
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Winter 3-20-2017 

Certifying Loop Pipelining Transformations in Certifying Loop Pipelining Transformations in 

Behavioral Synthesis Behavioral Synthesis 

Disha Puri 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Theory and Algorithms Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Puri, Disha, "Certifying Loop Pipelining Transformations in Behavioral Synthesis" (2017). Dissertations and 
Theses. Paper 3480. 
https://doi.org/10.15760/etd.5364 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3480
https://doi.org/10.15760/etd.5364
mailto:pdxscholar@pdx.edu


Certifying Loop Pipelining Transformations in Behavioral Synthesis

by

Disha Puri

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Jingke Li

Suresh Singh

Sandip Ray

Fu Li

Portland State University

2017



i

ABSTRACT

Due to the rapidly increasing complexity in hardware designs and competitive

time to market trends in the industry, there is an inherent need to move designs

to a higher level of abstraction. Behavioral Synthesis is the process of automati-

cally compiling such Electronic System Level (ESL) designs written in high-level

languages such as C, C++ or SystemC into Register-Transfer Level (RTL) imple-

mentation in hardware description languages such as Verilog or VHDL. However,

the adoption of this flow is dependent on designers’ faith in the correctness of

behavioral synthesis tools.

Loop pipelining is a critical transformation employed in behavioral synthesis

process, and ubiquitous in commercial and academic behavioral synthesis tools. It

improves the throughput and reduces the latency of the synthesized hardware. It

is complex and error-prone, and a small bug can result in faulty hardware with

expensive ramifications. Therefore, it is critical to certify the loop pipelining trans-

formation so that designers can trust the behaviorally synthesized pipelined de-

signs. Certifying a loop pipelining transformation is however, a major research

challenge because there is a huge semantic gap between the input sequential de-

sign and the output pipelined implementation, making it infeasible to verify their

equivalence with automated sequential equivalence checking (SEC) techniques.

Complex loop pipelining transformations can be certified by a combination

of theorem proving and SEC: (1) creating a certified pipelining algorithm which

generates a reference pipeline model by exploiting pipeline generation information



ii

from the synthesis flow (e.g., the iteration interval of a generated pipeline) and

(2) conduct SEC between the synthesized pipeline and this reference model. How-

ever, a key and arguably, the most complex component of this approach is the

development of a formal, mechanically verifiable loop pipelining algorithm.

We show how to systematically construct such an algorithm, and carry out its

verification using the ACL2 theorem prover. We propose a framework of certified

pipelining primitives which are essential for designing pipelining algorithms. Using

our framework, we build a certified loop pipelining algorithm. We also propose a

key invariant in certifying this algorithm, which links sequential loops with their

pipelined counterparts. This is unlike other invariants that have been used in

proofs of microprocessor pipelines so far.

This dissertation provides a framework for creating certified pipelining algo-

rithms utilizing a mechanical theorem prover. Using this framework, we have

developed a certified loop pipelining algorithm. This certified algorithm is essen-

tial in the overall approach to certify behaviorally synthesized pipelined designs.

We demonstrate the scalability and robustness of our algorithm on several ESL

designs across various domains.



iii

DEDICATION

To my Grandparents

Mrs. Rama Devi & Mr. M. C. Arora

Mrs. Laxmi Devi & Mr. R. D. Gandhi

who have been the pillars of spiritual guidance in my life, and

whose loving spirits blesses and sustains me still



iv

ACKNOWLEDGMENTS

In the process of working through this dissertation, I have been blessed with meet-

ing people who have helped me unconditionally and supported me through the

highs and lows of these past years. Even though it cannot be expressed in words,

how much their support means to me, I want to take this opportunity to thank

them from the bottom of my heart.

First and Foremost, I would like to thank my advisor Prof. Fei Xie. He is a

great advisor whose mentorship and intellectual insights helped me get a whole-

some view of formal verification and pick an area I love to work in. From helping

me define the project, to the point of teaching me how to identify research problems

and become an independent researcher - without his support and encouragement,

this dissertation would not have been accomplished. His deep theoretical knowl-

edge and passion about developing practical tools had a great influence on my

Ph.D research and future career. Given my unique personal family situation, I am

indebted to him for his patience and the kind of support he provided through the

final years of dissertation.

I would also like to take this opportunity to thank Dr. Sandip Ray who has

taken out his personal time to help me in all the facets of this research and has been

a steady influence throughout my Ph.D. career. He has been my guide throughout

and has oriented and supported me with a lot of patience. I have a huge respect

for his knowledge in this area and will always be grateful to him for encouraging

me to come up with new ideas in times of difficulties. I will fondly remember our



v

long thought provoking discussions irrespective of the time of the day.

Besides Prof. Fei Xie and Dr Sandip Ray, I would like to thank Prof. Suresh

Singh, Prof. Feng Liu, and Prof. Fu Li for serving on my dissertation committee.

Thanks for their valuable feedback and willingness to listen to my ideas. Thanks a

lot for understanding my personal situation and supporting me in the final phase

of this degree.

I would like to thank Dr. Kecheng Hao and Dr. Zhenkun Yang. Many research

ideas of this dissertation come from fruitful discussions with them. I am grateful

that I had great opportunity to work with talented group members: Dr. Kai Cong

and Dr. Li Lei.

I would like to thank my in-laws who encouraged me to pursue post graduate

studies. Their continuous encouragement and endless sacrifices have helped me

to grow both personally and professionally and I can never thank them enough

for their love and support. I would like to thank my parents who have always

believed in me and motivated me throughout my life. They have instilled in me a

feeling that God would guide and support me in every situation and that feeling

has helped me overcome a lot of obstacles I have faced in the past few years.

I would like to thank my husband for his unconditional love and making me

feel at all times that my education and my dreams are as important as his own.

I am blessed to have found in him a guide and a friend. Finally, I would like to

thank my 1 year old son whose contagious smile can brighten up any tiring day.



vi

TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction 1

1.1 Dissertation Summary . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Overview of our Approach . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Background and Context 10

2.1 Behavioral Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Overall Certification Model for Behaviorally Synthesized Pipelines . 11

2.3 A Reference Pipeline Approach . . . . . . . . . . . . . . . . . . . . 13

Chapter 3 Formalization 16

3.1 Intermediate Representation: CCDFG . . . . . . . . . . . . . . . . 16

3.2 Correctness of Loop Pipelining . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4 Research Challenges 25

4.1 Importance of using Formal Methods for checking correctness . . . 25

4.2 Challenges associated with Formal reasoning . . . . . . . . . . . . . 25

4.3 Comparison with Previous Algorithm . . . . . . . . . . . . . . . . . 26

Chapter 5 Our Approach 29



vii

5.1 Framework of Provable Pipelining Primitives . . . . . . . . . . . . . 30

5.2 Our Loop Pipelining Algorithm . . . . . . . . . . . . . . . . . . . . 33

Chapter 6 Proof Sketch 45

6.1 Correctness of Primitives . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Key Invariant on Correspondence Between Back-edges of Sequential

and Pipelined Loops . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Correctness of our algorithm . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Lessons from Previous False Starts . . . . . . . . . . . . . . . . . . 63

Chapter 7 Viability of our Approach 65

7.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Walk Through of Our Approach on an Industrial Strength Design . 66

Chapter 8 Related Work and Novelty of Our Approach 83

8.1 Hardware Pipelines and Their Verification . . . . . . . . . . . . . . 83

8.2 Software Pipelines and Their Verification . . . . . . . . . . . . . . . 85

8.3 Verification of Behaviorally Synthesized Designs . . . . . . . . . . . 87

8.4 Use of Theorem Provers in Hardware Verification . . . . . . . . . . 88

Chapter 9 Conclusion and Future Work 90

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.2 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

References 93



viii

LIST OF TABLES

7.1 Behaviorally synthesized pipelined designs tested using our algorithm 66



ix

LIST OF FIGURES

1.1 Behavioral synthesis flow . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Loop pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Back-edge in sequential loop Vs back-edge in pipelined loop . . . . 5

1.4 Overview of our approach . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Certification model for behaviorally synthesized pipelines . . . . . . 11

2.2 Certifying loop pipelining algorithm using SEC and theorem proving 14

3.1 (a) Loop in C (b) Loop CCDFG before pipelining . . . . . . . . . . 21

3.2 Pipelining increases throughput . . . . . . . . . . . . . . . . . . . . 22

5.1 Our framework of certified primitives . . . . . . . . . . . . . . . . . 30

5.2 Shadow register primitive . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Branch primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Our loop pipelining algorithm (built using primitives) . . . . . . . . 34

5.5 Sequential CCDFG with conditional branch . . . . . . . . . . . . . 35

5.6 Sequential CCDFG without conditional branch. Note the addition

of SpreExit to explicitely define the control flow . . . . . . . . . . . . 36

5.7 (a) Unrolling the loop once to separate the first iteration (b) After

φ-removal transformation . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8 (a) Data propagation - first step (b) Data propagation - second step 39

5.9 After shadow register . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.10 After superstep construction . . . . . . . . . . . . . . . . . . . . . . 42

5.11 Final pipelined CCDFG . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Correctness of φ-elimination primitive . . . . . . . . . . . . . . . . . 45

6.2 Shadow register primitive . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Branch primitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Superstep construction . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Invariant base case where k = 1 . . . . . . . . . . . . . . . . . . . . 51



x

6.6 Invariant inductive step . . . . . . . . . . . . . . . . . . . . . . . . 52

6.7 Correctness of invariant implies the correctness statement . . . . . . 53

6.8 Proof sketch for remove branches stage . . . . . . . . . . . . . . . . 58

6.9 Proof sketch for φ-to-assign step . . . . . . . . . . . . . . . . . . . . 59

6.10 Proof sketch for Data Propagation Step Base Case . . . . . . . . . . 61

6.11 Proof sketch for data propagation step . . . . . . . . . . . . . . . . 62

7.1 TEA: C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2 TEA: Sequential loop CCDFG . . . . . . . . . . . . . . . . . . . . . 68

7.3 TEA: After removing branches . . . . . . . . . . . . . . . . . . . . . 69

7.4 TEA: After unrolling loop once . . . . . . . . . . . . . . . . . . . . 70

7.5 TEA: After φ-removal . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.6 TEA: After data propagation first step for v0 1 := v0 2 . . . . . . . 73

7.7 TEA: After data propagation second step for v0 1 := v0 2 . . . . . 74

7.8 TEA: After data propagation first step for v1 1 := v1 2 . . . . . . . 75

7.9 TEA: After data propagation second step for v1 1 := v1 2 . . . . . 76

7.10 TEA: After adding shadow registers . . . . . . . . . . . . . . . . . . 78

7.11 TEA: After superstep construction . . . . . . . . . . . . . . . . . . 79

7.12 TEA: After interchanging post with pre-exit . . . . . . . . . . . . . 80

7.13 TEA: Pipelined CCDFG after adding branches back . . . . . . . . . 81



1

Chapter 1

INTRODUCTION

1.1 DISSERTATION SUMMARY

Developing a certified loop pipelining algorithm is a complex problem. We have

developed a certified loop pipelining algorithm for behavioral synthesis by proper

application of theorem proving techniques. The result of this dissertation is a

framework of certified pipelining primitives which are essential in developing any

such pipelining algorithm. We systematically build a loop pipelining algorithm

from ground up using these primitives and certify this algorithm using ACL2 the-

orem prover.

1.2 MOTIVATION

Behavioral synthesis [15, 4] is the process of synthesizing an Electronic System-

level (ESL) specification of a hardware design into a Register-Transfer Level (RTL)

implementation. The idea of ESL is to raise the design abstraction by specifying

the high-level, functional behavior of the hardware design. Designs are typically

specified in a language such as C, C++, or SystemC. The approach is promising

since the user is relieved of developing and optimizing low-level implementations.

Studies have shown that ESL reduces the design effort by 50% or more while

attaining excellent performance results [33]. It has recently received significant

attention, as the steady increase in hardware complexity has made it increasingly



2

High level specification of  hardware design
(in C, C++, System C)

Implementation in hardware description language
(in VHDL, Verilog)

Compiler Transformations 
(e.g., dead code elimination)

Scheduling Transformations
(e.g., Loop pipelining)

Resource Allocation
and Control Synthesis

B
eh

av
io

ra
l 

S
y

n
th

es
is

 T
o

o
l

Figure 1.1: Behavioral synthesis flow

difficult to design high-quality designs through hand-crafted RTL under aggressive

time-to-market schedules. A recent example is VP9 G2 hardware decoder IP de-

veloped by Google [2], which has been implemented primarily in standard C++

and synthesized to RTL logic for different target technologies and performance

points using Calypto’s Calatpult High Level Synthesis tool [8]. Nevertheless, and

in spite of availability of several commercial behavioral synthesis tools [7, 48, 19],

the adoption of the approach in main-stream hardware development for micropro-

cessor and SoC design companies is dependent on designers’ confidence that the

synthesized RTL indeed corresponds to the ESL specification.

To satisfy the power and performance demands of modern applications, a be-

havioral synthesis tool applies hundreds of transformations. As shown in Fig-

ure 1.1, a typical behavioral synthesis flow can be roughly divided into three

phases: compiler transformations; scheduling transformations; resource allocation

and control synthesis. Commercial synthesis tools are highly complex software

involving thousands to millions of lines of code; furthermore, they perform aggres-

sive optimizations on the design being synthesized to satisfy constraints on power,



3

Execution order before pipelining (3 iterations take 9 clock cycles)

Execution order after pipelining (3 iterations take 5 clock cycles)

“ Pipeline interval is 1”

Figure 1.2: Loop pipelining

performance, and area. Tools of such compelxity invariably contain subtle bugs,

which undermine the very effectiveness of behavioral synthesis. Consequently, it is

critical to develop a methodology for certifying synthesis transformations. Thus,

it is critical to develop mechanized support for certifying the equivalence between

ESL and RTL designs. However, the large difference in abstraction between the

two representations makes such certification non-trivial.

Loop pipelining is a critical transformation in behavioral synthesis. The goal of

this transformation is to increase throughput and reduce latency of the synthesized

hardware by allowing temporal overlap of successive loop iterations. As shown in

Figure 1.2, the three iterations of overlapped pipeline structure takes only five clock

cycles as opposed to nine clock cycles if executed sequentially. It is performed by

most state-of-the-art synthesis tools [48, 19, 9].

Unfortunately, it is also highly complex [61] and error-prone, requiring sub-

tle analysis of invariants to preclude data hazards arising from overlapping con-

trol/data flow of executions of successive loop iterations. Furthermore, certifying

the result of this transformation is very difficult. In particular, the pipelined output



4

design from the transformation has a markedly different control/data flow structure

from the sequential design that is input to the transformation; this makes it hard to

find corresponding internal signals to serve as cutpoints, making it hard to compare

them through Sequential Equivalence Checking (SEC). Another formal verification

technique is theorem proving. However, applying theorem proving to certify the

pipelining transformation is clearly cost-prohibitive given the complexity of the

implementation; furthermore, most commercial transformation implementations

are proprietary, making it infeasible to develop such a framework from a meth-

dological perspective. As a result, hardware designers are vary of using current

behavioral synthesis tools as they are often deemed either (a) aggressively opti-

mized but error-prone or (b) reliable but overly conservative, thus often producing

circuits of poor quality or performance [20, 40]. Therefore, ensuring correctness of

behaviorally synthesized pipeline designs is a critical issue in bringing behavioral

synthesis into practice.

An approach for certifying loop pipelining transformations using a combina-

tion of SEC and theorem proving techniques has been proposed by Hao et al. [24].

The most critical and complex component of their approach (c.f. Section 2.3) is

developing a loop pipelining algorithm with two key properties: (1) it generates

a reference pipeline model by exploiting pipeline generation information from the

synthesis flow (e.g., the iteration interval of a generated pipeline) and the reference

model can be compared with a pipelined RTL implementation using SEC effec-

tively, and (2) it can be mechanically verified to correctly preserve the semantics

of sequential (non-pipelined) specification of loop execution. Hao et al. showed

viability of their approach by comparing pipeline generated from their algorithm

with RTL implementation using SEC. However, their algorithm was not certified

as well as incomplete as explained later in Section 2.3. Certification is a key

component without which correctness of behavioral synthesis process for pipelined

designs cannot be claimed. Therefore, this dissertation on developing a certified



5

Entry

Exit

Pipeline 
Prologue

Pipeline
Full

Pipeline 
Epilogue

Entry

Exit

Sequential Execution Pipelined Execution

Backedge
Correspondence 

Figure 1.3: Back-edge in sequential loop Vs back-edge in pipelined loop

loop pipelining algorithm using our framework of certified primitives is important

in facilitating formal verification of behaviorally synthesized pipeline designs.

1.3 PROBLEM STATEMENT

Certifying an algorithm especially as complex as loop pipelining is not easy by

any known conventional methods. To develop a certified loop pipelining algorithm

in behavioral synthesis, we need to address the following key challenges brought

about by the semantic gap between the sequential and pipelined designs.

