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AN ABSTRACT OF THE THESIS OF Aiman R. Akileh for the Master of Science in 
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Title: Elastic-Plastic Analysis of Axisyrnmetrically Loaded Isotropic 

Circular and Annular Plates Undergoing Large Deflections. 

APPROVED BY MEMBERS OF THE THESIS COMMITTEE: 

airman 

Nan-Teh Hsu 

The concept of load analogy is used in the elastic and 

elastic-plastic analysis of isotropic circular and annular plates 

undergoing moderately large deflection. The effects of the nonlinear terms 

~ 
of lateral displacement and the plastic strains are considered as 

additional fictitious lateral loads, edge moments, and in-plane forces 

acting on the plate. The solution of an elastic or elastic-plastic Von 



Karman type plate is hence reduced to a set of two equivalent elastic plate 

problems with small displacements, namely, a plane problem in elasticity 

and a linear elastic plate bending problem. The method of finite element 

is employed to solve the plane stress problem. The large deflection 

solutions are then obtained by utilizing the solutions of the linear 

bending problems through an iterative numerical scheme. The flow theory of 

plasticity incorporating a Von Mises layer yield criterion and the 

Prandtl-Reuss associated flow rule for strain hardening materials is 

employed in this approach. 

Nonlinear elastic results for simply supported and clamped circular 

and annular plates are found to be in excellent agreement with the 

available solutions. The nonlinear elastic-plastic results show that the 

lateral displacement is increased by the plastic strain while the maximum 

fiber stresses are considerably relieved. Furthermore, the method of 

solution used in this study is found to be computationally efficient and 

offers an alternative method for obtaining nonlinear solutions to circular 

and annular pl ate bending prob 1 ems. The present formulation can be eas i1 y 
~ 

extended to include other sources of nonlinearity such aAcreep and 

relaxation in the analysis. Moreover, the approach is also well suited for 

the nonlinear analysis of circular and annular composite plates. 
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CHAPTER I 

INTRODUCTION 

When the lateral displacement of a plate is not small in comparison 

with its thickness, the membrane forces play a more dominant role in 

carrying the load, and hence the second order effects of lateral 

displacement on the membrane stresses need to be considered (1, 2, 3). In 

cases in which the vertical deflections are no longer small in comparison 

with the thickness of the plate but are still small as compared with the 

other dimensions, the analysis of the problem must be extended to include 

the strain of the middle plane of the plate. 

Nonlinear differential equations considering these effects were first 

given by Von Karman (4). Solutions based on these nonlinear differential 

equations are known as large deflection solutions in the sense of Von 

Karman Theory. These differential equations have been used in the elastic 

analysis of isotropic and orthotropic circular and annular plates with 

various edge conditions subject to uniform lateral pressure, axisymmetric 

line loads, or concentrated loads applied at the center of the plate. 

SURVEY OF PREVIOUS WORK 

Various investigators have provided solutions for such nonlinear 

elastic problems. Among the earlier contributions is the work of Way (5) 



which presents a series solution for uniformly loaded clamped circular 

plates. Other series solutions for calculating finite deflections of 

elastic simply supported and clamped circular plates have been proposed by 

Alwar, et al. (6, 7), Berger (8), Federhofer and Egger (9), Mansfield (10), 

Stoker (11), and Timoshenko and Woinowsky-Krieger (3). On the other hand, 

various investigations of nonlinear elastic circular plates have been 

attempted using numerical methods such as finite differences (12, 13), 

finite element (14), dynamic relaxation (15, 16), perturbation (17-22), 

integral collocation method (23) and rateform linearization (24). 

Recently, Dumir, et al. (25-27) used point collocation method together with 

Newmark-e scheme to analyze the static and transient nonlinear response of 

isotropic and orthotropic circular plates. 

A number of solutions for elastic annular plates with various inner 

and outer edge conditions have also been obtained by different 

researchers. Wempner and Schmidt (28) presented a series solution for an 

isotropic annular plate with simply supported movable outer edge subjected 

to a uniform line load at the free inner edge. Yeh (29) has given an 

approximate solution using the perturbation method for a clamped immovable 

isotropic annular plate with a plugged hole under a concentrated load at 

the plug. Mah (13) presented a finite difference solution for isotropic 

annular plates with simply supported and clamped immovable edges under a 

uniform load. Recently, Dumir, et al. (30) presented a large deflection 

analysis of orthotropic annular plates under uniformly distributed loads 

using the method of interior global orthogonal point collocation. Alwar 

and Reddy (7) analyzed the static and dynamic response of isotropic and 

2 



3 

orthotropic annular plates using a Chebyshev series expansion, while Turvey 

(16) considered the behavior of tapered annular isotropic plates under a 

-uniformly distributed load using the dynamic relaxation technique. 

All of the aforementioned methods were based on Von Karman's 

nonlinear differential equations. The accuracy of these methods in 

yielding numerical results is dependent on the number of terms utilized in 

the series solution or the number of grid points used in the case of 

numerical schemes. Furthermore, the foregoing solution methods assume 

elastic behavior and, hence, are not applicable to plates loaded beyond the 

elastic limit. 

Small deflection elastic-plastic solutions for axisymmetrically 

loaded circular and annular plates have been given by many investigators. 

Sokolovsky (31, 32) presented solutions for simply supported plates 

employing Henky type deformation theory of plasticity together with Von 

Mises yield condition. Three loading conditions were investigated: a 

uniformly distributed load, a uniformly distributed load over an inner 

circular portion of the plate, and a concentrated load at the center of the 

plate. Several other investigators extended Sokolovsky's solution to 

plates with variable thickness (33), other loading conditions (34), and to 

plates with clamped boundaries (35). Limit analysis has also been applied 

extensively to obtain the collapse loads of isotropic circular plates 

employing various yield criterion, loadings, and support conditions 

(36-38). An early attempt to estimate the deflections of elasto-plastic 

circular plates using incremental analysis based on the flow theory of 

plasticity was carried out by Haythornthwaite (39). The yield condition of 



Tresca and the associated flow rule were employed. The key assumption was 

made that at any point within the plate the entire thickness was either 

fully elastic or fully plastic. An example of an annular plate was given. 

Lackman (40) employed an analogy between plastic strains and transverse 

loads originally advanced by Lin (41) to obtain solutions for a uniformly 

loaded, simply supported circular plate made of strain hardening 2024-T4 

aluminum. The plate was divided into 40 layers along its thickness. 

4 

Unlike Haythornthwaite's full section plasticity model, the plastic strains 

were considered to vary in the thickness direction. The incremental 

plastic strains were obtained by the use of the Reuss-Mises incremental 

polyaxial inelastic stress-strain relations. Popov, et al. (42) treated 

the elastic-plastic bending of simply supported and clamped circular plates 

by employing Von Mises-layer yield criterion and Prandtl-Reuss incremental 

plastic stress-strain relations. The material was assumed to be 

elastic-perfectly plastic. 

Very few large deflection elasto-plastic solutions of circular and 

annular plates have been reported and even fewer analytical-experimental 

correlations exist (43). Naghdi (44) was the first to undertake full-range 

analysis of axisymmetrically loaded circular plates. His numerical scheme 

employed plastic stress-strain relations based on the deformation theory of 

plasticity. The validity of his approach was established by comparing 

deflections for a simply supported circular plate loaded at the center with 

those obtained from experiment. Tensile stress-strain and octahedral shear 

stress-shear strain curves for 245-T aluminum were also provided. Ohashi, 

et al. (35, 45-48) obtained solutions for elastic-perfectly plastic 



circular and annular plates using an analytical technique based on the 

deformation theory of plasticity. Their technique presents an extension of 

Sokolovsky's small deflection analysis of the same problem. Transversely 

loaded circular plates with simply supported (45) and clamped (46, 35) 

immovable edges along with annular plates (47) with free inner, simply 

supported immovable outer edges were tested. The validity of their 

analytical solutions was established based on favorable comparison with the 

experimental results. Myszkowski (49) developed a simplified version of 

the elasto-plastic constitutive equations used by Ohashi, et al. and 

incorporated them into a "shooting-type" analysis to solve circular plate 

problems with simply supported and clamped edges under transverse 

pressure. Recently, Turvey (50, 51) incorporated Myszkowski's 

constitutive relations into the dynamic relaxation method to obtain large 

elasto-plastic solutions to uniformly loaded circular plates. Several sets 

of results for simply supported and clamped plates made of either mild or 

high yield steel with constant and variable thicknesses were presented. 

The accuracy of this approach was verified through favorable comparison 

with experimental results obtained by Myszkowski (49) and Ohashi and 

Murakami (39). 

flt1 interesting simplified and design oriented full-range analysis of 

transversely loaded simply supported circular plates was published by 

Sherbourne, et al. (52). In their analysis a cross section of the plate 

was assumed to consist of two different types of elements, flexure and 

membrane elements, which were assumed to act independently without any 

interaction except in bond. Initially, the transverse pressure was assumed 

5 



to be supported solely by flexure action. When the flexure capacity of the 

plate section was exhausted, membrane action was assumed to take up the 

additional load-carrying requirement. Although Sherbourne, et al. 

attempted to establish the validity of their analysis by comparing lateral 

deflections of the solutions with simply supported plate test data, their 

methodology was regarded as too simplistic for general application (43). 

