
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 1-27-2017

Building a Multivariable Linear Regression Model of Building a Multivariable Linear Regression Model of

On-road Traffic for Creation of High Resolution On-road Traffic for Creation of High Resolution

Emission Inventories Emission Inventories

James Eckhardt Powell
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Physics Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Powell, James Eckhardt, "Building a Multivariable Linear Regression Model of On-road Traffic for Creation
of High Resolution Emission Inventories" (2017). Dissertations and Theses. Paper 3415.
https://doi.org/10.15760/etd.5313

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3415
https://doi.org/10.15760/etd.5313
mailto:pdxscholar@pdx.edu

Building a Multivariable Linear Regression Model of On-road Traffic for Creation

of High Resolution Emission Inventories

by

James Eckhardt Powell

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master Of Science
in

Physics

Thesis Committee:
Christopher Butenhoff, Chair

Linda George
M. Aslam K. Khalil

Andrew Rice

Portland State University
2016

Abstract

Emissions inventories are an important tool, often built by governments, and used

to manage emissions. To build an inventory of urban CO2 emissions and other

fossil fuel combustion products in the urban atmosphere, an inventory of on-road

traffic is required. In particular, a high resolution inventory is necessary to capture

the local characteristics of transport emissions. These emissions vary widely due

to the local nature of the fleet, fuel, and roads.

Here we show a new model of Average Daily Traffic (ADT) for the Portland, OR

metropolitan region. The backbone is traffic counter recordings made by the Port-

land Bureau of Transportation at 7,767 sites over 21 years (1986-2006), augmented

with PORTAL (The Portland Regional Transportation Archive Listing) freeway

traffic count data. We constructed a regression model to fill in traffic network gaps

using GIS data such as road class and population density. An EPA-supplied emis-

sions factor was used to estimate transportation CO2 emissions, which is compared

to several other estimates for the city’s CO2 footprint.

i

DEDICATION

To my family: Carol L. Linné and Paul Y. Irvin, John G. Powell and Debby E.

Powell, Ryan A. Powell and Kristin E. Bowen, Emmett J. Powell and Miles V.

Powell. You are my inspiration.

ii

ACKNOWLEDGMENTS

For our wonderful software libre stack, we thank the developers of GNU emacs,

GNU/Linux, gcc, Debian and CentOS, Sun Grid Engine (SGE), GRASS GIS,

PostgreSQL, R [1], Lattice [2], and cs2cs. A big thank you to Chad Sarni of PSU

Physics for downloading the PORTAL data for us, and to William Garrick of PSU

Research Computing for translating the TDAT into SQL. Kristin Tufte has been

patient answering many queries we’ve had about PORTAL. Jamie Throckmorton

and Tom Jensen of PBOT have unlocked the Bureau of Transportation’s methods

for us. Dr. Andrew Rice has helped us on many occasions by providing interesting

avenues for new research and by his keen insight into the research problem. Dr.

Aslam Khalil has been a steady support through some rocky periods. Dr. Khalil

has maintained a big picture view of the field for me throughout, and he has my

gratitude for introducing me to my advisor, Dr. Chris Butenhoff. I thank Dr.

Butenhoff for his almost superhuman patience with my work, his insanely great

science skills, and his ability to reign in my sometimes wild speculation thereby

directing this research to the conclusion you will read about here.

iii

TABLE OF CONTENTS

Table Of Contents

1 Introduction 1

1.1 Background . 1

1.1.1 The Big Picture . 7

2 Methods 11

2.1 Overview . 11

2.2 The Archive . 11

2.3 Data Understanding . 12

2.3.1 TDAT . 12

2.3.2 PORTAL . 15

2.4 Data Cleaning and Reduction . 15

2.4.1 Data Quality Problems Common to Both Archives 17

2.4.2 TDAT-specific Data Quality Problems 18

2.4.3 PORTAL-specific Data Quality Problems 19

2.5 The Use of the Computer for Reproducibility and Automation . . . 19

2.6 Statistics . 22

2.7 Data Preparation . 22

2.7.1 TDAT . 22

2.7.2 PORTAL . 23

2.8 Deriving a Canonical Model of ADT 23

2.8.1 Selection of Land Use Regression Variables 24

iv

TABLE OF CONTENTS

2.8.2 Establishing the Log-normality of the Counts 24

2.8.3 Using Multiple Linear Regression to make a Linear Model . 31

2.8.4 Obtaining VMT . 31

2.8.5 The Multiple Linear Regression 31

2.9 Preparation for Massively Parallel LUR 32

2.10 Massively Parallel LUR . 33

2.10.1 Population Density . 33

2.11 Exploration . 33

2.12 Hypothesis Testing . 33

2.12.1 Significance of Terms in the Linear Regression 36

2.12.2 Normally Distributed Residuals 36

2.12.3 Weekend Effect . 36

2.12.4 Bimodal Distribution (Rush Hours) 37

2.12.5 Seasonal Effect . 37

2.12.6 Moss Nitrogen Density Experiment 37

3 Results/Discussion 39

3.0.7 Tables of Outliers . 39

3.0.8 H01: Our ADT values compare well with other published

estimates. 41

3.0.9 H02: High (low) moss nitrogen concentration correlates with

high (low) traffic counts. 42

3.0.10 H03: The Shaprio-Wilk test will confirm that the count data

are log-normal. 42

3.0.11 H04: Linear regression is appropriate for the traffic count

data + our Land Use Regression (LUR) statistics 45

v

TABLE OF CONTENTS

3.0.12 H05: Observing that the residuals of the linear regression are

homoscedastic . 45

3.0.13 The linear regression results. 46

3.0.14 H06: the linear regression is statistically significant 46

3.0.15 H07: a linear regression can reproduce trends in the original

traffic data . 46

3.0.16 H08: there are few outliers in the cleaned data. 49

3.0.17 H09: Rush hours will produce a bimodal trend in the diel,

and weekends will be highly attenuated in counts. 49

3.0.18 H10: Small seasonal differences are expected. 52

3.0.19 H11: Our emissions inventory (EI) compares well with other,

independent estimates . 52

3.1 Limitations . 53

3.1.1 Uncertainties . 54

4 Conclusion 56

5 Future Work 58

Bibliography 63

A Appendices 71

A.1 Data Preprocessing Steps . 71

A.2 Data Cleaning Pipeline Flowchart 71

A.3 Archival Process . 76

A.3.1 TDAT . 78

A.3.2 PORTAL . 82

A.3.3 The TDAT Schema - a Finding Aid 84

vi

TABLE OF CONTENTS

A.4 Data Cleaning Details . 84

A.4.1 TDAT . 84

A.5 TDAT Road Class Assignment - Technical Details 87

A.5.1 Our effort to use a spatial join fails due to great disparities

between road maps . 88

A.5.2 A key is found that enables road class assignment 89

A.5.3 An anomaly is found that casts doubt 91

A.6 Source code . 94

A.6.1 Tiny Toy Data For Sample Calculations 94

A.6.2 Adapt PORTAL to the TDAT data structure 96

A.6.3 Weekend Test . 100

A.6.4 Diagnostic Plots for the Log Transformation. Shapiro-Wilks. 101

A.6.5 Join the raw counts with our pseudo-LUR variables. 102

A.6.6 Reduce the data to one row for each day. 103

A.6.7 Translate road class (RC) identifiers to name 104

A.6.8 Make a diel graph . 105

A.6.9 Make a random subset of the raw data for validation purposes.106

A.6.10 Run a stepwise linear regression on the model subset. 107

A.6.11 Count days for each outlier class 108

A.7 Source Code for the Pipeline . 108

B Interesting Statistics 109

C Source Code for the TD0N Pipeline 111

vii

LIST OF TABLES

List of Tables

2.1 A side-by-side comparison of the very different attributes of the

TDAT and PORTAL archives. 12

2.2 The result of our brainstorming effort, informed by research, about

factors that could sensibly affect traffic counts in the city. 26

3.1 A table summarizing the hypotheses tested in this research. 40

3.2 The types of outliers located in TDAT with an approximate num-

ber of location/days affected. The id column is a unique identifier

assigned to the outlier type. 40

3.3 The types of outliers found in PORTAL with an approximate num-

ber of location/days affected. The id column is a unique identifier

assigned to the outlier type. 41

3.4 Coefficients from the linear regression. The units are in the natural

log of the ADT. The significance codes are 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’

0.05 ‘.’. The multiple R2 is 0.8904. 47

A.1 Represented road classes in the toy study area, with color codes

assigned. 81

A.2 Portal freeway coverage. 84

viii

LIST OF FIGURES

List of Figures

1.1 Factors determining urban CO2 concentrations, after [8, Figure 2].

Photograph by the author. 2

1.2 Portland, OR GHG emissions by sector [10]. 3

1.3 Conceptual model of the Circoscope research. 8

2.1 A map of a part of the study area showing colors indicating road

class. The colors are as given in Table A.1. 13

2.2 TDAT count sites in the Portland Metro Area. Red dots are sites.

The yellow line is the Urban Growth Boundary. The blue is the

Willamette and Columbia rivers, and the gray lines are streets. Data

sources: Metro’s RLIS GIS data and the PBOT TDAT2 archive. . . 14

2.3 PORTAL sites in the Portland Metro Area. Blue crosses are stations,

yellow lines are freeways, and the gray area is the urban growth

boundary. 16

2.4 Known Traffic DATa (TDAT) counter arrangements. Numbers in-

side of square boxes are channels. 18

2.5 A schematic of the software stack used in the research. 21

2.6 Actual counts and model counts on a map of Portland, OR. Vertices

are raw data, while the color of the line segments is modeled based

on road class, population density, and on-ramp mileage. 25

ix

LIST OF FIGURES

2.7 Histograms (top) and QQ plots (bottom) for a random sample of

weekday ADT, untransformed. No indication of normality is seen in

these graphs. Each panel is one of the road classes. Codes (a), (b)

etc. are as in Figure 3.5. 28

2.8 Histograms (top) and QQ plots (bottom) for a random sample of

weekday ADT, log-transformed. Normality is seen in these graphs.

Each panel is one of the road classes. Codes (a), (b) etc. are as in

Figure 3.5. 29

2.9 In (a), the square root of standardized residuals plotted against the

fitted values for all of the raw data, without a log-transform. Observe

the definite proportionality of the variance of the residuals against

the fitted values. In (b), after the log-transform the residuals appear

more normally distributed around zero. 30

2.10 Centroids assigned to each road segment in RLIS streets. 32

2.11 A population density map of the Portland, OR region. The rivers

are a composite of RLIS’s fine Metro-area base layer and TIGER’s

coarser state-wide coverage of waterways. The data are compiled at

the level of the census tract, which is approximately the scale of a

neighborhood. 34

x

LIST OF FIGURES

2.12 A box plot of the combined PORTAL and TDAT traffic count data

after cleaning. N=34,308 ADT values were used, each representing

one day of counting at one site. The boxes represent the interquartile

range: 25 % of the data lie below the bottom line and 25 % lie above

the top line, while the interior line shows the median. Adjacent

values are represented by “whiskers” (dashed lines) extending off of

the top and the bottom of the box. Calculation of the adjacent

values is described in [46, p. 242]; they show the approximate range

of the data. Extreme values outside this range are drawn as circles. 35

2.13 A map showing all 81 of the moss experiment sample sites. Red

crosses are sample sites. Counties are named. 38

3.1 Moss collection sites outside of our ADT study area. 43

3.2 Plot of nitrogen content in moss vs. traffic counts. 44

3.3 The actual count data in the set held back during model creation is

plotted against the values for these counts predicted by the linear

model. The equation of the line is y = -0.08613 + 1.00799x. The r2

is 0.90. 11,463 data points are plotted. 48

3.4 Leverage of the points used in the regression, with Cook’s Distance

marked. 50

xi

LIST OF FIGURES

3.5 A plot showing the diurnal (diel) trends in the data. Each panel graphs

all of the available data, as counts per day vs. the time of day (00:00-23:00). The

blue colored dots are a single datum for each hourly binned count made on a week

day, red are the same but for counts made on weekends only. (a) = ”In the area

maintained by the City of Portland only”. (b) = ”Private right-of-way exists”. (c)

= ”With rapid transit”. (d) = ”To local street connector (Portland only, subarea =

’P’)”. (e) = ”Named, but without valid addressing (Clackamas County only, subarea =

’C’)”. (f) = ”Unnamed and without valid addressing (Clackamas County only, subarea

= ’C’)”. (g) = ”With valid address range and street name (in the area maintained by

the City of Portland only)”. (h) = ”With NO Valid Address Range or Street Name

(in the area maintained by the City of Portland only)”. (i) = ”No private right-of-way

exists”. (j) = ”Passable by emergency vehicles (e-911) only (in the area maintained by

the City of Portland only)”. 51

5.1 Conceptual model of the WRF components to the research. 59

5.2 A 1 km resolution gridded CO2 emissions inventory for Portland, OR

developed using our model. We presented this result at the GEIA

conference in Beijing, December 2015. The EI shows the expected

high intensity of emissions along the east-west I-84 corridor (straight

line, top center) and the north-south I-205 corridor (straight line,

center right), zero emissions on an all-river pixel (the white pixel

at bottom left), and fairly high emissions over downtown (top-left).

The units are MT of CO2/year. 60

A.1 TD0N pipeline, 1/4. 72

A.2 TD0N pipeline, 2/4. 73

A.3 TD0N pipeline, 3/4. 74

A.4 TD0N pipeline, 4/4. 75

xii

LIST OF FIGURES

A.5 A UML diagram of the namelist database. We created this finding

aid to guide our manual and automated research into the archives. . 77

A.6 A day of counting at one site in the center of the city. 79

A.7 Map of circles proportional to the number of times PBOT decided

to open a count at the site. Note the big circles all focused on the

downtown area and linear patterns of counts opened along major

N/S and E/W corridors. North is up. The Willamette river can

be seen as a lacuna opening in the top-left of the map. A large

forested park is immediately to the west of the river at the top-

left, represented as another lacuna. The remaining empty space

represents the Columbia river to the north, and other jurisdictional

boundaries to the east, south, and west. 80

A.8 The TDAT schema diagram, part 1. 85

A.9 The TDAT schema diagram, part 2. 86

A.10 An overlay map of the area around SE 29th and SE Waverleigh.

North is up. Red lines are road segments from the PBOT segments.

Blue lines are road segments from RLIS streets. Green lines repre-

sent the software’s best attempt to spatially join RLIS streets with

PBOT segments. Note the remarkable degree of divergence between

the two maps, far too great for an automated system to reconcile

them. 89

A.11 Map showing one of the TDAT count sites where it is not possi-

ble without ground truthing to identify the road class of the site.

RLIS streets includes two roads with different road classes in the

immediate vicinity. 93

xiii

LIST OF FIGURES

xiv

Chapter 1 Introduction

§1.1 Background

“The evidence is incontrovertible: global warming is occurring”(American

Physical Society, Policy Statement 7.1, 2007-11-18)

“Warming of the climate system is unequivocal” [3]

Global warming has already given us a warmer ocean/atmosphere system, less ice,

and a sea level that has and will continue to rise [3, p. 4]. CO2 in the atmosphere

has been rising due to human activities, and the rise since 1750 has created a

situation where anthropogenic CO2 has enhanced the radiative forcing (RF) of the

greenhouse 1 effect by a factor of 1.68 [1.33 to 2.03 W m−2] compared to 1750

levels. CO2 is thus the “elephant in the room,” being the anthropogenic gas most

responsible for global warming [3, p. 13].

Consequently, great energy has been and will continue to be focused on cutting,

drastically, humanity’s CO2 footprint. Only two avenues are available to us: miti-

gation and sequestration. Sequestration, while a favorite of governments, is so far

limited by the lack of incentive for power companies to pay for it, and difficulties

with storage of the sequestered CO2 [4]. We believe that mitigation is a key part of

the anthropogenic CO2 emissions problem and that emissions inventory (EI)s are

a primary tool in our effort to find an effective means of mitigation.

The global change research community has been constructing high resolution
1A misnomer: greenhouses are primarily heated by convection, not radiation.

1

Introduction

CO2
transportation CO2

biogenic

CO2
residential

CO2
commercial/industrial

Meteorology
CO2

background

Atmospheric [CO2]

Figure 1.1: Factors determining urban CO2 concentrations, after [8, Figure 2]. Photo-
graph by the author.

(< 10 km x 10 km resolution) EI of CO2 for several years [5]. The call for this

type of EI is to improve policy making for climate change mitigation and to help

scientists to close the carbon budget at small scales. Our field was recently de-

scribed as “the nascent field of modeling and observing urban carbon pools and

flows” [6]. Observers see the possibility that “an urban research campaign . . .

[that] combines surface observations [with] . . . high-resolution flux estimation . . .

could transform carbon cycle science” (ibid). Meta-analyses have abundantly iden-

tified “the importance of using localized data for accuracy in terms of emissions

estimates” [7], however such data and the expertise needed to analyze them are

prohibitively expensive in many cases.

The fluxes of CO2 in a city are complex, including biogenic, residential, com-

mercial/industrial, and CO2 from transportation and that blown in by winds in a

regional mixing. Figure 1.1 shows these sources and sinks.

The biggest significant change, one that really does alter what it is like

to be human, may well be modern communication and transportation”

[9, p. 249, emphasis mine]

2

1.1. BACKGROUND

Waste Disposal

Industrial

Residental

Commercial

Transportation
Figure 1.2: Portland, OR GHG emissions by sector [10].

Figure 1.2 demonstrates the importance of the transportation sector in CO2

emissions for Portland. We believe, for reasons discussed throughout, that urban

on-road transport is where the major focus for CO2 emissions mitigation should

be.

In 2014 [6] conducted a broad survey identifying the way forward from the

current, weak knowledge regarding the pathway to a sustainable, low-carbon future

for our cities. The situation is complex in the extreme; carbon use trajectories

vary widely between developed and developing countries, stakeholders are many

and powerful, and equity questions are strongly in play.

It will be possible to plot a sustainable course by improving our understanding

through “integrated, coproduced approaches to urbanization” (ibid.), combining

expertise of engineers, social scientists, and natural scientists. A repeated theme in

this work is the importance of “researchers and practitioners who create a thorough

quantification of city-level carbon emissions” (ibid).

Here we show a novel technique of making a high resolution EI by combining

3

Introduction

two extensive and local data sources for transportation with several government-

cultivated yet still local data sources for land-use (where the term land-use is taken

loosely to include factors like population density and road density). We report

here the methods and results for developing a high-resolution, high-accuracy CO2

emissions inventory for the North American city of Portland, OR. This is the first

work to our knowledge that examines raw traffic count data, a primary source;

preceding efforts have relied on state-reported numbers for VMT, which were shown

in [11] to be quite inaccurate for some states.

Hundreds of governments of all scales, world-wide are working to reduce CO2

emissions, including for example the state of California [12], the city of Portland,

OR [10], and a coalition of hundreds of cities in Local Governments for Sustain-

ability (ICLEI) [6], and many nations under the Kyoto Protocol which was put

forward in 1997 by the United Nations Framework Convention on Climate Change

(UNFCCC). The Paris talk of 2016 resulted in a commitment by the US to reduce

CO2 emissions to “26-28 percent below 2005 levels by 2025” [13].

Beyond voluntary efforts such as these, binding agreements between states are

emerging, and these are likely to have far-reaching economic impact. Such agree-

ments will require a process known as monitoring reporting and verification (MRV)

[14, p. 8423]. Emissions inventories are expected to be a primary means of demon-

strating compliance, but the accuracy of EI generally are as large or greater than

the expected emissions reductions.

Evidence is building that deep cuts in urban emissions will be required to miti-

gate the worst (and potentially catastrophic) effects of global warming [15, p. 486]

[10] For example, in 2008 Wheeler wrote that “a small but growing number of U.S.

states and cities have adopted long-term goals that would reduce CO2 equivalents

nearly 80% below the 2000 level by 2050.” [15].

Policy makers are interested in CO2 emissions mitigation as a source of options

4

1.1. BACKGROUND

(primarily cap and trade) in the face of potentially catastrophic climate change.

Emissions are of interest because sequestration options appear highly limited [16].

An accurate EI is a required vehicle for proving the effectiveness of emissions mit-

igation policy and also a useful tool for exploring mitigation options.

Carbon cycle research includes two distinct important elements: a terrestrial

sink that is hard to quantify (the biosphere) and a fossil fuel source that is well

known. In inversion studies, the latter is often used to constrain the former, and

even slight inaccuracies in spatial or temporal inventories of CO2 emissions from

fossil fuels result in uncertainty in estimations of Net Ecosystem Exchange (NEE)

[17] [18].

The global change research program’s attention has rightly fallen to the urban

scale [6], because recently the balance of humanity became urbanized and the

majority of global CO2 emissions are urban. Past studies have produced EI on a

global or national scale, however such work is not useful for understanding urban-

scale sources and sinks because an EI commensurate with the urban scale is needed.

In the United States (US), where there is no national policy 2, the scale at which

policy is being made is often urban.

Cities have been shown to be the source of most of the growth in on-road CO2

emissions in recent decades [11], and cities have another reason to mitigate: cost

savings. One study concluded that city managers are motivated by cost savings

more than public opinion, and that cities can save money in some cases through

mitigation [20].

Cities are also important for their activism (ICLEI) and because there is a

governance advantage at work. We generally find that policymakers at the urban

level have the ready ability to translate decisions into action especially in the

2In 2009 the EPA established a policy of maintaining an emissions inventory of Greenhouse Gas (GHG)
from major emitters in the US [19] , indicating some further regulation may be forthcoming.

5

Introduction

transport realm (Leonor Tarrasón, in a presentation at GEIA 2015).

As humanity works to curb CO2 emissions, Integrated Assessment Model (IAM)s

are a useful tool for categorizing the emitters. However, global IAMs ignore urban-

level work, where much interesting effort is going into urban planning and urban

mode shift work which will impact mitigation. Our high-resolution urban model

will capture this effect and enable these local efforts to be a part of the conversation

about CO2 mitigation [21].

Globally, the transport sector was found to be the source of 23 % of CO2

emissions in the year 2010 [22, p. 4]. On-road transport is 81% of that quantity

[23]. We find that on-road transport (that is, not air, rail, or water) is the largest

category of Greenhouse Gas (GHG) emissions nationwide in the USA [19], and

38% of GHG emissions in Portland, OR [10]. The transport sector overall was

responsible for 33.4 % of GHG \ (1,704.6 MMT CO2 eq.) emitted in 2012 in the

US, the last year reported.

This work differs from the usual approach in that we draw from primary sources:

the Portland Bureau of Transportation (PBOT) Traffic DATa (TDAT) archive and

the Portland Regional Transportation Archive Listing (PORTAL) archive. there

is another study which used road-segment level Vehicle Miles Travelled (VMT) to

avoid any requirement of down scaling by proxy [11, p. 5000], our product offers a

direct, local and bottom-up result.

We also see an opportunity to test some problems related to urban planning.

Portland is an unusually planned city, unique in some ways: the only city in the

United States with an elected metropolitan authority whose reach extends well be-

yond the city limits, and in 2011 the city rated 5th in the nation (after Denver, New

York, Los Angeles, and Boston) for “the best combination of public transportation

investment, ridership, and safety” 3.
3http://www.usnews.com/news/articles/2011/02/08/10-best-cities-for-public-transportation

6

1.1. BACKGROUND

So we see that matters of scientific interest (close the carbon cycle), civic inter-

est (build a sustainable city), and international law (treat with others to avoid a

tragedy of the commons) all demand much higher accuracy CO2 emissions inven-

tories, and this is the novel contribution of our work.

Our effort has produced an emissions inventory of high resolution and accuracy

for the City of Portland, Oregon, in the United States of America, for CO2 emissions

from on-road transport. Our model, circoscope, is bottom-up and based on traffic

counters which are believed to be a very reliable source of information, measured

at 98% accurate [24].

§1.1.1 The Big Picture

We initiated the project in 2011 in the full understanding that a unique resource,

the TDAT archive, existed and could, no doubt, be used to constrain the city’s

emissions inventory for CO2. The conceptual model in Figure 1.3 was developed

early and still guides our work.

We were also aware that the PORTAL group had been collecting counts on all

of the region’s freeways (restricted roads) for nine years [25]. Since TDAT has no

data for restricted roads, this PORTAL archive is vital complement allowing us to

complete our picture of the region’s ADT.

We designed this research then to produce a high resolution EI for the City of

Portland’s CO2 from on-road transport. Few other efforts have produced such high

resolution EI for CO2, two examples being the Hestia inventory for Indianapolis

[26] and Kevin Gately’s inventory for Boston [18], and McDonald et. al.’s 2014 fuel

and traffic-count based inventories for a number of US cities [27].

The discrete counts of TDAT and PORTAL were not enough for this purpose.

We needed to be able to model the whole road network with a meter by meter traffic

volume indicator such as ADT or VMT. Our hypothesis was that a multiple linear

7

Introduction

Figure 1.3: Conceptual model of the Circoscope research.

8

1.1. BACKGROUND

regression [28, Ch. 4] based on the road class (one of 32 classes such as primary

arterial, secondary arterial, minor streets) and several Geographical Information

System (GIS) statistics for the region surrounding the short road segment of interest

could well predict traffic counts. We wanted a model where we could ask “if I went

to this road segment on this day, at this time, how many vehicles would I count

going by in an hour?” and get a good answer.

When viewed at from a daily traffic count perspective, the “how many vehicles”

value, called ADT, is a common and well understood measure of traffic volume. Our

model depends on not only how many vehicles are traveling, but on how far they

go, so we combine ADT for a road segment with the length of the road segment

to obtain another common measure VMT. VMT is suitable input to emissions

modeling.

To obtain an accurate model of VMT, we considered many possible drivers for

ADT in a process similar to those followed by [29] and [30]. We decided to use road

class, population density in circles of various radii, and freeway on-ramp mileage

in circles of various radii, to build a linear model of the form

ADT = β0 (a constant intercept)
+ β1 ×RC(primary arterial) + β2 ×RC(secondary arterial) + . . .

+ βn × POPDEN(100m circle) + βn+1 × POPDEN(200m circle) + . . .

+ βm ×ONRAMP (100m circle) + βm+1 ×ONRAMP (200m circle) + . . .
(1.1)

where the RC variables are either 1 or 0 and the β are all constant values

determined by ordinary least squares regression. The variables we selected are

shown to be significant drivers of ADT.

The ADT values given by Equation 1.1 for each road segment (N=105,178) were

multiplied by the length of the segment to give VMT. The VMT were multiplied by

a nationwide average emissions factor from an EPA publication (http://www.epa.

9

http://www.epa.gov/climatechange/ghgemissions/ind-calculator.html
http://www.epa.gov/climatechange/ghgemissions/ind-calculator.html
http://www.epa.gov/climatechange/ghgemissions/ind-calculator.html

Introduction

gov/climatechange/ghgemissions/ind-calculator.html accessed 2014-12-08)

and summed up to provide a citywide CO2 emissions rate from on-road traffic. We

compared the resulting estimate for the region’s CO2 footprint to Vulcan’s estimate

for the same region. We summed the estimate to get a single annual CO2 emissions

estimate for the city and compared it to a City of Portland estimate.

We plan to go forward by using Environmental Protection Agency (EPA) MOtor

Vehicle Emission Simulator (MOVES) to provide more accurate local emissions

factor (EF) based on local fleet composition. This will produce a high resolution

(1km x 1km) hourly map of area CO2 emissions - a source which will be combined

with a map of Vegetation Photosynthesis and Respiration Model (VPRM) [31] to

give area CO2 emissions. This hourly EI will be input to the Weather Research

and Forecasting (WRF) model, and samples from the model output compared to

instrument recordings of CO2 concentration at three sites in an archive maintained

by Dr. Andrew Rice’s group at Portland State University (PSU). We expect based

on the fine results for a similar project [32] to be able to reproduce the Rice record

with some accuracy, thereby ground-truthing our model.

Our model then will build confidence and give tighter estimates for the city’s

CO2 emissions. This result will be useful in the fields of inverse modeling of CO2

sources and sinks, and separately in the discovery and monitoring of the effective-

ness of mitigation measures.

We have coined the name “Circoscope” for the traffic density model. We will

use the term “TD0N” somewhat interchangeably with Circoscope, although TD0N

is generally used to refer to the data cleaning pipeline (the computer code) while

Circoscope refers to the linear model which is a product of analyzing the clean

data.

10

http://www.epa.gov/climatechange/ghgemissions/ind-calculator.html
http://www.epa.gov/climatechange/ghgemissions/ind-calculator.html
http://www.epa.gov/climatechange/ghgemissions/ind-calculator.html

Chapter 2 Methods

§2.1 Overview

In the course of building our model, two complicated and in some ways poorly doc-

umented databases have been processed to produce a synthetic, summary product

which is both concise and accurate. Several best practice methodologies were em-

ployed to make the problem tractable. The include the methods of the archivist

[33] [34][35], the data miner, the software engineer [36] [37], and the statistician

[38] [39].

§2.2 The Archive

The research described here was carried out by analyzing a variety of primary

materials. Two collections of records in particular have never been used for CO2

emissions inventories before, to our knowledge. We adopt archival techniques to

help the public in understanding and reproducing our work. We are comfortable

that archival approaches are justified because these records, of traffic counts along

roads and highways, ‘provide “evidence of a person or organization’s activities”

’[34, p. 29].

Our work primarily involved obtaining, understanding, merging, and cleaning

two large raw data sets: TDAT and PORTAL. These are described in the next

section, Data Understanding.

11

Methods

TDAT PORTAL
Hierarchical Flat
Counting done deliberately, project-specific. Counters installed permanently
Many outages and special events labeled Few (any?) special events (holidays,

accidents, outages) labeled

Table 2.1: A side-by-side comparison of the very different attributes of the TDAT and
PORTAL archives.

§2.3 Data Understanding

To open the methods, we give an overview of the primary sources, TDAT and

PORTAL. These have much in common. Both are recordings of traffic counts: the

number of times a vehicle passed by on a road in a 15 minute period. The count

sites in both are known by the lat/long of a counting site, and the counts can be

and were summed to include vehicles passing in either direction and in any lane.

The organization and motivation of the two data sets is as different as can be.

These differences are summarized in Table 2.1.

§2.3.1 TDAT

TDAT is a database of project-specific traffic counts maintained by the City of

Portland. TDAT is continuously being added to at publication time.

The database is large (885 MB of Structured Query Language (SQL)) and spans

a lot of time (1986-2006). TDAT is largely undocumented outside of suggestive

table and field names, and in a white binder in the corner of an office at the PBOT.

We connected software for graphically representing the data dictionary, in order to

create Figures A.8 and A.9.

We obtained a GIS layer from the regional authority which assigns one of 32

road classes to each segment of road in the metropolitan region. A map of part of

this area is given in Figure 2.1.

12

2.3. DATA UNDERSTANDING

Figure 2.1: A map of a part of the study area showing colors indicating road class. The
colors are as given in Table A.1.

13

Methods

Portland, OR, USA Traffic Count Sites

SCALE: 1 : 322827

REGION: 7557746.90691 7753272.2394
744051.073819

614775.790723
ugb (PERMANENT)
streets (PERMANENT)
Nodeleg (PERMANENT)
riv_fill (PERMANENT)

Modification date: Mon Jul 29 18:31:58 2013

Map created by James Powell 2013−07−29.
Source: Metro’s RLIS archive and Portland, OR’s TDAT2 traffic count database.

Figure 2.2: TDAT count sites in the Portland Metro Area. Red dots are sites. The
yellow line is the Urban Growth Boundary. The blue is the Willamette and Columbia
rivers, and the gray lines are streets. Data sources: Metro’s RLIS GIS data and the
PBOT TDAT2 archive.

14

2.4. DATA CLEANING AND REDUCTION

To gain confidence in the usefulness of the TDAT data, we mapped the count

sites. The result is in Figure 2.2. We observe that coverage is intense and fairly

uniform in an area centered on downtown, but no coverage exists outside of the

city limits leaving much of the metropolitan area unsampled.

§2.3.2 PORTAL

PORTAL [40] is an archive of regional freeway and highway traffic counts kept by

PSU. PORTAL is continuously being added to at publication time. The project

combines the resources of PSU, Oregon Department of Transportation (ODOT),

Portland Metro, and the US Department of Transportation. Vehicle counts gath-

ered from a network of 732 loop detectors planted in restricted roads in the Port-

land area are recorded for research purposes. Recordings are made at 351 different

stations.

To gain confidence in the usefulness of the PORTAL data, we mapped the count

sites. The result is in Figure 2.3. We observe dense and uniform sites throughout

the metropolitan region.

§2.4 Data Cleaning and Reduction

“ItâĂŹs like riding a psychotic horse toward a burning stable” (Robin

Williams as Armand in “The Birdcage”)

Our problem is similar to probing a crystal with a laser from many different

directions to find paths with no defects. Defects that are found are categorized and

the suspect data is cleaned out of the final product.