– Formalizing an invariant that links loop in a sequential design with loop in the

corresponding pipelined design. As shown in Figure 1.3, a sequential loop exe-

cutes its iterations in sequence. The previous loop iteration is complete before

the next iteration starts. A pipelined design, however, overlaps the consecutive

iterations of a given design based on the pipeline interval. As a result, a loop in



6

the pipelined design executes statements from different iterations of the corre-

sponding sequential loop design. Identifying a provable inductive invariant that

links the backedge in the sequential loop with the backedge in the pipelined loop

is, therefore, a major challenge.

– Identify and certify underlying primitives in a loop pipelining algorithm. Cer-

tifying a loop pipelining algorithm requires a complex invariant to prove that

executing a sequential loop is equivalent to executing a pipelined loop. Identify-

ing the pieces which would make this certification managable is a difficult task.

We decompose the algorithm into certifiable primitives. We prove that if each

primitive maintains an invariant that the execution of the intermediate repre-

sentation before and after application of the primitive is same, we can prove that

the algorithm also maintains the invariant. This approach, however, requires a

crisp understanding of the essential steps involved in developing a pipeline loop

from a sequential loop. We need to succinctly identify primitives which maintain

the given invariant and are also certifiable by theorem proving. Each primitive

would require a systematic approach for its proof.

– Identify and maintain control flow by proper placement of branches. Branch

conditions dictate the control flow. Presence of conditional and unconditional

branch instructions in a loop means that the loop is no longer executed in a

straight line. At each application of primitive, we need to ensure that this

control flow is not disturbed and is well accounted for.

– Certifying the complete loop pipelining algorithm based on certified primitives.

Although, the primitives act as backbone for our algorithm, their certification

alone does not automatically certify the entire algorithm. We need to identify

the conditions under which a primitive is correct and make sure that every

application of the primitive in the algorithm has the required assumptions.



7

Identify succinct 
primitives which 
are essential for 
pipelining 
algorithms 

Prove that execution 
before and after each 
primitive is same using 
a mechanical theorem 
prover

Identify loop 
dependencies, data 
hazards(RAW/WAR) 
and cond/uncond
branches statically

Create the loop 
pipelining algorithm 
using primitives. 
Maintain data and 
control dependencies.

Prove an invariant that 
links the backedge in 
sequential structure with 
backedge in pipelined 
loop

Certify that well-formed 
conditions are 
maintained for each 
application of primitive

Prove algorithm end-to-
end using our invariant, 
certified primitives and 
other components 

Test the robustness 
and scalability of 
algorithm using 
industrial designs

Loop pipelining 
algorithm

Figure 1.4: Overview of our approach

1.4 OVERVIEW OF OUR APPROACH

Our work shows that a certified loop pipelining algorithm can be developed by

systematic application of theorem proving techniques.

We have basically divided our approach into eight broad steps as shown in

Figure 1.4. The first two steps define our framework of certified primitives which we

believe are essential for any certified pipelining algorithm. We have identified these

primitives based on a realization that in order to generate a pipelined loop design

from a sequential loop design, there are three broad steps: (1) identification and

removal of data hazards, (2) overlapping the executions of subsequent iterations

after the removal of data hazards, and (3) maintaining the correct control flow

to preserve the exit condition and state at the time of exit from the loop. Our



8

primitives are such that they can be applied alone or in combination with other

primitives to remove data hazards, reason about branches and to overlap iterations.

We certify each primitive by proving that execution before and after each primitive

is correct. Certification of each primitive requires separate careful reasoning in a

mechanical theorem prover which we describe later in Chapter 6. We have defined

the syntax and semantics of intermediate design representation in ACL2 [39, 55].

We have formalized and certified all of our primitives in ACL2 theorem prover.

The next six steps are for creating the certified loop pipelining algorithm using

our framework of certified primitives. Certifying an application of a primitive in the

context of the algorithm further involves ensuring that addition of any primitive

does not alter the underlying assumptions in the syntax, for example, if we assume

there are no return statements in a given representation, applying any primitive

should also maintain that assumption. We use these primitives as a backbone to

build our loop pipelining algorithm with distinct decomposable components one

step at a time. Besides primitives, there are also additional components in the

algorithm such as for identifying data hazards and for unrolling the loop. Each

component satisfies the invariant that execution of intermediate representations

before and after the component is same. We elaborate on our approach later in

Chapter 5.

We have also identified a unique invariant which proves that executing over-

lapped iterations is equivalent to executing sequential iterations. It differs from

a typical invariant used for correctness of pipelined systems in that it explicitly

specifies the correspondence between the sequential and pipelined programs at each

transition. We elaborate on our invariant in Chapter 6. We have proved that our

algorithm satisfies this invariant.

We have certified the algorithm end-to-end which means that given a well-

formed pipelinable loop (definition explained later in Chapter 5), we show that

executing a sequential loop is equivalent to executing the pipelined loop created



9

using our algorithm. We elaborate on the proof in our proof sketch in Chapter 6.

Our proof sketch shows that our primitives are sufficient and essential and that we

can build a complete certified loop pipelining algorithm from ground up using our

framework.

The major contributions of our dissertation are:

– Identifying the key provable primitives essential in pipelining algorithms for

behavioral synthesis and certifying these primitives in ACL2 theorem prover;

– Formalizing an invariant to link the sequential loop before pipelining with the

pipelined loop;

– Developing our own executable loop pipelining algorithm in ACL2 using those

primitives and certifying this algorithm using ACL2 theorem prover;

– Testing our certified loop pipelining algorithm on varied designs

1.5 OUTLINE

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on the overall project and explains the context of our theorem proving

work. Chapter 3 discusses our formalization of the intermediate representations

used in behavioral synthesis. We also discuss the correctness statement for loop

pipelining algorithms. Chapter 4 discusses an earlier proposed algorithm and how

and why we have chosen a different approach. Chapter 5 discusses our framework

and a certified loop pipelining algorithm we have developed using the framework.

Chapter 6 provides a proof sketch for our algorithm. Chapter 7 provides evaluation

of robustness and scalability of our algorithm on various designs from different

application domains. The related work is discussed in Chapter 8. We then conclude

with the major contributions of this dissertation and future work in Chapter 9.



10

Chapter 2

BACKGROUND AND CONTEXT

In this Chapter, we discuss the overall project of verifying behaviorally synthesized

designs, and how the certification of loop pipelining fits into this project. The

reader interested in a thorough understanding of other components of the project

is welcome to review the prior publications [52, 25].

2.1 BEHAVIORAL SYNTHESIS

Behavioral synthesis [44] is an automated compilation process where a behavioral

synthesis tool [20, 14, 9] takes an ESL description, together with a library of hard-

ware resources. Analogous to a regular compiler, the tool performs the standard

lexical and syntax analysis to generate an intermediate representation (IR). The

IR is then subjected to a number of transformations which can be categorized into

three phases as shown in Figure 2.1.

– Compiler Transformations: These include typical compiler operations, e.g.,

dead-code elimination, constant propagation, loop unrolling, common subexpres-

sion elimination etc. Furthermore, expensive operations (e.g., division) may be

replaced with simpler ones (e.g., subtraction). A design may undergo hundreds

of compiler transformations.

– Scheduling Transformations: Scheduling entails computing for each opera-

tion the clock cycle of its execution, accounting for hardware resource constraints

and control/data dependencies. Loop pipelining, the focus of our dissertation,

is a component of this phase.



11

High level specification of  hardware design
(in C, C++, System C)

Implementation in hardware description language
(in VHDL, Verilog)

Compiler & Simple Scheduling 
Transformations 

Loop pipelining

Resource Allocation
and Control SynthesisB

eh
av

io
ra

l 
S

y
nt

h
es

is
 T

oo
l

Front End Checker (SEC)

Reference Pipeline Approach
(SEC + Theorem Proving)

Back End Checker (SEC)

C
er

ti
fi

ca
ti

on
 F

ra
m

ew
o

rk

Figure 2.1: Certification model for behaviorally synthesized pipelines

– Resource Allocation and Control Synthesis: This phase involves mapping

a hardware resource to each operation (the “+” operation may be mapped to a

hardware adder), allocating registers to variables, and generating a controlling

finite-state machine to implement the schedule.

After the three phases above, the design can be expressed in RTL. The synthesized

RTL may be subjected to further manual tweaks to optimize for area, power, etc.

Each transformation is non-trivial. The end result is a hardware implementation

which has a huge abstraction gap from the input ESL description.

2.2 OVERALL CERTIFICATION MODEL FOR BEHAVIORALLY

SYNTHESIZED PIPELINES

The overall goal of the project is to provide a mechanized framework for certifying

hardware designs synthesized from ESL specifications by commercial behavioral

synthesis tools. One obvious approach is to apply standard verification techniques

(SEC or theorem proving) on the synthesized RTL itself. Unfortunately, such a



12

methodology is not practical. As mentioned earlier, the large gap in abstraction

between the ESL and RTL descriptions means that there is little correspondence

in internal variables between the two. Consequently, direct SEC between the two

reduces to cost-prohibitive computation of input-output equivalence. On the other

side, applying theorem proving is also troublesome since extensive manual effort

is necessary and this effort needs to be replicated for each different synthesized

design. It is also infeasible to directly certify the implementation of the synthesis

tool via theorem proving. In addition to being highly complex and thus poten-

tially requiring prohibitive effort to formally verify with any theorem prover, the

implementations are typically closed-source and closely guarded by EDA vendors

and thus out of reach of external automated reasoning communities.

To address this problem, previous work developed two key SEC solutions, which

we will refer to below as Back-end and Front-end. We then discuss the gap between

them, which is being filled by theorem proving efforts in this dissertation. The

certfication model is illustrated in Figure 2.1.

Back-end SEC: The key insight behind back-end SEC is that automated SEC

techniques, while ineffective for directly comparing synthesized RTL with the top-

level ESL description, are actually suitable to compare the RTL with the inter-

mediate representation (IR) generated by the tools after the high-level (compiler

and scheduling) transformations have been applied. In particular, operation-to-

resource mappings generated by the synthesis tool provide the requisite correspon-

dence between internal variables of the IR and RTL. Furthermore, a key insight is

that while the implementations of transformations are unavailable for commercial

EDA tools, most tools provide these IRs after each transformation application to-

gether with some other auxiliary information. To exploit these, an SEC algorithm

was developed between the IR (extracted from synthesis tool flow after these trans-

formations) and RTL [52, 25, 26, 70]. The approach scales to tens of thousands of

lines of synthesized RTL.



13

Front-end SEC: Of course the back-end SEC above is only meaningful if we can

certify that the input ESL indeed corresponds to the extracted IR produced af-

ter the compiler and scheduling transformations applied in the first two phases of

synthesis. To address this, another SEC technique was developed to compare two

IRs [67, 69, 68]. The idea then is to obtain the sequence of intermediate repre-

sentations IR0, . . . , IRn generated by the compiler and scheduling transformations,

and compare each pair of consecutive IRs with this new algorithm. Then back-end

SEC can be used to compare IRn with the synthesized RTL, completing the flow.

A Methodology Gap: Unfortunately, the front-end SEC algorithm can only

compare two IRs that are structurally close. If a transformation significantly

transforms the structure of an IR then the heuristics for detecting correspond-

ing variables between the two IRs will not succeed, causing equivalence checking

to fail. Loop pipelining falls in the category of transformations that significantly

change the structure of the IR. It is a quintessential transformation that changes

the control/data flow and introduces additional control structures (to eliminate

hazards). This makes front-end SEC infeasible for its certification. Furthermore,

most commercial implementations are of course proprietary and consequently not

available to us for review; applying theorem proving on those implementations is

not viable from a methodology perspective. Thus a specialized approach is war-

ranted for handling its certification.

2.3 A REFERENCE PIPELINE APPROACH

To develop a specialized approach for pipelines, a key observation is that while

the transformation implementation is inaccessible to us, commercial synthesis tools

typically generates a report specifying pipeline parameters (pipeline interval, num-

ber of loop iterations pipelined, etc.). The approach (c.f. Figure 2.2) then is to

develop an algorithm that takes as inputs these parameters and an IR C for the



14

Loop Pipelining Transformation

1. Create a correct pipeline reference model

Pipeline
Reference

Model

Pipeline 
parameters

2. Compare using sequential equivalence checking (SEC)

Entry

X

Y

Z

Exit

X

X

Y

Z

X

Y

Z

Entry

Exit

Certified Pipelining 
Algorithm

C

P

Figure 2.2: Certifying loop pipelining algorithm using SEC and theorem proving

design before pipelining, and generates a reference pipelined IR P . Note that this

algorithm would be much simpler than that employed during synthesis; while the

former includes advanced heuristics to compute pipeline parameters (like pipeline

interval, number of iterations pipelined etc.), this algorithm would merely use the

values provided by its report. To certify a synthesized RTL with pipelines, it is

sufficient to (1) check that the given algorithm can generate a pipeline P for the

parameters reported by synthesis, (2) use SEC to compare P with the synthesized

RTL, and (3) prove (using theorem proving) the correctness of this algorithm.

A previous work [24] justified the viability of steps 1 and 2 above; such a refer-

ence pipeline generation algorithm was developed and used to successfully compare

a variety of pipelined designs across various application domains. This suggested

that the approach of using a reference implementation is viable for certifying varied

behaviorally synthesized pipelines. However, a key (and perhaps the most com-

plicated) component of the approach was missing. The algorithm was not verified

(indeed, not implemented in a formal language), rendering the “certification” flow



15

unsound.

The unsoundness mentioned above is not just an academic notion. The ap-

proach showed no systematic approach for creating the reference pipeline gen-

eration algorithm. In fact, the specific reference algorithm developed was in fact

heavily influenced by the synthesis tool under consideration (AutoESL), and highly

complex. In fact, merely by going through the formalization process and thinking

about necessary invariants, we have already found a bug in the implementation of

the algorithm. Thus it is critical to develop a mechanized proof of correctness for

this implementation. Unfortunately, it is not easy to verify the original pipeline

generation algorithm as written. Its author was an expert in behavioral synthesis

but not in program verification or theorem proving; consequently, the algorithm,

while simpler than the one implemented in a synthesis tool, was still a highly

complex piece of code. In particular, since it was not written with correctness cer-

tification in mind, it is difficult to decompose the algorithm into manageable pieces

with succint invariants. One way to address this problem is to “buckle down” and

verify the pipeline generation algorithm (and fixing the bugs found in the process).

However, a key insight in our case is that we can get away without verifying such

a complex implementation. After all, there is nothing “sacred” about this specific

algorithm for pipeline generation: given the steps described above, any verifiable

pipeline generation algorithm would suffice.1

Thus the approach of our dissertation can be viewed as systematic approach to

write a loop pipelining algorithm which is amenable to mechanical theorem proving.

We identify the key invariant that we need to maintain for proving computational

equivalence between the pipelined and un-pipelined loops and design an algorithm

to explicitly maintain that invariant.

1Note that our algorithm must create a pipeline in accordance with the pipeline parameters
obtained from the behavioral synthesis tools; otherwise we may fail to certify correct designs.
However, in practice, we have not found this to be a problem.



16

Chapter 3

FORMALIZATION

3.1 INTERMEDIATE REPRESENTATION: CCDFG

In order to formalize and prove the correspondence between pipelined and un-

pipelined IRs, a first step is to define a formalization of the IRs themselves. We

call our formalization of IRs Clocked Control Data Flow Graph (CCDFG). An in-

formal description of CCDFG has been provided before [52]. It can be best viewed

as a traditional control/data flow graph used by most compilers, augmented with

a schedule. Control flow is broken into basic blocks. Instructions are grouped into

microsteps which can be executed concurrently. A scheduling step is a group of

microsteps which can be executed in a single clock cycle. The state of a CCDFG

at a particular microstep is a list of all the variables of a CCDFG with their

corresponding values.

The semantics of CCDFG require a formalization of the underlying language

used to represent the individual instructions in each scheduling step. The under-

lying language we use is the LLVM [36]. It is a popular compiler infrastructure for

many behavioral synthesis tools [14, 9] and includes an assembly language front-

end. We currently support only a subset of LLVM operations which are required

to handle all the designs we have seen. Instructions supported include assignment,

load, store, bounded arithmetic, bit vectors, arrays, and pointer manipulation in-

structions. Note that the reasoning involved in creating a pipelined CCDFG does

not involve the exact syntax of any operation. We are merely concerned with a

way to find the variables which are read and written at each step. Increasing



17

the operations database in our algorithm is expected to increase the time taken

to prove certain primitives as much more analysis needs to be done. However, it

would not affect the logical reasoning of the primitives, the overall algorithm and

the proof. We define the syntax of each type of statement by defining an ACL2

predicate. For example, in our syntax, an assignment statement can be expressed

as a list of a variable and an expression.

(defun assignment-statement-p (x)

(and (equal (len x) 1)

(and (equal (len (car x)) 2)

(first (car x)) (symbolp (first (car x)))

(expression-p (second (car x))))))

An expression can further be of multiple types, load expression (loading the

value of a variable from memory), add expression (addition of two variables), xor

expression (xor of two variables) etc., where each expression includes the operation

applied to the appropriate number of arguments.

