
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Winter 3-2-2017 

Power-Aware Datacenter Networking and Power-Aware Datacenter Networking and 

Optimization Optimization 

Qing Yi 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Computer Sciences Commons, and the Power and Energy Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Yi, Qing, "Power-Aware Datacenter Networking and Optimization" (2017). Dissertations and Theses. Paper 
3474. 
https://doi.org/10.15760/etd.5358 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/274?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3474
https://doi.org/10.15760/etd.5358
mailto:pdxscholar@pdx.edu


Power-Aware Datacenter Networking and Optimization

by

Qing Yi

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Suresh Singh, Chair

Jingke Li

Fei Xie

Branimir Pejcinovic

Portland State University

2017



i

ABSTRACT

Present-day datacenter networks (DCNs) are designed to achieve full bisection

bandwidth in order to provide high network throughput and server agility. How-

ever, the average utilization of typical DCN infrastructure is below 10% [8] for

significant time intervals. As a result, energy is wasted during these periods. In

this thesis we analyze tra�c behavior of datacenter networks using traces as well

as simulated models. Based on the insight developed, we present techniques to

reduce energy waste by making energy use scale linearly with load. The solutions

developed are analyzed via simulations, formal analysis, and prototyping. The im-

pact of our work is significant because the energy savings we obtain for networking

infrastructure of DCNs are near optimal.

A key finding of our tra�c analysis is that network switch ports within the DCN

are grossly under-utilized. Therefore, the first solution we study is to modify the

routing within the network to force most tra�c to the smallest number of switches.

This increases the hop count for the tra�c but enables the powering o↵ of many

switch ports. The exact extent of energy savings is derived and validated using

simulations. An alternative strategy we explore in this context is to replace about

half the switches with fewer switches that have higher port density. This has the

e↵ect of enabling even greater tra�c consolidation, thus enabling even more ports

to sleep. Finally, we explore a third approach in which we begin with end-to-end

tra�c models and incrementally build a DCN topology that is optimized for that
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model. In other words, the network topology is optimized for the potential use

of the datacenter. This approach makes sense because, as other researchers have

observed, the tra�c in a datacenter is heavily dependent on the primary use of the

datacenter.

A second line of research we undertake is to merge tra�c in the analog domain

prior to feeding it to switches. This is accomplished by use of a passive device we

call a merge network. Using a merge network enables us to attain linear scaling of

energy use with load regardless of datacenter tra�c models. The challenge in using

such a device is that layer 2 and layer 3 protocols require a one-to-one mapping of

hardware addresses to IP (Internet Protocol) addresses. We overcome this problem

by building a software shim layer that hides the fact that tra�c is being merged. In

order to validate the idea of a merge network, we build a simple mere network for

gigabit optical interfaces and demonstrate correct operation at line speeds of layer

2 and layer 3 protocols. We also conducted measurements to study how tra�c gets

mixed in the merge network prior to being fed to the switch. We also show that

the merge network uses only a fraction of a watt of power, which makes this a very

attractive solution for energy e�ciency.

In this research we have developed solutions that enable linear scaling of energy

with load in datacenter networks. The di↵erent techniques developed have been

analyzed via modeling and simulations as well as prototyping. We believe that

these solutions can be easily incorporated into future DCNs with little e↵ort.
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Chapter 1

INTRODUCTION

Datacenters have experienced a substantial growth in recent years due to the grow-

ing popularity of Internet services and the widespread adoption of cloud computing.

From sever rooms of small-sized organizations, to enterprise datacenters and the

server farms that run cloud computing services, datacenters have become the back-

bone of the economy. Datacenters achieve economies of scale with large numbers

of servers. Many Internet service providers and cloud computing service providers

have built very large-sized datacenters, often housing more than 50,000 or more

servers each, at geographically distributed locations. For example, Google has built

more than 30 datacenters in 15 countries with a total of approximately 900,000

servers [1]. Amazon has 11 cloud regions across the world. Each region has multi-

ple sets of datacenters, with a typical facility containing 50,000 to 80,000 servers.

A conservative estimate puts Amazon at over 1.5 million servers globally.

These gigantic datacenters consume a significant amount of electricity. In 2010,

the total electricity consumption by datacenters was 235.5BkWh (Billion kilo Watt

hours) [58], which accounts for about 1.3% of the total electricity consumption of

the entire world. In 2013, U.S. datacenters consumed an estimated 91 BkWh of

electricity. This is the equivalent annual output of 34 large (500-megawatt) coal-

fired power plants. As shown in Figure 1.1, datacenter electricity consumption is

projected to continue to increase. Energy costs currently comprise approximately
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Figure 1.1. Global electricity demand of datacenters 2010 - 2030 [15].

70% of the operations costs of the average datacenter facility [72]. As a result, en-

ergy cost and energy availability have become some of the top concerns in planning

future datacenter operations.

However, despite the rising energy consumption and limits on electric power,

the resource utilization of most of the datacenters is poor. An investigation of 5,000

servers in a datacenter during a six-month period shows that the average CPU

utilization is between 10%� 50% of the peak load [35]. Low server utilization also

leads to underutilization of network infrastructure interconnecting servers. Studies

show the average link utilization in the lower level of the network is only at 8%

for 95% of the time [20]. Energy concerns and underutilization of IT resources are

driving the industry to find ways of improving energy e�ciency of datacenters. New

technologies have driven up power capacity requirements in IT, mainly in server

and storage-related operations. For instance, Google builds their own customized

energy-e�cient server for its datacenter use. Software solutions such as server

virtualization have been proposed to improve the energy e�ciency by reducing
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computing overhead.

The datacenter network has not traditionally been a major contributor to the

power problems because of the relatively low consumption of power by the network

compared to the overall power consumed in a datacenter. Power consumption re-

quirements by the network have been relatively low because of the comparatively

low-level of computing functions in switches and routers. Most estimates of net-

working infrastructure consumption range from 8 to 12 percent of the total power

consumed by the entire datacenters. As the network has evolved to include higher

levels of intelligence, however, its corresponding power requirements have continued

to grow. In addition, with the improvement of sever and storage energy e�ciency,

networking components are expected to become an increasing user of datacenter

energy.

1.1 MOTIVATION

A great deal of recent research has examined the question of improving server’s

energy e�ciency (hardware and software) as well as developing better algorithms

for distributed computing. However, the question of optimizing the power perfor-

mance of the datacenter network has received far less attention. With the servers

becoming more energy e�cient, it is projected that the relative energy consumption

of the network components will increase by up to 50% and become the predomi-

nant source of energy waste in datacenters. Thus, it is meaningful to consider how

the datacenter network can be made more energy e�cient. We can identify the

following primary reasons for the energy ine�ciency of datacenter networks:

• Over-provisioned Network Topology: The underlying assumption in datacen-

ter network design is that full-bisection bandwidth needs to be supported at
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all times. This assumption has resulted in the use of dense network topolo-

gies such as the fat-tree network. While these topologies do provide high

bandwidth as well as low latency, numerous measurements show that the

links and switches are grossly under-utilized.

• Use of Legacy Switches: Datacenter network operators buy o↵ the shelf

switches from vendors such as Cisco with little thought to adapting the switch

design to the specific needs of the datacenter. Indeed, the primary focus of

switch development has been to make the interfaces faster and the switches

more dense. There has been little e↵ort at customized switches for the specific

eco-system of a datacenter.

• Application Oblivious Topology Design: The philosophy of designing dat-

acenter networks for the general case rather than the expected case causes

network ine�ciencies. For instance, datacenter job scheduling algorithms

try to concentrate computation to within a single rack to minimize mem-

ory and disk access latencies. In these datacenters, there is no need to have

high-bandwidth between racks as we do today.

• Unlinked Server and Network Energy savings: Today, servers in the data-

center are very energy-conscious and typically sleep for extended periods.

However, the underlying network continues to remain fully powered on. This

is clearly a waste of energy and linking the energy-conserving approach for

servers to the underlying network will result in significant energy savings as

well as little impact on performance.

In summary, current datacenter network architecture and network devices were

never designed for energy e�ciency. Network switches consume virtually the same

energy whether they are forwarding packets or not. Furthermore, the architecture
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precludes any scaling of switch performance for energy e�ciency. One approach

that has been developed called IEEE 802.3az [7] changes the link rate of each

interface on the switch based on load. However, as interfaces typically consume a

tiny fraction of overall switch power, this is an insignificant saving.

The overall goal of this research is to develop datacenter networks

whose energy cost scales linearly with load and which can support high

network throughput.

In this research we will develop novel techniques to address the question of

energy e�ciency of datacenter networks as well as delivering high network band-

width for distributed computations. We use a passive switching fabric to form a

merge network that allows tra�c from N links to be merged into fewer links into

a switch. This allows us to either replace high port density switches with lower

density switches or power o↵ large parts of a switch. We examine the application

this novel hardware element in the context of existing topologies and develop new

topologies that exploit its properties. Furthermore, we consider replacing the dat-

acenter network with this switching fabric. Thus, if we consider servers located

on one rack, rather than using traditional switches, we can connect all the servers

using a switching fabric composed of passive elements like multiplexers. Logically,

this can be viewed as throwing away the network interfaces of switches and directly

connecting the end-host network interfaces to the internal interconnection network

found in each switch.

This research relies on detailed simulations using tra�c models extracted from

measurements reported in the literature as well as analysis to determine perfor-

mance bounds. We examine metrics including energy cost of the new networks

as compared to traditional networks, network reliability, network bisection band-

width, and scalability.
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1.2 BACKGROUND

In this section, we will lay the groundwork for some fundamental terminology and

concepts. First, we will discuss the design and engineering of datacenter intercon-

nection networks, including network topology, network architecture, and routing

algorithms. Specifically, we will focus on the hierarchical network topologies that

are widely used in production datacenters. Indeed, most of the work in the follow-

ing chapters is based on hierarchical datacenter topologies. Second, we will review

the emerging technologies in power management of network devices, and motivate

our power-aware datacenter network research.

1.2.1 Datacenter Network Topology

Inside a datacenter, large number of servers are interconnected using specific dat-

acenter network (DCN) structures. The design goals of the datacenter network

are to provide high bandwidth, low latency and high throughput communications

between servers through network infrastructure with low cost and high scalabil-

ity. The network enables applications running on the servers to communicate and

interoperate in an orchestrated and e�cient way. The performance of intercon-

nection networks plays an important role in improving the overall performance of

datacenters.

Mega datacenters nowadays may contain tens of thousands of servers that are

interconnected by network links and switches. A three-layer hierarchical model

is widely adopted for designing a scalable internetwork for datacenters, in which

switches are connected in a network structure consisting of core, aggregation, and

access layers. Traditional hierarchical model is a tree topology with aggregation to

lager-sized, higher-speed switches moving up the hierarchy. The access layer grants

end servers access to the network. Switches in the access layer connect directly to
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servers, and are referred as edge switches. The access layer is in turn connected to

the network aggregation layer, which aggregates the data received from the access

layer switches before it is transmitted to the core layer for routing to its final

destination. The switches in the core layer form the network backbone, providing a

fabric for high-speed packet switching between aggregation switches. A single core

switch, even with a density of hundreds of ports, limits the network size to a few

thousand hosts. Also, one core switch only can provide limited bandwidth between

servers in di↵erent racks, making it di�cult for applications like MapReduce, which

requires high intra-cluster bandwidth. Moreover, a single-rooted tree has problem

of single point of failure, cause poor reliability. Therefore, many multi-rooted

tree topologies with multiple core switches, i.e. Clos, are deployed for large-sized

datacenters. A Multi-rooted tree topology can provide multiple paths between any

pair of end hosts.

In the access layer and core layer, high-end switches with high port density

and connection rate are used to provide high-speed data transmission. Due to

the high costs of high-end switches, datacenter architects choose to oversubscribe

the networks. The higher layers of the three-layer datacenter network are highly

oversubscribed, which in turn causes poor network utilization, limiting the overall

bisection bandwidth and overall network throughput. To address the problem of

limited cross section bandwidth close to the roots, a fat-tree [11] (also known as

folded Clos), was proposed for large-scale datacenter environments.

A fat-tree [11] is a multi-rooted tree topology that is a special instance of

the Folded-Clos network. It has ’fatter’ links in upper layers, that makes it a

mesh-like network with full bisection-bandwidth. A fat-tree leverages o↵-the-shelf

Ethernet switches and all the switches in di↵erent layers are identical, making it

a cost-e↵ective and easy-to-deploy solution for large-scale datacenters with tens of
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thousands of servers. Fat-tree topology is deployed in many datacenters. A k -ary

fat-tree has k pods, each containing 2 layers of k

2

switches. Each edge switch in

a pod is connected to k

2

hosts and k

2

aggregation switches. There are
�

k

2

�

2

core

switches, each of them has k ports connected to k pods. The fat-tree topology has

great scalability. A k -ary fat-tree network can support k

3

4

hosts. Furthermore, the

fat-tree topology has identical bandwidth at any bisection and each layer has the

same aggregated bandwidth. Therefore, it can achieve full bisection bandwidth

with 1:1 oversubscription ratio. Compared with other conventional tree-based

topologies, a fat-tree network has less bandwidth bottleneck issues and can provide

high bandwidth by interconnecting smaller commodity switches.

Recently, some relatively flat network architectures have been proposed to re-

place the traditional multi-layer enterprise network architecture for large data-

centers to support virtualization. Virtualization is implemented in large cloud

datacenters to improve e�ciencies, and as a result, the network no longer con-

nects only hardware blocks, but also interconnects virtual machines (VMs) and

virtual storage volumes. Resources need to be dynamically reassigned from any

point within the datacenter to another point. While the multi-layer architectures

have high latencies and complex software, moving a VM not only a↵ects the ac-

cess switch configuration, it may require reconfiguration of the aggregation and

core switches as well. Therefore, the multi-layered architecture is not considered

e�cient for VMs migration circumstance. However, flat datacenter network archi-

tectures can interconnect basic units such as virtual machines and virtual storage

volumes across large, switched Ethernet fabrics.
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1.2.2 Energy-E�cient Networking

The fat-tree topology provides a scalable and cost-e↵ective solution for large-scale

datacenters. A fat-tree is built from a large number of densely connected switches

and can support any communication patterns with full bandwidth. However, it

achieves the extra bandwidth by provisioning many redundant network links and

switches, providing multiple paths between any two end servers. Richer connection

can achieve high performance at peak network loads. However, the redundancy

also causes waste of network resources, especially in the night hours when the

network loading is extremely low. If the redundant network resources can be

put in low power mode, it is possible to dynamically vary the number of active

network elements to choose the necessary paths, thus to improve energy e�ciency

of datacenter networks.

Until recently, network interfaces and links were designed to stay awake all the

time. During idle periods, the interfaces send frames periodically to provide syn-

chronization as well as to serve as a keepalive mechanism. As a result, interfaces

run at full power all the time even though there is no tra�c. An increasing interest

in networking energy e�ciency led to the formation of the Energy E�cient Eth-

ernet (IEEE802.3az) project in November 2006. The project task force considered

many proposals for changes to the Ethernet interface standard to enable energy

e�ciency, and, at the same time, ensure backward compatibility and network ro-

bustness. The final IEEE802.3az Energy E�cient Ethernet standard (EEE) [7] was

published in November 2010, representing the beginning of a change in networking

architecture design. The core idea of the EEE standard is the low-power idle state

(LPI state), first proposed by Intel [50]. All the EEE-supported PHY types in the

IEEE 802.3az can configure an LPI state for the periods when there is no data

sent from/to the interfaces. The EEE standard defines a signaling protocol for
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network devices to communicate with each other and indicates the power state of

the link between them. The protocol uses an LPI signal that is a modification of

the normal idle signal that is transmitted between data packets to indicate that

the link can switch to sleep mode to minimize the power consumption of the device

ports that connect from either side of the link. The transmitting port sends idle

signals when it wishes to resume the fully functional link status. The EEE protocol

awakens the link at any time, and there is no minimum or maximum sleep interval,

which allows EEE to function e↵ectively in the presence of unpredictable tra�c.

Therefore, by switching between higher power state (data mode) and lower power

state (LPI mode) in response to whether data is flowing through it, a network

device can reduce energy consumption when its utilization pattern consists of long

periods of idleness.

1.3 CONTRIBUTIONS

This research proposes a framework of improving the energy-e�ciency of datacen-

ter networks. Most datacenter network topologies are designed to maximize cross-

section bandwidth at minimal link and switch cost, to achieve high scalability,

low latency, high throughput and low cost. Recently, however, energy e�ciency

has become a performance metric for datacenter networks. Al-Fares [11] shows

that a fat-tree (aka folded-Clos) topology built from 1Gbps commodity Ethernet

chips uses considerably less power than a hierarchical network composed of high-

end, power ine�cient 10 Gbps switches. Some other researchers reports that a

flattened-butterfly topology itself is inherently more power e�cient than the other

commonly proposed topology of datacenter networks [8].

This research complements prior work by developing analytical models for en-

ergy consumption and thus enables us to study fat-tree DCNs theoretically. In
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order to dynamically adapt the datacenter topology to the network tra�c load,

we build mathematical models of energy usage for a fat-tree datacenter network.

The approach can be generalized to derive energy consumption models for other

network topologies as well. The model considers di↵erent tra�c patterns and load-

ings, and can work as a reference in power-aware network design and utilized to

estimate the energy consumption.

Based on the energy consumption models, we explore maximizing the energy

saving through jointly optimizing task scheduling and flow assignment for given job

loads. Network tra�c can be planned and consolidated through virtual machine

migration or changing the size of edge switches.

We next propose a hardware merge network to consolidate the tra�c at the

switches automatically. We evaluate the simulation models of datacenters with

merge networks and obtain almost load-proportional energy consumption in large-

scale datacenters. We also build a prototype of a 2 ⇥ 2 merge network using

passive optical devices and test its performance. It shows that a merge network can

successfully consolidate tra�c and decrease the active ports needed for datacenter

switches. Especially, for edge switches in the access layer, a significant amount of

energy savings can be obtained.

The major outcomes of this work are summarized as follows:

1. Systematic analysis of energy cost of fat-tree datacenter network topologies

to model how energy usage scales with total load as well as with di↵erent

types of loads;

2. Usage-based topology analysis of fat-tree networks with job placement and

scheduling in order to minimize network energy cost;

3. Development of a tra�c driven model for fat-tree networks that proves to be
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accurate in predicting switch activity;

4. Evaluation of energy-savings when using high-port-density edge switches

with certain tra�c patterns and the impact on inter-pod routing;

5. Heuristic flow assignment algorithms to compute routing tables empirically

in simulations of large-scale datacenters;

6. Application of tra�c merging in existing topologies and a study of the energy

e�ciencies obtained, throughput sustained and costs; and

7. Development, performance measurement and analysis of a new prototype of

merge networks using fiber interfaces and optical switches.
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Chapter 2

LITERATURE REVIEW

Traditional network design has focused on providing increasingly greater band-

width and better coverage. As a result, networking equipment such as routers and

switches were designed with little consideration given to energy e�ciency. Indeed,

networking equipment runs at full power regardless of tra�c. However, empiri-

cal measurement shows that typical Ethernet tra�c remains low for most of the

time with occasional bursts, giving ample opportunity for energy saving of net-

work equipment. At the network level, the network architecture is designed and

dimensioned with over-provisioning and redundancy to sustain peak hour tra�c.

As a result, over-provisioned networks still consume a significant amount of energy

during low tra�c periods. A decade ago, researchers began paying attention to

this energy waste and began studying ways to reduce it. In this chapter, we first

discuss energy-aware networking and then describe this problem in the context of

datacenter networks.

2.1 ENERGY-EFFICIENT NETWORKING

The IEEE802.3az [7] standard published in November 2010 represents the begin-

ning of a change in networking architecture design. An EEE compliment network

device should consume power only when data is being sent. When there is a gap in

the data stream, the network device or interface is in an idle state and can be put

into LPI mode. Early EEE-compliant devices use a simple application of static
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logic design in the physical layer devices (PHYs) to transition to the Low Power

Idle (LPI) mode and save energy when data is not present. Later generations of

networking systems apply new architecture design that uses more aggressive en-

ergy saving techniques to be applied to all of the system silicon, extending the

range of energy savings.

2.1.1 Green Network Devices

Early work first explored the energy e�ciency of network devices by considering

two power modes: a sleeping mode and a fully working mode. The constraints

here include the non-zero wake-up time for the interfaces and the spike in power

consumption when the interface powers on. Therefore, it is challenging to find

the optimal trade-o↵ between system reactivity and energy savings, and determine

when to wake up the device. In early research, Gupta and Singh [48] examined

the feasibility of putting di↵erent subcomponents of a network switch or router

into sleep mode, and described possible impact of sleep mode on protocols, such as

VLAN, STP, and channel bonding. In their subsequent research [46], the authors

described di↵erent types of sleeping mode for an interface and presented an algo-

rithm incorporated in the host operating system that can dynamically transition

the power mode of the interfaces. By analyzing the packet interarrival distribu-

tion in the bu↵er, the host determines if the next idle period is long enough to

justify the energy saving of putting the interface into sleep mode. In this work,

they also proposed to modify L2 protocols to enable a more aggressive strategy

to keep the Ethernet interface in the sleeping state until the bu↵er queue exceeds

a predefined threshold. However, some low-level network protocols such as ARP

and STP require periodic control frames to maintain network connectivity, which

is the primary constraint on the length of the sleep state. Christensen et al. [28]
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[54] proposed network connectivity proxy (NCP) to handle network presence tasks

for an idle network host in a low-power sleep state. To address the problem of

possible packet loss during port sleeping period, G. Ananthanarayanan et al. [14]

proposed a novel architecture for bu↵ering packets at the network ports when the

port is in the low-power state. Especially, they propose using a shadow port to

receive ingress packets if any of the conventional ports are in the low-power state.

