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Abstract

Accommodating the continued increase in energy demand in the face of global cli-

mate change has been a worldwide concern. With buildings in the US consuming

nearly 40% of national energy, a concerted effort must be given to reduce building

energy consumption. As new buildings continue to improve their efficiency through

more restrictive energy codes, the other 76.9 billion square feet of current building

stock falls further behind. The rate at which current buildings are being retrofit

is not enough and better tools are needed to access the benefits of retrofits and

the uncertainties associated with them. This study proposes a stochastic method

of building energy model calibration coupled with a monthly normative building

simulation addressed in ISO 13890. This approach takes advantage of the great effi-

ciency of Latin Hypercube Sampling (LHS) and the lightweight normative building

simulation method, to deliver a set of calibrated solutions to asses the effectiveness

of energy conservation measure, making uncertainty a part of the modeling process.

A case study on a mixed-use university building is conducted to show the strength

and performance of this simple method. Limitations and future concerns are also

addressed.
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Chapter 1

Introduction

1.1 Motivation

Worldwide energy demand is at an all-time high and continues to grow. From

1984 to 2004 primary energy has grown by 49% and CO2 emissions have grown by

43% [1], with the increase in energy consumption growing faster than population

growth. In 2010 the US DOE reports that buildings account for 70% of electricity

and 50% of natural gas use, with the 76.9 billion square feet of current building

stock [2, 3]. And in 2004, US buildings alone accounted for more emissions than

any other countries emissions other than China [4]. Because more than half of the

energy in the US comes from coal and buildings are consuming 41% of total primary

energy [5] building standards are becoming stricter, resulting in more efficient new

buildings. What is left behind is the 76.9 billion square feet of current building

stock, nearly all of which can use some improvement.

Due to these concerns the building sector is the focus of many policy changes,

building performance labeling, and challenges to reduce energy and emissions of

the building stock for the future. The white house would like to see a 20% energy

reduction in commercial buildings by the year 2020 [6]. The Leadership in En-
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ergy & Environmental Design (LEED) program requires each building must meet

an energy efficiency requirement, among other conservation and carbon–reducing

requirements, before being granted a LEED rating for a new building or retrofit

project [7]. The 2030 Challenge is a project which suggests reducing carbon emis-

sions of new buildings and retrofits by 60% and increases this standard every 5 years

such that by 2030 all new buildings and retrofits are carbon neutral [6]. Continued

improvement within these goals can only be accomplished through a concerted effort

to create new, more efficient buildings, and implementation of energy conservation

measure (ECM) on the existing building stock [3, 4, 8, 9].

Figure 1.1: Figure from Olgayay and Seruto, showing the trend of carbon emis-
sions for current commercial buildings, a buisness as usual approach to retrofits, the
Architecture 2030 goals, and the US Copenhagen target.

Buildings are currently being retrofit at a rate of 2.2% per year with a median

energy savings of 11% for those retrofits [3]. At this rate half of the building stock
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will be retrofit by the year 2054. A large part of reaching goals to reduce emissions

and conserve energy is to either retrofit more square-footage per year or to make

each building retrofit more efficient.

1.2 Building Energy Modeling

Predictive building energy modeling have been in development since the 70s as part

of the effort to reduce building energy usage. These simulations model the physics of

all the interactions which take place within a buildnig such as heat gains from people,

lights, electronics, and sunlight; the heat transfer through the building envelope, the

outside air coming into the building, weather patterns, and building set points and

schedules. The accuracy of these models in quantitatively predicting actual buildings

performance has been in question due to wild fluctuations between model predictions

ad measured energy consumption. A recent study by the New Buildings Institute

(NBI) shows this disparity in a study of LEED certified buildings, comparing the

measured vs. predicted energy use intensity (EUI) of a host of buildings, with many

LEED buildings performing worse than the energy standards at the time, shown in

Figure 3.1 [10].

Disparities are not uncommon when modeling new buildings as behavior patterns

must be assumed, systems installed are assumed to be operating as designed, and in

some instances sytems are materials modeled do not make it into the final product

[11]. Despite the inconsistencies from a comparative view, building energy models

still provide valuable insight on which materials or components have the largest

effect on energy consumption and proper building management.

The growing need in buildings retrofits provide an interesting opportunity for
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Figure 1.2: Figures shown from Turner et. al 2008.

energy modeling. Compared to its application to new building design, modelers

dealing with existing buildings have access to operation schedules, building materi-

als, and equipment. Many times a base model of the building will be developed,

an ECM is implemented in the model, and the energy difference is estimated as the

expected savings. A similar problem still arises that the energy savings can still vary

depending on weather patterns, assumptions made in modeling (where required),

and how the ECM is implemented. Managing the uncertainty related to the retrofit

process is becoming more important and LEED has initiated a measurement and

verification (M&V) incentive for new buildings and retrofits. Other organizations

that have published M&V guidelines include the American Society of Heating, Re-

frigeration, and Air-conditioning Engineers (ASHRAE), the , and Energy Efficiency

and Renewable Energy (EERE). Applying the principles of M&V to building energy

modeling is known as building energy model calibration, comparing the model with

utility data and tuning it to get an acceptable fit.
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1.3 Calibration

Calibration methods for building energy models have been in development since

the mid-1980s and have been utilized for retrofit decision making since then [12].

These methods can be classified by two general categories: manual calibration and

robust computer based calibration. Due to the large number of building inputs in

a building energy model, building model calibration is essentially an undetermined

problem1. Therefore the quality of a manual calibration is highly dependent on

the experience and expertise of the analysts performing the calibration. With this

method one can get any calibration result desired but the solution that results

may not be the true solution. Robust computer calibration uses mathematical

algorithms and computer analysis to locate the best fit for an existing building

model. Regardless of the specific method used, all calibration employs a certain

level of optimization. The nonlinearity of a building model and its nature of being

an undetermined problem makes robust computer calibration computation intensive

and complicated. A detailed review of these calibration methods has been conducted

by Reddy [13]. Given the undetermined nature of building model calibration, Reddy

et al. have proposed to shift the calibration goal from finding a best fit to locating the

best set of plausible fits in their recently completed ASHRAE project RP-1051 [13]

[14] [15]. A mid-point Latin Hypercube Monte Carlo (LHMC) method is developed

and demonstrated through case studies. This mid-point LHMC method provides a

new perspective to building model calibration. Another recently completed thesis,

comparing manual calibration and the mid-point LHMC method, concludes that the

mid-point LHMC is most appropriate for models with a high number of uncertain

1i.e. the number of unknowns are larger than the given knowns
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building input parameters and when only monthly utility data is available [16].

In light of the mid-point LHMC method, this study presents a simplified and yet

effective approach to support decision making in existing building retrofits based

on limited data collection through a walk-through site audit. The method couples

a normative building modeling method with a general Latin Hypercube Sampling

(LHS) method. The monthly normative building energy model, based on ISO13790

[17], is to solve a set of quasi-steady state formulas of heat balance equations to

estimate monthly building energy consumption. The normative energy modeling

method requires much less building input compared to detailed dynamic building

simulations and is developed to provide the right balance between accuracy and data

collection costs. Its minimal requirement in computation allows LHS to scan the

entire feasible space with a large number of sample runs. Therefore the proposed

method is able to deliver a sound calibrated model for alternative retrofit evaluation.

A case study with an institutional building, built in the 1960s, is presented to

demonstrate the proposed approach.
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Chapter 2

Overview

Building energy models are primarily used as a means to estimate the total heating,

cooling, and electricity load in a building. This is done by inputting the physical

properties of the building, the internal loads, operation schedules, Heating Ventila-

tion and Air Conditioning (HVAC) system, and weather data. Traditionally energy

service companies (ESCOs) have used building energy models to evaluate the to-

tal energy use of new buildings or the effectiveness of energy efficiency measures

(EEMs) in older buildings. Due to wide variation between simulated results and

actual energy use, M&V practices are becoming more popular. These practices in-

corporate calibration procedures into the modeling process ensuring a higher quality

of modeled results.

2.1 Calibration

Calibration refers to the process of adjusting a set of inputs within a model to reach

a desired output. The calibration of a building energy model compares energy use

between observed and modeled behavior over a given time period. With the ideal

product of a calibration having the correct set of inputs, so that the output from

the model is representative of the observed energy use for the given time frame.
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Benefits of calibrated simulations include providing information to building owners

and utilities about energy usage patterns, better prediction of EEMs post-retrofit

energy usage, and increased system knowledge for building owners [13].

However, within the calibration process, it is important not to simply have a

calibrated model through garbage in garbage out (GIGO)1; but to have a model meet

the desired result by design. This situation can best be summarized by Hornberger

and Spear [18]

”. . . most simulation models will be complex, with many parameters,
state-variables and non linear relations. Under the best circumstances,
such models have many degrees of freedom and, with judicious fiddling,
can be made to produce virtually any desired behavior, often with both
plausible structure and parameter values.”

Along with the GIGO approach, other drawbacks to calibration preventing its

widespread adoption is the time and labor it takes to calibrate a model. There

is also a high dependency on the skill, experience, and judgment of the modeler [13].

Therefore the inherent errors in the calibration procedure must be understood and

accounted for in any calibration procedure to realize the full benefit of a calibrated

model.

Of the many ways to calibrate a model, manual calibration is the most common.

This is an iterative procedure in which the modeler ‘tunes’ the input parameters to

improve the model. The simulation is carried out and the results are analyzed to

determine the if what was done had a positive or negative impact on the result. The

modeler will go back to tuning until the desired level of accuracy between observed

and modeled performance is achieved. This method of calibration requires the most

modeler experience, knowledge of subject, and proper justification for parameter

1Random alteration to reach the desired result.
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changes made.

More robust computer based calibration approaches use statistics based algo-

rithms to determine a best fit. Other methods of calibration include graphical

methods, energy signature analysis, statistical methods, and others. A detailed

study on these methods has been carried out by Reddy, et. al [13].

2.2 Reddy

All calibration methods attempt to perform an optimization of the model to search

for a best solution. Reddy et al. have seen this as a flawed approach as building

energy models are a largely undetermined problem, with hundreds or thousands

of potential inputs to obtain a small number of outputs with which to perform

the calibration. This means that each output is not unique and could have many

confounding errors creating a suitable output by chance. The proposed solution

Reddy et al. suggest is to look at all the feasible solutions, and those which satisfy

the calibration criteria are the seen as a best set of solutions. From this, Reddy et

al. developed a process of calibration based on a mid-point LHMC sampling method

to search through the inputs for sets of solutions satisfying the calibration criteria.

This builds uncertainty into the calibration itself, providing a range of possi-

ble savings for the various ECMs. The method is demonstrated in the recently

completed ASHRAE project RP-1051 [13–15], another study done comparing the

mid-point LHMC method with manual calibration has been done and concludes that

the mid-point LHMC method is most appropriate for models with a high number

of uncertain building inputs and when only monthly utility data is available [16].

The mid-point LHMC method discretizes each input parameter into three groups
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Figure 2.1: Figure from Reddy et al. displays the triangular variable distribution
used to discretize each parameter for the mid-point LHMC method.

low, mid, and high; based on the probability density function (PDF) of the parame-

ter. Creating a triangular distribution of the cumulative distribution function (CDF)

for each parameter(figure 2.1), using LHMC sampling to generate n samples for each

group. From 3n samples, m are selected at random without replacement2 to rep-

resent one set of possible inputs, this process is repeated until n solution sets are

generated. These solutions sets are simulated and compared with observed data,

all solutions that are within the calibration criteria are then accepted as feasible

solutions3. After solution sets are generated a sensitivity analysis to filter strong

and weak parameters is carried out on the promising solution sets, using a χ2 (Chi-

2Where p is the total number of parameters (p1 . . . pm).
3Reddy et. Al later reduced the calibrated solutions to the 20 best calibrations out of thousands

of samples.
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Square) distribution. The sensitivity analysis allows the weak variables to be fixed,

increasing resolution that the strong variables are searched, within the same number

of n sample runs. The last step is a fine grid search which uses the results from

the best solutions to narrow the parameter search for select variables. Variables

which strongly favor one of the three discrete groups (low, mid, high) are further

discretized within that group. For example, if the parameter p1 favors the low group,

that parameter will be become p1low and another set of low, mid, high within the

low group. This increases the accuracy for those parameters allowing a finer search

of that area to reflect a more accurate representation of that parameter’s true value.

The end result is a set of calibrated solutions that represent the best solutions of

the model and can be simulated with selected ECMs to determine the savings and

uncertainties associated with each ECM.

2.3 Stochastic LHS Method

Inspired by the mid-point LHMC method, this study presents the stochastic LHS

method which shares some features of the mid-point LHMC method. The differences

between the methods lie in sampling procedure, methods for sensitivity analysis,

building simulation software used, and general order of operating procedure. The

process of the stochastic LHS method is as follows:

1. From climate data, building characteristics, operations schedules, and heuris-

tic knowledge a set of input parameters is generated. Parameters which must

be estimated due to lack of data, are put through a sensitivity analysis and

separated into significant parameters and weak parameters. The weak pa-

rameters are fixed, as they have little effect on results whereas the significant



12

parameters must remain.

2. Significant parameters are assigned a PDF of uniform or normal depending on

knowledge of the parameter. Then are put into the LHS generator to create

n samples sets to be compiled by the building simulation.