The principal weakness of the approximate full-range analyses 

outlined above is that they are incapable of taking proper account of any 

local elastic unloading which may arise as the lateral pressure increases 

and membrane action develops in the plate. These analyses, being based on 

the deformation theory of plasticity, are load-path independent. In 

reality, however, the plastic strain state is load-path dependent (2, 43, 

53-55). The incremental analyses based on the flow theory of plasticity 

permit the load-path to be taken into proper account and, therefore, are 

regarded as being more accurate representations of the physical situation. 

Only a few investigations of elastic-plastic circular plates undergoing 

large deflections based on the incremental flow theory of plasticity have 

been reported in the open literature. A brief account of these studies is 

given below: 

In 1969, Crose and Ang (56) proposed a discrete model of a plate 

consisting of a system of flexible nodes, rigid bars, and torsional springs 

to analyze the large deflection elastic-plastic behavior of circular 

plates. Von Mises yield criterion was employed. The incremental plastic 

strains were obtained by using the Prandtl-Reuss flow rule for 

elastic-perfectly plastic materials. The reliability of the model was 

6 
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verified through favorable comparison with theoretical (3) and experimental 

(57) results. Tanaka (58) presented an iterative scheme for solving the 

finite-difference approximations to the governing system of equations. His 

analysis employed Von Mises-layer yield criterion and allowed all linear 

combinations of isotropic and kinematic strain hardening to be accounted 

for. This analysis was subsequently used by Hamada, et al. (59) to explore 

the response of circular plates under slowly varying cyclic loading. 

Recently, Turvey and Lim (43) employed the dynamic relaxation method to 

obtain solutions for the finite-difference approximations to the governing 

equations of elasto-plastic circular plates undergoing large deflections. 

Their analysis was based on the flow theory of plasticity and incorporated 

a Von Mises-layer plasticity model, an Ilyushin and Ivanov full-section 

plasticity model, and the Prandtl-Reuss associated flow rule for 

elastic-perfectly plastic materials. It was observed that the layer 

analysis predicts the measured deflections more accurately than the 

full-section analysis. The analytical-experimental deflection correlation 

appeared to be accurate for slender clamped plates and less accurate for 

thick plates. This finding is not surprising since the effect of 

transverse shear deformation was not accounted for. However, the 

analytical-experimental correlation for simply supported plates appeared to 

be less favorable. 

In all the foregoing studies the plate is assumed to behave in an 

elastic-perfectly plastic manner. Therefore, the resulting solutions can 

only be expected to yield approximate results for plates exhibiting 

strain-hardening characteristics. Moreover, the solution techniques are 
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applicable to circular plates without a hole at the center and cannot 

easily be extended to annular plates. Additionally, the need for 

sophisticated modern full-range analytical techniques, i.e., techniques 

which take proper account of the interaction between large deflections (in 

the Von Karman sense) and elasto-plastic material characteristics, is 

clearly evident. These techniques must be simple, amenable to programming, 

and highly efficient for the practicing engineer to consider, yet they must 

be accurate and highly versatile to be regarded worthy of general 

application. Furthermore, full-range investigations based on the 

incremental flow theory of plasticity incorporating strain-hardening 

materials for circular and annular plates are clearly lacking. 

This study attempts to present a simple, yet rather versatile 

numerical technique for the analysis of large deflection elastic and 

elasto-plastic circular and annular plates. An attempt to fill the void 

regarding the use of incremental flow theory of plasticity incorporating 

strain-hardening materials in full-range analyses will be initiated. 

STATEMENT OF OBJECTIVES 

The first objective of this study is to assess the accuracy and 

efficiency of the equivalent load concept (1, 2, 40, 41, 60-63} in the 

analysis of axisymmetrically loaded isotropic circular and annular elastic 

plates undergoing large deflections. The motivation for this step has been 

to validate the results of nonlinear elastic problems. The second 

objective of this study is to extend the equivalent load concept to the 

large deflection elastic-plastic analysis of axisymmetrically loaded 



isotropic circular and annular plates. This analysis is based on the 

incremental flow theory of plasticity and incorporates a Von Mises-layer 

-yield criterion and the Prandtl-Reuss associated flow rule for 

strain-hardening materials. 

Accordingly, the equivalent load concept is employed in the large 

deflection (in the Von Karman sense) analysis of elastic and elasto-plastic 

circular and annular isotropic plates. The nonlinear terms of lateral 

displacement and the plastic strain gradients are considered as an 

additional set of body and surface forces acting on the plate. The 

solution of an elastic or elasto-plastic Von Karman type plate is 

hence reduced to a set of two equivalent elastic plate problems undergoing 

small displacements, namely, a plane problem in elasticity and a linear 

elastic plate bending problem. The numerical method of finite element (64) 

is employed to solve the plane stress problem. The large deflection 

solutions are then obtained by employing the solutions of the linear plate 

bending problems (3, 65, Appendix B) through an iterative numerical scheme. 

9 



CHAPTER II 

MATHEMATICAL FORMULATION 

The constitutive relations and governing equilibrium equations 

derived herein describe the axisyrmietric large deflection behavior of thin 

circular and annular isotropic plates loaded beyond the elastic limit by 

uniformly distributed transverse loads. In the development of these 

relations the following assumptions are made: 

1. The material is homogeneous and isotropic. 

2. The body forces are negligible in comparison with the applied loads. 

3. The lateral displacement of the plate is large (in the Von Karman 

sense). Hence, the second order effects of lateral displacement must 

be considered. 

d2 
4. The curvature of the plate may be approximated by (- ~) 

dr2 

5. The Kirchhoff's assumption is valid, i.e., the normal to the middle 

surface of the plate remains straight, unextended, and normal to the 

middle surface after deformation. Hence, transverse shear strains are 

neglected. 

6. The stress normal to the midplane is small compared with other stress 
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components and may, therefore, be neglected. 

Consequently, the resulting governing equations are in the realm of 

classical large deflection theory. 

CONSTITUTIVE RELATIONS 

Let r,t,z be a curvilinear coordinate system with the rt plane 

coinciding with the middle surface of the plate in its unloaded initial 

state and z axis normal to it and pointing downward. Let u0 and w be the 

components of displacement of the middle surface in the radial and lateral 

directions, respectively. The coordinate system and the sign convention 

for forces are shown in Fig. 1. 

Consider a circular or annular plate of uniform thickness h under the 

action of a uniform lateral load q as shown in Fig. 2. Since the plate and 

loading are axisymmetric, the displacements, stresses, and strains in the 

plate are also axisymmetric, and hence 

d = 0 (2.1.a) 
dt 

C1 = E = 0 rt rt (2.1.b) 

where a and e: denote the stress and strain components, respectively. 

The slope ~ of the deformed middle surface in the rz plane is given by 

~ = -w, r (2. 2) 
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(a) CIRCULAR PLATE (TOP VIEW) 

r 

(b) ANNULAR PLATE (TOP VIEW) 

q 
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z ,w 

(c) ANNULAR PLATE (FRONT VIEW) 

FIGURE 2. CIRCULAR AND ANNULAR PLATE NOTATION 



where comma denotes differentiation. The curvature of the plate may be 

approximated by 

K = <!>, = -w, rr r 
(2.3) 

Utilizing the stated assumptions, the radial displacement field for an 

axisyrrmetrically loaded plate may be expressed as 

u(r,z) = u
0

(r) - zw,r (2 .4) 

in which u0 (r) denotes the radial displacement of the middle surface and 

w denotes the lateral deflection as shown in Fig. 3. The nonlinear 

strain-displacement relations for a Von Karman type plate are given by (3, 

65) 

1 2 1 2 
E = U, + - W, = U + - W, - ZW, 
r r 2 r o, r 2 r rr 

(2.5.a) 

u _u_ o zw 
E ------ ' 
t r r r r 

(2.5.b) 

where w2,r represents the second order effect of lateral displacement. 

For a plate loaded beyond the elastic limit, the total component of 

strain may be expressed as the sum of its elastic and plastic components: 

e II 

E = E + E r r r (2.6.a) 

14 
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E = t 
e 

Et + Et 
II 

(2.6.b) 

The stress-strain relations for a plane stress problem are given by 

E e e E 11 11 

(2.7.a) O' = -- ( E + VE ) = -- [ E +VE - ( E +VE ) ] 
r 1_} r t 1_} r t r t 

E e e E II II 

(2.7.b) O' = -- ( E + VE ) = -- r E +VE - ( E +VE ) ] 
t 1 2 tr 

1
2-t r tr -v -v 

in which E and v are Young's modulus and Poisson's ratio, respectively. 

