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Abstract 

 

 With growing urban populations and increasing concerns over the effects of 

climate change on water supplies, there has recently been a significant amount of 

interdisciplinary research focused on identifying the drivers of urban water use. Due to 

unavailability of individual or household level data, these studies are often limited to 

using spatially aggregated data. There is concern that this aggregation of data may be 

leading to misrepresentations of the drivers of urban water use, yet there have been few 

studies that have addressed this concern. As in all spatial quantitative analyses, studies in 

this area should consider how the spatial scales chosen for analysis are affecting the 

results. The purpose of this research is to use a case study of single-family residential 

(SFR) water use in Portland, Oregon to determine the extent to which scale variation 

significantly affects the patterns of SFR water use, and whether household scale water 

use is influenced by neighborhood and census tract characteristics. The results of this 

analysis provide evidence that aggregating household scale water use data can mask 

meaningful patterns in SFR water use and potentially provide misleading information on 

what is influencing water use habits. This research also shows that using the chosen 

exploratory variables, there is a statistically significant, but not substantial, cross-scale 

influence on household scale water use by neighborhood and census tract characteristics. 
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Introduction 

  

The 21st century is the first time in recorded history that more than 50% of the 

Earth’s human population is living within urban areas (United Nations Population Fund 

2007). While the population of urban areas continues to rise, water providers struggle to 

meet the increasing water needs of their residents (Grafton et al. 2011). According to the 

Intergovernmental Panel on Climate Change (IPCC), climate change is likely to further 

reduce water supplies in many areas of the world, exacerbating the struggles of water 

providers trying to meet growing demands (IPCC 2014). The water-related impacts of 

climate change will vary by location, forcing water managers to consider many factors 

outside of simple water provision (Chang and Bonnette 2016).  

In Australia, the Millennium Drought greatly impacted ecosystems, water 

supplies, and the economy (Dijk et al. 2013). In South Korea, based on climate change 

projections, average drought intensity is expected to increase (Nam et al. 2015). In central 

Europe, the forests of southern Slovakia and Hungary are likely to experience substantial 

drying in the future (Hlásny et al. 2014). In the United States, the headlines are filled with 

stories of drought and water shortages in many arid southwestern cities (Johnson 2016, 

Boxall 2017); however, many cities throughout the eastern, central, and northwestern 

portions of the country are also facing these challenges due to growing demand, water 

pollution, and groundwater depletion (Hornberger et al. 2015). In the Pacific Northwest 

region of the United States, it was determined that while per capita water use is 

decreasing, population growth is inhibiting decreases in overall water use in the Puget 

Sound Region (Polebitski et al. 2011) and the Portland Metropolitan area (Parandvash 
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and Chang 2016). The residents of Flint, Michigan continue to face the catastrophic 

levels of lead and bacteria in their water supply that have been in the news since 2014 

(Butler et al. 2016). In the central United States, the Ogallala Aquifer, an essential water 

source for much of the country’s agricultural production, is being depleted by six inches 

to several feet per year (Wheeler-Cook et al. 2008). 

In response to these issues, the IPCC has called on the academic community to 

focus research on the impacts that climate change has on water demand and on strategies 

that will contribute to the improvement of water management systems (Bates et al. 2008). 

This has led to the publication of a significant amount of research focusing on residential 

water consumption (House-Peters and Chang 2011). 

Using a variety of methods, many of these studies claim to provide water 

managers with information that will allow them to implement policies aimed at 

increasing water conservation and decreasing water demand in areas under their purview. 

Halper et al. (2015) provided water managers with a study that would allow them to 

consider using public green spaces and swimming pools as a way to mitigate outdoor 

household water use. Lee (2016) analyzed the influence Low-Income Rate Assistance 

Programs (LIRA) have on levels of water demand in five California cities. Baerenklau et 

al. (2014) showed water providers that switching from a uniform rate price structure to an 

increasing block rate structure is an effective tool for reducing household water demand 

in the Eastern Municipal Water District of southern California, while resulting in only 

relatively small end-user price increases. Brelsford and Abbott (2017) provided indirect 

evidence that responses to drought, improved wastewater policies, and other policy 

measures play a significant role in reducing water demand. Rathnayaka et al. (2014) 
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identified factors that influence water use variability, aiming to provide the tools for 

water managers to adopt Integrated Urban Water Management techniques. While these 

studies, and many others like them, aim to assist water providers in reducing household 

water demand, there is one important factor that is rarely considered – spatial scale. 

In studies on any physical or social processes, scale should be an integral part 

when considering methodological approaches (Ruddell and Wentz 2009). There have 

been very few urban water use studies that have analyzed water use spatially rather than 

temporally, and even fewer have considered the effects that variation in spatial scales of 

dependent and independent variables can have on the results. Ouyang et al. (2014) 

conducted a multi-scale analysis of urban water use in Phoenix, Arizona. The goal of the 

study was to determine if this multi-scale analysis would reveal the presence of common 

geographic analysis problems like the ecological fallacy problem, the modifiable areal 

unit problem (MAUP), and the uncertain geographic context problem (UGCoP) in water 

consumption research (Dark and Bram 2007, Kwan 2012, Ouyang et al. 2014). While the 

authors found no evidence of these problems, they admitted that there were several 

obstacles that impeded them from truly addressing these issues in their study. The main 

limitation, and the main reason that most urban water use studies do not include multi-

scale analysis, is that it is difficult to obtain household water use data to the same 

geographic extent as data that are aggregated to other scales, with surveys being the 

primary source of household or individual water use habits (Ouyang et al. 2014). Hong 

and Chang (2014) observed similar limitations in their multi-level study of the influence 

of sociodemographic and behavioral characteristics on household water consumption 

patterns in the Portland metropolitan area. In order to fully understand the impacts of 
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scale variation and the effects of cross-scale interactions in urban water use studies, it is 

necessary to have access to household level water use data for the entire study area. 

 

Research Questions 

 This thesis aims to evaluate the effects that scale variation can have on the spatial 

patterns of single-family residential (SFR) water use and its common explanatory 

variables, as well as to determine if there are significant influences on household scale 

water use by neighborhood and census tract characteristics. Understanding these cross-

scale interactions provides policymakers and water managers with detailed insight into 

the methods and areas that should be targeted to reduce water use. 

 This analysis seeks to answer the following research questions: 

1) Using the same set of explanatory variables, is there significant variation in the 

influence of the chosen variables on SFR water use as the datasets are aggregated 

to higher levels? 

2) Using the same set of explanatory variables, do the predictors of SFR water use 

vary by season? 

3) Do neighborhood and census tract characteristics have a significant influence on 

the amount of household scale water use? 

 

Structure of Document 

The remainder of this thesis is structured as follows. Chapter 2 provides a review 

of relevant literature on urban water use studies, with a focus on those primarily 

concerned with spatial analysis rather than temporal analysis, as well as potential 
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problems these studies can face by not considering spatial scale. Chapter 3 then provides 

a description of the study area, the data used, and methodology undertaken. Chapter 4 

describes the results found through this analysis. Finally, Chapter 5 provides a discussion 

of how these results inform the given research questions, recommendations to water 

providers and policymakers, and ways to continue improving this type of research going 

forward.  
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Review of Literature 

 

 Studies of urban residential water use have been conducted in many locations 

around the world, using a variety of quantitative and qualitative data and analysis 

methods. With advances in technology and data processing, modeling and analysis 

methods continue to improve and evolve, allowing for more variables attributed to water 

consumption to be incorporated into urban water use studies (House-Peters and Chang 

2011). The studies predominantly take a quantitative approach to data analysis, yet there 

is an inherent humanistic aspect, as well. Many forms of statistical analysis and modeling 

have been used in recent literature to assess and identify the factors that influence urban 

water use (Table 1). Spatial error regression models, like the ones used in this study, have 

been shown to be an effective tool for analyzing residential water use (Chang et al. 2010). 

A large variety of socioeconomic, property characteristic, climatic, and behavioral 

variables have been analyzed to assess their influence on urban water use (Table 2). The 

eight explanatory variables used for this study (Maximum Temperature, Precipitation, 

Home Size, Lot Size, Home Age, Property Value, and Deciduous/Coniferous Tree 

Cover) have been shown throughout the literature to significantly influence residential 

water use. Some of the common scales used in residential water use research are the 

census block, census block group, census tract, and city levels (Table 3). The three census 

delineations and an additional neighborhood scale are used in this study to determine 

variations between household scale SFR water use and these aggregated scales. The 

remainder of this chapter will further explore the common methods, variables, and scales 

used throughout this branch of research, as well as potential problems that can arise. 
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Analysis Methods in Residential Water Use Studies 

 The majority of residential water use studies took a temporal approach to their 

analysis, either using some form of regression model to complete their analysis or 

focusing on the effectiveness of non-regression based analysis methods. These studies 

using non-regression models are quite varied and often specifically aimed to introduce 

new methods like cluster analysis (Cardell-Oliver 2013), genetic programming (Liu et al. 

