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Abstract

Four-dimensional variational data assimilation (4D-Var) provides an estimate to the

state of a dynamical system through the minimization of a cost functional that mea-

sures the distance to a prior state (background) estimate and observations over a time

window. The analysis fit to each information input component is determined by the

specification of the error covariance matrices in the data assimilation system (DAS).

Weak-constraint 4D-Var (w4D-Var) provides a theoretical framework to account for

modeling errors in the analysis scheme. In addition to the specification of the back-

ground error covariance matrix, the w4D-Var formulation requires information on the

model error statistics and specification of the model error covariance. Up to now, the

increased computational cost associated with w4D-Var has prevented its practical im-

plementation. Various simplifications to reduce the computational burden have been

considered, including writing the model error covariance as a scalar multiple of the

background error covariance and modeling the model error.

In this thesis, the main objective is the development of computationally feasible

techniques for the improved representation of the model error statistics in a data

assimilation system. Three new approaches are considered.

1. A Monte Carlo method that uses an ensemble of w4D-Var systems to obtain

flow-dependent estimates to the model error statistics.

2. The evaluation of statistical diagnostic equations involving observation residuals

to estimate the model error covariance matrix.
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3. An adaptive tuning procedure based on the sensitivity of a short-range forecast

error measure to the model error DAS parametrization.

The validity and benefits of these approaches are shown in two stages of numerical

experiments. A proof-of-concept is shown using the Lorenz multi-scale model and the

shallow water equations for a one-dimensional domain. The results show the potential

of these methodologies to produce improved state estimates, as compared to other

approaches in data assimilation. It is expected that the techniques presented will

find an extended range of applications to assess and improve the performance of a

w4D-Var system.
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Chapter 1

Introduction

Environmental processes can be realistically described by mathematical models of

the system dynamics, which can be used to make predictions about future behavior

of the system, provided that the initial conditions for the forecast are accurate [67].

However, it is generally the case that the data available incompletely describe all the

states and data may contain random noise, causing a discrepancy between the true

state of the dynamical system and a forecast of the true state [53]. The purpose of data

assimilation is to incorporate all available information, measured observations and

background knowledge of the state, with a mathematical model in order to estimate

as accurately as possible the state of the system [74]. Once obtained, the estimate

(analysis) can be used as input into another operation, for example, as the initial

state for a numerical weather forecast [6].

1.1 Overview of Data Assimilation Methods

There are various types of data assimilation techniques used for research in a number

of different applications, including, but not limited to, numerical weather prediction

(NWP), oceanography, geosciences, hydrology, and signal processing. A brief review

of several popular data assimilation methods is now presented.
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1.1.1 The Kalman Filter

The Kalman filter [51, 52] is a recursive algorithm that uses noisy observations to

produce an analysis of a linear dynamical system

xti = Mix
t
i−1 + εqi (1.1)

where Mi ∈ Rn×n is nonsingular and εqi denotes unbiased model error with covariance

matrix Qi. An unbiased background estimate xb0 of xt0 is known with unbiased error

εb0 = xt0−xb0 and error covariance matrix B0, which is uncorrelated with model error.

Noisy observations satisfy

yi = Hix
t
i + εoi (1.2)

where Hi ∈ Rp×n represents the observation operator, mapping the state xi into

observation space, as typically there are fewer observations than variables in the

model, and εoi is the unbiased observation error with covariance matrix Ri. With

these assumptions, the Kalman filter finds and an unbiased estimate xai of xti which

is a linear function of xbi and yi that minimizes the mean square error

E[(xti − xai )
T(xti − xai )]. (1.3)

The solution to this problem is

xai = xbi + Ki[yi −Hix
b
i ] (1.4)
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where Ki is the Kalman gain matrix

Ki = BiH
T
i [HiBiH

T
i + Ri]

−1. (1.5)

In addition, the analysis error εai = xti − xai has the covariance matrix

Ai = [In −KiHi]Bi. (1.6)

Once the analysis has been obtained, the model is used to forecast xai , which produces

the background estimate for the next time-step, that is, xbi+1 = Mix
a
i , whose error

covariance matrix satisfies

Bi+1 = MiAiM
T
i + Qi. (1.7)

The nature of the Kalman filter makes it desirable to use. A famous application of

the Kalman filter is its use in the Apollo moon project [39]. However, not all models

are linear. In the event of a nonlinear dynamical system

xti =Mi(x
t
i−1) + εqi (1.8)

and nonlinear observation operator hi, which gives the observations

yi = hi(x
t
i) + εoi , (1.9)

the Kalman filter does not apply without modification.

3



1.1.2 The Extended Kalman Filter

Due to the nonlinearity of the modelMi and observation operator hi, their lineariza-

tions are necessary

hi(xi) ≈ hi(x
b
i) + Hb

i(xi − xbi) (1.10)

Mi(xi−1) ≈Mi(x
a
i−1) + Ma

i (xi−1 − xai−1), (1.11)

where Hb
i is the Jacobian of hi evaluated at xbi and Ma

i is the Jacobian ofMi evaluated

at xai−1. With these approximations, the Kalman filter equations are used to find the

analysis state xai and use the linearized model Ma
i to forecast for the next iteration.

Using the Kalman filter equations for nonlinear Mi and/or hi gives the extended

Kalman filter (EKF). By using the linearizations, the Kalman filter equations are

no longer exact, but only approximations, meaning what is called Bi in the EKF

is not truly the background error covariance. If the model Mi and the observation

operators hi are weakly nonlinear, then the approximation is a good one. The books

by Anderson and Moore [2] and Jazwinski [50] provide a complete derivation of the

EKF.

1.1.3 The Ensemble Kalman Filter

Evensen [31] introduces a Monte Carlo alternative, known as the ensemble Kalman

filter (EnKF). The Kalman filter equations are used as in the EKF, however Bi is

replaced with an ensemble covariance matrix Be, which can be found at much lower

computational cost than the cost of (1.7). Evensen [33] presents the mathematical

framework of the EnKF and provides a historical overview of its development.

At each time-step, Be is formed from an ensemble of Ne members xbj and j =

1, 2, . . . , Ne is the member index. The n×Ne matrix X is defined to be the rectangular

4



matrix whose columns are the scaled differences between the ensemble members and

the ensemble mean x̄ [12].

X =
1√

Ne − 1

[
xb1 − x̄ xb2 − x̄ · · · xbM − x̄

]
(1.12)

The ensemble covariance Be is then given by

Be = XXT. (1.13)

Other developments in the EnKF occurred, and some of those results are summa-

rized here. Evensen and van Leeuwen [34] re-derive the EnKF as a suboptimal solver

for the general Bayesian problem. Hamill and Snyder [42] construct a hybrid data

assimilation system by combining the EnKF and 3D-Var. Mitchell and Houtekamer

[66] introduce an adaptive EnKF which accounts for the model error by estimating

some of the model error statistics. Houtekamer and Mitchell [47] localize covariance

matrices by using the Hadamard (Schur) product with a correlation function. Hamill

et al. [43] investigate the relationship between ensemble size and distant covariances.

Anderson [3] discusses different ensemble Kalman filters and provides an efficient two-

step update procedure. Evensen [32] develops a new square root implementation of

the EnKF.

1.1.4 Four-Dimensional Variational Data Assimilation

In variational data assimilation, the problem of finding an analysis is formulated to

be the minimizer of a cost functional, where optimization techniques can be applied.

The four-dimensional variational data assimilation (4D-Var) cost functional measures

the distance to a prior state (background) estimate and observations [56] over a time

window [t0, tN ]. The analysis fit to each information input component is determined

5



by the specification of the error covariance matrices in the data assimilation system

(DAS). The works by Sasaki [71] and Talagrand and Courtier [75] are some early

examples focusing on 4D-Var.

In a data assimilation window [t0, tN ], the analysis states xai depend only on the

initial condition xa0, which is obtained by minimizing the cost functional

J(x0) =
1

2
[x0 − xb0]

TB−1[x0 − xb0] +
1

2

N∑
i=0

[yi − hi(xi)]
TR−1i [yi − hi(xi)] (1.14)

where the observations yi are valid at ti ∈ [t0, tN ] and the states xi at time ti are

related by the perfect model assumption

xi =Mi(xi−1), (1.15)

Using this model constraint,

xai =Mi(x
a
i−1). (1.16)

The optimality condition satisfied by xa0 is ∇x0J(xa0) = 0, or

B−1[x0 − xb0]−
N∑
i=0

MT
0→iH

T
i R−1i [yi − hi(xi)] = 0 (1.17)

where M0→i is the Jacobian of the model integrated from time t0 to ti. It is a special

case of weak-constraint 4D-Var, in which the model relating the time-distributed

states xi is not perfect and model error exists.

6



1.1.5 Weak-Constraint 4D-Var

Weak-constraint 4D-Var (w4D-Var) provides a theoretical framework to account for

modeling errors in the analysis scheme. In addition to the specification of the back-

ground error covariance matrix, the w4D-Var formulation requires information on the

model error statistics and specification of the model error covariance Q. Instead of

the perfect model assumption, the model equations

xti =Mi(x
t
i−1) + εqi (1.18)

are imposed as a weak constraint of the optimization. The w4D-Var cost function is

J(x0, . . . ,xN) =
1

2
[x0 − xb0]

TB−1[x0 − xb0] +
1

2

N∑
i=0

[yi − hi(xi)]
T R−1i [yi − hi(xi)]

+
1

2

N∑
i=1

[xi −Mi(xi−1)− qi]
TQ−1i [xi −Mi(xi−1)− qi], (1.19)

where qi = E[εqi ] is the model error bias vector. To help reduce the computational

burden of implementing w4D-Var, several simplifications have been considered, in-

cluding writing the model error covariance as a scalar multiple of the background

error covariance (see [25] for example) and modeling the model error [41, 82, 83].

Further discussion of w4D-Var takes place in Chapter 2.

1.2 The Tangent Linear and Adjoint Models

An important component of variational data assimilation methods is the use of ad-

joint models in the computation of gradients. To a first-order approximation, the

propagation of a vector ẋ through a nonlinear model M(x) is determined by the

7



tangent linear model

ẏ = M(x)ẋ, (1.20)

the product of the Jacobian matrix M with ẋ, where the dot is used to indicate a

tangent linear variable. From linear algebra, it is known that for every linear operator

M, there exists an adjoint operator MT such that

〈Mx,y〉 = 〈x,MTy〉. (1.21)

The adjoint is used in the computation of the product of the Jacobian transpose

MT(x) with a vector ȳ

x̄ = MT(x)ȳ, (1.22)

where the bar is used to indicate adjoint variables. From the 4D-Var optimality

condition (1.17), the need for adjoints is clear. In particular, the adjoint of the

forecast model MT
0→i, which propagates the input backwards in time from ti to t0,

and the adjoint of the observation operator HT
i are needed.

Implementation of the tangent linear and adjoint models involve the development

of specialized code that produce the matrix-vector product without forming the Ja-

cobian matrix. Giering and Kaminski [38] and Griewank and Walther [40] discuss the

principles of tangent linear and adjoint code construction in detail. In essence, the

tangent linear model is based on the concept that if y = M(x), the corresponding

8



tangent linear statement for output yi is given by

ẏi =
∑
j

∂yi
∂xj

ẋj, (1.23)

involving the derivatives of yi with respect to all of the independent variables. The

adjoint statement for y =M(x) is based on

x̄i =
∑
j

∂yj
∂xi

ȳj, (1.24)

involving the derivatives of all outputs yj with respect to xi. The derivation of tangent

linear and adjoint code can be very time consuming and prone to errors when done

by hand. Various tools have been developed for automatic adjoint code generation,

such as Tapenade [44], which work on the principle that computer programs may

be seen as a sequence of mathematical statements and function evaluations. Such

computer programs can be differentiated by repeatedly applying the chain rule and

the computed derivatives are accurate to machine precision. The tangent linear model

is computed by propagating the derivatives of intermediate variables with respect to

the inputs, referred to as forward mode. The adjoint model is evaluated in reverse

mode by backward propagating the derivatives of the outputs with respect to the

intermediate variables. An example of creating tangent linear and adjoint models is

in Section 1.4.

1.3 Research Objectives

This dissertation aims to develop computationally feasible techniques for the im-

proved representation of the model error statistics in a w4D-Var DAS. Since the

analysis obtained from a w4D-Var DAS is determined by the input parameters, bet-

9



ter representation of the model error statistics will lead to a more accurate analysis.

Three new approaches are considered for achieving this goal.

1. A Monte Carlo method that uses an ensemble of w4D-Var systems to obtain

flow-dependent estimates to the model error statistics.

2. The evaluation of statistical diagnostic equations involving observation residuals

to estimate the model error covariance matrix.

3. An adaptive tuning procedure based on the sensitivity (derivative) of a short-

range forecast error measure to the model error DAS parametrization.

The theoretical foundations and development of these methodologies are separated

into three chapters. Each of these chapters also contains a review of the pertinent

published literature and preliminary results from the first stage of numerical exper-

iments demonstrating the merits of the related content using the Lorenz multi-scale

model, detailed next.

1.4 Lorenz Multi-Scale Model

The first stage of numerical experiments involves the multi-scale model of Edward

Lorenz [63]

dx̂k
dt

= x̂k−1(x̂k+1 − x̂k−2)− x̂k −
hc

b

J∑
j=1

ŷjk + F (1.25a)

dŷjk
dt

= cbŷj+1,k(ŷj−1,k − ŷj+2,k)− cŷjk +
hc

b
x̂k (1.25b)

where k = 1, . . . , K and j = 1, . . . , J . The ŷjk variables vary at a smaller scale than

the x̂k variables and are arranged as ŷ11, ŷ21, . . . , ŷJ1, ŷ12, . . . , ŷJ2, . . . , ŷJK . They also

extend cyclically so that ŷJ+1,1 = ŷ11. The model given by (1.25) will be referred to

10
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Figure 1.1: (a) Typical behavior of the LZ96 model, (b) The estimate of the true model
error covariance matrix

as LZ96. The “true” state of the dynamical system is represented by the integration

of (1.25) by the fourth-order Runge-Kutta method with b = c = 10, h = 1, K = 40,

J = 10 and F = 8. By ignoring the effects of the ŷjk variables, the Lorenz 40-variable

model [64]

dxk
dt

= xk−1(xk+1 − xk−2)− xk + F (1.26)

will only approximate the true state evolution and model error is now introduced by

the unrepresented small-scale dynamics. Thus, for the data assimilation process, the

true state xti at time ti will be the x̂-values produced from the integration of (1.25),

whereas the forecast modelMi will be the integration of (1.26) using a constant step-

size ∆t = 0.05, which identifies to a 6-hour time period. The integration of (1.25)

requires a smaller time-step to preserve numerical stability, so a 6-hour forecast is

achieved through ten smaller time-steps with ∆t = 0.005.

For comparison purposes only, an estimate of the true model error covariance

matrix Qt is obtained in the following way. First, a trajectory of 800,000 6-hour
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forecasts using (1.25) is formed. The state where x̂k = 8 for all k 6= K/2, x̂K/2 = 8.008,

and ŷjk = 0 is taken as the initial condition for the LZ96 model. Then, the x-values

from each state is forecast using (1.26). The difference between x̂- and x-values

represents the error in the forecast model. The sample covariance of these differences

is formed and represents the true time-invariant model error covariance Qt. Figure

1.1 shows the typical behavior of the LZ96 model and the estimated model error

covariance matrix when the small-scale dynamics are ignored.

A demonstration of the evaluation of the tangent linear and adjoint models is done

for the Lorenz 40-variable forecast function Mi, the integration of (1.26) using the

fourth-order Runge-Kutta method. For an autonomous differential equation system,

dx

dt
= f(x), x(t0) = x0, (1.27)

such as (1.26), the Runge-Kutta method numerically approximates the solution ac-

cording to

xi+1 = xi +
∆t

6
[k1 + 2k2 + 2k3 + k4] , (1.28)

where

k1 = f (xi) (1.29a)

k2 = f

(
xi +

∆t

2
k1

)
(1.29b)

k3 = f

(
xi +

∆t

2
k2

)
(1.29c)

k4 = f (xi + ∆tk3) . (1.29d)

The tangent linear and adjoint of (1.28) requires the tangent linear and adjoint of

12



the right-hand-side of (1.26). Starting with this, dxk/dt will be denoted yk for the

ease of notation. The tangent linear model requires the derivatives of yk with respect

to all input variables. Since yk depends on xk−2, xk−1, xk, and xk+1, only derivatives

with respect to these four inputs is required.

