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Forecast models are investigated and developed for use in local 

water management to aid in determining short term water requirements 

and availability. The forecast models include precipitation occurrence 



and depth using a Markov chain model, temperature and solar radiation 

with a multivariate autoregressive model, and streamflow with 

autoregressive-moving average models. The precipitation, temperature, 

and solar radiation forecasts are used with a soil moisture model to 

determine water demands. A state space approach to the Muskingum-Cunge 

streamflow routing technique is developed. The forecast water demands 

and streamflow forecasts are used as inputs to this routing model. 

Forecast model errors and propagation of these errors from one model 

into the next are investigated. 

The models are tested using data from the Tualatin River Basin in 

Oregon. The results tend to indicate that these models are 

sufficiently accurate to aid in water management. 
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CHAPTER I 

INTRODUCTION 

As the need for water continues to increase so does the need to 

develop methods by which it can be used more wisely. In many regions 

of the world and even this country, serious water shortages have 

occurred and will undoubtedly continue to occur in the future. 

There are several ways in which water supply can be enhanced to 

attempt to meet demand. In the past the most common solution has been 

to build structures either for storing water when it is plentiful 

until the time of need, to build complex transmission systems to get 

water to where it is needed, or both. Unfortunately, much of this 

type of construction and development is becoming prohibitively 

expensive particularly as federal participation decreases. In many 

parts of the country much of the easily available water has been 

developed and in the case of groundwater, depleted. More recently, 

conservation practices have emerged as an alternative to structural 

development and are being used in industry, agriculture, and even by 

the individual. At present, mathematical models are being developed 

so that managers are able to get the "best use 11 out of the available 

water resources by predicting the supply and demand of water for use 

in system operation. Using such models allows the manager to make 

more informed decisions and provides the ability to optimize water use 
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even in the time of water shortage. With computers many such tasks 

that were once far too costly are rapidly becoming an inexpensive way 

of maximizing the available supply, thus making this approach to water 

management increasingly popular. 

In the Western United States, irrigated agriculture accounts for 

by far the largest consumptive use of water. Due to the nature of 

this application, conflicts due to shortages of supply often result 

among irrigation users, particularly where there is no storage within 

the system as is often the case in smaller river basins. In addition, 

considerable attention is now being given to the instream value of 

water to maintain or enhance water quality and provide for aquatic 

habitat. These latter uses, by their very nature, conflict with 

diversion and consumptive use of water for irrigation. Since the 

distribution of water resources in the West is largely governed by the 

appropriative doctrine and most of the attention to instream use is 

relatively recent, any water rights attached to this type of use is 

junior to the older irrigation rights by the "first in time, first in 

right" principle. 

Although development of additional storage may be an alternative 

to mitigation of these conflicts, another option is the more efficient 

use of the resource. For irrigated agriculture, this generally 

implies more attention to the timing and amount of irrigation water, 

which in turn requires either measurement or prediction of soil 

moisture. Since any extensive measurement schemes are labor 

intensive and thus resonably costly, accurate modeling of the process 

is an attractive alternative. In addition, the distribution of flow 



in the river system is required to estimate availability for future 

supply. Where storage exists, such information can aid in planning 

release schedules to accommodate expected demand. To accomplish this 

a streamflow routing model must be used in conjunction with a soil 

moisture/evapotranspiration model. 

3 

Prior work in this area includes an agricultural irrigation 

Decision Support System (DSS) which can be used by a local water 

manager to estimate current field moisture conditions, streamflow, and 

water use priority (Allen, 1985). This model uses rather simple 

expressions to describe soil moisture and streamflow and was designed 

so that it could be run by a micro-computer thus making it accessible 

to water managers in small water districts. The DSS uses daily 

temperature, solar radiation and crop coefficients to determine the 

soil moisture. Streamflows are calculated using the linear reservoir 

technique given the inflows at the upper reaches and tributaries as 

well as diversions for irrigation. The DSS has been shown to 

accurately model field conditions given the required inputs. To be 

used as a predictive tool for water managers requires forecasts of the 

inputs, principally upstream inflow to the river system, 

precipitation, temperature and solar radiation. Given accurate 

forecasts a model such as the DSS has the potential for great utility 

in predicting irrigation water requirements. The streamflow portion 

of the model, when used in a forecasting mode, will indicate how much 

water will be available instream and can be used to determine how much 

of a shortage there will be or how much water must be released from a 

reservoir to meet demand. Such predictive capacity should enable the 
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water manager to make a more informed decision as to how much water to 

release, thereby increasing efficiency resulting in cost savings as 

well as increased available water. 

OBJECTIVE 

The objective of this research is to investigate and develop 

forecasting techniques for the inputs required by the DSS model. In 

addition, an improved streamflow routing model is developed to more 

realistically represent the river system and hydraulic processes. 

Of primary interest in this study are the effects of forecast errors 

on the overall predictive/operational characteristics of the system. 

Forecast and model errors are evaluated to determine the suitability 

of the forecast techniques. The effects of error propagation from the 

forecast into the soil moisture model and ultimately through the 

routing model are investigated to determine the behavior of the model 

error. Sensitivity analysis is used on the soil moisture model to 

determine which parameters and/or inputs have the greatest impact on 

the resulting water demand prediction. This knowledge will indicate 

which of the forecast inputs or parameters need to be most accurately 

estimated. 

The soil moisture model requires daily temperature, solar 

radiation, and precipitation as inputs. Stochastic models are 

investigated and developed to forecast these variables. The models 

investigated include Markov chains, single and multivariate 

autoregressive models, and autoregressive-moving average models 



(ARMA). Forecasts of streamflow are needed at upper reaches and 

tributaries in the system as inputs to the routing model. Stochastic 

5 

methods of streamflow prediction are investigated and developed. To 

route streamflow, common routing techniques are investigated. A 

method of computation for a multiple reach system is presented using a 

discrete state-space formulation of the common Muskingum-Cunge river 

routing technique. This technique is somewhat more complex than the 

linear reservoir technique presently used in DSS but allows for much 

longer reach lengths resulting in fewer computations and maintaining 

correspondence of the method with other hydraulic techniques. 

Acceptable ranges of the routing parameters are also investigated. 

The state space formulation allows tracking the propagation of 

forecast error. This is developed for both the soil moisture and 

streamflow models. Using these results the forecast and model errors 

can be followed from the soil moisture model into the streamflow 

model. A first order sensitivity analysis is performed on the soil 

moisture model to determine the effects of forecast error specifically 

in this model. 



CHAPTER II 

FORECASTING MODELS 

THE NEED FOR FORECASTS 

Forecasting of weather and streamflow have many practical uses. 

Common uses of forecasts are for flood control, drought management and 

water supply for irrigation and industry. Much of the weather 

forecasting in the Pacific Northwest is used to determine flood 

magnitude so that control or evacuation measures may be taken to 

minimize loss. In other areas, climate forecasts are used to estimate 

drought severity so that water conservation plans may be developed. 

Accurate forecasts used for such purposes result in significant cost 

savings in operating efficiencies as well as loss minimization. Water 

supply forecasts can al so be used to aid the normal day to day 

operation of a water resources project. 

Through the use of the historic flow record, a water manager is 

able to develop sets of guidelines for reservoir operation. The 

guidelines, known as rule curves, specify minimum and maximum 

reservoir levels throughout the year based on the requirements of the 

project. For example, with a reservoir used for flood control and 

water supply, it is desirable to maintain the reservoir level low 
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enough so that flooding can be contained, yet not so low that water 

supply cannot be met. A flood study performed on the historic flow 

record or through simulation can be used to determine flood magnitudes 

that the project will be expected to accomodate throughout the year or 

flood season. This information is used to construct the flood control 

rule curve and thus an upper bound for the reservoir level. Knowledge 

of future water demand and system drought characteristics will allow a 

lower bound rule curve to be determined. Of course, it is possible 

for rules curves to_suggest levels that are in conflict with each 

other such as a maximum level for water supply. This requires 

prioritization of project use. Once the rule curves are constructed, 

water supply forecasts can then be used to determine the appropriate 

releases such that the reservoir level is maintained between the 

levels specified, thus aiding the day to day operation of the project. 

The climatic conditions in an area must be considered before any 

modeling can be done. Different types of hydrologic environments 

favor different models. In an area where snowpack supplies much of 

the streamflow it is possible to get a reasonable estimate of the 

amount of water that will be available during the latter part of the 

year by measuring snowpack and calculating the total volume of water 

present. With such information the water supply problem is reduced 

from the more general problem in which both quantity of water and 

temporal distribution must be determined to one in which only the 

temporal distribution is required. Through the use of models of snow 

fed systems, it is possible to start making seasonal volume runoff 

forecasts quite early in the season. The Streamflow Simulation and 



Reservoir Routing Model (SSARR) developed by the North Pacific 

Division, U.S. Army Corps of Engineers (1972) for use in the Columbia 

River basin is such a model used primarily for flood control. This 

model uses estimated snowpack water content to determine total 

seasonal volume and then depletes this amount to streamflow as the 

season progresses based on temperature and precipitation forecasts. 

8 

In the case of a precipitation fed system the situation is much more 

difficult. Neither the future amount of water nor the distribution in 

time is known with any certainty. 

CLIMATE FORECASTING METHODS 

Common forecasting methods for weather variables include 

meteorological and statistical methods. Meteorological forecasts 

incorporate weather patterns and the physical phenomena that govern 

the variables being measured. This method requires considerable 

meteorological data such as satellite photographs, pressure 

measurements, and humidity readings. Complex models are required to 

interpret this data and return a forecast. Even so, the results are 

often inaccurate due to factors that are missed or simply not 

included. 

Statistical forecasting methods make use of the historic record 

to correlate future events to events in the past using an empirical 

model. More complex statistical models may also include the 

interrelationships between the variables. Stochastic models are 

generally fit to historic sequences and forecasting is based on a 



conditional expected value. In addition, these models can be used to 

create synthetic data sets whose properties are like those of the 

historic record. These synthetic sets of data can then be used to 

simulate a hydrologic system and study its response under different 

sequences of climatic conditions. 

9 

The use of forecasts in this study is for application to 

irrigation water management. The weather forecasts are used with a 

soil moisture model to determine how much water is likely to be 

required by the crops ~~ the future. The streamflow forecasting 

models are used in conjunction with the routing model to estimate 

streamflows. Given expected supply and demand of water at present and 

in the future a water manager can make appropriate releases so that 

demand is met without sending an excess of water resulting in waste or 

a shortage of water later on in the season. Ideally a manager would 

like to know all of the demands and all of the supply at the beginning 

of each year and be able to set the entire schedule from this 

knowledge. Unfortunately this is not yet possible as neither weather 

nor streamflow can be accurately predicted for each day over the 

entire growing season. However, shorter length forecasts can be made 

and these can certainly be used by a water manager to aid in the 

decision making process. 

To demonstrate typical statistical properties of the proposed 

models, sets of data from the Tualatin Valley will be used. This 

basin is typical of western Oregon and isolated in the Willamette 

Valley of Oregon. The climate during the latter part of the growing 

season (May through September) is typically warm and dry. The 
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Tualatin River and its tributaries begin in low hills off the coast 

range and receive their water from rainfall with little significant 

flows resulting from snow pack. The model is only required during the 

growing season, thus the forecasting scheme is only for the period 

from 1 May through 30 September. The forecasting model for climatic 

variables consists of three major components. Precipitation models 

are considered separate from the temperature and solar radiation due 

to inherent differences in the nature of these variables. 

STATISTICAL MODELS AND FORECASTING 

The climate and hydrologic variables that are to be forecast for 

this system are periodic, or non-stationary, in nature. With a 

periodic time series, statistical properties such as the mean, 

variance, and skewness will vary throughout the year. Yearly 

streamflow is a good example of a stationary time series. Figure 1 

shows a typical yearly (stationary) streamflow record with no 

discernable periodicities. 

Figure 2 shows a typical monthly (periodic) streamflow record 

for the same river, and the monthly mean flows as determined from a 10 

year data set, demonstrating the periodicities of within the year and 

in the statistics. 

For the purpose of this research, daily forecast values are 

required. To simplify, and increase the number of points that will be 

used to estimate the sample statistics, thus decreasing the confidence 

interval, it is helpful to lump sets of daily values together. These 
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sets are such that the statistical properties are not significantly 

different, or can be considered to be stationary, over the period. 

For example, one could calculate periodic mean daily values for a data 

set over a two week period as opposed to one for each day (Richardson, 

1981). This is particularly useful for small data sets. 

· Many stochastic models are also based on the assumption that the 

variable to be modeled is normally distributed (Salas et al., 1980). 

For variables that are not normal, it is necessary to transform them 

in some manner. The transformation required may depend on the 

characteristics of the variable being modeled. Most stochastic models 

are used to model the residuals of the variables and are fit using a 

residual, or standardized, time series. A residual is defined as 

f 011 ows: 

where: 

z(v,t) = (x(v,t) - x(t))/o(t) 

z(v,t) - residual of x(v,t), the random variable 

x(v,t) - data element 
x(t) - periodic mean of x(v,t) 
o(t) - periodic standard deviation of x(v,t) 

v - year index 

t - day index 

2.1 

The residual series of the data in figure 2 is shown in figure 3, 

demonstrating that much of the periodicity is removed by this 

process. Models presented in this chapter are for residuals of the 

variable and are transformed into actual values by multiplying by the 

standard deviation and adding the mean. 

Stochastic models are frequently used to generate sets of data 

whose statistical properties are similar to those of the historic 
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Figure 2. A typical monthly streamflow series showing 
within the year periodicities. 
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data. These models typically involve terms modeled and a random noise 

term, E(t). Because of the random noise term, the generated sample 

paths cannot be expected to be the same as the actual occurrence. 

When forecasting using a stochastic model, the objective is to 

minimize the square of the deviations between the actual and forecast 

values (Box and Jenkins, 1976). In the case of a linear stochastic 

model this produces a minimum variance forecast. To simply forecast 

-the mean for a variable would yield a variance that is the same as the 

sample variance. Using conditional expectation to forecast a variable 

z(t), conditioned by the previous values of z(t) we have: 

z ( L ) = E [ z ( t +L ) I z ( t) ' z ( t-1 ) ' ... ] 2.2 

where: 
z(L) - the forecast function at L time steps in the future 

E - expected value operator 
L - lead time of forecast 

By taking the expectation of a generation model, the forecast 

function is obtained. This gives the minimum mean square error 

forecast for a given model, minimizing the variance of the forecast. 

ARMA models consist of terms relating future flow to past flow and 

past deviations in flow, as well as a random noise term. For models 

of this type where the random noise term is additive and has E[(t)] = 

0, this results in an unbiased forecast as well (Box and Jenkins, 

1976). 

PRECIPITATION FORECASTING 

Stochastic modeling of daily precipitation quantity is 
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considerably different from modeling temperature, solar radiation, and 

streamflow. Stochastic models such as autoregressive and 

autoregressive-moving average which can be used with monthly or yearly 

rainfall quantity and with temperature, solar radiation and streamflow 

do not work well with daily precipitation (Richardson, 1981). These 

models require that the random variable be continuous and normally 

distributed or that it can be transformed so that it is normal. 

However, daily precipitation quantity is intermittent, containing many 

zero values and cannot be easily transformed so that an approximate 

normality results. Furthermore, there is typically very little 

persistence even in a wet sequence, often one day is as much as can be 

observed. The persistence is even less for precipitation quantity 

assuming that one could forecast the wet or dry status of a day. For 

these reasons a precipitation model is presented that is quite 

different from the types of temperature, solar radiation, and 

streamflow models. 