We provide semantics to these instructions through a state-based operational

formalization as is common with ACL2 [45]. We define the notion of a CCDFG

state, which includes the states of the variables, memory, pointers, etc. Then we

define the semantics of each instruction by specifying how it changes the state.

Thus, for an assignment statement we will have a function execute-assignment

that specifies the effect of executing the assignment statement on a CCDFG state.

(defun add-expression-p (x)

(and (equal (len x) 3)

(equal (first x) ’add)

(variable-or-numberp (second x))

(variable-or-numberp (third x))))



18

(defun expression-p (x)

(and (consp x)

(or (load-expression-p x)

(add-expression-p x)

(xor-expression-p x)...)))

Defining the semantics of most supported statements is straightforward, with

one exception. The exception is the so-called “φ-construct” available in LLVM [1].

A φ-construct is a list of φ-statements. A φ-statement is v := φ[σ, bb1][τ, bb2],

where v is a variable, σ and τ are expressions, and bb1 and bb2 are basic blocks:

if it is reached from bb1 then it is the same as the assignment statement v := σ;

if reached from bb2, it is the same as v := τ ; the meaning is undefined otherwise.

The construct is complex since the effect of executing this statement on a CCDFG

state s depends not only on the state s but also on how s is reached by the control

flow. φ-statements are inevitable in loop designs — they are used to evaluate the

value of loop carried dependencies. Consequently, the complexity induced by this

instruction cannot be avoided.

(defun phi-expression-p (x)

(and (consp x) (equal (len x) 1)

(consp (car x)) (> (len (car x)) 2)

(equal (caar x) ’phi) (phi-l (cdr (car x)))))

(defun phi-statement-p (x)

(and (consp x) (equal (len x) 2)

(symbolp (first x)) (first x)

(phi-expression-p (cdr x))))

Here phi-1 recognizes an expression of the form ((E0 b) (E1 b-prime))

where E0 and E1 are expressions and b and b-prime are symbols representing



19

basic blocks. Thus in ACL2, the φ-statement looks like (v (phi ((E0 b) (E1

b-prime)))). Finally, the execution semantics requires the additional parameter

prev-bb to track the previous basic block.

(defun choose (choices prev-bb)

(if (or (equal (nth 1 (first choices)) prev-bb)

(equal (symbol-name (nth 1 (first choices))) prev-bb))

(nth 0 (first choices))

(nth 0 (second choices))))

(defun evaluate-val (val bindings)

(if (symbolp val)

(cdr (assoc-equal val bindings))

val))

(defun execute-phi (stmt init-state prev-bb)

(let* ((expr (cdr stmt))

(var (first stmt))

(val (evaluate-val (choose (cdr (car expr)) prev-bb)

(car init-state))))

(list (replace-var var val (variables-of init-state))

(memory-of init-state)

(pointers-of init-state))))

The init-state represents the state of a CCDFG before executing φ-statement.

The function variables-of is used to get a list of all the variables of init-state with

their corresponding values. replace-var replaces the values of the variable var to

val in the list of those variables.



20

3.2 CORRECTNESS OF LOOP PIPELINING

For the purposes of this dissertation, a pipelinable loop is a loop with the following

restrictions [24]:

1. no nested loop;

2. only one Entry and one Exit block; and

3. no branching between the scheduling steps.

A well-formed pipelinable loop is expected to have only one conditional branch

and one unconditional branch. Unconditional branch is at the end of the loop

dictating the back edge which enforces that the loop CCDFG is executed again from

the first step. Conditional branch ensures that depending on the current value of

the exit condition variable, a loop can exit if required. Other intermediate branches

have already been handled by compiler and scheduling transformations prior to the

pipelining transformation so we need not consider them in our reasoning. There

is one φ-construct in the first scheduling step which handles the value assigned to

loop carried variables depending on whether we are entering loop for the first time

or not.

These restrictions are not just meant to simplify the problem, but reflect the

kind of loops that can be actually pipelined during behavioral synthesis. For

instance, synthesis tools typically require inner loops to have been fully unrolled

(perhaps by a previous compiler transformation) in order to pipeline the outer

loop.



21

a = 0; /* set up */

i = 0;

While (a < N) {

a = a + 2; 

c = i + 3;

i = a + c;

}

Entry

Exit

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

if [not (a < N)] goto Exit
a'  := a + 2

c := i + 3

i' := a' + c

X

Y

Z

(a) (b)

Figure 3.1: (a) Loop in C (b) Loop CCDFG before pipelining

Figure 3.1(a) illustrates the C code (ESL description) for a loop. The C code

does not have a schedule or the concept of a clock cycle. Figure 3.1(b) shows

CCDFG of the sequential loop just before loop pipelining. The loop has three

scheduling steps: X, Y and Z. The scheduling step before the loop is Entry

and after the loop is Exit. The edges in the CCDFG indicate the control flow.

Note that the sequential CCDFG has Static Single Assignment (SSA) structure ,

as a result variable a and i are not assigned more than once and we require the

quoted variables a′ and i′. Note that there is a φ-statement in the first scheduling

step of the loop. This φ-statement accounts for those variables whose values are

dependent on the variables evaluated in a previous iteration.

Behavioral synthesis tools use complicated heuristics and aggressive scheduling

strategies to find an optimized pipeline interval (clock cycles after which a new

iteration can be started such that there are no data hazards). One iteration of

the sequential design takes three clock cycles. Observe in Figure 3.2 that with the



22

X Y Z X Y Z X Y Z

X Y Z

X Y Z

X Y Z

Execution order before pipelining

Execution order after pipelining

Figure 3.2: Pipelining increases throughput

pipeline interval of one, the three iterations of the pipelined loop take five clock cy-

cles as opposed to nine clock cycles in the sequential loop. Loop pipelining reduces

the number of clock cycles required to execute the loop, hence this transformation

is used by synthesis tools to increase throughput and reduce overall latency.

The main lemma involved in the correspondence proof between the sequential

and pipelined CCDFG can be paraphrased in English as follows.

If the pipeline generation succeeds without error, executing the pipelined

CCDFG loop for k iterations generates the same state of the relevant

variables as executing the sequential CCDFG for some k′ iterations.

The explicit value of k′ is given by the term (+ (- k 1) (ceil m

pp-interval)).

The theorem can be stated in ACL2 as follows.1

(defthm correctness-statement-key-lemma

1The theorem mentioned in the paper does not contain all the hypotheses. Please refer to our
proof scripts for final form of this theorem.



23

(implies (and (posp k)

(posp pp-interval)

(posp m)

(equal pp-ccdfg

(superstep-construction pre loop pp-interval m))

(not (equal pp-ccdfg "error"))))

(equal (in-order (get-real (run-ccdfg (first pp-ccdfg)

(second pp-ccdfg)

(third pp-ccdfg)

k init-state prev)))

(in-order (run-ccdfg pre loop nil

(+ (- k 1) (ceil m pp-interval))

init-state prev)))))

The theorem involves several ACL2 functions, e.g., get-real,

superstep-construction, etc. For details, one can refer to our proof-scripts. We

provide a brief, informal description of some of the critical functions in the theorem.

Two key functions that appear in the theorem above are superstep-construction

and run-ccdfg.

The function run-ccdfg runs a CCDFG including a pipelinable loop in three

parts, first the prologue before the loop, next the loop itself, and finally the epilogue

past the loop.2

This function is defined as follows, where prefix determines the previous

scheduling step of the iteration (required to resolve φ-statements).

(defun run-ccdfg (pre loop post iterations init-state prev)

(let* ((state1 (run-block-set pre init-state nil prev))

2Of course one can have the standard function run that executes the entire CCDFG rather
than in parts. However, for reasons that will be clear when we define the invariant, in our case it
is easier to do most of the work with the execution in three parts and then assemble them into
a final theorem about the CCDFG run in the end.



24

(state2 (run-blocks-iters loop state1 iterations

(prefix loop)))

(state3 (run-block-set post state2 nil (prefix post)))

state3))

The function superstep-construction combines the scheduling steps of suc-

cessive iterations to create the “scheduling supersteps” of pipelined CCDFG. If

there are data-hazards and pipelined CCDFG cannot be generated as per the pp-

interval given, the function generates an “error”.

Finally, the function get-real removes from the pipelined CCDFG state, all

auxiliary variables introduced by the pipeline generation algorithm itself, leaving

only the variables that correspond to the sequential CCDFG,3 and in-order nor-

malizes “sorts” the components in a CCDFG state in a normal form so that the

sequential and pipelined CCDFG states can be compared with equal.

3The algorithm has to introduce new variables in order to eliminate hazards. One consequence
of this is that the new variables so introduced must not conflict with any variable subsequently
used in the CCDFG. Since we do not have a way to ensure generation of fresh variables, this
constraint has to be imposed in the hypothesis.



25

Chapter 4

RESEARCH CHALLENGES

4.1 IMPORTANCE OF USING FORMAL METHODS FOR CHECK-

ING CORRECTNESS

Formally certifying an algorithm gives confidence that the pipelined design is in-

deed correct. We can claim that if a pipeline loop is created, then there are no

additional data hazards which have not been accounted for. Also, since our final

theorem proves that executing a sequential loop is same as executing the pipelined

loop generated from our algorithm, we can confidently say that our algorithm is

complete and data and control flows are well-maintained.

Note that our framework is independent of the inner workings of a specific

tool, and can be applied to certify designs synthesized by different tools from a

broad class of ESL descriptions. Also, the approach produces a certified reference

flow, which makes explicit generic invariants that must be preserved by different

transformations.

4.2 CHALLENGES ASSOCIATED WITH FORMAL REASONING

To understand the complexities involved in mechanical certification of an algo-

rithm through interactive theorem proving that was not designed originally with

certification in mind, we need to re-visit the general approach to applying formal

reasoning on software programs. The typical approach is to break the program

into a number of pieces, prove key lemmas characterizing the role of each piece,



26

and then chain these lemmas together into a proof of the correctness of the en-

tire program. Crucial to this approach, however, is the requirement that each

program piece can be characterized by a succinct invariant that can be easily ver-

ified. However, in a program not developed with theorem proving certification in

mind, optimizations typically destroy the structural disciplines and modularity of

the individual program pieces. This makes it difficult to identify and isolate the

components that actually maintain succinct, interesting invariants.

4.3 COMPARISON WITH PREVIOUS ALGORITHM

The previous algorithm is composed of four concrete steps: generate scheduling

steps, add shadow register, add edges and data propagation. To prove the cor-

rectness statement in the previous algorithm, we want to prove that the complete

algorithm follows the invariant that the execution of input CCDFG is equal to

execution of the output CCDFG. We intuitively expect the individual steps or at

least a combination of steps in sequence to follow this invariant. However, since

the algorithm has not been designed keeping theorem proving in mind, that is

not the case. For example, if we consider the first step of the proposed algorithm

“generating new scheduling steps” by overlapping executions of an unrolled

loop, we know that the execution of the sequential scheduling steps is not the

same as the execution of new scheduling steps unless we prove that there are no

data hazards. But, data hazards are not completely eliminated till the last step

of the algorithm. Note, that the complete algorithm does follow the invariant as

expected, but reasoning about the structure of the complete algorithm at once is

not easy.

Our first approach was to certify their implementation as it is using theorem

proving. But, our experience was that it is a difficult approach, one that we need

not endure. In general, in order to certify such an arbitrary implementation, one

has to either (1) restructure the implementation into one that is more disciplined,



27

and prove the equivalence between the two, or (2) come up with very complex

invariants that essentially comprehend how invariants from each individual piece

are conflated together in the implementation. Both approaches require extensive

human interaction, resulting in the proverbial euphemism of proofs of programs

being orders of magnitude more complex than the programs themselves [45].

In our work, however, we can “get away” without verifying the specific im-

plementation while still being able to certify the design generated by behavioral

synthesis without loss of fidelity. The key observation, as above, is that it is suffi-

cient to develop any certifiable algorithm that generates a pipelined CCDFG from

a sequential implementation which can be effectively applied with SEC. In partic-

ular, any certifiable algorithm that has the same input-output characteristic as the

proposed algorithm is sufficient.

Checking correctness using formal methods prompted us to address the issues

lacking in the previous algorithm. To ensure that control flow is maintained, we

had to deal with branches. The previous algorithm introduces the concept of Exit

edges but does not explain/implement them. The previous authors checked the

output of their algorithm with RTL under the assumption that the loop never exits,

hence they did not face any issue while testing. However, removing a conditional

branch in a loop and furthermore, adding the conditional branch back in the middle

of a pipelined loop requires complex reasoning which we manage using one of our

primitives, explained in Chapter 5.

Also, the invariant that data flow is maintained at each step enabled us to find

a bug in the previous algorithm. The previous algorithm moves a statement to

make sure one particular data hazard is removed, but in doing so they move the

statement across a conditional branch statement. Our primitves ensure that such

a move is not possible. We have restructred the data propagation step so that

instead of going across a conditional branch in the same iteration, the movement

of step is now to the previous iteration, explained in Chapter 5.



28

Thus, our dissertation is on identifying certifiable primitives and invariants of

a loop pipelining transformation and developing a pipeline generation algorithm

using those primitives, achieving the dual goal of mechanical reasoning of the

algorithm and amenability of the resulting reference model to SEC.



29

Chapter 5

OUR APPROACH

As mentined earlier, one of the most complex requirements of verifying behaviorally

synthesized pipelined designs is a certified loop pipelining algorithm which can

generate a pipeline reference model for varied designs. This pipeline reference

model must have a similar structure to the pipelined RTL generated by behavioral

synthesis tools such that they can be compared using SEC.

Pipeline synthesis is based on the key observation that execution of successive

iterations can be overlapped without affecting execution as long as data and control

dependecies are correctly maintained. Thus, the three main activities of a pipeline

synthesis algorithm are to (1) identify and remove possible hazards (2) overlap

the successive iterations according to the pipeline interval, and (3) ensure proper

placement of conditional and unconditional branches. In our case, the identifi-

cation of data hazards is simplified since the synthesis tool provides a pipeline

interval. If we can use this pipeline interval to build our design, then the pipeline

reference model is comparable to RTL in abstraction. Thus, instead of discovering

a pipeline interval ourselves by analyzing read and write variables of every design

so that no hazard is introduced, we reuse the provided interval. We have developed

a framework of five certified pipelining primitives which allows us, among other

things, to prevent possible data hazards. Our framework also provides a primitive

to overlap successive iterations and a provision to add and remove branches when

required while still maintaining the control flow. We now discuss the framework

as shown in Figure 5.1 in detail.



30

Interchange Primitive
(To interchange two 

adjacent steps if no read 
write hazards)

Figure 5.1: Our framework of certified primitives

5.1 FRAMEWORK OF PROVABLE PIPELINING PRIMITIVES

We believe that the following primitives are necessary and essential in creating any

pipelining algorithm in behavioral synthesis.

φ-elimination primitive – A φ-statement is “v = phi [σ X] [τ Y]”, where

v is a variable, σ and τ are expressions, and X and Y are basic blocks: while exe-

cution, if the φ-statement is reached from X then it is the same as the assignment

statement v = σ; if reached from Y, it is the same as v = τ ; the meaning is un-

defined otherwise. Reasoning about the φ-statement is complex since after its

execution from a state, say s, the state reached depends not only on the state s

but also on previous basic blocks in the execution history. However, we must han-

dle it since it is used extensively in loops to perform different actions depending

on whether the loop body is executed the first time. One of the key steps in loop

pipelining is, therefore, φ-elimination i.e., replacing φ-statement with appropriate

assignment statements when the previous basic block is explicitely known.



31

Entry

{ a := ϕ [0,Entry] [a′,Z]
i := ϕ [0,Entry] [i′,Z] }
if [not (i < N)] goto Exit 

a′ := a + 2

c := i + 3

i′ := a′ + c

X

Y

Z

Entry

{ a := ϕ [0,Entry] [a′,Z]
i := ϕ [0,Entry] [i′,Z] } 

if [not (i < N)] goto Exit
a′ := a + 2
a_reg := a′

c := i + 3
a_reg2 := a_reg

i′ := a_reg2 + c

X

Y

Z

Before 
shadow register primitive

After
shadow register primitive

Figure 5.2: Shadow register primitive

Shadow register primitive – We define a shadow register microstep as sim-

ply an assignment statement with symbol expression (x) assigned to a new value

(x reg). We call all the new introduced variables as shadow registers. Intuitively,

it is correct that in a sequence of steps, if we assign a variable to a shadow register

and replace all occurences of x with x reg till the next write of x, we should not

have made any difference in the execution. Also, since we are not changing the

value of x itself, the state after end of execution for both CCDFGs as far as real

variables are concerned (all variables excluding all shadow registers) is same. In

Figure 5.2, if we assign a shadow register a reg value of a′ at the end of X block,

shadow register a reg2 value of a reg in Y and replace the read occurence of a′

in Z with a reg2, the sequential execution remains same. But, because of the

addition of these shadow registers, the value of a′ is stored in a new temporary

variable in every new scheduling step which prevents data hazards.



