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Abstract 

 

Changes in the gait characteristics, such as walking speed and stride length, of a 

person living at home can be used to presage cognitive decline, predict fall potential, 

monitor long-term changes in cognitive impairment, test drug regimens, and more. This 

thesis presents a novel approach to gait analysis in a smart-home environment by 

leveraging new advances in inexpensive sensors and embedded systems to create novel 

solutions for in-home gait analysis. Using a simple, non-invasive hardware system 

consisting entirely of wall-mounted infrared and radio frequency sensor arrays, data is 

collected on the gait of subjects as they pass by. This data is then analyzed and sent to a 

clinician for further study. The system is non-invasive in that it does not use cameras and 

could be built into the molding of a home so that it would be nearly invisible. In a 

finished prototype version, the system presented in this thesis could be used to analyze 

the gait characteristics of one or more subjects living in a home environment while 

ignoring the data of visitors and other non-subject cohabitants. The ability to constantly 

collect data from a home environment could provide thousands of observations per year 

for clinical analysis. Providing such a robust data set may allow people with gait 

impairment to live at home longer and more safely before transitioning to a care facility, 

have a reduced fall risk due to better prediction, and live a healthier life in old age.  
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Introduction 

America is aging, and as it does, new healthcare solutions are needed to serve this 

aging population. As baby boomers reach old age, defined as 65 and older, the burden on 

the healthcare system is dramatically increasing. One way to lessen the burden of an 

aging population on the healthcare system is to leverage innovative technologies to 

improve the efficiency of the system.  

This thesis focuses on one such innovation: a simple, inexpensive in-home gait 

analysis device capable to providing real-time data to clinicians. Changes in gait metrics, 

such as walking speed and stride length, are associated with negative life events such as 

falls in persons with gait impairment. The accurate monitoring and analysis of gait 

characteristics over time can help a care provider diagnose and monitor change in a 

subject’s health as well as the person’s ability to live with little or no caregiver support. 

In addition, in-home gait monitoring can provide much more data to clinicians than 

clinical data alone. Such data can be used for fall-risk assessment and the monitoring of 

rehabilitation progress or the effects of a new medication.  

The first part of the solution is a passive gait-analysis device. An array of 24 

infrared (IR) sensors stationed along a hallway baseboard at 10.2 cm intervals collects 

data continuously. When a subject walks past, data is stored and analyzed using machine 

learning and signal processing techniques to extract relevant gait characteristics including 

ambulatory time, walking speed, stride length, step length, step count, single-support 

time, and dual-support time, with the possibility to expand to more metrics in the future, 

such as stride width and instantaneous foot velocity.  
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The second part of the solution is a method for identifying individuals living 

together in a smart home. Take as an example an elderly man and woman living together 

at home. The man is diagnosed with mild cognitive impairment. Although there are a 

number of pre-existing solutions for monitoring the man at home, there are no ideal 

solutions for monitoring him independent of the woman’s data points. To solve this 

problem, a passive, non-invasive subject-identification system consisting of four radio-

frequency (RF) transceivers and three IR transceivers placed in a doorway was created. 

Using machine learning and signal processing techniques, the unique IR/RF-fingerprint 

of each person can be determined after a very small number of training walks, in which it 

is known who is walking past the sensors. Subsequent walks can be classified as one of 

the two inhabitants with up to 99% accuracy depending on height and weight differences 

between the two people, and is capable of separating residents from non-residents. This 

system is inexpensive and can be added to existing homes. 

The system is constructed using inexpensive, non-invasive sensors which the 

subject is not required to wear or carry. Additionally, it should cost less than 1,000 USD 

to produce, making it affordable for in-home installation. The system uses an array of IR 

sensors which detect the distance to an object passing within one meter of them. Data is 

acquired into software and analyzed using a stochastic signal processing technique called 

an Auxiliary Particle Filter (APF). The APF is made better by a number of other 

techniques including a data association technique called Sequential Silhouette 

Cancelation,  a switch for keeping the far foot stationary when the near is known to be 

swinging, and a strong underlying model of how walking occurs used in conjunction with 
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the process model. The system is capable of detecting step length with better than 10cm 

accuracy, dual- and single-support times to within 170ms and 130ms respectively, and 

stride length to within 20.4cm. Additionally the system can separate a male and female 

subject with as much as 99% accuracy, allowing for the collection of gait data in a multi-

resident smart home environment. By combining these two technologies, a clinician will 

be able to track a person’s gait characteristics with more comprehensive data than 

possible in a clinical setting. This innovative new technique for aging-in-place in a smart-

home environment will help people to stay safely in the comfort of their own home far 

longer than currently possible.  
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Chapter 1: Motivation 

In 2016 assistive technologies for a smart home is a fledgling industry.  Those 

solutions which do exist tend to be expensive, not automated for home use, or do not 

support the identification and separation of multiple inhabitants. This section will provide 

some background on the current state-of-the-art in in-home elderly care for persons with 

gait impairment.  

 

Aging, Cognitive Decline, and the American Healthcare System 

From the late 1940s through the early 1960s a baby boom was sparked by end of 

the last world war.  By the middle of the 1960s the world’s population had increased by 

400 million people [1]. In 2016, the very first baby boomers are reaching old age. They 

join their predecessors in making up the 46 million Americans over the age of 65, 14.5% 

of the total population, estimated to live in the US in 2014 [2]. By the year 2040 the 

cohort of Americans over the age of 65 is estimated by the US Census Bureau to more 

than double to 98 million people. An estimated 17.8 million senior citizens from that 

group will be over the age of 85 [3], which will be the average age of baby boomers in 

2040.  

 With an aging population comes an increased healthcare cost. Fifteen percent of 

men and 24% of women over the age of 65 need some level of care ranging from in-

home assistance to a full-time care staff at a nursing home. By the age of 85 these 

numbers increase dramatically to 46% for men and 62% for women with 15% and 25% 
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respectively living in nursing homes [4]. A conservative estimate places the number of 

elderly people living in nursing homes in 2040 at around 6 million with one in three of 

those people over the age of 85 at a total annual cost of 326.2 billion dollars (2016 

valuation). More than half the annual cost of nursing home care is incurred caring for 

those people 85 years and older.  

A meta-analysis of previous studies which account for age ranges above 80 years 

by EL Schneider et al. [3] suggests that 51.5% of older Americans dwelling in care 

facilities suffer from some level of cognitive impairment. The same survey suggests that 

the rates of cognitive impairment increase dramatically from 2.8% at age 65 to 28% at 

ages 85 and above. As improved healthcare increases life expectancy of the oldest-old the 

rates of cognitive impairment will increase. Researchers in this field agree that age-

related statistics from the Social Security Administration and the US Census Bureau 

underestimate the lifespan of aging Americans. The underestimate is due to an 

unwillingness to project federal spending on healthcare research and biomedical 

improvements in the next 25 years and their effect on reduced mortality risk [1]. Based 

on a study by Hu and Cartwright [5], the cost of care in a nursing home is nearly double 

that of in-home care. Therefore changes in the number of elderly people in care facilities 

could have a huge impact on the US economy. If government estimates of longevity are 

negatively biased by 3.8 years, as suggested by SJ Olshansky et al. [1] the person-years-

of-life (a metric describing aggregate years across a population and abbreviated PYL) 

could increase by as much as 22 million PYL for those over the age of 85 by 2040.  
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To help prevent the inevitable strain on social security in the US it would behoove 

researchers to try to limit the PYL of individuals in full-time care environments such as 

nursing homes. To achieve this end it is possible to leverage rapid improvements in 

computation, electronics and engineering. By creating systems which allow people in 

transitional phases of gait impairment to be closely monitored it is possible to keep them 

at home longer, thereby reduce expenditures on healthcare costs while simultaneously 

improving their quality of life. Systems which can help test drug regimens, monitor and 

report health concerns to doctors, and help alleviate a fear of being injured and alone are 

valuable to individuals and society at large.  

  

The Link between Gait and Health 

There are many methods for studying health in the aging. Over a half century ago 

S Katz et al. [6] suggested a framework referred to as the Index of Activities of Daily 

Living (ADL) which is still used today. The ADL focuses on a person’s ability to achieve 

the basic functions of daily life such as eating, bathing, and using the restroom. The ADL 

is the basis of a number of ongoing research projects both at OHSU and PSU [7]. 

Although some of the elements of the ADL are able to be tracked in an automated 

environment, the tests were designed to be evaluated by caregivers some 50 years ago. 

By monitoring gait in the home it is possible to collect some metrics relevant to ADL 

such as walking speed and ambulatory time regularly and with much higher frequency 

than afforded by the typical annual assessment [8].  
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For a gait analysis system to be effective it must be able to detect clinically 

relevant changes in gait metrics. In the application of tracking recovery progress in stroke 

victims, Tilson et al. [9] study a group of 283 subjects with first-time stroke. A 

comfortable gait speed (CGS) change of 16cm/s was considered a meaningful 

improvement. The study tracked the progression of stroke sufferers at 20 days and 60 

days post-stroke. Mean CGS changes of 18cm/s at 20 days and 39cm/s at 60 days post-

stroke were found. A CGS change of 16cm/s was found to have a sensitivity of 73.9% 

and a specificity of 57% for detecting improvement in subject’s health.  

In a study of Parkinson’s disease (PD) medications Morris et al. [10] tested 15 

subjects with PD for changes in gait metrics between peak dose time (.5 hours following 

dosing) and a half hour before re-dosing. At peak dose, PD sufferers had a mean walking 

speed of 103.2cm/s (standard deviation (SD) of 17.3), and a mean stride length of 

108.5cm (SD of 18.4). In the second test, walking speed was mean 78.6 cm/s (SD of 

28.7), and a mean stride length of 87.8cm (SD of 25.8).  

Schnall et al. [11] report on the gait characteristics of a soldier (N=1) with a 

traumatic hip disarticulation (leg loss, replaced by prosthesis). Between 3 and 38 months 

post-surgery the subject experienced step length changes of 12cm on the prosthesis and 

20cm on the intact limb. The subject also experienced a change in walking speed of 

29cm/s, single support time 2% (prosthesis) and 0% (intact limb).  

A study by Wet et al. [12] examines the contributions of abnormalities of gait 

biomechanics and gait characteristics to the energy cost of walking in older adults. The 
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study of 50 elderly adults with mean age 76.7 years, 65% female composition, and an 

average of 4.3 comorbidities resulted in the following measures of gait characteristics: 

walking speed 88cm/s (84-93 95% confidence interval (CI)) and stride time 740ms (720-

770 95%CI).  

The effect of therapeutic exercise on gait speed was studied by Lopopolo et al. 

[13] in a meta-analysis of 1,302 community-dwelling elderly people. The study found 

that Strength training and aerobic-plus-other-exercise training had statistically significant 

effects on habitual gait speed. Papers included in the meta-analysis report changes in gait 

speed pre-test to post-test of 0 to 7cm/s with one outlier of 17cm/s and the majority of the 

resulting changes in the 1-3cm/s range for both control and experimental groups. Overall, 

exercise training resulted in a habitual gait speed change of 1cm/s.  

The test-retest reliability of temporal and spatial gait characteristics was found to 

be good in a study using the GAITRite walkway system conducted by van Uden et al. 

[14]. The study measured the reliability of gait metrics including walking speed, step 

length, stride length, step time, stride time, single support time, and dual support time. 

The results can be seen in Table 1.  

The results of the research by Tilson et al, Morris et al., and Schnall et al. point 

towards potential use cases for in-home gait analysis. In each of these studies a temporal 

trend in gait metrics is used to find underlying patterns in the health of subjects. With an 

adequately precise system these tests could be completed in a smart-home environment 

instead of in a clinical setting.  
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Current Methods of Gait Analysis 

 The current state-of-the-art for gait analysis methods both in the home and 

in clinical settings is described well in a survey paper Gait Analysis Methods [15] by 

Muro-de-La-Herran et al. In their paper the authors present a comprehensive survey of 

current gait analysis methods in the 2012-2013 time frame. The survey covers methods 

used both in a home and clinical setting. [15] begins with an introduction of key gait 

parameters such as is presented in this thesis. The authors provide some historical 

perspective on the progress of gait analysis methods, calling those which depend on a 

clinician’s timing and judgement as being “semi-subjective.” [15] argues that these 

methods are neither as accurate nor as precise as what they label “objective” methods. A 

more fitting duality might be to call the later automated and the former manual due to the 

distinction being made based upon the clinician being part of the measuring device.  

In their survey, Muro-de-la-Herran et al. find that the current state-of-the-art of 

gait monitoring is two-pronged. The most accurate and reproducible systems are 

Mean Change Week 1 to Week 2 (95% CI)

Gait Variables Preferred Walking Speed Fast Walking Speed

Walking Speed (cm/s) 4.65 (1.27-8.03) 2.96 (-0.47-6.39)

Step Length (cm) 1.57 (0.68-2.46) 0.89 (0.13-1.66)

Stride Length (cm) 3.17 (1.36-4.98) 2.11 (0.49-3.74)

Step Time (s) 0.01 (0.01-0.002) 0.01 (0.01-0.002)

Stride Time (s) 0.01 (0.02-0.003) 0.01 (0.02-0.001)

Single Support Time (s) 0.01 (0.01-0.002) 0.01 (0.01-0.001)

Dual Support Time (s) <0.001 (0.01-0.01) <0.001 (0.01-0.004)

Table 1: A Review of changes in gait metrics over time using the GAITRite walkway system. 
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automated non-wearable systems used in clinical environments. The most usable in daily 

gait acquisition are automated wearable systems which the authors suggest as the ideal 

implementation for in-home use. The authors go on to offer guidelines for future research 

in new gait analysis techniques.   

Automated methods include any system in which a computer and a set of sensors 

measure the gait characteristics of the subject in place of a clinician directly timing or 

otherwise measuring a gait metric. The authors delineate the automated methods into 

three categories: image processing, floor sensors, and sensors placed on the body. Image 

processing includes what are referred to as “structured light” methods including laser 

range finding. More traditional image processing techniques such as Kinect based 

methods are also grouped under image processing. In this nomenclature the IR/ RF sensor 

system presented in this thesis would at least partially fall under the heading of structured 

light methods. The authors go on to further delineation by grouping the image processing 

and floor sensors into the group non wearable sensors (NWS) and the body-worn sensors 

into the group wearable sensors (WS).  

 The authors describe the methods for image processing beginning with image 

thresholding to create a binary image with the figure made distinct from the ground. 

More time is spent analyzing various methods of depth measurement including time of 

flight (TOF) based systems, stereoscopic (multi-camera) systems, and laser scanning 

(LIDAR). The Microsoft Kinect sensor system is mentioned by name under the 

structured light heading because it projects an IR grid and uses an IR capture device to 

estimate depth measurement. For further detail on Kinect based methods this thesis has a 
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detailed study of that system in Chapter 1 as well as another structured light system by 

ORCA tech called the passive infrared system (PIR).  

 Next Muro-de-la-Herran et al. present methods of gait analysis based on floor 

sensors, force plates and pressure sensors. The authors distinguish between the methods 

by pointing out that force plates measure pressure with 6 degrees of freedom, measuring 

vertical, horizontal, and rotational displacement along 3 axis. In contrast pressure sensors 

are simply a device for measuring the pressure caused when the sensor is compressed 

between a body part and the floor. Force plate and pressure sensor systems include both 

wearable and non-wearable systems. An example of a wearable system would be a 

sneaker insole which consists of a bottom layer of gel and a top layer of a piezoelectric 

material which is deformed in a measurable way as the subject walks. An example of a 

non-wearable system is the GAITRite Walkway which is described in detail in this thesis 

in Chapter 1.  

 Finally the authors present the inertial measurement unit (IMU) based gait 

analysis methods. These methods include one or more IMUs and gyroscopes which are 

mounted to a subjects clothing, footwear, or body to measure changes in moments of 

inertia of that body part. By knowing what part of the body an IMU is attached to, and by 

using multiple IMUs, a model of walking, joint flexion, and other biometrics can be 

constructed. An excellent example of one such IMU-based device is the Opal System by 

APDM, a Portland based company. Further detail on the Opal System can be found in 

Chapter 1.  
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 The survey goes on to compare prices, efficacy, and use cases among the gait 

analysis methods. Accuracy values are taken directly from publications on each sensor 

and as such are not in a single format, making it hard to compare them in a table. Pricing 

for each sensor is also vague, most price fields ranging by greater than an order of 

magnitude. The most interesting element of the analysis tables are the 

advantage/disadvantage columns which list the pros and cons of each method. At the 

broadest level, wearable systems are compared to non-wearable systems and the authors 

come to contrasting opinions to the ones in this thesis. Namely, the authors suggest that 

wearable systems are the primary systems appropriate for in home gait analysis and that 

their primary disadvantages are twofold: first is the complexity of algorithms needed to 

analyze IMU data, and second is the issue of battery life. In contrast this thesis presents 

wearable sensors as primarily a clinical technique because to effectively collect data 

sensors must be properly attached to the subject and monitored for functionality by 

clinicians.  

