarily existed between 2200 and 3000 m

elevation, and the average ELA for the LIA glaciers was 80 m (balance ratio) to 90 m

(accumulation area ratio) lower than modem glaciers. The LIA glacial advance at

Three Sisters extended 1-2 km from the glacial headwalls and the glaciers likely

stayed at their maximum positions for a time sufficient to construct the large (-60 m)

and well developed end and lateral moraines. Based on the lack of Devil' s Hill and

Rock Mesa tephra (- 2100 ± 400 yrs. B.P.) and the lack of developed soil horizons

and plant cover on the moraine slopes, the LIA advances at Three Sisters likely
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reached their maximum positions within the last 150-250 years, which is consistent

with temperature depressions recorded in tree rings from Oregon and other land based

temperature data (O'Connor et aI., 2001; Wiles et aI., 1996). The LIA deposits at

Three Sisters and Broken Top are correlative in time with LIA moraine deposits in

other regions of Oregon (Carver, 1972; Lafrenz, 2001; LilIquist, 1988; Scott, 1974;

Scott et aI., 1990) and the western United States (Anderson and Anderson, 1981;

Burrows et aI., 2000; Crandell, 1969; Madsen and Currey, 1979; Miller, 1969).

The remnant Late-Neoglacial moraines are isolated to only a few localities on

the Three Sisters and Broken Top mountain and are difficult to reconstruct and

correlate with other advances in the western United State. The moraines could

represent a still stand of the glaciers during the retreat from the Early-Neoglacial or

Fountonnor moraines but confirming this is difficult. The moraines formed between

-2 and 8 ka B.P. based on the presence of Devil's Hill / Rock Mesa tephra (- 2100 ±

400 yrs. B.P.), the lack of Mazama ash (7.7 ka yrs B.P.), and the small degree of

morainal weathering and vegetation cover.

From lateral and end moraines at South Sister and Broken Top, the Early-

Neoglacial glaciers (Prouty and Bend) primarily existed between 2100 and 3000 m

elevation. The average ELA from the two glaciers was 280 m (balance ratio) to 260 m

(accumulation area ratio) lower than modern glaciers. The Early-Neoglacial glaciers

were more extensive than the both the LIA and Late-Neoglacial glaciations with

glaciers extending 2-3 km from the glacial headwalls. The Early-Neoglacial stand at

Three Sisters occurred during the mid Holocene (2.5 - 8.0 ka. B.P.) based on the
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presence of Devil's Hill and/or Rock Mesa tephra (- 2100 ± 400 yrs. B.P.) and the

lack of Mazama ash (7,700 yrs B.P.) on the moraine slopes (Dethier, 1980a, b).

Locally, the Early-Neoglacial deposits are similar to the Neoglacial I deposits at Mt.

McLoughlin (Carver, 1972). Both deposits lie stratigraphically above Mazama tephra,

are covered with large amounts of lichen and tree cover, do not have much soil

development, and are < 3 km from the termini of modem glaciers. In additions, both

the Early-Neoglacial and Neoglacial 1 deposits at Mt. McLoughlin had ELAs that

were 200-300 m lower than modem glaciers.

Evidence from lateral and end moraines at Middle Sister suggests that the

reconstructed Fountonnor glaciers (Diller and Hayden) extended 3-4 km from the

glacial headwalls. The Fountonnor stand was pre-Mazama (-7500 yrs, B.P.) and

based on the incorporation of the Mazama tephra in the soil deposits and the amount

of weathering of the Fountonnor moraines, the stand may have been within the last

10,000-12,000 years. Locally, the Fountonnor moraines are stratigraphically and

geomorphically similar to the Canyon Creek drift of the Cabot Creek advance at Mt.

Jefferson (Scott, 1974) and the Zephyr Lake drift in the Mountain Lakes Wilderness

(Carver, 1972). Both the Canyon Creek and Zephyr Lake drifts are covered with

Mazama ash and both sets of moraines have medium soil development (15-45 em),

similar to the Fountonnor deposits at Three Sisters. However, the Fountonnor

glaciers' ELAs were only 320 m (both balance and accumulation area ratio) lower

than current glaciers while the Canyon Creek and Zephyr Lake glacier's ELA dropped