∂yk
∂xk−2

= −xk−1,
∂yk
∂xk−1

= xk+1 − xk−2,
∂yk
∂xk

= −1,
∂yk
∂xk+1

= xk−1 (1.30)

It follows from (1.23) that the tangent linear model of the right-hand-side of (1.26) is

ẏk = −xk−1ẋk−2 + (xk+1 − xk−2)ẋk−1 − ẋk + xk−1ẋk+1. (1.31)

The tangent linear model can be rewritten to be more computationally efficient,

reducing the number of operations required to compute the output.

ẏk = xk−1(ẋk+1 − ẋk−2) + ẋk−1(xk+1 − xk−2)− ẋk (1.32)

For the adjoint, the derivatives of all outputs which depend on xk are needed. The

outputs which depend on xk are yk−1, yk, yk+1, and yk+2.

∂yk−1
∂xk

= xk−2,
∂yk
∂xk

= −1,
∂yk+1

∂xk
= xk+2 − xk−1,

∂yk+2

∂xk
= −xk+1 (1.33)

Then, the adjoint model of the right-hand-side of (1.26) follows from (1.24).

x̄k = xk−2ȳk−1 − ȳk + (xk+2 − xk−1)ȳk+1 − xk+1ȳk+2 (1.34)
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For the Runge-Kutta method (1.28), the tangent linear model is given by

ẋi+1 = ẋi +
∆t

6

[
k̇1 + 2k̇2 + 2k̇3 + k̇4

]
, (1.35)

where the k̇ terms are obtained from the application of the chain rule

k̇1 = F (xi) ẋi (1.36a)

k̇2 = F

(
xi +

∆t

2
k1

)(
ẋi +

∆t

2
k̇1

)
(1.36b)

k̇3 = F

(
xi +

∆t

2
k2

)(
ẋi +

∆t

2
k̇2

)
(1.36c)

k̇4 = F (xi + ∆tk3)
(
ẋi + ∆tk̇3

)
(1.36d)

and F denotes the tangent linear model of f , that is (1.32) for the Lorenz model.

The adjoint of (1.28) is found by backward propagation the derivative of xi+1 with

respect to k4, k3, k2, and k1. By defining

k̂4 = FT (xi + ∆tk3) x̄i+1 (1.37a)

k̂3 = FT

(
xi +

∆t

2
k2

)(
x̄i+1 +

∆t

2
k̂4

)
(1.37b)

k̂2 = FT

(
xi +

∆t

2
k1

)(
x̄i+1 +

∆t

2
k̂3

)
(1.37c)

k̂1 = FT (xi)
(
x̄i+1 + ∆tk̂2

)
, (1.37d)

where FT denotes the adjoint of f , which is (1.34) for the Lorenz model, the adjoint

of (1.28) can be written as follows.

x̄i = x̄i+1 +
∆t

6

[
k̂1 + 2k̂2 + 2k̂3 + k̂4

]
(1.38)
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1.5 Organization

Chapter 2 provides an overview of w4D-Var, including the derivation of the cost

functional and the analysis equations. Chapter 3 describes the Monte Carlo approach

for estimating the model error statistics, the basis of which has been published in the

journal Procedia Computer Science [72]. Chapter 4 provides research on statistical

consistency diagnostics, extending previously published results. Chapter 5 shows the

derivation of data assimilation sensitivity equations to a forecast error measure that

are utilized in a gradient descent algorithm to reduce forecast error. The second stage

of numerical experiments are conducted with discretized shallow water equations,

more computationally demanding than the Lorenz model, in Chapter 6. Appendix A

gives some notes on the computational implementation of the ensemble and hybrid

error covariances, Appendix B shows the derivation of the discrete shallow water

model using finite differences, and Appendix C gives the tangent linear and adjoint

models for the discrete shallow water model.
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Chapter 2

Weak-Constraint 4D-Var

Weak-constraint 4D-Var provides a sequence of time-distributed analyses xai ∈ Rn

that estimate the true state xti of a dynamical system at time ti of the data assimilation

interval [t0, tN ] by solving a large-scale optimization problem. This involves finding

the states that minimize the w4D-Var cost functional J(x0, . . . ,xN). The derivation

of the cost functional is shown next.

2.1 The Cost Functional

The w4D-Var optimization problem relies on a number of statistical assumptions

[36, 59].

Background Information: Suppose that prior knowledge of the true state xt0 ∈ Rn

is known in the form of an unbiased estimate xb0. Let

εb = xt0 − xb0 (2.1)

be the error in the estimate. Assume that xt0 has the multivariate normal distribution

with mean xb0 and positive definite covariance matrix B. That is, xt0|xb0 ∼ N(xb0,B),
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with probability density

p(x0|xb0) ∝ e−Jb(x0) (2.2)

where

Jb(x0) =
1

2
[x0 − xb0]

TB−1[x0 − xb0]. (2.3)

Observations: Suppose that yi ∈ Rpi represents an observation about the true state

xti at time ti, for i = 0, 1, . . . , N . Let

yi = hi(x
t
i) + εoi (2.4)

where hi : Rn → Rpi is a vector-valued function and εoi is measurement noise, uncor-

related in time. Assume that εoi ∼ N(0,Ri) with Ri a positive definite matrix. Then

yi|xti ∼ N(hi(x
t
i),Ri), with probability density

p(yi|xi) ∝ e−Jo,i(xi) (2.5)

where

Jo,i(xi) =
1

2
[yi − hi(xi)]

TR−1i [yi − hi(xi)]. (2.6)

Then p(y0|x0) · · · p(yN |xN) = Jo(x0, . . . ,xN), where Jo(x0, . . . ,xN) is the sum of all

the Jo,i(xi) so that

Jo(x0, . . . ,xN) =
1

2

N∑
i=0

[yi − hi(xi)]
TR−1i [yi − hi(xi)]. (2.7)
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Model: Suppose that the unknown states xti ∈ Rn are related by a model

xti =Mi(x
t
i−1) + εqi (2.8)

where εqi ∼ N(qi,Qi) is the error in the forecast model Mi. Model error is uncorre-

lated in time and the vector qi is the model error bias, representing the systematic

errors in Mi.

The w4D-Var analysis is the sequence of states {xa0, . . . ,xaN} that maximize the

posterior distribution p(x0, . . . ,xN |y0, . . . ,yN). Using Bayes’ theorem,

p(x0, . . . ,xN |y0, . . . ,yN) =
p(y0, . . . ,yN |x0, . . . ,xN)p(x0, . . . ,xN)

p(y0, . . . ,yN)
. (2.9)

Since the denominator term is independent of the xi and acts as a normalizing con-

stant for p(x0, . . . ,xN |y0, . . . ,yN), let p(y0, . . . ,yN) = C−1. Further, assume that the

observations are independent given that one knows the true state [50, 80], so

p(y0, . . . ,yN |x0, . . . ,xN) =
N∏
i=0

p(yi|xi). (2.10)

Also, assume that the sequence {x0, . . . ,xN} is Markov, so that

p(x0, . . . ,xN) = p(x0)
N∏
i=1

p(xi|xi−1). (2.11)

By (2.8), it is noticed that xti|xti−1 ∼ N(Mi(x
t
i−1) + qi,Qi). Thus p(x0, . . . ,xN) is

the product of normal distributions, with probability density

p(x0, . . . ,xN) ∝ e−Jb(x0)e−Jq(x0,...,xN ), (2.12)
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where

Jq(x0, . . . ,xN) =
1

2

N∑
i=1

[xi −Mi(xi−1)− qi]
TQ−1i [xi −Mi(xi−1)− qi]. (2.13)

Putting this all together,

p(x0, . . . ,xN |y0, . . . ,yN) = C ′e−J(x0,...,xN ), (2.14)

where C ′ is a constant of proportionality and J(x0, . . . ,xN) represents the w4D-Var

cost functional (1.19). The analysis sequence {xa0, . . . ,xaN} is found by minimizing

(1.19) with respect to {x0, . . . ,xN}.

Often in practice, model error is assumed to be unbiased, i.e. qi is set to zero

in (1.19). By taking into account model error in w4D-Var, the control variable is

the time-distributed sequence of states {x0, . . . ,xN}. Trémolet [78] describes other

possible formulations of the control variable, such as {x0,η1, . . . ,ηN}, where

ηi = xi −Mi(xi−1) (2.15)

represents the error in the forecast modelMi that advances the state from time ti−1

to time ti.

2.2 The Incremental Algorithm

Due to the nonlinearity of the observation operator hi and the discrete modelMi, the

incremental algorithm, introduced by Courtier et al. [13] for strong-constraint 4D-Var,

can be adapted to minimize (1.19) through a sequence of quadratic approximations

in which hi and Mi are linearized about prior state estimates xgi for i = 0, 1, . . . , N .
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The observation operator is linearized at each time

hi(xi) ≈ hi(x
g
i ) + Hg

i (xi − xgi ) (2.16)

where Hg
i denotes the pi × n Jacobian matrix of hi evaluated at xgi . Similarly, for

i = 1, . . . , N , linearization of the model forecast operator from time ti−1 to time ti

gives

Mi(xi−1) ≈Mi(x
g
i−1) + Mg

i (xi−1 − xgi−1), (2.17)

where Mg
i denotes the n× n Jacobian matrix of Mi evaluated at xgi−1. From (2.16)

and (2.17), the quadratic approximation to (1.19) can be written in terms of the

increments δxi = xi − xgi . By defining δxb0 = xb0 − xg0, di = yi − hi(x
g
i ), and ηgi =

xgi −Mi(x
g
i−1), it is noticed that

x0 − xb0 = δx0 − δxb0 (2.18)

yi − hi(xi) ≈ di −Hg
i δxi (2.19)

xi −Mi(xi−1) ≈ δxi −Mg
i δxi−1 + ηgi . (2.20)

Equations (2.18)–(2.20) are used to approximate the nonlinear functional (1.19) by a

quadratic functional that is minimized with respect to {δx0, . . . , δxN}.

Ĵ(δx0, . . . , δxN) =
1

2
[δx0 − δxb0]TB−1[δx0 − δxb0]

+
1

2

N∑
i=0

[di −Hg
i δxi]

TR−1i [di −Hg
i δxi]

+
1

2

N∑
i=1

[δxi −Mg
i δxi−1 + ηgi − qi]

TQ−1i [δxi −Mg
i δxi−1 + ηgi − qi] (2.21)
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An equivalent formulation to the quadratic cost functional (2.21) may be given as

Ĵ(δx) =
1

2

[
(Fg)−1δx− g − q

]T
P−1

[
(Fg)−1δx− g − q

]
+

1

2
[d−Hgδx]TR−1[d−Hgδx], (2.22)

by defining the four-dimensional increment vector

δx =

[
δxT

0 · · · δxT
N

]T
, (2.23)

the four-dimensional innovation vector

d = y − h(xg) =

[
dT
0 · · · dT

N

]T
(2.24)

of dimension p = p0+p1+· · ·+pN , the time-distributed linearized observation operator

Hg =


Hg

0

. . .

Hg
N

 , (2.25)

the block observation error covariance matrix

R =


R0

. . .

RN

 , (2.26)
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the block-diagonal matrix

P =



B

Q1

. . .

QN


, (2.27)

the guess vector

g =

[
(δxb0)

T −(ηg1)
T · · · −(ηgN)T

]T
, (2.28)

and the bias vector

q =

[
0T qT

1 · · · qT
N

]T
. (2.29)

The matrix

Fg =



I

Mg
1 I

Mg
0→2 Mg

2 I

...
...

. . . . . .

Mg
0→N Mg

1→N · · · Mg
N I


, (2.30)

where

Mg
i→i+k = Mg

i+k · · ·M
g
i+2M

g
i+1 (2.31)

represents the tangent linear model integrated from time ti to ti+k evaluated at the

guess states xgi , comes from combining the background error and model error terms
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of (2.21) into the block formulation of (2.22). It is noticed that Fg is invertible with

inverse

(Fg)−1 =



I

−Mg
1 I

−Mg
2 I

. . . . . .

−Mg
N I


, (2.32)

The analysis sequence is obtained by the minimization of the quadratic approxima-

tion (2.22) to the nonlinear cost functional (1.19) with respect to the four-dimensional

increment δx.

2.3 The Analysis Equation

To find the optimum increment which minimizes the cost functional (2.22), differen-

tiate with respect to δx

∇δxĴ(δx) = (Fg)−TP−1[(Fg)−1δx− g − q]− (Hg)TR−1[d−Hgδx], (2.33)

set the result equal to zero, and solve for δx. Thus, the optimal increment δxa

minimizing (2.22) solves the linear system

[
(Fg)−TP−1(Fg)−1 + (Hg)TR−1Hg

]
δxa = (Fg)−TP−1[g + q] + (Hg)TR−1d. (2.34)
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The theoretical solution to this problem is

δxa =
[
(Fg)−TP−1(Fg)−1 + (Hg)TR−1Hg

]−1
×
[
(Fg)−TP−1[g + q] + (Hg)TR−1d

]
, (2.35)

in which the matrix inversion can be done by using the Sherman-Morrison-Woodbury

matrix identity

[
A + CBDT

]−1
= A−1 −A−1C

[
B−1 + DTA−1C

]−1
DTA−1, (2.36)

where the matrices A,B,C,D have appropriate dimensions to make the expression

valid. To use (2.36), identify (Fg)−TP−1(Fg)−1 with A, (Hg)T with C, R−1 with B,

and (Hg)T with D. The optimal analysis increment δxa minimizes (2.21) and may

be expressed as

δxa = K[y − h(xg)] + [I−KHg]Fg[g + q] (2.37)

where the gain matrix K is defined as

K = FgP(Fg)T(Hg)T[HgFgP(Fg)T(Hg)T + R]−1 (2.38)

and h is the four-dimensional observation operator

h(x) =

[
hT
0 (x0) · · · hT

N(xN)

]T
. (2.39)
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Ĵ0(x) Ĵ1(x)

x(0) x(1)x(2) xa
x

J(x)

Figure 2.1: A demonstration of the incremental method showing the successive quadratic
approximations of an example cost function.

Therefore, the four-dimensional state which minimizes the quadratic cost functional

(2.21) is

xa = xg + K[y − h(xg)] + [I−KHg]Fg[g + q]. (2.40)

For a single outer loop iteration, equation (2.40) gives the analysis state for the data

assimilation window.

Once the analysis estimate is obtained, the incremental method can be done again

with xa as the new guess. See Figure 2.1 for a visual of the successive quadratic

approximations of the cost function. If this process is to be done again with xa as

the new xg, the linearizations will need to be redone as to be centered at the new xg.

Continue this process until some desired accuracy or a maximum number of iterations

has been reached. Typically, it is impractical to do more than a few iterations of the

incremental algorithm. A good choice for xgi is xg0 = xb0 and xgi =Mi(x
g
i−1) + qi since
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this choice of guesses makes g + q = 0, in which case (2.40) becomes

xa = xg + K[y − h(xg)] (2.41)

which resembles the form of the Kalman filter.

It is usually desirable to find the analysis (2.40) by introducing a change of vari-

ables, such as

χ = P−1/2[(Fg)−1δx− g − q], (2.42)

for the purpose of preconditioning. With this variable change, (2.22) becomes a

function of χ

Ĵ(χ) =
1

2
χTχ

+
1

2
[HgFg(P1/2χ+ g + q)− d]TR−1[HgFg(P1/2χ+ g + q)− d] (2.43)

and the minimization is performed to obtain χa, from which it is seen that

δxa = Fg(P1/2χa + g + q). (2.44)

The gradient of the cost Ĵ with respect to χ is

∇χĴ(χ) = χ+ PT/2(Fg)T(Hg)TR−1[HgFg(P1/2χ+ g + q)− d]. (2.45)
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Setting (2.45) equal to zero, the linear system to solve is now

[I + PT/2(Fg)T(Hg)TR−1HgFgP1/2]χa =

PT/2(Fg)T(Hg)TR−1[d−HgFg(g + q)] (2.46)

with solution

χa = PT/2(Fg)T(Hg)T[HgFgP(Fg)T(Hg)T + R]−1[d−HgFg(g + q)]. (2.47)

Since the matrix PT/2(Fg)T(Hg)TR−1HgFgP1/2 is positive semidefinite, its eigenval-

ues are all nonnegative. Thus the eigenvalues of I + PT/2(Fg)T(Hg)TR−1HgFgP1/2

are all greater than or equal to 1, and so the matrix is positive definite, whereas

(Fg)−TP−1(Fg)−1 + (Hg)TR−1Hg may not be positive definite. This is where the

advantage of preconditioning with χ becomes apparent.