 For clinical purposes the authors of the survey suggest that non-wearable systems 

such as force plates and the GAITRite mat are ideal for data collections in a clinical 

setting because they are more accurate and provide more reproducible results. The 

authors point out that these systems tend to be very expensive and that it is impossible to 

monitor gait with them outside of the instrumented environment. Both these points are 

valid for the systems mentioned in this paper. The limitation of NWS to clinical settings 

is due largely to the fact that the systems listed are expensive, must be operated by 

clinicians, and are not able to distinguish among subjects. The authors point out that a 
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key criteria to analyzing the efficacy of any system, WS or NWS, is to keep in mind the 

target user group and consider their specific needs regarding frequency of data collection, 

important gait metrics, and the effect of testing in a clinic versus in a home.  

 Finally the authors provide some guidance for future gait research, stating that in 

the future it is important that research focuses on sensors which can monitor gait daily 

while interfering the least with a subject’s daily activities. Specifically the authors 

suggest that future gait research should focus on four different areas: (1) new sensors for 

gait parameter analysis, (2) power consumption, (3) miniaturization, and (4) signal 

processing algorithms. The authors deviate from the thinking of this thesis by stating that 

these objectives are best met by wearable systems such as the Opal device by APDM. It 

is the stated opinion of this thesis that a non-wearable system which is non-invasive, 

inexpensive, and accurate would be the ideal method for in home gait analysis because it 

would avoid the issues of body-worn sensing devices.  

The following systems have been studied heavily and some are considered the 

gold standard devices (specifically the Vicon and APDM’s Opal) for various types of 

mobility monitoring. These devices tend to deliver very high precision analysis of gait 

metrics. However, each of them has a reason for not being ideal for in-home gait 

monitoring.  
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The Vicon Camera System 

 The Vicon camera system is the gold standard for gait analysis in clinical settings. 

Most techniques in the last 30 years have been compared directly to the Vicon system as 

a gauge of their accuracy. The Vicon camera system consists of one or more cameras 

positioned around a room to capture the motion of a subject. The subject wears two or 

more reflective dots on her person which the Vicon system detects through image 

analysis. The motion of these dots can be used to motivate a model of human physiology, 

thereby allowing for the reconstruction of joint angles, body segment positions and more.  

These measurements can in turn be used for the analysis of physiological 

characteristics such as gait. In the field of gait analysis the Vicon system has been used 

for fall prediction, walking speed estimation, and other forms of gait analysis 

[16][17][18]. The Vicon camera system has been shown to be highly capable at 

distinguishing subjects with a history of falling from those without, using a dual-task test 

in which the subject carries water while walking [17]. One research group [16] was able 

to show that when used in a clinical environment with no occlusion the Vicon system is 

able to achieve an accuracy of better than 70 micrometers when measuring motion. The 

researchers are quick to note that this level of accuracy is highly dependent on a well-

calibrated system operating in a clutter-free environment.  

Occlusion due to clutter is the Achilles heel of the Vicon camera system; because 

it relies on video analysis, any subject or part of a subject obscured from the Vicon’s 

cameras is not available for analysis. This makes its use in an in-home setting require it to 

be carefully staged such that multiple cameras ensure no subject occlusion. In addition, 
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the Vicon system is very expensive and therefore not likely to be installed permanently in 

a residence.  

 

Radio Frequency Antennae Array 

 A recent paper by Adib et al. presents a very interesting result regarding clinical 

gait analysis via region level tracking [19]. While this work is not directly relevant to gait 

analysis it should be included because it has definite potential for in-home region level 

tracking and gait metric extraction. Physically the device is an array of RF antennae 2m 

tall and 1 m wide. The entire device appears to be custom manufactured and consists 

largely of PCB antennae, for this reason it seems that the device could be fairly 

inexpensive to produce, although the author does not mention this in his paper.  

 Researchers showed that the RF array could be used to measure multiple subjects 

with decimeter accuracy, even when obscured by walls. In addition the device can be 

used to measure breathing and gestures of each subject, leading to the supposition that it 

could also be used for gait analysis in the future. For the purposes of the initial paper, the 

system was tested in a research environment as well as a simulated office.  

 One finding of this research is that the system suffers from obfuscation as it tries 

to track multiple subjects: those nearer to the system block those further away. To solve 

this problem the researchers use a data association technique which they call successive 

silhouette cancelation in which the nearer object is tracked and then subtracted from the 
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data. These steps are repeated until all objects are tracked. Later it will become apparent 

that the IR gait system presented herein uses a very similar technique for data association.  

 Results from this the initial testing of this system are highly encouraging and 

suggest that very detailed region level tracking could be inexpensively achieved in the 

future. Concretely, the system was able to localize up to 5 users with a median accuracy 

of 8-18cm in the x direction ( orthogonal to the array plane) and 7-11cm in the y direction 

(parallel to the array plane). The discrepancy in the accuracies in the x and y directions is 

due to the shape of the antennae array which is more sensitive to time-of-flight errors in 

the x direction than in the y direction. The system can also detect pointing gestures in 

three dimensions with 8-16 degrees of accuracy.  

 

The Opal System by APDM 

The Opal system manufactured by APDM is a body worn device or set of devices 

each of which consist of an accelerometer a magnetometer and a gyroscope as well as 

data storage and communications hardware. Devices can be used in configurations of up 

to 24 Opal devices. Opal devices can come pre-attached to an object, such as a person’s 

shoes, but is more commonly positioned by a clinician for an in-clinic task [20].  

The Opal system is highly accurate due to its ability to integrate multiple devices 

and multiple sensors in each device. In so doing it is possible to measure a wide variety 

of gait, balance and postural metrics. The device has been tested both in clinical and 
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home settings [21] for gait analysis as well as a wide range of other uses including 

physiological monitoring of athletes and soldiers after a concussion event [22].  

The sole deficiency of the Opal design is that if the device is not being worn, it 

will not monitor a person’s motion. Because many persons with gait impairment also 

suffer from cognitive impairment, there is a serious difficulty with asking those persons 

to remember to wear or carry a device.  

 

The Kinect by Microsoft 

 The Kinect was a device designed by Microsoft originally for gaming with their 

dedicated game platform, the X-Box. Later the system was released as a Windows OS 

device which could be used along with a software development kit (SDK). The Device 

itself consists of an IR depth camera, RGB camera, and an array of microphones, all 

mounted on a motor-driven pivot.  

 Body position can be tracked using the IR depth camera and the SDK which 

outputs a skeletal model of a person within 4m of the camera. The Kinect can be used to 

monitor joint position and angle, spatiotemporal gait characteristics, and other physical 

motion of the body [23][24][25]. The Kinect is similar to the Vicon camera system in that 

it relies on line of sight imaging to capture body motion. Therefore it suffers from much 

the same deficiencies as does the Vicon system such as varying brightness in a room 

caused by windows, obscuring of the subject due to clutter, and the shape of the room 

being unconducive to the sensors range limitations.  
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Researchers found it especially difficult to directly track as subject’s legs when 

not in a clinical environment due to the common low-lying clutter of a home such as 

chairs, tables, couches, lamps, etc. Stone et al [25] suggests a solution for the issue of 

lower-limb detection. Using a Gaussian Mixture Model (GMM) of features including 

walking speed, subject height, and stride length the researchers could estimate a gait 

cycle by measuring fitting the features of a subject to the GMM. The estimates from this 

technique were not found to be highly accurate.  

Because of the difficulties of in-home use, as well as the reticence of elderly 

people to have a video camera in their homes, the Kinect is best suited as a low-cost, 

highly accurate clinical alternative to the Vicon camera system.  

  

The Benefits of In-Home Gait Analysis 

Collecting data continuously at home it is possible to have a far richer data set 

than by doing the same in a clinical environment. The switch to in-home testing is a new 

one. 15 years ago the ability to place inexpensive sensors in a person’s home and to 

monitor those sensors remotely did not exist. Today, while the technology exists, it is 

new and therefore important that good implementations are found in the current 

framework of in-home healthcare systems. From previous research, there are known tests 

for gait as a proxy for cognitive decline. The simplest such test is walking speed. To test 

walking speed a subject is asked to walk a predefined route, often a hallway or marked 

path as quickly as possible without running. The subject’s time is measured using either 
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an automated triggering system such as photovoltaic sensors, or a tester manually timing 

the walk between two points. A number of studies point to the use of velocity as a 

predictor of cognitive decline both in healthy and already diagnosed subjects [26] [27]. 

Gait characteristics other than walking speed are indicative of cognitive changes in older 

adults; Ble et al. points to stride length as an indicator of executive function [28], while 

Bowen et al. indicate a correlation between dual support time and the effects of a stroke 

[29]. Other gait characteristics include step length, step width, step/extremity ratio and 

stride width [30]. All of the metrics listed here are detectable using current systems such 

as the GAITRite gait mat. Many of the current devices are too expensive to be used 

outside of a clinical setting. Because of this limitation the results from these devices 

suffers from an inherent performance bias as when subjects are asked to come to a clinic 

and perform a task they know they are being measured and attempt to perform 

accordingly. Such metrics are only obtained at the frequency with which a subject can go 

to the clinic for testing. An affordable solution which could be deployed in a home would 

therefore have the opportunity to provide more consistent metrics with a higher degree of 

accuracy than its more expensive counterparts in the clinical setting.  

 

Current In-Home Gait Analysis Systems 

As a field of study, in-home device free gait detection is relatively new but the 

PSU BSP lab is not the first research group to address the issue. Other groups have 

provided more accurate systems, such as MIT’s RF tracking system [18], more detailed 

systems, such as the GAITRite gait mat [14], or more simple systems such as 
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ORCATECH’s ceiling mounted IR array [8]. The following is a description of some of 

the other systems currently available which attempt to solve the same or similar 

problems.  

 

The GAITRite Walkway  

The GAITRite walkway (GR) is the current gold-standard for gait analysis 

systems both at OHSU and at PSU. Much of the reason for our use of the system is its 

simplicity and accuracy. With a single researcher the system can be transported, setup 

and operated with ease. Because the system is entirely self-contained in a flexible mat it 

is consistently accurate. The proprietary GR software allows for walks to be exported at 

various levels of processing for use in analysis and comparison.  

The system consists of a portable walkway constructed of pressure sensors 

sandwiched between a foam layer beneath and a nylon layer above. The system connects 

to proprietary software on a Windows PC. The software detects and analyzes the timing 

and placement of footfalls, recording individual footstep data for analysis and replay. The 

active sensing portion of the mat measures an active area of 61cm by 732 cm and consists 

of nearly 28,000 individual sensors placed 1.27cm apart each sampling at 80Hz. Testing 

suggests that individual step values were within 1.5cm and 0.02 seconds 80-94% of the 

time. Values recorded by the GAITRite and a second system used for benchmarking did 

not vary from one-another significantly in one such test. 
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 Because of its cost, size, and bulk (noted by other researchers as a potential 

tripping hazard [31]) the system is not suitable for unattended use. Because it must be 

operated by a researcher for each walk it would be impossible in its current state to 

integrate into a smart-home environment. In addition it has no ability to separate 

individuals and therefore could not be functional in a multi-user home.  

 

ORCA Tech PIR system 

 The ORCATECH passive infrared system (PIR) is a ceiling mounted array of 

passive infrared sensors meant to detect motion occurring directly beneath them [32][33]. 

These sensors are relatively easy to mount and provide their data wirelessly to a central 

database. In my experience setup has been a challenge with these sensors due to a too-

broad IR aperture which makes their motion detection imprecise and a difficulty in 

getting the software setup correctly. Despite these difficulties the PIR system is 

unobtrusive, relatively inexpensive, and provides walking speed data on subjects walking 

below it in a hallway.  

A row of 4 sensors is placed in a line overhead in a hallway or other place where 

people will walk in a straight line. Each PIR sensor has its field of view restricted by a 

taped aperture which allows the sensor to have a +/- 6cm accuracy at a distance of 90cm. 

Due to inaccuracy in the application of the tape aperture, some form of ground truth must 

be used to calibrate the system upon setup. For the purposes of testing the GAITRite 
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system is used for calibration. By measuring the differences in timing and the known 

distance between sensors the walking speed can be found.  

Due to the reduced view of the sensors with taped apertures, some sensors failed 

to fire when a subject walked past them. When using the GR and the PIR sensors the 

walking speed correlated to ground truth results with between 93% accuracy with 2 

sensors firing and 99% accuracy with 5 sensors or more firing. The mean walking speed 

of subjects in this segment of the testing was 139.5+/-26cm/s. In-home testing provided 

an additional 100,000 walking speed samples over three months across 18 homes. Mean 

walking speed across subjects was 99.3+/-9.2cm/s.  

Physical measurement of in-home sensor lines is not precise, and therefore 

walking speeds are relative. The sensor system can collect an amazing amount of data 

because it is in constant use. This is one big benefit of an at-home system over its clinical 

counterparts. Unfortunately the sensor system only measures relative walking speed, 

requires calibration, and does not have any other pertinent gait metrics.  

 

The IR Distance Sensor System 

 After building the first prototype of our IR gait detection system one of our 

primary investigators, Dr. Peter Jacobs from the OHSU Biomedical Engineering Dept. 

brought to light a paper on an extremely similar system from a research group in Taiwan. 

This paper titled Easy-to-install system for daily walking ability assessment using a 
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distance sensor array by R Fukui et al. [31] describes a system which is uncanny in its 

similarity to our own.  

The system is described as an easily installed gait assessment system designed to 

measure walking speed and step length. The system does not require any initial 

configuration or ‘learning’ because it relies entirely on a heuristic approach for data 

analysis.  

The system is constructed as a 1.2 meter strip with 24 IR sensors (Sharp 

GP2Y0A21YK0F), the same sensor we used for the subject ID system which we began 

research on in early 2014 and initially submitted for publication in February of 2015. The 

sensors are grouped onto custom PCB boards in groups of 4 which allow the system to be 

expanded or repaired. The IR transceivers run at 20Hz and use triangulation to measure 

distance. They are built into a rigid platform 6cm high requiring a ramp to use. The 

sensors claim to be able to measure from 10 to 80 cm with a resolution of 60Hz, although 

our independent testing of the sensors suggests that possibly their range is closer to half 

that. The modular nature of the system allows it to be easily repaired but requires a fixed 

distance between sensors. At a length of 1.2 meters the sensor strip can catch one 80cm 

walking step only if it is well centered in the walking window. An ATMega 

microcontroller acquires data from the sensor array via 2 16 channel multiplexers. The 

system is powered by a wall wart power cord and transmits data wirelessly using an 

XBee wireless transmitter.  



  

24 
 

The overall flow of the data processing is as follows: data is acquired using the IR 

gait array. Next, regular walking data is extracted. This is done by thresholding the raw 

data at 800mm, which is the maximum range of the sensor. Any data acquired at less than 

800mm is therefore considered part of a walk. Walks are considered when they take place 

in less than 3 seconds (corresponding to 40 cm/sec, a very slow walking speed, even for 

the elderly). Next, step length is estimated by looking at the sum of energy (“reaction”) 

across all time.  Figure 1 depicts the “reaction” as a bar graph. By performing peak 

detection and measuring the distance between adjacent peaks (in figure 1, peaks Xc1 and 

Xc2 are considered adjacent), a step length estimate can me calculated as 𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ =

Δ𝑝𝑒𝑎𝑘 ∗ 𝑝𝑒𝑎𝑘 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛. Walking speed is calculated as 
Δ𝐷𝑖𝑠𝑡𝐻𝑒𝑒𝑙 𝑆𝑡𝑟𝑖𝑘𝑒

Δ𝑇𝑖𝑚𝑒𝐻𝑒𝑒𝑙 𝑆𝑡𝑟𝑖𝑘𝑒
 where 

Δ𝐷𝑖𝑠𝑡𝐻𝑒𝑒𝑙 𝑆𝑡𝑟𝑖𝑘𝑒is the distance between the heel strike of a foot and that of the opposite 

foot, and similarly Δ𝑇𝑖𝑚𝑒𝐻𝑒𝑒𝑙 𝑆𝑡𝑟𝑖𝑘𝑒 is the timing difference of the two heel strikes. Heel 

strikes are determined by using the Hough Transform, which identifies straight lines in a 

binary 2D image, to identify when a foot is stationary. The onset of the stationary foot 

timing is then considered to be a heel strike. Finally, step duration is calculated as the 

period of time the Hough transform determines a foot to be on the ground.  

Although Fukui et al. do not report algorithms or figures for single leg stand time 

or dual leg stand time, this could also be determined using the data from the Hough 

transform. The algorithms used in this section are highly dependent on data with a very 

high SNR. The benefit of the algorithms presented in this paper is that, given a high SNR, 

they are quite effective for analyzing some gait metrics. The algorithm is not at all robust 

to a low SNR.  
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Walking step length ranges from 30-60cm, walking speed ranges from .5 -1m/s. 

The proposed algorithm can estimate step length with an accuracy of 15mm, walking 

speed with an accuracy of .05 m/s. These results were compared to ground truth acquired 

from a pressure mat which resulted in a sensitivity of 100% and a specificity of 97.5%.  