700-750 m. The difference in ELA may result from differences in topography causing
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variations in precipitation and temperature between the sites, but because all three sites

are within -150 km of each other and have comparable elevations (± 500 m), it is

unlikely that drastic changes in temperature occurred. Also, large and sustained

differences in snowfall are unlikely. 1 infer that the Fountonnor stand was slightly

younger and less extensive than the Canyon Creek and Zephyr Lake drifts and that

these drifts may correlate with the apparent glacial deposits that exist further

downslope of the Fountonnor moraines. If correct, the Fountonnor stand would be

post Younger Dryas, and correlate with advances found at Mt. Rainier (10.4 ± 0.5 ka

B.P.) and the Wallowa Mountains (10.2 ± 0.5 ka B.P.) (Heine, 1997; Licciardi et al.,

2004) or the Younger Dryas advances found in British Columbia (11.5 ± 0.3 ka B.P.),

the Enchantment Lakes Wilderness (> 11.3 ka B.P.), and the San Bernadino Mountains

(12.5 ± 0.5 ka B.P.) (Bilderback, 2004; Owen et al., 2003; Reasoner et al., 1994).

Climate reconstructions show that to maintain the LlA ELA (2630 m) the

summer temperature would need to decrease by 0.2 - 1.0° C and/or the mean winter

precipitation would need to increase by 10 - 60 em weq. From land based

temperature data, global temperatures since 1850 (i.e. LIA) have increased by 0.5° C

(Jones and Bradley, 1992), which closely resembles the changes necessary for the

ELA depression at Three Sisters. Locally, tree ring data collected in the Pacific

Northwest (Figure 37) indicate summer air temperatures have increased by -0.6° C,

while annual precipitation is approximately the same « 5 em difference) (Garfin and

Hughes, 1996; Wiles et al., 1996). From both the tree ring data and the work by Jones
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and Bradley (1992), it appears that the LIA ELA depression at Three Sisters may have

been due primarily to a decrease in temperature and rather than increased snow fall.
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Figure 37: Recoustructed temperature and precipitatiou data from tree ring-widths and latewood
density chronologies for the Pacific Northwest (1760-1980). Bold lines are 7-year moving average
of temperature and precipitation data. The upper graph is the reconstructed mean temperature
(0C) from April to Septemher (Wiles et aI., 1996). The lower graph is the reconstructed annual
precipitation (mm) for several sites near 43°40' N, 119°48' W in Eastern Oregon (Garfin and
Hughes, 1996).

For the Early-Neoglacial and Fountonnor stands a temperature decrease of 0.7

- 1.6° C and/or a winter precipitation increase of 40 - 100 em weq. would have been

necessary for the estimated ELA depression of the Early-Neoglacial glaciers (-280

m), while the Fountonnor glaciers (-320 m) would have required a temperature

decrease of 1.5 - 1.7° C and a winter precipitation increase of 90 - 100 ern weq.

68



Evidence of cooling during the early Holocene and latest Pleistocene has come from a

high-resolution record of sea surface temperature (SST) reconstructed from alkenones

collected off the northern coast of California (ODP Site 1019). From the SST

information at Site 1019, it is apparent that a cooling interval, similar in time to the

Younger Dryas cooling, affected the eastern Pacific sea surface temperatures dropping

them by as much as 4°C from modern levels (Figure 38) (Barron et aI., 2003).

Following this Younger Dryas-like cooling event, there was a brief warming period at

- 11.3 ka B.P. followed by another cooling period (- l.5°C from modern) at - 11.0 ka

B.P. These warming and cooling events during the early Holocene and late

Pleistocene accord with a speleothem record collected at the Oregon Caves National

Monument (Figure 39) (Vacco, 2003). If the glacial events at Three Sisters are

correlative with the temperature data from the SST and speleothem records, then the

apparent moraines downslope of the Fountonnor moraines may correlate with the

more distinct and much cooler (- 4°C) Younger Dryas cooling while the Fountonnor

stand, which was much smaller and associated with a decreased in temperature by

only 1.5 - 1.7°C, would resemble the post-Younger Dryas cooling (-1.5°C) at around

11.0 ka B.P (Figure 40). The Early-Neoglacial stand at the Three Sisters was after

-7.7 ka yrs. B.P. based on the lack of Mazama ash on the moraines. From the SST

information at Site 1019, the Early-Neoglacial most likely occurred between 4500-