We resolved this problem by building an eight-stage pipeline, where each stage

except the last cleans the data, identifying and isolating outliers. The last joins

the clean count data to separately prepared “land use” data such as functional

15

Methods

Map created by James Powell, 2014−10−20.
Data from RLIS (layers ugb, fwy) and PORTAL
(portal−total−version−2014−07−31/portalstations.csv).

SCALE: 1 : 1105370

REGION: 7371584.87123 7949002.60692
858873.308944

473928.151817

 portal_total_freewy_stns(portal_total)

 fwy(PERMANENT)

 ugb(PERMANENT)

0 47500 95000 142500 190000

Feet

Figure 2.3: PORTAL sites in the Portland Metro Area. Blue crosses are stations, yellow
lines are freeways, and the gray area is the urban growth boundary.

16

2.4. DATA CLEANING AND REDUCTION

road class, population density, and on-ramp mileage in the area. The pipeline is

presented in Appendix A.2.

§2.4.1 Data Quality Problems Common to Both Archives

The majority of our data cleaning filter applies equally to TDAT and PORTAL.

We used a computing mechanism called materialized views to cast PORTAL in the

guise of TDAT to enable a single code base to operate on both databases. We will

discuss the common problems now.

Negative Counts Both archives have a handful of instances where a count of less

than zero was recorded. Discovery of this defect necessitated marking the whole

counting day as an outlier.

Two (or more) channels of data exist that share only a single channel number.

These channels (a TDAT term, these are known as detectors in PORTAL) are

expected to be uniquely identified. Some counting days in both archives have

multiple channels assigned to a single channel identifier.

Missing Data for a Channel We organize our counting into one or two channels.

One channel counting indicates traffic flow in a one-way street (PORTAL highways

and freeways are always two-channel). Two channels require traffic flow in two

directions.

Both archives have a number of instances of data being recorded for one channel

or lane of traffic, but the record for an expected second channel is missing entirely

from the archive.

Incomplete Day Of Recordings The vast majority of outliers in both archives is

the case where the recorder was only able to obtain part of the full day’s recordings.

17

Methods

 1

 2

 1

 2

1

1

MedianMedian

CountID VL104.V1 CountID VL105.V1

1 Automated traffic recorder recording on channel 1

Lane Marker
Key:

Automated traffic recorder recording on channel 1 and channel 2

Rubber tube across roadway

CountID VL103.V1

(a) Normal arrangements.

 1

 2

Median

 1

 2

1

1

Median

1 Automated traffic recorder recording on channel 1

Lane Marker
Key:

Automated traffic recorder recording on channel 1 and channel 2

Rubber tube across roadway

CountID VL105.V1

CountID VL104.V1

CountID VL103.V1

(b) Pathological arrangements.

Figure 2.4: Known TDAT counter arrangements. Numbers inside of square boxes are
channels.

A typical example will have recordings starting at 11 AM, and ending at 2 PM.

§2.4.2 TDAT-specific Data Quality Problems

The JAMAR-type traffic counters (pneumatic tubes and recorders manufactured by

JAMAR corp.) used by PBOT have multiple channels (multiple tubes connected).

The counting arrangements in Figure 2.4 capture all of the possibilities and are

expected to be typical of project-level automated counting in any city. We can

confidently report that TDAT’s long history spanning 21 years and perhaps 8000

forty-eight hour projects has enabled ample exploration of the ways the data can

be collected and recorded.

The Number Of Channels Is Not In (1,2) For This Count A slight handful of

TDAT counts were marked as outliers because the number of channels was outside

our canonical range of 1-2.

Unacceptable (or NULL) Excepttype TDAT has a field excepttype which usu-

ally indicates normal weekday, or normal weekend. Any alternative, for example

the code #BIKE which indicates “count includes bicycles only, no motor vehi-

cles” and the code #CONST which indicates “obstruction count data affected by

18

2.5. THE USE OF THE COMPUTER FOR REPRODUCIBILITY AND
AUTOMATION

construction activity which does not close the entire roadway” 1 are excluded.

No Kounts Were Recorded Under This Count Id We introduce here the TDAT

jargon of “kounts”. A kount is an integer expressing the number of vehicles recorded

as passing the device in a given time period, while a count is the introduction of a

project-specific counting event. There are many cases in TDAT where a counting

event was introduced (so a count ID was made) but no “kounts” were ever recorded.

§2.4.3 PORTAL-specific Data Quality Problems

PORTAL displayed a number of the same DQ problems that we found in TDAT.

Two unique problems with PORTAL are detailed here.

PORTAL Station With No Other In the case of roads with bidirectional traffic,

we require simultaneous recording of traffic in both directions. Many PORTAL

stations do not supply this comprehensive recording; counts at these stations are

filtered out.

§2.5

The Use of the Computer for Reproducibility and

Automation

The analysis is enabled by automation. To reproduce our work, one begins with a

“tarball” we have on our research computer - a single file which any programmer

can easily unpack and build. The build concludes with a single executable file

containing machine code and embedded SQL code, R code, and GIS map speci-

fications. This program is executed from a Portable Operating System Interface

- Unix (POSIX) command line, and when it finishes (in about 5 days) the Data

Preparation and Modeling phases are complete.
1Private communication from PBOT’s J. Throckmorton, 2014-07-22

19

Methods

As the research proceeds, we are configuring our computer to automatically

repeat the above on a rolling basis, as a safeguard against the unfortunate case of

a bug being introduced or fixed without notice and documentation, which changes

our model in a meaningful way.

It is best practice to reuse software components when possible and to thus

diminish the impact of a syndrome or anti-pattern known as “not invented here.”

We have maximized our use of other people’s work, reducing our own work to a mere

10,000 lines of code. The relatively small footprint, which is only 4x bigger than

the MAEROS coagulation model, for example, and just 1% of the size of the WRF

research-grade meteorological model, is a great aid to us allowing transparency and

parsimony to be the rule of the day. The software stack is shown in Figure 2.5,

and most of these components are probably recognizable to the reader because of

their famously useful rôle in a great number of computer-based experiments.

We were able to achieve this high level of automation and reproducibility by

virtue of an initial, risky effort to build a program-that-programs, which we call

the Zombie Caterpillar. The driver, called tache 2, at the top of the stack is able

to initiate processes amongst any other component in the stack, locally or over

a network, and interact with that component in complex ways. One example of

the utility of the Zombie Caterpillar is that among the 10K lines of driver code

is an Application Programming Interface (API) of great generality and depth for

carrying out GIS analyses. Another example is the ability of the driver to call out

to R for calculating statistics and other data reduction and error analysis steps.

We also use Embedded SQL 3, a type-safe and null-aware means to use the archive

from C++.

2Tache: a French word meaning task, but also stain, as in the stain of CO2 in our atmosphere.
3Embedded: the interpreted SQL is embedded into a compiled C++ code.

20

2.5. THE USE OF THE COMPUTER FOR REPRODUCIBILITY AND
AUTOMATION

POSIX (e.g. CentOS, Debian GNU/Linux)

(PostgreSQL)

ZombieCat Driver

TD0N Pipeline

GIS − Shapefiles

(GRASS, RLIS)

Database

Figure 2.5: A schematic of the software stack used in the research.

21

Methods

§2.6 Statistics

We carried out an extensive statistical analysis of the cleaned data after our cleaning

process completed. These steps involve data reduction and error analysis [41], and

stepwise multiple linear regression [38] [28]. Quantile-quantile plots [42] [43] were

used as diagnostics to demonstrate the normality of the distribution of the ε of

the traffic counts in our linear regression. The linear regression was analyzed by

holding back one third of the data for validation, and also by graphing the data at

various levels of detail and using different slices or subsets to produce results and

to test theories including a putative large weekend effect and a smaller seasonal

signal.

This concludes the overview of our methods. We will now describe our methods

in greater detail.

§2.7 Data Preparation

To select our data set, we started with all available counts. We then began the

process of accumulating a set of very clean 24-hour days of steady counting. We

then assigned a road class to each count site (Appendix A.5).

These two types of data, typified by the tuple (number of counts, timestamp

of the beginning of a fifteen minute interval, lat, long, road class), are the desired

result of preparing our data sets.

§2.7.1 TDAT

TDAT data were prepared by obtaining SQL for the entire database and associated

GIS layers supplied by PBOT.

22

2.8. DERIVING A CANONICAL MODEL OF ADT

§2.7.2 PORTAL

As described in Section 2.3.2, we prepared the PORTAL data by making a GIS layer

of the count stations and obtaining a complete record of the raw counts using the

PORTAL web site. We decided that the best approach would be to use SQL views

to cast one of the data sets into the form of the other. Success here meant that a

single data cleaning code could manage both archives with little special-casing.

This approach proved beneficial. We found it easy to put PORTAL into the

form of TDAT using Cartesian joins (a process where by data with packed coding,

meaning little redundancy, is exploded to produce a simple, flat table with a lot of

redundancy), and since the data are so similar in essence although very different

in organization this step represented a classical unification of apparently disparate

systems. It is very simply expressed, and it makes our system robust to accepting

data in either form, while both forms are apparently completely logical in the

context of the Bureaus that record the data.

The SQL code for this adapter is given in Appendix A.6.2.

§2.8 Deriving a Canonical Model of ADT

We require a continuous source of CO2 for our program of eventually cross checking

our model against measured CO2 concentrations, but we’re given discrete (in both

time and space) examples in which the passage of a vehicle is noted at a particular

location and time. We need to fill in spatial and temporal gaps in the discrete data

to give reasonable values for traffic counts where no count data exist.

The map in Figure 2.6 demonstrates both the problem and our solution for

the spatial part of the problem. The points marked X are the discrete historical

cases where vehicles definitely were observed passing by during the time period of

interest. The color of the lines is given by our model. We desire a close agreement

23

Methods

between these values.

§2.8.1 Selection of Land Use Regression Variables

The continuous values along the road segments are the product of a linear regres-

sion. We asked: what factors drive traffic volumes? As we see in [44], a number of

factors are possible: population density, greenness indices, distance from the center

of the city, even the vertical slope of a road segment. We generated the list of Table

2.2 and selected just population density and meters of restricted road onramp-type

road in circles of 100m, 200m etc. out to about 800m.

We will now derive an equation of the formADT = a1RC1+a2RC2+· · · anPOPDEN+

an+1ONRAMP , and describe a process for filling the gaps in the emissions inven-

tory, gaps in between count sites. The analysis proceeds by augmenting a matrix

whose initial contents are only the lat/long of the count sites, 6000 of them, so

it’s a 2x6000 matrix which for reasons which shall become clear, we call node-

leg 866 vector repo 001. We will augment this with road class, population density,

and on-ramp measurements.

§2.8.2 Establishing the Log-normality of the Counts

“In general, we must keep in mind that there is no guarantee that use

of these transformations will necessarily be better than analyzing the

proportions directly; much depends on the data. The effectiveness of

a transformation is best assessed by trying it on the data and then

checking the fit of the model and the pattern of residuals that results.”

[28, p. 239] on using log- or arc-sine transformations on proportional

data.

“In the standard classifications, skewness in the distribution of errors

24

2.8. DERIVING A CANONICAL MODEL OF ADT

High resolution traffic density model for Portland, OR

Map created by J. Powell, 2014−12−12.
Data sources: RLIS streets, PBOT TDAT, PORTAL, TIGER census 2010.

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 752 − 874 counts/hr

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 632 − 752

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 511 − 632

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 391 − 511

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 270 − 391

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 150 − 270

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 30 − 150

 Nodeleg_8666_9078_6965_tache_vector_repository_001@portal_total (portal_total)

 Nodeleg_8666_9078_6965_tache_vector_repository_001@PERMANENT (PERMANENT)

 −90 − 30

0 2.5 5

kilometers

Figure 2.6: Actual counts and model counts on a map of Portland, OR. Vertices are raw
data, while the color of the line segments is modeled based on road class, population
density, and on-ramp mileage.

25

Methods

Variable Subjective
Importance
(out of 10)

Road class 10
population density 10
meters of hwy on-ramps 10
percent of land cover that is 5

impermeable (or tree covered, or lawn)
slope 0
aspect 0
proximity to (school, hospital, groc. store, etc.) 0
zoning mix 0
could train neural net on all poss. variables - 0

soln is then general
temperature, precip, humidity 0
day of week
weekend or not
holiday or not
month
quarter
season
year
decade
major sporting event or concert that day
Obama visits
crime rate 1
direction of travel (EW vs. NS)
proximity to river
CO2 intensity recorded by Dr. Rice at 3 area locations. 0
Other Air Quality measurements by L. George
Traffic as counted by other counting systems

(L. Hill’s thesis)
New metric: is it on a line of steep travel gradient
Distance to Max, Bus (limit the years

in which red/yellow Max line operated
L. George’s student who has time series of NOx in PDX
Impervious surface area (ISA)
Volume-weighted Road Density

Table 2.2: The result of our brainstorming effort, informed by research, about factors
that could sensibly affect traffic counts in the city.

26

2.8. DERIVING A CANONICAL MODEL OF ADT

tends to produce too many significant results in F- and t-tests. In addi-

tion, there is a loss of efficiency in the analysis.” [45, p. 325]

We began our research expecting to find that our data would follow a log-

normal distribution, because of the proportional nature of the data. Log-normality

is expected if the treatments have an effect that is proportional instead of additive:

an increase of 5 % per unit of treatment instead of an increase of 5 units [45,

p. 329]. We consider it reasonable that for a given site, the evidence of the

population density or mileage of on-ramps in the area around the site does suggest

a proportional increase or decrease of the ADT compared to the mean ADT for

that road class. This makes a log-normal distribution of the traffic counts likely.

Our exploration supports this assumption. Graphing the data is the best way

to observe log-normality, and we see evidence of log-normality in the histograms of

Figure 2.7, in which we plot the raw data. The result is obviously not Gaussian,

or the histogram would look bell-shaped and the Q-Q plot would approximate a

straight line. The following Figure 2.8 displays the data after a log transform. The

Gaussian bell curve is apparent.

Homoscedastity, which is the property of constancy of the variance of the error

term over the full range of the model fitted to the data, is an assumption of Ordinary

Least Squares (OLS) fitting (we include a complete list of OLS assumptions in

Section 3.0.11). It is only by homoscedastity that OLS is the “minimum variance

unbiased estimator” 4. In the absence of homoscedastity, the estimator has more

variance, but it does not pick up a bias (ibid).

When the data are log-normal (that is, the logarithm of the raw data are nor-

mally distributed and the raw data themselves have the greatest number of counts

at the low end of the distribution and exponentially decreasing frequency of counts
4https://stats.stackexchange.com/questions/52089/ what-does-having-constant-variance-in-a-linear-

regression-model-mean/52107#52107 accessed 2016-10-23.

27

Methods

kount

P
er

ce
nt

 o
f T

ot
al

0
20

40
60

80

0 500000 1000000

Freeway

0
10

20
30

40
50

0 500000 1000000

Highway
0

20
40

60
80

10
0

0 500000 1000000

Local street (d).

0
20

40
60

80
10

0

0 500000 1000000

Minor (c)

0
20

40
60

80
10

0

0 500000 1000000

Minor streets
0

20
40

60
80

10
0

0 500000 1000000

Off ramp (only) to highway (a)

0
20

40
60

80
10

0

0 500000 1000000

On ramp (only) to highway (a)

0
20

40
60

80
10

0

0 500000 1000000

Other arterial

0
20

40
60

80
10

0

0 500000 1000000

Primary arterial

0
20

40
60

80
10

0

0 500000 1000000

Primary arterial (c)

0
20

40
60

80
10

0

0 500000 1000000

Private named road (b)

0
20

40
60

80
10

0

0 500000 1000000

Secondary arterial
0

20
40

60
80

10
0

0 500000 1000000

Secondary (c)

qnorm

ko
un

t

0
20

00
00

60
00

00
10

00
00

0

−2 0 2

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●
●●

●●

●

Freeway

0e
+

00
2e

+
05

4e
+

05
6e

+
05

−2 0 2

●●●
●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●
●
●

●●
●

●

Highway

50
00

10
00

0
20

00
0

−2 −1 0 1 2

●

●●

●●●●
●●
●●●●●

●●●●●●●
●●●●●●

●●●●●
●●●●

●●●●●●
●●●●

●●
●●●

●

Local street (d).

20
00

40
00

60
00

80
00

12
00

0

−2 −1 0 1 2

● ● ●●●●●●●●●●
●
●●●●

●

●

●
●

Minor (c)

0
50

00
10

00
0

−3 −2 −1 0 1 2 3

●●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●
●●●
●●●●●
●●
●●

●

●
●

Minor streets

50
00

10
00

0
15

00
0

20
00

0

−1.0 −0.5 0.0 0.5 1.0

●

●

● ● ●

●

●

Off ramp (only) to highway (a)

60
00

80
00

10
00

0
14

00
0

−1.0 −0.5 0.0 0.5 1.0

●
●

●

●
●

●

On ramp (only) to highway (a)

0
10

00
0

20
00

0
30

00
0

40
00

0

−3 −2 −1 0 1 2 3

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●●●●
●●●●

●

●

●●
●

Other arterial

10
00

0
20

00
0

30
00

0
40

00
0

−3 −2 −1 0 1 2 3

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●
●●●●
●●
●●
●●
●●

●●

Primary arterial

50
00

10
00

0
15

00
0

20
00

0

−2 −1 0 1 2

● ●●●●●●●
●
●●
●
●●
●●●

●●
●●●
●●●●

●●●
●
●●
●●●●

●●● ●

Primary arterial (c)

23
87

1.
6

23
87

2.
0

23
87

2.
4

−0.4 −0.2 0.0 0.2 0.4

●

Private named road (b)

0
20

00
0

40
00

0
60

00
0

−2 −1 0 1 2

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●

●●●●●
●●●●●●●●●●

●●●●
●●●
●●●●

●●
●●

Secondary arterial

0
50

00
10

00
0

−1.0 −0.5 0.0 0.5 1.0

●

●

● ●

●

Secondary (c)

Figure 2.7: Histograms (top) and QQ plots (bottom) for a random sample of weekday
ADT, untransformed. No indication of normality is seen in these graphs. Each panel is
one of the road classes. Codes (a), (b) etc. are as in Figure 3.5.28

2.8. DERIVING A CANONICAL MODEL OF ADT

xformkount

P
er

ce
nt

 o
f T

ot
al

0
20

40
60

4 6 8 10 12 14

Freeway

0
20

40
60

80

4 6 8 10 12 14

Highway
0

20
40

60

4 6 8 10 12 14

Local street (d).

0
20

40
60

4 6 8 10 12 14

Minor (c)

0
5

10
15

20
25

30

4 6 8 10 12 14

Minor streets
0

10
20

30
40

50

4 6 8 10 12 14

Off ramp (only) to highway (a)

0
20

40
60

4 6 8 10 12 14

On ramp (only) to highway (a)

0
10

20
30

4 6 8 10 12 14

Other arterial

0
20

40
60

4 6 8 10 12 14

Primary arterial

0
10

20
30

40
50

4 6 8 10 12 14

Primary arterial (c)

0
20

40
60

80
10

0

4 6 8 10 12 14

Private named road (b)

0
10

20
30

4 6 8 10 12 14

Secondary arterial
0

10
20

30
40

50
60

4 6 8 10 12 14

Secondary (c)

qnorm

xf
or

m
ko

un
t

11
12

13
14

−2 0 2

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●

●●●
●●●

●●●
●●●

●●
●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●
●●●●●
●●

●●
●

Freeway

10
11

12
13

−2 0 2

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●

●●●
●●

●●
●●

●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●●
●
●

●●●

●

Highway

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

−2 −1 0 1 2

●

●●

●●●●
●●
●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●
●●● ●

Local street (d).

7.
5

8.
0

8.
5

9.
0

9.
5

−2 −1 0 1 2

●
●

●●
●
●
●●●●●●

●
●●●●

●

●

● ●

Minor (c)

4
5

6
7

8
9

−3 −2 −1 0 1 2 3

●●●
●●
●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●●●

Minor streets

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

−1.0 −0.5 0.0 0.5 1.0

●

●

● ● ●

●

●

Off ramp (only) to highway (a)

8.
8

9.
0

9.
2

9.
4

9.
6

−1.0 −0.5 0.0 0.5 1.0

●

●

●

●
●

●

On ramp (only) to highway (a)

6
7

8
9

10

−3 −2 −1 0 1 2 3

●●
●●
●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●

●
●●●

Other arterial

9.
0

9.
5

10
.0

10
.5

−3 −2 −1 0 1 2 3

●●
●●

●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●
●●●●

Primary arterial

8.
0

8.
5

9.
0

9.
5

−2 −1 0 1 2

●

●
●
●
●●

●●
●
●●
●
●●
●●●

●●●●
●●●●

●●●●
●●
●●●●●

●●● ●

Primary arterial (c)

9.
8

10
.0

10
.2

10
.4

−0.4 −0.2 0.0 0.2 0.4

●

Private named road (b)

7
8

9
10

11

−2 −1 0 1 2

●●●
●
●●
●●●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●

Secondary arterial

5
6

7
8

9

−1.0 −0.5 0.0 0.5 1.0

●

●

● ●
●

Secondary (c)

Figure 2.8: Histograms (top) and QQ plots (bottom) for a random sample of weekday
ADT, log-transformed. Normality is seen in these graphs. Each panel is one of the road
classes. Codes (a), (b) etc. are as in Figure 3.5.29

Methods

0e+00 5e+04 1e+05

0
1

2
3

4
5

6

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

lm(xformkount ~ rc + pop100 + pop200 + pop300 + pop400 + pop500 + pop600 + ...

Scale−Location

21657 28080

21656

(a) Raw data.

4 6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fitted values

St
an

da
rd

iz
ed

re
si

du
al

s

lm(xformkount ~ rc + pop100 + pop200 + pop300 + pop500 + pop600 + pop700 + ...

Scale−Location

42109

46346

42104

(b) Log-xformed.

Figure 2.9: In (a), the square root of standardized residuals plotted against the fitted val-
ues for all of the raw data, without a log-transform. Observe the definite proportionality
of the variance of the residuals against the fitted values. In (b), after the log-transform
the residuals appear more normally distributed around zero.

in the higher ranks), the variance of the residuals will become a linear function of

the count [45, p. 329]. Figure 2.9 displays a proportionality of the variance of the

residuals that is clearly linear over some parts of the data.

Additionally, the graphical evidence is clearly indicative of a problem with the

constancy of the variance until the log-transform, after which the variance is highly

constant.

We suspected log-normality in the count data because count data (missing sym-

metry around the origin) do typically follow a log-normal distribution. We plotted

the raw data as a histogram and we examined the residuals using a quantile-quantile

plot to look for signs of the lack of normality. Normally distributed residuals are

one requirement for a valid linear model.

We plotted as a histogram the untransformed and log-transformed ADT for

all road classes, and tested the arterial and freeway counts for normality using

Shapiro-Wilk (shapiro.test in R, [46, p. 382]). We tested for normality using

the same test again after a log transform. The code for these plots and tests is in

Appendix A.6.4.

30

2.8. DERIVING A CANONICAL MODEL OF ADT

§2.8.3 Using Multiple Linear Regression to make a Linear Model

We obtained an ADT record of 1.1 million count/days. We used our ADT data as

input to a multiple linear regression following well established practice. The raw

data were sectioned randomly using a high quality random number generator (R’s

sample) with 2
3 of the rows marked “use for model” and the remaining 1

3 of the

rows marked “use for validation” using the code in Appendix A.6.9.

The raw data were log-transformed, a procedure justified by the log-normal

structure of the data.

A stepwise algorithm, in particular step() in R, which uses the AIC metric (a

metric which balances significant of each term in the regression against simplicity

gained by having fewer terms) to decide on the importance of keeping a term, which

resulted in a regression with 26 terms and an r2 of 0.89. Without stepwise, the

regression has 28 terms. The terms for pop400 and pop800 were dropped during

the regression as not contributing sufficiently to the AIC metric. The r2 is not

affected by these two terms being dropped.

The results are presented in Section 3.0.13.

§2.8.4 Obtaining VMT

We followed the technique of [18], in which VMT is calculated by multiplying ADT

by the length of a stretch of road.

§2.8.5 The Multiple Linear Regression

The software used in the linear regression is described in [46, pp. 403-414] and

in [47, pp. 100-114]. This is research-grade linear regression applied in the most

standard idiomatic manner.

The traffic counts emitted by the TD0N pipeline of Figure A.1 were subjected

31

Methods

Figure 2.10: Centroids assigned to each road segment in RLIS streets.

to a battery of tests in an attempt to detect irregularities. We conducted this work

as a series of experiments.

§2.9 Preparation for Massively Parallel LUR

To obtain the pseudo-land use variables of population density and on-ramp density

for each road segment in the city, we first needed a representative point for each

road segment. Ideally this would be a point halfway along the road segment, but

the technique we landed on gave us centroids for the geometry of the line segment.

These centroids are indicated in Figure 2.10.

32

2.10. MASSIVELY PARALLEL LUR

§2.10 Massively Parallel LUR

We developed a layer of N=105 centroids for road segments in order to use the

linear model TD0N. For each centroid we evaluated several Land Use Regression

(LUR), specifically population density from the 2010 US Official Census and on-

ramp density (km of onramp per km2). We evaluated these inside circles centered

at the centroids with several radii: 100 to 900m for population density, and 100 to

500m for onramp miles, with 100m increments. The calculation was estimated to

require 28 days for completion. To shorten it, we developed a technique for using

250 central processing units (CPUs) on our Gaia computing cluster. This work

required first learning how to deploy the GIS on those 250 CPUs. Once the GIS

was operational however, this embarrassingly parallel computation completed in

two days.

§2.10.1 Population Density

Population density was acquired from the US Census, 2010. The map of Figure

2.11 was created from the raw census data.

§2.11 Exploration

We constructed and used a few tools for data exploration. Our first look at the

data graphically is the box plot of Figure 2.12 on page 35.

§2.12 Hypothesis Testing

We formed a series of logical hypothesis that we knew could be tested using the

traffic count database.

33

Methods

Portland, OR Population Density 2010

Portland

Map created by J. Powell, 2015−05−08.
Data sources: RLIS, TIGER census 2010.

 Rivers

 Urban Growth Boundary

 50000 − 104000 people/km^2

 25000 − 50000

 10000 − 25000

 5000 − 10000

 2500 − 5000

 1000 − 2500

 500 − 1000

 250 − 500

 100 − 250

 50 − 100

 25 − 50

 10 − 25

 5 − 10

 0.1 − 5

 0 − 0.1

0 25 50

kilometers

Figure 2.11: A population density map of the Portland, OR region. The rivers are a com-
posite of RLIS’s fine Metro-area base layer and TIGER’s coarser state-wide coverage of
waterways. The data are compiled at the level of the census tract, which is approximately
the scale of a neighborhood.

34

2.12. HYPOTHESIS TESTING

●●●

●

●

●

●

●●
●●●●
●●●●●●●

●

●
●●●●●●●●●
●●●●

●
●●●●●
●
●
●
●
●

●●●●●●●●●

●
●
●

●

●●●●
●
●
●
●
●

●●●

●
●●●●●
●
●
●
●
●

●●

●

●
●●
●
●●●●●

●●
●
●
●

●●●●

●
●
●●●●●
●
●●●●
●●

●

●

●

●
●
●●●●●
●
●
●
●
●

●
●●●●●●●●
●●●

●●

●●●●
●
●
●
●
●
●

●

●
●●

●
●●●●●
●
●
●
●
●

●●●●●●●●●
●●
●
●●●●●
●
●
●
●
●

●●●●

●

●
●●●●●
●
●●●●
●
●
●
●●●●●

●●
●
●
●

●
●●●●●●●●●
●●●●●●
●
●
●●
●
●
●

●
●●●●●●●●●●●●●●●●●

●●

●●●●
●

●

●
●
●

●●●●
●●●
●
●●

●

●●●

●●
●●
●●●●
●
●
●
●
●

●
●
●
●●
●●
●
●●●●●●

●●
●●●●●
●●●
●
●
●

●
●
●
●●
●●●●●●

●
●●
●
●●●●●

●●●●
●
●

●●●●
●
●●●●
●●

●●

●●

●
●

●

●
●●●●●●

●

●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●
●●●●●

●
●
●
●

●●●●

●

●
●
●●●●

●

●●●●
●●

●

●

●●
●●
●
●●●●●
●
●
●
●
●

●●●●
●

●
●
●●●●

●

●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●●
●●●●●●

●●
●●
●●

●

●●

●

●

●

●

●

●●

●●●●
●
●

●●●●
●

●

●
●

●
●●

●
●●●
●●●●

●
●●●●
●

●●

●

●●●●

●

●

●●

●

●
●

●
●

●●
●
●
●

●●

●●

●

●
●
●

●

●
●
●●●

●

●

●●●●

●●●
●

●●●
●
●

●

●

●●

●●●●

●●●●

●

●
●●

●

●

●
●

●●●
●
●

●

1
2

3
4

5
6

Lo
g

B
as

e
10

 C
ou

nt
s

pe
r

da
y

(A
D

T
),

 a
ve

ra
ge

d
ov

er
 a

ll
da

ta
.

Fre
ew

ay

High
way

On
ra

m
p

(o
nly

)

Off
ra

m
p

(o
nly

)

On/
Off

ra
m

p

Prim
ar

y a
rte

ria
l

Sec
on

da
ry

 a
rte

ria
l

Oth
er

 a
rte

ria
l

M
ino

r s
tre

et
s

Lo
ca

l to
 lo

ca
l c

on
ne

cto
r

Priv
at

e
na

m
ed

 ro
ad

Unn
am

ed
 d

riv
ew

ay

Unim
pr

ov
ed

 ro
ad

Prim
ar

y a
rte

ria
l (

R.T.
)

Sec
on

da
ry

 (R
.T.

)

M
ino

r (
R.T.

)

Figure 2.12: A box plot of the combined PORTAL and TDAT traffic count data after
cleaning. N=34,308 ADT values were used, each representing one day of counting at
one site. The boxes represent the interquartile range: 25 % of the data lie below the
bottom line and 25 % lie above the top line, while the interior line shows the median.
Adjacent values are represented by “whiskers” (dashed lines) extending off of the top and
the bottom of the box. Calculation of the adjacent values is described in [46, p. 242];
they show the approximate range of the data. Extreme values outside this range are
drawn as circles.

35

Methods

§2.12.1 Significance of Terms in the Linear Regression

“The one-way analysis of variance model is one of the most useful mod-

els in the field of statistics. Many experimental situations are simply

special cases of this model. Other models that appear to be much more

complicated can often be considered as one-way models.” [48, p. 2]

We believe that some of the terms we shall attempt to regress against will have

a significant non-zero slope.

§2.12.2 Normally Distributed Residuals

“Another way to view a distribution is the quantile-quantile (Q-Q) plot.” [46,

p.241]

It is routine nowadays to examine the quantile-quantile plot of a linear fit’s

residuals [43] [47, p. 106]. We constructed a toy linear regression using values

from a published table of Gaussian deviates [49] to practice linear regression and

diagnostics. This code is present in Appendix A.6.1.

We used the same technique to produce diagnostic quantile-quantile plots for

the real, entire data set.

§2.12.3 Weekend Effect

Common sense suggests that traffic will be strongly attenuated on the weekend.

This effect was clearly seen in a study of traffic in a 2012 study of Lebanon [50].

Closer to home, work by Kendrick and George in 2015 [51], show this weekend

effect.

To test for the presence of a weekend effect, we use the methods described in

[39]: a t-test for the hypothesis that there is no difference between weekend and

weekday mean values.

36

2.12. HYPOTHESIS TESTING

§2.12.4 Bimodal Distribution (Rush Hours)

Kendrick and George in 2015 [51], show the expected bimodal distribution on one

of Portland’s arterials. We show the same bimodal distribution with a morning

rush hour and an evening rush hour. Another study in Lebanon showed the rush

hour bimodality [50] which we reproduce for Portland.

§2.12.5 Seasonal Effect

We investigated the possibility of a seasonal effect on the amount of on-road traffic.

Waked et. al. saw more traffic in winter and less in late summer/early fall in

Lebanon [50].

§2.12.6 Moss Nitrogen Density Experiment

In collaboration with Dr. Andrew Rice, a data set of elemental analyses on moss

was obtained. Errors in the latitude and longitude of the count sites were corrected

and the sites were the moss samples were taken were mapped in Figure 2.13. We

attempted to find a correlation between high (low) traffic counts and high (low)

nitrogen concentrations in the moss.

37

Methods

Figure 2.13: A map showing all 81 of the moss experiment sample sites. Red crosses are
sample sites. Counties are named.

38

Chapter 3 Results/Discussion

’A basic problem in analyzing a time series is to study the pattern of

the correlation between values at different time instants, and to try to

construct statistical models which “explain” the correlation structure of

the series.’ ([52, p. 2])

Our analysis proceeds by a series of hypothesis, tabulated in Table 3.1.