The algorithm used to analyze walks from the IR distance sensors does not 

measure single support time, step/extremity ratio, or stride width. It may be within the 

purview of this research group to do so but their current work does not show these 

results. In addition the system does not work with a cane and assumes that the person is 

walking without shuffling, both of which are sufficiently common in older adults to merit 

inclusion into such a system. While 

the study results are very 

impressive given the simplicity of 

their algorithm, the primary 

weakness is their lack of testing on 

subjects with non-standard gait 

characteristics such as walking with 

a cane or shuffling walks. Because 

the system does not require training 

certain assumptions are made such 

as the fact that the walker will not 

Figure 1: Reproduction of a figure from Fukui et al. The 

distance between peaks in the lower figure gives distance and 

the breadth of the plateau associated with sensor 5 in the top 

figure gives timing. 
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shuffle while walking. In addition because the system disregards walks in which a single 

sensor does not fire it is possible for the entire walk to be missed if a subject lifts her foot 

higher than the sensor height of 5cm (less than 2 inches). In addition the systems length 

does not allow it to measure step-to-step gait variability, an important measure of fall-

potential. Finally, and most importantly, the system does not distinguish among multiple 

subjects, therefore relegating it to a single-subject dwelling. 

Searches for the literature review and existing-systems overview conducted in this 

chapter were done using Google Scholar, Elsevier, and the PSU Library scientific 

periodicals search resource at library.pdx.edu. Search terms for these searches included: 

elderly, elderly care, aging-in-place, American demography, gait, gait analysis, activities 

of daily living, spatial, temporal, Shimmer gait device, GAITRite gait device, Opal gait 

device, Onspot gait device, Microsoft Kinect, IR gait detection, walking speed, gait 

detection, tagged, tag-free, in-home, and more.  
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Chapter 2: Design Methodology 

 Design requirements for a gait analysis system are dictated by the context in which it 

is to be used. The system described here has the goal of replacing some clinical gait 

analysis with in-home gait analysis. In the previous section the work by Tilson et al. 

suggests that in monitoring meaningful changes in comfortable gait speed post-stroke a 

system should be able to detect changes of in walking speed of less than 16cm/s. Morris 

et al.’s study on the efficacy of medication for Parkinson’s disease a gait detection system 

which can distinguish walking speed with at least 12cm/s accuracy, and stride length with 

an accuracy of 10cm would be useful for detecting a drop in medication levels, possibly 

due to an elderly person forgetting her medications. Schnall et al. suggests a walking 

speed accuracy of 14.5cm/s and step length accuracy of 6cm would be sufficient to 

measure changes in gait characteristics for a person with traumatic hip disarticulation 

over the course of a 3 year study.  Van Uden et al.’s research on test-retest reliability of 

temporal and spatial gait characteristics using the GAITRite walkway show that 

extremely fine-grained statistics could be useful for detecting changes in walking speed, 

step length, stride length, step time, stride time, single support time, and dual support 

accuracy

Gait Variables Lowest Highest

Walking Speed (cm/s) 16 1

Step Length (cm) 10 0.1

Stride Length (cm) 5 0.01

Step Time (ms) 10 2

Stride Time (ms) 10 3

Single Support Time (ms) 10 1

Dual Support Time (ms) 20 2

Table 2: Desired Accuracy for a Gait Analysis System. 'Lowest' column depicts lowest necessary accuracy, 'Highest' 

column depicts highest. 
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times. Temporally, a system able to detect changes on the order of 10ms and spatially on 

the order of 1cm would be ideal for this type of study.  By viewing these experiments a 

desirable range of gait metric sensitivity can be achieved. This result is visualized in table 

2. The first column depicts a gross measure while the second column depicts a fine 

measure. A gait analysis system would ideally be as or more sensitive than the fine 

measure column, but should certainly be between the two to be useful in replacing 

clinical data collections with smart-home data collections.  

The system discussed in this paper is the second prototype in an ongoing research 

project attempting to reliably and accurate track gait. As such, while table 2 represents 

final figures for accuracy of gait metrics which are desirable, there were other factors 

which were taken into account for the hardware development of the gait detection system. 

It should be noted that design decisions were made by the research group as a whole 

Figure 2: A block diagram of hardware design. 
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under the leadership of Dr. Eric Wan. The final implementation of prototype 2 

(referenced herein as the system) was done almost exclusively by Erich Schafermeyer 

with the exception of some soldering help by Shadman Samin and some case 

construction help from Tanisha Payne. Prototype 3 is being constructed entirely by 

Shadman Samin and Tanisha Payne. Prototype 1 was constructed in large part by 

Shadman Samin with some help from Erich Schafermeyer. All algorithms and software 

described herein were designed by Dr. Eric Wan and Erich Schafermeyer with the 

essential support of Walter Woods, Dr. James McNames, and Dr. Melanie Mitchell.  

The system was tested following Institutional Review Board (IRB) protocols for the 

data collections. IRB oversight was provided by the OHSU IRB and was approved 

through the PSU IRB approval process.  

 

Figure 3: The second prototype of the IR sensor array. Left image depicts an array of 24 sensors in a 

simulated hallway setup in the BSP lab. Right is a detail showing the sensor in an acrylic housing attached 

to extruded aluminum rail. 
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Hardware 

The hardware design for the gait detection device was a critical decision in the 

design process. The design of the hardware determines how and where the system can be 

used, how the code base for the system will be developed, and how robust the system is 

to modification, repair, and testing. Deciding on the size and material for the mounting 

system, the layout for the electrical system, and choosing the sensors themselves were all 

important elements of the design process.  

To effectively measure gait characteristics of a person walking down a hallway it 

is ideal to capture at least two full cycles of the subjects walk. Assuming a stride length 

of 1 meter, the array would, ideally, be at least 2 meters long. To be certain two strides 

are captured, the system was designed to consist of two rails, each 122cm long, for a total 

length of 2.44 meters.  Assuming an average walking speed of 1.4m/s, and that a foot will 

spend roughly half its time stationary, a spacing for the sensors can be calculated such 

that a sensor will never be passed by the foot without taking a measurement: 

1.4 𝑚𝑒𝑡𝑒𝑟

𝑠𝑒𝑐𝑜𝑛𝑑
∗ 2 ∗

1𝑠𝑎𝑚𝑝𝑙𝑒

60𝑠𝑒𝑐𝑜𝑛𝑑𝑠
≅

46.6𝑚𝑚

𝑠𝑎𝑚𝑝𝑙𝑒
  

Note that in the above calculation the multiplier (2) is used because half a foot’s 

time is spent not moving, therefore it must move twice as fast as the torso to travel the 

same distance over the same time period. Thus the foot can move up to 47mm/sample 

and the sensors should be at least 50mm apart to ensure that the foot does not pass a 

sensor without being sensed.  
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Figure 2 shows a block diagram of the hardware system. In the diagram 24 

channels of distance data are collected by 24 IR sensors which are powered in parallel by 

a 5v DC power supply. Sensor data is multiplexed and sent into an analog-to-digital 

converter (ADC). Data is then acquired by a computer program for de-multiplexing and 

analysis. The system is constructed as two identical rails, each 1.22m long. 12 sensors are 

spaced along each rail at 101.6mm intervals. A single control circuit (one MUX, clock, 

power supply) is mounted to each rail. 

The choice to break down the system into 12 sensor sub-segments was largely a 

result of the ADC used. To have a sufficiently fast sample rate on the ADC while keeping 

costs low it was necessary to use an ADC with less than 25 channels input, which would 

be necessary if not multiplexing the sensor data before passing it through the ADC. To 

reduce the number of channels entering the ADC a MUX was chosen which could handle 

a large number of sensors in case it was ever decided to add more sub-segments to the 

system.  
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The Sensor 

The sensor chosen was an infrared (IR) light transceiver (Figure 3) (Sharp 

GP2Y0A60SZXF_E). Light is emitted from an IR light emitting diode (LED) and 

received by a position sensitive device (PSD). The distance from the IR sensor to the 

target object is measured by triangulation and then sent to the collection device as an 

analog signal in the 3.6v to .6v range. The spec sheet for the Sharp IR sensor states that 

the sensor has a range of 10-80cm, although evidence would suggest that the range is 

closer to 20-60cm. The sensor housing includes an oscillator which samples the IR 

receiver at a rate of 60 times per second as well as a low pass filter (Figure 4). Empirical 

evidence suggests that the closest these sensors can be spaced without causing excessive 

interference with each other is around 10.2cm (~4in) apart. This testing was done by 

Shadman Samin in the early phases of prototyping and again between prototypes 2 and 3. 

Figure 4: Reproduced from the SHARP GP2Y0A60SZXF_E infrared sensor specification sheet. 

This image depicts the sensor layout. 
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Tests suggested that placing the sensors closer together than 10.2cm resulted in noise 

increases in the captured IR signal of one or more sensors in the array. It would be ideal 

in a future prototype to space the sensors at a closer spacing so that a finer distance could 

be measured.  By placing all sensors along one wall the system could eventually be 

installed in a hallway and powered by a single outlet. In addition, transmitter/receiver 

pairs would not measure distance, only a ‘broken link’ and therefore would provide less 

information that the sensors used here. 

 

The Mounting System 

A single hole in the sensor is the only point by which to mount the sensor to a rail. 

The sensor package contains both the transmitter and receiver thereby allowing the 

control circuit and sensor array to be mounted to a single wall (Figure 3). The benefit of 

mounting to a single wall is that in a hallway with doors or objects along one side the 

sensor system would still be able to be 

used. In addition the sensor system need 

only be powered by a single outlet instead 

of by one outlet for the transmitter array 

and a second for the receiver array on the 

opposite side of the hallway. A rail was 

constructed in two 4ft segments, each on a 

pair of legs which could be adjusted in 

height. The rail itself is made of aluminum Figure 5: 80/20 1x1 inch extruded aluminum 

railing.  
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extrusion called 80/20. The extrusion rail system consists of modular extruded aluminum 

which can be cut and bolted to itself easily (Figure 5).  The continuous channel in the rail 

allows the height and placement of sensors to be infinitely adjustable. To connect the 

sensor to the rail a box is constructed of three Plexiglas sheets as well as bolts and nylon 

washers. The sensor itself is mounted to the front panel of Plexiglas which is then 

mounted to the rear panels by a bolt at each of four corners (Figure 3). The two plates are 

held off of each other by nylon spacers to which can be added nylon washers to adjust the 

length of the spacer. By adjusting the length of the spacer the vertical and horizontal 

angles of the front plate and therefore the IR sensor can be adjusted to angle the sensor. 

This is an essential degree of freedom because the sensors, rail, and cases are not 

precisely constructed. If the sensors were not directly adjustable the ability to ensure their 

orientation would be greatly reduced.  

 

The Control Circuit 

The control circuit is designed around two multiplexers. Each multiplexer takes in 

16 channels and outputs 1 channel at 16 times the rate. The IR sensors switch at 60Hz so 

the multiplexer must sample each of the 16 channels in 1/60th of a second. In that same 

time all 16 inputs sampled are concatenated and sent out as a single channel. The 

multiplexer is driven by a 4 bit counter. Each count corresponds to one of the 

multiplexers input channels. The input is then drawn from the corresponding channel as 

the 4 bit counter switches. In this application the 4 bit counter is driven in turn by a 555 

timer running at 8kHz. Which allows each sensor to be sampled 8 times per 60Hz cycle. 
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It is important to sample the sensors multiple times per 60Hz cycle and find the average 

of multiple values to account for noise in individual samples. Because there are 24 

sensors, only 12 channels of each multiplexer are used.  The outputs of the MUX as well 

as that of the 4bit counters are taken as inputs to an analog to digital converter (ADC) 

which samples at a rate of 64 kHz, allowing it to capture the MUX signals with 8 samples 

per switch as well, again to account for noise in switching. A Scientific Instruments ADC 

was used which is capable of sampling 8 channels at up to 250 kHz. Power is provided to 

the sensor system by a dedicated DC power supply running at 5v 1A. The control circuit 

was implemented on a custom routed PCB which was designed using EagleCAD with the 

help of John Folsom at MotioSens and cut on the LID PCB router (Figure 6). In the board 

schematic mounting points can be seen for a shunt circuit which is a capacitor bridging 

Figure 6: Control Circuit Board.12 IR sensors attachment points with shunt circuits entering a single line 

female pin set where a daughter board is attached carrying a MUX.  
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the power and ground line for each sensor. The shunt circuit in general has many uses as 

a circuit breaker, reverse polarity protection, or low pass filter. In this case it is being 

used to redirect high-frequency noise to ground. A second low-pass filter circuit is also 

integrated into the control circuit design. All holes in the design are through-plated 

allowing the bottom of the board to be soldered to more effectively. A final consideration 

are the wires connecting the sensors to the control circuit board. These wires can be as 

much as 140cm long and act as excellent antennae for receiving electromagnetic noise 

from the surrounding environment. Because wall power in the US runs at a 60Hz cycle 

and the IR sensors are sampling at 60Hz it could be extremely difficult to remove any 

noise (called mains hum in audio applications) introduced by wall power. It was therefore 

Figure 7: An intuitive look at the waveforms resulting from a walk across 12 sensors (half the number 

actually being used). The figure to the top left associates’ step patterns with waveforms while the figure 

to the top right shows the resulting walk across all links. Lower figures show real data as heat map (left) 

and traces (right).  
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important that the wires were well shielded to avoid the introduction of noise from other 

electrical devices in the room.  

 

Ideal Data Example 

 Ideal data coming from the hardware system is depicted in Figure 7. In the figure 

a walking space is depicted as a rectangle outlined in black. The rectangle is transected 

by red lines which depict the IR beams emanating from the sensors which are depicted as 

small blue squares. On the mat can be seen footprints which depict the positions at which 

a subject places her feet while walking. The foot nearer to the blue sensor boxes is 

referred to as the near foot while the foot further away is referred to as the far foot. 

Above the walking area can be seen an idealized version of the waveform which will be 

acquired at that link based upon the subject’s foot positions. There are four basic 

waveforms depicted. At the first link from the bottom a waveform with a broad, low 

plateau bisected by a spike is visible. This waveform is created by a far foot stationed in 

the link, creating the plateau, and a near foot swinging past, creating the spike. At the 

second link from the bottom a waveform with a tall spike and a short spike is visible. 

This waveform is created by a near foot swinging followed by a far foot swinging. At the 

third link from the bottom a waveform with a broad, high plateau is visible. This 

waveform is created by the near foot stationed in the link. Because the far foot is 

obscured by the near foot, the far foot does not influence the signal at this link. At the 



  

38 
 

fourth link from the bottom a waveform with a short spike followed by a tall spike is 

visible. This waveform is created by a far foot swinging followed by a near foot 

swinging. In the top right, the rectangle depicting the walking area a graph of ideal traces 

is depicted. The traces are each associated with a single link and it can be seen that the 

non-zero parts of the signal are exactly the same as the waveform segments above the 

walking rectangle. This figure is included to provide some intuition and vocabulary for 

the following discussion of data processing, algorithms, and analysis.  

 Below the ideal data figures are two images of real data. The bottom right image 

depicts data as a set of traces, one per sensor. Note that traces are indexed from top to 

bottom. The image on the bottom left depicts the same data as a heat map in which the 

color reflects the energy with cooler colors (blues) representing low energy, and hot 

colors (reds) reflecting higher energy. These types of images will be used to relate real 

data for the remainder of the thesis.  

Figure 8: Flow chart of the data processing workflow. Data processing begins where data acquisition ends 

and proceeds until relevant gait metrics are extracted for analysis by a clinician.  
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 It is noteworthy that the data pictured in the bottom of Figure 7 is not as clean 

either as the ideal data or as the data from the IR sensor system made by the other group. 

The noise in the data collections taken for this thesis motivated much of the algorithm 

design and research herein. Some noise was due to optical interference issues, as has been 

noted. Other noise sources could include EM interference. Initially the hardware was 

designed to have a protective grounding shield for the wires, however the shields were 

never properly attached, leading to another potential source of noise. As pleasing as it is 

to have an opportunity to solve this problem, it would be ideal to have a hardware system 

which created data as clean as the ideal data shown above. It is the goal of the research 

group to create a third prototype system which minimizes noise due to hardware issues.  

 

Software 

Figure 8 depicts the steps from walking data acquisition through gait feature 

extraction. First, walking data is acquired from the ADC into MatLab. Next the data is 

low-pass filtered using an 8th-order Butterworth filter and resampled to 60Hz using 

interpolation to achieve even sample spacing and decimation to down sample. A filter, 

called a particle filter, is then applied to find the near foot position. From the near foot 

position a model of when each foot is stationary can be estimated. Data can also be 

associated to either the near foot or the far foot and background. These estimates are used 

in a second round of filtering which estimates the far foot position. Using both the far 

foot and near foot estimates, gait metrics such as walking speed, step length, etc. are 

extracted and made available for gait analysis.  
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Data Pre-processing  

Data is stored from the acquisition hardware as two channels of multiplexed 

signal and four channels of clock (one per each of 4 bits). The two channels of 

multiplexed signal data are de-multiplexed into 24 channels of data, each corresponding 

to a single IR sensor link. Each link’s signal is filtered using a polyphase finite impulse 

response (FIR) low pass filter. Filtering is an important step to avoid aliasing which 

occurs when the down-sampled data contains high frequency components which are 

above the Nyquist frequency of the resampling step. A polyphase filter is one which 

treats the signal as a multiplexed signal of M subsequences. The signal is de-multiplexed 

and sent through M low-order FIR filters which each filter one of M phases of the 

original signal. This schema allows the signal to be filtered in parallel. Next the data is 

down sampled to 60Hz. By oversampling, low pass filtering, and down sampling high 

frequency noise from the hardware data acquisition system is minimized.  