The analysis xa can also be obtained from the observation space evaluation of

(2.40) via the two-step process of solving the linear system

[HgFgP(Fg)T(Hg)T + R]z = d−HgFg[g + q] (2.48)

for the vector z ∈ Rp followed by the multiplication in

xa = xg + Fgq + FgP(Fg)T(Hg)Tz. (2.49)

When the number of observations p is less than the number of state space variables

(N+1)n, obtaining the analysis xa via z can be less computationally expensive due to

the reduction in the dimension of the problem. The observation space implementation

of the analysis scheme, including the outer loop iteration, is presented in the work of
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Rosmond and Xu [70].
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Chapter 3

Ensemble Data Assimilation

Ensemble data assimilation has been used in conjunction with variational methods

in an attempt to capture the “errors of the day” and dynamically update the back-

ground error covariance, since error covariances are typically not updated between

4D-Var assimilation cycles. Evensen [31] introduces this Monte Carlo alternative as

the ensemble Kalman filter (EnKF) and it has since been implemented in various

studies, e.g. [43, 48, 49]. Lorenc [61] and Fairbairn et al. [35] investigate the potential

use of EnKF for NWP applications and its analysis performance, as compared with

4D-Var. Ensemble data assimilation can estimate not only the model error covariance

matrices, but also bias. Traditionally, an assumption is made that the errors in data

assimilation are unbiased to simplify the computational cost or because the informa-

tion about error biases is not available. Bias in data assimilation has been explored

in the works by Dee [21], Dee and Da Silva [22], and Dee and Todling [23], where

it is noted that errors in models and the data are often systematic rather than ran-

dom. Attempts to correct for error bias have been made in the form of bias detection

and correction methods and “bias-aware” data assimilation methods, including bias

correction in variational data assimilation [24], but not in the context of w4D-Var.

Bias-aware Kalman filters have been explored by Drécourt et al. [29].

Ensembles can also be used to estimate the model error covariances Qi and the

model biases qi by using ensembles for the analysis states xai,j. The steps needed to
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obtain ensemble estimates of model error are presented next [72].

3.1 Derivation of the Model Error Ensemble

When the true model error statistics are unknown, the data assimilation system

specifications of the error bias qi 6= qti and error covariance Qi 6= Qt
i are made, where

the superscript ()t is used to distinguish the true error statistics Qt
i, qti from their

specified counterparts Qi, qi. The incremental algorithm is used to perform w4D-Var

over a window [t0, tN ]. The states xgi at which the model and observation operators

are linearized will utilize the assumed model error statistics, that is, let

xg0 = xb0 (3.1a)

xgi =Mi(x
g
i−1) + qi, i = 1, . . . , N. (3.1b)

The incremental method then produces the four-dimensional analysis given by (2.41).

An ensemble of analyses xai,j, where i = 0, 1, . . . , N and j = 1, . . . , Ne, is used

to produce a low-rank representation to the model error covariance. The setup is as

follows.

• Prescribe the error statistics B, Ri, Qi, and qi to be used for each w4D-Var

problem, the same specification for each ensemble member.

• From the background state xb0, form the background ensemble xb0,j = xb0 + εbj,

where εbj is generated from the normal distribution N(0,B).

• Perturb the observation yi to form an ensemble yi,j = yi + εoi,j, where the

perturbation εoi,j is normally distributed with mean zero and covariance Ri, for

i = 0, 1, . . . , N and j = 1, . . . , Ne.
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• For each member of the background ensemble xb0,j, form the corresponding

ensemble of guesses xgi,j according to (3.1) using the assumed model error bias

qi.

A substitute for using the statistics of B to perturb the background is to use the

approximate background error

ε = ‖xa0 − xb0‖/n (3.2)

as the standard deviation for the mean zero normally distributed perturbation. A

multiplicative constant β can be included so that the standard deviation of the per-

turbations is βε.

It is noted here that perturbing observations was introduced by Burgers et al. [8]

and has been implemented in several experiments, such as work done by Pereira and

Berre [69]. Whitaker and Hamill [79] show that ensemble data assimilation can be

performed without perturbing the observations, however, in an ensemble square root

filter.

By performing w4D-Var using the incremental method with data xg0,j, . . . ,x
g
N,j

and observations y0,j, . . . ,yN,j, we get an ensemble of analysis states xai,j. The four-

dimensional analysis ensemble xaj follows from (2.41)

xaj = xgj + Kj[yj − h(xgj )] (3.3)

where the gain matrix Kj may vary with the ensemble member j. In this framework,

the best estimate of the true state is obtained as the ensemble average for each time

x̄ai =
1

Ne

Ne∑
j=1

xai,j. (3.4)
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From (3.3) and (3.4), define ensemble estimates to model error

ηi,j = x̄ai −Mi(x
a
i−1,j) (3.5)

for i = 1, . . . , N and j = 1, . . . , Ne. With the model error ensemble now available,

the model error bias qti is estimated by the ensemble mean

qi,e =
1

Ne

Ne∑
j=1

ηi,j (3.6)

and the associated ensemble estimates to the model error covariance matrix are

Qi,e =
1

Ne − 1

Ne∑
j=1

[ηi,j − qi,e][ηi,j − qi,e]
T. (3.7)

Bickel and Levina [5] discuss regularized estimates of covariance matrices by banding

the sample covariance matrix. Now that estimates for the model error bias and model

error covariance are available, qi,e and Qi,e may be used in a w4D-Var data assimila-

tion system. This procedure is summarized in Algorithm 3.1. Possible ensemble-based

assimilation schemes are described next.

3.2 Ensemble-based w4D-Var Schemes

Instead of prescribing the model error covariance matrices as static Qi that do not

change between assimilation cycles, one approach is to specify the model error bias

and model error covariance matrices as qi,e and Qi,e, respectively. This choice of

specifying qi = qi,e and Qi = Qi,e utilizes the information from the “errors of the

day” to improve the quality of the analysis. These specifications can be kept up-to-

date in future time-steps by computing the ensemble estimates qi,e and Qi,e in each
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Algorithm 3.1: Computation of the ensemble estimates of model error.

1: procedure Model Error Ensemble(B, Ri, Qi, qi, Ne)
2: for j = 1, . . . , Ne do
3: xb0,j = xb0 + εbj . Perturb the background

4: xg0,j = xb0,j . Set the guess states

5: for i = 1, . . . , N do
6: xgi,j =Mi(x

g
i−1,j) + qi

7: end for

8: for i = 0, 1, . . . , N do
9: yi,j = yi + εoi,j . Perturb the observations

10: end for

11: (xa0,j , . . . ,x
a
N,j) = w4DVar(B,Ri,Qi,qi,x

g
i,j ,yi,j) . Analysis ensemble

12: end for

13: for i = 0, 1, . . . , N do
14: Compute x̄ai from equation (3.4)

15: for j = 1, . . . , Ne do
16: Compute ηi,j from equation (3.5)
17: end for
18: end for

19: for i = 1, . . . , N do
20: Compute qi,e from equation (3.6)
21: Compute Qi,e from equation (3.7)
22: end for
23: end procedure

data assimilation cycle.

The ensemble covariance matrices Qi,e may have low rank due to a small ensemble

size and additionally suffer from the presence of sampling error. To reduce this, one

may replace Qi in the data assimilation system by the Hadamard product of the

ensemble covariance Qi,e with a localization matrix

Qi = Qi,e ◦Ci (3.8)
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where Ci is a properly selected correlation matrix. A popular correlation function to

apply is the fifth-order rational function of compact support

C0(z, 1/2, c) =



−1
4

(
|z|
c

)5
+ 1

2

(
z
c

)4
+ 5

8

(
|z|
c

)3
− 5

3

(
z
c

)2
+ 1, 0 ≤ |z| ≤ c

1
12

(
|z|
c

)5
− 1
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(
z
c

)4
+ 5

8

(
|z|
c

)3
+ 5

3

(
z
c

)2−
5 |z|
c

+ 4− 2c
3|z| , c < |z| ≤ 2c,

0, |z| > 2c

(3.9)

given by equation (4.10) of Gaspari and Cohn [37].

Another option is to specify the model error covariance matrices as a linear com-

bination of a static matrix Qi,c and the ensemble covariance

Qi = αiQi,c + (1− αi)Qi,e. (3.10)

A localization matrix Ci may applied to Qi,e so that (3.10) is replaced by

Qi = αiQi,c + (1− αi)Qi,e ◦Ci. (3.11)

Similarly, the model error bias is specified as a linear combination of a static vector

qi,c and the ensemble average using the same parameter

qi = αiqi,c + (1− αi)qi,e (3.12)

where 0 ≤ αi ≤ 1. This combination of two specifications of model error is referred

to as hybrid data assimilation. The work by Efron and Morris [30] is at the origin

of estimating covariance matrices and the hybrid approach. Estimating a covariance

matrix using a linear combination of the sample covariance matrix and the identity
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matrix was introduced by Ledoit and Wolf [57]. For αi = 1, the specified model

error will utilize the current static specification, or the status quo, while for αi = 0,

it will be set to the ensemble model error statistics. Hybrid data assimilation is

designed to combine the merits of both the static component {Qi,c,qi,c} and the

dynamic component {Qi,e,qi,e} with a value of αi satisfying 0 < αi < 1 to improve

the quality of the analysis more than the static and dynamic components can do

alone. Appendix A contains some notes on the implementation of the ensemble and

hybrid error covariances.

3.3 Ensemble Error Statistics

This section provides an analysis of the statistical properties of the model error en-

semble average qi,e. The average qi,e plays an important role in the ensemble-based

schemes described in the previous section, so it seems that an exploration of its prop-

erties is in order.

To better understand how well qi,e estimates the model bias qti, it is necessary to

investigate the expectation E[εqi − qi,e]. From the linearization ofMi at x̄ai−1 and by

(3.5), it is noticed that (3.6) becomes

qi,e ≈ x̄ai −Mi(x̄
a
i−1). (3.13)

To a first-order approximation, (3.13) implies

εqi − qi,e ≈ (xti − x̄ai )−Ma
i [x

t
i−1 − x̄ai−1] (3.14)

where Ma
i represents the linearized model evaluated at x̄ai−1.

Since (3.14) involves analysis errors at time ti and ti−1, it will be convenient to
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analyze all of the differences εqi−qi,e simultaneously using the four-dimensional model

error

εq =

[
(εq1)

T (εq2)
T · · · (εqN)T

]T
, (3.15)

and the four-dimensional model error ensemble

qe =

[
qT
1,e qT

2,e · · · qT
N,e

]T
, (3.16)

where it is noticed that the expectation E[εq − qe] depends on E[xti − x̄ai ] for i =

0, . . . , N . Since the perturbations introduced in the ensemble data assimilation are

unbiased, it can be shown that E[xti − x̄ai ] = E[xti − xai ]. Then, from the linearization

of h at xg, (2.41) implies that

xt − xa ≈ (xt − xg)−K[εo + Hg(xt − xg)] (3.17)

= [I−KHg][xt − xg]−Kεo. (3.18)

To continue, it is necessary to find the expected value of xt − xg. Looking at the

differences xti − xgi for each time, notice that

E[xt0 − xg0] = E[xt0 − xb0] = 0 (3.19)

and, if Mg
1 denotes the linearization of M1 at xg0,

xt1 − xg1 ≈ (εq1 − q1) + Mg
1(x

t
0 − xg0). (3.20)
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The expected value of xt1 − xg1 is

E[xt1 − xg1] ≈ qt1 − q1 = ∆q1. (3.21)

In a similar way, it can be seen that by linearizing the model M2 at xg1,

xt2 − xg2 ≈ (εq2 − q2) + Mg
2(x

t
1 − xg1) (3.22)

which has the expected value

E[xt2 − xg2] ≈ ∆q2 + Mg
2∆q1. (3.23)

Continuing for each time ti in the data assimilation window, it can be seen that

xtN − xgN ≈
N∑
j=1

Mg
j→N(εqj − qj) + Mg

0→N(xt0 − xb0) (3.24)

has the expected value

E[xtN − xgN ] ≈
N∑
j=1

Mg
j→N∆qj. (3.25)

By writing this in block matrix form, it is possible to see that

E[xt − xg] ≈



I

Mg
1 I

Mg
0→2 Mg

2 I

...
...

. . . . . .

Mg
0→N Mg

1→N · · · Mg
N I





0

∆q1

∆q2

...

∆qN


, (3.26)
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From (3.18) and (3.26), it is possible to determine that

E[xt − xa] ≈ [I−KHg]Fg∆q, (3.27)

where

∆q =

[
0T ∆qT

1 · · · ∆qT
N

]T
, (3.28)

implying that the analysis states xai are unbiased estimates of the true states xti only

if ∆q = 0, that is, when the background and model errors are unbiased. Then, by

(3.14),

εq − qe ≈



−Ma
1 I

−Ma
2 I

. . . . . .

−Ma
N I





xt0 − x̄a0

xt1 − x̄a1
...

xtN − x̄aN


. (3.29)

If we denote the matrix in (3.29) by F̃a, then

E[εq − qe] ≈ F̃a[I−KHg]Fg∆q. (3.30)

If all of the error biases qi are specified as the true error biases qti, in which case

∆q = 0, then the ensemble model error average is unbiased.

3.4 Numerical Results

Preliminary numerical results are presented using the Lorenz models as described in

Section 1.4. A data assimilation window consists of the current time t0 and three
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time-steps, representing an assimilation window [t0, t3]. Observational data are gen-

erated from the true state with the observational error taken from the distribution

N(0, (σo)2) with the standard deviation specified as σo = 0.55. The observation

operator satisfies hi(xi) = xi for i = 1, 2, 3.

An analysis will be produced from w4D-Var after setting up the background error

covariance B by running the extended Kalman filter using the true model error statis-

tics for 700 time-steps with B initialized to the identity matrix. The background xb0

for each step of the extended Kalman filter is taken to be a forecast of the previous

analysis perturbed by random noise. After the spin-up cycle is complete, B will then

remain static for w4D-Var assimilation.

A comparative analysis is done to investigate the performance of the ensemble and

hybrid assimilation methods to gauge their benefits. Three w4D-Var schemes (hence-

forth referred to as Control, Weak Ensemble, and Weak Hybrid) are run concurrently

in order to properly compare and contrast the results. For each assimilation system,

the background and observation error covariances are specified as described above,

whereas the model error statistics are set as follows.

• (Control) Mis-specified model error covariances specified as Q = 2 diag(Qt) and

model bias q = 0 is considered as the status-quo and serves as the basis for

comparing against the other schemes.

• (Weak Ensemble) Use equations (3.6) and (3.8) from an ensemble size of 20. The

background was perturbed using (3.2) and multiplicative factor β = 10, which

was used to make sure the ensemble had sufficient spread. The localization

matrix is obtained using the fifth-order rational function of Gaspari and Cohn

(3.9) with c = 8.

• (Weak Hybrid) Use equations (3.11) and (3.12) with α = 0.5. The static com-
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ponents are set to Qc = 2 diag(Qt) and qc = 0 and the ensemble covariance

with localization is the same one computed for the weak ensemble scheme.

Additionally, three strong-constraint 4D-Var schemes are considered. With the same

observation error covariances as the w4D-Var systems, the background error covari-

ance matrix is set as follows.

• (Strong 4D-Var) Set B as the matrix from the spin-up cycle.

• (Strong Ensemble) Set B as an ensemble estimate obtained from an ensemble

of 20 strong-constraint 4D-Var assimilation systems. Further details are in the

next paragraph.

• (Strong Hybrid) Use the hybrid B = αBc + (1−α)Be, where the static compo-

nent Bc is the covariance produced from the spin-up cycle and Be is the back-

ground ensemble error covariance with localization computed for the strong

ensemble scheme. The parameter α is also set to 0.5 like the weak hybrid

scheme.

The ensemble-based schemes for the strong-constraint 4D-Var utilize background

perturbations computed using (3.2) with multiplicative factor β = 5. In this case, the

analysis xa0 in (3.2) is obtained from a strong-constraint 4D-Var run. The observations

yi are perturbed in the same manner as described in Section 3.1. Each analysis

ensemble member xa0,j is forecast to the beginning of the next assimilation cycle and

Be is defined to be the sample covariance from the ensemble of these forecasts.

To better compare the performance of the control system to the other five assim-

ilation schemes, the ratio of errors between the five other schemes and the control

is considered. For example, if the weak ensemble scheme outperforms the control

scheme, then the ratio of the weak ensemble errors to the control errors will be less
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Figure 3.1: The ratio of the global monthly
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Figure 3.2: The ratio of the average oma dif-
ferences to the control.

than 1. A ratio of 1 means the schemes have the same performance and larger than

1 if the weak ensemble scheme performs worse than the control.