Markov Chains and Processes 

First order Markov chains are often used to describe both 

precipitation occurrence and precipitation quantity (e.g. Todorovic 

and Woolhiser, 1974, Khanal and Hamrick, 1974, and Bruhn, Fry, and 

Fick, 1980). A Markov process is one in which the probability that 

the system will be at a given state X at time t, may be determined 

from the prior states of the system. For an nth order Markov chain 

this is written as: 



P[X(t) = x(t),X(t-1), ... ,X(l) = x(l)] 
= P[X(t) = x(t),X(t-1) = x(t-1), ... ,X(t-n) = x(t-n)) 

for al 1: X( i); i = 1, 2, 3 ... 

t < n 

where: 

p - probability operator 

A first-order Markov chain is written as: 

P[X(t) = x(t),X(t-1) = x(t-1), ... ,X(l) = x(l)] 

= P[X(t) = x(t) jX(t-1)] 

16 

2.3 

2.4 

which provides the simple day to day transition probabilities (Khanal 

and Hamrick, 1974). In this case the state, x(t), is either the depth 

of rainfall on a given day or simply the occurrence of rainfall. 

Thus, the probability of the system being at any given state 

(rainfall depth) depends only on the state of the system at the 

preceeding time period. Lack of persistence in precipitation usually 

dictates that the order of the chain be one but sometimes greater 

persistence is found. This formulation is for discrete states. 

Therefore, for the purpose of precipitation modeling it is necessary 

to discretize the range of probable daily precipitation depths. To 

accomplish this, the range of values as well as the occurrences of the 

less frequent values and the degree of discretization that is required 

must be considered. 

Development and application of Markov chains to precipitation 

modeling can be accomplished by several approaches. In some instances 

the precipitation states are chosen and the transition probabilities 

are calculated from historical data for each of the states providing a 
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discrete transition probability distribution for each state. When 

used for data synthesis, modeling is performed using these 

distributions by choosing the state for day t+l at random as dictated 

by the calculated transition probabilities given the state on day t 

(Khanal and Hamrick, 1974). Alternatively an approach is used in 

which only the wet or dry status of day t+l is modeled using the 

Markov chain and the quantity of precipitation is modeled using a 

gamma distribution or some other continuous distribution with 

properties similar to those found in the precipitation record (Bruhn, 

Fry, and Fick, 1980). In this case the wet or dry status of day t+l 

is chosen at random as dictated by the transition probabilities. If 

day t+l is found to be wet then the magnitude of the precipitation is 

chosen at random from an appropriate distribution. 

These Markov chain methods are quite useful for synthesizing 

data and have been shown to produce records that exhibit behavior 

quite similar to the historical record (Khanal and Hamrick, 1974). 

For the purpose of forecasting it is not reasonable to randomly select 

the state of the day from the distributions whether derived from 

Markov probabilities or from some other distribution. To forecast, 

the expected value of the state given the previous state should be 

used. To determine what should actually be forecast, it is useful to 

investigate the precipitation characteristics of the data. 

To determine the first order transition probabilities, letting 

be the state on day t, and j be the state on day t+l, the transition 

frequencies, fi,j are determined by simply counting the times during 

the historic record that a transition from each state on one day is 
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followed by another state on the following day for each of the periods 

that can be considered to be stationary. Table I shows a tabular 

arrangement of transition frequencies. Each cell contains the number 

of times that a transition was made from the state of the row of the 

cell to the state of the column of the cell. By surrming across each 

row, the frequency of occurrence for. each state, F, is found. 

n 
F1· = E f 1· J. for all states on day t, i=l to n 

j+l ' 

A set of these frequencies will be needed for each of the periods. 

The transition probabilities are then found by dividing each of the 

transition frequencies by the total number of occurrences of the 

corresponding row, Fi. 

2.5 

P· · = f· · I F· l,J l,J l 2.6 

The state to forecast for day t+l is found by multiplying the 

probability of each cell by the value of the state for that cell. The 

forecast, or expected value of precipitation quantity, x(t+l) is: 

x(t+l) = 
n 
E p .. 

j=l lJ Xj 2.7 

Where Xj is the mean of the rainfall depth range for state j. Table 

II shows the transition probabilities, as would be determined from the 

transition frequencies, as well as the value to forecast for day t+l 

given the state at t. Each cell here is the probability of a 

transition of the state in the row of the cell to the state of the 

column of the cell. 



TABLE I 
TRANSITION FREQUENCIES 

State on day t+ 1 
State on day t I 1 2 3 

--
1 f 11 f 12 f 13 . 
2 f 21 f 22 f 23 • 
3 f 31 f 32 f 33 . 

• 
n f n l fn2 f n 3 

TABLE II 
TRANSITION PROBABILITIES 

AND FORECAST VALUES 

State on day t+l 
State on day t I 1 2 3 n 

1 I P11 P12 p 13 . Pin 

2 I P21 P22 P23 . P2n 

3 I P31 P32 p 33 . P3n 

• 

n Pn 1 Pn 2 Pn 3 Pnn 

n 

f 1n 
f 2n 
f 3n 

fnn 

I 
I 

I 

I 
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F1 
F2 
F3 

Fn 

Forecast 

n 
E PijX(j) 

j=l 
n 
E P2jXj 

j=l 
n 
E P3jXj 

j=l 

n 

E Pnj Xj 
j=l 
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TEMPERATURE AND SOLAR RADIATION FORECASTING 

Several stochastic models can be applied to describe temperature 

and solar radiation. As with precipitation the amount of persistence 

in these variables greatly affects the ability to forecast them. 

Models for both temperature and solar radiation are presented together 

because they can be adequately represented with the same models, 

unlike precipitation. Both processes are continuous random 

variables. For this study forecasts for up to seven days are used. 

Since the model must operate within the year and these variables 

exhibit a seasonal variation, the periodicity of the data must be 

considered. This tends to complicate the models somewhat and in the 

case of high order models tends to make parameter estimation rather 

cumbersome. 

There is an obvious physical relationship between temperature 

and solar radiation. One would typically expect that high temperature 

would be associated with high levels of solar radiation and vice 

versa. Analysis of historic records of temperature and solar 

radiation show this to be true as they exhibit relatively high values 

of covariance as is demonstrated in chapter five. For this reason it 

is desirable to use forecast models that will preserve this covariance 

and provide for more realistic forecasts. Multivariate models are 

capable of doing this and are investigated. 

Multivariate Autoregressive Models 

Multivariate autoregressive models (MVAR) can be used to model 



temperature and solar radiation together (Richardson, 1981). The 

model uses not only the autocorrelation coefficients as in the 

univariate autoregressive (AR) model but includes the 
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cross-correlation between variables. The MVAR model degenerates to an 

independent set of AR models in the case where there is no 

cross-correlation between variables. It is intuitively apparent that 

there is a relationship between temperature and solar radiation so the 

use of a model that incorporates this relationship should be able to 

provide more realistic results than a model that considers the two 

separately. 

The periodic model is of the form: 

~(v,t) = [~(t) ~(v,t-1) + ~(t) ~(v,t)] 

where: ~(v,t) - vector of residuals of variables to be modeled 

~(t) - coefficient matrix 

~(t) - coefficient matrix 

2.8 

~(v,t) - random noise vector having the property E[e(v,t)] = 0 

The ~(t) matrix is defined as: 

~(t) = !i1 t ~ 1t-1 , , 

with B(t) defined such that: 

( )T - M ~(t)~ t - --0,t - M MT 
-1,t --0,t-1 

t=l to number of periods 

t=l to number of periods 

with Ji being the correlation matrix given by: 

2.9 

2.10 



!11< t = I 
' 

11 12 
rk t rk t , ... , 

' ' 
21 22 

rk t rk t '· · ·' 
' ' 

• • 

rn 1 rn 2 
k,t k,t ' ... , 

r ln 
k,t 

r2n 
k,t 

. 

rnn 
k,t 
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I 2.11 

where: r~~t correlation coefficients between variables 
period t and lag k. 

and j for 

(Salas et al., 1980) 

These relationships are used to estimate ~(t) and .§_(t) based on moment 

estimates of M and M . 
-0, t -1, t . 

To obtain the minimum variance forecast from this model, the 

conditional expectation is taken resulting in: 

where: 

E[~(v,t),~(v,t-1)] = [~(t) ~(v,t-1)] 

~( v 't) - fRT(v,tfl 
~s(v, tU 

RT(v,t) - residual of temperature 
RS(v,t) - residual of solar radiation 

The response of this forecast approaches the mean values of the 

variables as the length of the forecast increases. 

2.12 

To improve upon this model one can incorporate the wet or dry status 

of the days being modeled as determined by the precipitation 

forecasting model (Richardson, 1981). This change in the model makes 

good intuitive sense as it allows there to be a different set of 
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parameters for wet days than for dry days. For both temperature and 

solar radiation this incorporation is beneficial. Typically one will 

find solar radiation to be decreased due to the cloud cover on a day 

precipitation occurs and temperature is generally lower when there is 

a precipitation occurrence. 

With this model the means and standard deviations are found from 

the historical record for both the wet days and the dry days. The 

residual series is computed conditioned by the wet or dry status of 

the day and the correlation structure is determined from this series. 

This is of the form: 

~(i,v,t) = [~(t) ~(i,v,t-1)] ~(i,t) + ~(i,t) 

where: 

~(i,t) - standard deviation matrix for condition 
~(i,t) - mean matrix for condition i 

condition indicator: 0 = dry, 1 = wet 

Note that this model is written in terms of actual values and not 

2.13 

residuals. This is due to the inclusion of the wet or dry conditioned 

mean and standard deviation. 

Autoregressive-Moving Average Models 

Autoregressive-moving average models of order p and q, 

ARMA(p,q), can be used to model temperature and solar radiation. 

These models, and the subset referred to as autoregressive models, 

AR(p), are often used in single-variate form which for the case of 

temperature and solar radiation would not be able to include the 

correlation between them. Multi-variate formulations are available 

for AR models which are relatively simple for low order ~odels but get 

extremely complicated and cumbersome for higher order models. 
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Approximate multi-variate forms of ARMA models are available but are 

complicated and cumbersome for higher order models with relatively 

little utility beyond that of an autoregressive model. Based on the 

experience of other investigators (e.g. Richardson, 1981) and the ease 

of implementation, the first order multi-variate autoregressive model 

is selected as the model for temperature and solar radiation in this 

study. 

STREAMFLOW FORECASTING 

Many methods are available for use in forecasting streamflow. The 

degree of sophistication required in the model is determined by the 

properties of the river basin, the forecasting needs of the project as 

well as by the resources available to operate the model. Physically 

based models in which all of the physical processes governing the 

motion of the water through a watershed are described by partial 

differential equations are far too computationally difficult to apply 

to an entire watershed. In addi~ion, Loaque and Freeze (1985) have 

shown that this approach has questionable value for prediction. 

Alternate 1 y, 1 arge, comp 1 ex mode 1 s such as the SSARR mode 1 (Army Corps 

of Engineers, 1975) are designed to forecast the streamflow of an 

entire watershed. In this model physical processes such as surface 

flow, subsurface flow, and base flow are accounted for conceptually. 

These three components of flow are then routed to the stream using the 

linear reservoir routing technique. The methods by which they are 

accounted for are not specifically derived from the actual physical 
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characteristics of the watershed, i.e. soil type, but are empirically 

derived for simplicity. Thus, this type of model is empirical yet 

attempts to preserve at least some of the physical phenomena that 

occur within a watershed. Such simplification greatly reduces the 

amount of data that are required regarding the watershed when compared 

to a truly physically based model. Another popular watershed model is 

the Stanford Model developed by Crawford and Linsley which has had 

many improvements since it was introduced. This model was designed to 

be used in all types of watersheds and is also of the empirical 

nature. 

Both of these models as well as most general watershed models 

require moderately large computer resources, large amounts of data, 

and trained personnel for application. These models are far too 

costly and complex for use in local water management. Stochastic 

models can be much less complicated yet may be capable of providing 

the desired forecast accuracy. Several alternative major stochastic 

models are investigated below and evaluated for their suitability with 

the system being modeled. 

Review Of Stochastic Streamflow Models 

There are several stochastic models that have been used to model 

streamflow. Many of these models are well suited for synthesizing 

sets of yearly or monthly data but tend to be less realistic when 

applied to daily or shorter time period models. The reason for this 

is the asymmetric nature of daily flow patterns. A precipitation 

event often will cause a rather rapid jump in the streamflow 
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hydrograph. Flows then receed at a much slower rate due to the nature 

of the hydraulics of the system. In order to produce realistic daily 

flow records or forecasts this behavior must be considered. Figure 4 

is a typical May through September daily streamflow record for the 

Tualatin River and clearly demonstrates the asymmetric nature of daily 

flow. Models that have been used for the synthesis of daily 

streamflow are the AR, ARMA, shot-noise, Markov, and transfer 

function. They each have some advantages and disadvantages which are 

examined. 

Autoregressive-Moving Average Models 

Mixed autoregressive-moving average models (ARMA) and the subset 

autoregressive models (AR) are probably the most commonly used form of 

stochastic streamflow models. Periodic AR models of order p have the 

form: 

p 
z(v,t) = L ~.(t) z(v,t-j) + s(v,t) 

. 1 , 
1= 

and the form of an ARMA mode 1 with orders p and q is: 

p q 

2.14 

z(v,t) = L ~.(t) z(v,t-i) - L 6.(t) s(v,t-j) + s(v,t) 2.15 
i=l , j=l J 

where: z(v,t) - periodic residual of modeled value 
~i(t) - ith periodic autoregressive parameter 
ej(t) - jth periodic moving average parameter 
s\v,t) - independent and indentically distributed random 

variables with E[s(v,t)] = 0 

The popularity of these models is partially due to the physical 

justification (Salas et al. 1980). AR models are quite good during 

the flow recession portion of a year where streamflow results 
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primarily from groundwater. These models base future streamflow as a 

fraction of the current streamflow. During periods of high flow the 

flows are primarily the result of rainfall, snowmelt, or both which 

can be modeled as a disturbance to the system by the moving average 

component of the model. This adds a portion of the randomness of the 

previous flow to future flow. When combined the model is good for use 

during both of the flow patterns. 

Obtaining the minimum variance forecast from these models is 

quite simple and involves taking the expected value of the generation 

model. This simply eliminates the random noise, E(v.t) term from 

equation 2.14 since E[E(v,t)] = 0. 

Parameter estimation for these models can become computationally 

difficult especially in the case of high order seasonal models. Box 

and Jenkins (1970) describe parameter estimation techniques for these 

models as do Salas, et al. (1982) for seasonal models. It is often 

possible to model a lower order ARMA with a higher order AR model 

which may often be easier to fit than the ARMA model. To determine 

the type and order of model the Akaike Information Criterion (AIC) can 

be used. The AIC calculated for ARMA models is written as: 

AIC (p,q) = N ln (cr~) + 2(p+q) 2.16 

where: N - sample size 

cr~ - maximum liklihood estimate of the residual variance 

The model with the lowest AIC value is chosen as the best one. This 

method is basically weighing the increased complexity of the model 

in terms of the number of parameters against the improvement in the 

residual variance. 
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The major drawback to using this class of models to synthesize 

or forecast daily flows is that they produce records that do not look 

like typical daily flow hydrographs. ARMA models produce symmetric 

sequences which are reasonable yearly and monthly models but may not 

be realistic for daily models. 

