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seas into which the ice flows: the Weddell Sea sector, the Amundsen Sea sector, and the 

Ross Sea sector. The focus here is on the Amundsen Sea (AS) sector (Figure 2). 

 

 

Figure 2. The location of the Amundsen Sea sector catchment area is shown in red. 

Note that the areas of white between the red region and ocean are showing small ice 

shelves and the Thwaites Glacier Tongue. 

 

The geography and mass balance of the AS region are two factors that distinguish 

it from the other WAIS sectors. The subglacial topography of the AS region includes 

deep channels that connect coastal outlets to the interior of the ice sheet (Goff et al., 

2014; Holt et al., 2006). This suggests ice flow in these areas may more resemble isbrae 

in Greenland than the ice streams in the Ross Sea sector of West Antarctica (Truffer and 

Echelmeyer, 2003). Also, the AS is much less embayed than the margins on the Ross and 

Weddell Seas (Figure 1). This geometry suggests that the formation of very large ice 

shelves, which affect stress balance at the grounding line, are not likely here (Parizek et 
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al., 2013). However, small ice shelves and the Thwaites ice tongue exist today at the 

marine margin in the ASE (Figure 2). The continental shelf near the ASE narrows from 

over 400 km north of Pine Island Bay to between 100 and 200 km west of Siple Island 

(Nitsche et al., 2007). This is important because relatively warm Modified Circumpolar 

Deep Water (MCDW) is found near continental shelf breaks around the majority of the 

continent (Dinniman et al., 2012).  

The snow accumulation rate is higher over the AS sector than elsewhere in West 

Antarctica because it is at the end of a major storm track that begins in the mid-latitudes 

and directs relatively moist air to the region (King and Turner, 2007). However, the rate 

of new mass accumulation over much of the AS sector has not kept pace with increasing 

ice discharge. The net effect of the imbalance is thinning of glaciers and grounding line 

retreat (Rignot et al., 2014; Shepherd et al., 2002). Today, the AS sector is one of the 

most rapidly changing regions in Antarctica (Parizek et al., 2013; Rignot, 2008; Rignot et 

al., 2002; Shepherd et al., 2012; Shepherd and Wingham, 2007; Thomas et al., 2004; 

Wåhlin et al., 2010).   

The physical setting of the AS sector must influence the recent mass loss. The 

lack of a large ice shelf and the proximity of MCDW exposes the ice front to climate 

forcings such as ocean variability and ocean warming (Gille, 2014; Pritchard et al., 2009) 

and indeed, the intrusion of relatively warm MCDW beneath the small ice shelves is 

thought to be driving present changes in the ASE (Shepherd et al., 2004). The 

geomorphology of the bed beneath the grounded ice will determine how the interior 

responds to that forcing. 
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1.2 Climate Context 

The expected future high atmospheric CO2 world is one in which the WAIS will 

be smaller than at present and may retreat to isolated ice caps and mountain glaciers 

(Golledge et al., 2012; Naish et al., 2009; Pollard and DeConto, 2009). According to the 

physics as it is understood, the change will be driven from the sea, but may also involve 

warming in the atmosphere above (Mayewski et al., 2009; Nowicki et al., 2013). As 

deglaciation proceeds, sea level will rise, sea ice extent will change, and the circulation of 

both the ocean and the atmosphere will be modified. These changes will affect Antarctic 

ecosystems and will propagate northward through the climate system (Ainley et al., 2005; 

Smith et al., 1999; Trathan et al., 2007). What is less clear, however, is at what rate key 

changes will take place. Both direct observation and paleoclimate proxies show that rates 

in cryosphere systems are not uniform over time, a situation that confounds direct 

comparison between observations and climate models, and that makes understanding 

sources of variability in the coupled ice—ocean—atmosphere system of particular 

scientific and social relevance. 

The rate at which the WAIS responds to climate forcing depends on a set of 

processes and process interactions involving ice, ocean, atmosphere, and the terrestrial 

subglacial environment. Substantial gaps exist in the scientific understanding of most of 

these. This is the case because direct observation in the Antarctic is challenging and 

because time and spatial scales of observation are often mismatched with the fundamental 

scales of the underlying processes. Nevertheless, model projections of future change are 
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of critical importance and are routinely produced (Goelzer et al., 2013; Golledge et al., 

2015; Nowicki et al., 2013). Here I focus on the subglacial environment of Thwaites 

Glacier in the AS sector of the West Antartica, and in particular the influence of 

(estimated) bed morphology on model projections. As the shape of the ice sheet base is 

inferred from geophysical observations, many realizations are possible and thus, many 

ice sheet model outcomes are also possible.  