The nonlinear stress-displacement relations are obtained by substituting 

relations (2.5) into relations (2.7). On this basis, we may write 

E v v 12 II II 

O' = -- [u +_ U -z ( W, +_ W, )+- W, - ( E + VE ) ] 
r 1 2 o,r r o rr r r 2 r r t -v 

a = _E~ [uo 
t 1-v2 -r ( 1 ) v 2 +vu -z vw, +_ w, +_ w, -

o,r rr r r 2 r 

II II 

(VE + E ) ] 
r t 

(2.8.a) 

(2.8.b) 

The sectional forces and moments are obtained by integrating the 

stress components across the thickness of the plate. These relations are 

defined by 

Nr = f or dz (2.9.a) 

Nt = f at dz (2.9.b) 

16 



Mr = J a zdz 
r 

Mt = J otzdz 

17 

(2.9.c) 

(2.9.d) 

where sectional forces and moments are expressed per unit length of a given 

cross section of the plate. Substituting relations (2.8) into relations 

(2.9) and carrying out the required differentiations yield 

E - II 

N = N + N - N r r r r (2.10.a) 

E - II 

Nt = Nt + Nt - Nt (2.10.b) 

E II 

M = M - M r r r (2.10.c) 

E II 

Mt = Mt - Mt (2.10.d) 

where 

E Eh v 
N = -- (u + - u ) (2.11.a) 

r 1 2 o,r r o -v 

u 
E Eh o 

N = -- (- + v u ) (2.11.b) 
t 1_} r o,r 

E v 
M = -D ( w, + - w, ) (2.11.c) 
r rr r r 
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E 1 
(2.11.d) Mt = -D(r w,r + " w,rr) 

D = 
Eh3 

(2.12) 
2 12(1-v ) 

N Eh 2 
(2.13.a) = w, 

r 2 r 2(1-v ) 

N Ehv 2 (2.13.b) = w, 
t 2 r 2(1-v ) 

II E II II 

(2.14.a) N = -- f ( e: + ve: ) dz 
r 1_} r t 

II E II II 

(2.14.b) N = -- f ( e: + ve: ) dz 
t l-v2 t r 

II E II II 

M = -- f ( e: + ve: ) zdz (2.14.c) 
r 1_} r t 

II E II II 

M = -- f ( e: + ve: ) zdz (2.14.d) 
t 1_} t r 

Expressions (2.11) represent the sectional forces and moments of an 

axisymmetrically loaded elastic plate with small deflections (3, 65), 

whereas the second order effect of lateral displacement and the influence 

of the inelastic strains on the forces and moments are given by expressions 

(2.13) and (2.14), respectively. 



The shear force Qr, shown in more detail in the next section, is 

obtained by considering the equilibrium of an element of the plate and is 

given for convenience as 

M - M 
Q=M + r t (2.15) 

r r ,r r 

Substituting relations (2.10.c & d) and (2.11.c & d) into equation (2.15) 

yields 

where 

E 
Qr = Qr 

II 

Qr 

E 1 
Q = -D ( w, + - w, 

r rrr r 

II II 

II II M - M 
Q = M + _r_ t 

r r,r r 

(2.16) 

1 
- - w, 

rr r2 r 
) (2.17.a) 

(2.17.b) 

Again, we note that expression (2.17.a) represents the shear force of an 

axisymmetrically loaded elastic plate undergoing small deflections (3, 

19 

65) in contrast to expression (2.17.b) which refers to the inelastic shear 

force. 

Substituting relations (2.11) and (2.13) into equations (2.8), we may write 

E 
a =a +a r r r 

II 

or (2.18.a) 
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E - II 

<\ = 0 t + 0 t - 0 t (2.18.b) 

where 

E 
N 

12z E 
(2.19.a) 

E r 
C1 =-+-M 
r h3 r 

h 

E 
N 

12z E 
(2.19.b) 

E t 
a =-+-M 
t h h3 t 

and 

-
N 

r 
C1 = -
r h 

(2.20.a) 

-
- Nt 
C1 = 
t h (2 .20. b) 

II E II II 

C1 = -- ( £ + \1£ ) 

r l-v2 r t 
(2.21.a) 

II E II II 

<J = -- ( £ + \1£ ) 
t 1_} t r 

(2.21.b) 



GOVERNING EQUILIBRIUM EQUATIONS 

Let us now consider the equilibrium of an element of the plate, such 

as element abed shown in Fig. 4 a & b, cut out from the plate by two 

cylindrical sections ab and cd and by two diametral sections ad and be. 

21 

Taking the sum of the projections in the radial direction of all the forces 

acting on the element we obtain 

(N 
r 

dt 
+ N dr)(r + dr) dt - N rdt - 2N dr ~ = 0 

r,r r t 2 
(2.22) 

neglecting Nr r drdrdt as a small quantity of higher order, the first 
' 

equation of equilibrium may be stated as 

N 
r,r 

N - N 
+ r t = 0 

r 
(2.23) 

The second equation of equilibrium of the element is obtained by taking 

moments of all the forces acting on the element with respect to an axis 

perpendicular to the radius in the roz plane shown in Fig. 4b. Neglecting 

the higher order terms resulting from q and Qr, we obtain 

dt (M + M dr)(r + dr)dt - M rdt- Qr drdt - 2M dr ~ = 0 
r r,r r r t 2 

(2.24) 

Disregarding Mr,rdrdrdt as a small quantity of higher order, the second 

equation of equilibrium may be stated as 
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M - M 
M + r t - Q = 0 (2.25) 
r,r r r 

Denoting the intensity of the load by q, the magnitude of the shearing 

force Or is evaluated by considering the equilibrium of an inner circular 

portion of the plate of radius r shown in Fig. 4c. For a uniform pressure 

such a consideration yields the relation 

qr Q = - - - N w, 
r 2 r r 

(2.26) 

Substituting the expression for the shearing force Qr into expression 

(2.25), the second equation of equilibrium may be rewritten as 

M - M 
M + r t + N w, + qr = 0 
r,r r r r 2 

( 2. 27) 

Equation (2.23) may expressed in terms of displacements by using the first 

t\'K> parts of relations (2.10) and (2.11). The first equation of 

equilibrium becomes 

where 

Eh 1 1 - " 
-- (u + - u - - u ) + R (r) + R (r) = 0 
1-v2 o,rr r o,r r2 o 

- -
R (r) = N 

-
N - N 
r t + __ _ 

r,r r 

(2.28) 

(2.29.a) 
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II 

R (r) 
II N - N 

(N + r t) (2.29.b) 
r,r r 

In a similar manner, the second equation of equilibrium may be written in 

terms of the middle surface displacement by substituting equations (2.10) 

and (2.11.c & d) in (2.27). We then have 

where 

4 - II D V w = q + q (r) + q (r) 

4 2 v w = w, +_ w, 
rrrr r rrr 

1 - w, 
2 rr 

r 

+ .!_ 

r3 

- 1 q (r) = - N w, + N w, + N w, 
r r r r,r r r rr 

II II 

w, 
r 

II 1 11 

q(r)=--(2M M + r M ) 
t,r r,rr r r ,r 

(2.30) 

(2.31) 

(2.32.a) 

(2.32.b) 

Equations (2.28) to (2.32) may be rewritten in terms of the plate 

displacements and plastic strains by making use of relations (2.13) and 

(2.14). The resulting governing equations are 

Eh 
-- (u 
1-v2 °'rr 

1 
+ - u 

r o,r 

1 - II 

- - u ) + R (r) + R (r) = 0 
2 0 

r 
(2. 33. a) 

24 
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4 - " DV w = q + q (r) + q (r) (2.33.b) 

where 

- _ Eh ( ( 1-v) 2 ] R (r) - -- w, w, + -- w, 
1 

2 r rr 2r r 
-\I 

(2.34.a) 

- 1 q ( r) = - N w, + N w, + N w, 
r r r r,r r r rr 

(2.34.b) 

" R (r) E d " " (1 v) " " = -~ [ ~ J (e + ve ) dz + - J (e -e )dz] 
1_"2 dr r t r r t 

(2.35.a) 

" q(r) E ld d " " "" = -~ - ~ [r~ J (e + ve )zdz + (1-v)J (e -£ )zdz](2.35.b) 
1 2 r dr dr r t r t 

-\I 

Expressions (2.33-2.35) show that the nonlinear effects of finite lateral 

" " displacement and the plastic strains are given by R, q and R, q, 

- " respectively. It is also seen that R, R have the same effect in causing 

" displacements as the in-plane radial body forces. Thus R, R may be 

considered as equivalent radial body forces. In a similar fashion, q 

" and q have the same effect in causing lateral deflections as the applied 

" lateral load q and, hence, q, q may be treated as equivalent lateral 

loads. Therefore, relations (2.33) are identical to the governing equations 

for small deformation of an elastic thin plate subjected to a radial body 

" " force R + R and a lateral load of magnitude q + q + q. The solution of an 
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elastic or elasto-plastic Von Karman type plate can, therefore, be reduced 

to that of an equivalent elastic plate subjected to additional body and 

surface forces and undergoing small displacements. 



CHAPTER III 

PLASTIC STRESS-STRAIN RELATIONS 

The fundamental problem in applying plasticity theory is to determine 

the total plastic strain as a function of the history of loading or history 

of stress. To calculate the plastic strains at a final load condition, it 

is necessary to integrate the infinitesimal plastic strain increments over 

the actual loading path (2, 53-55). This may be accomplished by applying 

the load in small finite increments and calculating the finite increments 

of plastic strain for each of the load increments. All these increments of 

plastic strain are then added to give the total plastic strain. 

Let the total loading path be divided into n increments of load. 

Assume that the plastic strains have been computed for the first n-1 

increments of load and we now wish to compute them for the nth increment 

of load. The total strains at the end of the nth increment can be 

written as 

e n-1 11 11 

e: .. = e: .. + k}:;l de: .. k +de: .. lJ lJ = lJ, lJ,n (i,j = 1,2,3} ( 3 .1) 

where the first term on the right side of equation (3.1) represents the 

elastic part of the total strain, the second term is the plastic strain 

accumulated in the first n-1 increments of load, and the third term is the 
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plastic strain increment due to the nth increment of load. In the above 

equation the sum is assumed to be known and the problem is to calculate the 

plastic strain increment for the current or nth increment of load and its 

corresponding stresses. 