Data from the IR gait system is paired with data collected simultaneously by a 

GAITRite gait mat. The GAITRite’s data is treated as ground truth, meaning that it is 

assumed to be correct. RMSE values presented later will reflect the difference between 

the ground truth and the data collected by the IR gait system.  
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Algorithms 

Data analysis begins with identifying the position of the near foot. Because the 

near foot is nearer it generates the stronger signal of the two feet. It is an easier task to 

detect the near foot position. In attempts to track both feet using a particle filter it was 

noticed that the nearer foot was always tracked much more accurately. The assumed 

reason for this is that the near foot has a higher energy signal and the two feet come 

together and separate during a gait cycle. For these two reasons the tracking of the far 

foot was often derailed by the observation of the near foot. This observation led to the 

idea of using data association, which will be discussed later. Once detected, the near foot 

position can be used to separate out the part of the signal associated with the near foot 

from that of the far foot. By separating the two it becomes easier to track the far foot 

position.  

To track the near foot position an Auxiliary Particle Filter (APF) is used. The 

particle filter was chosen through a process of empirically testing multiple state space 

tracking algorithms, machine learning techniques, and heuristic tracking methods. The 

APF was the most effective method for tracking foot position. The APF is a method of 

Bayesian inference, a class of algorithm, based on Bayes Theorem which can be stated 

as:  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

This equation can be thought of as relating the probability of an event P(A) to the 

probability of that same event P(A|B), after more information is taken into account. As a 
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concrete example, if 𝐴 ≡ 𝑓𝑜𝑜𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑛) and 𝐵 ≡ 𝑠𝑒𝑛𝑠𝑜𝑟 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑑𝑎𝑡𝑎) 

then this can be reformulated as:  

𝑃(𝑝𝑜𝑠𝑛|𝑑𝑎𝑡𝑎) =  
𝑃(𝑑𝑎𝑡𝑎|𝑝𝑜𝑠𝑛) ∗ 𝑃(𝑝𝑜𝑠𝑛)

𝑃(𝑑𝑎𝑡𝑎)
 

With knowledge of what data the sensors will give based on a given foot position, 

𝑃(𝑑𝑎𝑡𝑎|𝑝𝑜𝑠𝑛), called the measurement model in the context of a particle filter, and with 

knowledge of what the likelihood of that foot position 𝑃(𝑝𝑜𝑠𝑛), which is called the 

process model in the context of a particle filter, it is possible to find the probability of a 

foot position given the sensor data 𝑃(𝑝𝑜𝑠𝑛|𝑑𝑎𝑡𝑎).  

A particle filter is the application of an integral approximation technique called 

the Monte Carlo Method to Bayesian inference. The Monte Carlo method approximates a 

high-dimensional definite integral by generating random samples from a probability 

distribution. By avoiding the curse of dimensionality, Monte Carlo methods allow for the 

statistical analysis of any system which can be defined as a probability. Taken a step 

further, a related probability distribution can be used to do importance sampling, which 

takes into account where the bulk of the probability is distributed and generates more 

random samples in that region. This technique leads to the other name by which a variety 

of particle filters are know: Sequential Importance Sampling, or SIS particle filters (SIS) 

[27].  

Particle filters are a relatively new method for solving the filtering problem 

because they require more computation than was reasonable in the computer systems of a 
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generation ago. As with all Bayesian state space tracking techniques, one of the primary 

benefits of the particle filter framework is its ability to integrate prior knowledge about a 

system with the measured output of that system to create a more robust tracker. Particle 

filters differ from other methods of state space tracking in that they utilize a stochastic 

process to progress each particle. The group of particles, defined as points in N-

dimensional space, along with their weights, which can be thought of as each particle’s 

relative importance, represents the posterior distribution of the Bayesian inference. This 

method is derived from Monte Carlo integration, which represents a definite integral 

using a stochastic process to find points on that N-dimensional surface.  In the context of 

a particle filter the posterior probability density can be thought of as being represented as 

a sum of impulses which are represented by the particles and their weights such that: 

�̂�(𝑥𝑛|𝑦0:𝑛) ≡  ∑ 𝑤𝑛
𝑖 𝛿(𝑥𝑛 − 𝑥𝑛

𝑖 )

𝑛𝑝

𝑖=1

. 

Where �̂� is the estimated posterior PDF, 𝑥𝑛is the underlying state position at time 

n, 𝑦0:𝑛 are the observations from time 0 to time n,  𝑛𝑝 is the number of particles, 𝑤𝑛
𝑖  is the 

weight of each particle i at time n, 𝛿 is the Dirac delta impulse function, and 𝑥𝑛
𝑖  is the 

estimated particle position at time n for particle i. The simplest particle filter, called the 

Sequential Importance Sampling (or SIS) particle filter suffers from a problem called 

degeneracy. Degeneracy is an example of the curse of dimensionality in which particles 

cease to be representative of the posterior probability distribution over time. There are 

multiple ways to solve this problem, including resampling (which leads to the SIR 

particle filter), the Auxiliary Particle Filter (APF) was the focus of this research.  The 
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APF solves the degeneracy problem by using an auxiliary variable which represents the 

distribution in a pre-sampling step. 

Concretely, the particle filter can be described with the following pseudo code 

algorithm [34]:  

 

[{𝑥𝑛
𝑖 , 𝑤𝑛

𝑖 }
𝑖=1

𝑛𝑝
= 𝐴𝑃𝐹 [{𝑥𝑛−1

𝑖 , 𝑤𝑛−1
𝑖 }

𝑖=1

𝑛𝑝
, 𝑦𝑛]      (1) 

 𝐹𝑜𝑟 𝑖 = 1: 𝑛𝑝: 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 �̃�𝑛−1
𝑖 = 𝑤𝑛−1

𝑖 𝑝(𝑦𝑛|𝑓𝑛−1(𝑥𝑛−1))      (2) 

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑣𝑛
𝑖−1 =

�̃�𝑛−1
𝑖

∑ �̃�𝑛
𝑖𝑛𝑝

𝑖=1

      (3) 

 𝑆𝑎𝑚𝑝𝑙𝑒 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 𝑗𝑖 𝑢𝑠𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑣𝑛
𝑖−1      (4) 

 𝐹𝑜𝑟 𝑖 = 1: 𝑛𝑝: 

𝑑𝑟𝑎𝑤 𝑥𝑛
𝑖 ~𝑞 (𝑥𝑛|𝑥𝑛−1

𝑗𝑖

, 𝑦𝑛)      (5) 

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑢𝑛𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 �̃�𝑛
𝑖 =

𝑝(𝑦𝑛|𝑥𝑛
𝑖 )𝑝 (𝑥𝑛

𝑖 |𝑥𝑛−1
𝑗𝑖

)

𝑞(𝑥𝑛
𝑖 |𝑥0:𝑛−1

𝑗𝑖 , 𝑦0:𝑛)
∗

𝑤𝑛−1
𝑗𝑖

𝑣𝑛−1
𝑗𝑖

      (6) 

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑤𝑛
𝑖 =  

�̃�𝑛
𝑖

∑ �̃�𝑛
𝑖𝑛𝑝

𝑖=1

      (7) 

 

In equation (1) an overview of the particle filter is given where the subscript n is a 

time step, i is the index of each particle. 𝑋𝑛 is the position of each particle in one 

dimension along the walking axis of the sensor array at time n in K-dimensional space 

where K is the number of state variables defined for the particular problem. 𝑌𝑛 is the 

observation for each state at time n. Equation (2) describes the process of generating an 
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auxiliary variable �̃�𝑛−1
𝑖  from the weight at the previous time step and the likelihood of the 

observation 𝑦𝑛 given the observation function on the particle 𝑥𝑛which is predicted from 

𝑥𝑛−1 using a process model which predicts a future value of x based upon its current 

value. The observation function is a model of how underlying states map to observations. 

It takes as input the predicted underlying state at a given time step and outputs an 

estimation of the observation. The observation function is also called a measurement 

model. Equation (3) describes normalizing the weights. Equation (4) describes the pre-

sampling step which allows the APF to avoid the degeneracy problem. Equation (5) 

describes updating the particle trajectory. Equation (6) describes calculating the un-

normalized weight �̃�𝑛
𝑖  using the likelihood 𝑝(𝑦𝑛|𝑥𝑛

𝑖 ), the prior 𝑝 (𝑥𝑛
𝑖 |𝑥𝑛−1

𝑗𝑖

) , and the 

ratio of auxiliary variable to weight variable 
𝑤𝑛−1

𝑗𝑖

𝑣𝑛−1

𝑗𝑖
. Equation (7) describes unit-

normalizing the weights. A further treatment of particle filters in general and auxiliary 

particle filters in specific can be found in PD Moral et al. 1996 [35] and MK Pitt et al, 

1999 [36]. 

For the purpose of implementing the APF two models must be specially fit to the 

data, the process model, which defines the state transitions from one hidden state, 𝑋𝑛−1, 

to the next, 𝑋𝑛, and the measurement model which defines the likelihood of a specific 

output 𝑌𝑛 given a hidden state 𝑋𝑛 at time n. These two models fill the role of the prior 

P(A) and the likelihood P(B|A) in the Bayesian framework described. For the purpose of 

multi-foot tracking the process model describes the position of each foot x(n)  at time n as 

a random walk on  previous position x(n-1) driven by a white noise process 𝑈𝑛𝑒𝑎𝑟,𝑓𝑎𝑟(𝑛): 
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𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑀𝑜𝑑𝑒𝑙:   

𝑋𝑛𝑒𝑎𝑟(𝑛) = 𝑋𝑛𝑒𝑎𝑟(𝑛 − 1) + 𝑈𝑛𝑒𝑎𝑟(𝑛) 

𝑋𝑓𝑎𝑟(𝑛) = 𝑋𝑓𝑎𝑟(𝑛 − 1) + 𝑈𝑓𝑎𝑟(𝑛) 

 

This process model does not capture knowledge of gait. Instead it allows the 

tracked object to move within a range about its current position by defining a normal 

distribution with mean of the estimated position and variance defined be the use case. A 

more advanced process model could be beneficial for future testing, however empirical 

testing suggested that more descriptive process models were not beneficial in 

implementing the particle filter. With limited time the research was shifted to focus on 

data association and other techniques for state space tracking. The measurement model 

Figure 9: a visualization of Measurement Model output based upon underlying foot position for both feet. 

Note that the near foot is the taller waveform, beginning at 0.5s while the far foot is the shorter waveform 

beginning around 1s. 
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can be thought of as a bi-weight kernel smoother, defined as 𝑌𝑛 = 𝑎 ∗ (1 − 𝑋𝑛
2)2 where 𝛼 

is a scaling value. The measurement model is designed to replicate the behavior of a 

series of IR sensors each of which provides a smoothed peak as an object moves in front 

of it. The height of the peak (given by a) is proportional to the distance from the IR 

sensor to the object. Therefore the far foot creates a truncated peak relative to the near 

foot, thus requiring a smaller a term. The width of the peak is determined by the speed at 

which the object is traveling. For each link the measured IR value is calculated as 

follows:  

Measurement Model: 

 For i = 1:24:  

Figure 10: The three stages of data association: (a) tracking the near foot, (b) separating data windowed 

about the estimated near foot position from all other data, (c) tracking the far foot now that the near foot is 

removed. Also the creation of a prior occurs. (d) tracking the far foot (red) with expert labeling (green) and 

prior based upon near foot position (purple).  
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 𝑌𝑛 = 𝑚𝑎𝑥 (𝑓𝑓𝑎𝑟 (𝛥𝑥𝑓𝑎𝑟(𝑛)) , 𝑓𝑛𝑒𝑎𝑟(𝛥𝑥𝑛𝑒𝑎𝑟(𝑛))) + 𝑈𝑛 

Where 𝑓𝑓𝑎𝑟 (𝛥𝑥𝑓𝑎𝑟(𝑛)) = (1 − 100𝛥𝑥𝑓𝑎𝑟
2 )

2
 𝑖𝑓 𝛥𝑥𝑓𝑎𝑟 ∗ 10 < 1,  0 𝑒𝑙𝑠𝑒 

  𝑓𝑛𝑒𝑎𝑟(𝛥𝑥𝑛𝑒𝑎𝑟(𝑛)) = 2(1 − 100𝛥𝑥𝑛𝑒𝑎𝑟
2 )2 𝑖𝑓 𝛥𝑥𝑛𝑒𝑎𝑟 ∗ 10 < 1,  0 𝑒𝑙𝑠𝑒 

 

Where Δ𝑋𝑛𝑒𝑎𝑟,𝑓𝑎𝑟(𝑛) is calculated for each link as the relative distance of that link from 

the start of the sensor array minus the estimated position of the foot. Therefore, for each 

link, it is a difference between foot position and sensor position. 𝑌𝑛 is then the estimated 

measurement given the underlying state estimate. For the current sensor array there are 

twenty four links and therefore this measurement model is run twenty four times for each 

foot position. An example of the output of the measurement model for both feet can be 

seen in Figure 9.  

 

Figure 11: An example of far foot prior information (purple) overlaid on silhouette-cancelled data. Also 

pictured: tracked foot (red), ground truth (green). 
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Data Processing 

Once down sampled the data is filtered using the APF to determine near foot 

position as visualized in Figure 10a. As described above the APF uses a measurement 

model and process model which attempt to account for the position of both feet. This is 

due to the fact that the observations used at this stage are of both feet’s data. Once the 

near foot position is estimated a data association method which was adapted from the 

multi-person motion tracking paper reviewed [19]. In their paper Adib et al. refer to the 

data association as sequential silhouette cancellation (SSC). This name is chosen because 

a silhouette of the subject being tracked is removed from the measurement data in 

successive steps, allowing for the remaining data to be successively filtered until all 

subjects are tracked. In the case of the IR gait system the object being tracked is a foot, of 

which there are only two, therefore a single silhouette cancelation is sufficient. The 

silhouette of data associated with the near foot is defined by the estimated position of the 

near foot from the first run of the APF Figure 10a. This data association window about 

time n is defined as a Gaussian-shaped filter (along the link axis) around the estimated 

position of the near foot at time n. The Gaussian-shaped filter allows for a ‘soft 

windowing’ of the background data. The Gaussian has a mean of the estimated position 

at time n and a standard deviation of one link.  A window of data defined the dot product 

of the Gaussian and the observation is then subtracted from the observation (Figures 10b 

and c) and replaced with white Gaussian noise (WGN) of the same standard deviation as 

noise in the data collection. Data collection noise parameters are determined when there 

is no subject in front of the sensor array which is defined as a time when the energy 
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across all sensors is below a threshold defined as double the mean energy of the system in 

a walk. Because those two signals were so similar, and because the underlying states join 

and separate multiple times in the course of an observation, it was quite difficult to 

successfully track the far foot position. SSC solved the problem of having two signals 

which were identical except for their magnitude in the observation.  

The downside of SSC, as can be seen in Figure 10 is that silhouetting the near 

foot data necessarily removes some of the far foot data. This results in a situation in 

which it is hard to track not because there is too much near foot data as before, but 

because there is not enough far foot data. To solve a lack of usable observation a stronger 

prior model is necessary (shown as the purple line in Figure 10d). Fortunately, this is an 

easier problem to solve because the sections of the observation from which SSC removed 

information are sections in which the far foot is stationary. Therefore, if those times can 

be identified by estimating the near foot position and using that estimate to motivate a 

more refined a priori model for the far foot, then the issue of data association is 

sufficiently resolved. This technique works specifically because there are only two 

objects (the feet) being tracked. A more involved technique called a joint probabilistic 

data association filter (JPDAF) is used extensively in computer vision research to an 

unknown and time varying number of subjects. The JPDAF would be an excellent avenue 

of future research for this project, however, due to time constraints a simpler, sufficient 

method was found in the SSC method.  

The near foot position estimation is also used to create a strong model for 

positions of both feet. The model is based on a knowledge of gait. Concretely, when the 
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near foot is stationary it is probable that the far foot is swinging, when the near foot is 

swinging it is definite that the far foot is stationary (otherwise the person is jumping). By 

using these two facts a strong a priori can be constructed for integration into the far foot 

tracking algorithm. Figure 11 shows the far foot prediction (purple), the background and 

far foot data (heat map), the tracked foot position (red), and the labeled foot position 

(green). By using a strong prior concept of the far foots position two things can be done. 

The first is that switching model can be constructed and the second is that a second prior 

can be folded into the system at the measurement model.  