 

1.3 Glaciological Context 

The WAIS is thought to be particularly prone to rapid mass loss due to its marine 

setting. The grounded inland ice sheet rests on an inland-deepening bed and terminates in 

a deeply embayed floating ice shelf. The marine ice sheet instability hypothesis first put 

forward in the 1970s holds that a perturbation causing thinning of ice at the transition 

from grounded to floating ice could yield runaway retreat of that boundary (Mercer, 

1978). In brief: when ice upstream of the grounding line thins and goes afloat, it can flow 

more rapidly than was previously possible, generating additional thinning and additional 

speedup at the grounding line. The dynamical connection between floating and grounded 

ice is particularly strong because the ice sheet is drained by fast-flowing ice streams that, 

due to the unconsolidated, water saturated sediments over which they flow, are only 

weakly coupled to the bed (Bougamont et al., 2003). 

The grounding zone is the gateway through which terrestrial ice must pass before 

entering the floating ice shelf and contributing to sea level. The geographic setting of the 

grounding zone influences the rate at which ice flows through this gateway such that any 
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processes influencing its position must be well understood if credible assessments of ice 

sheet vulnerability to warming and likely future rates of change are to be made. 

In a real-world setting, the transition from grounded to floating ice occurs as ice 

passes over a strip of bed, hence the term grounding zone. However, it is conceptually 

simpler to discuss processes related to this zone by expressing it in terms of a line. 

Models treat the grounding zone as a line, and any reference in this work to a grounding 

line implies grounding zone.     

 

1.4 Research Question 

Accurately modeling marine ice sheet response to environmental forcing requires 

good fidelity to a variety of physical processes. The importance of grounding line 

dynamics and downstream processes like ice shelf basal melting are widely addressed. 

My focus is directed upstream to the influence of bed morphology on ice sheet retreat. 

This is accomplished using accurate sub-kilometer scale topographic data and a high-

resolution ice sheet model with appropriate grounding line physics. 

My primary goal is to understand how and why the more realistic bed geometry 

affects model behavior and projections of future change. I use the same type of forcing as 

prior work on the Thwaites and Pine Island Glacier systems – parameterized warm water 

incursion beneath the floating glacier terminus – and compare the resulting ice sheet 

retreat across simulations using different basal elevation data sets. This allows me to 

consider how representation of the bed affects the simulation.   
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2.0 METHODS 

The transition from grounded (ice flowing over bedrock) to floating (ice flowing 

over water) is also a transition in flow regime. On the floating side, basal shear stress is 

very small, so that vertical shearing does not occur and the stress balance is dominated by 

horizontal shear and normal stresses. On the grounded side, basal traction ranges from 

small but non-zero to nearly equal the gravitational driving stress and so vertical shearing 

ranges from negligible to dominant in the balance of stresses, with horizontal shear and 

normal stresses making up the rest of the balance (Cuffey and Paterson, 2010). The 

relative magnitudes of the stresses depend on spatially variable conditions such as 

properties of the basal material and bed morphology. The physics necessary to reasonably 

model grounding line retreat must accommodate flow regime on either side of the 

transition, as well as the transition itself.  

The flow of ice can be described by a system of partial differential equations. 

Such a system is derived from conservation laws (governing equations) and constitutive 

equations and can be solved, at least through numerical approximations, with the addition 

of boundary and initial conditions. A very brief description of the governing equations 

and constitutive relationships that lead to ice flow approximations is provided in this 

section. In order to provide context, some of the more widely used approximations for 

fast flowing regimes such as Thwaites Glacier are shown. The hybrid approximation 

implemented in the model used here is discussed at the beginning of the 2.5 Numerical 

Model section. 
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2.1 Governing Equations 

Ice is a viscous, non-Newtonian fluid. Like all fluids it must obey the 

conservation laws of mass, energy, and momentum. In all cases, ice deformation is 

treated as an irrotational flow of an incompressible fluid. 

The general form of mass conservation is: 

 0
t





 


u   (2.1.1) 

where represents ice density and represents the velocity vector in three Cartesian 

dimensions. Boldface is used to indicate a vector-valued quantity. 