The first step of any plastic flow analysis is to decide on a yield 

criterion, i.e., what combination of multiaxial stresses will cause 

yielding. Beyond the elastic limit, a set of incremental plastic 

stress-strain relations are needed in order to describe the behavior of the 

materi~ after yielding has occured. 

In the most general case, the yield criterion will depend on the 

complete state of stress at the point under consideration and will 

therefore be a function of the nine components of stress at the point. 

Since the stress tensor is symmetric, we can reduce this function to a 

function of the six independent components of the stress tensor. The yield 

criterion for a virgin material is then essentially the extension of the 

single yield point of the uniaxial tensile test to the six-component stress 

tensor. For a material loaded to the initial yield, it can be expressed by 

the relationship 

F(a .. ) = k 
lJ ( i ,j = 1, 2' 3) (3.2) 

Equation (3.2) represents a convex hypersurface in the six-dimensional 

stress space and any point on this surface represents a point at which 

yielding can begin. For example, for the simple tensile test with a yield 

point ay' the point a11 = ay,a22 = a33 = a12 = a13 = a23 = 0 must lie on 

this surface. The function appearing in equation (3.2} is called the yield 
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function, and the surface described by it in the stress space is called the 

yield surf ace. 

If isotropy is assumed so that the rotation of the axes does not 

affect the yielding function, equation (3.2) can be expressed in terms of 

the principal stresses as 

F 1 ( al ' a2 ' a3) = k (3.3) 

Based on extensive experimental studies, it has been found that hydrostatic 

pressure has negligible effect on the yield point until extremely high 

pressures are reached. It has also been shown that the density, and 

consequently the volume, does not change for very large plastic 

deformations. Thus, in the plastic range a material can be considered as 

incompressible. The yield function may then be expressed in terms of the 

stress deviators as 

F2(s1, s2, s3) = k (3.4) 

Alternatively, S1, S2, and S3 can be written in terms of the 

invariants of the stress deviator tensor. Since the first invariant of 

this tensor is always zero, we can write 

F 3 ( J2 ' J3 ) = k (3.5) 

Subject therefore to the above assumption, the yield criterion has been 

reduced to a function of the two nonzero invariants of the stress deviator 

tensor (55). 
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The two most widely used criteria, the Tresca maximum shear criterion 

and the Von Mises criterion, are specific cases of equation (3.5). The Von 

Mises criterion is by far the simplest one that can be associated with 

equation (3.5} and is, therefore, the initial yield criterion utilized in 

this study. 

VON MISES INITIAL YIELD CRITERION 

Von Mises (1913) stated that initial yielding will occur when the 

second invariant J2 of the stress deviator tensor reaches a critical 

value, i.e., the value of J2 at yield in simple tension. 

Let xi (i = 1,2,3) refer to a set of Cartesian coordinate system. 

The components of stress with respect to Xi are denoted by aij (i,j = 

1,2,3). For this general state of stress, J2 is given by 

2 2 2 1 2 2 2 
J = a + a+ a+ - [(a - a ) +(a - a ) +(a - a ) ] (3.6) 
2 12 23 13 6 11 22 22 33 33 11 

At the yield point in simple tension, equation (3.6} reduces to 

1 2 
J = - a 
2 3 y 

(3. 7) 

As a result, the Von Mises initial yield criterion may be mathematically 

expressed in the following form 

2 2 2 1 2 2 2 1 2 a + a + a + _ [(a - a ) +(a - a ) +(a - a ) ]= - a (3.8) 
12 23 13 6 11 22 22 33 33 11 3 y 



Specializing this equation to an axisyrrnnetrically loaded circular or 

annular plate in a state of plane stress, the yield criterion may be 

expressed in terms of radial and tangential stresses as 

a~ + { - ar at = J 
y 

(3.9) 

which plots as an ellipse, called the Von Mises ellipse, in the orat 

plane as shown in Fig. 5. It is worth noting that the Von Mises yield 

criterion implies equal yielding in tension and compression. 
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The Von Mises criterion of initial yielding was first proposed due to 

its simplicity and mathematical convenience. Nevertheless, the famous 

experiments of Taylor and Quininney {1921) along with most other test 

results have shown this criterion to exhibit good correlation with 

experimental data (2, 53-55). Attempts have been made to improve the 

correlation of the data by including the effect of the third invariant J3 

into the yield criterion {66). It seems, however, that from an engineerng 

viewpoint the accuracy of the Von Mises criterion for yielding is amply 

sufficient when considering the general scatter and lack of uniformity in 

the properties of nominally the same material obtained from different 

batches. For these reasons, this criterion is widely utilized in the 

inelastic analysis of metals. 

SUBSEQUENT YIELD SURFACES 

Thus far, the discussion has been confined to the initial yield 
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at 

a 
r 

FIGURE 5. GRAPHICAL REPRESENTATION OF THE VON MISES INITIAL 
YIELD CRITERION FOR AXISYMMETRICALLY LOADED PLATES 
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surface at which a material will first start yielding. For a perfectly 

plastic material, the yield surface remains fixed, as seen from the 

uniaxial tensile test data where the stress after yielding remains constant 

at the initial yield. However, for a material that strain hardens, such as 

aluminum, the yield surface must change for continued straining beyond the 

initial yield. In equation (3.2) rewritten below for convenience, the 

yield function was defined by the relation 

F(a .. ) = k 
lJ 

(i,j = 1,2,3) (3.10) 

such that whenever the function F became equal to the constant k, yielding 

would begin. Then k represented an initial yield surface in the stress 

space. This type of relation can now be generalized to subsequent yield 

surf aces. 

After yielding has occured, k takes on a new value depending on the 

strain-hardening properties of the material. If the material is unloaded 

and then loaded again, additional yielding will not occur until the new 

value of k is reached. The function F can then be looked upon as a loading 

function which represents the load being applied, and the function k is a 

yield function which is dependent on the complete previous stress and 

strain history of the material and its strain-hardening properties. Three 

distinct cases may be encountered for a strain-hardening material: 

( 1) F = k and dF = ~ do > 0 
~a. . ij 

lJ 

(3.11.a) 
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This case constitutes loading 

(2) F = k and dF = ~ d a = 0 oa. . i j 
lJ 

(3.11.b) 

This is called neutral loading 

( 3) oF F = k and dF = -- d a < 0 
oa. . i j 

lJ 

(3.11.c) 

Which defines the unloading. The following geometric interpretation of the 

conditions expressed by relations (3.11) is readily evident: F = k means 

that the stress state is on the yield surf ace. dF > 0, on the other hand, 

describes the case where the stress is "moving out" from the yield surface 

and plastic flow is occuring, while dF < 0 refers to a state when the 

stress is "moving in" from the yield surface and unlaoding is therefore 

taking place. dF = 0 corresponds to the case of the stress state moving on 

the yield surface and is called neutral loading. For a strain-hardening 

material no plastic flow occurs for neutral loading. It is obvious that F 

< k defines the elastic region. 

There is one more ingredient necessary in constructing the plasticity 

theory, namely, the relations between stress and strain when plastic flow 

is occuring. In this study the incremental plastic strains are obtained by 

utilizing the Prandtl-Reuss polyaxial inelastic stress-strain relations. 



PRANDTL-REUSS INCREMENTAL PLASTIC 
STRESS-STRAIN RELATIONS 
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In 1870 Saint Venant proposed that the principal axes of strain 

increments coincide with the axes of principal stresses. Levy (1871) and 

subsequently Von Mises (1913) introduced the general relations between 

strain increments and the deviatoric stresses. Prandtl (1924) and Reuss 

(1930) assumed that the plastic strain increment tensor is, at any instant 

of loading, proportional to the instantaneous deviated stress tensor, 

expressed as 

II 

dEij = dA 
s .. 

lJ 

(i,j = 1,2,3) (3.12) 

where d>.. is an instantaneous positive constant of proportionality which may 

vary during the loading process and Sij are the deviatoric stress 

components. d>.. = 0 for unloading and neutral loadings. 

