
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1985

Two new parallel processors for real time Two new parallel processors for real time

classification of 3-D moving objects and quad tree classification of 3-D moving objects and quad tree

generation generation

Farjam Majd
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Signal Processing Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Majd, Farjam, "Two new parallel processors for real time classification of 3-D moving objects and quad
tree generation" (1985). Dissertations and Theses. Paper 3421.
https://doi.org/10.15760/etd.5301

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3421
https://doi.org/10.15760/etd.5301
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Farjam Majd for the Master of Science in

Engineering: Electrical and Computer presented November 14, 1985.

Title: Two New Parallel Processors for Real Time Classification of 3-D

Moving Objects and Quad Tree Generation

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

Dr. Badii ,Chairman

Dr. M. Gh4ifai'iadeh

Two related image processing problems are addressed in this thesis.

First, the problem of identification of 3-D objects in real time is

explored. An algorithm to solve this problem and a hardware system for

parallel implementation of this algorithm are proposed. The

classification scheme is based on the "Invariant Numerical Shape

Modeling" (INSM) algorithm originally developed for 2-D pattern

recognition such as alphanumeric characters. This algorithm is then

extended to 3-D and is used for general 3-D object identification. The

hardware system is an SIMD parallel processor, designed in bit slice

2

fashion for expandability. It consists of a library of images coded

according to the 3-D INSM algorithm and the SIMD classifier which

compares the code of the unknown image to the library codes in a single

clock pulse to establish its identity. The output of this system

consists of three signals: U, for unique identification; M, for

multiple identification; and N, for non-identification of the object.

Second, the problem of real time image compaction is addressed.

The quad tree data structure is described. Based on this structure, a

parallel processor with a tree architecture is developed which is

independent of the data entry process, i.e., data may be entered pixel

by pixel or all at once. The hardware consists of a tree processor

containing a tree generator and three separate memory arrays, a data

transfer processor, and a main memory unit. The tree generator

generates the quad tree of the input image in tabular form, using the

memory arrays in the tree processor for storage of the table. This

table can hold one picture frame at a given time. Hence, for processing

multiple picture frames the data transfer processor is used to transfer

their respective quad trees from the tree processor memory to the main

memory. An algorithm is developed to facilitate the determination of

the connections in the circuit.

TWO NEW PARALLEL PROCESSORS FOR REAL TIME CLASSIFICATION OF

3-D MOVING OBJECTS AND QUAD TREE GENERATION

by

FARJAM MAJD

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ENGINEERING: COMPUTER AND ELECTRICAL

Portland State University

1985

~.._ ____ _

\
\

TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH:

The members of the Committee approve the thesis of Farjam Majd

presented November 14, 1985.

Dr::Bddli ,Chairman

Dr/ J. Henegha

Dr. M. G~afatzadeh

APPROVED:

, ead, Department of Electrical Engineering

ACKNOWLEDGMENTS

It is my pleasure and duty to express my sincere gratitude to my

advisor Dr. Faris Badi'i, who not only guided me through the course of

this thesis by giving valuable suggestions and ideas, but also was a

source of knowledge and support throughout my master's degree program.

I would like to give special thanks to my parents for their support

during the entire course of my education. Without their encouragement

my higher education would not have been possible.

TABLE OF CONTENTS

ACKNOWLEDGMENTS .

LIST OF TABLES

LIST OF FIGURES .

CHAPTER

I

II

III

INTRODUCTION • • • • • •
REAL TIME CLASSIFICATION OF 3-D MOVING OBJECTS

The INSM Algorithm •.

Extension to 3-D
Properties of 3-D INSM

A Pattern Recognition System Based on the 3-D INSM

Algorithm •••••.••••••

Hardware Configuration
Functional Description of the Hardware
System Operation

Results •

Cone 1 us ion •

REAL TIME GENERATION OF QUAD TREES

Quad Trees

A Real Time Image Compaction System Using Quad

Trees

Hardware Configuration
System Operation

Conclusion •••••..••

PAGE

iii

vi

vii

1

3

3

11

20

21

22

22

25

37

REFERENCES

APPENDIX A

APPENDIX B

.
•

v

38

40

49

TABLE

I

II

III

IV

v

LIST OF TABLES

Integer Codes for INSM Algorithm

Integer Codes for INSM Algorithm With Spikes

Relation Between INSM Codes for CW and CCW Traversals .

Relation Between CW Traversal of an Image and CCW

Traversal of Its Flip-Image . • . • . •..

Relation Between CW (CCW) Traversal of an Image and

Its Flip-Image ••...

PAGE

5

7

9

10

11

FIGURE

1.

2.

3.

4.

5.

6.

7.

8.

LIST OF FIGURES

The Polygonal Representation of an Airplane Profile .•

Spikes, Illustrating (a) Shorter, (b) Equal, and (c)

Longer Conditions .•

Relation Between cw and ccw Traversals

Image for Coding Example 2

Block Diagram for the Pattern Recognition System

Connections of the Microprocessor with Library Modules

Detailed Structure of a Library Chip ••••••

Complete Pattern Recognition System for Airplane

Identification

9. Examples of (a) Digital Image, (b) Its Quad Tree, (c)

Correspondence Between Image Quadrants, at Any Level,

and Quad Tree Branches, and (d) Tabular representa-

tion of a Quad Tree

10. Image Compaction System •

11. Detailed Structure of the Tree Generator

12. The Recursive Structure of the Tree Generator •

13. Interconnections of G-RAM, L-RAM, L-ROM and Control

Signals

14. One Quadrant of the Mirage Projection Library •

15. One Quadrant of the Mig Projection Library ••

PAGE

5

6

8

9

13

14

15

17

24

26

27

28

30

50

50

viii

FIGURE PAGE

16. One Quadrant of the Phantom Projection Library 51

17. One Quadrant of the F 104 Projection Library 51

18. One Quadrant of the F 105 Projection Library 52

19. One Quadrant of the B 57 Projection Library • 52

20. Polygonal Approximations of the Mirage Profiles 53

21. Polygonal Approximations of the Mig Profiles. . 54

22. Polygonal Approximations of the Phantom Profiles 55

23. Polygonal Approximations of the F 104 Profiles 56

24. Polygonal Approximations of the F 105 Profiles 57

25. Polygonal Approximations of the B 57 Profiles • 58

CHAPTER I

INTRODUCTION

Real time image processing is a relatively new field which was made

possible primarily because of the advances in IC technology. This has

made the implementation of special purpose processors more feasible due

to lower cost and more accessible service (1-3]. Image processing of

any kind generally involves a large number of operations due to the

abundance of information in the data source (image) and its intricate

nature. Hence, single processor digital computers do not lend

themselves well to real time image processing, and special purpose

parallel processors must be designed which reduce the computation time

by performing the required operations in parallel instead of in

sequence, as in the case of common computers (4, p. 209].

In this thesis, two new parallel processors are presented. In

Chapter II, the method of "Invariant Numerical Snape Modeling" (INSM)

which was originally developed for 2-D alphanumeric character

recognition [5] is extended for 3-D object recognition. The INSM method

is not dependent on the size, orientation and location of the object.

Subsequently, a bit slice SIMD architecture is proposed for 3-D object

recognition and classification.

In Chapter III, the quad tree algorithm, which is normally used for

image representation and compaction, is briefly described and a tree

architecture is developed based on this algorithm. This processor has a

2

recursive combinational structure that processes all bits of a picture

(pixels) simultaneously and therefore is extremely fast.

CHAPTER II

REAL TIME CLASSIFICATION OF 3-D MOVING OBJECTS

There are two general types of pattern recognition: discriminant

and syntactic [6]. In discriminant methods of pattern recognition, a

set of characteristic measurements, called features, is extracted from

the image. The set of these features is called a feature vector. The

feature vector describes the image under consideration and can be used

for its recognition. Syntactic methods, however, deal with the

components of an image. These components, often called primitives,

compose each pattern which is recognized according to some rules for

parsing the pattern structure.

In this thesis a syntactic recognition is chosen, as described

next.

THE II INSM" ALGORITHM

One of the methods utilized for shape description in syntactic

pattern recognition is the generation of a numeric code or number string

based on the boundaries of an object [5, 7, 8]. INSM is one such

algorithm. This algorithm uses the polygonal representation of the

boundary of the object to generate the code. The coding starts from an

arbitrary node, and the polygon is traversed in a cw or ccw direction,

to one node beyond the starting point. The code is generated based on

the relative direction and length of the line segments (polygon

4

sides). There are six possible relations between two consecutive line

segments based on these criteria. A line segment can either turn to the

right or left and be shorter, equal, or longer with respect to the line

segment before it. To each one of these six possible configurations, an

integer code is assigned. As the polygon is traversed, one such integer

is assigned to each line segment. Thus, an n-digit code is used to

represent an n-sided polygon. This code is normalized by circularly

rotating the number string and selecting the position which yields the

largest numerical value. The normalized code is independent of the

orientation of the object and the starting node. This is true because

the image polygons are closed and the order of the sides traversed are

independent of the starting point.

The selected integer codes for INSM are summarized in Table I. The

following example illustrates this algorithm.

EXAMPLE 1

TABLE I

INTEGER CODES FOR INSM ALGORITHM

Relative Condition
Between Line Segments

RIGHT

LEFT

Shorter
Equal
Longer

Shorter
Equal
Longer

Integer Code

1
2
3

4
5
6

Let us code the airplane image shown in Figure 1.

Figure 1. The polygonal representation of an airplane profile.

The coding is done starting from the circled node:

1. right, equal: 2 4. right, 1 anger: 3

2. left, 1 onger: 6 5. right, shorter: 1

3. right, shorter: 1 6. right, shorter: 1

5

6

So the object code is 261311, which is normalized to 613112.

Extension to 3-D

In general, a 3-D object can be specified by a number of 2-D

projections obtained at different spatial angles around the ooject. The

more complicated the shape of the object is, the more 2-D projections

(or profiles) are needed to specify it. Based on this property, a 3-D

object can be identified, not by a single object code, but rather by a

set of ooject codes, each one of which is the object code of one of the

profiles. One possible feature of profiles is what is called a spike.

A spike results from a 180 direction change of a line segment with

respect to its predecessor. Thus, in the case of a spike, there are

three possible conditions: shorter, equal and longer.

Normally, spikes do not occur as often as other conditions. For

this reason, two-digit integer codes were selected for assignment to

various spikes. Integer 7 signifies the existence of a spike; and 71,

72, and 73 designate shorter, equal, and longer conditions. These

conditions are shown in Figure 2.

(a) (b) (c)

Figure 2. Spikes, illustrating (a) shorter, (b) equal, and (c) longer
conditions.

The INSM integer codes, including the spike conditions, are

7

summarized in Table II. The integer codes 1 through 7 are represented

internally in a computer using binary codes 001 through 111,

r~spectively. Thus, for every integer code we need three bits, and for

a spike we need six. However, spikes occur much less frequently than

other conditions. Therefore, for an n-digit object code, we need a

memory space on the order of 3n bits. Had we chosen distinct integers

for the spikes, such as 7, 8, 9 instead of 71, 72, 73, we would have

needed a memory space on the order of 4n bits since 8 and 9 require

at least four binary bits. Thus, this selection of spike codes reflects

approximately a 25% savings in memory space.

TABLE II

INTEGER CODES FOR INSM ALGORITHM WITH SPIKES

Relative Condition Integer Code

RIGHT

Shorter 1
Equal 2
Longer 3

LEFT

Shorter 4
Equal 5
Longer 6

SPIKE (7)

Shorter 71
Equal 72
Longer 73

8

Properties of 3-D INSM

The 3-D INSM algorithm is dependent on the direction of traversal.

However, there is a one-to-one relation between cw and ccw traversals,

which is depicted in Figure 3. This figure demonstrates that the

condition "right, longer" in cw traversal is equivalent to "left,

shorter" in ccw traversal (Figure 3a) and vice versa (Figure 3b). The

conditions "right, equal" and "left, equal" are equivalent in cw and ccw

traversals, respectively. These relations are presented in Table III in

terms of integer codes.

B <ccw B ccw B ccw

AI
0

A<B A) B A A = B
A

cw
w

cw

(a) (b) (c)

Figure 3. Relation between cw and ccw traversals. In cw traversal (a),
the condition "right, longer" is equivalent to "left,
shorter"; (b) "right, shorter" is equivalent to "left,
longer"; and (c) "right, equal" is equivalent to "left,
equal" when traversing in ccw direction.