Figure 3.1 shows the ratio of the monthly (30-day) average analysis errors for each

method to the control, that is, εa(〈method〉)/εa(control), where the analysis error is

the difference between the LZ96 x̂-values and the w4D-Var analysis. It is noticed that

the strong hybrid and weak ensemble schemes have similar performance, whose ratios

fluctuate near 1. The weak ensemble scheme does not seem to perform much better

than the control scheme, however the weak hybrid errors show an improvement over

the entire assimilation period. At month 7, an improvement of about 7% is achieved.

The fact that the ensemble scheme ratios are sometimes slightly larger than 1 can be

attributed to two important components: the factor β that controls the background

ensemble spread and the ensemble size. The choice to set β = 10 for w4D-Var

ensemble schemes was made to ensure that Qe did not suffer from being orders of

magnitude smaller than Qt. Due to the banded structure of the localization matrix,

the model error correlations are not fully accounted for in the ensemble and hybrid

methods. Still, enough of the correlation structure was recovered from the ensembles
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to reduce the monthly hybrid w4D-Var error averages.

Figure 3.2 shows the ratio of the three-year averaged observed-minus-analysis

(oma) ‖yi − hi(x
a
i )‖ difference for each grid point to the control. It shows that

the analyses for the weak ensemble scheme better fit to the observations than the

hybrid scheme, even though Figure 3.1 shows the hybrid scheme had a lower average

analysis error. Since the background, observational, and model error components

of w4D-Var are weighted by their corresponding inverse covariance matrices in the

cost functional, the analysis fit to the observations is affected by the magnitudes of

the error covariance matrices. In particular, Qe having a larger magnitude than the

hybrid model error covariance reduces the weight of model error in the analysis and

increases the relative weights of the background and observations. Recalling that

B and R remain unchanged between the two schemes, it can be inferred that Qe

has a larger magnitude and that the hybrid specification better represents the true

model error statistics. Some evidence to support this conjecture is shown in Figure

3.3, which compares the prescribed model error variance to the ensemble and hybrid

model error variances, obtained from the three-year average covariance matrices.

The performance of a hybrid data assimilation system is closely determined by the

weight assigned to the static and ensemble-based components of the error covariances.

This aspect is investigated by running the hybrid data assimilation scheme for differ-

ent α for Q = αQc + (1−α)Qe ◦C, where Qc is the static component of Q specified

as the control error covariance. For α = 0, the system runs in ensemble mode while

for α = 1, the system runs as the control, the status quo. The weight α varies from

0 to 1 in steps of ∆α = 0.025 and the ratio of the time- and space-averaged analysis

errors over a three-year period to the control verses the choice of α is shown in Figure

3.4. The ensemble size for generating Qe is 20, as before. The results show that the

error corresponding to pure ensemble mode provides an improvement over the control
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data assimilation system by about 2.5%. Further reduction in the analysis error is

achieved due to the specification of the hybrid covariance with 0 < α ≤ 0.95. In

particular, the hybrid covariance matrix corresponding to approximately α = 0.625

provides the greatest reduction in the analysis error, about 7.5% improvement over

the control.

3.5 Conclusion

This chapter provides a framework for performing ensemble and hybrid data assim-

ilation in a w4D-Var setting. A practical approach is considered that relies on an

ensemble of w4D-Var systems solved by the incremental algorithm to obtain an en-

semble of analysis sequences, the best estimates of the true state from which an

ensemble of model error estimates is formed. These model error ensembles provide

insight to the true nature of the model error covariance matrices. Model error bias

has traditionally been assumed to be zero, and it may be possible to incorporate

information about model error bias to improve the quality of the analysis with future
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research in this area.

In some situations, such as the case when the number of ensemble members is

small, the ensemble covariance matrices will have low rank and may not be a com-

pletely reliable representation of the true model error statistics. The weighted com-

bination of a static matrix, a diagonal matrix, for example, and the ensemble covari-

ance can prove to be an improvement over the ensemble matrices alone. A further

improvement is to remove the random noise within the ensemble covariance by using

a localization matrix.

The results of these numerical experiments provide a proof-of-concept for using

ensembles in a w4D-Var setting. Specifying the model error covariances as the ensem-

ble covariances with localization can improve the analysis error. Further improvement

can be made in a hybrid setting with a good choice of the scalar weights.

The numerical results in this study assumed an idealized observing system in

which all states in the dynamical system are observed. In practical applications, the

performance of the data assimilation system is closely determined by the observing

system configuration and further research is needed to investigate the performance of

both ensemble and hybrid w4D-Var assimilation schemes.
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Chapter 4

Observation Space Diagnostics

While the true error statistics may be unknown, a potential source of information

may lie in observation residuals, the difference between observations and the obser-

vation space equivalent of the state vector, such as the observed-minus-background

and observed-minus-analysis differences. Observation residuals have previously been

used to estimate error statistics in data assimilation, such as the work done by

Hollingsworth and Lönnberg [45], in which the observed-minus-background differ-

ence is used to estimate the background error covariance, and Desroziers and Ivanov

[28], who used an a posteriori diagnosis with observed-minus-analysis differences.

Dee has used observed-minus-background residuals to detect bias in data assimila-

tion [21, 22]. Additionally, observed-minus-background residuals have been used to

tune parametrizations of the background and observation error covariances (Chapnik

et al. [9] for example).

In this chapter, the use of observation residuals as a diagnostic tool in w4D-Var is

proposed, extending the diagnostics of Desroziers et al. [27] from one time-step to a

data assimilation window [t0, tN ]. The diagnostics of Desroziers et al. have previously

been expanded upon by Todling [77] to estimate the model error covariance matrix

using a lag-1 smoother and further to the variational case [76], but not a w4D-Var

system.
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4.1 Derivation of Diagnostics

To help simplify the following derivations, it will be assumed that the true model

error biases are all zero. This means that the guess states satisfy

xg0 = xb0 (4.1a)

xgi =Mi(x
g
i−1), i = 1, . . . , N (4.1b)

implying that both the guess vector g and bias vector q from the incremental method

are zero. With these assumptions, the w4D-Var analysis satisfies (2.41). If the error

statistics are mis-specified in the DAS, then the analysis is still given by (2.41), but

the gain matrix will be suboptimal, i.e. K 6= Kt, where Kt is the gain matrix (2.38)

corresponding to true error covariances.

Before the analysis xa is found, an a priori diagnostic can be formed using the

observed-minus-guess difference dog = y − h(xg), the same as (2.24) but renamed for

consistency of notation in this section. From the linearization of the four-dimensional

observation operator h at xg,

dog = y − h(xg) ≈ εo + Hg(xt − xg). (4.2)

If it is assumed that the background error εb is uncorrelated with the model errors εqi

and, in addition, the εqi are uncorrelated in time, then Pt from (2.27) is the covariance

matrix of

εp =

[
(εb)T (εq1)

T · · · (εqN)

]T
. (4.3)

From linearizations of the model Mi centered at xgi−1 as defined by (4.1), it can be
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seen that xt − xg ≈ Fgεp, where Fg is from (2.30), by writing out the expression

xti − xgi for each i = 0, 1, . . . , N . First,

xt0 − xg0 = εb (4.4)

since xg0 = xb0. Next,

xt1 − xg1 = xt1 −M1(x
t
0) +M1(x

t
0)−M1(x

b
0)

≈ εq1 + Mg
1ε

b (4.5)

where Mg
1 is evaluated at xg0 = xb0. Then

xt2 − xg2 = xt2 −M2(x
t
1) +M2(x

t
1)−M0→2(x

b
0)

≈ εq2 + Mg
2(x

t
1 −M1(x

b
0))

≈ εq2 + Mg
2ε

q
1 + Mg

0→2ε
b (4.6)

where Mg
2 is evaluated at xg1. Continuing in this way, it is noticed that

xtN − xgN ≈
N∑
j=1

Mg
j→Nε

q
j + Mg

0→Nε
b, (4.7)

where Mg
j→N is defined as in (2.31). By writing all of these guess errors xti − xgi in

block matrix form, it can be seen that xt − xg ≈ Fgεp indeed holds. Hence,

dog ≈ εo + HgFgεp. (4.8)

If, it is further assumed that the observation errors εo are uncorrelated with the four-

dimensional error εp, i.e. εo0 is uncorrelated with εp and εoi is uncorrelated with εqi for
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i = 1, . . . , N , then

E
[
(dog)(d

o
g)

T
]
≈ HgFgPt(Fg)T(Hg)T + Rt. (4.9)

Equation (4.9) can be used as a consistency check on the specification of R and

P in that if R 6= Rt or

HgFgP(Fg)T(Hg)T 6= (Hg)FgPt(Fg)T(Hg)T, (4.10)

that is, the observation error covariance is not correctly specified or the matrix

FgP(Fg)T does not agree with FgPt(Fg)T in observation space, then

E
[
(dog)(d

o
g)

T
]

= HgFgP(Fg)T(Hg)T + R (4.11)

may not be true. Also, (4.9) resembles and reduces to equation (1) of Desroziers et

al. [27] when the data assimilation window consists only of one time level t0, as P

becomes B and Fg becomes the identity in this case. When the forecast model and

observation operator are linear, (4.9) is an equality.

Now, the difference between xa and xg in observation space is

dag = h(xa)− h(xg) ≈ Hg(xa − xg) = HgKdog, (4.12)

which follows from (2.41). Thus

E
[
(dag)(d

o
g)

T
]
≈ HgK E

[
(dog)(d

o
g)

T
]

(4.13)

= HgK[HgFgPt(Fg)T(Hg)T + Rt]. (4.14)
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From the definition of K in (2.38),

E
[
(dag)(d

o
g)

T
]
≈ HgFgP(Fg)T(Hg)T[HgFgP(Fg)T(Hg)T + R]−1

× [HgFgPt(Fg)T(Hg)T + Rt] (4.15)

and when HgK = HgKt, (4.15) reduces to

E
[
(dag)(d

o
g)

T
]
≈ HgFgPt(Fg)T(Hg)T. (4.16)

This result is in agreement with (2) with Desroziers et al. [27] when the data assimi-

lation window consists of only one time level, t0. Like before, if hi andMi are linear,

(4.16) is an equality.

Similarly, the observed-minus-analysis difference doa is

doa = y − h(xa) ≈ dog −HgKdog = (I−HgK)dog (4.17)

It can be verified that

I−HgK = R[HgFgP(Fg)T(Hg)T + R]−1 (4.18)

and so, from (4.9),

E
[
(doa)(d

o
g)

T
]
≈ R[HgFgP(Fg)T(Hg)T + R]−1

× [HgFgPt(Fg)T(Hg)T + Rt]. (4.19)

Once again, if the specification of HgK agrees with HgKt, then I−HgK from (4.18)
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equals

I−HgKt = Rt[HgFgPt(Fg)T(Hg)T + Rt]−1 (4.20)

and (4.19) can be further simplified to

E
[
(doa)(d

o
g)

T
]
≈ Rt, (4.21)

analogous to equation (3) of Desroziers et al. [27]. Due to the block diagonal structure

of Rt, this readily translates into a statement about the individual components of doa

and dog. Firstly,

E
[
(doa)i(d

o
g)

T
i

]
≈ Rt

i, (4.22)

and secondly,

E
[
(doa)i(d

o
g)

T
j

]
≈ 0 (4.23)

when i 6= j. Therefore, the components of doa and dog are uncorrelated in time.

The final diagnostic formulated here is the diagnosis for the analysis errors, similar

to equation (4) of Desroziers et al. [27]. Consider the product

dag(d
o
a)

T ≈ HgK(dog)(d
o
g)

T[HgFgP(Fg)T(Hg)T + R]−1R. (4.24)
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By (4.9) again,

E
[
(dag)(d

o
a)

T
]
≈ HgK[HgFgPt(Fg)THT + Rt]

× [HgFgP(Fg)T(Hg)T + R]−1R. (4.25)

When HgK = HgKt, this expression reduces to

E
[
(dag)(d

o
a)

T
]
≈ HgKtRt. (4.26)

All of these diagnostics provide consistency checks for a linear data assimilation

system. In the case of w4D-Var, if the model and observation operators are weakly

nonlinear, these diagnostics are an approximation and should still provide meaningful

information. For the case when assimilation is only performed at one time level, all

the results presented here reduce to their three-dimensional counterparts derived by

Desroziers et al. [27].

4.2 A Special Case

The diagnostic equations presented in the previous section do not provide information

on the full matrix structure of Pt unless observations are available at all grid points,

that is, hi(xi) = xi. In this case, the four-dimensional operator Hg is the identity

matrix and the diagnostics (4.9) and (4.16) can then be expressed as

E
[
(dog)(d

o
g)

T
]

= FgPt(Fg)T + Rt (4.27)

E
[
(dag)(d

o
g)

T
]

= FgPt(Fg)T. (4.28)
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By isolating Pt,

Pt = E
[
[(Fg)−1dog][(F

g)−1dog]
T
]
− (Fg)−1Rt(Fg)−T (4.29)

Pt = E
[
[(Fg)−1dag][(F

g)−1dog]
T
]
, (4.30)

equations (4.29) and (4.30) serve as a priori and a posteriori diagnostics, respectively.

When Pt is constant in time, the expectations in (4.29) and (4.30) can be estimated

by the time average of rank one matrices of the form [(Fg)−1dog][(F
g)−1dog]

T and

[(Fg)−1dag][(F
g)−1dog]

T over a number of data assimilation cycles. The special structure

of (Fg)−1 can be exploited so that the product of (Fg)−1 with a block vector d



I

−Mg
1 I

−Mg
2 I

. . . . . .

−Mg
N I





d0

d1

d2

...

dN


=



d0

d1 −Mg
1d0

d2 −Mg
2d1

...

dN −Mg
NdN−1


(4.31)

only requires the use of the tangent linear models and vector subtraction. Since the

guess states for the incremental method will be different from cycle to cycle, the

matrix Fg will also be different. Similarly, if Rt is constant in time, the expectation

in (4.21) can be estimated by a time average of the rank one matrices (doa)(d
o
g)

T.

The covariance matrices Pt and Rt are symmetric, however the time averages es-

timating the expected values in (4.21) and (4.30) are not symmetric. So, for practical

purposes, their diagnostic estimates may be identified with their symmetric parts. For

52



any square matrix X, the symmetric part of X is the symmetric matrix 1
2
(X + XT).

Pt ≈ 1

2(# cycles)

∑[
[(Fg)−1dag][(F

g)−1dog]
T + [(Fg)−1dog][(F

g)−1dag]
T
]

(4.32)

Rt ≈ 1

2(# cycles)

∑[
(dag)(d

o
g)

T + (dog)(d
a
g)

T
]

(4.33)

The estimation of Pt via (4.29) is symmetric, however, so

Pt ≈ 1

# cycles

∑[
[(Fg)−1dog][(F

g)−1dog]
T − (Fg)−1Rt(Fg)−T

]
(4.34)

will be sufficient in producing a symmetric approximation of Pt. Any discrepancies

that appear from comparing both sides of these approximations will indicate that the

data assimilation system is suboptimal.

The first n × n block of (4.32) and (4.34) are diagnostics for the background

error covariance matrix Bt and with the assumption that Qt
i is constant in time, the

other n×n diagonal blocks all estimate the time-invariant Qt
i, which can be averaged

together for another estimate of the model error covariance. Similarly, the diagonal

blocks of (4.33) can be averaged together for another estimate of the time-invariant

Rt
i.

4.3 Numerical Results

Once again, preliminary numerical results are presented for the Lorenz models from

Section 1.4. This time, observational data generated from the true state, corrupted

by random noise from N(0, (σo)2) with the standard deviation specified as σo = 0.55,

are available at every time in the assimilation window [t0, t3]. The observation

operator is specified as hi(xi) = xi so that equation (4.32) can be used in or-

der to get an estimate of Qt. The background error covariance is defined to be a
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Figure 4.1: (a) Posterior estimate of Qt, (b) Twentieth rows of Qt and the posterior esti-
mate.
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Figure 4.2: Specification of the background
error correlation matrix.

static band matrix with correlation

structure specified by the fifth-order

rational function of compact support

(3.9) with correlation parameter c = 4.

The background error variance is set to

(σb)2 = 0.1 for each grid point. Ini-

tially, the background xb0 is the truth per-

turbed by random noise and is a forecast

of a previous analysis for future cycles.

Figure 4.2 shows the specification of the

background error correlation matrix.