2014), and factor analysis (Panagopoulos 2014) into this field of study.  

While these various temporal analyses provide vital information on the drivers of 

urban water consumption, they are not as well suited at providing water managers and 

policymakers with specific areas in which to target water conservation efforts. However, 

several recent studies have shown the advantages of using a spatial approach to 

understanding this issue, pointing out that population and economic growth cannot 

explain consumption levels alone, but also need biophysical and socioeconomic factors 

with a typically spatial dependence (de Maria André and Carvalho 2014). Additionally, 

water consumption and conservation have been shown to have a cascading effect - 

meaning the behavior of one household has an influence on its neighbors and vice versa 

(Janmaat 2013). Using a spatial approach to study water consumption will likely provide 

a clearer explanation of the factors influencing variations in household water use (de 

Maria André and Carvalho 2014). 

 Among those studies that have focused primarily on spatial analysis, there is not a 

consensus on which type of statistical model provides the highest level of predictability. 

Breyer et al. (2012) used a spatial lag regression model, while de Maria André and 

Carvalho (2014) used both a spatial autoregressive model and a spatial autoregressive 
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moving average model. Janmaat (2013) took an additional step, using all three of these 

model types in the analysis. In addition to these, other recent studies have used a variety 

of models, including: a spatial error regression model to account for spatial influences on 

the residuals (Chang et al. 2010), a spatial heteroscedasticity and autocorrelation 

consistent (HAC) model to account for the influence of proximity to amenities that 

influence water use (Halper et al. 2015), and a spatial linear mixed-effects model to 

measure cross-scale influences (Ouyang et al. 2014). While all of these models have their 

advantages, the spatial linear mixed-effects model used by Ouyang et al. (2014) is the 

only one that addresses the impacts that spatial scale and cross-scale influences can have 

on the results of urban water use studies. 

 

Explanatory Variables in Residential Water Use Studies 

The most commonly used variables in recent literature have been water price, 

income, household size, population, temperature, precipitation, and the presence of 

various water efficiency devices in the home. The wide variety of independent variables 

used in studies of urban water consumption will likely continue to expand in order to 

examine the effectiveness of new policies and programs that are implemented in an 

attempt to promote water conservation. 

While there are many variables that have been used in these studies, very few of 

them are useful for completing a cross-scale analysis including household scale water 

use. This deficiency is related to the availability of these variables at the household scale. 

Many of the variables commonly used are only available at the census block group scale 

or higher in order to protect the privacy of residents (Ouyang et al. 2014). In order to 
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complete a cross-scale analysis, only those variables available at the household scale, 

such as maximum temperature, precipitation, property value, home age, home size, lot 

size, and deciduous/coniferous tree cover, were used in this study. 

Maximum temperature has been consistently shown to have a significant impact 

on end-user water consumption, justifying its use in this study. A study by Sebri (2013) 

found that a 10% quarterly increase to maximum temperature would lead to more than a 

9% increase in quarterly household water use in Tunisia. Adamowski et al. (2012) found 

that daily maximum temperature is the primary driver of daily summer demand in 

Montreal, Quebec. Mini et al. (2014) found in Los Angeles, California that an increase of 

one degree Celsius in the maximum temperature leads to an increase of 2.9% in monthly 

SFR water use at the census tract scale. 

Precipitation is one of the most common explanatory variables used in residential 

water use studies, and thus is included in this study. Ashoori et al. (2016) found that 

precipitation was the only variable in their model of SFR water use in Los Angeles that 

had a significant impact, with a one centimeter increase in annual precipitation leading to 

a decrease of residential water demand of 629,000 cubic meters. Price et al. (2014) 

determined that household water demand in Albuquerque, New Mexico is negatively 

correlated with precipitation. Grafton et al. (2011) found that precipitation had a 

statistically significant negative relationship with household water consumption datasets 

from ten different countries. 

This study used property value as a proxy for household income, since income 

data is not available at the household scale. Janmaat et al. (2013) set precedent for this 

when they found that, in four different models, property value was shown to have a 
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significant positive relationship with household water consumption in Kelowna, British 

Columbia, similar to the relationship typically shown between income and water use in 

other studies of water use in the Portland metropolitan area (Chang et al. 2010, House-

Peters et al. 2010). 

Age of home was used for this study as it has been shown in the literature to 

influence water consumption, with older homes using more water and newer homes using 

less, likely due to updated building and appliance standards. Harlan et al. (2009) found 

that year built has a significant negative relationship with household water consumption 

in Phoenix, Arizona, showing that older homes use more water. Ouyang et al. (2014) also 

found evidence of this relationship in Phoenix, Arizona, showing that home age had a 

significant positive relationship with SFR water use in the Phoenix metropolitan area at 

the census tract and city scales, but there was not a significant relationship at the 

household scale. Janmaat et al. (2013) noted that home age was shown to have a 

significant positive relationship with household water consumption in Kelowna, British 

Columbia across all four of their models. 

 Home size has been shown to influence household water use, particularly in 

regard to indoor water use. Chang et al. (2010) found that home size has a significant 

positive relationship with SFR water use in Portland, Oregon.  Harlan et al. (2009) also 

showed that home size has a significant positive relationship with household water 

consumption in Phoenix, Arizona. Janmaat et al. (2013) again verified this relationship, 

showing that home size has a significant positive relationship with residential water use 

in Kelowna, British Columbia.  
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 Lot size has also been shown throughout the literature to have a significant 

positive relationship with water use, primarily impacting outdoor water use. Renwick and 

Green (2000) found that lot size has a positive significant relationship with residential 

water use in a study of eight California water agencies. Harlan et al. (2009) found that lot 

size has a significant positive relationship with household water consumption in Phoenix, 

Arizona. Janmaat et al. (2013) also showed that lot size has a significant positive 

relationship with residential water use in Kelowna, British Columbia. 

 Many studies throughout the literature have found that landscape characteristics 

such as impervious surface area, vegetative cover, and garden space can have an 

influence on residential water use. A study by Gage and Cooper (2015) showed that 

variations in canopy height significantly influenced outdoor water use in Aurora, 

Colorado. Thus, this study used a dataset of coniferous and deciduous tree cover in order 

to capture these effects.  

 

Spatial Scales in Residential Water Use Studies 

 While researchers focused on water use are often interested in the water use habits 

of SFRs, this individual household data is often not available for these analyses. Even if 

researchers are provided household scale data, they are often required to aggregate the 

data to a coarser spatial scale in order to coincide with the scale of their explanatory 

variables or to meet confidentiality restrictions (Ouyang et al. 2014). There has been little 

research into how this spatial aggregation may be affecting the results of these studies. 

Without insight into the issues that can be caused by this spatial aggregation and scale 

variation, researchers may be leading water providers and policymakers to implement 
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ineffective or misguided water policies. This study provides a cross-scale comparison of 

water use at the household, census block, census block group, census tract, and 

neighborhood scales in order to determine if the common scales in this field of study are 

masking or misrepresenting information that could be beneficial to water managers and 

policymakers. 

 

Scale Problems in Geographic Research 

 Due to unavailability of household scale data, urban water use studies are 

typically limited to using aggregated water use data (Ouyang et al. 2014). As with many 

areas of study, there is concern that rescaling the data used could lead to a loss of 

continuity of the analysis (Easterling and Polsky 2004). There are very few studies in this 

area that address how scale variation can alter the patterns of water use and its drivers, 

and even fewer address the common scale problems that regularly arise in geographic 

studies - ecological fallacy, MAUP, and UGCoP (Ouyang et al. 2014). It is important for 

researchers in this area, as with all spatial analysis, to understand that the scale of 

observation is integral to understanding spatial phenomena and processes (National 

Research Council 1997). 