TABLE III

RELATION BETWEEN INSM CODES FOR CW AND CCW TRAVERSALS

CW TRAVERSAL

1
2
3
4
5
6

71
72
73

CCW TRAVERSAL

6
5
4
3
2
1

73
72
71

9

Table III is used in order to convert a cw code to ccw or vice

versa. However, this is not sufficient since not only the codes change

when the direction of traversal changes, but also the order of traversal

is reversed. Hence, Table III is used to convert the integer codes and

then the converted code is written in reverse order to give the correct

object code. This property is illustrated in the following example.

EXAMPLE 2.

Suppose we are given the image in Figure 4:

Figure 4. Image for coding example ·2.

10

The cw traversal results in 16131, which is normalized to 61311; and the

ccw traversal results in 46166, which is normalized to 66461. Using

Table III, 11316 is obtained for the ccw code. Now, writing this in

reverse order results in 61311, which is the same as the normalized cw

code.

Another one of the properties of the 3-D INSM is the relation

between the cw traversal of an image polygon and the ccw traversal of

its flip-image polygon. The flip-image is obtained by a 180° rotation

of a 2-D image about an arbitrary axis in its plane. This relation is

simply that left direction in an image polygon is equivalent to the

right direction in the flip-image polygon. This relation is given in

Table IV.

TABLE IV

RELATION BETWEEN CW TRAVERSAL OF AN IMAGE AND
CCW TRAVERSAL OF ITS FLIP-IMAGE

CW Codes
of Image

1
2
3
4
5
6

71
72
73

CCW Codes
of Flip-Image

4
5
6
1
2
3

71
72
73

From the relations given in Tables III and IV, it is clear that the

11

code and flip-code (code of its flip-image) of an image contain .the same

information and one can be obtained from the other. This is one of the

major strengths of the 3-D INSM algorithm, since it allows the

elimination of 50% of profiles otherwise needed for t~e unique

identification of a 3-D object. However, since in coding an image, the

traversal is always done in cw or ccw direction, a relation should be

derived between cw or ccw traversal of an image and its flip image.

Such relation may easily be derived by combining Tables III and IV. The

result is presented in Table V.

TABLE V

RELATION BETWEEN CW (CCW) TRAVERSAL OF AN IMAGE
AND ITS FLIP-IMAGE

CW Codes
of Image

1
2
3
4
5
6

71
72
73

CW Codes
of flip-Image

3
2
1
6
5
4

73
72
71

A PATTERN RECOGNITION SYSTEM BASED ON THE 3-D INSM ALGORITHM

The aforementioned properties of the 3-D INSM algorithm and its

relative simplicity make it a desirable algorithm for pattern

recognition and classification. The recognition scheme presented in

12

this thesis consists of a library of profiles of one or more given

objects (a set of six airplanes are used here as an example) coded using

this algorithm and the INSM code of an external object which is to be

recognized. The code for the external object is generated by a

processor from an image of the object, obtained via some data

acquisition system. This code is then compared to all library codes to

establish its identity.

Hardware Configuration

The hardware arrangement for the realization of this system is

shown in Figure 5. The image of the object targeted for identification

is acquired by an image acquisition system and fed into a dedicated

microprocessor for coding. The code is then sent to an image classifier

for identification. The classifier has an SIMD architecture, designed

in bit slice fashion. A more detailed diagram of this system is shown

in Figure 6. The image classifier consists of a set of library modules,

designated Li, where i is a numeric subscript. Every Li chip has three

terminals, A, B, and C. Terminal A consists of eight bits for data

input; terminal B is used as a clock pulse for data multiplexing; and

terminal C is the output signal signifying the identification of the

image (input data). The internal structure of the Li chips is shown in

Figure 7. The numbers shown in this figure are purely for illustration

purposes and may vary according to application and cost considerations.

Here, for the sake of illustration, it is assumed that coding is done

using an 8-bit microprocessor. It is further assumed that a resolution

of 32 digits is sufficient for codes to be unique. Thus, each profile

IM
 A

G
[

~
J
P

IM
A

G
E

- .

A
Q

U
l5

IT
IO

N

C
LA

S
S

IF
IE

R

Fi
gu

re
 5

.
B

lo
ck

 d
ia

gr
am

 f
or

 t
he

 p
at

te
rn

 r
ec

og
ni

ti
on

 s
ys

te
m

.

.....

w

IM
A

G
E

/J

P
.

~

A
Q

U
IS

IT
IO

N

--

vB

., 1

~

,

.
T

O

O
T

H
 E

..R

A

tB

A/

B

L
l

L2

c
f

0
le

-
.

Fi
 v

u
re

ti.

C

or
nw

ct
io

ns

cf
 t

l1
e

11
1i

cr
op

ro
ce

ss
or

 \
~i

tr
1

li
b

ra
ry

 1
11

od
ul

es
.

M
O

D
U

L
E

S

~

.....

,+
:::

.

A

-a
B

c
1 X

 J
6

D
C

 C
O

 D
C.

 R

1
-1

l
c
o

u
w

rt
R

I

12

u
•••

 -
..

,
4

C
O

D
E

:
R

E
G

IS
T

E
R

S

18

I
•

I
'"

''
-'

'L
IB

R
A

R
Y

1

1
R

E
G

IS
T

E
R

S

c

F
ig

ur
e

7.

D
et

ai
le

d
st

ru
ct

u
re

 o
f

a
li

b
ra

ry
 c

hi
p.

.....

U
"I

16

chip consists of 1-13 counters whose clock pulse is provided through

terminal B, a 1 x 16 decoder, twelve 8-bit registers for holding the

target code, and eighteen 96-bit registers for storing the library

profiles. Signal Al shown in Figure 6 signifies the identification of

the one airplane whose profiles are in chips Ll and L2. The entire

system for the identification of six airplanes is shown in Figure 8.

Each block with output Ai has a structure identical to that shown in

Figure 6, but with profiles of different airplanes. Every such block is

connected to the µP via the A and B terminals of its Li chips. Signals

N, U, and M correspond to nonidentification, unique identification, and

multiple identification, respectively.

Functional Descriktion of the Hardware

Let t , 1 , and C be the i th bit of the code register, the i th
i ij k

bit of the jth library register of the L module, and the C terminal of
k

the L module, respectively. And furthermore, let A be the output of
k r

the rth block as shown in Figure 8. Where, for the case under

consideration, i = 1, 2, •.. , 96; j = 1, 2, ... , 18; k = 1, 2; and

r = 1, 2, •.• 6, then we can write:

N

F
R

O
M

 J
<

P.

M
IR

A
G

-£
 ~

-9

M
I&

9

F
10

4
19

F1

4
..

r~

·9
PH

A
N

T
O

M
.1

'9

A
f

A
3

A

·f

A
5

AG

5
-0

R

4
-0

R

3
-0

R

2
-0

R

F
ig

ur
e

8.

C
om

pl
et

e
pa

tt
er

n
re

co
gn

it
io

n
sy

st
em

fo

r
ai

rp
la

n
e

id
en

ti
fi

ca
ti

o
n

.

.....
.

....
....

18

(1)

A = ~ Ck
r k=l

, r_ 1,2, ,6 (2)

(3)

(4)

(5)

19

where:

n = # of library registers per Li module (18, in our case)
1

n = # of bits per library register (96)
2

n = # of distinct objects in the library (6)
3

Thus, in order to expand the library, we can take advantage of

the expandable bit slice design and add Li chips for increasing the

number of profiles per object without having to alter the internal

structure of the Li chip itself. And for adding more objects, we can

add entire modules as the one in Figure 6. To add these Li chips or

modules to the system, it is only necessary to use trivial external

gating of these subsystems; and no major modification is necessary.

Equations (1) - (5) facilitate this expansion.

System Operation

Once a profile is acquired from the target object, it is sent to

the microprocessor for coding. Then the code is transmitted to the Li

modules eight bits at a time, as shown in Figure 6. In Figure 7, the

counter-decoder combination form a multiplexing circuit in conjunction

with the tri-state buffers at the inputs of the code registers. The

microprocessor sends the first eight bits of the 96-bit code and then

clocks the counter via terminal B to enable the input to the first code

register by enabling the first output of the decoder. Then the next

eight bits are put on the bus and another pulse enables the second

decoder output which in turn enables the current data into the second

code register, etc. When all 96 bits of the code are loaded into the

20

code registers, the thirteenth decoder output enables all of the code

registers' outputs at once, which causes the target profile to be

compared to all eighteen library profiles simultaneously. If one or

more of the library profiles matches the target profile, then the output

at terminal C goes high, signifying this fact. In addition, if the C

output of one or more Li modules is high, then signal Ai will go high,

as shown in Figure 6. This means airplane Ai has been identified. If

exactly one Ai signal is high, then output U will go high, indicating a

unique identification. If more than one Ai signal is activated, then

signal M will go high, which signifies a multiple identification. This

signal means more profiles are needed for unique identification. Signal

N will be activated if none of the Ai signals is high, which means that

the target was not recognized.

RESULTS

A computer program was written in C language to test the INSM

algorithm. The actual profiles of a set of six airplanes [7] were used

to carry out this test. The program was successful in establishing the

reliability of this method by properly identifying arbitrary objects and

random profiles of these airplanes. A Haming distance of zero was

chosen for comparison. A copy of this program in provided in Appendix

A. As mentioned earlier, due to its flip and orientation invariance,

the 3-D INSM algorithm tan reduce the number of profiles needed for

identification by more than 50%. Actually, in the example used, more

than 60% of images provided were discarded because of redundancy with

21

respect to this algorithm. The profiles used in the test are given in

Appendix B.

CONCLUSION

In this paper it was shown that the INSM algorithm is a suitable

method for 2-D pattern recognition. This algorithm was extended to 3-D;

and after establishing its properties, it was shown, using a computer

program, that it can be easily-applied to the problem of 3-D pattern

recognition and classification, as well. A real time, microprocessor­

based pattern recognition system was proposed and developed which

consists of an image acquisition system and a microprocessor for

generating the INSM code. A parallel processor was designed with a bit

slice SIMD architecture for the recognition and classification of a

given target image. A set of Boolean equations was derived to

facilitate hardware description and expansion. In all, in this thesis a

new real time pattern recognition algorithm, complete with an

appropriate hardware system, was developed.

CHAPTER III

REAL TIME GENERATION OF QUAD TREES

Generally, digital images are stored in computer memory using a 2-D

array. However, this is not an efficient method of data storage since
2

the memory space required increases as n for an n x n image. For this

reason, considerable work has been done in the area of digital image

representation and compacation. Traditionally, two distinct approaches

have been used for this purpose. In the first approach, boundaries of

an image have been used for its representation [9, 10]; and in the

second, distinct internal regions of the image have been utilized. More

recently, other approaches to image representation have been used.

Among these are hierarchical data structures such as image pyramid [11,

20] and quad tree [13-16].

In this thesis, the quad tree data structure is used for developing

a real time image processor for image representation and compaction.

QUAD TREES

The quad tree is a recursive data structure which is suitable

for the representation of 2-D data such as images. One of the

advantages of using quad trees is their ability to represent images in a

more compact form [17].
n n

A picture frame which has a 2 x 2 dimension, will have an (n

+ 1)-level quad tree representation [8]. A quad tree is generated by

23

dividing the entire picture frame into four equal quadrants, if all

pixels in the whole frame do not have the same gray level (a frame of a

single solid color). Then each quadrant is examined separately. If

pixels in a given quadrant all have the same gray level, then that

quadrant is left untouched and forms a leaf of the tree; otherwise, it

forms an internal node. If, however, some pixels have a different gray

level than others, then that quadrant is subdivided into four

subquadrants. This process is repeated until all subquadrants have only

one gray level within themselves. Then each such subquadrant forms one

leaf of the quad tree. All the information necessary to reconstruct the

image will be contained in the leaves of its quad tree. This quad tree

has n + 1 levels, with level 0 corresponding to the root of the tree or

the whole picture frame and level n corresponding to a single pixel.

Each subdivision corresponds to going one level down in the

tree. Figure 9 shows an example of a quad tree. At each level, the

correspondence between quadrants and the tree nodes is given by Figure

9c. Other assignments are possible as well. One way of representing a

leaf of a quad tree in compact form, at any level, is to store the

address of the upper left pixel of that quadrant, the length of its side

in terms of pixels, and the gray level of the quadrant in a table.

Thus, a quad tree can be stored and represented in this tabular form

without storing information about a node's parents and children. Such

information may be extracted from this table if needed. An example of

such a table is given in Figure 9d.

24

(C)

ROOT

START LENuiH OF
ADDRESS SIDE'. G.RAY LtVE.L

X::.1,Y=l j BL ,4.tK.: 1
(6) 1, 2 I j wurre =o

2, 1 1 0
2, 2 1 1
1, 3 1 0
i,4 1. 1
2,3 1 0
2,4 1 0
3, 1 2 0
3,3 2 1

(d)

Figure 9. Examples of (a) digital image, {b) its quad tree, (c)
correspondence between image quadrants, at any level,
and quad tree branches, and (d) tabular representation
of the quad tree.