32

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2 

c := i + 3

i' := a' + c

X

Y

Z

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] } SpreExit

EntryEntry

Exit

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

if [not (a < N)] goto Exit
a'  := a + 2

c := i + 3

i' := a' + c

X

Y

Z

Exit

S1oop

SpreExit

Execute S1oop k times 
followed by SpreExit

S

Well formed CCDFG with 
branches 
Assume Well Formed Flow : 
Exit in k+1st iteration

Figure 5.3: Branch primitive

Branch primitive – Branch instructions are required to determine the con-

trol flow. However, reasoning about execution of branch instructions in a loop

everytime we apply a primitive can make proof very complex. We note that if

we specifically assume that the exit condition becomes true after completing k

iterations, then we can remove the conditional branch. To understand the branch

primitive (c.f. Figure 5.3), let’s assume there is a conditional branch in the sequen-

tial loop structure S, which points to either the next microstep in sequence or exits

the loop by branching to the scheduling step Exit. Let SpreExit be the collection

of microsteps before this branch in S and let Sloop be the corresponding CCDFG

loop without the conditional branch. The conditional branch primitive allows us

to replace S with Sloop followed by SpreExit. Similarly, the primitive also allows us

to introduce an exit conditional branch by replacing Sloop followed by SpreExit with

S. Note that since k can take any value k ≥ 0, we are not compromising on the

correctness statement. It can be proved that executing S k times such that it exits



33

in the (k + 1) st iteration is same as executing Sloop k times followed by SpreExit.

Interchange primitive – Let m and n be two adjacent scheduling steps (or

in general, any collection of microsteps) in a CCDFG where both m and n do

not have any microsteps containing branch statements. Also, there are no read

write hazards between m and n. By read write hazards, we mean that m does

not read or write any variable which is written in n and vice versa. Then, the

interchange primitive allows us to interchange the order of m and n in the given

CCDFG. Note that under the given assumptions, if initial state is the same, then

the state reached after executing m followed by n is same as the state reached after

executing n followed by m.

Superstep construction primitive – This operation entails combining the

scheduling steps of the successive iterations, forming scheduling “supersteps” that

act as scheduling steps for the pipelined implementation. Supersteps must account

for read-after-write hazards, i.e, if a variable is written in a scheduling step X and

read subsequently in Z then Z cannot be in a superstep that precedes X in the

control/data flow. Note that we implement data forwarding (forward value of data

within a single clock cycle); thus X and Z can be in a single superstep.

5.2 OUR LOOP PIPELINING ALGORITHM

Given a sequential loop S in CCDFG C and pipeline interval I, we can create a

pipelined loop P using Algorithm 1. Note that every step of the algorithm is built

from ground up using our framework of provable primitives such that the algorithm

can be certified by theorem proving. A quick overview of primitives used in the

algorithm at each step are shown in Figure 5.4.



34

• Identify Branches

• Apply Branch 
primitive 

Remove Branches

• Identify steps causing RAW 
hazards

• Apply shadow register 
primitive repeatedly for all 
variables in conflict steps

Add Shadow 
Registers

• Identify variables that cause WAR hazards

• Apply interchange primitive (move conflict step to 
beginning)

• Apply induction to move step to previous iteration

• Repeat steps 3 and 4 for all variables

Data Propagation

• Unroll Loop once 
while maintaining 
control flow

Unroll Loop Once

• Identify previous 
basic block statically

• Apply Φ-elimination 
Primitive

Φ-Elimination 

• Identify how and 
where to place 
branches back

• Apply branch 
primitive

Add Branches

• Apply Superstep 
construction primitive

• Checks to ensure no data 
dependencies are violated

Superstep 
Construction

Loop pipelining 
algorithm

Figure 5.4: Our loop pipelining algorithm (built using primitives)

Algorithm 1 Pipelining algorithm

1: procedure PipelineLoop(S, I)

2: S1 ← RemoveBranches(S)

3: S2 ← UnrollLoopOnce(S1)

4: S3 ← φ− Elimination(S2).

5: S4 ← DataPropagation(S3, I).

6: S5 ← GenerateShadowRegisters(S4, I).

7: S6 ← SuperstepConstruction(S5, I).

8: P ← AddBranches(S6)

9: return (P ).

10: end procedure



35

Now, we describe the steps to convert a sequential loop CCDFG (c.f. Figure 5.5)

to a pipelined loop CCDFG in detail:

Entry

Exit

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

if [not (a < N)] goto Exit
a'  := a + 2

c := i + 3

i' := a' + c

X

Y

Z

Exit condition is true in (k+1)st

iteration (k>=0) 

Figure 5.5: Sequential CCDFG with conditional branch

Remove Branches: We apply the branch primitive on S (c.f. Figure 5.5) to

remove the conditional and unconditional branch by explicitly defining the control

flow in S. The output is a sequence of two CCDFG’s Sloop and SpreExit connected

through an edge as shown in Figure 5.6. Note, that Sloop does not contain the

conditional branch originally present in S. Executing S such that S exits in the

(k + 1)st iteration is same as executing Sloop k times followed by SpreExit. This is

possible because the input CCDFG has only one conditional and one unconditional

branch as per our definition of pipelinable well formed CCDFG’s.



36

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2  

c := i + 3

i' := a' + c

X

Y

Z

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

S1oop

SpreExit

Entry

Exit

Execute Sloop k times 
followed by SpreExit

Figure 5.6: Sequential CCDFG without conditional branch. Note the addition of

SpreExit to explicitely define the control flow

Unroll Loop Once: We have already established that the first iteration be-

haves differently than the rest of the iterations due to φ-construct. So, in this

particular step, we simply unroll the loop Sloop once. This step does not use any

primitive. It is an intuitively correct step, although we also formally verify it

using induction in the final proof. We call the first iteration Spre as shown in

Figure 5.7(a).



37

Entry

Y

{a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2   

c := i + 3

i' := a' + c

{a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2  

c := i + 3

i' := a' + c

X1

Z

X

Y

Z

Spre

{a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

Sloop

SpreExit

Exit

a := a'
i := i' SpreExit

Y

Entry

a := 0
i := 0

a' := a + 2   

c := i + 3

i' := a' + c

a := a'
i := i'

a' := a + 2

c := i + 3

i' := a' + c

X1

Z

X

Y

Z

Spre

Sloop

Exit

(a) (b)

Figure 5.7: (a) Unrolling the loop once to separate the first iteration (b) After

φ-removal transformation

φ-elimination: We apply the φ-elimination primitive on Spre, Sloop and SpreExit

to return a CCDFG in which all the φ-statements have been replaced with their cor-

responding assignment statements. Figure 5.7(b) shows the CCDFG after applying

the φ-elimination primitive. Note that φ-construct is only in the first scheduling

step of any iteration, so the remaining scheduling steps are the same in all the

iterations.

Data propagation: Algorithm 2 describes how to compute candidates for

data propagation across pipeline iterations. It is a critical step in removing data



38

Algorithm 2 Data propagation

1: procedure DataPropogration(L)
2: msteps← GetLoopCarriedDependencies(L)
3: for each mstep in msteps do
4: if CheckConflict(L,mstep,N, I) 6= 0 then
5: L← RelocateMStep(L,mstep)
6: end if
7: end for
8: return (L)
9: end procedure

hazards. We want to make sure that when we pipeline a loop, we do not read a vari-

able which has not yet been written. A critical observation is that data propaga-

tion is required only for loop carried dependencies. GetLoopCarriedDependencies

identifies the microsteps where loop carried dependencies are being read. Then,

CheckConflict checks whether there would be a conflict when we pipeline the

loop. Conflict occurs when the value being read in a microstep is not yet written

in the pipelined loop execution. If so, RelocateMSteps works in two steps. It

first relocates the microstep which reads the variable in an iteration to the start-

ing of Sloop. This step can be proved by the interchange primitive since we have

already established that the value has not been written yet so there are no read

write hazards in between. In the next step, we relocate the microstep to the end

of Sloop. Note, to maintain the invariant that executing CCDFG before and after

this relocation is the same, we need to add the microstep at the end of Spre as

well and remove it from SpreExit. This step ensures that any variable which is

being read has already been written. Note that in order to maintain the invariant,

only those microsteps can be propagated which exist in SpreExit, which means only

those steps which occur before the conditional branch in original CCDFG can be

relocated. This ensures that our algorithm does not have the bug which the pre-

viously proposed algorithm had. In Figure 5.7(b) we found that the loop carried

dependency i′ in X would create a conflict when we would move X before Z while



39

Entry

Exit

Y

a := 0
i := 0

a'  := a + 2   

c := i + 3

i'  := a' + c

i := i'
a := a'

a'  := a + 2

c := i + 3

i'  := a' + c

X1

Z

X

Y

Z

Spre

a := a'
i := i'

Sloop

SpreExit

Y

Entry

a := 0
i := 0 

a'  := a + 2   

c := i + 3

i'  := a' + c
i := i'

a := a'
a'  := a + 2

c := i + 3

i'  := a' + c
i := i'

X1

Z

X

Y

Z

Spre

a := a'

Sloop

SpreExit

Exit

(a) (b)

Figure 5.8: (a) Data propagation - first step (b) Data propagation - second step

pipelining. So, first we relocate the microstep i := i′ to the beginning of Sloop

using interchange primitive in Figure 5.8(a). Then, we move the microstep to end

of Spre and Sloop and remove the microstep from SpreExit in Figure 5.8(b). Note

that this preserves execution as explained more in Chapter 6. This step needs to

be repeated for every variable found using GetLoopCarriedDependencies.

Generate shadow registers: Algorithm 3 inserts shadow registers to prevent

variables from being overwritten before being read.



40

Algorithm 3 Generate shadow registers

1: procedure GenerateShadowRegisters(L, I)

2: V ← GetAllV ariables(L).

3: for each v in V do

4: wv ← WriteV ariable(v, L).

5: rv ← LastReadV ariable(v, L).

6: if RequireShadowRegister(rv, wv, I) 6= 0 then

7: L← AddShadowRegister(wv, L).

8: end if

9: end for

10: return (L).

11: end procedure

We first compute all program variables that may be overwritten before being

read, which means these are the variables that require shadow registers. To find

such variables, GetAllV ariables first gets a set of all variables. Then, for each

variable, we compare the distance (the number of scheduling steps) between the

write of the variable wv (WriteV ariable) and the last read of the variable rv

(LastReadV ariable) in an iteration; if the distance is greater than I (pipeline

interval), the variable is assigned the new data value of the next iteration before the

current iteration’s value has been fully consumed; this warrants insertion of shadow

registers in every scheduling step between the rv and wv. The value is propagated

every clock cycle following the CCDFG data flow. We apply the shadow register

primitive on the microstep which writes the variable (AddShadowRegister). We

assign that variable to a new temporary variable called shadow register in every

new scheduling step and replace all subsequent reads of that variable with the

shadow register till its next write. In Figure 5.9, we introduce a shadow register

a reg in X and a reg2 in Y . This step is also repeated for all the variables found



41

Y

Entry

a := 0
i := 0

a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

a := a'
a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2+ c
i := i'

X1

Z

X

Y

Z

Spre

a := a'

Sloop

SpreExit

Exit

Figure 5.9: After shadow register

using GetAllV ariables.

Superstep construction: Now that we have removed the data hazards, we

can successfully pipeline the loop using the pipeline interval I. We combine the

scheduling steps of the successive iterations, forming scheduling “supersteps” that

act as scheduling steps for the pipelined implementation. Supersteps must account

for read-after-write hazards, i.e., if a variable is written in a scheduling step s and

read subsequently in s′ then s′ cannot be in a superstep that precedes s in the

control/data flow. A scheduling step is allowed to move up another scheduling step

only if there are no intermediate read and write conflicts. Note that we implement



42

a := 0
i := 0

a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

a := a'
a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

Entry

a := a'
a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

a := a'

Ppre

Ploop

Ppost

SpreExit

Exit

Figure 5.10: After superstep construction

data forwarding; thus s and s′ can be in a single scheduling superstep. Superstep

construction on Spre and Sloop creates a CCDFG with three parts: prologue Ppre,

Ploop which is the full pipeline stage and epilogue Ppost as shown in Figure 5.10.

We will later prove using our invariant that executing Ppre followed by k iterations

of Ploop followed by Ppost is equivalent to executing Spre followed by x iterations of

Sloop, where value of x is determined based on value of k, pipeline interval I and

number of scheduling steps in S.



43

a := 0
i := 0 

a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

a := a'
a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

Entry

a := a'
if [not (a < N)] 

goto Ppost
a'  := a + 2
a_reg := a'

Ppre

Ploop

i'  := a_reg2 + c
i := i'

Exit

Ppost

Figure 5.11: Final pipelined CCDFG

Add Branches: To add the branches back, we use the a combination of

interchange primitive and reverse of Branch primitive. Note in Figure 5.10, if

there are no read write hazards in between the last scheduling step Z of Ppost and

SpreExit, we can interchange them using interchange primtive. Now recall from the

branch primitive that if there is a loop structure Sloop with a conditional branch,

then executing Sloop such that it exits in the (k+1)st iteration is same as executing

Sloop without the conditional branch followed by only those steps from Sloop which

occur before the branch SpreExit. Now, we apply the reverse of branch primitive

here. Ploop in Figure 5.10 is a loop structure without a conditional branch, followed



44

by a collection of microsteps PpreExit (here, a collection of Z, Y and SpreExit). Then,

we can add an exit conditional branch in Ploop after the microsteps PpreExit. This

branch points to the next scheduling step after the loop Ppost if the exit condition

is true. We can add the conditional and the unconditional branch as shown in

Figure 5.11.

We now have the final pipelined loop structure. We describe a proof sketch for

the primitives and the algorithm in the next chapter.



45

Chapter 6

PROOF SKETCH

Certification of our loop pipelining algorithm naturally requires a certification of

each of our primitives. In addition, we need to ensure that every time a primitive

needs to be applied, the conditions under which the primitive can be applied are

maintained. We discuss both aspects below.

6.1 CORRECTNESS OF PRIMITIVES

We must prove that applying a particular primitive is correct, i.e., maintaining

a certain invariant. This is proven without considering how it is applied in the

context of a pipeline synthesis algorithm. We give an outline of the proof to justify

that the primitives are correct.

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a := 0
i := 0

Entry Entry

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a := a'
i := i'

Z Z

Figure 6.1: Correctness of φ-elimination primitive



46

φ-elimination primitive: We prove that the execution of a φ-construct is

same as executing the corresponding assignment statements assuming that we

already know the previous basic block for the φ-construct. In essence, we prove that

the algorithm correctly resolves the φ to create multiple assignment statements.

We induct along the length of each sub-microstep of φ-construct and relate it to

one corresponding assignment statement as shown in Figure 6.1.

Entry

{ a := ϕ [0,Entry] [a′,Z]
i := ϕ [0,Entry] [i′,Z] }
if [not (i < N)] goto Exit 

a′ := a + 2

c := i + 3

i′ := a′ + c

X

Y

Z

Entry

{ a := ϕ [0,Entry] [a′,Z]
i := ϕ [0,Entry] [i′,Z] } 

if [not (i < N)] goto Exit
a′ := a + 2
a_reg := a′

c := i + 3
a_reg2 := a_reg

i′ := a_reg2 + c

X

Y

Z

Before 
shadow register primitive

After
shadow register primitive

Figure 6.2: Shadow register primitive

Shadow register primitive: We prove that adding a shadow register mi-

crostep, a reg = a′ (as shown in Figure 6.2), does not change the value of any

variable in the state except the shadow variable. In essence, we prove that if a

variable is not written in a microstep, then its value in the state before and after

executing that microstep is same. Also, we prove that after executing the shadow

register microstep, value of a reg in the state is equal to value of a′. Furthermore,

since now the value of a reg is equal to value of a′, we prove that executing a



47

statement which reads a′ has the same effect on the state as executing a statement

which reads a reg till the next write of a′. This needs to be done for all types

of statements e.g., assignment statements (with different types of operations like

load, add, mul, getelementptr e.t.c.), store statement, branch statement etc. We

determine the variables read and written in a statement by analyzing the state-

ments. Note that a reg is a new variable which is neither written nor read in the

given statements.

Interchange primitive: We prove that we can interchange any two adjacent

microsteps (excluding branch microsteps) which do not have read-write conflict.

We prove that given an initial state, the state after executing microsteps m and n

is same as the state after executing n then m if m and n have no read-write conflict.

Suppose, the state after executing m and n is s1 and that after executing n and

m is s2. We prove that for any variable x, its value remains same in s1 and s2.

After normalizing the states, we can prove that s1 is equal to s2, i.e., the states are

the same after executing the two microsteps in a sequence or in an interchanged

order. Again, reasoning about read and write of statements involves reasoning

about execution semantics of all types of microsteps present in the language which

is not trivial.

Branch primitive: We prove that executing S k times such that it exits in

the (k + 1) st iteration is same as executing Sloop k times followed by SpreExit. (c.f

Figure 6.3). We need to define a notion of a well-formed-flow to ensure that we can

show that the branch does not exit in the first k iterations. We also need a way to

track the backedge along the unconditional branch and ensure that it points back

to the beginning of loop S.