 As with most geographic or spatial analyses, water use studies use areal units that 

come in a variety of shapes and sizes, which can lead to complications in the statistical 

analysis. These complications arise from the differently sized and/or shaped areal units 

leading to different results, and are what is commonly referred to as the modifiable areal 

unit problem (MAUP). The MAUP can be broken down into two related issues: 1) there 

are differences in results related to the number of units that a given area is broken into - 
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differences caused by disaggregation, and 2) there are differences in results related to the 

way in which smaller units are combined into larger ones for analysis - differences 

caused by aggregation (Dark and Bram 2007). Studies of water use are likely affected by 

both the aggregation and disaggregation of data. Water use data and household 

characteristics are often aggregated, while socioeconomic and demographic variables can 

be either aggregated or disaggregated depending on the data available for a given study 

area. This use of aggregated data, typically at census designated areal units, is somewhat 

concerning as this process has been shown to lead to unreliable results in many 

geographic multivariate studies (Fotheringham and Wong 1990). 

The ecological fallacy problem is another scale related issue in quantitative 

analysis that has close ties to the MAUP. Ecological fallacy occurs when the results of a 

study based on aggregated data are applied to specific individuals or sites within the 

analyzed unit (Openshaw 1984). This problem often occurs because studies that use 

aggregated data do not always distinguish between the results from analysis of the 

aggregated data sets and the real-world processes that influence the individual data used 

in the aggregation (Dark and Bram 2007). With the prominence of data aggregation in 

water use studies, the ecological fallacy problem should be a consideration for any 

research looking into this area when attempting to explain household level water use 

patterns based on spatially aggregated data. 

The UGCoP is a geographic problem that is related to errors or misinterpretations 

of phenomena that result from how areal units in spatial analysis are delineated and the 

amount that these delineations deviate from the area that is truly relevant in a geographic 

context. The UGCoP arises because it is very difficult to determine the size and shape of 
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areal units that are geographically relevant to a given phenomena (Kwan 2012). With 

urban water use studies typically using established areal units (census levels, city limits, 

etc.) instead of units derived from water use patterns, it is likely that this problem exists 

in this area of research. Additionally, previous studies have shown spatial dependence in 

SFR water use, but they have not directly addressed UGCoP (Ouyang et al. 2014). 

 There are additional concerns that even when some household scale data are used 

in these water use studies, they still do not successfully capture the spatial heterogeneity 

of household level water use and the characteristics of the study area that drive them. 

This is primarily attributed to household data only being available through means of 

survey, resulting in only a small portion of the population being analyzed (Ouyang et al. 

2014). Having access to a full set of household scale water use data allows for a better 

investigation of how the heterogeneity of the data relates to other landscape 

characteristics in the study area. 
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Methods 

 

Study Area 

 This case study will focus on Portland, Oregon (Figure 1). The average 

temperature in Portland is 12.45ºC, and the average precipitation is 914 mm, using 1981 

to 2010 normals (US Climate Data 2017). While the Pacific Northwestern United States 

is typically identified as having a humid climate, it is actually an ideal area for water 

consumption studies as summers are dry and there is a strong reliance on surface water 

supplies that are also likely to be greatly impacted by climate change (Breyer et al. 2012, 

Polebitski et al. 2011). With 80% of rainfall typically occurring between October and 

March, summer droughts are a growing concern in this region (Chang et al. 2014). 

 There are several distinct regions of the city to consider while assessing SFR 

water use across the city. The western portion of the city is known as the West Hills, and 

is one of the most affluent areas in the city, leading to an expectation of higher water use. 

Between the West Hills area and the Willamette River to the east is the Downtown area 

of the city, which is a typical urban environment with fewer and smaller SFRs. The 

northern and inner southeast portions of the city are former industrial and low-income 

areas that have experienced significant gentrification recently, and continue to grow. 

Finally, the eastern portion of the city is a more suburban environment, with an 

abundance of SFRs. 

 As of 2010, Portland is home to almost 620,000 people living in 265,000 housing 

units - of which over 60% are SFRs (US Census Bureau 2010). The primary water 

provider for the residents of Portland, and the rest of the metropolitan area, is the 
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Portland Water Bureau, which provides drinking water to over 950,000 residents pulled 

primarily from surface water within the Bull Run Watershed located east of downtown 

Portland (Portland Water Bureau 2016). Being the water provider to such a large area 

allows the Portland Water Bureau to monitor household scale water use over a large 

spatial extent. 

 

Data 

 For this project, monthly SFR water use data for the year 2011 was chosen as the 

dependent variable. This year was chosen due to temperature and precipitation being near 

average, and the availability of other characteristic data for this time period. The Portland 

Water Bureau (PWB) collects a combination of quarterly and monthly metered water use 

data from their customers, which does not allow for easy analysis, as the metering 

intervals are not the same for every household with customers having the option to 

choose between 1-month and 3-month billing intervals (Appendix). The PWB provided 

records for 152,596 SFRs at the household scale in this format, meaning additional 

processing, performed by Dr. Chris Grant, was required before analysis. The data in its 

raw format was first converted into daily household water use values for each day in the 

2011 study period by assigning each day in a given monthly or quarterly interval an equal 

portion of the whole value. Theses daily values were then aggregated into monthly 

household water use for each calendar month. After this additional processing was 

completed, any entries that did not have continuous data available for the study period 

were removed, leaving records for 142,844 SFRs. The data was then converted from the 

centum cubic feet (CCF) to kiloliters (kL), and average monthly values were calculated 
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for the annual period, summer period (June, July, and August), and the winter or base 

period (December, January, and February). Finally, these three water use variables were 

log transformed in order to normalize the data for analysis. 

Both temperature and precipitation have commonly been shown to be drivers of 

residential water consumption in many areas of the world (Liu et al. 2014, Price et al. 

2014, Romano et al. 2014). For this study, monthly maximum temperature (°C) and 

monthly precipitation data (mm) - raster datasets at a scale of 30 by 30 arcseconds - were 

acquired from the PRISM Climate Group at Oregon State University for 2011. Each 

household in the final water use data set was spatially joined to these climate datasets, 

and average monthly maximum temperature and average monthly precipitation were 

calculated for the annual, summer, and winter time periods. 

 A study by Chang et al. (2010) determined that property characteristics, such as 

tax-assessed value, prove to be acceptable substitutes for the socioeconomic variables 

commonly used in water use studies. For this study, datasets that provide property value, 

year built, home size, and lot size at the household level were acquired from the Oregon 

METRO’s Regional Land Information System (RLIS) and joined to each household 

record (Oregon METRO RLIS 2011). The property value was converted to $100K, year 

built was converted to a new variable (age) by subtracting year built from the study year 

(2011), and home size and lot size were converted into metric units - square meters and 

hectares, respectively. 

 A study by Gage and Cooper (2015) showed that variations in tree canopy can 

have an influence on end user water consumption. For this study, a dataset including 

deciduous and coniferous tree cover for the Portland metropolitan area was acquired from 
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the City of Portland (City of Portland 2016). This data was spatially joined to each 

household record to determine the percentage of each lot covered by deciduous and 

coniferous trees. 

 Once all eight explanatory variables were incorporated into the household 

records, any record with incomplete data for any of the chosen variables was removed, 

leaving 138,518 household records. The descriptive statistics for these variables can be 

found in Table 4. These records were then aggregated (Figure 2) to the census block scale 

(Minnesota Population Center 2011), after which, any block with less than five 

households was removed from the dataset along with any households they contain. This 

resulted in a final total of 134,666 household records and 8,289 census blocks in the 

analysis. The final data processing step was aggregating the household data to census 

block group, census tract, and neighborhood scales (Minnesota Population Center 2011, 

Bureau of Planning and Sustainability 2014). This resulted in 419 census block groups, 

142 census tracts, and 111 neighborhoods being used in the analysis. The census 

delineated features were chosen for this analysis because they are the spatial scales that 

are typically used in residential water use studies, while the neighborhood features were 

chosen to determine if a different type of areal unit delineation could be more 

geographically relevant in residential water use studies. 

 

Water Use Patterns at Varying Spatial Scales 

 The 2011 annual, summer, and winter mean monthly SFR water use were mapped 

at the household, census block, census block group, census tract, and neighborhood scales 

for a visual pattern analysis (Figures 3 - 5). Using the Spatial Statistics Toolbox in 
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ESRI’s ArcGIS 10.4 software, global Moran’s I, local Moran’s I, and local Getis-Ord G 

tests were run to determine patterns of spatial autocorrelation in the data. The global 

Moran’s I index was found by using the Spatial Autocorrelation (Moran’s I) tool, which 

determines whether the chosen variable displays a dispersed, random, or clustered spatial 

pattern across the chosen study area. The local Moran’s I was analyzed with the Cluster 

and Outlier Analysis (Anselin Local Moran’s I) tool, which calculates the Moran’s I for 

each feature in a dataset and produces an output of clusters and outliers. High-high 

clusters identify high value features surrounded by other high value features, and low-low 

clusters identify low value features surrounded by other low value features. The high-low 

outliers identify high value features in areas expected to have low values, and low-high 

outliers identify low value features in areas expected to have high values. The local 

Getis-Ord G test was run using the Hot Spot Analysis (Getis-Ord Gi*) tool, which 

identifies features that are statistically significant hot and cold spots, and produces an 

output of these areas. The hot spots represent areas of high values, and the cold spots 

represent areas of low values. Using these spatial pattern tools with SFR water use can be 

beneficial to water managers and policymakers, allowing them to create spatially targeted 

educational campaigns and other policies to reduce water consumption in high use areas.  