Incompressibility leads to: 

 0 u   (2.1.2) 

Equation (2.1.2) can be vertically integrated using the Leibniz integral rule to 

obtain mass continuity for ice thickness in terms of mass flux divergence and melting & 

freezing: 

   (2.1.3) 

where represents ice thickness,  represents melting or freezing rate at the base, and 

represents accumulation or ablation rate at the surface. The overbar indicates a depth-

averaged value. 

Following Fourier’s law of heat conduction, the equation for the conservation of 

energy can be written as: 

   (2.1.4) 
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where represents temperature, represents the ice heat capacity,  represents the ice 

thermal conductivity, and   is a heat source term. The first term on the right represents 

vertical heat diffusion, the second term represents advection, while the third heat source 

term may include viscous dissipation and latent heat (freezing). The small aspect ratio of 

ice sheets, about 10-3, means that horizontal diffusion may be neglected (Cuffey and 

Paterson, 2010). The material properties c and k are temperature-dependent (Cuffey and 

Paterson, 2010). 

The Navier-Stokes equation for the conservation of linear momentum is: 

 
d

p
dt

    
u

τ f   (2.1.5) 

where p  represents pressure, τ  is the deviatoric stress tensor, and f  represents the body 

force acting on the ice. The effective force of gravity, g , and the Coriolis force, which 

is an inertial force, comprise f . However, scaling arguments lead to simplifications of the 

complete Navier-Stokes equation for conservation of linear momentum using typical 

values for the horizontal and vertical ice sheet extent, the typical horizontal and vertical 

flow velocities, typical pressure, and typical time-scale (Greve and Blatter, 2009). The 

Froude number, a ratio involving acceleration and pressure gradient, is about 10-15 in the 

horizontal direction and about 10-21 in the vertical direction. The acceleration term on the 

left-hand side of equation (2.1.5) is very small compared to the viscous terms on the right 

so it is neglected. Similarly, a scaling argument is used to estimate the ratio between the 

Coriolis force and pressure gradient is about 85 10 , which is still very small compared 

T c k



13 

 

to viscous terms. As a result, the Coriolis force inertial term is also neglected and the 

equation for the conservation of linear momentum for ice is:  

 0p    τ g   (2.1.6) 

where g  represents the acceleration due to gravity. Equation (2.1.6) describes what is 

known as Stokes flow (Greve and Blatter, 2009). 

 

2.2 Constitutive Equations 

Ice sheets are in static equilibrium even while in motion, as expressed in equation 

(2.1.6) (Cuffey and Paterson, 2010). This balance is often represented in terms of driving 

and resisting stresses. The divergence of the stress deviator in equations (2.1.5) and 

(2.1.6) can be written using the effective fluid viscosity,  . 

 
2  τ u   (2.2.1) 

and the viscosity, then, should be written in terms of the effective strain rate.   

A constitutive relation between stress and strain is needed. For an incompressible, 

isotropic material, each strain rate component must be proportional to its corresponding 

deviatoric stress component. Treating ice as such a material leads to the power-law 

relation known as the generalized Glen’s Law or the Nye-Glen Isotropic Law: 

   (2.2.2) 

where is a component of the strain rate tensor and is a component of the deviatoric 

stress tensor. The second invariant of the deviatoric stress tensor is known as the effective 

deviatoric stress, .  The exponent in the flow law, , is usually 3. The rate factor  is 

 1
, , ,            n
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a spatially variable parameter that is strongly dependent on temperature and fabric of the 

ice. This temperature dependence is described by an Arrhenius relationship with different 

constants above and below 263 K (Cuffey and Paterson, 2010). Some of the pioneering 

work for the flow relation in equation (2.2.2) was accomplished by Nye who proposed 

that: 

   (2.2.3) 

where once again the subscript  denotes the second invariant or effective strain rate and 

effective deviatoric stress respectively (Cuffey and Paterson, 2010). Considering 

equations (2.2.2) and (2.2.3), deviatoric stress can be written as: 

   (2.2.4) 

The flow relation in equation (2.2.2) can be written in the inverse form and 

expressed in terms of effective viscosity and strain rate as: 

   (2.2.5) 

Setting the right side of equation (2.2.5) equal to the right side of equation (2.2.4), the 

effective viscosity of ice may be expressed as: 

   (2.2.6) 