Equation (3.12) states that the increments of plastic strain depend 

on the current values of the deviatoric stress state, not on the stress 

increments required to reach this state. The relation also implies that 

the principal axes of stress and of plastic strain increment tensors 

coincide. Furthermore, the condition of zero plastic dilitation is 

satisfied. For an axisyrrrnetrically loaded circular or annular plate, 

equation (3.12) may be written as 

II 

dEr = Sr d>.. (3.13.a) 



II 

det = St dA (3.13.b} 

where the radial and tangential deviatoric stress components are given by 

2o - a 
s = r t 
r 3 

(3.14.a} 

2o - a 
s t r ---
t 3 

(3.14.b} 

Substituting equations (3.14) into equations (3.13}, the incremental 

plastic stress-strain relations can be written in terms of the radial and 

tangential stresses as 

II 2o - a 
de = r t dA. 

r 3 
(3.15.a} 

11 2ot - a 
de = r dA. 

t 3 
(3.15.b) 

Once the value of dA. is known, the desired stress-strain relations are 

* defined. To determine dA., let us define effective stress a and and 

*II 

effective plastic strain increment de as 

~ = ( o2 + a2 - a a ) 1/2 
r t r t 

*II 

de 2 11 2 11 2 II II 1/2 = - (de + de + de de ) 
13 r t r t 

(3.16) 

(3.17) 
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For a uniaxial tensile state of stress in the radial direction, the 

* effective stress a reduces to or. Utilizing the incompressibility 

assumption, i.e., 
II 

de: = 
t 

II 

de: 
z 

= - ~ de:
11 

the effective plastic strain 
2 r 

*" II increment de: , likewise, reduces to de: . For the uniaxial state of 
r 

stress, equation (3.15.a) becomes 

II 2 
de: = a d). 

r 3 r 
(3.18) 
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Generalization of the above case to a multiaxial state of stress results in 

*" 2 * de: = - a d). 
3 

The constant d). can now be written as 

*" 
d). = ~ de: 

2 -*
a 

And the stress-strain relations (3.15) become 

*II 
II 1 de: 

de: = (a - - a ) -
r r 2 t ~ 

*" II 1 de: de: =(a --a)-
t t 2 r ~ 

(3.19) 

(3.20) 

(3.21.a) 

(3.21.b) 



The generalization of the uniaxial stress-strain relation to a multiaxial 

*" * stress state is defined bye = g(a). For strain-hardening aluminum, this 

function is approximated by (67) 

*" e = 
* 
a - 0y)n 

a 
0 

where a0 and n are constants. 

And hence 

* 
*" 

a - a 
* de = ~ ( y)n-1 d~ when a > a 

a a y 
0 0 

*" * * de = 0 when a < a y or a = a y 

(3.22) 

(3.23.a) 

(3.23.b} 

Substituting equation (3.23.a) into equations (3.21), the incremental 

plastic stress-strain relations for axisymmetrically loaded plates made of 

strain-hardening aluminum may be expressed as 

" n de = - (a 
r a r 

0 

* 
1 a - a * 

- - a )( Y) n-1 da 
2 t a * o a 

* " n 1 a - a * de = _ (a __ a )( y)n-1 da 
tat 2r a * 

0 o a 

(3.24.a} 

(3.24.b} 
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where 

~ = (o2 + o2 - o o )1/2 
r t r t 

hence 

* 1 1 1 do= - [(a - - o ) do + (o - - o ) do ] 
~ r 2 t r t 2 r t 

II II 

and dEr = dE t= 0 * when do < 0 

(3.25.a) 

(3.25.b) 

(3.26) 

It is worth noting that the Prandtl-Reuss assumptions imply the Von Mises 

yield criterion. This can readily be seen by comparing the equation 
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defining the effective stress (3.25.a) with equation (3.9), which gives the 

Von Mises yield criterion. Such a comparison shows that yielding will 

in it i ate when 

* o = a 
y ( 3. 27) 

The equivalent stress is thus the same as the Von Mises yield function and, 

therefore, the Von Mises initial yield criterion may be restated as: 

initial yielding will occur when the effective stress reaches a critical 

value, i.e., the value of the yield stress in simple tension. 



CHAPTER IV 

METHOD OF SOLUTION 

In the earlier discussion, it was stated that the inelastic strains 

as well as the nonlinear terms of lateral displacement can be considered as 

a combination of lateral loads, edge moments, and in-plane forces acting on 

an equivalent plate. The solution of an elastic or elasto-plastic Von 

Karman type circular or annular plate is, therefore, reduced to that of an 

equivalent elastic plate subjected to additional body and surface forces 

with small displacements. The incremental plastic stress-strain relations 

(3.25) are employed in this analysis. The displacement, stress, and strain 

fields are obtained by the solution of the governing equilibrium equations 

(2.33) together with the constitutive relations (2.10) in their incremental 

forms. 

A general discussion of the equivalent load theory (2) as it relates 

to circular and annular plates undergoing large deflections, along with a 

detailed account of the incremental numerical scheme utilized to solve the 

nonlinear set of governing equilibrium equations are presented herein. 

EQUIVALENT LOAD THEORY 

The well known analogy between thermal strains and applied forces 

(Duhamel's Analogy) was first generalized by Lin (41, 62) to include creep 
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and plastic strains. Lin (2) showed that the lateral deflections and 

stresses in an inelastic simply supported plate undergoing small 

deflections may be calculated by considering the inelastic strains as an 

additional set of lateral loads and edge moments acting on an equivalent 

elastic plate. Lackman (40) employed the analogy between inelastic strains 

and applied lateral loads to obtain the solution for a simply supported 

elasto-plastic circular plate with small deflections. Later, Lin (61, 63) 

extended the concept to obtain the large deflection solutions to 

elasto-plastic and creep bending problems of isotropic rectangular plates. 

Recently, Gorji {l, 60) has used this approach to obtain solutions for 

elastically isotropic-plastically orthotropic rectangular plates as well as 

syrmietric composite plates with large deflections. The present study 

utilizes this method to obtain the elastic and elasto-plastic solutions to 

circular and annular plates undergoing large deflections. 

Accordingly, the equivalent load concept is used in the analysis of 

large deflection (in the Von Karman sense) of elastic and elasto-plastic 

circular plates with or without a hole at the center. The nonlinear terms 

of lateral displacement and the plastic strains are considered as an 

additional set of loads acting on the plate. The solution of an elastic or 

elasto-plastic Von Karman type plate is hence reduced to a set of two 

equivalent elastic plate problems with small displacements, namely, a plane 

problem in elasticity and a linear plate bending problem. Examination of 

equation (2.33.a) showed that the nonlinear effects of finite lateral 

displacement and the inelastic strains have the same effect in causing 
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" radial displacement as the in-plane body force R. Thus Rand R were 

called equivalent radial body forces due to finite lateral displacement and 

the plastic strains, respectively. In a similar fashion, equation (2.33.b) 

" indicated that the equivalent lateral forces q and q have the same 

influence in causing lateral deflections as the applied load q, and 

therefore were considered as equivalent lateral loads induced by these 

nonlinear effects. Hence, if the displacements are prescribed at the 

boundaries of the plate, the deformation of a Von Karman type plate under 

the action of a lateral load q w:>uld be the same as that of an equivalent 

plate undergoing small displacements and subjected to a radial body force 

II 11 

~ + R , and a lateral load q + q + q. This is true because the governing 

equations (2.33) and the boundary conditions are identical for both cases. 

On the other hand, if forces are prescribed on some portion of the 

boundary, the same conclusion can still be reached provided the 

corresponding boundary forces of the equivalent plate are modified to 

reflect the nonlinear terms of lateral displacement and the plastic strains 

given by equations (2.13), (2.14), and (2.17.b). 

Since the radial force Nr as well as the moment Mr and 

Kirchhoff shear Vr (equivalent to Qr for an axisymmetric plate) are the 

prescribed at the inner free edge of the annular plates considered in this 

study, the corresponding forces acting on the inner edge of the equivalent 

plate are modified in order to account for the nonlinear terms of 

displacement and the effect of the plastic strains present in equations 

(2.10.a), (2.10.c) and (2.16). In a similar manner, the moment Mr at the 

outer boundary of the simply supported equivalent plate is modified in 
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order to reflect the prescribed moment at the corresponding boundary of the 

actual plate. For a clamped plate, however, displacements are prescribed 

at its outer boundary and no modification of the boundary conditions of the 

equivalent plate is needed. The actual and corresponding equivalent 

boundaries for the three classes of circular boundaries discussed above are 

shown in Fig. 6. 

The sectional forces and stresses in the equivalent plate may be 

calculated from the displacement field as can be readily seen by examining 

expressions (2.11) and (2.19). Therefore, the influence coefficients for 

radial and lateral nodal displacements due to unit body and surface forces 

must be known in order to evaluate the sectional forces and stresses in the 

equivalent plate. Since the equivalent plate is elastic, the method of 

superposition is utilized to obtain the nodal displacements due to body and 

surf ace forces of various magnitudes. 

While the influence coefficients of elastic plate bending problems 

under arbitrary surface loading conditions are generally known (3, 65, 

Appendix B), the influence coefficients for the plane stress problems of 

finite region under body forces are not always available. However, with 

the use of numerical techniques such as the finite element method (64), the 

influence coefficients of elastic plane stress problems under arbitrary 

body loading conditions are obtainable. In this study, a finite element 

program (SAP IV) was utilized to obtain the influence coefficients due to 

unit radial in-plane forces. 

The stresses in the Von Karman type plate may be obtained by 

superposing on the stresses obtained from the corresponding equivalent 
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(c) CLAMPED BOUNDARY 

FIGURE 6. ACTUAL AND CORRESPONDING EQUIVALENT PLATE BOUNDARIES 



plate solutions, the stresses arising from the nonlinear terms of lateral 

displacement and the plastic strains as seen from constitutive relations 

(2.10) and (2.18). 
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Due to the symmetry of the loading and boundaries about the plate 

axis, the plane of the plate is divided into a number of equal segments 

along a typical radial direction. Moreover, the variation of the plastic 

strain in the thickness direction is considered by dividing the plate into 

four equal layers along its thickness. The method discussed earlier is 

then used to solve the governing equations of equilibrium in their 

incremental forms in order to obtain the displacement, stress, and strain 

fields. The iteration technique utilized in the solution procedure is 

discussed in the following section. 