Each shadow port has the same hardware with regular ports and associates with

a cluster of normal ports.

Besides using sleep mode to reduce energy consumption during the idle period,

newer network devices can scale power dynamically when they are in active state.

During the low utilization period, network devices can lower the working rate of

processing engines, and reduce link transmitting rate, resulting in significant reduc-

tion of energy consumption. In general, operating a device at a lower frequency

allows substantial energy savings. For some network equipment (e.g. linecards,

transceivers) that supports frequency scaling and dynamic voltage scaling, the re-

duction in power consumption is scaled cubically with operational frequency [70].

There is a great deal of research about dynamically adapting the link rate to

the real load transmitted. C. Gunaratne et al. [40] show the measurement of the

power consumption of Ethernet NICs and switches for a range of data rates and

utilization levels. They first propose the notion of adaptive link rate (ALR) for

Ethernet. In their work, the Ethernet link data rate is scaled as a function of queue

length in both the PC and LAN switch. In a later work, the same authors propose

a refined rate control policy based on dual bu↵er threshold [42]. Successively, they

developed and evaluated a utilization-threshold policy and a time-out-threshold

policy to eliminate rate oscillations in the rate transition process [41].

In more complicated switches and routers, the linecard accounts for most of
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the energy consumption. M. Mandviwalla et al. [65] study linecard architecture in

backbone routers and dynamically scale the linecard’s power to the predicted work-

load. The simulation results show that it can achieve 60% energy savings through

dynamic power scaling. Hu et al. [52] propose reconfigurable router architecture

that supports multiple router operational states (e.g., energy saving state) with

fast switching ability. The router settings, including routing path, clock frequency,

and supply voltage, are reconfigurable, aiming to support rate adaptive processing

and power-aware routing. [77] measures the power consumption of NetFPGA-

based gigabit routers in standard and low-frequency modes with di↵erent numbers

of activated ports. They compare the internal power usage of a gigabit router at

the granularity of packet and byte level, and analyzed the impact of router fre-

quencies, numbers of activated ports, tra�c loads and packet sizes on potential

network power savings. In another work, the same authors propose a practical

implementation of power scaling algorithms to modulate router frequency on a

periodic or threshold basis adaptively [78].

Some other work compares the sleeping mode scheme and rate adaptation

scheme. S. Nedevschi et al. [70] evaluate the two approaches regarding achieved

energy saving, QoS, packet delay and loss rate. Both of the schemes can o↵er

a substantial reduction in power consumption with minimum packet loss and a

relatively small increase in network latency. However, there does exist a boundary

utilization below which sleeping mode o↵ers better energy savings than adaptive

line rate, depending on how much a device’s power consumption scales with fre-

quency and the magnitude of its active-to-idle power draw. Furthermore, the au-

thors compare two sets of data rates. In the first set, rates distribute exponentially

(e.g., 10Mbps, 100Mbps, 1000Mbps), while in the second set they are distributed
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uniformly (e.g., 330Mbps, 660Mbps, 1000Mbps). Interestingly, the uniformly dis-

tributed rates have a lower additional delay and achieve a greater energy saving

compared to the exponentially distributed set since the first set of rates require

fewer rate transitions, which causes transition delays and leads to reduced energy

saving and higher overall delay. However, the authors also mention that more

supported rates increase the management complexity and cause extra overhead.

Other work [67] [83] also conducts a comparison of sleeping mode and ALR mode,

and concludes that rate adaption is more robust during bursty load periods while

the sleeping mode has a much lower complexity and overhead with comparable

performance.

Meanwhile, new hardware technologies enable re-design and re-engineering the

network devices to improve hardware energy e�ciency. For example, novel energy-

e�cient silicon (ASICs and FPGAs) contributes to performance gains of packet

processing engines, allowing higher clock frequencies and fast packet forwarding,

and achieves better energy cost per gigabit. Among this research, Yamada et

al. integrate ASICs/FPGAs and router memories, and adapt a scalable central

architecture in the router, which successfully supports 1Tbps with doubled energy

e�ciency. Also, some other research focuses on using optical switching architecture

to replace electronic based devices [18]. In general, optical switching is much more

energy e�cient than its electronic counterpart. However, it is not possible to bu↵er

the optical signal, so the optical switch lacks management flexibility. Also, optical

switches only support a limited number of ports (less than 100), which limits their

application to the large backbone networks.
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2.1.2 Power-Aware Network Infrastructure

The emerging low-energy mode of network devices allows network switches, links or

parts of the network be put into sleep mode, achieving non-negligible energy savings

for each device or collaborative devices. Some work considers further coordinating

the network-wide devices to dynamically put a portion of the network into sleep

during the low to median utilization, to address the problem of network over-

provisioning and redundant design. In this section, we discuss some of the network-

wide energy-aware strategies.

Power-Aware Routing and Tra�c Engineering

Energy-e�cient devices utilize a modified physical layer and link layer protocols

to coordinate the transition between sleep and active mode. At the network layer,

power-aware routing considers consolidating tra�c flows over a subset of links and

network devices, allowing more idle interfaces, links, and network components to

be put into the sleep state. Achieving a minimum subset of network devices is an

optimization problem with the constraints of preserving full network connectivity

and satisfying QoS requirements. Theoretically, the power-aware routing problem

is an extension of the general capacitated multi-commodity flow problem, which is

an NP-complete mixed integer programming problem (MIP).

In the position paper where Gupta and Singh [47] first presented the idea of

putting network components into sleeping mode, the possibility of coordinated

sleeping mode of multiple routers was described. The challenge is that the routing

algorithms (OSPF, for example) will consider the sleeping nodes as having failed

and recompute the routes, which incurs extra computing overhead. The paper

discussed a possible solution of pre-computing alternative routes.

Chiaraviglio et al. [27] is the first paper that formulates an optimization model
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to find the set of routers and links that must be powered on so that the total

power consumption is minimized, subject to flow conservation and maximum link

utilization constraints. This network design problem falls into the class of ca-

pacitated multi-commodity flow problems, which is NP-complete. Therefore, they

propose heuristic greedy approximation algorithms and apply that to the backbone

network of ISP networks. They test di↵erent node and link selection strategies in

responding to the day/night tra�c patterns and prove that the total network power

consumption can be reduced by switching o↵ links and ports accordingly. Similar

work includes [37], which evaluates heuristics algorithms on topology and tra�c

data from the Abilene backbone network. They prove that the simplest heuristic

algorithm can reduce energy consumption by 79% under realistic tra�c loads.

More recent work further explores the practical application of energy-aware

routing. Coudert [33] formulates a model combining redundancy elimination and

energy-aware routing to increase energy e�ciency for backbone networks. [62]

quantifies the e↵ects of five recently proposed power-aware routing approaches and

shows that switching o↵ redundant links a↵ects terminal reliability (TR) and route

reliability (RR) significantly. Accordingly, they propose a practical algorithm,

called “reliable Green-Routing” to maximally switch-o↵ network cables subject to

link utilization as well as TR/RR requirements.

Power-Aware Architecture Design

Power-aware routing aims at dynamically adapting network topology to network

usage to address the over-provisioning problem. This approach can be a practical

way to improve the energy e�ciency of existing networks. Some other work advo-

cates redesigning the network architecture in order to meet energy e�ciency goals

and QoS guarantees. Several authors propose new architecture design for energy
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savings [17] [25] [73]. For instance, [17] considers synchronizing the operation of

routers and scheduling tra�c in advance since tra�c comes from predictable ser-

vices (such as video). [25] proposes power awareness in the design, configuration

and management of networks, and in protocol implementations. They conducted

a measurement study about the power consumption of various configurations of

widely used core and edge routers and created a generic power model for routers.

Nevertheless, [73] proposes a planning model that clearly shows the trade-o↵ be-

tween energy consumption and network performance and emphasizes the impor-

tance of accounting for reliability in energy-e�cient network design and analyzed

robustness issues in some of the designs. To leverage the high e�ciency of optical

switching, some research on hybrid network architecture combines optical trans-

port and electronic packet processing. For instance, Baldi et al. [17] propose to use

a complemental Dense Wavelength Division Multiplexing (DWDM) optical cable

for deterministic tra�c.

2.1.3 Power-Aware Software Stack

In the operating system and user-space applications, it is possible to implement

energy strategies at the transport layer and application layer protocols. For ex-

ample, Irish et al. [59] modify the TCP/IP protocol, putting a TCP SLEEP signal

in the TCP header to notify the other party to stop sending data. Application

layer protocols can enforce the power-aware configuration as well. For example,

Blackburn et al. [53] [22] customize Telnet and BitTorrent protocols so that clients

send sleep-signal to servers to advertise the energy state and implement a probing

mechanism to avoid sending keepalive message. Furthermore, Microsoft scientists

developed general tools for application programmers in energy-e�cient program-

ming. Kansal et al. [55] present automated tools that profile the energy usage
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of various network resource components used for the guidance of energy-e�cient

application design. Baek et al. [16] provide a framework that enables program-

mers to approximate expensive functions and loops in a systematic manner while

providing statistical QoS guarantees.

2.2 DATACENTER NETWORK ARCHITECTURE

2.2.1 Datacenter Network Topologies

Inside a present-day datacenter, tens of thousands of servers are interconnected

using a network of switches, called datacenter networks (DCNs). Many datacenters

deploy a multi-layer, multi-rooted tree structure DCN, such as Clos [32] and fat-

tree [11] (also known as folded-Clos).

A Clos network topology [29][32] has three stages. Each stage is composed of

many crossbar switches. An (m,n, r) Clos network has m middle-stage switches,

r input switches, and r output switches. n is the number of input(output) ports

in the input(output) switches. Each input switch is an n ⇤m crossbar and every

output switch is an m⇤n crossbar. The input switches are fully connected with the

middle-stage switches, and the middle-stage switches are then fully connected with

all output switches. Every switch in the middle-stage has r input links from input

stage switches and r output links to output stage switches. Thus, the middle-stage

switches are r⇤r crossbars. An (m,n, r) Clos network can have N = rn end nodes.

With m middle-stage switches, there are m di↵erent paths between each pair of the

input and output nodes. Therefore, Clos topology has very good path diversity.

Fat-tree [11] is another example of a multi-rooted tree topology that is widely

deployed in many datacenters. A fat-tree network leverages o↵-the-shelf Ethernet

switches to connect to tens of thousands of nodes. A k -ary fat-tree has k pods, each

containing two layers of k

2

switches. Each edge switch in a pod is connected to k

2
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hosts and k

2

aggregation switches. There are
�

k

2

�

2

core switches, each of them has k

ports connected to k pods. The fat-tree topology has great scalability. A k -ary fat-

tree network can support k

3

4

hosts. Furthermore, the fat-tree topology has identical

bandwidth at any bisection and each layer has the same aggregated bandwidth.

Therefore, it can achieve full bisection bandwidth with 1:1 oversubscription ratio.

Compared with other conventional tree-based topologies, a fat-tree network has less

bandwidth bottleneck issues and can provide high bandwidth by interconnecting

smaller commodity switches.

Another cost-e�cient interconnection network topology is called flattened but-

terfly [57]. The flattened butterfly structure is derived from the conventional but-

terfly topology by combining the routers in each row into a single router. Channels

inside a row are eliminated. All the other channels in the flattened butterfly are

bidirectional. By combining the routers in the same row, the connection path be-

tween pairs of nodes can take any order of dimensions to get through, providing

better path diversity than a conventional butterfly topology. A k -ary n-flat flat-

tened butterfly can support N = n

k end nodes with n (k � 1) + 1 links. With high

degree of interconnection, flattened butterfly scales more e↵ectively than k -ary n-

cubes. Also, flattened butterfly has smaller network diameter than the folded-Clos

network. With load-balanced tra�c, a flattened butterfly is approximately half the

cost of a folded-Clos.

The fat-tree, Clos, and flattened butterfly are all switch-centric architectures

with interconnection intelligence built in switches [45]. Recently, some new server-

centric architectures were proposed to rely on servers to make routing decisions

and use them as intermediate routers. Examples of server-centric topologies include

DCell [43], BCube [44], FiConn [60] and CamCube [9].

DCell [43] is a recursively-defined interconnecting structure. Lower-levelDCells
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are connected to construct a higher-level DCell. Therefore, DCell scales out dou-

bly exponentially. It can support an enormous number of servers with only a few

levels (k) and switch ports (n). For example, a 3-level DCell can accommodate

around 3.26 million servers [21]. In a DCell network, servers are active parts in

routing and forwarding process. Each DCell can be deemed as a virtual node, and

all virtual nodes in the same level are fully connected to each other. The rich phys-

ical connectivity and distributed routing protocol provide better fault tolerance.

There is no single point of failure in a DCell. Compared with other datacenter

network topologies, DCell has better scalability, fault tolerance, and higher net-

work capacity. However, DCell requires higher wiring cost and it has problems of

load balancing.

BCube [44] is another server-centric architecture suitable for container-based

modular datacenters. The switches only connect with servers and act as a crossbar.

Servers communicate through the switches or other relaying servers. Since all the

switches in the BCube are equally connected, therefore, there is no oversubscription

bottleneck and BCube can provide high inter-server throughput. However, BCube

requires the server to have multiple network ports to scale out, which is a barrier

for BCube to scale to millions of servers.

DCell and BCube both require that a server has more network interfaces to scale

out, which is a challenge for datacenters currently using commodity servers with

at most two network ports each. FiConn [60] is a server-centric network, which

expands similarly to DCell. However, the server in FiConn needs only two Ethernet

ports to scale out to a large number of servers. DPillar [61] is another server-centric

network with dual-port servers. Dpillar ’s structure was inspired by the classic

butterfly network. It has symmetric structure and eliminates network bottleneck.

As a result, DPillar can achieve better scalability and network performance.
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The server-centric networks we discussed above are all hybrid direct-connect

topologies, which use simple dummy mini-switches to connect servers. Abu-Libdeh

et al. [9] propose a direct-connect topology (CamCube) where each server connects

directly with a set of other servers, without using any switches or routers. It

connects servers in a 3D torus topology, and each server directly connects to six

other servers.

Singla et al. propose a high-capacity network topology called Jellyfish [76]. It

adopts a random topology with high flexibility and network capacity. A Jellyfish

network has small network diameter and supports fine-grain incremental expand-

ing. However, the unstructured design also brings challenges in routing strategy

and networking wiring. Similar works include Scafida [49] and Small-World Dat-

acenters (SWDC) [74].

2.2.2 Datacenter Network Protocols

There is a broad range of applications running in the datacenters today, from web

hosting services to file storage services, to other customized applications. With

the increasing popularity of cloud computing, large online service providers such

as Amazon, Google and Microsoft have launched large-sized cloud datacenters, of-

fering user-facing Internet services such as web services, Instant Messaging, and

webmail. Additionally, many large-scale data-intensive applications like MapRe-

duce, Hadoop, and Dryad run in large production datacenters. Benson et al. [20]

studied the applications and their tra�c patterns of ten datacenters.

As the number and variety of applications increases, the network performance

of datacenters will significantly influence the QoS. For example, a MapReduce job

running in the partition/aggregate pattern distributes small tasks to other worker

nodes and collects results afterward, which requires transferring large amounts of
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data among servers at very high rate, demanding substantial network bandwidth.

Secondly, MapReduce is also latency-sensitive which require minimum response

time. If a worker node misses the deadline, its result will just be ignored, which

will impact the quality of the overall outcome.

To address the performance requirements of applications, datacenter designers

have focused their work on routing, flow control and management protocols to op-

timize the desired metrics of network utilization, latency, and throughput. Current

datacenter network protocols used in datacenters originate from those designed for

general LAN settings, which has predictable communication patterns and limited

paths between end nodes. With the exponential increase in the number of hosts,

especially the appearance of distributive cloud computing, many research e↵orts

are being focused on datacenter protocols to address the network management

challenges and new application requirements.

Routing and Addressing

The development of large-scale datacenters with an increasing number of servers

also imposes a significant challenge on the scalability of the datacenter protocols.

In a cloud computing environment, host virtualization allows multiple virtual ma-

chines (VMs) running on one physical machine. Each of the virtual machines

is assigned a fixed IP address and a MAC address, requiring more scalable ad-

dress resolution to locate millions of end nodes. Furthermore, virtual machines are

migrated to tightly-coupled hosts in order to achieve higher throughput, which im-

poses challenges on IP address configuration. Some researchers have proposed new

addressing schemes for datacenters. For example, Al-Fares [11] described a partic-

ular IP addressing over the fat-tree topology to provide high bisection bandwidth

without using high-cost core switches. The fat-tree network enforces a special
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IP addressing scheme and a routing protocol customized for its topology. The

routing algorithm uses two level look-ups at each node to distribute tra�c. The

prefix look-up in the primary table routes down to servers and the su�x look-up

in secondary table routes up towards core switches. The pod switches forward

subsequent packets of the same flow to the same outgoing port. Hence, all the

packets going to the same destination will follow the same path without packet

reordering.

Datacenter protocols originate from Ethernet and IP-based protocols support-

ing arbitrary topologies. As a result, many current datacenter protocols have

obvious limitations such as inflexibility, high configuration overhead, and limited

scalability. Recently, some Ethernet-compatible protocols for datacenters have

been proposed to address these problems.

For example, SEATTLE [56] is an early proposal of scalable Ethernet-compatible

architectures for large-scale datacenters. SEATTLE keeps the simplicity of Eth-

ernet by forwarding packets based on layer 2 flat MAC addresses, and employs a

broadcast-based link state protocol. Flat addressing treats the datacenter as a uni-

fied entity and enables lower administration overhead on handling network config-

uration and host mobility. To overcome the scalability problem of flat addressing,

SEATTLE employs a directory service by building a one-hop Distributed Hash Ta-

ble (DHT). Instead of requiring each switch to maintain a state for every end node,

SEATTLE employs a link-state protocol, which only keeps switch-level topology

and then uses a hash function to map host information to a switch. Switches

first run a discovery protocol to find their positions and automatically configure

the link-state protocol. Additionally, SEATTLE leverages communication locality

by letting switches cache the shortest paths of previous queries. Further, location
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information is memorized during end host ARP queries for later data packet trans-

mission. Compared with other hybrid IP/Ethernet network protocols, SEATTLE

improves the communication e�ciency with minimal management complexity.

Another proposed approach with similar goals is PortLand [69], which is a

scalable and fault-tolerant layer 2 network protocol implemented over the fat-tree

topology. It consists of a set of routing, forwarding, and addresses resolution pro-

tocols, which applies to any multi-rooted tree topology of current datacenters.

Instead of using flat MAC address as seen in SEATTLE, PortLand leverages the

knowledge of the topology by encoding positions into hierarchical addresses and

thus achieves scalability and e�ciency. It uses a pseudo MAC (PMAC) addresses

and embeds the baseline network topology information into the PMAC addresses.

Each end node is assigned a unique PMAC address containing hierarchical position

information. Switches update the forwarding table through a lightweight Location

Discover Protocol (LDP). Compared with the traditional layer 2 flat MAC ad-

dresses, the hierarchical structure of the PMAC addresses allows a relatively small

forwarding table in each switch and enables more e�cient routing and forwarding.

While PortLand achieves scalability by using topologically-significant PMAC

addresses, the position-related addressing constraints virtual machine migration.

To overcome these limitations, Greenberg et al. presented the Virtual Layer 2

(VL2) [39] network architecture based on layer 3 IP routing in the network in-

frastructure, and implemented flat addressing at the server level. In VL2, all the

switches are using location-specific IP addresses (LAs). At the application level,

applications are assigned application-specific IP addresses (AAs). The VL2 agent

at each server encapsulates the packet with the AA address of the application, and

LA address of the ToR switch directly connected to the destination server. When

the packet arrives at the destination ToR, the switch decapsulates the packet and



28

forwards it to the target server. The AA address represents the name of the server

instead of the location, which allows virtual machine migrating with no IP address

modification overhead. And the network-level IP protocol assures high-e�ciency

forwarding and scalability with a small state at each switch. VL2 implementation

does not require changing the software and API of current switches. Therefore, it

is a practical solution for datacenters with commodity switches.

The multi-rooted tree structures of current datacenter networks provide multi-

ple paths between each pair of servers. Many existing forwarding protocols apply

Equal Cost Multipath (ECMP) to select a path statically using flow hashing, re-

sulting in collisions and bandwidth losses. To address these challenges, Al-Fares et

al. proposes Hedera, a dynamic flow scheduling system to adaptively allocate flows

to paths [12]. Hedera is a centralized scheduler with a global view of the flows and

network utilization status. Therefore, it can not only appropriately schedule the

flows to the core switches with less utilization, but also fully leverages the high de-

gree of parallelism provided by the multi-rooted tree topology and achieves nearly

full bisection bandwidth.

