
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

2-19-2010 

Biogeography of the American Pika (Biogeography of the American Pika (Ochotona Ochotona 

princepsprinceps) In Oregon and Southern Washington: ) In Oregon and Southern Washington: 

Illuminating Genetic Relationships Among Disjunct Illuminating Genetic Relationships Among Disjunct 

Populations Populations 

George Washington Batten III 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Animal Sciences Commons, and the Biology Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Batten, George Washington III, "Biogeography of the American Pika (Ochotona princeps) In Oregon and 
Southern Washington: Illuminating Genetic Relationships Among Disjunct Populations" (2010). 
Dissertations and Theses. Paper 3553. 
https://doi.org/10.15760/etd.5436 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/76?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3553&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3553
https://doi.org/10.15760/etd.5436
mailto:pdxscholar@pdx.edu


THESIS APPROVAL 

The abstract and thesis of George Washington Batten III for the Master of Science 

in Biology were presented February 19, 2010 and accepted by the thesis committee 

and the department. 

COMMITTEE APPROVALS: 

DEPARTMENTAL APPROVAL: 

Mic 

Anna-rlouise Rey~enbach, Chair 
Department of Biology 



ABSTRACT 

An abstract of the thesis of George Washington Batten III for the Master of Science 

in Biology presented February 19, 2010. 

Title: Bio geography of the American Pika ( Ochotona princeps) in Oregon and 

Southern Washington: Illuminating Genetic Relationships Among Disjunct 

Populations. 

The American pika ( Ochotona princeps) finds moderately warm 

temperatures (>25°C) lethally stressful, and at the end of the last Ice Age 10,000 

years ago was forced to disperse to cooler, "sky island" mountaintops where they 

are almost exclusively found today. Thirty six subspecies are recognized, all 

established using morphological characters, and it is uncertain whether these 

subspecies' designations are corroborated by genetic analyses. This study 

elucidates three hypotheses regarding populations in Oregon and southern 

Washington: 1) 0. p. fumosa constitutes a subspecies distinct form 0. p. 

brunnescens, 2) the Columbia River constitutes a barrier to gene flow giving rise to 

two subspecies rather than the single subspecies 0. p. brunnescens, and 3) 

populations in eastern Oregon ( 0. p. jewetti and 0. p. taylori) are genetically 

distinct from populations in the Cascade Range ( 0. p. brunnescens and 0. p. 

fumosa). 



Genetic sequence data from cytochrome b and the control region of the 

mitochondrial genome were analyzed using both genetic distance and Maximum 

Parsimony, Maximum Likelihood, and Bayesian criteria. Ochotona princeps 

fumosa was not shown to be a monophyletic clade, refuting hypothesis 1. 

Populations of 0. p. brunnescens north of the Columbia River were not found to be 

reciprocally monophyletic with 0. p. brunnescens south of the Columbia River, 

refuting hypothesis 2. Eastern populations and western populations were 

reciprocally monophyletic and exhibited genetic distances ranging from 5.2 -

8.55%. Further support for hypothesis 3 was given by differing alarm calls: single 

syllable in the west, double syllable in the east. 

Genetic analyses did not corroborate current subspecies designations, 

suggesting further research to determine the genetically most diverse populations. 

Given the sensitivity of pikas to warming temperatures, this research should be 

done soon. 
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INTRODUCTION 

The end of the Wisconsinian Ice Age ca. 10,000 years ago moved the 

Pacific Northwest into a period of retreating glaciers, rapid warming, and a change 

in species composition and abundance. During its glacial maximum 50,000 to 

20,000 years ago, nearly half of North America was covered with ice-a virtual 

biological desert-and the subsequent warming and melting opened large areas of 

habitat for colonization by both plants and animals (Pielou 1991). The magnitude 

of change from biological desert to lush ecosystem in a relatively short span of time 

was tremendous. Still, the transition must have required numerous, successive 

stages of plant and animal colonization to assemble the contemporary (or pre­

Columbian) mixture of species. But what of the plants and animals adapted to life 

on the cold edge of a continent-sized glacier? Did they have time to adapt to the 

warmer, wetter climes, or were they forced to follow the retreating glaciers 

northward in order to maintain habitat suitable for survival and persistence? 

One such species is the American pika ( Ochotona princeps; Lagomorpha: 

Leporidae). Well adapted to cold weather with its thick fur and high metabolism, 

0. princeps finds even brief exposure to moderately warm temperatures (>25°C) 

lethally stressful (Smith 1974, Smith 1990), and so must have been forced to either 

follow the retreating glaciers northward, or head uphill to the cooler mountaintops. 

Indeed, 0. princeps is now found almost exclusively at high elevations in Western 

North America. Find a talus slope near an alpine meadow on many western 

mountains, and you have found good habitat for 0. princeps. Severe heat-
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intolerance isolates pikas to these high elevations, effectively producing a set of 

"sky island" populations. How are these "island" populations related to each other? 

Are mountain passes elevated enough to allow gene flow, and if so, are there 

geographical features that have created a correlated genetic structure? 

The rare exception to high altitude habitat is the Columbia River Gorge 

splitting the states of Washington and Oregon, where the shade of high, steep cliffs 

maintains reasonably cool temperatures throughout the year. The Gorge can also 

be thought of as an island, as temperatures just east or west would prove lethal to 

pikas during the warmer months of the year. While the cooling effect of the high, 

steep cliffs seems unique to the Columbia River Gorge, certain mountain passes 

might have similar topography that allows dispersal and gene flow between two 

mountains. This would seem reasonable for the fairly well connected mountains of 

the Cascade Range, but less likely for the mountains of Eastern Oregon, namely the 

Steens, Strawberries, and Wallowas, which are separated by many miles of high 

desert. Connectivity in the Cascades suggests some possibilities for gene flow, 

while isolation in the east suggests little to no gene flow. Hence, fewer clades in 

the Cascade Range of Oregon as compared to the mountains of the eastern part of 

the state are expected. 

Ochotona princeps 

While pikas may be confused for rodents, they are members of the Order 

Lagomorpha along with rabbits and hares. Pikas communicate regularly with high-

2 



pitched calls, while other Lagomorphs are essentially non-vocal as adults (Maser 

1998). The Family Ochotonidae is hypothesized to have originated in Asia where 

there are approximately 28 extant species living both in montane and grassland 

environments (Niu et al. 2004, but see Smith 1990, and Maser 1998). Ancestors to 

0. princeps dispersed across the Bering Land Bridge in the early Pleistocene, and 

fossils of 0. princeps were found in 36 of 46 known Quaternary fossil sites of 

Ochotona in North America (Mead 1987). That most of the latter date to within the 

last 500,000 years (Mead 1987) indicates a relatively recent dispersal. The 

Wisconsinian glacial period probably forced the separation and subsequent 

speciation of 0. princeps and 0. collaris from a common ancestor (Guthrie 1973); 

0. princeps was pushed south and 0. collaris north into the Bering refugium by the 

expanding glacial ice. Ochotona princeps and 0. collaris are the only extant 

species of pika in North America. The current range of 0: collaris is from 

Fig. 1 Ochotona princeps (http: //www.companyofadventurers.com) 
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southeast Alaska to northwestern Canada. 

Although 0. princeps is found exclusively in talus slopes today, populations 

from the Quaternary Period also resided in grasslands at lower elevations as much 

as 1 OOkm farther south of its present distribution (Grayson 1987, Mead 1987). 

With the retreat ofWisconsinian glaciers, heat intolerant 0. princeps moved 

upslope to form isolated montane populations by 7,000 years ago (Grayson 1977). 

Hafner (1994) estimated the minimum permafrost elevation during the height of the 

Wisconsinian in the southern Rocky Mountains, and showed that current isolated 

populations were indeed connected at that time. Hafner (1994) also demonstrated 

that most current populations of pika in the southern Rocky Mountains exist within 

20km of estimated altithermal permafrost, meaning that pika populations have 

dispersed little from their most thermally restricted period 6000 years ago. 

Ochotona princeps are small, ranging in body length from 162 to 216 mm 

(Hall 1981), and in mean body mass from 121to176 g (Hall 1981; Smith 1978). 

Their feet and short legs are covered with thick fur except for exposed toe pads. 