6500 yrs. B.P where the temperature depression recorded from the alkenones (-1.5°C)

was similar to the 0.7 - 1.6°C decrease at Three Sisters.
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Figure 38: Reconstructed oxygen isotope curve from the GISP2 Ice Core record (top) (Stuiver
and Grootes, 2000) and the reconstructed sea surface temperature (SST) from alkenones at Site
1019 in the Pacific Ocean just off the northern coast of California and southern coast of Oregon
(bottom) (Barron et al., 2003).
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Figure 39: Oxygen-IS record from a stalagmite record (OCNMS-02A) collected from Oregon
Caves National Monument in southwestern Oregon (Vacca, 2003). The bold line represents a 10-
point running mean of the oxygen-IS data. It is apparent that a large cooling event took place
during the Younger Dryas time intervals (13.0 -12.0 ka B.P.) followed by a brief warming (12.0-
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Fignre 40: Comparison of glacial advances and stands in the Three Sisters Wilderness with
inferred glohal air temperatures hased on the oxygen isotope curve from the Greenland Ice Sheet
Project 2 (GISP2) ice core (Stuiver and Grootes, 2000) and the deuterium curve from the Lake
Vostok ice core from Antarctica (Lorius et al., 19S5; Sowers et al., 1993).
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Other evidence of both the Younger Dryas and post-Younger Dryas warming

has come from pollen records collected in lake cores throughout western Oregon.

Between 11.0 and 12.4 ka B.P. there was an increase in haploxylon Pinus pollen at

Little Lake in the Oregon Coast Range, which would imply cooler winters and drier

summers. Additionally, the expansion of P. monticola and decline of Pseudotsuga

indicate cooler winters and more snowfall (Grigg and Whitlock, 1998; Worona and

Whitlock, 1995). Following the cooling interval, the pollen record suggests that the

vegetation was similar to modem forests and that there was a decrease in precipitation

and wanner, drier summers between 10.2 and 11.0 ka B.P. Why the post-Younger

Dryas cooling interval (-11 ka B.P.) found by Vacco (2003) and Barron et al. (2003)

was not seen in the pollen records, is unknown. Perhaps the event was short lived and

the vegetation in Oregon did not have time to equilibrate. However, the glacial

advances at the Wallowa Mountains (10.2 ± 0.6 ka B.P.) (Licciardi et aI., 2004) and

Mt. Rainier (10.4 ± 0.5 ka B.P.) (Heine, 1997) suggest that a post-Younger Dryas

advance did take place in the western United States.

4.2 Conclusions

At least four post Last Glacial Maximum glacial advances/stands marked by

end and lateral moraines occurred on the eastern flanks of the Three Sisters Volcanoes

and the northern flanks of Broken Top mountain in the central Cascade Mountains of

Oregon. The youngest of these was the LIA glaciation, which reached its maximum

150-200 yrs. B.P. and is well defined by the 60 m high moraines adjacent to the
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modern glaciers. Less than 100 m downslope from the LIA moraines, a second set of

sparsely vegetated lateral moraines mark a Late-Neoglacial stand. These Late-

Neoglacial moraines predate the local rhyolitic eruptions from the Devil's Hill and

Rock Mesa volcanic chain on South Sister (2.1 ± 0.4 ka B.P.) and post date the Mount

Mazama eruption (-7.7 ka B.P.). The moraines were likely deposited between 2 - 3

ka B.P. based on moraine weathering and vegetation cover. Beyond the Late-

Neoglacial moraines, a third set of moraines is present 200-600 m downslope of the

modern glacier termini. These moraines record the Early-Neoglacial stand of the

glaciers and also predate the Devil' s Hill and Rock Mesa eruptions and postdate the

Mazama eruption. From SST temperature data (Barron et aI., 2003) and a speleothem

record (Vacco, 2003), it is most likely that this advance occurred between 4.5 and 6.5

ka B.P. A fourth set of moraines, which I have termed the Fountonnor moraines, are

500-900 m downslope of the modern glacier termini and pre-date -7,700 yrs. B.P.

based on the Mazama ash deposit on their slopes. These moraines may be latest

Pleistocene or early Holocene in age inferred from their weathering characteristics,

flat crests, vegetation cover, and soil development. An apparent fifth and possible

sixth set of moraines exists 700-1500 m downslope of the modern glacier termini. The

moraines are overlain by Mazama ash and are older than the Fountonnor moraines due

to their heavier vegetation cover, severe weathering, and flattened moraine profiles.