INCREMENTAL NUMERICAL SCHEME 

Consider a circular or annular plate with arbitrary boundary 

conditions subjected to a uniformly distributed load q. Let this load be 

increased by equal increments ~q until the desired load is reached. The 

increments of lateral displacement, plastic strain, stress, etc. are 

denoted by double subscribed notations, where the first subscript is 

associated with the load increment and the second subscript denotes the 

cycle of iteration. Thus, ~w(n+l)mand ~eij(n+l)m refer, respectively, 

to the increments of lateral displacement and plastic strain due to the 

(n+l)th load increment at the end of the mth iteration cycle. When the 

final values of these variables are reached for any load increment, the 



second subscript is deleted. Assume that the increments of lateral 

displacement and plastic strain due to the (n+l)th increment of load are 

equal to those obtained at the end of the nth load increment. This 

indicates that 

6w ( n+ 1 ) 1 = 6w ( n ) 

6E~(n+l)l = 6E~(n) 

6Et(n+l)l = 6Et(n) 

and 

w(n+l)l = w(n) + 6w(n+l)l 
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Substituting these assumed values in relations (2.34.a) and (2.35), a trial 

' " 
set of values for of the equivalent radial body forces tiR(n+l)l' tiR(n+l)l 

and lateral load 6q"(n+l)l are obtained. Note that the magnitude of 

6q(n+l)l is not known at this time. With the trial values of 

" of tiR(n+l)land tiR(n+l)l known, equation (2.33.a) is solved for the 

in-plane radial displacement increment of 6Uo(n+l)l· This equation 

represents an elastic plane stress problem for which influence coefficients 

have been obtained by the method of finite element. The membrane forces 

6Nr(n+l)l and fiNt(n+l)l are evaluated by substituting the incremental 

in-plane displacement along with the assumed values of incremental lateral 

displacement and incremental plastic strain into constitutive relations 



(2.10.a) and {2.10.b). The sectional forces Nr(n+l)l and Nt(n+l)l are 

then obtained by 

Nr(n+l)l = Nr(n) + ~r(n+l)l 

Nt{n+l)l = Nt(n) + ~t(n+l)l 

having obtained the in-plane radial forces, the lateral load 6Q(n+l)l and 

consequently q{n+l)l may now be determined from relation (2.34.b). Using 

the trial values of lateral displacement, plastic strain and in-plane 

displacement in relations (2.24), stresses 6crr(n+l)l' 6crt(n+l)l and hence 
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crr{n+l)l' crt(n+l)l are determined. The incremental plastic stress-strain 

relations (3.24) are subsequently utilized to evaluate a new set of values 

II II 

of incremental plastic strains 6Er(n+l)2 and 6Et{n+l) 2. Inserting the 
II 

values of 6q(n+l)l, 6Q{n+l)l, and the applied load increment 6q in 

equation (2.33.b) allows for the determination of 6W(n+1)2· This is a 

linear elastic plate bending problem for which influence coefficients have 

been obtained using analytical solutions (Appendix B). With the new 

11 II 

calculated values of 6W(n+1)2 and 6Er(n+l)2' 6Et(n+l)2 known, the 

same procedure is repeated until the difference between the successive 

II II 

values of 6w, 6Er' and 6Et are within the desired tolerances. In this 

way the lateral displacements, stresses, and strains of Von Karman type 

circular and annular plates are obtained. 



NUMERICAL SOLUTION CONVERGENCE 
ACCURACY AND STABILITY 

The convergence process was significantly enhanced by assuming new 
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trial values of lateral displacement and plastic strains based on a linear 

combination of the trial and calculated values obtained in the preceding 

iteration cycle. A numerical scheme used for that purpose is presented in 

the following. 

II II 

Let 6w(n)m-l' 6Eij(n)m-l and b-l(n)m' 6Eij(n)m' denote, respectively, 

the trial and calculated values of the incremental lateral displacement and 

incremental plastic strain components at the mth cycle of iteration due 

to the nth loading increment. Furthermore, assume that the difference 

II 

between these successive values of t:J,i and 6Eij are not within the desired 

limit so that further iteration is required. The trial values of 6w and 

II 

6Eij for the (m+l)th iteration are obtained by 

6w =-1-fa6w +6w ] 
(n)m+l l+a - (n)m-1 (n)m-

II 

6E 
ij(n)m+l 

1 II II = - r 0: 6E + 6E ] 
l+a - ij(n)m-1 ij(n)m 

As a approaches zero or infinity, the new trial magnitudes of 6w and 

II 

6Eijfor the (m+l)th iteration tends to equal the calculated and trial 

values of displacement and plastic strain components of the previous cycle, 
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respectively. Hence for an a value between zero and infinity, intermediate 

II 

values of 6w and 6Eij are obtained. 

In general, two factors affecting the accuracy of the numerical 

solution are the degree of convergence tolerance and the mesh size. The 

accuracy of numerical solutions may be increased by utilizing a low 

convergence tolerance and a high number of grid points. This would result 

in an increase in the number of iterations for convergence to the final 

solution. There is, of course, a trade off between solution accuracy and 

computational efficiency which must be taken into account. In this study 

the accuracy of fixed boundary solutions was observed to be highly 

sensitive to the number of grid points utilized adjacent to the clamped 

boundary. For simply supported and free boundaries, however, far less 

sensitivity to the number of grid points was observed. 

For elasto-plastic solutions, the magnitude of the applied lateral 

load increment 6q has also been found to influence the stability and speed 

of convergence of the numerical procedure. Hence, it is preferable to use 

a constant small load increment when attempting elasto-plastic solutions. 

This is specially true for plates with other clamped edges. 

In the example problems considered in this study, convergence to 

final solutions was achieved quite rapidly even when small tolerances and a 

rather large number of grid points were considered. The method of solution 

presented herein has been found to be computationally efficient and offers 

an alternate means of obtaining elasto-plastic solutions to circular and 

annular plate problems with moderately large deflections. 



CHAPTER V 

NUMERICAL RESULTS AND DISCUSSION 

A computer program based on the previously discussed method of 

solution was written. Solutions for t'fK> distinct classes of plates were 

obtained using this program: 

1. Circular Plates 

Elastic and elasto-plastic solutions of uniformly loaded simply 

supported and clamped circular plates undergoing large deflections 

have been obtained. The edges for both support conditions have been 

assumed immovable in the plane of the plate. Accordingly, the 

boundary conditions are given as: 

simply supported plates @ r = a, 

clamped plates @ r = a, 

2. Annular Plates 

w=Mr=u0 =0 

w=$=u0 =0 

Uniformly loaded annular plates with a free inner edge at r = b and 

both simply supported and clamped outer edges were also considered. 

In all cases, the ratio of the inner to outer radii was assumed to be 

0.25 and the edges were considered immovable. Hence, the boundary 

conditions are: 

simply supported, free edges @ r = a, W = Mr = u0 = 0 

@ r = b, Nr = Mr = Vr = 0 



clamped, free edges @ r = a, w = 4> = u0 = 0 

@ r = b, Nr = Mr = Vr = O 

Where Vr = Kirchhoff shear = Qr for an axisyrrnnetric plate. The 

plate material is made of 2024-T351 aluminum alloy and is considered 

isotropic in the elastic and plastic regions. The following material 

properties and constants a0 and n have been used in the numerical example 

problems: 

E = 10 x 106 psi (69 GPa) * ' v = 0.3 

a = 
0 

7.435 x 104 psi (513 MPa) , n = 3 .08 

ay = 32 ksi (221 MPa) 
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Initially, a suitable mesh size was selected in the nonlinear elastic 

analysis of circular and annular plates. The results were then compared 

with the available solutions in order to establish the accuracy of the 

solution procedure and to asses the computational efficiency of the 

method. The nonlinear elastic solutions for circular and annular plates 

are shown in Figs. 7 through 16. The corresponding available solutions are 

also included for comparison. 

As a next step, the problem was extended beyond the elastic limit by 

considering the elastic-plastic behavior of circular and annular plates 

undergoing moderately large deflections. The plate is first loaded 

*A value of v = 0.25 has been used in the elastic simply supported 

circular plate example problem in order to facilitate comparison with the 

available solutions. 
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elastically until the effective stress of the extreme fiber at the center 

or the inner edge of the plate reaches the yield stress. Beyond the 

elastic limit, the incremental plasticity theory together with the 

iteration technique, discussed earlier, are used to obtain solutions to the 

example problems. The results of elastic-plastic plates are shown in 

Figs. 17 through 50. The nonlinear elastic solutions are also included for 

the purpose of comparison. The elastic-plastic analyses reported by other 

investigators have largely been confined to elastic-perfectly plastic 

material wherein the effect of strain-hardening has been neglected. 

Furthermore, the majority of the studies found in the open literature have 

employed the deformation theory of plasticity. The plastic strains can not 

in general be independent of the loading path and deformation theories can 

not generally be correct. Accordingly, no quantitative comparison of the 

present solutions can be made with the available solutions. However, it is 

possible to compare, on a qualitative basis, the elastic-plastic solutions 

of this study with the existing solutions of plates made of 

elastic-perfectly plastic materials which are based on an incremental 

plasticity theory. 

A general discussion of the nonlinear elastic and elasto-plastic 

results obtained for the circular and annular plates considered in this 

study are presented herein. All results are presented in nondimensional 

form in order to facilitate comparison with those of other investigators 

when applicable. 
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LARGE DEFLECTION, ELASTIC RESULTS 

The nonlinear elastic results for both uniformly loaded simply 

supported and clamped circular plates are shown in Figs. 7 through 10. 