3. All n sample sets are simulated and output data from the simulation is com-

pared with observed performance of the building. The fit between modeled

and actual performance for each model is then accepted or rejected by the

calibration criteria; models accepted become part of the final set of feasible

solutions.

4. The last step is to select ECMs to implement using the feasible solution set.

Once simulated, the savings and uncertainty for each EEM can be calculated

and used for retrofit decision making.

The entire method is outlined in Figure 2.2, with details of each process further

explained in the following chapter.
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Figure 2.2: Flowchart of Calibration Process
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Chapter 3

Methods

3.1 Current Calibration Practice

Of the many ways to calibrate a model, manual calibration is the most common.

This is an iterative procedure in which the modeler ’tunes’ the input parameters

to improve the model. The simulation is carried out and the results are analyzed

to determine the impact the changes had on the result. The modeler will go back

to tuning until the desired level of accuracy between observed and modeled perfor-

mance is achieved. This method of calibration requires the most modeler experience,

knowledge of subject, and proper justification for parameter changes made.

More robust computer based calibration approaches use statistics based algo-

rithms to determine a best fit. Other methods of calibration include graphical

methods, energy signature analysis, statistical methods, and others.

One technique knowns as ’inverse modeling’ is wher utility data is used to create a

model based on weather data and regression parameters is currently in use through

software knwon as First View, develolped by NBI [19, 20]. First View analyzes

8 parameters (table 3.1) to use as performance indicators for the building. By

analyzing the results (figure 3.1) and comparing profiles with typical ranges First
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Table 3.1: Table from Reichmuth and Turner, listing the key parameters analyzed
with the First View inverse modeling tool.

Figure 3.1: Figure from Reichmuth and Turner, displaying the results for a medium-
sized Chicago office building from the First View inverse modeling tool.

View detects inefficiencies and makes commissioning or retrofit recommendations

based on the findings. The method does not provide a detailed model of the building,

nor does it estimate energy savings and uncertainties associated with the suggested

improvements.



16

3.2 Building Simulation Software

The monthly normative energy calculation procedure, specified in ISO13790 [17],

uses a utilization factor approach which has been validated through a few studies

[21].

The monthly heating demand is calculated by:

QH = QH,ht − ηH,gnQH,gn (3.1)

Where QH,ht is the heat demand from transmission and ventilation heat transfer,

QH,gn are the heat gains from solar and internal sources, and the ηH,gn is the gain

utilization factor for the heating model. ηH,gn accounts for the heat gains that are

utilized, decreasing overall heating demand.

Similarly, the monthly cooling demand is calculated by:

QC = QC,gn − ηC,lsQC,ht (3.2)

Where QC,ht is the heat transfer through transmission (through building envelope)

and ventilation, during the cooling season, QC,gn is the heat gains from solar and

internal sources, and the ηC,ls is the loss utilization factor for the cooling model. The

loss utilization factor plays a similar role as the gain utilization factor in heating

demand calculation. It accounts for the fact that only part of the heat loss through

transmission and ventilation is used to decrease cooling load.

Qht = Qtr +Qve (3.3)
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Qtr = Htr(θint − θe)t (3.4)

Qve = Hve(θint − θe)t (3.5)

The above equations illustrate the effect of the temperature difference between

the mean internal temperature θint and the external temperature θe. It is important

to note that with this normative method the temperature dependence is based on a

monthly mean internal and external temperature. The calculation of Htr and Hve

are detailed below.

Htr =
n∑

i=1

AiUi (3.6)

Hve = ρacpV̇ (3.7)

These equations demonstrate that each ith building element must be taken into

account for the overall conduction heat gain/loss coefficient.

Qgn = Qint +Qsol (3.8)

Qint =

[∑
k

Φint

]
t (3.9)

Qsol =

[∑
k

Φsol

]
t (3.10)
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Solar gains and internal gains combine to account for the buildings total gains.

Internal gains being from occupants, lighting, and misc. equipment loads within

the space. Solar gains are a combination of the short wave radiation gains from the

sun, and the long wave radiation losses from each surface to the sky. The below

equations demonstrate this.

Φsol = FshAsol,kIsol,k − Ft,kΦr,k (3.11)

Φr = RseUcAchr∆θer (3.12)

For opaque elements:

Asol = αs,cRseUcAc (3.13)

For glazing elements:

Asol = Fsh,glggl(1− FF )Aw,p (3.14)

Going back to Equation 3.1, the ηC,ls is the loss utilization factor for the cooling

model. The loss utilization factor plays a similar role as the gain utilization factor in

heating demand calculation. It accounts for the fact that only part of the heat loss

through transmission and ventilation is used to decrease cooling load. The gain/loss

utilization factor is a function of the gain/loss ratio γC (or the loss/gain ratio in

cooling season) and of a regression parameter aC that depends on building inertia:
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For heating:

if γH > 0 and γH 6= 1 : ηH,gn =
1− γaHH

1− γaH+1
H

(3.15)

if γH = 1 : ηH,gn =
aH

aH + 1
(3.16)

if γH < 0 : ηH,gn =
1

γH
(3.17)

and γH =
QH,gn

QH,ht

(3.18)

the dimensionless parameter aH may be calculated by:

aH = aH,0 +
τ

τH,0

(3.19)

For cooling:

if γC > 0 and γC 6= 1 : ηC,ls =
1− γaCC

1− γaC+1
C

(3.20)

if γC = 1 : ηC,ls =
aC

aC + 1
(3.21)

if γC < 0 : ηC,ls = 1 (3.22)

and γC =
QC,ht

QC,gn

(3.23)

the dimensionless parameter aH may be calculated by:

aC = aC,0 +
τ

τC,0

(3.24)
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Where aH,0 and aC,0 are user determined dimensionless parameters, with default

values of aH,0 = 1 and aC,0 = 1 for continuously heated/cooled buildings in monthly

calculations. τH,0 and τC,0 are the reference time constants, with default values of

τH,0 = 15hours and τC,0 = 15hours for continuously heated/cooled building in

monthly calculations. The building time constant, τ , can be calculated as:

τ =
Cm

Htr +Hve

(3.25)

Where Cm is the building internal heat capacity, Htr and Hve are the transmission

and ventilation heat transfer coefficients, respectively.

An example of the ISO13790 implementation used in this study can be viewed

in Appendix B.

3.3 Sensitivity Analysis

To increase accuracy and reduce the number of variables included in the Latin

Hypercube Sampling process a sensitivity analysis is performed with the method of

Elementary effects (EEs). This method evaluates the significance of each variable

by determination their respective elementary effect. By examining the mean and

standard deviation of these elementary effect the significance of each variable may

be determined.

To determine the elementary effects consider k independent variables varied by

p levels within a k-dimensional cube, each elementary effect will then be represented

by 3.26 below [22]:
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EEi =
y (x1, x2, . . . , xi−1, xi + ∆, . . . xk)− y (x1, x2, . . . , xk)

∆
(3.26)

Where ∆ is a value in [ 1
p−1

, . . . , 1− 1
p−1

].

The morris method of sensitivity analysis uses the method of elementary effects

to experiment with different combinations of variables and their values to rank each

variable according to their largest effect. A flowchart of this process is located

in Appendix D; the MATLAB code for the morris experiment is also located in

Appendix D.

3.4 Latin Hypercube Sampling

The LHS method is an evolution of the stratified sampling method. The stratified

sampling method divides the probability distribution of the target variable into

K strata of equal probability and each stratum has n random samples generated.

The drawback of the stratified sampling method for high-dimensional problems is

that the total number of strata grows exponentially as the number of variables m

increases. The sample size N of a stratified sampling method is: N = Kmxn.

The LHS method samples on the m-dimensional hypercube in a way that only the

marginal distributions are stratified. Figure 3.2 (b) shows an illustration. Compared

to the stratified sampling shown in Figure 3.2(a) not all cells in Figure 3.2(b) have the

same number of samples (Figure 3.2 taken from Kroese, Taimre et al. [23]). Instead,

both the horizontal and vertical coordinates are stratified into K1 stratum with 30

samples each. A previous study by [24] shows that the LHS method, compared to

random sampling and stratified sampling, is more robust and leads to less variance

1K = 5 in the case illustrated.
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Figure 3.2: Illustration of Latin Hypercube Sampling.

in the expected mean in building simulation related applications.

The MATLAB code in Appendix E was used to generate the n samples required

for the simulation.

3.5 Sample Size

Sample size recommendations from previous studies by Ricker [16] and Reddy [14]

are relatively arbitrary and suggest samples within the range of 2000 up to 10000.

For this study there will be a minimum sample size based on the central limit

theorem and a confidence interval associated with that sample size. The goal being

to choose a sample large enough so the error of the sampling method itself does not

compound with the uncertainty of the modeling method and results.

Though the stochastic LHS method is the most robust sampling technique, com-

pared to random sampling and stratified sampling method, a proper sample size is



23

required to achieve a certain level of accuracy. A common measure for the level of

accuracy of a Monte Carlo Monte Carlo (MC) simulation is called the coefficient of

variation Coefficient of Variation (CoV) of the sample mean, as shown in Equation

3.27.

CoVMC =
σX̄
X̄

(3.27)

Where σX̄ is the standard deviation of the sample mean, X̄. According to the

central limit theory, σX̄ can be estimated through Equation 3.28:

σX̄ =
σx√
n

(3.28)

Where σx is the standard deviation of the population x, and n is the sample size.

Let X̄ represent a sample mean of a monthly building energy consumption (in any

energy source type) and µ represent the true monthly building energy consumption.

The confidence interval of µ at a confidence level of (1− δ) can be calculated as:

Pr(X̄ − Z 1−δ
2
× σX̄ ≤ µ ≤ X̄ + Z 1−δ

2
× σX̄) = 1− δ (3.29)

Theoretically a student t distribution should be used in Equation 3.29 instead

of the normal distribution since the standard deviation of monthly building energy

consumption is unknown. But the difference between the student t distribution

and the normal distribution becomes practically negligible when sample size grows

larger than 30. Past research shows a sample of size 100 is often required for a MC

simulation to converge in building applications. Therefore the normal distribution

is used in Equation 3.29 for simplicity. Based on Equation 3.29 the confidence range
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(θ) of monthly energy consumption µ can be calculated as:

θ = 2× Z 1−δ
2
× σX̄ (3.30)

As the calibration criterion for normalized mean bias error (NMBE) is 5% spec-

ified by ASHRAE Guideline 14 [25], measures have to be taken to ensure that θ

for any monthly energy consumption is significantly smaller than the required cal-

ibration criterion for NMBE. A conservative measure is taken in this study: the

confidence range θ of any monthly energy consumption has to be no larger than

some safety factor SF of the NMBE calibration criterion. That is:

θ = 2× Z 1−δ
2
× σX̄ ≤ 2× 5%

SF
× µ (3.31)

Since the true monthly building energy consumption µ is unknown, the sample

mean X̄ is used to approximate: µ ≈ X̄. Thus the proper sample size has to be at

least large enough to meet the accuracy level specified in Equation 3.32 at a given

level of confidence (1− δ).

CoVMC ≤
5%
SF

Z 1−δ
2

(3.32)

In accordance with Equation 3.29, the level of confidence and value of the pro-

duce different required CoV values. This study aims for a minimum confidence of

68% and of 1/10th, to lessen the impact of sampling error, which corresponds with

a sample size of n = 5000.

To reach a 99% confidence interval with a of 1/100th would require a half million

samples in this instance. Due to computing restrains this would be an unreasonably



25

large sample size for most applications, however with the LHS method it is possible

to simulate a sample this large within an hour. But, to keep the method applicable

to other building simulation software packages, 5000 will be the minimum sample

size.

3.6 Calibration Criteria

The quality of a calibration can be considered a goodness of fit (GOF) between the

model prediction and the measurements. Statistics used to measure the goodness of

fit are the NMBE and the coefficient of variance of root mean square error (CVRMSE)

[25,26].

NMBE =

∑
i=1:nActuali −Modeledi
(n− 1) Mean(Actual)

100% (3.33)

CVRMSE =

√∑
i=1:n(Actuali −Modeledi)2

n− 1
÷ x̄× 100% (3.34)

Actual represents metered utility data and Modeled is the simulation result. The

calibration residual is defined as the difference between the modeled and measured

building performance. NMBE measures the mean of calibration residuals, show-

ing how much a calibrated model over or under estimates building performance

compared to the actual measurement. NMBE alone is not sufficient to measure

the GOF, as the monthly fluctuations may cancel each other and result in a small

NMBE. The CVRMSE is introduced to account for these fluctuations and is essen-

tially the standard deviation of calibration residuals; showing how wide the variation

of the residual is. Thus it is possible to have an acceptable NMBE and reject the

CVRMSE or the opposite [27]. Since a building often consumes energy from multiple



26

energy sources, including electricity, gas, etc., one needs an aggregated index to

measure the overall goodness of fit. A common practice is to weigh the calibration

statistics, NMBE and CVRMSE, by the contribution each energy source makes to

annual building energy cost. The weighted indices can be calculated as follows:

Overall NMBE =

√
w2

kWhNMBEkWh
2 + w2

ThermNMBETherm
2

w2
kWh + w2

Therm

(3.35)

Overall CVRMSE =

√
w2

kWhCV
2
kWh + w2

ThermCV
2
Therm

w2
kWh + w2

Therm

(3.36)

Where w
kWh

+ w
Therm

= 1

Aggregating once more, the overall GOF of a calibration is calculated by com-

bining the NMBE and CVRMSE with a different set of weighting factors. There is

no established rule on what values to assign to either weight factor, however the

recommendation from ASHRAE Guideline 14-2002 [25] is to use a 1:3 weight for

CVRMSE:NMBE , reflecting the preference of building energy managers to capture

the annual energy consumption more accurately than the monthly variation. The

study by Reddy, Maor et al. [13] also uses a weight of 1:3 for CVRMSE:NMBE.