From the paleoclimate signatures established from the glacial deposits at the

Three Sisters and Broken Top, the average summer temperature would have cooled by

1.5 - 1.7°C and the winter precipitation would have had to rise by 90 - 100 cm weq.
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during the Fountonnor stand. These changes in temperature during the Fountonnor

stand would suggest that during the latest Pleistocene and early Holocene (-10 - 1l.5

ka B.P.) the temperature was cooler by I-2°C in the summer and wetter by 50-150 em

weq. in the winter. This accords with sea surface temperatures records from

California (Barron et al., 2003) and similar glacial advances in the Wallowa

Mountains (10.2 ± 0.6 ka B.P.) (Licciardi et al., 2004) and Mt. Rainier (10.4 ± 0.5 ka

B.P.) (Heine, 1997). Following this cooling period, the sea surface temperature data

suggests a warming, similar to modem temperature values, until approximately 8 ka

B.P. (Barron et al., 2003). Between 3 - 8 ka B.P., the Early-Neoglacial ELAs

decreased -280 m at Three Sisters suggesting cooler summer temperature (0.7 -

1.6°C) and wetter winters (40 - 100 em weq.). This is consistent with SST records

that were I - 2°C cooler during the summer (Barron et al., 2003). This cooling and

wetting continued to approximately 3.5 ka B.P. until the temperature began to rise to

modem values (Barron et al., 2003). Since, two minor summer cooling intervals of -

0.2 - l.O°C and winter precipitation increases of 10 - 60 em weq. at 2,000 - 3,000 (?)

and 100 - 500 years ago have disrupted this warm and dry interval during the late

Holocene. Because the moraines from the Late-Neoglacial are few, it is difficult to

decipher the ELA depression. However, the LIA moraines are very apparent and

average summer temperature would have been 0.2 - l.O°C lower than present during

the LIA to accommodate the 80 m difference between the modem and LIA ELAs.

This is consistent with LIA global temperature cooling (Jones and Bradley, 1992) and

local tree ring records (Wiles et al., 1996). These mid and late Holocene advances are

74



locally correlative with similar glacial events in the Mt. Hood (Lillquist, 1988), Mt.

Jefferson (Scott, 1977), Mt. McLoughlin (Carver, 1972), and Mountain Lakes

Wilderness (Carver, 1972) areas.

4.3 Suggestions for Future Work

The timing of glacial advances in the Three Sisters Wilderness is still relatively

unknown. The majority of the glacial deposits have been dated using relative

techniques, such as soil thicknesses and stratigraphic positions relative to tephras and

lava flows. In most cases, these techniques are only precise to within ± 3000 - 5000

yrs. precluding accurate correlation with advances/stands in other regions of western

North America. Future research in the Three Sister Wilderness should include a

rigorous attempt to find suitable material to date the glacial deposits and correlate their

timing with other advances of western North America. This will aid in the refinement

of regional and global climate models and will help in understanding how Oregon was

affected by global climate anomalies (i.e. Younger Dryas and Heinrich events).

Additionally, further detailed mapping of the Pleistocene and Holocene glacial

deposits throughout Oregon is needed to help understand the magnitude of glaciation

during the past 20 ka.
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Appendix: Detailed Stratigraphic Sections

The following detailed, stratigraphic columns were collected during the

summer of 2004. Color descriptions for each section are generalizations and should

not be confused with the traditional Munsell soil classification. Particle sizes, sorting,

and rounding were determined by hand. Sample numbers (labeled as sample number-

location-date) correspond to archived soil and rock samples from each unit.

em
0

30

60

90 -1500 yn.a p.'

120

150

180

210

240

270

300

330

360

Modem loll horizon; brownlah-red In color; roots throughout; 2-5 em weathered horizon at
base; t-5 cm2 pediments thai crumble when touched (dry)

-- Glacial till and/or outwash depotlit: gl'8y to light brown In color; poorty-sorted with
.ubangular to lubrounded aands to cobbles size grains; materlall, exclusively volcanic

-- Tephra layers: yellowllh-brown In color; well .. orted, medlum-sand size lapUIl; MIlWTlI Alh deposit
• Sample 02-Ms.<lS1504

__ Tephra layers: yellowiah-brown In CQlor; Wllil-torted with lubangula1 coarse-und size laplllI: Mazama deposit
• Sample 03-MS.Q81504

-- SandoGravellayer; gray In color: moderately lOTted with IUbrounded sand to gravel size grains

-- Silt layer; grayiah-brown in color; welt sorted with mostly alit size grains; appears to have ripples atrudures;
yellow, medlum-sand IIze particles scattered throughout thll: could be leaching from above

• Sample 04-Ms-G81504

. \.-.- Graded layer; gray (top) to bfownlsh-orange (base) In color; sections grad" from m&cllum-sand
• J to pebbles; grains are mostty subround&cl

• sample 05-MS.Q81504

-...-----... Silt layer; grayish-brown In color; wellsortad with Iltcluslvely silt slzll grains; manlYe structure