Markov Chains and Processes 

Multi-state, multi-lag Markov models have been found to provide 

reasonable sequences of daily streamflow data (Yakowitz, 1979). These 

models are much the same as described for precipitation above but will 

always use several states or possibly a continuous model and commonly 

use more than one. lag for determining the streamflows, both of which 

add considerably to the complexity of model development. Forecasts of 

streamflow are made by taking the expected value of streamflow as 

dictated by the transition probabilities. The major advantage is that 

realizations of the process look like actual streamflow records and 

there is no need to select a specific distribution to model the 

flows. The d~stributions are reflected in the transition matrices as 

determined from the historical record. The major drawbacks include 

computational difficulty in fitting the model and the determination of 

model and forecast errors which are required in this study. 

Shot Noise Processes 

Shot noise models are often used to generate sequences of streamflow 

and are capable of producing sequences that visually resemble actual 

daily streamflow records (O'Connell, 1979). Several types of these 
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models are used. The typical shot noise model generates events of 

random magnitude at random times. Events are defined as disturbances 

to the system which, in the case of streamflow, would result from 

precipitation, snowmelt or both. Timing of events is typically 

determined by a Poisson distribution and the magnitude is usually 

determined by an exponential distribution. Once the timing and 

magnitude of the event is determined then it is allowed to decay at a 

rate that is consistent with recession rates found in the river 

system. The decay is usually modeled with an exponential function. 

The form of a single shot noise model is: 

N(t) -b(t-L ) 
m X(t) = L Ym e 

m=N(-co) 
2.17 

where: y 
L 
m 

N(t) 

b 
x(t) 

- jump height as determined by an exponential function 
- random time of event occurrence 

number of events occurring in (O,t), generated by a 
Poisson process 

- a parameter 
- initial value of the process at time t=O 

This is the sum of all the pulses up to time t, decayed by the 

exponential function. 

The major advantage of shot noise models over more commonly used 

models, such as the ARMA model, is the asymmetric sample paths which 

more closely resemble actual daily streamflows. One drawback of this 

model is the inability of it to produce realistic recessions. To make 

the model more realistic two components can be modeled, one 

representing the rapid decay as would be found shortly after a 

precipitation event due to surface flow and one decaying more slowly 

representing baseflow recession (O'Connell, 1979). Other improvements 
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to this model include the second orcer shot noise model which involves 

one event rate for both of the events of the double shot noise model. 

This model is somewhat simpler than the double shot noise model and 

has been found to represent flows quite realistically. Another type 

of shot noise model breaks the recession into two parts (Sargent, 

1979). The first decay function is rapid consisting of a power 

function. The second, slower part of the recession is modeled with an 

exponential function. This form produces flows that look more 

reasonable than the single shot noise model and is quite comparable to 

the double shot noise model. The parameters of this process are 

somewhat more difficult to estimate and the break between the two 

recession functions is difficult to determine. 

When used to forecast streamflows this model would be of 

little utility. The timing of the events would no longer be randomly 

spaced since they are to represent some sort of input event. These 

events would need to be correlated to streamflow magnitude in some 

manner which there seems to be little basis for doing with this type 

of model. Furthermore, this correlation would most likely be much 

like trying to fit some sort of transfer function model yet would be 

less realistic due to the nature of the recession modeling. 

Transfer Function Models 

The transfer function incorporates some form of input which is 

usually linearly related to streamflow. In one such model (Miller, 

Bell, Ferreira, and Wang, 1981) streamflow was modeled as a function 

of past flows, present and past precipitation, and the square of the 
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present precipitation. In the application presented, this model 

performs better, in a forecasting model, than the time series models. 

This specific model has the following form: 

ln Q(t) = So + 81 ln Q(t-1) + 82 ln Q{t-2) + 83 R(t) + 84 R(t) + 

Ss R(t-1) + 86 R(t-2) + N(t) 
where: Q(t) 

R(t) 
N(t) 
81 

- fl ow at ti me t 
- standardization of rainfall at time t 
- random noise 
- ith regression coefficient; i = 1 to 6 

It seems reasonable that this type of model should out perform time 

series models due to the inclusion of precipitation as a forcing 

function. However, for use in forecasting the precipitation 

quantities in the future would be required, which is not a trivial 

problem as noted above. Choice of what should be included as a 

forcing function as well as the appropriate transformation are not 

necessarily simple as can be seen by the seemingly arbitrary form of 

the model above. This model was fit to the data using least squares. 

Box and Jenkins (1970) provide further parameter estimation techniques 

for use with transfer functions. 

Streamflow Model Selection 

The final choice of a model to be used for forecasting should be 

made based on the forecasting needs, the resources available to fit 

the model, and the characteristics of the system being modeled. For 

the test data set that is being used in this study, Tualatin River, 

near Gaston, Oregon, an inspection of the flow patterns from May 

through September was performed. During this period it is apparent 
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that the general flow pattern indicates flow recession. There seems 

to be nosignificant jumps in streamflow following the precipitation 

that occurs during this period. From this it is apparent that a 

transfer function type of a model would not be appropriate as there is 

no input to drive the system. For the same reason a shot noise model 

would also not be appropriate. A Markov model could be used but as 

mentioned before, error analysis which is essential to this study 

would be difficult to perform. Since the flow is in recession, it 

should be able to be modeled for forecasting satisfactorily using an 

AR or ARMA type of a model. For these reasons the AR and ARMA models 

are chosen for further investigation as the forecast models for this 

system. Several models of different orders are fit and the best is 

determined using the AIC. 



CHAPTER III 

SYSTEM MODELS 

The components of a water management model investigated in this 

study consist of a physically based routing procedure driven by 

forecast tributary inflow and irrigation demands, and a soil moisture 

model driven by the forecasts of temperature and solar radiation. 

These components, when combined with an irrigation management system 

such as the DSS (Allen, 1985), and the forecasting models of Chapter 

II can provide information that aid in planning of irrigation timing 

and quantity several days in advance. To determine the adequacy of 

these forecast models it is necessary to investigate their errors and 

how these errors propagate through the system. This chapter develops 

a state space approach to the Muskingum streamflow routing technique 

and presents the simplified soil moisture model (Koch and Allen, 1985) 

in notation which facilitates analysis of errors and error 

propagation. 

STREAMFLOW ROUTING 

For most water supply systems, the demands for water are to be 

met by either existing streamflow, releases from the reservoir, or 

both. In order to ensure adequate water availablity in the stream at 

any given time some method of accounting for streamflow must be 
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provided. The routing model must be developed so it is complete 

enough to accurately describe the flow in the system yet simple enough 

to be computationally efficient. In this section we will review the 

physical processes involved in streamflow and present a model meeting 

these criteria. 

For this system the streamflow routing will be driven by two 

inputs, upstream flows in the main stream and tributaries, and 

irrigation diversion demands as dictated by the soil moisture model. 

The effects of errors in these inputs are evaluated for the model. 

Fundamental Flow Equations 

For a one-dimensional, straight channel, with no lateral inflow, 

the flow can be described by the Saint-Venant equations of continuity 

and momentum, respectively: 

ah/at + a(uh)/at = o 

au/at + uau/ax + gah/ax = g(S 0 - Sf) 

Where: 
h - local depth of flow 
t - time 
u - velocity of flow 
x - axis in direction of flow 

g - acceleration due to gravity 

So - bottom slope 

Sf - friction slope 

3.1 

3.2 

The terms of 

ah/ at 

these equations have the. following physical significance: 

- change in depth with respect to time 

a (uh) I at 

au/at 

- change in flow with respect to time 
local acceleration due to unsteadiness in the flow 



uou/ox - convective acceleration due to nonunifonn nature of 
the flow 

goh/ox - acceleration caused by the pressure gradient 
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These are nonlinear partial differential equations which have no 

general analytical solution. For this reason it is necessary to 

either simplify these equations to a form with a known analytical 

solution which still provides a reasonable representation of the flow, 

use some numerical approach on the original equations, or use both a 

simplification and a numerical approach together. Two common 

simplifications of the full dynamic wave equation are the diffusive 

and the kinematic wave. 

Diffusive Wave. Here the local and convective acceleration terms are 

considered to be negligible compared to the frictional, gravitational, 

and pressure terms. The momentum equation then takes the form: 

Sf = S0 - oh/ox 3.3 

By manipulating equation 3.1 and 3.3 one obtains: 

oh/ot + c oh/ox = µd 2h/d 2x 

where: 
c - wave celerity = 1.5 u 
µ - diffusive coefficient = ud/2S 

3.4 

This model produces some diffusion but not as much as the full dynamic 

wave. The diffusive assumption is reasonable in situations having 

mild slopes and long flood wave periods (Ponce, Li, and Simons, 1978). 

Kinematic wave. In this model the inertial terms are neglected as is 

the pressure term. This model produces no diffusion and the form of 

the momentum equation is: 

So = Sf 3.5 



which implies a uniform flow. A relationship between friction slope 

and discharge can be expressed through either the equation of Chezy: 
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Q = CA(RS)l/2 3.6 

or Manning: 

Q = 1.486/n AR 213 s112 

where: 
Q - volume flow rate 
C - Chezy coefficient 
n - Manning's coefficient 
R - hydraulic radius 
A - area of flow 

3.7 

In general, this leads to an area discharge relationship of the form: 

Q = a Ab 3.8 

By manipulating equations 3.1 and 3.6 one obtains: 

dQ/dA = budQ/dx 3.9 

The kinematic approximation is valid for very mild slopes and waves of 

very long periods as would be typical of overland flow or flow in some 

river systems (Ponce et al. 1978). This approximation is more 

restrictive than the diffusive wave. 

Analytical solution of the kinematic equation yields a solution 

with convection and no diffusion. However, using a finite difference 

scheme to solve the equation results in numerical inaccuracies which 

cause the result to exhibit both convection and diffusion. Cunge 

(1969) equated these numerical inaccuracies to the physical diffusion 

that should actually occur in a diffusive wave. In doing this he 

developed the well known, but empirically based, Muskingum routing 

technique thus giving a physical basis to the parameters used in the 

Muskingum technique. 
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Muskingum Routing 

In the 1930's the Muskingum routing technique was empirically 

developed based on the storage equation and the assumption that the 

storage in a reach at any given time was a function of the inflow and 

the outflow. 

dS/dt = I-0 

and S = K[xl + (1-x)O] 

where: 
S - storage in a reach 
I - instantaneous inflow 
0 - instantaneous outflow 
K - a parameter 
X - a parameter 

3.10 

3.11 

This equation implies that there is a one to one relationship between 

storage or depth in the river and discharge as would be the case for 

the kinematic wave. The analytical solution would yield no diffusion 

of the flood wave. With the Muskingum method this is not the case as 

some diffusion does occur, apparently due to the fact that instead of 

the continuous form of the continuity equation a discrete form was 

used. 

01 + 12)/2 - (01 + 02)/2 = (S2 - S1)/6t 

For a multiple reach system, the solution is: 

with: 

n+l n n+l n 
Qj+l = C1Qj + C2Qj + C3Qj+l 

n 
Q. - flow 

J 

J - space increment counter (reach) 
n - time increment counter 
C1 = (-KX + 0.56t)/(K - KX + 0.56t) 
C2 = (KX + 0.56t)/(K - KX + O.S~t) 
C3 = (K - KX + O.S~t)/(K - KX + O.S~t) 

3.12 

3.13 
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The parameters K and X are corrmonly determined by choosing a value for 

x. usually close to 0.2 and then plotting storage in the reach verses 

[XI + (1 - X)O] for a given set of inflow and outflow data. The plots 

will be in the shape of a loop. This is done for several values of 

X. The plot with the narrowest loop has the most accurate value of· X, 

and K is the reciprocal of the slope of a line drawn through the loop 

(Viessman et al. 1977). This method is somewhat cumbersome and the 

results are only good for floods with similar properties to the flood 

used for calibration. By equating the actual diffusion to the 

numerical diffusion Cunge (1969) found the values of K and X to be 

related to the properties of the physical and hydraulic system: 

K = 6.x/c 

X = 1/2 (1 - (Q/BS 0c6.x)) 

where: 
Q - flow rate 
c - flood wave celerity = dQ/dA 
A - cross sectional area of river 
6.x - length of routing reach 
B - width of the river 
S - channel slope 

3.14 

3.15 

Such basis makes parameter estimation much simpler and also 

allows for parameters to vary with different floods as needed if this 

is found to be a significant problem. Thus the parameters K and X 

depend on physical characteristics of the river and the flood of 

interest (since c, Q, B and S change both with respect to time and 

distance) as well as the time and space intervals. For the model to 

be physically realistic and produce diffusion it is necessary that the 

value of X be between 0 and 0.5. 
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Linear Reservoirs. A common simplification of the Muskingum routing 

technique is to set X = 0. The resulting equation sets the storage as 

a linear function of flow and is known as the linear reservoir. This 

model implies a "level pool" assumption which means that the water 

level in the reaches is assumed to be approximately level and flows as 

a system of cascaded reservoirs. This further implies that the reach 

lengths must be relatively short so that they may be considered 

level. For the physical basis of the model to be maintained, the 

reach length becomes fixed from Eq. 3.15 at: 

t:.x = Q/(BcSo) 3.16 

Time and Space Steps. From use and empirical testing it has been 

found that the choice of the space and time increments have a 

substantial impact on the results of the routing and must be chosen in 

such a manner as to yield realistic results (Ponce and Theurer, 1982). 

From a practical standpoint it is apparent that the time 

increment, t:.t, must be small enough so that the flood of interest is 

not 'lost' between two time steps. As a generally accepted rule of 

thumb it is recommended that there be at least 5 timesteps on the 

rising portion of the inflow hydrograph (Ponce and Theurer, 1982). No 

theoretical lower limit has been found for the time step and is 

usually set by the computational resources used to perform the routing 

computations as well as the appropriate time step required by the 

project. 

The value of the space interval, t:.x, also called the reach 

length, is more difficult to determine. Ideally one would like to 

have t:.x be the distance from the inflow to the point of interest for 
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only one space step. However, empirical studies have shown that large 

values of 6x tend to produce flows downstream that are below 

baseflow. This is clearly unrealistic and the reach length must be 

chosen so that this 'dip' is either not present or is insignificant. 

The object becomes choosing 6x as large as possible without causing 

unrealistic flows. From experimentation, Ponce and Theuer (1982) have 

found that the coefficient C2 is solely responsible for the ''dip" and 

will cause it to occur when C2 is negative. 

In terms of the Courant number, C: 

C = c6t/6x 

and the cell Reynolds number, D: 

D = q/(S0 c6t) 

the condition C + D = 1 should yield acceptable results. Greater 

restrictions can be placed on C2 to provide a 'factor of safety' 

against the dip. In general this leads to: 

C + D = > e: 

E: > 1 

This condition requires that: 

6x < 1/e: (c6t + Q/BS 0c) 

3.17 

3.18 

Koussis (1982) has shown that theoretically e: = 1 but Ponce and Theuer 

suggest that a value of e: = 2 should be used thus providing a factor 

of safety. For the linear special case where X = 0, known as the 

linear reservoir routing method, the choice of 6x becomes fixed at: 

6x = Q/BS 0c 3.19 

which also serves as a lower bound for the general case since the 



parameter X must not be less than zero. Depending on the 

characteristics of the river, the reach lengths may need to vary in 

order to satisfy the inequalities. 