Our analysis begins by analyzing the combined PORTAL and TDAT prod-

uct. We will note and analyze the sets separately when any qualitative difference

emerges.

§3.0.7 Tables of Outliers

In data cleaning, tables of locations and in some cases location+days were made

documenting problematic data. Any data that did not seem to be part of a a

completely normal 24 hour count was discarded. Approximately 48 % of the data

was not used to build the linear regression due to these irregularities, which are

cataloged in Table 3.2 and Table 3.3. The code producing these numbers is given

in Appendix A.6.11.

For PORTAL, the results are given in Table 3.3.

39

Results/Discussion

ID Description
H01 Our ADT values compare well with other published estimates.
H02 High (low) moss nitrogen concentration correlates with high (low) traffic counts.
H03 The Shaprio-Wilk test will confirm that the count data are log-normal.
H04 Linear regression is appropriate for the traffic count data.
H05 The residuals of the linear regression are homoscedastic.
H06 The linear regression is statistically significant.
H07 That a linear regression will predict ADT in 1/3 of

the data when the remaining 2/3 is used to make the model.
The regression is based on road class and “land use
regression variables” (population density and on-ramp
mileage inside circles of various radii around the count
site).

H08 There are few outliers in the cleaned data.
H09 Rush hours will produce a bimodal trend in the diel,

and weekends will be highly attenuated in counts.
H10 Small seasonal differences are expected.

Table 3.1: A table summarizing the hypotheses tested in this research.

id description location/
days affected

(approximate)
306 the number of channels is not in (1,2) for this count. 6

A count represents a case where a device was recording.
These are identified by unique count IDs.

311 Negative kounts (less than zero) were recorded. 6
A kount is an integer expressing the number of vehicles
recorded as passing the device in a given time period.

310 missing data for a channel 528
304 two (or more) channels of data exist that 1188

share only a single channel number.
301 Unacceptable (or NULL) excepttype. We 4268

expect to find e.g. “Normal Weekday”.
ExceptType codes interesting facts about the count day,
such as that it was on a weekend, or a holiday, or
any ad hoc note such as “Lane Count” or “Bike Lane”.

298 no kounts were recorded under this count id 9170
303 incomplete day of recordings 56168

Table 3.2: The types of outliers located in TDAT with an approximate number of loca-
tion/days affected. The id column is a unique identifier assigned to the outlier type.

40

id description location/
days affected

(approximate)
296 PORTAL station with no other - it sits on one side unknown

of the freeway with no station on the other side.
309 Negative kounts (less than zero) recorded 7

A kount is an integer expressing the number of
vehicles recorded as passing the device in a
given time period.

305 two (or more) channels of data exist that 588
share only a single channel number.

307 missing data for a channel 2328
308 PORTAL count w/midday zero kounts 3110

(hr between 5 and 20)
302 incomplete day of recordings 12987

Table 3.3: The types of outliers found in PORTAL with an approximate number of
location/days affected. The id column is a unique identifier assigned to the outlier type.

§3.0.8

H01: Our ADT values compare well with other published

estimates.

As one example, [51] reports “SE Powell Boulevard [in Portland, OR USA] is a

major arterial roadway that runs east/west with peak hourly traffic volumes of

2800 vehicles and 28,000 Average Annual Daily Traffic (AADT)”.

The Regional Land Information System (RLIS) streets shapefile identifies SE

Powell Boulevard as having road class 1300 (primary arterial). Our data shows

that for this road class generally the weekday AADT as being 20335.

We found that of all of the sites recorded in PORTAL, the ADT over the nine

year period sampled is 83808 vehicles/day. This is within the range of values

reported for these same roads in the the “Atlas of Oregon” [53], which gives a

number of 73,700 vehicles per day passing on the I-5 freeway in the year 1998.

Our work to build an EI to compare with other published estimates indirectly

validates our ADT model (see Section 3.0.19).

41

Results/Discussion

§3.0.9

H02: High (low) moss nitrogen concentration correlates

with high (low) traffic counts.

We evaluated TD0N at sites where plant moss samples had been collected and fed

into an elemental analyzer, and searched for a correlation between TD0N and [N]

. demonstrating a wider and possibly more important application of the model in

investigating transport-related air quality issues. We used the same method as [54],

which [11] calls “volume weighted road density index” to predict N for moss.

We were not able to find evidence for this hypothesis. This experiment used an

early version of our regression model which did not include freeway information.

We were also unable to complete the experiment at 21 of 86 moss collection sites

because they’re outside of the Metro region and we have been unable to obtain

street maps with the requisite road class information for this region. The map in

Figure 3.1 shows these 21 sites. Our numerical analysis produced the graph in

Figure 3.2. The best fit line has a surprising negative slope, which is statistically

significant (p < 0.001). We believe that either or both of the limitations of the

experiment (lack of freeway, lack of sites in remote regions), both of which reduce

the available experimental sites to a highly homogeneous collection of inner-city

non-freeway variety, make detecting this signal - which is obvious in other maps of

the nitrogen concentration - impossible.

§3.0.10

H03: The Shaprio-Wilk test will confirm that the count

data are log-normal.

We used the Shapiro-Wilk test to confirm our suspicion that the count data are

log-normal, but the results indicate that the distribution of ADT for the freeway

and arterial data are still unlikely to be normally distributed (p < 2.2× 10−16).

42

Figure 3.1: Moss collection sites outside of our ADT study area.

43

Results/Discussion

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 18000000 20000000
0

5

10

15

20

25

30

35

40

45

50

f(x) = - 6.02764854011102E-007x + 27.1757358405
R² = 0.1127242013Nitrogen vs. Traffic Density in a 200m Radius Circle

Traffic Density (m· weekday counts/day averaged over a year)

P
e

rc
e

n
ta

g
e

N

Figure 3.2: Plot of nitrogen content in moss vs. traffic counts.

44

§3.0.11

H04: Linear regression is appropriate for the traffic count

data + our LUR statistics

The ability to derive a meaningful linear regression from a data set depends on

a number of rather restrictive characteristics of the data [43]. These are neatly

summarized in [46, pp. 412-413] as

1. Linearity.

2. Full rank: nonsingular predictor matrix.

3. Independent variables display exogenicity: ε’s mean is 0 for the full range of

the independent variables.

4. Homoscedasticity (constant variance of ε).

5. Nonautocorrelation between sample values.

6. Exogencity in the sampling: ε is not a product of any of the independent

variables.

7. ε ∼ N(0, σ2)

However, you can also produce useful linear models when there is some degree of

violation of these requirements. We attempt to evaluate our data: does the data

satisfy the seven requirements?

§3.0.12

H05: Observing that the residuals of the linear regression

are homoscedastic

The QQ plots in the bottom panel of Figure 2.8 show a pretty linear feature over

much of the data. We take this as good evidence of the homoscedasticity of the

residuals after the log-transform. The graph of residuals in Figure 2.9 (b) lacks

the definite linear funnel shapes of Figure 2.9 (a). We take this as further evidence

that the residuals are homoscedastic after the log-transform.

45

Results/Discussion

§3.0.13 The linear regression results.

As discussed in section 2.8.3, we made a linear model using the well-understood

least-squares regression method. Using the lm feature of R, we fit the data to a

model of xformkount rc+pop100+pop200+pop300+pop500+pop600+pop700+

pop900+or100+or200+or300+or400+or500, where xformkount is log-transformed

traffic counts in units of natural log of the ADT.

The residuals mapped out fairly normal, slightly skewed to the negative, with

min = -5.7738, 1Q = -0.2286, Median -0.0117, 3Q = 0.2224, and Max = 3.6996.

The coefficients are given in Table 3.4.

§3.0.14 H06: the linear regression is statistically significant

The regression produces an equation purporting to reproduce a linear trend in the

raw data. A test exists against the null hypothesis that the slope of the regression

line is actually zero. The significance factors in the coefficients Table 3.4 indicate

that we have enough independent data to make a useful linear model involving

fourteen road classes, seven population density radii, and five onramp mileage

radii with α = 0.05.

§3.0.15

H07: a linear regression can reproduce trends in the

original traffic data

The count data held back during the creation of the linear model were plotted

against the prediction of the counts made by the model. This is considered to be

the ultimate test of a linear regression. The result shows a good fit, with a slope

of 1.008 and an r2 of 0.90. The Y-intercept is -0.09, indicating a slightly skewed

fit. The graph in Figure 3.3 gives an overview of the result.

The fit is perhaps more convincing when seen in a map. Figure 2.6 on page 25

presents the graphical view.

46

Parameter Estimate Std. Error t value Pr (> abs(t)) Significance Code
(Intercept) 1.108 (+01) 1.042 (-02) 1063.878 < 2e-16 ***
rc1200 -3.602 (-01) 1.194 (-02) -30.172 < 2e-16 ***
rc1221 -2.956 (+00) 9.070 (-02) -32.593 < 2e-16 ***
rc1222 -2.572 (+00) 7.996 (-02) -32.172 < 2e-16 ***
rc1300 -1.672 (+00) 1.882 (-02) -88.882 < 2e-16 ***
rc1400 -2.106 (+00) 1.959 (-02) -107.472 < 2e-16 ***
rc1450 -2.917 (+00) 1.722 (-02) -169.359 < 2e-16 ***
rc1500 -4.746 (+00) 1.463 (-02) -324.383 < 2e-16 ***
rc1521 -2.152 (+00) 3.573 (-02) -60.231 < 2e-16 ***
rc1700 -3.340 (+00) 1.467 (-01) -22.768 < 2e-16 ***
rc1800 -4.407 (+00) 2.144 (-01) -20.555 < 2e-16 ***
rc2000 -7.318 (+00) 5.667 (-01) -12.912 < 2e-16 ***
rc5301 -2.216 (+00) 4.027 (-02) -55.028 < 2e-16 ***
rc5401 -3.004 (+00) 9.267 (-02) -32.420 < 2e-16 ***
rc5501 -3.728 (+00) 5.544 (-02) -67.239 < 2e-16 ***
pop100 -1.268 (-02) 1.404 (-03) -9.033 < 2e-16 ***
pop200 4.125 (-03) 8.723 (-04) 4.729 2.27 (-06) ***
pop300 -1.308 (-03) 4.104 (-04) -3.188 0.001436 **
pop500 1.862 (-03) 2.774 (-04) 6.711 1.98 (-11) ***
pop600 -1.008 (-03) 3.398 (-04) -2.966 0.003018 **
pop700 -3.697 (-04) 1.923 (-04) -1.923 0.054517 .
pop900 2.519 (-04) 3.194 (-05) 7.888 3.20 (-15) ***
or100 -2.705 (-04) 6.146 (-05) -4.402 1.08 (-05) ***
or200 -1.834 (-04) 4.744 (-05) -3.867 0.000111 ***
or300 6.071 (-04) 6.007 (-05) 10.107 < 2e-16 ***
or400 -4.600 (-04) 5.344 (-05) -8.607 < 2e-16 ***
or500 2.567 (-04) 2.349 (-05) 10.925 < 2e-16 ***

Table 3.4: Coefficients from the linear regression. The units are in the natural log of the
ADT. The significance codes are 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’. The multiple R2 is
0.8904.

47

Results/Discussion

4 6 8 10 12

4
6

8
10

12
14

ADT exponents predicted by TD08 (log(counts/day))

A
ct

ua
l e

xp
on

en
ts

 a
t s

ite
s

no
t u

se
d

in
 b

ui
ld

in
g

T
D

08
 (

lo
g(

co
un

ts
/d

ay
))

Figure 3.3: The actual count data in the set held back during model creation is plotted
against the values for these counts predicted by the linear model. The equation of the
line is y = -0.08613 + 1.00799x. The r2 is 0.90. 11,463 data points are plotted.

48

§3.0.16 H08: there are few outliers in the cleaned data.

Our goal was to accept only counting that was as clean as possible. Any aberration

was taken as grounds to throw out the count. We believe that this succeeded and

the product is quite clean. To test this hypothesis, we used a statistical test to

search for outliers.

We used Cook’s Distance as described in [55] to determine data that exert

extreme leverage in the regression. The result is given in Figure 3.4. Metrics like

Cook’s Distance are best interpreted in the context of the distribution of the data,

and best used in a graphical setting as we have done here instead of as a strict

cutoff point. We are pleased to see in the figure that very few of our large number

of records exert any particularly strong leverage on the regression coefficients.

§3.0.17

H09: Rush hours will produce a bimodal trend in the diel,

and weekends will be highly attenuated in counts.

We graphed the counts to search for this expected result. The results are shown

in Figure 3.5. We note that the graph of Figure 3.5 would be misleading if the

data included any days that did not include a full 24 hours of counting. In data

cleaning we eliminated any counts that were not part of a full, clean 24 hours of

counting so we can correctly interpret the graphical evidence of both the weekend

effect and the bimodal diel cycle in Figure 3.5 without any misleading bias. The

code for producing Figure 3.5 is in Appendix A.6.8.

We used a Welch Two Sample t-test to determine the probability that the

weekend effect is present. We found a significant (p < 0.0001, t = -12.4, df =

1360) and large (23 %) drop off in traffic on the weekends for primary arterials.

A significant (p < 0.001, t = -27, df = 37428) and large (22 %) drop in traffic on

the weekends is seen for a pooled mean of all of the road classes. The evidence

49

Results/Discussion

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5

Leverage

St
an

da
rd

ize
d

re
si

du
al

s

lm(xformkount ~ rc + pop100 + pop200 + pop300 + pop500 + pop600 + pop700 + ...

Cook's distance

10.5
0.51

Residuals vs Leverage

47515

40803

35225

Figure 3.4: Leverage of the points used in the regression, with Cook’s Distance marked.

50

Figure 3.5: A plot showing the diurnal (diel) trends in the data. Each panel graphs all of
the available data, as counts per day vs. the time of day (00:00-23:00). The blue colored dots are a
single datum for each hourly binned count made on a week day, red are the same but for counts made on
weekends only. (a) = ”In the area maintained by the City of Portland only”. (b) = ”Private right-of-way
exists”. (c) = ”With rapid transit”. (d) = ”To local street connector (Portland only, subarea = ’P’)”.
(e) = ”Named, but without valid addressing (Clackamas County only, subarea = ’C’)”. (f) = ”Unnamed
and without valid addressing (Clackamas County only, subarea = ’C’)”. (g) = ”With valid address range
and street name (in the area maintained by the City of Portland only)”. (h) = ”With NO Valid Address
Range or Street Name (in the area maintained by the City of Portland only)”. (i) = ”No private right-
of-way exists”. (j) = ”Passable by emergency vehicles (e-911) only (in the area maintained by the City
of Portland only)”.

51

Results/Discussion

suggests that we can safely reject the null hypothesis that there is no difference in

ADT mean between weekends and weekdays. The code for the weekend test is in

Appendix A.6.3.

§3.0.18 H10: Small seasonal differences are expected.

To test for seasonal differences, we partitioned the data by season, defining winter

as December, January, and February. Spring is March, April, May. Summer is

June, July, and August. Fall is September, October, and November.

We tested the mean of the average of all of the data for primary arterials against

the mean of the subset of the data in each season using the Welch Two Sample

t-test. We found a small (7.8 %) and significant (p < 0.001, t = −3.64, df = 776)

enhancement in traffic volume during the winter. We found a small (5.9 %) and

significant (p < 0.01, t = 2.69, df = 877) decrease in traffic volume during the

spring. We found a small (7.2 %) and significant (p < 0.001, t = 3.34, df = 7944)

decrease in traffic volume during the summer. We found no significant difference

in the mean fall traffic (p = 0.064, t = −1.85, df = 1057) vs. the overall mean.

§3.0.19

H11: Our EI compares well with other, independent

estimates

Our estimate was compared to other published estimates. The number we used for

comparison are:

• 9.1E7 metric ton (MT) CO2 emitted (average quantity for 1986-2006 (unre-

stricted) and 2005-2014 (restricted) from our own Circoscope inventory cal-

culated using local VMT and a national average EF.

• 9.8E7 MT CO2 e of GHGs emitted in 2001 (our own work extracting the

Portland region’s pixels from Vulcan [5])

52

3.1. LIMITATIONS

• 2.5E7 MT CO2 e of GHGs emitted in 2010 [56].

• 6.1E6 MT of GHGs emitted in 2005 - Metro (Portland’s regional authority)

estimate. 1.

Our estimate agrees closely with Vulcan’s, and remains about ten times higher

than the City of Portland and Metro’s estimates, even though the latter included

non-CO2 gasses. This is typical of EI work: finding the best number is difficult

and this motivates the WRF ground truthing of our Future Work (Section 5).

§3.1 Limitations

Our work is limited to just one mode (on-road transport), as is seen in other

works of the genre [57] [18] [54] [58]. We cannot complete an emissions inventory

for CO2 without including other important sources such as off-road transport and

residential and commercial fossil fuel use.

We are limited also to tank-to-wheel emissions, so our inventory does not include

well-to-tank emissions, defined as “emissions from the extraction of primary energy

carriers, and their conversion, refinement and delivery” [57, p. 7609] which are

important for the purposes of mitigation.

We present results related to CO2 only, but as Nickless et. al. write [57], other

species with shorter lifetimes cause global warming (NOx, ozone, contrails and

cirrus clouds) and are relevant to the problem of climate change which motivates

this study and must be included in the comprehensive picture to enable the creation

of useful short-term plans which are themselves a necessary complement to long-

term plans.
1We multiplied “The average Portland-area resident emitted 4.05 tons of carbon

dioxide and other greenhouse gases in 2005” from (http://www.oregonmetro.gov/news/
tailpipe-emissions-portland-region-climate-smart-communities-qa accessed 2016-10-06) by the
quantity of “1,500,000 people Metro serves” from (http://www.oregonmetro.gov/regional-leadership
accessed 2016-10-16).

53

http://www.oregonmetro.gov/news/tailpipe-emissions-portland-region-climate-smart-communities-qa
http://www.oregonmetro.gov/news/tailpipe-emissions-portland-region-climate-smart-communities-qa
http://www.oregonmetro.gov/regional-leadership

Results/Discussion

We calculate AADT for comparison with [51] simply by taking the arithmetic

mean of the year’s traffic. This is potentially biased because the counters are

preferentially taken down for maintenance on certain days of the week. A better

approach is described in [59, p. 1-5], creating an average of averages.

§3.1.1 Uncertainties

Here we identify several parts of the research that introduce uncertainty.

TDAT - conditions

TDAT identifies a handful of conditions marking a count as unusual. These are

recorded as “conditions” in a table called public.volcount, and include values such

as “Bike Path Only” and “Tax Day at the Post Office.”

These condition-marked records are not presently excluded as outliers in the

analysis. These condition-marked records appear to be outliers by the descriptive

text just above, and the associated count records should be excluded as outliers,

except possibly the synaptic ones.

Bikes being Counted

In Portland, there is a significant biking population. It is not known at this time

whether bikes are counted along with cars by the automated traffic recorder (ATR)s

that the city uses and thus are included in our count.

One Way Streets

We do not notice a street that is one way. As a result our ability to predict ADT

is diminished; we underpredict two-way streets and overpredict one-way.

54

3.1. LIMITATIONS

Miscoding of Weekends

If TDAT classifies a weekend as a weekday (or vice-versa), this would indicate some

confusion in the record and we could detect that and use it as a reason to treat the

day’s count as an outlier. This would be done in Pass 1, where other exceptType

(excepttype 6= “normal weekday” and excepttype 6= “normal weekend”) are already

marked as outliers.

Multiple, Independent Counts on one Site/Day

If there are instances of multiple, independent counts of the same place on the

same day, we do not catch those currently and so over count.

Autocorrelation

To avoid the problem of autocorrelation, which we discussed in Section 3.0.11,

in light of the results of Sections 3.0.17 and 3.0.18 it would be more accurate to

use eight different equations of the form of Equation (1.1), one for each possible

combination of weekend/weekday and season.

55

Conclusion

Chapter 4 Conclusion

A new model of ADT for the North American city of Portland, OR, USA has been

created using multiple linear regression against a collection of 1.1 million full days of

counting at a diverse array of 7,000 regional sites over the period spanning the years

1986-2006 (unrestricted roads) and 2005-2014 (restricted roads), supplemented by

“land use” statistics for population density and extent of restricted road on-ramp

in the area around each count site, and by identification of the functional road class

(arterial, local, etc.) of the count sites.

The model was tested by holding back one-third of the data and using the model

results to estimate ADT at each of the held-back count sites. The result appears

to validate the model, producing a fit with a slope of 1.008 and an r2 of 0.90.

We analyzed each road segment in a detailed map of the city by finding a

centroid for each uninterrupted stretch of road (105,178 road segments). At each

centroid, our “land use” variables (population density and on-ramp mileage) were

evaluated using 250 CPUs in parallel on the PSU Gaia computing cluster.

These data were used with the model to estimate ADT for each road segment.

The model ADT was multiplied by the road segment length to obtain VMT. This

result is expected to be generally useful in building emissions inventories related to

transport, meeting a current research need for high resolution emissions inventories

to complement high resolution atmospheric models and neighborhood- or street

segment- level policy-making decisions.

As a preliminary foray into the use of the data, the VMT values were mul-

56

tiplied by a nationwide-average CO2 EF to estimate daily CO2 emissions from

on-road traffic. A city-wide EI for CO2 was made by summing and scaling the

road segment emission estimates from the model, and the resulting sum compared

to other estimates. Our result closely agrees with another, the Vulcan inventory,

which is a factor of ten greater than estimates made by the City of Portland and

by Metro, the regional authority.

We demonstrated the construction of a 1km x 1km gridded inventory of CO2

emissions using the nationwide-average EF and the model. The result appear to

be useful, correctly highlighting freeways as CO2 hotspots.

We used our model to search for a correlation between high ADT and high

concentrations of nitrogen sampled in moss plants, but we have not been unable

to establish the correlation.

57

Future Work

Chapter 5 Future Work

Cities have a pressing need for aid in mitigating CO2 emissions, and the TD0N

model offers a window onto the city’s emissions landscape at a high spatial and

temporal resolution.

In his talk at AGU in 2014, K. Gurney reported a discovery of a small area of

Salt Lake City which is responsible for a large portion of the city’s CO2 emissions.

We plan to search for this effect in Portland.

The high resolution of our model enables our inventory to be used with WRF,

a research-grade meteorological model, to predict CO2 concentrations anywhere in

the region. We will use WRF-GHG to generate model time series at high temporal

resolution and compare these to tower measurements, ground truthing TD0N. We

will acquire a map of biogenic emissions (perhaps Model of Emissions of Gases and

Aerosols from Nature (MEGAN)) to supply this component of the carbon flux.

Top-down methods validate bottom-up methods [60] and our work will carry

out this validation step in the future, using an existing data set of CO2 concentra-

tion recordings made by Dr. Andrew Rice’s group at three locations around town,

locations chosen to sample a wide range of population densities.

We will extend our comparison to include the Emission Database for Global

Atmospheric Research (EDGAR) [61] EI, the Highway Performance Monitoring

System (HPMS) [11, Supp. p. 16] EI, the Vulcan [5] EI, and the National Emissions

Inventory (NEI) [18]. We have developed a method to create gridded EI at various

resolutions, for example the 1km EI of Figure 5.2. This type of summary result

58

Road traffic counts*

MOVES
Input data

VMT

PBOT
RLIS

Experimental Data

Novel GIS combines count data products
from diverse bureaus.

* about 4 million from PBOT, 368 million
from PORTAL.

compare

Figure 5.1: Conceptual model of the WRF components to the research.

59

Future Work

Figure 5.2: A 1 km resolution gridded CO2 emissions inventory for Portland, OR de-
veloped using our model. We presented this result at the GEIA conference in Beijing,
December 2015. The EI shows the expected high intensity of emissions along the east-
west I-84 corridor (straight line, top center) and the north-south I-205 corridor (straight
line, center right), zero emissions on an all-river pixel (the white pixel at bottom left),
and fairly high emissions over downtown (top-left). The units are MT of CO2/year.

makes for easy comparison with other gridded EIs and is typical of this type of

research; for example [27] compare their result with EDGAR and Vulcan, and [18]

compare their result with EDGAR, Vulcan, and HPMS.

We will repeat the moss N experiment, with more information than before, to

find a signal.

We will continue to receive updates from PBOT and PORTAL about new traffic

counts. We have completed one cycle of updates from PBOT already with no

60

problems, and we anticipate given our flexible data structures (CSV or SQL into

an RDBMS, and then materialized views to add structure to flat data) that we can

accommodate even alternative forms of the data as the archives change over time.

A novel aspect of our work is its exploration of the Portland, OR metropolitan

region, which has been ranked as the “most compact” city in the USA [62]. More

realistically, Portland is found to rank 80th out of 221 US cities in the ”Measuring

Sprawl 2014” index [63]. Portland ranks fifth the nation for light rail ridership.

From 1998-2008, the average miles driven by a citizen of Portland remained flat at

20 miles a day, even while national average per-capita miles driven daily climbed

steeply 1. We expect to explore some hypotheses relating the city’s lack of sprawl to

the CO2 emissions inventory, such as the possibility that CO2 from on-road traffic

should not be seen to grow linearly with the growth of the population but rather

should lag somewhat behind it.

We will explore a hypothesis posed by Daniel Mendoza, who reviewed our work

at AGU 2014, that Portland’s Urban Growth Boundary should cause a visible

effect by which population grows over time while freeway traffic holds constant.

We believe other theories relating to Portland’s progressive urban planning can be

fruitfully explored through the high resolution TD0N model. We have concerns

that super-emitters, real outliers such as diesel construction vehicles (bulldozers,

cranes, dump trucks) or supercharged classic cars 2, will simultaneously not be

captured by our model and yet represent a majority of emissions, a known problem

for some pollutants today. We will learn whether this is true, because it will make

calibration of the model with tower measurements difficult.

1http://www.oregonlive.com/environment/index.ssf/2008/05/portland_reduces_its_carbon_
fo.html accessed 2016-10-06

2This is a hobby which is gaining in popularity in Portland. Walking home one Sunday evening in
October 2016, I encountered a train of some thirty vehicles, all extremely loud, emerging from a weekly
gathering. A passerby told me about it, that it’s a growing movement coming up to Portland from areas
such as Auburn in northern California.

61

http://www.oregonlive.com/environment/index.ssf/2008/05/portland_reduces_its_carbon_fo.html
http://www.oregonlive.com/environment/index.ssf/2008/05/portland_reduces_its_carbon_fo.html

Future Work

Another concern is that the roughness of the urban terrain defeats the ability

of WRF to model air flow over the city. This defect is being addressed, with some

success, by a group at Berkeley, CA who have modified WRF to include a new

module feeding the boundary outputs of very turbulent low-altitude activity into

the higher (but still low-altitude) boxes of the WRF model.

Our group has already encountered a problem of this sort in doing basic WRF

validation against recorded air-speed measurements: WRF simply would not run

faced with the sheer altitude gains of the nearby Coast and Cascade mountain

ranges.

Another concern is the very different diel patterns expected of light duty (LD)

vs. heavy duty (HD) traffic, and rural vs. urban traffic as found in [27].

Our approach has also been accurately criticized as being “traditional” 3. In an

age when sensors are pervasive and capable, using the ATR devices is limiting. It

is possible, for example, for a camera to film license plates, and for those plates to

be looked up in the registration records to find the year, model, and fuel type of

the vehicle. Additionally, it is possible today to mine cell phone location data for

velocity and traffic density. More work needs to be done in this area.

c

3Leonor Tarrason speaking at GEIA 2015 in Beijing, China. Our EI of Figure 5.2 was projected on
the big screen as an example of current work.

62

BIBLIOGRAPHY

Bibliography

[1] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing. Vienna, Austria, 2015. url: https://www.R-

project.org.

[2] Deepayan Sarkar. Lattice : multivariate data visualization with R. [London]: London

: Springer, 2008,

[3] TF Stocker et al. “IPCC, 2013: climate change 2013: the physical science basis.

Contribution of working group I to the fifth assessment report of the intergovern-

mental panel on climate change”. In: (2013). url: http://www.ipcc.ch/pdf/

assessment-report/ar5/wg1/WG1AR5_ALL_FINAL.pdf.

[4] Juerg M Matter et al. “Rapid carbon mineralization for permanent disposal of

anthropogenic carbon dioxide emissions”. In: Science (New York, N.Y.) 352.6291

(2016), pp. 1312–.

[5] Kevin R. Gurney et al. “High Resolution Fossil Fuel Combustion CO2 Emission

Fluxes for the United States”. In: Environmental Science & Technology 43.14

(2009), pp. 5535–5541. doi: 10.1021/es900806c. eprint: http://pubs.acs.

org/doi/pdf/10.1021/es900806c.

[6] Patricia Romero-Lankao et al. “A critical knowledge pathway to low-carbon, sus-

tainable futures: Integrated understanding of urbanization, urban areas, and car-

bon”. In: Earth’s Future 2.10 (2014), pp. 515–532. issn: 2328-4277.

63

https://www.R-project.org
https://www.R-project.org
http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_ALL_FINAL.pdf
http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_ALL_FINAL.pdf
http://dx.doi.org/10.1021/es900806c
http://pubs.acs.org/doi/pdf/10.1021/es900806c
http://pubs.acs.org/doi/pdf/10.1021/es900806c

BIBLIOGRAPHY

[7] D. Mendoza et al. “Implications of uncertainty on regional CO2 mitigation poli-

cies for the U.S. onroad sector based on a high-resolution emissions estimate”. In:

Energy Policy, 55:386-395 (2013),

[8] James Powell, Chris L. Butenhoff, and Andrew L. Rice. Network Level Carbon

Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan

Area. Poster at AGU, A53L-3370. 2014.

[9] Ian Stewart, Jack S. (Jack Sidney) Cohen, and Terry Pratchett. The science of

Discworld. 2, The globe. Ed. by Ian Stewart and Jack S. (Jack Sidney) Cohen.

London: London : Ebury, 2003.

[10] Sam Adams and Jeff Cogen, eds. Climate Action Plan 2009. City of Portland, 2009.

[11] Conor K Gately, Lucy R Hutyra, and Ian Sue Wing. “Cities, traffic, and CO2: A

multidecadal assessment of trends, drivers, and scaling relationships”. In: Proceed-

ings of the National Academy of Sciences of the United States of America 112.16

(2015), pp. 4999–. url: http://www.pnas.org/content/112/16/4999.

[12] California Legislature. “California Global Warming Solutions Act (AB 32), Health

& SC § 38500-38598”. 2006. url: http://www.arb.ca.gov/cc/docs/ab32text.

pdf.

[13] Barack Obama. White House press release. Accessed 2016-10-08. Tech. rep. 2014.

url: https://www.whitehouse.gov/the-press-office/2014/11/11/fact-

sheet-us-china-joint-announcement-climate-change-and-clean-energy-

c.

[14] Kathryn McKain et al. “Assessment of ground-based atmospheric observations for

verification of greenhouse gas emissions from an urban region”. In: Proceedings of

the National Academy of Sciences of the United States of America 109.22 (2012),

pp. 8423–.

64

http://www.pnas.org/content/112/16/4999
http://www.arb.ca.gov/cc/docs/ab32text.pdf
http://www.arb.ca.gov/cc/docs/ab32text.pdf
https://www.whitehouse.gov/the-press-office/2014/11/11/fact-sheet-us-china-joint-announcement-climate-change-and-clean-energy-c
https://www.whitehouse.gov/the-press-office/2014/11/11/fact-sheet-us-china-joint-announcement-climate-change-and-clean-energy-c
https://www.whitehouse.gov/the-press-office/2014/11/11/fact-sheet-us-china-joint-announcement-climate-change-and-clean-energy-c

BIBLIOGRAPHY

[15] Stephen M Wheeler. “State and municipal climate change plans: the first gener-

ation”. In: Journal of the American Planning Association 74.4 (2008), pp. 481–

496.

[16] Elizabeth C. Brodeen. “Sequestration, science, and the law: an analysis of the

sequestration component of the California and northeastern states’ plans to curb

global warming”. In: Environmental Law 37.4 (2007), p. 1217. issn: 0046-2276.

[17] Philippe Ciais et al. “The European carbon balance. Part 1: fossil fuel emissions”.

In: Global Change Biology 16.5 (2009). issn: 1354-1013.

[18] Conor K Gately et al. “A Bottom up Approach to On-Road CO2 Emissions Es-

timates: Improved Spatial Accuracy and Applications for Regional Planning”. In:

Environmental Science & Technology 47.5 (2013), pp. 2423–2430.

[19] EPA. U.S. Greenhouse Gas Inventory Report: 1990-2013. Tech. rep. U.S. Gov-

ernment, 2015. url: http://www3.epa.gov/climatechange/ghgemissions/

usinventoryreport.html.

[20] Carolyn Kousky and Stephen H Schneider. “Global climate policy: will cities lead

the way?” In: Climate Policy 3.4 (2003), pp. 359–372.