Superstep construction primitive: This primitive is for overlapping itera-

tions while maintaining data and control dependencies. It is built on interchange

primitive but while interchange primitive handles only two adjacent microsteps,

superstep construction moves around scheduling steps with multiple microsteps.



48

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2 

c := i + 3

i' := a' + c

X

Y

Z

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] } SpreExit

EntryEntry

Exit

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

if [not (a < N)] goto Exit
a'  := a + 2

c := i + 3

i' := a' + c

X

Y

Z

Exit

S1oop

SpreExit

Execute S1oop k times 
followed by SpreExit

S

Well formed CCDFG with 
branches 
Assume Well Formed Flow : 
Exit in k+1st iteration

Figure 6.3: Branch primitive

The interchange primitive is extended by non-trivial induction along the length of

the scheduling steps to achieve the desired result. Superstep construction primitive

is proved using the interchange primitive and our key invariant described in detail

below.

6.2 KEY INVARIANT ON CORRESPONDENCE BETWEEN BACK-

EDGES OF SEQUENTIAL AND PIPELINED LOOPS

Our key invariant defines a “correspondence relation” between the back-edges of

the sequential and pipelined CCDFGs. The relation can be informally paraphrased

as follows [50].

Let S be a sequential loop and P be the pipelined loop generated from

our algorithm. The pipelined loop after superstep construction consists

of three stages before SpreExit as depicted in Figure 6.4: prologue Ppre,

full stage Ploop, and epilogue Ppost. Let sl be any state of P poised



49

a := 0
i := 0

a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

a := a'
a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

Entry

a := a'
a'  := a + 2
a_reg := a'

c := i + 3
a_reg2 := a_reg

i'  := a_reg2 + c
i := i'

a := a'

Ppre

Ploop

Ppost

SpreExit

Exit

Figure 6.4: Superstep construction

to execute Ploop, and let k be any number such that the loop of P is

not exited in k iterations from sl. Then executing Ppre followed by k

iterations of Ploop is equivalent to executing first iteration of S, say S1

followed by (k−1) iterations of S together with a collection of “partially

completed” iterations of S.1

1The formalization actually characterizes each incomplete iteration, e.g., if the pipeline in-
cludes d iterations and successive iterations are introduced in consecutive clock cycles, then the



50

The partially completed iterations can be determined by the length of the first

iteration in Ppre and the pipeline interval. Suppose the length of the first iteration

in Ppre is m and the pipeline interval is i. Note that we can calculate the value of

m based on the number of scheduling steps in a CCDFG and the pipeline interval.

The partially completed iterations mean m scheduling steps of S followed by (m−i)

scheduling steps of S, by (m − 2i) scheduling steps of S, etc. while (m − ni) is

positive.

In our example, m is 2 and i is 1. The invariant implies that starting from the

same initial state, executing Ppre and k iterations of Ploop is the same as executing

k iterations of S, followed by m = 2 scheduling steps of S, followed by (m− i) = 1

scheduling steps of S.

As is standard with proofs involving invariants, there are two obligations to

prove the correctness, viz., that it is indeed an invariant, and that its invariance

is sufficient to imply the desired correctness theorem. Here we give a sense of our

envisioned proof.

The proof of invariance of this predicate is, of course, the main “work horse”

in this exercise. The proof depends on our interchange primitive which in turn

is based on a fundamental idea for pipelining, viz., commutability of independent

instructions.

Suppose that the set of variables written and read by two consecutive

operations a and b is disjoint. Then executing a followed by b generates

the same result as executing b followed by a.

If we view the scheduling steps in Figure 6.5 as arranged in a matrix, then the

sequential execution proceeds column-wise along the matrix while the pipelined

execution proceeds row-wise. Thus the core proof obligation involves the following

two proof requirements.

i-th iteration has i− 1 incomplete scheduling steps.



51

Pipeline
Prologue 

Y X

X'

X

Y

X

m scheduling 
steps from 
Sequential 
CCDFG

(m- I ) steps

Z Y X

X'

Y

Z

First 
iteration of 
sequential 
CCDFG

Figure 6.5: Invariant base case where k = 1

– Our pipelining algorithm correctly combines the “appropriate” scheduling su-

persteps which do not have read-write hazards.

– Given that there are no read-write hazards at appropriate places, executing

scheduling steps row-wise is same as executing those scheduling steps column-

wise in the pipelined CCDFG. This requires the use of interchange primitive.

Although these requirements justify that our correspondence relation is an in-

variant, they are used somewhat differently in the base case (when the number of

iterations k of the pipelined loop is 1) and inductive step (assume the invariant

holds for k iterations of the pipeline and prove that it holds for (k+ 1) iterations).

Their usage is pictorially shown in Figures 6.5 and 6.6. For invariant base case

where k is equal to 1, we commute operations in the loop prologue of the pipeline

(which corresponds to the first iteration after unrolling) with the loop body. We

prove that executing pipeline prologue and one pipeline full stage is the same as ex-

ecuting Spre followed by a sequence of partially completed sequential loop CCDFG.

For the inductive step we work with two consecutive iterations of the loop. As-

suming that invariant is true for k steps, we prove that executing one pipeline full



52

Pipeline
Prologue 

Pipeline
FullZ Y

Y

X

X

X'

X

Y

Z

X

Y

X

Z

Y

X

X

Y

Z

X

Y

Z

X

Y

X

Figure 6.6: Invariant inductive step

stage on both sides gives us (k + 1) iterations of sequantial loop CCDFG followed

by partially completed sequences as expected.

Our invariant is defined specifically to make the proof sufficiency straightfor-

ward. Equivalence of CCDFG states of P and S follows from the invariant by

noting that the epilogue Ppost exactly constitutes the incomplete scheduling steps

of S specified by the invariant (cf. Figure 6.7).

Our invariant is very different from a typical invariant used in the verifica-

tion of pipelined machines (e.g., for microprocessor pipelines). We make explicit

the correspondence with the sequential execution. The key requirement from a

pipeline invariant, viz., hazard freedom, is left implicit and arises indirectly as a

proof obligation for invariance of this predicate. Most microprocessor pipeline ver-

ification work went the other way. For instance, Sawada and Hunt’s invariant [57],

expressed through an intermediate structure called MAETT, “tracks” the instruc-

tions as they pass through different pipeline stages to ensure that hazards are not

introduced. One difference in our case is that we are not working with a concrete



53

X

Y

Z

X

Y

X

Z

X

Y

Z

X

Y

Z

X

Pipeline
Prologue 

Pipeline
Full

Pipeline
Epilogue

Z

Z Y

Y

X

X

X'

Figure 6.7: Correctness of invariant implies the correctness statement

pipeline with a fixed set of operations but an algorithm that generates pipelines

with an arbitrary sequence of scheduling steps; a construction like MAETT is thus

not directly applicable. However, there is a deeper reason for defining our invariant

the way we did. Suppose we simply unroll the loop in the sequential design three

times, and then use a technique similar to MAETT to track scheduling steps in

this “unrolled loop body” in the pipeline execution. Unfortunately, this does not

work, because of the back edge. There is no direct correlation between this edge

and any edge in the sequential loop. In fact, it is interesting to observe what its

introduction achieves: completion of one scheduling step in each of the three par-

tially executed, overlapping loop iterations. This suggests that the invariant must

explicitly capture the state of the executions that have been partially completed

during each iteration of the pipeline (ie, each traversal of the back edge).



54

6.3 CORRECTNESS OF OUR ALGORITHM

The algorithm is essentially built from ground-up using primitives as shown in

Chapter 5. However, apart from proving correctness of each primitive and our key

invariant, we also need to ensure that the primitive is applied by our algorithm

properly, i.e., the environment assumptions on which the correctness of prim-

itive depends are maintained appropriately by the algorithm at the point where

the primitive is applied. The correctness of each primitive discussed above, entails

a so-called “assume-guarantee” reasoning: the primitive is guaranteed to maintain

the desired invariant if and only if it is applied under certain well-formed condi-

tions. To use these correctness statements to verify the algorithm, we must there-

fore prove that the algorithm applies each primitive appropriately, maintaining

the well-formedness condition required for the correctness of the primitive. Note

that verifying this requires an inductive proof relating the states of the CCDFG

C ′ generated after the application of the transformation with the original CCDFG

C. Note that the induction is non-trivial because transformations have significant

“global” effect on a CCDFG. These include one or more of the following:

1. Replacing one microstep of C with more than one microsteps in C ′ (e.g.,

φ-elimination), or

2. Interchanging scheduling steps (e.g., interchange), or

3. Changing the variable being read or written in several microsteps (e.g.,

shadow register)

The final theorem can be written in ACL2 as

(defthm run-random-final-theorem

(implies (and (well-formed-ccdfg c)

(well-formed-flow-ccdfg bb sub-bb loc c



55

ccdfg-state prev no_seq_steps)

(equal (list pre loop post)

(final-pp c prev interval m)))

(not (equal (final-pp c prev interval m) "error"))

(equal (get-final-real-state

(run-ccdfg-random 0 0 0 c ccdfg-state

prev no_seq_steps))

(get-final-real-state

(run-ccdfg-random 0 0 0 (append pre loop post)

ccdfg-state prev no_pp_steps)))))

This theorem uses our main correctness lemma (c.f. Chapter 3.2). The theorem

involves several ACL2 functions, e.g., well-formed-ccdfg,

run-ccdfg-random, etc. Please refer our proof scripts for details. Here, we provide

a quick overview of some of the critical functions in the theorem below.

c here refers to a sequential loop. We have defined a function well-formed-ccdfg

which imposes restrictions on the structure of the types of loops which can be

pipelined. It ensures that we have only one conditional branch in c which either

points to the next microstep or points to Exit somewhere outside c. It also ensures

that we have only one unconditional branch at the end of the loop which points

back to the beginning of the loop. Moreover, there is only one relevant φ-branch

which is required to handle variables which change value depending on whether

previous basic block is outside the loop or inside. It is required to handle loop

carried dependencies as explained before. Also, there is only one place of entry and

one place of exit in the loop. Note that these restrictions are seen in behavioral

synthesis tools as well since branches inside/outside the loop have already been

taken care of before this step using other compiler and scheduling transformations.

When we reach the pipelining stage, we have a well-defined-ccdfg loop structure

dictated by one conditional and one unconditional branch.



56

We have also defined a function well-formed-flow-ccdfg, which states that

starting from the initial basic block bb, sub-basic-block sub-bb and location loc

of (0, 0, 0) and an initial state ccdfg-state, if we encounter a branch within m

number of steps, then we do not exit i.e., the exit condition variable is not true.

Also, it ensures that the next statement after branch is the next mircostep in order

such that we execute the microsteps in order for m number of steps.

The function run-ccdfg-random executes a CCDFG starting from the initial

basic block bb, sub-basic-block sub-bb and location loc of (0, 0, 0) and an initial

state ccdfg-state.

The function final-pp applies the pipeline generation algorithm to create the

list of pre, loop and post as expected.

Finally, the function get-final-real-state removes from the CCDFG state,

all auxiliary variables introduced by the pipeline generation algorithm itself, leav-

ing only the variables that correspond to the sequential CCDFG. Recall that the

algorithm has to introduce new variables in order to eliminate hazards. One con-

sequence of this is that the new variables so introduced must not conflict with any

variable subsequently used in the CCDFG. Since we do not have a way to ensure

generation of fresh variables, this constraint has to be imposed in the hypothe-

sis. Also, this function normalizes “sorts” the components in a CCDFG state in a

normal form so that the sequential and pipelined CCDFG states can be compared

with equal.

Following is an English paraphrase of the theorem.

If the pipeline generation succeeds without error, executing the pipelined

CCDFG (a combination of pre, loop and post) for no pp steps gener-

ates the same state of the relevant variables as executing the sequential

CCDFG c for no seq steps.



57

no seq steps = lenS1 + (lenS ∗ (d m

interval
e − 1)) + lenSpreExit

no pp steps = lenPpre + (lenPloop ∗ k) + lenPpost

(6.1)

We can take each stage one by one to understand the complexity involved in

verifying the algorithm as a whole, over and above the verification of individual

primitives.

1. Remove Branches: In the RemoveBranches stage, which is the first stage

of pipelining algorithm, we have to create a correspondence between ran-

domly executing a CCDFG with branches using basic-block, sub-basic-block

and location with executing a CCDFG in sequence without a conditional and

unconditional branch as shown in Figure 6.8. This is similar to branch prim-

itive, but since we have a non-streamlined run on one side and a steamlined

sequential run on the other side, there are theorems involved with finding the

next microstep randomly and proving that it is same as the next microstep

in streamlined order. We also need to prove that the applicaton of branch

primitive is correct. After this step and for all the subsequent steps, we need

to show that there are no relevant branches in CCDFG.

2. Unroll Loop Once: This step unrolls the loop by one as explained before.

The proof uses induction along the number of iterations.

3. φ-to-assign: In the φ-to-assign stage, we replace one microstep of C with

more than one microsteps in C ′ as shown in Figure 6.9. In addition to in-

ductively reasoning about application of a primitive in entire CCDFG, we

also have to ensure that the inductive theorem relating C and C ′ must be

strong enough to comprehend the global effects. Thus an execution of C for

n microsteps must correspond to an execution of C ′ for a different number



58

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2 

c := i + 3

i' := a' + c

X

Y

Z

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

SpreExit

EntryEntry

Exit

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

if [not (a < N)] goto Exit
a'  := a + 2

c := i + 3

i' := a' + c

X

Y

Z

Exit

S1oop

SpreExit

Run CCDFG with branches
Assume Well formed flow:
Exit in (k+1)st iteration

CCDFG without branches
Execute S1oop k times followed 
by SpreExit

S

 Use Certified Branch Primitive

Figure 6.8: Proof sketch for remove branches stage

m of microsteps, where the number m is a function of n and the structures

of C and C ′; the statement of the correctness of φ-elimination must char-

acterize the value of m precisely, perhaps defining functions that statically

and symbolically execute C and C ′, in order to be provable by induction.

Furthermore the functions so introduced for static symbolic execution must

themselves be proven correct. Moreover, the well-formed-conditions need to

be maintained at each step to ensure that the primitives can be applied.



59

Uses ϕ-removal primitive

Entry

Y

{a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a' := a + 2   

c := i + 3

i' := a' + c

{a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

a'  := a + 2 

c := i + 3

i'  := a' + c

X1

Z

X

Y

Z

Spre

{a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] } SpreExit

Exit

Sloop

Entry

Y

a := 0
i := 0

a' := a + 2

c := i + 3

i' := a' + c

a := a'
i := i'

a' := a + 2

c := i + 3

i'  := a' + c

X1

Z

X

Y

Z

Spre

a := a'
i := i' SpreExit

Exit

Sloop

One Application of ϕ removal primitive
Deduce previous block statically
Note: lengths are different

Figure 6.9: Proof sketch for φ-to-assign step

4. Data Propagation : In the data propagation stage, the first step involves

identifying the appropriate statements that cause conflict and applying in-

terchange primitive multiple times to move the microstep to the beginning of

the loop. We need to make sure that the conditions under which interchange

primitive can be further applied are maintained after each application.

The second step involves moving the microstep into the previous iteration.

It requies removing the microstep, referred as mstep from beginning of Sloop



60

and adding it to end of Sloop. Also, mstep is added in Spre and removed from

SpreExit. The proof of this step requires non-trivial induction as explained

in Figures 6.10 and 6.11. These stages need to be repeated for as many

variables as are in conflict.

5. Shadow-register: Recall that shadow register step adds many more new

statements to assign temporary values to new shadow variables. The addition

of new microsteps means that in addition to inductively reasoning about

application of a primitive in entire CCDFG, we also have to ensure that

basic structure of the CCDFG is maintained. Moreover, we need to reason

about read and write of variables across a number of microsteps. The proof is

analogous to the proof of shadow-register primitive. However, the primitive

is applied multiple times based on the variabes which are causing conflict.

This gets tricky as after application of one primitive, there are new variables

introduced and we can only claim that the relevant variables have same value.