This shows that viscosity decreases (ice softens) with increasing strain rate, which is 

analogous to increasing deviatoric stress, and that viscosity is strongly dependent on ice 

temperature and fabric. 
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2.3 Ice Flow Approximations 

The incompressibility equation (2.1.2) and force balance represented by the 

conservation of momentum in equation (2.1.6) comprise the field equations that describe 

ice flow. Using the relation between strain rate and velocity shown here in tensor 

notation: 

   (2.3.1) 

and the constitutive relationship between stress and strain in Glen’s Law leads to the 

following 3D representation known as the full-Stokes model: 

   (2.3.2) 

where is effective viscosity, is the ice pressure, g  is the acceleration due to gravity 

and , yu , and are the three Cartesian components of velocity. This system, including 

the strain-rate dependent viscosity, is computationally challenging. Due to this, glacier 

and ice sheet modelers take advantage of scaling arguments and boundary conditions to 

reduce the order of the equations. 

Various simplifications have been developed that depend on assumptions about 

stress boundary conditions and relative magnitudes of stress gradients in the ice (see 
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Hindmarsh, 2004; Hutter, 1983; MacAyeal, 1989; Morland, 1985). The Blatter-Pattyn 

first order ice sheet model makes the assumption that the horizontal derivatives of the 

vertical velocity component are negligible (Blatter, 1995; Pattyn, 2003): 

   (2.3.3) 

Furthermore, bridging effects are considered negligible so that the vertical momentum 

balance at a location is independent of horizontal coordinates. This means that the 

horizontal components of velocity may be uncoupled from the system leading to the 

following system of equations: 

   (2.3.4) 

where is the surface elevation and as an input it can be determined by the ice thickness 

evolution equation (2.1.3). This also simplifies the constitutive relations between stress, 

strain, and viscosity, equations (2.2.2) through (2.2.6), so that now they only depend on 

the horizontal velocity components. After solving for the horizontal velocities, the 

vertical velocity component may be determined by vertical integration of: 

   (2.3.5) 
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   (2.3.6) 

(MacAyeal, 1989; Morland, 1985). This leads to the following model that when 

integrated yields the horizontal components of velocity: 
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where is the depth-averaged viscosity, is ice thickness, and b
  is the basal drag in 

the superscripted direction. 

 

2.4 Boundary Conditions 

Suitable boundary conditions must be applied in order to solve any system of 

equations describing ice motion. Kinematic boundary conditions are applied at 

impermeable boundaries, and define the conditions where fluid flow normal to the 

boundary must be zero at a stationary boundary or equal to the velocity of a moving 

boundary normal to itself. The first case essentially describes the situation for a 

solid/fluid boundary such as that at the bedrock/ice interface while the second case can 

describe the situation for a fluid/fluid boundary such as that at the atmosphere/ice 

interface. The derivation and application of kinematic boundary conditions at the ice 

surface and ice base will now be discussed in greater detail. 

If the boundary at the free surface (atmosphere/ice interface) is defined by the 

implicit equation  
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 ( , ) ( , , ) 0sB t z h x y t  x   (2.4.1) 

where z  is a vertical coordinate, t  is time, and h  is the z-coordinate of the ice surface 

(Greve and Blatter, 2009) then, equation (2.4.1) describes a zero-equipotential surface 

where the unit normal vector pointing toward the atmosphere is defined as 
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As flow evolves, particles can only remain on sB  if  

 0s s
s

DB B
B

Dt t


   


w   (2.4.3) 

where 
D

Dt
is the notation for the material derivative and w  represents the velocity of the 

free surface. An ice volume flux perpendicular to the free surface can be specified by 

letting u
s
equal the surface velocity in the mass balance equation: 

  ( )sa   w u n   (2.4.4) 

For this surface mass balance equation, the sign is typically chosen such that 

accumulation is positive and ablation is negative. Now equation (2.4.3) can be rewritten 

using equation (2.4.2) and the definition provided by equation (2.4.4) as 

  s
s s s

B
B B a

t


    


u   (2.4.5) 

which, using sB z h    and the definitions in equation (2.4.2) , is equivalent to  
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in which a superscript on a vector component indicates the Cartesian coordinate 

direction. This is the kinematic boundary condition for the freely evolving surface of an 

ice sheet (Greve and Blatter, 2009).  