The near foot a priori is used to generate a Boolean value 𝐵𝑜𝑜𝑙𝑆𝑊𝐼𝑇𝐶𝐻 which 

switches the process model between the random walk model used in the previous APF 

and a stationary value:  

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑀𝑜𝑑𝑒𝑙 𝐹𝑜𝑟 𝐹𝑎𝑟 𝐹𝑜𝑜𝑡 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔:   

𝑖𝑓 𝐵𝑜𝑜𝑙𝑆𝑊𝐼𝑇𝐶𝐻 =′ 𝑚𝑜𝑣𝑖𝑛𝑔′:  𝑋𝑓𝑎𝑟(𝑛) = 𝑋𝑓𝑎𝑟(𝑛 − 1) + 𝑈𝑓𝑎𝑟(𝑛) 

𝑖𝑓 𝐵𝑜𝑜𝑙𝑆𝑊𝐼𝑇𝐶𝐻 =′ 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦′:  𝑋𝑓𝑎𝑟(𝑛) = 𝑋𝑓𝑎𝑟(𝑛 − 1) 

 

Notice also in this process model that only the far foot is tracked. The Boolean value 

𝐵𝑜𝑜𝑙𝑆𝑊𝐼𝑇𝐶𝐻 is created using the near foots estimated location from the first execution of 

the APF. The estimated location is used to find the near foot position, as described in the 

results and discussion section, later in the thesis. The value of 𝐵𝑜𝑜𝑙𝑆𝑊𝐼𝑇𝐶𝐻 is ‘stationary’ 

when the near foot is swinging, and ‘moving’ the remainder of the time. Similarly the 

measurement model is updated to work with the newly silhouette-canceled data:  
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Measurement Model For Far Foot Tracking: 

For i = 1:24:  

𝑌𝑖
𝑓𝑎𝑟

(𝑛) = max (𝑓𝑓𝑎𝑟 (Δ𝑥𝑓𝑎𝑟(𝑛)) , 𝑓𝑓𝑎𝑟 (Δ𝑥𝑝𝑟𝑖𝑜𝑟(𝑛))) + 𝑈𝑖  

Where 𝑓𝑓𝑎𝑟 (Δ𝑥𝑓𝑎𝑟(𝑛)) = (1 − 100Δ𝑥𝑓𝑎𝑟
2 (𝑛))

2
 𝑖𝑓 Δ𝑥𝑓𝑎𝑟(𝑛) ∗ 10 < 1,  0 𝑒𝑙𝑠𝑒 

and 𝑓𝑓𝑎𝑟 (Δ𝑥𝑝𝑟𝑖𝑜𝑟(𝑛)) = (1 − 100Δ𝑥𝑝𝑟𝑖𝑜𝑟
2 (𝑛))

2
 𝑖𝑓 Δ𝑥𝑝𝑟𝑖𝑜𝑟(𝑛) ∗ 10 < 1,  0 𝑒𝑙𝑠𝑒 

 

In the updated measurement model 𝑋𝑝𝑟𝑖𝑜𝑟 is the far foot prior information. The 

calculation of this is described above, in the Using the updated process model and 

measurement model, along with the far foot prior information and the switching Boolean, 

an APF tracks the far foot position (Figure 10d). A better solution in this case could be a 

true interacting mixture model which would use multiple models running in parallel to 

track the feet in different parts of the gait cycle. The different models could be switched 

between using a mixture variable. This mixture variable could be tracked as a hidden 

state in the process model. 

 The resulting output is a position estimate for the far foot, in addition to the 

previously attained position estimate for the near foot. From these two position estimates 

gait metrics such as stride length, step count, etc. can be extracted for gait analysis. 
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Chapter 3: Results and Discussion 

Data was collected from four subjects of varying age, gender, height, and weight.  

Subject 1 is male, early thirties, 6’2” tall, 200lbs. Subject 2 is male, early fifties, 5’9” tall, 

160 lbs. Subject 3 is female, mid-twenties, 5’8” tall, 125lbs. Subject 4 is male, mid-

forties, 5’8” tall, 150lbs. The four subjects were asked to walk a hundred times each. 

Each walk consisted of traversing the IR sensor array once while stepping on the 

GAITRite gait mat. Data was collected simultaneously using two laptops, one as 

described here-in for the IR gait data, and one running the proprietary GAITRite 

software. Subjects were given ten seconds in which to complete the walk. Data in which 

the subject did not complete the walk in ten seconds, the walk was not detected by both 

the systems, or any other error occurred in the collection of data, was discarded. 

Approximately 350 usable collections were performed in this way. 99 walks taken from 

the first 35 walks for subjects 1-3 were then hand-labeled using a custom script in 

MatLab. Hand-labeled data consisted of a position estimate for the near and far foot 

based upon an image of the data. The green line in Figure 10d is an example of hand 

labeling of the far foot. The 99 hand labeled walks were used in the development and 

initial comparison of the analysis 

methods and algorithms. The 

remaining approximately 250 

walk were left aside for 

validating the behavior of the 

final analysis solution. Final 

results are reported for the full 

Table 3: RMSE table. Gait metrics by row, tracking algorithm by 

column. Algorithms include Hidden Markov Model (HMM), 

Heuristic Model (Heuristic), and the APF model (Particle Filter). 
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data set of approximately 350 

walks, of which a subset of 

approximated 99 walks were used 

to develop the method. Data from 

the GAITRite system was 

considered to be the ‘true state’ of 

the walk. Thus a walking speed, 

step count, etc. as determined by the GAITRite is the ‘true’ walking speed, step count, 

etc. RMSE values calculated in Table 3 reflects the difference between the true value 𝑥 

and the estimated value �̂� for that gait metric as:  

𝑋𝑅𝑀𝑆𝐸 = √∑(𝑥𝑛 − �̂�𝑛)2 

The amount of data calculated for each method is also presented in table 4. Data which 

cannot be estimated for a specific metric (e.g. if the APF detects only one step for a given 

walk, then that walk cannot have a stride length calculated) will be ignored in the 

calculation of RMSE for that metric. To aid understanding of the RMSE values, Table 5 

will present the RMSE for each metric and each algorithm mean-normalized using the 

mean of the ‘true’ value as determined by the GAITRite:  

𝑋𝑁𝑂𝑅𝑀 =
𝑋𝑅𝑀𝑆𝐸

(
1
𝑁) ∑ 𝑥𝑛

 

Multiple gait analysis methods were investigated. These three tables will give a full 

understanding of the efficacy of each of the gait analysis algorithms for each gait metric.  

Table 4: normalized RMSE values (nRMSE). Gait metrics by 

row, tracking algorithm by column. Algorithms include 

Hidden Markov Model (HMM), Heuristic Model (Heuristic), 

and the APF model (Particle Filter). 
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Results 

 Multiple gait analysis methods were investigated in the course of this research. 

The most promising methods are compared in this results section. Only the APF 

algorithm is described in detail in the thesis body. For a description of the other 

algorithms in detail please refer to The Appendix. In addition to the APF there are two 

other algorithms analyzed. First, the heuristic algorithm analyzes signal power to detect 

footfalls, and uses those footfalls to extract gait characteristics. The heuristic method is 

simple and effective, providing another good reference point against which to compare 

more complex algorithms. Second, a Hidden Markov Model (HMM) which is a state 

space tracking technique. The HMM uses a discrete state space to represent the same 

information as the process model in the context of the APF. The HMM uses the Viterbi 

algorithm to find an optimal path.  For further description of the HMM and heuristic 

algorithms refer to The Appendix. Finally, the APF, that algorithm has been discussed in 

depth, is compared.  

 Development of the Heuristic algorithm was done entirely by Erich 

Schafermeyer. The Auxiliary 

Particle Filter was designed as 

part of coursework for a state 

space tracking course taught by 

Dr. James McNames. The APF 

code was modified and adapted 

Table 5: Percentage of data used in each calculation. Gait 

metrics by row, tracking algorithm by column. 
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from code used in the course and presented by the professor for use in the homework 

assignments. Development of the Hidden Markov Model was based upon code written by 

Dr. Anindya Paul for MotioSens. The code was adapted by Erich Schafermeyer. The 

discrete state space of transition probabilities was designed by Erich Schafermeyer and 

Dr. Eric Wan and the emission probabilities were based on a measurement model 

designed by Fatema Adenwala.  

 

Stationary Foot Detection 

  Before extracting individual gait metrics each foot must be determined to be 

swinging or stationary. A foot is considered swinging when its position stays within 

7.62cm of a given position for at least .33 seconds. For example if at time 12.45sec a foot 

Figure 12: Scatter plot of Walking Speed (WS). True WS (as determined by GR mat) is on the x-axis, while 

estimated is on y-axis. Thus, the closer to the diagonal (red) line the better. 
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is at position 1.5m and at no time before 12.79 sec does it go beyond 1.438m or 1.5762 

meters, then the foot is considered to be stationary in that window. If the foot stays within 

those bounds for a longer duration, the foot is considered stationary over that longer 

duration. Any time step during which a foot is in front of the sensor array and is not 

stationary, it is considered to be moving. Each of the tracking algorithms provides an 

estimated foot position for the near and far feet. The estimated positions are then found 

using a separate heuristic function as described here.  

 

Walking Speed 

In the data collections true walking speed ranged between .5m/s and 2m/s. The 

sensor system is 2.34 meters long, therefore to calculate walking speed the heuristic 

Figure 13: Scatter plot of Ambulatory Times (AT). True AT (as determined by GR mat) is on the x-axis, 

while estimated is on y-axis. Thus, the closer to the diagonal (red) line the better. 
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method finds the ambulatory time (AT) for each walk. AT is then used as the 

denominator in the formula 𝑊𝑆 =  
Δ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Δ𝑡𝑖𝑚𝑒
 for of walking speed (WS). The heuristic 

method for extracting walking speed is described below. The HMM and APF both 

measure walking speed in the following way. By looking at time difference between 

instances where both feet are at the same position (such that the ankles are crossing). Two 

such positions gives sufficient data for a walking speed calculation. If there are less than 

two such times the walk is discarded from the walking speed calculation. Otherwise it is 

assumed that when two feet are next to each other the torso is aligned above the feet. A 

linear regression, 𝑦 = 𝑚𝑥 + 𝑏 is computed using the two or more ankle crossing times as 

inputs (x) and the two or more ankle crossing positions as outputs (y). The resulting slope 

(m) is the estimated walking speed.  In Figure 12 walking speeds are depicted for each of 

the 3 estimation methods. The x-axis is the ground truth walking speed as derived from 

the GAITRite system. The y-axis is the estimated walking speed for each respective 

analysis method. Therefore the closer to the 𝑥 = 𝑦 line that a measurement is, the closer 

that measurement is to the true speed of the walk as measured by the GAITRite. The 

HMM method has performs with an RMSE of 20.1 cm/s on 48.7% of the data, meaning 

that more than half of the data had no measureable AT due to the HMM not being able to 

measure more than one ankle crossing. The heuristic method has an RMSE of 19.7 cm/s. 

The heuristic method was able to detect 100% of walks Table 5. The APF has a walking 

speed RMSE of 21.7 cm/s calculated on 100% of the data. Despite the fact that the HMM 

has a slightly better RMSE than that of the APF method, it has more than 50% data loss 

Table 5. The HMM suffers from a great deal more data loss because of its use of a 
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discrete state model for the gait cycle. When the HMM-based analysis system loses the 

objects that it is tracking, it fails to re-acquire them and the data for the entire walk is lost.  

 

Ambulatory Time 

Ambulatory time is the time spent walking during a single walk. For the heuristic 

analysis method ambulatory time is calculated by looking at the duration of time during 

which the entire system has an energy level greater than a certain threshold (𝜇𝑃𝐸):  

𝐴𝑚𝑏𝑢𝑙𝑎𝑡𝑜𝑟𝑦 𝑇𝑖𝑚𝑒 = 𝑃𝐸 > 2𝜇𝑃𝐸 

𝑤ℎ𝑒𝑟𝑒 𝑃𝐸 = ∑ 𝑥𝑛,𝑙
2  

𝑙=1

 

This value is then used to calculate walking speed. In contrast, the ambulatory time of the 

GR, HMM and APF are calculated based up walking speed as 𝐴𝑇 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑊𝑆
 where 

Distance is 2.34m, the length of the sensor array. In Figure 13 the shorter ambulatory 

times, those between 1.5 seconds and 2.5 seconds are tightly grouped around the 𝑥 = 𝑦 

line. This suggests that faster walking speeds were easier for all systems to detect, 

perhaps because the feet made more distinct motions through the IR path. As the 

ambulatory time increases the measurements spread out leading to more RMSE.  

Comparing Figures 12 and 13 it can be seen that the walking speed RMSE seems to be 

tighter about the  𝑥 = 𝑦 line for walking speeds faster than 3mph. For reference the 

average walking speed of an adult on flat ground is around 3 mph. The HMM and the 

heuristic methods have similar AT RMSE with respective values of 1.014 sec and 0.807 
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sec. RMSE values for ambulatory time. The APF has more than double the RMSE of the 

next worst method, the HMM, and both are inferior to the Heuristic method. Again the 

amount of data loss suggests that the HMM is not a good algorithm for AT analysis, 

despite its relatively low RMSE values. The HMM fails to correctly estimate ambulatory 

time because it is not able to track the feet with sufficient accuracy in time. This leads to 

foot-crossing times which are inaccurate and ultimately to an inaccurate ambulatory time 

estimation.  

 

Step Count 

A step is considered to be a period of 1/3 of a second during which a foot is 

stationary. Counting all such steps leads naturally to a step count. Each column is a step 

Figure 14:  boxplot of step count (SC) for the heuristic algorithm. The x-axis depicts the true SC based on 

GAITRite mat. The y-axis depicts the estimated step count.  
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count from the GAITRite system. Each box plot is a distribution of estimated step counts 

as calculated by the titular method for that true step count. For example, in Figure 14 the 

1st columnar box plot depicts walks with 3 steps. The heuristic method measured step 

counts between 2 and 5 steps for these walks. T he median step count was 3, the 1st 

quartile is 2, and the 4th quartile is 4. The 2nd columnar boxplot depicts walks with 4 

steps, and so on. For the heuristic method the mode of estimated values are equal to the 

true value for 3 and 4 steps, thereafter the algorithm has trouble distinguishing walks with 

more than 4 steps. This, again, reinforces the intuition derived from the WS and AT 

estimates that fewer steps (equivalent to faster walking) is easier for the system to detect. 

The heuristic method Figure 14 has a RMSE of 1.147 steps. The HMM method has an 

Figure 15: boxplot of step count (SC) for HMM algorithm. The x-axis depicts the true SC based on 

GAITRite mat. The y-axis depicts the estimated step count. 
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RMSE of 1.520 steps, worse than its heuristic counterpart. Looking at Figure 15 it can be 

seen that there is a larger deviation in the boxplot median values for true step counts. The 

APF in Figure 16 has an RMSE of 0.652 steps, providing the best step count estimate of 

any of the methods. The figure shows that the APF method is very good at estimating 

step count for '3 and 4 step walks which make up the bulk of the walks. It is less capable 

with walks of 5 and 6 steps. The nRMSE in Table 4 shows that the HMM and APF have 

fairly similar nRMSE values while the heuristic algorithm more than doubles that error. 

The GAITRite mat is longer than the IR sensor array by more than a meter. Steps 

recorded by the GAITRite are stored with position along the walking direction of the mat. 

Figure 16: boxplot of step count (SC) for the APF. The x-axis depicts the true SC based on GAITRite mat. 

The y-axis depicts the estimated step count. 
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To accurately record step count only those steps which occurred in front of the IR sensor 

array are included in the GAITRite count.  

 

Stride Length 

Stride length (STL) is calculated as the distance from on foot’s placement on the 

ground to the place that foot next lands on the ground, visualized in (Figure 17) as line 

segment AG. For example in a walk the distance from where you pick your right foot up 

to where you set it down again is a single stride length. The HMM has a stride length 

RMSE of 21.6 cm drawn from 76.1% of data. The heuristic is the worst stride length 

estimator with an RMSE of 51.8 cm drawn from 62.7% of the data. The APF’s RMSE of 

18.2 cm which is calculated on 100% of the data is the best result both in terms of the 

RMSE and the amount of data calculated on. Part of the reason that the non-PF 

algorithms calculate their STL RMSE values on such a low volume of data is because 

Figure 17: This figure is a reproduction of a figure from the GAITRite technical literature. Step length is 

measured from A to L, stride length is measured from A to G, and stride width is measured from D to L.  
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those algorithms had a very hard time detecting footfall. In a number of walks the number 

of true footfalls was only 3, therefore a single missed footfall on the side with 2 footfalls 

would result in a failure to calculate stride length, while the step length is calculable with 

only 2 footfalls detected.  

 

Step Length 

  Step Length (SL) is calculated as the distance from one foot’s placement to the 

ground to the line tangent to the next foot placement on the ground. This is visualized in 

Figure 17 as the line segment AL.  The HMM has an RMSE of 39.8 cm calculated on 

73.18% of data. The fact that the percent of data calculated on is lower for step length 

than for stride length in the HMM method suggests that one foot was harder to detect 

Figure 18: Stride Length (STL). The true STL is on the x-axis while the estimated STL is on the y-axis. 
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than the other, thereby making step length harder to detect than stride length. It also 

suggests that the estimated stride length, if differentiated between the two feet would 

have much higher data loss for one of the two feet (likely the far foot). The Heuristic 

method has an RMSE of 49.4 cm calculated on 46.9% of data. The particle filter has an 

RMSE of 9 cm calculated on 100% of data, and again, the lowest of the methods.  