The weak-constraint diagnostic matrices (4.32) and (4.33) are estimated over a

one-year time period and compared against the true error covariance matrices. Since

the model error covariance matrix is constant in time, the three n×n diagonal blocks

of the estimate from (4.32) that all estimate the same time-invariant Qt are averaged
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Figure 4.3: (a) Posterior estimate of Rt, (b) Twentieth rows of Rt and the posterior esti-
mate.

together. Figure 4.1 shows the posterior Q-diagnostic matrix from this experiment

along with the comparison between the twentieth rows of Qt and the diagnostic

matrix. By comparing the Q-diagnostic matrix with the true model error covariance

matrix for the Lorenz model from Figure 1.1b, it is clear that the Q-diagnostic matrix

has recovered the correlation structure of Qt. The magnitude of the diagnostic matrix,

however, appears to be lower than the true model error covariance. While Qt was

not recovered entirely, the posterior diagnostic matrix hints at the existence of model

error correlations that were not accounted for in the specification of Q in the DAS.

In a similar manner, the four diagonal blocks of the estimate from (4.33) are aver-

aged together and compared to Rt. Figure 4.3 shows the R-diagnostic matrix along

with a cross-sectional analysis of the twentieth rows of Rt and the R-diagnostic ma-

trices. Recalling that R = Rt is a diagonal matrix, the true model error correlation

structure has become incorporated into the observation error covariance estimate.

This is verified by comparing the the rows of Qt and the R-diagnostic matrix. The

twentieth row of the R-diagnostic matrix follows the same correlation pattern exhib-
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ited by Qt. This phenomenon was also seen by Todling [76], who points out that this

has consequences for how estimates of observation error correlations derived from ob-

servation residuals are interpreted in operational data assimilation procedures. If, in

an operational DAS, R has been accurately specified, the appearance of correlations

within the R-diagnostic matrix indicates a problem with the specification of Q, i.e.

that the model error correlations have been mis-specified.

4.4 Conclusion

The work in this chapter provides a study on the framework of observation space

diagnostics in a w4D-Var setting. These new diagnostic equations are an extension

of those derived by Desroziers et al. [27] and when only one time level is considered,

the w4D-Var diagnostics reduce to the Desroziers diagnostics. A practical approach

is considered that relies on the evaluation of statistical expectations involving obser-

vation residuals, which contain some information about the true error statistics.

In an operational DAS, the statistical expectations can be estimated practically

over a number of assimilation cycles from a single realization of the residuals from

each cycle. While model error bias was assumed to be zero in the derivation of the

diagnostic equations, a nonzero model error bias can be considered and with slight

modifications to the work of Section 4.1, the same diagnostic matrices can be made.

Numerical experiments considered in this chapter demonstrated the ability of

the diagnostics to recover information about the true model error covariance in a

suboptimal DAS. More specifically, only Q was mis-specified and the diagnostics

attempted to recover the true model error covariance. The posterior Q-diagnostic

made it clear that there exist model error correlations that were absent in the DAS.

The observation residuals included information about the true model error correlation

structure and incorporated it into the estimate of Rt that, at first glance, indicated
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the presence of observation error correlations that did not exist.
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Chapter 5

Sensitivity Analysis

The weighting between the information provided by models and observational data in

a 4D-Var data assimilation system is determined by the representation of the statisti-

cal properties of the errors in the background, model, and observations. Adjoint-based

sensitivity analysis allows for the development of efficient methodologies to assess the

contribution of the various input parameters to the reduction of forecast error. Le

Dimet and Ngodock [55] provide the general framework for performing sensitivity

analysis in variational data assimilation, such as 4D-Var. Baker and Daley [4] de-

rived the equations of the forecast sensitivity to observations and the background

state in terms of the adjoint of the DAS. Subsequently, these techniques have been

extended to incorporate the forecast error sensitivity to observation and background

error covariances [14, 15, 16, 19, 20] and provided a basis for tuning error covariance

parameters [26, 28]. Cioaca et al. [11] present a practical approach to quantify the

impact associated with distinct observing system components. Akella and Navon [1]

discuss a method for estimating scalar parameters in the representation of system-

atic model errors through variational data assimilation. Yaremchuk and Martin [81]

compare 4D-Var ensemble sensitivity with adjoint sensitivity analysis for a quasi-

geostrophic model. Lupu et al. [65] use sensitivities and innovation statistics to tune

the observation error covariance matrix in numerical weather prediction. Cioaca and

Sandu [10] develop an optimization framework to improve 4D-Var data assimilation
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system performance. Lorenc and Marriott [62] discuss an adjoint-based approach for

calculating observation impacts in global 4D-Var at the Met Office.

The work in this chapter extends the adjoint-based approach to sensitivity anal-

ysis to the w4D-Var framework and provides the equations to evaluate the forecast

sensitivity with respect to parameters used to represent the model error covariance

in the DAS. Theoretical aspects and sensitivity guidance to forecast error reduction

through model error tuning procedures are presented.

5.1 Sensitivity Analysis

The analysis xa obtained from a w4D-Var assimilation system is determined by the

input parameters xa = xa(xb0,yi,B,Ri,Qi,qi) and varying these inputs can impact

the quality of the analysis. In 4D-Var, the impact of variations in the error covariance

models R and B is evaluated for a short-range forecast error measure typically defined

as

e(xak) = (xaf − xvf )
TE(xaf − xvf ) (5.1)

where xak is the analysis at time tk and xaf = Mtk→tf (xak) is the model forecast of

xak to verification time tf , xvf is the verifying analysis at time tf serving as a proxy

to the true state xtf , and E is a diagonal matrix of weights. The methodology of

deriving the 4D-Var sensitivity equations in the context of nonlinear least-squares

optimization [17, 18]

J(x) =
1

2
[Γ(x)− z]TW−1[Γ(x)− z] (5.2)
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can be extended to the w4D-Var cost functional (1.19) by defining the information

vector as

z =


xb0
...qi
...yi

 ∈ RM+p, (5.3)

where M = (N + 1)n, the nonlinear operator Γ : RM → RM+p which maps the

four-dimensional state x into information space

Γ(x) =


x0

...xi −Mi(xi−1)

...hi(xi)

 , (5.4)

and the block diagonal covariance model

W =

 P 0M×p

0p×M R

 ∈ R(M+p)×(M+p). (5.5)

In the work that follows, the sensitivity of a scalar forecast error functional to the

information z and the covariance model W is derived in the general context when the

forecast error aspect e(xa0, . . . ,x
a
N) is a function of the time-distributed model state.

5.2 Sensitivity Equations

The calculus of variations provides a tool for deriving the sensitivity of a scalar func-

tional e(x) to a parameter X ∈ Rm×n via the first-order variation

δe = 〈∇Xe(x), δX〉Rm×n (5.6)
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where the inner product is defined in terms of the matrix trace operator as

〈X,Y〉Rm×n = Tr(XYT). (5.7)

The first-order optimality condition ∇xJ(xa) = 0, or

ΓT
x (xa)W−1[Γ(xa)− z] = 0, (5.8)

where

Γx(xa) =
∂Γ

∂x
(xa) =

(Fa)−1

Ha

 ∈ R(M+p)×M (5.9)

denotes the Jacobian of Γ evaluated at xa, is used to establish the relation between

the first-order variation δxa and the parameter variations δz and δW. The matrix

Fa is like (2.30), but evaluated at the analysis state. It is noticed that

[
∇2

xxJ(xa)
]
δxa − ΓT

x (xa)W−1δz + ΓT
x (xa)δ(W−1)[Γ(xa)− z] = 0, (5.10)

where ∇2
xxJ(xa) is the Hessian matrix of the w4D-Var cost functional evaluated at

xa, W, and z. Using the identity

δ(W−1) = −W−1[δW]W−1 (5.11)

(5.10) can be rewritten as

[
∇2

xxJ(xa)
]
δxa − ΓT

x (xa)W−1δz− ΓT
x (xa)W−1[δW]W−1[Γ(xa)− z] = 0. (5.12)
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Taking the inner product of (5.12) with an arbitrary vector χ ∈ RM gives

〈
χ,
[
∇2

xxJ(xa)
]
δxa
〉
RM =

〈
χ,ΓT

x (xa)W−1[δW]W−1[Γ(xa)− z]
〉
RM +〈

χ,ΓT
x (xa)W−1δz

〉
RM . (5.13)

This can be simplified using the fact that ∇2
xxJ(xa) and W are symmetric matrices

and with the aid of some linear algebra operations.

〈[
∇2

xxJ(xa)
]
χ, δxa

〉
RM =

〈
W−1Γx(xa)χ[Γ(xa)− z]TW−1, δW

〉
R(M+p)×(M+p) +〈

W−1Γx(xa)χ, δz
〉
RM+p (5.14)

Let χ denote the solution to

[
∇2

xxJ(xa)
]
χ = ∇xe(x

a), (5.15)

where ∇xe(x
a) is the dimension M forecast error gradient. Second-order derivative

information about the Hessian of the cost functional (5.2) may be obtained through

the development of a second-order adjoint model [54].

From equations (5.14) and (5.15), the first-order variation in the forecast error

functional is

δe =
〈
W−1Γx(xa)χ, δz

〉
RM+p +

〈
W−1Γx(xa)χ[Γ(xa)− z]TW−1, δW

〉
RM+p . (5.16)

From (5.6), the forecast sensitivity to the information vector z is

∇ze(x
a) = W−1Γx(xa)χ ∈ RM+p (5.17)
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and the forecast sensitivity to the covariance model W is

∇We(xa) = W−1Γx(xa)χ[Γ(xa)− z]TW−1 ∈ R(M+p)×(M+p). (5.18)

The W-sensitivity equation (5.18) can be rewritten as

∇We(xa) = ∇ze(x
a)[W−1(Γ(xa)− z)]T. (5.19)

By denoting

v1 = ∇ze(x
a) (5.20a)

v2 = W−1[Γ(xa)− z], (5.20b)

the W-sensitivity matrix can be represented as

∇We(xa) = v1v
T
2 , (5.21)

where it is noticed that the W-sensitivity matrix has rank one. Thus, evaluation and

storage of only two vectors is required to contain the W-sensitivity information.

5.3 Sensitivities with Matrix Decomposition

The error covariance model W is a symmetric and positive definite matrix. For prac-

tical purposes, it is therefore necessary to constrain δW so that W + δW is also

symmetric and positive definite. A perturbation using the W-sensitivity information

δW = α∇We(xa) may not preserve this property, however, a perturbation δW in-

duced from a matrix decomposition can. To address this issue, the following three

matrix decompositions are considered.
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• W = W1/2WT/2, where W1/2 is a square root of W.

• W = ΣCΣ, where Σ = diag(σw) and C are the standard deviation and corre-

lation matrices, respectively.

• W =
(
ΣC1/2

) (
ΣC1/2

)T
, where C = C1/2CT/2 so that W1/2 = ΣC1/2.

In these decompositions, a perturbation in W1/2, Σ, or C1/2 will induce a perturbation

in W that is symmetric positive semi-definite, preserving the requisite structure of

W. The equations to evaluate the forecast sensitivities associated with these matrix

decompositions are detailed next.

5.3.1 Sensitivity to the Covariance Square Root Specification

From the matrix decomposition W = W1/2WT/2, a perturbation δW1/2 is related to

a perturbation δW via

δW = (δW1/2)WT/2 + W1/2(δW1/2)T. (5.22)

Equation (5.22) is used to get the forecast sensitivity to W1/2.

〈∇We(xa), δW〉 = 〈v1v
T
2 , (δW

1/2)WT/2 + W1/2(δW1/2)T〉 (5.23)

Using the properties of the inner product (5.7), (5.23) can be written as

〈v1v
T
2 , (δW

1/2)WT/2 + W1/2(δW1/2)T〉 = 〈(v1v
T
2 + v2v

T
1 )W1/2, δW1/2〉, (5.24)

which provides the forecast sensitivity to W1/2.

∇W1/2e(xa) = (v1v
T
2 + v2v

T
1 )W1/2 (5.25)
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Notice that (5.25) is a rank two matrix.

5.3.2 Sensitivity to the Standard Deviation Specification

A perturbation δΣ induces a perturbation

δW1/2 = (δΣ)C1/2. (5.26)

The first-order variation is

δe = 〈(v1v
T
2 + v2v

T
1 )W1/2, δW1/2〉 = 〈(v1v

T
2 + v2v

T
1 ), (δΣ)C1/2〉. (5.27)

From (5.7), (5.27) is simplified by using the properties of the trace operator.

δe = Tr
[
(v1v

T
2 + v2v

T
1 )W1/2CT/2(δΣ)

]
= Tr

[
δΣ
(
v2(C

1/2WT/2v1)
T + v1(C

1/2WT/2v2)
T
)]

(5.28)

Since Σ is a diagonal matrix, δΣ relates to a perturbation δσw so that

δe = Tr
[
(δσw ◦ v2)(C

1/2WT/2v1)
T
]

+ Tr
[
(δσw ◦ v1)(C

1/2WT/2v2)
T
]
. (5.29)

The property that Tr(abT) = bTa further simplifies (5.29), in which case

δe = (C1/2WT/2v1)
T(δσw ◦ v2) + (C1/2WT/2v2)

T(δσw ◦ v1), (5.30)

where ◦ denotes the Hadamard product of matrices. After additional simplification,

δe = 〈v2 ◦ (CΣv1) + v1 ◦ (CΣv2), δσ
w〉, (5.31)
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which gives the forecast sensitivity to the standard deviation σw.

∇σwe(xa) = v2 ◦ (CΣv1) + v1 ◦ (CΣv2) (5.32)

5.3.3 Sensitivity to the Correlation Specification

A perturbation in the correlation matrix C induces a perturbation of W via

δW = Σ(δC)Σ. (5.33)

Once again, the properties of the inner product (5.7) imply that

〈∇We(xa), δW〉 = 〈v1v
T
2 ,Σ(δC)Σ〉 = 〈Σv1v

T
2 Σ, δC〉. (5.34)

Therefore, the forecast sensitivity to the correlation matrix C is

∇Ce(x
a) = Σv1v

T
2 Σ = (Σv1)(Σv2)

T. (5.35)

Like the W-sensitivity equation, the C-sensitivity equation has rank one. Further,

Σ = diag(σw), so the C-sensitivity equation can be expressed using σw as

∇Ce(x
a) = (σw ◦ v1)(σ

w ◦ v2)
T. (5.36)

5.3.4 Sensitivity to the Correlation Square Root Specification

The sensitivity of the correlation model square root C1/2 can also be obtained. A

perturbation in C1/2 induces a perturbation in W1/2 via

δW1/2 = Σ(δC1/2). (5.37)
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Then

δe = 〈(v1v
T
2 + v2v

T
1 )W1/2,Σ(δC1/2)〉 = 〈Σ(v1v

T
2 + v2v

T
1 )W1/2, δC1/2〉 (5.38)

implies that the forecast sensitivity to C1/2 is

∇C1/2e(xa) = Σ(v1v
T
2 + v2v

T
1 )W1/2. (5.39)

5.3.5 Summary of Sensitivity Equations

The forecast sensitivities to the model error parameters can be extracted from the

block structures of z, W, and the sensitivity equations. For the model error param-

eters at time ti,

v1 = Q−1i [χi −Ma
iχi−1], (5.40a)

v2 = Q−1i [xai −Mi(x
a
i−1)− qi]. (5.40b)

Then, the sensitivity equations for the model error parameters, summarized in Table

5.1, follow from equations (5.17), (5.19), (5.25), (5.32), (5.36), and (5.39).

5.4 Sensitivities Using a Single Outer Loop Iteration

The model error sensitivity equations can be simplified in the case when the analysis

is obtained from a single outer loop iteration of the incremental algorithm. Since

the quadratic approximation Ĵ(x) of (5.2) is used instead, obtained by lineariz-

ing the model forecast and observation operators about a sequence of guess states

67



Parameter Significance Dimension Forecast Sensitivity

q Model error bias Rn v1

σq Model error standard Rn v2 ◦ (CΣv1) + v1 ◦ (CΣv2)
deviation

Q Model error covariance Rn×n v1v
T
2

Q1/2 Model error covariance Rn×n (
v1v

T
2 + v2v

T
1

)
Q1/2

square root
C Model error correlation Rn×n (σq ◦ v1)(σ

q ◦ v2)
T

C1/2 Model error correlation Rn×n Σ
(
v1v

T
2 + v2v

T
1

)
Q1/2

square root

Table 5.1: Summary of forecast error sensitivities to model error input parameters in w4D-
Var.

{xg0, . . . ,x
g
N}, Γ(x) is replaced by the first-order linearization about xg

Γ(x) ≈ Γ(xg) + Γx(xg)(x− xg). (5.41)

Then, the first-order optimality condition is ∇xĴ(xa) = 0, where

Ĵ(x) =
1

2
[Γ(xg) + Γx(xg)(x− xg)− z]TW−1[Γ(xg) + Γx(xg)(x− xg)− z]. (5.42)

In this framework, the sensitivity equations in Table 5.1 remain valid if the following

changes are made.