To achieve load balancing in multipath datacenter networks, a novel multipath

forwarding approach is proposed as Smart Path Assignment in Network (SPAIN

[68]). While traditional Ethernet protocol uses Spanning Tree Protocol (STP) to

generate a single loop-free-tree, SPAIN explores a set of redundant paths in a

network topology and merges these paths into a set of trees. Every switch installs

the information of VLANs, each of which maps to one tree. SPAIN supports layer

2 flat addressing and routing, and can deliver higher bandwidth and better fault

tolerance than spanning tree.

Similarly, Raiciu et al. propose a Multipath TCP (MPTCP) [71] as an exten-

sion of current TCP protocol. MPTCP explores multiple paths simultaneously
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and utilizes the congestion feedback to choose the e↵ective paths. Compared with

single-path TCP, MPTCP can find unused capacity more e↵ectively and maxi-

mize the utilization of networks in topologies with full bisection bandwidth. Now,

MPTCP has been deployed in Amazon’s latest EC2 environment, and experimen-

tal tests show that it can improve the throughput by 300%.

The server-centric architectures allow servers to perform routing and forward-

ing. DCell uses a single path routing protocol. Each server is assigned a (k + 1)-

tuple as the address. The DCellRouting routing algorithm follows a divide-and-

conquer approach to find the path from source to destination. BCube adopts a

source routing protocol called BSR (BCube Source Routing). When a new flow

arrives, the source server sends out probe packets through multiple parallel paths

and selects the best route after it receives the probe response. BSR can fully

utilize the high capacity provided by the Bcube topology and realizes automatic

load-balancing. In a FiConn network, every intermediate server takes a greedy

approach for establishing a tra�c-aware path hop-by-hop. The source server al-

ways selects the outgoing link with higher bandwidth to forward the tra�c, thus

balancing the tra�c.

Flow Control and Resource Management

OpenFlow [66] provides an open protocol to program the flow table in a switch.

OpenFlow-enabled switches support fine-grained, flow-level control over Ethernet

switching. However, its centralized control and global visibility create scalability

issue as well. Curtis et al. designed a modified model called DevoFlow [31]. It

pushes most flow controls to switches and only manages over significant flows and

packets. The distributed control mechanism reduces the sizes of flow tables and

control messages.
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Many studies show the datacenter tra�c is characterized by a few large flows

and many small flows. Although there are a few long-lived flows, these flows play

a critical role in deciding the achievable network bisection bandwidth. Current

datacenter commodity switches have limited bu↵er sizes. Short-length flows may

also experience long latencies if the long-length flows occupy the available bu↵ers

in the switches. To keep the high throughput for big flows and low latency for short

flows, a TCP-like Datacenter TCP protocol (DCTCP) [13] is proposed to address

this problem. DCTCP uses Explicit Congestion Notification (ECN) as feedback

of the extent of switch congestion and proportionally resizes the window. A tra-

ditional TCP reduces the window by half when it receives ECN feedback, which

causes bu↵er underflow and throughput losses. Experimental results show that

DCTCP can deliver comparable throughput with 90% less bu↵er space occupancy

compared with conventional TCP.

Another novel tra�c management system, Mahout [30], was proposed recently

to detect elephant flows in datacenter tra�c. Instead of polling the switches, Ma-

hout monitors the end hosts socket bu↵ers to detect long-lived flows and signals the

central controller. Hence, only the detected long flows will be forwarded through

the central controller. As such, Mahout incurs much lower monitoring overhead

and switch resources compared to Hedera. It is relatively simple to implement

Mahout because it only requires a shim layer of software at the end host OS.

Although many resource management proposals consider the sizes of flows in

congestion control and flow scheduling mechanisms, few of them are aware of the

deadline of the flows and study how meeting the deadline will influence the appli-

cation throughputs. Wilson et al. designed and implemented a Deadline-Driven

Delivery (D3) control protocol [84] to apply explicit rate control to allocate net-

work bandwidth according to the flow deadline. Results from an implemented
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small testbed show that D3 can e↵ectively double the peak load supported.

2.2.3 Alternative Datacenter Architectures

The topologies we have considered thus far consist of an enormous amount of elec-

trical switches and links, resulting in high complexity of wiring and deployment

of the datacenter networks. Compared with the packet-switching technology, the

optical circuit switching technology can provide higher bandwidth at much lower

power cost, but it comes at a cost of a slower switching speed. An optical switch

requires on the order of one millisecond to establish a new circuit, which is much

longer than the transmission time for a single packet. Therefore, optical circuit

switching works best with high-speed, high-volume communications. Many propos-

als present new network architectures to leverage the high bandwidth transmission

advantage of optical circuit switching.

Wang et al. propose a hybrid packet and circuit switched datacenter network

architecture (HyPaC ) [80] that combines traditional electrical packet-switched net-

work with rack-to-rack circuit-switched optical network. In the implementation of

the prototype system, servers bu↵er tra�c and accumulate enough tra�c for the

links to leverage the high-speed bandwidth. The experiment on an implemented

prototype shows that the optical inter-rack switches integrate well with the Eth-

ernet/TCP electrical switches. The case studies on di↵erent types of applications

suggest that this hybrid architecture benefits applications with bulk data transfer

requirement and which are also insensitive to latency.

Modular datacenters have been a new direction in building datacenters in the

past few years. Moderate numbers of servers interconnected with non-blocking

networks form a module called a pod. High bandwidth inter-pod connections are

necessary to prevent the bottleneck of communications. An optical switch is an
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option for the pod-level aggregated tra�c demand. Farrington et al. [36] proposed

Helios, a hybrid electrical/optical switch architecture for modular datacenters.

Helios dynamically reconfigures the network topology at run-time according to the

communication patterns and tra�c demands monitored.

More recently, Chen et al. [26] introduced an innovative Optical Switching

Architecture (OSA) for datacenter networks. Consisting of all optical switches,

OSA achieves high topology flexibility. It can dynamically change topology or

link capacity more flexibly to adapt to varying tra�c patterns. Compared with

the hybrid structures, OSA is characterized by a higher bandwidth, lower energy

consumption, and simpler wiring complexity. However, small flows may su↵er

non-trivial delay due to the reconfiguration delay of OSA.

2.3 DATACENTER NETWORK ENERGY EFFICIENCY

The exponential growth of Internet-scale applications drives the expansion of large-

scale, geographically distributed datacenters with fast increasing energy cost. With

various types of applications from online services, scientific computations to MapRe-

duce running on datacenters, the communication patterns and network bandwidth

requirements have been driving new research on datacenter networks. We explore

the literature of recent studies that addresses various aspects of the challenges in

designing e�cient datacenter networks.

A lot of research e↵orts are focused on achieving the energy proportionality in

datacenter networks. In practice, companies provision their datacenters for peak

usage. However, a typical datacenter workload is around 5% � 25% of the peak.

Many researchers propose energy proportionality datacenter networks. For exam-

ple, Lin et al. [63] explored the option of adaptively right-sizing the datacenters

by turning o↵ idle servers. Heller et al. designed an ElasticTree topology [51] that
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changes network topology dynamically to adapt to varying tra�c load.

Lin’s research introduced an online algorithm, Lazy Capacity Provisioning

LCP(w), to predict arriving workload in a window size of w. In the case study, some

impacting parameters are discussed to analyze the cost-saving of their approach.

Especially, the impact of Valley Filling, an alternative approach to right-sizing, is

evaluated and compared.

In the ElasticTree approach, Heller developed a variety of optimizers to com-

pute a minimal-power subset of network elements according to di↵erent tra�c

patterns. The power control turns o↵ unnecessary switches and links and the

routing assigns routes accordingly. Tradeo↵s between power, fault tolerance and

performance are considered as well in their approaches. Similar work on dy-

namic topology is called CARPO [81], a correlation-aware power optimization

algorithm. Di↵erent from ElasticTree, CARPO first consolidates tra�c flows by

putting negatively-correlated flows onto the same path and positively correlated

flows onto di↵erent paths, and then feeds the consolidated flows into a smaller set

of links before shutting o↵ idle links.

More recently, Adnan and Gupta proposed an online path consolidation algo-

rithm to dynamically right-size the networks [10]. From multiple equal cost paths

between each pair of nodes, their algorithm selects the path, which has most over-

lap with the paths between other pairs of nodes and meets the total flow bandwidth

requirement. By combining all the best overlapping paths together, the minimum

energy-proportional topology is formed. When there are large amount of flows in

the network, their method outperforms the ElasticTree approach.

Also, others have explored the ideas of energy-proportional hardware, such as

energy-proportional servers or energy-proportional links. For instance, Abts et al.

proposed building energy proportional datacenter networks by adapting the data



34

rate of individual links to the tra�c intensity [8]. Abts then compared the power

consumption rate of di↵erent topologies and proposed to build the network based

on the flattened butterfly topology, which is more energy-e�cient than a fat-tree

topology of equivalent size and performance. Compared to the dynamic topology,

this approach is a more fine-grained tuning adaptive technology. Additionally, it

does not require changing the topology and routing.

An innovative idea of tra�c merging was proposed recently for running more

energy-e�cient datacenters [23]. Given the low utilization of the links, tra�c from

multiple links is aggregated into fewer uplinks through a simple hardware design

of the Merge Network. Unused links can be set to low power mode to save energy.

The hardware implementation is simple and has no additional delay and has lower

small power consumption.

2.4 COMPARISON AND DISCUSSIONS

The expansion of datacenter infrastructure motivates the research on how to e�-

ciently interconnect a huge number of servers. The high capacity requirement of

applications implies that the topologies have high bisection bandwidth. For exam-

ple, the fat-tree, and Clos are all hierarchical multi-rooted tree-structured topolo-

gies connecting multiple levels of commodity switches. These topologies support

high-rate communications between any pair of end hosts and are widely deployed in

existing datacenters. Another approach considers server-centric topologies, such

as DCell, BCube and FiConn. These topologies leverage the programming ca-

pability of servers and conduct routing and forwarding by the servers instead of

switches. Network scales out through recursive expansion of lower-level server

interconnections. Compared to the tree-based topology, server-centric topology

has better scalability and more convenient routing and management mechanism.
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Also, there are alternative architectures proposed using optical switches to meet

the high bandwidth demands between di↵erent racks. Optical switches can form

a circuit-switching path and have very high transmission rate.

In our research, we apply merge networks to the switches in di↵erent topologies

and evaluate the total energy saving under various tra�c patterns. For a hierar-

chical tree-structured fat-tree topology, more tra�c concentrates in the core layer

switches, according to Benson [20]. The link utilization of other layers is much

lower. Considering this variation, we can apply merge networks more aggressively

in the aggregation/edge layer. For example, we can connect a 2N ⇥ 2N merge

network to 2 N -interface switches.

We also propose using a switching fabric for the interconnection of servers.

Conventional networks use switches as intermediate nodes to forward packets. The

forwarding switches increase the network latency and consume large amount of en-

ergy. In our research, we will replace switches with simple analog multiplexers,

which use minimal electricity. We use servers to make routing decisions and es-

tablish a full path from source to destination before data transmission. As we

discussed, server-centric architectures also put routing intelligence on the server.

However, they need servers to work as the relaying nodes during the transmission,

which incurs high latency. Our approach lets the source server set up a particular

path. The packets then traverse the path from source to destination without going

through intermediate servers. Optical switches also establish a circuit switching

path. However, they have a long configuration time, which hinders its application

to inter-server data transmissions. Typically, optical switches are used for inter-

rack networking. Our proposed switching fabric is simple to configure and has low

transmission latency and energy cost.

The increasing concern about datacenter power consumption has attracted
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many research e↵orts. Barroso [19] has proposed the concept of energy proportion-

ality, which resorts to keep the energy usage proportional to the o↵ered workload.

There are di↵erent approaches to achieve energy proportionality. Some proposed

dynamically turning o↵ idle servers [63]. Others focus on ensuring the energy

use of network infrastructure to be proportional to the network utilization, such as

turning o↵ unused switches [51] or adapting the link rate to the workload [8]. More

aggressive approaches include consolidating tra�c flows [81] or merging transmis-

sion paths [10] to find minimal energy proportional topology. Our research on

merge network is also focused on combining the tra�c and dynamically turning o↵

the idle switches. However, the previous tra�c consolidating approach [81] requires

statistical analysis of the tra�c flow correlations. The path-consolidating approach

[10] has to calculate the optimal overlapping path first. The merge network is im-

plemented from simple analog hardware, and it consolidates tra�c automatically

with almost no software overhead. The switching fabric proposed is a more energy

e�cient way by replacing all switches with low-energy-cost analog multiplexers.
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Chapter 3

MODELING ENERGY USAGE OF DATACENTER NETWORKS

Datacenter networks tend to consume about 10 � 20% of energy in normal usage

[51] but account for up to 50% energy [38] during low loads since at those times

servers can be put into low power states. It is therefore important to adapt the

network energy consumption to actual tra�c loads as the servers do. To do this,

we need to develop a better understanding of network energy consumption under

varying types of loads with the eventual goal of designing more energy e�cient

datacenter networks.

We consider the fat-tree network, which has been a popular choice for many

commercial data centers due to its full bisection bandwidth (which minimizes la-

tency and boosts throughput). Unfortunately, the energy consumption of this or

any other network is very dependent on the type of tra�c, the type of load and on

the selected routing algorithm. For instance, even at high loads if most of the traf-

fic is between servers located in the same pod (see Figure 3.1) then core switches

are never used resulting in significant energy savings. On the other hand, at light

loads if most of the tra�c is between servers located in di↵erent pods, then savings

are small since more switches in the network will need to be utilized for routing.

Routing also plays an important part in the potential for energy savings. Thus,

routing algorithms that seek to minimize only latency will distribute flows over

unused paths when possible, ensuring that a majority of switches are kept busy

(albeit at very low loads). Alternatively, if paths can be consolidated into a few,
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then there is the potential to save energy at the idle switches.

In this chapter, we provide a systematic analysis of the energy e�ciency of a fat-

tree network using modeling and detailed simulations. The key question we ask is

how does energy usage scale with total load as well as with di↵erent types of loading.

To answer this question, we build a detailed analytical model that gives the lower

bound on the fraction of active switches required for a given load and type of load.

We show that fat-trees have a minimal cost of about 40� 50% (i.e., about half the

switches need to remain active at all times) but beyond that, the lower bound scales

almost linearly with total o↵ered load. The lower bound computation is based on

aggregating tra�c into few routes. We next conducted a detailed simulation of a

fat-tree network where we used di↵erent types of load (staggered and stride) [11]

and di↵erent amounts of total load. We compute routing tables empirically every

second for the next second and compute the fraction of needed active switches.

The simulation shows that the model we develop is accurate in predicting switch

activity and the simulation demonstrates that by modifying the routing algorithms

we can potentially save significant amounts of energy in real networks.

3.1 MODELING ENERGY CONSUMPTION

The structure of a fat-tree is shown in Figure 3.1. The tree is made up of 2k “pods”

which are connected to k

2 core switches. Within each pod we have k aggregation

switches and k edge switches. Each edge switch is in turn connected to k servers.

Therefore, each pod has k2 servers and the DCN has a total of 2k3 servers. Each

core switch has one link to each of the 2k pods. The ith port of a core switch is

connected to an aggregation switch in pod i. The left-most k core switches are

connected to the leftmost aggregation switch of each of the 2k pods. The next set

of k core switches are connected to the second aggregation switch of each of the
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Figure 3.1. Fat-tree network model.

pods, and so on.

Our goal here is to derive analytical expressions for minimal energy consump-

tion of fat-trees for di↵erent type of loading. The metric we use for energy con-

sumption is fraction of active switches. To model di↵erent types of loading we

use three parameters. A packet from a server goes to another server connected to

the same edge switch with probability p

1

, it goes to a server in the same pod but

another edge switch with probability p

2

and with probability p

3

= 1 � p

1

� p

2

it

goes to a server in a di↵erent pod. Thus p

1

of the tra�c is never seen by either

the core or the aggregation switches while p

2

of the tra�c is not seen by the core

switches. It is easy to see that by varying p

1

and p

2

we can model very di↵erent

types of tra�c. Finally, we model external tra�c (i.e., tra�c going to/from the

Internet) as the fraction q (also see discussion in first part of section 3.1.2).

Let � denote the average internal load o↵ered by each server expressed as a

fraction of link speed (which we normalize to 1). This load refers to packets that

will stay within the datacenter. Thus, the total o↵ered load per server is �+q. For

simplicity, we assume that � + q is the same for all the servers in the datacenter.

Thus, the total load in the datacenter is 2k3(�+q). We have the following equalities
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for total tra�c at the level of edge switches, pod aggregation switches and core

switches:

tra�c per edge switch = (�+ q)k

tra�c for all aggregation switches in a pod =

((1� p

1

)�+ q)k2

tra�c for all core switches =

((1� p

1

� p

2

)�+ q)k2 ⇥ 2k

Note that tra�c flow is symmetric and the numbers above correspond to both,

tra�c into and out of a switch or switches.

We perform our analysis below in three stages:

• In the basic model we assume that q = 0 and thus all tra�c is internal only.

This analysis gives us a good starting point for generalization to the other

two models.

• The extended model allows q > 0 but assumes that every core switch has a

connection to the Internet. This model is valid for small datacenters.

• In the asymmetric model we only allow a small subset of core switches to be

connected to the Internet and these switches are equipped with much higher

rate links. This model is representative of a large number of datacenters

today.

3.1.1 Basic Model

Assume that q = 0. The first observation we can make is that all the edge switches

need to remain active at all loads to ensure servers have network connectivity.

This gives us 2k2 active switches at this level. Within each pod we have total

tra�c equal to (1 � p

1

)�k2 going into/from the k aggregation switches from/to
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the edge switches. Given each link has a normalized capacity of 1, and that there

are k interfaces per aggregation switch connected to the edge switches, we require

at least d (1�p1)�k
2

k

e active aggregation switches per pod. Observe that in the fat-

tree each edge switch is connected to each aggregation switch. Therefore, we can

force all tra�c from the edge switches to go to the fewest number of aggregation

switches. This fact is represented in the expression for the total number of active

aggregation switches above. Since there are 2k pods, the total number of active

aggregation switches becomes 2kd(1� p

1

)�ke. Finally, since every core switch i is

connected to aggregation switch i from each of the 2k pods, the number of active

core switches we require is simply, d (1�p1�p2)�⇥2k

3

2k

e where we divide the total tra�c

passing through the core switches by the number of links per switch and round up.

Therefore, the total number of active switches can be written as:

ActiveBasic = 2k2 + 2kd(1� p

1

)�ke+
l

(1�p1�p2)�⇥2k

3

2k

m (3.1)
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Figure 3.2. Active switches for the basic model.

Figure 3.2 plots the fraction of active switches as a function of load � for five
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di↵erent scenarios when k = 6. The plot with the labels -o corresponds to the

case when all tra�c is between the servers connected to an edge switch. In other

words, no tra�c needs to flow to the aggregation switches or to the core switches.

As expected, the graph stays flat. However, what is relevant here is that even at

light loads of 0.1 all the edge switches are fully active. At this load value, each

server generates 1/10th of the uplink capacity of tra�c (similarly for downlink)

but the energy consumed is the same as when the link is fully loaded. The total

combined tra�c from all the k = 6 servers is 0.6 which is less than the capacity

of a single link. It is clear that significant energy savings can be accomplished

here by redesigning the edge switches or the topology at the edge. We return to a

discussion of this point later.

The plot with the labels �/ corresponds to the extreme case when all the tra�c

is destined for servers in a di↵erent pod. Hence the core and aggregation switches

will be utilized. Contrasting this with the case discussed above, we observe that

energy scales approximately linearly with load, if we discount the edge switches.

This is the desired behavior for energy-proportional networking.

3.1.2 Extended Model

Let us now extend the above discussion to the more realistic case when the dat-

acenter sees external tra�c from the Internet. Let us assume that tra�c coming

into the datacenter is 2k3

qin equally distributed among all the servers and tra�c

going out is 2k3

qout also equally generated by each server. It is easy to see that

�+ qin  1 and �+ qout  1 since the normalized capacity of the link connecting

each server to the edge switch is 1. Before proceeding with the derivations below,

note that a switch interface is typically bi-directional. Therefore, even if there is

no tra�c in one direction, the entire interface is functioning and running link layer
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protocols to maintain connectivity. Therefore, instead of considering qin and qout

separately, we need to only consider the maximum of the two. Let,

q = max{qin, qout}

In order to handle external tra�c, let us assume that each of the core switches

is equipped with additional interfaces with a total normalized capacity of Q and

connected to a border switch or router. Therefore the network can handle a total

external load of Qk

2. Observe that Q  2k.

In order to compute the number of aggregation switches and core switches that

are active, it is convenient to begin at the core layer. The total external tra�c is

2k3

q therefore the minimum number of core switches required to handle this tra�c

is,

n =
2qk3

Q

It is possible that n is a fraction or is greater than the total number of core switches.

Therefore, we obtain,

n

ext
core = min

�

k

2

, dne
 

since each core switch can only handle Q external tra�c. The reason we take a

minimum above is to account for the case when the external tra�c exceeds the

total capacity of the network to handle it.