Ears are large, rounded, and suborbicular, with fur on both sides. No tail is visible 

externally. Pelage ranges from reddish-brown to gray on the dorsal surface, and 

whitish on the ventral. Ears are normally dark with white margins. The twice 

annual molt of Ochotona princeps corresponds to a summer and warmer winter 

coat (Smith 1990). Interestingly, males have no scrotum or baculum and females 
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no vulva. A single "pseudo-cloacal" opening is used for both rectal and urogenital 

functions (Smith 1990). 

Ochotona princeps do not hibernate, but spend the winter in or near talus 

slopes which are typically buried by 2.4 meters or more of snow (Maser 1998). 

Spaces between talus provide both shelter and tunnels leading to the edge of the 

talus where pikas dig down to the vegetation for foraging. Once snows have 

melted enough to expose meadow herbs and forbs, 0. princeps spend much of the 

day traveling from talus to meadow to collect vegetation. Returning to the talus, 

the vegetation, or "hay", is laid in the sun to dry, and eventually haypiles are 

formed under rocks in the talus slope and used to augment food supplies during the 

winter. Only some of the hay is consumed and over time its degradation produces 

nutrient rich soils, thereby allowing for increased plant growth in and around scree 

slopes (Aho et al. 1998). Haying activity may last from June until November 

(Maser 1998) and is more frequent in the early morning and later afternoon in order 

to avoid the midday heat. So frequent are the trips from talus to meadow that trails 

are often worn in. Ochotona princeps are highly territorial, and establish territories 

as soon as two weeks after weaning (Maser 1998). Both sexes defend territories, 

and males and females tolerate each other's presence only during their brief mating 

season. Territorial defense may require a substantial time investment including 

frequent warning vocalizations and occasional aggressive actions (Smith 1990). 
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Fig. 2 Pika haypile on Mt. Adams, Washington (approximately 3 ft. wide) 

Ochotona princeps are highly territorial, and establish territories as soon as 

Young must establish a territory quickly to have time to collect enough hay for the 

winter, and the low likelihood of dispersal across non- talus terrain leads to the 

establishment of territories in the natal range (Smith 1990}. Individuals born late in 

the summer (usually a second litter) often do not have enough time to grow to the 

size required to establish territories and collect enough hay before winter arrives. 

Natal philopatry suggests minimal gene flow among populations, particularly for 

populations on adjacent mountains separated by a low elevation valley. 

Genetic Structure 

Using allozymes, Hafner and Sullivan (1995) suggested the existence of 

four major genetic units prior to the Wisconsinian Glacial Period, which they 
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labeled N orthem Rocky Mountains, Southern Rocky Mountains, Cascade Range, 

and Sierra Nevada. While this coarse scale structure may tell us something about 

0. princeps in general, it does not illuminate the finer scale questions I attempt to 

address. If populations of 0. princeps were able to homogeneously interbreed 

across their geographic range as a result of their continuous lower elevation habitat 

prior to 7 ,000 years ago, some of their current genetic structure may have arisen 

subsequent to this time, as populations effectively became isolated on sky islands. 

There are some 36 recognized subspecies of Ochotona princeps, all of 

which originally were described on the basis of morphology. But what constitutes 

a subspecies, and are these 36 subspecies valid? Long and Kittles (2003) identified 

four major definitions of subspecies: essentialist, taxonomic, population, and 

lineage. The essentialist concept (Hooton 1926) understands a subspecies as a 

group of individuals sharing, through common descent, a particular combination of 

unique characters. The taxonomic subspecies concept (Mayr 1969) defines a 

subspecies as a group of populations restricted to a subdivision of the species' 

range and which are phenotypically similar. In the population subspecies concept, 

Dobzhansky ( 1970) defines the subspecies as, "genetically distinct Mendelian 

populations." Templeton's (1998) lineage concept demands both historical 

continuity and contemporary genetic differentiation to define a subspecies. In other 

words a subspecies is a distinct evolutionary lineage of a genetically differentiating 

species that resulted from a consistent historical barrier to gene flow. 
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Are the four concepts of subspecies arbitrary or do they have an identifying 

biological basis? If they do have a biological basis, can we unify these concepts? 

Lewontin (1972) argued that the variation found in human populations was too 

great to differentiate humans into races or subspecies; however, Edwards (2003) 

argued that Lewontin was correct only when considering one locus or trait. By 

using multiple loci or traits, Edwards (2003) showed that the likelihood of being 

able to differentiate subspecies increases because locus and trait frequencies may 

generally tend to be correlated within a subspecies; i.e. a subspecies is a 

correlational structure of traits (Woodley 2010). Woodley maintained that this 

"correlation structure" idea unifies the four subspecies concepts, but that it does not 

address the arbitrariness of what is meant by distinctive. 

All four definitions rely on the distinctiveness of a population; however, 

disagreement as to what merits "distinctiveness" is considerable (Woodley 2010). 

Morphology may seem like a good metric, but one gene may influence multiple 

phenotypic traits (pleiotropy), potentially leading to large morphological 

differences with slight variation in the gene. The most common example is the 

variety of body types found in the dog, all of which are grouped into a single 

subspecies (Canis lupusfamiliaris). With respect to birds, Zink (2004) determined 

that "97% of continentally distributed avian subspecies lack population genetic 

structure indicative of a distinct evolutionary unit." This statistic undermines 

morphological and geographical methods of determining subspecies. 
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Analysis of molecular data is therefore one method of assessing the 

taxonomic level of classification (A vise 2000), but has been unevenly applied at the 

level of subspecies. Heterozygosity (allele frequency) theoretically should be 

directly proportional to the number of subspecies, but a literature search does not 

bear this out (Woodley 2010). For example, the observed heterozygosity of 

chimpanzees (Pan troglodytes) is 0.63 - 0.73 (Reinartz et al. 2000, Wise et al. 

1997, Gander et al. 1997), that of the wolf (Canis lupus) in North America is 0.528 

(Garcia-Moreno et al. 1996), and that of the coyote (Canis latrans) is 0.583 

(Garcia-Moreno et al. 1996) yet there are only 4 recognized subspecies of 

chimpanzees compared with 3 7 recognized subspecies of wolf and 19 of coyote. 

The species with the highest level ofheterozygosity has the fewest subspecies 

while the species with the lowest level of heterozygosity has the highest. Other 

molecular metrics such as genetic distance have also been applied unevenly 

(Woodley 2010). 

Zink (2004) suggested that A vise's (2000) concept ofreciprocal monophyly 

was a measure that could accurately be applied to determine the validity of 

recognized subspecies. If a subspecies has evolved independently for 2Ner 

generations, where 2Ner is the inbreeding effective size of the female population, 

the mtDNA gene tree should show a common ancestral sequence not found in other 

subspecies (Zink 2004); i.e. the subspecies is monophyletic. Thus, any recognized 

subspecies that is shown to not be monophyletic should not be regarded as a true 

subspecies. 
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From a taxonomic perspective, four subspecies of pika are currently 

recognized in Oregon: 0. p. taylori extends from southeast and south-central 

Oregon into northeastern California; 0. p. jewetti includes northeastern Oregon and 

the Wallowa, Blue, and Strawberry Mountains; 0. p.fumosa is restricted to the area 

immediately adjacent to Mount Jefferson and the Three Sisters; and 0. p. 

brunnescens' range extends from southern Oregon along the Cascades into the 

western Washington Cascades and ends in the Coast Range of British Columbia. 

All four subspecies belong to Hafner and Sullivan's Cascade Range group of 0. 

princeps (Hafner and Sullivan 1995). 

The designation of these subspecies is based on morphology and their 

validity has not been corroborated via genetic means. The geographic isolation of 

0. p. taylori and 0. p. jewetti (i.e. confinement to the Wallowa/Strawberry 

Mountains and Steens Mountain, respectively) suggest genetic isolation, hence the 

validity of subspecific designation. On the other hand, 0. p. brunnescens and 0. p. 

fumosa are widely distributed in apparently contiguous populations throughout the 

Cascade Range, and as a consequence, may not be sufficiently isolated to have 

evolved characters suggestive even of subspecific recognition. Populations of 0. p. 

brunnescens exist both north and south of 0. p. fumosa, possibly linked by a 

narrow corridor to the west of Mt. Jefferson, as proposed by Hall (1981). If pikas 

dispersed southward, as suggested by Hafner and Sullivan (1995), such a separation 

into two subspecies is unlikely. Indeed, if 0. p. fumosa's designation is legitimate, 

pikas in the southern range of 0. p. brunnescens should be more closely related 
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to 0. p.fumosa than to northern 0. p. brunnescens, and/or constitute their own 

subspecies. Another possibility is 0. p. brunnescens dispersed from the eastern 

part of the state in which case 0. p. brunnescens is more closely related to 0. p. 

jewetti or 0. p. taylori. 