Fig. 7 shows the variation of the center deflection with load for a simply 

supported circular plate, while those corresponding to the extreme fiber 

radial stress at the center and the radial membrane stress at the edge of 

the plate are given in Fig. 8. The results of the present method are seen 

to agree very well with those of Nath, et al. (27) and Alwar and Nath (6). 

The results for a clamped circular plate are presented in Figs. 9 and 

10. The center deflection of the clamped circular plate, given in Fig. 9, 

was calculated and found to compare very well with the results of Nath, et 

al. (27) and Alwar and Nath (6). Fig. 10 shows the variation of the radial 

membrane and bending stresses with center deflection at the edge and the 

center of the plate. The comparison of these results with the existing 

solutions is also shown. 

It is important to note that the solutions for both simply supported 

and clamped circular plates are in good agreement with the available 

solutions. The present solutions are, however, closer to those given in 

reference (27) for the range of the load considered. Moreover, an 

extremely favorable comparison with the series solution of clamped plates 

given by Way (5) is also noted. Although not shown in the figures, as a 

further check on the accuracy of these solutions, the present results have 

been compared with dynamic relaxation solutions of Turvey (16) and found to 

be in close agreement. 
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The nonlinear elastic solutions for both uniformly loaded simply 

supported and clamped annular plates are shown in Figs. 11 through 16. The 

load-deflection curves at the inner edge of the plate for both types of 

supports are given in Figs. 11 and 14, while the relations between the 

radial and tangential bending stresses at the inner and outer edges of the 

plate and the applied lateral pressure are shown in Figs. 12 and 15. 

Figs. 13 and 16 represent the radial and tangential membrane stresses at 

the plate boundaries as computed by the proposed method. The solutions for 

simply supported and clamped annular plates show excellent agreement with 

the results of Dumir, et al. (30) and Turvey (16). 

LARGE DEFLECTION, ELASTIC-PLASTIC RESULTS 

The results of the elastic-plastic analysis for simply supported and 

clamped circular plates are shown in Figs. 17 through 32. The 

corresponding nonlinear elastic solutions are also included in the figures 

for comparison. Fig. 17 shows the variation of the deflection at the 

center with the nondimensional load q(a/h)4/E for a simply supported 

circular plate. The load deflection curve of the classical theory is also 

shown in the figure. This plot clearly indicates the effects of membrane 

forces and the plastic strain on the behavior of the plate. The 

displacement at the center of the plate is noted to increase by the plastic 

strain. The results for the radial and tangential membrane stresses at the 

center and the edge of the plate are plotted in Fig. 18. Fig. 19 gives the 
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variation of the radial and tangential stresses with load at the center and 

edge of the plate. The results for stresses indicate that while the 

membrane stresses are only slightly affected by plastic strain, the 

corresponding maximum fiber stresses at the center are considerable 

relieved by the inelastic action, resulting in additional load carrying 

capacity for the plate and, of course, make better use of the material, an 

important consideration in aerospace applications. The distribution of the 

effective plastic strain at a nondimensional load of 7.15 is presented in 

Fig. 21. The results indicate that the center of the plate at the lower 

surface yields initially. As the load is increased, the plastic range 

propagates toward the top and the edges. Before the plastic deformation 

completely reaches the edges, however, the upper surf ace of the edge starts 

yielding and the plastic deformation in turn propagates toward the center 

of the plate. Figs. 21, 22, 23, and 24 plot, respectively, the radial 

profiles of lateral deflection, extreme radial stress and radial membrane 

stress, extreme tangential stress and the corresponding membrane stress, 

and sectional moments Mr and Mt for the nonlinear elastic and 

elasto-plastic solutions of the simply supported circular plate. 

Next, the elastic-plastic behavior of a clamped circular plate under 

a uniformly distributed load is analyzed. The results are presented in 

Figs. 25 through 32. The plot of the lateral displacement of the center, 

given in Fig. 25, shows that, unlike a simply supported plate, when the 

load parameter increasess beyond a certain value, the displacement 

corresponding to the elastic-plastic large deflection solution exceeds 

slightly that of the linear elastic case. This behavior is attributed to 
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the fact that the increase in displacement due to the effect of plastic 

strain exceeds the reduction in the value of the deflection resulting from 

the second order effects of lateral displacement. This finding is 

consistent with the results of Crose and Ang (56) and Turvey and Lim (43). 

The plots for the radial and tangential membrane stresses at the center and 

the edge of the plate are given by Fig. 26; it is noted that the membrane 

stresses are slightly increased by the inelastic action. Fig. 27 shows the 

variation of the radial and tangential stresses at the center and the edge 

of the plate. Again, the maximum stresses are observed to be considerably 

reduced in the elastic-plastic case. The distribution of the effective 

plastic strain in the clamped circular plate is shown in Fig. 28. As seen 

from the figure, yielding starts initially at the top surface of the edge. 

At a slightly higher load, the bottom surface of that boundary also yields 

and the plastic strain propagates toward the center of the plate. However, 

before it reaches the center, the lower surf ace of the center yields and 

the plastic strain in turn propagates toward the edge. Fig. 29 shows the 

radial profile of lateral deflections of the plate at a nondimensional load 

of 5.96. Figs. 30 and 31 show the distribution of the maximum radial and 

tangential stresses together with the corresponding membrane stresses for 

the nonlinear elastic and elasto-plastic solutions. Additionally, the 

variation of the nondimensional moments Mr and Mt along a radial line 

are given in Fig. 32. 

The results of the elastic-plastic analysis of simply supported and 

clamped annular plates are shown in Figs. 33 through 50. The corresponding 

nonlinear elastic solutions are also included. Figs. 33 and 42 show, 
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respectively, the variation of the deflection at the inner edge of the 

simply supported and clamped plates with the nondimensional load. The load 

deflection curves of the classical linear theory are also shown in these 

figures. The radial and tangential membrane stresses at the inner and 

outer boundaries of both plates are plotted in Figs. 34, 35, and 43, 44 

while the result for the extreme fiber stresses are shown in Figs. 36 and 

45. The distribution of the effective plastic strain, shown in Figs. 37 

and 46, clearly indicate the regions of the plates that have yielded. 

Figs. 38 and 47 plot the radial profiles of lateral deflections at 

the nondimensional loads of 3.58 and 5.96 for simply supported and clamped 

annular plates, respectively. Additionally, the distributions of the 

maximum radial and tangential stresses together with the corresponding 

membrane stresses and sectional moments Mr and Mt for the 

elastic-plastic and nonlinear elastic solutions are given in Figs. 39 to 41 

and 48 to 50. 

The interpretation of the results for the simply supported and 

clamped annular plates is similar to that of corresponding circular plates 

and, therefore, will not be repeated. 

I 
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CHAPTER VI 

CONCLUSIONS 

Solutions of Von Karman type circular and annular plates were 

obtained by considering equivalent plates with small displacements, where 

the nonlinear terms of lateral displacement and the plastic strain were 

treated as fictitious body and surface loads acting on the plate. In this 

way, solutions for many difficult nonlinear problems may be obtained by 

using the known solutions of the linear problems through an iteration 

procedure. The numerical iteration scheme used in this investigation 

resulted in rapid convergence to the final solutions. The method of 

solution presented in this study is found to be computationally efficient 

and offers an alternative method for obtaining the nonlinear solutions to 

plate bending problems. 

Nonlinear elastic results for simply supported and clamped circular 

and annular plates have been shown to be in excellennt agreement with the 

available solutions. The results of the nonlinear elastic-plastic 

solutions show that the lateral displacement is increased by the plastic 

strain while the maximum fiber stresses are considerably relieved. The 

consideration of the behavior beyond the elastic limit is important since a 

high premium is currently being placed on the saving of weight in aircraft, 

missile, and space applications. 
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The procedure used in this study can be employed to solve a variety 

of nonlinear plate bending problems under different loading and boundary 

conditions. Furthermore, the present formulation can easily be extended to 

include other sources of nonlinearity such as creep and relaxation and to 

obtain solutions for orthotropic plates undergoing large deflections. In 

concluding this chapter, it is perhaps worth pointing out that the present 

approach does not require the large computational storage and high cost 

normally involved in the nonlinear analysis of composite plates by the 

finite element method (1). The procedure is thus well suited for the 

nonlinear analysis of this class of annular plates. 
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APPENDIX A 

NOTATION 

The following symbols are used in this study: 

a = radius of plate; 

b = radius of the circular hole at the center of the plate; 

D = elastic flexural rigidity; 

E = modulus of elasticity in tension and compression; 

F = loading function; 

g = function relating effective plastic strain and effective 

plastic stress; 

h = plate thickness; 

J1, J2, J3 =first, second, and third invariants of the stress deviator 

tensor; 

k = yield function; 

Mr, Mt = sectional moments per unit length; 

" " Mr , Mt = inelastic sectional moments per unit length; 

M~ , M~ = equivalent sectional moments per unit length; 

Nr, Nt = sectional forces per unit length; 
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Nr, Nt = sectional forces per unit length due to 

geometric nonlinearity; 

II II 

Nr , Nt = inelastic sectional forces per unit length; 

N; , N~ = equivalent sectional forces per unit length; 

n = constant; 

Qr= shearing force per unit length of the cylindrical section 

of radius r; 