• The linear system (5.15) is replaced by

[
∇2

xxĴ(xa)
]
χ̂ = ∇xe(x

a), (5.43)
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where

∇2
xxĴ(xa) = ΓT

x (xg)W−1Γx(xg) (5.44)

is the Hessian of (5.42), and χ is replaced by χ̂. The Hessian of the quadratic

approximation ∇2
xxĴ(xa) consists only of first-order tangent linear and adjoint

models of the forecast and observation models such that higher-order deriva-

tives and the development of a second-order adjoint model are not required to

evaluate χ̂.

• The vectors v1 and v2 from (5.40) are replaced by

v̂1 = Q−1i [χ̂i −Mg
i χ̂i−1] (5.45a)

v̂2 = Q−1i [xai −Mi(x
g
i−1)−Mg

i (x
a
i−1 − xgi−1)− qi]. (5.45b)

5.5 Adaptive Tuning of Model Error Parameters

An adjoint-based approach has been considered by Song et al. [73] to achieve adap-

tive tuning of the background error covariance model in a hybrid ensemble Kalman

filter/4D-Var DAS. The forecast error sensitivity equations provide a tool for tun-

ing the model error covariance matrix specification. The forecast error gradients to

Q1/2, σq, and C1/2 give information on reducing the forecast error using the steepest

descent direction in an update of the form

X(k+1) = X(k) − αk∇Xe(x
a)

∣∣∣∣
X=X(k)

(5.46)

and the specification of an updated model error covariance Q(k+1) based on the new

value of the parameter Q1/2, σq, or C1/2. A practical approach for adaptive tuning of
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Figure 5.1: A visual of the model error parameter tuning procedure.

model error parameters and the selection of the step length αk are presented below.

After assimilating data over the window [t0, tN ], the analysis sequence for the next

window [tN+1, t2N+1] will be used as the verification state xv in the forecast error

functional, which is needed in the evaluation of the error sensitivity equations. This

information is then fed back to the first window [t0, tN ] to produce a new model error

covariance specification and a new analysis sequence is obtained by re-assimilating

the same observational data. The quality of the new specification is evaluated by

comparing the errors in the forecasts initiated from the analyses produced in each of

the two assimilation systems. If a sufficient reduction in the forecast error is achieved,

the new DAS is accepted. The evaluation of the sensitivities and the quality of the

updated DAS is computationally expensive, so it is impractical to implement more

than one iteration of the gradient descent algorithm per assimilation cycle. This

means that if there was not a sufficient decrease in the forecast error, the new DAS

is rejected. Figure 5.1 shows a diagram of the sensitivity feedback loop.

The step-size for the gradient descent is initialized to α0 = 1 and is dynamically

updated between cycles. After a successful reduction in the forecast error, the step-
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size is updated according to [68, p. 59]

α =
2(e(xa)− e(xanew))

‖∇Xe(xa)‖2
(5.47)

which is the step-size obtained as the minimizer of the quadratic interpolation using

the data e(xa), e(xanew), and ‖∇Xe(x
a)‖2. If the new DAS is rejected, the step-size is

halved for the next cycle instead of being set by (5.47). Algorithm 5.1 summarizes

this sensitivity procedure.

In general, the Q1/2- and C1/2-sensitivity matrices are full matrices and do not

conform to any matrix structure. If Q is a band matrix, then updating the DAS us-

ing these sensitivity matrices will not preserve this structure. This can be remedied

through a localization operator, as used in the ensemble-based error covariance spec-

ification. Modifying the model error sensitivity equations in Table 5.1 to account for

a band matrix structure simply requires setting the sensitivities outside the diagonal

band to zero.

5.6 Numerical Results

Again, preliminary numerical results are presented for a DAS using the Lorenz models

from in Section 1.4. For these experiments, a data assimilation window consists of

the current time t0 and three 6-hour time-steps, [t0, t3]. Observational data yi at time

ti are taken at locations 10i + k for k = 1, 2, . . . , 10 so that yi is a 10-dimensional

vector. Thus, the data y0 are located at locations 1 through 10, y1 are at locations

11 through 20, and so on. Through this rotating observing system, each grid point is

observed during the assimilation cycle. All observations are generated from the true

state with the observational error taken from the distribution N(0, (σo)2) with the

standard deviation specified as σo = 0.55. The background error covariance is defined
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Algorithm 5.1: Procedure to update the model error covariance matrix using sensitivities.

1: procedure Update Qmodel(X0, α0)
2: Q = Q(X0) . Initialize Q using parameter X0

3: α = α0 . Set initial step-size
4: xa = w4DVar(xb0,y,B,R,Q,q)

5: p = −∇Xe(x
a) . Set the search direction

6: Xnew = X0 + αp

7: Qnew = Q(Xnew)
8: xanew = w4DVar(xb0,y,B,R,Qnew,q) . Redo analysis with new specification
9: ε = e(xanew)− e(xa) . Compute forecast error impact

10: if ε < 0 then . Forecast error was decreased
11: Q = Qnew . Update model error covariance specification
12: xa = xanew . Update analysis state
13: α = 2(e(xa)− e(xanew))/‖∇Xe(x

a)‖2 . Update step-size for the next cycle
14: else . Reject the updated specification
15: α = 0.5α . Reduce step-size for next cycle
16: end if

17: Continue to next assimilation cycle
18: end procedure

to be a static band matrix with correlation structure specified by (3.9) with correlation

parameter c = 4. The background error variance is set to be (σb)2 = 0.1 for each grid

point. Initially, the background xb0 is the truth perturbed by random noise and is a

forecast of a previous analysis for future cycles. A visual of the rotating observing

system and the background error covariance specification are shown in Figure 5.2.

5.6.1 Numerical Convergence Tests

The validity of the model error sensitivity equations is established using a numerical

gradient check. For this test, the forecast error aspect is defined similar to (5.1)

e(xa0, . . . ,x
a
N) = (xfN − xvN+4)

TE(xfN − xvN+4), (5.48)
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Figure 5.2: (a) A visual of the rotating observing system, (b) The specification of the
background error correlation matrix.

where E = In, xfN = MN→N+4(x
a
N) is the 24-hour forecast of xaN , and xvN+4 is the

verifying analysis at time tN+4. The forecast sensitivity of (5.48) to the analysis is

∇xe(x
a) =

[
0T · · · 0T [2MT

N→N+4E(xfN − xvN+4)]
T

]T
(5.49)

where MT
N→N+4 is the adjoint of the tangent linear forecast model from time tN+4 to

tN evaluated at xaN .

The convergence of the second-order accurate finite difference approximation

〈∇Xe(X),∆X〉 =
e(X + h∆X)− e(X− h∆X)

2h
+O(h2) (5.50)

as h→ 0 provides the means to verify the model error parameter sensitivity equations

derived in Section 5.1 by observing the behavior of the error in the finite difference
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Perturbation Q+,−

h∆Q Q± h∆Q

h∆Q1/2 (Q1/2 ± h∆Q1/2)(Q1/2 ± h∆Q1/2)T

h∆C Q± hΣ∆CΣ

h∆C1/2 Σ(C1/2 ± h∆C1/2)(C1/2 ± h∆C1/2)TΣ

h∆σq (Σ± h∆Σ)C(Σ± h∆Σ)

Table 5.2: Specifications of Q+ and Q− given a perturbation in Q or one of its matrix
factors.

approximation.

Eh =
e(X + h∆X)− e(X− h∆X)

2h
− 〈∇Xe(X),∆X〉 (5.51)

For h = 2−n, the logarithm of the error ratio log2(Eh/Eh/2) should be approximately 2

as n increases for each of the model error sensitivity equations. The forecast sensitivi-

ties are evaluated for a DAS where the model error covariance matrices are prescribed

as Qi = diag(Qt). The numerical experiment for this gradient check is implemented

as follows.

• Obtain the analysis sequence and the forecast sensitivity.

• Setup two new systems where the model error covariances are prescribed by

Q+ = Q(X + h∆X), Q− = Q(X− h∆X) (5.52)

where X is a stand-in for the model error parameter being perturbed. Table

5.2 summarizes these specifications for each model error covariance parameter.

74



When perturbing q, prescribe

q+ = q + h∆q, q− = q− h∆q (5.53)

instead.

• Obtain the analysis sequences for the new systems and evaluate the forecast

errors.

• Form the table of finite difference error ratios.

Table 5.3 shows the finite difference errors for the model error parameter sensitivity

equations. The logarithm of the error ratios approaches 2 for each of the sensitivity

equations, agreeing with the correct rate of convergence of (5.50). This provides a

numerical validation of the sensitivity equations. The range of h is different for the

Q-sensitivity experiment since for larger values of h, Q− was not positive definite and

no analyses have been produced in those cases.

5.6.2 Adaptive Tuning of the Model Error Covariance Specification

A comparative analysis is done to investigate the performance of a w4D-Var DAS

when the specification of the model error covariance is dynamically updated using

the tuning procedure from Section 5.5. Two systems are considered where the model

error covariance matrices are prescribed as follows.

• (Control) Q = diag(Qt) and will remain static throughout the experiment.

• (Sensitivity) Q = diag(Qt) for the first assimilation cycle and is updated using

the gradient descent algorithm via sensitivities to the square root factor Q1/2.
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h Eh log2(Eh/Eh/2)
2−14 4.98×10−3 —
2−15 1.24×10−3 2.00
2−16 3.11×10−4 2.00
2−17 7.78×10−5 2.00
2−18 1.94×10−5 2.00

(a) Q-sensitivity

h Eh log2(Eh/Eh/2)
2−7 3.93×10−5 —
2−8 9.82×10−6 2.00
2−9 2.46×10−6 2.00
2−10 6.14×10−7 2.00
2−11 1.53×10−7 2.00

(b) C-sensitivity

h Eh log2(Eh/Eh/2)
2−9 3.49×10−1 —
2−10 8.73×10−2 2.00
2−11 2.18×10−2 2.00
2−12 5.46×10−3 2.00
2−13 1.37×10−3 2.00

(c) Q1/2-sensitivity

h Eh log2(Eh/Eh/2)
2−5 6.19×10−2 —
2−6 1.56×10−2 1.99
2−7 3.89×10−3 2.00
2−8 9.74×10−4 2.00
2−9 2.43×10−4 2.00

(d) C1/2-sensitivity

h Eh log2(Eh/Eh/2)
2−5 2.08×100 —
2−6 5.26×10−1 1.99
2−7 1.32×10−1 2.00
2−8 3.30×10−2 2.00
2−9 8.24×10−3 2.00

(e) σq-sensitivity

h Eh log2(Eh/Eh/2)
2−5 9.02×10−5 —
2−6 2.25×10−5 2.00
2−7 5.63×10−6 2.00
2−8 1.41×10−6 2.00
2−9 3.52×10−7 2.00

(f) q-sensitivity

Table 5.3: Finite difference errors and log error ratios for each of the model error sensitivity
equations.

The w4D-Var forecast error functional for this experiment is defined by

e(xa0, . . . ,x
a
N) = (xfN − xvN+1)

TE(xfN − xvN+1), (5.54)

where E = In and xfN =MN+1(x
a
N) is the 6-hour forecast of xaN from time tN to tN+1.

It is sufficient to only forecast xaN one time-step to obtain the forecast sensitivity to

Qi and qi since each analysis state xai depends on the model error statistics over the
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entire window [t0, tN ]. The forecast sensitivity of (5.54) to the analysis is

∇xe(x
a) =

[
0T · · · 0T [2MT

N+1E(xfN − xvN+1)]
T

]T
(5.55)

where MT
N+1 is the adjoint of the tangent linear forecast model from time tN+1 to tN

evaluated at xaN . The 6-hour forecast lead time is used for quasi real time adaptivity of

the parameters of the Q-model. The 6-hour lead time has been previously considered

in the work of Hotta [46] to achieve flow-dependent proactive quality control using

ensemble-based estimation of the sensitivity to observations. In his work, Hotta has

also found that the 6-hour ensemble forecast sensitivity to observations is, at least

qualitatively, consistent with the results based on 24-forecast sensitivities.

Initially, the step-size for the gradient descent is set to 1 and dynamically updated

throughout the experiment. Localization is applied so that the dynamic model error

covariance matrices have bandwidth 20.

Figure 5.3 shows the ratio of the monthly (30-day) average background and anal-

ysis errors to the control analysis error. An error ratio less than 1 indicates better

performance than the control and greater than 1 means a worse performance. Also

shown is the error ratio for the control background error, which is about 1.1 for the

entire two years, meaning that the control background error is about 10% worse than

the control analysis error. The background and analysis errors for the sensitivity DAS

are trending downward during months 1 through 7. This time acts as a spin-up period

for the sensitivity-based system and proper analysis of its performance can be made

once the downward trend in the background and analysis errors has finished. At the

end of this period, the analysis error ratio is about 0.5, implying a 50% analysis error

reduction has taken place. Furthermore, the background error ratio is less than 1,

and in particular, the background obtained from the sensitivity DAS estimates the
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Figure 5.3: The ratio of the global monthly
errors to the control w4D-Var experiment.
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Figure 5.4: The step-size for the gradient de-
scent update of the model error covariance
matrices for each data assimilation cycle over
a two-year period.

truth better than the analysis of the control. In total, the two-year period consisted

of 720 assimilation cycles, for which there were 603 updates to Q for a total of 83.75%

success rate in reducing the forecast error. Figure 5.4 shows the step-sizes for each

assimilation cycle. For the assimilation cycles in which the forecast error was not

reduced, the step-size was recorded as α = 0, signifying that Q was not updated for

the next assimilation cycle.

The sensitivity w4D-Var system performance is also compared to the ensemble-

based w4D-Var approaches from Chapter 3. The model error statistics for the two

additional assimilation systems are prescribed as follows.

• (Ensemble) Q is specified as the flow-dependent estimate Qe for an ensemble

size of Ne = 20 with localization obtained from (3.9) with correlation parameter

4.

• (Hybrid) Q = 0.5Qc + 0.5Qe, where the static component is specified as Qc =

diag(Qt) and Qe is as specified for the weak ensemble DAS.
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Figure 5.5: The same as Figure 5.3, but com-
pares the monthly error ratios of the sensitiv-
ity DAS to the ensemble-based DASs.
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Figure 5.7: The ratio of the analysis errors to
the control for each time in the data assimila-
tion window.

The performance of the sensitivity

w4D-Var and the ensemble-based w4D-

Var systems is evaluated by comparing

the analysis errors in three situations.

Figure 5.5 shows the monthly analysis

error ratios for each DAS to the con-

trol, like Figure 5.3, but does not include

background errors. Figure 5.6 shows the

analysis error ratios over each grid point

while Figure 5.7 shows the average anal-

ysis error ratios for each time level in the

data assimilation window [t0, t3] over two years. For the first three months, the

ensemble-based systems outperform the sensitivity-based DAS.

The ensemble and hybrid w4D-Var schemes do not require a spin-up as they use an

ensemble covariance matrix updated at every assimilation cycle. On the other hand,
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the sensitivity-driven update of Q involves one low-rank matrix each cycle and only

after a number of updates will a significant reduction in the analysis error be seen.

For grid points 2 through 20, the sensitivity w4D-Var DAS has better performance

than the ensemble-based schemes. The error ratios vary between about 0.3 in the

middle of the domain to about 0.8 at the highest. The best performance is seen

at grid points 11 through 20, which can be explained by the choice of observing

system. In variational data assimilation, it is known that the analysis error over a

data assimilation window [t0, tN ] is at its lowest in the middle of the window, which is

the second time level t1 in this experiment. This is corroborated by Figure 5.7 which

plots the average analysis error ratios to the control for each time level in the data

assimilation window. It is at time t1 in which grid points 11 through 20 are observed

in the rotating observing system. Additionally, it is noted that Figure 5.7 indicates

that the sensitivity w4D-Var has the best performance overall in [t0, t3].

5.7 Conclusion

This chapter extends the theoretical framework of the adjoint-based sensitivity analy-

sis in data assimilation to incorporate model error parameters in the weak-constraint

4D-Var formulation. Equations to evaluate the sensitivity of a forecast error aspect to

the DAS representation of the model error bias, standard deviation, and correlation

structures are derived from the first-order optimality condition associated with the

nonlinear optimization problem. It is emphasized that an all-at-once evaluation of

the sensitivities to various parameters in the Q-model may be efficiently performed

by properly exploiting the low-rank structure of the Q-sensitivity matrix.