Overall GOF =

√
w2

NMBENMBE2
Overall + w2

CVRMSE
CV 2

Overall

w2
NMBE + w2

CVRMSE

(3.37)

Where wCVRMSE
+ wNMBE = 1.

Multiple organizations adopting M&V guidelines, including ASHRAE, EERE,

and EVO, have all published recommendations on the acceptable levels of NMBE

and CVRMSE [25, 26, 28]. EERE adopts the standards set by ASHRAE Guideline



27

14 [25] which suggests NMBE ≤ 5% and CVRMSE ≤ 15% for calibration on a

monthly basis2. This translates to a GOF ≤ 11% which is considered a calibrated

solution in the ASHRAE Project RP-1051 [13].

The implementation of the calibration criteria uses MATLAB and the source

code can be viewed in Appendix F.

3.7 Process

To sample and simulate each of these runs 5000 runs parameters are ”injected” into

the simulation via an (n× k) matrix and then stepped through ’n’ iterations where

each ’k’ variable is unpacked to the x(ith) value.

Before injecting, the parameters are ’packed’ such that array ’x(n, k)’ has a

unique position for each variable ’k’.

Consequently x(1, k) is the ith variable and as long as a = x(i), b = x(i+ 1), etc.

as the iteration continues; then each variable is assigned its appropriate position

within the simulation.

This process is repeated for each of ’n’ unique iterations for the test required.

With a simulation being completed and results output for each iteration.

This study begins with a morris sensitivity analysis; then a LHS simulation, a

calibration process, and the retrofit ECMs being implemented at the end.

2For hourly calibration ASHRAE Guideline 14 suggests NMBE ≤ 10% and CVRMSE ≤ 30%
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Chapter 4

Case Study

To demonstrate the calibration methods outlined in Chapter 3 a building that rep-

resents the aging building stock in need of retrofit is presented.

4.1 Nueberger Hall

Neuburger Hall (NH) at Portland State University (PSU) is a six story multi-use

building with classrooms, administrative service offices, computer labs, and other

facilities; originally built in 1960 and expanded in 1966. The footprint measures

200x200ft and contains a basement, four main floors, three mezzanine floors, and

a mechanical penthouse. Structurally, Neuburger Hall is primarily concrete with

single pane glazing, aluminum insulating panels and brick veneer.

Neuburger Hall is served by PSU’s central steam and chilled water loop, circu-

lated throughout NH via a constant vir volume (CAV) air handling unit (AHU).

Multiple air source heat pumps located on the roof serve the computer labs on the

fourth floor which are not serviced by the main AHU1.

Occupant and building operation schedules are based on observed university

schedules, and private communications with campus facility personnel. Internal

1This is marked by grey shade in Figure 4.1
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Figure 4.1: Photo of Neuberger Hall

gains are calculated based on lighting, equipment, and occupancy estimates from

site visits, university course catalogs, building layout, and university office schedules

[29,30].

Fresh air ventilation for is determined in accordance with ASHRAE 62.1 [31],

however different ventilation requirements in the 1960s may have been, NH is known

to be over ventilated2. Power ratings for major mechanical systems components,

such as fans, pumps, and the like; are acquired from a building audit report con-

ducted by Interface Engineering [32].

Ideally, on-site weather data for the 2003-2006 academic years is used, however

there is none. Instead, weather data for these years comes from a commercial

weather service, based on a new coupled global National Center for Environmental

2Malfunctioning air dampers according to site visits and communications with PSU facilities [29]
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Prediction (NCEP) reanalysis at unprecedented spatial3, vertical4, and temporal5

resolution [33].

Utility data is available intermittently from the years 2003-2011, condensate

water is available for 2003-2010, while electricity is available from 2003-2006 and

2010-2011. There is also no record of chilled water use. Due to these limitations

this research bases its calibration studies upon electricity consumption and space

heating energy use for the 2003-2006 academic years.

Table 4.1: Utility data provided by PSU F&P department for the years 2003-2006.

Condensate (KGAL) Electricity (kWh)
2003-2004 2004-2005 2005-2006 2003-2004 2004-2005 2005-2006

JUL 1 0 0 275,062 277,090 277,062
AUG 0 0 0 289,939 282,472 289,839
SEP 0 0 0 271,057 287,143 270,457

OCT 45 67 83 306,590 309,546 306,590
NOV 122 118 131 282,132 285,088 282,132
DEC 119 84 155 247,817 250,773 247,817
JAN 192 176 137 289,682 292,638 289,682
FEB 120 102 129 276,530 279,486 276,530

MAR 87 90 108 283,470 286,426 283,470
APR 63 83 89 292,667 295,623 292,667
MAY 30 33 33 304,613 307,569 304,613
JUN 0 13 0 300,717 302,281 297,605

Notice internal temperature is an uncertain parameter, this is because the model

simulates the difference between the exterior and interior. The set-point temperature

of the thermostat will regulate heating and cooling, but does not indicate what the

actual internal temperature may be and thermostats sometimes have a dead band

30.5◦ × 0.5◦
437 pressure levels for the atmosphere and 40 levels for the ocean
5Hourly
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Table 4.2: List of input parameters

Discrete Parameters Continous Paramters

Fan Power Outside Air Flow Rate (Building)
Pump Power Outside Air Flow Rate (Lab)
Occupant Internal Gains (Building) Thermal Bridge (Building)
Occupant Internal Gains (Lab) Thermal Bridge (Lab)
Lab Electricity Usage Heat Exchanger Efficiency
Monthly Schedule (Building) SHGC
Monthly Schedule (Lab) Lighting Power Density
Lighting/Plug Load Schedule Plug Load Power Density
North Shading Internal Temp H
East Shading Internal Temp C
South Shading External Convection Coef.
West Shading

in which they do not operate.

4.1.1 Utility Data Reduction

According to the PSU Master Plan [30] steam is supplied at 10.3psig and condensate

water cools to approximately 200◦F where it is metered. Using the steam tables

hg for the saturated steam is 2699.55kJ
kg

and hf for condensate is 419.1kJ
kg

. The

difference being the net energy supplied to the building per kilogram of steam.

Condensate water is given in kilo-gallons (KGAL), converting gallons to m3 by

dividing by 264.2 gal
m3 then multiplying by the density of the condensate will give

kilograms. Then the product of kilograms and the difference between the enthalpies

of the steam and condensate are converted to joules to be used in the calibration.

Qheat = (hg − hf)× 1000× GAL

264.2 gal
m3

× ρcondensate (4.1)
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4.2 Sensitivity Analysis

The sensitivity analysis analyzes the unknowns that are sampled and determines

which unknown parameters are significant with respect to the output. This reduces

the total number of parameters required for each sample and sampling less parame-

ters allows the sample generator to search more efficiently, increasing the resolution

of the significant parameters [34].

Each parameters significance is determined by the method of EEs. This method

is applied by generating a sample matrix containing each of the unknown parameters.

Each sample is simulated and the outputs recorded6. The elementary effects for each

parameter are calculated according to Equation 3.26, and the primary indicator of

a parameters significance is the µ∗ of the EEs for that parameter and output. There

will be a µ∗ of a parameter for each output7. Once complete, the parameters with

the largest µ∗ values are significant to their respective outputs they represent.

However, the final selection of significant parameters must contain the same level

of variation as the original set of parameters. Without this step, the new parameter

set will not truly represent the original parameter set. This is done by comparing

the variances of the outputs from the original set of parameters with the variances

of the modified set of parameters. With this complication, reducing the number of

parameters becomes a trial and error process.

After selecting variables with large and absolute significance, there are a large

amount of variables with relatively small influence, but do play an important role

in the validation procedure presented. Most of these are parameters that vary each

6In this case monthly and annual electricity and heat energy are the outputs
7The outputs in this case are heating and electricity for each month and an annual value for

each. Twenty-four per parameter
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month, but may have the same mean value and standard deviation as estimates for

each month. Reducing these parameters from discrete to continuous creates one or

two significant parameters rather than multiple less significant parameters. This

reduces the original list of 23 parameters with 155 inputs to just 8 parameters with

16 total inputs.

Table 4.3: Parameter list, post sensitivity analysis

Input Parameters

Outside Air Flow Rate Monthly Schedule (Building)
Fan Power Plug Load Power Density
Pump Power Lighting/Plug Load Schedule
Thermal Bridge (Building) Internal Temp H

A graphic illustrating this process can be found in Appendix D.

4.3 Settings

As noted in Equations 3.35 and 3.36 weighting factors may be assigned to each

energy source to adjust the calibration to favor a better fit for one energy source

over another. Building managers may wish to have a balanced fit between all en-

ergy sources or may be interested in identifying a fit that emphasizes energy costs.

Accomplishing these two goals is done by having the the energy factors, wkWh and

wTherm, equal one another for an even weight, or have them fluctuate as a ratio of

price against one another such that wkWh

wTherm
+ wTherm

wkWh
= 1 is true.

Once price or even weighting factors are established the GOF weights, wNMBE

and wCVRMSE
, can be adjusted to to the ratio desired as well. As in the ASHRAE

project a balance between these variables satisfying a GOF ≤ 11% may be used8.

8This will strictly average the NMBE and CVRMSE
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Or, prior to the GOF calculation, the NMBE and CVRMSE may be restricted to 5%

and 15%, respectively.

Altering the calibration with the calibration criteria through these weighting

factors changes the results achieved dramatically as is demonstrated in Section 4.4.

Table 4.4 displays these options.

Table 4.4: Calibration settings for price weighting (A), even weighting (B), and strict
criteria (C).

A B C

GOF 11% 11% 11%
MBE 5% 5% 5%
CV RMSE 15% 15% 15%
wkWh 3/4 1/2 -
wTherm 1/4 1/2 -

4.4 Results

Simulating 5000 samples generated for each case from Table 4.4 gives the results

displayed in Table 4.5. All simulations were done with the same year, 2005-2006,

and found 20 solutions for case A, 15 for case B, 920 for case C, and 162 for case D.

Years 2003-2004 and 2004-2005 are simulated with the same solution sets generated

by each case for validation.

Table 4.5 represents a GOF of the individual energy sources, such that only the

NMBE and CVRMSE for electricity are used in Equation 3.37. This is done for

the sake of simplicity. Electricity generally has a good fit no matter the setting,

with a slightly better fit for setting D, where a NMBEOverall and CV
RMSEOverall

of 5% and 15% are allowed, including price weighting. The values for setting C
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are the worst for heating, which also includes price weighting, and allows 15% for

either NMBEOverall or CV
RMSEOverall. Settings A and B have similar results for

both energy sources, each setting giving equal weight to the energy sources, and the

difference between them being the NMBEOverall of 15% for A and 5% for B.

Table 4.5: GOF distribution for settings A-D for each energy source. Calibrated for
2005-2006 and validated with the 2003-2004 and 2004-2005 years.

Heating Electricity
Year Set 5th Median 95th 5th Median 95th

2005-2006 A 9.9% 12.3% 14.5% 2.6% 4.2% 9.1%
2004-2005 A 13.3% 16.9% 24.1% 2.5% 3.5% 9.8%
2003-2004 A 10.6% 15.7% 22.6% 2.7% 4.2% 9.1%

2005-2006 B 9.4% 12.3% 14.4% 2.5% 3.8% 8.6%
2004-2005 B 13.3% 16.7% 24.9% 2.5% 3.3% 9.8%
2003-2004 B 10.9% 16.6% 23.7% 2.6% 3.8% 8.7%

2005-2006 C 16.3% 29.0% 64.3% 2.5% 4.4% 8.4%
2004-2005 C 17.5% 38.8% 74.4% 2.4% 3.8% 8.5%
2003-2004 C 17.0% 30.0% 65.4% 2.6% 4.5% 8.4%

2005-2006 D 13.5% 20.7% 25.3% 2.4% 3.7% 6.2%
2004-2005 D 15.3% 25.5% 33.6% 2.5% 3.2% 6.4%
2003-2004 D 14.0% 21.4% 29.3% 2.6% 3.8% 6.2%

Given the results in Table 4.5, this shows that while electricity may carry more

weight due to price, the fit of electricity is not greatly improved by enforcing this

within the calibration criteria. As mentioned earlier in Section 2.2, the idea of this

calibration method is a small set of quality calibrated building models to mitigate

the uncertainties associated with building retrofits. So while price weighting the

calibration will give a larger number of results9 the better fit represented by moving

to an equal price weight provides a smaller set of higher quality calibrations.

9920 and 162 solutions for C and D settings vs. 20 and 15 solutions for settings A and B.
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Due to the good overall fit of electricity in all cases and years, it is likely that

when electricity is aggregated with heating it produces an acceptable result. If

these energy sources were not aggregated, and instead, were to be evaluated on

their individual GOFs most solutions would not meet this criteria, and in fact only

2 solutions meeting this criteria for 2005-2006 were found. To analyze a sample

set without combining electricity and heating, but have them meet the criteria

independent of one another; a much larger sample size would be required.
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Chapter 5

Analysis

Understanding each sample population from price weighting, even weighting, or

enforcing the calibration criteria for each energy source individually, is important

to reducing uncertainty in calibrated building models.