The dynamic boundary condition for the free surface is derived from a momentum 

jump condition. Since the atmospheric stress is small compared to typical stresses in an 

ice sheet and ice flow velocities are small, the end result is the stress-free condition 

 0 σ n   (2.4.7) 

for the surface (Greve and Blatter, 2009). 

Additionally, thermodynamic boundary conditions are required for the energy 

equation (2.1.4). This is accomplished by specifying the surface temperature sT  ,  

 ,sT T   (2.4.8) 

which can be approximated in sub-zero (°C)  regions by the mean annual surface 

temperature (Greve and Blatter, 2009). Similarly, if the basal temperature is at the 

pressure melting point, the basal temperature can be specified as 

 mT T   (2.4.9) 

where the subscript m indicates the pressure melting point.  

The kinematic boundary condition for the ice base is derived in a similar manner 

to that of the free surface. The normal vector points into the bedrock, so that the 

components of the gradient at the boundary between ice and bedrock bB  have the 
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opposite sign than in equation (2.4.2).  Similarly, the ice volume flux perpendicular to the 

basal boundary is 

  sb   u w n   (2.4.10) 

so that positive values for b
 indicate mass loss due to basal melting. 

Since the normal component of ice velocity vanishes at the basal boundary in the 

same manner as the free surface, the end result for the basal kinematic boundary 

condition is analogous to equations (2.4.5) and (2.4.6) (respectively): 

 b
b b b

B
B B b

t


    


u   (2.4.11) 

and 
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  (2.4.12) 

where the subscript b  indicates the base and superscripts indicate the Cartesian 

coordinate direction for u-velocity components. 

The upper and lower surfaces may have any orientation relative to the fixed 

coordinate system and the fluxes perpendicular to the free surface and ice base can be 

written in terms of the vertical coordinate as 

 sa B a    (2.4.13) 

for accumulation and ablation rates, and 

 bb B b    (2.4.14) 
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for basal melt rate. With these fluxes in the vertical direction, these kinematic boundary 

conditions can be used with the Leibniz integral rule to form the mass continuity equation 

(2.1.3) as previously mentioned. 

The momentum jump condition for the basal interface is simplified once again as 

the advective ice flow term is small, so that 

 lith ,  σ n σ n   (2.4.15) 

where lithσ  indicates lithospheric stresses. Equation (2.4.15) shows continuity of the 

stress vector across the interface, but this is inadequate for a dynamic boundary condition 

as it provides no information about the stress regime in the underlying material (Greve 

and Blatter, 2009). Stress state and deformation in the subglacial material is a topic of 

ongoing research and various parameterizations are used to represent the effect of the 

material on ice flow (Bougamont et al., 2015; Bougamont et al., 2011). In the  model 

implemented here, sliding creates resistance according to a viscous law (Cornford et al., 

2015). The resulting basal traction term, b , is spatially variable according to the motion 

of the ice and a coefficient C that represents basal properties 

 

1
   if 

0                            otherwise
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 



  (2.4.16) 

The coefficients C  are determined during model initialization by the adjoint equations. 

For this equation, 1l   and r  represents the bedrock elevation below sea level.  
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2.5 Numerical Model 

The Berkeley Ice Sheet Initiative for Climate at Extreme Scales (BISICLES) ice 

sheet model is used here. BISICLES applies a block-structured finite volume method 

with adaptive mesh refinement (AMR) to solve the governing equations for ice sheet 

dynamics (Cornford et al., 2013). The momentum equations are simplified using the 

Schoof-Hindmarsh model (Cornford et al., 2013).  As this approximation was similar to 

the SSA at the time the modeling in this paper took place, it is hereafter informally 

referred to as SSA*. SSA* is like other approaches that make use of the small aspect ratio 

and near-zero basal traction, but treats the effective viscosity differently.  In brief, the 

deviatoric stress tensor  is split into a tensor representing the horizontal and vertical 

normal components together with the horizontal shear, and a tensor representing the 

vertical shear components. The first tensor is the usual case of the MacAyeal-Morland 

SSA. In the case of a near-zero basal shear condition, the second tensor is very small, 

compared to the first, and may be neglected when computing velocity terms. It is, 

however, of use in computing the effective viscosity.  For that purpose, vertical shear 

components are computed using the shallow ice approximation of Hutter (1983) and 

Morland (1984) 
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  (2.5.1) 

in which xz  and yz  represent the vertical shear components in the horizontal plane and z  

represents the vertical Cartesian coordinate. 