61

Entry

Y

a := 0
i := 0

a' := a + 2

c := i + 3

i' := a' + c

X1

Z Spre

i := i'
a := a' SpreExit

Exit

Requires induction along the 
length of CCDFG

Entry

Y

a := 0
i := 0

a' := a + 2

c := i + 3

i' := a' + c
i := i'

X1

Z

Spre

a := a' SpreExit

Exit

k = 0 k = 0

Figure 6.10: Proof sketch for Data Propagation Step Base Case



62

E
nt

ry

a
 :

=
 0

i 
:=

 0
a

' :
=

 a
 +

 2

c 
:=

i 
+

3

i' 
:=

a
' +

 c

i 
:=

 i
'

a
 :

=
a

'
a'

 :
=

 a
 +

 2

c 
:=

i 
+

3

i' 
 :

=
a

' +
 c

S
pr

e

i 
:=

 i
'

a
 :

=
a

'

E
x

it


R

eq
ui

re
s 

co
m

pl
ex

 i
nd

u
ct

io
n

E
n

tr
y

a 
:=

 0
i 

:=
 0

a'
 :

=
 a

 +
 2

c 
:=

i 
+

3

i' 
:=

a'
 +

 c
i 

:=
 i

'

a 
:=

a'
a'

 :
=

 a
 +

2 
 

c 
:=

i 
+

3

i' 
 :

=
a'

 +
 c

i 
:=

 i
'

a 
:=

a'

E
xi

t

L
H

S
:

S
pr

e
+

 S
lo

o
p

 .
k

 +
 S

E
x

it

=
 S

p
re

+
 (

m
st

ep
+

 S
lo

o
p

-m
st

ep
) 

. k
 +

 (
m

st
ep

+
 S

E
x

it
-m

st
ep

) 

R
H

S
:

(S
p

re
+

 m
st

ep
) 

+
 (

S
lo

o
p

-m
st

ep
+

 m
st

ep
) 

.
k 

+
 S

ex
it

-m
st

ep

=
 (

S
p

re
+

 m
st

ep
) 

+
 (

S
lo

o
p

-m
st

ep
+

 m
st

ep
) 

.
(k

 –
1

) 
+

 (
S

lo
o

p
-m

st
ep

+
  

m
st

ep
) 

+
 S

E
x

it
-m

st
ep

=
 S

p
re

+
 [

m
st

ep
+

 (
S

lo
o

p
-m

st
ep

+
 m

st
ep

) 
.
(k

 –
1)

 +
 S

lo
op

-m
st

ep
] 

+
  

 (
m

st
ep

+
 S

E
x

it
-m

st
ep

)

L
H

S
 =

 R
H

S
 i

ff
(m

st
ep

+
 S

lo
o

p
-m

st
ep

) 
. k

 =
 [

m
st

ep
+

 (
S

lo
o

p
-m

st
ep

+
 m

st
ep

) 
.
(k

 –
1)

 +
 S

lo
o

p
-m

st
ep

] 
[P

ro
ve

d 
by

 I
nd

u
ct

io
n

]
S

lo
o

p
S

lo
op

 -
m

st
ep

m
st

ep

S
E

x
it

S
E

x
it

-
m

st
ep

m
st

ep

F
ig

u
re

6.
11

:
P

ro
of

sk
et

ch
fo

r
d
at

a
p
ro

p
ag

at
io

n
st

ep



63

6. Superstep-construction: This step requies proof of invariant and multiple

applications of interchange primitive as explained earlier.

7. AddBranches: The proof required is the reverse of branch-primitive. How-

ever, a key requirement is that branch-primitive can be applied only when

we have a well-formed-ccdfg, so we need to ensure that the structure of

the loop before adding branches is such that the final loop in the pipelined

CCDFG is indeed a well-formed-ccdfg.

6.4 LESSONS FROM PREVIOUS FALSE STARTS

Before we came up with our approach of building a pipelining algorithm using

a framework of certified pipelining primitives, we tried a few other intuitive ap-

proaches. From each false start, we were able to learn something valuable.

In our initial approach we had decided to simplify the problem by ignoring

the back edge and proving the correspondence between an unrolled loop and the

pipeline. Only after substantially completing this proof and in attempting to

extend it to the pipeline with the back edge did we realize that the extension does

not work. So, we came up with a key invariant to deal with this problem.

Also, we attempted initially to stick to the previously proposed algorithm and

try to prove that the execution of the input is equal to the execution of the output

for the complete algorithm. To do that, we need to claim that the output pipeline

does not introduce any data hazards. Hazard freedom entails showing the follow-

ing. “Suppose a variable v is written by a scheduling step S and read subsequently

by a scheduling step S ′ in the sequential CCDFG. Then in the pipelined CCDFG,

there is no scheduling step P that writes v and is executed between S and S ′.”

Originally, we defined this notion directly for each variable, viz., with a function

that statically analyzes the CCDFG to identify the range of scheduling steps be-

tween a write and subsequent read of each variable. However, this does not work.



64

For example, proving this property for variable x may require a similar property

to hold for another variable y (perhaps because x is assigned an expression involv-

ing y). But the range of scheduling steps in which x and y are read and written

are different, and the extension of the property to all the variables cannot be eas-

ily specified by an invariant for any specific scheduling step. When we realized

the challenges involved in proving the complete algorithm, it led us to propose our

framework of pipelining primitives. Also, our current approach succinctly captures

an “on-track property”, viz., that the state after k pipeline iterations is equivalent

to partial execution of a certain number of iterations in the sequential CCDFG (in

addition to completion of k′ iterations) which avoids this problem and can indeed

be specified as an invariant.



65

Chapter 7

VIABILITY OF OUR APPROACH

As mentioned earlier, the viability of this approach was tested in [26]. They used

a pipelining algorithm to generate a pipeline reference model and compared their

pipelined implementation with pipelined RTL using SEC to justify their approach.

If we replace their algorithm with our certified algorithm and still produce

the same pipelined implementation with same shadow registers and data propa-

gations, we can claim that our algorithm is also suited for certifying behaviorally

synthesized designs.

7.1 EXPERIMENTAL RESULTS

Our approach has been integrated into the overall certification flow for commer-

cial behavioral synthesis flows, which includes, in addition to pipeline certification,

the front-end and back-end SEC as discussed in Section 2. The overall flow has

been used in tandem with the commercial synthesis flow of AutoESL to certify

synthesized designs. Table 7.1 shows some illustrative certified design examples

which include non-trivial pipelines. We have successfully tested the pipeline refer-

ence model generated by our certified algorithm with the pipelined reference model

generated by the previous algorithm. Note that the designs are from a variety of

domains and many of the pipelines are non-trivial. Furthermore, the certification

flow itself is automatic, requiring no expertise in theorem proving (or even for-

mal methods) and can be carried out by the system designer in tandem with the

synthesis framework.



66

Table 7.1: Behaviorally synthesized pipelined designs tested using our algorithm
Design RTL Application Loop Loop No. of Pipeine

Lines Domain Interval Depth ops Register
MemoryOp 291 Memory Operation 1 4 18 2

TEA 383 Cryptography 1 4 28 2
XTEA 483 Cryptography 1 4 37 1

SmithWater 517 Data Processing 2 3 73 0

7.2 WALK THROUGHOF OURAPPROACHONAN INDUSTRIAL

STRENGTH DESIGN

To understand our approach, we can go over the steps of one particular industrial

strength design.

void encrypt (uint32_t* v, uint32_t* k) 

{ 

uint32_t v0=v[0], v1=v[1], sum=0, i;    /* set up */

uint32_t delta=0x9e3779b9;                /* a key schedule constant */

uint32_t k0=k[0], k1=k[1], k2=k[2], k3=k[3]; /* cache key */

for (i=0; i < 32; i++) { /* basic cycle start */

sum += delta; 

v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1); 

v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3); 

} /* end cycle */

v[0]=v0; 

v[1]=v1; 

}

Figure 7.1: TEA: C code

Tiny Encryption Algorithm (TEA) [65] is a cryptography design. It is a block

cipher notable for its simplicity of description and implementation with a few lines



67

of code as shown in Figure 7.1. TEA operates on two 32-bit unsigned integers

(could be derived from a 64-bit data block) and uses a 128-bit key. It has a simple

key usage, mixing all of the key material in exactly the same way for each cycle.

Different multiples of a magic constant are used to prevent simple attacks based

on the symmetry of the rounds. The magic constant, 2654435769 or 9E3779B916

is chosen to be 232/φ, where φ is the golden ratio”.

The C code is converted to an Intermediate representation IR and undergoes

compiler transformations. If we only consider the loop CCDFG, ignoring the para-

phernalia before and after this, we have a loop sequential CCDFG just before the

loop pipelining transformtion needs to be applied as shown in Figure 7.2. Now, we

show how we apply our algorithm to derive a pipelined loop structure from this

sequential CCDFG.

Recall that the first step of the algorithm is to remove branches. Assuming

that the loop exits in the (k + 1)st iteration, we separate Sloop and SpreExit as we

explained earlier in Chapter 5. We now have a CCDFG as shown in Figure 7.3.

Next, we unroll the loop once to separate the first iteration from the rest. Recall

that this step is important so that we can statically determine how to resolve the

φ-construct. The unrolled loop structure is shown in Figure 7.4.

Next, we resolve the φ-construct and replace it with appropriate assignment

statements as explained in φ-removal step in Chapter 5. Note that the first iteration

of the loop has the previous basic block as Entry so φ-construct resolution is

different than those in other iterations where previous basic block is Z. The

CCDFG after this step is as shown in Figure 7.5.



68

Entry

Exit

{ v0_1 := ϕ [v0, Entry] [v0_2, Z]
v1_1 := ϕ [v1, Entry] [v1_2, Z]
i := ϕ [0, Entry]   [i_1, Z]
phi_mul := ϕ [0, Entry]   [next_mul, Z] }

exitcond := ( i == 32)
i_1 := i + 1
if (exitcond) then goto Exit else goto Next step
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1       := tmp + k0_read
tmp2       := v1_1 >> 5
tmp3       := tmp2 + k1_read
tmp4       := v1_1 + next_mul

tmp5        := tmp3 xor tmp4
tmp6        := tmp5 xor tmp1
v0_2        := tmp6 + v0_1
tmp7        := v0_2 << 4
tmp8        := tmp7 + k2_read
tmp9        := v0_2 >> 5
tmp10      := tmp9 + k3_read 
tmp11      := v0_2 + next_mul
tmp12      := tmp11 xor tmp8
tmp13     := tmp12 + tmp10
v1_2       := tmp13 + v1_1

Go to X

X

Y

Z

Figure 7.2: TEA: Sequential loop CCDFG



69

Entry

{ v0_1 := ϕ [v0, Entry] [v0_2, Z]
v1_1 := ϕ [v1, Entry] [v1_2, Z]
i := ϕ [0, Entry]   [i_1, Z]
phi_mul := ϕ [0, Entry]   [next_mul, Z] }
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
Go to X

X

Y

Z

{ v0_1 := ϕ [v0, Entry] [v0_2, Z]
v1_1 := ϕ [v1, Entry] [v1_2, Z]
i := ϕ [0, Entry]   [i_1, Z]
phi_mul := ϕ [0, Entry]   [next_mul, Z] }
exitcond := ( i == 32)
i_1 := i + 1

S1oop

SpreExit

Exit

Execute Sloop k times followed by SpreExit

Figure 7.3: TEA: After removing branches



70

Entry

{v0_1 := ϕ [v0, Entry] [v0_2, Z]
v1_1 := ϕ [v1, Entry] [v1_2, Z]
i := ϕ [0, Entry]   [i_1, Z]
phi_mul := ϕ [0, Entry]   [next_mul, Z] }
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1

X

Y

Z

{v0_1 := ϕ [v0, Entry] [v0_2, Z]
v1_1 := ϕ [v1, Entry] [v1_2, Z]
i := ϕ [0, Entry]   [i_1, Z]
phi_mul := ϕ [0, Entry]   [next_mul, Z] }
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1

X

Y

Z

{v0_1 := ϕ [v0, Entry] [v0_2, Z]
v1_1 := ϕ [v1, Entry] [v1_2, Z]
i := ϕ [0, Entry]   [i_1, Z]
phi_mul := ϕ [0, Entry]   [next_mul, Z] }
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit
Exit

Sloop

Figure 7.4: TEA: After unrolling loop once



71

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1

X

Y

Z

v0_1 := v0_2
v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1

X

Y

Z

v0_1 := v0_2
v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit

Exit

Sloop

Figure 7.5: TEA: After φ-removal



72

Now, we have to prepare this CCDFG so that iterations can be overlapped.

So, we need to remove the data hazards. We first identify the variables/microsteps

which cause Write After Read (WAR) hazards. We note that values of v0 1 and

v1 1 are read in X and written in Z of Sloop. If we overlap the iterations, then

X of second iteration will read the outdated values of these variables before they

have had a chance to be updated by the Z of the first iteration, thus causing data

hazards.

To overcome this, recall that we have data propagation step in Chapter 5 as

next step of our algorithm. We implement the first step for v0 1 := v0 2 and move

it to the beginning of the X block in Sloop and SpreExit as shown in Figure 7.6.

Since, we are already at the beginning of Sloop here, nothing needs to be done.

Recall, this step may need multiple applictions of interchange primitive.

In the second step, we add this microstep to Z of Spre and Z of Sloop and

remove this mstep from X of Sloop and X of SpreExit as shown in Figure 7.7.

The motivation is to move the microstep to the previous iteration such that the

value of any variable is overwritten only when the previous value has already been

correctly read. The justification of this step is as explained in Chapter 6 using

smart restructing of CCDFG to ease the complexity and application of multiple

interchange primitives.

We apply both the steps of data propagation primitive for the second mstep as

well, as shown v1 1 := v1 2 in Figures 7.8 and 7.9.



73

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1

X

Y

Z

v0_1 := v0_2
v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1

X

Y

Z

v0_1 := v0_2
v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit

Exit

Sloop

Figure 7.6: TEA: After data propagation first step for v0 1 := v0 2



74

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2

X

Y

Z

v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2

X

Y

Z

v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit

Exit

Sloop

Figure 7.7: TEA: After data propagation second step for v0 1 := v0 2



75

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2

X

Y

Z

v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2

X

Y

Z

v1_1 := v1_2
i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit

Exit

Sloop

Figure 7.8: TEA: After data propagation first step for v1 1 := v1 2



76

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

X

Y

Z

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_mul

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_mul
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

X

Y

Z

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit

Exit

Sloop

Figure 7.9: TEA: After data propagation second step for v1 1 := v1 2



77

After we have removed the potential WAR hazards which can stall the pipeline,

we need to remove the RAW hazards as well. We check the variables which can

cause data hazards by measuring the read and write distance between variables

and compare it to pipeline interval. For example, in Figure 7.9, we write next mul

in X while we read next mul in both Y and Z. If we overlap the iterations as it is,

then the X of second iteration occurs before Z of first iteration and we overwrite

the value in X before Z has a chance to read it. Note that we know this as our

algorithm calculates the longest read and write distance of every variable in an

iteration. Here the distance for next mul is 2 scheduling steps, while the pipeline

interval is 1. So, we know that this variable will cause a hazard when we pipeline.

For all other variables, the distance is either 1 or 0 which is less than the pipeline

interval so we know that they are safe.

We store the value of the variable in temporary variables called shadow regis-

ters, here we store the value in next reg, for second scheduling step, we store in

next reg2 and we read from these shadow registers so that the original value is un-

affected and can be read as required. The new CCDFG with temporary variables

is shown in Figure 7.10.

Now, we can overlap the iterations as shown in Figure 7.11. We call this step

- superstep construction.

Now, we need to add the branches back which is the final step of our algorithm.

We first interchange the S preExit with P post. Since we have already removed

the potential data hazards, we know that we can apply interchange primitives to

achieve this step as shown in Figure 7.12. Then, we apply the branch primitive and

put the branch back to get the final pipelined structure as shown in Figure 7.13.