25

A REAL TIME IMAGE COMPACTION SYSTEM USING QUAD TREES

As was pointed out earlier, quad trees are suitable data

structures for compact storage of images. The system proposed here is

for the real time compaction of images which are acquired frame by frame

through an image acquisition system. This is done using a tree

architecture based on the quad tree structure. The quad tree of an

image is generated in real time as fast as data can be input to the

processor. A block diagram of this system is shown in Figure 10.

Hardware Configuration

The system shown in Figure 10 consists of an image acquisition

system, a tree processor, a secondary processor, and a main memory unit.

A picture frame is fed into the tree processor, pixel by pixel, via the

image acquisition system. Actually the operation of the tree processor

is completely independent of the way that data are input to it. The

data may be given to the tree processor pixel by pixel, row by row,

column by column, all at once, etc. The tree processor itself consists

of a combinational circuit called a tree generator, two arrays of RAM,

one double arrray of ROM, and another single array of ROM.

Tree Generator. A detailed diagram of the tree generator for a
2 2

2 x 2 data array is shown in Figure 11. It consists of a recursive

structure beginning with groups of four pixels and expanding outward

with groups of four groups, etc. This recurisve structure is

illustrated in Figure 12. The letter 11 R11 designates a single register

or pixel. These groups are formed by grouping together four units in a

T
R

E
E

P

R
O

C
E

S
S

O
R

R

O
M

R

A
M

T

R
E

E

X
Y

L

G

G
E

N
E

R
A

T
O

R

[g
J [

g]

.
D

D

IM
A

G
E

~

[g
] [

ffi
 ·

A
Q

U
IS

IT
IO

N

D
D

t

t
.

I
L

-R
O

M

,

PR
O

C
ES

SO
R

~

M
A

IN
 M

E
M

O
R

Y

Fi
gu

re
 1

0.

Im
ag

e
co

m
pa

ct
io

n
sy

st
em

.

N
 °'

27

Figure 11. Detailed structure of the tree generator.