 

Dual-Leg Standing Time 

Dual-Leg Standing Time (DST) is a measure of how much time a person stands 

on both legs while transitioning weight from one foot to the next during a walk. The 

HMM method used just under 70% of the data and had an RMSE of 0.181 seconds. The 

heuristic method had an RMSE of 0.246 seconds calculated on 92.4% of the data. The 

Figure 19: Step length (SL). The true SL is on the x-axis while the estimated SL is on the y-axis. 
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APF has an RMSE of 0.178 seconds calculated on 100% of data. While RMSE is a useful 

measurement for many of the gait analysis metrics, the standing time values are a bit 

difficult to quantify because there is little natural intuition about how long a person stands 

on both feet during a walk. The superior measurement is then the nRMSE presented in 

Table 5 which shows that the APF and HMM both have an nRMSE of around 0.46 

seconds and are mainly differentiated by the percentage of data used in the calculation.   

 

Single-Leg Standing Time  

 Single-leg standing time (SST) is calculated as the average amount of time spent 

on each leg. The HMM has an RMSE of 0.284 seconds calculated on 74.6% of the data. 

Figure 20: Dual-leg standing time (DST). The true DST is on the x-axis while the estimated DST is on the 

y-axis. 
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The heuristic method had an RMSE of 0.264 calculated on 95.3% of the data. The APF 

greatly outperformed the heuristic method with a MSE of 0.157 seconds calculated on 

100% of the data. Again the nRMSE provides the greatest intuition, showing that the 

APF has an nRMSE of almost half that of the other two methods.  

   

Discussion 

 Among the methods investigated in this thesis the Auxiliary Particle Filter is 

clearly the single best method for the detection and analysis of gait characteristics. The 

only metrics in which it was bested are the walking speed and ambulatory time. The APF 

calculates all of the other gait metrics with better than 99.7% data use. The AT and WS 

estimates are best calculated using the heuristic method which achieves both using 100% 

Figure 21: Single-leg standing time (SST). The true SST (as determined by the GR) is on the x-axis, while 

the estimated SST is on the y-axis. The closer to the diagonal line the better. 
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of data. Therefore an ideal system would incorporate the APF for gait analysis in all 

metrics except AT and WS for which it would use the heuristic method.  

 In Chapter 2 Table 2 a list of accuracies for successful gait analysis in various 

activities is presented. Table 6 presents the lowest necessary accuracies from Table 2 

compared with the results from our IR based system. The color coding in Table 6 relates 

to how successfully each gait metric is estimated using the current system prototype. 

Achieved accuracy is calculated as RMSE. Step length, used in the context of measuring 

the efficacy of Parkinson’s disease medication, is the sole successful measurement based 

upon the system. The value for walking speed is close to the desired accuracy of walking 

speed based upon a use case of stroke recovery monitoring, but is inaccurate by more 

than 35%. The remaining compared metrics: stride length, single support time, and dual 

support time, are all significantly less accurate than they would need to be to successfully 

measure changes over time of spatiotemporal gait characteristics. 

Comparing the results of our IR gait system with that of the other IR gait system 

[31] requires the introduction of a new metric which is used in the other paper. The mean 

absolute relative error (MARE) is calculated as:  

Gait Metric Lowest Accuracy Desired Achieved Accuracy Use Case

Walking Speed (cm/s) 16 21.7 Stroke Recovery

Step Length (cm) 10 9.05 Medication Efficacy

Stride Length (cm) 5 18.237 Spatial Gait Stability

Single Support Time (ms) 10 157 Temporal Gait Stability 

Dual Support Time (ms) 20 178 Temporal Gait Stability 

Table 6: A Summary of Gait Metrics, their lowest desirable accuracy, and achieved results. 
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𝑀𝐴𝑅𝐸𝑥,�̂� =  
∑ (|𝑥𝑛−�̂�𝑛|)𝑁

1

𝑁
  where N is the number of observations 

The MARE is a useful metric for ignoring outliers while calculating the error between an 

expected outcome (𝑥𝑛) and a measured outcome (�̂�𝑛). Fukui et al. provides only two 

metrics for gait analysis: walking speed and step length. In a test with elderly people, 

they report an error of 6.5% for walking speed and 3.8% for step length. Their results are 

reported from a data set consisting of 10 walks per subject with 5 male and 5 female 

subjects for a total of 100 walks. MARE figures are evaluated using data from an 

unspecified pressure mat, similar to the GAITRite, as reference values. In contrast, the IR 

gait system described in this paper gave an 18.5% error for walking speed and an 11% 

error for step length. This data is based upon approximately 350 walks collected from 4 

subjects, as described previously. Clearly Fukui et al. had better results. It is this author’s 

opinion that this analysis must be taken with a grain of salt for a few reasons. First, the 

results reported in Fukui et al. are based on a simple method used on a clean data set 

which is less noisy than the data collected from the prototype presented in this thesis, as 

seen in Figure 10. The data in Fukui et al. can be separated from the background using a 

threshold alone. This is due to a very high SNR which makes dealing with background 

noise easy. My suspicion is that the inferiority of our data is the result of a not fully 

developed hardware prototype which had improperly shielded and grounded wires. I 

believe that with a better hardware prototype the algorithms described in this thesis could 

provide better results than we have reported, and possibly better than in Fukui et al. 

Because the two feet are tracked independently using an APF, it would be trivial, given 

sufficiently high SNR, to track step width, instantaneous velocity per foot, and other 
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metrics not mentioned in Fukui et al.  A review of the system, assessment of its 

capabilities, and comments on future steps follows the next chapter which is on subject 

identification. 

  



  

71 
 

Chapter 4: Subject Identification using IR and RF Fingerprinting  

This chapter describes a passive subject identification system which is designed to 

be an unobtrusive, easily installed, and inexpensive solution for uniquely identifying 

multiple residents in a smart home. To effectively monitor biometrics of a subject living 

in a multi-resident home it is important to separate that subject’s data from the data of 

caregivers, cohabitants, and visitors. For example, a male and female couple living at 

home with a male care giver could install these systems and the subject ID system would 

be used to distinguish the unique data sets.  

The subject ID system described herein consists of four radio frequency (RF) 

transceivers and 3 infrared sensors set up in or near a doorway. Received Signal Strength 

(RSS) can be defined broadly as power of the signal at a time step between two 

transceivers. RSS from each path was used to separate three subjects, two male and one 

female of varying heights and weights. The testing for the subject identification hardware 

and the gait analysis hardware were conducted at separate times. The systems, once 

integrated will be able to augment each other in a number of ways. Most importantly the 

gait analysis system will be able to separate subjects from non-subjects. In addition the 

walking speed derived from the gait analysis system, as well as other features derived 

from the gait analysis system, could be used to perform more effective subject 

identification.  

The system achieved 98% accuracy separating two male from one female subject 

and 83% accuracy separating the two male subjects from each other when using all 

available training data, around 2,300 observations per subject. The system maintained 
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over 96% accuracy separating male subjects from female subject and 82% accuracy 

separating between the two male subjects when trained on only 140 observations per 

subject (Tables 3 and 5). This result suggests that the training data could easily be 

acquired within a week in a multi-resident home with minimal effort from the residents. 

This chapter is based on research conducted for a paper by Schafermeyer et al. published 

in the proceedings of the IEEE Engineering in Medicine and Biology Conference 

(EMBC) from August of 2015 [37].  

  

Hardware Methodology 

The system used in this research consists of 4 radio frequency (RF) transceivers 

operating in the 900MHz range at a 20Hz sample rate (Figure 22). The receivers each 

sample a received signal strength (RSS) value which 

indicates how strong the signal being transmitted is 

upon reception. Changes in RSS are caused by 

objects in the room absorbing, reflecting, and 

blocking the signal energy. Humans, furniture, and 

walls can all contribute to RSS values. The 

transceivers used were originally designed to be used 

in a larger, slower sample-rate network for the 

purposes of region-level tracking [7]. In their 

existing state they were insufficient for subject ID 

because of their low sample rate of 1 sample every 

Figure 22: Access-points (AP) 

transceivers are arranged in a hallway. 

As a person walks past, the RSS 

disruptions between links are measured 

and used to recognize the person. IR 

sensors provide timing information to 

extract walking speed. 
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250ms, or 4Hz. To use them for subject ID it was necessary to run them at the 

significantly faster sample rate of 20Hz. To achieve this high rate the sensors and data 

collection software had to be extensively tested. It was determined that sensors from 

some manufacturers were not sufficiently well built to run at a higher sample rate. For 

this reason only a small subset of the sensors tested was usable for this data collection.   

During testing sensors were mounted in a 2m by 1m door frame with two APs 

positioned at 1.75m from the ground (head height) and two positioned at 1m from the 

ground (waist height). There are three types of physical devices, or access points (AP), 

the first is a initiator, which sends out a signal to all three of the other access points, the 

second is a transceiver access point which receives then sends a signal to each of the 

other access points except the initiator, the final is a hub which only receives from all the 

other access points without transmitting. In this chapter the path between any two access 

points is referred to as a link. The hub receives a packet of information from each AP 

which contains the received signal strength (RSS) of each transmitted path between the 

initiator and the hub to go through that AP. An example of a single waveform for each 

subject is given in (Figure 23). In parallel a 

set of 3 infrared (IR) sensors provide a 

walking speed and trigger which alerts the 

system to a subject walking through. 

Because the IR triggers are at waist height 

(approximately 1m from the ground) the 

trigger also negates the issue of a pet Figure 23: Example RSS waveforms for three 

different subjects 
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triggering the subject identification system. When the system is triggered a marker is 

placed at that point in the RF data such that it can be used to identify which subject is 

walking past. The physical sensors are less than one inch square and can be housed in 

unobtrusive plastic enclosures to be minimally invasive to a home-living environment.  

The APs themselves are used for wireless transmission of packets of information. 

In addition, on each cycle a transmitting sensor will send a reference signal to each of its 

receiving sensors. The receiving sensor will be able to determine the RSS value from that 

reference signal. That RSS value is then added as data to the signal sent to the next 

sensor. The initiator transmits first and is received by access points 2,3,4, then access 

points 2,3 transmit and are received by access point 4, which is the hub. Access point 4 

does not transmit, it only receives. Access point 1, the initiator, does not receive, it only 

transmits. After transmitting each access point restarts. For each pair of sensors to 

transmit uninterrupted by the transmission of other sensors it is important for the 

transmitting sensors to have a staggered firing time from each other. It was 

experimentally determined that the ideal delay in firing time is around 15ms. This 15ms 

value accounts for both the time for an access point which is not the initiator or the hub to 

receive a signal, and then to package the RSS value it has received and resends it as a part 

of its own packet to the next sensor in the series. The longest such path is from the 

initiator to AP2 to AP3 and then to AP4. This path requires 3 steps of 15ms apiece, 

leading to the roughly 50ms sample time of the sensor system as a whole. 

As a person walks in the region of a transmitting and receiving sensor pair the 

receiver will register a change in the RSS value sent from the transmitter. This change is 
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possibly due to a number of factors. One possible factor is the capacitance of the person’s 

body absorbing some of the electromagnetic energy from that transmission, and thereby 

blocking that energy from reaching the receiver. Another possible factor in RSS shift 

during a walk is the person’s body blocking or reflecting some of the RSS signal between 

two sensors, thereby creating a change in multi-path.  

The subjects walked down a simulated corridor demarcated in the center of the 

BSP lab with tape. The corridor goes through a simulated door frame at its center point 

(Figure 22). It is important to note that during the week these data collections were being 

completed the lab was in active use. Students and staff worked in the lab on other 

projects, hardware was jostled and tables, chairs, and couches were shifted. Because of 

these changes the multipath signature of the room was not constant among data 

collections. Just as in a home living environment the features selected, as well as the 

algorithms used, have to be robust to these changes.  

 

Software Methodology 

The software used in this system can be broken into two parts, the data acquisition 

system and the data processing and analysis system. The data acquisition system used 

was developed specifically for this sensor set by MotioSens. It acquires data from 

multiple sensors at a high data acquisition rate. A reference to supporting materials for 

this acquisition system can be found in the appendices. Data processing and analysis was 

primarily conducted in MatLab.  
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Data acquisition 

The details of the data acquisition system are covered in depth in the appendices. 

The system consists of a serial interface communicating with the hub AP over a USB 

connection. The data acquisition system, called ERF Collector 3 can be used for 

programming the APs as well as collecting data from them. To program the APs each 

must be connected as though it were a hub and programmed directly. The network cannot 

be reprogrammed over the air.  

Data comes into the ERF collector software and is batched until data collection is 

complete. It is then stored into a text file. The data collections are uniquely identified 

with timestamp and user ID.  

 

Algorithms for data processing 

To identify the subjects from the data collected, a method for separating among 

the three based upon that data must be created. A Gaussian Mixture Model (GMM) is a 

model which attempts to fit data given the assumption that that data can be fit using only 

Gaussians. Gaussian distributions are described by mean and covariance. For example a 

random variable X which is Gaussian has the probability density function:  

𝑃𝑋(𝑥) =  
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2⁄
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Where 𝜇 is the mean and 𝜎2 is the covariance of the normal distribution in a multivariate 

GMM. A GMM is constructed of weighted sums of Gaussian distributions. 

𝑝(𝑥|𝜆) =  ∑ 𝑤𝑖 ∗ 𝑔(𝑥|𝜇𝑖, 𝛴𝑖)

𝑀

𝑖=1

, 

where x is a D-dimensional feature vector , 𝑤𝑖,  𝑖 = 1, … , 𝑀 are mixture 
weights, 

𝑔(𝑥|𝜇𝑖,  𝛴𝑖) =
1

(2𝜋)
𝐷
2 |𝜎𝑖|

1
2

∗ 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝜇𝑖)

′𝜎𝑖
−1(𝑥 − 𝜇𝑖)} are the component 

Gaussian densities, 

And 𝜆 = {𝑤𝑖, 𝜇𝑖,  𝛴𝑖} are the parameters of Gaussian i 

𝛴𝑖is a diagonal covariance matrix 

 

Gaussians are fit using the expectation maximization (EM) algorithm. EM is an 

iterative approach for finding the maximum a posteriori (MAP) estimate for mean and 

variance. The EM algorithm consists of two steps: the expectation step consists of fixing 

the parameters (𝜇 𝑎𝑛𝑑 𝜎) and solving for the posterior distribution. The maximization 

step consists of fixing the posterior distribution and optimizing the parameters.  

Given a set of observations 𝑥 ∈ {𝑥1, … , 𝑥𝑛}, EM begins by initializing the 

parameters 𝜃0 ∈ Θ. Mean initialization consisted of drawing parameters from the set of 

observed data at random. Standard deviation was initialized to 1. As 𝑡 → ∞ (until 

convergence): 

�̅�𝑖 =
1

𝑇
∑ Pr (𝑖|𝑥𝑡,  𝜆)𝑇

𝑡=1  (weight update) 
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�̅�𝑖 =  
∑ Pr(𝑖|𝑥𝑡, 𝜆)𝑥𝑡

𝑇
𝑡=1

∑ Pr (𝑖|𝑥𝑡,𝜆)𝑇
𝑡=1

 (mean update) 

𝜎𝑖
2 =  

∑ Pr(𝑖|𝑥𝑡, 𝜆)𝑥𝑡
2𝑇

𝑡=1

Pr (𝑖|𝑥𝑡,𝜆)
− �̅�𝑖

2 (diagonal covariance update) 

The EM steps are then repeated until convergence is reached. In this case a 

separate GMM is formed for data from each subject. The argmax of log likelihoods from 

each GMM determines the subject label.  

𝑃𝑟(𝑖|𝑥𝑡 , 𝜆) =  
𝑤𝑖𝑔(𝑥𝑡|𝜇𝑖,  𝛴𝑖)

∑ 𝑤𝑘𝑔(𝑥𝑡|𝜇𝑘, 𝛴𝑘)𝑀
𝑘=1

 

Where i is the subject label.. This is the same as the maximization step in the EM 

algorithm. For the purposes of this research a diagonal covariance matrix was used for 

each Gaussian. This choice led to faster execution times but causes the model to not fit 

the data as well as if full covariance matrices were used. Hyper-parameters, including the 

number of Gaussians used and the distance metric, allow for the GMM to be adjusted to 

fit a specific need. Information theoretic methods can be used for identifying the 

appropriate number of Gaussians for each GMM. However the number of Gaussians used 

was found experimentally in this research.  

The efficacy of the GMM algorithm was determined to exceed that of other 

classification methods such the heuristic approach which is described further in The 

Appendix. The testing method for each of these algorithms consisted of a 5-fold cross 

validation method in which subject data for 4 days would be used for training with the 

final day’s data reserved for testing. Data is rotated such that 5 train/test cycles are 
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completed and the results are averaged. Using k-fold cross validation avoids the risk of 

overfitting the training data. To ensure enough data points are used a Monte Carlo 

method is implemented for drawing samples from the observations.  