Another inconsistency with the current subspecies designations of 

Ochotona is the extensive and narrow north-south distribution of 0. p. 

brunnescens. While the Cascades are relatively continuous in Oregon and in 

Washington, the Columbia River presents a significant obstacle for gene flow 

between the two states. The catastrophic Missoula Floods, a major vicariant event 

that coincided with the end of the Wisconsinian in the Pacific Northwest, may have 

separated 0. princeps into populations north and south of the river, possibly 

leading to current genetic structure. At the end of the Wisconsinian, ice dams that 

formed Lakes Columbia and Missoula repeatedly (as many as 40 times; Benito and 

O'Connor 2003) formed and burst to produce floods of incredible proportions that 

extended from Montana to the mouth of the Columbia River. The eastern end of 

the Columbia River Gorge experienced floodwaters up to 300m above present river 

levels, while the water that exited the Gorge on the western end was up to 150m 

above present levels (Alt 2001). Such depths and gradient must certainly have 

severed all contact between 0. princeps populations north and south of the 

Columbia River. 
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Fig. 3 Subspecies of Ochotona 
princeps in the Pacific Northwest: (1) 
0. p. brunnescens, (2) 0. p. fumosa, 
(3) 0. p.jewetti, (4) 0. p. taylori, and 
(5) 0. p. princeps (Other subspecies 
are included that are not part of this 
study.) Adapted from Hall (1981). 

For this study, I use the concept of 

subspecies as reciprocally monophyletic 

clades to test the validity of the four subspecies of 0. princeps found in Oregon. 

By applying phylogenetic analysis of DNA sequence data from the mitochondrial 

cytochrome b and control region loci I test the hypotheses that 1) 0. p. fumosa 

constitutes a subspecies distinct from 0. p. brunnescens, 2) that the Columbia River 

constitutes a barrier to gene flow giving rise to two subspecies rather than the 

single subspecies 0. p. brunnescens, and 3) that populations in eastern Oregon (0. 

p. jewetti and 0. p. taylori) are genetically distinct from populations in the Cascade 

Range (0. p. brunnescens and 0. p.fumosa). 
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MATERIALS AND METHODS 

Trapping Sites 

Trapping localities were determined first at a coarse scale based on the 

hypotheses to be tested. Testing the validity of the 0. p.fumosa subspecies 

designation required samples from 0. p. fumosa populations, centered on Mt. 

Jefferson, for comparison with samples from 0. p. brunnescens populations, found 

throughout most of the remainder of the Oregon Cascade Range, and 0. p. jewetti 

from the Wallowa and Strawberry Mountains. Samples north and south of the 

Columbia River Gorge were compared to test the hypothesis that 0. p. brunnescens 

should be split into two clades. Specimens from the Cascade Range and the eastern 

ranges (Wallowa, Strawberry, and Steens) were also collected to test the east-west 

disjunction hypothesis. 

After this coarse geographic evaluation, specific trapping sites were 

determined using museum collection lists, reference sources (Verts and Carraway 

1998), contact with local biologists, and personal reconnaissance. Ochotona 

princeps habitat is relatively easy to locate because they are nearly exclusively 

restricted to talus slopes that are located near meadows, which can often be seen at 

great distances from high vantage points. Two exceptions are sites in the Columbia 

River Gorge and the type locality of 0. p. fumosa on Mt. Jefferson, both of which 

are in relatively dense coniferous forests. 
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Fig. 4 Typical 0. princeps habitat. Strawberry Mountains, Oregon. 

Nine sites were chosen for the study including the type locality of 0. p. 

princeps in Jasper National Park Alberta, Canada. The sites listed north to south 

are: Jasper National Park, Canada; Snoqualmie Pass, Washington; Mt. Adams, 

Washington; Columbia River Gorge, Oregon; Mt. Hood, Oregon; Wallowa 

Mountains, Oregon; Mt. Jefferson, Oregon; Strawberry Mountains, Oregon; 

and Steens Mountain, Oregon (see Appendix A). 

I was not able to obtain specimens from all locations and therefore used 

museum specimens from the Portland State University Museum of Vertebrate 

Biology to augment the data. Ochotona collaris was chosen as an outgroup since it 

is considered the nearest extant relative to 0. princeps; sequences of 0 . collaris 
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were obtained courtesy of Link Olson of the University of Alaska Fairbanks 

Museum of the North. 

Trapping Methods 

Live trapping 0. princeps is difficult because of their susceptibility to heat 

stress and the consequent requirement for near constant monitoring of the traps. 

Moreover, the remoteness of many sites made constant monitoring difficult. Given 

this, and the fact that animals were to be deposited as specimens in the Portland 

State University Museum of Vertebrate Biology, I used common, rat-sized snap 

traps to quickly and humanely euthanize the animals. 

Haypiles are constructed during the warm summer months, and several 

trails that extend from haypile to nearby meadow often are apparent. These trails 

proved ideal for trap placement with one trap "pointed" up trail, and the other down 

trail. In some sites, no trails were obvious despite large haypiles; in these cases I 

placed traps on and around the haypile and in any well-used tunnels formed by the 

talus around the haypile. All traps were baited with a combination of peanut butter 

and oats. Trap efficacy varied greatly from site to site, from a low of no captures in 

225 trap days (Mt. Jefferson) to a high of 4 in 50 trap days (Strawberry Mountains). 

Call Recording 

While this study used phylogenetic analyses of genetic data to test 

hypotheses, calls were recorded at five sites (Mt. Adams, Mt. Hood, Mt. 
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Jefferson, Steens Mountain, and Wallowa Mountains) using a parabolic dish 

antenna and a digital recorder. Recordings were visualized using SoundRuler 

Acoustic Analysis software (Gridi-Papp 2003 - 2007). Ochotona princeps has two 

calls, a short alarm call, and a longer call produced mainly by males in the breeding 

season (Broadbooks 1965, Smith 1990). The short alarm call, which is heard much 

more often than the long call, was recorded at each site. An extensive analysis of 

calls was not performed, but I noted obvious differences among sites. 

Preservation Method and DNA Extraction 

All specimens were placed in 95% Ethanol and stored in the laboratory at 

room temperature. Cubes of muscle approximately 0.5cm on edge were removed 

from the right rear quadriceps of all specimens, and stored individually in 95% 

Ethanol in Eppendorf tubes. Scalpel blades were thoroughly cleaned with DNA 

Away prior to tissue extraction for each specimen. Whole genomic DNA was then 

extracted from the tissue of the freshly collected specimens using a Qiagen 

DNeasy® tissue kit (Qiagen, Valencia, CA). 

The muscle tissue was removed from the Ethanol and incubated overnight 

at 55°C in a tube containing 180µL of Buffer ATL and 20µL of Proteinase K, 

following the DNeasy protocol suggested by Qiagen. After incubation, 200µL of 

Buffer AL was added and the tube incubated 10 minutes at 70°C. 200µL of 95% 

Ethanol was added and the entire solution was transferred to a mini-column for 
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elution. Buffers A Wl and A W2 were run through the column before eluting the 

DNA with Buffer AE. Extracted DNA was stored at -80°C. 

DNA was also extracted from the skin and fur of museum specimens. 

Pieces of skin with fur approximately 0.5cm square were removed from the ventral 

surface of each specimen. Care was taken to remove pieces along the ventral 

suture in order to minimize damage to the study skins. Scalpel blades were 

thoroughly cleaned with DNA Away prior to tissue extraction for each specimen. 

Using a Qiagen DNeasy® tissue kit (Qiagen, Valencia, CA), each piece of 

tissue was incubated overnight at 55°C in a tube containing 450µL of Buffer ATL 

and 50µL of Proteinase K. 125µL of the resulting supernatant was then mixed with 

625µL of Buffer PB and run through a purification column. I then ran 750µL of 

Buffer PE through the column before eluting the DNA with Buffer EB. This 

extraction technique worked well on 67% of the samples. Museum samples were 

taken from specimens collected primarily in the mid- l 960s. 