 

Influence of Explanatory Variables on Water Use at Varying Spatial Scales 

 It has been previously shown in water use studies, including in Portland, Oregon, 

that spatial error models are effective at mitigating overestimates of the influence of 

explanatory variables on water use (Chang et al. 2010). A spatial error regression model 

was used for this analysis as it accounts for any spatial autocorrelation among residuals 
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resulting from the dependent and independent variables. A spatial error model was run 

using GeoDa v1.8.14 software for annual, summer, and winter water use at the five 

chosen scales using a Queen contiguity weight matrix. Each model was run using the 

appropriate maximum temperature and precipitation as the independent variables, as well 

as the other six chosen variables - property value, home age, home size, lot size, 

percentage of deciduous tree cover, and percentage of coniferous tree cover. 

 

Cross-scale Influences on Household Water Use 

The final portion of this research was to determine cross-scale interactions with 

household scale water use, specifically looking at how census tract and neighborhood 

characteristics influence individual SFR water use (Figure 6). These scales were 

primarily chosen because they cover similar sized areas while not sharing similar borders. 

In order to accomplish this, four multi-level regression models were developed using 

GeoDa v1.8.14 software. These multi-level models allow for the incorporation of values 

for each of the common explanatory variables at nested scales into the analysis of what is 

determining household scale water use. The first model explores the influence of SFR 

summer water use at the census tract scale and the other chosen census tract 

characteristics on household scale SFR water use. The second model explores household 

scale SFR water use using the same census tract variables as the first model, with the 

addition of household scale characteristics. The third model explores the influence of 

SFR summer water use at the neighborhood scale and the other chosen neighborhood 

characteristics on household scale SFR water use. The fourth model explores household 
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scale SFR water use using the same neighborhood variables as the third model, with the 

addition of household scale characteristics.  
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Results 

 

Water Use Patterns at Varying Spatial Scales 

 At the household scale, the Global Moran’s I test showed statistically significant 

clustering in the annual, summer, and winter water use data sets. Annual water use has a 

Moran’s index of 0.053, summer water use has an index of 0.041, and winter water use 

has an index of 0.023. This can be further seen in the Local Moran’s I maps of annual, 

summer, and winter water use, with high-high clusters primarily located in the western 

portion of the city and low-low clusters located primarily on the east side of the 

Willamette River. The Getis-Ord Gi* maps show the majority of hot spots in the western 

and far eastern portions of the city, and the majority of cold spots are in the near east side 

and northern portion of the city. 

 At the census block scale, the Global Moran’s I test showed statistically 

significant clustering in the annual, summer, and winter water use data sets. Annual water 

use has a Moran’s index of 0.136, summer water use has an index of 0.117, and winter 

water use has an index of 0.069. This can be further seen in the Local Moran’s I maps of 

annual, summer, and winter water use (Figure 7), with high-high clusters primarily 

located in the western and far eastern portions of the city and low-low clusters located 

primarily close in on the east side of the Willamette River. The Getis-Ord Gi* maps show 

a similar pattern with the majority of hot spots in the western and far eastern portions of 

the city, and the majority of cold spots are in the near east side and northern portion of 

the city (Figure 8). 
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At the census block group scale, the Global Moran’s I test showed statistically 

significant clustering in the annual, summer, and winter water use data sets. Annual water 

use has a Moran’s index of 0.105, summer water use has an index of 0.079, and winter 

water use has an index of 0.139. The Local Moran’s I maps at this scale varied by season, 

unlike the previously discussed scales (Figure 9). Annual and winter water use show 

high-high clusters primarily located in the western and far southeastern portions of the 

city and low-low clusters located primarily close in on the east side of the Willamette 

River, while summer water use shows high-high clusters in the western and northeastern 

portions of the city and low-low cluster primarily close in on the east side. The Getis-Ord 

Gi* maps show a similar pattern (Figure 10). Annual and winter use hot spots are 

primarily in the western and far eastern portions of the city, and the majority of cold spots 

are in the near east side and northern portion of the city, while summer use shows hot 

spots in the west and northeast with cold spots on the near east side. These differences 

could be attributed to larger lot sizes in the western portions leading to higher summer 

water use (Hong and Chang 2014), with larger household sizes in the southeast leading to 

higher winter and annual water use (House-Peters et al. 2010).  

 At the census tract scale, the Global Moran’s I test showed statistically significant 

clustering in the annual, summer, and winter water use data sets. Annual water use has a 

Moran’s index of 0.121, summer water use has an index of 0.083, and winter water use 

has an index of 0.147. The Local Moran’s I maps at this scale varied by season, similar to 

the census block group scale (Figure 11). Annual use shows high-high clusters primarily 

located in the western and far southeastern portions of the city and low-low clusters 

located primarily close in on the east side of the Willamette River. Summer water use 
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shows high-high clusters in the western portion of the city and low-low clusters primarily 

close in on the east side, while winter use shows high-high clusters in the far eastern 

portion of the city and low-low clusters primarily close in on the east side. The Getis-Ord 

Gi* maps show a similar pattern (Figure 12). Annual use hot spots are primarily in the 

western and far southeastern portions of the city, and the majority of cold spots are in the 

near east side and northern portion of the city. Summer use shows hot spots in the west 

with cold spots on the near east side, while winter use shows hot spots in the far eastern 

portions of the city and cold spots in areas just east and west of the Willamette River and 

northern portions of the city. 

 At the neighborhood scale, the Global Moran’s I test showed statistically 

significant clustering in the annual, summer, and winter water use data sets. Annual water 

use has a Moran’s index of 0.338, summer water use has an index of 0.224, and winter 

water use has an index of 0.304. The Local Moran’s I maps at this scale varied by season, 

but not in the same way as the census block group and census tract scales (Figure 13). 

Annual and summer water use show high-high clusters primarily located in the western 

portion of the city and low-low clusters located primarily close in on the east side of the 

Willamette River, while winter water use shows high-high clusters in the western and far 

southeastern portions of the city and low-low clusters primarily close in on the east side. 

The Getis-Ord Gi* maps show a similar pattern (Figure 14). Annual and summer use hot 

spots are primarily in the western portion of the city, and the majority of cold spots are in 

the near east side and northern portion of the city, while winter use shows hot spots in the 

west and southeast with cold spots on the near east side. 
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Influence of Explanatory Variables on Water Use at Varying Spatial Scales 

 The spatial error regression models of monthly SFR water use at the household 

scale resulted in R² values of 0.138, 0.152, and 0.070 for annual, summer, and winter 

water use, respectively (Table 5). In the annual water use model, the significant 

explanatory variables are Maximum Temperature (+), Precipitation (+), House Age (-), 

Lot Area (+), House Area (+), Coniferous Cover (-), Deciduous Cover (-), and Lambda 

(+) - the autoregressive coefficient. The significant explanatory variables for the summer 

water use model are: Precipitation (-), Property Value (-), House Age (-), Lot Area (+), 

House Area (+), Coniferous Cover (-), Deciduous Cover (-), and Lambda (+). Finally, the 

significant explanatory variables for the winter water use model are: Maximum 

Temperature (-), Property Value (-), House Age (-), Lot Area (+), House Area (+), and 

Lambda (+). House Age, Lot Area, House Area, and Lambda were the only variables 

found to be significant and the same sign across all three seasons. Several variables did 

not have the expected relationship based on previous studies, specifically: Precipitation 

showed a positive relationship with annual use, Maximum Temperature showed a 

negative relationship with winter water use, and Property Value showed a negative 

relationship with summer and winter water use. Further inspection of outlier values, 

additional socioeconomic and behavioral variables, and water pricing structures could 

provide more insight into these unexpected results. 

The spatial error regression models of monthly SFR water use at the census block 

scale resulted in R² values of 0.469, 0.528, and 0.229 for annual, summer, and winter 

water use, respectively (Table 6). In the annual water use model, the significant 

explanatory variables are: Precipitation (+), Property Value (-), House Age (-), Lot 
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Area (+), House Area (+), Coniferous Cover (+), Deciduous Cover (-), and Lambda (+). 