Each of the 2k interfaces of the core switches (facing towards the servers) has

a normalized capacity of 1. For the core switches serving external tra�c, Q/2k of

each link’s capacity is used for external tra�c coming/going from/to the connected

pods leaving a capacity of (1�Q/2k) for internal tra�c between pods. The reason

for this is two-fold. First, each of the pods is assumed to be identical to the

other pods and generate an equal amount of external tra�c. And second, in the

computation of the number of core switches needed to support the external tra�c,
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we assume that all the external tra�c is put into as few core switches as possible

rather than spreading it out among all the core switches. This design is more energy

e�cient since we can minimize the number of active switches.

We may require additional core switches to handle inter-pod internal tra�c.

To compute this additional number of core switches we first determine how much

internal tra�c can be carried by the nextcore switches. The remaining internal tra�c

can then be carried by free core switches. To compute the first value, note that of

the n

ext
core switches, the first nextcore � 1 will be running their external links at full

capacity of Q each while the last switch may be running at lesser capacity. Thus,

the residual capacity of these active switches can be written as,

(2k �Q)bnc+ (2k � (2qk3 � bncQ))

Recall from our discussion of the basic model that the total internal tra�c reaching

the core switches from the pods (i.e., tra�c sent between pods) is 2(1�p
1

�p
2

)�k3.

Therefore, the number of additional core switches we require to handle internal

tra�c is,

naddlcore =

&

2(1� p
1

� p
2

)�k3 �
�

(2k �Q)bnc+ (2k � (2qk3 � bncQ))
�

2k

'

(3.2)

We divide by 2k because that is the capacity of each free core switch (2k links

of capacity 1 each). Of course, it is possible that the total tra�c will exceed the

capacity of the core switches. Therefore, we obtain the final value for the number

of required core switches as,

n

total
core = min

n

k

2

, n

ext
core + n

addl
core

o

Finally, let us compute the number of aggregation switches required. In each

pod, each server sends (1�p

1

)� amount of internal tra�c to the aggregation layer.

An additional q amount of external tra�c is also sent. Therefore, the total amount
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of tra�c within each pod that reaches its aggregation layer is ((1 � p

1

)� + q)k2.

Each aggregation switch has k interfaces connected to edge switches. Therefore,

the number of aggregation switches required per pod is,

⇠

((1� p

1

)�+ q)k2

k

⇡

Yielding the total number of required aggregation switches in the network as,

n

total
aggr = 2kmin {k, d((1� p

1

)�+ q)ke}

Combining all the derived values, we obtain the total number of active switches in

the extended model as,

ActiveExtended = 2k2 + n

total
aggr + n

total
core (3.3)

In Figure 3.3 we plot the fraction of active switches as a function of �+ q for the

case when q = 0.25, k = 6 and Q = 12. In this case, the external capacity of each

core switch is more than su�cient to handle all external tra�c. In the figure, point

A denotes the case when there is no internal tra�c at all and all tra�c is external.

Here, all the edge switches are active and in addition, 9 core switches are required

for external tra�c. Each of these 9 core switches have zero available capacity to

handle internal tra�c. Therefore, as we now start increasing internal load � we

require additional core switches to become active when (1� p

1

� p

2

) > 0. Observe

that the case when p

1

= p

2

= 0.5 only requires additional aggregation switches

after � exceeds 0.2. Prior to that we can get away with using the aggregation

switches that are already active for external tra�c.

It is instructive to contrast the above figure with Figure 3.4 where we now have

Q = 6 and q = 0.5. This represents a case where the external tra�c accounts for

50% of all tra�c handled by the network and the number of external interfaces is

smaller. Point A again denotes the case when there is no internal tra�c. The -o
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Figure 3.3. Extended model with high external connectivity.

data set corresponds to the case when all internal tra�c confined to edge switches

only. As we increase the tra�c within the pod but between edge switches (data

shown by -+) we see an increase in aggregation switches used but no change in

core switches. The remaining three plots correspond to the case where we slowly

increase the amount of inter-pod internal tra�c. This causes an increase in number

of core switches required until the point where the internal inter-pod tra�c plus the

external tra�c exceeds the capacity of the network. To understand this further,

let us derive the expressions for tra�c loss.

First note that there are no tra�c losses in the basic model without external

tra�c since the fat-tree has full bisection bandwidth. In the extended model, tra�c

losses will not occur within the pod if � + q < 1. However, tra�c losses occur in

the core if external capacity Q is unable to handle the external load.

Tra�c losses at the core can potentially be divided into two types. The first

type corresponds to losses to the external tra�c and happens if,

Qk

2

< 2qk3
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Figure 3.4. Extended model with reduced external connectivity and high external load.

This yields a loss of external tra�c of,

Lossext = max{0, (2qk3 �Qk

2)}

The second source of losses is from internal tra�c if the residual capacity of the core

switches (after handling external tra�c) is insu�cient for internal tra�c. Recall

that the total internal tra�c coming to the core layer is 2(1�p
1

�p
2

)�k3. Equation

3.2 gives us the number of additional core switches required to handle this tra�c.

Therefore the amount of internal tra�c loss is,

Lossint = max{0, 2(1� p

1

� p

2

)�k3�

((2k �Q)bnc+ (2k � (2qk3 � bncQ)))� 2k(k2 � n

ext
core)}

Theorem 1: In the extended model Lossint = 0.

Proof sketch: (We have not included the formal proof here for space reasons) The

intuition behind this result is relatively simple. Consider tra�c going up to the

core first. Since � + q < 1 there will be no losses seen by any of the tra�c either

in the pods or in the inputs to the core switches. Tra�c heading out of the core
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Losses only occur for the last case

Figure 3.5. Tra�c loss corresponding to Figure 3.4.

to the Internet is limited by Q and hence we may see packet drops if 2kq > Q.

Consider now tra�c coming into the network from the Internet as well as inter-pod

and intra-pod tra�c. At the core layer, this tra�c will be 2(1�p

1

�p

2

)�k3+2k3

q

0.

The first term is the inter-pod tra�c and the second term is the amount of external

tra�c that was not lost due to the limitation on Q. Clearly, q0  q and hence the

total tra�c flowing into the servers is below the link capacity of one and there will

again be no losses. Therefore, we can write the total loss in the extended model

as,

Lossextended = Lossext

Figure 3.5 plots the fraction of tra�c loss (total tra�c lost divided by the

number of servers) versus � + q for various cases. Note that there are no losses

when q = 0.1 for Q = 4, 6. The only case we see losses is when q = 0.5, Q = 4

since there is not su�cient external capacity.
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3.1.3 Asymmetric Model

The extended model above assumes that every core switch has a link to a border

gateway for connectivity to the Internet. This assumption may be reasonable for

smaller datacenter networks but for larger ones, the more likely scenario is one

where only a few of the core switches have external links. Let us assume that of

the k2 core switches, k � C � 1 have external connectivity via links of capacity Q.

Assume further that these C switches are connected to the aggregation switches

using links of capacity l � 1. All remaining links in the network have a capacity

of 1. Clearly, Q  2kl and l  k. The latter inequality makes sense since an

aggregation switch is connected to k edge switches with capacity one links and

thus there is little point in connecting it to a core switch by a link of capacity

greater than k. Without loss of generality, assume that the C core switches are

1, 1+ k, 1+ 2k, · · · , 1+ (C � 1)k. Thus aggregation switches 1, · · · , C in each pod

are connected with a link of capacity l to these special core switches.

As before, assume that the total external tra�c load is 2qk3 and the tra�c

is uniformly distributed among all the servers. The total number of externally

connected core switches we need to be active is thus given by,

m =
2qk3

Q

Since m may be greater than C or have a fractional part, we obtain,

m

ext
core = min{C, dme}

If the external tra�c exceeds the capacity of the network to handle it, then we can

compute the loss as,

Loss
Asym
ext = {0, 2qk3 � CQ}

We proceed as in the previous section to compute the number of additional core

switches needed to support internal tra�c. Recall that the externally connected
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core switches may not be using all of their link capacity and thus they can be used

for routing internal tra�c as well.

Each of the 2k interfaces of the active externally connected core switches has

a capacity of l. If mext
core = dme then bmc of these switches are using their full

external capacity of Q leaving (2kl �Q)bmc free capacity. For example, a switch

may have 2k = 12 one gigabit links and one Q = 10 gigabit link connected exter-

nally. Thus this switch has 2 gigabits of free capacity that can be used for routing

internal tra�c.

One additional externally connected core switch will be using less capacity for

external tra�c leaving (2kl� (2qk3�bmcQ)) free capacity. The total free capacity

is thus f = (2kl�Q)bmc+(2kl�(2qk3�bmcQ)). If C < dme, however, then all the

m

ext
core switches are using their full external capacity Q leaving only f = (2kl�Q)C

free capacity. The total internal tra�c that needs to be forwarded by core switches

is 2(1� p

1

� p

2

)�k3. Therefore, the number of additional core switches we need is,

m

addl
core =

8

<

:

0, if 2(1� p

1

� p

2

)�k3  f

l

2(1�p1�p2)�k
3�f

2k

m

, otherwise

We divide the second term above by 2k since that is the degree of the additional

core switches used. Since it is possible that the above number exceeds the available

number of free core switches, we can write the final answer as,

m

total
core = min

n

k

2

,m

ext
core +m

addl
core

o

Let us next compute the number of aggregation switches required per pod.

Within each pod, the total external tra�c is qk

2 and this is forwarded to/from

the externally connected core switches using m

ext
core aggregation switches. This

is the case because of the way we are performing the minimization forces tra�c

from/to each pod to be identically routed. The total internal tra�c that needs to

be handled by the aggregation switches is (1� p

1

)�k2.
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Consider the aggregation switches in a pod that are connected to the active

externally connected core switches. Say the high-capacity link (of capacity l)

carries tra�c a. This tra�c is evenly distributed over the k capacity 1 links

connecting this aggregation switch to edge switches. In other words, each of the

edge switches can send up to (1� a/k) internal tra�c to this aggregation switch.

In all, the k connected edge switches can send (k � a) total internal tra�c to this

aggregation switch. Consider next the k links from this switch connected to the

core switches. One of the links is capacity l while the others are capacity 1 each.

Thus, the total available capacity of these links is (l�a)+(k�1) = (k�a)+(l�1).

Since k � a < (k � a) + (l � 1) the total internal capacity that can be handled by

this aggregation switch is k � a.

In a pod, if m

ext
core = dme then there are bmc aggregation switches where

a = Q/2k (corresponding to the bmc core switches that run their external links at

full capacity) and at most one switch (dme � bmc) where a = (2qk3 �Qbmc)/2k.

These dme aggregation switches handle internal tra�c equal to,

taggr = bmc(k �
Q

2k
) + (dme � bmc)(k � (2qk3 �Qbmc)/2k

leaving (1�p
1

)�k2�taggr to be handled by other aggregation switches. If, however,

C < dme then taggr = (k�Q/2k)C. In all, in the entire network, the total number

of aggregation switches needed is then given by,

m

total
aggr = 2kmin

⇢

k,m

ext
core +

⇠

(1� p

1

)�k2 � taggr
k

⇡�

Putting all these values together we have,

ActiveAssymetric = 2k2 +m

total
core +m

addl
core (3.4)

Recall that C  k in the asymmetric model therefore, q  QC/2k3. Let us

assume that C = k = 6. In Figure 3.6 we plot the fraction of active switches versus
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�+q when q = 0.25, Q = 12, C = 6, k = 6, l = 1. We observe that even when � = 0

we are using over 80% of the switches. The reason for this has to do with the fact

that when m

ext
core switches are active in the core, an equal number of aggregation

switches are forced to be active in each pod since they have a high capacity link

to these externally connected core switches. In this particular example, therefore

all C = 6 externally connected core switches are active. No additional switches

are needed since there is no internal tra�c. In each of the 2k = 12 pods, six

aggregation switches are also active and all the edge switches are active. Therefore

we get 6+72+72 = 150 active switches or 83%. The switches are essentially idle

but due to the external tra�c and the topology of the network we are paying this

high cost.
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Figure 3.6. Asymmetric model with high external tra�c.

Let us consider a more realistic case where the external links are Q = 40 gbps

and l = 10 gbps for the C = 6 externally connected core switches. Figure 3.7 plots

the fraction of active switches and we note that in this case only 3 of the C = 6

core switches was used resulting in an overall reduction in number of aggregation
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Figure 3.7. A more realistic asymmetric model with high capacity external links.

switches needed. Also, since 2kl = 120 gbps for each of these C switches, there

is 120� 40 = 80gbps excess capacity that can be used to forward internal tra�c.

Unfortunately, as in the previous example, each pod has at least m

ext
core active

aggregation switches and thus even when � = 0 we use 62% of switches.

Finally, let us consider tra�c loss for the asymmetric model. As in the case of

the extended model, we can state that the only tra�c loss will occur at the core

switches when �+ q < 1. Thus,

LossAsym = Loss
Asym
ext

Figure 3.8 plots the tra�c lost (total tra�c lost divided by number of servers) for

the case corresponding to Figure 3.6. Regardless of internal tra�c patterns the

tra�c loss is the same. This makes sense since only external tra�c q = 0.25 will

be lost due to insu�cient external bandwidth.
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Figure 3.8. Tra�c loss for the model in Figure 3.6.

3.1.4 Summary

The derivations above point to a few significant areas where energy is being squan-

dered. The first is the cost of running edge switches all the time even when there

is minimal load. This contributes a large constant to the overall energy cost. Sec-

ond, external tra�c to the datacenter can cost a lot of energy as shown in the

asymmetric case. In the examples described, we end up using more aggregation

switches than necessary due to the topology.

In order to reduce energy consumption and make it linear for low loads, we need

to modify the edge topology of these networks without sacrificing the full through-

put to support high loads. To deal with the challenge of supporting external tra�c

while not using unnecessary aggregation switches, we need to consider minimizing

C. For example, by making C = 1 but boosting its link speeds dramatically, we

can ensure that only one aggregation switch per pod needs to be active for a wider

range of loads. This fact is illustrated in Figure 3.9 where C = 1 but the external

capacity is 120 gbps with each of its 12 links running at 10 gbps. This one core
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Figure 3.9. Using only one externally connected switch.

switch now carries a significant amount of internal tra�c as well and thus even a

�+ q = 1 we see less than 100% active switches.

3.2 SIMULATIONS

We built a simulator for a fat-tree network with k = 6 and 1 gbps link capacity. We

also use C = 1 and designate the leftmost core switch as the externally connected

core switch. In the simulator, we read trace files generated externally and forward

packets based on routing tables computed every second of simulated time. The

routing algorithm is a modified version of Dijkstra’s algorithm where we force flows

to use routes that are already in use, thus packing flows together. In the algorithm

we assign weights to edges as well as nodes. Edge weights are constant but node

weights can be 0 or 1. If a node has been used for forwarding a flow, its weight

changes from 1 to 0. Thus, flows are encouraged to reuse the same subset of nodes

(or switches). Of course, if adding a new flow over a link will exceed the link’s

capacity we eliminate that link from further consideration in that round of routing
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computation.

We used the tra�c models developed in [11] to analyze our algorithm. The

two models that are most relevant for datacenters are the stride and the staggered

models. Imagine numbering the 2k3 servers consecutively starting from 1. In

stride(s), packets are send from server i to server i+ s mod 2k3. Thus, stride(1)

tends to mainly send tra�c between servers connected to the same edge switch

(high p

1

in our analytical model) while stride(6) generates mainly tra�c within a

pod but between edge switches (high p

2

) and stride(36) is mainly inter-pod tra�c.

Staggered tra�c is very similar to the tra�c model we used for our analysis and is

specified using the same probabilities p
1

and p

2

. The seven di↵erent tra�c models

we used are as follows:

1. stride(1), stride(6), stride(36), stride(216)

2. staggered(1) p
1

= 1.0, p
2

= 0.0

staggered(2) p
1

= 0.5, p
2

= 0.3

staggered(3) p
1

= 0.2, p
2

= 0.3

We assume that external tra�c q is 10% in all cases.

In Figure 3.10 we plot the fraction of active switches versus total load using

simulation for the staggered data and in Figure 3.11 we plot the same metric using

the asymmetric model from the previous section (but using the staggered packet

trace parameters). It is easy to see that our model is a very close match to the

simulations. The implication of this is that the lower bound of energy e�ciency can

be achieved in practice by utilizing the simple routing algorithm described above.

Figure 3.12 plots the fraction of active switches versus load for the stride case

using simulation. Figure 3.13 plots the same data using our asymmetric analytical

model. Again note the closeness of the two models. The 5% error between the
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Figure 3.10. Fraction of active switches for the staggered model.
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simulations and analysis is due to the fact that we estimated the values of p
1

and

p

2

from the simulations and then used them in the analysis. The estimated values

for these probabilities are listed in the legend of Figure 3.13. One noteworthy

feature of the stride model is that there is no di↵erence between stride(36) and

stride(216). This makes sense because in both cases packets are inter-pod. The

di↵erence between stride(6) and stride(36) is that most packets in stride(6) remain

within one pod and thus only one core switch is used.

When we examine Figures 3.10 to 3.13, we observe that the type of loading

has a significant impact on energy consumption. While stride(1) and staggered(1)

may be impractical for many distributed applications, we see that stride(6) and

staggered(2) are better choices than stride(36) and staggered(3). This means that

when it comes to allocating tasks to servers, the task manager should be mindful

of the type of tra�c that will be generated since we can obtain significant energy

savings by careful scheduling.

3.3 SUMMARY

In this chapter, we provide a systematic analysis of the energy e�ciency of a fat-

tree network topology using modeling and detailed simulations. The key question

we ask is how does energy usage scale with total load as well as with di↵erent types

of loading. To answer this question, we build a detailed analytical model that gives

the lower bound on the fraction of active switches required for a given load and

type of load. We show that fat-trees have a minimal cost of about 40-50% (i.e.,

about half the switches need to remain active at all times) but beyond that, the

lower bound scales almost linearly with total o↵ered load. The lower bound com-

putation is based on aggregating tra�c into few routes. We conducted a detailed

simulation of a fat-tree network where we used di↵erent types of load (staggered
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and stride) [11] and di↵erent amounts of total load. We compute routing tables

empirically every second for the next second and compute the fraction of needed

active switches. The simulation shows that the model we develop is accurate in

predicting switch activity and the simulation demonstrates that by modifying the

routing algorithms we can potentially save significant amounts of energy in real

networks. By developing analytical models for energy consumption, datacenter

researchers are able to study fat-tree DCNs theoretically. A practical application

of our work would be to jointly optimize task scheduling and flow assignment so

as to maximize the tra�c consolidation for given job loads. In this research, we

first provide a systematic analysis of the energy e�ciency of a fat-tree network

topology using modeling and detailed simulations. The key question we ask is how

does energy usage scale with total load as well as with di↵erent types of loading.

To answer this question, we build a detailed analytical model that gives the lower

bound on the fraction of active switches required for a given load and type of load.

We show that fat-trees have a minimal cost of about 40-50% (i.e., about half the

switches need to remain active at all times) but beyond that, the lower bound

scales almost linearly with total o↵ered load. The lower bound computation is

based on aggregating tra�c into few routes. We conducted a detailed simulation

of a fat-tree network where we used di↵erent types of load (staggered and stride)

[11] and di↵erent amounts of total load. We compute routing tables empirically ev-

ery second for the next second and compute the fraction of needed active switches.

The simulation shows that the model we develop is accurate in predicting switch

activity and the simulation demonstrates that by modifying the routing algorithms

we can potentially save significant amounts of energy in real networks.
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Figure 3.12. Fraction of active switches for the stride model.
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Chapter 4

ANALYTICAL OPTIMIZATION MODEL

To compute the minimal power required by a datacenter network, we will com-

pute the minimum subset of network elements of network infrastructure. For a

given tra�c load, we need to find optimal route assignments of tra�c flows that

involves minimum number of switches and links. This optimization problem is in

general a mixed-integer programming problem (MIP), and can be integrated into

a capacitated minimum cost multi-commodity network flow problem (MCMCF).

In this chapter, we examine the power optimization model with the goal of

minimizing energy consumption of datacenter networks. We implement the power

model using commercial optimization software. For a more scalable implementa-

tion, we propose a heuristic algorithm that finds a near-optimal subset of network

switches and links that satisfies a given tra�c load and consumes minimal power.

We demonstrate that this simple routing algorithm can approximate the optimiza-

tion model very closely and it can be applied to large-scale datacenter networks to

achieve optimal subset of networks with minimum overhead.