Due to the fact that ~t and ~x are related and that each has 
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bounds which limit its range, it is possible that a choice for one 

variable within its range will lead to the other one being outside of 

the respective range. For this reason it may be necessary to iterate 

between them until both values are within their respective ranges. 

In summary: 

0 < ~t < T/5 where T = time of rise of hydrograph, and 

Q/BS 0c < ~x < 1/2 

If one of these inequalities cannot be met then a smaller value for ~t 

is chosen and ~x is recomputed. These provide reasonably conservative 

limits. 

Linear Reservoirs Vs. Muskingum. Using a linear reservoir 

approximation, the time increment is set in the same manner as in the 

Muskingum routing. The space increment, however, is set specifically 

at the lower limit of the Muskingum reach lengths as shown by Eq. 

3.19. Requiring specific interval lengths with linear reservoir 

routing can cause considerable inconvenience if the reach lengths do 

not occur at the points of interest along the river. Also the 

resulting reach lengths are often relatively short. Note that with 

Muskingum reaches, during high flows and shallow slopes the upper 

limit for ~x can become quite large thus allowing for far fewer 

reaches than in linear reservoir routing if desired. Since Muskingum 

reach lengths are allowed to be within a range of values it is easier 
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to find reach lengths which correspond to points of interest along the 

river system without losing accuracy. The maximum allowable reach 

lengths can also be considerbly longer than the minimum of linear 

reservoir reach lengths depending on the physical characteristics of 

the river thus allowing for far fewer reaches and substantially less 

computation time. The Muskingum method also provides a greater degree 

of accuracy than the linear reservoir approximation because changes in 

celerity that occur undoubtedly lead to an incorrect linear reservoir 

reach length whereas {his is not necessarily true with Muskingum 

routing. From Eq. 3.16 it can be seen that the value of ~x for a 

linear reservoir is based on both the celerity and the flow. One 

could theoretically change the reach length as required by the changes 

in the flow but this would require considerable data about the entire 

river system and would complicate calculations immensely. From this 

it is evident that the exact reach length is not maintained except at 

the discharge chosen for setting the reach length which means the 

physical correspondence is also not maintained. This flow, known as 

the reference discharge, is chosen as a representative flow in the 

reach. The selection is somewhat subjective and the problem can be 

averted by using Muskingum routing and a conservative value for a 

reference discharge. This gives a factor of safety against obtaining a 

reach length that is physically unrealistic. For all of these reasons 

the Muskingum routing procedure is preferred to the linear reservoir 

approach. This method is further developed using a state space 

formulation and solution to equation 3.13. 
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CONSTANT VS. VARIABLE PARAMETERS 

Thus far, all of the discussion has been limited to the case where the 

parameters K and X are considered to be constant. This is not the 

case as both K and X are defined in terms of the wave celerity which 

is a function of flow and the flow rate itself. Unless flow is found 

to increase linearly with area then the celerity will not be a 

constant. When using Muskingum routing several methods can be used to 

approximate the time varying celerity. These methods generally 

consist of determining the celerity based on the averages of flow at 

two or three of the remaining grid points or by using an iterative 

procedure on all four grid points using a three point average as an 

initial estimate. All of these methods produce reasonable results and 

are quite simple to perfonn (Ponce and Theurer, 1982). However, this 

procedure requires that values of the parameters be determined for 

each time and space step which results in a great increase in 

computational effort. By routing various flow sequences with constant 

parameters and comparing these to the results of routing with variable 

parameters it has been found that choosing a reasonable value of a 

constant reference discharge will yield acceptable results (Ponce 

and Yevjevich, 1978). The celerity should be determined from a flood 

of record that is in the same size range of those that are to be 

routed. For the proposed state space formulation holding values of K 

and X to be constant for a reach greatly simplifies the computations 

required. In an irrigation system, the water is required during the 

low flow period of the year and large flood waves are unlikely. 

Therefore it should be possible to take a 'typical 1 summer flow and 



determine the celerity for use in determining K and X. If it is 

desired to do some sort of flood study at a later time it would be 

advisable to choose a reference discharge that is similar to the 

normal flows that are found in the time period that flooding is of 

importance. 

Discrete State Space Derivation 
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Due to the form of the river routing problem and the requirement 

that flows at intermediate points along the river are required, state 

space analysis is employed. State space is an n-dimensional space in 

which each axis represents one of the n state variables. The state of 

the system at any given time is expressed by the state variables. 

State space analysis is an analytical technique frequently used in 

modern control theory to solve sets of coupled or high order 

differential equations. It has several advantages over classical 

methods. State space analysis is accomplished in the time domain, it 

applies to problems with multiple inputs and outputs, and it includes 

the initial conditions. The classical theory operates in the 

frequency domain, has only a single input and output, and neglects the 

initial conditions. For these reasons a state space approach is used 

to solve the river routing problem. The Muskingum routing approach is 

written in terms of discrete time periods rather than in the form of 

differential equations as normally used in state space analysis, this 

required the development of a discrete state space solution for this 

set of difference equations. 

The discrete state space formulation is written as: 

F[~(t)] = Ax(t) + Br(t) 3.20 
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where: 

F - the forward shift operator 

~(t) - state vector 
..!:_(t) - the input vector (forcing function) 

A - coefficient matrix 
B - coefficient matrix 

Solving for the Homogeneous Case. To find the solution of the 

equation one must first define the state transition matrix ~(t) which 

gives the free response of the system such that: 

~(t) = !(t)~(O) 

To find the state transition matrix, start with the homogeneous 

equation 

F[x(t)] = Ax(t) 
or ~(t+l} = Ax(t) 

Taking Z transforms of this equation gives: 

Z [~ ( t+ 1) ] = Z [Ax ( t) ] 

Expanding one obtains: 

z! - z~(O) = AX 

where X = Z(~) 

rearranging this gives 

! = (_!_ - ~/z)- 1 x(O) 

Then taking inverse Z transforms results in the solution: 

~(t) = z- 1 [(_!_ - ~/z}- 1 ] ~(O) 

Thus the state transition matrix is: 

1 ( t) = z- l [ (_!_ - ~/ z) - l] 

which provides the unforced response to a vector of initial 

conditions. 

3.21 

- -------i 



Solving for the Non-Homogeneous Case. The non-homogeneous case 

includes the forcing function r(t) and the corresponding coefficient 

matrix B. 

F[x(t)] = Ax(t) + Br(t) - - -
Again, taking Z transforms of Eq. 3.20 gives: 

z! ·- zx(O) = AX + ~(z) 

where ~(z) = Z[.!:_(t)] 

Rearranging one obtains: 

!. = (l-.~/z)- 1 ~(O) + (.!_ - ~/z)- 1 ~(z)/z 

Again taking inverse Z transforms: 

~(t) = z- 1((.!_ - ~/z)- 1 ] ~ (O) + z- 1 [(.!_ - yz)- 1 ~(z)/z] from 

the homogeneous solution of Eq. 3.20. 

z- 1 [ (.!_ - A/ z )- 1
] = j_ ( t) 

so, the solutions to the nonhomogeneous case is: 

~ ( t) = j_ ( t) x ( o) + z- 1 
[ (.!_ - ~I z) - 1 ~ ( z) I z] 

To determine the inverse transform of Z[(!. - ~z)- 1 BR(z)/z] the 

convolution property is used. 

Z[f*g] = Z[f] * Z[g] 

by letting 

Z[f] = (l - A/z)- 1 

and Z[g] = ~(z)/z 

we obtain: 

z- 1{Z[f]*Z[g]} = z- 1{z[f*g]} 

= f * g 

47 



so: 

f; z- 1 [{_!_ - ~/z)- 1 ] 

= _i(t) 

g = z- 1[BR(t)/z] 

= ~(t) for instantaneous values of r(t) 

The convolution of f with g is defined as: 

h 
f * g = L f(k~t) g[(h-k)~t] 

k=O 

The complete solution of the discrete difference equation is then: 

n 

48 

~(t) = !(t) ~(O) + k~O j_(k~t)~[(h - k)~t)] 3.21 

Using this method it is possible to determine the response at 

any time given the input function r(t). If a continuous function is 

used to represent for the input r(t), a dirac delta function would 

need to be incorporated and would be obtained in taking the inverse Z 

transforms of .equation above. The dirac delta function would sample 

the input vector at each of the discrete time steps thus reducing the 

continuous function to a set of discrete points. In this case, 

however, the input is defined to be a constant value for each time 

period thus eliminating the need for the delta function. For the 

proposed Muskingum routing, inputs consist of the inflow at the top of 

the reachs as we 11 as the 1atera1 inflows and diversions. Average 

values of these over the time increment ~t are used in the 

computations. 

In the original form of the equation for multiple reaches exact 

results may be obtained by numerical methods, however, due to the 
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recursive nature, a solution at all intermediate time steps is 

required to get one answer at the desired time in the future. The 

discrete state space solution allows for the results to be solved for 

at any time in the future g1ven the initial conditions and the inputs 

for each time step. 

State Space Muskingum Routing 

Recalling that the Muskingum routing method for a multiple reach 

system is: 

n+l n n+l n 
Q ·+1 = c 1 Q . + c 2Q . 

J J J + C3Qj+l 

In discrete state space notation, using constant parameters, this 

system of equations becomes: 

F [.Q_ ( t)] = ~ .Q_ ( t) + ~ _!_ ( t) 

Specifically for this case: 

.Q_(t) - flow in the reaches at time t 

I(t) - inflow at the top of the uppermost reaches or lateral 
- inflows to the other reaches 

3.13 

The elements of the A and B matrices are found by solving Eq. 3.13 for 

each reach and substituting so that each reach is defined in terms of 

all of the reaches above it. The notation of Eq. 3.21 is simple in 

vector form but is rather cumbersome when each element is expressed 

for use with Muskingum routing. This is due to the form of the input 

I(t), which actually consists of values of inflow at both time t and 

time t+l. This results in a B matrix with dimensions that are N by 2N 

for an N reach system. One way to simplify the~ matrix, is to 

express it as two matrices, Bl and 82. This requires some minor 

changes in the solution. 

----! 



50 

Rewriting Eq. 3.21 as follows produces relatively simple 

expressions for the elements of the B matrix and will have no effect 

on the A mat r i x . 

F [.Q_ ( t) ] = ~ _Q_ ( t) + .fil:_ l_ ( t) + g l_ ( t + 1 ) 3.23 

where: 
Bl - coefficient matrix 

B2 - coefficient matrix 
l_(t) - known inflows to reaches at time t 

l_(t+l) - known inflows to reaches at time t+l 

The solution using this formulation is written as: 

n 
Q(t) = $(t)Q(O) + ~ 
- - k=O 

j_(kt)BlI[(h-k)t:.t] + 1_(kt)B2I[(h-k)t:.t + t:.t] 3.24 

For an N reach non-branching system the elements of the A matrix as 

determined from Eq. 3.13, where i represents the row of the element, k 

represents the column, and L is a counter. 

For i < k a(i,k)=O 

For i = k a(i,k) =Ci 3 
' 

For i = k+l a(i,k) = [Ck+l,l + Ck+l,2 ck,3] 

For i > k+l a(i,k) = [ H cl ~ [ck+l 1 + ck+l 1 ck ~ 
L=k+2 ' ' ' ' 

With the same notation, the elements of the Bl and B2 matrices are: 

For i < k bl(i,k) = 0 b2 ( i 'k) = 0 

For i = k bl(i,k) =Ci 1 b2(i,k) =Ci 2 
' ' 

For i > k bl(i,k) = ~ H CK 2] ck 1 
L=k+l ' ' 
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For i > k s2 ( i , k) = I H cK ~ ck 2 
LL=k+l , J . 

Recalling that the state transition matrix is determined by Eq. 

3.21, general expressions for terms of ~(t) can be found but are 

algebraically very complex and cumbersome. To illustrate this, the 

state transition matrix of a three reach system with no lateral inflow 

is determined. The elements of the A matrix are determined from Eq. 

3.13 above to be: 

Cl,3 

A = I C2 1 + C2 2 + C1 3 
' ' ' 

C3,2[C2,1 + C2,2 + C1,3] 

0 

C2,3 

C3,1 + C3,2 + C2,3 

0 

0 

C3,3 

Letting the elements of the A matrix be represented as a(i,j), where 

represents the row and j the column, the elements of the state 

transition matrix can be determined from the following equations. 

For i < j 
For i = j 

1_(i,j) = 0 

1_(i,j) = a(i,i) 

For = j+l 1_(i,j) = a(i,j) 
a(i,i) a(j,j) 

------ + ------
(a(i ,i) - a(j,j)) (a(j,j) - a(i,i)) 

For i = j+2 
1_(i,j) = a(i-l,i-2)a(i,i-1) 

a(i-1,i-1) 

(a(i-1,i-1)-a(i-2,i-2))(a(i-l,i-1)-a(i-3,i-3)) 

a(i-2,i-2) 
+-~-----------~~-~ 

(a(i-2,i-2)-a(i-1,i-l))(a(i-2,i-2)-a(i-3,i-3)) 

a(i-3 i-3) 
+ ' 

(a(i-3,i-3)-a(i-2,i-2))(a(i-3,i-3)-a(i-l,i-1)) 

+ a(i,j) 
a(i-l,i-1) a(i-l,j-1) + ______ _ 

a(i-l,i-1)-a(i,i) (a(i,i) - a(i-l,i-1) 
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This simple example clearly demonstrates how the terms of the 

matrix become very complex when written in general terms of t. The 

complexity of these equations increases geometrically as the number of 

reaches increases and becomes very cumbersome even for a simple 

system. An alternative to solving for a general, time varying, 

transition matrix is to use a one step ahead transition matrix with 

the outflows at one time period as the initial conditions for the 

next. The A matrix is a one step ahead transition matrix as can be 

verified by setting t equal to one in the above e·quations or simply by 

the form of the initial equation. This method is much less cumbersome 

as can be seen by comparing the elements of the A matrix to the 

elements of the matrix. 

SOIL MOISTURE 

The movement of water into and through the zone in which plants 

can extract moisture is a complex phenomenon. It involves 

infiltration, redistribution of the water within the root zone, 

drainage from the root zone, evaporation and transpiration. These 

processes are very important as they affect the amount of water that 

is required for irrigation. Models that accurately describe these 

phenomena can be used to determine the timing and amount of irrigation 

that a crop requires. Such knowledge is crucial to an irrigation 

management system. 

This section presents a brief description of the processes 

involved in moisture depletion. The simplified soil moisture model 
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given by Koch and Allen (1985) is presented and developed into a form 

to facilitate sensitivity and error analysis. The results of this are 

used to determine the errors associated with irrigation demands which 

are then tracked through the streamflow routing model. 

Moisture Transport in Soil 

To explain transport in soil several definitions are required. 

Soil moisture is defined as the ratio of the volume of water to the 

bulk volume of soil. The field capacity, 8fc• is the soil moisture 

below which no loss due to gravity drainage occurs. The wilting 

point, Owp. is the soil moisture at which a plant can no longer 

extract water from the soil. Natural saturation, es, is the soil 

moisture at which the voids are nearly full of water. This is usually 

less than the porosity of the soil as there is often trapped air 

within the soil. The root zone is the depth to which plants can 

extract water from the soil. 