[21] Felix Creutzig et al. “Energy and environment. Transport: A roadblock to climate

change mitigation?” In: Science (New York, N.Y.) 350.6263 (2015), pp. 911–.

[22] Ralph Sims et. al. Intergovernmental Panel on Climate Change. Working Group

III- Mitigation of Climate Change. Chapter 8 Transport. 2014. doi: 10.13140/2.

1.4480.3521.

[23] Lee Chapman. “Transport and climate change: a review”. In: Journal of transport

geography 15.5 (2007), pp. 354–367.

[24] Battelle. Traffic Data Quality Measurement - Final Report. Tech. rep. p. A-8, Table

A.1. Completeness Statistics for Original Source Data. Office of Highway Policy

65

http://www3.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://www3.epa.gov/climatechange/ghgemissions/usinventoryreport.html
http://dx.doi.org/10.13140/2.1.4480.3521
http://dx.doi.org/10.13140/2.1.4480.3521

BIBLIOGRAPHY

Information Federal Highway Administration U.S. Department of Transportation

Washington, D.C., 2004.

[25] Kristin Tufte and et. al. PORTAL. Tech. rep. PSU, 2013.

[26] Kevin R Gurney et al. “Quantification of fossil fuel CO2 emissions on the build-

ing/street scale for a large US City”. In: Environmental Science & Technology 46.21

(2012), pp. 12194–12202.

[27] Brian C. Mcdonald et al. “High?resolution mapping of motor vehicle carbon diox-

ide emissions”. In: Journal of Geophysical Research: Atmospheres 119.9 (2014),

pp. 5283–5298. issn: 2169-897X.

[28] Harry Smith and Norman Richard Draper. Applied regression analysis. New York:

New York : Wiley, 1981.

[29] Patrick H. Ryan and Grace K. LeMasters. “A Review of Land-use Regression Mod-

els for Characterizing Intraurban Air Pollution Exposure.” In: Inhalation Toxicology

19 (2007), pp. 127–133. issn: 08958378. url: http://stats.lib.pdx.edu/proxy.

php?url=http://search.ebscohost.com/login.aspx?direct=true&db=hch&

AN=26641305&site=ehost-live.

[30] Manju Mohan, Lalit Dagar, and BR Gurjar. “Preparation and validation of gridded

emission inventory of criteria air pollutants and identification of emission hotspots

for megacity Delhi”. In: Environmental monitoring and assessment 130.1-3 (2007),

pp. 323–339.

[31] Pathmathevan Mahadevan et al. “A satellite-based biosphere parameterization for

net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model

(VPRM)”. In: Global Biogeochemical Cycles 22.2 (2008). GB2005, n/a–n/a. issn:

1944-9224. doi: 10.1029/2006GB002735.

[32] Thomas Lauvaux et al. “Urban emissions of CO2 from Davos, Switzerland: the

first real-time monitoring system using an atmospheric inversion technique”. In:

66

http://stats.lib.pdx.edu/proxy.php?url=http://search.ebscohost.com/login.aspx?direct=true&db=hch&AN=26641305&site=ehost-live
http://stats.lib.pdx.edu/proxy.php?url=http://search.ebscohost.com/login.aspx?direct=true&db=hch&AN=26641305&site=ehost-live
http://stats.lib.pdx.edu/proxy.php?url=http://search.ebscohost.com/login.aspx?direct=true&db=hch&AN=26641305&site=ehost-live
http://dx.doi.org/10.1029/2006GB002735

BIBLIOGRAPHY

Journal of Applied Meteorology and Climatology (Aug. 21, 2013). issn: 1558-8424.

doi: 10.1175/JAMC-D-13-038.1.

[33] Society of American Archivists. Describing archives : a content standard. Chicago

: Society of American Archivists, 2013.

[34] Kathleen D. Roe. Arranging & Describing Archives & Manuscripts. The Society of

American Archivists, Chicago IL, 2005.

[35] Jerome S. Bruner. “The act of discovery”. In: Harvard Educational Review 31

(1961), pp. 21–32. url: http://hal.archives-ouvertes.fr/hal-00692072.

[36] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-

guage User Guide. Addison Wesley, 1998.

[37] F. Codd E. “A relational model of data for large shared data banks”. In: Commu-

nications of the ACM 13.6 (1970). Ed. by M. Lynn, pp. 377–387. issn: 0001-0782.

[38] Annette J. Dobson. An introduction to generalized linear models. London; New

York: Chapman and Hall, 1990.

[39] Herbert Friedman. Introduction to Statistics. Random House, Inc., New York, 1972.

[40] Robert L. Bertini Kristin A. Tufte. PORTAL Data Quality Analysis. Tech. rep.

PSU, 2008. url: http://www.its.pdx.edu/upload_docs/1248894239sryN2wqBix.

pdf.

[41] John R. (John Robert) Taylor. An introduction to error analysis : the study of

uncertainties in physical measurements. Mill Valley, Calif.: Mill Valley, Calif. : Uni-

versity Science Books, 1982,

[42] Martin B Wilk and Ram Gnanadesikan. “Probability plotting methods for the

analysis for the analysis of data”. In: Biometrika 55.1 (1968), pp. 1–17.

[43] R. Dennis Cook and Sanford Weisberg. Residuals and influence in regression. Ed.

by Sanford Weisberg. New York: New York : Chapman and Hall, 1982.

67

http://dx.doi.org/10.1175/JAMC-D-13-038.1
http://hal.archives-ouvertes.fr/hal-00692072
http://www.its.pdx.edu/upload_docs/1248894239sryN2wqBix.pdf
http://www.its.pdx.edu/upload_docs/1248894239sryN2wqBix.pdf

BIBLIOGRAPHY

[44] Md Shohel Reza Amin. “Application of Spatial Auto-Regressive Model for Deter-

mining Urban Land Market”. In: Journal of Bangladesh Institute of Planners 2

(2009), pp. 107–115.

[45] William G. (William Gemmell) Cochran and George W. (George Waddel) Snedecor.

Statistical methods. Ed. by William G. (William Gemmell) Cochran. Ames, Iowa:

Ames, Iowa : Iowa State University Press, 1967.

[46] Joseph Adler. R in a Nutshell. O’Reilly Media, 2009.

[47] John M. Chambers and Trevor Hastie. Statistical models in S. Ed. by John M.

Chambers and Trevor Hastie. Pacific Grove, Calif.: Pacific Grove, Calif. : Wadsworth

& Brooks/Cole Advanced Books & Software, 1992.

[48] Dallas E. Johnson and George A. Milliken. Analysis of messy data. Ed. by Dallas E.

Johnson. Belmont, Calif.: Belmont, Calif. : Lifetime Learning Publications, 1984.

[49] John I. (John Ignatius) Griffin. Statistics : methods and applications. New York:

New York : Holt, Rinehart and Winston, 1962.

[50] Antoine Waked, Charbel Afif, and Christian Seigneur. “An atmospheric emission

inventory of anthropogenic and biogenic sources for Lebanon”. In: Atmospheric

Environment 50 (2012), pp. 88–96. issn: 1352-2310.

[51] Christine M. Kendrick, Peter Koonce, and Linda A. George. “Diurnal and seasonal

variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside

an urban arterial”. In: Atmospheric Environment 122 (2015), pp. 133–141. issn:

1352-2310.

[52] M. B. (Maurice Bertram) Priestley. Non-linear and non-stationary time series anal-

ysis. San Diego: San Diego : Academic Press, 1988.

[53] Stuart Allan et al. Atlas of Oregon. Ed. by Stuart Allan, Aileen R Buckley, and

James E Meacham. Eugene, Or., 2001.

68

BIBLIOGRAPHY

[54] Max N. Brondfield et al. “Modeling and validation of on-road CO2 emissions in-

ventories at the urban regional scale”. In: Environmental Pollution 170 (2012),

pp. 113–123. issn: 0269-7491. doi: 10.1016/j.envpol.2012.06.003. url: http:

//www.sciencedirect.com/science/article/pii/S0269749112002783.

[55] John Fox. Regression Diagnostics. Newbury Park, Calif.: Newbury Park, Calif. :

Sage Publications, 1991.

[56] C.O.P. City of Portland Carbon Dioxide Reduction Strategy Update. Tech. rep. City

of Portland, Nov. 1997.

[57] Alecia Nickless, Robert J. Scholes, and Ed Filby. “Spatial and temporal disaggrega-

tion of anthropogenic CO2 emissions from the City of Cape Town”. In: (Nov. 2015).

doi: 10.17159/sajs.2015/20140387. url: http://www.sajs.co.za/spatial-

and-temporal-disaggregation-anthropogenic-co2-emissions-city-cape-

town/alecia-nickless-robert-j-scholes-ed-filby.

[58] Yuqin Shu and Nina S.N. Lam. “Spatial disaggregation of carbon dioxide emis-

sions from road traffic based on multiple linear regression model”. In: Atmospheric

Environment 45.3 (Jan. 2011), pp. 634–640. issn: 1352-2310. url: http://www.

sciencedirect.com/science/article/pii/S1352231010009234.

[59] Highway Performance Monitoring System Field Manual. Federal Highway Admin-

istration. Mar. 2014. url: http://www.fhwa.dot.gov/policyinformation/

hpms/fieldmanual/.

[60] Gregory J. Frost et al. “New Directions: GEIA’s 2020 vision for better air emis-

sions information”. In: Atmospheric Environment 81 (Dec. 2013), pp. 710–712.

issn: 1352-2310. url: http://www.sciencedirect.com/science/article/pii/

S1352231013006833.

[61] Johannes Gerardus Jozef Olivier et al. Description of EDGAR Version 2.0: A set

of global emission inventories of greenhouse gases and ozone-depleting substances

69

http://dx.doi.org/10.1016/j.envpol.2012.06.003
http://www.sciencedirect.com/science/article/pii/S0269749112002783
http://www.sciencedirect.com/science/article/pii/S0269749112002783
http://dx.doi.org/10.17159/sajs.2015/20140387
http://www.sajs.co.za/spatial-and-temporal-disaggregation-anthropogenic-co2-emissions-city-cape-town/alecia-nickless-robert-j-scholes-ed-filby
http://www.sajs.co.za/spatial-and-temporal-disaggregation-anthropogenic-co2-emissions-city-cape-town/alecia-nickless-robert-j-scholes-ed-filby
http://www.sajs.co.za/spatial-and-temporal-disaggregation-anthropogenic-co2-emissions-city-cape-town/alecia-nickless-robert-j-scholes-ed-filby
http://www.sciencedirect.com/science/article/pii/S1352231010009234
http://www.sciencedirect.com/science/article/pii/S1352231010009234
http://www.fhwa.dot.gov/policyinformation/hpms/fieldmanual/
http://www.fhwa.dot.gov/policyinformation/hpms/fieldmanual/
http://www.sciencedirect.com/science/article/pii/S1352231013006833
http://www.sciencedirect.com/science/article/pii/S1352231013006833

BIBLIOGRAPHY

for all anthropogenic and most natural sources on a per country basis and on 1

degree x 1 degree grid. 1996.

[62] R Ewing, R Pendall, and D Chen. “Measuring sprawl and its transportation im-

pacts”. In: Travel Demand And Land Use 2003 1831 (2003), pp. 175–183. issn:

0361-1981.

[63] Reid Ewing and Shima Hamidi. Measuring Sprawl 2014. Tech. rep. Accessed 2015-

11-25. Smart Growth America, 2014. url: http://www.smartgrowthamerica.

org/measuring-sprawl.

[64] J. Frank Cook, Society of American Archivists. College, and University Archives

Committee. Forms manual. Ed. by J. Frank Cook. Madison, Wisc.: Madison, Wisc.,

1973.

[65] Michel Duchein. “Theoretical Principles and Practical Problems of Respect des

fonds in Archival Science”. In: (1983).

[66] Erich Gamma et al. Design Patterns. Addison-Wesley, Reading MA, 1995.

[67] EPA. Using MOVES for Estimating State and Local Inventories of On-Road Green-

house Gas Emissions and Energy Consumption. E, 2012.

70

http://www.smartgrowthamerica.org/measuring-sprawl
http://www.smartgrowthamerica.org/measuring-sprawl

Chapter A Appendices

§A.1 Data Preprocessing Steps

Cleaning these two separate, different, and massive traffic count databases has

been a great challenge. We reduced 14 GB of data - collected over many years with

errors, missing data, redundant counts, and every creative possible misuse of the

model system present. This has stressed the very limits of our data preparation

abilities. It required years of dedicated labor. The end result is a clean, small,

logical table of counts and the ability to aggregate reliable counts at the hourly or

daily level, and a table of outliers (Tables 3.2 and 3.3) with reasons given for each

of the problem cases.

§A.2 Data Cleaning Pipeline Flowchart

A pipeline was conceived and written out in ANSI standard flowchart code, repro-

duced here in Figures A.1, A.2, A.3, and A.4.

We learned through experiment that this type of engineering, taking the prob-

lem down to small easily digestible and explained steps is far superior to any

attempt to combine the steps into one monolithic pass across the data.

71

Appendices

Figure A.1: TD0N pipeline, 1/4.

72

A.2. DATA CLEANING PIPELINE FLOWCHART

Figure A.2: TD0N pipeline, 2/4.

73

Appendices

Figure A.3: TD0N pipeline, 3/4.

74

A.2. DATA CLEANING PIPELINE FLOWCHART

Figure A.4: TD0N pipeline, 4/4.

75

Appendices

§A.3 Archival Process

“Archives [. . .] include a range of format types beyond traditional paper,

including [. . .] geographic information systems” [34, p. 3].

“You’re making history.” (Jeffer Daykin, Capstone teacher at PSU in

2010, on the work of an archivist)

For both collections, we created accession description forms wherein our form is

based primarily on the example given in [34, p. 53], with the idea of the Restrictions

field, and the idea of giving our archive a distinctive name, was borrowed from the

University of Wisconsin-Parkside University Archives Accession Data form in [64,

p. 56].

To better document our activity and to allow some automatic interaction with

the archive, an accession log [34, p. 52, Figure 4-4] is maintained in the rela-

tional database management system (RDBMS). The log is called “data origins”. It

persists in the PostgreSQL database called 8666 9078 6965 namelist.

Our work commenced with the accession of a database called TDAT. This is a

collection of traffic counting records made by the city of Portland (COP), almost

all made with tube counters outfitted with a pneumatic hose. For the last 8-10

years, the city has been using the JAMAR brand 1 ATRs (Tom Jensen of PBOT,

private communication, 2015-09-18).

TDAT was assigned for this research the catalog number 001 and is thus often

referred to in this paper as Archive 001 or just Archive 1. The principle of respect

des fonds [65] requires that we carefully isolate this archive from accidental or in-

tentional modification, yet we will be continuously augmenting and annotating the

archive by, to take one example of many, marking outliers. Our approach has been
1http://jamartech.com/ accessed 2015-11-25.

76

http://jamartech.com/

A.3. ARCHIVAL PROCESS

Database _8666_9078_6965_namelist

<<persistant>>

data_origins
+PK id: integer
+name: text
+snapshot: timestamp without time zone
+masterdbname: text
+mastertablename: text
+slavedbname: text
+comments: text
+slavetablestub: text

<<persistant>>

_8666_9078_6965_tache_schema_info
+PK major_number: integer NOT NULL
+PK minor_number: numeric NOT NULL
+release_date: date
+description: text

Common to All Databases

<<persistant>>

outlier
+PK id: serial
+fondid: integer
+locationid: text
+countid: text
+created_on: date
+modified_on: date
+reasonID: integer
+is_locked: boolean
+thedate: date

<<persistant>>

outlierReasonID
+PK id: serial
+name: text
+description: text
+created_on: date
+modified_on: date

1

 *

1

 *

Figure A.5: A UML diagram of the namelist database. We created this finding aid to
guide our manual and automated research into the archives.

to construct a number of auxiliary records that are co-resident with the archive,

but clearly labeled as being foreign to the archive. That label is a sequence of three

numbers emitted in sequence by a pseudo-random number generator. These num-

bers are 8666, 9078, 6965. These always appear together, usually as 8666 9078 6965
2.

With our new identifier in hand, we constructed a finding aid, a catalog of the

archive contents, called Database 8666 9078 6965 namelist (Figure A.5).

The accessioning process requires that a new row be added to the table called

data origins, which is unique to the entire archive (a singleton as described in [66]).

2This identifier is unique to the research described here and does not occur with import anywhere else
in the entire cultural record of mankind as far as we are aware due to our random generation of these
digits.

77

Appendices

If an archive is listed in the data origins table, it is part of our archive. The ID

in data origins is the archive catalog number, e.g. id=1 for TDAT as we described

above. The name is something short and descriptive. Snapshot is a time-stamp

that is attested and meaningfully descriptive of the temporal extent of the archive.

Comments are free text but must include a citation for the value used in snapshot.

The remaining fields in data origins guide our automatic analysis system to the

named records in the archive where key indices and values are to be found.

The resulting archive we have dubbed the PSU Tarchive (traffic archive).

§A.3.1 TDAT

We solicited the TDAT count database from the city Bureau of Transportation

(BOT). There was dialog within the Bureau, preserved in emails, expressing con-

cern that transferring count data at a detailed level would be an unreasonable

burden on the Bureau. It was suggested, and agreed to, that the Department

would give us a copy of the entire database, which we would mine for the data at

high resolution.

The database was downloaded by File Transfer Protocol (FTP) in an encoded

form used by a commercial firm. Our first task was to crack the code to free the

data. This task was given to the Research Computing Department at PSU, who

worked on a solution for some months until the decision was made to purchasing a

commercial decoder. The result is a database in industry standard SQL format.

Thus did data collection and description proceed. Exploring the data progressed

through a series of email exchanges with a senior technologist at PBOT, who taught

us how to find and extract counts, and a method for geocoding counts.

We built confidence in the quality of the TDAT data progressively over several

year of exploration and analysis. The first potential problem was corruption in

the form of the full proper names of city employees and contractors in a database

78

A.3. ARCHIVAL PROCESS

Figure A.6: A day of counting at one site in the center of the city.

slot (field) where street names are to be written. PBOT clarified that this was

intentional because a location is required for each bill sent to an entity, and so

when a person is the recipient, we get this.

We extracted counts for one site and graphed these in Figure A.6, and evaluated

the graph for its common-sense scale and diurnal pattern.

We spent some time evaluating the structure of the counts. We produced the

map of Figure A.7, a useful basic overview of the data we had obtained.

We obtained a GIS shapefile from RLIS which classifies the roads in a 32-factor

79

Appendices

Figure A.7: Map of circles proportional to the number of times PBOT decided to open
a count at the site. Note the big circles all focused on the downtown area and linear
patterns of counts opened along major N/S and E/W corridors. North is up. The
Willamette river can be seen as a lacuna opening in the top-left of the map. A large
forested park is immediately to the west of the river at the top-left, represented as another
lacuna. The remaining empty space represents the Columbia river to the north, and other
jurisdictional boundaries to the east, south, and west.

80

A.3. ARCHIVAL PROCESS

type color
1110 red Freeway
1121 red On-ramp (only)
1122 black Off-ramp (only)
1123 violet On- and off-ramp (combination)
1200 blue Highway
1221 purple On ramp (only) to highway (in the area

maintained by the City of Portland only)
1222 red Off ramp (only) to highway (in the area

maintained by the City of Portland only)
1300 indigo Primary arterial
1400 green Secondary arterial
1450 red Other arterial
1500 cyan Minor streets
1521 yellow Local street to local street connector

(Portland only, subarea = ’P’).
1700 magenta Private named road; private right-of-way exists
1800 gray Unnamed driveway; private right-of-way exists
2000 brown Unimproved road, passable by emergency vehicles

(e-911) only (in the area maintained by the City of Portland only)
5301 red Primary arterial with rapid transit
5401 orange Secondary with rapid transit
5501 aqua Minor with rapid transit

Table A.1: Represented road classes in the toy study area, with color codes assigned.

scheme (freeway, primary arterial, minor streets, &t). We defined a toy study area

to practice on, and constructed Table A.1 to produce the map of

We built competence in mining the TDAT data through constant probing,

reshuffling, comparing the results of a number of ad-hoc analyses that we con-

ducted, punctuated with the formulation of questions for our domain experts at

PBOT, who have always replied courteously and promptly 3.

Much of the complexity of mining the TDAT database is the result of the almost

completely inverse structure of the TDAT RDBMS when compared to PORTAL.

Where the latter is flat and simple making the addition of a new record just a

single row in a table, TDAT involves adding several interlinked records in several
3Portland, OR has a tradition of strong civic involvement.

81

Appendices

tables. Where PORTAL’s counters are automatic, often neglected, and permanent

installations, TDAT’s counters are carefully hand-placed, watched over, and highly

temporary. This leads to a great variety of corner cases which we shall document

here.

§A.3.2 PORTAL

Accessioning the PORTAL process involved molding the PORTAL data dictionary

to closely resemble the TDAT data dictionary. Consequently, we appropriate some

terminology from TDAT. A count happens when someone decides, for any reason,

to count vehicular traffic on a road. When this happens a unique (within the

archive) count ID is generated and assigned to the count. For PORTAL, each

station/day is assigned a unique count ID by combining the station ID and the

day. A kount is a recording of vehicles that actually passed by in a given time

period. A kount is always an exact integer.

We explored the published data and metadata thoroughly, and interacted via

email with the PORTAL staff to obtain the information needed for our research.

We learned that PORTAL has recorded traffic counts at 15 minute intervals on all

of the area’s freeways and highways for more than nine years.

The curated PORTAL data at RDE

We first obtained a curated and well-documented extract of the PORTAL data

from the Research Data Exchange (RDE), (https://www.its-rde.net accessed

2014-03-20). The RDE is a US Federal Government-held database which hosts

curated and documented data sets. The PSU PORTAL group put considerable

time and effort into delivering a fine extract from their raw data, cleaned and

documented. While the set is too small (just two months of coverage) to be useful

for our project, we found this to be a useful starting point for learning how to clean

82

https://www.its-rde.net

A.3. ARCHIVAL PROCESS

and reduce the highway and freeway data.

We sought for and obtained confirmation (K. Tufte, private email) that the RDE

data set, which is identified by the name “Test Data Sets from Portland OR” with

a publication date of 2012-04-16 2016-10-27) is identical to the data set known as

“PORTAL FHWA” which is available from (https://portal.its.pdx.edu/fhwa

accessed 2016-10-27).

We were able to use this valuable resource to develop our analysis while we con-

tinued to dialog with the PORTAL group about an extract of the raw data. Kristin

Tufte was the principal on the PORTAL RDE (aka FHWA) data set preparation;

we are not aware of the names of any other contributing parties.

In the process we built confidence in our tools and in the appropriateness of

using the PORTAL data together with TDAT.

Mastering the PORTAL raw data

With the help of the PSU Research Experience for Undergrads (REU) program,

who lent us Chad Sarni for two days to operate the PORTAL web site, we obtained

a snapshot of the entirety of the raw count data (starting on 2005-01-01 and ending

on 2014-07-27). With some searching, we obtained a complete map of the sites were

counting was done.

We learned that PORTAL has both freeways and highways in it (and TDAT has

highways but no freeways). The total list of freeways and highways in PORTAL is

given in Table A.2. We concluded that the following roads are highways: OR 217,

SR 500, US 26, SR 14 and we classified them as such for the research, leaving the

rest of the roads in Table A.2 classified as freeways.

All of our GIS work was conducted using data projected into the Lambert

Conformal Conic (LCC) projection, with ellipsoid grs80, selected because this is

the default of a large curated base layer archive (RLIS) maintained by the regional

83

https://portal.its.pdx.edu/fhwa

Appendices

freeway name
I-84
I-5
I-405
I-205
WA I-5
WA I-205

Table A.2: Portal freeway coverage.

authority (Portland Metro). The freeway and highway recording station positions

published by PORTAL are in lat/long coordinates. To obtain a GIS layer of the

PORTAL station locations, we began with the lat/long station positions in the

station list posted as part of the RDE curated set (Section 2.3.2). We required an

LCC projection of these lat/long station positions for compatibility with the RLIS

street map.

We used cs2cs version 4.8.0, the “cartographic coordinate system filter” (cs2cs

documentation) by Frank Warmerdam and Gerald Evenden 4 to translate station

positions from lat/long into LCC for compatibility with our RLIS street map.

§A.3.3 The TDAT Schema - a Finding Aid

The first step in understanding the complex TDAT database was to construct a

finding aid in the form of a data dictionary. With the database in PostgreSQL

after the translation work of Section 2.3.1, we were able to use the LibreOffice tool

to quickly create the overview present in Figures A.8 and A.9.

§A.4 Data Cleaning Details

§A.4.1 TDAT

Q & A sessions with our PBOT experts proceeded through three distinct phases:
4https://github.com/OSGeo/proj.4/wiki accessed 2016-10-27.

84

https://github.com/OSGeo/proj.4/wiki

A.4. DATA CLEANING DETAILS

Figure A.8: The TDAT schema diagram, part 1.

85

Appendices

Figure A.9: The TDAT schema diagram, part 2.

86

A.5. TDAT ROAD CLASS ASSIGNMENT - TECHNICAL DETAILS

1. Obtain believable, accurate counts for a given time and place.

2. Find the road functional class belonging to a count.

3. Surety that all counts that belong to a site are discovered and counted in data

reduction.

Each of these phases brought new confidence in the quality of the data, although

the process was not without bumps. Two in particular had us concerned. The first

was the inclusion of people’s names as detailed in Section 2.3.1. The second was a

failure of the road class assignment of Phase 2 to properly assign a smattering of

sites.

The first was explained easily as we said. The second spurred us on to a careful

analysis, in early 2014, of road class assignment which we shall now discuss in some

detail.

§A.5 TDAT Road Class Assignment - Technical Details

Road class in TDAT is complex. The Bureau of Transportation does not consider

road functional class to have any place in the database of traffic counts: “we

presently have no plans to put the federal classifications in our location model”

(Jamie Throckmorton of PBOT, private communication). We identified a source

of road class information provided by the regional planning authority (Metro).

Identifying count sites in the BOT archive, which are point data in a GIS layer

called segments, with roads in the Metro road map (RLIS streets) was a major GIS

effort, but we are satisfied today that we have succeeded with this work.

The count sites are geocoded and assigned to one segment of the city’s road

network. The count sites are filed under the name nodeleg, which is a shapefile

containing vertex geometry. The vertex attributes connect each vertex to a line

87

Appendices

segment in the street map, which is called segments. Segments is another shapefile,

containing line geometry. The attributes of segments identify the street name.

We consider compatibility of our system with EPA MOVES a priority, so we

read [67] to find that MOVES requires road types “based on the HPMS clas-

sification” (ibid, p. 28). We obtained and compared a variety of candidates

(ODOT, PBOT SDE, Topologically Integrated Geographic Encoding and Refer-

encing (TIGER), HPMS, and RLIS streets).

We concluded by selecting RLIS streets, whose road functional class “codes

are specific to our region” (Kelly Hauger, GIS specialist at Metro, private email),

based on advice from an expert at PBOT. RLIS streets is a GIS shapefile curated by

Portland’s regional authority, part of the RLIS archive. It contains line geometry.

The attributes identify the street name and the road class. We had to find a way

to impute the road class from streets to segments.

§A.5.1

Our effort to use a spatial join fails due to great disparities

between road maps

Our PBOT expert suggested a spatial join. If both maps are accurate, we reasoned,

it would be quite easy to accomplish a spatial join, effectively copying the road class

into segments. We had to proceed carefully, because the accuracy and usefulness of

the model is a function of the accuracy and usefulness of the road functional class

assignment. Thus, we spent time planning this step, exploring systems of road

functional classification and alternative data sources for road class in our study

area.

Our data sources selected, we attempted the spatial join. The join failed because

of pervasive differences between the two vector layers (RLIS streets and TDAT

segments). The two layers are evidently based on a common source put together

perhaps in the 1970s, which have diverged enormously since that time. Another

88

A.5. TDAT ROAD CLASS ASSIGNMENT - TECHNICAL DETAILS

Figure A.10: An overlay map of the area around SE 29th and SE Waverleigh. North is
up. Red lines are road segments from the PBOT segments. Blue lines are road segments
from RLIS streets. Green lines represent the software’s best attempt to spatially join
RLIS streets with PBOT segments. Note the remarkable degree of divergence between
the two maps, far too great for an automated system to reconcile them.

approach was needed.

One example of several we examined of the complete failure of an automated

spatial join based just on the linear street segment geometry is given in Figure A.10.

This type of divergence between the maps is pervasive, reflecting in the author’s

opinion decades of customization by two very different governmental units.

§A.5.2 A key is found that enables road class assignment

A single key identifies - often, but not always - a road segment in both layers. In

TDAT the key is the last six digits of the parent ID returned by

psql -x -d rlis-gis -c "select * from locheir

89

Appendices

where LocationID = ’LEG66360’ and

systemid = ’STREET’;"

. That select returns

: -[RECORD 1]-------------
: locationid | LEG66360
: parentid | 0040SEG138385
: systemid | STREET
: myid | 292816

The value 138385 matches the local ID in RLIS streets, as in

psql -x -d rlis-gis -c "select * from segstr_clean

where localid = 138385;"

, which returns

-[RECORD 1]--------------
cat | 79928
comments |
direction |
fromint |
ftype | AVE
lcity | PORT
lcounty | MULT
leftadd1 | 300
leftadd2 | 398
leftzip | 97204
length | 262.5003299528
linkpath |
localid | 138385
location |
modifiedby |
modifiedon |
modifiedus |
prefix | SW
rcity | PORT
rcounty | MULT

90

A.5. TDAT ROAD CLASS ASSIGNMENT - TECHNICAL DETAILS

rgtadd1 | 301
rgtadd2 | 399
rightzip | 97204
shape_leng |
streetname | 5TH
toint |
type | 5501
zero | 0

§A.5.3 An anomaly is found that casts doubt

The spatial join indicated how tenuous this link is (the two maps diverged signifi-

cantly over time), and in a flyover we noticed an anomaly: highway-typed streets

deep in a residential neighborhood. These mistyped streets were a serious concern,

so we examined this case in particular and found that our analysis is unaffected

because no traffic counting ever happened at these particular sites.

The flag was raised however, and to regain confidence in the road class as-

signment we tested and proved the theory that every counter site in TDAT where

counts actually happened is sited within a short distance (4m) of a road segment

in RLIS streets which agrees with the road class we previously found for the site

by the tenuous link of Appendix A.5.2.

We found that 1.7 % of the sites do not have a road on the authoritative map

(RLIS streets) with the appropriate road functional class within four meters of

the count site. We are unable to say anything definite about these sites without

ground truthing them, except that the remainder of the analysis came so close

to perfectly matching road class via the tenuous link and road class by the type

of spatial matching assigned here that they are most probably correctly assigned.

Divergence in the location and dimensions in the road segments given in the two

maps is great, as we have demonstrated, so it is expected that our careful analysis

here, with its tight 4m radius requirement for a match, will not always find a match

91

Appendices

even when the assignment is good.

At 98.7 % of the sites where a count actually happened, only one type of road is

found. In the other 1.3 % of sites, there are more than one road classes represented

in the 4m circle, but the “correct” road class is always among them. We conclude

that it is highly likely that 100% of the sites where counts actually happened have

been assigned the correct road class. This is not a given, because our method relies

on a tenuous putative link between TDAT segments and RLISstreets, two street

maps that seem to have shared a common ancestor a long time ago, but which

have diverged quite thoroughly since that time (for example, many or most road

segments have drifted, and many road segments have been added or deleted, to

better fit the needs of the individual bureaus, which are COP PBOT and Oregon

Metro - a regional planning organization).

One of the vague cases is given in Figure A.11. Due to the divergence in the

segments and streets maps, either of the two roads shown could apply their road

class to the site indicated by the yellow cross. The geocentric coordinate system

(GCS) coordinates in RLIS streets projection are given.

This RC validation work is epitomized by the occurrence of the text typesin

as in

#if (DIAGNOSTIC TYPESIN)

ln << ”,rc,typesin 4 m 01, ...

#endif

92

A.5. TDAT ROAD CLASS ASSIGNMENT - TECHNICAL DETAILS

Figure A.11: Map showing one of the TDAT count sites where it is not possible without
ground truthing to identify the road class of the site. RLIS streets includes two roads
with different road classes in the immediate vicinity.

93

Appendices

§A.6 Source code

§A.6.1 Tiny Toy Data For Sample Calculations

// Fi: gen.cc
// Au: James E. Powell
// Da: 2016-05-14
//
// Generate data similar to the TD0N raw data, but a much smaller set.