Recall from the results in Section 4.4 that there are very few Strict criteria

enforcement (strict) criteria enforcement solutions generated from the minimum

sample size, n = 5000. To increase the number of strict solutions there are two

general methods. To use better data, using measure values instead of uncertain

parameters (where possible). The other options are to use a more efficient sampling

algorithm or increase the number of samples.

5.1 Large Sample Size

The results in section 4.4 used the minimum sample requirement of 5000, determined

in section 3.5, for which only 1 or 2 samples may meet the requirements of the strict

criteria, in some cases no samples will meet this criteria. To generate a large enough

solution set for analysis the number of samples are increased from 5×103 to 5×105.

This is still a small size relative to the possible combinations of variables, but offers

larger resolution to search more parameter combinations.
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Figure 5.1: Boxplots displaying the interquartile range of Heating and Electricity
predictions for strict weight solutions for the 2005-2006 year, n = 5x105.

Results from the large sample simulations for the strict solutions are in Table

5.1. These show marked improvement for the calibration year, however comparing

these results with Table 4.5 for settings A and B there is only marginal improvement

for the 2003-2004 validation and poor performance with the 2004-2005 validation

years. By themselves the validations do not show good agreement for heating, but

there is better agreement for electricity again compared with Table 4.5.

Increasing the resolution of the sampling procedure with a larger sample size

shows there are a larger number of strict solutions, however their validation between

years for heating leaves room for improvement. Ensuring the strict solutions between

years do not belong to the same sample population a hypothesis test is used.
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Table 5.1: Large sample size results for strict criteria with ∗ indicate the calibration
year and the other years are for validation.

Heating Electricity
Year 5th Median 95th 5th Median 95th

2005-2006* 7.4% 10.2% 11.0% 2.9% 4.6% 6.7%
2004-2005 11.3% 15.9% 20.3% 2.5% 3.4% 6.8%
2003-2004 11.2% 14.9% 19.5% 3.0% 4.7% 6.7%

2005-2006 11.2% 17.4% 27.7% 2.6% 4.1% 6.9%
2004-2005* 8.2% 9.9% 10.8% 2.5% 3.9% 5.4%
2003-2004 14.4% 21.6% 36.0% 2.7% 4.2% 6.9%

2005-2006 12.1% 15.9% 20.0% 3.4% 5.5% 7.5%
2004-2005 12.5% 17.3% 21.8% 2.5% 4.3% 7.8%
2003-2004* 7.5% 9.9% 10.8% 3.5% 5.5% 7.5%

The Hotelling T 2 Test is a multivariate hypothesis test of the means between two

sample populations to determine if the samples belong to the same population. It is

useful in determining if the resultant solution set from one year belong to the same

population from another year, or in determining if the solution sets found by the

various calibration settings are members of the same population. It is being used

for its robustness and compatibility with large sample sizes from multiple variables

for each sample set. Ideally sample sets being tested should be normally distributed

but this test handles non-normal distributions very well as noted by Everitt [35].

Using this test confirms the results seen in Table 5.1, that the strict solutions for

each year are coming from different populations (rejecting the null hypothesis that

Ho = µ). Most variables in the solutions sets tested are normally distributed, save

2-4 variables, for some sets.
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5.2 Refinement

From the previous section there is a suitable population of solutions from each of

the calibration criteria to analyze and compare with one another. This would not

have been possible without increasing the sample size from n = 5x103 to n = 5x105.

This may indicate that the uncertain variable table has ranges which are too broad

to locate a suitable amount of strict solutions and a possible method of correction

to this table is through the refinement process.

The refinement process involves taking the population of solutions from the strict

solutions from Section 3.5 and assigning a normal distribution to each parameter

with a mean and standard deviation. These become the new uncertainty table that

are sampled from with the minimum sample size and analyzed to determine the

effectiveness of this correction. Effectiveness is determined by the GOFs for the

energy sources and how other years calibrate and validate with this new uncertainty

table.

Solution sets generated from this procedure display marked improvement in the

quantity of strict criteria solutions achieved, but the overall validation ranges are

similar to those displayed in Table 5.1.
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Chapter 6

Conclusion

In review this calibration method relies on LHS and morris method sensitivity anal-

ysis to sample and determine significance in unknown parameters. The parameters

are then simulated with a calibration year and deemed solutions based on criteria

defined in ASHRAE Guideline 14 for NMBE and CVRMSE depending on the var-

ious weighting parameters used. These solutions are checked for validity between

other years of data and then could be used to simulated a set of ECMs.

6.1 Future Work

6.1.1 Retrofits and Uncertainty

After generating a validated solution set the retrofit energy simulations can be done.

Capturing the uncertainty associated with these results should be done to under-

stand the limitations of the data being presented and increasing its usefulness.

According to ASHRAE Guideline 14,

’Good data’ does not describe data that yield the desired answer; it de-
scribes data that yield a result within the intended uncertainty interval.

Fulfillment of the uncertainty calculations for the proposed ECMs is done in two

ways:
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1. Usage of the mean result for a set of solutions within the solution populations

to serve as the uncertainty.

2. Use uncertainty equations developed for single calibrated models in ASHRAE

Guideline 14, where the mean values would serve as the inputs.

Since the LHS method may stand on its own, the comparison of these two uncer-

tainty calculations is interesting. The stochastic LHS method of calculating the un-

certainty based on the range of model results from each population and the method

developed by Reddy and Claridge [36] utilizing the CVRMSE, savings, and number

of months post retrofit modeled to gather uncertainty.

6.1.2 Additional Research

Firstly, the method must be applied to a broader selection of buildings including

office buildings, multi-family residential, and such. Buildings with adequate utility

data, simple HVAC systems, and are in need of some form of energy improvement

would be the best candidates. Most of the effort for this study has been on the

method itself and centered around a single multi-use university building.

Subsequently, work may also be done on improving the algorithms within the

study too. This can include but is not limited to applying parts of stochastic LHS

method to other building simulation programs such as eQuest, EnergyPlus, and

others. Also conducting comparative studies between the aforementioned simulation

programs and the ISO13790 simulation approach will provide insight into how best

to implement the method as there are multiple ways to use the ISO13790 approach

including: single zone, core and shell, multi-zone, seasonal or monthly timestep, or

an hourly timestep.
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Focusing more on the sampling and analysis by providing a streamlined simula-

tion, analysis, and calibration approach integrated with neural networks and deep

learning algorithms would also be a huge improvement in this stochastic LHS pro-

cess.

6.2 Considerations

The stochastic LHS approach is a step forward in the process of building energy

model calibration. The strength of the method is derived from taking a closer look

at the assumptions that go into an energy model and filtering out the interactions

that either have no effect on the result, or interactions that would invalidate the

model.

This can lead to mixed results, with utility data pointing the way towards the

’correct’ answer. It is possible to arrive at the desired result according to the data,

however if the data itself is not accurate, then the model will be flawed as a result.

Looking back at Table 4.1 in Chapter 4 this is absolutely the case. Close inspection

of the electricity usage for the 03-04 year compared with 05-06 shows almost identical

energy usage for the two years which is most likely due to human error in collecting

the data.

6.3 Final Thoughts

Packaged calibration tools are still in development and there is no single ’best’

option. Compared with traditional building energy modeling retrofit projects, cali-

bration provides the much needed focus on uncertainty. Results generated without

regard to uncertainty have little significance comparatively.
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This stochastic LHS method presents a new trend in the development of tools

for MV. The importance of uncertainty analysis and risk assessment in the face of

commercial building retrofits cannot be understated. As the method matures, this

simple straightforward tool may prove invaluable for building owners and ESCOs.

As countries strive to be more energy independent and while new building en-

ergy consumption is on the decline it is important to bring the current building

stock up to modern standards. With the increasing capabilities of computers, more

efficient modeling techniques are being developed such as the one presented in this

study. With the improvement of building energy model calibration retrofits can

make the transition to transparency and quality investments, saving energy, money

and resources over the long term.
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Appendix A

Building Inputs

Table A.1: Simplified Internal Gains

Quantity Energy/Per Fraction Total [W]

People 1500 70 0.5 52500
Lighting 200000 1.2 0.5 120000

Plug Loads 200000 1.2 0.5 120000

Table A.2: Opaque Exterior Elements

Type Qty. Perimiter (m) Area U-Value Azimuth

Alum Panels 96 501.3 163.5 0.29 90
Alum Panels 97 613.4 231.8 0.29 180
Alum Panels 59 360.7 133.2 0.29 0
Brick Siding 2 73.2 201.9 0.29 90
Brick Siding 1 36.9 115.8 0.29 180
Brick Siding 1 36.9 115.8 0.29 0

Other Panels 20 101.2 32.0 0.29 180
Other Panels 20 101.2 32.0 0.29 0

Pillars 2 73.5 14.3 0.29 180
Pillars 2 73.5 14.3 0.29 0
Pillars 9 330.8 64.1 0.29 90

Roof 1 243.8 2405.3 0.29 0
Veneer Concrete 1 40.5 919.8 0.29 270
Veneer Concrete 1 37.5 102.7 0.29 180
Veneer Concrete 1 37.5 102.7 0.29 0
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Table A.3: Exterior Glazing Elements

Type Qty Perimeter Area U-Value SHGC Azimuth

1” Glass 70 468.2 189.9 5.7 0.75 270
1” Glass 36 278.7 97.3 5.7 0.75 180
1” Glass 36 278.7 97.3 5.7 0.75 0

1/4” Glass 34 254.3 118.8 5.7 0.75 270
1/4” Glass 24 180.0 83.4 5.7 0.75 180
1/4” Glass 24 180.0 83.4 5.7 0.75 0

Alum Windows 96 1683.4 295.0 5.7 0.75 90
Alum Windows 64 1196.5 192.6 5.7 0.75 180
Alum Windows 60 1052.1 182.0 5.7 0.75 0

Glass Door 3 23.4 11.4 5.7 0.75 180
Glass Door 3 23.4 11.4 5.7 0.75 0
Glass Door 2 19.9 12.3 5.7 0.75 270

Skylights 4 97.3 305.2 5.7 0.75 0
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Table A.4: ASHRAE 62.1 Ventilation Calculation

Type Floor Area cfm/ft2 People cfm/person m3/s

Office Basement 11072 0.06 55 5 0.44
Lecture Basement 10235 0.06 665 7.5 2.64

Circulation Basement 8157 0.06 0 0 0.23
Mechanical Basement 1432 0.12 0 0 0.08

Office First 28465 0.06 142 5 1.14
Circulation First 4812 0.06 0 0 0.14
Mechanical First 153 0.12 0 0 0.01

Office Second 2710.7 0.06 14 5 0.11
Lecture Second 24396.3 0.06 1586 7.5 6.30

Circulation Second 5499 0.06 0 0 0.16

Office 2nd Mezz 3803 0.06 19 5 0.15
Circulation 2nd Mezz 1622 0.06 0 0 0.05

Office Third 4415.4 0.06 22 5 0.18
Lecture Third 17661.6 0.06 1148 7.5 4.56

Circulation Third 10405 0.06 0 0 0.29
Mechanical Third 163 0.12 0 0 0.01

Office 3rd Mezz 2754 0.06 14 5 0.11
Circulation 3rd Mezz 1889 0.06 0 0 0.05

Office Fourth 10059 0.06 50 5 0.40
Lecture Fourth 4311 0.06 280 7.5 1.11

Circulation Fourth 8855 0.06 0 0 0.25

Office 4th Mezz 2802 0.06 14 5 0.11
Circulation 4th Mezz 1967 0.06 0 0 0.06

Office Fifth 1599 0.06 8 5 0.06
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Table A.5: Complete List of Variables for Latin Hypercube Sampling and the Morris
Method Sensitivity Analysis.