4.1 MINIMIZING ENERGY CONSUMPTION

For a datacenter network, we formulate a power model for all network elements

including switches and links. A network G(V,E) is given, where V is the set of

nodes in the network and E is the set of links. We consider both the end hosts and

the switches as network nodes and thus we have V = V

1

+V

2

, where V
1

is the set of
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end hosts and V

2

is the set of switches. Link (u, v) 2 E connects node u and node

v (u, v 2 V ). Assuming each switch consumes power P

s

and each link consumes

power P
l

, the total power consumed by the entire network can be expressed as

P

total

=
1

2

X

u2V2

k

u

⇥ P

l

+ n⇥ P

s

+
✏

2
⇥

X

u2V,w2Vu

f

u,w (4.1)

where n is the number of active switches and k

u

is the number of active interfaces

of switch u. V
u

is the set of nodes connecting to node u. ✏ is the dynamic energy

consumption factor representing the power consumption per unit data transmitted

through a link. f

u,v

is amount of tra�c flow assigned to link (u, v). We use

binary variables y
u

and x

u,v

to represent the power state of node u and link (u, v),

respectively. For instance, if x
u,v

= 1, link (u, v) is active; if it is 0, link (u, v) is

idle and can be powered o↵. Therefore, k
u

and n can be written as

n =
X

u2V2

y

u

(4.2)

8u 2 V

2

, k

u

=
X

w2Vu

x

u,w

(4.3)

4.1.1 Optimization Model

Based on the power model defined above, we define an optimization problem in

order to find the optimal flow assignment that involves a minimum subset of active

network elements, (n, k
u

), with the minimal total power consumption P

total

for a

given network topology and a tra�c load. This optimization problem is an exten-

sion to the capacitated minimum-cost multi-Commodity Flow problem (MCMCF).

A classical MCMCF problem is subject to three constraints - capacity constraint

(4.4), flow conservation constraint (4.5) and demand satisfaction constraint (4.6)

written as follows

8(u, v) 2 E, f

u,v

 cx

u,v

(4.4)
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8u, u 62 S and u 62 D,

X

w2Vu

f

u,w

�
X

w2Vu

f

w,u

= 0 (4.5)

8

>

>

>

<

>

>

>

:

8s 2 S,

P

w2Vs

g

i

s,w

�
P

w2Vs

g

i

w,s

= t

i

s,d

8d 2 D,

P

w2Vd

g

i

w,d

�
P

w2Vd

g

i

d,w

= t

i

s,d

(4.6)

where c is the capacity for each link. S is the set of source nodes and D is the set

of destination nodes. V
s

and V

d

is the set of switches that connect to source node

s and sink node d, respectively. f

u,w

is the total flow assigned on link (u, w) and

f

u,w

=
P

i

g

i

u,w

, where g

i

u,v

represents the flow of the ith tra�c demand t

i

s,d

routed

through link (u, v).

Capacity constraint (4.4) takes account of maximum link utilization and ensures

that the total tra�c flow assigned to a link does not surpass the link capacity. The

capacity constraint also forces flows to go through active links only. For example,

inactive link (u, v) has x

u,v

= 0, which causes f

u,v

= 0 meaning no tra�c flow

is assigned to this link. Flow conservation (4.5) ensures that tra�c entering an

intermediate node equals to tra�c exiting from it. Demand satisfaction (4.6)

describes that the overall tra�c departing a source node or entering a destination

node equals to the tra�c demand.

Besides these three constraints, the bidirectional link rule ensures that both

directions of a link are powered on if there is a flow assigned to either direction of

the link. The bidirectional link constraint is expressed as

8(u, v) 2 E, x

u,v

= x

v,u

(4.7)

Additionally, we include constraints that correlate the power states of switches and

links. For each node u and the connected links (u, w) and (w, u), we have

8u 2 V, 8w 2 V

u

, x

u,w

 y

u

and x

w,u

 y

u

(4.8)
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8u 2 V, y

u


X

w2Vu

(x
u,w

+ x

w,u

) (4.9)

Constraint (4.8) makes sure that a switch is powered o↵ only when all its connected

links are powered o↵, and constraint (4.9) ensures that a switch be powered o↵

when all its connected links are powered o↵. Optionally, we can include a non-

splitting constraint as follows to prevent flow splitting:

8i, 8(u, v) 2 E, g

i

u,v

= t

i ⇥ r

i

u,v

(4.10)

where ri
u,v

is a binary decision variable that indicates whether the tra�c demand t

i

is assigned to link (u, v). Constraint (4.10) ensures that gi
u,v

, the flow assignment

to link (u, v), is either equal to the ith tra�c demand t

i

or equal to zero.

Furthermore, we define heuristic constraints to reduce the problem size. For

example, since a k-ary fat-tree network has 5k2

/4 switches and each switch has at

most k active links, we explicitly apply an upper bound and a lower bound to k

u

and n as 0  k

u

 k and 0  n  5

4

k

2, which can greatly improve convergence

time for the problem.

We implement the power optimization model using CPLEX, which is an opti-

mization solver for integer programming problems. For a given tra�c matrix, the

optimization model outputs the numbers of active switches and links, and the flow

assignment to each link corresponding to every tra�c flow demand. Our model is

implemented with both flow-splitting and non-flow-splitting options.

4.2 GREEDY FLOW ASSIGNMENT

Through the formal power optimization model, we can find the optimal flow as-

signment for a given network topology and tra�c loading. However, noticing that

mixed integer programming is known to be strongly NP-hard, a MCMCF problem

for a large-sized datacenter network cannot be solved within a reasonable time
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frame. To address this problem, we propose a heuristic greedy algorithm to find a

near-optimal flow assignment.

4.2.1 Heuristic Algorithm

Our greedy flow assignment algorithm is based on the Dijkstra’s algorithm that

solves the shortest path problem. For each tra�c flow, the algorithm finds a route

with su�cient bandwidth between the source node and the destination node with

the lowest cost. The cost function is defined as the sum of the cost of switches and

links along the route. By carefully defining the cost value of each node and each

link, our greedy algorithm finds the lowest-cost route for each flow incrementally,

and ultimately obtains the optimal routing for all the flows. The greedy algorithm

is described as in Algorithm 1.

Each link and each node has a fixed capacity. We only assign a flow to a

link when there is available bandwidth at that link and also at the source and

destination node. Once a flow is assigned, the corresponding amount of tra�c

demand is subtracted from the bandwidth of the link and the nodes on both ends.

Link cost cost(u, v) is defined as a constant value of 2 for all links while node cost

cost(v) is initialized as 1. Each link is counted in the cost of the route and we are

ensured to find the shortest route. Once node v is used in a route once, cost(v) is

updated to 0. This makes sure that a switch that has been used in a previous route

will have higher priority to be reused. As a result, we can achieve the minimum

overall number of active switches. We use higher link cost than node cost in order

to avoid detour routes between switches.

The greedy algorithm is not optimal, but we verified that the results produced

by the algorithm are very close to those from the CPLEX optimization solver in

Section 3 for all tra�c types and loads. However, the optimization model can only
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Algorithm 1 Flow Assignment algorithm

1: function flowAssign(source, sink, demand)

2: for each vertex v in Graph do

3: dist[v] Infinity

4: dist[source] 0

5: insert (source, dist[source]) to Q

6: while Q is not empty do

7: u first pair in Q

8: if u == sink then

9: break

10: for each neighbor v of u do

11: if (capacity(u, v)! = 0) and

12: (capacity(u)! = 0) then

13: alt dist[u] + cost(v) + cost(u, v)

14: else

15: alt Infinity

16: if alt < dist[v] then

17: dist[v] alt

18: previous[v] u

19: update (v, dist[v]) in Q

20: for v = sink; v! = �1; v = previous[v] do

21: insert v to route

22: return route
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scale to k = 4 fat-tree networks. In the next part of this paper, we use this greedy

algorithm to simulate larger scale fat-tree networks.

4.2.2 Validation of Greedy Algorithm

The greedy algorithm is not optimal but, as we show below, the routes produced by

the algorithm are very close to those produced by solving the optimization formu-

lation using CPLEX optimization solver in section 4.1. We use fat-tree topology

with k = 4 and generate a number of packet traces following certain datacenter

network tra�c patterns [20]. The packet traces in each one-second interval are or-

ganized as a tra�c matrix and is fed into the CPLEX optimization model and the

simulated greedy algorithm. We obtain the number of active switches and active

interfaces for the eight tra�c patterns and seven tra�c loads shown in Table 4.1.

Table 4.1. Number of active switches and active interfaces from optimization model vs. simulation

with greedy algorithm.

load

Random Staggered(1)

active switches active interfaces active switches active interfaces

opt greedy opt greedy opt greedy opt greedy

10% 13 13 40 40 8 8 16 16

20% 13 13 40 40 8 8 16 16

30% 13 14 40 44 8 8 16 16

40% 14 14 48 48 8 8 16 16

50% 14 14 48 48 8 8 16 16

60% 18 19 64 72 8 8 16 16

70% 19 19 72 72 8 8 16 16

load

Staggered(2) Staggered(3)

active switches active interfaces active switches active interfaces

opt greedy opt greedy opt greedy opt greedy
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10% 13 13 40 40 13 13 40 40

20% 13 13 40 40 13 13 40 40

30% 13 13 40 40 13 13 40 40

40% 13 13 40 40 13 13 40 40

50% 13 13 40 40 14 14 48 47.2

60% 13 13 40 40 14 14 48 53.4

70% 13 13 40 40 18 19 64 72

load

Stride(1) Stride(2)

active switches active interfaces active switches active interfaces

opt greedy opt greedy opt greedy opt greedy

10% 13 13 40 40 13 13 40 40

20% 13 13 40 40 13 13 40 40

30% 13 13 40 40 13 13 40 40

40% 13 13 40 40 13 13 40 40

50% 13 13 40 40 17 17 58 56.2

60% 13 13 40 40 18 18 64 64

70% 13 13 40 40 19 18 66 64

load

Stride(4) Stride(8)

active switches active interfaces active switches active interfaces

opt greedy opt greedy opt greedy opt greedy

10% 13 13 40 40 13 13 40 40

20% 13 13 40 40 13 13 40 40

30% 14 14 48 48 14 14 48 48

40% 14 14 48 48 14 14 48 48

50% 17 17 60 60.8 17 17 60 63.6

60% 19 19 72 72 19 20 72 75.2

70% 19 19 72 72 19 20 72 75.6

The results we get from the simulated greedy algorithm are very close to those
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get from the CPLEX optimization model, especially for the lighter loads. Since

the optimization model can only scale to a fat-tree datacenter network with k = 6,

we use the greedy algorithm to simulate the optimization of a large-scale fat-tree

network in the following chapters of this paper.

4.3 SUMMARY

Inspired by the earlier work of Gupta et al. [48], many researchers propose energy-

proportional datacenter network topologies through topology-aware heuristics to

find optimal subset and power o↵ idle interfaces or devices. For example, Elas-

ticTree et al. [51] leverages the regularity of hierarchical datacenter networks and

uses left-most heuristics to find the smallest topology. CARPO [81] examines the

dynamic topology by consolidating timely-negative-correlated flows into a smaller

set of links and shutting o↵ unused ones. Instead, we propose a universal greedy

flow assignment algorithm to find the optimal network subset. Our algorithm can

find near-optimal flow assignments comparable to solutions achieved from MIP

model solver, for not just hierarchical network topologies, but also random or ir-

regular datacenter network topologies. In addition, our approach is proved to be

able to achieve energy conservation based on real-time tra�c load.
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Chapter 5

USAGE-BASED DATACENTER NETWORK TOPOLOGY

In this chapter, we construct a datacenter network (DCN) topology that supports

the expected loading for di↵erent application domains but incurs a lower energy

cost. Specifically,

1. We first begin with fat-tree network and examine the sub-graphs of these

networks that are used for loadings as high as 70% for di↵erent types of

applications (educational, cloud, and private data centers) when using left-

most routing as in [51]. The results indicate that we can indeed reduce the

number of switches by 50% at the aggregation and core layers of the network

without incurring any loss or increased latency.

2. Next we consider the possibility of moving flows to fewer servers, particularly

for low loads. This approach is interesting since it can inform job schedulers

about how and where to place jobs in order to minimize network energy cost.

Consolidating flows further reduces the needed switches in the network by

up to 10%.

3. Our analysis shows that edge switches (i.e., switches connected to servers)

account for a high energy cost as they are always powered on, even at tiny

loads. Given that a significant energy cost of a switch is static (in the chas-

sis, power supply, processor, interconnect fabric), by using high cardinality



71

switches (and thus fewer switches) we can save significant amount of energy

even if they are always on.

Putting all these studies together we obtain a new DCN in which edge switches

have high port density and where the other switches are connected in a left-skewed

topology which is a subgraph of the fat-tree. This type of topology has a lower

capital cost and lower operational cost as well.

5.1 SUB-TREES FOR DIFFERENT TRAFFIC CHARACTERISTICS

A typical fat-tree DCN consists of three layers of switches: edge layer, aggregation

layer and core layer. For a k-ary fat-tree network, there are k

2

4

switches in the core

layer. The aggregation layer and edge layer are divided into k pods, each of which

has k

2

edge switches and k

2

aggregation switches. In total, the network is composed

of 5k

2

4

switches and each switch has k ports. Every edge switch is connected to k

2

end hosts, thus k

3

4

end hosts in total can be interconnected through the fat-tree

network.

5.1.1 Tra�c Model

Benson et al. [20] analyzed network tra�c characteristics of ten Datacenters, in-

cluding three university data centers (EDU), two private enterprise Datacenters

(PRV) and five commercial cloud Datacenters (CLD). EDU Datacenters serve stu-

dents and sta↵ on campus. The main applications in EDU data centers include

distributed file systems and Web services. PRV Datacenters mainly serve corporate

users and developers. Besides hosting traditional Web services, these data centers

also run customized applications. CLD Datacenters are purposely-built to sup-

port specific applications and serve external users. For example, two of the CLD

Datacenters primarily run MapReduce style jobs and the other three are mainly
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for Internet-facing applications, including Messaging, Webmail, Web portal and

searching.

By observation, a significant part of the tra�c in the EDU data centers is

distributed file system tra�c across the entire network. On average, about 30% of

the tra�c in these three EDU datacenters is within the same rack. The applications

in the PRV datacenters have shown a degree of emerging patterns of consolidation

and virtualization and around 45% of the tra�c is within the same rack. The

MapReduce job in the CLD Datacenters is scheduled to be packed into the same

rack to reduce core interconnection and nearly 75% of the tra�c is confined in the

same rack.

For our topology study, we need tra�c traces that not only follow di↵erent

patterns in the EDU, PRV and CLD Datacenters but also have di↵erent loads.

Therefore, we created a tra�c generator to generate tra�c traces following the

tra�c patterns of these Datacenters with varies loadings and fed them to the fat-

tree simulator we implemented. Tra�c in a fat-tree can be characterized by two

probabilities: p
1

and p

2

. p
1

denotes the probability that the source and destination

of a packet are connected to the same edge switch. Of the other packets, there

is a probability p

2

that their destination is within the same pod and thus will

need to traverse an aggregation switch. The rest of the packets are destinated to

servers in other pods and thus need to pass through a core switch. By varying the

probabilities p
1

and p

2

, we can simulate di↵erent types of tra�c patterns. Based

on the results of Benson et al [20]), we generate synthetic tra�c traces using an

On/O↵ process with the On and O↵ periods following the lognormal distributions

(�
off

= [2.6, 3], µ
off

= [12.4, 13.8], �
on

= [2.6, 2.9], µ
on

= [12.2, 14.1]). The packet

interarrival time is also a lognormal process (� = [3.8, 4.1], µ = [20.1, 22.1]). The

source and destination nodes are chosen uniformly from servers in each pod. The
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specific parameters we used are: EDU(p
1

= 0.3, p

2

= 0.2), EDU1 (p
1

= 0.3,

p

2

= 0.5), PRV (p
1

= 0.45, p
2

= 0.2) and CLD (p
1

= 0.75, p
2

= 0.2).

In a second study, we examine the benefits of consolidating jobs into fewer

servers by distributing di↵erent tra�c loads to each pod, which is called the non-

uniform case. For example, say we have 12 pods. We generate 70% pod load for

the first five pods and 10% pod load for the sixth pod and leave all other pods

with zero tra�c with the overall load be 10% for the entire network. For each of

the tra�c patterns we generate loads from 10% to 70% of network capacity.

We simulate a k = 12 fat-tree DCN that supports 432 end hosts connected

through 180 12-port switches. These switches are grouped in 12 pods and each

pod contains 6 edge switches and 6 aggregation switches. The core layer consists

of 36 core switches, which connect the 12 pods together.

5.1.2 Active Sub-Trees

We feed a 10-second synthetic packet trace to the simulated fat-tree and use left-

most routing. We demonstrate the sub-trees for all tra�c patterns with load of

10% in Figure 5.1. It shows that a minimum spanning tree is su�cient for CLD

Datacenters because only around 25% of their tra�c leaves the rack. We observe

that even the load increases to 70%, there are still a significant number of switches

and links in idle state. If we can pack the communicating jobs into fewer number

of pods like in the non-uniform scenario, then the number of edge switches and

aggregation switches required will be further reduced.

The fraction of active switches is shown in Figure 5.2. It shows that when the

tra�c load is less than 70%, 20% of switches are never used. For light tra�c at

10%, less than 50% of switches are needed. Since the CLD Datacenters are usually

designed with meticulous job placement in order to decrease cross-pod tra�c, the
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fraction of unused switches for CLD is the greatest. For non-uniform tra�c, fewer

edge switches and aggregation switches are required since jobs are consolidated

into fewer pods. However, the non-uniform case requires more core switches than

uniform cases because the number of active core switches is dependent on the pod

with the heaviest tra�c going to the core layer. So when we pack jobs into fewer

servers, it is better to balance the load among the active pods. For example, the

10% CLD nonuniform tra�c load is split into 70% of pod tra�c in pod 1 and 50%

pod load in pod 2. The maximum core number required (= 12) is determined by

pod 1 since more tra�c from pod 1 is going to core layer. If we split the 10%

overall load into 60% in pod 1 and 60% in pod 2, the maximum number of core

switches required is reduced to 6.

5.1.3 Analytical Model of Sub-Tree Size

The simulations above clearly show that significant part of a fat-tree can be dis-

pensed without a↵ecting performance. However, the simulation results were con-

ducted for relatively small DCNs. In this section, we provide a theoretical model

that can be generalized to arbitrary sized DCNs. Let us assume that tra�c load

generated by k pods is �

1

,�

2

, ...,�

k

(represented as a fraction of full load). We

use parameters p
1

and p

2

to represent the probability of tra�c travelling between

servers connected to the same edge switch, and tra�c travelling within the same

pod but di↵erent subnets, respectively. Therefore, (1 � p

1

� p

2

) of tra�c goes

to other pods. We assume that p

1

and p

2

for each of the k pods are written as

p

1

1

, p

2

1

, ..., p

k

1

and p

1

2

, p

2

2

, ..., p

k

2

. For pod i, �
i

of tra�c load is generated of which

�

i

(1�p

i

1

) goes up to the aggregation layer and �

i

(1�p

i

1

�p

i

2

) arrives the core layer

switches.

The edge switches are constantly active since they are connected to servers.
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Figure 5.1. Minimal fat-trees with uniform and non-uniform tra�c of load 10%.
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Figure 5.2. Fraction of switches required for uniform and non-uniform tra�c.

Thus for each pod i, the number of edge switches that are powered on is e
i

= k/2.

Since the tra�c from the edge switches takes the left-most available aggregation

switches first, and the total capacity of each aggregation switch is 1

k
2

of the pod

load, the total number of aggregation switches in pod i that handle tra�c load

�

i

(1� p

i

1

) is:

a

i

= d�i

(1� p

i

1

)k

2
e (5.1)

For the core layer, we consider two scenarios. The first scenario is when p

2

= 0,

all the tra�c arriving in the aggregation switches is going up to the core layer.

The number of core switches is determined by the maximum load of the k pods.

Suppose pod j has the maximum load, �
j

(1� p

j

1

), going to core layer. Since each

core switch can handle a fraction of 1

k2

4

pod load, the total number of core switches

for the entire network is computed as:

c = d�j

(1� p

j

1

)k2

4
e (5.2)

When p

2

6= 0, the number of core switches varies with the tra�c load going to
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core layer. We can compute the range of the number of core switches needed. If

the tra�c going to core layer is distributed on the left-most aggregation switches

for all the pods, then minimum number of core switches is needed and is calculated

from the maximum core load of the k pods. Similarly, we suppose the maximum

load going to the core layer is from pod j with the load �

j

(1 � p

j

1

� p

j

2

) and the

number of core switches is computed as:

c

min

= d�j

(1� p

j

1

� p

j

2

)k2

4
e (5.3)

If the load going to core layer is distributed randomly on active aggregation

switches of each pod, the maximum number of active core switches is dependent on

the maximum number of active aggregation switches. For example, suppose pod

j has the most active aggregation switches and the number of active aggregation

switches is a

j

= d�j(1�p

j
1)k

2

e. Each of these aggregation switches can send tra�c

to k/2 core switches connected to it. Therefore, we can estimate that the upper

bound of the number of core switches as:

c

max

= d�j

(1� p

j

1

)k

2
e ⇥ k

2
(5.4)

Using above formulations, we can compute the number of active switches in

each layer of a fat-tree network. The significant conclusions we can draw are as

follows:

• Even at 70% loading, in both the uniform and non-uniform tra�c cases, no

more than 50% of aggregation switches are used.

• For CLD Datacenters, only a third of the aggregation switches are used be-

cause of the job placement policies.