#include <iostream>
#include <fstream>
#include <assert.h>
#include <iomanip>
#include <cmath>

using namespace std;

// First ten entries from (Griffin62) Table F-10
// Gaussian Deviates, p. 490.
double gd0[10]={-1.276, -1.218, -0.453,
-0.350, 0.723, 0.676,
-1.099, -0.314, -0.394,
-0.633};
double gd1[10]={-0.318, -0.799, -1.664,
+1.391, 0.382, 0.733,
+0.653, 0.219, -0.681,
+1.129};
double gd2[10]={-1.377, -1.257, 0.495,
-0.139, -0.854, 0.428,
-1.322, -0.315, -0.732,
-1.348};
double gd3[10]={+2.334, -0.337, -1.955,
-0.636, -1.318, -0.433,
+0.545, 0.428, -0.297,
+0.276};
double gd4[10]={-1.136, 0.642, 3.436,
-1.667, 0.847, -1.173,
-0.355, 0.035, 0.359,
+0.930};
double gd5[10]={ +0.414, -0.011, 0.666,
-1.132, -0.410, -1.077,
+0.734, 1.484, -0.340,
+0.789};

void write_header(ofstream &fl)
{

94

A.6. SOURCE CODE

fl << "rc1,rc2,dacount,dacount_delta,numkounts,pd1,pd2,or1,or2\n";
}

int main()
{
ofstream fl("data-gen.org");
assert(fl.good());
fl << setprecision(8);
int n = 9;
write_header(fl);
double rcmean[] = {25000., 800.};
for (int rc = 1; rc <= 2; rc++) {
for (int i = 0; i < n; i++) {
double m = rcmean[rc-1];
double pdmean = 5.*((m / 25000.) + 10.);
double ormean = 20.*((m/25000.0) + 10.);
double adt_raw_var = (rc == 1 ? gd0[i] : gd1[i]);
// mean plus natural variation
double adt = m + adt_raw_var * 50.0 * (m / rcmean[1]);
doublt adt_delta_raw_var = (rc == 1 ? gd0[i] : gd1[i]);
double adt_delta = 100 * fabs(adt_delta_raw_var);
// delta is bigger as var is bigger
adt_delta = pow(adt_delta*(m / (rcmean[1] / 100.0)),1.);
// pd1 is closely correlated with adt through gd0, with a
// little of its own natural variation through gd1.
double pdvar = gd0[i] * 10.0;
double pd1 = pdmean + pdvar + gd1[i];
// pd2 also is closely correlated with adt through gd0

// (pdvar), with its own natural variation. It’s also
// twice as large as pd1.

double pd2 = pdmean * 2.0 + pdvar * 2.0 + gd2[i];
// or1 is closely correlated with adt through gd0 (orvar),
// with its own natural variation through gd3. It’s three
// times bigger than the pds.
double orvar = gd0[i] * 30.0;
double or1 = ormean + orvar + gd3[i] * 3.0;
// or2 is twice as big as or1, but also closely correlated

// with adt through gd0.
double or2 = ormean * 2.0 + orvar * 2.0 + gd4[i] * 6.0;
// rc1,rc2,adt,pd1,pd2,or1,or2
fl << (rc==1 ? 1 : 0) << "," << (rc==2 ? 1 : 0) << "," <<

adt << ",";
fl << adt_delta << ",";
fl << 1 << ",";
fl << pd1 << "," << pd2 << "," << or1 << "," << or2 << endl;
}
}
}

95

Appendices

§A.6.2 Adapt PORTAL to the TDAT data structure

We had a need for PORTAL data to appear, to the SQL interface, much like the

much more hierarchically organized TDAT data. We accomplished this by creating

the materialized views, using the SQL given here.

-- file: adapt-foreign-database-version-portal-total-MATERIALIZED.sql
-- au: James E. Powell
-- date: 2016-08-04
-- c.f. ˜/projects/tache/milestones/milestone-04-03-2014 (SQL to
-- make materialized views for PORTAL-TOTAL)/
-- based on adapt-foreign-database-version-portal-fhwa-
-- MATERIALIZED.sql

\timing

-- Dropping the views should delete the indices also, "DROP TABLE
-- always removes any indexes"
-- (file:///usr/share/doc/postgresql-doc-9.4/html/sql-droptable.html)

drop materialized view nodeleg;
drop materialized view volchannel;
drop materialized view volcount;
drop materialized view voldata9999;
-- cascade is req’d for sf_ld15m cos ’view volcount_v depends on
-- materialized view sumfreeway_loopdata15min’
drop materialized view sumfreeway_loopdata15min cascade;

-- Sometimes I like to change the type of columns, and CREATE
-- OR REPLACE
-- doesn’t work (see 0E3: view build fails changing data type,
-- https://stackoverflow.com/questions/36790981/
-- cannot-change-data-type-of-view-column-sql)
-- when that happens unless you utterly delete the views first.
drop view sumfreeway_loopdata15min_v;
drop view nodeleg_v;
drop view volchannel_v;
drop view volcount_v;
drop view voldata9999_v;

-- View sumfreeway_loopdata15min
-- based on "View: volchannel_v" (below)
-- See tache issue "0E1: groups of three..." for discussion.
CREATE OR REPLACE VIEW sumfreeway_loopdata15min_v AS
select starttime,sum(volume) as sumvol,highwayid,stationid from

freeway_loopdata15min group by starttime,highwayid,stationid;

96

A.6. SOURCE CODE

create materialized view sumfreeway_loopdata15min as
select * from sumfreeway_loopdata15min_v;

-- View: nodeleg_v

-- DROP VIEW nodeleg_v;

CREATE OR REPLACE VIEW nodeleg_v AS
SELECT DISTINCT portal_total_freewy_stns.stationid AS location,

portal_total_freewy_stns.cat
FROM portal_total_freewy_stns;

-- Materialized View: nodeleg

-- DROP MATERIALIZED VIEW nodeleg;

-- this works too (for all of the tables):
-- create materialized view nodeleg as select * from nodeleg_v;
CREATE MATERIALIZED VIEW nodeleg AS
SELECT nodeleg_v.location,

nodeleg_v.cat
FROM nodeleg_v

WITH DATA;

-- View: volchannel_v

-- DROP VIEW volchannel_v;

CREATE OR REPLACE VIEW volchannel_v AS
WITH honker AS (

SELECT fd.stationid,
ld.starttime::timestamp without time zone AS starttime,
date_trunc(’day’::text,

ld.starttime::timestamp without time zone)
AS truncstamp,

date_part(’dow’::text,
date_trunc(’day’::text,

ld.starttime::timestamp
without time zone))

AS dow,
ld.sumvol AS kount,
row_number() OVER (ORDER BY fd.stationid, starttime)

AS channelid
FROM portal_total_freewy_stns fd

JOIN sumfreeway_loopdata15min ld
ON fd.stationid = ld.stationid

)
SELECT DISTINCT concat(honker.truncstamp, honker.stationid)

AS countid,

97

Appendices

honker.channelid,
1 AS channelnum

FROM honker;

-- Materialized View: volchannel

-- DROP MATERIALIZED VIEW volchannel;

CREATE MATERIALIZED VIEW volchannel AS
SELECT volchannel_v.countid,

volchannel_v.channelid,
volchannel_v.channelnum

FROM volchannel_v
WITH DATA;

-- View: volcount_v

-- DROP VIEW volcount_v;

CREATE OR REPLACE VIEW volcount_v AS
WITH honker AS (

SELECT fd.stationid,
ld.starttime::timestamp without time zone AS starttime,
date_trunc(’day’::text,

ld.starttime::timestamp without time zone)
AS truncstamp,

date_part(’dow’::text,
date_trunc(’day’::text,

ld.starttime::timestamp
without time zone))

AS dow
FROM portal_total_freewy_stns fd

JOIN sumfreeway_loopdata15min ld
ON fd.stationid = ld.stationid

)
SELECT DISTINCT honker.stationid AS locationid,

honker.truncstamp AS starttime,
concat(honker.truncstamp, honker.stationid) AS countid,
15 AS intervallen,

CASE
WHEN honker.dow = 0::double precision

THEN ’Normal Weekend’::text
WHEN honker.dow = 1::double precision

THEN ’Normal Weekday’::text
WHEN honker.dow = 2::double precision

THEN ’Normal Weekday’::text
WHEN honker.dow = 3::double precision

THEN ’Normal Weekday’::text
WHEN honker.dow = 4::double precision

THEN ’Normal Weekday’::text

98

A.6. SOURCE CODE

WHEN honker.dow = 5::double precision
THEN ’Normal Weekday’::text

WHEN honker.dow = 6::double precision
THEN ’Normal Weekend’::text

ELSE NULL::text
END AS excepttype

FROM honker;

-- Materialized View: volcount

-- DROP MATERIALIZED VIEW volcount;

CREATE MATERIALIZED VIEW volcount AS
SELECT volcount_v.locationid,

volcount_v.starttime,
volcount_v.countid,
volcount_v.intervallen,
volcount_v.excepttype

FROM volcount_v
WITH DATA;

-- View: voldata9999_v

-- DROP VIEW voldata9999_v;

CREATE OR REPLACE VIEW voldata9999_v AS
WITH honker AS (

SELECT fd.stationid,
ld.starttime::timestamp without time zone AS starttime,
date_trunc(’day’::text,

ld.starttime::timestamp without time zone)
AS truncstamp,

date_part(’dow’::text, date_trunc(’day’::text,
ld.starttime::timestamp without time zone))
AS dow,

ld.sumvol AS kount,
row_number() OVER (ORDER BY fd.stationid, starttime)

AS channelid
FROM portal_total_freewy_stns fd

JOIN sumfreeway_loopdata15min ld
ON fd.stationid = ld.stationid

)
SELECT DISTINCT honker.channelid,

honker.starttime,
honker.kount

FROM honker;

-- Materialized View: voldata9999

-- DROP MATERIALIZED VIEW voldata9999;

99

Appendices

CREATE MATERIALIZED VIEW voldata9999 AS
SELECT voldata9999_v.channelid,

voldata9999_v.starttime,
voldata9999_v.kount

FROM voldata9999_v
WITH DATA;

-- make sure they are up to date
REFRESH MATERIALIZED VIEW nodeleg;
REFRESH MATERIALIZED VIEW volchannel;
REFRESH MATERIALIZED VIEW volcount;
REFRESH MATERIALIZED VIEW voldata9999;

create index volc_chanid_index on volchannel (channelid);
-- => \timing
-- portal-total=> create index vold_chanid_index on
-- voldata9999 (channelid);
-- CREATE INDEX
-- Temps : 54856.375 ms
-- This particular index (voldata9999, channelid) speeds STAC calls
-- up by something like 3000 times.
-- They go from 5s each call (too slow for my purposes) to
-- flying by faster than I can see it.
-- That, folks, is why we create indices.
create index vold_chanid_index on voldata9999 (channelid);
create index volc_countid on volchannel (countid);

§A.6.3 Weekend Test

File: weekend-ttest.r

Au: J. E. Powell

Da: 2016-10-10

##source("xform.r")

x<-read.table(

"td08-after-subset-selection-and-rename-2016-10-04.csv",

header=TRUE,sep=",")

lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

x$weekendp <- as.factor(weekdays(

as.Date(as.character(x$tsdate),"%Y-%m-%d")) %in% c(’Sunday’,

’Saturday’))

z <- subset(x, x$rc==1300)

100

A.6. SOURCE CODE

z <- x

z1 <- subset(z, weekendp==TRUE)

z2 <- subset(z, weekendp==FALSE)

t.test(x=z1$kount, y=z2$kount)

§A.6.4

Diagnostic Plots for the Log Transformation.

Shapiro-Wilks.

Fi: lognormdiag.r
Au: J.E. Powell
Da: 2016-10-06
De:
##
We need to justify log-transforming kounts in the lm().
We do that here by showing that in a sampling of RC, the
data become normal on a log-transform.
library(lattice)
source("transrc.r")
Graphs <- function(x) {

pdf("hist-lognormdiag-xform-2016-10-06.pdf")
trellis.par.set(fontsize=list(text=7))
histogram(˜ xformkount|as.factor(rc),data=x,auto.key=TRUE,

scales="free")
dev.off()
pdf("hist-lognormdiag-no-xform-2016-10-06.pdf")
trellis.par.set(fontsize=list(text=7))
histogram(˜ kount|as.factor(rc),data=x,auto.key=TRUE,

scales="free")
dev.off()
pdf("qq-lognormdiag-no-xform-2016-10-06.pdf")
trellis.par.set(fontsize=list(text=7))
qqmath(˜ kount|as.factor(rc),data=x,auto.key=TRUE,

scales="free")
dev.off()
pdf("qq-lognormdiag-xform-2016-10-06.pdf")
trellis.par.set(fontsize=list(text=7))
qqmath(˜ xformkount|as.factor(rc),data=x,auto.key=TRUE,

scales="free")
dev.off()

}
xform <- function(x) {

if (TRUE) {
remove 10 outliers, see log entry for
Wed Sep 21 20:11:19 2016
x <- x[x$kount != 0,]

101

Appendices

log-transform.
see Wed Sep 21 20:23:38 2016 :log:transform:
x$xformkount <- log(x$kount)

}
else {

x$xformkount <- x$kount
}
x

}
filename <-

"td08-after-subset-selection-and-rename-2016-10-04.csv"
use only 5000 records cos the full set is unwieldy to
render the QQ
filename <- "td08-after-subset-selection-5000-2016-10-04.csv"
x <- read.table(filename, header=TRUE, sep=",")
x$rc <- apply(as.matrix(x$rc), 1, transrc)
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x$weekendp <- weekdays(as.Date(as.character(x$tsdate),

"%Y-%m-%d")) %in% c(’Sunday’,’Saturday’)
x <- xform(x)
x <- x[x$weekendp == FALSE,]
if (FALSE) {

Graphs(x)
}
s/w
filename <- "td08-after-subset-selection-and-rename-2016-10-04.csv"
x <- read.table(filename, header=TRUE, sep=",")
x <- xform(x)
art <- x[x$rc == 1300,]
fwy <- x[x$rc == 1110,]
shapiro.test(art$kount)
shapiro.test(art$xformkount)
shapiro.test(sample(fwy$kount, 5000, replace=FALSE))
shapiro.test(sample(fwy$xformkount, 5000, replace=FALSE))

§A.6.5 Join the raw counts with our pseudo-LUR variables.

This task (pass 8 in the pipeline) is made easy by R’s merge function. It’s fast, too

(1 minute). The input, lur-min.csv, is easily extracted from the GIS layer.

Fi: join.r
Au: J.E. Powell
Da: 2016-08-15
##
desc:
based on -

102

A.6. SOURCE CODE

[[file:˜/projects/tache/milestones/milestone-04-03-2015%20
(TD08%20statistically%20defensible%20traffic%20density%20
model%20with%20freeways)/join.r][file:˜/projects/tache/
milestones/milestone-04-03-2015
(TD08 statistically defensible traffic density model with
freeways)/join.r]] td008-input.csv comes out without any
LUR info adorning it. Use R merge to pull the lur variables.
use "make td08-with-lur.csv" to run this.
lur <- read.table("lur-min.csv", header=TRUE, sep=",")
a <- read.table("rlis-gis-vec_repo_001_rconly.txt", header=TRUE,

sep=",")
fname <-

"data-from-mercredi 14 septembre 2016, 19:05:09 (UTC-0700).txt"
x <- read.table(fname, header=TRUE, sep=",")
z <- merge(lur,x)
z <- merge(z, a)
sort before write
z <- z[with(z, order(rc, locid, tsdate, tstime)),]
write
write.csv(z,"td08-with-lur-2016-09-14.csv",row.names=FALSE)

§A.6.6 Reduce the data to one row for each day.

This computation takes a long time (about 8 hours). There is surely a better and

fast way to do it in R, because using rbind is almost always a sign that you’ve

broken the R paradigm.

File: reduce.r
Au: J.E. Powell
Da: 2016-09-18
based on file:˜/projects/tache/milestones/milestone-2015-03-03-
(TD007 statistically defensible traffic density model with
freeways)/reduce.r]]
http://stackoverflow.com/questions/2676554/in-r-how-to-find-
the-standard-error-of-the-mean
se <- function(x) sqrt(var(x)/length(x))
fname <- "td08-with-lur-2016-09-14.csv"
x <- read.table(fname, header=TRUE, sep=",")
templateRow = x[,1]
step 0: sort it so we have a known qty
http://stackoverflow.com/questions/1296646/how-to-sort-a-dataframe-
by-columns
x <- x[with(x, order(locid, tsdate)),]
... important early example of why step 1 is needed.
14 LEG10212 02111250.VL1 2002-11-13 0 0 ...

103

Appendices

15 LEG10212 02111262.VL1 2002-11-13 0 0 ...
...
http://stackoverflow.com/questions/1269624/how-to-get-row-from-
r-dataframe
step 1: we have records where several rows describe one day.
x <- x[1:4000,]
step1o <- x[1,]
templateRow <- x[1,]
#browser();
first <- 1
for (i in 2:length(x$kount)) {

if (x[i,]$tsdate != templateRow$tsdate ||
x[i,]$locid != templateRow$locid) {

stash it.
if (first == 1) {

step1o <- templateRow
first <- 0

}
else {

step1o <- rbind(step1o, templateRow)
}

cat("stash at ",i,"\n")
templateRow <- x[i,]

} else {
add it
I just add uncertainties here. TODO find the right rule,
use it.

cat("add at ",i,"\n")
templateRow$kount <- templateRow$kount + x[i,]$kount

cat("kount now ", templateRow$kount, "\n")
}

}
browser();
write.csv(step1o,"td08-with-lur-2016-09-14-reduced.csv",

row.names=FALSE)
stop("enough")
step 2: we now have only one row for each location/day

§A.6.7 Translate road class (RC) identifiers to name

File: transrc.r
Au: J.E. Powell
Da: 2016-09-27
##
Based on src/roadclassdb.cc
(a) = "In the area maintained by the City of Portland only"
(b) = "Private right-of-way exists"
(c) = "With rapid transit"
(d) = "to local street connector (Portland only, subarea = ’P’)
(e) = " -named, but without valid addressing (Clackamas County only, subarea = ’C’)"
(f) = "-unnamed and without valid addressing (Clackamas County only, subarea = ’C’)"
(g) = "with valid address range and street name (in the area maintained by the City of Portland only)"

104

A.6. SOURCE CODE

(h) = "with NO Valid Address Range or Street Name (in the area maintained by the City of Portland only)"
(i) = "no private right-of-way exists"
(j) = "passable by emergency vehicles (e-911) only (in the area maintained by the City of Portland only)"
transrc <- function(rc) {

rcnames <- c("Freeway","Ramps; interchanges & feeders","On-ramp (only)","Off-ramp (only)","On- and off-ramp (combination)",
"Highway","On ramp (only) to highway (a)","Off ramp (only) to highway (a)","On/Off ramp to highway (a)",
"Primary arterial","Secondary arterial","Other arterial","Minor streets","Local street (d).","Minor street (e)",
"Minor street (f)","Private named road (b)","Private street (g)","Private named road (i)","Private Road (h).",
"Unnamed driveway (b)","Unnamed driveway (i)","Unimproved road (j)","Path","Freeway (c)","Highway (c)",
"Primary arterial (c)","Secondary (c)","Minor with railroad","Minor (c)","Unknown type (only in Yamhill County)",
"Forest Service road")

rcC <- c(
1110, ## Freeway
1120, ## Ramps; interchanges & feeders
1121, ## On-ramp (only)
1122, ## Off-ramp (only)
1123, ## On- and off-ramp (combination)
1200, ## Highway
1221, ## On ramp (only) to highway (in the area maintained by the City of Portland only)
1222, ## Off ramp (only) to highway (in the area maintained by the City of Portland only)
1223, ## On/Off ramp to highway (in the area maintained by the City of Portland only)
1300, ## Primary arterial
1400, ## Secondary arterial
1450, ## Other arterial
1500, ## Minor streets
1521, ## Local street to local street connector (Portland only, subarea = ’P’).
1550, ## Minor street -named, but without valid addressing (Clackamas County only, subarea = ’C’)
1560, ## Minor street -unnamed and without valid addressing (Clackamas County only, subarea = ’C’)
1700, ## Private named road; private right-of-way exists
1740, ## Private street with valid address range and street name (in the area maintained by the City of Portland only)
1750, ## Private named road; no private right-of-way exists
1760, ## Private Road with NO Valid Address Range or Street Name (in the area maintained by the City of Portland only).
1800, ## Unnamed driveway; private right-of-way exists
1850, ## Unnamed driveway; no private right-of-way exists
2000, ## Unimproved road, passable by emergency vehicles (e-911) only (in the area maintained by the City of Portland only)
3200, ## Path
5101, ## Freeway with rapid transit
5201, ## Highway with rapid transit
5301, ## Primary arterial with rapid transit
5401, ## Secondary with rapid transit
5500, ## Minor with railroad
5501, ## Minor with rapid transit
8224, ## Unknown type (only in Yamhill County)
9000 ## Forest Service road
)
browser()

for (i in 1:length(rcnames)) {
if (rcC[i] == rc)

return (rcnames[i])
}
return ("unknown")

}

§A.6.8 Make a diel graph

FILE: diel.r
AU: J.E. Powell
DA: 2016-10-04
DE: plot traffic count summary diel, separated by weekday/weekend
library(lattice)
source("transrc.r")
5000 records randomly selected
fname <- "td08-with-lur-5000-2016-10-04-diel.csv"
all records (takes long, result is huge like 3.2MB)
fname <- "td08-with-lur-2016-09-14.csv"
fname <- "td08-after-subset-selection-5000-2016-10-04.csv"
x <- read.table(fname, header=TRUE, sep=",")
4## *help[R](as.Date)* advises us to set the locale. Otherwise day
names may be in e.g. French.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
file:˜/notes/R/R-has-knowledge-of-weekends.pdf
x$weekendp <- weekdays(as.Date(as.character(x$tsdate),"%Y-%m-%d")) %in% c(’Sunday’,’Saturday’)
Adler p. 269
##xyplot(kount˜tstime|weekendp,data=x,groups=
adler p. 299
pdf uses colors, and compresses.
pdf("diel-2016-09-27.pdf")
postscript("diel-2016-10-04.ps")

105

Appendices

x$rc <- apply(as.matrix(x$rc), 1, transrc)
png(filename="diel-2016-10-04.png",width=4096,height=4096)
trellis.par.set(fontsize=list(text=7))
xyplot(kount˜tstime|as.factor(rc),data=x,groups=weekendp,auto.key=TRUE,scales="free")
xyplot(kount˜tstime|as.factor(rc),data=x,groups=weekendp,auto.key=TRUE,scales="free")
dev.off()

§A.6.9

Make a random subset of the raw data for validation

purposes.

Note that we seed the Random Number Generator (RNG) to make our subset

selection reproducible. We use R because it is known to have a superior RNG

compared to some other systems.

File: make-random-subset.r
Au: J.E. Powell
Da: 2016-09-22
##
Desc:
The ultimate test of any linear regression is whether
it can reproduce values from the sampled set that were not part
of making the model.
set.seed(86669078,kind="default", normal.kind="default")
filename <- "td08-with-lur-2016-09-14-reduced.csv"
x <- read.table(filename, header=TRUE, sep=",")
Adler2009 p. 189
useForModelRowNums <- sample(1:nrow(x), 2*nrow(x)/3);
x$useForModel <- FALSE
for (i in 1:length(useForModelRowNums))

x[useForModelRowNums[i],]$useForModel <- TRUE;
write.csv(x,"td08-after-subset-selection-2016-09-22.csv",row.names=FALSE)

The above code makes a reduced set: counts aggregated to the day level. To

mark a random subset of the hourly set, used in deriving and testing the canonical

diel cycle, the following code was used.

File: make-random-subset-hourly.r
Au: J.E. Powell
Da: 2016-10-25
##
Desc:
The ultimate test of any linear regression is whether
it can reproduce values from the sampled set that were not part
of making the model.
set.seed(86669078,kind="default", normal.kind="default")
filename <- "td08-with-lur-2016-09-14.csv"
x <- read.table(filename, header=TRUE, sep=",")
Adler2009 p. 189
useForModelRowNums <- sample(1:nrow(x), 2*nrow(x)/3);
x$useForModel <- FALSE
for (i in 1:length(useForModelRowNums))

x[useForModelRowNums[i],]$useForModel <- TRUE;
write.csv(x,"td08-hourly-after-subset-selection-2016-10-25.csv",row.names=FALSE)

Warning: this later code takes time, about 24 hours on a fast research host.
That time is all spent in this loop:

106

A.6. SOURCE CODE

> for (i in 1:length(useForModelRowNums))

+ x[useForModelRowNums[i],]\$useForModel <- TRUE;

suggesting that R is not optimized for simple iteration over a lot (1.1 × 106) of

rows.

§A.6.10 Run a stepwise linear regression on the model subset.

#!/usr/bin/R
Fi: lm.r
Au: J.E. Powell
Da: 2016-08-15
##
Desc:
Based on
file:˜/projects/tache/milestones/milestone-2015-04-03-
(TD08 statistically defensible traffic density model with
freeways)/lm.r
which in turn was based on
/home/powellj/projects/tache/milestones/milestone-04-10-2014
(TD004 statistically defensible traffic density model
with freeways)/lm.r

xform <- function(x) {
if (TRUE) {

remove 10 outliers, see log entry for Wed Sep 21 20:11:19 2016
x <- x[x$kount != 0,]
log-transform.
see Wed Sep 21 20:23:38 2016 :log:transform:
x$xformkount <- log(x$kount)

}
else {

x$xformkount <- x$kount
}
x

}
filename <- "td08-after-subset-selection-and-rename-2016-10-04.csv"
x <- read.table(filename, header=TRUE, sep=",")
help[R](as.Date) advises us to set the locale. Otherwise day
names may be in e.g. French.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x$weekendp <- weekdays(as.Date(as.character(x$tsdate),"%Y-%m-%d")) %in% c(’Sunday’,’Saturday’)
x$rc <- as.factor(x$rc)
x <- xform(x)
subset weekdays
x <- subset(x, weekendp==FALSE)
x <- subset(x, useForModel==TRUE)
y <- lm(formula=xformkount˜rc+pop100+pop200+pop300+pop400+pop500+

pop600+pop700+pop800+pop900+or100+or200+or300+or400+or500,
data=x,singular.ok=FALSE)

cat("rˆ2 for full model:", summary(y)$r.squared, "\n");
minimal y
y <- lm(formula=dacount˜rc1110+rc1120+rc1121+rc1122+rc1123+rc1200+
rc1222+rc1223+rc1300+rc1400+rc1450+rc1500+rc1521+rc1550+rc1560+
rc1700+rc1740+rc1750+rc1760+rc1800+rc1850+rc2000+rc3200+rc5101+
rc5201+rc5301+rc5401+rc5500+rc5501+rc8224+rc9000+pop100+pop200+
or100+or200,data=x,weight=w)
#anova(y) # as in \cite[p. 408]{adler2009r}
summary(y)
stop("enough")
if (TRUE) {

#coe <- y$coefficients;
#coe;
x$pred = x$X1200*coe["X1200"] + x$X1221*coe["X1221"] +
x$X1300*coe["X1300"] + x$X1400*coe["X1400"] + x$X1450*coe["X1450"]
plot(x$dailyavg˜x$pred)

z <- step(y);
summary(z)$r.squared; # -> 0.662145
anova(z)$’Pr(>F)’;

summary(z) # gives "t value", "Adjusted R-squared: 0.8323"
postscript("diags-2016-09-22.ps")
plot(z)

107

Appendices

dev.off()
}

§A.6.11 Count days for each outlier class

The values below (594, 264, etc) were multiplied by 2 to obtain the values in Table

3.2, because we found that the average duration of one count (recorded under one

countid) is about 48 hours in TDAT.

: powellj@login:˜$ echo "select reasonid,count(countid)

from outlier where fondsid = 1 group by reasonid" |

psql -h node01 -d _8666_9078_6965_namelist

| reasonid | count |

|-------------+-------|

| 304 | 594 |

| 310 | 264 |

| 311 | 3 |

| 303 | 28084 |

| 297 | 0 |

| 301 | 2134 |

| 306 | 3 |

| 298 | 4585 |

| 299 | 0 |

| 312 | 1 |

| (10 lignes) | |

| | |

§A.7 Source Code for the Pipeline

We call this pipeline ”TD0N” - traffic density, N being some integer. We can be

more specific, the version presented in this appendix is our eighth, so we call this

one ”TD08”.

108

Chapter B Interesting Statistics

Some interesting statistics.

• 80389 : number of potential count sites located in the study area (TDAT).

• 9352 : number of potential count sites where someone at PBOT allocated a

countid (indicating an intention to count I presume) (TDAT).

• 7767 : number of actual counts sites, where a counter was actually laid on

the road and read off into the database (TDAT).

• 48 : average number of hours that a counter was left on the road (TDAT).

• 15 : the usual bin size for the counters (in minutes) (TDAT).

• 60 : a bin size also used for some few counters (in minutes) (TDAT).

• 21 : approximate number of years of traffic count data contained in the PBOT

database (starting in 1986, ending in 2006) (TDAT)

• 11072 : lines of C++ code written to produce the maps and statistics reported

here.

• 8 : minutes to read all counts in PORTAL-FHWA

• 12 : gigabytes of raw ASCII data in PORTAL-TOTAL

• 885 : megabytes of SQL in TDAT

109

Interesting Statistics

• 1128: CPUs Total in the Gaia cluster (localhost/Ganglia snapshot of 2014-

11-26)

• 94: Hosts (total) in the Gaia cluster (localhost/Ganglia snapshot of 2014-11-

26)

• 105178: road segments in the PDX street map

• 2005 to 2014: years accumulated in PORTAL-TOTAL

110

Chapter C Source Code for the TD0N Pipeline

Source code for the TD0N pipeline forms the remainder of this document.
// FILE: pass10.cc
// AU: James E. Powell
// DATE: 2016-09-15

#include "tache.h"
#include "td0n-uml.h"
#include <string.h>

using namespace std;

#define PORTAL ONEOFF 0
string gPickDate1;
string gPickDate2;
bool gDoingPortalToy = false;

Pass10::Pass10(bool doToy, const OneFonds &fonds) :
ChecksumAttribute(doToy, // bool isToy,

fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()
+string(NC TBLNAM POSTFIX) // table
)

{
tout << "Pass10 has been instantiated." << endl;
if (gDoingPortalToy || PORTAL ONEOFF) {

cerr << "WARNING: doing PORTAL Toy mode.\n";
FILE LOG() << "WARNING: doing PORTAL Toy mode.\n";

}
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-10");

}

vector<Location> *Pass10::QueryForAccumulation(const std::string &tableName)
{

FILE LOG() << "Pass10::QueryForAccumulation(\"" << tableName << "\")\n";
LOG TAB IN();
vector<Location> *result = new vector<Location>;
stringstream query;
query << "select " << GetFonds().GetLocationKey();
// tableName is the fonds’s mastertable plus magic number (see
// parent constructor).
query << " from " << tableName;
if (GetPrefs().m HasLocation) {

query << " where ";
query << GetFonds().GetLocationKey() << "=’";
query << GetPrefs().m Location << "’";

}
query << " order by " << GetFonds().GetLocationKey();
tout << "Master query: " << query.str() << "\n";
strs type *lids;
lids = get strlist(query.str());
// int maxI = GetFonds().GetFondsID() == 1 ? 250 : 20; // <- PORTAL
// takes 1 hr when maxI = 20
int maxI = GetFonds().GetFondsID() == 1 ? 250 : 10;
// <- PORTAL takes 27m when maxI = 10
//
// but I think only location ID 1010 records come through meaning
// since no records come from the other station, pass50 writes them
// all off as missing the second channel ("3 records were found to
// be ’missing data for a channel’-type outliers" it says).

#if (PORTAL ONEOFF)

111

Source Code for the TD0N Pipeline

// boost portal up to 100 records - it’s an hour long very good test.
// (10 records is a 30 minute not very good test).
maxI = GetFonds().GetFondsID() == 1 ? maxI : 100;
// make sure some records make it to pass60 for this one-off PORTAL run.