The processes involved in moisture transport in soil include 

infiltration, redistribution, percolation, evaporation, and 

transpiration. Infiltration is the transport of moisture into the 

soil surface. Redistribution occurs following a precipitation or 

irrigation and causes the soil moisture to even out throughout the 

soil column. This process occurs rather rapidly following an 

irrigation or precipitati?n event. Drainage is the process of water 

draining from the root zone by gravity following the redistribution of 

an irrigaton or precipitation. This tends to be a rather slow process 

and occurs when the soil moisture is in excess of field capacity. The 
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major factors affecting redistribution and drainage are the hydraulic 

conductivity and the capillary pressure properties of the soil. 

Evaporation is the loss of moisture from the soil surface to the 

atmosphere and transpiration is the removal of moisture from the soil 

by the plants. These two processes have very similar characteristics 

and are often modeled together (Saxton and McGuinness, 1982). 

Collectively the process is referred to as evapotranspiration (ET). 

The two major factors controlling ET are energy inputs, such as 

sensible heat and solar radiation, and the availability of water in 

the soil. 

The combination of these processes lead to complex nonlinear 

differential equations for which there is no analytical solution. 

Simplifications, numerical methods, or both are needed to solve these 

problems for practical applications. 

Simplified Soil Moisture Model 

The soil moisture model presented by Koch and Allen (1985) describes 

the movement of water through the root zone and the moisture depletion 

due to ET. Many simplifying assumptions were made to obtain this 

model yet the parameters are still physically measureable and the 

results seem to be adequate. For the ET phase the model is written 

as: 

e(t) = ewp + (eo-ewp)exp[-ETp t/[D(efc-ewp)] 

where: e(t) - soil moisture at time t 
eo - soil moisture at time 0 
ETp - potential evapotranspiration 
D - depth of root zone 

3.24 
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In this application, only the ET process is modeled which restricts 

the applicability to areas where irrigation methods are efficient and 

no excess water is applied which result in drainage. The major 

assumptions made in this model are: 

1. Redistribution occurs rapidly with respect to ET so no 
separate calculations for redistribution are needed. 

2. ET is assumed to be a linear function of the soil moisture, 
starting at zero when e = o and reaching the potential rate of 
ET (PET) when 6 > o. 

3. This model is only adequate for situations in which the soil 
moisture is at or below field capacity following 
redistribution. 

The model is inappropriate under conditions where 0 > o since drainage 

from the root zone is not considered. This study addresses only the 

model presented which limits applicability to relatively efficient 

methods of irrigation that will apply no excess water. For soil 

moisture greater than 0, in which drainage occurs, additional 

components are available (Koch and Allen, 1985). 

PET is modeled using the Jensen-Haise equation, an empirical 

relationship between PET, temperature, and solar radiation. It is as 

follows: 

ETp = (9.1598 * lo- 6 T - 2.4167 * l0- 4 )Rs 

where: 

ETp - potential evapotranspiration in inches per day 

T - average temperature in degrees fahrenheit 
Rs - 24 hour solar radiation total in Langleys per day 

Rewriting Eq. 3.24 in terms of available water gives: 

AWC(t) - AWC(O) exp[-ETp t/(AW D)] 

3.25 

3.26 



where: 

AWC(t) - available water at time t 
( e ( t) - ewp) 

AWC(O) - initial available water 
( e ( o) - ewp) 

AW - total available water 
( 6fc - ewp) 

Adding a forcing function such as rainfall or an irrigation, and a 

term representing model error, the model becomes: 

AWC(t) = AWC(O) exp[-ETp t/(AW D)] + r(t)/D + w(t) 

where: 
r(t) - input, precipitation or irrigation 
w(t) - model error 

3.27 

This formulation is valid for an input r(t) such that 0 + r(t)/d < 0 
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based on the restricted applicability of the model. This formulation 

can be readily analyzed for sensitivity and error propagation. 

The parameters of this model are estimated from the physical 

characteristics of the system. The complete model has been used to 

describe soil moisture in the Tualatin Valley Irrigation District. 

Results indicate an adequate reproduction of observed soil moisture 

given the required climatological data from the historic record 

(Allen 1985). 

The results of this model, when used to forecast, determine the 

amount of water that is required for irrigation as well as the timing 

of the irrigation based on crop needs. When adjusted for irrigated 

area, the resulting diversion is an input to the river routing model 

which is used to determine whether demands can be met. Other factors 

to consider when irrigating include soil contamination by inorganic 

salts and irrigation efficiency. Soil contamination may dictate that 
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more water than required for plant growth be supplied in order to wash 

the salts from the soil. This is not considered in the soil moisture 

model presented here but may be important in certain situations. In 

addition, the actual amount of water that reaches the ground is less 

than the water that is removed from the river system. Losses from 

conveyance and from the actual application of the water can vary 

considerably with the methods being used as well as the climatic 

conditions. This is considered in determining the amount of diversion 

required. 



CHAPTER IV 

SENSITIVITY, FORECAST ERRORS, ANO ERROR PROPAGATION 

One of the major objectives of this study is the evaluation of 

forecast errors and the determination of how errors propagate through 

the system. The ability to determine the sensitivity of the model to 

the various inputs, throughout the system from soil moisture demand to 

the source of water, is of great aid in determining the utility of the 

models. Such an analysis provides an objective means by which to 

measure the relative effects of forecast errors. This, in turn, 

suggests where effort must be centered in constructing forecast 

models. It is desirable to improve the parts of the model that yield 

the greatest increase in model performance. These can be identified 

using a sensitivity analysis and tracking errors through the system. 

In a model such as this where the results of one component or reach 

are used as the input for the next component or reach, any error in 

the input will propagate through all lower segments of the model. A 

determination of what happens to these errors is necessary to 

determine whether the model will provide reasonable results. It is 

possible that the errors could grow unbounded or just grow until they 

reach a constant value. Even if the errors were to grow unbounded 

they may grow slowly enough at first so that their effects are not 

significant within the time frame that the forecasts are needed. With 



an analysis of error propagation it is possible to objectively 

determine how the errors behave. 

TEMPERATURE AND SOLAR RADIATION FORECAST ERRORS 

59 

The model chosen to forecast temperature and solar radiation is 

a multivariate autoregressive model (MVAR). The form of this model 

is: 

~(v,t) = ~(t) ~(v,t-1) + ~(t)~(v,t) 4.1 

with terms as defined in chapter 2. For ease of forecast error 

development, this model can be written in single variate form as: 

~(t+l) = [Az(t) + ~(t)~(t)] 4.2 

Or, the model may be written in terms of the lead time, L, as: 

~(t+L) = ~L~(t) + ~L-lB£(t+l) + ... + AB£(t+L-1) 4.3 

By taking the term by term expectation the forecast function is found. 

~(L) = ~L~(t) 4.4 

The forecast error at lead time L is the difference between the 

actual value and the forecast value and is written as: 

~ ( L ) = [~ ( t +L ) - ~ ( L ) ] 
where: 

~(L) - forecast error at lead time L 

~(t+L) - actual value 

~(L) - forecast value 

4.5 

Substituting Eq. 4.3 and 4.4 into Eq. 4.5, an expression for the error 

at lead time L is obtained. 

e(L) = AL-1B£(t+l) + ... + AB£(t+L-1) + B£(t+l) 4.6 



with variance determined by: 

VAR[~(L)} = E(~(L)~(L)T1 

= E[~L-l~(t+l) + ... + ABe(t+L-1) + ~(t+l)) 

(~L-lBe(t+l) + ... + ABe(t+L-1) + ~(t+l))T} 
Expanding equation 4.7 and recalling that the noise terms are 

uncorrelated leads to a general expression for the forecast error 

covariance at lead time, L, given by: 

E[e(L)e(L)T} = [AL-lBB(AL-l)T + ... + ABBTAT + BBT} 

ARMA FORECASTING MODEL ERROR 

An ARMA model of orders p and q has the form: 

p q 
z(t) = t ~iZ(t-1) + e(t) - t ej e(t-j) 

i=l j=l 

with terms as defined in chapter 2. 

or 

p q 
t ~ i z ( t - j ) - t ~ j et- j = 0 

i=O j=O 

This model can also be written as the infinite sum of weighted 

independent random variables. 

"" 
z(t) = t 'l'jet-j 

j=O 

where: 
'l'j - weighting factors 

Forecast errors can be expressed as: 

60 

4.7 

4.8 

4.9 

4.10 

4.11 
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L-1 
e ( L ) = E '¥ j e:t +L - j 

j=O 
4.12 

where: 
e(L)·- forecast error at lead time L 

(Salas et al., 1980). Substituting Eq. 4.14 into Eq. 4.15 one 

obtains: 

p m q 

E E ej '¥j Et-j-1 - E eje:t-j 
j=O i=O j=O 

4.13 

To.determine the variance of the forecast error, the '¥terms must be 

found. This can be done by solving Eq. 4.13 recursively. For an 

AR(p) model the '¥ terms are: 

p 
'¥· - E A.·'¥· • J - 'Y1 J - 1 

i=l 

where: 
'¥0 = 1 

'¥j-l = 0 where j - 1 < 0 

For an ARMA(l,1) model the terms are: 

'¥.=(<I> -6 )A.j-1 
J 1 1 'Yl 

4.14 

4.15 

With the '¥ terms known, the variance of the forecast error can then be 

determined. 

Var[e(L)] = E[e 2(L)] 

L-1 
E '¥4a2 

. 0 J e: = 
J= 

4.16 

The variance of the forecast error for a one step ahead forecast 

is the residual variance of the model. As the lead time increases the 

·error variance approaches the variance of the system modeled. 



SENSITIVITY ANALYSIS 

To determine the sensitivity of the soil moisture model to the 

parameters and forecasts of input variables (temperature and solar 

radiation), it is necessary to perform a sensitivity analysis. This 

is accomplished by determining the contribution that each of the 

parameters and forecasts makes to the variance of the modeled 

variable. The approximate variance of the result can be determined 

from the first order Taylor series approximation, which is giyen by: 

62 

· o2 = (oR/ox 1 crx 1) 2 + (3R/ax 2 crx 2) 2 +•••+ (aRn/axn crxn) 2 4.17 

where: 

R - is the function under evaluation 

Xi - parameters or forecast variables 

n - number of parameters and/or forecast variables 

Recalling the form of the soil moisture model: 

AW(t) = AW(O) exp-[ETp/D AWC] 

where: 

ETp = (9.1598*10- 6T - 2.4167*10- 4 )Rs 

with terms as defined in Chapter 3. To estimate the sensitivity or 

variance of soil moisture to the parameters and the forecasts for 

temperature and solar radiation the following equation can be applied: 

cr~w = (aAW(t)/oAW(O) crAW(0)) 2 + oAW(t)/aAwC crAWC) 2 + 

(aAW(t)/aT crT) 2 + (oAW(t)/aRs crRs) 2 
+ (oAW(t)/aO cr0) 2 4.18 

However, the variance of the parameters is not known and cannot 

easily be determined, thus the analysis can only provide relative 

sensitivities for the parameters using the coefficients of Eq. 4.18 as 

a guide. The parameters, in this case, are physically measureable 
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quantities. The variance of these measurements are dependent on such 

considerations as the skill of the person performing the measurement, 

the precision of the instrument or method used to develop the data, 

and the natural variability that exists in the variable being 

analyzed. 

Since the forecast error variance can be determined, estimated 

values for the variance of soil moisture with respect to temperature 

and solar radiation can be obtained as: 