Index Variables Min Max Ref

1 Outside Air Flow Rate (Building) 11.879 25.521 18.7
2 Outside Air Flow Rate (Lab) 0.826 1.774 1.3
3 Fan Power 75834 162916 119375
4 Pump Power 8356 15519 11938
5 Occupant Internal Gains (Building) 24813 53307 39060
6 Occupant Internal Gains (Lab) 1654 3554 2604
7 Lab Electricity Usage 8715 18723 13719
8 Thermal Bridge (Building) 1.000 1.500 1
9 Thermal Bridge (Lab) 1.000 1.500 1

10 Heat Exchanger Efficiency 0.83 0.87 0.85
11 Monthly Schedule (Building) 0.335 0.719 0.527
12 Monthly Schedule (Lab) 0.463 0.591 0.527
13 SHGC 0.729 0.931 0.830
14 Lighting Power Density 1 1.5 1.000
15 Plug Load Power Density 1 1.5 1.000
16 Lighting/Plug Load Schedule 0.254 0.546 0.400
17 North Shading 0.8 1 0.800
18 East Shading 0.703 0.897 0.800
19 South Shading 0.703 0.897 0.800
20 West Shading 0.703 0.897 0.800
21 Internal Temp H 18.8 21.2 20.0
22 Internal Temp C 21.9 24.7 23.3
23 External Convection Coef. 20.4 29.6 25.0
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Appendix B

ISO 13790 MATLAB Code

MATLAB Code B.1: ISO 13790 Code

function [Q h interm,Q c interm]=iso 13790(H g,H tr,H ve,time,C m,...
theta h,theta c,f H,f C,a0,t0,Q gn,theta e)

% ******************************************************************
% This function calculates the monthly heating and cooling loads
% using the monthly heat balance method specified in ISO 13790.
% ******************************************************************
%
% Inputs:
% H g : Ground Heat Transfer Coefficient [W/K]
% H tr : Transmission Heat Transfer Coefficient [W/K]
% H ve : Ventilation Heat Transfer Coefficient [W/K]
% C m : Building Total Heat Capacity []
% time : Monthly Timestep [s]
% theta h : Heating Setpoint Temperature [C]
% theta c : Cooling Setpoint Temperature [C]
% theta e : Monthly Average External Temperature [C]
% f H : Fraction of Month in Heating Mode
% f C : Fraction of Month in Cooling Mode
% a0 : Dimensionless Time Constant
% t0 : Dimesnionless Time Constant
% Q gn : Monthly Total Solar and Internal Gains [J]
%
% Outputs:
% Q h interm : Monthly Heating Energy Requirements [J]
% Q c interm : Monthly Cooling Energy Requirements [J]
%
% Subfunctions:
% util factor : Monthly Utilization Factor Calculation
%
for i = 1:12 % run through each month (Jan to Dec)
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% -------------------------------------------------------------------
% Transmission/Ventilation

Q tr g = H g * time(i) * 2; % 2 degree temp difference
% Transmission/Ventilation Heat Transfer (Continous)
Q tr h = (theta h - theta e(i))*H tr*time(i) + Q tr g; % [J]
Q tr c = (theta c - theta e(i))*H tr*time(i) + Q tr g; % [J]
Q ve h = (theta h - theta e(i))*H ve*time(i); % [J]
Q ve c = (theta c - theta e(i))*H ve*time(i); % [J]

% -------------------------------------------------------------------
% Heat Balance Ratio for Heating

Q h i = Q ve h + Q tr h; % Heating for month i
gamma h = Q gn(i)/Q h i; % Heat Balance for heating for month i

% Heat Balance Ratio for Cooling
Q c i = Q ve c + Q tr c; % Cooling for month i
gamma c = Q gn(i)/Q c i; % Heat Balance in cooling for month i

% -------------------------------------------------------------------
% 12.2.1 - Utilization Factor

[eta h,eta c,a h,a c]=CalUtilizationFactor(C m,H tr,...
H ve,a0,t0,gamma h,gamma c,f H(i),f C(i));

% -------------------------------------------------------------------
% Continous Heating/Cooling Energy

Q h cont = Q h i - eta h*Q gn(i); % [J] Heating
Q c cont = Q gn(i) - eta c*Q c i; % [J] Cooling

% -------------------------------------------------------------------
% 13.2.2 - Intermitent Heating/Cooling

Q h interm(i) = Q h cont*a h;
Q c interm(i) = Q c cont*a c;

% -------------------------------------------------------------------
end

MATLAB Code B.2: Heat Transmission Calculation

function [H tr,H g,H ve] = tr calc(BldgEnv,Bldg,BldgEnvG,...
Vdot,EnvWind)

% ******************************************************************
% This function calculates the transmission and ventilation heat
% transfer coefficients as outlined in ISO 13790.
% ******************************************************************
%
% Inputs:
% Bldg: Complete Building Envelope Areas and U-Values
% BldgEnv: Opaque Building Element Areas and U-Values
% BldgEnvG: Ground Building Element Area
% Vdot: Ventilation Air Flow Rate Required
% EnvWind: Glazing Building Element Areas and U-Values
%
% Outputs:
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% H tr: Transmission Heat Transfer Coefficient [W/K]
% H ve: Ventilation Heat Transfer Coefficient [W/K]
% H g: Ground Heat Transfer Coefficient [W/K]
%

mArea = BldgEnv(:,2);
mUVal = BldgEnv(:,3);
He = sum(mArea.*mUVal); % W/K

wArea = Bldg(EnvWind,2);
wUVal = Bldg(EnvWind,3);
Hw = sum(wArea.*wUVal); % W/K

H tr = He + Hw; % W/K

% Ventilation
H ve = 1200*Vdot; %[W/K]

% Transmission to Ground
gArea = BldgEnvG(:,2);
gUVal = BldgEnvG(:,3);
H g = sum(gArea.*gUVal); % W/K

MATLAB Code B.3: Utilization Factor Calculation

function [eta h,eta c,a h red,a c red]=util factor(C m,H tr,H ve,...
a 0,tau 0,gamma h,gamma c,f H,f C)

% ******************************************************************
% This function calculates the monthly utilization factors
% as specified in ISO 13790.
% ******************************************************************
%
% Inputs:
% C m: Building Total Heat Capacity []
% H tr: Transmission Heat Transfer Coefficient [W/K]
% H ve: Ventilation Heat Transfer Coefficient [W/K]
% a 0: Dimensionless Time Constant
% tau 0: Dimensionless Time Constant
% gamma h: Heat Balance Ratio in Heating Mode
% gamma c: Heat Balance Ratio in Cooling Mode
% f H: Fraction of Month in Heating Mode
% f C: Fraction of Month in Cooling Mode
%
% Outputs:
% eta h: Gain Utilization Factor
% eta c: Loss Utilization Factor
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% a h red: Intermitent Heating Reduction Factor
% a c red: Intermitent Cooling Reduction Factor

% Building Inertia
tau = (C m/3600)/(H tr + H ve);
a param = a 0 + tau/tau 0;

%Gain and Loss Utilization Factor Calculation
if gamma h<0

eta h = 1/gamma h;
elseif gamma h>0

if gamma h==1
eta h = a param/(a param + 1);

else
eta h = (1-gamma hˆ(a param))/(1-gamma hˆ(a param + 1));

end
else

eta h = 0;
end
if gamma c<0

eta c = 1;
elseif gamma c>0

if gamma c==1
eta c = a param/(a param + 1);

else
eta c = (1-gamma cˆ-(a param))/(1-gamma cˆ-(a param + 1));

end
else

eta c = 0;
end

% Heating and Cooling Reduction Factor Calculation
a h red = 1 - 3*(tau 0/tau)*gamma h*(1-f H);
if a h red > 1

a h red = 1;
elseif a h red <f H

a h red = f H;
end
a c red = 1 - 3*(tau 0/tau)*cBalance*(1-f C);
if a c red > 1

a c red = 1;
elseif a c red <Cfract

a c red = Cfract;
end
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Appendix C

Internal Gains and Solar Calculations

MATLAB Code C.1: Total monthly heat gain calculation. Comprised of solar and
internal gains.

function Q gn = gains(bldg opaq,bldg glaz,bldg env,hoa,...
lat,lon,weather data,theta e,theta sky,time)

% ******************************************************************
% This function calculates the total internal and solar gains
% as specified in ISO 13790.
% ******************************************************************
%
% Inputs:
% Bldg: Complete Building Envelope Data
% BldgEnv: Opaque Element Areas and U-Values
% EnvWind: Glazed Element Areas and U-Values
% hoa: External Film Heat Transfer Coefficient
% lat: Latitude of Location
% lon: Longitude of Location
% weather data: Complete Hourly Weather Data
% theta e: Fraction of Month in Heating Mode
% theta sky: Fraction of Month in Cooling Mode
%
% Outputs:
% Q gn: Gain Utilization Factor
%
% Subfunction:
% solar glaz: Calculate Solar Gains from Glazed Elements
% solar opaq: Calculate Solar Gains from Opaque Elements
% rad solar: Calculate Radiated Solar Losses

% Estimate shading reduction factor
ext shade = ones(size(bldg glaz,1),1);

for i = 1:12
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% Solar Gains for Conditioned Space
Phi glaz(i) = solar glaz(bldg glaz,ext shade,i,lat,...

lon,weather data); %[Wh]
Phi opaq(i) = solar opaq(bldg opaq,i,lat,lon,...

weather data,hoa); %[Wh]
Phi sol(i) = (Phi glaz(i) + Phi opaq(i))*3600; %[J]
Phi r(i) = rad solar(bldg env,hoa,theta sky(i),...

i,theta e(i))*time(i); %[J]
end

Q sol gn = (Phi sol - Phi r); % [J]

Q gn = Q sol gn;

MATLAB Code C.2: Solar calculation for opaque elements.

function Q sol opaq = solar opaq(bldg opaq,month,lat,...
lon,weather data,hoa)

% *****************************************************************
% Subfunction to estimate the total solar gain
% through exterior opaque elements.
% *****************************************************************
%
% Inputs:
% bldg opaq : Matrix containing area, SHGC, thermal
% absorptance, and thermal transmission
% of opaque elements.
% month : Month of the year.
% lat : Latitude of location.
% lon : Longitude of location.
% weater data : Matrix of hourly weather data including direct
% and diffuse solar radiation.
% hoa : Thermal resistance of thermal film on
% exterior surface.
%
% Outputs:
% Q sol opaq : Monthly solar gain through glazing elements [Wh]
%

Q sol opaq = 0; % Initialize

Fsh = 1; % Shading reduction factor

for i = 1:size(bldg opaq,1)
alpha f = bldg opaq(i,6);
beta f = bldg opaq(i,7);
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SolAbs = bldg opaq(i,5);
Aopaq = bldg opaq(i,2);
U val = bldg opaq(i,3);
[I beam, I diff] = month solar(lat,lon,weather data,month,...

alpha f,beta f); %[Wh/m2]
Asol = SolAbs/hoa*U val*Aopaq;
SolarOpaq = (I beam + I diff)*Asol*Fsh;

Q sol opaq = Q sol opaq + SolarOpaq; % [Wh]
end

MATLAB Code C.3: Solar calculation for glazed elements

function Q sol glaz = solar glaz(bldg glaz,bldg shade,month,...
lat,lon,weather data)

% **********************************************
% Subfunction to estimate the total solar gains
% through glazing envelope elements
% **********************************************
%
% Inputs:
% bldg glaz : Matrix containing area, SHGC, thermal
% absorptance, and thermal transmission
% of building glazing.
% bldg shade : External shading factor
% lat : Latitude of location
% lon : Longitude of location
% weather data : Matrix of hourly weather data including
% direct and diffuse solar radiation.
% Outputs:
% Q sol glaz : Monthly solar gain from glazing
% elements [Wh]

Q sol glaz = 0; % Initialize

Ff = 0.0; % Frame factor

for i = 1:size(bldg glaz,1)
alpha f = bldg glaz(i,6);
beta f = bldg glaz(i,7);
SHGC = bldg glaz(i,5);
Aw = bldg glaz(i,2);
[I beam, I diff] = month solar(lat,lon,weather data,month,...

alpha f,beta f); %[Wh/m2]
A sol = SHGC * (1-Ff)*Aw;
Q sol beam = bldg shade(i)*A sol*I beam;
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Q sol diff = A sol*I diff;

Q sol glaz = Q sol glaz+(Q sol beam + Q sol diff);% [Wh]
end

MATLAB Code C.4: Monthly calculation for total solar gains.

function [I beam, I diff] = month solar(lat,lon,weather data,...
month,alpha f,beta f)

% *****************************************************************
% This is a subfunction to calculate the monthly incident solar
% radiation on any tilted surface.
% *****************************************************************
% Author : Huafen Hu
% Edited By : Nicolas Johnson
%
% Inputs:
% Lat: latitude of the location [deg]
% Lon: longtitude of the location [deg]
% alpha f: surface zimuth measured from due south clockwise, [deg]
% beta f: the tilt angle [deg]
% Outputs:
% mIb: monthly beam radiation on the tilted surface, [Wh/mˆ2]
% mId: monthly diffuse radiation on the tilted surface, [Wh/mˆ2]

I beam = 0;
I diff = 0;

fdmonth = [1 32 60 91 121 152 182 213 244 274 305 335];

ydate s = fdmonth(month);
if month==12

ydate e = 365;
else

ydate e = fdmonth(month+1)-1;
end

for j = ydate s:ydate e
Ydate = j;
for k = 1:24

LST = k-0.5;
nrow = (Ydate -1)* 24 + floor(LST) + 1;
[Idbeta,Idfbeta]=solar(weather data,lat,lon,Ydate,LST,nrow,...

alpha f,beta f);
I beam= I beam + Idbeta;
I diff = I diff + Idfbeta;
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end
end

MATLAB Code C.5: Calculation for direct and diffuse solar radiation on each
element.

function [Idbeta,Idfbeta,i beta]=solar(weather data,Lat,Lon,Ydate,...
LST,nrow,alpha f,beta f)

% *******************************************************************
% This is a sub-function for calculating solar gains.
% The total solar gain comes from three parts: direct radiation, sky
% diffuse radiation and ground reflection.
% *******************************************************************
%
% Author: Huafen Hu
%
% Inputs:
% weather data : Formatted weather data w/ solar beam and diffuse
% radiation.
% lat : Lattitude of location.
% lon : Longitude of location.
% Ydate : Day of the year.
% LST : Hour of the day.
% nrow : Row of weather data to access.
% alpha f : Surface azimuth measure from due south clockwise.
% beta f : Tilt angle of surface.
%
% Outputs:
% Idbeta : Total direct/beam radiation on the surface.
% Idfbeta : Total diffuse solar radiation on the surface.
% i beta : The angle between the incident beam and
% the surface's normal vector.
%

r g = 0.2; % ground reflectivity - assign the overcast sky

%---------------
%Albedo of some typical natural surfaces
% fresh snow cover - (0.75-0.95)
% old snow cover - (0.4-0.7)
% densely built-up areas - (0.15-0.25)
% high dense grass - (0.18-0.20)
% Lawn: high sun, clear sky - (0.23)
% Lawn: high sun, partly cloudy - (0.23)
% Lawn: low sun, clear sky - (0.25)
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% Lawn: overcast sky - (0.23)
% Dead leaves - (0.30)

Iglobal h = weather data(nrow,11); % Load global horizontal radiation
% from weather data

Ifh = weather data(nrow,13); % Load diffuse horizontal radiation
% from weather data

Idh = Iglobal h - Ifh;

if Iglobal h == 0
Idbeta = 0;
Idfbeta = 0;
i beta =0;
return;

end

plocal = weather data(nrow,7); %atmospheric station pressure(Pa)

%--------------------------------------------------------------%
% This part covers direct radiation

decli = 23.45*sin((280.1+(0.9863*Ydate))*pi/180); % Solar declination,
% unit: degree

% Apparent solar time, calculated according to
% ASHRAE fundamentals 07/31/2006

LSM = 120; % Local standard time meridian, CST - 90, EST - 75,
% MST - 105, PST - 120

ET = 9.87*sin((1.978*Ydate-160.22)*pi/180)-7.53*cos((0.989*Ydate-...
80.11)*pi/180)-1.5*sin((0.989*Ydate-80.11)*pi/180); % Equation

% of time
ts = LST + ET/60 + 4*(LSM - Lon)/60; % Apparent solar time

theta h = 15 * (12 - ts); % The hour angle, degree
beta s = asin(cos(Lat*pi/180)*cos(decli*pi/180)*cos(theta h*pi/180)...