78

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

X

Y

Z

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp :=  v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

X

Y

Z

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Spre

SpreExit

Exit

Sloop

Figure 7.10: TEA: After adding shadow registers



79

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp := v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp := v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp := v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Exit

Ppre

Ploop

Ppost

SpreExit

Figure 7.11: TEA: After superstep construction



80

Entry

v0_1 := v0
v1_1 := v1
i := 0
phi_mul := 0
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp := v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp := v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1
next_mul := phi_mul + 0x9e3779b9
next_reg := next_mul

tmp := v1_1 << 4
tmp1 := tmp + k0_read
tmp2 := v1_1 >> 5
tmp3 := tmp2 + k1_read
tmp4 := v1_1 + next_reg
next_reg2 := next_reg

i := i_1
phi_mul := next_mul
exitcond := ( i == 32)
i_1 := i + 1

Exit

Ppre

Ploop

SpreExit

tmp5 := tmp3 xor tmp4
tmp6 := tmp5 xor tmp1
v0_2 := tmp6 + v0_1
tmp7 := v0_2 << 4
tmp8 := tmp7 + k2_read
tmp9 := v0_2 >> 5
tmp10 := tmp9 + k3_read 
tmp11 := v0_2 + next_reg2
tmp12 := tmp11 xor tmp8
tmp13 := tmp12 + tmp10
v1_2 := tmp13 + v1_1
v0_1 := v0_2
v1_1 := v1_2 Ppost

Figure 7.12: TEA: After interchanging post with pre-exit



81

E
nt

ry

v0
_

1
:=

 v
0

v1
_

1
:=

 v
1

i
:=

 0
ph

i_
m

ul
:=

 0
ex

it
co

nd
:=

 (
 i

 =
=

 3
2)

i_
1

:=
 i

 +
 1

ne
xt

_m
ul

:=
 p

hi
_m

ul
+

 0
x9

e3
77

9
b9

ne
xt

_r
eg

:=
 n

ex
t_

m
ul

tm
p

:=
 v

1_
1 

<
<

 4
tm

p1
:=

 t
m

p
+

 k
0_

re
ad

tm
p2

:=
 v

1_
1 

>
>

 5
tm

p3
:=

 t
m

p2
 +

 k
1_

re
ad

tm
p4

:=
 v

1_
1 

+
 n

ex
t_

re
g

ne
xt

_r
eg

2
:=

 n
ex

t_
re

g

tm
p5

:=
 t

m
p3

 x
o

r
tm

p4
tm

p6
:=

 t
m

p5
 x

o
r

tm
p1

v0
_2

:=
 t

m
p6

 +
 v

0_
1

tm
p7

:=
 v

0_
2

 <
<

 4
tm

p8
:=

 t
m

p7
 +

 k
2_

re
ad

tm
p9

:=
 v

0_
2

 >
>

 5
tm

p1
0

:=
 t

m
p9

 +
 k

3_
re

ad
 

tm
p1

1
:=

 v
0_

2
 +

 n
ex

t_
re

g2
tm

p1
2

:=
 t

m
p1

1 
xo

r
tm

p
8

tm
p1

3
:=

 t
m

p1
2 

+
 t

m
p1

0
v1

_2
:=

 t
m

p1
3 

+
 v

1_
1

v0
_1

:=
 v

0_
2

v1
_1

:=
 v

1_
2

i
:=

 i
_1

p
hi

_m
u

l
:=

 n
ex

t_
m

ul
ex

it
co

nd
:=

 (
 i

 =
=

 3
2)

i_
1

:=
 i

 +
 1

n
ex

t_
m

ul
:=

 p
hi

_m
ul

+
 0

x9
e3

77
9

b9
n

ex
t_

re
g

:=
 n

ex
t_

m
ul

tm
p

:=
 v

1
_1

 <
<

 4
tm

p1
:=

 t
m

p
+

 k
0_

re
ad

tm
p2

:=
 v

1
_1

 >
>

 5
tm

p3
:=

 t
m

p2
 +

 k
1_

re
ad

tm
p4

:=
 v

1
_1

 +
 n

ex
t_

re
g

ne
xt

_r
eg

2
:=

 n
ex

t_
re

g

i
:=

 i
_1

p
hi

_m
u

l
:=

 n
ex

t_
m

ul
ex

it
co

n
d

:=
 (

 i
 =

=
 3

2)
i_

1
:=

 i
 +

 1
If

 e
xi

tc
on

d
go

to
P

p
os

t
el

se
 g

ot
o

N
ex

tS
te

p
n

ex
t_

m
ul

:=
 p

hi
_m

ul
+

 0
x9

e3
77

9b
9

n
ex

t_
re

g
:=

 n
ex

t_
m

ul
G

o
to

B
eg

in
ni

ng
 o

f 
P

lo
op

E
xi

t

P
p

re

P
lo

o
p

tm
p

5
:=

 t
m

p
3 

xo
r

tm
p4

tm
p

6
:=

 t
m

p
5 

xo
r

tm
p1

v
0_

2
:=

 t
m

p
6 

+
 v

0
_1

tm
p

7
:=

 v
0

_2
 <

<
 4

tm
p

8
:=

 t
m

p
7 

+
 k

2
_r

ea
d

tm
p

9
:=

 v
0

_2
 >

>
 5

tm
p

10
:=

 t
m

p
9 

+
 k

3
_r

ea
d 

tm
p

11
:=

 v
0

_2
 +

 n
ex

t_
re

g2
tm

p
12

:=
 t

m
p

11
 x

or
tm

p
8

tm
p

13
:=

 t
m

p
12

 +
 t

m
p1

0
v

1_
2

:=
 t

m
p

13
 +

 v
1_

1
v

0_
1

:=
 v

0
_2

v
1_

1
:=

 v
1

_2
P

po
st

F
ig

u
re

7.
13

:
T

E
A

:
P

ip
el

in
ed

C
C

D
F

G
af

te
r

ad
d
in

g
b
ra

n
ch

es
b
ac

k



82

As is evident from this example, we have a methodical way of dealing with

data hazards and ensuring that we can get a smooth pipeline structure. We have

shown that our approach works by testing it on industrial strength designs. The

systematic approach to creating a pipelined structure has enabled us to succintly

decompose our algorithm into certified primitives and thus certify the overall al-

gorithm.



83

Chapter 8

RELATED WORK AND NOVELTY OF OUR APPROACH

Besides behaviorally synthesized pipelines, there are mainly two other kinds of

pipelines, hardware pipelines and software pipelines.

8.1 HARDWARE PIPELINES AND THEIR VERIFICATION

Hardware pipelining [28] is of two types: Instruction pipelining where there is a

continuous, overlapped movement of instructions to the processor or Arithmetic

pipelining where different stages of an arithmetic operation are handled along the

stages of a pipeline. An Instruction pipeline has five stages: Fetch, Decode, Exe-

cute, Memory Access and Write Back. Without any pipelining, a processor gets

the first instruction from memory, undergoes arithmetic operations and then sends

it back to memory before starting any new instruction. While pipeline is fetching

the instruction, Arithmetic and Logic Unit (ALU) of processor is idle. Pipelining

allows the fetching of instructions to be continuous. The next instructions can

be fetched even while the processor is performing arithmetic operations, holding

them in a buffer close to the processor until each instruction operation can be per-

formed. It reduces the processing time. However, there may be hardware conflicts

(structural hazards), data dependencies (data hazards) or hazards that come from

branch, jump and other control flow changes (control hazards). These prevent the

pipeline from running at full speed. These issues can and are successfully dealt

with. But, detecting and avoiding these hazards leads to a considerable increase

in hardware complexity.



84

There has been a significant amount of work in formal or semi-formal verifica-

tion of processor (hardware) pipelines. A theorem prover, PVS [49] was successfully

used for verification of a simple pipelined processor [16]. Sawada and Hunt [57]

presented a technique that models the trace of executed instructions using a table-

based representation called a MAETT. These approaches require involvement of

user to a great degree, especially in control dominated designs. Hosabettu [30]

proposed to build the proof of correctness of pipelined microprocessors by con-

structing the abstraction function using completion functions. Burch and Dill [6]

presented a technique to verify the correctness of the implementation model of

a pipelined processor against its instruction-set architecture (ISA) model based

on quantifier-free logic of equality with uninterpreted functions. The technique

has been extended to handle more complex pipelined architectures by several re-

searchers [59, 63, 64, 46, 62, 60]. ARM2 pipelined processor was verified [32] using

abstract state machine. Levitt and Olukotun [43] created a verification method to

merge repeatedly last two stages of a pipeline into one, called unpipelining, to ul-

timately create a sequential verision. Aagaard et al. [3] presented a framework for

microprocessor correctness statements about safety that is independent of imple-

mentation representation. Out of order pipelines have been verified by combining

model checking for the verification of the pipeline control, and theorem proving for

the verification of the pipeline functionality [34] .

All the above techniques attempt to formally verify the implementation of

pipelined processors by comparing the pipelined implementation with its sequen-

tial (ISA) specification model, or by deriving the sequential model from the imple-

mentation. There are significant differences in goals and techniques between these

efforts and ours. Microprocessor pipelines include optimized (hand-crafted) control

and forwarding logics, but have a static set of operations based on the instruction

set. Behaviorally synthesized loop pipelines tend to be deep with a high complex-

ity at each stage, but control and forwarding logics are more standardized since



85

they are automatically synthesized. Furthermore, microprocessor pipeline verifi-

cation is focused on one (hand-crafted) pipeline implementation, while our work

focuses on verifying an algorithm that generates pipelines. As explained earlier in

Chapter 6 that our invariant is very different from a typical invariant used in the

verification of pipelined machines (e.g., for microprocessor pipelines). We make

explicit the correspondence with the sequential execution. The key requirement

from a pipeline invariant, viz., hazard freedom, is left implicit and arises indirectly

as a proof obligation for invariance of this predicate.

8.2 SOFTWARE PIPELINES AND THEIR VERIFICATION

Software pipelining is a form of out of order execution. It is performed by com-

piler rather than a processor. Behaviorally synthesized loop pipelines are similar

in reasoning to software loop pipelines except that since behavioral synthesis is

automatic, it is much more streamlined than software pipelines.

In [42], Pnueli and Leviathan present a validator to verify software pipeline

in IA-64 architecture [18] (Intel’s architecture specifically designed with keeping

complexities of software pipelining in mind and to provide additional support for

it). It uses rotating register file and predicate registers for its verification. Using

symbolic evaluation, the validator generates a set of verification conditions that

are discharged by a theorem prover. Kundu et al. [41] use parameterized trans-

lation validation to verify software pipelines. They use code motion (rewrite of

original loop by validating each rewrite step). Our understanding of hazards and

reasoning behind pipelining algorithm is very closely related to recent work on

verification of software pipelines. In particular, Tristan and Leroy [61] present

a verified translation validator for software loop pipelines. The loop pipelines in

behavioral synthesis considered in this paper are close in structure to software

loop pipelines, although our formalization (e.g., CCDFG) has different semantics

from the Control Flow Graphs they use, reflecting the difference between eventual



86

targets of compilation (viz., hardware vs. software). However, the fundamental

difference is in the approach taken to actually certify the pipelines. Tristan and

Leroy’s approach decomposes the certification problem into two parts, a “dynamic”

part that is certified on a case-by-case basis and a “static” part that is certified

in the Coq theorem prover [5] once and for all. The theorem proven by Coq is

informally paraphrased as follows:

Suppose the pipelining algorithm generates a pipeline P from a sequen-

tial design S. Suppose symbolic simulation of S and P verifies certain

“dynamic” verification conditions (VCs). Then S and P are indeed

semantically equivalent.

Thus for any pipeline instance P generated by their algorithm, symbolic simulation

is executed between P and S to certify that P is indeed a correct pipelined im-

plementation of S. The dynamic VCs checked by symbolic simulation essentially

certify that the pipeline generation did not overlook any hazards.

This is where our work differs from theirs. Our work is expected to provide

a single theorem certifying the correctness of the reference pipelined implementa-

tion, without requiring further runtime hazard check. Furthermore, their corre-

spondence theorem relates the pipelined implementation with a sequential design

with a (bounded) unrolled loop, while our approach certifies the correspondence

between the actual Control Flow Graph (CFG) and the pipelined implementation.

Indeed, Tristan and Leroy remark that the mechanization of the correspondence

between the CFG and unrolled loop is “infuriatingly difficult”. We speculate this

is so because they focus on verifying the correspondence between the unrolled loop

and the pipeline. In our experience, attempting the formal correspondence be-

tween the unrolled sequential loop and pipelined design is indeed difficult since

there is no formal way to connect to back edge of the loop with any of the edges

in the pipeline. We believe that reconciling this problem and developing a fully



87

certified pipeline generation algorithm would require backtracking from the cor-

respondence with an unrolled loop (and hence translation validation) to a more

complex invariant like ours. Of course we must note that we can “afford” to de-

velop a fully certified algorithm in our approach since the pipelines are simpler (cf.

Chapter 3); achieving this for arbitrary software pipeline may require further more

subtle invariants.

8.3 VERIFICATION OF BEHAVIORALLY SYNTHESIZED DESIGNS

A lot of research has been done in verification of behaviorally synthesized designs.

Matsumoto et al. [47] compare two similar C-based hardware descriptions. To ver-

ify large C descriptions efficiently, they rely on scanning for textual differences to

reduce problem complexity, then enumerate execution paths and apply symbolic

simulation and word-level uninterpreted functions. Bounded model checking is

used if the software is abritrary. If the software is arbitrary high-level code, then

full formal verification is undecidable, but bounded-length verification is possible

using symbolic execution. Kroening, Clarke and Yorav [12] apply BMC (Bounded

Model Checking) to both a circuit and a C program. Their tool covers arbitrary

designs. However, this method shows only the absence of inconsistencies up to a

given bound. Furthermore, the number of paths is very high. In order to avoid

the state space explosion problem of full formal verification, Jain, Kroening, and

Clarke [11] introduce predicate abstraction for hardware implementations against

software specifications. This approach can greatly reduce the size of the state

space and verify certain properties for large circuits. The strength of that work is

powerful abstraction techniques that reduce the complexity of the software specifi-

cations. However, such abstraction techniques can be too coarse, and finding good

predicates is highly challenging.

Initially, high level synthesis verification focused on behavioral VHDL [10] and

translation from VHDL to dependence flow graphs [35] was verified by structural



88

induction based on CSP semantics [29]. Bisimulation has been proposed as a

solution to validate behaviorally synthesized designs [40]. Their approach is im-

plemented for the Spark synthesis tool [20]. However, their approach is not scalable

and we handle more complex industrial strength designs. Recently, HOL [22]has

been used to synthesize hardware from formal languages automatically. A certified

hardware synthesis from programs in Esterel, a synchronous design language, has

also been developed [58] in which a variant of Esterel was embedded in HOL.

There has been much research on sequential equivalence checking (SEC) be-

tween RTL and gate-level hardware designs [56, 37]. Research has also been done

on combinational equivalence checking between high-level designs in software-like

languages (e.g., SystemC) and RTL-level designs [31]. There has also been effort

for SEC between software specifications and hardware implementations [66] .

8.4 USE OF THEOREM PROVERS IN HARDWARE VERIFICA-

TION

Thorem provers are widely used for hardware verification. HOL theorem prover [21]

has been used in several well-documented projects [13, 23]. ACL2 is also used a lot

in hardware verification [17, 38, 39, 27, 51, 54, 53]. Our project is however some-

what different from the traditional applications of theorem provers. First, since an

over-arching goal is to exploit automatic decision procedures, we use theorem prov-

ing primarily to complement automated tools. Second, we eschew theorem proving

on inherently complex or low-level implementations. Third, interactive theorem

proving is acceptable for one-time use, in certification of a transformation, but not

as part of a methodology that requires ongoing use in certification of each design.

The constraints are imposed by the environment in which we envision our frame-

work being deployed: it may not be possible to have a dedicated team of experts

doing theorem proving as full-time jobs. Finally, the loop pipelining transforma-

tion we verify are proprietary to the synthesis tools. Therefore, our approach is



89

targeting verification of transformations which are closed-source (and exceedingly

complex), thus making traditional program verification techniques unusable. Our

approach shows a novel way in which theorem proving can be applied even under

those constraints, in concert with automated SEC.

In addition to technical contributions, we see our work as providing an im-

portant methodological contribution enabling use of theorem proving in situations

where one needs to certify the result of an implementation on which theorem prov-

ing cannot be directly applied either because it is closed-source or because it is

highly complex: (1) create a reference implementation, perhaps using as much

information as available from the actual implementation, in our case information

about pipeline intervals, (2) certify this simpler reference implementation with

theorem proving, and (3) develop an SEC framework to compare the result of

the reference implementation with that of the actual implementation. In addition

to making theorem proving applicable on industrial flows without requiring us to

certify industial implementations with their full complexity, this approach permits

adjusting the algorithm (within limits) to suit mechanical reasoning while still af-

fording comparison with actual synthesized artifacts. We have made liberal use of

this “luxury”, e.g., we have been continually redefining our superstep construction

function to facilitate proof of key structural lemmas of the invariant before settling

on the final version. We believe similar approach is applicable in other contexts

and may provide effective use of theorem proving within industrial verification

flows.



90

Chapter 9

CONCLUSION AND FUTURE WORK

9.1 SUMMARY

Our dissertation is on developing a framework of certified pipelining primitives

for building certified pipelining algorithms. We build a loop pipelining algorithm

using this framework and certify it using ACL2 theorem prover. We have for-

malized the syntax and semantics of our intermediate representation (CCDFG)

in ACL2. We have successfully identified and formalized a framework of succinct

and provable primitives essential for loop pipelining algorithms. These primi-

tives include φ-elimination, shadow-register, interchange, branch and superstep-

construction primitive. We have formalized a key invariant, unlike used before for

any microprocessor pipeline verification, required for the correspondence between

the sequential loop with the backedge and the pipelined loop with the backedge.

We have proved that the corresponding relation is true for our algorithm and we

have proved the implication chain from this relation to the correctness statement

for our algorithm. Using these certified primitives as building blocks and our key

invariant, we have formalized and certified a loop pipelining algorithm. We have

proved that each component of our algorithm described in Chapter 5 maintains

the invariant that the execution of CCDFGs before and after that component is

same. Even though each component essentially decomposes into proving that our

primitive is correct, we still have to prove that every application of our primitives

maintains certain assumptions and does not disrupt the certification flow. Also,

we have proved by induction that applying a primitive in the context of a CCDFG



91

is correct.

Our current ACL2 script has 296 definitions and 1012 lemmas, including many

lemmas about structural properties of CCDFGs (but not counting those from the

false starts).

Since, we have a certified loop pipelining algorithm, we can confidently say that

there are no data hazards and executing a sequential loop is same as executing a

pipelined loop created using our algorithm. We have tested the pipeline reference

model created using our algorithm on a variety of designs across different appli-

cation domains. This shows that our algorithm is practical and can be used for

industrial strength designs with tens of thousands of RTL.

With this dissertation, we have made the following major contributions:

– Developed a framework of succinct certified primitives essential to build pipelin-

ing algorithms : Our primitives are essential for developing certified loop pipelin-

ing algorithm in behavioral synthesis. This framework can also be extended to

certify other pipelining algorithms such as function pipelines.