A new computationally feasible approach is introduced for tuning Q-model pa-

rameters based on derivative information extracted from a short-range forecast error

measure. Our novel approach to adaptive covariance tuning relies on a two-stage
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procedure that includes a trial analysis followed by adjoint-based forecast error sen-

sitivity and parameter tuning to obtain the final analysis. The information collected

through a feedback mechanism is used to dynamically update the step-size of the

steepest descent iteration. To the best of our knowledge, this is the first attempt to

perform variable step-size gradient-based tuning of the model error covariance in a

w4D-Var DAS. A proof-of-concept has been presented with the Lorenz model and,

the simplicity of the model notwithstanding, results from a preliminary set of data

assimilation experiments show the potential of this methodology to produce improved

state estimates as compared with other approaches in data assimilation.

The theoretical superiority of the w4D-Var formulation can be achieved in prac-

tical applications only through a proper representation of the model error statistics.

Therefore, it is expected that the techniques presented here will find an extended

range of applications to assess and improve the performance of variational data as-

similation and forecast systems.
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Chapter 6

Experiments with the Shallow Water Equations

The second stage of numerical experiments takes place with the shallow water equa-

tions

∂u

∂t
+ u

∂u

∂x
+
∂φ

∂x
= fv − g∂H

∂x
(6.1a)

∂v

∂t
+ u

∂v

∂x
= −fu (6.1b)

∂φ

∂t
+ u

∂φ

∂x
+ φ

∂u

∂x
= 0 (6.1c)

where x ∈ [0, L]. The variables u = u(x, t) and v = v(x, t) represent the eastward

and northward components of velocity and φ = φ(x, t) represents the geopotential,

defined by φ = gη(x, t) with g being the acceleration due to gravity and η the depth

of the fluid. The topography of the bottom is given by H(x), and f is the Coriolis

parameter. Setting the values of the parameters as f = 1.45842 × 10−4 sin θ s−1,

g = 9.8 ms−2, and L = 40074 cos θ km are suitable for a model approximating the

atmosphere of Earth at θ◦ north latitude. Experiments in this chapter are performed

for θ = 30◦. This model has previously been used in the study of data assimilation

techniques [41, 60]. See Figure 6.1 for a visual representation of the shallow water

model.
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Figure 6.1: Schematic representation of the shallow water model.

6.1 The Discrete Model

For data assimilation experiments, the forecast model is obtained by discretizing the

flux form of the shallow water equations using finite differences, which includes ar-

tificial diffusion with K = 500 m2s−1 to help eliminate spurious oscillations. The

discrete model for the shallow water equations using forward time and centered spac-

ing is given by

mk+1
j = mk

j −
∆t

4∆x

[
(ukj+1 + ukj )(m

k
j+1 +mk

j )− (ukj + ukj−1)(m
k
j +mk

j−1) + (φkj+1)
2−

(φkj−1)
2 + g

[
(φkj+1 + φkj )(Hj+1 −Hj) + (φkj + φkj−1)(Hj −Hj−1)

]]
+ ∆tfnkj

+K
∆t

∆x2
[
mk
j−1 − 2mk

j +mk
j+1

]
, (6.2a)

nk+1
j = nkj −

∆t

4∆x

[
(vkj+1 + vkj )(mk

j+1 +mk
j )− (vkj + vkj−1)(m

k
j +mk

j−1)
]
−∆tfmk

j

+K
∆t

∆x2
[
nkj−1 − 2nkj + nkj+1

]
, (6.2b)

φk+1
j = φkj −

∆t

2∆x

[
mk
j+1 −mk

j−1
]

+K
∆t

∆x2
[
φkj−1 − 2φkj + φkj+1

]
, (6.2c)

for j = 1, . . . , J spatial nodes so that the state vector xk has dimension n = 3J .

In the discretized shallow water equations, mk
j = φkju

k
j and nkj = φkjv

k
j , where ukj ≈

u(j∆x, k∆t), vkj ≈ v(j∆x, k∆t), and φkj ≈ φ(j∆x, k∆t). The derivation of this
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Figure 6.2: Shallow water diagram with bottom topography given by (6.3).

scheme is shown in Appendix B. Periodic spatial boundary conditions are imposed so

that state J+1 corresponds to state 1 and so on. For the finite difference scheme, the

spatial step-size is set to be ∆x = L/J and the temporal step-size satisfies ∆t = 0.1∆x

to ensure numerical stability. The bottom topography H(x) consists of a ridge in the

center of the domain defined, in meters, by

H(x) =


0.5

[
1−

(
x− L/2
10∆x

)2
]
, |x− L/2| ≤ 10∆x

0, otherwise

(6.3)

as shown in Figure 6.2.

The true state for data assimilation experiments is represented by (6.2). By

ignoring the bottom topography, the finite difference equations with H(x) = 0 will

only approximate the true state evolution and model error is introduced. Therefore,
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Figure 6.3: The “true” state of the shallow water model.

the forecast model Mk is represented by

mk+1
j = mk

j −
∆t

4∆x

[
(ukj+1 + ukj )(m

k
j+1 +mk

j )− (ukj + ukj−1)(m
k
j +mk

j−1) + (φkj+1)
2−

(φkj−1)
2
]

+ ∆tfnkj +K
∆t

∆x2
[
mk
j−1 − 2mk

j +mk
j+1

]
, (6.4a)

nk+1
j = nkj −

∆t

4∆x

[
(vkj+1 + vkj )(mk

j+1 +mk
j )− (vkj + vkj−1)(m

k
j +mk

j−1)
]
−∆tfmk

j

+K
∆t

∆x2
[
nkj−1 − 2nkj + nkj+1

]
, (6.4b)

φk+1
j = φkj −

∆t

2∆x

[
mk
j+1 −mk

j−1
]

+K
∆t

∆x2
[
φkj−1 − 2φkj + φkj+1

]
. (6.4c)

The adjoint and tangent linear models of the forecast model (6.4) are shown in Ap-

pendix C.

6.2 Data Assimilation System

Numerical experiments will implement the methodologies of the previous chapters to

gain insight on the model error statistics in this situation. The number of spatial

nodes is chosen to be J = 100 and the initial state of the system is given by

m0
j = 0 m3s−3, n0

j = 0 m3s−3, φ0
j = 10 m2s−2. (6.5)
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Figure 6.4: (a) The estimated model error covariance matrix for the discrete shallow water
model, (b) Zoomed-in view of Qt.

The initial conditions correspond to a fixed point of the model equations (6.4) so the

model state remains in equilibrium if data assimilation is not applied. Figure 6.3

shows the “true” state at different times, starting with the initial conditions (6.5).

Figure 6.4 shows the model error covariance estimated using the sample covariance

of model error realizations obtained from the difference between the truth (6.2) and

the model (6.4). In these figures, the state vector xk is arranged so that states 1

through 100 correspond to mk
1:100, states 101 through 200 correspond to nk1:100, and

the the final 100 correspond to φk1:100. Since the absence of bottom topography only

affects the state of the m-variables, no model error exists in the forecast model for

the n- and φ-variables. In particular, the definition of the true bottom topography

(6.3) implies that only mk
41:61 are affected by model error.

The DAS is defined such that a data assimilation window consists of four time

levels [t0, t3] and observations are taken from the true state at every grid point and

at every time level perturbed by unbiased random noise with covariance Rk = In.

The background error and model error covariances are also specified as the identity
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h Eh log2(Eh/Eh/2)
2−9 8.72×10−2 —
2−10 2.17×10−2 2.00
2−11 5.42×10−3 2.00
2−12 1.35×10−3 2.00
2−13 3.38×10−4 2.00

(a) Q-sensitivity

h Eh log2(Eh/Eh/2)
2−5 2.97×10−1 —
2−6 7.37×10−2 2.01
2−7 1.83×10−2 2.00
2−8 4.59×10−3 2.00
2−9 1.14×10−4 2.00

(b) C-sensitivity

h Eh log2(Eh/Eh/2)
2−9 5.26×10−2 —
2−10 1.31×10−2 1.99
2−11 3.29×10−3 1.99
2−12 8.24×10−4 2.00
2−13 2.06×10−4 2.00

(c) Q1/2-sensitivity

h Eh log2(Eh/Eh/2)
2−5 1.51×10−1 —
2−6 3.78×10−2 1.99
2−7 9.46×10−3 2.00
2−8 2.36×10−3 2.00
2−9 5.91×10−4 2.00

(d) C1/2-sensitivity

h Eh log2(Eh/Eh/2)
2−5 4.41×10−2 —
2−6 1.10×10−2 2.00
2−7 2.75×10−3 2.00
2−8 6.88×10−4 2.00
2−9 1.72×10−4 2.00

(e) σq-sensitivity

h Eh log2(Eh/Eh/2)
2−5 7.71×10−8 —
2−6 1.92×10−8 2.00
2−7 4.81×10−9 2.00
2−8 1.20×10−9 2.00
2−9 2.95×10−10 2.00

(f) q-sensitivity

Table 6.1: Finite difference errors and log error ratios for each of the model error sensitivity
equations for the discrete shallow water model.

matrix and the initial background xb0 is the true state perturbed by random noise.

The analysis is obtained using state space preconditioning (2.46), where the linear

system is solved by the conjugate gradient method.

6.3 Numerical Results

The data assimilation approaches described in Chapters 3 through 5 are applied to

the discrete shallow water equations. But first, the model error sensitivity equations

from Chapter 5 are validated for the discrete shallow water model.
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6.3.1 Validation of the Sensitivity Equations

The gradient check for the model error sensitivity equations using the finite difference

approximation (5.50) is now performed using the discrete shallow water model. The

same experimental setup is used in this situation as was employed for the Lorenz

model, i.e. errors of the form (5.51) are calculated for h = 2−n and the logarithm

of the error ratios log2(Eh/Eh/2) is monitored. Table 6.1 shows these error ratios

using the discrete shallow water model. Like the results for the Lorenz model, the

log error ratios approach 2 for each of the sensitivity equations, agreeing with the

correct convergence rate of (5.50). For several values of h, no error ratios exist for the

Q- and C-sensitivity equations since those choices of h produced covariance matrices

that were not positive definite.

6.3.2 Data Assimilation Experiments

The data assimilation approaches described in Chapters 3 through 5 are applied to the

discrete shallow water equations. First, the ensemble-based w4D-Var approaches from

Chapter 3 are compared to a sensitivity-based DAS where the model error covariance

specification is updated according to the adaptive procedure from Chapter 5. Four

assimilation systems are considered where the model error covariance matrices are

specified as follows.

• (Control) Mis-specified model error covariances specified as Q = In and model

bias q = 0 is considered as the status-quo and serves as the basis for comparing

against the other schemes.

• (Ensemble) Use equations (3.6) and (3.8) from an ensemble size of 20. Covari-

ance localization is performed using the fifth-order rational function of Gaspari

and Cohn [37] with correlation parameter 50. The model error ensemble is
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Figure 6.5: The ratio of the global analysis
errors to the control w4D-Var experiment.
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Figure 6.6: The step-sizes for the gradient
descent update of the model error covariance
matrices for each data assimilation cycle.

generated according to Algorithm 3.1 using the control DAS.

• (Hybrid) Use equations (3.11) and (3.12) with α = 0.5. The static components

are set to Qc = In and qc = 0 and the ensemble covariance with localization is

the same one computed for the ensemble scheme.

• (Sensitivity) Initially set Q = In and the adaptive step-size to 1 for the first

assimilation cycle. Then, Q is updated using the gradient descent algorithm,

Algorithm 5.1, via sensitivities to the square root factor Q1/2.

These assimilation schemes were run over a period of 150 cycles. The ratios of the

average analysis errors in each cycle to the control are shown in Figure 6.5. As

before, an error ratio smaller than 1 indicates better performance than the control

and greater than 1 means a worse performance. For the majority of the assimilation

period, the ensemble-based and sensitivity-based DASs all outperformed the control.

The most significant improvement was achieved by the sensitivity-based DAS. During

the assimilation period, the model error covariances from the sensitivity-based DAS

were updated 147 times, for a total of 98% success rate in forecast error reduction.
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Figure 6.7: (a) Posterior estimate of Qt, (b) Zoomed-in view of the Q-diagnostic matrix.

The adaptive step-sizes are shown in Figure 6.6.

Unlike the numerical results with the Lorenz model in Chapter 3, the w4D-Var

ensemble DAS has outperformed the hybrid DAS. By selecting the hybrid scalar

weight α = 0.5 in defining Q by (3.11), the static part Qc plays a large role in the

analysis quality. Of particular note is the fact that Qc = In differs significantly from

Qt. The entries of Qt have smaller magnitude than those of Qc and the diagonal of

Qt is mostly zero. This discrepancy between Qc and Qt can explain the change in

performance that was seen when compared to the Lorenz model results.

The application of the model error diagnostics of Chapter 4 to the discrete shallow

water model is now considered. The specification of the control DAS provides the

basis for these experiments. The Q- and R-diagnostic matrices are analyzed from

observation residuals from 150 assimilation cycles and are calculated from (4.32) and

(4.33). More specifically, the three Q-diagnostic blocks of (4.32) are averaged together

to estimate Qt, just as was done for the Lorenz model experiments. Similarly, the

four R-diagnostic blocks of (4.33) are averaged together and compared against the

time-invariant Rt
k = In. The average Q-diagnostic matrix for this period is shown in
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Figure 6.8: (a) Posterior estimate of Rt, (b) Zoomed-in view of the R-diagnostic matrix.

Figure 6.7 while the average R-diagnostic matrix is shown in Figure 6.8.

Just as with the results obtained from data assimilation experiments using the

Lorenz model, the Q-diagnostic matrix exhibits correlations of Qt that were missing

from the DAS. Unlike Qt though, which is all zero except for a 20×20 diagonal block,

the entire diagonal of the Q-diagnostic matrix is nonzero. It appears that the Q-

diagnostic matrix has incorporated elements of both the true model error covariance

matrix Qt and the DAS specification Q. In any case, the Q-diagnostic matrix has

revealed information on the correlation structure of Qt, which was absent from the

DAS, even if it is not a perfect representation of the true model error covariance

matrix. Also, the R-diagnostic matrix has correlations like Qt. Even though Rt
k = In,

the true model error correlation structure has been incorporated into the observation

covariance diagnostic matrix. This type of behavior is consistent with previous results

by Todling [76] and the results from Chapter 4.
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6.4 Conclusion

The shallow water equations provided the basis for implementing the methodologies

developed in the previous chapters to establish a proof-of-concept using a model more

sophisticated than the Lorenz equations. The presented results are obtained from a

similar experimental design, i.e. only the model error covariance Q is mis-specified in

the DAS. Recovered knowledge of the model error statistics and improvements made

to the analysis are the result of the successful application of the new techniques.

Through the use of model error ensembles and adaptive sensitivity-based updates,

the reduction of analysis error has been achieved. The w4D-Var Q-diagnostic matrix

provided insight into the true model error correlation structures that were left out of

the DAS, just like the results from Chapter 4 for the Lorenz model. The R-diagnostic

matrix displays an apparent observation correlation structure that, in truth, does

not exist, replicating the behavior seen with the Lorenz model in Chapter 4 and in

Todling’s results [76]. Encouraging results with this more sophisticated model have

set the stage for their application in large-scale practical applications, where improved

model error specification is tantamount to quality analyses.
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Chapter 7

Conclusions and Future Directions

Accurate specification of the model error parameters in w4D-Var is linked to quality

data assimilation system performance. Previously, the practical implementation of

w4D-Var was dependent on assumptions about the model error in order to reduce the

computational cost. The research contained in this document adds to the practical

techniques and methodologies for improving the representation of the model error

covariance in w4D-Var. There are still many additional avenues of research concern-

ing model error representation in w4D-Var. In particular, further advances can be

made to the ensemble- and sensitivity-based techniques presented here. Some possible

research directions are outlined next.

Improvements to the ensemble-based approaches can be made by optimal selection

of the ensemble size, localization operator, and hybrid covariance parameter. For a

data assimilation window [t0, tN ] of N + 1 times, N model error ensembles of size Ne

are formed and are used to estimate each model error covariance Q1, . . . ,QN . When

the dimension of the state space is large, this can be computationally expensive, so

it would be desirable to have a small ensemble size and still obtain a good estimate

of the model error statistics. To do this becomes a question of how to optimally

perturb the background and observations when forming the initial ensemble. Another

improvement can be made by determining how to specify the hybrid scalar weights

to get the best improvement in the quality of the analysis. A worthwhile research
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direction is the incorporation of forecast error sensitivities into a hybrid w4D-Var DAS

so that the sensitivity to the hybrid scalar weights can be developed. The sensitivity

feedback mechanism of Chapter 5 should provide the foundation for tuning the hybrid

scalar weights.