• At 70% loading, no more than 50% of core switches are used while for CLD

this percentage is even smaller at 33%.
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Based on above results, we can reduce the number of aggregation switches and core

switches by 50% from current fat-tree networks. One approach may be to keep

each pod symmetric (for the uniform tra�c model) and discard the rightmost

50% of aggregation switches from each pod. For the non-uniform tra�c case, the

leftmost pods would not be modified but the rightmost pods would have only a few

aggregation switches as computed in eqn. 5.1. Similarly, we can discard rightmost

core switches based on eqn. 5.3 and 5.4.

5.2 RIGHT SIZING THE EDGE SWITCHES

A regular fat-tree uses switches of the same size over the entire network. While this

is a useful feature when purchasing switches in bulk from OEMs, we show that it is

not the best approach from an energy e�ciency standpoint. Consider the benefits

of increasing the degree of edge switches, the immediate impact is that it increases

p

1

and decreases p
2

, thus we need fewer aggregation switches. The second benefit

comes about in energy cost of the edge switches. The energy cost of a switch can

be viewed as the cost of the chassis, switching fabric, linecards and ports [14]. As

we show in Section 5.3.1, we can increase the port density of switches by adding

new linecards which has the net e↵ect of scaling the energy cost sub-linearly with

the number of ports. Thus using a single switch with twice as many ports is more

energy e�cient as compared to using two switches with half as many ports each.

As we analyze in Section 5.1, the number of switches and links required in

any pod for a given tra�c is dependent on the tra�c load �, and tra�c pattern

parameters of p
1

and p

2

. If we increase the size of edge switches, more servers will

directly connect to it and, by definition, p
1

will be greater, and thus more tra�c is

transferred directly through the edge switches. As a result, the number of required



79

aggregation layer switches will decrease to

a

0
i

= d�i

(1� p

i0
1

)k

2
e (5.5)

If we keep the size of the pod unchanged, then fewer edge switches is required

when we replace small-sized edge switches with larger-sized switches. At the same

time, the amount of inter-pod tra�c, 1 � p

1

� p

2

, remains the same. Therefore,

the lower bound of required core switches is still c
min

. However, since a smaller

number of aggregation switches are used, the inter-pod tra�c is moved to the left

side of the aggregation switches, so the maximum number of required core switches

will decrease to

c

0
max

= d�j

(1� p

j0
1

)k

2
e ⇥ k

2
(5.6)

In particular, when p

1

keeps increasing and p

2

decreases to zero, all the tra�c

reaching aggregation layer is directed to the core switches. Under this circum-

stances, all tra�c in core layer are consolidated to the leftmost core switches.

We simulate fat-trees using di↵erent sizes edge switches. The original k = 12

fat-tree has 6 12-port edge switches in each pod. In our experiment, we use 3 24-

port switches, or 2 36-port switches, or 1 72-port switch in the edge layer of each

pod. For all cases, edge switches still use half of the ports connected to servers

and the other half connected to aggregation switches. For example, the 24-port

edge switch connects to 12 servers and connects to 6 aggregation switches with two

links connecting each edge switch and aggregation switch. We note that changing

the radix of edge switches will not change the total tra�c between servers and

edge switches or between aggregation and core layers. The only change is in tra�c

between the edge and aggregation layers, as shown in Figure 5.3. Indeed, as the

radix of edge switches increases, less tra�c goes from the edge switches to the

aggregation switches.
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Figure 5.3. Tra�c between edge layer and aggregation layer is less when the size of edge switches

increases. (Figures shown above are for uniform and nonuniform tra�c patterns in EDU Data-

centers. CLD, PRV and EDU1 Datacenters also have the same properties.)

The fraction of active switches is illustrated in Figure 5.4. We can conclude

that as the size of edge switches increases, the fraction of the total number of

required switches decreases. The reduction in aggregation switches needed comes

about since p

2

decreases (less intra-pod tra�c). Although the inter-pod tra�c

remain unchanged, the fraction of core switches may reduce slightly because the

tra�c going to the core layer can be further consolidated to the left core switches.

Figure 5.5 shows examples of the resulting sub-trees when we use either 12-port

or 72-port edge switches for an EDU Datacenter in the k = 12 fat-tree. We can

conclude that using the highest port-density switches for the edge layer minimizes

the overall number of aggregation and core layer switches required.

5.3 ENERGY SAVINGS OF LARGER-SIZED EDGE SWITCHES

Let us next consider the energy benefits of using high port density switches at the

edge. Datacenter switches are chassis-based modular switches designed for relia-

bility and performance. The number of ports can be expanded by inserting more
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Figure 5.4. Fraction of active switches with larger-sized edge switches.
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Figure 5.5. EDU DCNs with 12-port and 72-port edge switches, 70% load.

linecards in the switch chassis. In this section, we formulate the power consump-

tion model of the DCN and use actual power consumption data from di↵erent

Cisco switches to make the case for utilizing high port density edge switches.

5.3.1 Static Cost

Consider a fat-tree network constructed with 12-port switches supporting 432 end

hosts. We compare its energy consumption with the cases using edge switches of

24, 36 and 72 ports. Cisco Catalyst 4503-E is a modular datacenter switch with two

linecard slots. From Cisco Power Calculator [2], we find the power consumption

data of Catalyst 4503-E switches (shown in Table 5.1). The fixed power cost of a

switch includes the power cost by the chassis, supervisor engines and linecards. The

Catalyst-4503-E switch works with three supervisor engine models: 6LE,7E/7LE

and 8E. Model 6LE supports 46XX series 1GE 12-port and 24-port linecards and

model 7E/7LE/8E supports 47XX series linecards up to 48 ports. Combining

di↵erent choices of linecards, we can create switches with port number from 12 to

72. We calculate the total power consumption of a k = 12 fat-tree DCN when

using di↵erent sizes of edge switches. The results is shown in Figure 5.6 (left) and

we see around 30% power savings for the entire network when replacing 12-port



83

Table 5.1. Power Consumption of Datacenter Modular Switch - Cisco Catalyst 4503-E.

Component Model Power Cost

chassis 48W

Supervisor Engine

6LE 168W

7E/7LE 223.68W

8E 319.97W

Linecard

4612-SFP-E 24W

4624-SFP-E 40.32W

4712-SFP-E 19.97W

4724-SFP-E 31.97W

4748-SFP-E 73.63W
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Figure 5.6. Static power consumption of a k = 12 and a k = 48 fat-tree DCN with di↵erent sizes

of edge switches.

switches with 72-port switches in the edge.

Large cloud Datacenters have tens of thousands of servers and require high-

port-density switches. For example, we need a 192-port switches to merge 4 48-port

edge switches together. A Catalyst 6513-E switch chassis has 11 linecard slots and

supports 528 1GE ports in total. A Cisco Nexus 7018 switch has 16 linecard slots,

providing 768 1GE ports. We choose switch configurations that consume the least

power per port from the two switches and calculate the DCN power consumption

shown in Figure 5.6 (right).
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5.3.2 Dynamic Cost

The power consumption of chassis, supervisor engine and linecards is fixed when

the switch is deployed. However, a port consumes more power when it is active.

Besides, port capacity setting, port utilization and switch firmware version also

a↵ect the power consumption of a switch [64]. For simplicity, We only consider

the static power consumption and the power cost by ports in this work and we

represent the power model of a switch as:

P

switch

= P

chassis

+ P

supervisor�engine

+ numCard⇥ P

linecard

+ numActPort⇥ P

actPort

+ numIdlePort⇥ P

idlePort

where numCard is the number of linecards supported by the switch. numActPort

is the number of active ports and numIdlePort is the number of inactive port.

We compute the overall DCN power consumption as the sum of power cost of all

switches:

P

total

=
X

P

switch

Using the data in Table 5.1, the switch 4503-E chassis with 12, 24, 36 and 72

ports has a fixed cost of at least 240W, 264W, 280.32W and 377.28W, respectively.

We also learn from [14] that each port consumes 3W when active and 0.1W when

idle. Thus we can formulate the power model for estimating the switch power
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Figure 5.7. Fraction of total power consumption of network switches with larger-sized edge

switches for di↵erent tra�c load and patterns in EDU Datacenters.

consumption as:

P

switch

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

240 + (12� x) ⇤ 0.1 + 3x 12-port switch

264 + (24� x) ⇤ 0.1 + 3x 24-port switch

280.32 + (36� x) ⇤ 0.1 + 3x 36-port switch

377.28 + (72� x) ⇤ 0.1 + 3x 72-port switch

where x is the number of active ports. The resulting power consumption of the sub-

trees of EDU Datacenters is compared in Figure 5.7. With the uniform tra�c load,

the homogeneous fat-tree can achieve more than 50% power savings through left-

most routing. By replacing the 12-port edge switches with larger-sized switches,

tra�c flows can be further consolidated at the edge and core layer, and thus achiev-

ing a skinner sub-tree with more energy savings. Thus we can conclude that us-

ing higher port density edge switches saves energy by requiring fewer aggregation

switches and by reducing the energy needed by the edge switches themselves.
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5.4 SUMMARY

Many approaches are studied to find the minimum subset of DCN topology for

an o↵ered tra�c load without changing network interconnection or the network

devices. Recently, Widiaja et al. [82] compare the energy savings of deploying

di↵erent sizes of switches in a fat-tree network. They find it is more energy e�cient

to use smaller-sized switches when the tra�c is highly localized. Chabarek et al.

[24] propose to build energy proportional DCN using low-power low-radix switches

for matched tra�c patterns.

This chapter explores the approaches to find the minimum network topology

for a given loads and tra�c patterns. We derive a tra�c-driven model to calcu-

late the number of switches required for each layer in a fat-tree DCN. We use the

left-most heuristic flow assignment algorithm to simulate the tra�c consolidation

process and validate the model correctness. Based on the model, we propose to

use high-radix edge switches when the tra�c load within the same pod is high,

which significantly reduces the number of switches in aggregation layer. Further-

more, using high-radix edge switches can a↵ect the routing of inter-pod tra�c and

consolidate it to the left-side core switches. As a result, fewer core switches are

used and the active core switches are aligned to the left of the core layer, resulting

in a smaller sub-tree. Using this principle, datacenter operators can easily deter-

mine which core switches can be powered o↵. We survey the power consumption

of commodity modular switches and conduct an evaluation of the power savings

when using larger-sized edge switches in di↵erent types of datacenters. We find

that the overall power consumption is reduced by using high-radix edge switches

in fat-tree DCNs.
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Chapter 6

TRAFFIC CONSOLIDATION USING MERGE NETWORKS

In previous chapters, we investigated the usage-based network optimization. We

also formulated analytical models and proposed heuristic routing algorithm to find

optimal power consumption of datacenter networks. However, in practice, a large

number of switches still need to remain active even for very light loadings, resulting

in sub-optimal energy savings.

Pod 1 Pod 2

k/2 edge
switches

k/2 aggregation
switches

k   /4 core switches
2

k pods

1 2 k/2 k/2+1 k
2
/4

k/2 servers

Figure 6.1. Fat-tree model.

We use a k-ary fat-tree shown in Figure 6.1 as an example to illustrate the

situation and explain the motivation for our work. The k-ary fat-tree intercon-

nects k

3

/4 servers using three layers of switches. The edge-layer switches and

aggregation-layer switches are organized in k “pods”. Each pod includes k/2 ag-

gregation switches and k/2 edge switches and each edge switch connects to k/2
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servers. There are k

2

/4 core switches and each core switch has k links connecting

to k pods.

In datacenters, all the edge switches are always powered on as they are con-

nected to servers and have to remain active to be able to forward tra�c upward

and downward at all times. Even if a server has very little tra�c going to the

connecting edge switch, the switch will be fully powered on although very lightly

loaded. The contribution of our approach is to enable powering o↵ more switches

and links by consolidating tra�c at the edge and aggregation layer.

6.1 OUR APPROACH: MERGING

Consider the case of an edge switch connected to k/2 servers. Assuming each server

k/2 x k/2 Merge

k/2 x k/2 Merge

k port edge switch

k/2 links

k/2 links

k/2 links to k/2 servers

k/2 links to k/2 aggregation switches

Figure 6.2. Merge networks applied to a switch.

o↵ers a load of � (expressed as a frac-

tion of link rate). The total tra�c to

this switch from the servers is k�/2.

Normally the k/2 switch interfaces re-

main active even when � is small. If

the tra�c can be consolidated, we need

at most dk�/2e interfaces to be active.

When the load � is small, more switch

interfaces of the switch can be powered

o↵. In other words, if there was a way

to merge the tra�c from the k/2 servers, we could potentially power o↵ more

switch interfaces and save power. Previous papers [75][85] provided a hardware

design of a device called merge network. Rather than repeating that discussion

here, we provide a functional model of what such a network does, and then use it

in the remainder of this chapter.
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We illustrate a k

2

⇥ k

2

merge network in Figure 6.2. The merge network has k/2

connections to the k/2 servers and k/2 connections to the k/2 switch interfaces. A

merge network has the property that it pushes all tra�c from servers to the leftmost

interface of the switch. If that interface is busy, then the tra�c is forced to the

next interface, and so on. This tra�c merging behavior ensures that several switch

interfaces can be put to low power mode without compromising connectivity. Of

course, because of the fact that we are breaking the 1-1 association of a switch

interface to a server interface, several layer 2 protocols will break. Some additional

observations about the merge network are as follows:

1. The merge network is a fully analog device with no transceivers and, as a

result, its power consumption is below one watt. The merge network can be

visualized as a train switching station where trains are re-routed by switching

the tracks (rather than store-and-forward).

2. Consider the uplink from the servers to the merge network. All tra�c coming

into the merge network is output on the leftmost m  k/2 links connected

to the m leftmost interfaces of the switch, where m = dk�/2e (assuming

a normalized unit capacity for links). This is accomplished internally by

sensing packets on links and automatically redirecting them to the leftmost

output from the merge network that is free.

3. On the downlink to the servers, tra�c from the switch to the k/2 servers is

sent out along the leftmost m  k/2 switch interfaces to the merge network.

The packets are then sent out along the k/2 links attached to the servers from

the output of the merge network. The manner in which this is accomplished

is described in [75] (note that the challenge is to correctly route the packets

flowing through the merge network to the appropriate destinations).
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We apply two k

2

⇥ k

2

merge networks to each edge switch as shown in Figure 6.2.

The connections are similar for each aggregation switch. For the core switches, we

connect a k ⇥ k merge network.

Alternatively, we can connect a merge network to multiple switches. In this

scenario, tra�c is merged to interfaces of the leftmost switches, and the right-end

switches with all idle interfaces can be powered o↵, achieving more energy savings.

In this work, we apply merge networks at two locations within a pod of a fat-

tree network – one location is between the servers and the edge switches and the

other location is between the edge switches and the aggregation switches. Figure

6.3 shows a single pod of a fat-tree after applying merge networks. As shown,

we utilize one k

2

/4 ⇥ k

2

/4 merge network to connect all the servers in a pod to

the interfaces of edge switches and apply another merge network to connect edge

switches to aggregation switches.

1 k/2

k 2

4

k 2

4
X merge network

1 k/2

k/2 k-port aggregation switches

k/2 k-port edge switches

k 2

4

k 2

4
X merge network

k/2 X k/2 = k  /4 servers
2

k/2 ports

k/2 ports

k/2 ports

to core switches

k/2 ports

Figure 6.3. Merge network applied to pod in a fat-tree.

To apply merge networks to a fat-tree network, we add two k

2

⇥ k

2

merge networks

to each edge switch as shown in Figure 6.2. The connections are similar for each

aggregation switch. For the core switches, we connect a k ⇥ k merge network.
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6.2 ENERGY SAVINGS DUE TO TRAFFIC MERGING

To illustrate the additional energy savings achieved by merge networks when com-

pared with approaches such as ElasticTree, we quantify this benefit by running

the optimization problem on several di↵erent types of network loadings for a small

fat-tree topology of size k = 4. In this topology, there are 8 edge switches, 8 ag-

gregation switches and 4 core switches. For each edge switch, there are 2 servers

connected for a total of 16 servers in 4 pods. We assume that there is a 2⇥2 merge

network connected to either side of each edge and aggregation switch and there is

a 4⇥ 4 merge network connected to each core switch.

6.3 TRAFFIC PATTERNS

Tra�c patterns in data centers can vary greatly, and to ensure our results are

widely applicable, we run the optimization algorithm on the following types of traf-

fic: Random, Stride(n), Staggered(n) [11]. In Random, the source and destination

are randomly selected from among the servers. For Stride(n), the destination of

a flow from server i is server [(i + n) mod 16], where servers are numbered left

to right as 0, 1, · · · , 15. For example, in a k = 4 fat-tree network, Stride(1) has

almost half of the tra�c goes between servers connected to the same edge switch

and the other half tra�c goes to aggregation and core switches. On the other hand,

Stride(4) sends all tra�c between pods, resulting in a larger number of switches to

participate in forwarding tra�c. The Staggered tra�c model assigns a probability

p

1

for tra�c going to a server in the same subnet (i.e., connected to the same edge

switch), a probability p

2

for tra�c going to a server in the same pod but di↵erent

subnet, and a probability 1 � p

1

� p

2

where the flow is destined to a server in a

di↵erent pod. By varying these probabilities, we can generate a large number of
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(b) Total number of active interfaces

Figure 6.4. Di↵erence in number of active switches and active interfaces network-wide.

di↵erent loading patterns.

6.4 TRAFFIC MERGING WITHIN A SWITCH

6.4.1 Number of Active Interfaces

Figure 6.4a plots the percentage of active switches for our approach as well as for

ElasticTree for di↵erent loading patterns and di↵erent loads. As we have expected,

the number of active switches for Stride(1) does not vary with �. This is because

almost all the tra�c goes to the server in the same subnet or in the same pod

and therefore, the active switches required are always the eight edge switches,

one aggregation switch per pod and one core switch. Stride(8) shows the highest

number of active switches because all the tra�c is inter-pod tra�c and hence more

core switches are used.

In order to illustrate the potential benefits of tra�c merging, we take a dif-

ference between the total number of active interfaces when using ElasticTree and

using tra�c merging with the above optimization. The results, shown in Figure
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6.4b, clearly illustrate the benefits of merging. In the case of Stride(1), ElasticTree

uses 12 more interfaces than merging. The reason is that one aggregation switch

is active per pod. In ElasticTree, all the four interfaces to this switch are active

(albeit with very low tra�c). In our approach, in contrast, we merge the tra�c

using a merge network and use only a single interface of the switch.

6.4.2 Energy Savings

The overall energy cost of a switch can be roughly partitioned into the cost of

the chassis and the cost of the interfaces. As described in [82, 34], a reasonable

approximation to the cost of a switch is

Switch Cost = C +m logm+m

where m is the number of active switch ports. The constant C accounts for static

costs of a switch such as fan, etc. The second term corresponds to the cost of

the interconnection fabric within the switch, which is a significant contributor to

energy consumption (typically 30% ⇠ 40%). This cost scales as m logm for a

switch with m active ports. The last term is the cost contribution from the active

interfaces. This term folds into itself the cost of the line cards that the interfaces

are on. For the purpose of comparing the overall cost reduction of tra�c merging

relative to ElasticTree, we set C to 50% of the maximum switch cost and express

it as

C = m

max

logm
max

+m

max

where m

max

is the number of switch ports. If the tra�c load fraction going to a

switch is �, the merge network will switch the tra�c to the leftmost k = d�me

ports. Thus, the cost of a switch with merge networks is written as

Tra�c Merging Switch Cost = C + k log k + k
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Figure 6.5. Reduction in total cost when using tra�c merging.

Therefore, the fraction of cost savings of tra�c merging over ElasticTree is calcu-

lated as

Cost Savings =
m logm� k log k +m� k

C +m logm+m

Figure 6.5 plots the fraction of reduction of network cost using tra�c merging

over ElasticTree. It is noteworthy that, for all tra�c patterns and across all loads,

the tra�c merging reduces the overall energy cost even for a small-sized network

consisting of 20 switches. These savings are more substantial when we consider

realistic DCNs as we do later in this paper.

6.5 TRAFFIC MERGING WITHIN A POD

In this section, we compute the minimum number of active switches required when

we apply merge networks to all switches at each layer within a datacenter pod.

The merge networks force tra�c to the left so that more aggregation and core

switches can be powered o↵. Specially, tra�c merging at the edge layer enables
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idle edge switches, which can be powered o↵.

6.5.1 Lower Bound on Energy Consumption

We derived the analytical expressions for minimal energy consumption of fat-trees

for di↵erent type of loadings in Chapter 3. We assume fraction of active switches

as the metric for energy consumption and assume an underlying routing protocols

that pushes tra�c to the left. Using parameters p

1

, p
2

and p

3

to model tra�c

loading types (A packet from a server goes to another server connected to the

same edge switch with probability p

1

, which goes to a server in the same pod but

another edge switch with probability p

2

, and with probability p

3

= 1 � p

1

� p

2

it goes to a server in a di↵erent pod.) and � to denote the average load o↵ered

by each server (� as a fraction of link speed which we normalize to 1), the total

tra�c at the level of edge switches, pod aggregation switches and core switches is

represented as follows:

Tra�c per edge switch = �k

2

Tra�c for all aggregation switches in a pod

= (1�p1)�k
2

4

Tra�c for all core switches = k ⇥ (1�p1�p2)�k
2

4

Note that tra�c flow is symmetric and the numbers above correspond to both,

tra�c into and out of a switch or switches.