#endif
int numI = 0;
char hname[2048];
assert(gethostname(hname, 2048) == 0);
LOG("hname: %s", hname);
bool limitRun = (string("pliny").compare(hname) == 0);
// limitRun = true;

#if (PORTAL ONEOFF)
limitRun = true;

#endif
gDoingPortalToy = (limitRun && GetFonds().GetFondsID() == 2);
if (limitRun)

tout << "We’re running on pliny (JEP’s desktop) or "
<< "PORTAL ONEOFF is set. Limited to first "
<< maxI << " lids.\n";

else
tout << "We’re running on \"" << hname << "\", not pliny. Unlimited.\n";

if (gDoingPortalToy) {
cout << "Portal toy mode.\n";
Location loc;
loc.m LocationID = "1989";
result->push back(loc);
loc.m LocationID = "1990";
result->push back(loc);

}
else {

cout << "Not Portal toy mode.\n";
for (strs type::const iterator i = lids->begin(); i != lids->end()

&& (limitRun ? numI < maxI : true) // -- use to severely
// -- limit operations
// -- for gprof etc.
; i++, numI++) {

Location loc;
loc.m LocationID = *i;
result->push back(loc);

}
}
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " Location items.\n";
return result;

}

/* Important to have companion stations listed as boring/not boring:

portal-total=> select other 8666 from
Nodeleg 8666 9078 6965 tache vector repository 001 where stationid =
’1503’;

other 8666

1504
(1 ligne)

*/
bool Pass10::IsBoringLoc(const std::string &li)
{

bool boring = true;
if (GetPrefs().DoToy()) {

if (li.compare("LEG5567") == 0) {
boring = false;
gPickDate1 = string("2006-02-08");
gPickDate2 = string("2006-02-08");

}
else if (li.compare("1010") == 0) {

boring = false;
gPickDate1 = string("2006-04-16");
gPickDate2 = string("2006-04-23");

}
#if (TACHE DO DIURNAL)

gPickDate2 = gPickDate1;
#endif

if (!boring)
tout << "not skipping " << (li) << " ... it’s not boring.\n";

}
else

boring = false;
return boring;

}

vector<Location> *Pass10::RemoveBoringLoc(vector<Location> &lids)
{

vector<Location> *result = new vector<Location>;

112

int numBoring = 0;
int numOutlier = 0;
for (vector<Location>::const iterator li = lids.begin();

li != lids.end(); li++) {
if (IsBoringLoc(li->m LocationID)) {

numBoring++;
continue;

}
if (GetFonds().IsOutlierLoc(li->m LocationID)) {

numOutlier++;
continue;

}
result->push back(*li);

}

// n.b. the text of the next two FILE LOGs shall contain the text in
// macro TAG OUTL to allow this type of grep to find the range of
// removals:
//
// grep outl7739 /tmp/myappaE0BKc | sort -u
//
// Similar text exists in all of these methods:
// Pass10::RemoveBoringLoc
// Pass20::RemoveOutlierCountIDs
// Pass30::RemoveOutlierCountDays
FILE LOG() << TAG OUTL << "Removed " << numBoring

<< " outlier records (boring location type).\n";
FILE LOG() << TAG OUTL << "Removed " << numOutlier

<< " outlier records (location type).\n";
return result;

}

void Pass10::populate()
{

FILE LOG() << "Pass10::populate()\n";
LOG TAB IN();
ConnectToDB();
m Locations = QueryForAccumulation(GetTable());
// this select gives us something like
// cat | location
// -------+----------
// 1061 | LEG213
// 1062 | LEG36653
// 1065 | LEG210
// 1066 | LEG247
// [...]
vector<Location> *newLoc = RemoveBoringLoc(*m Locations);
delete m Locations;
m Locations = newLoc;
if (m Locations->size()) {

tout << "Found " << m Locations->size() << " locations.\n";
} else {

if (GetPrefs().m HasLocation) {
tout << "No non-outlier records found at the selected location ’"

<< GetPrefs().m Location << "’.\n";
}
throw("No locations found. Aborting.");

}
FILE LOG() << "processing " << m Locations->size()

<< " rows from " << GetTable() << "\n";
LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.
// false: unable to validate the values in the database. They are NOT GOOD.
bool Pass10::validate()
{

bool result = false;
return result;
ConnectToDB();
stringstream alllocs;
for (vector<Location>::const iterator i = m Locations->begin();

i != m Locations->end(); i++)
alllocs << (*i).m LocationID << "\n";

FILE LOG() << "Validating locs: \"\n" << alllocs << "\"\n";
string knownGood;
if (GetIsToy())

knownGood = "unknown";
else {

if (GetFonds().GetName().compare("TDAT") == 0)
knownGood = "f4a9c356cb746942c45f183bb744b4f4e10059d2327494e257";

else if (GetFonds().GetName().compare("PORTAL-FHWA") == 0)
knownGood = "04f6cc64c960c37b3aec4a713460b8f9f931167dae00bc773";

113

Source Code for the TD0N Pipeline

else if (GetFonds().GetName().compare("PORTAL-TOTAL") == 0)
knownGood = "89471ee3b510da222fc2997ca4e4c47a089317e96e66a021a";

else
cerr << "unknown fonds name in dacountsattribute::validate"

" (=no cert in tache/docs/certs for this fonds)" << endl;
}
result = generic validate(alllocs.str(), knownGood);
result = true;
return result;

}

// FILE: pass20.cc
// AU: James E. Powell
// DATE: 2016-09-15
#include "tache.h"
#include "td0n-uml.h"

std::string PORT NO OTH("PORTAL station with no other 8666 - it sits "
"on one side of the freeway with no station on "
"the other side.");

std::string NKRC DESC("no kounts were recorded under this countid");
std::string NKRL DESC("countids were assigned to this location, "

"but no kounts were recorded at this location");
std::string NCR DESC("no counts were recorded at this location");

LocationCount::LocationCount(const std::string& lid,
const std::string& cid) : m LocationID(lid),

m CountID(cid),
m NumKountBins("unset")

{}
LocationCount::LocationCount() {}

inline std::ostream& operator<<(std::ostream& a, const LocationCount &b)
{

return a << "[a LocationCount with lid = " << b.m LocationID
<< " and cid " << b.m CountID << "]";

}

using namespace std;

Pass20::Pass20(bool doToy, const OneFonds &fonds,
std::vector<Location> *theLocs) :

ChecksumAttribute(doToy, // bool isToy,
fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()+string(NC TBLNAM POSTFIX)),

m Locations(theLocs)
{

tout << "Pass20 has been instantiated." << endl;
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-20");

}

Pass20::˜Pass20()
{

delete m Locations;
}

countid type *Pass20::QueryForAccumulation(const std::string &locationid)
{

LOG("Pass20::QueryForAccumulation(\"%s\")", locationid.c str());
LOG TAB IN();
stringstream query;
query << "select countid from public.volcount where locationid=’"

<< locationid << "’";
if (GetPrefs().m HasCountID) {

query << " and CountID=’";
query << GetPrefs().m CountID << "’";

}
query << " order by CountID";
tout << "Master query: " << query.str() << "\n";
// cout << "qu: " << query.str() << endl;
// exit(1);
countid type *result;
result = get strlist(query.str().c str());
LOG TAB OUT();
LOG("-> (found %d rows)", result->size());
return result;

}

114

// Called from populate().
// Calls QueryForAccumulation to get countids.
vector<LocationCount> *Pass20::AddLocationCounts(vector<Location> &lids)
{

FILE LOG() << "Pass20::AddCounts(...)\n";
LOG TAB IN();
int numOutlierLocs = 0;
int numOutlierLocCnts = 0;
int numLocCounts = 0;
vector<LocationCount> *result = new vector<LocationCount>;
for (vector<Location>::iterator li = lids.begin();

li != lids.end(); li++) {
const Location &l = (*li);
const string &lid = l.m LocationID;
FILE LOG(LogFile::Debug) << "Checking location ID \""

<< lid << "\".\n";
change db(GetFonds().GetSlaveDBName());
// tout << "Pushing countids for lid: " << lid << endl;
countid type *countids b4 = QueryForAccumulation(lid);
if (countids b4->size() == 0) {

GetFonds().MarkOutlier(&lid, NULL, NULL, NCR DESC);
numOutlierLocs++;
delete countids b4;
continue;

}
FILE LOG() << "Counts were recorded at this location.\n";
FILE LOG() << "QueryForAccumulation returned "

<< countids b4->size() << " countids.\n";
cids type *countids = RemoveOutlierCountIDs(lid, *countids b4);
delete countids b4;
if (countids->size() == 0) {

FILE LOG() << "No counts remain after removing outliers. "
"Moving on to the next location.\n";

delete countids;
continue;

}
FILE LOG() << countids->size()

<< " counts remain after removing outliers.\n";
char hname[2048];
assert(gethostname(hname, 2048) == 0);
bool limitRun =

(string("pliny").compare(hname) == 0) && GetFonds().GetFondsID() == 2;
int maxI = 5;
int numI = 0;
if (limitRun) {

tout << "In pass20, we’re (still) running on pliny (JEP’s desktop) "
<< "and this is (still) PORTAL.\n"
<< "Limited to first " << maxI << " location+counts.\n";

}
bool gotKounts = false;
for (cids type::iterator ci = countids->begin();

ci != countids->end() &&
(limitRun ? numI < maxI : true); // -- use to severely

// -- limit operations for
// -- gprof etc.

ci++, numI++) {
counts type kounts;
times type times;
ch type channels;
GetFonds().SelectTimesAndCounts(*ci, kounts, times, channels);
if (kounts.size()) {

gotKounts = true;
numLocCounts += kounts.size();
LocationCount newLoc;
newLoc.m LocationID = lid;
newLoc.m CountID = *ci;
result->push back(LocationCount(lid, *ci));
FILE LOG() << "STAC returned " << kounts.size()

<< " kounts, so we’re keeping this loc/count.\n";
FILE LOG() << "So, as a consequence we now have "

<< result->size() << " items in the result list.\n";
}
else {

FILE LOG() <<
"STAC returned zero kounts, "
"so we’re throwing out this loc/count.\n";

GetFonds().MarkOutlier(&lid, &(*ci), NULL, NKRC DESC);
numOutlierLocCnts++;

}
}
if (!gotKounts) {

FILE LOG() << "No kounts were recorded at this location. "
"Marking this location as outlier.\n";

GetFonds().MarkOutlier(&lid, NULL, NULL, NKRL DESC);

115

Source Code for the TD0N Pipeline

numOutlierLocs++;
}
delete countids;

} // for (vector<Location>::iterator li = lids.begin();
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " LocationCounts.\n";
cout << TAG OUTL << "In " << GetFonds() << ",\n" << TAG OUTL

<< "Pass20 saw " << lids.size()
<< " locations, and of these\n"
<< TAG OUTL << numOutlierLocs << " location records were found to be"
<< " empty (no counts or counts but no kounts).\n"
<< TAG OUTL << "Tache "
<< "today is designed to work with existing kounts records only so\n"
<< TAG OUTL
<< "these were all marked as outliers of one of these two classes:\n"
<< TAG OUTL << "- " NCR DESC "\n"
<< TAG OUTL << "- " NKRL DESC "\n";

if (numOutlierLocCnts) {
cout << TAG OUTL << "Additionally, we investigated " << numLocCounts

<< " loc+counts to discover that\n"
<< numOutlierLocCnts << " of these are empty, and are now filed\n"
<< TAG OUTL << "as outliers under "
<< "’no kounts were recorded under this countid’.\n";

}
else

cout << TAG OUTL << "All loc+counts in this fonds were "
<< "found to have kounts under them.\n";

return result;
}

// The caller is responsible for freeing the result.
cids type *Pass20::RemoveOutlierCountIDs(const string &lid,

const cids type &cids b4)
{

cids type *result = new cids type;
int numRemoved = 0;
FILE LOG() << "Pass20::RemoveBoringLocCounts(...)\n";
LOG TAB IN();
assert(result);
for (cids type::const iterator i = cids b4.begin();

i != cids b4.end(); i++) {
bool itsOK = true;
std::string cid = *i;
itsOK = !GetFonds().IsOutlierLocCount(lid, cid);
if (itsOK) {

if (gDoingPortalToy) {
string dateOfInterest 1("2013-01-16");
string dateOfInterest 2("2013-01-17");
string dateNow = cid.substr(0, 10);
// cout << "dateNow: \"" << dateNow << "\"\n";
// cout << "doi1: \"" << dateOfInterest 1 << "\"\n";
itsOK = (dateNow.compare(dateOfInterest 1) == 0 ||

dateNow.compare(dateOfInterest 2) == 0);
} // if (gDoingPortalToy)
if (itsOK)

result->push back(cid);
} // if (itsOK) {
else

numRemoved++;
}
// n.b. the text of the next FILE LOG shall contain the text in
// macro TAG OUTL to allow this type of grep to find the range of
// removals:
//
// grep outl7739 /tmp/myappaE0BKc | sort -u
// Similar text exists in all of these methods:
// Pass10::RemoveBoringLoc
// Pass20::RemoveOutlierCountIDs
// Pass30::RemoveOutlierCountDays
FILE LOG() << TAG OUTL << "Removed " << numRemoved

<< " outlier records (loc+countid type).\n";
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " cids.\n";
return result;

}

std::vector<Location> *Pass20::SieveNoOthers(std::vector<Location> *lids)
{

FILE LOG() << "Pass20::SieveNoOthers(...)\n";
LOG TAB IN();
int numOutliers = 0;
vector<Location> *result = new vector<Location>;
for (vector<Location>::iterator li = lids->begin();

li != lids->end(); li++) {
const Location &l = (*li);

116

const string &lid = l.m LocationID;
FILE LOG(LogFile::Debug) << "Checking location ID \""

<< lid << "\".\n";
change db(GetFonds().GetSlaveDBName());
stringstream query;
query

<< "select "
"other 8666 from Nodeleg 8666 9078 6965 tache vector repository 001"
<< " where stationid = ’" << lid << "’;";

// cout << query.str() << endl;
bool isNull;
string otherID = do string lookup(query.str(), &isNull);
if (isNull) {

FILE LOG() << "No other 8666 found. Marking it as an outlier.\n";
GetFonds().MarkOutlier(&lid, NULL, NULL, PORT NO OTH);
numOutliers ++;

}
else {

FILE LOG() << "Found other (similar to PORTAL’s ’opposite’ "
<< "in total freewy stns) with id: " << otherID << endl;

result->push back(l);
}

}
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " Locations.\n";
cout << TAG OUTL << "In " << GetFonds() << ",\n"

<< TAG OUTL << "Pass20 saw " << lids->size()
<< " locations, and of these\n"
<< TAG OUTL << numOutliers
<< " locations were found to be PORTAL locations"
<< " without ’others’ (matching stations for traffic going the other\n"
<< TAG OUTL << "direction. Tache today is designed to work "
<< " with PORTAL stations\n"
<< TAG OUTL << "that record traffic flowing both ways "
<< "simultaneously (and indeed\n"
<< TAG OUTL << "TDAT recordings on two channels in "
<< "opposite directions) so\n"
<< TAG OUTL << "these were all marked as outliers of class:\n"
<< TAG OUTL << "\"" << PORT NO OTH << "\"\n";

delete lids;
return result;

}

void Pass20::populate()
{

FILE LOG() << "Pass20::populate()\n";
LOG TAB IN();
ConnectToDB();
// Any fonds02 lacking others get tossed.
bool isPortal = (GetFonds().GetName().compare("PORTAL-TOTAL")==0);
if (isPortal)

m Locations = SieveNoOthers(m Locations);
// this select gives us something like
// cat | location
// -------+----------
// 1061 | LEG213
// 1062 | LEG36653
// 1065 | LEG210
// 1066 | LEG247
// [...]
if (m Locations->size()) {

tout << "Found " << m Locations->size() << " locations.\n";
} else {

if (GetPrefs().m HasLocation) {
tout << "No records found at the selected location ’"

<< GetPrefs().m Location << "’.\n";
if (isPortal)

tout << "Perhaps the station has no ’other 8666’.\n";
}
throw("No locations found. Aborting.");

}
m LocationCounts = AddLocationCounts(*m Locations);
tout << "Found " << m LocationCounts->size() << " location/counts.\n";
// Output a little extra ’I hear and obey’ when then user has gone
// out of the way to specify that tache shall operate on one single
// location (the -L flag).
if (GetPrefs().m HasLocation && m LocationCounts->size())

tout << "Specifically, this location specified on the command line " <<
"using -L, which is: \"" << (*m LocationCounts)[0] << "\".\n";

LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.

117

Source Code for the TD0N Pipeline

// false: unable to validate the values in the database. They are
// NOT GOOD.
bool Pass20::validate()
{

bool result = false;
return result;

}

void Pass20::DumpCache()
{

LOG("Pass20::DumpCache(...)");
LOG TAB IN();
change db(GetFonds().GetMasterDBName());
// drop table(TACHE MAGIC NUMBER " pass20 cache");
string tnam(TACHE MAGIC NUMBER " pass20 cache");
// n.b. we could write this to a CSV file. Using postgresql has
// some major advantages:
//
// 1. parsing CSV is a PITA - type inference must happen at least.
// 2. PK enforcement will catch me if I write duplicate entries.
if (!table exists(tnam))

create table(tnam, "lid text, cid text, PRIMARY KEY (lid, cid)");
for (std::vector<LocationCount>::const iterator i =

m LocationCounts->begin();
i != m LocationCounts->end(); i++) {

const LocationCount &lc = (*i);
stringstream qs;
qs << "INSERT INTO " << tnam << " (lid, cid) VALUES (";
qs << "’" << lc.m LocationID << "’,";
qs << "’" << lc.m CountID << "’)";
assert(exec query(qs.str()) == 0);

}
LOG TAB OUT();
LOG("-> null");

}

// FILE: pass30.cc
// AU: James E. Powell
// DATE: 2016-09-15

#include "tache.h"
#include "td0n-uml.h"

typedef enum pops {
s begin = 0,
s accum = 1,
s dump bin = 2,
s end of list = 3,
s accept = 4,
s mark outlier = 5,
s skip till tomorrow = 6,
s skip till tomorrow after day start = 7

} pops;

using namespace std;

std::string
NUMCHANOUTL DESC("the number of channels is not in (1,2) for this count.");
std::string
TC DESC("two (or more) channels of data exist that "

"share only a single channel number.");
std::string IDOR DESC("incomplete day of recordings");
std::string
EXTYP DESC("Unacceptable (or NULL) excepttype. "

"We expect to find e.g. \"Normal Weekday\".");

CountDayChannel::CountDayChannel(const std::string& lid,
const std::string& cid,
std::string & theDate,
int theChannelID,
int numChan)

: m LocationID(lid),
m CountID(cid),
m Date(theDate),
m ChannelID(theChannelID),
m NumChannels(numChan)

{}

CountDayChannel::CountDayChannel() {}

Pass30::Pass30(bool doToy,
const OneFonds &fonds,
std::vector<LocationCount> *theLocCounts) :

118

ChecksumAttribute(doToy, // bool isToy,
fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()+string(NC TBLNAM POSTFIX)),

m LocationCounts(theLocCounts),
m DayStartText("00:00:00"), m DayEndText("23:45:00")

{
tout << "Pass30 has been instantiated." << endl;
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-30");

}

Pass30::˜Pass30()
{

delete m LocationCounts;
}

// returns:
// true: zero times/counts found. Skip this location/count.
// false: we found times/counts. Accept this location/count.
bool Pass30::QueryForAccumulation(const string &cid,

counts type &kounts,
times type ×,
ch type &channels)

{
bool result;
FILE LOG() << "Pass30::QueryForAccumulation(\"" << cid << "\")\n";
LOG TAB IN();
GetFonds().SelectTimesAndCounts(cid, kounts, times, channels);
result = (kounts.size() == 0);
if (result) {

string rstr("warning: no counts were recorded under "
"this countid, should not happen in pass30.");

tout << rstr << "\n";
}
LOG TAB OUT();
FILE LOG() << "-> " << result << " (found " << kounts.size()

<< " rows in Pass30::QueryForAccumulation)\n";
return result;

}

int FindNumChan(const ch type &channels)
{

int numChan = 0;
assert(channels.size());
for (unsigned int cc = 0; cc < channels.size(); cc++) {

if (channels[cc] > numChan)
numChan = channels[cc];

}
return numChan;

}

// Called from populate().
// Calls QueryForAccumulation to get countids.
vector<CountDayChannel> *Pass30::
AddCountDayChannels(vector<LocationCount> &lcs)
{

FILE LOG() << "Pass30::AddCountDayChannels(...)\n";
LOG TAB IN();
vector<CountDayChannel> *result = new vector<CountDayChannel>;
int numCounts = 0;
int numDays = 0;
int numOutliers = 0;
int numBadNumChanOutl = 0;
int numTwoChanOneNumOutl = 0;
int numSeen = 0;
for (vector<LocationCount>::iterator li = lcs.begin();

li != lcs.end(); li++) {
const LocationCount &l = (*li);
const string &lid = l.m LocationID;
const string &cid = l.m CountID;
FILE LOG(LogFile::Debug) << "Checking location ID \""

<< lid << "\", countID \"" << cid << "\".\n";
numCounts ++;
change db(GetFonds().GetSlaveDBName());
// tout << "Pushing countids for lid: " << lid << endl;
counts type counts;
times type times;
ch type channels;
if (QueryForAccumulation(cid, counts, times, channels))

continue;
RemoveOutlierCountDays(lid, cid, counts, times, channels);

119

Source Code for the TD0N Pipeline

if (times.size() == 0) {
FILE LOG() << "All results were outlier. Moving to next location.\n";
continue;

}
FILE LOG() << "Reading over " << times.size() <<

" records in the counts array resulting from the last SELECT.\n";
pops st = s begin;
string fmt = string("%H:%M:%S");
string dfmt = string("%Y-%m-%d");
string dayOfKount;
int numChan = FindNumChan(channels);
// tache is designed for two cases: either a single channel with
// channel id 1, or two channels with channel ids 1, 2.
if (numChan != 1 && numChan != 2) {

// cerr << "Warning: numChan = " << numChan << " in lid " << lid
// << " and cid " << cid << ".\n";
FILE LOG() << "Warning: numChan = " << numChan << " in lid " << lid

<< " and cid " << cid << ".\n";
GetFonds().MarkOutlier(&lid, &cid, NULL, NUMCHANOUTL DESC);
numBadNumChanOutl ++;
continue;

}
if (numChan < 0) {

cerr << "Skipping negative channel count case.\n";
// this never happens and if it did we would want to make an
// outlier record for it instead of blindly continuing.
assert(0);

}
string lastGoodTimestamp("");
for (unsigned int chan = 1; chan <= static cast<unsigned int>(numChan);

chan++) {
for (unsigned int cc = 0; cc < times.size(); cc++) {

assert(channels[cc] <= numChan);
if (channels[cc] != static cast<int>(chan)) {

#define SPAMOK 0
#if (SPAMOK)

// Spammy, but useful for debugging when -L flag is supplied.
FILE LOG() << "channels[" << cc

<< "] == " << channels[cc]
<< " which is != the current channel which is chan="
<< chan << " so I’m skipping it.\n";

#endif
continue;

}
else {

#if (SPAMOK)
FILE LOG() << "channels[" << cc

<< "] == " << channels[cc]
<< " which is == the current channel which is chan="
<< chan << " so I’m NOT skipping it.\n";

#endif
}
string timesText = MakeTimesText2(×[cc], fmt.c str());
string dayOfKount = MakeTimesText2(×[cc], dfmt.c str());
FILE LOG() << "at cursor=" << cc << " st=" << st

<< " timestamp: " << dayOfKount << " "
<< timesText << " lastGoodTimestamp="
<< lastGoodTimestamp << "\n";

if (lastGoodTimestamp.compare(timesText) == 0
&& st != s skip till tomorrow after day start
&& st != s skip till tomorrow) {

FILE LOG()
<< "We found two timestamps in a row, both with the same "
<< "channel number. This is a case of "
<< "issue 0FA: new outlier - two channels of records "
<< "that share a single channel number.\n";

string dayOfKount = MakeTimesText2(×[cc], dfmt.c str());
GetFonds().MarkOutlier(&lid, &cid, &dayOfKount, TC DESC, true);
numTwoChanOneNumOutl ++;
st = s skip till tomorrow after day start;

}
else

lastGoodTimestamp = timesText;
bool doAgain = true;
while (doAgain) {

doAgain = false;
switch (st) {
case s begin:

// find a day start.
numDays ++;
numSeen = 0;
if (m DayStartText.compare(timesText) == 0) {

st = s accum;
doAgain = true;

}

120

else {
st = s skip till tomorrow;
FILE LOG()

<< "The current kount is the first one in a day, "
<< "but it’s not a day start.\n";

GetFonds().MarkOutlier(&lid, &cid, &dayOfKount, IDOR DESC, true);
numOutliers ++;

}
break;

case s skip till tomorrow after day start:
if (m DayStartText.compare(timesText) == 0)

FILE LOG()
<< "Outlier marked but we need to "
<< "dodge over this beginning-of-day timestamp.\n";

else
st = s skip till tomorrow;

break;
case s skip till tomorrow:

// find a day start after marking this day as outlier.
if (m DayStartText.compare(timesText) == 0) {

// We found a timestamp at time 00:00:00. It’s a brand new day.
st = s accum;
doAgain = true;

}
break;

case s accum:
numSeen ++;
// cout << "s accum, cc: " << cc << " and times.size(): " <<
// times.size() << "\n";
if (m DayEndText.compare(timesText) == 0) {

// We found a timestamp at time 23:45:00. It’s the
// end of a day.
FILE LOG() << "... the current kount is day-end\n";
st = s accept;
doAgain = true;

} // handling the current kount being at day-end
else if ((cc + 1) == times.size() ||

((cc + 2) == times.size() && numChan == 2)) {
FILE LOG()

<< "The current kount is the last one in the whole list.\n";
if (m DayEndText.compare(timesText)) {

FILE LOG() << "... but it’s not a day-end\n";
st = s mark outlier;
doAgain = true;

}
} // handling end of the whole list
else {

// n.b. that this depends on earlier if clauses,
// particularly "if ((cc + 1) == times.size()) {" (the
// first one).
string nextDayOfKount =

MakeTimesText2(×[cc + 1], dfmt.c str());
if (dayOfKount.compare(nextDayOfKount)) {

FILE LOG()
<< "... we are about to enter a new day but "
<< "never saw dayendtext.\n";

st = s mark outlier;
doAgain = true;

}
} // handling entering a new day
break;

case s accept:
st = s begin;
cout << "numSeen: " << numSeen << "\n";
if (numSeen != 96) {

// see issue "0FC: midday data dropout isn’t caught"
FILE LOG()

<< "This count has data drop out in the middle of the day.\n";
GetFonds().MarkOutlier(&lid, &cid, &dayOfKount, IDOR DESC, true);
numOutliers ++;

}
else {

FILE LOG()
<< "This count has 96 entries (24 hrs x 4 entries/per). "
<< "Saving it.\n";

result->push back(CountDayChannel(lid, cid, dayOfKount,
chan, numChan));

}
break;

case s mark outlier:
// tout << cc << " should be end of day and isn’t, tossed
// day as outlier.\n";
GetFonds().MarkOutlier(&lid, &cid, &dayOfKount, IDOR DESC, true);
numOutliers ++;
st = s begin;

121

Source Code for the TD0N Pipeline

break;
default:

tout << "unknown state " << st << endl;
assert(0);
break;

} // switch (st)
if (doAgain)

FILE LOG() << "doAgain was set.\n";
} // if (doAgain)

} // for (unsigned int cc = 0; cc < times.size(); cc++)
} // for (unsigned int chan = 1; chan <= numChan; chan++) {

} // for (vector<LocationCount>::iterator li = lcs.begin();
LOG TAB OUT();
cout << TAG OUTL << "In " << GetFonds() << ",\nPass30 saw " << numCounts

<< " countIDs together covering "
<< numDays << " days, and of these\n"
<< TAG OUTL << numOutliers
<< " countid+day time series recordings were found to be"
<< " only partial-day records (e.g. a record from\n"
<< TAG OUTL
<< "11:30 to 14:30). Tache today is designed to work with full-day\n"
<< TAG OUTL
<< "records (from 00:00 through to 23:45 in 15 minute increments) "
<< "only,\n" << TAG OUTL
<< "so these were all marked as outliers with the description\n"
<< TAG OUTL << IDOR DESC << ".\n";

if (numBadNumChanOutl) {
cout << TAG OUTL << "Additionally, "

<< numBadNumChanOutl << " of " << numCounts
<< " loc+counts were found to\n"
<< TAG OUTL
<< "have an illegal number of channels. Tache is designed today\n"
<< TAG OUTL
<< "to work with exactly 1 or 2 channels, so these were marked\n"
<< TAG OUTL << "as outliers with the description.\n"
<< TAG OUTL << NUMCHANOUTL DESC;

}
if (numTwoChanOneNumOutl) {

cout << TAG OUTL
<< "Additionally, " << numTwoChanOneNumOutl << " of " << numCounts
<< " loc+counts+days were found to\n"
<< TAG OUTL
<< "have two or more rows with the same "
<< "timestamp and channel number.\n"
<< TAG OUTL << "(issues 0FA, 0FB) so these were marked\n"
<< TAG OUTL << "as outliers with the description.\n"
<< TAG OUTL << TC DESC << "\n";

}
FILE LOG() << "-> " << result->size() << " CountDayChannels.\n";
return result;

}

// Pass30::RemoveOutlierCountDays is called once per lid+cid.
//
// The arrays in kounts, times, channels (which should all be the same
// length) are the time series recorded under the given cid, at the
// given lid. This routine effectively deletes the outlier cases
// which have previously been identified in the time series and which
// were recorded in the outlier table as loc+count+day type outliers.
void Pass30::RemoveOutlierCountDays(const string &lid,

const string &cid,
counts type &kounts,
times type ×,
ch type &channels)

{
int numRemoved = 0;
FILE LOG() << "Pass30::RemoveOutlierCountDays(...)\n";
LOG TAB IN();
counts type rKounts;
times type rTimes;
ch type rChan;
string dfmt = string("%Y-%m-%d");
string dayBeingSkipped;
for (unsigned int cc = 0; cc < times.size(); cc++) {

string dayOfKount = MakeTimesText2(×[cc], dfmt.c str());
bool itsOK = true;
itsOK = (dayBeingSkipped.compare(dayOfKount) == 0) ? false :

!GetFonds().IsOutlierLocCountDate(lid, cid, dayOfKount);
if (itsOK) {

rKounts.push back(kounts[cc]);
rTimes.push back(times[cc]);
rChan.push back(channels[cc]);

}
else {

numRemoved++;

122

dayBeingSkipped = dayOfKount;
}

}
// n.b. the text of the next FILE LOG shall contain the text
// in the macro TAG OUTL to allow this type of grep to find the range of
// removals:
//
// grep outl7739 /tmp/myappaE0BKc | sort -u
//
// Similar text exists in all of these methods:
// Pass10::RemoveBoringLoc
// Pass20::RemoveOutlierCountIDs
// Pass30::RemoveOutlierCountDays
FILE LOG() << TAG OUTL << "Removed " << numRemoved

<< " outlier records (loc+count+day type).\n";
LOG TAB OUT();
kounts = rKounts;
times = rTimes;
channels = rChan;
FILE LOG() << "-> " << kounts.size() << " count/day records.\n";

}

std::vector<LocationCount> *
Pass30::SieveExceptType(std::vector<LocationCount> *lcs)
{

FILE LOG() << "Pass30::SieveExceptType(...)\n";
LOG TAB IN();
int numOutliers = 0;
vector<LocationCount> *result = new vector<LocationCount>;
for (vector<LocationCount>::iterator li = lcs->begin();

li != lcs->end(); li++) {
const LocationCount &l = (*li);
const string &lid = l.m LocationID;
const string &cid = l.m CountID;
FILE LOG(LogFile::Debug) << "Checking location ID \""

<< lid << "\", count ID \"" << cid << "\".\n";
change db(GetFonds().GetSlaveDBName());
stringstream query;
query

<< "select excepttype from public.volcount where locationid=’"
<< lid << "’"
<< " and countid=’" << cid << "’";

// cout << query.str() << endl;
bool isNull;
string exceptType = do string lookup(query.str(), &isNull);
if (isNull) {

FILE LOG() << "NULL excepttype found. Marking it as an outlier.\n";
GetFonds().MarkOutlier(&lid, &cid, NULL, EXTYP DESC);
numOutliers++;

}
else {

FILE LOG() << "Found excepttype: " << exceptType << endl;
if (exceptType.compare("Normal Weekday") == 0 ||

exceptType.compare("Weekend/Holiday") == 0 ||
exceptType.compare("Normal Weekend") == 0)

result->push back(l);
else {

FILE LOG() << "Unacceptable excepttype.";
GetFonds().MarkOutlier(&lid, &cid, NULL, EXTYP DESC);
numOutliers++;

}
}

}
cout << TAG OUTL << "In " << GetFonds() << ",\n" << TAG OUTL << "Pass30 ";
if (numOutliers) {

cout << "saw " << lcs->size()
<< " countIDs, and of these "
<< numOutliers << " countid recordings were found to be"
<< " of an excepttype other than normal weekday/weekend.\n"
<< TAG OUTL
<< "Tache today is designed to work with only records marked as "
<< "normal\n" << TAG OUTL
<< "so these were all marked as outliers with the "
<< "description\n"
<< TAG OUTL << "\"" << EXTYP DESC << "\".\n";

// This is only allowed in fonds 1 (TDAT). The other fonds (PORTAL)
// has excepttype faked up by the materialized views and they are always
// "normal" as of today 2016-05-13.
assert(GetFonds().GetFondsID() == 1);

}
else

cout << "found no countids of excepttype other "
<< "than normal weekday/weekend.\n";

delete lcs;
LOG TAB OUT();