Selection of Primers and PCR 

Mitochondrial DNA (mtDNA) was used as the source of genetic data 

because recombination is not an issue, thus leading to a geographic sorting of 

lineages (Avise et al. 1984), and higher resolution is obtained compared with a 

similar length of nuclear DNA (Slade et al. 1994). Cytochrome b (cyt b) is a 

common mitochondrial gene used for inter- and intraspecific phylogenetic studies, 

but typically when studying divergences occurring around 50,000 years ago. 
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The hypotheses of this study rest mostly on events that took place within the last 

10,000 years. Cyt b was thus used to detect divergence events that occurred prior 

to the end of the Wisconsinian. DNA from the mitochondrial control region is non­

coding and known to evolve at a more rapid rate than cyt b (Stoneking et al. 1991 ). 

Consequently, I used the control region to address the hypotheses of this study. 

While several control region primers obtained in the literature (Slade et al. 1994; 

Waltari et al. 2004) were tried, I had success only with F ormozov et al.' s (2006), 

which were subsequently used in the analysis (see Appendix C). 

All primers were obtained from Integrated DNA Technologies (San Diego, 

CA), reconstituted with TE buffer (Promega, Madison, WI), and diluted with H20 

to 1 Onmol. Master mixes were created for each primer pair using the basic 

formula: lµL of primer A, lµL of primer B, and 20µL ofH20. 22µL of the master 

mix was combined with 3µL of DNA and cycled in a Minicycler. By raising and 

lowering the temperature of the reactants to specific temperatures for specific 

lengths of time, each desired sequence was copied multiple times utilizing a 

polymerase chain reaction. Program GWBCYTb was used to set the temperatures 

and durations for cytochrome b primers and program GWBCROOO was used for 

control region primers (see Appendix D). Programs were obtained from Zachary 

Harlow. Quality of PCR product was determined by visualizing DNA on 

Invitrogen® (Carlsbad, CA) agarose E-gels. After clearing the gel for 2 minutes at 

70 volts, 5µL of PCR product and 9µL ofH20 were added to each well. 14µL of 
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H20 were added to empty wells to prevent drying and distortion of the gel. Single 

bands indicated that the primers successfully selected a unique piece of the 

genome; lanes that exhibited a single banding were selected for subsequent 

sequencmg. 

Sequencing Methods 

Before sequencing, PCR product was cleaned using the Qiaquick PCR 

Purification Kit (Qiagen, Valencia, CA) to ensure that all PCR residues were 

removed. 125µL of Buffer PB was added to the PCR product, placed in a column, 

and centrifuged for 60 seconds at 8000 rpm. The flowthrough was discarded, and 

750µL of Buffer PE was added to the column and spun for 60 seconds. 

Flowthrough was discarded and the column was spun an additional 60 seconds. 

The column was placed in a 1.5mL Eppendorftube and the DNA eluted by adding 

40µL of Buffer EB and spinning for 60 seconds. 

Master mixes were created for each primer using the basic recipe: 2.5µL of 

primer, lµL of 5X buffer, 2µL of Big Dye, and 2µL ofH20. For the sequencing 

reaction, primers were diluted to 2.5nmol. 7.5µL of master mix was added to 

2.5 µL of PCR product and cycled in a thermal cycler using program GWBCYTb 

for cytochrome b and GWBCROOO for the control region. Reaction product was 

plated and sent to the Oregon State University Center for Gene Research and 

Biotechnology for sequencing on an Applied Biosystems, Inc. ABI 3100 automated 
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sequencer. Bases not read by the sequencer were manually determined using SEQ­

ED software (Nilsson and Gunnar 1984) to visualize the chromatograms. 

Phylogenetic Analyses 

MacClade v. 4.06 (Maddison and Maddison 2000) and ModelTest v. 3.7 

(Posada and Crandall 1998) were used to manually align the sequences and test for 

the optimal model of molecular evolution respectively. ModelTest evaluates 56 

models of evolution based on Akaike information criterion (AIC - used for control 

region) or hierarchical likelihood ratio tests (hLRTs - used for cytochrome b). 

Posada and Buckley (2004) show there are some advantages to using AIC, but that 

hLRTs also yield interpretable and valid results. 

Maximum parsimony (MP), maximum likelihood (ML), and metropolis 

coupled Markov chain Monte Carlo Bayesian inference (MCMCMC) were used to 

estimate the phylogenetic relationship among populations. MP and ML were 

implemented using the software PAUP* v. 4.0b 10 (Swofford 2002) while MrBayes 

v.3.1.2 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) was 

used for the Bayesian analysis. 

Cytochrome b 

A heuristic MP search was run using the tree-bisection-reconnection (TBR) 

algorithm with gaps treated as missing. Branch support was evaluated using 

nonparametric bootstrap analysis with 1000 replicates (Felsenstein 1985). A 
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heuristic ML search was run using TBR and the best-fit model (TrN+G) as 

determined by ModelTest 3.7 (Posada and Crandall 1998). Branch support was 

evaluated using nonparametric bootstrap analysis with 500 replicates (Felsenstein 

1985). ML and MP analyses were implemented in PAUP* (Swofford 2002). 

A Bayesian search using Metropolis-coupled Markov chain Monte Carlo 

sampling was implemented using Mr Bayes (Huelsenbeck and Ronquist 2001 ). One 

cold and eight warm chains were run at a metropolis temperature of 0.02 and a 

swap frequency of 10. The analysis was run for 20,000,000 generations, sampled 

every 500 generations, and a consensus tree constructed from the last 10,000 

samples. All three trees were rooted using the sequence of 0. collaris obtained 

from Genbank. Two other Genbank sequences of 0. princeps from Idaho were 

included in the analysis. A genetic distance matrix was created using PAUP* 

(Swofford 2002). 

Control Region 

MP, ML, and Bayesian analyses were implemented using the same protocol 

as for cyt b except that I used a different best-fit model (HKY+I+G) and ran the 

Bayesian analysis for 100,000,000 generations. The two Genbank sequences of 0. 

princeps used in the cyt b analysis were not used in the control region analysis. 

Trees were rooted using Ochotona collaris sequences obtained courtesy of Link 

Olson. 
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RESULTS 

Newly caught specimens accounted for 57% of the 28 specimens used for 

my analyses. A complete list of specimens, and whether they were newly caught or 

of museum origin, is found in Appendix B. 

Individual calls were recorded at 5 sites: Mt. Hood (4 calls), Mt. Adams (4), 

Mt. Jefferson (4), Steens Mountain (1), and the Wallowa Mountains (2). In 

addition to the recordings, at least 4 individual pikas were heard at the Strawberry 

Mountains and the above sites, except for Steens Mountain where 2 were heard. 

Recordings of alarm calls show calls in the Cascade Range were distinct from calls 

in the eastern mountains. Specifically, western 0. princeps had a single syllable 

alarm call, where eastern 0. princeps had a double syllable alarm call (Fig. 5). 

z 
Jo~ 'Alol< ........ ~Wo'o •••Wou r ~ ~ ~ •-• fo~ 

- 1 -1 

85 AO 
T1mefs) Time (s) 

Fig. 5 (left) Oscillogram of pika call from Mt. Adams showing single syllable; 
(right) Oscillogram ofpika call from Wallowa Mts. showing double syllable. 

This simple distinction groups specimens from Mt. Adams, Mt. Hood, and Mt. 

Jefferson into one clade, and those from the Wallowa Mountains and Steens 

40.2 

Mountain into a separate clade (Fig. 6). While not recorded, single syllable alarm 
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calls were heard at the Mt. Adams, Snoqualmie Pass, and Multnomah Falls sites, 

and double alarm calls were heard at the Strawberry Mountains site . 

t•: • ...., 

Fig. 6 Recording location of single syllable calls in the west and double syllable 
calls in the east. Single calls were heard at all western sites, and double calls were 
heard at all eastern sites (See Appendix A for site names.) 

DNA was successfully extracted from all newly caught specimens and most 

of the museum specimens from the 1960's. Specimens collected from the 1950's 

all were too degraded to yield sufficient DNA for extraction. The cyt b gene of an 

initial set of specimens (Jasper, Strawberry Mountains, Wallowa Mountains, 

Snoqualmie Pass, Mt. Adams, Mt. Hood, and two Idaho specimens) was 

successfully sequenced, but the phylogenetic analysis, while useful, had too limited 

a resolution to thoroughly address two of the hypotheses of this study. Thus, 
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attention was focused on the more rapidly evolving control region. While several 

primers were used to sequence the control region, the only ones to work were those 

developed by Formozov et al. (2006). 