3AW 
oA2W = (3AW(t)/3t oT) 2 +(3AW(t)/3R oR )2 + (~~ oAW( .)) 2 

s s 3AW(i) 1 

9.1598 x l0- 6T - 2.4167 x 10- 4 

= [AW(i) exp -[[ ]Rs(i)] x 

9.1598 x 10- 6 (Rs(i) 
------- a ] 2 + 

D x AWC T 

D x AWC 

9.1598 x l0- 6T - 2.4167 x 10- 4 

[AW(i) exp -[[ ]Rs(l)] x 
D x AWC 

9.1598 x io- 6r - 2.4167 x io- 4 

~~~~~~~~~~-]oR ]2 + 
s D x AWC 

9.1598 x 10- 6T - 2.4167 x 10- 4 

[exp -[[ ]Rs]oAW(i)J2 
D x AWC 

which provides the forecast error variance of the soil moisture 

assuming that the parameters are perfect. 
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ERROR PROPAGATION 

Errors are introduced through all the models presented. The 

results of the climate forecasting models are used as input to the 

soil moisture model. These results as well as streamflow forecasting 

are used as input to the routing model. The routing model indicates 

whether there is adequate water for irrigation. thus, all of the 

models presented are interrelated. Unfortunately, the errors of each 

of the models are interconnected as well. This section presents a 

method to track propagation of errors through the system. 

The following error propagation analysis (Gelb 1974) is 

presented using the state space notation of chapter 3 primarily for 

its incorporation with the discrete Muskingum state space solution. 

This technique is used with the soil moisture model as well, when 

reduced to a scalar rather than vector form. The following 

definitions are presented to provide the required background. 

The state of a system whose output is X can be written as: 

~ ( t + 1 ) = ! ( t ) ~ ( t ) + .!:. ( t ) ~ ( t ) + ~( t ) ..':! ( t ) + _i: ( t ) .'.!'.. ( t ) 

where: 
!(t) - state transition matrix as described in chapter 2 

_!:.(t) - a convolution matrix as described in chapter 2 
representing the model error coefficients 

~(t) - model error at time t 
~(t) - convolution matrix for "known" model input 

_':!(t) - known model input 
_i:(t) - convolution matrix for input errors 

.'.!'._(t) - errors of the input 

4.20 

In this analysis the coefficient matrices are assumed to be constant. 

The error covariance matrix, P(t), at time t is defined as: 

---; 



f(t) = E~(t);(t)T] 
where: 

E - the expected value operator 

~(t) - error vector, X(t) - _!(t) 
~(t) - observed value vector 

~(t) - estimated value vector 

Substituting Eq. 4.24 into Eq. 4.26 one obtains: 

x{t+l) - ~{t+l) = .!_(t)x(t) - [!(t)~(t) + _!:.(t)w(t) 

+ ~(t)_!!(t) + .!:(t)_y_(t)] 
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4.21 

4.22 

Note that the term A{t)_!!(t) is a known input and introduces error into 

the system. 

From this: 

x(t+l) = .!_(t)x(t) - _!:.(t)w(t) - .!:(t)_y_(t) 

So the error covariance matrix at time t+l is: 

P ( t + 1 ) = E [ (j_ ( t) ; ( t) ; ( t ) T 4> T ( t ) -

.!_(t);(t)w(t)T_!:.(t)T + .!_(t);(t)_y_(t)T.!:(t)T -

_!:.(t)w(t);(t)T!T(t) + .£(t)w(t)w(t)T.£T(t) + 

_!:.(t)w(t)_y_(t)TKT{t) - .!:(t)_y_(t);(t)T4>T(t) + 

.!:(t)_y_(t)~(t)TrT(t) + .!:(t)_y_(t)_y_(t)TKT(t)] 

For the terms in which the random variables are not the same, the 

expected value is zero since these errors are uncorrelated. For 

example: 

E[x(t)(r(t)w(t))T] = O 

4.23 

4.24 
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Thus, Eq. 4.6 reduces to: 

P(t+l) = E[$(t);(t);(t)T$T(t)] + E[r(t)w(t)w(t)TrT(t)] + 4.25 --- - ---

E[~(t)_y_(t)_y_(t) T~(t) T] 

which becomes: 

P(t+l) = ..P_(t)f(t)_!T(t) + _!:.(t)R(t)_!:.T(t) + ~(t)~(t)~T(t) 4.26 
where: 

~(t) - covariance matrix of the model error 
~(t) - covariance matrix of the input error 

Using equation 4.8 the error covariance matrix at time period t+l can 

be found from the error covariance matrix at the time t with the model 

and input error covariance matrices. 

It is interesting to note the Eq. 4.26 is a difference equation 

from which a general solution could be obtained. This could be useful 

for further investigation of error propagation, but would most likely 

become computationally cumbersome as did the general solution to the 

Muskingum routing problem of chapter 3. 



CHAPTER V 

APPLICATION OF FORECAST MODELS 

To demonstrate the fitting, use, and forecast error variance of 

each of the selected models, numerical examples are provided using 

data from the Tualatin Valley Irrigation District (TVID) and the U.S. 

Geological Survey. Each of the models are fit and analyzed for 

forecast error variance with examples showing the individual model 

response. Following this, an example is given for a simplification of 

the entire system using all of the component models. The error 

variance associated with each model is calculated and the forecast 

error variance is determined for the entire system. 

The Tualatin River Basin is chosen as the study area for these 

examples because it is typical of a small river basin in Western 

Oregon and is one of the few areas where most of the data required to 

fit and test these models are available due to the activities of the 

TVID. This area is especially useful because of its relatively long, 

five year, record of solar radiation. A map of the basin and the 

surrounding area is shown in Figure 5. To simplify computations, 

water users are consolidated into five major diversions in the 

examples. This simplifies computations but still adequately 

demonstrates the models. Because most of the required data is 

available, few further modifications are required. 

--, 
! 
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WEATHER FORECASTING 

Precipitation 

To determine the characteristics of the precipitation occurrence 

and quantity of the Tualatin Valley, a Markov chain analysis was 

performed on a 29 year climatological data set from 1952-1981 from 

Forest Grove, Oregon. Analysis indicated that seven states adequately 

discretize the data. To accommodate periodicity, the data are grouped 

into 14 day periods. To demonstrate typical forecast development, the 

transition occurrences and probabilities as well as the forecast 

values are determined for the two week period beginning July 22 and 

ending August 4. These values are shown in Tables III and IV 

respectively. The transition probabilities for the other period are 

listed in the Appendix. They show that the most common transition is 

the no rain to no rain situation. The forecasts demonstrate that even 

in the event that it does rain there is little rain on the following 

day. For example, if on day 0 there was .25 inches of rain, the 

forecast for day 1 would be for 0.125 inches. The forecast for day 2 

would then be 0.01 inches and for the following days, the forecast 

would be zero inches of rain. 

Temperature and Solar Radiation 

For the Tualatin River basin a five year solar radiation record, 

available from the TVID, was used with the associated temperature and 

precipitation record to fit the MVAR model. These data included daily 

high and low· temperatures as well as cumulative solar radiation. Mean 
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daily temperatures are assumed to be the arithmetic average of the 

high and low temperatures. The record for the solar radiation was not 

complete apparently because the cummulative solar radiation meter used 

was not read on weekends. This resulted in a solar radiation record 

that typically consisted of four days per week of daily readings 

followed by a cumulative reading for the remaining three days per 

week. To obtain a continuous set of daily data, as required by the 

model, it was necessary to synthesize values for the days that had no 

readings. This was accomplished by fitting a regression between the 

temperature and the solar radiation for the days on which solar 

radiation data was read. To accommodate periodicity a different 

regression was fit for each month. The best fits, for all periods, 

was obtained using a linear regression with daily high temperature as 

the regressor. Using the regression relations, estimates for the 

missing data were calculated from the temperature data. The 

cumulative radiation that was read over the period of missing data was 

then distributed in proportion to the estimated quantities that each 

of the days received from the regression. This procedure attempts to 

maintain the assumed relation between temperature and solar radiation 

while keeping the cumulative radiation of the missing data equal to 

the actual amount. 

Using the five year data set, the parameters of the MVAR model 

were estimated. To accommodate periodicity an attempt was made to use 

daily means, standard deviation, and correlation coefficients; 

however, doing so produced some unrealistic negative correlations. 

Seven and 14 day periods were also tried. The 14 day period smoothed 
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the statistics well, showed good correlation and was chosen as the 

appropriate period length for mean and standard deviation. The 

correlation coefficients showed minimal periodicity and were 

recalculated for the entire period. These statistics are shown in 

Table V. Using these statistics, the A and B coefficient matrices 

were determined; they are shown in Table VI. From these, the error 

covariance matrices are determined; they are shown in Table VII. The 

diagonal terms of these matrices are the variance and are used to 

determine variance of the soil moisture model. These terms start off 

relatively small and increase towards one as the forecast lead time 

increases. This indicates that the forecasts obtained by this model 

are better than merely forecasting the mean, for a lead time of only a 

few days. As the lead time. increases, the variance of the forecast 

approaches the sample variance. As this happens, the utility of the 

model decreases. With higher correlations, these variance terms would 

stay lower for longer periods thus providing better forecasts. 

Sample forecasts are shown in figure 6 through 8 

demonstrating the behavior of the model under different initial 

conditions. It is interesting to note that this model behaves quite 

differently from a simple single-variate AR(l) model. With an AR(l) 

model a forecast always directly approach the mean value. With the 

MVAR it is possible for forecast values to increase for a time period 

or two before approaching the mean and at a rate different from that 

which would occur in a single variate model. These forecasts tend to 

indicate that solar radiation is more strongly influenced by 

temperature than one might expect. This may be due to the manner in 



TABLE V 

TEMPERATURE AND SOLAR RADIATION 
S ·r AT I ST IC S 

TEMPERATURE 

Day 

1-14 
15-28 
29-42 
43-56 
57-70 
71-84 
85-98 
99-112 
113-126 
127-141 
142-153 

Dry Mean 

54.05 
60.66 
59.53 
63.52 
64.38 
66.37 
67.81 
68 .. 97 
64.85 
63.88 
58.60 

SOLAR RADIATION 

Day 

1-14 
15-28 
29-42 
43-56 
57-70 
71-84 
85-98 
99-112 
113-126 
127-141 
142-153 

Dry Mean 

456.4 
485.1 
465.7 
469.7 
474.9 
519.2 
504.3 
450.8 
393.7 
386.9 
319.8 

Wet Mean 

51. 42 
52.34 
56.19 
57.87 
59.10 
64.42 
62.40 
61. 88 
63.69 
60.88 
5::.75 

wet Mean 

360.9 
428.27 
327.3 
361.0, 
380.5 
372.5 
312.8 
304.8 
283.6 
310.2 
245.4 

CORRELATION COEFFICIENTS 

Temperature - Temperature 

Temperature - Solar Radiation 

Dry Std. Dev. 

4.74 
6.46 
5.24 
6.18 
4.51 
4.92 
5.22 
6.56 
4.93 
5.23 
5.95 

Dry Std. Dev. 

142.8 
134.5 
152.8 
141.7 
158.7 
131. 0 
148.6 
126.4 
118.4 
107.9 
95.8 

Lag 0 

1. 0000 

0.4904 

Solar Radiation - Solar Radiation 1. 000 

0.4904 Solar Radiation - Temperature 

73 

wet Std. Dev. 

3.95 
3.15 
2.70 
4.23 
3.93 
3.61 
2.16 
2.90 
4.32 
4.38 
3.72 

wet Std. Dev. 

166.6 
117.9 

75.0 
130.5 
104.0 
112.0 

93.3 
56.8 
87.4 

110.3 
59.1 

Lag 1 

0.5978 

0.4032 

0.5420 

0.1717 



A = 10.5268 

Lo. 6027 

TABLE VI 

A AND B PARAMETER 
MATRICES 

0.14481 

-0.123~ 

TABLE VII 

B = ~
. 7.916 

0.2274 

RESIDUAL FORECAST ERROR VARIANCE 
MATRICES OF TEMPERATURE AND 

SOLAR RADIATION 

Lead Time Lead Time 
(Days) (Days) 

[6267 .1800 J [9892 
1 5 

.1800 .6946 .5126 

[. 8426 .3712] [9956 
2 6 

.3712 ,9054 .5176 

[9360 .4702 J [9982 
3 7 

4702 .9587 5197 

[9736 .5004 J 
4 

5004 .9831 

74 

0.0000] 

0.8018 

. 5126] 

.9926 

.5176] 

.9966 

.5197] 

.9982 
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which the missing data was filled in for the solar radiation. 

However, the linear regression only preserved the lag zero correlation 

but did nothing to preserve the lag one correlation that would tend to 

make temperature follow solar radiation. 

SOIL MOISTURE 

To demonstrate the soil moisture model and the water demands 

that are derived from the results, the Tualatin Valley Irrigation 

District is simulated with only five major water users. This 

simplifies computation, but is adequate to demonstrate the behavior of 

the model and the errors associated with it. The pertinent 

information about each water user is provided in Table VIII. 

Irrigations are performed when the soil moisture drops below the 

critical soil moisture. The amount of water required is the 

difference between the field capacity and the soil moisture on the day 

of the irrigation multiplied by the number of acres and the root zone 

depth. This quantity is then assumed to be withdrawn evenly from the 

river over the entire day of the irrigation. The error variance of 

soil moisture is determined from Eq. 4.19. The variance of 

temperature and solar radiation, required in this equation, are 

determined from the diagonal terms of the residual forecast error 

variance of Table VII and are shown graphically in Figure 9. Table IX 

shows the normalized contributions of temperature, solar radiation, 

and initial available water to the overall variance of the model. The 

soil moisture error variance values generally increase as the forecast 



79 

TABLE VIII 

WATER RIGHT INFORMATION 
JULY 24 - 31, 1974 

Field Number 1 2 3 4 5 

Priority 1 2 3 4 5 

Diversion Reach 8 4 8 6 1 

Irrigated acres 800 450 350 80 180 

Root Zone Depth 12 12 18 12 18 

Critical soil 0.10 0.15 0.30 0.10 0.30 
moisture, 

Field Capacity, 0.35 0.33 0.38 0.40 0.40 

Wilting Point, 0.15 0.13 0.18 0.13 0.22 

Initial Soil 0.30 0.30 0.22 0.35 0.26 
Moisture, ( 0 ) 

Available water 0.20 0.20 0.20 0.27 0.18 
content, AWC 

Critical avaliable 0.0 0.02 0.12 0.0 0.08 
water content, AW 

Initial available 0.15 0.17 0.14 0.22 0.10 
water content, AW(O) 
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TABLE IX 

NORMALIZED CONTRIBUTIONS OF FORECAST 
ERROR VARIANCE TO SOIL 

MOISTURE VARIANCE 

LEAD TIME (DAYS) 

1 2 3 4 5 6 7 
FIELD 1 

Temperature .147 .079 .055 .043 .034 .028 .024 

Solar Radiation .853 .492 .315 .241 .191 .156 .132 

Initial Soil o.o .429 .629 .715 .774 .816 .844 
Moisture 

FIELD 2 

Temperature .147 .080 .057 .043 .032 .027 .028 

Solar Radiation .853 .493 .323 .243 .180 .148 .125 

Initial Soil o.o .428 .620 .714 .788 .826 .852 
Moisture 

FIELD 3 

Temperature .147 .079 .096 .060 .044 .034 .028 

Solar Radiation .853 .491 .544 .338 .244 .190 .156 

Initial Soil o.o .429 .360 .602 .712 .776 .816 
Moisture 

FIELD 4 

Temperature .147 .079 .057 .043 .034 .028 .024 

Solar Radiation .853 .492 .323 .241 .189 .156 .132 

Initial Soil o.o .429 .620 .716 .776 .816 .844 
Moisture 

FIELD 5 

Temperature .147 .079 .057 .043 .034 .028 .076 

Solar Radiation .853 .490 .325 .242 . 190 . 155 .418 

Initial Soil o.o .431 .618 .715 .776 .817 .505 
Moisture 
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lead time increases. A one week forecast for each of the water users 

is provided with the system forecast. 

STREAMFLOW FORECASTING 

To demonstrate the streamflow forecasting model, several ARMA 

models are fit to the data for the main stem and tributaries in the 