 

Experimental Setup 

Data was collected from 3 subjects once per day for 5 days. Each subject was 

asked to walk for 1 hour. A total of just over 7,000 walks were collected from 3 subjects 

over 5 days. Subjects varied in age, gender, height, and weight. Subjects were asked to 

walk at a variety of speeds, in various shoes and clothing. Each subject walked both with 

and without cellphones while placing calls, listening to music, or simply with the 

smartphone in a pocket. The lab was in active use except at the time of data collections. 

The system was restarted before each data collection. The three subjects consisted of one 

female and two males. Subject A is a 5’3” 145lb female, Subject B is a 5’11” 185lb male, 

and Subject C is a 6’1” 195lb male. Subjects were asked to walk continuously back and 

forth down a 7m simulated hallway constructed in the BSP lab. Each subject wore 

different clothing and shoes on different days. Each subject used his or her phone at some 

point on each day. Subjects were asked to vary gait and walking speed but gait variations 

were not quantified.  

Further Testing for the subject identification subsystem would consist of more 

subjects of a wider variety of ages, sizes, weights, and gender. Because of the preliminary 

nature of the study done for this thesis, it was only practical to collect data on three 
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subjects for the purpose of better identifying system response relating to mean-shift 

changes among days, the effect of changing clothing and shoes, the effect of walking 

with a cellphone, as well as preliminary results relating to the separation of male and 

female subjects. In a multi-subject smart-home environment it is likely that two or fewer 

subjects would be living permanently, and that other visitors would include care givers, 

family, and friends. A successfully implemented subject identification prototype would 

therefore be able to distinguish one or two subjects, for whom gait analysis was being 

conducted, from non-subject walkers who may be in the home for short periods of time.  

Data collections taken from multiple subjects were interspersed such that data 

from a single subject would not be more reflective of the day it was collected on than the 

subject herself. Data was interspersed in the following way: each day for 5 days each of 

the 3 subjects walked for 1 hour. Some such differences could include changes in the 

position of furniture in the room, changes in the battery power of sensors, or even 

changes in the ambient EM noise of the room itself. A distinction is made between 

background data and data acquired during a walk by measuring the level of variance in 

the data, which increases as a subject walks by. When variance is low the data is 

considered to be background data and that data is averaged for each path and used for 

mean subtraction. By subtracting the background mean from the data it is hoped that the 

data becomes somewhat more stationary.  

A significant amount of effort was directed towards understanding RF multipath 

in a multi-resident environment. Tests were conducted in three locations including an 

outdoor location with no hard surfaces within 20m for RF signals to reflect off, an office 
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environment with no furniture, only blank walls, and a fully furnished simulated 

apartment called the Point of Care Lab, a testing facility in the OHSU biomedical 

engineering department dedicated to elderly care research. It was found conclusively that 

multipath does exist in the latter two environments and that the largest drop in RSS does 

not necessarily occur when the direct path between two links is physically blocked by a 

body. This suggests that there are strong multipath elements to the RSS. To capture any 

information relevant to subject identification a broad window of time about the triggering 

of the sensor system should be used for data analysis.  

 

Data analysis 

Data is imported from a text file into MatLab where it is stored in matrix format. 

Each matrix represents a set of walks. From each of these walks a set of features must be 

extracted which can be used to distinguish the subjects in a meaningful way. A feature is 

any measurable property of the raw waveforms which can be used to distinguish one 

subject from another. For example the magnitude of the highest peak during a walk 

(Figure 23) is a feature. To find these types of features a window is first cut in time 

around the time that the center IR trigger is activated resulting in a windowed waveform 

(Figure 23). First, RSS is converted from dBs to power (Watts) by the following formula:  

𝑅𝑆𝑆𝑊𝑎𝑡𝑡𝑠 = 10
𝑅𝑆𝑆𝑝𝑤𝑟

10  

This formulation allows for the accentuation of small fluctuations in the signal. Second, a 

background mean subtraction is executed to remove mean-shift. Background mean is 
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calculated by finding the mean of all data from a given link which has a variance below a 

certain threshold. This variance threshold defines the difference between foreground and 

background. Finally a two second window is cut from both the RSS data and the PWR 

data using the IR trigger. From that window a large candidate pool of features is extracted 

including spectral representations of the signal, mean, variance, skewness, kurtosis, peak 

magnitudes, number of peaks, and more.  

A total of 81 candidate features were drawn from the windowed data. Using a 

process called sequential forward selection (SFS) [18] a set of the ten best features was 

selected. SFS is a fast feature selection method which chooses the best feature for a 

classification method by running the classifier using each feature independently. 

Whichever feature provides the highest classification rate is added to a permanent list of 

features and the remaining set is iterated over again with the permanent set included. This 

process is repeated until a predetermined number of features is reached or classification 

ceases to improve by a predetermined amount between features. The classification 

algorithm for SFS was a GMM. For subject identification SFS was considered complete 

when adding new features ceased to improve the classification of subjects. A final set of 

10 features was selected. Those features include:  

1. The area under the curve for the link C RSS; area is calculated as the sum of the 

RSS magnitude squared.  

2. The first 5 principle components from the link A signal.  

3. Number of unique peaks in link B RSS signal.  

4. The max minus the min value of link A RSS signal.  

5. Walking speed as approximated by the timing difference between IR sensor 

firings from IR1 and IR3.  

6. The skewness of the link B RSS signal.  

7. The standard deviation of the link B RSS signal.  
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8. The max minus the min value of 

the difference between the link A 

and link B RSS signals.  

9. The mean of link C RSS signal.  

10. The difference in standard 

deviation between the link B RSS 

signal before and after the primary 

peak of link B RSS signal.  

 

All features are scalars except for feature 

2, which is a vector of 5 values. Features 1 

and 3 are derived from the RSS signal in dBs while features 2,4,7-10 are derived from the 

RSS signal in units of watts.  

 

Results and Discussion 

A GMM was found to be the most effective classification algorithm both with 

small amounts of input data and with large amounts. In Figure 24 a comparison was made 

between a feed-forward Neural Network and the GMM using varying amounts of training 

observations per class. The y-axis gives percent accuracy between 60% and 95%. The x-

axis has the number of training observations used for classification varying from 100 to 

700. Four different classification tasks are 

performed: 1. Separation of male and female 

subjects using the GMM algorithm. 2. Separation of 

male and female subjects using the NN algorithm. 3. 

Separation of one male subject from the other male 

Figure 24: Percent classification accuracy versus 

amount of labeled training data used for both a GMM 

and feed forward NN. 

Table 7: Confusion matrix of three 

subjects (A-female, B-male, C-male) 

classified using a GMM trained on all 

available labeled observations. 5-fold 

daily cross validation. 
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subject using the GMM algorithm. And 4. Separation of one male subject from the other 

male subject using the NN algorithm. The GMM outperformed the NN in both 

identifying male-vs-female subjects as well as identifying male-vs-male subjects. Also 

notable in this graph is that the GMM is able to maintain around 97% accuracy 

distinguishing male-vs-female and 80% accuracy distinguishing male-vs-male subjects 

with only 6% of the labeled data (or around 140 samples per subject) used for training. 

To select 140 training samples from the training data Monte-Carlo sampling was 

implemented in which the original training set of around 2,300 samples was drawn from 

uniformly with replacement. This finding suggests that were the system to be deployed 

for home use; the user would only need to do around 5 minutes of walking per day for a 

week to train the system. Some subsequent walking would be necessary at regular 

intervals for the system to maintain its accuracy due to the mean-shifting of the RF as 

well as changes in multipath of the environment.  

To evaluate performance confusion matrices for each of the three subjects were 

generated. Table 7 shows performance for all three subjects when the GMM is trained on 

100% of the training set. In table 7 it is clear that subject A, the female subject, is highly 

separable from subjects B, C.  Subject A (female) is 

classified with nearly 97% accuracy, while subjects 

B,C  are classified with 85% and 78% accuracies, 

respectively. The drop in classification rates is due 

to the more subtle height and weight difference 

between the two men (2”, 10lbs) than between the 

Table 8: Confusion matrix of three 

subjects (A-female, B-male, C-male) 

classified using a GMM trained on 

approximately 140 labeled observations 

(6% of data) per subject. 5-fold daily 

cross validation with Monte-Carlo 

sampling. 
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men and the woman (9”, 45lbs average). Because the men and woman are of different 

heights and weights the APs register markedly different shifts in RSS as the subjects walk 

through. When the two male subjects are distinguished the difference in mass distribution 

is more subtle and therefore harder for the system to delineate. Table 8 shows 

performance for all three subjects when the GMM is trained on only 6% of the training 

set. The female subject is again classified with the highest accuracy at 94%, while the 

male subjects are classified with approximately 82% and 79% accuracies. So far, analysis 

assumes that the classifier is evaluated on all data. If instead only the 80% of data scoring 

above a confidence threshold for the GMM is used, the results of training the GMM on 

only 140 examples approach those of using all available training data.  

The research presented in this chapter represents an unobtrusive, inexpensive, and 

yet highly accurate system for distinguishing subjects in a multi-resident living situation. 

The system is implemented using sensors developed by MotioSens, a local company 

which specializes in tag-free localization systems. In the future further testing with more 

subjects in an in-home environment could be used to provide a richer data set for further 

algorithm development.  
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Contributions and Skills Developed 

 This thesis represents a contribution to the fields of biomedical signal processing 

and elderly care in that it is an extension of known gait analysis methods to in-home use. 

By leveraging inexpensive electronic systems and state-of-the-art signal processing and 

machine learning algorithms the author was able to design and implement a prototype for 

automated gait analysis in a multi-resident in-home setting. This device could greatly 

increase the quality and quantity of data which care providers have, thereby improving 

their ability to make good decisions regarding patients with gait impairment.  

 The work completed in this paper was done in conjunction with a number of 

researchers at OHSU, PSU, and MotioSens. It was also supported by the help of many 

professors and fellow students. Specifically, prototype gait analysis system versions 1 

and 3 were designed by Eric Wan, Erich Schafermeyer, and Shadman Samin. Prototype 1 

was soldered and assembled by Shadman Samin with the help of Erich Schafermeyer. 

Prototype 3 is being constructed by Shadman Samin with the help of Madisen Phillips 

and Tanisha Payne. Prototype 2 was constructed by Erich Schafermeyer with the help of 

Shadman Samin. Software for data acquisition and pre-processing, version 1, was built 

by Noah Zentzis. Software version 2 was built by Erich Schafermeyer. Data collections 

were conducted by Eric Wan, Erich Schafermeyer, Shadman Samin, Tanisha Payne, John 

Condon, and Colin Doolittle. Collaboration with OHSU and the Point of Care Lab were 

facilitated by John Condon. Board Layout and PCB designs were done with the help of 

Jon Folsom. Algorithms were designed and implemented by Erich Schafermeyer, Eric 

Wan and Anindya Paul.  
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 Financial support was provided through a lab grant for elder care research to the 

PSU BSP Lab. This project was also supported by grant no. 1R41AG035400 from the 

National Institute of Aging and grant no. ETAC-12-239042 from the Alzheimer’s 

Association. The content is solely the responsibility of the authors and does not 

necessarily represent the official views of the National Center for Aging or the National 

Institute of Health. 

 Skills Developed for this thesis by Erich Schafermeyer include: Machine 

Learning (GMM-UBM, NN, KNN, K-means, NN-HMM). Signal Processing (SIR_PF, 

nLMS, AR modeling, filtering, and sample theory). Hardware design and 

implementation: PCB design and prototyping, 2-D and 3-D fabrication techniques, 

soldering, gluing, welding, etc. These skills were taught by the excellent students and 

staff in the Maseeh College of Engineering and Computer Science. Thank you all!  
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Conclusion and Future Work 

The gait analysis subsystem presented in this thesis is capable of tracking and 

analyzing gait metrics for multiple subjects living in a smart-home environment. It can 

measure step length with a RMSE of 9.05cm, walking speed with a RMSE of 22.16 cm/s, 

and single leg standing time with a 157ms RMSE. A direct comparison of the three gait 

analysis algorithms – HMM, heuristic, and APF – shows that the auxiliary particle filter 

is the most effective at extracting analyzable foot positions for gait metric extraction in 

all cases but the ambulatory time and walking speed metrics. In those cases the heuristic 

method is the most effective. A future prototype of the analysis system could include a 

heuristic walking speed analysis method and an APF-based approach for the remaining 

gait metrics. It is possible that with the next hardware prototype a higher SNR will be 

achieved. If a higher SNR is achieved, testing with varying SNR levels of synthetic data 

suggest that the APF tracking could be greatly enhanced to track more states such as step 

width and instantaneous foot velocity as well as to track more accurately, lowering the 

RMSE for the gait metrics. A higher SNR could enable a greatly simplified workflow 

consisting of one particle filter with a more detailed process model which could 

potentially be used without the need for data association or a second particle filter. If a 

higher SNR is not achieved through better hardware improved data association 

techniques and a true interacting mixture model, or joint probabilistic data association 

(JPDAF), could be used. JPDAF is a tool used in computer vision for tracking an 

unknown number of targets which may interact of be obscured in a scene.  
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The results of the subject identification work are highly encouraging but are 

preliminary. They suggest that an inexpensive, unobtrusive subject identification system 

could be deployed to a user’s home with minimal in-home training. The system could be 

used in conjunction with many other biomedical applications including region level 

tracking systems [7], gait detection systems, drug usage systems, and more. In the case of 

a region level tracking system capable of tracking multiple users a subject ID system such 

as the one suggested in this thesis could be used to distinguish the walking paths of 

multiple subjects within a home environment. With this data a couple could be tracked 

based upon their individual statistics and relevant usage information could be 

communicated to each of their doctors with a high degree of certainty. 

Future research on the subject ID system will focus on algorithm development. 

Such algorithms could include a universal background model (GMM-UBM) variant of 

the Gaussian Mixture Model algorithm used in this thesis. The universal background 

model consists of unlabeled data to which a single generic GMM can be fit. This generic 

GMM can then be adapted to each subject using expectation maximization. Such a model 

should allow for less labeled data to be used in the training of the subject identification 

system. The GMM-UBM system was implemented in the course of the research leading 

up to this thesis but was not sufficiently effective to include in the results. Its 

effectiveness should be as good as, or better than, the GMM alone. Future prototypes of 

the RF sensors in conjunction with a subject-worn tag for tracking could be used for 

training the system in an in-home environment.  
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Both the gait analysis and subject identification subsystem have, thus far, been 

tested on a very small population of mostly healthy adults. Further data collections with 

more subjects would allow for a better idea of the efficacy of the system as a whole and 

could be included in a final product’s data set as part of the GMM-UBM. Specifically, 

data collections from elderly subjects in care-facility environments could provide salient 

information and data sets for distinguishing gait characteristics among populations with 

age related diseases. 
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Appendix: Algorithms for Gait Analysis and Subject ID 

Three algorithms are considered for the gait analysis portion of this research. The first 

algorithm considered is a heuristic approach, which uses some basic signal processing 

techniques to create an image map of a foot on the ground. The second is a Hidden 

Markov Model which uses a Bayesian framework to combine a time series of 

observations with an underlying model for gait. The third is a particle filter which is also 

a Bayesian technique for combining observations with a model. The particle filter is 

described in the body of the text.  The two following sections address the functionality of 

each of the other two techniques.  

 

Gait Analysis Heuristic Algorithm 

The heuristic approach to gait analysis is quite simple. The benefits to the heuristic 

approach are that it does not require training data nor does it require calibration to an 

individual subject. The downsides are that it does not detect a foot in motion. The process 

begins by creating a window of data 10 seconds long. The sensors sample at 60Hz, and 

there are 24 of them, so this window is a matrix of dimension 24x600 double values. The 

following algorithm is then employed:  

 Pre-filtering: The first step is to reduce noise using a low-pass filter implemented 

as a 9th order Butterworth filter with a 3db cutoff at 25Hz. This filter is applied to 

each of the links independently resulting in a smoothed waveform. 

 Detecting overall system energy: Summing across the 24 links for all time steps 

simultaneously provides a view of the overall energy of the system (below left). 

This energy increases as objects, such as feet, go in front of the system. A 

threshold can be defined as some scalar of the background energy. A walk is then 

defined as the anything exceeding the threshold for at least two seconds. Two 
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seconds is chosen in this context because the sensor array is 7’8” long and a 

person should not walk through the system any faster than around 4 feet per 

second.  

 Detecting Walking Speed: Walking speed can be determined directly as  

𝑠𝑝𝑒𝑒𝑑 (𝐹𝑃𝑆) =  
Δ𝑑𝑖𝑠𝑡 (𝑓𝑒𝑒𝑡)

Δ𝑡𝑖𝑚𝑒 (seconds)
.  

 Detecting Footfall Position: As can be seen in the figure below represented by the 

red dotted boxes (note 𝐴2): by truncating the windowed data to only include those 

time steps in which the total energy of the walk exceeded the threshold we gain a 

tighter window of data of size 24xL where L<600. To determine which links a 

foot fell in we then sum across all time steps, resulting in a 24x1 link-power 

vector. Peak detection, parameterized by a minimum peak height and a minimum 

distance between the peaks of at least two links, is run on the link-power vector. 

By making sure that peaks are at least two links apart we are able to filter for a 

footfall occurring in multiple links at the same time. This is essential as the foot, 

if longer than 7 inches will always fall in more than a single link at a time.  