The three analytical algorithms for cyt b yielded similar tree topologies 

(Figs. 7-9), with ML providing the best resolution. Two major clades with good 

bootstrap support (84 to 100%) are apparent: a western and eastern group. The 

Jasper and Idaho specimens form a clade which is sister to specimens from the 

Wallowa Mountains ( 0. p. jewetti), Strawberry Mountains ( 0. p. jewetti), and 

Steens Mountain (0. p. taylori). Mt. Hood (0. p. brunnescens) is shown as a sister 

clade to Mt. Adams (0. p. brunnescens) and Snoqualmie Pass (0. p. brunnescens), 

a relationship not recovered by MP and Bayesian analyses. 

The three analyses for the control region (Figs. 10-12) yielded similar 

topologies except that the Maximum Likelihood analysis placed P5 Mt. Adams in a 

sister relationship to all other western specimens, while Maximum Parsimony 

grouped the Oregon and Washington specimens in one clade distinct from Jasper. 

ML and Bayesian analyses indicate three clades: eastern, western, and Jasper. 

Though considered two subspecies, the control region sequence data showed no 

resolution between the Wallowa Mountains and Steens Mountain. The Linn 

County specimens, representing 0. p. fumosa, are found within a clade comprised 

of 0. p. brunnescens specimens (Multnomah Falls, Government Camp, and Mt. 

Hood) on all three phylogenetic trees. 
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The following figures show all phylogenetic trees produced in this study. 

Unless otherwise noted all specimens are Ochotona princeps, and subspecies 

correspond with the following geographical names: 0. p. brunnescens (Snoqualmie 

Pass, Mt. Adams, Multnomah Falls, Mt. Hood, and Government Camp); 0. p. 

fumosa (Linn County); 0. p.jewetti (Strawberry and Wallowa Mountains); and 0. 

p. taylori (Steens Mountain). 
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Figure 7. Phylogenetic tree derived using the Maximum Parsimony criterion from 
the sequence data for cytochrome b. Values above the lines indicate percent 
bootstrap support (500 replicates), and the tree is a 50% majority consensus tree. 
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Figure 8. Phylogenetic tree derived using the Bayesian criterion from the sequence 
data for the cytochrome b. The tree is a 50% majority consensus tree. 
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Figure 9. Phylogenetic tree derived using the MaximumParsimony criterion from 
the sequence data for the control region. Values above the lines indicate percent 
bootstrap support (500 replicates), and the tree is a 50% majority consensus tree. 

28 



J ---

I I' 

-I 91 

l ' 

I 

I 

I' 

60_ 
I 

100 

-I 
94 -

91 -' 

I 

I 

I 

. 

81 

99 
1' 

I 

I 60 

I 

-
80 ..... -

.. -
-71 -I 

I -
-
-
-
-
-
-
-
-
-

I' -
86 . 

-I 

I 

-

-

-

71-1 -

I -

..... 
I -

-

Pl Jasper 

P2 Jasper 
P3 Jasper 

P4Mt. Adams 

P29 Mt. Adams 

P33 Snoqualmie Pass 

P5 Mt. Adams 

P28 Mt. Adams 

P 11 Multnomah Falls 

P12 Multnomah Falls 

P13 Multnomah Falls 

P 14 Multnomah Falls 

P 16 Linn County 

P 17 Linn County 

P 18 Linn County 

P22 Linn County 

P25 Government Camp 

P20 Linn County 

P2 l Linn County 

P27 Government Camp 

P34 Mt. Hood 

P32 Snoqualmie Pass 

P6 Strawberry Mts. 

P7 Strawberry Mts. 

P8 Strawberry Mts. 

P9 Strawberry Mts. 

P30 Wallowa Mts. 

P31 Steens Mt. 

Ochotona collaris 

Figure 10. Phylogenetic tree derived using the Bayesian criterion from the 
sequence data for the control region. The tree is a 50% majority consensus tree. 
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Fig. 11. Phylogenetic tree derived using the Maximum Likelihood (ML) criterion 
from the sequence data for cytochrome b (left) and ML consensus tree for the 
control region (right). Values above the lines indicate percent bootstrap support 
(500 replicates); below are percent jackknife support values (500 replicates). In the 
cytochrome b tree, letters indicate Tamura-Nei genetic distances at the major 
nodes: node A (0. collaris v. O.princeps) averages 9.577%; B (O.princeps, 
Cascades v. Rockies), 6.790%; C (0. princeps, Eastern v. Western Rockies), 
5.135%. 
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DISCUSSION 

Knowledge of population genetic relationships among island populations is 

required to determine whether one population constitutes a novel species. Such a 

determination is not limited only to true islands: rather, the same logic applies to 

ecological islands of unique habitat formed by topography or other abiotic factors. 

This is precisely the case in Ochotona princeps. Comparing a map of subspecies in 

Oregon and southern Washington with a map of topography raises questions. Why 

does 0. p. fumosa disrupt the range of 0. p. brunnescens which otherwise extends 

from Canada to southern Oregon? Why is the distribution of 0. p. brunnescens not 

disrupted by the Columbia River? While topography would suggest a separation of 

subspecies in eastern and western Oregon, given that the ranges may be continuous 

in northern Washington and Canada, will such separations withstand genetic 

scrutiny? The phylogenetic analyses in this study have, to some degree, 

illuminated these questions. 

Hypothesis 1: 0. p.fumosa is a subspecies 

Ochotona princeps individuals could have dispersed into the current range 

of 0. p. fumosa by one of three routes: from the north, from the south, or from the 

east. According to Hall ( 1981 ), there is a thin band of 0. p. brunnescens which 

skirts around the western edge of 0. p. fumosa connecting northern Oregon 

populations of 0. p. brunnescens with southern ones. The Cascade Range forms a 
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continuous chain of mountains and high mountain passes; no geographical feature 

corresponding to this hypothesized habitat band is known to exist or otherwise be 

discernable as distinct from the habitat that comprises the range of 0. p. fumosa; 

thus it would seem that this band does not exist. If the pikas' dispersal routes went 

from north to south, any separation between 0. p.fumosa and 0. p. brunnescens, if 

it happened, would have occurred as a result of sympatric speciation after 0. p. 

brunnescens extended its range to their present day southern terminus. Unless 

there is north-south gene flow via the thin putative western habitat band, southern 

populations of 0. p. brunnescens should be more closely related to 0. p. fumosa 

than to northern populations of 0. p. brunnescens because their most recent 

ancestors would have come from habitat immediately to the north. It would be 

very unlikely that northern and southern populations of 0. p. brunnescens would 

experience identical evolutionary trajectories with 0. p. fumosa located 

geographically in between. 

The same logic applies in the case of the reverse possibility: that dispersing 

pikas moved from south to north. If 0. p. fumosa is a separate subspecies, 0. p. 

brunnescens populations in the north should be more closely related to 0. p. 

fumosa than to 0. p. brunnescens in southern Oregon for reasons stated above. 

While no specimens from southern Oregon were used in this study, if 0. p. fumosa 

is within a clade that includes 0. p. brunnescens from the north, the direction of 

dispersal is irrelevant: 0. p. fumosa is not a separate subspecies since it is not 

monophyletic. 

32 



The third option is that 0. princeps dispersed to the current range of 0. p. 

fumosa from the eastern part of the state during a colder period, when habitat would 

have been continuous and appropriate. This can be tested genetically: a closer 

relationship between 0. p. fumosa and 0. p. taylori or 0. p. jewetti than with 0. p. 

brunnescens would support this hypothesis. 

All phylogenetic analyses of the control region produced trees showing that 

the clade containing all specimens of 0. p. fumosa also contain a specimen from 

Government Camp. This lack of reciprocal monophyly falsifies the hypothesis that 

0. p. fumosa constitutes a taxonomically distinct subspecies. In addition, the 

specimens examined also fell within a larger clade comprised of all specimens in 

the western part of Oregon, i.e. 0. p. fumosa is more closely related to 0. p. 

brunnescens than it is to 0. p. jewetti or 0. p. taylori. This closer relationship with 

0. p. brunnescens refutes the east-to-west dispersal hypothesis. 

Hypothesis 2: 0. p. brunnescens forms distinct clades north and south of the 
Columbia 

The Columbia River and the Columbia River Gorge form a large physical 

and ecological barrier between Washington and Oregon, which is largely 

impassable for small terrestrial mammals. During the colder periods of the 

Wisconsinian, the Columbia River was reduced to very low flows, and passage 

across the river was likely. However, any route across was violently removed by 

the catastrophic Missoula Floods, the waters being some 120m higher in present 
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day Portland, Oregon. This series of floods, beginning 12,000 years ago (Alt 

2001), marked the beginning of 12,000 years of separation between populations of 

0. p. brunnescens north and south of the river. Because the mtDNA control region 

evolves at a very fast rate (useful at microevolutionary scales of just a few thousand 

years (Ward et al. 1993, McMillan and Palumbi 1997)), 12,000 years should be 

enough time for these populations to have developed separate evolutionary 

trajectories. 