+sin(Lat*pi/180)*sin(decli*pi/180)); % The solar altitude, radians

if sin(beta s)<sin(3*pi/180) % Sun is still below the horizon,
% assigning the tolerance to be
% 5 degrees

Idbeta = 0;
Idfbeta = 0;
i beta =0;
return;

end
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Isc = 1353; % the solar constant evaluated at the equinox, W/mˆ2

sin alpha s = cos(decli*pi/180)*sin(theta h*pi/180)/cos(beta s);
cos alpha s = (sin(beta s)*sin(Lat*pi/180) - sin(decli*pi/180))...

/cos(beta s)/cos(Lat*pi/180);
alpha s1 = asin(sin alpha s)*180/pi; % Solar azimuth

% option 1 in degree
alpha s2 = acos(cos alpha s)*180/pi; % Solar azimuth

% option 2 in degree
Idn = Idh/sin(beta s);

%% Do correction on solar azimuth - 07/31/2006
if sin alpha s > 0.00000001

if cos alpha s > 0.00000001
alpha s = - alpha s1;

else
alpha s = - alpha s2;

end
else

if cos alpha s > 0.00000001
alpha s = - alpha s1;

else
alpha s = alpha s2;

end
end

w = abs(alpha s - alpha f); % The surface solar azimuth
i beta = acos(sin(beta s)*cos(beta f*pi/180)+cos(beta s)*...

cos(w*pi/180)*sin(beta f*pi/180));
% The angle between the incident beam and the surface's normal vector

if beta f==0 %horizontal surfaces
Idbeta = Idh;
Idfbeta = Ifh;
return;

elseif beta f==180
Idbeta = 0;
Idfbeta = 0;
return;

end

if cos(i beta)<0.0000001 % the subject is behind the shadow
Idbeta = 0;

else
Idbeta = Idn * cos(i beta) ; % The direct intensity on

% the inclined surface;
if Idbeta < 0
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Idbeta = 0;
end

end

%--------------------------------------------------------------%
% The section deals with ground reflected component

Irv = 0.5*(1-cos(beta f*pi/180))* Iglobal h * r g;
% The ground reflected total radiation incident on the
% nonvertical inclination

% calculate the air mass
% The air mass corresponding to the prevailing solar altitude
% and atmospheric pressure
m d = sin(beta s)+0.00176759*(beta s*180/pi*((94.37515-beta s...

*180/pi)ˆ(-1.21563)));
m unc = 1/m d;
m = m unc * plocal / 101325;

%--------------------------------------------------------------%
% This part deals with sky diffuse component
z = (90 - beta s*180/pi)*pi/180; % The zenith angle, in radiance
a0 = max(0, cos(i beta));
a1 = max(cos(85*pi/180), cos(z));
% a0, a1: correct for the angle of incidence of the circumsolar
% radiation on the inclined and horizontal surface respectively

if Ifh==0
Idfbeta = 0;
return;

else
epslon m = (Ifh + Idn)/Ifh + (1.041*zˆ3);
epslon d = 1 + (1.041*zˆ3);
epslon = epslon m / epslon d;

end

f = [
-0.0083 0.1299 0.3297 0.5682 0.8730 1.1326 1.0602 0.6777
0.5877 0.6826 0.4869 0.1875 -0.3920 -1.2367 -1.5999 -0.3273
-0.0621 -0.1514 -0.2211 -0.2951 -0.3616 -0.4118 -0.3589 -0.2504
-0.0596 -0.0189 0.0554 0.1089 0.2256 0.2878 0.2642 0.1561
0.0721 0.0660 -0.0640 -0.1519 -0.4620 -0.8230 -1.1272 -1.3765
-0.0220 -0.0289 -0.0261 -0.0140 0.0012 0.0559 0.1311 0.2506];

fcol = zeros(5,1); % initialize the f column
if (epslon>=1.000)&&(epslon<1.065)

fcol = f(:,1);
elseif (epslon>=1.065)&&(epslon<1.230)
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fcol = f(:,2);
elseif (epslon>=1.230)&&(epslon<1.500)

fcol = f(:,3);
elseif (epslon>=1.500)&&(epslon<1.950)

fcol = f(:,4);
elseif (epslon>=1.950)&&(epslon<2.800)

fcol = f(:,5);
elseif (epslon>=2.800)&&(epslon<4.500)

fcol = f(:,6);
elseif (epslon>=4.500)&&(epslon<6.200)

fcol = f(:,7);
else

fcol = f(:,8);
end

delta = m * Ifh / Isc; % The sky's brightness ( reflect the
% opacity/thickness of the clouds)

F1 =max(0, (fcol(1)+fcol(2)*delta + z*fcol(3)));
% The circumsolar brightness coefficient
F2 = fcol(4) + fcol(5)*delta + z*fcol(6);
% The horizon brightness coefficient

Isbeta = Ifh * ((1-F1)*cos(0.5*beta f*pi/180)*cos(0.5*beta f*...
pi/180) + F1*a0/a1 + F2*sin(beta f*pi/180));

% The sky diffuse radiation incident on a surface of inclination

%---------------------------------------------------------------------
%---------------------------------------------------------------------
Idfbeta = Isbeta + Irv; % total diffuse radiation, W/mˆ2

MATLAB Code C.6: Radiated solar loss calculation.

function Phi r = rad solar(BldgEnvC,hoa,theta sky,theta e)

% *******************************************************************
% This is a function to estimate longwave radiation between
% exterior building surfaces and sky.
% *******************************************************************
%
% Author: Huafen Hu
%
% Inputs:
% bldg env : Building exterior surface data
% hoa : Exterior surface convective heat
% transfer coefficient
% theta sky : Sky temperature
% theta e : Exterior temperature
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%
% Outputs:
% Phi r: Total longwave solar radiation loss
%

Phi r = 0; % Initialize
sigma 0 = 5.67e-8; % [W/M2K4] Stephen Boltzman Constant
theta ss = (theta sky + theta e)/2;

% Estimate the external radiative heat transfer coefficient
for j = 1:size(BldgEnvC,1)

alpha f = BldgEnvC(j,6);
epslon 0 = BldgEnvC(j,8);
h r = 4*epslon 0*sigma 0*((theta ss+273.15)ˆ3); % [W/M2K]
U val = BldgEnvC(j,3); % [W/M2K]
area = BldgEnvC(j,2);
phi r j = (1/hoa*U val*area*h r*(theta e - Tsky))*...

(1+cos(alpha f/180*pi))/2; % [W]

Phi r = Phi r + phi r j;
end

MATLAB Code C.7: Sky temperature calculation.

function theta sky = sky temp(weather data)

% ********************************************************
% This is a function to estimate sky temperature based
% on the algorithm set up in EnergyPlus, referred in
% Engineering reference PDF p.148
% ********************************************************
%
% Author: Huafen Hu & Nicolas Johnson
%
% Inputs:
% weather data : The TMY3 formatted weather file
%
% Outputs:
% theta sky : The average monthly sky temperature, [degC]
%

theta sky = zeros(12,1);

% constants
sigma0 = 5.67e-8; % Stefan-Boltzmann constant, [W/m2K4]
hIR = weather data(:,10);
hTsky = (hIR/sigma0).ˆ0.25 - 273.15;
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% calculate the monthly average
fdmonth = [1 32 60 91 121 152 182 213 244 274 305 335];
for i=1:12

ydate s = fdmonth(i);
if i==12

ydate e = 365;
else

ydate e = fdmonth(i+1)-1;
end

row s = (ydate s - 1)*24 +1;
row e = (ydate e - 1)*24 + 24;
theta sky(i) = mean(hTsky(row s:row e));

end

MATLAB Code C.8: Monthly average temperature calculation.

function [theta sky,theta e,t,WindS]=weather(weather data)

theta sky = sky temp(weather data);

% Ic, Tdb,Tsky

mWeather = weather data(:,4);
Jan = mean(mWeather(1:744));
Feb = mean(mWeather(745:1416));
Mar = mean(mWeather(1417:2160));
Apr = mean(mWeather(2161:2880));
May = mean(mWeather(2881:3624));
Jun = mean(mWeather(3625:4344));
Jul = mean(mWeather(4345:5088));
Aug = mean(mWeather(5089:5832));
Sep = mean(mWeather(5833:6552));
Oct = mean(mWeather(6553:7296));
Nov = mean(mWeather(7296:8016));
Dec = mean(mWeather(8017:8760));

mWind = weather data(:,15);
wJan = mean(mWind(1:744));
wFeb = mean(mWind(745:1416));
wMar = mean(mWind(1417:2160));
wApr = mean(mWind(2161:2880));
wMay = mean(mWind(2881:3624));
wJun = mean(mWind(3625:4344));
wJul = mean(mWind(4345:5088));
wAug = mean(mWind(5089:5832));
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wSep = mean(mWind(5833:6552));
wOct = mean(mWind(6553:7296));
wNov = mean(mWind(7296:8016));
wDec = mean(mWind(8017:8760));

theta e = [Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec];

WindS=[wJan;wFeb;wMar;wApr;wMay;wJun;wJul;wAug;wSep;wOct;wNov;wDec];

ndaysMonth=[31 28 31 30 31 30 31 31 30 31 30 31];
t = ndaysMonth'*24*3600;
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Appendix D

Morris Method MATLAB Functions

MATLAB Code D.1: Morris Method generator script. This script initializes the
variables and inserts them within the morris experiment function. Once complete a
variable matrix is created for simulation.

% --------------------------------------------------------------------
% This script generates a file called MorrisExperiment.csv which
% specifies the runs for a Method of Morris screening experiment.
% To use this script, please do the following:

% 1. REQUIRED FILES
% Have the following files in your working directory in Matlab:
% - generate experiment.m (this script)
% - morris experiment.m

% 2. EDIT CODE FOR YOUR FACTORS
% Adapt the script for the number of factors that you are analyzing.
% - Specify your factors the comments following Line 23.
% - Specify lower bounds for your factors in Line 31.
% - Specify upper bounds for your factors in Line 32.
% - Specify the number of random observations in Line 40.
% --------------------------------------------------------------------

% --------------------------------------------------------------------
% SPECIFY FACTORS
% --------------------------------------------------------------------

% -----------------------------edit-below-----------------------------
% x = [Factor1,...,Factork]
% Factor1 ranges from a to b --> [a, b]
% ...
% Factork ranges from c to d --> [c, d]
% -----------------------------edit-above-----------------------------

% -----------------------------edit-below-----------------------------
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xlb = xlsread('..\16.Variables\Uncertainties.xls','Morris','C2:C156')';
xub = xlsread('..\16.Variables\Uncertainties.xls','Morris','D2:D156')';
% -----------------------------edit-above-----------------------------

% --------------------------------------------------------------------
% SPECIFY NUMBER OF RANDOM OBSERVATIONS
% --------------------------------------------------------------------

% -----------------------------edit-below-----------------------------
r = 10; % the number of random observations
% -----------------------------edit-above-----------------------------

k = length(xlb); % the number of factors
e = morris experiment(k,r,xlb,xub);
csvwrite('..\16.Variables\MorrisExperiment.csv',e)
m morr = csvread('..\16.Variables\MorrisExperiment.csv');
% --------------------------------------------------------------------

MATLAB Code D.2: Function within the Morris Method generator script. This
function generates a matrix of variable sets between their upper and lower bounds.

function X = morris experiment(k, r, xlb, xub, seed)
%
% ****************************************************
% Function to generate the input data matrix for the
% Morris expiriment.
% ****************************************************
%
% Author : Huafen Hu
% Edits By : Nicolas Johnson
%
% Inputs:
% k : Number of input factors
% p : Grid level (should be even)
% r : The number of effects that one wants to sample
% lb : Optional lower bound on the x values
% ub : Optional upper bound ont the x values
% seed : Optional random number generator seed
%
% Output:
% X : Matrix of (n,k) for model
%

m = k+1; % number of experiments per batch
n = m*r; % total number of experiments
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% Pick p to be something large so that it is unlikely that
% the same grid point will be sampled twice
p = 4; %r*10000;
delta = p/(2*(p-1));

% Check for lower and upper bounds
if nargin < 4

xlb = zeros(1,k);
xub = ones(1,k);

end

% Seed the random number generator
if nargin==5

rand('state',seed);
else

rand('state',sum(100*clock));
end

% Define sampling matrix of the form
% B = [0 0 0 0;
% 1 0 0 0;
% 1 1 0 0;
% 1 1 1 0;
% 1 1 1 1];
J = ones(m,k);
B = tril(J,-1);

X = zeros(n,k);
for i=1:r

Dstar = diag(floor(rand(k,1)*2)*2-ones(k,1));
xstar = floor(rand(1,k)*p/2)/(p-1);
Btemp = ones(m,1)*xstar+delta/2*((2*B-J)*Dstar+J);
Bstar = Btemp(:,randperm(k));
X((i-1)*m+1:i*m,:) = ones(m,1)*xlb+ones(m,1)...