123

Source Code for the TD0N Pipeline

FILE LOG() << "-> " << result->size() << " Location/Counts.\n";
return result;

}

void Pass30::populate()
{

FILE LOG() << "Pass30::populate()\n";
LOG TAB IN();
ConnectToDB();
// this select gives us something like
// cat | location
// -------+----------
// 1061 | LEG213
// 1062 | LEG36653
// 1065 | LEG210
// 1066 | LEG247
// [...]
m LocationCounts = SieveExceptType(m LocationCounts);
if (m LocationCounts->size()) {

tout << "Found " << m LocationCounts->size()
<< " location/counts after SieveExceptType.\n";

} else
throw("No location/counts found. Aborting.");

m CountDayChannels = AddCountDayChannels(*m LocationCounts);
tout << "Found " << m CountDayChannels->size()

<< " location/count/day/channels after AddCountDayChannels.\n";
// printsome helper("Pass30", m CountDayChannels, 60);
LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.
// false: unable to validate the values in the database. They are NOT GOOD.
bool Pass30::validate()
{

bool result = false;
return result;

#if (0)
ConnectToDB();
typedef vector<string> nc type;
nc type dacount;
// creating the dacount attribute creates several additional attributes,
// which are counted together as a unit with the dacount attribute.
stringstream dacountSelect;
// GetTable() is the master table for the fonds, e.g. Nodeleg.
dacountSelect << "select locid || ’:’ || countid || ’:’ "

<< "|| countdate || ’:’ || "
<< "dacount || ’:’ || dacount delta || ’:’ || "
<< "dacount n || ’:’ || rc || ’:’ || exceptType "
<< "|| ’:’ || numkounts from "
<< GetTable() << " order by "
<< "locid,countid,countdate";

dacount = get strlist(dacountSelect.str());
stringstream allcnts;
for (nc type::const iterator i = dacount.begin();

i != dacount.end(); i++)
allcnts << (*i) << "\n";

string knownGood;
if (GetIsToy())

knownGood = "unknown";
else {

if (GetFonds().GetName().compare("TDAT") == 0)
knownGood = "f4a9c356cb746942c45f183bb744b4f4e10059d2327494e257";

else if (GetFonds().GetName().compare("PORTAL-FHWA") == 0)
knownGood = "04f6cc64c960c37b3aec4a713460b8f9f931167dae00bc773";

else if (GetFonds().GetName().compare("PORTAL-TOTAL") == 0)
knownGood = "89471ee3b510da222fc2997ca4e4c47a089317e96e66a021a";

else
cerr << "unknown fonds name in dacountsattribute::validate"

" (=no cert in tache/docs/certs for this fonds)" << endl;
}
result = generic validate(allcnts.str(), knownGood);
result = true;
return result;

#endif
}

#include "tache.h"
#include "td0n-uml.h"
#include "portallocation.h"
#include "countdaychannel.h"

124

using namespace std;

Pass40::Pass40(bool doToy,
const OneFonds &fonds,
std::vector<CountDayChannel> *theCDCs) :

ChecksumAttribute(doToy, // bool isToy,
fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()+string(NC TBLNAM POSTFIX)),

m CountDayChannels In(theCDCs),
m plocs(NULL)

{
tout << "Pass40 has been instantiated." << endl;
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-40");
m CountDayChannels Out = new std::vector<CountDayChannel>;

}

Pass40::˜Pass40()
{

delete m CountDayChannels In;
}

std::unordered map<std::string, PortalLocation>
*Pass40::CollectPortalLocs(vector<CountDayChannel> *cdcs)

{
FILE LOG() << "Pass40::CollectPortalLocs()\n";
LOG TAB IN();
std::unordered map<std::string, PortalLocation> *result =

new std::unordered map<std::string, PortalLocation>;
for (vector<CountDayChannel>::iterator li = cdcs->begin();

li != cdcs->end(); li++) {
const CountDayChannel &l = (*li);
const string &lid = l.m LocationID;
const string &cid = l.m CountID;
// Confirm our assertion that all locations have a four-digit ID.
// (see use of PORTAL STATION ID LEN elsewhere for the reason
// for this strong requirement).
assert(lid.length() == PORTAL STATION ID LEN);
FILE LOG(LogFile::Debug) << "Checking location ID \""

<< lid << "\", countID \"" << cid << "\".\n";
change db(GetFonds().GetSlaveDBName());
// Do we have an entry for this station?
const std::unordered map<std::string, PortalLocation>::const iterator

oneLoc = result->find(lid); // see pass3.cc, onefonds.cc
if (oneLoc == result->end()) {

// No. Do we have one for its ’other’?
stringstream query;
query <<

"select other 8666 from "
"Nodeleg 8666 9078 6965 tache vector repository 001"

<< " where stationid = ’" << lid << "’;";
// cout << query.str() << endl;
bool isNull;
string otherID = do string lookup(query.str(), &isNull);
// Stations without others should have been thrown out in
// Pass20::SieveNoOthers.
assert(!isNull);
FILE LOG() <<

"Found other (similar to PORTAL’s ’opposite’ in total freewy stns) "
"with id: " << otherID << endl;

std::unordered map<std::string, PortalLocation>::iterator varLoc
= result->find(otherID);

if (varLoc == result->end()) {
// Totally new to us. Create a record.
PortalLocation newLoc(lid);
newLoc.AddAlias(otherID);
(*result)[lid] = newLoc;
(*result)[otherID] = newLoc;

}
else {

// Yes, it’s been registered under its otherid. Add lid as an alias.
varLoc->second.AddAlias(lid);

}
}

}
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " unique PORTAL locs.\n";
return result;

}

std::vector<CountDayChannel> *Pass40::ResetChannels()
{

125

Source Code for the TD0N Pipeline

FILE LOG() << "Pass40::ResetChannels()\n";
LOG TAB IN();
std::vector<CountDayChannel> *result = new std::vector<CountDayChannel>;
for (vector<CountDayChannel>::iterator cdc = m CountDayChannels In->begin();

cdc != m CountDayChannels In->end(); cdc++) {
const string &lid = cdc->m LocationID;
const string &cid = cdc->m CountID;
FILE LOG(LogFile::Debug) << "Checking location ID \""

<< lid << "\", countID \"" << cid << "\".\n";
std::unordered map<std::string, PortalLocation>::iterator varLoc

= m plocs->find(lid);
assert(varLoc != m plocs->end());
CountDayChannel outCDC = *cdc;
int useChan = varLoc->second.FindAliasID(lid);
assert(useChan >= 0);
// MangleName() concatenates the two portal stations (self, other)
// with a comma. We’re finishing the merge of two stations on
// opposite sides of the freeway.
outCDC.m LocationID = varLoc->second.MangleName();
outCDC.m ChannelID = useChan + 1;
outCDC.m NumChannels = 2;
// CountIDs in PORTAL have their original station appended. This
// breaks sorting and grouping in pass50 (see issue 0BF: pass50
// marks all PORTAL records as outliers). Thus we continue
// merging the data from the two stations by removing the original
// 4 digit station ID and replacing it with the mangled name
// version of the location ID (see just above).
string oname = outCDC.m CountID.substr(0,

outCDC.m CountID.length()
- PORTAL STATION ID LEN);

stringstream nname;
nname << oname << outCDC.m LocationID;
outCDC.m CountID = nname.str();
result->push back(outCDC);

}
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " CDCs with mangled names.\n";
return result;

}

#define MYFNAME PORTAL FNAME

void Pass40::populate()
{

FILE LOG() << "Pass40::populate()\n";
LOG TAB IN();
const std::string &fname = GetFonds().GetName();
if (fname.compare(MYFNAME)) {

FILE LOG() << "Fonds \"" << fname << "\""
<< " <> the fonds for which Pass40 is necessary (\""
<< MYFNAME << "\") and so ::populate is a no-op.\n";

// Copy the daychannels for the next pass to use.
m CountDayChannels Out =

new std::vector<CountDayChannel>(*m CountDayChannels In);
}
else {

ConnectToDB();
m plocs = CollectPortalLocs(m CountDayChannels In);
if (m plocs->size()) {

tout << "Found " << m plocs->size()
<< " unique locations after CollectPortalLocs.\n";

} else
throw("No location/counts found. Aborting.");

m CountDayChannels Out = ResetChannels();
tout << "Found " << m CountDayChannels Out->size()

<< " location/count/day/channels after ResetChannels.\n";
cout << "Random ten with mangled names:\n";
for (int i = 0; i < 10; i++) {

int which = random() % m CountDayChannels Out->size();
cout << which << ": " << (*m CountDayChannels Out)[which] << "\n";

}
}
LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.
// false: unable to validate the values in the database. They are NOT GOOD.
bool Pass40::validate()
{

bool result = false;
return result;

#if (0)

126

ConnectToDB();
typedef vector<string> nc type;
nc type dacount;
// creating the dacount attribute creates several additional attributes,
// which are counted together as a unit with the dacount attribute.
stringstream dacountSelect;
// GetTable() is the master table for the fonds, e.g. Nodeleg.
dacountSelect << "select locid || ’:’ || countid || ’:’ || "

<< "countdate || ’:’ || "
<< "dacount || ’:’ || dacount delta || ’:’ || "
<< "dacount n || ’:’ || "
<< "rc || ’:’ || exceptType || ’:’ || numkounts from "
<< GetTable() << " order by "
<< "locid,countid,countdate";

dacount = get strlist(dacountSelect.str());
stringstream allcnts;
for (nc type::const iterator i = dacount.begin();

i != dacount.end(); i++)
allcnts << (*i) << "\n";

string knownGood;
if (GetIsToy())

knownGood = "unknown";
else {

if (GetFonds().GetName().compare("TDAT") == 0)
knownGood = "f4a9c356cb746942c45f183bb744b4f4e10059d2327494e257";

else if (GetFonds().GetName().compare("PORTAL-FHWA") == 0)
knownGood = "04f6cc64c960c37b3aec4a713460b8f9f931167dae00bc773";

else if (GetFonds().GetName().compare("PORTAL-TOTAL") == 0)
knownGood = "89471ee3b510da222fc2997ca4e4c47a089317e96e66a021a";

else
cerr << "unknown fonds name in dacountsattribute::validate"

" (=no cert in tache/docs/certs for this fonds)" << endl;
}
result = generic validate(allcnts.str(), knownGood);
result = true;
return result;

#endif
}

#include "tache.h"
#include "td0n-uml.h"
#include "countdaychannel.h"
#include <algorithm> // sort

std::string MCHAN DESC("missing data for a channel");
std::string
WRCH DESC("channel 2 data recorded but numchannels==1");

using namespace std;
Pass50::Pass50(bool doToy,

const OneFonds &fonds,
std::vector<CountDayChannel> *theCDCs) :

ChecksumAttribute(doToy, // bool isToy,
fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()+string(NC TBLNAM POSTFIX)),

m CountDayChannels In(theCDCs),
m CountDayChannels Out(NULL)

{
tout << "Pass50 has been instantiated." << endl;
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-50");

}

Pass50::˜Pass50()
{

delete m CountDayChannels In;
}

typedef enum pops {
s begin = 0,
s reset chseen = 1,
s continue = 2,
s validate channels seen = 3

} pops;

void Pass50::ncabort(vector<CountDayChannel>::iterator &cdc,
int expectNumChan)

{
// Does this ever happen?
stringstream errmsg;

127

Source Code for the TD0N Pipeline

errmsg << "abort: cdc->m NumChan=" << cdc->m NumChannels
<< " but expectNumChan=" << expectNumChan
<< " at cdc index "
<< (cdc - m CountDayChannels In->begin())
<< ".\n";

throw(errmsg.str());
}

// Based on Pass30::AddCountDayChannels.
// Called from populate().
vector<CountDayChannel> *Pass50::FindMissingChannelOutliers WholeDay()
{

FILE LOG() << "Pass50::FindMissingChannelOutliers WholeDay(...)\n";
LOG TAB IN();
vector<CountDayChannel> *result = new vector<CountDayChannel>;
vector<CountDayChannel> *oneGroup = NULL;
int numCDC = m CountDayChannels In->size();
int numOutliersWRCH = 0;
int numOutliersMCHAN = 0;
pops st = s begin;
string lastKey("");
bool chSeen[2] = {false, false};
string fmt = string("%Y-%m-%d %H:%M:%S");
int numSeen = 0;
// N.B. we need not remove outlier count days here, cos they’ve been
// removed in Pass30.
FILE LOG() << "Reading over " << m CountDayChannels In->size() <<

" records in the counts array resulting from pass40.\n";
// We are assuming a really orderly set of records. Let’s peek at
// the first few.
int numTotal = m CountDayChannels In->size();
int numToPrint = std::min(60,

static cast<int>(m CountDayChannels In->size()));
cout << "First " << numToPrint << "/" << numTotal

<< " total records in pass50 (input, full day):\n";
int printCursor = 0;
for (vector<CountDayChannel>::iterator cdc = m CountDayChannels In->begin();

printCursor < numToPrint; printCursor++, cdc++)
cout << (printCursor + 1) << ": " << (*cdc) << "\n";

int expectNumChan = -1;
bool skipGroup = false;
for (vector<CountDayChannel>::iterator cdc = m CountDayChannels In->begin();

cdc != m CountDayChannels In->end();
cdc++) {

FILE LOG() << "cursor=" << (cdc - m CountDayChannels In->begin())
<< ", cdc: " << *cdc << endl;

bool doAgain = true;
while (doAgain) {

stringstream key;
key << cdc->m LocationID << ","

<< cdc->m CountID << "," << cdc->m Date;
stringstream nextkey;
vector<CountDayChannel>::iterator nextCDC = (cdc + 1);
if (nextCDC != m CountDayChannels In->end()) {

nextkey << nextCDC->m LocationID << ","
<< nextCDC->m CountID << "," << nextCDC->m Date;

}
FILE LOG() << "at cursor=" << (cdc - m CountDayChannels In->begin())

<< " st=" << st << " key: " << key.str()
<< " lastKey: \"" << lastKey << "\""
<< " and skipGroup: " << skipGroup << "\n";

doAgain = false;
switch (st) {
case s begin:

assert(cdc->m NumChannels == 1 ||
cdc->m NumChannels == 2);

// The group ’lives’ by being copied into the result, or dies
// (deleted) all together.
if (oneGroup) delete oneGroup;
oneGroup = new vector<CountDayChannel>;
doAgain = true;
lastKey = "";
expectNumChan = cdc->m NumChannels;
st = s reset chseen;
break;

case s reset chseen:
chSeen[0] = false;
chSeen[1] = false;
st = s continue;
doAgain = true;
break;

case s continue:
//FILE LOG() << "s continue: lastKey \"" << lastKey
// << "\" and key: \"" << key.str() << "\"\n";
oneGroup->push back(*cdc);

128

// We’re stepping through a group of entries that all belong
// to one count + day. Make sure these entries have the
// designated number of channels, picked by the first entry
// in the group.
assert(cdc->m ChannelID == 1 || cdc->m ChannelID == 2);
if (cdc->m NumChannels != expectNumChan)

ncabort(cdc, expectNumChan);
// This next assert may become an outlier, indicating duplicate
// records for one loc+cid+time+chan.
assert(chSeen[cdc->m ChannelID - 1] == false);
FILE LOG() << "Recording presence of data in channel "

<< cdc->m ChannelID << "\n";
chSeen[cdc->m ChannelID - 1] = true;
if (cdc->m NumChannels == 1 &&

cdc->m ChannelID != 1) {
GetFonds().MarkOutlier(&cdc->m LocationID, &cdc->m CountID,

&cdc->m Date, WRCH DESC, true);
numOutliersWRCH++;
skipGroup = true;
cerr << "WARNING: The skipGroup = true code path has never "

<< "been followed,\n"
<< "because this type of outlier has not been seen as of\n"
<< "2016-07-20. Proceed with caution.\n";

}
if (nextCDC == m CountDayChannels In->end()) {

// End of the input set. Did we see all of the channels?
st = s validate channels seen;
doAgain = true;

}
else if (nextkey.str().compare(key.str()) == 0

|| nextkey.str().length() == 0)
FILE LOG() << "still in group...\n";

else {
FILE LOG() << "End of a group. Did we see all of the channels?\n";
st = s validate channels seen;
doAgain = true;

}
break;

case s validate channels seen:
numSeen = 0;
if (skipGroup) {

FILE LOG() << "Done skipping a group.\n";
st = s begin;
skipGroup = false;
continue;

}
for (int i = 0; i < cdc->m NumChannels; i++)

if (chSeen[i])
numSeen++;

FILE LOG() << "st=s validate channels seen, and numSeen is " << numSeen
<< " and numchan=" << cdc->m NumChannels << "\n";

if (numSeen != cdc->m NumChannels) {
GetFonds().MarkOutlier(&cdc->m LocationID,

&cdc->m CountID,
&cdc->m Date, MCHAN DESC, true);

numOutliersMCHAN++;
}
else {

FILE LOG() << "It’s a good result. Saving this group.\n";
copy(oneGroup->begin(), oneGroup->end(), back inserter(*result));

}
st = s begin;
break;

} // switch (st)
if (doAgain)

FILE LOG() << "doAgain was set.\n";
else

lastKey = key.str();
} // while doAgain

} // for (vector<CountDayChannel>::iterator cdc = m CountDayChannels In->b...
if (oneGroup) delete oneGroup;
oneGroup = NULL;
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " CountDayChannels.\n";
cout << TAG OUTL << "In " << GetFonds() << ",\nPass50 saw " << numCDC

<< " count/day/channels, and of these\n"
<< TAG OUTL << numOutliersMCHAN << " records were found to be"
<< " ’" << MCHAN DESC << "’-type outliers, and " << numOutliersWRCH
<< "\n" << TAG OUTL << "were found to be ’" << WRCH DESC
<< "’-type outliers.\n";

return result;
}

void Pass50::populate()
{

129

Source Code for the TD0N Pipeline

FILE LOG() << "Pass50::populate()\n";
LOG TAB IN();

#if (0)
const std::string &fname = GetFonds().GetName();
// this is true and useful in pass50 but also possibly an
// unnecessarily complication - it’s harmless to check all fonds
// (unless the thing gets too slow in which case this is an obvious
// optimization). "premature optimization is the root of all evil"
// (Donald Knuth).
std::string MYFNAME("PORTAL-TOTAL");
if (fname.compare(MYFNAME)) {

FILE LOG() << "Fonds \"" << fname << "\""
<< " <> the fonds for which Pass50 is necessary (\""
<< MYFNAME << "\") and so ::populate is a no-op.\n";

// Copy the daychannels for the next pass to use.
//
// We only run pass50 for tdat, because portal is the only other
// fonds at the moment at portal is guaranteed to have exactly two
// channels by the station-matching logic of pass40.
m CountDayChannels Out = new

std::vector<CountDayChannel>(*m CountDayChannels In);
}
else

#endif
{

ConnectToDB();
// Pass30 emits rows in a strange order (see issue 0BA:
// interesting sort in pass50). This necessarily evolves because
// of its function. We need a different order here, so we sort
// the list.
sort(m CountDayChannels In->begin(), m CountDayChannels In->end(),

sortbylidciddatechan);
m CountDayChannels Out = FindMissingChannelOutliers WholeDay();
tout << "Found " << m CountDayChannels Out->size()

<< " location/count/day/channels after "
<< "FindMissingChannelOutliers WholeDay.\n";

#if (0)
cout << "Random ten with mangled names:\n";
for (int i = 0; i < 10; i++) {

int which = random() % m CountDayChannels Out->size();
cout << which << ": " << (*m CountDayChannels Out)[which] << "\n";

}
#endif

}
LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.
// false: unable to validate the values in the database. They are NOT GOOD.
bool Pass50::validate()
{

bool result = false;
return result;

#if (0)
ConnectToDB();
typedef vector<string> nc type;
nc type dacount;
// creating the dacount attribute creates several additional attributes,
// which are counted together as a unit with the dacount attribute.
stringstream dacountSelect;
// GetTable() is the master table for the fonds, e.g. Nodeleg.
dacountSelect << "select locid || ’:’ || countid || ’:’ || "

<< "countdate || ’:’ || "
<< "dacount || ’:’ || dacount delta || ’:’ || dacount n || "
<< "’:’ || rc || ’:’ || exceptType || ’:’ || numkounts from "
<< GetTable() << " order by "
<< "locid,countid,countdate";

dacount = get strlist(dacountSelect.str());
stringstream allcnts;
for (nc type::const iterator i = dacount.begin();

i != dacount.end(); i++)
allcnts << (*i) << "\n";

string knownGood;
if (GetIsToy())

knownGood = "unknown";
else {

if (GetFonds().GetName().compare("TDAT") == 0)
knownGood = "f4a9c356cb746942c45f183bb744b4f4e10059d2327494e257";

else if (GetFonds().GetName().compare("PORTAL-FHWA") == 0)
knownGood = "04f6cc64c960c37b3aec4a713460b8f9f931167dae00bc773";

else if (GetFonds().GetName().compare("PORTAL-TOTAL") == 0)
knownGood = "89471ee3b510da222fc2997ca4e4c47a089317e96e66a021a";

else

130

cerr << "unknown fonds name in dacountsattribute::validate"
" (=no cert in tache/docs/certs for this fonds)" << endl;

}
result = generic validate(allcnts.str(), knownGood);
result = true;
return result;

#endif
}

// FILE: pass60.cc
// AU: James E. Powell
// DATE: 2016-09-13
#include "tache.h"
#include "td0n-uml.h"
#include "countdaychannel.h"
#include "locationminutechannel.h"
#include "kounttimechannel.h"
#include <algorithm> // sort

#define VERBOSE FOR DUPS 0
#define P60V 0 // verbose for this module
#define P60L() if (P60V) FILE LOG()

// Quick status overview. What comes in is a row of CDCs with one row
// per location/count/day. Recall that a count in TDAT can have
// multiple days. These are the first two records:
//
// 1: [a CountDayChannel with lid = LEG10248 and cid 04121308.VL1,
// date 2004-12-14, ChannelNo = 1 and numChan = 1]
//
// 2: [a CountDayChannel with lid = LEG10248 and cid 04121308.VL1,
// date 2004-12-13, ChannelNo = 1 and numChan = 1]
//
// Two days, one countid. However, my workhorse
// SelectTimesAndCounts(...) gives back all of the days under a
// countid. So, we have to filter out days that belong to other rows
// of the input as we step through STAC output.

using namespace std;
string BADBINSZ DESC("bin size is other than 15 minutes");
string NEGCT DESC("kounts negative (less than zero) recorded");
string MDDROP DESC("PORTAL count w/midday zero kounts (hr >= 5 and <= 20)");

Pass60::Pass60(bool doToy,
const OneFonds &fonds,
vector<CountDayChannel> *theCDCs) :

ChecksumAttribute(doToy, // bool isToy,
fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()+string(NC TBLNAM POSTFIX)),

m CountDayChannels In(theCDCs),
m LocationMinuteChannels Out(NULL)

{
tout << "Pass60 has been instantiated." << endl;
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-60");
m InPortal = (GetFonds().GetName().compare("PORTAL-TOTAL") == 0);

}

Pass60::˜Pass60()
{

delete m CountDayChannels In;
}

// Method: FindBadBins
// Returns:
// true: this countid has a nonstandard (non-15-minute) bin size
// false: this countid has a standard (15-minute) bin size.
bool Pass60::FindBadBins(vector<CountDayChannel>::iterator &cdc)
{

bool result = false;
change db(GetFonds().GetSlaveDBName());
int ilen;
if (m InPortal) {

// hardcoded for portal, see ish 0C2: PORTAL pass60 finds too
// many ’bin size other than 15 mins’
ilen = 15;

}
else

ilen = find interval length for countid(cdc->m CountID);
if (ilen != 15) {

131

Source Code for the TD0N Pipeline

GetFonds().MarkOutlier(&cdc->m LocationID, &cdc->m CountID,
NULL, BADBINSZ DESC, true);

result = true;
}
return result;

}

// Method: FindZKounts
// Returns:
// true: there are zero kounts in this day, midday.
// false: there are no zero kounts in this day, midday
bool Pass60::FindZKounts(timestamp &theTime, int kount,

vector<CountDayChannel>::iterator &cdc)
{

P60L() << "Pass60::FindZKounts(...)\n";
bool result = false;
// check for zero kounts in midday.
string tmpDate = MakeTimesText2(&theTime, "%H");
// In \cite[p. 600-601]{stroustrup00: c progr languag},
// Stroustrup seems to recommend the "useful functions"
// atof and friends, and these are part of C++ as well as
// C, so I’m using atoi here.
int dayTime = atoi(tmpDate.c str());
if (errno) {

perror("atoi");
assert(0);

}
if (kount == 0) {

if (dayTime >= 5 && dayTime <= 20) {
GetFonds().MarkOutlier(&cdc->m LocationID, &cdc->m CountID,

NULL, MDDROP DESC, true);
result = true;

}
}
P60L() << "-> " << result << "\n";
return result;

}

// Method: RemoveDups
//
// Description:
//
// A wonderfully naive approach to finding duplicate rows in the
// output table. Potentially problematic due to performance (lookups
// are O(log(n)) per Stroustrup) and/or size - this duplicates the
// entire output, which is already potentially gigabytes large.
// Following Knuth "premature optimization &tc" I will not touch it
// until it fails.
vector<LocationMinuteChannel> *
RemoveDups(vector<LocationMinuteChannel> *outTable)
{

FILE LOG()
<< "Pass60::RemoveDups([" << outTable->size() << " LMC entries])\n";

LOG TAB IN();
// sort by LocID, timestamp [ascending], chan. [ascending]
sort(outTable->begin(),

outTable->end(),
sortbylidcidtimechan);

vector<LocationMinuteChannel> *result = new vector<LocationMinuteChannel>;
// "A \empth{map} is a sequence of (key, value) pairs that provides
// for fast revtrieval based on the key."
// \cite[p. 480]{stroustrup00: c progr languag}.
map<string, LocationMinuteChannel> fastRet;
for (vector<LocationMinuteChannel>::iterator lmc = outTable->begin();

lmc != outTable->end();
lmc++) {

string hc = lmc->hashkey();
// This is "not as cheap as subscripting an array with an integer"
// (ibid p. 485). If it turns out to be too slow, "a hashed
// container is often the answer, (\section 17.6)" (ibid)
map<string, LocationMinuteChannel>::iterator p = fastRet.find(hc);
if (p != fastRet.end()) {

FILE LOG() << "duplicates are found. New:\n"
<< (*lmc) << " with hashkey \""
<< (*lmc).hashkey() << "\n and existing:\n"
<< (*p).second << " with hashkey \"" << (*p).second.hashkey()
<< "\"\n";

}
else {

FILE LOG() << "Brand new is this: " << (*lmc) << " with hashkey \""
<< (*lmc).hashkey() << "\n";

fastRet[hc] = *lmc;
result->push back(*lmc);

}
}

132

delete outTable;
FILE LOG() << "A sample of the output follows.\n";
printsome helper("Pass60-after-remove-dups", result, -1); // 60
FILE LOG() << "-> " << result->size()

<< " LocationMinuteChannels resulting from pass60::RemoveDups.\n";
return result;

}

// Based on Pass50::FindMissingChannelOutliers WholeDay()
// Called from populate().
vector<LocationMinuteChannel> *Pass60::ExpandIntoKounts()
{

FILE LOG() << "Pass60::ExpandIntoKounts()\n";
LOG TAB IN();
vector<LocationMinuteChannel> *result = new vector<LocationMinuteChannel>;
int numCDC = m CountDayChannels In->size();
int numOutliersBADBINSZ = 0;
int numOutliersNEGCT = 0;
int numOutliersMDDROP = 0;
string lastKey(""), lastCountID(""), skipCountID("");
FILE LOG() << "Reading over " << numCDC <<

" records in the counts array resulting from pass50.\n";
printsome helper("Pass60", m CountDayChannels In, 60);
bool isOutDay = false;
vector<LocationMinuteChannel> *oneGroup =

new vector<LocationMinuteChannel>;
for (vector<CountDayChannel>::iterator cdc = m CountDayChannels In->begin();

cdc != m CountDayChannels In->end();
cdc++) {

FILE LOG() << "cursor=" << (cdc - m CountDayChannels In->begin())
<< ", cdc: " << *cdc << endl;

if (skipCountID.compare(cdc->m CountID) == 0) {
FILE LOG() << "skipping cos it’s equal to skipCountID.\n";
continue;

}
if (lastCountID.compare(cdc->m CountID) != 0) {

// It’s a new count for us - validate bin size.
if (FindBadBins(cdc)) {

numOutliersBADBINSZ++;
skipCountID = cdc->m CountID;
P60L() << "skipping cos it’s a BADBINSZ outlier.\n";
continue;

}
}
counts type kounts;
times type times;
ch type channels;
if (m InPortal) FILE LOG() << "cdc->m CountID: \""

<< cdc->m CountID << "\"\n";
string useCountID = m InPortal ?