~~ [fil~
~~~~ 
~[]~~ 
[I]~~~ 

• 

• 
. 

• • • 

Figure 12 .• The recursive structure of the tree generator. 

28 



29 

square type of structure, forming a larger unit. Then this larger unit 

is grouped with three other similar units again in a square type of 

structure to form an even larger unit. This upward recursive procedure 

is repeated until the desirable height is reached. The largest such 

unit corresponds to the entire picture frame, or equivalently, to the 

root of the quad tree; and the smallest unit is a single register which 

corresponds to the lowest level of the tree, or a single pixel. Thus, 

the hardware structure of the tree generator is identical to that of a 

quad tree. 

At any level, the units in a given quadrant are connected via an X­

NOR-gate, and the outputs of these are fed into an AND-gate. Each such 

AND-gate also receives the outputs of the AND-gates of its subquadrants, 

as inputs, and its own output is fed into the inputs of its 

superquadrant's AND-gate. The output of every AND-gate is also 

connected to inputs of a non-inverting tri-state buffer and an inverting 

tri-state buffer. The outputs of these buffers are used for the control 

of data paths between the tree generator and memory arrays of the tree 

processor. The enable signal for these buffers, at any given level and 

a given quadrant, comes from the output of the inverting buffer of their 

superquadrant. It is important to note that every X-NOR-gate in Figure 

11 actually represents eight X-NOR-gates, one per register bit. Thus, 

their input lines represent eight lines, while all other lines are just 

single lines. 

Memory Structure of Tree Processor. In addition to the tree 

generator, the tree processor has three distinct arrays of memory 



30 

elements. These include an array of RAM called the G-RAM, another RAM 

array called the L-RAM, a double array of ROM designated X-ROM and Y-

ROM, and an array of ROM called L-ROM. 
n n 

The G-RAM, L-RAM, X-ROM, and Y-ROM have 2 x 2 registers each, 

one for every register in the tree generator. The L-ROM has n + 1 

registers. There is a row-by-row correspondence between the registers 

in the tree generator and the registers in these four memory arrays. 

The registers in each array are numbered according to row and column 

numbers of the pixels in the tree generator, as illustrated in Figure 11 
2 2 

for the 2 x 2 case. 

The G-RAM, L-RAM, X-ROM, and Y-ROM are for storing the gray 

level, the length of side of a quadrant of the quad tree, the row 

number, and the column number of their corresponding registers in the 

tree generator, respectively. The L-ROM contains the n + 1 possible 

lengths of sides for quadrants at different levels of the tree. 

Processor. When processing multiple frames of pictures, we need 

a larger memory than that available in the tree processor since that 

memory is for storing one frame of picture (in quad tree representation) 

only. Thus, after a frame of picture is processed, it is read from the 

memory of the tree processor into a larger memory space. This is done 

by the processor. Data compaction actually takes place during this 

transfer. 

Main Memory. The main memory is a mass storage device for 

storing quad trees in compact tabular form after they are generated in 

the tree processor. As mentioned above, the quad trees are transferred 



31 

to the main memory using the processor. 

System Operation 

The image to be processed is loaded into the tree generator as 

shown in Figure 10. The tree generator works in two combinational 

passes. In the first pass, as the registers are loaded, starting with 

the lowest level (the register level), if pixels in a group have the 

same gray level (same bit pattern), then the AND-gate of that group will 

have a high output. This output signifies that this quadrant may be a 
-

leaf of the tree, if it is not part of a bigger quadrant at a higher 

level in the tree. If all the AND-gates in the next upper quadrant 

containing this group are high, and if, in addition, the pixels in all 

similar groups in this quadrant have the same gray level, then the AND­

gate of this quadrant will go high, indicating that all pixels in this 

quadrant are the same. This upward recursive process takes place 

simultaneously in all quadrants of the tree, starting with the lowest 

level and combinationally propagating up to the root of the tree. The 

second pass is a downward recursive process from the root of the tree 

down to the lowest level. During the second pass at any level in the 

tree, starting with the top level, the output of the AND-gate of a given 

quadrant is either high or low. If it is high, it signifies that all 

pixels in that quadrant are the same and hence, that quadrant is a leaf 

in the tree. However, if it is low, it indicates that all pixels in 

that quadrant are not the same, and it has to be divided into four 

subquadrants. This division is done using the signal now generated at 

the output of the inverting buffer of this AND-gate. This signal 



32 

propagates down to enable the buffers of the AND-gates of all its 

subquadrants. Depending on the states of their respective AND-gates, 

these subquadrants either form some leaves of the quad tree, or 

propagate the signals from the outputs of their inverting buffers to the 

next level down. This process continues in all quadrants simultaneously 

and through all levels (with a combinational propagation delay) until a 

timer set for the maximum propagation delay of both passes terminates 

the second pass by reseting all registers in the tree generator to zero. 

Before the termination of the second pass, the quad tree 

structure is specified by the outputs of the non-inverting and inverting 

tri-state buffers in every level. But these are actually only the 

control signals which will subsequently generate the quad tree table in 

the memory arrays. There are one or more sets of eight tri-state 

buffers at the input of each register in the G-RAM and L-RAM arrays, as 

shown in Figure 13. The input to each register in the G-RAM comes from 

the output of the corresponding register in the tree generator, and the 

inputs for the L-RAM come from the L-ROM. The tri-state buffers' enable 

lines are connected to the control signals from the tree generator. 
2 2 

These control signals are shown for a 2 x 2 system as circled numbers 

in Figures 11 and 13. The control signals consist of the outputs of 

either non-inverting or inverting buffers. The high outputs of non­

inverting buffers constitute control signals at any level of the tree 

because a high signal at their output indicates that their respective 

quadrants are leaves of the tree and are ready for tabulation. However, 

a high signal at the output of the inverting buffers constitutes control 



L 
J . , 1 

\ 2 . 
I 

1 • 3 

1 .4 . 

2 , 1 

·2 . 2 

2· .3 

2 ,4 

3 . 1 

3 ,2 

3 ,3 

3 ,4 

4, l 

4 1 2 

4,3 

4,4 

RAM 

: Figure 13. 

(Z, Z) 

(?. 3) 

('t' J) 

t+, z) 

G 
1 J j 

1 '2 

l . 3 

1 ,4 

2 1 l 

2 .2 

2 ,3 

2 .4 

3 . 1 

3 .2 

3 ,3 

3.4 

4,4 

RAM 

Interconnections of G-RAM, L-RAM, L-ROM and control 
signals. 

33 



34 

signals only at the lowest level, where the last buffers appear, and the 

lower level is the register level. Such signals at higher levels would 

enable the tri-state buffers of their respective subquadrants, as 

explained earlier. If a control signal comes from a non-inverting 

buffer, it will only enable the input of those registers in the G-RAM 

and L-RAM arrays that corresponds to the upper left register in its 

quadrant. This is because all pixels in that quadrant have the same 

gray level, and the upper left register serves as a representative of 

the gray level of the entire quadrant. The address of this register is 

called the start address of this quadrant. However, if a control signal 

comes from an inverting buffer, then it means that it is at the lowest 

level and that at least two of the pixels in this lowest level quadrant 

have different gray levels and should be tabulated separately. Thus, 

such signal will enable the inputs to all registers of the G-RAM and L­

RAM arrays which correspond to the four pixels in its quadrant. Based 

on these properties, the connections from the control signals to the 

input enables of the G-RAM and L-RAM can be easily established. It is 

worthwhile to observe that control signals have either four connections 

(for inverting buffers) or one connection (for non-inverting buffers). 

The control signals have identical connections to G-RAM and L-RAM 

arrays. 

In order to determine the precise connections from the L-ROM to 

L-RAM, we need to find a general relationship between the length of side 