___ Graded layer; gray In color; sections grades from flne-sand to gravels; grains are mostly subrounded
• Sample l!6-MS.Q81504

Silt layer; mostly reddlsh-brown In color wlth 11lernallng bands of IIght-brown, orange, Ind Ian

/

colors; well sorted with exclusively slit slzll grains; alternating layers loeb like varves (1)
• Sampl.16-MS.Q81904
• Sample 18-MS-081904

Tephra layers; yellowllh-brown In color; well-lorted wtth subangular coarse-sand size laplill
• Sample 17-Ms-G81504

-- Sand-Gravellayer; brown In color; moderately IOrttd with subroundecllland to gravelslz. grains

Figure 41: Detailed stratigraphic section of river exposure along the North Fork of Squaw Creek
(Site 05)
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o em Sitty~la)' layer;brown in color, well sorted with clayto sill sizegrains;manlY. structure't,~~,~~,f .Sampl.l1-MS~81904 .

-2100 +,. 400yrs B.P. Tephra layer, gray In color; composed of ash fall and lapllIl that are 3-8mm In length and width;
(1) deposits mostly likely camefrom the Devil', HillandJorthe RockMesaevent! (Scott, 1987)

·Samp.12-MS~81904

Sllty-Clay layer; brown In color; moderately sorted with clay to silt Ilze grains and pieces of
-- gray-pumlce mixed throughout

• Samp.13-MS~81904

30

SandITephra layer; yellowiah-brown In color; moderately sorted, ceam lind with yellow-
tephra deposit mixed throughout; yellow-tephra [sllkely reworted Mazama Ash

• Sample1UlS.oS1904

60

90

120 230+1-10yra B.P,
(?)

80 +'- 60 yrs B.P.
(?)

Clay layer; dart brown In color; wetilOrted with exclusively clay sized grains; 10g of woody
debris found In layer; wood most likely fell Into hole during coring

-Sample 15-MS.(IB1904

'-.......Impenetrable gravel or cobble layer; likely glacial outwash deposit
150

Figure 42: Detailed stratigraphic section of auger pit near Camp Lake hetween South and Middle
Sisters (Site 16). Radiocarhon dates of 230 ± 10 yrs B.P. and 80 ± 60 yrs. D.P. correspond to Beta
numbers 203136 and 200871, respectively.
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o em

__ Sand.Qravellayer; grayish-brown In color, moderJiely sorted wtth sand to gravel size
grains of volcanic rocks; pumice and sInter throughout

• Sampl.19-ss-083104

-_ Slh-Pebble layer; brown In cooler; poorly sorted with sand to pebble layer at top and
sittler layer at base; silt layer could be laminated

• Sam pl. 20-ss-083104

-- Sand.pebble layer; blulsh-gray In color; moderately lorted wlth fine sand to pebble size grains
• Sampl. 21058-083104

-- Sand layer; blulsh-gray in color; well sorted with medium sand grains; "fluffy- or light feeling
• Sample 22-55-083104

-- Sand-Grav81Iayer; brown In color; moderately sorted with sand to gravel size graIns;
water saturated sediment

• Sample 23-5S-083104

1 _
Water Table; Impenetrable because of auger hole collapse

Figure 43: Detailed stratigraphic section of auger pit downslope of Carver Lake on South Sister
(Site 18).
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o em

'i,r-Sand-Gravellayer; brownlah-gray in color, moderately sorted with aand to gravel size
grains; nearly Impenetrable gravel or cobble layer -45 em below surface; some root fragments

• Sample 3O-8S-lI90704. . .•• •• •. ' .'.' ,'.'_:',',fl",:
'.' ,I. 'f' If ••••

.. e ,I ••• '.'

':-,':',','

Modem soli horizon; yellowlsh-brown In color; roots throughout; gray pumice
fragments throughout; trees and shrubs growing at surface; yellow-tephra wnhln layer
that mey be rtwort<ed Mazame Aeh depo.~ (7)

• Semple 29-8S-lI90704

-- Sand·Pebble layer; brown in color; poorly sorted with sand to pebble size grains; some
roots but taper off with depth

• Sample 31-8S-lI90704

Impenetrable gravel or cobble layer; likely glacial outwash deposit

30

60

90

120

Figure 44: Detailed stratigraphic section of auger pit near Green Lake hetween South Sister and
Broken Top Mountain (Site 20).