We observe that all the edge switches need to remain active at all levels of

loads to ensure servers have network connectivity. This gives us k2

/2 active edge

switches. Within each pod we have total tra�c equal to (1 � p

1

)�k2

/4 going in-

to/from the k/2 aggregation switches from/to the edge switches. Given each link

has a normalized capacity of 1, and that there are k/2 interfaces per aggregation



96

switch connected to the edge switches, we require at least d (1�p1)�k
2
/4

k/2

e active ag-

gregation switches per pod. Since there are k pods, the total number of active

aggregation switches becomes kd (1�p1)�k

2

e. Finally, since every core switch is con-

nected to an aggregation switch from each of the k pods, the number of active

core switches we require is simply, d (1�p1�p2)�k
3
/4

k

e where we divide the total tra�c

passing through the core switches by the number of links per switch and round up.

Therefore, the total number of active switches can be written as:

Active Switches = k

2

2

+ kd (1�p1)�k

2

e+
l

(1�p1�p2)�k
2

4

m

Figure 6.6 plots the fraction of active switches as a function of load � for five

di↵erent scenarios when k = 12. The plot with the labels -o corresponds to the

case when all tra�c is between the servers connected to an edge switch. In other

words, no tra�c needs to flow to the aggregation switches or to the core switches.

As expected, the graph stays flat. However, what is relevant here is that even at

light loads of 0.1, all the edge switches are fully active. At this load value, each

server generates 1/10th of the uplink capacity of tra�c (similarly for downlink)

but the energy consumed is the same as when the link is fully loaded. The total

combined tra�c from all the 6 servers is 0.6, which is less than the capacity of a

single link.

The plot with the labels �/ corresponds to the extreme case when all the tra�c

is destined for servers in a di↵erent pod. Hence the core and aggregation switches

will be utilized. Contrasting this with the case discussed above, we observe that

energy scales approximately linearly with load, if we discount the edge switches.

This is the desired behavior for energy-proportional networking.
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Figure 6.6. Active switches for the model in Section 3.1.1.

6.5.2 Energy Savings Due to Tra�c Merging

To save energy used by the edge switches, we apply a k

2

4

⇥ k

2

4

merge network

between the k

2

/4 servers and the k/2 edge switches. There are two consequences

after applying the merge networks. First, the �p
2

tra�c that goes to other subnets

within the same pod has no necessity to go through the aggregation level. Instead,

it is transferred directly to the destination servers. The tra�c loading parameters

are changed to p

0
1

and p

0
2

and p

0
1

= p

1

+ p

2

and p

0
2

= 0. Accordingly, the number

of active aggregation switches required in each pod is d (1�p

0
1)�k

2

e = d (1�p1�p2)�k

2

e.

Second, tra�c from servers is now sent to a merge network and consolidated to

the leftmost edge switch and the idle edge switches can be put to low power mode

to save energy. Therefore, The active edge switches in one pod can be calculated

as d(�k2
4

)/(k
2

)e = d�k
2

e, which changes with the tra�c load �. The total number of
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active switches after applying the merge networks can be written as:

Active Switches = kd�k
2

e+ kd (1�p

0
1)�k

2

e+
l

(1�p

0
1�p

0
2)�k

2

4

m

= kd�k
2

e+ kd (1�p1�p2)�k

2

e+
l

(1�p1�p2)�k
2

4

m

Figure 6.7 shows the fraction of active switches in a k = 12 fat-tree with merge

networks for the same tra�c models as Figure 6.6. It is very illustrative of the

benefits of tra�c merging. The number of active switches is reduced more when

the tra�c load is lower. It is noticeable that the flat line in Figure 6.6 becomes

more linear with the load after the tra�c merging.
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Figure 6.7. Active switches for the model with tra�c merging.

6.6 SIMULATION RESULTS

We build a simulator for a fat-tree network with k = 6 and 1 Gbps link capacity.

Each server generates tra�c based on a two-state On/O↵ process in which the
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length of the On and O↵ periods follows a lognormal distribution. In the On state,

packet inter-arrival times are also from a lognormal process [20]. The parameters

selected for the lognormal processes are based on di↵erent types of tra�c patterns

as well as di↵erent loading patterns. For each packet, the destination is selected

uniformly randomly from the set of all nodes based on probabilities p
1

and p

2

. In

the simulator, we read these trace files which are generated externally and forward

packets based on routing tables computed every second of simulated time. In our

simulation, we test several sets of tra�c loads with di↵erent p
1

and p

2

and obtain

similar results. Due to space limitations, we only publish the results from the first

set of tra�c with p

1

and p

2

as follows:

1. p

1

= 0.75, p
2

= 0.125;

2. p

1

= 0, p
2

= 0.75;

3. p

1

= 0, p
2

= 0;

We assume that external tra�c q is 10% in all three cases. The total tra�c load

is from 10%� 70% of the full bandwidth.

The routing algorithm is a modified version of Dijkstra’s algorithm where we

force flows to use routes that are already in use, thus packing flows together. In the

algorithm we assign weights to edges as well as nodes. Edge weights are constant

of 2, but node weights can be 0 or 1. If a node has been used for forwarding a

flow, its weight changes from 1 to 0. Thus, flows are encouraged to reuse the same

subset of nodes (or switches). We eliminate link with zero available capacity from

further consideration in that round of routing computation.

We use C = 1 and designate the leftmost core switch as the externally connected

core switch. For 10% external tra�c, the link capacity l of the externally connected

core switch has to be greater than 4. Therefore, we use l = 4 and let Q = 2kl = 48

to avoid tra�c loss.
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In Figure 6.8, we plot the fraction of active switches versus total load using

simulation without merge networks and with merge networks. Figure 6.9 shows

the same metric from the analytical models described in Chapter 3 and Chapter

6. It is easy to see that, our model is a very close match to the simulations. The

minor di↵erence between the simulations and model is due to the fact that we

estimated the values of p
1

and p

2

from the synthetic tra�c and then used them in

the analysis. The estimated values for these probabilities are listed in the legend of

Figure 6.9. The implication of this is that the lower bound of energy e�ciency can

be achieved in practice by utilizing the simple routing algorithm described above.
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Figure 6.8. Simulation results of active switches for near and far tra�c.

When we examine Figure 6.8, we observe that the type of loading has a signifi-

cant impact on energy consumption. When it comes to allocating tasks to servers,

the task manager should be mindful of the type of tra�c that will be generated

since we can obtain significant energy savings by careful scheduling.
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Figure 6.9. Modeling active switches for near and far tra�c.

6.7 SUMMARY

Many approaches proposed on reducing energy consumption by right-sizing the

datacenter networks using di↵erent approaches. Lin et al. [63] propose to turn

o↵ idle servers. CARPO consolidates negatively-correlated tra�c flows to keep

a smaller subset of active links. Adnan and Gupta [10] proposed an online path

consolidation algorithm to dynamically right-size the networks. These approaches

perform well when there are lots of flows in the network. ElasticTree [51] propose

to force tra�c in a network to the leftmost switches in a fat-tree topology to power

o↵ unused switches. It is the most energy-e�cient of all approaches, but is still

sub-optimal because, as we show, for many light loading patterns, a large number

of switches still need to remain active.

In this chapter, we present a concept of a merge network to be applied to

switches to consolidate tra�c. Our merging approach enables powering o↵ more

switches and links by merging tra�c at edge and aggregation layer and scale net-

work energy cost to the number of busy interfaces of each switch. By applying

merge networks to each switch, we further reduce power consumption of active
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switches. With very light load, our approach saves 20% ⇠ 40% energy cost com-

pared with ElasticTree, depending on the tra�c types. Tra�c with small number

of inter-pod and inter-subnet flows can benefit even more from tra�c merging. We

show that with tra�c merging at switches, datacenter networks can achieve energy

proportionality without changing the network topology and devices.
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Chapter 7

SIMULATION RESULTS WITH MERGE NETWORKS

We simulate a k = 12 fat-tree network which supports 432 servers and 180 12-

port switches. In this network, there are 12 pods and each of which has six edge

switches and six aggregation switches. We assign 1Gbps capacity to each link and

assume that each of the core switches has extra ports to be connected to external

Internet through border routers. We experiment with synthetic tra�c data from

a tra�c generator and real packet traces from a university datacenter. Since flow

splitting will incur packet reordering cost, which is not a desirable practice in real

datacenters, we implement our simulation using non-splitting flow assignment.

7.1 TRAFFIC DATA

7.1.1 Synthetic Tra�c Data

The experimental tra�c traces are generated following the On/O↵ pattern derived

from production datacenters [79][20]. The duration of the On/O↵ period and the

packet interarrival time follow the lognormal distribution. We generate di↵erent

tra�c type including Random, Stride(n), and Staggered(n), each of which has

di↵erent patterns of near and far tra�c. For instance, a flow in Stride(n) goes from

node i and to node [(i + n) mod N ] (N is the total number of servers). Source

and destination nodes in Random type are uniformly distributed. Staggered(n) is

staggered probability tra�c and assigns fixed probabilities for tra�c going to the
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Table 7.1. Probabilities of flow going to the same subnet (p1), to the same pod (p2) and to

di↵erent pods (1� p1 � p2) for all tra�c suites studied

Tra�c Suite p

1

p

2

1� p

1

� p

2

Random 1.2% 7% 91.8%

Stride(1) 83.3% 13.9% 2.8%

Stride(6) 0% 83.3% 16.7%

Stride(36) 0% 0% 100%

Stride(216) 0% 0% 100%

Staggered(1) 100% 0% 0%

Staggered(2) 50% 30% 20%

Staggered(3) 20% 30% 50%

same subnet and to the same pod.

We generate 8 tra�c suites with parameters p
1

, p
2

and 1 � p

1

� p

2

showed in

Table 7.1. Flows in Stride(1) always go to the next server. In a k = 12 fat-tree,

each edge switch connects to 6 servers and forms a subnet. Flows from the first

5 servers go to the same subnet. While flow from the 6th server travels to the

next subnet or the next pod. Therefore, 5/6 of the tra�c goes to the same subnet.

Flows in Stride(6) always travel cross subnets. Stride(36) have all flows traveling

to other pods. The load fraction � o↵ered by each server varied from 0.1 to 0.7.

7.1.2 Empirical Tra�c Data

We use packet traces from a university datacenter published by Benson et al. [20].

This university datacenter has about 500 servers providing services for campus

users. 60% of the tra�c is for Web services and the rest is for other applications

such as file sharing services. Tra�c traces are captured by a sni↵er installed at a
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Figure 7.1. Tra�c load of a university datacenter.

randomly selected switch in the datacenter. Figure 7.1 illustrates the total load

of the packet traces within 50 minutes. The overall load is very small for a high-

bandwidth fat-tree topology.

7.2 APPLYING MERGE NETWORK WITHIN A SWITCH

Our simulation outputs the number of active switches (Figure 7.2a) and the num-

ber of active interfaces of each switch with varies tra�c loads and patterns. In

general, the number of active switches increases with the tra�c load. However,

both Stride(1) and Staggered(1) have constant number of active switches and ac-

tive interfaces. This is because, for Stride(1), all loads can be satisfied by using a

minimum spanning tree. For Staggered(1), only edge switches are used since all

the tra�c flows are local tra�c within the same subnet.

Figure 7.2b illustrates the di↵erence of total numbers of active interfaces of a

DCN using merge networks versus ElasticTree. It shows that more interfaces of

the active switches become idle when the tra�c is light, which demonstrates that
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(a) Number of active switches.
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(b) Total number of active interfaces.

Figure 7.2. Number of active switches and active interfaces network-wide for a k = 12 fat-tree

network.

tra�c merging can save more energy with lighter tra�c (Figure 7.3). Stride(1)

achieves the most energy savings over ElasticTree (around 42%) because, for each

active edge switch, the energy consumed by the five idle interfaces is wasted.

Staggered(1) saves 30% energy consumption since for the entire network, only

half of the interfaces (facing the severs) of the edge switches are used.

ElasticTree provides an energy-e�cient solution for DCNs. However, the draw-

back of ElasticTree is that, a DCN still consumes a large amount of power with

light load [51]. In contrast, our approach reduces energy consumption when the

network is lightly loaded, which demonstrates that tra�c merging achieves better

energy proportionality than ElasticTree.

We observe that power cost decreases from 30% to 17% when applying merge

networks compared with ElasticTree (Figure 7.4).
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Figure 7.3. Reduction in total cost when using tra�c merging.
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Figure 7.4. Energy savings when using tra�c merging.
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7.3 APPLYING MERGE NETWORK WITHIN A POD

The k = 12 fat-tree network consits of 180 12-port switches, organized in 12 pods

and each of which has six edge switches and six aggregation switches. Every

switch in the edge layer and aggregation layer, there are six uplink ports and six

downlink ports. So within each pod, there are total 36 servers connected with six

edge switches, and the number of links between edge layer and aggregation layer

is 36. In this experiment, within each pod, we apply one 36 ⇥ 36 merge network

between servers and edge switches, and another 36 ⇥ 36 merge network between

edge switches and aggregation switches. The merge network switches tra�c flows

to the left switches. Flow splitting is allowed for simplicity.

7.3.1 Number of active switches

Figure 7.5 compares the number of active switches at each level before and after

applying tra�c merging. As we can find, for all tra�c suites, the number of active

switches at edge level reduces significantly after applying merge networks. For

aggregation-level switches, we observe obvious reduction for Stride(6), Staggered(2)

and Staggered(3). We notice from table 7.1 that these three tra�c suites have

higher p
2

, and as we discussed in Section 6.2, a amount of �p
2

of tra�c is switched

away from aggregation level after tra�c merging, which means a substantial part of

the tra�c originally going to aggregation layer has been cut short to be transferred

directly through edge switches with merge networks.

Figure 7.6 illustrates the fraction of total active switches of the DCNs before

and after using merge networks. The fraction of active switches reduced from

40%� 60% to 10%� 35% for light tra�c loadings (0.1� 0.2).



109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Stride(1)

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Stride(6)

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Stride(36)

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Stride(216)

λ
N

um
be

r o
f a

ct
iv

e 
sw

itc
he

s
 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Staggered(1)

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Staggered(2)

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Staggered(3)

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

20

40

60

80

100

120

140

160

180
Compare the number of active switches for Random

λ

N
um

be
r o

f a
ct

iv
e 

sw
itc

he
s

 

 

edge switches
aggregation switches
core switches

Figure 7.5. Compare number of active switches with vs. without tra�c merging.
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Figure 7.6. Fraction of active switches before using tra�c merging (left) and after using tra�c

merging (right).

7.3.2 Energy cost

The above discussions focused on reducing the number of active switches. The

overall energy cost a DCN consists of the cost incurred by switches and links.

However, cost incurred by links is negligible and can be incorporated within the

cost of interfaces of switches. Generally speaking, the energy cost of a switch can

be roughly partitioned into the cost of chassis and the interfaces. As described in

[82][34], a reasonable approximation to the cost of a k-port switch is:

Switch Cost = C + k log k + k

The constant C accounts for static costs of the switch such as fan etc. The second

term corresponds to the cost of the interconnection fabric within the switch, which

is a significant contributor to energy consumption (typically 30% � 40%). This

cost scales as k log k for a k-port switch. The last term is the contribution to the

cost from the active interfaces. This term folds into itself the cost of the linecards

that the interfaces are on. For the purposes of comparing the overall cost reduction

of tra�c merging, we set C to 50% of the maximum switch cost. That is:

C = k log k + k
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Figure 7.7. Reduction in total cost after using tra�c merging.

If the tra�c load fraction going to a switch is �, the merge network will switch

the tra�c to the leftmost m = d�ke interfaces. The cost of a switch with merge

networks is thus:

Switch Cost = C +m logm+m

Figure 7.7 shows the overall cost improvement over approaches without merge

networks. It demonstrates that our tra�c merging method can save up to 90%

of energy cost when the tra�c load is low. Figure 7.8 shows that the tra�c

merging can achieve better energy e�ciency that is closer to the ideal energy

proportionality.

7.4 SUMMARY

We examine the approach of merging tra�c by simulating a large-size fat-tree

datacenter network and applying merge network at each switch and at a whole

pod, and finding the lower bound of the minimum number of network switches

and links that satisfies a variety of tra�c patterns and loads similar to those from
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Figure 7.8. Fraction of total cost without tra�c merging vs. using tra�c merging.

actual datacenters.

Simulation results show that our approach can substantially reduce the number

of active switches and lower the energy consumption of a fat-tree datacenter net-

works when the load is light. We show that our solution achieves up to 70%�90%

total energy savings through tra�c merging and achieves almost perfect energy

proportionality.
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Chapter 8

PROTOTYPE OF MERGE NETWORKS

In previous chapters, we have studied the idea of merging tra�c at a switch to

consolidate tra�c flows to minimize the number of active switch ports. In this

chapter, we describe the implementation of a prototype of a simple 2 ⇥ 2 merge

network built for optical switches. We use optical networks and devices for two

reasons: 1) fiber optic cables are the fastest-growing transmission medium used in

data centers today since they provide high bandwidth communication and reliable

high-speed data transmission, and 2) passive optical networks (PON) can be used

in the enterprise as point-to-multipoint solutions because passive optical splitters

can distribute data, voice, and video signals throughout a network with greatly

improved cost e�ciency than Ethernet switches. Thus our work on merging tra�c

is related to the enterprise networks as well.

8.1 2⇥ 2 MERGE NETWORK ARCHITECTURE DESIGN

We utilize three Linux workstations to build a test-bed for a 2⇥ 2 merge network.

Figure 8.1 shows the architecture of the test environment. We configure the top

Linux machine named PACLAB11 as a virtual Linux bridge to simulate an L3 net-

work switch with two interfaces with IP addresses, 192.168.0.11 and 192.168.0.14.

The bottom two Linux machines, PACLAB12 and PACLAB13, work as two servers

connected to the simulated network switch, PACLAB11. The network addresses of

these two hosts are 192.168.0.12 and 192.168.0.13, respectively. We build a merge
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network to merge tra�c to the left port of the network switch. In other words, the

hosts always choose to connect to port 192.168.0.14 if it is available. Otherwise,

the right-side port (192.168.0.11) will be used.

We implement the 2⇥2 merge network using two 2⇥2 optical switches, shown

as the two beige boxes in Figure 8.1. To communicate with the optical switches,

we install two Gigabit multimode SC fiber optic network adapters in PACLAB11,

to act as two ports of the network switch. Each SC fiber optic network adapter

provides a Transmitter (Tx) and a Receiver (Rx). We install one multimode SC

fiber optic network adapter each in host PABLAB12 and PACLAB13. The left-

side optical switch is the uplink switch, which connects the Transmitters of the two

servers to the Receivers of the network switch. The optical switch on the right is

the downlink switch, connecting the Receivers of the two hosts to the Transmitters

of the network switch.

Figure 8.2 is the picture of the two 2 optomechanical optical switches used in

our prototype [3]. A 2 ⇥ 2 optical switch has two states: Inserted State (A) and

Bypass State (B) (Figure 8.3). The state of the optical switch is controlled by

electric signals applied to the latches on the outer side the switch. For instance,

when the uplink switch and downlink switch are both configured as in Bypass

state, host PACLAC12 is connected to the switch port 192.168.0.11 and host PA-

CLAB13 is connected to port 192.168.0.14. If both optical switches are in Insert

state, PACLAB12 and PACLAB13 are connected to 192.168.0.14 and 192.168.0.11,

respectively.

To implement priority on the left port, the controller has to decide which port is

the left-most available port. Since it is not possible to detect whether the network

switch port is busy or not when the host is disconnected from the ports of network

switch, we use a variable named STATE to keep the status of the optical switches
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Figure 8.1. A 2⇥ 2 merge network implemented with two 2⇥ 2 optical switches.

Figure 8.2. Optical switches
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Figure 8.3. Two states of the optical switch.

and store it on the Arduino board. In our 2 ⇥ 2 merge network, the STATE

corresponding to di↵erent scenarios is listed as follows:

1. STATE = 0: idle state - no port is in use

2. STATE = 1: both uplink and downlink switches are in Bypass state

3. STATE = 2: both uplink and downlink switches are in Insert state

4. STATE = 8: conflict state - two hosts send contradictory states

We implemente a communication protocol between the hosts and Arduino to

negotiate the merge network state. Before a host starts to transfer data, it reads

the current STATE from Arduino. If the Arduino is already set to one of the active

states (STATE = 1 or STATE = 2), the host will update its own state variable,

myState, as the same value of the STATE of merge network and starts to send data

using the current setting. If STATE = 0, the host will set mySTATE to a value

that can make the merge network connect the host to the left port of the network

switch. The host sends myState, as a STATE update request, to the Arduino. The

host will check STATE again and start to send data if STATE is set to 1 or 2. If

STATE = 8, it means that the other host was trying to set up merge network to

the opposite state at the same time, in other words, competing for the left port.

In this case, the host will back o↵ for some random time and set myState to 0 and

restart.
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Figure 8.4 shows the flowchart of the logic to determine myState implemented

on host PACLAB12. When current STATE is 0, there is no active data transmis-

sion. Host PACLAB12 needs to set the merge network to STATE = 1 in order to

be connected to the left-side port. If the current STATE is 2, which means host

PACLAB13 is connected to the left port, PACLAB12 can only use the right port

and keep STATE = 2. For host PACLAB13, its preferred STATE is 2 and will set

up myState to 2 when the board STATE is 0. We implement the state-determine

logic in the socket connection function at each host as part of the application-level

protocol.