The significant explanatory variables for the summer water use model are: 

Precipitation (-), Property Value (+), House Age (-), Lot Area (+), House Area (+), 

Coniferous Cover (+), Deciduous Cover (-), and Lambda (+). Finally, the significant 

explanatory variables for the winter water use model are: Maximum Temperature (-), 

Property Value (-), House Age (-), Lot Area (+), House Area (+), and Lambda (+). House 

Age, Lot Area, House Area, and Lambda were the only variables found to be significant 

and the same sign across all three seasons. Several variables did not have the expected 

relationship, specifically: Precipitation showed a positive relationship with annual use, 

Maximum Temperature showed a negative relationship with winter water use, Property 

Value showed a negative relationship with annual and winter water use, and Coniferous 

Tree Cover showed a positive relationship with annual and summer water use. 

The spatial error regression models of monthly SFR water use at the census block 

group scale resulted in R² values of 0.857, 0.845, and 0.646 for annual, summer, and 

winter water use, respectively (Table 7). In the annual water use model, the significant 

explanatory variables are: Maximum Temperature (+), Property Value (-), Lot Area (+), 

House Area (+), Coniferous Cover (+), Deciduous Cover (+), and Lambda (+). The 

significant explanatory variables for the summer water use model are: Precipitation (-), 

House Age (-), Lot Area (+), House Area (+), Coniferous Cover (+), and Lambda (+). 

Finally, the significant explanatory variables for the winter water use model are: Property 

Value (-), Lot Area (+), House Area (+), Coniferous Cover (+), Deciduous Cover (+), and 

Lambda (+). Lot Area, House Area, Coniferous Tree Cover, and Lambda were the only 

variables found to be significant and the same sign across all three seasons. Several 
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variables did not have the expected relationship, specifically: Property Value showed a 

negative relationship with annual and winter water use, Coniferous Tree Cover showed a 

positive relationship with water use in all three seasons, and Deciduous Tree Cover 

showed a positive relationship with annual and winter water use. 

The spatial error regression models of monthly SFR water use at the census tract 

scale resulted in R² values of 0.896, 0.855, and 0.790 for annual, summer, and winter 

water use, respectively (Table 8). In the annual water use model, the significant 

explanatory variables are: Maximum Temperature (+), Property Value (-), Lot Area (+), 

House Area (+), Deciduous Cover (+), and Lambda (+). The significant explanatory 

variables for the summer water use model are: Precipitation (-), Property Value (-), 

House Area (+), Coniferous Cover (+), and Lambda (+). Finally, the significant 

explanatory variables for the winter water use model are: Property Value (-), Lot Area 

(+), House Area (+), Deciduous Cover (+), and Lambda (+). House Area, Property Value, 

and Lambda were the only variables found to be significant and the same sign across all 

three seasons. Several variables did not have the expected relationship, specifically: 

Property Value showed a negative relationship with water use in all three seasons, 

Coniferous Tree Cover showed a positive relationship with summer use, and Deciduous 

Tree cover showed a positive relationship with annual and winter water use. 

The spatial error regression models of monthly SFR water use at the 

neighborhood scale resulted in R² values of 0.818, 0.806, and 0.634 for annual, summer, 

and winter water use, respectively (Table 9). In the annual water use model, the 

significant explanatory variables are: Property Value (-), Lot Area (+), House Area (+), 

and Deciduous Cover (-). The significant explanatory variables for the summer water use 
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model are: Precipitation (-), Property Value (-), Lot Area (+), House Area (+), and 

Lambda (+). Finally, the significant explanatory variables for the winter water use model 

are: Maximum Temperature (-), Property Value (-), House Age (-), House Area (+), and 

Coniferous Cover (+). House Area and Property Value were the only variables found to 

be significant and the same sign across all three seasons. Several variables did not have 

the expected relationship, specifically: Maximum Temperature showed a negative 

relationship with winter water use, Property Value showed a negative relationship with 

water use in all three seasons, and Coniferous Tree Cover showed a positive relationship 

with winter water use. 

 

Cross-scale Influences on Household Water Use 

Four multi-level regression models were used to examine the cross-scale 

relationships between household scale summer monthly SFR water use and the 

characteristics of the census tracts and neighborhoods in which they are located. The first 

and second models focused on the interactions between the household and census tract 

scales (Table 10). The first model used census tract SFR summer monthly water use and 

the census tract scale of the eight explanatory variables used throughout this study to 

explore cross-scale influences on household water use. This model had an Adjusted R² 

value of 0.067, with CT Summer Water Use (+), CT Summer Max Temperature (+), CT 

Property Value (-), CT Lot Area (-), CT Home Area (+), CT Coniferous Cover (+), and 

CT Deciduous Cover (-) shown to be significant at least at the 0.1 level. Several variables 

did not have the expected relationship, specifically: Census Tract Property Value showed 
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a negative relationship, Census Tract Lot Area showed a negative relationship, and 

Census Tract Coniferous Tree Cover showed a positive relationship. 

The second model used the same census tract variables as the first, but added the 

eight explanatory variables at the household scale. This model had an Adjusted R² value 

of 0.165, with Summer Precipitation (-), Property Value (-), Lot Area (+), House Area 

(+), Coniferous Cover (-), Deciduous Cover (-), CT Summer Water Use (+), CT Summer 

Precipitation (+), CT Property Value (-), CT House Age (+), CT Lot Area (-), CT 

Coniferous Cover (+), and CT Deciduous Cover (-) shown to be significant at least at the 

0.1 level. Several variables did not have the expected relationship, specifically: 

Household Property Value showed a negative relationship, Census Tract Summer 

Precipitation showed a positive relationship, Census Tract Property Value showed a 

negative relationship, Census Tract Lot Area showed a negative relationship, and Census 

Tract Coniferous Tree Cover showed a positive relationship. 

The third and fourth models focused on the interaction between the household and 

neighborhood scales (Table 11). The third model used neighborhood SFR summer 

monthly water use and the neighborhood scale of the eight explanatory variables used 

throughout this study to explore cross-scale influences on household water use. This 

model had an Adjusted R² value of 0.074, with Neighborhood Summer Use (+), 

Neighborhood Summer Max Temperature (-), Neighborhood Property Value (-), 

Neighborhood Lot Area (-), Neighborhood Home Area (+), and Neighborhood 

Coniferous Cover (-) shown to be significant at least at the 0.1 level. Several variables 

did not have the expected relationship, specifically: Neighborhood Summer Maximum 
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Temperature showed a negative relationship, Neighborhood Property Value showed a 

negative relationship, and Neighborhood Lot Area showed a negative relationship. 

The fourth model used the same neighborhood variables as the third, but added 

the eight explanatory variables at the household scale. This model had an Adjusted R² 

value of 0.169, with Summer Max Temperature (+), Summer Precipitation (-), Property 

Value (-), Lot Area (+), Home Area (+), Coniferous Cover (-), Deciduous Cover (-), 

Neighborhood Summer Water Use (+), Neighborhood Summer Max Temperature (-), 

Neighborhood Summer Precipitation (+), Neighborhood Property Value (-), 

Neighborhood Lot Area (-), and Neighborhood Home Area (-) shown to be significant at 

least at the 0.1 level. Several variables did not have the expected relationship, 

specifically: Household Property Value showing a negative relationship, Neighborhood 

Summer Maximum Temperature showing a negative relationship, Neighborhood 

Summer Precipitation showing a positive relationship, Neighborhood Property Value 

showing a negative relationship, Neighborhood Lot Area showing a negative relationship, 

and Neighborhood Home Area showing a negative relationship. 
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Discussion 

 

Water Use Patterns at Varying Spatial Scales 

 The spatial autocorrelation tests show minor clustering of household scale water 

use for the annual, summer, and winter datasets. The main clustering is of high values in 

the West Hills area of Portland, which is a more affluent part of the city, making this 

pattern not surprising. The census block scale shows moderate clustering with more high 

values located in the West Hills, as well. High values are also prevalent in the eastern 

portion of the city, which could potentially be attributed to the higher proportion of 

Hispanic and Asian populations, in which it is more culturally common to have multiple 

generations of families living in a single residence, thus leading to larger household sizes 

and more water use. Finally, there are several high use areas in the near eastside and 

northern portions of the city, which could be influenced by recent influxes in income as 

gentrification continues to take place.  