While the cyt b data corroborate this hypothesis, it is with only one 

specimen south of the river and with poor ( <50%) bootstrap support. The control 

region analyses do not support this hypothesis since the thirteen southern 

specimens rest within a clade (93% bootstrap support) including Snoqualmie Pass 

and Mt. Adams. Either 12,000 years was not enough time to create genetic 

separation or sufficient gene flow occurs to prevent separation. Possible routes for 

gene flow across the river are the multiple landslides that occurred near present day 

Cascade Locks, Oregon. The Bonneville Slide, in particular, is estimated to have 

occurred between 1060 to 1760 CE (Reynolds 2001), and there is evidence that 

multiple slides occurred in the area. At its maximum, the slide formed a dam 3 .5 

miles long, providing ample physical linkage between 0. princeps populations 

north and south of the Columbia River. 
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Hypothesis 3: East- West clades in Oregon 

According to Hoffmann and Smith (2005), all four subspecies of 0. 

princeps in Oregon are part of the Cascade Group as defined by Hafner and 

Sullivan (1995), but is there an east - west split within that grouping? In Oregon 

and southern Washington, the Cascade Range is separated from the eastern 

mountains by an expanse of high desert that is completely inhospitable to 0. 

princeps. It is possible that gene flow between the Cascade Range and the eastern 

mountains occurred during the Wisconsinian; however, the distances are large, 

suggesting that dispersal in these highly philopatric animals would have been 

unlikely. The results of the phylogenetic analyses indicate that reciprocally 

monophyletic eastern and western clades have strong bootstrap support for both cyt 

b (67 - 100%) and control region (85 - 94%) data sets with a correspondingly large 

(5.2 - 7.9%) genetic distance. Likewise, the alarm call data suggest a strong east­

west split, providing additional credence to hypothesis 3. 

Hafner and Sullivan (1995) proposed that two dispersal routes existed 

during the initial colonization from the north: one down the Cascade Range and 

into the Sierras and another down the Rocky Mountains. They suggested that the 

Wallowa and Strawberry Mountains were populated by individuals that dispersed 

from the Cascade Range while the Steens Mountain population originated from the 

Sierra Group. However, the cyt b data show a closer relationship between the 

eastern mountains and Jasper than the eastern mountains and the Cascades. Indeed 
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the eastern mountains form a sister clade to Jasper, which suggests they were 

established by dispersal down the Rocky Mountains. It is also possible that the 

Sierra Group was originally established by dispersal from the Rocky Mountains 

and that the Steens, Strawberry, and Wallowa populations were established from 

later dispersal from the Sierra Group. 

Taxonomic Conclusions 

Current taxonomy of Ochotona princeps does not fully reflect my analysis 

of sequence data from mitochondrial cyt b and the control region. Specifically, 0. 

p. fumosa is not a separate subspecies, but is subsumed by 0. p. brunnescens. 

Additionally, cyt b data show no resolution between the Strawberry Mountains ( 0. 

p. jewetti), Steens Mountain ( 0. p. taylori), and the Wallowa Mountains ( 0. p. 

jewetti), while the control region data show that pikas from the Strawberry 

Mountains are a sister clade to one comprised of pikas from the Steens and the 

Wallowa Mountains. Either all three localities should be combined into a single 

subspecies or, the geographical boundaries should be redrawn to group the 

Wallowas and Steens together. A larger data set from the Wallowa Mountains and 

Steens Mountain should clarify these relationships. Finally, this study shows 

strong support for the existence of two large clades: the Cascade Range and the 

eastern Oregon mountains. These clades have genetic distances as large 8.55% 

(P29Mt. Adams and P8Strawberry Mts.) which is greater than the genetic distance 
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between 0. collaris and Steens Mt. (8.47%) suggesting that these clades represent 

separate species. 

Climate Change and Population Extirpation 

Collins (2009) noted that many individual global change drivers (e.g. 

increased nitrogen levels) decrease biodiversity and lead ultimately to less resilient 

ecosystems. An argument can thus be made that ecological research should 

prioritize conservation of biodiversity. Because temperatures are warming faster 

than the capacity for animal species to adapt to temperature change (Loarie et al. 

2009), this is a particularly pressing problem for North American pikas, which 

occur at low population densities in highly restricted montane habitats. Since 0. 

princeps are isolated on mountains, as temperatures warm they can neither move 

upward (because the shape of the mountain results in smaller and smaller area), nor 

do they have the ability to disperse north. Beever et al. (2003) first raised the 

concern that some 0. princeps populations in the Great Basin had become 

extirpated and showed evidence to support the idea that warmer temperatures were 

at least partially to blame. Since then, 0. princeps have been labeled a "canary in 

the global warming coal mine'', and, at least in the Great Basin, is considered on 

the brink of extinction (Grayson 2005). In an effort to avoid this fate, the Center 

for Biological Diversity filed petitions in 2007 with both the State of California and 

the U.S. Fish and Wildlife Service (USFWS) to list 0. princeps as an endangered 

species. The USFWS, in early 2010, ruled against listing 0. princeps as an 
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endangered species. Had they been listed, 0. princeps would have been the first 

species listed under the Endangered Species Act as a direct result of global 

warmmg. 

The importance of identifying biologically valid subspecies becomes 

apparent in conservation efforts. Limited time and resources mean that we must 

focus on saving populations that represent the greatest amount of biodiversity, 

which implies a need to make determinations as to biologically valid subspecies. A 

population that is not reciprocally monophyletic may have adapted phenotypically 

in ways important to that population's survival (Zink et al. 2000). It can therefore 

be argued that phenotypic variability could be considered a reasonable measure for 

determining upon which populations to focus conservation efforts on. Zink (2004) 

pointed out, however, that phenotypic variability occurs relatively quickly 

compared to the evolution of reciprocally monophyletic clades, and that emphasis 

should thus more appropriately be placed on the genetic structure of the population. 

It follows that in order to successfully effect conservation of threatened populations 

of 0. princeps, a more comprehensive knowledge is required of the genetic 

structure of this species. Studies such as the present should be undertaken to 

evaluate the status of all purported subspecies. Results of this and other research 

can then inform those tasked with allocating conservation resources. For example, 

efforts should be placed on preserving representative populations in both the 

Cascade Range and the mountains of eastern Oregon - the two large clades 

supported by this study. 
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APPENDIX A 

Trapping Sites 

Site N Latitud Lon!!itud Elevat· 
1. Jasper National 52°41 '16.96"N 118°2' 17.29"W 2018 m (6600 

Park ft) 
2. Snoqualmie Pass 47°26' 19.65"N 121°25'14.57"W 932 m (3050 ft) 
3. Mount Adams 46°16' 10.84"N 121°35'13.97"W 1409 m (4607 

ft) 
4. Columbia R. 45°34' 44.57" 122°06'23.87"W 80 m (261 ft) 

Gorge 
5. Mount Hood 45°17'21.86"N 121°47'31.36"W 1497 m (4895 

ft) 
6.MountJefferson 44°40'42.6"N 121°50'58.l"W ~1682 m (5500 

ft) 
7. Wallowa Mts. 45°13 '31.64"N 1l7°15'57.14"W 2483 m (8123 

ft) 
8. Strawberry Mts. 44°17'34.63"N 118°40'47.6l"W 2292 m (7498 

ft) 
9. Steens Mountain 42°43'4.57"N 118°34'31.58"W 2446 m (8000 

ft) 
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APPENDIXB 

Specimen List 

Specimen numbers in bold indicate samples obtained via trapping. All others are 
museum samples. In addition to those listed below, two specimens were obtained 
from GenBank for the cyt b analysis (AY292716 and AF272989) and one 
Ochotona collaris specimen was used as the outgroup (obtained from Link Olsen, 
University of Alaska, Fairbanks) in both the cyt band control region analyses. 