basin. The only tributary with no record is Rock Creek. To model the 

flow in this stream d data set is synthesized from the records of the 

other tributaries. Flows from the main stem and the other tributaries 

for the two year period in which all of the other tributaries were 

gaged, are routed to the gage at Farmington using the flow routing 

model. The flows resulting from the routing are then subtracted from 

the recorded flows at the Farmington gage. This difference is used as 

the estimate of the flows in Rock Creek. This technique makes no 

allowance for losses or unaccounted for inflow that may have occurred 

between gages, however, this is often one of the few alternatives in 

such cases. This provided only a two year estimated streamflow record 

for Rock Creek. Presently, Scoggins Creek is fully regulated by the 

dam at Henry Hagg Lake, thus the flow in Scoggins Creek is 

deterministic as required to meet project requirements, no stochastic 

model is needed for this tributary. 

Preliminary analysis indicates that the flows are not normally 

distributed as determined by the skewness test of normality (Salas 

et al. 1980). A logarithmic transformation performed on the data 

resulted in some improvement. Grouping the data into 7 day periods 
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helped to smooth out the statistics but provided some unrealistic 

correlation coefficients. Grouping the data into 14 day periods 

improved both the normality and the statistics probably due to the 

increased sample size. The 14 day grouping of data is used to fit the 

models. The correlation coefficients showed little or no periodicity 

over the May through September period, so the models are fit with 

constant autoregressive and moving average parameters. These 

statistics are shown in the Appendix. Early May tended to show 

slightly lower correlation coefficients that the other periods. This 

is probably the result of the greater inputs the system receives 

during this time of the year. However, since these forecasting models 

are typically used to model recession and not the disturbances, it is 

reasonable to lump May in with the rest of the season. 

The main stem and each of the tributaries were fit for AR models 

of orders one through six and for an ARMA(l,1) model. Table X shows 

the residual variance of each of the models for each reach as 

determined from Eq. 4.16. Using the residual variance, the Akaike 

Information Criteria (AIC) is determined for each of the models. The 

AIC values are listed in Table XI. The model with the lowest AIC is 

selected as the best model. These models are underlined for each 

tributary. The parameters of the selected models are shown in Table 

XII and the associated residual forecast error variance is shown in 

Table XIII with actual error variance in Table XIV. The actual error 

variance is obtained by inverting the log transformed residual 

forecast error variance. For some of the models, the forecast 

variance of Table XIV peaks out at the sample variance. This was 
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imposed because the calculated inverted variance was greater than the 

sample variance for these lead times, so the forecast variance is set 

equal to the sample variance. This may result from the data not being 

normalized well enough with the logarithmic transformation. To 

improve this a more complex transformation may be required. 

These models will produce forecasts that approach the mean 

value, which decreases as the season progresses. To demonstrate a 

typical forecast, the period from September 10-17, 1974 on the 

Tualatin River near Gaston is modeled. The forecast is shown in 

Figure 10 along with the actual flows that occurred. The error 

variance of this forecast is shown in Figure 11. 

STREAMFLOW ROUTING 

To demonstrate the routing model, the response of the Tualatin 

River to a storm during September 1974 is simulated. During this 

period the major tributaries were gaged and are used as known input to 

the river. Irrigations are assumed to be minimal during this period 

due to the time of year and apparent storm occurrence. 

Parameter estimation was performed using bed slope and channel 

width data obtained from United States Geological Survey topographic 

quadrangle maps. The reference discharges and the celerity were 

estimated from published flow data for the basin (United States 

Geological Survey, 1974). Using Eq. 3.20 minimum and maximum reach 

lengths were calculated for each section of the river with relatively 

constant physical characteristics. Table XV shows these 
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characteristics as well as the associated reach lengths. Note that 

the minimum reach length for the Muskingum approach is the same as the 

maximum reach length for the 1 inear reservoir technique. The minimum 

lengths are often on the order of hund~eds of feet, while the maximum 

is on the order of several miles, thus demonstrating the benefit of 

the Muskingum technique. Based on this information, reach lengths 

routing are set so that they correspond to the gaging stations and 

other landmarks in the system. The selected reach lengths and their 

corresponding characteristics are shown in Table XVI. The parameters 

K and X and the corresponding coefficients for each reach are shown in 

Table XVII. The elements of the A, Bl, and B2 matrices are shown in 

Table XVIII. The results of the routing is graphed with the observed 

flow and are shown in Figure 12. This routing appears to be 

consistently low over the entire routing period. This is possibly due 

to a choice of reference discharges and/or other characteristics of 

the basin that are not realistic for the flows being routed. The 

flows in the system during this period were somewhat lower than the 

reference discharges used for parameter estimation, so this is most 

likely the source of error. Also, the flow estimation procedure used 

for Rock Creek may tend to bias the results. These results, however, 

appear to be sufficiently accurate to warrant the use of this model 

for water management purposes, as close correspondence was maintained 

between routed and observed flows with errors of typically only a few 

cubic feet per second. 
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TABLE XVI 

PHYSICAL PROPERTIES OF 
SELECTED REACHES 

REACH LENGTH s B Q 
(miles) (ft/ft) (ft) (cfs) 

1 4.8 0.00123 20 19.1 
2 3.9 0.00125 20 78.4 
3 1. 2 0.000651 20 98.8 
4 3.4 0.000651 20 98.8 
5 3.9 0.000416 20 128.0 
6 7.1 0.000416 20 128.0 
7 5.9 0.0000933 60 154.0 
8 5.2 0.0000933 80 158.0 

TABLE XVII 

ROUTING PARAMETERS AND 
COEFFICIENTS 

REACH K x Cl C2 C3 
(days) 

1 0.1600 0.4916 0.9953 0.7248 -0.7202 
2 0.1300 0.4584 0.9810 0.7721 -0.7531 
3 0.0400 0.1728 0.9509 0.9250 -0.8759 
4 0.1133 0.3845 0,9541 0.8011 -0.7552 
5 0.1300 0.2959 0.9103 0.7802 -0.6905 
6 0.2367 0.3879 0.9177 0.6330 -0.5507 
7 0.1967 0.2587 0.8530 0.6954 -0.5484 
8 0.1733 0.2893 0.8828 0.7219 -0.6047 
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SYSTEM FORECAST 

To demonstrate the interaction of all the models, a forecast for 

the seven day period from July 25 through July 31, 1974 is performed. 

This period is chosen because it provides most of the data needed to 

compare the forecasts to observed values, particularly on the major 

tributary streams. No solar radiation data are available for this 

time period, so a set of synthesized values is used for comparison. 

These data are synthesized using the MVAR generation model with the 

temperature equal to the observed temperature. The result is a solar 

radiation data set with the same multivariate relationships that occur 

in the historic record. Soil moisture data are also not available for 

this period and 'reasonable values' are chosen to provide the initial 

conditions required by the model so that they adequately demonstrate 

model response to different soil/crop conditions. The final result of 

the entire system forecast is the steamflow in the Tualatin River at 

the Farmington gage. During this time period, however, the irrigation 

diversions were not known and cannot be used as input. Furthermore, 

the dam on Scoggins Creek was not yet in place and actual or forecast 

flows might not be able to meet irrigation demands that one might 

encounter. So, to realistically simulate the system, some assumptions 

and modifications have to be made. These are as follows. To 

accommodate irrigation demands on Scoggins Creek, the flows in 

Scoggins Creek will be set at 25 cfs as though a dam was controlling 

the releases. Synthesized values of solar radiation are to be used as 

described above and initial conditions of soil moisture are chosen and 
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indicated in Table VIII. The 'observed' soil moisture is taken as the 

results of the soil moisture model with the observed values of 

temperature and synthesized values of solar radiation as input. The 

'observed' flows in the Tualatin River at the Farmington gage are 

taken as the routed observed inflows and diversions from the system. 

These modifications and assumptions imply a perfect soil moisture and 

routing model, which is clearly not the case. However, comparison of 

forecasts with the observations provides insight to the forecast 

errors. 

July 24 had no precipitation which results in a forecast of zero 

precipitation over the seven day period. The temperature and solar 

radiation forecasts and observed values are shown in Figure 13. The 

initial temperature is very close to the mean value for this period 

and so the forecast showed little variation. The solar radiation 

forecast also showed little variation from its initial condition. The 

forecast error variance of these forecasts were presented earlier in 

Figure 9. From these forecasts water requirement of the irrigated 

lands is calculated. When the water requirement is forecast to be 

below the critical available water, an irrigation is assumed during 

that day to bring the available water up to field capacity. The 

forecasts of available water are shown in Table XIX with the observed 

soil moisture in Table XX. The forecast error variance of these 

forecasts are shown in Table XXI. From these forecasts, it can be 

seen that two fields need to be irrigated. The forecast soil moisture 

for these fields are shown in Figures 14 and 15. The flows needed to 

meet these requirements, and the variance of these flows are in Table 
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TABLE XIX 

AVAILABLE WATER FORECAST 
JULY 25 - 31, 1974 

DATE JULY, 1974 

25 26 27 28 29 30 31 
Field Number 

1 .139 .129 .117 .110 .102 .094 .087 

2 .157 .146 .135 .126 .112 .103 .095 

3 .123 .117* .189 .179 .170 .161 .153 
(.200) 

4 .207 .196 .185 .175 .165 .156 .147 

5 .104 .098 .093 .088 .083 .078* .170 
( . 180) 

TABLE XX 

OBSERVED AVAILABLE WATER 
JULY 25 - 31, 1974 

DATE JULY, 1974 

25 26 27 28 29 30 31 
Field Number 

1 .142 .131 .119 .109 .097 .083 .077 

2 .167 .154 .140 .128 .114 .097 .090 

3 .125 .118* .187 .173 .159 .141 .133 
(.200) 

4 .211 .199 .185 .173 .159 .141 .133 

5 .106 .100 .093 .087 .080 .071* .170 
(.180) 

For both tables the numbers with an I* I indicate that 
an irrigation is required. The numbers in parantheses show 
the available water content following the irrigation. 
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XXII. For use in routing computations these demands are treated as 

output from the top of the appropriate reach. Streamflow forecasts 

and observed values are shown in Tables XXIII and XXIV and are 

presented graphically in Figures 16 through 20. The irrigation 

demands and the streamflow forecasts are used as inputs to the routing 

model. The results of this routing are shown in Figure 21. 

The errors of the forecasts are propagated using equation 4.26. 

Table XXV shows the error covariance matrices for lead times of one 

and two days. The matrices for lead time three through seven days are 

presented in the Appendix. The diagonal terms of these matrices are 

the forecast error variance. They tend to grow rapidly at first and 

then level off as the lead time increases. Figures 22 and 23 shows 

these varian~es for reaches 2 and 5 respectively. 



25 
Field Number 

1 0.71 

2 0.91 

3 0.26 

4 0.90 

5 0.23 

25 

REACH 1 
Field 5 

Forecast 0 

Observed 0 

REACH 8 
Field 3 

Forecast 0 

Observed 0 

TABLE XXI 

FORECAST ERROR VARIANCE 
OF AVAILABLE WATER 
JULY 25 - 31 7 1974 

( * 1 oS ) 

DATE JULY, 197 4 

26 27 28 

1. 42 1. 94 2.31 

1. 82 2.52 3.01 

0.55 1. 37 2.05 

1. 87 2.70 3.35 

0.47 0.68 a.as 

TABLE XXII 

IRRIGATION DIVERSIONS 
JULY 25 - 31, 1974 

(CFS) 

DATE JULY, 1974 

26 27 28 

0 0 0 

0 0 0 

21. 9 0 0 
( 0. 26) 
21. 7 0 0 

2~ 

2.55 

3.27 

2.59 

3.84 

0.97 

29 

0 

0 

0 

0 

30 

3.04 

3.85 

3.23 

4.58 

1.15 

30 

13.9 
(0.14) 
14.8 

0 

0 

None of the other reaches have forecast or actual 
diversions during this time period. Forecast error 
variances are in parentheses. 
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31 

3.01 

3.79 

3.51 

4.76 

1. 94 

31 

0 

0 

0 

0 
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XX III 

STREAMFLOW FORECAST 
JULY 25 - 31, 1974 

(CFS) 

Date, July 1974 

25 26 27 28 29 30 31 

Tualatin R. 20.1 19.2 18.2 17.6 17.4 17.3 17.2 

Gales Cr. 14.7 14.2 13.5 13.0 12.6 12.4 12.3 

McKay Cr. 4.5 3.5 3.0 2.8 2.6 2.4 2.3 

Dairy Cr. 13.5 12.4 12.0 11. 5 11.1 10.7 10.4 

Rock Cr. 0.67 0.57 0.29 0.18 0.15 0.12 0.10 

Routed Forecasts 
to Farmington 
Gage 82.4 49.5 61. 4 77.8 51. 7 46.8 33.3 

TABLE XXIV 

OBSERVED STREAMFLOW 
JULY 25 - 31, 1974 

(CFS) 

Date, July 1974 

25 26 27 28 29 30 31 

Scoggins Cr. 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

Tualatin R. 19.0 17.0 20.0 20.0 19.0 18.0 17.0 

Gales Cr. 14.0 13.0 13.0 10.0 9. 6 9.0 7.8 

McKay Cr. 3.8 3.1 3.2 1. 4 1. 8 1. 6 0.7 

Dairy Cr. 17.0 15.0 10.0 11. 0 13.0 10.0 9 . 3 

Rock Cr. 10.0 0.0 0. 0 o.o 0. 0 o.o 0.0 

Routed Observations 
to Farmington 
Gage 83 .1 52.8 64.5 77.0 46.5 35.7 28.3 
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Figure 22. Propagated forecast error variance for reach 2. 
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Figure 23. Propagated forecast error variance for reach 5. 
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EVALUATION 

This chapter demonstrates each of the forecast models and used 

their output as the inputs to the soil moisture and routing models to 

obtain a routed streamflow forecast. The temperature and solar 

radiation models did not provide forecasts that maintain close 

correspondence to the observed values. However, the soil moisture 

model is relatively insensitive to these forecasts, resulting in 

forecasts of soil moisture that are very close to the observed soil 

moisture. The streamflow forecast models appear to perform reasonably 

well for most of the tributaries. Using the results of the forecast 

models as input to the routing model produced streamflow at Farmington 

that is very close to the routing of the observed inputs. 

The simplifications and modifications required to fit and use 

the models and compare the output to the observations must be 

considered. Great effort was taken to ensure that these examples be 

as realistic as possible given the data that were available. 

Simplification was kept to a minimum and modifications were made only 

when data was insufficient to fit models. Overall, the results of 

these examples tend to show that the models presented are capable of 

providing forecasts whose results are sufficiently accurate for use as 