In the aggregate scales of census block group, census tract, and neighborhood, the 

cluster patterns become much stronger and more visually evident. This variation in 

clustering intensity between the household scale and the aggregate scales suggests that 

individual households’ water use behaviors may not be influenced as strongly by their 

immediate neighbors as the aggregated scales suggest. These aggregate scales that are 

often used in water use studies are masking the more nuanced patterns and distributions 

of high and low SFR water users, and could be strongly influenced by outlier households. 

If water managers and policymakers use these aggregated scales to implement policies 
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that are spatially targeted at high water use areas, a significant number of average and 

low water users could be adversely impacted. 

 

Influence of Explanatory Variables on Water Use at Varying Spatial Scales 

 The R² values for all three household scale models were drastically lower than 

those from any of the other scales. Maximum temperature was significant in both the 

annual and winter models, with the annual model showing the positive relationship often 

seen in similar studies and the winter model showing a negative relationship (Chang et al. 

2014). This negative relationship could potentially be related to variations in household 

size across the city, and including this variable in further studies would be beneficial. 

Precipitation was significant in both the annual and summer models, with the annual 

model showing an unanticipated positive relationship (Chang et al. 2014). This positive 

relationship could potentially be attributed to residents staying indoors during Portland’s 

wet winters and springs, leading to an increase in indoor water use. Property value had a 

significant negative relationship in the summer and winter models; however, the 

coefficients are so small, the variable has a limited effect in this study (Janmaat 2013). 

House age shows an unexpected significant negative relationship in all three models, but 

again the coefficient is very small, showing a minimal effect on water use (Halper et al. 

2015). This negative relationship could be attributed to the older homes typically being 

smaller, on smaller lots, and many having been remodeled with more efficient devices. 

Both lot area and house area have significant positive relationships in all three models, 

which is expected as larger homes tend to lead to higher indoor water use and larger lots 

tend to lead to higher outdoor water use (Chang et al. 2010, Hong and Chang 2014). Both 
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coniferous and deciduous cover show significant negative relationships in the annual and 

summer models. This relationship is expected as more tree cover leads to less sunlight 

and lower ambient temperatures. Finally, Lambda - the autoregressive coefficient - shows 

a significant positive relationship in all three models. This suggests that there is a spatial 

influence on household level water use. However, with very low R2 values and many low 

coefficient values, these models suggest that this set of explanatory variables may not be 

appropriate for explaining SFR water use in Portland. Using a number of socioeconomic 

(income, education, age, etc.) and behavioral (water conservation perceptions, political 

views, water efficiency device use, etc.) variables in this analysis could provide better 

insight into the influences of household scale SFR water use, as well as why some of the 

signs of coefficients change across scales and seasons. However, these types of variables 

are difficult to obtain at the household scale, limiting their usefulness in an analysis of 

spatial scale variation. 

 The R² values at the census block, census block group, and census tract scales for 

annual, summer, and winter use models were substantially higher than those of the 

household scale. Additionally, the majority of the significant coefficients in these models 

have substantially larger absolute values than their counterparts in the household scale 

models. The three models at the neighborhood scale also show significantly stronger R² 

values and stronger significant coefficients than the household scale; however, the 

Lambda variable is only significant for the summer use model. This indicates that, at the 

neighborhood scale, it is likely that there is only a spatial dependence in regards to 

outdoor water use. The drastic differences between the spatial error regression models for 

the aggregate scales and those of the household scale suggest that the aggregate scale 
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models are providing one answer, but they are missing significant influences on actual 

household scale SFR water demand. 

 

Cross-scale Influences on Household Water Use 

 Four multi-level regression models were created to assess cross-scale influences 

on SFR summer water use. The first two models were aimed at analyzing the influence of 

census tract characteristics on household scale summer water use. The first model 

showed that the census tract characteristics alone have a statistically significant, but not 

substantial, impact on household scale summer water use. The adjusted R² value was 

approaching zero, and while seven variables were shown to be statistically significant, 

their coefficient values were very low. The second model incorporated both the census 

tract characteristics and household characteristics. This model showed slightly better 

results, with an improved adjusted R² value. However, the significant coefficient values 

were still low, and several of the relationship signs for variables contradicted the sign of 

the same variable at the other scale. 

 The third and fourth models were aimed at assessing the influence of 

neighborhood characteristics on household scale summer water use. While the adjusted 

R² values of these models were slightly higher than their census tract counterparts, they 

were also unable to show a substantial cross-scale influence, suffering from similarly 

poor model results. The results of these four models could indicate that household water 

use is not strongly impacted by cross-scale influences; however, it is also possible that 

these cross-scale influences could be identified using a different set of explanatory 

variables. 
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Conclusion 

 Studies on urban water use are an important tool for understanding and predicting 

changes in water demand. Water managers and policymakers could greatly benefit from 

these types of studies as they deal with increasing demands due to population growth and 

diminishing supply related to climate change. As researchers continue to study these 

challenges, it is important to remember that this is an inherently spatial issue. Given this, 

the spatial scale in which these analyses are done must be given serious consideration. 

Misleading results and advice could be detrimental to water providers and the people they 

serve. 

 The purpose of this study was to answer three specific questions, aimed at 

providing water managers and policymakers comprehensive insight into how spatial scale 

variation can influence SFR water use studies in Portland, Oregon and beyond. The first 

was to determine if there is significant variation in the influence of the chosen variables 

on household level water use as the datasets were aggregated to higher levels. It was 

discovered that aggregating water use data can mask some of the more intricate patterns 

in household level water use. It was also found that the variables that substantially 

explain water use patterns at aggregated scales are not necessarily the same as those that 

explain them at the household level. Seeing the differences in the patterns between spatial 

scales will allow water managers and policymakers to have a better understanding of the 

patterns of high and low SFR water use in their region, enabling them to make more 

educated assessments of where to target educational campaigns and policies aimed at 

reducing residential water consumption.  
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The second question was to determine if the predictors of SFR household water 

use vary over seasons. It was discovered that, at each spatial scale, the determinants of 

water use varied across season. It was also found that these seasonal variations differed 

across the spatial scales. Identifying these seasonal variations will allow water managers 

and policymakers to better understand where to target educational campaigns and policies 

focused on reducing outdoor water use (high summer water users) and indoor water use 

(high winter water users).  

The final question was to determine if neighborhood and census tract 

characteristics have a significant influence on the amount of household water use. It was 

discovered that the potential for cross-scale and spatial influences on household water use 

exists, but the variables used in this study did not have a strong impact. Further studies of 

these cross-scale influences on household scale could assist water managers and 

policymakers in identifying how effective policies and education campaigns targeted at 

high use neighborhood or census tracts are at influencing household scale SFR water use. 

Future research should continue to explore the effects of spatial aggregation in these 

studies, the different variables that may influence water use habits (Straus et al. 2016), 

and cross-scale and spatial influences on water use. 
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Table 1: Methodology in Water Use Studies 

Analysis Method Examples from the Literature 

Agent-based Model Yuan et al. 2014 

Artificial Neural Networks Adamowski et al. 2012 

Autoregressive Integrated 

Moving Average 

Praskievicz and Chang 2009;  

Adamowski et al. 2012; Chang et al. 2014 

Cluster Analysis Cardell-Oliver 2013 

Cobb-Douglas Model Dharmaratna and Harris 2012 

Cointegration Model Zaied and Binet 2015 

Coupled Wavelet and Artificial 

Neural Networks 
Adamowski et al. 2012 

Double-log Regression Model Liu et al. 2015 

Dynamic Error Correction 

Model 
Fullerton et al. 2013 

Econometric Model 
Renwick and Green 2000;  

Woltemade and Fuellhart 2013 

Factor Analysis Panagopoulos 2014; Yu et al. 2015 

Fixed-effects Panel Regression Price et al. 2014 

Genetic Programming Liu et al. 2015 

Integrated Assessment Model Hejazi et al. 2014 

Latent Class Model Pérez-Uridiales et al. 2014 

Linear Latent Growth Curve 

Model 
Jorgensen et al. 2013 

Linear Mixed-effects Model Ouyang et al. 2014; Romano et al. 2014 

Linear Regression 

Adamowski et al. 2012;  

Woltemade and Fuellhart 2013; Yu et al. 2015; 

Ashoori et al. 2016 

Log-linear Regression Rinaudo et al. 2012; Baerenklau et al. 2014 



38 

 

Multinomial Logit Model Reynaud 2013 

Multiregression Model Shandas and Parandvash 2010 

Natural Log-linear Regression Grafton et al. 2011; Mini et al. 2014 

Nonlinear Regression Model Adamowski et al. 2012; Yasar et al. 2012 

Ordinary Least Squares 

Regression Model 

Praskievicz and Chang 2009; Chang et al. 2010; 