of a quadrant in a given level and all possible registers which can 

possibly have that length of side in a quad tree structure. Since a 



35 

quad tree is formed by successively dividing each side of its quadrants 

by 2, the starting address of each has to be an integer power of 2. 

Also, at every level there will be i x i such starting points, where i-1 

is the level number, starting with zero for the top level or root of the 

tree. Using these properties, the following equations and algorithm A 
n n 

were derived. For a 2 x 2 array we have: 

k ·n 
x = 1 + j * 2 ; j = 0, 1, ' 2 -1 

7 
k 

Y = 1 + 1 * 2 ; 1 = 0, 1, .•. , 2n -1 

where: 

. 2k 

k = log [length of side] = 0, 1, ... , n 
2 

x = row number of the start point 

y = column number of the start point. 

Algorithm A 

For k = 0 to n [ 
n 

Set: P = 1, Q = 2 -1 

7 
For j = 0 to Q [ 

For 1 = 0 to Q [ 

(6) 

(7) 

(8) 

k K 
Set: X(P) = 1 + j * 2 , y(P) = 1 + 1 * 2 

Set: P = P + 1 
] 

J 



36 

Equations (6) and (7) were derived to be used in algorithm A. This 

algorithm gives the correspondence between any given possible length of 
k n n 

side, 2 , for k = 0, 1, ..• , n, in a 2 x 2 array, and the start 

address (upper left pixel), (x, y), of all subquadrants which could 

possibly have that length of side. Thus, for k = 0, algorithm A will 
k 0 

produce all pixels in the array since 2 = 2 = 1 and all pixels can be 

the start address of a subquadrant with a length of side of 1 (a single 

pixel). And fork= n, the algorithm will only produce (x, y) = (1, 1), 

because only pixel (1, 1) can be the start address of a subquadrant with 
n 

a length of side of 2 (the entire array). 
k 

The L-ROM contains all possible lengths of side, 2 , for k = 0, 

1, ... , n. Hence, for each value of k, the coordinates of the L-RAM 
k 

registers which can have a side of length 2 , are generated using 

algorithm A, and connections are made accordingly. The address of all 

registers of the tree generator are stored in the X-ROM and Y-ROM arrays 

since they are known in advance. Once the value of a register and the 

length of side of the quadrant it belongs to are transferred to the 

appropriate arrays, the table entry for that leaf is complete. It 

should be noted that not all registers in the G-RAM and L-RAM arrays 

will contain a value for a given quad tree since a quadrant which is a 

leaf will be represented only by its start register, and the rest of its 

registers will be ignored. Thus, although the memory arrays of the tree 

processor will contain the quad tree table, it is not any more compact 

than the original picture stored in the tree generator because of the 

gaps in these memory arrays. Hence, to compress this table and at the 



37 

same time transfer it to the main memory, a processor is used, as shown 

in Figure 10. This processor first checks the L-RAM, one register at a 

time. If it was non-zero, then it transfers the entire table entry 

corresponding to that register (i.e., the contents of L-RAM and the 

corresponding registers in G-RAM, X-ROM, and Y-ROM) to the main memory. 

If it was zero, however, the processor ignores that entire table entry 

since it is actually a blank line. This way, the filled table entries 

are stored one after another, without any gaps, in the main memory. 

After the last entry is processed, the processor will send a signal to 

reset all registers in the G-RAM and L-RAM arrays to zero. Now the 

entire system is ready to process another frame of picture. While the 

processor is busy reading the table entries, the tree generator can 

receive the next picture frame since it has already been reset after the 

second pass of the previous image. Therefore, pipelining has been 

incorporated into this system as well, for maximum efficiency. 

CONCLUSION 

A new real time image compaction system was developed based on 

the quad tree data structure. It consists of a tree architecture which 

processes 2-D data in parallel and is independent of the data inputing 

process. It was proposed that this system is best suited for the 

processing of multiple frames of pictorial data in real time since it 

combines parallel processing with pipelining for maximum speed. 

Formulas were derived to facilitate the specification of hardware 

connections. 



REFERENCES 

1. D. Agrawal and R. Jain, "A Pipelined Pseudoparallel System 
Architecture for Real Time Dynamic Scene Analysis," IEEE 
Trans on Comps., Vo 1 c-31, No. 10 (October 1982). --

2. F. A. Briggs, K. S. Fu, K. Hwang, and J. Patel, "PM: A 
Reconfigurable Multiprocessor System for Pattern Recognition and 
Image Processing," Proc. NCC, AFIPS (June 1979). 

3. L. S. Davis, "Computer Architecture for Image Processing," Proc. 
Picture Data Descrip. Manag Conf. (August 27-28, 1980). 

4. John P. Hayes, Computer Architecture and Organization, McGraw-Hill, 
New York (1978). · 

5. Mode 1 i ng," 
Pattern Reco nition, 

6. K. S. Fu, "Recent Advances in Syntactic Pattern Recognition," 
School of Electrical Engineering, Purdue University, W. Lafayette, 
Indiana. 

7. T. Wal lace and 0. Mitchell, "Real Time Analysis of Three 
Dimensional Movements Using Fourier Descriptors," School of 
Electrical Engineering, Purdue University, W. Lafayette, IN. 

8. Thes Pavlidis, Algorithms for Gra hies and Ima e Processin , 
Computer Science Press, Rockville, MD. 1982 . 

9. H. Freeman, "On the Encoding of Arbitrary Geometric 
Configurations," IRE Trans. on Electronic Computers, Vol. EC-10, 
No. 2, pp.260-268 {1970). 

10. V. Montanari, "A Note on Minimal Length Polygonal Approximation to 
a Digitized Contour," Comm. of ACM, Vol. 13, No. 7, pp. 41-47 
{1970). 

11. M. D. Levine and J. Leamet, "A Method for Non-Purposive Picture 
Segmentation, 11 Proc. of 3rd Int. J. Conf. on Pattern Recognition, 
pp. 474-497 (1976). 

12. S. Tanimoto and A. Klinger, "Structured Computer Vision," Chs. 2-3, 
Academic Press (1970). 



39 

13. A. Klinger and C. R. Dyer, "Experiments in Picture Representation 
Using Regular Decomposition," Computer Graphics and Image 
Processing, Vol. 5, pp 68-105 (1976). 

14. H. Samet, "Region Represntation: Raster-to-Quad Tree Conversion," 
IEEE Trans. on Pattern Anal sis and Machine Intelli ence, Vol. 3, 
pp. 93-95 1981 • 

15. H. Samet, "Region Representation: Quad Tree From Binary Array," 
Computer Graphics and Image Processing, Vol. 13, pp. 88-93 (1980). 

16. G. M. Hunter and K. Steiglitz, "Operation on Images Using Quad 
Tree, 11 IEEE Trans. on Pattern Anal sis and Machine Intelli ence, 
Vol.1, No. 2, pp. 145-153 1979 • 

17. C. H. Chien and J. K. Aggarwal, "A Normalized Quad Tree 
Representation," Proc. IEEE Conf. on Com uter Vision and Pattern 
Recognition, p. 121 June 1983 . 



APPENDIX A 

A COMPUTER PROGRAM FOR TESTING THE 3-D INSM ALGORITHM 



/-A -it*.*.-ir.*.lr. *.lr.-A/1:.-A.'l'A.A;~.l;A*.J.:.:V.;•:AJ; ,~ t;A).;.Ud.J..A>:.J.;Jr.Jr.A-i-:AJ.:lr.lr.-J<.Jr.A*-Af.JA ~ ... ~ ;'<: ,·.;•: -~..-: :':-.k..:l:.·:-i-:J;,1;f;?: f: · 
I* Ihi~ is a iunct1on whir.h Jr. ARGUMENTS : '* implements a pattern ~ A*Alr.-ir.Jr.AAJr.•A~ 
/~ rl!eo~r.itior, ::.19oritnM J. :: ... 1:11!t9e = ~: ___ c:::.ordir1-~t~ ~t.· r::::·!~1t.!: 
I* created by Dr. F~ris Ir. y_1ma9~ = y_coordi~~te • 
lh Badi'i. I~ was written by~ code = 3rray con~a!ni~s the cc~e 
/Ir. f.:irj.:.111 M:ajd on 5-11-1984.lr. fl1.P ... c:od;; = .3rr'3y for tne :·~,r. ... -:od!? 
/A * n = t ot cGde a19its :A .. ·' 

/;4'; ,.,. 1<.. 

/Alr.Jtr.•-AJr.-A••~AJr.*.AAJr.Jr.AAAJr.AA***~AAA***~*AA**********-h~~A*~AAJr.*Jr.fe~hAA~A***~/ 

~include<math.h> 

ca ,j e .... 9 en < :-: ___ i 111a9 e , y ... .i 111.:i '3 e , co ·::I c , f 1 i p .... r. rn1 c , r1 ) 
double x_1mage[J,y_1ma~er~; 
int codeCJ,flip_coac(Jtn; 
{ 

do u t• le p :: , p y , q :-: , q y ~ r , ·:i l ; I~ def in e t:> d '3 e vector :: A/ 
ir1t i,j; 
for(i = 0 , j = 0 ; i ( n ; ••i ~ ++j) 
{ 

px = x_ima9elj•l] 
PY y_im~9e(j+lJ 
qx x __ i111a~e ( j+ 2 J 
qy r_im~9e[j+2J 

r = px~qy - PY*qx; 

- >: .... im.39e[ jJ; 
- y __ im.39e[jJ; 
- >:_image( j+lJ; 
- y -· i m .::i 3 e C j + ! J ; 

l* c::ilcul:;ite ve~tor. ; 
.'-A c :J l c •.J 1 a t e l en~ 't- :' ·= : f. f ('1 r c: ra c: -!-; / 

dl = sqrt(pow(p~~~2.0) + pow\py,2.0)) - sqrtO:pDl·dq:: •• ·),; + pOW~C'." 
if(r < - 0.00001> /A ri9ht tu~~ o~ c~n iticn trGe •. 
< 

} 

if(dl < - 0.0000!) 
{ 

code[iJ = 3; 
} 

else if(dl > 0.00001> 
{ 

} 

elsE· 
{ 

} 

codeCiJ = 1; 

codeCiJ 2; 

else if(r > O.OJOOl> 
{ 

if(dl \ - ~.00001) 
{ 

c o .j e [ i J :: G ; 
} 

else 2fCdl > 0.00001> 
{ 

code(iJ = 4: 
} 

else 
{ 

codeCiJ ... -. 
..J' 

codeCiJ 
if(dl <, -

{ 

7; 
0.00001> 

/A shorter on condition true A/ 

IA eqr.Jal 

If. le:ft. tur-;. ,.,/ 

IA shorter ~n =~na~t1on t~ue A: 

41 



} 

} 

} 

} 

else if(dl > 0.00001> 
{ 

} 

el~e 
{ 

} 

++:i: 

CC•(~f:Li+l] :::- l; 

code[:i '"1J 2; 

for< i = 0 ; i '·· n : ++ i> 
{ 

} 

if(CO•::fe[iJ == l) 