– Designed and certified a reference loop pipelining algorithm : We utilize our

framework of certified primitives as backbone to build our certified loop pipelin-

ing algorithm. Since a primitive can only be applied under certain conditions,

when certifying the algorithm, we prove that every application of our primitive

is under correct conditions and certain assumptions are maintained after the

application of a primitive. We also formalize and certify a key invariant for the

correspondence between the sequential and pipelined CCDFGs and propose an

algorithm for handling branch conditions in pipelines.

– Evaluated our algorithm on industrial-strength designs : We test our algorithm

on a variety of designs across different application domains. If our algorithm

can generate a pipeline reference model for a design, we can compare it to the

pipelined RTL generated by behavioral synthesis tools using SEC. If the SEC



92

passes, we certify the application of loop pipelining transformation is correct.

We show that our algorithm can discharge industrial-strength designs.

9.2 NEXT STEPS

Our dissertation shows that it is possible to develop and certify an industrial-

strength loop pipelining algorithm if we can decompose it into succint certifiable

primitives. We have already identified and certified these primitives. Our algo-

rithm has components which can identify data hazards based on the given pipeline

interval. Then we use our certified primitives to remove those data hazards and

create a pipelined implementation.

Function pipelining algorithms also have the same type of data hazards as we

have mentioned in loop pipelining algorithms. However, while loop pipelines have

a fixed pipeline interval which is known at compile time, function pipelines have a

variable pipeline interval for every iteration. So, instead of identifying data hazards

at once for every iteration, we would have to call those functions for each iteration.

After we have identified the data hazards, we can use our certified primitives to

remove those data hazards. We believe that if we can modify the algorithm to

identify data hazards, then we can conveniently reuse our certified primitives to

certify behaviorally synthesized function pipelines as well.



93

REFERENCES

[1] Phi Operator LLVM reference manual. http://llvm.org/releases/2.9/

docs/LangRef.html#i_phi. Accessed: September 29, 2016.

[2] WebM. VP9 Video Hardware RTL. http://www.webmproject.org/

hardware/vp9/. Accessed: September 11, 2016.

[3] Mark D. Aagaard, Byron Cook, Nancy A. Day, and Robert B. Jones. A Frame-

work for Microprocessor Correctness Statements, pages 433–448. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2001.

[4] Reinaldo A. Bergamaschi. Behavioral Synthesis: an Overview, pages 103–131.

Springer US, Boston, MA, 2007.

[5] Yves Bertot, Pierre Castran, Grard (informaticien) Huet, and Christine

Paulin-Mohring. Interactive theorem proving and program development :

Coq’Art : the calculus of inductive constructions. Texts in theoretical com-

puter science. Springer, Berlin, New York, 2004. Donnes complmentaires

http://coq.inria.fr.

[6] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor

Control. In D. L. Dill, editor, Proceedings of the 6th International Conference

on Computer-Aided Verification (CAV 1994), volume 818 of LNCS, pages

68–80. Springer-Verlag, 1994.

[7] Cadence. C-to-Silicon Reference Manual, 2011.

[8] Calypto. Catapult Reference Manual, 2014.

http://llvm.org/releases/2.9/docs/LangRef.html#i_phi
http://llvm.org/releases/2.9/docs/LangRef.html#i_phi
http://www.webmproject.org/hardware/vp9/
http://www.webmproject.org/hardware/vp9/


94

[9] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-

moona, Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson.

Legup: An open-source high-level synthesis tool for fpga-based proces-

sor/accelerator systems. ACM Trans. Embed. Comput. Syst., 13(2):24:1–

24:27, September 2013.

[10] R.O Chapman. Verified high-level synthesis. PhD thesis, Portland State Uni-

veristy, 1994.

[11] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Sa-

tabs: Sat-based predicate abstraction for ansi-c. In Proceedings of the 11th

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, TACAS’05, pages 570–574, Berlin, Heidelberg, 2005.

Springer-Verlag.

[12] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral consis-

tency of c and verilog programs using bounded model checking. In DAC, pages

368–371. ACM, 2003.

[13] Avra Cohn. The Notion of Proof in Hardware Verification, pages 359–374.

Springer Netherlands, Dordrecht, 1993.

[14] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang. Platform-based behavior-

level and system-level synthesis. In 2006 IEEE International SoC Conference,

pages 199–202. IEEE, 2006.

[15] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andrs Takach.

An introduction to high-level synthesis. IEEE Design & Test of Computers,

26(4):8–17, 2009.

[16] David Cyrluk. Microprocessor verification in pvs - a methodology and simple

example. Technical report, 1994.



95

[17] DavidRussinoff and Matt Kaufmann and Eric Smith and Robert Sumners.

Formal Verification of Floating-Point RTL at AMD Using the ACL2 Theorem

Prover, 2014.

[18] Gautam Doshi. Understanding the IA-64 architecture. Technical report, Au-

gust 1999.

[19] Tom Feist. White paper: Vivado design suite. Technical report, Xilinx, June

2012.

[20] D. Gajski, N. D. Dutt, A. Wu, and S. Lin. High Level Synthesis: Introduction

to Chip and System Design. Kluwer Academic Publishers, 1993.

[21] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem

Proving Environment for Higher Order Logic. Cambridge University Press,

New York, NY, USA, 1993.

[22] Mike Gordon, Juliano Iyoda, Scott Owens, and Konrad Slind. Automatic

formal synthesis of hardware from higher order logic. Electron. Notes Theor.

Comput. Sci., 145:27–43, January 2006.

[23] Brian T. Graham. The SECD Microprocessor: A Verification Case Study.

Kluwer Academic Publishers, Boston, MA, 2012.

[24] K. Hao, S. Ray, and F. Xie. Equivalence Checking for Behaviorally Syn-

thesized Pipelines. In P. Groeneveld, D. Sciuto, and S. Hassoun, editors,

49th International ACM/EDAC/IEEE Design Automation Conference (DAC

2012), pages 344–349. ACM, 2012.

[25] K. Hao, F. Xie, S. Ray, and J. Yang. Optimizing equivalence checking for be-

havioral synthesis. In Design, Automation and Test in Europe (DATE 2010),

pages 1500–1505. IEEE, 2010.



96

[26] Kecheng Hao. Equivalence Checking for High-Assurance Behavioral Synthesis.

PhD thesis, Portland State Univeristy, 2013.

[27] David S. Hardin. Design and Verification of Microprocessor Systems for High-

Assurance Applications. Springer Publishing Company, Incorporated, 1st edi-

tion, 2010.

[28] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 3 edition, 2003.

[29] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,

21(8):666–677, August 1978.

[30] Ravi Mohan Hosabettu. Systematic Verification of Pipelined Microprocessors.

PhD thesis, The University of Utah, 2000.

[31] Alan Hu. High-level vs. rtl combinational equivalence: An introduction. In

ICCD, pages 274–279. IEEE, 2006.

[32] James K. Huggins and David Van Campenhout. Specification and verifica-

tion of pipelining in the arm2 risc microprocessor. ACM Trans. Des. Autom.

Electron. Syst., 3(4):563–580, October 1998.

[33] I. Moussa and Z. Sugar and R. Suescun and A. A. Jerraya and M. Diaz-Nava

and M. Pavesi and S. Crudo and L. Gazzi. Comparing RTL and Behavioral

Design Methodologies in the Case of a 2M Transistors ATM Shaper, 1999.

[34] Christian Jacobi. Formal verification of complex out-of-order pipelines by

combining model-checking and theorem-proving. 2404:309, 2002.

[35] Richard Johnson and Keshav Pingali. Dependence-based program analysis.

In In Proceedings of the SIGPLAN ’93 Conference on Programming Language

Design and Implementation, pages 78–89, 1993.



97

[36] Roel Jordans and Henk Corporaal. High-level software-pipelining in llvm. In

Proceedings of the 18th International Workshop on Software and Compilers

for Embedded Systems, SCOPES ’15, pages 97–100, New York, NY, USA,

2015. ACM.

[37] Daher Kaiss, Silvian Goldenberg, and Zurab Khasidashvili. Seqver : A sequen-

tial equivalence verifier for hardware designs. In 24th International Conference

on Computer Design (ICCD 2006), 1-4 October 2006, San Jose, CA, USA,

pages 267–273, 2006.

[38] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Publishers, Boston, MA, June 2000.

[39] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, Boston, MA, June 2000.

[40] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Validating High-Level Syn-

thesis, pages 459–472. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[41] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. Proving optimizations

correct using parameterized program equivalence. SIGPLAN Not., 44(6):327–

337, June 2009.

[42] Raya Leviathan and Amir Pnueli. Validating software pipelining optimiza-

tions. In Proceedings of the 2002 International Conference on Compilers, Ar-

chitecture, and Synthesis for Embedded Systems, CASES ’02, pages 280–287,

New York, NY, USA, 2002. ACM.

[43] Jeremy Levitt and Kunle Olukotun. Verifying correct pipeline implementa-

tion for microprocessors. In Proceedings of the 1997 IEEE/ACM International

Conference on Computer-aided Design, ICCAD ’97, pages 162–169, Washing-

ton, DC, USA, 1997. IEEE Computer Society.



98

[44] Youn-Long Lin. Recent developments in high-level synthesis. ACM Trans.

Des. Autom. Electron. Syst., 2(1):2–21, January 1997.

[45] Hanbing Liu and J. Strother Moore. Executable jvm model for analytical

reasoning: a study. Sci. Comput. Program., 57(3):253–274, September 2005.

[46] P. Manolios. Correctness of Pipelined Machines. In W. A. Hunt, Jr. and S. D.

Johnson, editors, Proceedings of the 3rd International Conference on Formal

Methods in Computer-Aided Design (FMCAD 2000), volume 1954 of LNCS,

pages 161–178, Austin, TX, 2000. Springer-Verlag.

[47] Takeshi Matsumoto, Hiroshi Saito, and Masahiro Fujita. Equivalence check-

ing of c programs by locally performing symbolic simulation on dependence

graphs. In Proceedings of the 7th International Symposium on Quality Elec-

tronic Design, ISQED ’06, pages 370–375, Washington, DC, USA, 2006. IEEE

Computer Society.

[48] Michael Meredith. High-Level SystemC Synthesis with Forte’s Cynthesizer,

pages 75–97. Springer Netherlands, Dordrecht, 2008.

[49] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification sys-

tem. In Deepak Kapur, editor, 11th International Conference on Automated

Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,

pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[50] D. Puri, S. Ray, K. Hao, and F. Xie. Mechanical certification of loop pipelining

transformations: A preview. In G. Klein and R. Gamboa, editors, 4th Interna-

tional Conference on Interactive Theorem Proving (ITP 2014), volume 7998

of LNCS. Springer, 2014.

[51] S. Ray and J. Bhadra. Abstracting and Verifying Flash Memories. In

K. Campbell, editor, Proceedings of the 9th Non-Volatile Memory Technology



99

Symposium (NVMTS 2008), pages 100–104, Pacific Grove, CA, November

2008. IEEE.

[52] S. Ray, K. Hao, F. Xie, and J. Yang. Formal Verification for High-Assurance

Behavioral Synthesis. In Z. Liu and A. P. Ravn, editors, Proceedings of the

7th International Symposium on Automated Technology for Verification and

Analysis (ATVA 2009), volume 5799 of LNCS, pages 337–351, Macao SAR,

China, October 2009. Springer.

[53] S. Ray and W. A. Hunt, Jr. Mechanized Certification of Secure Hardware

Designs. In M. S. Abadir, L. Wang, and J. Bhadra, editors, Proceedings

of the 8th International Workshop on Microprocessor Test and Verification,

Common Challenges and Solutions (MTV 2007), pages 25–32, Austin, TX,

December 2007. IEEE Computer Society.

[54] S. Ray and W. A. Hunt, Jr. Connecting Pre-Silicon and Post-silicon Verifica-

tion. In A. Biere and C. Pixley, editors, Proceedings of the 9th International

Conference on Formal Methods in Computer-Aided Design (FMCAD 2009),

pages 160–163, Austin, TX, November 2009. IEEE Computer Society.

[55] Sandip Ray. Scalable Techniques for Formal Verification. 2010.

[56] Hamid Savoj, David Berthelot, Alan Mishchenko, and Robert Brayton. Com-

binational techniques for sequential equivalence checking. In Proceedings of

the 2010 Conference on Formal Methods in Computer-Aided Design, FMCAD

’10, pages 145–150, Austin, TX, 2010. FMCAD Inc.

[57] J. Sawada and W. A. Hunt, Jr. Verification of FM9801: An Out-of-

Order Microprocessor Model with Speculative Execution, Exceptions, and

Program-Modifying Capability. Formal Methods in Systems Design (FMSD),

20(2):187–222, 2002.



100

[58] Klaus Schneider. A Verified Hardware Synthesis of Esterel Programs, pages

205–214. Springer US, Boston, MA, 2001.

[59] Jens U. Skakkebæk, Robert B. Jones, and David L. Dill. Formal verification

of out-of-order execution using incremental flushing, pages 98–109. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1998.

[60] Sudarshan K. Srinivasan. Automatic refinement checking of pipelines

with out-of-order execution. IEEE Transactions on Computers,

59(undefined):1138–1144, 2010.

[61] J. Tristan and X. Leroy. A Simple, Verified Validator for Software Pipelin-

ing. In M. V. Hemenegildo and J. Palsberg, editors, Proceedings of the 37th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages (POPL 2010), pages 83–92, January 2010.

[62] M. N. Velev and R. E. Bryant. TLSim and EVC: A term-level symbolic

simulator and an efficient decision procedure for the logic of equality with

uninterpreted functions and memories. International Journal on Embedded

Systems, pages 134–149, 2005.

[63] Miroslav N. Velev. Formal Verification of VLIW Microprocessors with Spec-

ulative Execution, pages 296–311. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2000.

[64] Miroslav N. Velev and Randal E. Bryant. Formal verification of superscale

microprocessors with multicycle functional units, exception, and branch pre-

diction. In Proceedings of the 37th Annual Design Automation Conference,

DAC ’00, pages 112–117, New York, NY, USA, 2000. ACM.

[65] David J. Wheeler and Roger M. Needham. Tea, a tiny encryption algorithm.



101

In Bart Preneel, editor, FSE, volume 1008 of Lecture Notes in Computer

Science, pages 363–366. Springer, 1994.

[66] Jin Yang and Carl-Johan H. Seger. Introduction to generalized symbolic tra-

jectory evaluation. In ICCD, pages 360–367. IEEE Computer Society, 2001.

[67] Z. Yang, K. Hao, K. Cong, F. Xie, and S. Ray. Equivalence Checking for

Compiler Transformations in Behavioral Synthesis. In 31st International Con-

ference on Computer Design (ICCD 2013), pages 491–494, 2013.

[68] Zhenkun Yang, Kecheng Hao, Kai Cong, Li Lei, Sandip Ray, and Fei Xie.

Scalable certification framework for behavioral synthesis front-end. In The

51st Annual Design Automation Conference 2014, DAC ’14, San Francisco,

CA, USA, June 1-5, 2014, pages 149:1–149:6, 2014.

[69] Zhenkun Yang, Kecheng Hao, Kai Cong, Li Lei, Sandip Ray, and Fei Xie.

Validating scheduling transformation for behavioral synthesis. In 2016 Design,

Automation & Test in Europe Conference & Exhibition, DATE 2016, Dresden,

Germany, March 14-18, 2016, pages 1652–1657, 2016.

[70] Zhenkun Yang, Sandip Ray, Kecheng Hao, and Fei Xie. Handling design and

implementation optimizations in equivalence checking for behavioral synthe-

sis. In Proceedings of the 50th Annual Design Automation Conference, DAC

’13, pages 117:1–117:6, New York, NY, USA, 2013. ACM.


	Certifying Loop Pipelining Transformations in Behavioral Synthesis
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Dissertation Summary
	Motivation
	Problem Statement
	Overview of our Approach
	Outline

	Background and Context
	Behavioral Synthesis
	Overall Certification Model for Behaviorally Synthesized Pipelines
	A Reference Pipeline Approach

	Formalization
	Intermediate Representation: CCDFG
	Correctness of Loop Pipelining

	Research Challenges
	Importance of using Formal Methods for checking correctness
	Challenges associated with Formal reasoning
	Comparison with Previous Algorithm

	Our Approach
	Framework of Provable Pipelining Primitives
	Our Loop Pipelining Algorithm

	Proof Sketch
	Correctness of Primitives
	Key Invariant on Correspondence Between Back-edges of Sequential and Pipelined Loops
	Correctness of our algorithm
	Lessons from Previous False Starts

	Viability of our Approach
	Experimental Results
	Walk Through of Our Approach on an Industrial Strength Design

	Related Work and Novelty of Our Approach
	Hardware Pipelines and Their Verification
	Software Pipelines and Their Verification
	Verification of Behaviorally Synthesized Designs
	Use of Theorem Provers in Hardware Verification

	Conclusion and Future Work
	Summary
	Next Steps

	References