emo

30

60

90

120

Modern soli horizon; grayish-brown In color; poorly sorted with sand to gravel grains
and scattered cobbles; roots throughout

-- Sand-Pebble layer; brownish-orange In color; poorly sorted with sand to pebble size
grains; some roots but taper off with depth

-- SlIt..sand layer; brownlsh-orange In color: well sorted with sUbangular to subrounded
silt to sand size grains; some gravel within layer as well

• Sample 45-SS-lI91 004
• Sample 46-SS-lI91 004

-- Sand-Gravellayer; blackish-orange in color; moderately sorted with subangular to
subrounded sand to gravel size grains

"" • Sample 47-SS-ll91004

Impenetrable andesitlc gravel layer; likely glacial outwash deposit

Figure 45: Detailed stratigraphic section of auger pit downslope of Prouty Glacier on South Sister
(Site 24).
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.'.'.','.'
I ," I ," .' , ... 1 __ Sand-Gravellaytr, grayish-black In colol'j poorly sorted with angular to subrounded sand to
I , I ••• ", I I gravel,lze grains; no modem soil development present; pieces of gray to black pumice

.. 2100 +/. 400 yrs B,P. :' I I' : • I f I : I and brlck-red fragments throughout layer, tlkely Rock Mesa and Devil', Hili Tephra deposits (SCott, 1987)
I 'I I " • I •Sample 490$5-091004

o em

-- Sino$and layer; brown in color; well sorted with rounded sin to sand size grains; some gravel
and pebbl .. wi1!lln I,yer as .ell

• sample 5OoSS-$1004
• sample 51oSS~91004

Sand-Gravellayer, yellowish-brown in color, poorly sorted with angular to subrounded sand 10
-- gravel slza grainsj some roots present In layer; yellow-tephra deposn thalli vesicular within layer

• sample 52.s~91004
• S,mple 53oSS~91004\ Impenetrable gravel or cobble layer, likely glacial outwash deposit

Figure 46: Detailed stratigraphic section of auger pit on saddle north of Green Lake (Site 27).
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60
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120

emo

:~__ Sand layer; yellowlsh-brown In color; well sorted medium sand with no organic materials;
some yellow tephra mixed Into layer that is most likely reworked Mazama Tophra

• Sample 5S-MS~91704
• Sample 56-MS-091704

< 50 yrs B.P.
(?)

Impenotrable gravel or cobble layor, likely glacial outwath deposit

Figure 47: Detailed stratigraphic section of auger pit upslope of an apparent pre-Fountonnor
moraine on Middle Sister (Site 32). Radiocarbon dates of < 50 yrs B.P. corresponds to Beta
numbers 200872.
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60

Modem soli horizon; gray (top) to orange (bottom) in color; living roots penetrate

~enij"laYer

___ Tephra layer; yel1owlsll-brown In color; moderately sorted with angular coarse-sand
sIze grains; Mazama Ash Deposit

"" • Sampla 6l-8T-l192304

1~)~~~~\1~~~~Silt layer, darll: gray in color; moderately sorted wilh sub rounded to lIubangular pebble size grains
~'\'0-'%1~~~'" scattered throughout; paleosol layer; roots at surface penetrate top portion of layer

, " "" • Sampla 66-8T-092304

~

SUt layer; reddlsh-black in colorj well sorted; lorna sand scattered throughout layer,
some tephra from above and other volcanic fragments scattered througllout layer

• Samp~ 67-8T-092304

Impenetrable cobble layer, likely glacial outwash deposit

o em

30

90

Figure 48: Detailed stratigraphic section of soil pit dug overlying a Fountonnor till or outwash
deposit downslope of Broken Top (Site 41).
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Sand-Gravellayer; brownlsh-black In color; coal'l8-1and to gravel size grains mIxed with
clay, pebbles and organic: material

• Sampl. 73-BT -Il924ll4

Clay layerj dar1t brown in color; well sorted; massive structure; organic material throughout
layelj moat organic material Is some type of grass material; some sand within layer

• Sampl. 74-1lT.Q924ll4

Clay layer; grayish-brown In color, layer II completely saturate with water and liquefies
In auger bucket when extracted; organic content is low to none

• Sampl. 7s-BT .Q924ll4

? ? ? ? -- Extractlon Impossible because of mud liquefying

Figure 49: Detailed stratigraphic sectiou of auger pit downslope of Bend Glacier on Broken Top
(Site 43). Radiocarbon dates of 875 ± 85 yrs. B.P. and < 50 yrs. B.P. correspond to Beta numbers
200873 and 203137, respectively.
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