 Detecting Footfall Timing: As can be seen in the figure below represented by the 

blue boxes (note 𝑇2): having detected the location of footfalls in each link it is 

now trivial to detect the timing of that footfall. To do so we simply look at the 

highest energy in the signal from each link in which a footfall was detected. A 

threshold is then used to determine how long the foot was on the ground.  

 Creating a Footfall Map: As can be seen in the figure below represented by the 

black rectangles: by combining the footfall timing and position we can create a 

𝑇2 

𝐴2 

Distance (links) 

Figure: A visual depiction of how the energy graphs from the previous figure can be combined 

to estimate position and timing of footfalls. 𝑇2 is the duration of the second footfall. 𝐴2 is the 

duration of the second footfall. Note that the direction of the walk must be calculated first 
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map of when the foot was on the ground. This map does not dictate which foot is 

which nor does it determine where the foot was while in the air. 

 

Hidden Markov Model 

 

The Hidden Markov Model (HMM) is a Bayesian technique for tracking hidden 

states of a system based upon a system model and measurements from the system. The 

HMM is very similar to the APF in respect to the parts: Bayesian inference, measurement 

model, process model. The HMM differs from the APF in that it uses a discrete state 

space. In the context of gait detection this can be thought of as the difference of the 

measurement of foot positions in front of a link only (HMM) versus the measurement of 

foot positions at any point between the first and second link, even if the foot is not 

directly in front of a single link (APF).  

Concretely, a state sequence can be labeled {𝑥1, 𝑥2, … , 𝑥𝑛} where x is the variable 

representing state and n is the time step. Observing state transitions for a sufficiently long 

period of time a conditional probability can be formed of what the next state will be 

based upon all previous states:  

𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1). 

Given a number of possible states K, prediction of the nth state in a sequence requires 

𝐾𝑛−1 possible state combinations. For example, to predict the 6th state in time in a system 

with 3 possible states 𝑋 = {𝑥1, 𝑥2, 𝑥3} would require looking at 36−1 = 243 possible 

state combinations. To avoid huge calculations the 1st order Markov assumption can be 

used, which simplifies the calculation to be:  

𝑝(𝑥𝑛|𝑥𝑛−1, 𝑥𝑛−2, … , 𝑥1) = 𝑝(𝑥𝑛|𝑥𝑛−1). 

Although the Markov assumption may not be strictly valid for the process being modeled 

it is often used anyway to simplify the model. In this case the Markov assumption has 

reduced the number of necessary state combinations from 243 to 3*3=9 for all the 

possible combinations of  𝑥𝑛, 𝑥𝑛−1 ∈ 𝑋. The probability of a sequence can be expressed 

using the Markov assumption as:  

𝑝(𝑥1, … , 𝑥𝑛) = Π𝑖=1
𝑛 𝑝(𝑥𝑖|𝑥𝑖−1) 

The Markov model for the states represented in the figure could also be given in a table 

form called the transition probability matrix (TPM). The TPM is an explicit definition of 

transitions made in dictionary form and used by the model to determine the next foot 

position with any starting state leading to a next state (in the context of the gait problem: 

physically the next possible foot position) with probability 𝑝𝑥𝑛+1
𝑖  such that: 
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∑  𝑝𝑥𝑛+1
𝑖

𝐾
𝑖=1 = 1 where K is the set of all states (in this example K=3) 

The emission probability function for an HMM is defined as the probability of an 

observation 𝑦𝑖 given a state 𝑥𝑖 as 𝑝(𝑦𝑖|𝑥𝑖). The probability of a hidden state 𝑥𝑖 can be 

found based upon knowing the previous state 𝑥𝑖−1 as 𝑝(𝑥𝑖|𝑥𝑖−1), and the probability of 

an observation 𝑦𝑖 given a state 𝑥𝑖 as 𝑝(𝑦𝑖|𝑥𝑖) by Bayes’ rule:  

𝑝(𝑥𝑖|𝑦𝑖) =
𝑝(𝑦𝑖|𝑥𝑖) ∗ 𝑝(𝑥𝑖)

𝑝(𝑦𝑖) 
 

Therefore the probability of n events in a Markov walking sequence can be given as:  

𝑝(𝑥1, … , 𝑥𝑛|𝑦1, … , 𝑦𝑛) =
𝑝(𝑦1, … , 𝑦𝑛|𝑥1, … , 𝑥𝑛) ∗ 𝑝(𝑥1, … , 𝑥𝑛)

𝑝(𝑦1, … , 𝑦𝑛)
 

Using the Markov assumption and defining likelihood 𝐿(𝑥𝑛|𝑦𝑛) ∝ 𝑝(𝑥𝑛|𝑦𝑛):  

𝐿(𝑥𝑛|𝑦𝑛) = Π𝑖=1
𝑛 𝑝(𝑦𝑖|𝑥𝑖) ∗ Π𝑖=1

𝑛 𝑝(𝑥𝑖|𝑥𝑖−1) 

Likelihood is then proportional to the probability 𝑝(𝑥𝑛|𝑦𝑛). 

The Viterbi algorithm is then used to find the most probable path for each state in 

a sequence. First, some terminology: 

 Prior probabilities 𝜋𝑖 = 𝑃(𝑥1 = 𝑋𝑖
𝑁,𝐹) this is the probability that the model starts 

in state 𝑠𝑖. It is fairly common to set all of these to be equal such that 𝜋𝑖 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠
. 

 Transition probabilities (A) defined above as the probabilities of going from state 

i to state j: 𝑎𝑖,𝑗 = 𝑃(𝑥𝑛+1 = 𝑋𝑖
𝑁,𝐹|𝑥𝑛 = 𝑋𝑗

𝑁,𝐹). 

 Emission probabilities (B) also defined above as the likelihood of an observation 

𝑥 if the model is in state 𝑠𝑖. because the observations in our case are continuously 

valued, a probability density function is defined over the observation space such 

that 𝑏𝑖(𝑦𝑛) = 𝑝(𝑦𝑛|𝑥𝑛 = 𝑋𝑖
𝑁,𝐹).  

 Model 𝜆(𝐴, 𝐵, 𝜋) this is simply a shorthand notation so that the model can be 

referred to as 𝜆 when referencing it in the description of optimization algorithms.  

 Highest probability along a single path 𝛿𝑡(𝑖) =
max

(𝑞1,…,𝑞𝑡−1) 
𝑃[𝑥1, … , 𝑥𝑡 = 𝑖, 𝑌1, . . , 𝑌𝑡|𝜆]. The highest probability along a single path 

at time t, which accounts for the first t observations and ends in state 𝑋𝑓𝑖𝑛𝑎𝑙
𝑁,𝐹

.  

This notation defines an optimal path through the HMM which takes into account both 

the underlying model 𝜆 and the observed sequence X. The most widely used method for 

finding an optimal path is the Viterbi algorithm which finds a single best state sequence. 

The Viterbi algorithm in pseudo code as follows:  
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Initialization:  

 𝛿1(𝑖) = 𝜋𝑖𝑏𝑖(Y𝑖) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑀 

 𝜓1(𝑖) = 0 

Recursion:  

 𝛿𝑡(𝑗) = max
1≤𝑖≤𝑁

[𝛿𝑡−1 (𝑖) ∗ 𝑎𝑖𝑗]𝑏(𝑋𝑡)] 𝑓𝑜𝑟 2 ≤ 𝑡 ≤ 𝑇 

 𝜓𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁[𝛿𝑡−1(𝑖) ∗ 𝑎𝑖𝑗] 𝑓𝑜𝑟 2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁 

Termination:  

 𝑃∗ = max
1≤𝑖≤𝑁

[𝛿𝑇(𝑖)] 

 𝑥𝑇
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑁 [𝛿𝑇(𝑖)] 

Path Backtracking: 

 𝑥𝑡
∗ = 𝜓𝑡+1(𝑥𝑡+1

∗ ) 𝑓𝑜𝑟 𝑡 = 𝑇 − 1, 𝑇 − 2, … , 1   

In the figure below it can be seen that there are 3𝑁possible paths through the 

states. To choose an optimal path at any given time step the Viterbi algorithm recursively 

moves to the beginning and works its way forward to find the best path given the model 

and observation. The final step of the Viterbi algorithm is to backtrack through the values 

of 𝜓𝑡 at each step to find the optimal path. For the purposes of gait tracking, the prior (𝜋) 

is set to an even probability for all foot positions entering the array within 1 meter (10 

links) of the edge. The HMM can begin tracking at any step position a person with a 1m 

or shorter stride length could take into the array. Bishop et al. [37] is an excellent 

resource for more information on HMMs and the Viterbi algorithm. 
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The equations for the transition and the emission probabilities of the gait cycle 

used by the HMM are closely related to those used by the APF because both represent the 

same physical process. The following figure is a state space representation of the gait 

cycle as imagined by a discrete tracking methodology such as the HMM. In the figure on 

the next page the circles represent hyper-states X which can be thought of as 

generalizations of individual states. For example the state 𝑋𝑛,𝑓
𝑁,𝐹

 represents the set of states 

in which the near foot is in front of the far foot (indicated by the super-script ordering 

N,F) and both feet are stationary (indicated by the lack of a vector arrow 𝐹→). In contrast 

Figure: A depiction of possible paths through a state space of 3 states across 5 time steps. This figure 

illustrates the number of possible combinations as well as two potential individual paths through the 

space 
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Figure: Hyper state diagram of the gait cycle. Subscripts describe which link the left and right foot are 

in front of. Superscripts show which foot is in motion.  
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the state 𝑋𝑛,𝑓
𝑁,𝐹→

represents the same ordering of feet but with the far foot in motion. The 

subscript indicates at which link each foot is positioned with links represented by the 

indices 1 through 24, the ‘pre-walk’ state indicated by index 0, and the ‘post-walk’ state 

indicated by index 25. Therefore the specific state 𝑋24,17
𝑁,𝐹→

 indicates that the near foot is 

stationary at link 24 while the far foot is in motion at link 17. That specific state is a 

subset of the hyper-state 𝑋𝑛,𝑓
𝑁,𝐹→

, therefore it can only transition to another sub-state of the 

same hyper-state or to one of the states contained in the hyperstate 𝑋𝑛,𝑓
𝑁,𝐹

 unless the feet 

transition out of the walkway entirely in which case the next hyper-state would be 𝑋25,25 

which is the finish state. This state can only be reached from the previous hyperstate if 

the specific previous state is 𝑋𝑖,25
𝑁,𝐹→

𝑤ℎ𝑒𝑟𝑒 𝑖 < 25. A visual relationship of hyper-states to 

foot positions can be seen in the figure on the next page. In the figure, the state 𝑋𝑛,𝑓
𝐹,𝑁

 is 

pointing at a segment of the graph in which the far foot is at link 5 and the near foot is at 

link 3. Therefore, the state in this interval would be: 𝑋3,5
𝐹,𝑁 ∈ 𝑋𝑛,𝑓

𝐹,𝑁
.  

 The TPM is derived from the hyper-state diagram above by careful expert 

labeling of all possible state transitions. There are four transition probability models: (i) 

for each 𝑋0,0 and (ii) 𝑋25,25, (iii) for 𝑋𝑛,𝑓
𝑁,𝐹 𝑎𝑛𝑑 𝑋𝑛,𝑓

𝑁,𝐹
, and (iv) for 𝑋𝑛,𝑓

𝑁,𝐹→

 𝑎𝑛𝑑 𝑋𝑛,𝑓
𝐹,𝑁→

 . The 

last two sets (iii),(iv) contain two grouped hyper states each because those hyper states 

behave the same way. For example the two hyper-states in (iii) are both stationary and 

therefore have the same modes of state transition as one another. Concretely:  

i. For 𝑋0,0:  𝑎(0,0),(0,0) = 𝑝(𝑋0,0, 𝑋0,0) = 𝑝1, 

    𝑎(0,0),(0,1)→ = 𝑝(𝑋0,0, 𝑋0,1
𝑁,𝐹→

) = (1 − 𝑝1)(1 − 𝛽), 

    𝑎(0,0)→,(1,0) = 𝑝(𝑋0,0, 𝑋1,0
𝐹,𝑁→

) = (1 − 𝑝1)𝛽 

Where 𝛽 is the probability of stepping with the near foot first.  

 

ii. For 𝑋25,25:  𝑎(25,25),(25,25) = 𝑝(𝑋25,25, 𝑋25,25) = 1 

 

iii. For 𝑋𝑛,𝑓
𝑁,𝐹: 𝑎(𝑖,𝑗),(𝑖,𝑗) =  𝑝(𝑋𝑖,𝑗

𝑁,𝐹, 𝑋𝑖,𝑗
𝑁,𝐹) = 𝑝3, 

     𝑎(𝑖,𝑗),(𝑖,𝑗)→ = 𝑝(𝑋𝑖,𝑗
𝑁,𝐹 , 𝑋𝑖,𝑗

𝑁,𝐹→

) = (1 − 𝑝3) 

Where 𝑖, 𝑗 ∈ {1,25} link indices. Note that the probabilities for 𝑋𝑛,𝑓
𝐹,𝑁

 are found by 

using 𝑝4 instead. 

    

 

iv. For 𝑋𝑛,𝑓
𝑁,𝐹→

: 𝑎(𝑖,𝑗)→,(𝑖,𝑗+1)→ = 𝑝(𝑋𝑖,𝑗
𝑁,𝐹→

, 𝑋𝑖,𝑗+1
𝑁,𝐹→

) = 𝑝5, 

      𝑎(𝑖,𝑗)→,(𝑖,𝑗)→ = 𝑝(𝑋𝑖,𝑗
𝑁,𝐹→

, 𝑋𝑖,𝑗
𝑁,𝐹→

) = (1 − 𝛼)(1 − 𝑝5), 
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      𝑎(𝑖,𝑗)→,(𝑖,𝑗) = 𝑝(𝑋𝑖,𝑗
𝑁,𝐹→

, 𝑋𝑖,𝑗
𝑁,𝐹) = 𝛼(1 − 𝑝5)  

            Where 𝑖, 𝑗 ∈ {1,25} link indices. And 𝛼 ∝ |𝑖 − 𝑗| such that the further the two feet 

are apart, the more likely that the moving foot will land. Note that the probabilities for 

𝑋𝑛,𝑓
𝐹,𝑁→

 are found by using 𝑝6 instead.  

 Practically, the values 𝑝1,…,6 must be assigned. A generic value could be assigned 

as a coin flip (i.e.  𝑝𝑛 =  .5)  or could be assigned based on some knowledge of walk 

kinematics. In the case of this research very basic assumptions were made.  

In the HMM based method, the emission probability is defined as: 

𝑏𝑖(𝑦𝑛) = 𝑝(𝑦𝑛|𝑥𝑛 = 𝑠𝑖) =  ∏ 𝑝(𝑦𝑛
𝑙 |𝑥𝑛

𝑙 )24
𝑙=1   

 𝑝(𝑦𝑛
𝑙 |𝑥𝑛

𝑙 )~𝑁(𝜇𝑙, 𝜎𝑙) 

Where 𝑥𝑛𝑙 is derived from 𝑋𝑛,𝑓
𝑁,𝐹

 and describes which foot is in front of link 𝑙 at 

time 𝑛. Therefore 𝑥𝑛
𝑙 ∈ {𝑛𝑒𝑎𝑟, 𝑓𝑎𝑟, 𝑛𝑒𝑖𝑡ℎ𝑒𝑟}. 𝑦𝑛

𝑙  is the sensor value at link 𝑙 at time  𝑛. 

Similar to 𝑥𝑛
𝑙 : 𝜇𝑙, 𝜎𝑙 ∈ {𝑛𝑒𝑎𝑟, 𝑓𝑎𝑟, 𝑛𝑒𝑖𝑡ℎ𝑒𝑟}. The values for the mean and standard 

deviation {𝜇, 𝜎} were found experimentally to be {0.58200,0.36614}, 

{1.27400,0.62736}, {-0.00766, 0.08529} for near foot, far foot, neither foot respectively.  
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The Hidden Markov Model is a simple and powerful tool for finding hidden states 

using the Markov assumption. It is computationally more efficient as compared to the 

particle filter techniques. When used with the Viterbi algorithm the HMM based gate 

estimator maximizes over the entire walk, instead of simply finding the most likely next 

state at each time step as the APF based method does. Because a gait cycle is highly 

structured the Viterbi algorithm is ideal because of this path optimization. It was found 

experimentally that the HMM had a very hard time with low SNR data. This is because 

the HMM more strictly enforces the gait cycle, therefore a common failure mode of the 

model occurs when it gets stuck on a state and cannot transition away from it. In addition, 

it is less straightforward to incorporate multiple sources of prior information in an HMM 

than in an APF. For these reasons the HMM is unable to track subject gait with sufficient 

accuracy for effective gait analysis. In conclusion, possible future steps for research 

within the framework of the HMM algorithm could include mixing the HMM and APF 

approaches by leveraging an interacting mixture model to estimate the point in the gait 

cycle and switch between models as a foot is moving versus when it is stationary.  
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Figure: An idealized waveform for each of 12 links with an overlaid foot position for near (red) and far 

(blue) feet. Note the definition of the 4 hyper-states as they relate to the foot position.  
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