{ 

} 

else 
{ 

} 

else 
{ 

} 

else 
{ 

} 

else 
{ 

} 

else 
{ 

} 

else 
{ 

} 

fliP .... codel:n-1-lJ 

if(codeC:iJ -- 2) 

f l i p ... c: ode L n - i - 1 J 

if(codeC:iJ -- 3) 

flip_~odeC:n-i-lJ 

if<codeC:iJ -- 1) 

flip __ . code(n-1-lJ 

if<codeUJ -- 5) 

f lip_code C:r.-i-1 J 

if(codeC:iJ -- 6) 

fl iP .. _codelri-i-1 J 

it<codeC:iJ -- 7) 

':\ . .., ' 

1; 

6 • , 

flip_codeln-i-~J = 7; 
if<coae[i+lJ == lJ 
{ 

:t' 11 p .... c: ode [ r1 - i. - 1 J 3 ; 
} 

else if(ccd~E1+lJ ~= 2> 
{ 

f l 1 p .... code [ n - i - l J = 2 ; 
} 

else if(ccde[i+lJ == 3) 
{ 

} 

++i; 

f 1 i p .... cc; d.: E n -- i -· 1 J = l ; 

/AA**************•*****~AkA*A**AAAAAAAA*******I '* This is a routine for standar~i=in9 the *' 
I* code 9enerated by the code_sen routine, *' '* that is, to shift the code to form the *' 
I* lar9est number. *' 
'*****'*AA*•******A•****~*~*******************I 

42 



int codeCJ,tmp_codcCJ,n; 
{ 

int temp,i,j,~~l; 
for<i = O ; i < n ; ++i} 
{ 

t mp _,,code ( i J = code [ i J ; 

for<i = 0 
{ 

i < n ; ++i) 

temp tmp_~odeEOJ; 

for<j = l ; j ( ~ ; ++j> 
{ 

/A duplic~te :cJc ~.· 

I* shift counter {/ 

I* shift cod~ ~o t~c ri~Mt hi 

tr11p .... coe1e(J-lJ = tmp ___ code[jJ; 
} 

t mp .... c ode ( n- l J t em p ; 
for<k = 0 ; k < n ; ~+k} 
{ 

I* di9it counte~ Ai 

i t' \ t. mp .... co .j e LI.. J ,.:· code ( Id > 
{ 

iorCl = 0 l < n ; ++l) 
{ 

co .:-.l c ( l J t mp ~ ... code [ l J ; 

I• terminate lo~p i: c~nd1~1on me~ ~ 

} 

> 
} 

} 

else if(tmp_code[k] < code[kJ) 
{ 

} 

'***********************~********~******h****~/ 
I* This is ~ routine for comparing the codes •I 
IA 9enerated by the code_sen routine with *' 
I* codes ot the s~me kino. *' 
'*****************AAAA*AAA~************~****A*I 

comp~re_codeCcodc,lib,fl23~n> /An= t of cod2 d:;i~~ At 
int codeC:J,libCJ[30J.Afl'.'13,r1; /A lib = library o.;: 1m:o.'=!es J,/ 
{ I• fla9 = used when there is other tnan unique 

int i,j,k; 
for<i = o; i ~ 174 ; •+i) 
{ 

"- = o; 
for(j = 0 : J • n : ~+J> 

0 • .... , 

if(code[JJ != libCiJ[jJ I I Cj == n-1 ~' lib~iJ[j+lJ !~ C> 
{ 

I~ terminate loop it condlt1on met A/ 
.r 

alse if•:j rr ... 1 > 
{ 

:.:f'(i < ~':)) 

{ 

} 

pr1n~f( 1 \n This is a 'Mir~~~, ~~rrlane \n">; 
++I:.: 

else lf(i >= 29 && i < 5G> 
{ 

} 

?rintf('\n This is a 'Mig' ~:rpl3ne \n'>; 
++k: 

else if(i ·~ 56 && i < 96> 

43 



} 

} 
} 

if(I•, 0) 
.{ 

i1i:tia 9 = o; 
} 

else ifO. > 1 > 
< 

} 

p~1ntf("\n This 1~ ~ 'Ph3nt~~, ::~~l~nr '~">: 

++k.; 

~lsc if!1 >= 86 && 
c 

,· 116) 

} 

~~intf("\n This is a 'Fl04' ai~cla~~ \n">: 
++k; 

el=2 i~<i ~= 116 t& i < 145) 

} 

;:· :r i n t f ( • \ r1 Th i ~, 1 s :i / F 1 0:. · ~ :; : :· l :. r: 2 ". r1 • } ; 
++k: 

els2 if<i >= 145 && i ~ 174> 

} 

printf('\n Ihis is a 'B57' 31rDlane \n">; 
++V..; 

printf'( '\rr Hor~ 
.*flag = 1; 

~re needed for uni~~2 l~e~tificati~n 

} 

} 

l*****************~****************~*******-hk*******kA**' 
IA This is a pro9r~m for testing the ·p~t-recl.c' fil~ ~! 

'******~AAAAAAAAAA~~AAAhAhA~AA*-AAA*~~A****~****A*AA~hA~*/ 

tinclude<aath.h> 

ir1t lib Cl i'-t JC 30 J '* define librar~,. of i.11.::.:1e~. Al 

/h*AAAAAAAAAAAA~~*****/ 
/-Jr. MIRAGE -J../ 
'**AAAAAAAAAA••~~****A/ 

44 

{6,2,4, 1,3.4, .; '1, 81 4,:?,6, 1,3,4, b' 1, 3' o, ·~ '.' 1:.J' c~o,o, (). 0' (), ·:·" ·) .. --
{7,2,4, 6, 1'3' 4, 6, 1, 3, '1,:?, 6,1,3, 4,G,l, 3,4,·~. (•, (\, 0, 0, C•, 0, (: .. <· 
<7,:!,4, 6,3,6, l, 3' 4. 2,6,l. 3,4,l, .. ~, 6' 0' ·:>. 0. ·).. >) ~ 1) • ·~ ' () ~ 1)' 0. ·~~ It ·~~ . 
{7,3,4, 6,7,2, '1, 6, ·;:, 2,. ~i,. 6, l,J,4, :.:! ~ 6, l ~ 3 ! "i. ( ~ /. .• (r ~ :: (.· .• C1 ~C·, 0. c. ·~· 
<?,2,4, 6,2,4, 'l ,, ': 2, .it,b. o,o.o, 0, O, O, 0, 0. '.i. :) . :,i "•), •J, •). 0' •). ·~· . ... ' .. ' t.>. . .. 
{7,2,4, 6,2,4, :-!,6, 2, 4,6,0, o,o,o, o,o,o, 0' (). (1 ~ (.). C• • (· • C•. 0 ,O, o ..... ':-; 
{6,2,4, l,J.4, €.' l '3' •1, 3. l, 6,1,3, 4, G, l, 3, c .. :; • •:J" •),. i), c. ·~. ()' 0. :: - :~:-·· 

{6,1,4, 6,1,3, 4,6,1, 3, 4, 1, 6,1,3, 4,6,1, 3, C•. (• c,. c', c,, 0, (\, 0' (• .. (1. 

{7,2,4, b,:;;. b' l. :3' 4. 1,6,l, 3,4,G, :: , 4. b, 0' !J. 'J. (} .. r) • () • •). (). •). I~" ·~;" ·" 
{7,3,G, 7, 1, 4, 6. ·7, l. 6,t..,7, 3,4,l, 6,1,3, 4 .• c. ·'-' . (• .-:..· .:..: , ':i • C· .. o, 0. (!. -~ 

{7,3,4, 1,4,6, 3,4,l, l,t.,6, o,o,o, o,o,o, O,O,•J. •). 1)' 0' 0. •J. 0' 1,) ~ (· .. ... 
{7,3,4, 1,4,6~ 3,1,5, 6,0,0, o,o,o, o,o,o, 0, (i. (•. 0,1.',(.\, (i, C•, 0, 0. (1' '>.· 
{7,2,6, l,G,l, 3,4,6, 1,3,6, 2,4,l, 3,4,G, l , 3. it~ 1''1 '" .. , ... ~ ... ' ... ,. 0' ·:>, 0' 0. 1) ~ 

{6,3,4, 3,4,6, l '3' 6' 1, 4, 1' 3,4,6, l, 0, 0, 0, 0' C•, (l ~ o. e, (· ~ (•, 0, o. I· .. 
<6,3,G, 1,4,t., 3,4.l. 3,C..,l, 4,1,3, -4. 0. 0' o, 0. •.J. •"J •. :; f ;_j' ':' ·:>. 0' o, ') . .. , ;~I -~ 

{6,4,1, 3,6.l, 'l, l, 3. 4,3,6, 1, (), 0, o,o,o, tJ, (• ,. (.1 ' (•. C,, (:. o. c·, o. (' .. , .. 
{6,3,1, 1,4.3, 4.' 1. 4, 0,0,0, O,•:>,O, 0,0,0, O, •'.J, •'.J' i.j,. 0 !' :~ ~ 0~(),(), •,) ·'· 
{7,3,4, 1,1,6, c '3, l, 4,0,0, o,o,o, o,o,o, 0, 0 ~ (•. C· ,., ., (· ~ 0, •;}, 0, o. {. .. 
<G,G,l, 3,6,l, 4' 1'3. 4,6,1, 3,4,3, l,C..,l, 3. 0. (). ').;) f '). 0. 0. 0' '~ .. .... . ' 
<G,3,4, 6,1,3, G, 1, 4. 1 , ::: , '1, 4 ,2,G, l, 4, 2, 1, (), (l. 0. ·:·. 0. 0. (). 0, (• .. 
{6,1,4, 1,3,4, 1, 6' l, 3,4,4, 3' 4' l, 3,0,0, 0, 0. 'J. 0. ·). •). :} '0. '). ,-, ,.,, 

.,;.,·_,. 

{7,:?,.it, 3' 6, l, 4,6, '.}, ~.1,6, 4,0,0, 0 ,o,o, 0' ·~l. 0 ~ (· 1'• ,'', ......... ,. ·:! ~ 1:1, 0, c '<:. ·:-: 
~ -- ... .. 



"'; ,.. j - ~ 1 .. 1 - ' .... ; ""'!"'' 
<6,4,3, 3,6,1, 4.1,J, 4,6,1, 4,3,1, 6,1,3, o,o.o. o,c,0. o,o,o, 0,0.(_ 
<6,1,4, 3,3,4, ~,3,1, 4,1,3, 4,0,0, O,O,O, O,O.J. 0.0,), 0,0,0, O.~. __ 
< G , 6 , l , 4 , 3 , :..; , 1 , 4 , ~j , ! • (1 , 0 , 0 • 0 , O , 0 , o , 0 , 0 , 0 , c • o . C• • Ci • C , C· • C1 , O , .: · 
<G,1,3, 4,3,3, 1.4,2, o,o,o. o,o,o! o,o,o, 0,0.0. c.J,J, 0 o,o, 0.0.J: 
{ 4 , 3 , 3 , 1 , 4 , 1 , :J , 0 , 0 , 0 • 0 • 0 , 1:> , 0 , v , 0 .• 0 , 0 , 0 , 0 , <· .• ".:· • 0 • 0 , C• , 0 , 0 • C· . o;, • : · .:-
{ 4, l, 4, 1,3,l, 0,0,0, O,O,O, C,O,O, 0,0,•), 0,0,•), O,O,O, 0,::>,0, 0.),•>.·; 

l*~***********AAAkkAAAAA*AA/ I* HIG *I 
l**AAAAih***AAAAAAA*A~*~AAA/ 

<7,2,6, 
<7,2,4, 
<7,2~4, 
{7,2,4, 
{7,2,4, 
{7,2,4, 
{7,2,4, 
<u,3,6, 
{6,3,6, 
<G,3,4, 
<u,3,6, 
{7,:!,6, 
{7,3,4, 
{'7,2,4, 
<G,4,1, 
<6,3,4, 
<G,3,4, 
{7,2,6, 
{7,2,6, 
<6,1,1, 
{6,3,4, 
{7,3,4, 
<7,1,5, 
<G,1,3, 
<7,2,4, 
{4,3,3, 
{7,2,4, 

1,3,4, 
6, 1,3, 
1, ::i, 4, 
1,4,6, 
4,3,6, 
6,3,2, 
6,2,4, 
1,3,4, 
3' 4, £,, 
l. 3' 3, 
3,4,3, 
1, l, 6, 
4, :3, l, 
3,4,6, 
3,4,3, 
6,3,4, 
1,1,3, 
1. l, 3, 
l,G,6, 
3,4,3, 
3,4,l, 
4,7,2, 
3,4,l, 
4,3,1, 
3,4,3, 
1,4,l, 
3,1,l, 

6, 1, :3' 
4,6,3, 
6,3,4, 
3,4,:!, 
4' 1,]' 
1,4.t., 
3, 1, (:,' 
6, 3, 4, 
1, 3' •\' 
(~, 1 , 4, 
6' 3. 4, 
3, 4, 4, 
~,l,b, 

1,3,l, 
4,1,3, 
l,3,4, 
4' l '4' 
4,3,4, 
7,2,4, 
4,3,4, 
l,3,4, 
6,1,2, 
3, 4' E.' 
3, l, 4, 
1,1,E>, 
l,O,O, 
3,4,1, 

6,~,4, 

4,~,6, 
2ft,,1, 
6,1.4, 
4.1,3, 
o,o,o, 
:.! '4, 6' 
2~6,1, 
3,G,l, 
4, l, 2' 
l, l '3, 
'j. l, l' 
j, l, 1, 
6 .• 6 ,7, 
4,6,l, 
1, 3. 4, 
6, l '3, 
G,1,3, 
3,1,l, 
3,4,1, 
l, 4 '6, 
3. -4. 1, 
3, l, ·:>' 
3,0,0, 
l, l, 4' 
o,o,o, 
3,4,6, 

!********************~~**! I* PHANTOM ~/ 

!**********************~*/ 

<6,.6,1, 3,4,2, 
{7,2,4, 6,3,4, 
<7,3,4, 6,6,l, 
{7,2,4, 6,3,4, 
<7,2,6, G,7,2, 
<G,G,l, 3,4,3, 
<G,3,4, 6,1,3, 
{7,1,6, 6,3,4, 
<7,2,G, G,3,4, 
{7,3,4, 3,4,.l, 
<7,2,6, 3,6,l, 
{7,2,G, 6,7,3, 
{6,6,1, 3,4,3, 
<G,1,3, G,2,4, 
<6,G,3, 4,3,3, 
<7,2,6, 6,3,l, 
<7,2.6, 7,2,6, 
<7,3,4, 3,3,l, 
<7,3,4, 3,3,3, 
<G,5,l, 3,4,3, 
{6,6,l, 3,4,3, 
<6,4,G, 3,1,1, 

G,1,3, •l,4.4, 
6,3,4, l,6,7, 
4,2,G, 1,4.4, 
6,3,1. 3,1.4, 
4,4,7, 2.6.6, 
.:?,1,6, 1,3,4, 
4,3,3, 4,1.3, 
4.l,G. 2,6,1, 
:: , 1, E.·. ::~' 6. 1 ' 
4,G,'7. 2,6,6, 
4.G,7, 2.4,6, 
4,2,4 .• /'_,2,6, 
2,1,6, 1,::.6, 
1,3,4, 6,1.3, 
4,3,6. 4.1.3, 
3,6,l, 3,4,0, 
1,3,l, 4,1,4, 
'1, l, 3, '1, G, 7, 
4,1,3, 4,£.,7, 
2,1,4, 1.3,6, 
4,G,l. 3,4.l, 
G,l.3. 4,1.0, 

1,3,4, 
1,4,4, 
4,6,l, 
6, 3, (,, 
6,1.3, 
o,o,o, 
·:>, (_;, 0 f 

4, 4, l, 
·1,6,1, 
6, 2, 4, 
6" 3, 4' 
G, G, 3, 
4,0,0, 
2,4,3, 
1,6,3, 
6,1,3, 
4,~,4, 

l,6,6, 
3,4,l, 
o,o,o, 
1,3,4, 
6,6,1, 
o,o,o, 
0,(1 ,0, 
f.,O,O, 
o,o,o, 
o,o,o, 

:?,G,3, 
2,4,3, 
6, 7' 1, 
6, l, 4, 
3,2,l, 
'1, l, 3, 
4. 4, l, 
6, 6,:]' 
4,0,0, 
7,3,1, 
7,2.4, 
3,4,1, 
1' 1'0, 
4,3,4, 
G,2,0, 
·:>. 0, 0, 
o,o,o, 
2,6,G, 
2,6.4, 
1,3,l, 
l, G, 1, 
o,o,o, 

6,1,3, 4,o.o, o,o,o, o,o,o, 0~0.0. 
1,1,4, 6,0,0, 0,0,0, o,o,o, 0.0.0~ 
3,G,O, O,O,O. 0,0.0, O,O,O, 0,0.j}, 
(I, 0, 0' 0, o., (i, 0. (;' 0, 0, (•. 0, 0. :::- . ·:- ~· 

f.,4,1, 4.G,O, 0.0.0. O.O.O, C.~ ... 
o,o,o, o,o,o, c.o.o. 0.0,0. 0.0:~ 

o,o,o, o,o,c, 0,0,0, o.c,o, 0.0 •.. 
l,O,O, O,O.O, 0,0,0, 0,0,0, 0,0.0}. 
o,o,o, o,o,o, o.~.o, o,o,o, 0.:.a: 
6, 1, 3, 4, 0, C·, (1. 0, <:.·, (}. (1, 0, 0. r:i. '· 
o,o,o, o,o,o, o.~,o. 0,0.0, 0.~ 

4,6,0, o,o,c, 0.0.0. c,o,o, 0.0 
o,o,o, o,o.o. 0.0.0~ o,o,o, 0.0. 
l , 4 , 0 , 0 , 0 , (• ' C• • (.; : (• • 0 , 0 • 0 , 0 • '.:; • ·:I > 