House-Peters et al. 2010; Breyer et al. 2012;  

Browne et al. 2013; Janmaat 2013; Sebri 2013; 

Chang et al. 2014; Rathnayaka et al. 2014 

Piecewise Linear Regression Chang et al. 2010 

Random Forest Analysis Gage and Cooper 2015 

Sequential Regression Model Fielding et al. 2012 

Spatial Autoregressive Model Janmaat 2013; de Maria Andre and Carvalho 2014 

Spatial Autoregressive Moving 

Average Model 
Janmaat 2013; de Maria Andre and Carvalho 2014 

Spatial Error Model 
Chang et al. 2010; Janmaat 2013;  

de Maria Andre and Carvalho 2014 

Spatial HAC Method Halper et al. 2015 

Spatially Disaggregate Water 

Demand Model 
Polebitski et al. 2011 

Stepwise Linear Regression Chang et al. 2014 

Stone-Geary Functional Form Dharmaratna and Harris 2012 

Two-stage Least Squares Model Polycarpou and Zachariadis 2013 

Wavelet Analysis Adamowski et al. 2012 
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Table 2: Significant Explanatory Variables in Water Use Studies 

Significant Explanatory 

Variables (Relationship 

to water use) 

Examples from the Literature 

Climate Variables 

Daylight Length (-) Praskievicz and Chang 2009 

Precipitation (+) Polycarpou and Zachariadis 2013 

Precipitation (-) 

Grafton et al. 2011; Dharmaratna and Harris 2012;  

Ozan and Alsharif 2013; Chang et al. 2014; Liu et al. 2014; 

Ouyang et al. 2014; Price et al. 2014; Romano et al. 2014; 

Zaied and Binet 2015 

Temperature (+) 

Renwick and Green 2000; Praskievicz and Chang 2009; 

Grafton et al. 2011; Dharmaratna and Harris 2012; 

Rinaudo et al. 2012; Yasar et al. 2012;  

Polycarpou and Zachariadis 2013; Reynaud 2013;  

Sebri 2013; Chang et al. 2014; Ouyang et al. 2014;  

Price et al. 2014 

Wind Speed (-) Praskievicz and Chang 2009 

Socioeconomic Variables 

Education (+) House-Peters et al. 2010; Baerenklau et al. 2014 

Household Size (+) 

House-Peters et al. 2010; Dharmaratna and Harris 2012; 

Fielding et al. 2012; Jorgensen et al. 2013; Sebri 2013; 

Baerenklau et al. 2014; Ouyang et al. 2014;  

Rathnayaka et al. 2014; Pérez-Uridiales et al. 2016 

Income (+) 

Grafton et al. 2011; Polebitski et al. 2011;  

Dharmaratna and Harris 2012; Fielding et al. 2012; 

Rinaudo et al. 2012; Jorgensen et al. 2013;  

Polycarpou and Zachariadis 2013; Willis et al. 2013; 

Baerenklau et al. 2014;  

de Maria André and Carvalho 2014; Ouyang et al. 2014; 

Romano et al. 2014; Yuan et al. 2014 

Income (-) 
Renwick and Green 2000; Dharmaratna and Harris 2012; 

Reynaud 2013 
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Property Characteristic Variables 

Bathrooms (+) Janmaat 2013; de Maria Andre and Carvalho 2014 

Home Age (+) Janmaat 2013; Ouyang et al. 2014; Halper et al. 2015 

Home Age (-) Reynaud 2013 

Home Size (+) 
Chang et al. 2010; Grafton et al. 2011;  

Polebitski et al. 2011; Janmaat 2013 

Lot Size (+) 

Renwick and Green 2000; House-Peters et al. 2010; 

Polebitski et al. 2011; Janmaat 2013; Willis et al. 2013; 

Hong and Chang 2014; Ouyang et al. 2014;  

Halper et al. 2015 

Property Value (+) Janmaat 2013 

Rooms (+) Grafton et al. 2011 

Swimming Pool (+) Fielding et al. 2012; Janmaat 2013; Rathnayaka et al. 2014 

Tree Cover (Unspecified) Gage and Cooper 2015 
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Table 3: Spatial Scales in Water Use Studies 

Analysis Scale Examples from the Literature 

Household 

Grafton et al. 2011; Fielding et al. 2012;  

Cardell-Oliver 2013; Janmaat 2013;  

de Maria André and Carvalho 2014;  

Jorgensen et al. 2014; Ouyang et al. 2014;  

Pérez-Urdiales et al. 2014; Price et al. 2014; 

Rathnayaka et al. 2014; Gage and Cooper 2015 

Census Block House-Peters et al. 2010 

Census Block Group 
Chang et al. 2010; Shandas and Parandvash 2010; 

Breyer et al. 2012; Gage and Cooper 2015 

Census Tract 
Polebitski et al. 2011; Baerenklau et al. 2014;  

Mini et al. 2014; Ouyang et al. 2014 

City 

Praskievicz and Chang 2009; Adamowski et al. 2012; 

Rinaudo et al. 2012; Yasar et al. 2012;  

Polycarpou and Zachariadis 2013; Reynaud 2013; 

Woltemade and Fuellhart 2013; Chang et al. 2014; 

Ouyang et al. 2014; Panagopoulos 2014;  

Romano et al. 2014; Yuan 2014; Liu et al. 2015; 

Ashoori et al. 2016 

Regional 

Renwick and Green 2000;  

Dharmaratna and Harris 2012; Sebri 2013;  

Haque et al. 2015; Yu et al. 2015 

Country Zaied and Binet 2015 

Global Hejazi et al. 2014 
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Table 4: Descriptive statistics of the dependent and independent variables for the SFRs 

used in this study (n = 134,666) 

 

 Mean Std. Dev. Min Max 

Annual Monthly Use (kL) 16.562 11.742 0.880 1,850.684 

Summer Monthly Use (kL) 20.352 23.900 0.747 6,424.812 

Winter Monthly Use (kL) 13.807 9.407 0.636 825.418 

Annual Monthly  

Max Temperature (C) 
15.701 0.073 15.318 15.941 

Summer Monthly  

Max Temperature (C) 
23.842 0.097 23.431 24.158 

Winter Monthly  

Max Temperature (C) 
7.888 0.091 7.400 8.129 

Annual Monthly  

Precipitation (mm) 
91.182 2.780 82.626 102.594 

Summer Monthly 

Precipitation (mm) 
21.842 0.722 18.230 23.969 

Winter Monthly 

Precipitation (mm) 
103.163 4.187 90.309 119.474 

Property Value ($100k) 3.304 1.815 0.375 75.236 

House Age (years) 64.55 29.794 0 165 

Lot Area (ha) 0.068 0.092 0.004 10.360 

House Area (m2) 159.222 75.203 26.013 1,885.652 

Coniferous Tree Cover (%) 11.755 14.341 0 100 

Deciduous Tree Cover (%) 21.631 17.309 0 100 
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Table 5: Spatial error regression for SFR monthly water use at the household scale 

 

Household (n = 134,666) 

 Annual Use Summer Use Winter Use 

R-square Value 0.138 0.152 0.070 

AiC 214019 252925 223061 

Maximum 

Temperature 
0.115*** -0.025 -0.235*** 

Precipitation 0.011*** -0.031*** less than 0.001 

Property Value -0.002 -0.025*** -0.035*** 

House Age -0.001*** -0.001*** -0.001*** 

Lot Area 0.292*** 0.356*** 0.105*** 

House Area 0.003*** 0.003*** 0.002*** 

Coniferous Cover -0.050*** -0.050*** -0.010 

Deciduous Cover -0.068*** -0.077*** less than 0.001 

Lambda 0.055*** 0.079*** 0.038*** 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01 
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Table 6: Spatial error regression for SFR monthly water use at the census block scale 

 

Census Block (n = 8,289) 

 Annual Use Summer Use Winter Use 

R-square Value 0.469 0.523 0.229 

AiC -4954.36 -1812.14 -4360.6 

Maximum 

Temperature 
0.115 -0.008 -0.242*** 

Precipitation 0.009*** -0.029*** less than 0.001 

Property Value -0.015*** 0.014*** -0.043*** 

House Age -0.001*** -0.001*** -0.001*** 

Lot Area 0.247*** 0.215*** 0.158*** 

House Area 0.003*** 0.003*** 0.002*** 

Coniferous Cover 0.069** 0.133*** 0.040 

Deciduous Cover -0.138*** -0.164*** -0.009 

Lambda 0.322*** 0.422*** 0.236*** 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01 
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Table 7: Spatial error regression for SFR monthly water use at the census block group 

scale 

 