τ
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Cornford et al. (2013) tested the SSA* model using steady-state grounding line 

experiment for an ice stream with a simple geometry. Comparison against a full-Stokes 

solution showed that the modification increased the accuracy of a steady-state grounding 

line about 10 times over the standard SSA. Although this experiment incorporated simple 

ice stream and basal geometry with the assumption of isothermal ice, it does provide 

evidence that the SSA* approximation may be more accurate in determining grounding 

line position than the shelfy-stream approximation alone.  

The finite volume method (FVM) is similar to both the finite difference method 

(FDM) and finite element methods (FEM). All three methods solve discretized governing 

equations over discretized domains.  In particular, the governing equations of a system 

are solved over a structured grid for both the FVM and FDM. In contrast to the FDM in 

which a truncated Taylor series is used to approximate governing equations at each node, 

the FVM and FEM solve the integral form of the governing equations. the strong 

formulation is discretized for the FVM while the weak formulation is discretized for the 

FEM (Patankar, 1980; Price et al., 2007; Versteeg and Malalasekera, 2007).  

Discretizing the domain into cells, creating control (or finite) volumes that 

surround grid points, and evaluating the integral strong form of governing equations over 

each cell is distinguish the FVM from other approximation methods (Patankar, 1980; 

Versteeg and Malalasekera, 2007). The numerical scheme implies that the integral 

conservation of a conserved quantity is exact over any number of control volumes up to 

and including the entire domain (Patankar, 1980; Versteeg and Malalasekera, 2007). 
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Furthermore, the exact integral balances apply to a domain consisting of coarse cells or 

fine cells alike, not just in the limiting case of sufficiently high resolution.  

The block structured AMR facilitates efficient modeling of ice sheet regions that 

include a grounding line. Numerical models always require compromises between 

resolution (and thus computation time) and convergence.  Problems involving a 

grounding line tend to exhibit decreasing rates of convergence with increasing mesh 

spacing (Cornford et al., 2013). Therefore, it is desirable to have a mesh with the smallest 

spacing at the grounding line which quickly coarsens away from it and that is able to 

evolve over time as the grounding line migrates, and this is exactly what the AMR in 

BISICLES accomplishes  

AMR in BISICLES is hierarchical with the coarsest mesh spacing on the bottom 

in plan view (Figure 3). The mesh spacing of a level divided by the mesh spacing of the 

level immediately below it is known as the refinement ratio. The refinement ratio is 

always an even integer and each level domain is properly nested. The stress balance 

equations are first solved for the coarsest level mesh and progresses upward where 

refinement criteria have been applied, using the previous coarser mesh solution as a 

starting point. Refinement criteria can be based on the Laplacian of the velocity field, 
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Figure 3. An example of a block-structured mesh.  The first discrete level domain is 

comprised of the coarsest mesh labeled A. Overlaying this is the next discrete level 

domain comprised of meshes in the rectangular blocks labeled B and C. The finest 

mesh comprises the discrete level domain in block D.  The valid domain includes the 

subsets of discrete levels that are not overlain by other discrete levels. In other 

words, what one sees in plan view is the valid domain. Figure adapted from 

Cornford et al., 2013.  

 

by tagging cells adjacent to the grounding line, or both (Cornford et al., 2013). However, 

modifications to the FVM discretization on meshes must be made to accommodate the 

coarse-fine boundaries separating valid regions of the domain. The flux of a vector field 

across a coarse-fine boundary is handled by modifying the following three discrete 

operators: the flux divergence term in the thickness evolution equation (2.1.3), the 

driving stresses on the right hand side of SSA*, which can be seen in equation (2.3.7), 

and the viscous terms on the left hand side of SSA*, equation (2.3.7) (Cornford et al., 

2013). These modifications simply partition the flux from a coarse cell correctly into the 

bordering finer cells.  
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2.6 Model Domain and Boundaries 

The model domain includes the entire ASE sector, both grounded and floating ice. 

The boundary is the union of ice in contact with the atmosphere, ice in contact with the 

ocean, and ice in contact with the bed. For our simulations, ice thickness and ice surface 

elevation come from the standard Bedmap2 dataset (Fretwell et al., 2013). The ice 

accumulation field (ice equivalent surface snow accumulation), is provided in 

conjunction with the Bedmap2 data (Arthern et al., 2006). 