5,1,6, 3,3,0, O.·).G, O,O.O, O.•J.·. 
o,o,o, 0,0.0. 0.0,0, 0:0,0, 0.0.0: 
0 f 0 ' ·:> p 0 f 0 f ;,.• ' 0 • ) • 0 1 o~ f 0 ' •) p o') < i) • .'I 

7,~.4, 4,G.~. o.o,o. o~o,o, 0.0 
4,o,o, o,c,c. 0.0~0. 0.0.0, o.~.0~ 
o,o,o, o,o,o, o.o,o, o,o,o, 0.(.0~ 

o,o,o, 0,0,0. o,o,o. o.o,o, 0.0 ... 
3,4,6, 0,0,0. 0.0,0 ~:O.O, 0.0.0) 
o,o,o, o,o.,·:·" o.cJ.o. '~.u.o, c~·--' .. ,. 
o,o,o, 0,0,0, 0:0,0. 0,0,0, 0,0 ... 
O,O,O, 0,0,•), O,•J,O, O,O,O, O.O.·;, 
o,o,o, o,o,c', o,c·,o, 0,c•,o, o,(.: 
o,o,o, o,o.~, o.o.o. o.o,o, o.o.~: 

o,o,o, o,o.o. 0,0,0, 
6,1,4, 6,1~~, G.o.o, 

0 '·:>. 0. 
0 ,0, 0' 
·~. '). :) , 

(.\. (). ·>} -

5' fi, 7' 
G,o,o, 
•1,4,0, 
l, 1,0, 
4,3,0, 
4.0,0, 
o,o,o, 
l 'Ii' 0 ~ 
1. 4' 0' 
4,6,0, 
o,o,o, 
o,o,o, 
o,o,o, 
<:i,o,o, 
o,o,o, 
o,o,o, 
o,o,o, 
o,o.,o, 
::? ,o' o, 
o.o,o, 

·:. .. : .. ~ -
0,0:0• 0,0,0, o.c,o, 0.0 
0,0.0. 0.0,0, 0:0,0, o,c. 
o,o,~, o.c.o, ~,o.o, 0,0. 
0,0,0. 0.0.0, c.o,o, o.~.0: 
0,0,0, C.0,0, 0,0,0, 0.A.0, 
o,o.c. o,c,o, 0,0.0, o.~.~, 

o,o .. :·, C•.(;.C, 0,0?0, C·,·~· .. __ 
0 ' 0 ' 'J , •:> • •;} • 0 , 0 ' c , 0 ' 0 ! ·~: . ..' .. 

0,0,0. o,o,o, o,o,o, c.c.~ 
o,o.o. 0.0.0, 0,0,0, 0,0~ 
0 ' 0 • (r 1 V , '~' 1 0 p 0 1 0 • 0 1 0 • '.,: , ' ' · 
0,0.0. ~.).o; o.o,o, o.c. 
o,o,o, 0,0!0, o,o,o, 0,0.~: 
0' 0, 0' '), ,:; • \). 0, 0 '0' c' •.: .. ·~: -· 
0,0,0~ o.c,o, o,o,o, o,c.~~ 
o,o.0t 0,0,0, o.o.o. o,o,~ 
0,0.0, 0.0.0, o,o,o, 0.0.0}. 
o,o.o, o.o.o, o~o.~, 0.0.~: 
o,c·~c·. o,o.o, o,c·,o, o." 

45 



<7,3,4, 3.3,l, 
<7,2,6, 3,4,1, 
<4,3,2, 3,4,l', 
<7,3,l, 1,4,l, 
<G,3,4, 3,l,3, 
{4,1,3, 3,3,1, 
<4,1,3, 3,1,3, 

6, ! , 3, 
3,G,b, 
3 .. 3 • .it, 
2,6,3, 
4, 1,::, 
3,o,o, 
1,0,0, 

4,7,:!, 
7,2.4, 
1,3,0, 
4,4.0, 
0' (j '(J, 
0,0,0, 
o,o,o, 

'**~**********~~·•AA~~~~*h*/ 
I* Fl04 *I 
'*************~~*~**~*****~' 

{7,3,7, 
{7,3,7, 
{7,3.3, 
{6,2,2, 
{7.2.4. 
{7~3,7~ 
{7,3,7, 
{7,3,7, 
<7,3.7, 
{7,3,7, 
.(7,3,7, 
{7,3,7, 
{7,3,7, 
{7,3,7, 
{7,3,7, 
{7,3,7, 
<7,3,7, 
<7,3,7, 
<7,3,7, 
<7,3,7, 
<7,3,7, 
{7,3,7, 
{7,3,l, 
<7,3,7, 
<7,3,1, 
<7,3,7, 
<7,3,7, 
{6,3,2, 
{7,2,6, 
<7,1,6, 

1, 6, ", 
1,6,4, 
4, 5, IS, 
2,4 ,5, 
4,G,3, 
l, 4 ,G. 
l,G,4, 
l,G,4, 
l,6,4, 
l, 4, G, 
1,4,5, 
1, 4, G, 
1, 4, 6. 
l,G,4, 
1,6,4, 
l,G,G, 
l,4,5, 
l,4,4, 
1,4,4, 
1,4,4, 
1,6,4, 
1,6,4, 
6,4,4, 
1,4,5, 
1,4,6, 
1,6,6, 
1,6,6, 
3,'1,4, 
3,4,3, 
3,1,l, 

4,3,2, 1,6,G, 
2,G,'4, 7,3,7, 
1.7,l. E .. 1.1, 
2,G,l, 3,4,2, 
1,4.£ .• 6,7.::!, 
6,7,::. 4,2,G, 
4,l.2, 2,1,2~ 

4,J,l. 1,3,6, 
4.G,:!., 3.1~3, 

2~6,1, 3,4.1, 
3,6.:-1

• 3,4.l, 
J,6,'i'. 2,4,l, 
€.,7,2, 6,1,6, 
4,6,l, 3,1,l, 
4,G,l, 3,1.1, 
4,6,1. 3,1,3, 
1,3,3, 4,7,3, 
3,G,7, 3,1,1, 
3,6,7, 3,1,G, 
7,3,l, G,7,2, 
4,3,6, 1,3.3, 
4,4,3, l,1,3, 
3,3,1, 3,1.J. 
2,1,5, 3,1,G, 
1,3,1, 4,7,::?, 
3,2,1, 4,4,6, 
6,1,1, 5,3,4. 
3,1,u, 1,3,1, 
1,6,3, l,-1,0, 
3,4,3, O,C•,v, 

/~'**********A************~/ /* Fl05 *I 
l****~***~A********~*A***~*I 

<&,4,1, 
<7,:?,4, 
{7,3,4, 
<7,2,4, 
<7,::l,4, 
{7,::?, 4., 
<G.~,4, 

<7,3,4, 
<7,1,4, 
<7.3,G, 
{7,3,6, 
{7,3,4, 
{6,4,l, 
<G,3,G, 
{7,3,6, 
{7,l,3, 
{7,3,l, 
{6,l,4, 

3.4,6, l,G,2, 
G,3,4, 6,1,3, 
2,6,7, 1,4,4, 
G,3,4, 2,2,G, 
6.3,4, ~.6,1, 
4,4,3, 7,2,4, 
l ' 3 , 4 ' 4 '·1 ' 2 , 
l,6,7, ~,6,6, 

G,3,4, 1,1,l, 
1,1,6, 3,t.,7, 
1.4,3, 7,1,E:, 
G,3,4, 6,7,::;, 
3,6,1, 4,1,2, 
1,4,1,· :J,4.6, 
1,4,l, 3,4,~ .• 
4,1,3, 4,6,1. 
3,4,3, G.l,4, 
3,3,l, J,O,-:.\, 

4,3,4, 
6,5,4, 
7,2,£, 
1,4,G, 
4,E-.O, 
3,G,l, 
6,3.1, 
l, 3, .tl, 
6,1,1, 
l,6,4, 
4,0,0, 
4,3,1, 
'1,6,l, 
l, ~' :1, 
l, 4' 3' 
4,3,4, 
it,·~,·). 

O,v.O, 

6,4,0, 
2' l '4, 
o,o,o, 
'),O,O, 
o,o,o, 
o,o,o, 
o,o,o, 

4,7,3, 
1,6,4, 
5, E·, 3, 
4,;:?' 5, 
4. l, 3. 
7 ~:: .. 4, 
6' 6. 4, 
(,, 4, 7' 
4. 3, E•, 
1, G, l, 
l,G,7, 
6,7,2, 
7,2,4, 
2,6,G, 
3.5,3~ 
4,1,3, 
3,4,3, 
4,6,7, 
7,3,4, 
4,3,4, 
3.4,4, 
4,4,7, 
4,4,7, 
1,4,7, 
4,6,7, 
7,3,7, 
4,7,3, 
o,o,o, 
o,o,o, 
o,o,o, 

6' 1, 3, 
l,3,4, 
6,7,2, 
o,o,o, 
o,o,o, 
3, 4, l, 
6,3,4, 
G,1,6, 
6,4,3, 
o,o,o, 
o,o,o, 
J,1.:,,0, 
4,3,3, 
3,6,3~ 
4,l.3, 
0, ()' 0, 
o,o,o, 
o,o,o, 

o,o,o, 
o,o,o, 
0, (), 0, 
o,o,o, 
(•, 1.), 0' 
o,o,o, 
o,o,o, 

0 • ·J ~ (' , •' • 
0 , 0 . ') • 0 '. •) ~ ·~: -

r, ,,, ,'\ 
... !' ..... \J ~ 0, (•. ·:·. 

0,0. - . 
0, ('. ~·' 
0' {J. ·J ~ 
0, ·~·. ·:~: . 

0 .. ':.~ .. ': • 0 • ~) ~ 1) ' •:! • J 

~ .... :~.' ~ ~· ' 
·). ·). (). 

0. ~· '0. 1:1. t_· .. 

•:) ~ •,) ' 1;) ' '~J ' I ' '.' . 

(;. (;. 0 If 0 ~ 0 ~ c ' 0 ~ ·~:· • ·.: ~ ., 

7 , 1 , G, 4 , :::: • :: • l • ::. . '1 • O:>. •:>, 0, 
1,6,2, 2,~.~. ~ G,4, O,O,C, 
::,~~"' 5.2~:·~:. 1.0.~. 0.0.0, 
(_! , 0 J' 0 !II •J ~ (1 ~ (' • (i ' ' . .! • :..: • (.· • ·:- • 0 !' 

6.o.o, o.c.j. 0.0.0. 0.0.0. 
4,6,o, c,c.~. 0!0.0. 0.0.0, 
~., • 3 , 7 , 1 , E, , !~ • ::: • ~ • J. • .;., , 4 ~ :J , 
3,7,1, 6,4 , ~!G!~P 0.0,0, 
4,7,3, 7,!.t::. 4.1.:.:'.. 1'.t:,.1, 
3,4,4, 6,0.~. 0.0.0, 0.0,0, 
2.4,4, ~.~-~. ~.~.0. c.o.o. 
4,3,4, &,0.0, 0,~.o. o,o~o, 
3.4.G, 0,0.0. 0.0.a. o,o,o, 
4,7,3, 7,1.G, 4.~,2, 1,6,4, 
E.,4,7, 3.7.l. 0.t\.3. 1.1,5, 
6,'4,7, 3,7.~, b.4,3, ~.G.4, 

1,6,4, 7,J,3, G.4.4, O.O.O, 
3,4,G, O,O,O, O,O,O, O,O,O, 
4,5,G, G,o.o. 0.0.c. o,o,o, 
G,o,o, o,c.0, o.o.o, o.~.o, 

7,3,7, l,S,4. 3.~.l. G,4,0, 
3,7,l, 6,4,~. 3~4,4, 0,0,0, 
3,1,6, 3,l.4. 4,0.0, o,o,o. 
3,4,6, 7,3,!, 6,4,4, 6,v,o, 
3,6,4, o,o,o, 0,0!0, c.o,o, 
1,6,4, G,4,~, 3,3.3, 4,4,0, 
l,G,4, 7,~,0. 4.~,0, o,o,o, 
o,o,o, o,o,~, o.o.o. o,o,o, 
O,O,O, O,C,0. O,?.C. O.O.O, 
o,o,o, o,o.~, 0,0,0. 0,0,0, 

0' ·~·. '~': 
0 "(). ':. :- .. 

·J .. ·::·: ') -
0. ·~'- . ·~· > • 
·.)" 1) •.. ', .. 

/", .' . ._,, I. - ' 
:J. ·:; • . · 
0. (.• .... 
o.;;. ·:.,._. 
C·. <1. ·~<· . 

0. ·:.:. ·~·: . 

(t " {I • ~~I•\. 

-~ ~ ::;. ~ ' .... ' ' 

0. (:. !:.' >. 
0' 0. ·;): . 
0, (:. ,=,~ ' 
..:··. 1:!'. 1)_:- .. 

o,o,o, 0,0.0, 0,0,c, 
6,1,4, 6,C,0, O.O,O, 
4,4,7, 2,~.c. o,o,o, 
o,o,o, 0,0.0, 0,0,0, 
o,o,o, o,o.~. 0.0.0. 
6,7,2, l,C,C. G,O.C, 
6,1,3, 0,0.0. 0.0,0, 
7,1,6, 4,7,~. 4,6,l, 
G,o,o, o,o.o, o.o.o, 
o,o,o, o.o,o, 0.0,0, 
o,o,o, 0,0,0, c.c.o~ 

o,o,o, 0,0,0, 0,0,0. 
o,o,o, o,o,o, 0.0,0. 
4,o,o, o,o,o, 0,c,c, 
4,4,6, 0,0,0, 0,0,0. 
0,0,0, 0,0,0, o.o,o, 
0,0,0, 0,0.0, O.J.0. 
o,o,o, o,o .. ~. ·:·,o,Ci, 

0. 0, 1;)' i).). ·:·· . • 

C·,o .• o, o .. ~·.·~·~:. 
o,(},O, c;,!.) .. ::~· .. 
C• , 0 , 0 , 0 , t: ... ·~' =" . 

'J. (}' 0, 0. 'J • .:: • 
o,o,o, o ... ':'. 
0 ' 0 ' 0 ' 0 , ·~· . . -· • 
G,o,o, o,o.:'>. 
·~ ' ~) ' ·) ' () '.' ·~ " J:.1 : .. 

0 , 0 .. 0 , 0 • ( . ·> :- • 
o,o,o, o.·; .... , 
0 '0, 0, (' !' (: 

o~o,o, •),.J. 
o,o~o, o~o'! 
0 f 0, o, c. ·::. -
•',;. 0 ,o, 0. (.1. ') 

::) • 0 ~ c' -:>.I~' 
C•,O,O, (•.·> .. 

46 



<7,3,4, 6~7,3! 
{7.3.4, 1,€>,7, 
<G,6,1, 3,4,::.. 
{7' 2' 1 , 3. l. 6. 
{6,1,3, 4,2,3, 
<6.1,3, 4,2.3, 
{6,1,3, 4,2,3, 
{6.1,3, 4,3.3, 
-(4,l.3, 4.1,:', 

l ''1 ~: .. 
3 .1 "..rtr, 
l, -4' :.'.. 
: I~ 1: I 

l,:.::' 4. 
l '3, 'I~ 
l. l 'j. 
l, () !' ,~,. 

l . .t!' 3' 
4. 1. 1. 
l' l,. 0. 
: . (). o, 
1. 4 ,o, 
.1. 4. 0. 
3 ~ l !' 5, 
t) '0. 0. 
-:· • (~ . C•, 

l*~***AA*AAA**A~AA~AAA~~/ 
I' B57 ~/ 
l**A**A~A~A*A*A~AAAAAA*h/ 

{6.4,1, 6,1,3, 4,3,G, 
{C,6,6, 1,3,4, ~,6,l, 

r l " -·' • , <,J, 
5. 6 .1. 
0. •:>, (1. 

f) ' tJ. (). 
c·, o ,o, 
o.o,o, 
o,o,o, 
(). J,O, 
C•, 0, 0, 

4, 1 '6' 
4, 6, ;j, 

.c!' 6. l' 
:· '.' 1, 3. 
(•' 0' 0' 
1
) ~ 0' 0. 
C1 , 0, 0, 
0,0,0, 
o,c,c, 
o,o,o, 
0, 0, C•, 

4 11 () • ·~'.' • 

0, (•. ~ . 
o !' r: .· ·) 
(\ , .. 
'tJ I • 

(J. (;'. ·). 

0 • C•, ·~~· . 
O,•'.), ·:·:. 
o~o.·~··~ 

.... ·~.· .. ( ' 

I ' •:• .' ~: ~ 
-~~ .. ·,,· • 1; • 
-::· .. ~·· ' (· . 
•J. :.:.; .. ) • 

fr .... • 

'). 1). •J' ('. 
C· .. t·. 0. (.· & I 

·j .. :j ~ 0 ' ~) ... _ 
(i r) I'\ r. , 
v 1 "" ~ ..... ' ~ ... °;. 

() • 0 ' iJ !' ·~~ • ·~· • • 

(• .• (· ~ 0 ' 0 . ·'.: . -: ' .· 
G. ·), 0, O. ·.:· 
:~) • C• • C',. c .. ..-

1,3,4, 3,G.1. 1.2.1. 2.~.o, c.~. 

l , 3 !' 4 , 3 _. G _, ! , ~ ... ~: .• "1 _. .:. ~ f.:. ~ .:. , ~ • 

3,•,3, 4~5.~. :.~,1, c,0,0. 0 
~'3"3, ~,t,~-'. :.".!.-1.'.·~. c·,:~· .. o, t\ ..... 

0,0.). 1). t:). 0. 0. ~:. 

47 

{6,3,E., 1,3.4~ 

<7,:!,5, G,7,~, 

{6,~,l, '1,3,G, 
{7.'..!,6, 1,1,6, 
{7.:!,G, 1,4,~, 

<G,6,1, 3,4,'..!, 
·{C:.,::!,t.., 3,4,6, 
{7,2,4, 6,3,4, 
{7.3,4, 3,4,1, 
{6,3,4, 3,1,6, 
{7.:J,4, 1,6,3, 
{7,3,'l, 4,3,1, 
{7. ~' ", b, l, 3. 
{7,3.4, 3,'l,.L, 
t.7.3.4, 1.3,4, 
{7,3,l, 1,3,4, 
{6.3,l, 3,4,l, 
{6,C:.,4, 1,3,l, 
C7.::,4, 4.~,J, 

{7,3,l, 4,6,3, 
{7,3,4, 3,4,l, 
{7,3,1, 1,3,4, 
<G.t.-,1, 3,4,6, 
{6,1,3, 3,4,3, 
{4,4,3, 3,4,3, 
{4,1,3, 3,1,2, 
{3,4,l, 3,1,l, 

6. l, 'l, 
4, 6, l' 
::: '4, l' 
:::,A?,:.:, 
:~ ., t.. , :; , 
6,::. ,3. 
l :' ~~,. l ll' 

1 • J. L., 
t. .• l' 4. 
'.J, 4' l, 
l • t.' c ~ 
:] , .c\ 1 ::.~ t 

.1!, .l, ::..:, 

:...: ,6, ··'. 
l '2' 'l' 
:3 !II:!, i.: !' 

::: , tJ I() p 

~J, 6 '!;. , 
4':: !' l:. ~ 
:j, 4, 1, 

l. :! '3, 
:; , 4 ! 4 !' 

:! ~ tS !' ~. 
l,~,1, 

6,3.1, 
3, ~, 0, 
•l, ),0, 
4 ~ .1\, ti'! 
£,' l. l • 

·'l. (;;' 1 , 
::! , :! ,6, 
4,2,2, 
C>,O ,O, 
o,o,o, 
3. l, :; , 

0 • 0 , 0 ' 0 • 0 • •) • 
(r ' 0 p 0 ' 0 1 (! • '~· ~ 
0. 0, O, O. 0. '.:. 
l,G,l, J,~,G, 

::. • 2' 4' 4. ;;: .. ~. 