*(xub-xlb).*Bstar;
end

return;

MATLAB Code D.3: First step in analyzing the simulation results from the pre-
ceeding variable matrix. Elementary effect statistics are generated for the plots and
further analysis.

% --------------------------------------------------------------------
% This script generates Method of Morris plots to analyze the results
% of a Method of Morris screening experiment. To use this script,
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% please do the following:

% 1. REQUIRED FILES
% Have the following files in your working directory in Matlab:
% - generate plots.m (this script)
% - morris plot.m
% - MorrisResults.csv (a .csv file containing your experiment and
% results.
% It is important that this file contain only numbers, so be sure
% there are no headers in your .csv file.)

% 2. EDIT CODE FOR YOUR RESPONSES
% Adapt the script for the number of responses that you are
% analyzing.
% - Specify the number of responses in Line 26.
% - Add or remove plot commands following Line 45.
% - Add or remove entries in the stats command following Line 73.
% --------------------------------------------------------------------

% --------------------------------------------------------------------
% NUMBER OF RESPONSES
% --------------------------------------------------------------------

% load Morris Results
% Qkwh =[m mQkwh' sum(m mQkwh,1)'];
% Qsh = [m mQh demand' sum(m mQh demand,1)'];
% xlswrite('MorrisResults.csv',Qkwh,'MorrisResults','A1');
% xlswrite('MorrisResults.csv',Qsh,'MorrisResults','N1');
%

% -----------------------------edit-below-----------------------------
m = 30; % number of responses
%
% load morResult
%
% morResult = [qH total' sum(qH total)' qE total' ...
% sum(qE total)' g CV RMSE' g MBE' e CV RMSE' e MBE'];
%
% load m morr
%
% morResults = [m morr morResult];
%
% csvwrite('MorrisResults.csv',morResults);

% -----------------------------edit-above-----------------------------

% load experiment and response data from MorrisResults.csv
E = xlsread('MorrisResults.csv');
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k = size(E,2) - m;
e = E(:,1:k);
M = E(:,(k+1):(k+m));

% --------------------------------------------------------------------
% PLOT COMMANDS
% --------------------------------------------------------------------
% The following lines contain plot commands to generate the morris
% plots. There is one plot command for each response. Each command
% consists of three lines of code. Add or remove plot commands as
% needed. Be sure to index the effective mean and standard deviation
% variable names as well as the column in the M vector for each
% additional response. Also, replace the generic "Reponse #" with a
% more descriptive name.

% -----------------------------edit-below-----------------------------
figure, [eff mean m1, eff std m1] = morris plot(e,M(:,26));
title('Method of Morris - annual space heating')

figure, [eff mean m2, eff std m2] = morris plot(e,M(:,13));
title('Method of Morris - annual kwh')

figure, [eff mean m3, eff std m3] = morris plot(e,M(:,3));
title('Method of Morris - Response 3')

figure, [eff mean m4, eff std m4] = morris plot(e,M(:,4));
title('Method of Morris - Response 4')

figure, [eff mean m5, eff std m5] = morris plot(e,M(:,5));
title('Method of Morris - Response 5')
% -----------------------------edit-above-----------------------------

% -----------------------------Results postprocess--------------------
MorrisSum = zeros(k,m*3);
for ii = 1:m

[eff mean, abs eff mean, eff std] = morris cal(e, M(:,ii));
MorrisSum(:,(ii-1)*3+1)= abs eff mean;
MorrisSum(:,(ii-1)*3+2)= eff mean;
MorrisSum(:,(ii-1)*3+3)= eff std;

end

% rank them here

save morSum MorrisSum

xlswrite('MorrisSum.xls',MorrisSum,1,'A1')
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% --------------------------------------------------------------------
% STATS
% --------------------------------------------------------------------
% The effective means and standard deviations for each factor and each
% response are stored in the stats matrix below. This is helpful for
% determining which dot on the plot corresponds to which factor,
% because the labels often overlap or are not sufficiently close to
% the dot. Notes for interpreting the stats matrix are included below.
% Edit this command to include the effective means and standard
% deviations for each response that you are studying.

% -----------------------------edit-below-----------------------------
% stats = [eff mean m1', eff std m1', ...
% eff mean m2', eff std m2',...
% eff mean m3', eff std m3',...
% eff mean m4', eff std m4',...
% eff mean m5', eff std m5'];
% -----------------------------edit-above-----------------------------

% INTERPRETING THE STATS MATRIX
% The effective means and standard deviations are organized as follows
% in the stats matrix
% - each row corresponds to a factor
% - each pair of columns corresponds to the mean and standard
% deviation of a response (i.e., there are 2*m columns)
%
% For example, elements (4,5) and (4,6) correspond to the mean and
% standard deviation of the fourth factor with respect to the
% third response.
% --------------------------------------------------------------------

MATLAB Code D.4: Final step in the Morris Method sensitivity analysis ranking
variables according to their significance according to the results received from the
experiment generated.

% *****************************************************
% This script is written to process Morris results.
% *****************************************************

clear all
resMorris = xlsread('MorrisSum.xls');
Mrank = zeros(length(resMorris),30);
Mstar = zeros(length(resMorris),30);

ind1 = [1:length(resMorris)]';
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nw = 1;
for i=1:3:size(resMorris,2)

comb = [ind1 -resMorris(:,i)];
zero row = find(comb(:,2)==0);
comb(zero row,:)=[];
comb2 = sortrows(comb,2);
Mrank(1:length(comb2(:,1)),nw) = comb2(:,1);
Mstar(1:length(comb2(:,1)),nw) = -comb2(:,2);
nw = nw+1;

end
xlswrite('MorrisSum.xls',Mrank,'Mrank','B2');
xlswrite('MorrisSum.xls',Mstar,'Mstar','B2');

morScreen = [Mrank;Mstar];

morSetup = [Mrank(:,27) Mstar(:,27) Mrank(:,28) Mstar(:,28) ...
Mrank(:,29) Mstar(:,29) Mrank(:,30) Mstar(:,30)];

morMonth = [Mrank(:,1) Mstar(:,1) Mrank(:,2) Mstar(:,2) Mrank(:,3)...
Mstar(:,3) Mrank(:,4) Mstar(:,4) Mrank(:,5) Mstar(:,5)...
Mrank(:,6) Mstar(:,6) Mrank(:,7) Mstar(:,7) Mrank(:,8)...
Mstar(:,8) Mrank(:,9) Mstar(:,9) Mrank(:,10) Mstar(:,10)...
Mrank(:,11) Mstar(:,11) Mrank(:,12) Mstar(:,12)];

save morScreen morScreen morMonth Mrank Mstar
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Figure 4.1: Flowchart of morris method sensitivity analysis.
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Appendix E

Latin Hypercube Sampling MATLAB Functions

MATLAB Code E.1: Latin Hypercube Sampling main function to take variables
and their reference values and return n random samples based on their probability
density functions.

% *******************************************************
% Latin Hypercube Sampling main data
% input and output script.
% *******************************************************
%
% Authors: Nicolas Johnson and Huafen Hu
%
% Inputs:
% pdfPar : Data Structure Containing Variable Info
% nsample : Number of Samples
%
% Output:
% m lhs : Random Sample Matrix (nsample,nvar)
%
% Subfunction:
% lhs normunitri: Subfunction to create random values based on
% the pdf assigned to each variable.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DomID MUST be EQUAL to number of variables being sampled!!! %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nsample = 5000; % Edit to change number of samples
pdfPar = xlsread('...\PathToExcelData.xlsx','Sheet','CellRange');
refPar = pdfPar(:,1); % Reference Parameter (Initial Value)
pdfID = pdfPar(:,3); % PDF Identifier (Normal/Uniform)

domID = sort(1:size(pdfPar,1)); % Index of Each Variable
pdfdom = pdfID(domID);
domPar = pdfPar(domID,:);
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normID = find(pdfdom==1);
unifID = find(pdfdom==2);

xmean = domPar(normID,1);
xsd = domPar(normID,2);

xmin = domPar(unifID,1);
xmax = domPar(unifID,2);

m lhs std = lhs normunitri(xmean,xsd,xmin,xmax,nsample);

% Restore the Matrix
newID = [normID;unifID];
comb = [newID m lhs std'];
comb = sortrows(comb,1);
m lhs = comb(:,2:size(comb,2))';

MATLAB Code E.2: Modification to the main LHS function to re-assign the
reference values to insignificant variables as determined by the sensitivity analysis.

% Assign constant values for nonsignificant parameters
m lhs = ones(nsample,k);
for j=1:k

m lhs(:,j) = refPar(j)*m lhs(:,j);
end
for ii = 1:length(domID)

dID = domID(ii);
m lhs(:,dID) = m lhs sh(:,ii);

end

MATLAB Code E.3: Sub function to calculate the uniform and normal distribu-
tions for each variable for the number of samples required.

function s=lhs normunitri(xmean,xsd,xmin,xmax,nsample)

% *******************************************************
% Latin Hypercube Sampling function from a combination
% of uniform and normal distribution functions.
% *******************************************************
%
% Author : Huafen Hu
% Edits by : Nicolas Johnson
%
% Inputs:
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% xmean : Mean of Data (1,nvar)
% xsd : Standard Deviation of Data (1,nvar)
% nsample : Number of Samples
% xmin : Min of Data (1,nvar)
% xmax : Max of Data (1,nvar)
%
% Output:
% s : Random Sample (nsample,nvar)
%
nvar1 = length(xmean); % normal
nvar2 = length(xmin); % uniform

ran = rand(nsample,nvar1+nvar2);
s = zeros(nsample,nvar1+nvar2);

% Stein method for normal distributions
for j=1:nvar1+nvar2

idx = randperm(nsample);
P=(idx'-ran(:,j))/nsample; % Probability of the cdf
if j<nvar1+0.5

s(:,j) = xmean(j) + ltqnorm(P).* xsd(j);
else

s(:,j) = xmin(j-nvar1) + P.* (xmax(j-nvar1)-xmin(j-nvar1));
end

end

MATLAB Code E.4: Sub function to provide a better approximation of the normal
distribution for probabilities close to zero. Written by Peter J. Acklam.

function z = ltqnorm(p)
%LTQNORM Lower tail quantile for standard normal distribution.
%
% Z = LTQNORM(P) returns the lower tail quantile for the standard
% normal distribution function. I.e., it returns the Z satisfying
% Pr{X < Z} = P, where X has a standard normal distribution.
%
% LTQNORM(P) is the same as SQRT(2) * ERFINV(2*P-1), but the
% former returns a more accurate value when P is close to zero.

% The algorithm uses a minimax approximation by rational functions
% and the result has a relative error less than 1.15e-9. A last
% refinement by Halley's rational method is applied to achieve full
% machine precision.

% Author: Peter J. Acklam
% Time-stamp: 2003-04-23 08:26:51 +0200
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% E-mail: pjacklam@online.no
% URL: http://home.online.no/~pjacklam

% Coefficients in rational approximations.
a = [ -3.969683028665376e+01 2.209460984245205e+02 ...

-2.759285104469687e+02 1.383577518672690e+02 ...
-3.066479806614716e+01 2.506628277459239e+00 ];

b = [ -5.447609879822406e+01 1.615858368580409e+02 ...
-1.556989798598866e+02 6.680131188771972e+01 ...
-1.328068155288572e+01 ];

c = [ -7.784894002430293e-03 -3.223964580411365e-01 ...
-2.400758277161838e+00 -2.549732539343734e+00 ...
4.374664141464968e+00 2.938163982698783e+00 ];

d = [ 7.784695709041462e-03 3.224671290700398e-01 ...
2.445134137142996e+00 3.754408661907416e+00 ];

% Define break-points.
plow = 0.02425;
phigh = 1 - plow;

% Initialize output array.
z = zeros(size(p));

% Rational approximation for central region:
k = plow <= p & p <= phigh;
if any(k(:))

q = p(k) - 0.5;
r = q.*q;
z(k) = (((((a(1)*r+a(2)).*r+a(3)).*r+a(4)).*r+a(5)).*r+a(6))...