Thermal boundary conditions at the base and surface derive from an estimation of  

spatially varying ice temperatures provided by Pattyn (2010). This dataset is used to 

specify an initial temperature distribution in the ice. No geothermal flux under grounded 

ice is specified. Instead, the model initialization technique used here accounts for the 

contribution to ice velocity from basal melt. 

Boundary conditions are also needed for the ice shelf and lateral boundaries. For 

the shelf, the normal stress at the lower surface is equal to the hydrostatic water pressure 

(Cornford et al., 2013). At ice divides, the flow velocity normal to the divide is zero, a 

Dirichlet condition, while a Neumann condition is applied to the tangential velocity such 

that its derivative is zero (Cornford et al., 2013). A Neumann condition is applied at the 

calving front such that the normal stress across it is equal to the hydrostatic pressure there 

(Cornford et al., 2013). 
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2.7 Bed Topography 

Two realizations of the Earth surface beneath the ice sheet are used. These include 

a benchmark data set widely used by ice sheet modelers, and a new data set produced by 

colleagues associated with this research project (Goff et al., 2014).  

The BEDMAP project (Fretwell et al., 2013; Lythe et al., 2001) is the cryosphere 

community standard suite of boundary condition data sets. The Bedmap2 topography is a 

1 km resolution gridded dataset of subglacial topography and seabed elevation for the 

Antarctic region extending from the South Pole to 60° S (Fretwell et al., 2013). The 

Bedmap2 collection of gridded datasets also includes ice thickness and surface elevation. 

Over grounded regions and away from rock outcrops, the bed topography was created by 

subtracting 5 km gridded ice thickness data from 1 km gridded surface elevation data. In 

order to fill in detail close to outcrops, a denser 1 km coverage of ice thickness from a 

thin-ice-model was subtracted from the surface elevation data within 10 km of rock 

outcrops but not including the rock, which is an expression of surface elevation. These 

data were combined with ocean and sub-ice-shelf bathymetry and gridded, interpolating 

where necessary, to produce the final 1 km gridded topography (Fretwell et al., 2013).   

The second realization of the subglacial bed was created by project partners at the 

University of Texas Institute for Geophysics (UTIG) using the same airborne radar 

observations of the ice surface and thickness as the Bedmap2, but with a novel 

computational approach. This approach summarizes the along track radar data into 250 m 

resolved bed geometries. The new 250 m resolution conditional simulation, combines a 
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stochastic realization with a deterministic surface of the bed beneath Thwaites Glacier 

and its catchment area (Goff et al., 2014) (Figure 4).  

 

 

Figure 4. The new 250 m resolution bed of the Thwaites catchment created by UTIG 

researchers. This bed has been “sewn into” a 250 m interpolation of the Bedmap2 

bed for the sake of continuity. 

 

The aerogeophysical observations over the Thwaites catchment were interpolated 

to the fine grid using inhomogeneous statistics with channelized morphology and a 

realistic small-scale roughness to create this new bed topography (Goff et al., 2014). A 

conditional simulation is non-unique. It allows multiple realizations of the features that 
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could lie between radar flight lines to be generated using the statistics of the features that 

do lie along the flight lines (Goff et al., 2014). Multiple bed models could be used to 

quantify uncertainty in ice sheet model projections, however, only one realization is used 

here. The UTIG conditional simulation will hereafter be referred to as the Goff bed, 

named after the bed’s principal creator.  

 

2.8 Model Initialization 

Model initialization is based on optimal control theory, in which unknown values 

of parameter fields and boundary conditions are estimated using known (observed) fields 

and the fundamental dynamics of the model (MacAyeal, 1993). The goal is to find, as 

efficiently as possible, the best fit between the observed and modeled fields. A cost 

function that quantifies the quality of the fit is minimized by repeated estimation of the 

unknown parameters, that is, by iterating on those parameters.  In this case, basal traction 

and ice stiffening coefficients, which locally modify ice viscosity, are estimated through 

minimization of the cost function for the BISICLES control problem (Cornford et al., 

2015). 

While not fully developed in the present work, a brief example of a control 

method application is provided here so that both the benefits and the limitations of the 

approach may be discussed later. In this example, basal traction coefficients are sought.  

The spatially variable basal traction field  ,x y  can be represented by an infinite 

two-dimensional Fourier series: 