Census Block Group (n = 419) 

 Annual Use Summer Use Winter Use 

R-square Value 0.857 0.845 0.646 

AiC -1007.55 -736.64 -992.879 

Maximum 

Temperature 
0.691*** 0.240 -0.077 

Precipitation 0.004 -0.059*** -0.003 

Property Value -0.016** -0.017 -0.042*** 

House Age less than 0.001 less than -0.001* less than 0.001 

Lot Area 0.519*** 0.323*** 0.248*** 

House Area 0.004*** 0.005*** 0.002*** 

Coniferous Cover 0.280*** 0.414*** 0.244** 

Deciduous Cover 0.302*** 0.129 0.300*** 

Lambda 0.837*** 0.755*** 0.678*** 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01 
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Table 8: Spatial error regression for SFR monthly water use at the census tract scale 

 

Census Tract (n =142) 

 Annual Use Summer Use Winter Use 

R-square Value 0.896 0.855 0.790 

AiC -383.215 -259.371 -407.808 

Maximum 

Temperature 
0.682*** 0.142 0.095 

Precipitation 0.004 -0.036* -0.004 

Property Value -0.046*** -0.070*** -0.050*** 

House Age less than -0.001 -0.001 less than 0.001 

Lot Area 0.352*** 0.060 0.295*** 

House Area 0.004*** 0.007*** 0.002*** 

Coniferous Cover 0.155 0.328* 0.179 

Deciduous Cover 0.302** -0.315 0.453*** 

Lambda 0.826*** 0.559*** 0.832*** 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01 

  



47 

 

Table 9: Spatial error regression for SFR monthly water use at the neighborhood scale 

 

Neighborhood (n = 111) 

 Annual Use Summer Use Winter Use 

R-square Value 0.818 0.806 0.634 

AiC -228.696 -144.694 -266.027 

Maximum 

Temperature 
0.159 0.088 -0.320*** 

Precipitation 0.005 -0.048* -0.002 

Property Value -0.044*** -0.047*** -0.039*** 

House Age -0.001 -0.001 -0.001** 

Lot Area 0.583*** 0.773*** -0.122 

House Area 0.004*** 0.005*** 0.002*** 

Coniferous Cover 0.156 -0.026 0.327*** 

Deciduous Cover -0.280* -0.167 0.040 

Lambda 0.119 0.446*** -0.105 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01 
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Table 10: Multi-level regression for SFR summer monthly water use at the household 

scale using census tract and census tract plus household variables 
 

 Census Tract Variables 

(n = 134,666) 

Census Tract and Household 

Variables (n = 134,666) 

Adjusted R-square 

Value 
0.067 0.165 

AiC 265422 250438 

CT Summer Water Use 0.030*** 0.030*** 

CT Summer Max 

Temp 
0.123*** -0.465 

CT Summer 

Precipitation 
-0.004 0.025** 

CT Property Value -0.037*** -0.114*** 

CT House Age less than 0.001 less than 0.001** 

CT Lot Area -0.687*** -0.754*** 

CT House Area 0.002*** less than 0.001 

CT Coniferous Cover 0.218*** 0.336*** 

CT Deciduous Cover -0.292*** -0.251*** 

Summer Max Temp  0.082 

Summer Precipitation  -0.029** 

Property Value  -0.077*** 

House Age  less than -0.001 

Lot Area  0.067*** 

House Area  0.002*** 

Coniferous Cover  0.118*** 

Deciduous Cover  -0.041*** 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01  
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Table 11: Multi-level regression for SFR summer monthly water use at the household 

scale using neighborhood and neighborhood plus household variables 
 

 Neighborhood 

Variables 

(n = 134,666) 

Neighborhood and 

Household Variables  

(n = 134,666) 

Adjusted R-square 

Value 
0.074 0.169 

AiC 264370 249873 

N Summer Water Use 0.799*** 0.803*** 

N Summer Max Temp -0.121*** -0.103*** 

N Summer 

Precipitation 
-0.005 0.015* 

N Property Value -0.016*** -0.095*** 

N House Age less than -0.001 less than 0.001 

N Lot Area -0.125* -0.176*** 

N House Area 0.001*** -0.001*** 

N Coniferous Cover -0.132*** 0.030 

N Deciduous Cover -0.017 -0.115 

Summer Max Temp  0.186*** 

Summer Precipitation  -0.018** 

Property Value  -0.074*** 

House Age  less than -0.001 

Lot Area  0.060*** 

House Area  0.002*** 

Coniferous Cover  -0.114*** 

Deciduous Cover  -0.0378*** 

*significant at 0.1 

**significant at 0.05 

***significant at 0.01  
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Figure 1: The map below shows the location of Portland within the state of Oregon, 

while the inset map provides a closer view of the Portland city limits as well as a general 

understanding of land use through aerial photography. 
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Figure 2: The chart below provides a simplified view of how the household water use 

and exploratory variables were aggregated to the census block, census block group, 

census tract, and neighborhood scales. 
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Block Block Group Tract 

Neighborhood 
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Figure 3: The below figure displays 2011 mean monthly SFR water use at the a) census 

block, b) census block group, c) census tract, and d) neighborhood scales for Portland, 

Oregon. 
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Figure 4: The below figure displays 2011 mean summer monthly SFR water use at the a) 

census block, b) census block group, c) census tract, and d) neighborhood scales for 

Portland, Oregon. 
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Figure 5: The below figure displays 2011 mean winter monthly SFR water use at the a) 

census block, b) census block group, c) census tract, and d) neighborhood scales for 

Portland, Oregon. 
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Figure 6: The multi-level regression models used in this study showing how household, 

neighborhood, and census tract characteristics influence household level water use in 

Portland, Oregon. 
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Figure 7: Local Moran’s I clusters for a) annual, b) summer, and c) winter SFR water use at the census block scale 

5
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Figure 8: Getis-Ord Gi* hot spots for a) annual, b) summer, and c) winter SFR water use at the census block scale 

5
7
 



58 

 

Figure 9: Local Moran’s I clusters for a) annual, b) summer, and c) winter SFR water use at the census block group scale 
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Figure 10: Getis-Ord Gi* hot spots for a) annual, b) summer, and c) winter SFR water use at the census block group scale 

5
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Figure 11: Local Moran’s I clusters for a) annual, b) summer, and c) winter SFR water use at the census tract scale 

6
0
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Figure 12: Getis-Ord Gi* hot spots for a) annual, b) summer, and c) winter SFR water use at the census tract scale 
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Figure 13: Local Moran’s I clusters for a) annual, b) summer, and c) winter SFR water use at the neighborhood scale 

6
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Figure 14: Getis-Ord Gi* hot spots for a) annual, b) summer, and c) winter SFR water use at the neighborhood scale 
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Appendix 

 

Process for Transforming Billing Data to Monthly Water Use 

 

 

 

Table A1: The table below provides an example of the format of the raw household 

water use data provided by the Portland Water Bureau. 

 

 

Household 
Metering 

Period 

Water 

Use 

(CCF) 

Metering 

Period 

Water 

Use 

(CCF) 

Metering 

Period 

Water 

Use 

(CCF) 

A 
2 FEB 11 -  

1 MAR 11 
12 

2 MAR 11 - 

31 MAR 11 
11 

1 APR 11 -  

2 MAY 11 
14 

B 
31 JAN 11 - 

28 FEB 11 
10 

1 MAR 11 - 

30 MAR 11 
11 

31 MAR 11 - 

APR 30 11 
13 

C 
3 JAN 11 -   2 

APR 11 
31 

3 APR 11 - 2 

JUL 11 
58 

3 JUL 11 -   

 1 OCT 11 
63 

 

 

Table A2: The table below provides an example of the raw household water use data 

converted into a daily value (CCF). 

 

 

Household 27-Feb-11 28-Feb-11 1-Mar-11 2-Mar-11 3-Mar-11 4-Mar-11 

A 0.4 0.4 0.4 0.3 0.3 0.3 

B 0.3 0.3 0.4 0.4 0.4 0.4 

C 0.3 0.3 0.3 0.3 0.3 0.3 

 

 

Table A3: The table below provides an example of the daily household water use values 

aggregated to monthly household water use in CCF. 

 

 

Household Feb-11 Mar-11 Apr-11 

A 11 10 14 

B 11 12 13 

C 10 12 14 
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