We use a 5V Arduino Uno board as the controller to negotiate STATE with

hosts and to send control signals to optical switches and to coordinate them to

provide connection channels between the hosts and network switch (Figure 8.5).

Arduino Uno consumes only 232mW power when it is active. The two optical

switches are passive optical devices with no power requirement. As such, the

power consumption of the 2 ⇥ 2 merge network is negligible. In addition, the

optical switch requires minimum management and it is highly reliable. It supports

multimode optic fiber operating at a wavelength from 650nm to 1310 nm.

The architecture design of the merge network is illustrated in Figure 8.6. The

Arduino board works as a micro-controller, receiving state inquiries and state up-

dating requests from hosts, and controls optical switches by outputting control

signals to the latches of optical switches. The Arduino board communicates with

the hosts through serial ports. Given there is only one hardware serial port in

Arduino Uno, we use two pins on Arduino to work as Tx and Rx of a serial port

and simulate a software serial port to communicate with the second host.

The Arduino reads myState values from the two hosts and sets up new STATE,

which is sent to the optical switches to change the switching states. The new value
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Figure 8.4. Controlling the state of merge networks: state-transferring logic implemented at

PACLAB12.
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Figure 8.5. Arduino board to control the states of the two optical switches.

Figure 8.6. Architecture design of a 2⇥ 2 merge network.
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Table 8.1. Arduino board STATE values

PPPPPPPPPPPPPP
myState1

myState2
0 1 2

0 0 1 2

1 1 1 8

2 2 8 2

of the STATE variable is determined according to the values of the state request

variables received from the two hosts, myState1 and myState2. The logic is shown

in Table 8.1. If the new STATE is 1 or 2, the Arduino board will send control

signals to the uplink and downlink optical switches to turn them into Bypass or

Insert state. If the new STATE is 0, Arduino will turn both optical switches o↵. It

is possible for the two hosts to send contradictory myState values (e.g. one sends

1 and the other sends 2). This situation happens when the current STATE is 0

and both hosts have data to transfer at the same time, and each of the two hosts

considers itself the only sender and can use the left port to transfer data. As a

result, one host sets myState to 1 and the other host sets myState to 2. When

Arduino receives two di↵erent myState, the new STATE will be set to 8. When

the hosts detect this situation, they will reset myState to 0, wait some random

time, and try again.

8.2 MEASUREMENT RESULTS

We test the utilization of the two ports in a switch (implemented at workstation

PACLAB11). We use Iperf to send packets from host1 and host2 and customize

the tra�c flows with log-normal distribution of flow length and inter-arrival time
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to generate tra�c with di↵erent loadings. We measure the active time periods of

the two ports and compare the throughputs with that of a switch without a merge

network.

We use the Iperf application to send tra�c packet flows to the switch, with

overall loadings from about 10% to 75%. The two ports of the switch are named

Port 1 (left) and Port 2 (right) for simplicity. When there is no merge network

used, Port 1 and Port 2 are connected to Host A and Host B respectively, and they

are always in an active mode. With the merge network at the switch, the available

left-most port is chosen first. That means, in our test case with the switch having

two ports, the left port (Port 1) always has higher priority than Port 2 (on the

right).

We use green color to represent the tra�c flows going to the left port (Port 1)

and red color for the flows to Port 2. Figure 8.7 illustrates the ten-hour record of

the tra�c flows from Host A and Host B. Host A sends most of the tra�c flows to

Port 1. Host B also uses Port 1 when loading is low, and uses Port 2 more when

loading increases to 75%.

In our experiment, the two hosts’ software settings are exactly the same. The

reason that Host A can seize more time of the Port 1 is that we use Arduino UNO

as the state control circuit of the merge network. Each of the two hosts sends its

state control signal to the Arduino through a serial port. Since Arduino UNO has

only one built-in hardware serial port, we use a software serial port to simulate

a hardware serial port and let Arduino receive the signal from the second host.

Although we set the two serial ports with the same transfer baud rate, it appears

that the host using the hardware serial port can always get connected to Port 1

faster and more frequently.

In this first experiment, Host A is connected to the hardware serial port and
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Figure 8.7. Tra�c flows and port usage of Host A and Host B.
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Figure 8.8. Total port usage of Host A and Host B.

Host B is linked to the software serial port. The assumption above explains why

Host A sends most of the tra�c flows using Port 1. Figure 8.8 shows the total

percentage of tra�c flows that is sent to each of the ports from Host A and Host

B, with loadings increase from 10% to 75%. In this figure, the green line represents

the usage of Port 1, and the red line represents the usage of Port 2. It is obvious

that Port 1 is the dominant port used by Host A. For Host B, when loading is

approximately below 45%, the tra�c flows from Host B can still squeeze into Port

1. As a result, more tra�c is going to Port 1 than going to Port 2. When loading

is above 45%, the total tra�c from the two hosts will approach the capacity of

each port. As a result, Host A occupies Port 1 most of the time, and Host B

increasingly sends tra�c to Port 2.

To verify our assumption that the di↵erent performance results of Host A and

B are caused by the di↵erence of the Arduino hardware serial port and software

serial port, we switch the hardware and software serial ports between Host A and

B in the second set of experiments. Figure 8.9 shows the reverse results from that,

as shown in Figure 8.7, which verify that the host connected with hardware serial

port of the Arduino (i.e. Host B) uses Port 1 more. The total port utilization

shown in Figure 8.10 also proves that Host B sends significantly more tra�c to
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Port 1 after we switch the serial port connections.

To show the results without the influence of Arduino serial port, we sum the

two experiment results and calculate the average. The results shown in Figure 8.11

illustrate very similar performance of Host A and Host B, and indicates that more

tra�c goes to Port 1 for both Host A and Host B. It is also possible to achieve this

result by using a control circuit with two hardware ports. For example, Arduino

Mega provides 3 extra built-in serial ports on board.

We calculate the overall utilization of the two ports by adding the tra�c from

Host A and Host B. The result is shown in Figure 8.12. The x-axis represents

loading increase. The y-axis represents the percentage of the active time of the

port. We can see that Port 1 is used much more than Port 2, especially when the

loading is smaller. When the loading is about 75%, Port 1 is used close to the line

capacity and Port 2 is active half of the time. This proves that the merge network

perfectly consolidates the tra�c to the left port, which is Port 1.

We extract the state switching data from the Arduino board in order to under-

stand how frequently the merge network changes its switching state and illustrate

the result in Figure 8.13. The x-axis is the workload. The y-axis is the number of

times that the state switching command is received from each host. We find that

the host connected with the software serial port of the Arduino board switches

state more. The host connected with the hardware serial port maintains a much

lower and more stable number of state switching.

We add the state switching number of Host A and Host B and compare the total

numbers of state switching in experiments 1 and 2, we find very similar curves of

the two, Figure 8.14. Both curves start to climb from abut 300 first when loading

increases, and they peak when loading reaches about 30%. After that, the curves

start to descend, totaling lower than 100 when the loading increases to 75%.
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Figure 8.9. Tra�c flows and port usage of Host A and Host B after switching serial ports.
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Figure 8.10. Total port usage of Host A and Host B after switching serial ports.
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Figure 8.11. Average port usage of Host A and Host B.
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Figure 8.13. State switching times of the merge network in two experiments.
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For controlling state switching, there are two possible strategies. One is non-

blocking transfer: when a host’s preferred port is busy, the host can connect to

the other port immediately. The other strategy is blocking transfer: when a host’s

preferred port is busy, the host can wait some time to see if the preferred ports can

be available soon. In our experiments, we use non-blocking strategy to guarantee

that all tra�c load is sent immediately without delay, thus to ensure the network

performance. In future work, we can experiment with the blocking strategy and

find the threshold of the waiting time that can guarantee reasonable throughput

and latency.

8.3 HIGHER-ORDER MERGE NETWORKS

When we apply a merge network to all ports of a ToR switch, or several ToR

switches within a datacenter pod, we need merge networks with more inputs/out-

puts. If we have a N ⇥ N optical switch like Figure 8.2, we can use a pair of
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Figure 8.15. Example of a 16⇥ 16 MEMS matrix optical switch.

these optical switches to work as uplink and downlink switches to build a N ⇥N

merge network that connects N hosts to a N-port network switch, similar to the

architecture described in Figure 8.6.

An example of such a switch is a MEMS matrix optical switch [4] that support

all-optical cross connections in a fully non-blocking manner, allowing simultaneous

connection between a number of input and output fibers. Figure 8.15 is a 16⇥ 16

matrix switch. Any of the 16 input fibers can be connected to any of the 16 output

fibers.

The MEMS matrix optical switch is based on the micro-electro-mechanical

system (MEMS) mirror technology, which uses a MEMS chip to rotate a matrix

of movable silicon mirrors to change the coupling of light between input fibers and

output fibers (Figure 8.16 left). The use of MEMS technology o↵ers low cost and

excellent optical performance of high reliability and fast switching time of less than

 40ms. Currently, the MEMS matrix switch is available in sizes up to 32 ⇥ 32

(Figure 8.16 right). Using a modular design, it is also possible to customize the

optical switch to larger-size N ⇥N configurations.

The MEMS matrix optical switch is controlled through a RS232 interface or

I2C. We generalize the algorithm we used for the 2⇥2 optical switch to the N ⇥N
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Figure 8.16. MEMS 3D matrix optical switch.

optical switch. We use an array to keep the STATE of the current switching state

of optical switches. The array’s size is equal to the dimension of the matrix optical

switch. The value of the ith item of the array stores the name of the host whose

connection is switched to the ith output port. For example, consider four hosts

named A,B,C and D. Assume the STATE array of the 4⇥ 4 matrix switch shown

in Figure 8.17 is CADB. This means host C is connected to port 1 (leftmost), host

A is connected to port 2, and so on. When there is no tra�c from a host, the

value of corresponding item of STATE is set to 0. From the example shown in

Figure 8.17, if at this time the packet flow from Host A is completed, the STATE

array will be changed from CADB to C0DB. Following that, if Host C is done, the

STATE changes to 00DB. The STATE array records which ports are available for

the following tra�c flows, and the algorithm can use the value of STATE giving

the leftmost available port highest priority. For example, if the next tra�c flow is

from Host A again, the STATE will change from 00DB to A0DB.

The STATE array keeps the current outputs of the matrix optical switches.

It contains information for two types of ports: for active ports that have data

flows, it represents current switching logic of those ports. For output ports that

are currently idle, it stores 0 in those corresponding positions. The 0s in the
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Figure 8.17. STATE of a 4⇥ 4 matrix switch.

STATE array are used to determine whether there is a further-left port available

when new tra�c arrives, thus to consolidate tra�c to the left side of datacenter

switches. However, since the matrix optical switch is non-blocking, the control

signal sent to the optical switch has to specify the switching path of every port,

even if there is no packet go through it. Since the STATE array may contain many

0s for idle ports, it cannot be used to control the switch state transfer. Therefore,

we use another array, SIGNAL, to store the control signals for the optical switches.

We take a 4 ⇥ 4 optical switch as an example. The STATE array is of size 4

to store the output port states. It is initialized as 0000 since all the four ports are

idle at the beginning. We set up SIGNAL = ABCD to start the optical switch

in the bypass state initially. For the tra�c flows, we use ’+A’ to represent that

Host A starts sending data, and ’-C’ to describe that Host C’s data transmission is

completed. Ans we use a string to represent a sequence of starts and ends of data

transmission from specified hosts. For example, “+A+B-B-A” means a sequence of

events - “Host A starts data transmission; then Host B starts data transmission;

Host B data-transmission ends; and then Host A data-transmission ends”. We

illustrate the changing values of STATE and SIGNAL arraies when we have the
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Figure 8.18. A 4⇥ 4 matrix switch: STATE and SIGNAL.

sequence of data flows shown in Figure 8.18.

For this 4⇥ 4 case, the STATE array starts from 0000, and changes every time

when a new data flow starts and an old data flow completes. When a new data flow

starts, the algorithm finds the first available port (first zero) from STATE array

and updates that item to the name of the host that sends the data flow. When

a host completes its data transmission, the algorithm traverses the STATE array

again, finds the item with the host name and changes it to 0. The algorithm needs

to traverse the STATE array twice for each data flow, so the time complexity is

O(2n). The SIGNAL array starts from ABCD and updates simultaneously with the

STATE array. For example, when a new data flow starts, the algorithm changes the

ith item of STATE array to Host x. Also, it checks the value of ith item of SIGNAL.

If it is not equal to Host x, the algorithm finds Host x at jth position of SIGNAL,

and switches the ith item and jth item. The time complexity of updating SIGNAL

array is O(n). Therefore, the overall complexity of this algorithm is O(3n). The

pseudo-code of the algorithm is described in Algorithm 2. The SIGNAL array is

used to control the matrix switches. It only needs to be updated when there is a

new data flow coming in. However, the STATE array needs to be updated when a

data flow starts and completes to store the real status of each ports of the merge

network.
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Algorithm 2 Algorithm to update state and control the matrix switch

1: function SwitchControl(host)

2: STATE  {0};

3: SIGNAL {A,B,C,D};

4: loop

5: if Host x has data to transfer then

6: for i 0; i < SwitchDimension; i i+ 1 do

7: if STATE[i] == 0 then

8: STATE[i] x;

9: if SIGNAL[i] <> x then

10: for j  0; j < SwitchDimension; j  j + 1 do

11: if SIGNAL[j] == x then

12: swap(SIGNAL[i], SIGNAL[j]);

13: break;

14: break;

15: Send SIGNAL to matrix switch;

16: if Host x complete data transferring then

17: for i 0; i < SwitchDimension; i i+ 1 do

18: if STATE[i] == x then

19: STATE[i] 0;

20: break;
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When there are more than one hosts requesting to send data within a short

period of time, it is more e�cient to change STATE and SIGNAL for all host

requests and send the final SIGNAL to the switch, considering the switching time

required for each state change of the matrix optical switches.

In the prototype of 2⇥2 merge network, we implemented the control algorithm

in the software running on the Arduino board, which receives inputs from the two

hosts through serial ports. For the general implementation of a N ⇥ N merge

network, we can use optical detectors to collect the data input fiber from each

host. DiCon optical detector [5] provides in-line power monitoring by utilizing

fused couplers on every input, which taps o↵ a portion (1% ⇠ 10%)of the signal

and delivers it to the output (Figure 8.19). We propose to integrate the optical

switch, the micro-controller and the optical detectors as an integrated merge net-

work module. The architecture design of the functional module is shown in Figure

8.20. We have found some successful examples of customized function modules.

Figure 8.21 is an example of a module integrated by Dicon [6] with MEMS VOAs,

tap-detectors, control electronics, and firmware, for optical power balancing and

management. With our control algorithm, the micro-controller can be integrated

with the tap-detectors, and the matrix switch, to make a functional module of an

N ⇥N merge network.

8.4 SUMMARY

This chapter describes the implementation of a 2⇥ 2 merge network using optical

switches. Hosts that have data to transfer send a request to an Arduino controller,

which calculates the control signal and sends it to the optical switch. The 2 ⇥ 2

merge network successfully consolidates the data to the left port of the network
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Figure 8.19. DiCon Tap/Detector module.

Figure 8.20. Customized functional module of merge networks.
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Figure 8.21. DiCon customized module.

switch. We extend the algorithm to a general N ⇥ N case and discuss the ar-

chitecture design of integrating optical tap-detector, optical switches, electronic

controller and firmware to form a functional N ⇥ N merge network that can be

used to consolidate tra�c to leftmost ports of edge switches within a datacenter

pod.
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Chapter 9

CONCLUSIONS

9.1 SUMMARY

In this research, we consider the energy e�ciency problem of datacenter networks.

Since fat-tree topologies are the predominant choice for datacenter networks, lot of

our work was based on this topology. While fat-trees provide full bisection band-

width, which minimizes latency and boosts throughput, the energy consumption

of this network, and other datacenter networks, is not proportional to the network

load. We find that the usage of the network devices in a fat-tree network is greatly

dependent on the type of tra�c, the tra�c load, and the selected routing algo-

rithm. For instance, if most of the tra�c is between servers located in the same

pod, the core switches are never used, even at high loads. On the other hand,

if most of the tra�c is between servers in di↵erent pods, the better part of the

network switches will be in active states even at low loads since more switches in

the network need to be utilized for routing.

We first analyze the problem of energy consumption in fat-tree networks by

deriving expressions for the fraction of active switches and tra�c losses for arbi-

trary tra�c loads and tra�c losses. The developed analytical models for energy

consumption enable us to study fat-tree DCNs theoretically. We show that there

is a base cost of approximately 45% (due to edge switches), but after that point

energy consumption can scale linearly by appropriately consolidating tra�c flows.
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A practical application of the models is to jointly optimize task scheduling and

flow assignment so as to maximize the tra�c consolidation for given job loads.

Based on the energy consumption model, we investigate skinnier network topolo-

gies that meet performance requirements of realistic loads, thus saving not only

energy but capital cost as well. Through a comprehensive study of the sub-graphs

of fat-trees for di↵erent tra�c characteristics, we conclude that it is possible to

further reduce the number of active switches by up to 10% by consolidating cor-

responding jobs to fewer servers, particularly at low loads. Furthermore, we find

that edge switches account for a large portion of the energy cost even at very low

loads. We propose to replace the edge switches with high cardinality switches and

build energy proportional DCN. We evaluate the DCN power consumption using

the power data of Cisco modular switches. We find that the overall power con-

sumption is significantly reduced by using high-radix edge switches in the edge

layer of fat-tree DCNs.

In order to find the minimum subset of a network, we formulate an optimization

model for computing routes with the goal of minimizing energy consumption and

use Cplex solver to find optimal solutions for a small fat-tree network. Routing

plays an important part in the potential for energy savings. Compared to routing

algorithms that seek to balance load, our routing algorithm consolidates tra�c

into a few paths to save energy at the idle switches. We use a universal greedy

flow assignment algorithm, which is proved to be able to find flow assignments

close to that achieved from the optimization solver for a variety of loading scenar-

ios. Although the greedy bin-packing algorithm used in ElasticTree also finds the

shortest route using the left-most heuristics, it leverages the regularity of hierar-

chical DCNs. Our greedy algorithm can find flow assignments close to the MIP

model, for not just hierarchical network topologies, but also random or irregular
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DCN topologies.

Many approaches that address the DCN energy e�ciency problems can hardly

achieve the goal of energy proportionality. There is still considerable amount of

energy waste especially when the network is very lightly loaded during o↵-peak

hours. For example, in ElasticTree, the edge switches are always fully powered

on, even during the idle hours, because they are connected to servers. At the

aggregation layer, switches that are powered on do not fully load their interfaces

facing the edge switches. Our proposed merging approach explores additional

savings made possible by use of a hardware device called a merge network, which

further consolidates the tra�c to fewer switches and enables powering o↵ a subset

of interfaces in active switches, thus to manage the power at a finer granularity.

We attach merge networks to each switch of the network, and alternatively, to

all switches of the same layer within a pod, so as to scale the network energy cost

to the number of busy interfaces. We customize the analytical model to include the

merge networks by including the number of active interfaces as a parameter in the

minimization function. The model shows that, in addition to the savings obtain

by forcing tra�c to the left, as shown in ElasticTree, we can achieve significantly

additional savings by powering o↵ unused interfaces in active switches, which is

made possible by merge networks. Simulation results prove that the merge net-

works can reduce the energy consumption by around 50% at light loads, and the

DCN energy consumption can scale linearly by appropriately consolidating tra�c

flows.

In simulation of larger fat-tree networks, we analyze the energy savings obtained

when using merge networks. With very light load, our approach reduces 20% to

40% energy cost compared with ElasticTree by applying merge networks to each

switch, depending on the tra�c types. Localized tra�c can benefit even more from
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tra�c merging. When deploying merge network at edge-layer and aggregation-

layer switches within the same pod, the tra�c merging achieves up to 70%� 90%

total energy savings and the network exhibits power-usage behavior close to that

of an energy-proportional system.

As a proof of concept, we design and build a hardware prototype of a 2 ⇥ 2

merge network using fiber links and passive optical devices. We experiment with

the merge network in a small test bed built on Linux boxes and Arduino. The

merge network consolidates data to one interface, with a slight time delay due to

switching time of the optical switches. The energy cost of the prototype is minimal.

We extend the prototype to larger-size merge networks by generalizing the control

algorithm and hardware design. The system can be built with reasonable expense

compared with the cost of datacenter network devices. The time and space com-

plexity of the control algorithm is linear and the system requires minimal change

at the end hosts.

9.2 CONCLUSIONS

An important conclusion of this research is that the type of tra�c has a close cor-

relation with the potential energy savings for datacenter networks. This is clearly

demonstrated in the simulations as well as in the analytical models developed in

this thesis. The key thought is to keep tra�c local as much as possible in order to

save energy. Another conclusion is that the symmetric design and homogeneous

network equipment is not generally energy-e�cient. Topology enhancement for

providing external connectivity and heterogeneous deployment of network devices

has an impact on the overall energy consumption.
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