a guide in water management. 



CHAPTER VI 

SUMMARY ANO CONCLUSIONS 

This paper presents several models intended for use in water 

management with methods for evaluating forecast model errors. The 

forecast models are for preciptation quantity, temperature, solar 

radiation and streamflow. Precipitation, temperature, and solar 

radiation forecasts are used as the inputs to a soil moisture model 

which provides irrigation diversion requirements. The forecast 

streamflows and irrigation requirements serve as input to a routing 

model that provides streamflow forecasts throughout a river basin. 

These forecasts are used to indicate whether diversions can be met 

with the existing operating policy or conditions, or if a new policy 

must be implemented. The precipitation forecast model uses simple 

Markov transition probabilities to determine precipitation quantity 

given the precipitation quantity on the previous day. The model 

selected for temperature and solar radiation is a multivariate 

autoregressive model using different parameters based on 

precipitation. The streamflow forecast models are of the 

autoregressive-moving average type. To route forecast inflows and 

diversions a state space approach to the Muskingum-Cunge routing 

technique is applied. The errors of the forecast models and the 

propagation of errors through the models are investigated. 
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CONCLUSIONS 

Each of the component models seem to provide reasonable 

forecasting capabilities for use with soil moisture modeling and 

streamflow routing. The precipitation model is simplistic, and not 

capable of forecasting rain when no rain has occurred on the previous 

day. However, for use in an irrigation management model, where the 

objective is to ensure that enough water is available to meet crop 

demends, this model provides conservative estimates, which are 

generally desireabJe. Unfortunately, this could also lead to wasted 

water if rain did occur when none was forecast. This model is well 

suited to areas where there are typically several days of dry weather 

in a row. In the system forecast the precipitaion model forecast zero 

rain for the seven day period. 

The temperature and solar radiation model did not perform well 

in the system forecast. The forecast error variance rapidly 

approached the sample variance, indicating the model to be of 

relatively little value. This is probably due to the non-continuous 

set of solar radiation d~ta from which the parameters were estimated. 

A more complete set of data would be likely to improve model 

performance substantially. 

The soil moisture forecasts, driven by the temperature and solar 

radiation, showed little sensitivity to these forecasts. This 

resulted in soil moisture forecasts that were very close to the soil 

moisture under the simulated conditions. 

The streamflow forecasting models indicate that reasonably good 

forecasts can be obtained when the stream is in recession. For 



113 

periods in which the streamflow is fluctuating, ARMA forecast models 

do not perform well. For the streams modeled in this study, it is 

apparent that use of long flow records for parameter estimation 

produced forecasting models with lower error variance than. those 

estimated from short data sets. This further demonstrates the need 

for complete, long data sets to obtain good stochastic models. 

The Muskingum-Cunge routing technique is slightly more complex 

in form than the linear reservoir technique but allows for much longer 

reach lengths while still maintaining physical correspondence with the 

system being modeled. This provides accurate routing with far fewer 

reaches resulting in a considerable savings in computation time. The 

general solution to the state space formulation of the Muskingum 

routing method is far too cumbersome to be useful for practical 

application. However, the state equation may be easily used to 

provide one step ahead forecasts to as many time steps into the future 

as required by using the results from one time step as the initial 

conditions for the next. This matrix approach may also have 

considerable utility when used with vector processers that are be;ng 

developed for computers. 

The results of the system forecast indicate that the proposed 

forecast and routing models could be adequate for use in water 

management for simple systems with only a few water users. Further 

testing is required, under a variety of conditions, to determine when 

and where the models can be successfully used. Further interpretation 

of the forecast error covariance matrices may also be of some use. 
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Implementation of these models requires periodic updating, 

possibly every one or two days particularly when conditions change 

rapidly, such as the occurrence of a rainstorm. In a small basin, 

where the river travel time is only a few days, such updating could 

provide enough information to make operational changes in time to 

prevent short term water shortages in the river or prevent water from 

being wasted. 

A major drawback to these forecast models is the amount of data 

required to accurately estimate the parameters. Temperature records 

are generally readily available but good records of solar radiation 

are not common. Each of the major tributaries must have at least a few 

years of data as well. This requires that the need for future 

forecasting capabilities be realized with enough time to install 

gaging and measurement equipment so that a good data base is 

established by the time the models are required. Another drawback may 

be encountered by the computer resources that are required to run a 

comprehensive water management model incorporating the proposed 

forecast and routing models The models presented are relatively 

simple, but when combined with a system that keeps track of the 

pertinent water user information, the system can become quite complex 

requiring substantial computing capabilities. However, computers are 

rapidly becoming more powerful and less expensive, so it is not 

unreasonable to expect that the necessary computing capabilities are 

likely to be available to water managing agencies. 
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With all of this in mind, these forecasting models and the 

streamflow routing model, when combined with an adequate data base and 

a comprehensive water management model, are capable of being a 

powerful tool to aid water managers in the day to day operational 

strategies required for local water management. 
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TABLE XXVI 

PRECIPITATION TRANSITION PROBABILITIES 
FOREST GROVE, OREGON 

May 1 - May 12 

.771 .092 .040 .032 .016 .012 .036 

.453 .156 .141 .078 .031 .063 .078 

.345 .241 .103 .ooo .034 .103 .172 

.571 .214 .143 .000 .071 .000 .000 

.308 .385 .000 .000 .154 .077 ,077 

.231 .154 .231 .077 .077 .154 .077 

.250 .375 .042 .000 .083 .000 .250 

May 13 - May 26 

.805 .103 .019 .031 .015 .011 .015 

.534 .155 .138 .000 .017 .052 .103 

.423 .346 .077 .038 .038 .000 .077 

.214 .143 .214 .143 .000 .000 .286 

.286 .143 .286 .000 .000 .143 .143 

.429 .143 .143 .000 .000 .ooo .286 

.121 .303 .091 .152 .030 .000 .303 

May 27 - June 9 

.793 .088 .034 .034 .014 .000 .037 

.542 .250 .021 .042 .021 .021 .104 

.471 .176 .118 .118 .000 .000 .118 

.412 .176 .059 .176 .059 .059 ,059 

.600 .400 .000 .000 .ooo .000 .000 

.000 .500 .250 .ooo .000 .250 .000 

.400 .200 .150 .000 .000 .050 .200 

June 10 - June 23 

.838 .064 .024 .014 .027 .010 .024 

.510 .184 .061 .041 .041 .041 .122 

.357 .286 .071 .000 .000 .143 .143 

.333 .222 .ooo .111 .111 .000 .222 

.636 .091 .000 .091 .091 .000 .091 

.250 .625 .000 .000 .000 .000 .125 

.632 .211 .105 .000 .000 .053 .000 
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TABLE XXVI (continued) 

PRECIPITATION TRANSITION PROBABILITIES 
FOREST GROVE, OREGON 

June 24 - July 7 

.871 .072 .013 .016 ,006 .006 .016 

.564 .231 .077 .026 .000 .026 .077 

.538 .154 .154 .000 .077 .000 .077 

.375 .ooo .250 .125 .000 .·125 .125 

.500 .167 .000 .167 .000 .ooo .167 

.143 .143 .143 .143 .143 .143 .143 

.533 .267 .067 .000 .000 .133 .000 

July 8 - July 21 

.948 .027 .008 .003 .003 .000 .011 

.600 .2GO .000 .150 .000 .000 .050 

.750 .250 .000 .000 .000 .000 .000 

.857 .000 .143 .000 .000 .000 .000 

.000 .000 .000 1.000 .000 .000 .000 

.000 .000 .000 .000 .000 .000 .000 

.667 .333 .ooo .000 .000 .ooo .000 

July 22 - Aug 4 

.955 .021 .013 .008 .000 ,000 ,003 

.692 .154 .000 .000 .000 .077 .077 

.800 .200 .000 .000 .000 .000 .000 

.333 .333 .000 .000 .333 .000 .000 
1.000 .000 .ooo .000 .ooo .000 .000 
.500 ,000 .000 .000 .000 .500 .000 
.ooo 1.000 .000 ,000 .000 .000 .000 

Aug 5 - Aug 18 

. 931 .030 .008 .003 .011 .006 .011 

.412 .235 .118 .000 .118 .118 .000 

.333 .167 .000 .167 .167 .000 .167 

.000 .000 .500 .000 .000 .000 .500 

.500 .000 .125 .000 .125 .000 .250 

.667 .333 .ooo .000 .000 .000 .000 

.444 .222 .111 ,000 .111 .000 .111 
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TABLE XXVI (continued) 

PRECIPITATION TRANSITION PROBABILITIES 
FOREST GROVE, OREGON 

Aug 19 - Sept 1 

.862 .067 .016 .006 .003 .006 .038 

.667 .179 .026 .000 .026 .026 .077 

.500 .167 .083 .000 .167 .000 .083 

.250 .500 .000 .000 .000 .000 .250 

.667 .000 .000 .167 .000 .ooo .167 

.143 .000 .000 .000 .143 .286 .429 

.346 .154 .154 .038 .000 .038 .269 

Sept 2 - Sept 15 

.863 .056 .022 .006 .009 .003 .041 

.423 .231 .077 .038 .115 .038 .077 

.588 .176 .059 .059 .059 .059 .000 

.400 .200 .200 .000 .ooo .200 .000 

.500 .125 .125 .000 .000 .000 .250 

.600 .000 .000 .200 .000 .000 .200 

.280 .200 .160 .000 .040 .040 .280 

Sept 16 - Sept 30 

.870 .055 .020 .010 .010 .003 .031 

.548 .214 .119 ,024 .000 ,024 .071 
,500 .143 .000 .000 .000 .000 .357 
,333 .000 .167 .000 .000 .000 .500 
.444 .000 .000 .000 .111 .222 .222 
.ooo .250 .000 .250 .000 .000 .500 
.189 .162 .081 .027 .135 .027 .378 
.412 .176 .059 .176 .059 .059 .059 



TABLE XXVII 

STREAMFLOW STATISTICS 
MAY - SEPTEMBER 

Tualatin River near Gaston 

DATE MEAN STANDARD DEVIAITON 
{CFS) 

May 1 - May 14 105.8 53.1 
May 15 - May 28 76.8 44.9 
May 29 - June 11 53.8 33.7 
June 12 - June 25 37.5 18.8 
June 26 - July 9 26.4 10.9 
July 10 - July 23 20.1 7.7 
July 24 - Aug. 6 16.2 6.9 
Aug. 6 - Aug. 19 17.7 8.7 
Aug. 19 - Sept. 2 21. 3 7.9 
Sept. 3 - Sept. 17 21. 0 16.1 
Sept. 18 - Sept. 30 22.8 14.7 

LOG TRANSFORMED FLOW 

DATE MEAN STANDARD DEVIAITON 

May 1 - May 14 4.57 .397 
May 15 - May 28 4.23 .430 
May 29 - June 11 3.88 .424 
June 12 - June 25 3.53 .386 
June 26 - July 9 3.20 .377 
July 10 - July 23 2.93 .358 
July 24 - Aug. 6 2.70 .416 
Aug. 6 - Aug. 19 2.77 .448 
Aug. 19 - Sept. 2 2.99 .353 
Sept. 3 - Sept. 17 2.90 .489 
Sept. 18 - Sept. 30 2.96 .567 

CORRELATION COEFFICIENTS OF LOG TRANSFORMED DATA 

1 2 

.8987 .7918 

LAG 

3 

.7053 

4 5 6 

.6464 .6062 .5694 

123 

SKEW 

2.42 
3.03 
3.70 
2.37 
1. 49 
1. 21 
0.90 
1. 55 
1. 09 
4.24 

-0.22 

SKEW 

0.88 
1. 09 
1. 32 
1.16 
0.34 
0.25 
0.01 
0.23 
0.16 
1. 27 

-0.38 
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TABLE XXVII (continued) 

STREAMFLOW STATISTICS 
MAY - SEPTEMBER 

Gales Creek 

DATE MEAN STANDARD DEVIAITON SKEW 
(CFS) 

May 1 - May 14 116.7 63.0 2.71 
May 15 - May 28 90.1 80.3 6.42 
May 29 - June 11 56.8 26.0 3.15 
June 12 - June 25 39.5 16.8 1. 98 
June 26 - July 9 27.4 10.5 0.55 
July 10 - July 23 17.8 8.8 0.49 
July 24 - Aug. 6 11.1 5.2 1. 09 
Aug. 6 - Aug. 19 10.6 10.2 8.48 
Aug. 19 - Sept. 2 13.0 8.8 3,03 
Sept. 3 - Sept. 17 11. 8 9.9 3.80 
Sept. 17 - Sept. 30 17.7 14.9 -0.28 

LOG TRANSFORMED FLOW 

DATE MEAN STANDARD DEVIAITON SKEW 

May 1 - May 14 4.66 .422 0.68 
May 15 - May 28 4.34 .487 1. 26 
May 29 - June 11 3.96 .357 0.86 
June 12 - June 25 3.61 .356 0,78 
June 26 - July 9 3.23 ,405 -0.40 
July 10 - July 23 2.74 ,554 ..:.o. 46 
July 24 - Aug. 6 2.31 .437 0,29 
Aug. 6 - Aug, 19 2.19 .524 0.71 
Aug. 19 - Sept. 2 2.40 ,567 o. or 
Sept. 3 - Sept. 17 2.28 ,549 1. 05 
Sept. 18 - Sept. 30 2,59 .732 -0.58 

CORRELATION COEFFICIENTS OF LOG TRANSFORMED DATA 

LAG 

1 2 3 4 5 6 

.8856 .7862 .7032 ,6430 .5953 .5578 



Dairy Creek 

TABLE XXVII (continued) 

STREAMFLOW STATISTICS 
MAY - SEPTEMBER 

DATE MEAN 
(CFS) 

STANDARD DEVIAITON 

May 1 
May 15 
May 29 
June 12 
June 26 
July 10 
July 24 
Aug. 6 
Aug. 19 
Sept. 3 
Sept. 18 

- May 14 
- May 28 
- June 11 
- June 25 
- July 9 
- July 23 
- Aug. 6 
- Aug. 19 
- Sept. 2 
- Sept. 17 
- Sept. 30 

LOG TRANSFORMED FLOW 

DATE 

May 1 - May 14 
May 15 - May 28 
May 29 - June 11 
June 12 - June 25 
June 26 - July 9 
July 10 - July 23 
July 24 - Aug. 6 
Aug. 6 - Aug. 19 
Aug, 19 - Sept. 2 
Sept. 3 - Sept. 17 
Sept. 18 - Sept. 30 

160.8 
97.4 
61,3 
36.9 
32,0 
19.2 

9. 8 . 
13.0 
16.5 
28.5 
16,3 

MEAN 

4.99 
4.52 
4.05 
3,57 
3.35 
2.70 
2.16 
2.27 
2.65 
2.45 
2.63 

72.0 
32.2 
21. 0 
10.2 
23.0 
13.0 

3.9 
9.7 
8.2 

12.6 
10.5 

STANDARD DEVIAITON 

.406 

.366 

.367 

.269 

.434 

.799 

.578 

.831 

.602 

.779 
,541 

CORRELATION COEFFICIENTS OF LOG TRANSFORMED DATA 

1 

.7698 

2 

,6560 

LAG 

3 

.5803 

4 

.5080 

5 

.4589 

6 

.4364 

125 

SKEW 

1. 32 
0.05 
0.16 
0.71 
5.59 
0.96 

-0.15 
1. 35 
0.12 
7.18 

-0.34 

SKEW 

0.40 
-0.63 
-0.33 

0.11 
0,85 

-0.97 
-1. 87 
-0.51 
-0.67 

3.22 
-1. 30 



McKay Creek 

TABLE XXVII (continued) 

STREAMFLOW STATISTICS 
MAY - SEPTEMBER 

DATE MEAN STANDARD DEVIAITON 
(CFS) 

May 1 - May 14 47.5 25.7 
May 15 - May 28 25.5 5,5 
May 29 - June 11 16.5 4. 2 
June 12 - June 25 8.4 2.2 
June 26 - July 9 6.8 2.0 
July 10 - July 23 5.7 4.1 
July 24 - Aug, 6 2 .1 1. 2 
Aug. 6 - Aug. 19 2.9 3.7 
Aug. 19 - Sept. 2 3.9 2.5 
Sept. 3 - Sept, 17 3.0 2.0 
Sept. 18 - Sept. 30 2.7 1. 7 

LOG TRANSFORMED FLOW 

DATE MEAN STANDARD DEVIAITON 

May 1 - May 14 3.75 .441 
May 15 - May 28 3.22 .209 
May 29 - June 11 2.77 .244 
June 12 - June 25 2.09 .274 
June 26 - July 9 1. 88 .304 
July 10 - July 23 1. 50 .719 
July 24 - Aug. 6 0.51 .752 
Aug, 6 - Aug. 19 0.46 1. 07 
Aug. 19 - Sept. 2 1.10 .788 
Sept. 3 - Sept. 17 0.84 .825 
Sept. 18 - Sept. 30 0.74 ,759 

CORRELATION COEFFICIENTS OF LOG TRANSFORMED DATA 

1 

.8138 

2 

.6461 

LAG 

3 

.5340 

4 

.4480 

5 

.3756 

6 

.3199 

126 

SKEW 

1. 65 
0.72 
0.75 
0.20 
0.12 
1. 29 
0.62 
2.13 
0.38 
0.61 
2.41 

SKEW 

0,96 
0.37 
0.38 

-0.43 
-0.40 
-0.17 
-0.81 

0,39 
-0.58 
-0.54 

0.41 



Rock Creek 

TABLE XXVII (continued) 

STREAMFLOW STATISTICS 
MAY - SEPTEMBER 

DATE MEAN 
(CFS) 

STANDARD DEVIAITON 

May 1 
May 15 
May 29 
June 12 
June 26 
July 10 
July 24 
Aug. 6 
Aug. 19 
Sept. 3 
Sept. 18 

- May 14 
- May 28 
- June 11 
- June 25 
- July 9 
- July 23 
- Aug. 6 
- Aug. 19 
- Sept. 2 
- Sept. 17 
- Sept. 30 

LOG TRANSFORMED FLOW 

DATE 

May 1 - May 14 
May 15 - May 28 
May 29 - June 11 
June 12 - June 25 
June 26 - July 9 
,July 10 - July 23 
July 24 - Aug. 6 
Aug. 6 - Aug. 19 
Aug. 19 - Sept. 2 
Sept. 3 - Sept. 17 
Sept. 18 - Sept. 30 

122.6 
94.0 
53.8 
31. 8 
25.8 
36.7 
0.3 
0.6 

10.8 
16.3 
42.3 

MEAN 

4.35 
4.29 
3.74 
3.31 
2.63 
0.56 

-2.81 
-2.64 

0.90 
2.38 
3.09 

105.2 
53.9 
33.5 
16.3 
27.9 
49.9 

1. 5 
2.8 

12.6 
10.6 
46.3 

STANDARD DEVIAITON 

1. 583 
.837 
.783 
.583 

1. 243 
3.645 

.965 
1. 296 
2.587 
1. 308 
1.531 

CORRELATION COEFFICIENTS OF LOG TRANSFORMED DATA 

LAG 

1 2 3 4 5 6 

.5233 .3604 .2420 .1731 .1130 .0859 

127 

SKEW 

2.80 
0.11 
0.25 
0.56 
1. 27 
1. 40 
4.91 
4.63 
1. 93 
0.20 

-0.19 

SKEW 

-3.62 
-1.15 
-0.48 
-0.67 
-0~32 
-0.04 

4.91 
3.42 

-0.75 
-2.55 
-0.04 
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