.*q./(((((b(1)*r+b(2)).*r+b(3)).*r+b(4)).*r+b(5)).*r+1);
end

% Rational approximation for lower region:
k = 0 < p & p < plow;
if any(k(:))

q = sqrt(-2*log(p(k)));
z(k) = (((((c(1)*q+c(2)).*q+c(3)).*q+c(4)).*q+c(5)).*q+c(6))...

./((((d(1)*q+d(2)).*q+d(3)).*q+d(4)).*q+1);
end

% Rational approximation for upper region:
k = phigh < p & p < 1;
if any(k(:))

q = sqrt(-2*log(1-p(k)));
z(k) = -(((((c(1)*q+c(2)).*q+c(3)).*q+c(4)).*q+c(5)).*q+c(6))...

./((((d(1)*q+d(2)).*q+d(3)).*q+d(4)).*q+1);
end
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% Case when P = 0:
z(p == 0) = -Inf;

% Case when P = 1:
z(p == 1) = Inf;

% Cases when output will be NaN:
k = p < 0 | p > 1 | isnan(p);
if any(k(:))

z(k) = NaN;
end

% The relative error of the approximation has absolute value less
% than 1.15e-9. One iteration of Halley's rational method (third
% order) gives full machine precision.
k = 0 < p & p < 1;
if any(k(:))

e = 0.5*erfc(-z(k)/sqrt(2)) - p(k); % error
u = e * sqrt(2*pi) .* exp(z(k).ˆ2/2); % f(z)/df(z)
%z(k) = z(k) - u; % Newton's method
z(k) = z(k) - u./( 1 + z(k).*u/2 ); % Halley's method

end
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Appendix F

Calibration MATLAB Scripts

MATLAB Code F.1: Script used to calculate the GOF and identify solutions that
meet the calibration criteria.

% Utility data
load (['.\01.Utilities\',Year,'.mat'])

% Calibration Criteria
cMBE = .05;
cCV = .15;

% Begin Analysis

for ii = 1:nsample
g Error(:,ii) = (Qh supply - m mQh demand(ii,:));
g MBE(1,ii) = (sum(g Error((1:(12-p)),ii))./((12-p)-1))...

/mean(Qh supply);
g RMSE(1,ii) = sqrt(sum(g Error((1:(12-p)),ii).ˆ2)/((12-p)-1));
g CV RMSE(1,ii) = sqrt(sum(g Error((1:(12-p)),ii).ˆ2)...

/((12-p)-1))/mean(Qh supply);

e Error(:,ii) = (Qkwh - m mQkwh(ii,:));
e MBE(1,ii) = (sum(e Error((1:(12-p)),ii))./((12-p)-1))...

/mean(Qkwh);
e RMSE(1,ii) = sqrt(sum(e Error((1:(12-p)),ii).ˆ2)/((12-p)-1));
e CV RMSE(1,ii) = sqrt(sum(e Error((1:(12-p)),ii).ˆ2)...

/((12-p)-1))/mean(Qkwh);

% Price/Therm / Boiler Efficiency Joules to Therms conversion
Therm = sum(m mQh demand(ii,:))*1.15/.79*(1/(105.505585*10ˆ6));
kW = .07*sum(m mQkwh(ii,:)); % Price/kW
eW(1,ii) = kW/(kW+Therm);
gW(1,ii) = (Therm)/(kW+Therm);

end
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[pPrice,ePrice,sPrice,pEven,eEven,sEven,pHeating,eHeating,sHeating,...
pElectric,eElectric,sElectric,pHdemand,eHdemand,sHdemand,...
pEdemand,eEdemand,sEdemand,pCdemand,eCdemand,sCdemand,p lhs,...
e lhs,s lhs,allGOF] = gofAnalysis(m mQh demand,m mQc demand,...
m mQkwh,g CV RMSE,e CV RMSE,g MBE,e MBE,eW,gW,12,o lhs,cMBE,cCV);

nrgStats = [g MBE;g CV RMSE;e MBE;e CV RMSE];

save ('..\04.MorrisMethd\morResult.mat','m mQh demand','m mQkwh', ...
'g MBE','g CV RMSE','e MBE','e CV RMSE')

resultname = ['..\',Folder,'\Results ',Year,Sim,'.mat'];
save (resultname,'pPrice','ePrice','sPrice','pEven','eEven',...

'sEven','pHeating','eHeating','sHeating','pElectric',...
'eElectric','sElectric','pHdemand','eHdemand','sHdemand',...
'pEdemand','eEdemand','sEdemand','pCdemand','eCdemand',...
'sCdemand','p lhs','e lhs','s lhs','allGOF','Qh supply',...
'Qkwh','m mQh demand','m mQkwh','nrgStats','m mQh demand',...
'm mQc demand','m mQkwh','g Error','e Error')

MATLAB Code F.2: Function to carry out the analysis for each GOF solution set.

function [pPrice,ePrice,sPrice,pEven,eEven,sEven,pHeating,...
eHeating,sHeating,pElectric,eElectric,sElectric,pHdemand,...
eHdemand,sHdemand,pEdemand,eEdemand,sEdemand,pCdemand,...
eCdemand,sCdemand,p lhs,e lhs,s lhs,allGOF] = gofAnalysis...
(m mQh demand,m mQC bldg,m mQkwh,g CV RMSE,e CV RMSE,g MBE,...
e MBE,eW,gW,nMonths,o lhs,cMBE,cCV)

nsample = size(g MBE,2);
smallnum = 1e-3;

pMBE = zeros(1,nsample);
pCV RMSE = zeros(1,nsample);
pGOF = zeros(1,nsample);

MBE = zeros(1,nsample);
CV RMSE = zeros(1,nsample);
GOF = zeros(1,nsample);

e GOF = zeros(1,nsample);
g GOF = zeros(1,nsample);

% Price Weight vs. Even Weight
for j=1:nsample

pMBE(1,j) = wFactor(g MBE(1,j),gW(1,j),e MBE(1,j),eW(1,j));
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pCV RMSE(1,j) = wFactor(g CV RMSE(1,j),gW(1,j),...
e CV RMSE(1,j),eW(1,j));

pGOF(1,j) = wFactor(pMBE(1,j),1,pCV RMSE(1,j),1);

MBE(1,j) = wFactor(g MBE(1,j),1,e MBE(1,j),1);
CV RMSE(1,j) = wFactor(g CV RMSE(1,j),1,e CV RMSE(1,j),1);
GOF(1,j) = wFactor(MBE(1,j),1,CV RMSE(1,j),1);

e GOF(1,j) = wFactor(e MBE(1,j),1,e CV RMSE(1,j),1);
g GOF(1,j) = wFactor(g MBE(1,j),1,g CV RMSE(1,j),1);

end

allGOF = [pGOF(1:nsample);pMBE(1:nsample);pCV RMSE(1:nsample);...
GOF(1:nsample);MBE(1:nsample);CV RMSE(1:nsample);...
e GOF(1:nsample);e MBE(1:nsample);e CV RMSE(1:nsample); ...
g GOF(1:nsample);g MBE(1:nsample);g CV RMSE(1:nsample)];

p = 0;
e = 0;
s = 0;

for j=1:nsample
if pMBE(1,j) < (cMBE+smallnum)

if pCV RMSE(1,j) < (cCV+smallnum)
p = p + 1;
p mark(1,p) = j;

end
end

end

for j=1:nsample
if MBE(1,j) < (cMBE+smallnum)

if CV RMSE(1,j) < (cCV+smallnum)
e = e + 1;
e mark(1,e) = j;

end
end

end

for j=1:nsample
if e CV RMSE(1,j) < (cCV+smallnum)

if abs(e MBE(1,j)) < (cMBE+smallnum)
if g CV RMSE(1,j) < (cCV+smallnum)

if abs(g MBE(1,j)) < (cMBE+smallnum)
s = s + 1;
s mark(1,s) = j;

end
end
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end
end

end

if p == 0
p mark = 1;
disp('No price solutions')

end

pGof = pGOF(1,p mark(1:p));
[TP,OP] = sort(pGof,2);
pSol = [p mark(1,OP(1:length(pGof))); TP(1:length(pGof))];

pPrice = zeros(4,size(pSol,2));
pEven = zeros(4,size(pSol,2));
pHeating = zeros(4,size(pSol,2));
pElectric = zeros(4,size(pSol,2));

pHdemand = zeros(nMonths,size(pSol,2));
pCdemand = zeros(nMonths,size(pSol,2));
pEdemand = zeros(nMonths,size(pSol,2));

p lhs = nan(length(p mark),size(o lhs,2));

for k=1:size(pSol,2)
p = pSol(1,k);

pPrice(1,k)= p;
pPrice(2,k)= pGOF(1,p);
pPrice(3,k)= pMBE(1,p);
pPrice(4,k)= pCV RMSE(1,p);

pEven(1,k)= p;
pEven(2,k)= GOF(1,p);
pEven(3,k)= MBE(1,p);
pEven(4,k)= CV RMSE(1,p);

pHeating(1,k)= p;
pHeating(2,k)= g GOF(1,p);
pHeating(3,k)= g MBE(1,p);
pHeating(4,k)= g CV RMSE(1,p);

pElectric(1,k)= p;
pElectric(2,k)= e GOF(1,p);
pElectric(3,k)= e MBE(1,p);
pElectric(4,k)= e CV RMSE(1,p);
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pHdemand(:,k) = m mQh demand(:,p);
pEdemand(:,k) = m mQkwh(:,p);
pCdemand(:,k) = m mQC bldg(:,p);

p lhs(k,:) = o lhs(p,:);
end

if e == 0
e mark = 1;
disp('No even solutions')

end

eGof = GOF(1,e mark(1:e));
[TE,OE] = sort(eGof,2);
eSol = [e mark(1,OE(1:length(eGof))); TE(1:length(eGof))];

ePrice = zeros(4,size(eSol,2));
eEven = zeros(4,size(eSol,2));
eHeating = zeros(4,size(eSol,2));
eElectric = zeros(4,size(eSol,2));

eHdemand = zeros(nMonths,size(eSol,2));
eCdemand = zeros(nMonths,size(eSol,2));
eEdemand = zeros(nMonths,size(eSol,2));

e lhs = nan(length(e mark),size(o lhs,2));

for k=1:size(eSol,2)
e = eSol(1,k);

ePrice(1,k)= e;
ePrice(2,k)= pGOF(1,e);
ePrice(3,k)= pMBE(1,e);
ePrice(4,k)= pCV RMSE(1,e);

eEven(1,k)= e;
eEven(2,k)= GOF(1,e);
eEven(3,k)= MBE(1,e);
eEven(4,k)= CV RMSE(1,e);

eHeating(1,k)= e;
eHeating(2,k)= g GOF(1,e);
eHeating(3,k)= g MBE(1,e);
eHeating(4,k)= g CV RMSE(1,e);

eElectric(1,k)= e;
eElectric(2,k)= e GOF(1,e);
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eElectric(3,k)= e MBE(1,e);
eElectric(4,k)= e CV RMSE(1,e);

eHdemand(:,k) = m mQh demand(:,e);
eEdemand(:,k) = m mQkwh(:,e);
eCdemand(:,k) = m mQC bldg(:,e);

e lhs(k,:) = o lhs(e,:);
end

if s == 0
s mark = 1;
disp('No strict solutions')

end

sGof = GOF(1,s mark(1:s));
[TS,OS] = sort(sGof,2);
sSol = [s mark(1,OS(1:length(sGof))); TS(1:length(sGof))];

sPrice = zeros(4,size(sSol,2));
sEven = zeros(4,size(sSol,2));
sHeating = zeros(4,size(sSol,2));
sElectric = zeros(4,size(sSol,2));

sHdemand = zeros(nMonths,size(sSol,2));
sCdemand = zeros(nMonths,size(sSol,2));
sEdemand = zeros(nMonths,size(sSol,2));

s lhs = nan(length(s mark),size(o lhs,2));

for k=1:size(sSol,2)
s = sSol(1,k);

sPrice(1,k)= s;
sPrice(2,k)= pGOF(1,s);
sPrice(3,k)= pMBE(1,s);
sPrice(4,k)= pCV RMSE(1,s);

sEven(1,k)= s;
sEven(2,k)= GOF(1,s);
sEven(3,k)= MBE(1,s);
sEven(4,k)= CV RMSE(1,s);

sHeating(1,k)= s;
sHeating(2,k)= g GOF(1,s);
sHeating(3,k)= g MBE(1,s);
sHeating(4,k)= g CV RMSE(1,s);
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sElectric(1,k)= s;
sElectric(2,k)= e GOF(1,s);
sElectric(3,k)= e MBE(1,s);
sElectric(4,k)= e CV RMSE(1,s);

sHdemand(:,k) = m mQh demand(:,s);
sEdemand(:,k) = m mQkwh(:,s);
sCdemand(:,k) = m mQC bldg(:,s);

s lhs(k,:) = o lhs(s,:);
end

MATLAB Code F.3: Sub-function to alter the weighting of the GOF.

function [output] = wFactor(var1,weight1,var2,weight2)

output = ((weight1ˆ2*var1ˆ2 + weight2ˆ2*var2ˆ2)/...
(weight1ˆ2+weight2ˆ2))ˆ(1/2);
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