// the next line, string oname = ..., is almost verbatim from pass40.cc.
// TODO: make this .substr a method on CDC, use it also in pass40.cc.
cdc->m CountID.substr(0,

cdc->m CountID.length()
- (PORTAL STATION ID LEN + 1))

: cdc->m CountID;
GetFonds().SelectTimesAndCounts(useCountID, kounts, times,

channels);
if (m InPortal) {

// add the other station’s kounts, times.
string otherStation = cdc->m CountID.substr(cdc->m CountID.length()

- PORTAL STATION ID LEN,
cdc->m CountID.length());

string useCountIDStem
= cdc->m CountID.substr(0, cdc->m CountID.length() -

(PORTAL STATION ID LEN
+ 1 + PORTAL STATION ID LEN));

FILE LOG() << "otherStation: \"" << otherStation << "\"\n";
FILE LOG() << "useCIDStem: \"" << useCountIDStem << "\"\n";
string useCountID2(useCountIDStem);
useCountID2 += otherStation;
FILE LOG() << "useCountID2: \"" << useCountID2 << "\"\n";
counts type kounts2;
times type times2;
ch type channels2;
GetFonds().SelectTimesAndCounts(useCountID2, kounts2, times2,

channels2);
// We’re on the second station, we force these channelIDs to be
// 2. See issue 0E6: portal, pass60 the STAC calls put every
// single channelid to 1
for (ch type::iterator i = channels2.begin();

i != channels2.end(); i++)
(*i) = 2;

copy(kounts2.begin(), kounts2.end(), back inserter(kounts));
copy(times2.begin(), times2.end(), back inserter(times));

133

Source Code for the TD0N Pipeline

copy(channels2.begin(), channels2.end(), back inserter(channels));
}
vector<ktc> allofem;
for (unsigned int i = 0; i < kounts.size(); i++) {

ktc tp;
tp.kount = kounts[i];
tp.time = times[i];
tp.channel = channels[i];
allofem.push back(tp);

}
sort(allofem.begin(), allofem.end(), sortbytimechan);
P60L() << "STAC returned " << allofem.size() << " items.\n";
int cc = 0;
for (vector<ktc>::iterator i = allofem.begin();

i != allofem.end(); i++, cc++) {
ktc &item = (*i);
P60L() << "at cc=" << cc << " (isOutDay=" << isOutDay

<< ", ktc=" << item << "):\n";
P60L() << "result.size() now " << result->size()

<< " and group.size() now " << oneGroup->size()
<< "\n";

if (VERBOSE FOR DUPS)
cout << cc << ": " <<

MakeTimesText2(&item.time, "%Y-%m-%d %H:%M:%S")
<< " in count/day " << (*cdc) << " which has date "
<< cdc->m Date << "\n";

// only look at rows with the current channel number.
if (cdc->m ChannelID != item.channel) {

P60L() << "skipping cos this record’s in the wrong channel.\n";
continue;

}
// Only look at rows in the current date.
string dateOfKount = MakeTimesText2(&item.time, "%Y-%m-%d") ;
if (dateOfKount.compare(cdc->m Date)) {

P60L() << "skipping cos this record’s in the wrong date.\n";
if (VERBOSE FOR DUPS) {

cout << "at index " << cc << ", ";
cout << "date of kount: " << dateOfKount

<< " is different from the date of the CDC which is "
<< cdc->m Date << "\n";

}
continue;

}
string nextDateOfKount;
if ((i + 1) != allofem.end())

nextDateOfKount = MakeTimesText2(&(i + 1)->time, "%Y-%m-%d") ;
if (item.kount < 0) {

isOutDay = true;
// On a single incidence of a negative kount, we toss the
// whole count (which is typically 48 hrs of counting in TDAT,
// 24 hrs in PORTAL). We arguably lose some good days of
// counting but the code is /way/ simpler.
GetFonds().MarkOutlier(&cdc->m LocationID, &cdc->m CountID,

NULL, NEGCT DESC, true);
numOutliersNEGCT++;

}
// If we didn’t just reject it due to negative kount, maybe
// we’ll reject it cos of midday zeros, but only in PORTAL
// cos TDAT is expected (tiny little roads sometimes) to have
// midday zeros.
if (m InPortal && !isOutDay) {

isOutDay = FindZKounts(item.time, item.kount, cdc);
if (isOutDay) numOutliersMDDROP++;

}
if (isOutDay) {

P60L() << "NOT stashing it, isOutday = " << isOutDay << "\n";
}
else {

P60L() << "stashing it in the group.\n";
LocationMinuteChannel lmc;
lmc.m LocationID = cdc->m LocationID;
lmc.m CountID = cdc->m CountID;
lmc.m Date = cdc->m Date;
lmc.m Timestamp = item.time;
lmc.m ChannelID = item.channel;
lmc.m Kount = item.kount;
lmc.m NumChannels = cdc->m NumChannels;
oneGroup->push back(lmc);
P60L() << " group size now " << oneGroup->size() << "\n";

}
// At day end or end of set, we decide whether to
// preserve records for the day.
if ((i + 1) == allofem.end() ||

nextDateOfKount.compare(dateOfKount)) {
P60L() << "we are at end of day.\n";

134

if (cdc->m NumChannels == 1 ||
(cdc->m NumChannels == 2 && item.channel == 2)) {

if (isOutDay) {
isOutDay = false;
P60L() << "isOutDay was set, so we ignore the day.\n";

}
else {

P60L() << "isOutDay was NOT set, so we keep the day.\n";
P60L() << "before: oneGroup has " << oneGroup->size()

<< " records, and result has " << result->size()
<< " records.\n";

copy(oneGroup->begin(), oneGroup->end(), back inserter(*result));
P60L() << "after: oneGroup has " << oneGroup->size()

<< " records, and result has " << result->size()
<< " records.\n";

P60L() << "result.size() now " << result->size() << "\n";
}
delete oneGroup;
oneGroup = new vector<LocationMinuteChannel>;

}
}

} // for (int cc = 0; cc < numKounts && !isOutDay; cc++) {
} // for (vector<CountDayChannel>::iterator cdc = m CountDayChannels In...
delete oneGroup;
P60L() << "result.size() at completion of big loop is "

<< result->size() << "\n";
result = RemoveDups(result);
LOG TAB OUT();
cout << TAG OUTL << "In " << GetFonds() << ",\n"

<< TAG OUTL << "Pass60 saw " << numCDC
<< " count/day/channels, and of these\n"
<< TAG OUTL << numOutliersBADBINSZ << " records were found to be"
<< " ’" << BADBINSZ DESC << "’-type outliers, and " << numOutliersNEGCT
<< "\n" << TAG OUTL << "were found to be ’" << NEGCT DESC
<< "’-type outliers.\n";

if (m InPortal) {
cout << TAG OUTL << numOutliersMDDROP << " records were found to be"

<< " ’" << MDDROP DESC << "’-type outliers, which are only\n"
<< TAG OUTL
<< "detected in PORTAL (fonds 2), and not in TDAT (fonds 1).\n";

}
else

cout << TAG OUTL << "This is not PORTAL, so we did not check for "
<< "zero counts in the midday.\n";

FILE LOG() << "A sample of the output follows.\n";
printsome helper("Pass60", result, 60);
FILE LOG() << "-> " << result->size()

<< " LocationMinuteChannels resulting from "
<< "pass60::ExpandIntoKounts.\n";

return result;
}

void Pass60::populate()
{

FILE LOG() << "Pass60::populate()\n";
LOG TAB IN();
ConnectToDB();
m LocationMinuteChannels Out = ExpandIntoKounts();
tout << "Found " << m LocationMinuteChannels Out->size()

<< " location/minute/channels after "
<< "ExpandIntoKounts.\n";

#if (0)
cout << "Random ten with mangled names:\n";
for (int i = 0; i < 10; i++) {

int which = random() % m CountDayChannels Out->size();
cout << which << ": " << (*m CountDayChannels Out)[which] << "\n";

}
#endif

LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.
// false: unable to validate the values in the database. They are NOT GOOD.
bool Pass60::validate()
{

bool result = false;
return result;

#if (0)
ConnectToDB();
typedef vector<string> nc type;
nc type dacount;
// creating the dacount attribute creates several additional attributes,
// which are counted together as a unit with the dacount attribute.

135

Source Code for the TD0N Pipeline

stringstream dacountSelect;
// GetTable() is the master table for the fonds, e.g. Nodeleg.
dacountSelect << "select locid || ’:’ || countid || ’:’ || "

<< "countdate || ’:’ || "
<< "dacount || ’:’ || dacount delta || ’:’ || dacount n || "
<< "’:’ || rc || ’:’ || exceptType || ’:’ || numkounts from "
<< GetTable() << " order by "
<< "locid,countid,countdate";

dacount = get strlist(dacountSelect.str());
stringstream allcnts;
for (nc type::const iterator i = dacount.begin();

i != dacount.end(); i++)
allcnts << (*i) << "\n";

string knownGood;
if (GetIsToy())

knownGood = "unknown";
else {

if (GetFonds().GetName().compare("TDAT") == 0)
knownGood = "f4a9c356cb746942c45f183bb744b4f4e10059d2327494e257";

else if (GetFonds().GetName().compare("PORTAL-FHWA") == 0)
knownGood = "04f6cc64c960c37b3aec4a713460b8f9f931167dae00bc773";

else if (GetFonds().GetName().compare("PORTAL-TOTAL") == 0)
knownGood = "89471ee3b510da222fc2997ca4e4c47a089317e96e66a021a";

else
cerr << "unknown fonds name in dacountsattribute::validate"

" (=no cert in tache/docs/certs for this fonds)" << endl;
}
result = generic validate(allcnts.str(), knownGood);
result = true;
return result;

#endif
}

// FILE: pass70.cc
// AU: James E. Powell
// DATE: 2016-07-26
#include "tache.h"
#include "td0n-uml.h"
#include "countdaychannel.h"
#include "locationminutechannel.h"
#include "locationtimekounts.h"
#include <algorithm> // sort

using namespace std;
string
CHANCLONE DESC("cloned channels (same data in two or more channels)");

string
NORC DESC("the roadclass is null in GetRC() for this location");

string
LATEGAME PARTIALDAY DESC("A partial day was found in pass 70 "

"for this loc+count. This should never happen. "
"Diagnose it please.");

Pass70::Pass70(bool doToy,
const OneFonds &fonds,
std::vector<LocationMinuteChannel> *theLMCs) :

ChecksumAttribute(doToy, // bool isToy,
fonds, // const OneFonds &fonds,
true, // bool attrInMaster,
fonds.GetMasterTableName()+string(NC TBLNAM POSTFIX)),

m LocationMinuteChannels In(theLMCs),
m LocationTimeKounts Out(NULL)

{
tout << "Pass70 has been instantiated." << endl;
// The short name is used here
// ./checksumattribute.cc:125: << GetShortName() << ".txt";
// strictly to output the raw data for the checksum.
SetShortName("pass-70");
m InPortal = (GetFonds().GetName().compare("PORTAL-TOTAL") == 0);

}

Pass70::˜Pass70()
{

delete m LocationMinuteChannels In;
}

typedef enum p70s RCC {
s begin = 0,
s rec kount = 1,
s do fencepost = 2

} p70s RCC;

136

typedef enum p70s DR {
s dr begin = 0,
s dr rec kount = 1,
s dr do fencepost = 2

} p70s DR;

// Based on Pass50::FindMissingChannelOutliers WholeDay()
// Called from populate().
vector<LocationMinuteChannel> *Pass70::RemoveChanClones()
{

FILE LOG() << "Pass70::RemoveChanClones()\n";
LOG TAB IN();
vector<LocationMinuteChannel> *result = new vector<LocationMinuteChannel>;
int numLMC = m LocationMinuteChannels In->size();
int numOutliersCHANCLONE = 0;
LocationMinuteChannel modelLMC;
bool hetFound = false;
p70s RCC state = s begin;
vector<LocationMinuteChannel> group;
unsigned int kountRec[MAX NCHAN] = {0,0}; // plan for 2 channels -

// hardcoded limit today
// 2016-07-28.

// sort by LocID, timestamp [ascending], chan. [ascending]
sort(m LocationMinuteChannels In->begin(),

m LocationMinuteChannels In->end(),
sortbylidtimechan);

FILE LOG() << "Reading over " << numLMC <<
" records in the counts array resulting from pass60.\n";

const char *titleNow = "Pass70::RemoveChanClones input";
FILE LOG() << "A sample of the input follows (please find it in "

<< "stdout under title \"" << titleNow << "\").\n";
printsome helper(titleNow,

m LocationMinuteChannels In, -1);
for (vector<LocationMinuteChannel>::iterator lmc =

m LocationMinuteChannels In->begin();
lmc != m LocationMinuteChannels In->end();
lmc++) {

FILE LOG() << "cursor=" << (lmc - m LocationMinuteChannels In->begin())
<< ", lmc: " << *lmc << endl;

bool doAgain = true;
while (doAgain) {

doAgain = false;
switch (state) {
case s begin:

hetFound = false;
group.clear();
if (lmc->m NumChannels == 1)

result->push back(*lmc);
else {

modelLMC = *lmc;
state = s rec kount;
doAgain = true;

}
break;

case s rec kount:
group.push back(*lmc);
assert(lmc->m ChannelID <= MAX NCHAN);
assert(lmc->m ChannelID >= 1);
kountRec[lmc->m ChannelID - 1] = lmc->m Kount;
// The code below is set to handle more than two channels
// yet it’s a natural fact today 2016-08-04 that all data
// in fonds 1 and 2 has been normalized to 1 or two channels,
// and 1-channel recordings never get past state==s begin.
if (lmc->m NumChannels != 2) {

FILE LOG() << "Strange case of mixed channels for cid "
<< lmc->m CountID << ".\n"
<< "Advise caution. See issue 0F1: dup cids "
<< "(multiple cids for one loc+date) exist = add "
<< "new outlier class.\n";

}
// We expect these two-channel records to come ordered as chan
// 1, chan 2, chan 1, chan 2 etc. So, when the channel of this
// row is 2 (= lmc m NumChannels) it’s a sign that if we don’t
// have heterogenity in the signal (e.g. all channels have same
// data) yet then we never will.
if (!hetFound && lmc->m ChannelID ==

static cast<int>(lmc->m NumChannels)) {
unsigned int expectKount = kountRec[0];
FILE LOG() << "Reached end of recordings for this timeslice.\n";
FILE LOG() << "expectKount has been set to " << expectKount << ".\n";
for (int i = 1; i < static cast<int>(lmc->m NumChannels) &&

!hetFound; i++) {
FILE LOG() << "Index " << i << ": " << kountRec[i] << "\n";
if (kountRec[i] != expectKount) {

137

Source Code for the TD0N Pipeline

FILE LOG() << "... heterogenity!\n";
hetFound = true;

}
}
FILE LOG() << "Done checking for hetero in this time slice. Result:"

<< hetFound << ".\n";
}
if ((lmc + 1) == m LocationMinuteChannels In->end()) {

FILE LOG() << "The next recording is the very last one. "
<< "Going to fencepost.\n";

state = s do fencepost;
doAgain = true;

}
else if (!(lmc + 1)->IsInDayGroup(modelLMC)) {

// To avoid being labeled as an outlier, some record over
// the entire day must be different between channels 1 and
// 2.
FILE LOG() << "The next recording is not in the day group "

<< "of the current modelLMC. Going to fencepost.\n";
state = s do fencepost;
doAgain = true;

}
break;

case s do fencepost:
if (hetFound) {

FILE LOG() << "At fencepost, we found heterogenity. Copying "
<< group.size() << " items on over.\n";

copy(group.begin(), group.end(), back inserter(*result));
}
else {

FILE LOG()
<< "At fencepost, no heterogenity found. "
<< "Reporting dup chan outlier.\n";

GetFonds().MarkOutlier(&lmc->m LocationID, &lmc->m CountID,
NULL, CHANCLONE DESC, true);

numOutliersCHANCLONE += group.size();
}
state = s begin;
break;

} // switch (st) {
} // while (doAgain) {

} // for (vector<LocationMinuteChannel>::iterator lmc = m LocationMinu...
LOG TAB OUT();
FILE LOG() << "-> " << result->size() << " LocationMinuteChannels.\n";
cout << TAG OUTL << "In " << GetFonds() << ",\n"

<< TAG OUTL << "Pass70 saw " << numLMC
<< " location/minute/channels, and of these\n"
<< TAG OUTL << numOutliersCHANCLONE << " records were found to be"
<< " ’" << CHANCLONE DESC << "’-type outliers.\n";

const char *titleNow2 = "Pass70::RemoveChanClones output";
FILE LOG() << "A sample of the output follows (please find it in stdout "

<< "under title \"" << titleNow2 << "\").\n";
printsome helper(titleNow2, result, 60);
return result;

}

vector<LocationTimeKounts> *
Pass70::DataReduction(vector<LocationMinuteChannel> *in)
{

FILE LOG() << "Pass70::DataReduction()\n";
LOG TAB IN();
// sort by LocID, timestamp;
sort(in->begin(), in->end(), sortbylidtime);
vector<LocationTimeKounts> *result = new vector<LocationTimeKounts>;
int numLMCs = in->size();
LocationMinuteChannel modelLMC;
p70s DR state = s dr begin;
unsigned int accumKount = 0;
FILE LOG() << "Reading over " << numLMCs <<

" records in the counts array resulting from pass60.\n";
const char *titleNow = "Pass70::DataReduction input";
FILE LOG() << "A sample of the input follows (please find it "

<< "in stdout under title \"" << titleNow << "\").\n";
printsome helper(titleNow, in, 60);
int numInHourGroup = 0;
for (vector<LocationMinuteChannel>::iterator lmc = in->begin();

lmc != in->end();
lmc++) {

FILE LOG() << "cursor=" << (lmc - in->begin())
<< ", lmc: " << *lmc << endl;

bool doAgain = true;
while (doAgain) {

doAgain = false;
switch (state) {
case s dr begin:

138

modelLMC = *lmc;
accumKount = 0;
state = s dr rec kount;
doAgain = true;
numInHourGroup = 1;
break;

case s dr rec kount:
accumKount += lmc->m Kount;
if ((lmc + 1) == in->end()) {

FILE LOG() << "This is last one, stashing the result.\n";
state = s dr do fencepost;
doAgain = true;

}
else if ((lmc + 1)->IsInHourGroup(modelLMC)) {

numInHourGroup ++;
}
else {

cout << "nihg: " << numInHourGroup << "\n";
FILE LOG()

<< "Next one is not in the hour group. Stashing the result.\n";
state = s dr do fencepost;
doAgain = true;

}
break;

case s dr do fencepost:
// this assertion will fire if dups are found as in issue
// "0F3: hour group identity test puts timestamps in the
// same hour group into different groups".
if (numInHourGroup != 4 && numInHourGroup != 8) {

cerr << "Warning: numInHourGroup == " << numInHourGroup
<< ". You’ll have partial days in the CSV output. Diagnose, "
<< "or drop as outlier. See tache issue 101: PORTAL hour "
<< "group starts at 15 minutes in. I am marking it as an "
<< "outlier to warn future sailors.\n";

GetFonds().MarkOutlier(&lmc->m LocationID, &lmc->m CountID,
NULL, LATEGAME PARTIALDAY DESC, true);

assert(0);
}
else {

result->push back(LocationTimeKounts(modelLMC.m LocationID,
modelLMC.m Timestamp,
accumKount));

FILE LOG() << "Result stashed.\n";
}
state = s dr begin;
break;

} // switch (st) {
} // while (doAgain) {

} // for (vector<LocationMinuteChannel>::iterator lmc = m LocationMinu...
LOG TAB OUT();
const char *titleNow2 = "Pass70::DataReduction output";
FILE LOG() << "A sample of the output follows (please find it "

<< "in stdout under title \"" << titleNow2 << "\").\n";
printsome helper(titleNow2, result, 60);
return result;

}

// Pass70::PopulateRC could take too long, and it’s undeniably more
// efficient to do this way back in pass 1 when life is simple and the
// whole output is just a list of locations. However, then we would have
// to propagate the RC value down through all of the other passes which
// I can’t be bothered to do right now. Phht.
void Pass70::PopulateRC()
{

FILE LOG() << "Pass70::PopulateRC()\n";
int numTossed = 0;
vector<LocationTimeKounts> *newKounts = new vector<LocationTimeKounts>;
for (vector<LocationTimeKounts>::iterator i =

m LocationTimeKounts Out->begin();
i != m LocationTimeKounts Out->end(); i++) {

string useLoc = m InPortal ?
i->m LocationID.substr(0,4) : i->m LocationID;

bool notFound = false;
bool isNull = false;
int useRC = GetFonds().GetRC(useLoc, ¬Found, &isNull);
assert(!notFound);
if (isNull) {

GetFonds().MarkOutlier(&i->m LocationID, NULL,
NULL, NORC DESC, true);

numTossed++;
}
else {

i->m RC = useRC;
newKounts->push back(*i);

}

139

Source Code for the TD0N Pipeline

}
delete m LocationTimeKounts Out;
m LocationTimeKounts Out = newKounts;
cout << TAG OUTL << "Tossed " << numTossed << " of "

<< m LocationTimeKounts Out->size()
<< " entries due to roadclass being null for their location.\n";

cout << TAG OUTL << newKounts->size() << " entries remain.\n";
FILE LOG() << "-> void\n";

}

void Pass70::populate()
{

FILE LOG() << "Pass70::populate()\n";
LOG TAB IN();
ConnectToDB();
m LocationTimeKounts Out = DataReduction(RemoveChanClones());

#if (ATTEMPT EMIT RC)
PopulateRC();

#endif
tout << "Found " << m LocationTimeKounts Out->size()

<< " location/minute/channels after DataReduction.\n";
// print the set. This is in theory a highly useful product:
// squeaky clean due to all of the work in this and other passes.
// ˜/projects/tache/src $ (random)
// 1241967739153956173
// I use 56173 as the sole special code for the final, final output
// of tache. I got it from RNG, as run just above on 2016-08-03.
printsome helper("TD0N output", m LocationTimeKounts Out, -1, 56173);

#if (0)
cout << "Random ten with mangled names:\n";
for (int i = 0; i < 10; i++) {

int which = random() % m CountDayChannels Out->size();
cout << which << ": " << (*m CountDayChannels Out)[which] << "\n";

}
#endif

LOG TAB OUT();
FILE LOG() << "-> void\n";

}

// returns:
// true: the values in the database have been validated GOOD.
//
// false: unable to validate the values in the database. They are
// NOT GOOD.
bool Pass70::validate()
{

bool result = false;
return result;

#if (0)
ConnectToDB();
typedef vector<string> nc type;
nc type dacount;
// creating the dacount attribute creates several additional attributes,
// which are counted together as a unit with the dacount attribute.
stringstream dacountSelect;
// GetTable() is the master table for the fonds, e.g. Nodeleg.
dacountSelect << "select locid || ’:’ || countid || ’:’ || "

<< "countdate || ’:’ || "
<< "dacount || ’:’ || dacount delta || ’:’ || dacount n || "
<< "’:’ || rc || ’:’ || exceptType || ’:’ || numkounts from "
<< GetTable() << " order by "
<< "locid,countid,countdate";

dacount = get strlist(dacountSelect.str());
stringstream allcnts;
for (nc type::const iterator i = dacount.begin();

i != dacount.end(); i++)
allcnts << (*i) << "\n";

string knownGood;
if (GetIsToy())

knownGood = "unknown";
else {

if (GetFonds().GetName().compare("TDAT") == 0)
knownGood = "f4a9c356cb746942c45f183bb744b4f4e10059d2327494e257";

else if (GetFonds().GetName().compare("PORTAL-FHWA") == 0)
knownGood = "04f6cc64c960c37b3aec4a713460b8f9f931167dae00bc773";

else if (GetFonds().GetName().compare("PORTAL-TOTAL") == 0)
knownGood = "89471ee3b510da222fc2997ca4e4c47a089317e96e66a021a";

else
cerr << "unknown fonds name in dacountsattribute::validate"

" (=no cert in tache/docs/certs for this fonds)" << endl;
}
result = generic validate(allcnts.str(), knownGood);
result = true;
return result;

#endif

140

}

// FILE: countdaychannel.h
// AU: James E. Powell
// DATE: 2016-07-26
#pragma once
#include "td0n-uml.h"
// similar to inline std::ostream& operator<<(std::ostream& a,
// const LocationMinuteChannel &b) in locationminutechannel.h
inline std::ostream& operator<<(std::ostream& a, const CountDayChannel &b)
{

return a << "[a CountDayChannel with lid = " << b.m LocationID
<< " and cid " << b.m CountID << ", date " << b.m Date
<< ", ChannelNo = " << b.m ChannelID
<< " and numChan = " << b.m NumChannels << "]";

}

// sortbylidciddatechan used in pass50
// "comparison function object (i.e. an object that satisfies the
// requirements of Compare) which returns âĂŃtrue if the first argument
// is less than (i.e. is ordered before) the second" (devhelp for c++,
// deb 8 cppreference-doc-en-html)
inline bool sortbylidciddatechan(const CountDayChannel &b1,

const CountDayChannel &b2)
{

// sort the input list by:
// lid + cid + date + channelno
FILE LOG() << "Compare cdc b1: " << b1 << "\n";
FILE LOG() << "Compare cdc b2: " << b2 << "\n";
int res = b1.m LocationID.compare(b2.m LocationID);
if (res == 0) {

res = b1.m CountID.compare(b2.m CountID);
if (res == 0) {

res = b1.m Date.compare(b2.m Date);
if (res == 0) {

// sort in increasing order
res = b1.m ChannelID < b2.m ChannelID;

}
}

}
return res > 0;

}

// FILE: locationminutechannel.h
// AU: James E. Powell
// DATE: 2016-07-26
#pragma once
#include "td0n-uml.h"
// similar to inline std::ostream& operator<<(std::ostream& a, const
// CountDayChannel &b) in countdaychannel.h.
inline std::ostream& operator<<(std::ostream& a,

const LocationMinuteChannel &b)
{

timestamp useStamp = b.m Timestamp;
return a << "[a LocationMinuteChannel with lid = " << b.m LocationID

<< " and cid " << b.m CountID << ", date " << b.m Date
<< ", ChannelNo = " << b.m ChannelID
<< " and numChan = " << b.m NumChannels << ", timestamp "
<< MakeTimesText2(&useStamp, "%Y-%m-%d %H:%M:%S")
<< ", kount: "
<< b.m Kount << "]";

}

// sortbylidciddatechan used in pass70 based on
// countdaychannel.h::inline bool sortbylidciddatechan(const
// CountDayChannel &b1,...
//
// "comparison function object (i.e. an object that satisfies the
// requirements of Compare) which returns âĂŃtrue if the first argument
// is less than (i.e. is ordered before) the second" (devhelp for c++,
// deb 8 cppreference-doc-en-html)
inline bool sortbylidtime(const LocationMinuteChannel &b1,

const LocationMinuteChannel &b2)
{

// sort the input list by:
// lid + timestamp

#if (0)
// (very) spammy -> 100 GB for a full run
FILE LOG() << "Compare lmc b1: " << b1 << "\n";
FILE LOG() << "Compare lmc b2: " << b2 << "\n";

#endif

141

Source Code for the TD0N Pipeline

int res = b1.m LocationID.compare(b2.m LocationID);
if (res == 0)

res = b1.m Timestamp < b2.m Timestamp;
return res > 0;

}

// sort by LocID, timestamp [ascending], chan. [ascending]
inline bool sortbylidtimechan(const LocationMinuteChannel &b1,

const LocationMinuteChannel &b2)
{

// sort the input list by:
// lid + timestamp

#if (0)
FILE LOG() << "Compare lmc b1: " << b1 << "\n";
FILE LOG() << "Compare lmc b2: " << b2 << "\n";

#endif
int res = b1.m LocationID.compare(b2.m LocationID);
if (res == 0) {

if (b1.m Timestamp == b2.m Timestamp)
res = b1.m ChannelID < b2.m ChannelID;

else
res = b1.m Timestamp < b2.m Timestamp;

}
return res > 0;

}

// sort by LocID, cid. [ascending], timestamp [ascending], channel
inline bool sortbylidcidtimechan(const LocationMinuteChannel &b1,

const LocationMinuteChannel &b2)
{

// sort the input list by:
// lid + timestamp

#if (0)
FILE LOG() << "Compare lmc b1: " << b1 << "\n";
FILE LOG() << "Compare lmc b2: " << b2 << "\n";

#endif
int res = b1.m LocationID.compare(b2.m LocationID);
if (res == 0) {

res = b1.m CountID.compare(b2.m CountID);
if (res == 0) {

if (b1.m Timestamp == b2.m Timestamp)
res = b1.m ChannelID < b2.m ChannelID;

else
res = b1.m Timestamp < b2.m Timestamp;

}
}
return res > 0;

}

// FILE: kounttimechannel.h
// AU: James E. Powell
// DATE: 2016-09-13
#pragma once

class ktc {
public:
int kount;
timestamp time;
int channel;

};

// similar to inline std::ostream& operator<<(std::ostream& a,
// const LocationMinuteChannel &b) in locationminutechannel.h
inline std::ostream& operator<<(std::ostream& a, const ktc &b)
{

timestamp theTime = b.time;
return a << "[a ktc with kount = " << b.kount

<< " and time " << MakeTimesText2(&theTime, "%Y-%m-%d %H:%M:%S")
<< ", channel " << b.channel << "]";

}

// sortbylidciddatechan used in pass60, based on
// countdaychannel.h::inline bool sortbylidciddatechan(const
// CountDayChannel &b1,... "comparison function object (i.e. an
// object that satisfies the requirements of Compare) which returns
// âĂŃtrue if the first argument is less than (i.e. is ordered before)
// the second" (devhelp for c++, deb 8 cppreference-doc-en-html)
inline bool sortbytimechan(const ktc &b1,

const ktc &b2)
{

// sort the input list by:
// lid + timestamp

142

// FILE LOG() << "Compare ktc b1: " << b1 << "\n";
// FILE LOG() << "Compare ktc b2: " << b2 << "\n";
int res;
if (b1.time == b2.time) {

if (b1.channel == b2.channel)
res = 0;

else
res = b1.channel < b2.channel;

}
else

res = b1.time < b2.time;
return res > 0;

}

// FILE: locationminutechannel.cc
// AU: James E. Powell
// DATE: 2016-07-26
#include "tache.h"
#include "locationminutechannel.h"
#include <iostream>

using namespace std;

string LocationMinuteChannel::hashkey()
{

std::string binTimeOfKount = MakeTimesText2(&m Timestamp,
"%Y-%m-%d %H:%M:%S");

std::stringstream key;
key << m LocationID << ":"

// << m CountID << ":"
<< binTimeOfKount << ":"
<< m ChannelID;

std::string theStr = key.str();
return theStr;

}

// hashcode is used strictly to identify duplicate rows in the output
// of pass6.
int LocationMinuteChannel::hashcode()
{

std::string binTimeOfKount = MakeTimesText2(&m Timestamp,
"%Y-%m-%d %H:%M:%S");

std::stringstream key;
key << m LocationID << ":"

<< m CountID << ":"
<< binTimeOfKount << ":"
<< m ChannelID;

std::string theStr = key.str();
int strLen = theStr.length();
int result = 0;
for (int i = 0; i < strLen; i++)

result += static cast<int>(theStr[i]);
cout << "hashed key \"" << theStr << "\’ to code " << result << "\n";
return result;

}

bool LocationMinuteChannel::IsInDayGroup (const LocationMinuteChannel & b)
{

bool result = true;
FILE LOG() << "LocationMinuteChannel::IsInDayGroup(this="

<< (*this) << ", b=" << b << ")\n";
LOG TAB IN();
if (m LocationID.compare(b.m LocationID))

result = false;
// else if (m CountID.compare(b.m CountID))
// result = false;
else if (m Date.compare(b.m Date))

result = false;
LOG TAB OUT();
FILE LOG() << "-> " << result << "\n";
return result;

}

bool LocationMinuteChannel::IsInHourGroup (const LocationMinuteChannel & b)
{

bool result = true;
FILE LOG() << "LocationMinuteChannel::IsInHourGroup(this="

<< (*this) << ", b=" << b << ")\n";
LOG TAB IN();
if (!IsInDayGroup(b))

result = false;
else {

timestamp tsA = m Timestamp;

143

Source Code for the TD0N Pipeline

timestamp tsB = b.m Timestamp;
string hrA = MakeTimesText2(&tsA, "%H");
string hrB = MakeTimesText2(&tsB, "%H");
if (hrA.compare(hrB))

result = false;
}
LOG TAB OUT();
FILE LOG() <<"-> " << result<< "\n";
return result;

}

// FILE: locationtimekounts.h
// AU: James E. Powell
// DATE: 2016-07-26
#pragma once
#include "td0n-uml.h"

inline LocationTimeKounts::LocationTimeKounts() {}

inline LocationTimeKounts::LocationTimeKounts (std::string locID,
timestamp theTimeStamp,
unsigned int theAccumKount)

: m LocationID(locID), m Timestamp(theTimeStamp), m Kounts(theAccumKount)
{
}

// similar to inline std::ostream& operator<<(std::ostream& a, const
// CountDayChannel &b) in countdaychannel.h.
inline std::ostream& operator<<(std::ostream& a,

const LocationTimeKounts &b)
{

timestamp useStamp = b.m Timestamp;
#if (0)

return a
<< "[a LocationTimeKounts with lid = ")
<< b.m LocationID
<< ", timestamp "
<< MakeTimesText2(&useStamp, "%Y-%m-%d %H:%M:%S")
<< ", kounts: "
<< b.m Kounts << "]";

#else
//
return a
<< b.m LocationID
#if (ATTEMPT EMIT RC)
<< ","
<< b.m RC
#endif
<< ","
<< MakeTimesText2(&useStamp, "%Y-%m-%d %H:%M:%S")
<< ","
<< b.m Kounts << "\n";
#endif
}

144

	Building a Multivariable Linear Regression Model of On-road Traffic for Creation of High Resolution Emission Inventories
	Let us know how access to this document benefits you.
	Recommended Citation

	Introduction
	Background
	The Big Picture

	Methods
	Overview
	The Archive
	Data Understanding
	TDAT
	PORTAL

	Data Cleaning and Reduction
	Data Quality Problems Common to Both Archives
	TDAT-specific Data Quality Problems
	PORTAL-specific Data Quality Problems

	The Use of the Computer for Reproducibility and Automation
	Statistics
	Data Preparation
	TDAT
	PORTAL

	Deriving a Canonical Model of ADT
	Selection of Land Use Regression Variables
	Establishing the Log-normality of the Counts
	Using Multiple Linear Regression to make a Linear Model
	Obtaining VMT
	The Multiple Linear Regression

	Preparation for Massively Parallel LUR
	Massively Parallel LUR
	Population Density

	Exploration
	Hypothesis Testing
	Significance of Terms in the Linear Regression
	Normally Distributed Residuals
	Weekend Effect
	Bimodal Distribution (Rush Hours)
	Seasonal Effect
	Moss Nitrogen Density Experiment

	Results/Discussion
	Tables of Outliers
	H01: Our ADT values compare well with other published estimates.
	H02: High (low) moss nitrogen concentration correlates with high (low) traffic counts.
	H03: The Shaprio-Wilk test will confirm that the count data are log-normal.
	H04: Linear regression is appropriate for the traffic count data + our statistics
	H05: Observing that the residuals of the linear regression are homoscedastic
	The linear regression results.
	H06: the linear regression is statistically significant
	H07: a linear regression can reproduce trends in the original traffic data
	H08: there are few outliers in the cleaned data.
	H09: Rush hours will produce a bimodal trend in the diel, and weekends will be highly attenuated in counts.
	H10: Small seasonal differences are expected.
	H11: Our compares well with other, independent estimates

	Limitations
	Uncertainties

	Conclusion
	Future Work
	Bibliography
	Appendices
	Data Preprocessing Steps
	Data Cleaning Pipeline Flowchart
	Archival Process
	TDAT
	PORTAL
	The TDAT Schema - a Finding Aid

	Data Cleaning Details
	TDAT

	TDAT Road Class Assignment - Technical Details
	Our effort to use a spatial join fails due to great disparities between road maps
	A key is found that enables road class assignment
	An anomaly is found that casts doubt

	Source code
	Tiny Toy Data For Sample Calculations
	Adapt PORTAL to the TDAT data structure
	Weekend Test
	Diagnostic Plots for the Log Transformation. Shapiro-Wilks.
	Join the raw counts with our pseudo-LUR variables.
	Reduce the data to one row for each day.
	Translate road class (RC) identifiers to name
	Make a diel graph
	Make a random subset of the raw data for validation purposes.
	Run a stepwise linear regression on the model subset.
	Count days for each outlier class

	Source Code for the Pipeline

	Interesting Statistics
	Source Code for the TD0N Pipeline