Further research needs to be conducted to investigate the w4D-Var diagnostics

in suboptimal experiments. In particular, disentangling the model error correlations

from the observation error covariance diagnostic is of interest. Since numerical ex-

periments focused only on mis-specifying the model error covariance, the role of B

is not explored. However, the equations derived in Chapter 4 provide the ability to

analyze B as well. It remains to be seen how the diagnostics will perform when all of

the error covariances are mis-specified or different observing systems are considered.

Numerical results have shown the merits of sensitivity-based tuning of the model

error covariance. Future research directions include the development and refinement

of algorithms for derivative-based error covariance tuning and testing with models of

increased complexity.

This dissertation extends the field of data assimilation with its theoretical foun-

dations to improve model error representation in w4D-Var. Weak-constraint 4D-Var

itself is not new, but has benefited from new methodologies and algorithms this work

presents. These contributions to the theory of data assimilation have led to many

new problems and areas of potential research.
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Appendix A

Ensemble Covariance Implementation

Since it is necessary to compute the product of the model error covariance with a
vector to obtain the analysis, this appendix provides notes on the implementation of
Q

1/2
i when Qi is the ensemble error covariance with localization or the hybrid error

covariance. The ensemble error covariance (3.7) can be expressed by

Qi,e =
Ne∑
j=1

qi,jq
T
i,j, (A.1)

by defining

qi,j =
1√

Ne − 1
(ηi,j − qi,e). (A.2)

From (A.1), the product of a vector x ∈ Rn with Qi,e can be calculated as follows.

Qi,ex =
Ne∑
j=1

(
qT
i,jx
)

qi,j (A.3)

When a localization matrix Ci is applied to the ensemble error covariance matrix,
the product with x ∈ Rn is

(Qi,e ◦Ci)x =
Ne∑
j=1

(Ci(x ◦ qi,j)) ◦ qi,j. (A.4)

Since it can be shown that

(qi,jq
T
i,j) ◦Ci = diag(qi,j)Ci diag(qi,j), (A.5)

it follows that Qi = Qi,e ◦Ci can be factored in the form Qi = Q
1/2
i Q

T/2
i by letting

Q
1/2
i =

[
diag(qi,1)C

1/2
i · · · diag(qi,Ne)C

1/2
i

]
∈ Rn×(nNe). (A.6)
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Other studies have implemented this decomposition for ensemble-based data assimi-
lation, such as [7] and [58]. Multiplication of Q

1/2
i with a vector x ∈ RnNe , which can

be composed into Ne blocks of size n according to

x =
[
xT
1 · · · xT

Ne

]T
, (A.7)

can be evaluated by

Q
1/2
i x =

Ne∑
j=1

(C
1/2
i xj) ◦ qi,j ∈ Rn. (A.8)

The product of Q
T/2
i with a vector x ∈ Rn is

Q
T/2
i x =

[
C

T/2
i (qi,j ◦ x)

]Ne

j=1
∈ RnNe . (A.9)

The hybrid covariance (3.10) can be implemented in a similar way. The square
root of the hybrid error covariance

Q
1/2
i =

[√
1− αi diag(qi,1)C

1/2
i · · ·

√
1− αi diag(qi,Ne)C

1/2
i

√
αiQ

1/2
i,c

]
(A.10)

has dimension n× n(Ne + 1). For x ∈ Rn(Ne+1), which can be composed into Ne + 1
blocks of size n according to

x =
[
xT
1 · · · xT

Ne
xT
Ne+1

]T
, (A.11)

the product of Q
1/2
i with x is

Q
1/2
i x =

√
1− αi

Ne∑
j=1

(C
1/2
i xj) ◦ qi,j +

√
αiQ

1/2
i,c xNe+1 ∈ Rn. (A.12)

If y = Q
T/2
i x where x ∈ Rn, then y can be decomposed into Ne + 1 blocks of size n

y =
[
yT
1 · · · yT

Ne
yT
Ne+1

]T
, (A.13)

where

yj =
√

1− αiCT/2
i (qi,j ◦ x), j = 1, . . . , Ne, yNe+1 =

√
αiQ

T/2
i,c x. (A.14)
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Appendix B

The Discrete Shallow Water Equations

The shallow water equations (6.1) can be rewritten in flux form by replacing (6.1a)
with φ× (6.1a) + u× (6.1c) and by replacing (6.1b) with φ× (6.1b) + v × (6.1c).

∂

∂t

[
φu

]
+

∂

∂x

[
φu2 +

1

2
φ2

]
= fφv − gφ∂H

∂x
(B.1a)

∂

∂t

[
φv

]
+

∂

∂x

[
φuv

]
= −fφu (B.1b)

∂φ

∂t
+

∂

∂x

[
φu

]
= 0 (B.1c)

If m = φu and n = φv, the shallow water equations can be rewritten as follows.

∂m

∂t
+

∂

∂x

[
mu+

1

2
φ2

]
= fn− gφ∂H

∂x
(B.2a)

∂n

∂t
+

∂

∂x

[
mv

]
= −fm (B.2b)

∂φ

∂t
+
∂m

∂x
= 0 (B.2c)

Diffusion terms are added to each subequation of (B.2) to help eliminate spurious
oscillations in the discrete shallow water equations.

∂m

∂t
+

∂

∂x

[
mu+

1

2
φ2

]
= fn− gφ∂H

∂x
+K

∂2m

∂x2
(B.3a)

∂n

∂t
+

∂

∂x

[
mv

]
= −fm+K

∂2n

∂x2
(B.3b)

∂φ

∂t
+
∂m

∂x
= K

∂2φ

∂x2
(B.3c)

The shallow water equations (B.3) are discretized using forward time and cen-
tered space finite differences. The time derivatives are estimated using the first-order
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accurate forward difference. Thus

∂m

∂t
=
mk+1
j −mk

j

∆t
+O(∆t) (B.4)

and similar expressions are used for the time derivatives of n(x, t) and φ(x, t).
The product rule of differentiation implies that

∂

∂x

[
mu

]
= m

∂u

∂x
+ u

∂m

∂x
, (B.5)

and each side of this equation can be estimated using centered differencing

∂

∂x

[
mu

]
=
mk
j+1u

k
j+1 −mk

j−1u
k
j−1

2∆x
+O(∆x2) (B.6)

m
∂u

∂x
+ u

∂m

∂x
= mk

j

ukj+1 − ukj−1
2∆x

+ ukj
mk
j+1 −mk

j−1

2∆x
+O(∆x2). (B.7)

The average of these two schemes is also a second-order accurate approximation of
∂(mu)/∂x. After adding and subtracting the term mk

ju
k
j to 1

2
[(B.6)+(B.7)] and some

factoring, we get the finite difference approximation for ∂(mu)/∂x.

∂

∂x

[
mu

]
=

1

4∆x

[
(ukj+1 + ukj )(m

k
j+1 +mk

j )

− (ukj + ukj−1)(m
k
j +mk

j−1)
]

+O(∆x2) (B.8)

A similar process yields the finite difference approximation for ∂(mv)/∂x.

∂

∂x

[
mv

]
=

1

4∆x

[
(vkj+1 + vkj )(mk

j+1 +mk
j )

− (vkj + vkj−1)(m
k
j +mk

j−1)
]

+O(∆x2) (B.9)

Next, the spatial derivative of φ2 is simply the standard centered difference for-
mula.

∂

∂x

[
φ2

]
=

(φkj+1)
2 − (φkj−1)

2

2∆x
+O(∆x2) (B.10)

On the right side of equation (B.3a), there is φ∂H/∂x, which can be written as

φ
∂H

∂x
=

∂

∂x

[
φH

]
−H∂φ

∂x
(B.11)

from the product rule of differentiation. In a manner similar to the finite difference
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scheme from (B.8), we get the following.

∂

∂x

[
φH

]
−H∂φ

∂x
=
φkj+1Hj+1 − φkj−1Hj−1

2∆x
−Hj

φkj+1 − φkj−1
2∆x

+O(∆x2) (B.12)

φ
∂H

∂x
= φkj

Hj+1 −Hj−1

2∆x
+O(∆x2) (B.13)

The average of equations (B.12) and (B.13) gives another second-order approximation
for φ∂H/∂x.

φ
∂H

∂x
=

1

4∆x

[
(φkj+1 + φkj )(Hj+1 −Hj)

+ (φkj + φkj−1)(Hj −Hj−1)
]

+O(∆x2) (B.14)

Finally, the diffusion terms are expressed using the standard second-order approx-
imation for the second derivative. Using this and the finite differences derived above,
the discretization of the shallow water equations (B.3) gives (6.2).
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Appendix C

Tangent Linear and Adjoint of the Discrete Shallow Water Model

The derivation of the tangent linear and adjoint models of the discrete shallow water
equations (6.4) can be obtained by using the chain rule of differentiation. Guided
by (1.23), it can be verified through a pen and paper calculation, or by using an
automatic differentiation tool, that the tangent linear model is given by

ṁk+1
j = ṁk

j −
∆t

4∆x

[(
ṁk
j+1 − φ̇kj+1u

k
j+1

φkj+1

+
ṁk
j − φ̇kjukj
φkj

)(
mk
j+1 +mk

j

)
+

(
ukj+1 + ukj

) (
ṁk
j+1 + ṁk

j

)
−

(
ṁk
j − φ̇kjukj
φkj

+
ṁk
j−1 − φ̇kj−1ukj−1

φkj−1

)(
mk
j +mk

j−1
)
−

(
ukj + ukj−1

) (
ṁk
j + ṁk

j−1
)

+ 2φkj+1φ̇
k
j+1 − 2φkj−1φ̇

k
j−1

]
+ ∆tf ṅkj+

K
∆t

∆x2
[
ṁk
j−1 − 2ṁk

j + ṁk
j+1

]
(C.1a)

ṅk+1
j = ṅkj −

∆t

4∆x

[(
ṅkj+1 − φ̇kj+1v

k
j+1

φkj+1

+
ṅkj − φ̇kjvkj

φkj

)(
mk
j+1 +mk

j

)
+

(
vkj+1 + vkj

) (
ṁk
j+1 + ṁk

j

)
−

(
ṅkj − φ̇kjvkj

φkj
+
ṅkj−1 − φ̇kj−1vkj−1

φkj−1

)(
mk
j +mk

j−1
)
−

(
vkj + vkj−1

) (
ṁk
j + ṁk

j−1
) ]
−∆tfṁk

j +K
∆t

∆x2
[
ṅkj−1 − 2ṅkj + ṅkj+1

]
(C.1b)

φ̇k+1
j = φ̇kj −

∆t

2∆x

[
ṁk
j+1 − ṁk

j−1
]

+K
∆t

∆x2

[
φ̇kj−1 − 2φ̇kj + φ̇kj+1

]
, (C.1c)

where the expressions for

u̇kj =
ṁk
j − φ̇kjukj
φkj

(C.2)
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and

v̇kj =
ṅkj − φ̇kjvkj

φkj
(C.3)

are used, coming from the definitions of mk
j = φkju

k
j and nkj = φkjv

k
j .

By following (1.24) and using the derivative formulae

∂ukj
∂mk

j

=
∂vkj
∂nkj

=
1

φkj
,

∂ukj
∂φkj

= −
ukj
φkj
,

∂vkj
∂φkj

= −
vkj
φkj

(C.4)

as needed, the derivation of the adjoint of (6.4) gives the following.

m̄k
j = m̄k+1

j − ∆t

4∆x

[(
mk
j+1 +mk

j

φkj
+ ukj+1 + ukj

)(
m̄k+1
j − m̄k+1

j+1

)
+(

mk
j +mk

j−1

φkj
+ ukj + ukj−1

)(
m̄k+1
j−1 − m̄k+1

j

) ]
+

∆t

4∆x

[ (
vkj+1 + vkj

) (
n̄k+1
j+1 − n̄k+1

j

)
+
(
vkj + vkj−1

) (
n̄k+1
j − n̄k+1

j−1
) ]

+

∆t

2∆x

[
φ̄k+1
j+1 − φ̄k+1

j−1
]
−∆tf n̄k+1

j +K
∆t

∆x2
[
m̄k+1
j−1 − 2m̄k+1

j + m̄k+1
j+1

]
(C.5a)

n̄kj = n̄k+1
j − ∆t

4∆xφkj

[ (
mk
j+1 +mk

j

) (
n̄k+1
j − n̄k+1

j+1

)
+
(
mk
j +mk

j−1
) (
n̄k+1
j−1 − n̄k+1

j

) ]
+

∆tfm̄k+1
j +K

∆t

∆x2
[
n̄k+1
j−1 − 2n̄k+1

j + n̄k+1
j+1

]
(C.5b)

φ̄kj = φ̄k+1
j −

∆tvkj
4∆xφkj

[ (
mk
j+1 +mk

j

) (
n̄k+1
j+1 − n̄k+1

j

)
+
(
mk
j +mk

j−1
) (
n̄k+1
j − n̄k+1

j−1
) ]
−

∆tukj
4∆xφkj

[ (
mk
j+1 +mk

j

) (
m̄k+1
j+1 − m̄k+1

j

)
+
(
mk
j +mk

j−1
) (
m̄k+1
j − m̄k+1

j−1
) ]

+

∆t

2∆x
φkj
[
m̄k+1
j+1 − m̄k+1

j−1
]

+K
∆t

∆x2
[
φ̄k+1
j−1 − 2φ̄k+1

j + φ̄k+1
j+1

]
(C.5c)

Automatic differentiation tools, like Tapenade [44], may not present the tangent linear
and adjoint codes in the same manner as presented here since some optimizations are
performed that yield a better code. In some cases, these optimization may make the
code somewhat harder to understand.

To ensure the accuracy of the tangent linear (C.1) and adjoint (C.5) models, it is
necessary to perform some numerical tests. The tangent linear model can be validated
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(a) First-order test (C.6)
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(b) Second-order test (C.7)

Figure C.1: Numerical validation plots for the tangent linear model.

by using the first- and second-order accurate identities

‖M(x + ε∆x)−M(x)‖
‖εM∆x‖

≈ 1 (C.6)

‖M(x + ε∆x)−M(x− ε∆x)‖
‖2εM∆x‖

≈ 1 (C.7)

as ε approaches 0, where M represents the tangent linear forecast model evaluated at a
randomly generated state x. For these tests, the step-size is ε = 10−i for i = 0, 1, . . . , 9
and the direction vector ∆x is randomly generated and normalized to unit length.
The plots shown in Figure C.1 both validate the tangent linear model (C.1) as the
left-hand-sides of (C.6) and (C.7) converge to 1.

Next, the adjoint model can be verified from the definition of the adjoint of a
linear operator

〈Mu,v〉 = 〈u,MTv〉 (C.8)

by checking that the left and right sides give the same value, or equivalently,

〈Mu,v〉 − 〈u,MTv〉 = 0. (C.9)

Using randomly generated vectors u and v, Table C.1 shows the results of (C.9) ap-

Tangent Linear Product Adjoint Product Difference
−345.82026685450165360 −345.82026685450176728 1.13686837722× 10−13

Table C.1: The results of the adjoint test (C.9) for the discrete shallow water model.
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plied to the tangent linear and adjoint models of the discrete shallow water equations.
The “tangent linear product” refers to the left side of (C.8) and “adjoint product”
corresponds to the right side. The difference between the inner products is essentially
zero, establishing the validity of the adjoint model (C.5). Subsequent executions
of this test produce different numbers, due to randomness, but the inner product
difference is always around the order of 10−13 or smaller.

110


	Computational Algorithms for Improved Representation of the Model Error Covariance in Weak-Constraint 4D-Var
	Let us know how access to this document benefits you.
	Recommended Citation

	Title
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Overview of Data Assimilation Methods
	The Tangent Linear and Adjoint Models
	Research Objectives
	Lorenz Multi-Scale Model
	Organization

	Weak-Constraint 4D-Var
	The Cost Functional
	The Incremental Algorithm
	The Analysis Equation

	Ensemble Data Assimilation
	Derivation of the Model Error Ensemble
	Ensemble-based w4D-Var Schemes
	Ensemble Error Statistics
	Numerical Results
	Conclusion

	Observation Space Diagnostics
	Derivation of Diagnostics
	A Special Case
	Numerical Results
	Conclusion

	Sensitivity Analysis
	Sensitivity Analysis
	Sensitivity Equations
	Sensitivities with Matrix Decomposition
	Sensitivities Using a Single Outer Loop Iteration
	Adaptive Tuning of Model Error Parameters
	Numerical Results
	Conclusion

	Experiments with the Shallow Water Equations
	The Discrete Model
	Data Assimilation System
	Numerical Results
	Conclusion

	Conclusions and Future Directions
	References
	Ensemble Covariance Implementation
	The Discrete Shallow Water Equations
	Tangent Linear and Adjoint of the Discrete Shallow Water Model