,.-·, ,r, ,'·, 
.... . ._ ~ ..., , '~ , 0 "! Ci !' r'j • ·~: ~ ._, ) 

}· , 

3' 4':;' 
l, 3, 4' 
l '3, ! • 
J, 4,::. 
4 ~ ~' ! ' 
~3,0,0, 

o,o,o, 

1, 3, ~, 
4. 3, 4' 
(;•' (.', 0, 
(}, \). t.) !' 

I~ • -1 ' '.J I 

4' l':;' 
,, , l ''1' 
3' l. '1, 
r.:,Ci.O, 
;),•),'), 

A! p J, ~' 
1. 1, ';' ! 

:~, 'i '4. 
4. l, 3' 
0, (•, 0, 
6.4,3, 
.l., l, 4, 
-1. :.~ '0. 
o,o,o, 
(;,0.(), 

r c:- "' 
""'' w'...)' 
5.3,6, 
'?' 2, 4 !' 

o,o,o, 
(). ·)' <), 

! • 3 1 4 t 
4' :1, ~' 
(:, 0, 0, 
(; ~ tj" 0' 
(1'!CJ,0, 
()' 1)' 0' 
l '4 .. :::, 
3' l , '~' 
:J, :J, 'i, 
4. •)' o, 
o,o,o, 
:2. 4, 4. 
3,4,0, 
0. •). 0' 
0, (•, 0, 
o,o,o, 

,~ ... ·~~ '" ':; .. 1: .• •). 0. I) •. _. 

.. ~. ; • i. :5. 0, ·...,·. !. 

·) .. ·.._· .. 
!. , G , C· , 0 • C• •. :: • 

.:: .. ·);; .. : • ·.)., li ., :) • 

C•.C.C, (..'~(:~O!' 

b,1.1 ,(), 0,0,·:. 
o,o,c, o,o.c 

'). ,·\ '.' !:: • (} ~ (). (;!, ·J .. i_;· .. ·.-

0' ·)' f.). 
5 ~ ~.: 'I !-5 , 
::.:, .. l ,O, 
C•, v, 0, 
0 ,o. o, 
(•, 0, 0, 
0 .•:>, o, 
'l, 6, J, 

v~-~·.O, ·~'.",~!lo!' 
0,0.0. 0.0,c. c,o,o. 0 
3 ~ • .~: • i.

0

; w .:0 • ~- *' ll • :.:.: !' :·: !' 4 p I I 

0 '!' ·.) • ·_; • :) " ·:· .. . • • ·:; • 0 !' 0 ' ·:1 
... 

(J f (1 ~ (: I (.t • I,~! ~ (! f (1 • :~1 ~ 0 , '· • . 
o.c.~. ~.0.0. 0.),0. ~.~ 

() '0, ) . ') . ... ·). 
' - - . "' 

~) ':~1' Q, 
!) ~ ~:~ ' 0 ~ •). ·: 
.j. :J .. l ,, (·. 

2,~~.,2, 3"::.,.:··." '~ ... 
4,1,3, 4,4"~' C.0, 
0,0,0, o.o.o. o.o. 
c~c~o, o~c.'!':'. (:.1.::. 

·1, ·.:. 0. 
(1~<J,(.~, ~·.·· 

0 • .;~. 0, 0. :: . 
(:, ·:: .• 0, .~. . ..... ,, ... 

3 ' :! ., 1 ' . 0 ~ 0 .. 1
) • <· . •) .. 

(.'•, C1 , 0, 
•). 0. 0. 
o,o,o, 
()' 0' 0' 

0, t·. ·~:. 
.'\ .1·. 
·,; ~ \.I • ~· .. 

0 ,. (1 ~ :~· • (' 

0, () ~ ·.:. ~' . 
(1 '! ·~·. 0 .• 
(). :) • 0 ~ 

/A~*~~***'***A~**~~*AAAh~~ **~****~**A~~AAA/ 
I* im~~e~ ~o be compare~ w th th~ liDr3ry •1 
'**~**************•~****** ****•···~~··•***! 

double x_i~~9elCllJ ~ I~ MIRACE imaqe t 12 *' 
{3,4,3,0,5.5,7.~.7.~.S,12,3,1}; 

,jouble y __ i111.:13e1r.1:=· = 
<0,0.5,1,l,!,~.~.l,1.0,0.~}; 

{1~4.~.4,2.3,~,2,3.7.4.GJ; 
.:; = u b l e y __ i m :::i 3 !? :.! [ l C ~ = 

<2.2.:.12.2.s.~.~.:.1,~.~); 

i r1 t i , code L '.j O J • :f 1 i p ... c ~· i::i !? (. 3 O J , t :n ;:· •.. cc·::! e:: L 3 •) J , :t" :t .n :: : 
cod~_ 'Jen ( :: ... i rr. :-; ~J""· 1 , • '. .. i. a , ~ .l , ~ o .j ':! , ::· l i !-' ... :: '=' ·j r-:· , :!. O ! : 
stdi::P.i:co.::!c. t..n::: ... ::n•:-:<. ;.') 

.. • 1·~ • l (i ) : 



,,·, -~1 ';I~.: .l :L !:. ; \ i"I - .' ; 

::';::ri::: = 0 ; : }.(•: ++i) 

printf(' ~G •.codeCiJ>; 

;:: ; int f < • \ n :f:!. i :: .... :ode of i m .:is cl is : \ n • > : 
~~r(i = 0 ; i < 10 : ++i) 

print!(• :'.;.J • .:::'liP .... codeCiJ); 

: :i m par e .... cod c i: c C· d c • i ::. t:• , & f' l ::. i;:1 , l ~) ) ; 
·:~ :::. m o .3 r e .... co d ~ ( f ;. i f! ... r:: ·:. d e , l i b , & f 1 a 3 , l 0 > ; 
: ei d e .... '3 e r1 < >: .... i m -'i i::.c~ 2 1• y .... i m :J 3 e 2 , code , t' 1 i p .... co ,j c ~ 8 ) ; 
~tdize(code,tmr_code.8>; 

:. 7_..:h ze < f 1 i P .... ccdc, t;r; r.· .... codc ,8 >; 
;~intfC'\~ cod2 c~ :ma9e2 is :\n 1 >; 
~or(i = 0 ; i < 8 ; ·+i) 

printf(' z~ ·.code[iJ}; 

pr1ntf( 1 \n flip ~c~c of imaoe2 is :\n">: 
::·: .: r ( i = 0 ; i --~ ····:?. ~ "'" + i > -

printf(' ~c '.ilip_code[iJ>; 
·,_ 

::·om p a r e .... co ,j e ( c- :- (1 r:: , l i ::i , & f 1 a '3 , 8 ) ; 
:: :i m p .'J r e ·-c tJ d e ( f 1 :. p ... '.:' G .::: e , 1 i b , & :f l ::i '3 , 8 > ; 
::. :' < f l a '3 == = O ) 

.. -·c·= ::.:· in1.;9el is 
4 l 4 6 3 

- ··~ =ode of ima~cl 
4 5 3 

im:33e2 :.: 
3 3 ·'!: 

.4 
i -

G 

.. =~de of im~~~~ .~ 
i l 3 G •1 

6 

::: 6 

object is not re'.:'::~~ized 

·~=·r- im:::ii;:el i:: 
. • .. .. . 'L~ :J Ci l 4 3 6 

. . : .~ i p .... c. '.J d E :f C.1 l' :~ J1 -. '~· C ~- j S 

: : !;_ ·~ c j ·1 :~ 2 6 l 4 3 £ 
_ ..• :. · "' a ' M i ·::i ' :i :;. ::- ~· 1 :::i r, :·::· 

::or im2190~2 i::. 
'." .-:-::: .. ::: ''. - :.::21-4 
.~e ~lip_code for ima9e2 is 

:.::J;.::1:3,:;;14 
~s a 'Phantom' ~l~~:ane 

_ .. ::_:.-·: for im.39~3 i::: 
/.::..:. :'...:. .l ::;3 
:h~ flip_pode for im~9eJ is : 

, .. ~·: ! 3.:~:33 

48 



APPENDIX B 

ACTUAL PROFILES OF SIX FIGHTER PLANES AND THEIR POLYGONAL APPROXIMATIONS 

USED TO TEST THE 3-D INSM ALGORITHM 



-

>. 
L 
1\1 
L 
LI 

Jjj4~iii111 ~ ; 
j j j ~ ~ _j ~ 11 -~· ~ 
J J J .Q -f -t 1 i 1 ~ 1 ~'~ ~ 
JjjJ!Jrti-1~'' Nk i 

CJ 

/./<ff~ ~1'~' : c: 
0 

//¥~ tr-~~'~ ~ 
QI 
L 
::s 
C1 

u.. 

A >.. 

J J J ~ . .!J 1 1 ~ 1 1 ~ : 
J J J J .!J i 1 1 1 1 ;;:; ~ 

. " ~ 

J J J ./ 4 { ~ 1 ~ ' ' N\~ ~ 
jjJJ4~·~'\''' ~ 

' 0 

j/44# ~~~~~ ~ 
m· -
::s 
lT 

QI 
c: 

0 

50 



\
'
~
~
~
~
 

~
'
~
~
~
~
 

~
 
~
~
~
~
1
=
:
>
 

~
~
~
~
~
~
 

.....
.... 

-
~
 .

.:Z
S

-
-=

zs
-

-=
s-

+
 ~
 -

=3
=-

-+
-

-=
o=

­
~
 ~
 -a

s=
. -

as
:. 

-a
::

. 

-
~
~
~
~
-
C
!
l
=
 

~
#
d
J
~
-
d
:
S
"
<
=
!
J
"
 

/l. 
~
~
~
~
 

l 
~
~
~
.
c
=
:
!
J
~
 

30
=3

~!
 U

S
E

D
 

7
7

 
• 

F
io

ur
e 

17
. 

O
ne

 
qu

ad
ra

nt
 o

f 
th

e 
F 

1:
4 

pr
oj

ec
:i

on
 l

ib
ra

ry
. 

\
'
~
~
~
~
 

~
 '
~
~
~
C
:
=
>
.
 

~
~
~
~
~
~
 

~
~
~
~
~
~
 

~
 
~
 
~
 
~
 

-1:
::.

. 

-.:i
?-

...:
Js

-
-.:

0:
-

I -
-0

-
T

 

~
~
 
~
 

. .
¢

. 
~
 

~
~
~
~
~
~
 

/:.
 /

t 
~
~
~
~

'
/
:
~
b
f
>
~
~
~
 

'
/
~
~
~
~
~
 

2 
9 

=-
3

B
1 

us
 E

D
 

7
7

: 
~ 

F
i:

ur
e 

16
. 

On
e 

qu
aa

ra
nt

 o
f 

th
e 

p
h

an
t:

, 
p
r
o
j
e
~
:
i
o
n
 

li
cr

ar
y

. 

11 

U
l 

....
... 



>. 
\.... 
•U 

. p :-; 

jjj~~r-----.+"1~·111~ ~ 
j J j j ~ -+ i 1 ·~ 11 ~ .~ 
j j J . ..! -)/ -t --t. 11 ~ ~ ~II'- ~ 

\' ' ~\t- .c 

j)J-14+-1-"\'\ ' ~ 
/././~ +~~'"' ·~ 
~/~~ ~''~ ~ 

'" 
Qj 
!... 
::I . 
O> 

LI- ·~!-~ 

52 



53 

., 
. 

ti) 
Q) 

..--
•r-
4-

I.I) 0 

" s... <.: c.. ct 
~ Q) 

"' C') 
-':::> rtS u.. s... 

•r-
E 
Q) 

..s:: 
~ 

4-
0 

····· ti) 

s:: 
;1 0 

•r-
~ .. rtS 

I E I 

•r-
x 
0 
s... 
c.. 
c.. 
rtS 

..--
rtS 
s:: 
0 
C') 

~ 
..--
0 

0... 

~ 
L 



L 

I 
I 

.l 

·i. .. i 
I 

I 

54 

V'I 
Q) 

.,... 
4-
0 
~ 
c.. 
O'> .,... 

Q) 
..c:: 
..µ 

4-
0 

V'I 
I:: 
0 

..µ 
ra 
E .,... 
x 
0 
~ 
c.. 
c.. 
ra 

r--
0 

a.. 

.,... 



~· 

t 

L 

~l?· .,) 
. .·_,,.. 

. .. .. . 

--"-

\' 
~ 

-1- .... 
·:; ;: 
,.. J-... -.... 
-1-~ ...... ....... 
~£ .... ... 

f 

I
. .i .i 

..... :J :·r .. 
. . .. 1 

. '1 '1,.1. 

.. q 

.:.1. 
I "· :.i 

- .... --

~ 
... .... 
~= 
... ' ....... 

: . ·~~ 
"'::?' 

~ 

~ 

' .. 
.~ .... ~ 
~~ 

1' 
.... 
- 2' 

"' -,..'T ... ..:.. ...... 
.-,.,. ... 
~-.... ~ ..... ·;:N _,.. 
_t_· 

.... ,. ...... ... _ ... 

~~' ,. "' ... .a 
..,>.~ 
'\a ... ...... 

f' 

I 
t 

I 

i 
I 

i 
I 

!· 
I 
I. 

I 
.I 
I 

1' 

I 

~ 

"'""" ,.. ... , 
r ' ... :; ........ .., _ ... 
.. ? 

1' 

_ .... _ .... 

-"" _ ... 

z 
0 

55 

Vl 
Q) 
r­.,... 
4-
0 
s... 
c.. 
E 
0 

..µ 
c 
rtS 
~ 
c.. 
Q) 
~ 
..µ 

4-
0 

Vl 
c 
0 .,... 
..µ 
rtS 
E .,... 
x 
0 
s... 
c.. 
c.. 
rtS 

r-
rtS 
c 
0 
O'> 
>, 
r-
0 

c... 



"" ~~ ....... 
~""' ..... 

~ 
~ ... ... ~ 
~~ 
~~ ... ... -.. ~ ~~ ... ~ 
~~ ,., .. ..... 

: .. ! ... ... .. ~ 
::,. __ .,._ 
.Jo. .. ' > ... ... ... f; ~ 

... ...... 

.J-"' 
~? ~~ 
•'•' ...... ...... ... .. ... ~ .... ..... :r 
_J_ ~ N .... ...... ....... ... .. :, ; .. ' .._,~ ..... ... ~ ::! .. ~ ... _ .... 

~~ 
.;:--~ 

T •> ... ... --

~ 
~f 

,... ... 

~ 
..: ... 
.a~ 
.:. ... 

"''~ !.'~ !. = ... -:. ~~ .a' .... ... ~ ,.. ?. 
t~ ..... .. ~ 
' 

L 

! 
I 
i 

·I:. "i 

~ 

~ 
"' ~~ _ ...... 
~~ 

~~· ~ 
...... 
-.:-
~ ..... ...... 
~~ 
j ....... 
"'~ .::- ... 
.. -• ::?. 

V> 
QJ 

...­.,... 
4-
0 
s... 
Cl. 

c::t" 
0 
........ 

LL. 

QJ 
..c:: ......., 

4-
0 

V') 

s:: 
0 .,... 

......., 

"' E .,... 
x 
0 
s... 
Cl. 
Cl. 

"' ...-

"' s:: 
0 
C') 
>, 

...-
0 

Q. 

CV) 
N 

56 

QJ 
s... 
:::s 
C') .,... 

LL. 



57 

IS'\ 

Q 
ll.. (/) 

Q) 
....-

~ 
•r-
4-
0 s.. 
a. 
Ln 
0 ...... 
LI-

Q) 

~ 
+.J 

4-
0 

(/) 

s::::: 
0 

•r-
+.J 
ttS 
E 

•r-
x 
0 
s.. 
a. 
a. 
ttS 

....-
ttS 
s::::: 
0 
en 
>, r 

....-
0 

a_ 

. 

1' ~ 



. r 

"' ... 
'! ~ 

i 
::! . 

!! ..... 
.... .. 
:: ~ ..... 

t 

i "' :;1;' 
~~ .. ~ .. -J ... 
:::!".a ... ::::: 
;-2' :' .. 

L 

i 
....... 
""' 
~'i 
"' -'::!'-: 
.... "' 

f 

I· 
: 

' · 1 . :: ,_ 

:~-~-~-

t 

r~ ...... 
:~ 
~-:, ...... 
~ :: 
~-::.' 
¥. 

f 

f i "'::: 

~'f _ .... ~ 

.a ~ 
T" "" .,._ ..... ,.. .... 
!: ;-

1 
N - . ... -

~ ~· .,.. .... t ...... 
~""' ....... _ .... 

. ..,..,_,. - ... ... ... 
~~' 
~~ 
~'...!" ....... _., 

] ~~ ~-' r t ... ... 

] .. ... _ ....... 
'": "' .. _, ... .. "" ... ;: 

58 

(/) 

Q) 

4-
0 
s.. 
c. 

,....._ 
LO 

c:a 
Q) 

...c:: 
..µ 

4-
0 

(/) 

c 
0 

..µ 
ttS 
E .,.. 
>< 
0 
s.. 
c. 
c. 
ttS 

...... 
0 
a.. 


	Two new parallel processors for real time classification of 3-D moving objects and quad tree generation
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1488495085.pdf.RvRrE