No. Date Location 
Trapped 

Pl 8/17/2005 Jasper, Canada 
P2 8/18/2005 Jasper, Canada 
P3 8/19/2005 Jasper, Canada 
P4 10/4/2005 Mount Adams, WA 
PS 10/4/2005 Mount Adams, WA 
P28 8/19/2006 Mount Adams, WA 
P29 8/19/2006 Mount Adams, WA 
P6 10/11/2005 Strawberry Mountains, OR 
P7 10/11/2005 Strawberry Mountains, OR 
PS 10/11/2005 Strawberry Mountains, OR 
P9 10/11/2005 Strawberry Mountains, OR 
Pll 7/12/1967 0.5 mile east of Multnomah Falls 
P12 7/13/1967 0.5 mile east of Multnomah Falls 
P13 7/1/1967 0.5 mile east of Multnomah Falls 
P14 7/1/1967 0.5 mile east of Multnomah Falls 
P16 8/16/1966 32.5 miles east of Sweet Home, Linn Co., OR 
P17 7/12/1967 32.5 miles east of Sweet Home, Linn Co., OR 
P18 9/11/1968 32.5 miles east of Sweet Home, Linn Co., OR 
P20 9/11/1968 32.5 miles east of Sweet Home, Linn Co., OR 
P21 9/11/1968 32.5 miles east of Sweet Home, Linn Co., OR 
P22 9/11/1968 32.5 miles east of Sweet Home, Linn Co., OR 
P25 7/28/1966 2.25 miles east, 1.5 miles north of Government 

Camp, OR 
P27 7/28/1966 2.25 miles east, 1.5 miles north of Government 

Camp, OR 
P30 8/30/2006 Ice Lake, Wallowa Mountains, OR 
P31 91512006 Kiger Gorge, Steens Mountain, OR 
P32 9/13/2006 Snoqualmie Pass, WA 
P33 9/13/2006 Snoqualmie Pass, WA 
P34 912012006 Tom, Dick, and Harry Mountain, Mount Hood, OR 
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APPENDIXC 

Primers 

Control Region 
L159260CH: 5' -ATT ACC CTG GTC TTG TAA ACC-3' * 
MTOCHlR: 5' -GTA CAT CGA GGT GCT CGT CT-3' * 

Cytochrome b 
L14724: 5' - CGA AGC TTG ATA TGA AAA ACC ATC GTT G-3' # 
Hl5915: 5' -AGG AAT TCC ATT TTT GGT TTA CAA GAC-3' # 

*Obtained from Formozov et al. (2006) 

#Obtained from Lori Patrick (lpatrick@pdx.edu) 
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APPENDIXD 

PCR Cycler Programs 

Cytochrome b 
GWBCYTb 

1. 94° for 3 min 
2. 94° for 1 min 
3. 95° for 1 min 
4. 72° for 1.5 min 
5. 39 times to 2° 
6. 72° for 5 min 
7. 4 ° forever 
8. END 

Control Region 
GWBCROOO 

1. 94° for 5 min 
2. 94° for 1 min 
3. 62° for 1 min 
4. 72° for 3 min 
5. 40 times to 2° 
6. 72° for 5 min 
7. Hold at 4° 
8. END 
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APPENDIXE 

Cytochrome b Genetic Distances 

PU asper P2Jasper P3Jasper P4Adams P5Adams P28Adams 

PlJasper 

P2Jasper 0.00087854 

P3Jasper 0.00087854 0 

P4Adams 0.06709102 0.06604198 0.06604198 

P5Adams 0.0651191 0.06510516 0.06510516 0.0019704 

P28Adams 0.06698813 0.06594279 0.06594279 0 0.00197213 

P29Adams 0.06783549 0.06678071 0.06678071 0 0.00199717 0 

P6Strawberrv 0.04796451 0.04697582 0.04697582 0.06291671 0.06292833 0.06284134 

P7Strawberrv 0.05527252 0.05524412 0.05524412 0.07232881 0.07235973 0.07237682 

P8Strawberry 0.06064359 0.06062598 0.06062598 0.08405468 0.08151861 0.08392904 

P9Strawberry 0.04646923 0.04644265 0.04644265 0.06877327 0.06619392 0.06882057 

P30Wallowa 0.0477178 0.04671773 0.04671773 0.0596164 0.06139077 0.05966093 

P31Steens 0.04905043 0.04805481 0.04805481 0.05888593 0.06057046 0.05893425 

P32Snoqualmie 0.06708869 0.06604335 0.06604335 0 0.00197395 0 

P33Snowqualmie 0.06685378 0.06581211 0.06581211 0.00175793 0 0.00175793 

P34Hood 0.06779002 0.06674835 0.06674835 0.00264174 0.0029398 0.00264174 

A Y2927160princeps 0.00264372 0.00175977 0.00175977 0.06814374 0.06746134 0.06803714 

AF2729890princeos 0.00264372 0.00175977 0.00175977 0.06814374 0.06746134 0.06803714 

Ocollaris 0.10087962 0.10201617 0.10201617 0.09654311 0.09451839 0.09638594 

P29Adams P6Strawberrv P7Strawberrv P8Strawberrv P9Strawberrv 

Pl Jasper 

P2Jasoer 

P3Jasoer 

P4Adams 

P5Adams 

P28Adams 

P29Adams 

P6Strawberrv 0.06365016 

P7Strawberrv 0.07259469 0.00706895 

P8Strawberrv 0.08545333 0.01618928 0.02571911 

P9Strawberrv 0.06947018 0 0.00826045 0 

P30Wallowa 0.05986181 0.00445477 0.01013184 0.0198873 0.00337606 

P31Steens 0.05960476 0.00619351 0.01119578 0.0216915 0.005644 

P32Snoqualmie 0 0.06299049 0.07246524 0.08399527 0.0689136 

P33Snowqualmie 0.00177945 0.06085317 0.07004433 0.08141734 0.06628992 

P34Hood 0.00267554 0.05991567 0.06891922 0.08147619 0.06629471 

AY2927160princeos 0.06889397 0.04895653 0.05755688 0.06306875 0.04889997 

AF2729890orinceps 0.06889397 0.04895653 0.05755688 0.06306875 0.04889997 

Ocollaris 0.09765176 0.08635103 0.09244056 0.10692304 0.09218144 
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APPENDIX E (continued) 

P31Steens P32Snociualmie P33Snowciualmie P34Hood 

P!Jasper 

P2Jasoer 

P3Jasper 

P4Adams 

P5Adams 

P28Adams 

P29Adams 

P6Strawberry 

P7Strawberrv 

P8Strawberry 

P9Strawberry 

P30Wallowa 

P31Steens 

P32Snoqualmie 0.05905969 

P33Snowqualmie 0.05695529 0.00177026 

P34Hood 0.05602256 0.00266635 0.00263915 

A Y2927 l 60princeps 0.05004941 0.0681377 0.0678991 0.06883534 

AF2729890princeps 0.05004941 0.0681377 0.0678991 0.06883534 

Ocollaris 0.08473752 0.09649139 0.09654219 0.09427095 

AF2729890orinceos Ocollaris 

P!Jasper 

P2Jasoer 

P3Jasper 

P4Adams 

P5Adams 

P28Adams 

P29Adams 

P6Strawberrv 

P7Strawberrv 

P8Strawberrv 

P9Strawberry 

P30Wallowa 

P31Steens 

P32Snoaualmie 

P33Snowqualmie 

P34Hood 

AY2927160orinceos 

AF2729890princeps 

Ocollaris 0.09974783 

49 



APPENDIXF 

Control Region Genetic Distances 

P!Jasoer P2Jasoer P3Jasper P4MtAdams P5MtAdams P28MtAdams 

P!Jasper 

P2Jasper 0.00838563 

P3Jasoer 0.00676415 0.00137058 

P4MtAdams 0.07103238 0.07450382 0.07086776 

P5MtAdams 0.06451419 0.06794572 0.06440295 0.00837329 

P28MtAdams 0.07243443 0.07282298 0.06910882 0.00978343 0.00978334 

P29MtAdams 0.07103238 0.07450382 0.07086776 0 0.00837329 0.00978343 

P6Strawberrv 0.06573934 0.06566629 0.06256751 0.05565663 0.05719663 0.05716101 

P7Strawberry 0.06543968 0.06416164 0.06229179 0.05688848 0.0584255 0.05533589 

P8Strawberry 0.06370466 0.06259947 0.06058396 0.05516335 0.05672175 0.05669338 

P9Strawberry 0.06223967 0.06263278 0.0591126 0.05367349 0.05522463 0.05518926 

Pl lMultnomahFalls 0.07001141 0.06937977 0.06668339 0.01569686 0.01276244 0.01133056 

Pl 2MultnomahFalls 0.07048191 0.06941495 0.06710347 0.01291317 0.01283885 O.oI137887 

Pl 3MultnomahFalls 0.07000857 0.06935892 0.06667188 0.01279117 0.0127537 0.01132147 

Pl4MultnomahFalls 0.06977104 0.06927478 0.06642652 0.01284614 0.01275272 0.01128121 

P 16LinnCounty 0.07520537 0.07421619 0.07180496 0.01433862 0.01139868 0.00995638 

P 17LinnCounty 0.07925374 0.07921194 0.075662 0.01725466 0.01403902 0.01258903 

Pl 8LinnCounty 0.07220477 0.07253698 0.06889639 0.01552296 0.01265164 0.01122253 

P20LinnCountv 0.07591472 0.07859927 0.075899 0.01652878 0.01344923 0.01204684 

P21 LinnCountv 0.07807056 0.07711667 0.07453912 0.01501172 0.01195627 0.0105587 

P22LinnCounty 0.07319789 0.07258449 0.06984926 0.01572493 0.01279106 0.01135923 

P25GovernmentCamo 0.07200965 0.07099298 0.06863751 0.01725714 0.01429228 0.01284098 

P27GovernmentCamp 0.07070335 0.07093718 0.06738937 0.0112376 O.oI 120922 0.00978437 

P30WallowaMountains 0.07150683 0.07374758 0.06984238 0.05977788 0.05978888 0.056681 

P31 SteensMt 0.07125214 0.06882683 0.06655268 0.0552163 0.05522738 0.05826337 

P32SnoqualmiePass 0.06620888 0.06960645 0.066077 0.00696491 0.00416984 0.01120282 

P33SnoqualmiePass 0.07207634 0.07450479 0.07191332 0.00280468 0.00844393 0.01276038 

P34MtHood 0.06999093 0.06936724 0.06666012 0.01284614 0.01277995 O.oI 133498 

Ocollaris 0.08751918 0.09463038 0.09281842 0.07420174 0.07070637 0.07594029 
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APPENDIX F (continued) 

P6Strawberry P7Strawberry P8Strawberrv P9Strawberrv Pl lMultFalls 

PlJasper 

P2Jasper 

P3Jasoer 

P4MtAdams 

P5MtAdams 

P28MtAdams 

P29MtAdams 

P6Strawberry 

P7Strawberry 0.00412806 

P8Strawberry 0.0027497 0.00135697 

P9Strawberry 0.00136911 0.00271522 0.00135643 

Pl lMultnomahFalls 0.05754875 0.05759474 0.05605966 0.05606923 

P 12MultnomahF alls 0.05634168 0.05638748 0.0548601 0.05486769 0.00280871 

P13MultnomahFalls 0.05443045 0.05441954 0.05288843 0.05289375 0.00280813 

Pl 4MultnomahFalls 0.05567966 0.05711882 0.05561816 0.05412436 0.00280389 

P 16LinnCounty 0.05782956 0.05787634 0.05634037 0.05634994 0.0042365 

Pl 7LinnCounty 0.06383144 0.06547083 0.06367164 0.06202894 0.00614439 

P 18LinnCounty 0.05881569 0.06002268 0.0583148 0.05682121 0.00559259 

P20LinnCountv 0.06155092 0.06160801 0.05989143 0.05990195 0.00592938 

P2 l Linn County 0.06013757 0.06019241 0.05846792 0.05847571 0.0044186 

P22LinnCounty 0.05914497 0.05918597 0.05765677 0.05766848 0.00562815 

P25GovemmentCamp 0.05791296 0.0579605 0.05642368 0.05643336 0.00708222 

P27GovemmentCamp 0.05417371 0.05539716 0.05370815 0.05222199 0.00421045 

P30WallowaMountains 0.01816999 0.01947347 0.01799332 0.01659647 0.06382394 

P3 l SteensMt 0.01811736 0.01660452 0.01514114 0.01652797 0.06080109 

P32SnoqualmiePass 0.05883975 0.06005967 0.05832505 0.0568262 0.01423005 

P33SnoqualmiePass 0.06071101 0.06072856 0.05915799 0.05914846 0.01576729 

P34MtHood 0.05591989 0.0559063 0.05438189 0.0543892 0.00280672 

Ocollaris 0.08703567 0.08522853 0.08705284 0.0870524 0.08124156 

51 



APPENDIX F (continued) 

Pl3MultFalls Pl4MultFal!s Pl 6LinnCountv Pl 8LinnCountv P20LinnCountv 

P!Jasper 

P2Jasoer 

P3Jasoer 

P4MtAdams 

P5MtAdams 

P28MtAdams 

P29MtAdams 

P6Strawberrv 

P7Strawberrv 

P8Strawberrv 

P9Strawberry 

Pl lMultnomahFalls 

Pl2MultnomahFalls 

Pl3MultnomahFalls 

Pl 4MultnomahFalls 0 

Pl 6LinnCounty 0.00423646 0.00422046 

Pl 7LinnCounty 0.006179 0.0061373 0.00154341 

Pl 8LinnCounty 0.00559754 0.00556298 0.00139505 

P20LinnCountv 0.00596413 0.00595642 0.00151174 0.00299161 

P2 l LinnCciuntv 0.00443303 0.00441731 0 0.00148329 0.00151104 

P22LinnCounty 0.00562678 0.00559898 0.00140764 0 0.00299825 

P25GovernmentCamo 0.00708486 0.00705957 0.00281746 0.00139505 0.00445776 

P27GovernmentCamo 0.00138823 0.00138632 0.00282768 0.00415636 0.00450685 

P30WallowaMountains 0.06217612 0.06194433 0.06413389 0.06447786 0.06980663 

P3 l SteensMt 0.05916471 0.06041889 0.06108775 0.06297862 0.06664849 

P32SnoqualmiePass 0.01133064 0.01136591 0.01287084 0.01408581 0.01496997 

P33SnoqualmiePass 0.01286366 0.01277423 0.01433785 0.01569629 0.01655659 

P34MtHood 0 0 0.00423117 0.00558979 0.00596197 

Ocollaris 0.08124949 0.08094247 0.08307355 0.08484648 0.08905894 

52 



APPENDIX F (continued) 

P2 l Linn County P22LinnCounty P25GovCamp P30WallowaMts P3 l SteensMt 

PlJasper 

P2Jasper 

P3Jasper 

P4MtAdams 

P5MtAdams 

P28MtAdams 

P29MtAdams 

P6Strawberrv 

P7Strawberry 

P8Strawberry 

P9Strawberrv 

Pl lMultnomahFalls 

Pl2MultnomahFalls 

Pl3MultnomahFalls 

Pl4MultnomahFalls 

Pl 6LinnCountv 

Pl 7LinnCountv 

Pl 8LinnCounty 

P20LinnCounty 

P21LinnCountv 

P22LinnCountv 0.00149669 

P25GovernmentCamp 0.00295718 0.00140764 

P27GovernmentCamp 0.00297882 0.00422516 0.00566097 

P30WallowaMountains 0.06842057 0.06542613 0.06421293 

P3 l SteensMt 0.06527399 0.06239897 0.06115917 0.01656028 

P32SnoqualmiePass 0.01345714 0.01426529 0.01578284 0.06296896 0.05836143 

P33SnoqualmiePass 0.01502581 0.01575866 O.ol 727783 0.06394441 0.05775839 

P34MtHood 0.00442816 0.0056175 0.00708622 0.06224477 0.05923649 

Ocollaris 0.08754521 0.08490901 0.08672906 0.08712437 0.08364108 
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APPENDIX F (continued) 

P33SnoqualmiePass P34MtHood Ocollaris 

Pl Jasper 

P2Jasper 

P3Jasoer 

P4MtAdams 

P5MtAdams 

P28MtAdams 

P29MtAdams 

P6Strawberry 

P7Strawberrv 

P8Strawberrv 

P9Strawberrv 

Pl lMultnomahFalls 

P12MultnomahFalls 

P13MultnomahFalls 

P14MultnomahFalls 

Pl 6LinnCountv 

P 17LinnCountv 

P 18LinnCounty 

P20LinnCounty 

P21LinnCountv 

P22LinnCountv 

P25GovernmentCamp 

P27GovernmentCamp 

P30WallowaMountains 

P31 SteensMt 

P32SnoqualmiePass 

P33SnoqualmiePass 

P34MtHood 0.01281903 

Ocollaris 0.07563926 0.08101243 
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