II 

Qr= inelastic shearing force per unit length of the cylindrical 

section of radius r; 

q = intensity of uniformly distributed lateral load; 

q = intensity of fictitious lateral load due to nonlinear terms 

of lateral displacement; 

II 

q = intensity of fictitious lateral load due to the plastic 

strains; 

R = radial component of intensity of fictitious body force due 

to nonlinear terms of lateral displacement; 

II 

R = radial component of intensity of fictitious body force due 

to the plastic strains; 

r, t = radial and tangential cylindrical coordinates; 

u, w = displacement components along radial and lateral directions; 

z = lateral coordinates; 

Er, Et = radial and tangential components of total strain; 

E~, E~ = radial and tangential components of elastic strain; 



II II 

Er , Et= radial and tangential components of plastic strain; 

*" E = effective plastic strain; 

*" dE = effective plastic strain increment; 

II 

dEij = components of incremental plastic strain tensor; 

5ij = components of deviatoric stress tensor; 

dA = positive constant of proportionality; 

v = Poisson's ratio; 

a11 , a22 , a33= normal stress components in general coordinates; 

a12 , a13 , a23= shear stress components in general coordinates; 

or, at = radial and tangential components of stress; 

* a= effective stress; 

* da = effective stress increment; 

ay = yield stress in simple tension; 

a0 = constant; 

a = convergance parameter; 

<1> = slope; and 

K = curvature. 
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APPENDIX B 

ANALYTICAL SOLUTIONS OF LINEAR PLATE 

BENDING PROBLEMS 

The small deflection elastic solutions of isotropic circular and 

annular bending plate problems with various loading conditions of interest 

for this study are presented herein. 

Simply supported circular plates (3, 65} 

A. Subjected to a uniformly distributed lateral load 

q 2 2 5+v 2 2 
w = - (a -r }(- a - r ) 

64D l+v 

B. Subjected to a concentrated load at the center 

w = _P _ [ 3+v 2 2 16IlD l+v (a -r ) + 2 r
2 

Ln ~} a 

C. Subjected to a uniformly distributed line load at r = b 

I. Outer portion solution r > b 

2 2 

(B.1) 

(B.2) 

P [ 2 2 1 1-v a -b 2 2 r J w = - (a -r ) ( 1 + - - ) + ( b +r ) Ln - ( B. 3) 
anD 2 l+v 2 a a 



II. Inner portion solution r < b and r = b 

2 2 
w = _P~ [(b2+r2) Ln ~ + (a2-b2)(3+v)a - (1-v) r ] (B. 4) 

SITO a 2 (l+v) a2 

0. Subjected to a uniformly distributed edge moment 

w = __ M_)(a2-r2) 

Clamped circular plates (3, 65) 

A. Subjected to a uniformly distributed lateral load 

w=q (222 
640 a -r ) 

B. Subjected to a concentrated load at the center 

w= P [ 2 2 2 16ITO (a -r ) + 2r Ln ~] a 

C. Subjected to a uniformly distributed line load at r = b 

I. Outer protion solution r > b 

2 2 
w = _P~ [(a2-r2) a +b + (b2+r2) Ln .!:_] 

SITO 2a2 a 

(B.5) 

(B.6) 

( B. 7) 

(B.S) 
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II. Inner portion solution r <band r = b 

w = 8~ D [ ( b 2 +r 2) Ln E_ + ( a 2 -b 2) ( a2 +r 2 ) ] 
a 2 2a 

(B.9) 

Where for the aforementioned expressions of simply supported and clamped 

circular plates the following symbols are used: 

a= radius of the circular plate; 

b = radial location of the applied lateral line load; 

D = flexure rigidity; 

M =applied edge moment; 

P =applied concentrated center load; or 

total applied line load; 

q =applied uniformly distributed lateral load; 

r =radial location of a point on the middle surface of the plate; 

w = lateral deflection; 

v =Poisson's ratio; 

n = 3.1416; and 

Ln = natural logarithm. 
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Simply supported annular plates 

A. Subjected to a uniformly distributed lateral load 

The solution of this problem may be obtained by superposing on the 

deflections obtained for a simply supported circular plate, 

equation (B.1), the deflections produced by the removal of the 

bending moments and the shearing forces of the simply supported 

circular plate at the inner edge location of the annular plate as 

shown in Fig. 51.a. These shearing forces and bending moments are 

given by (3) 

2 P = -qIIb 

M = - ~ (3+v)(a2- b2) 
1 16 

(B.10) 

(B.11) 

Analytical expressions for the deflections produced by the inner 

edge bending moments and shearing forces are given by equations 

(B.15) and (B.14), respectively. Therefore, the solution of a 

simply supported annular plate subjected to a uniformly distributed 

lateral load may be expressed as 

2 2 c q 2 2 5+v 2 2 qb [r r 1 2 r ] w = - (a -r )(- a -r ) - - - (Ln - -1) - - r - C L~ +C 
640 l+v 40 2 a 4 2 a 3 

2 2 2 2 qb ( 3+v) [ r + a L r _ a ] 
160 2(1+v) 1-\) n a 2(1+v) (B.12) 



q q 

++•i++lilll ~······~•+• 
1-b .~b •I 

11 

'* * * * •• t •• * •• * * *. * * * *. *. * ~ 
~ a •I• a .j 

~~~~M1)+(-l~~~ 
t f p 
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(a) SUBJECTED TO A UNIFORMLY DISTRIBUTED LATERAL LOAD 

p p 

L_ _J 
t- c :t c .. I 

J- a a 
.. 1 

Ml( 11 yl 
1--b •t-b .. 1 )Ml Ml (! + -t 

p 

(b) SUBJECTED TO A UNIFORMLY DISTRIBUTED LATERAL LINE LOAD 

FIGURE 51. DECOMPOSITION OF TWO LINEAR ANNULAR PLATE BEDNING 
PROBLEMS 
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where 

2 
C = 1-v _ 2b Ln ~ 
1 l+v 2 b2 a a -

(B.13.a) 

2 2 
C = _ l+v a b Ln ~ 
2 1-v a2-b2 a 

(B.13.b) 

2 2 
C = ~ (1 + ~ l-v - b Ln ~ ) 
3 2 2 l+v 2 b2 a a -

(B.13.c) 

B. Subjected to a uniformly distributed line load at the inner edge of 

the plate (3, 65) 

P [ r
2 

( r ) Cl 2 r ] w = - - Ln - - 1 - - r - C Ln - + C 
4TID 2 a 4 2 a 3 

(B.14) 

where C1, C2, and C3 are defined by expressions (B.13}. 

C. Subjected to a uniformly distributed moments at the inner and outer 

edges (3, 65) 

M b2 2 2 2 
w = 1 f r +_a_ Ln ~ - a ] 

D(a2-b2) ·2(1+v) 1-v a 2(1+v) 

2 M2a 
+ [-

D(a2-b2) 

2 2 2 
_r ___ b_ Ln ~ + a ] 

2(1+v) 1-v a 2(1+v} 
(B.15) 

where Mi and M2 denote the uniformly distributed moments at 

the inner and outer edges, respectively. 
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D. Subjected to a uniformly distributed line load at r = c 

The solution of this problem may be obtained by dividing the simply 

supported annular plate into two parts as shown in Fig. 51.b. It 

is seen that the inner portion of the plate is in the condition of 

pure bending produced by the uniformly distributed moments M1 and 

that the outer portion of the plate is bent by the moments M1 and 

the shearing force P. The magnitude of the inner moment M1 is 

found from the condition of continuity along the circle r = c, from 

which it follows that both portions of the plate have, at that 

circle, the same slope. 

Since the shearing forces on the inner plate portion are equivalent 

to zero, the governing equation for the inner plate portion may, 

therefore, be expressed as (3, 65) 

~ r.!. ~ ( r dw)] = 0 
dr -r dr dr 

(B.16) 

Integrating the above expression with respect to r, we can write 

Il 2 
w = - - r - I Ln r - I 

4 2 3 

I1 I2 
w =--r--

' r 2 r 

w, 
rr 

Il I2 _+_ 

2 r 2 

(B.17.a) 

(B.17.b) 

(B.17.c) 
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where I1, I2, and 13 are constants of integration. 

The sectional moment Mr is given by 

v 11 12 (B.18) M = -D(w, + - w, ) = D[~ (l+v)- ~ (1-v)] 
r rr r r 2 r2 

At r = b, corresponding to the inner free edge, the sectional 

moment Mr is equivalent to zero. At r = c, corresponding to the 

outer boundary of the inner plate portion, the sectional moment 

Mr is equivalent to Mi. Substituting these boundary conditions 

into expressions (B.18) and solving the two resulting equations 

simultaneously, the values of the first and second constants of 

integration are found to equal 

2M1 
I=---

l D (1 + v )( 1- e2 ) 

M b2 
I = __ 1 __ _ 
2 D {1- v )( 1- ~2 ) 

where 

~ = .!?. 
c 

(B.19.a) 

(B.19.b) 

(B.20) 

Substituting the values obtained for I1 and I2 into expression 

(B.17.b), the slope of the outer boundary of the inner portion of 

the plate (r = c) may be expressed as 



( w, ) 
r c 

M c 
- - 1 ( 1 82 - + ) 

D(l-82) l+v 1-v 

122 

(B.21) 

The solution of the outer portion of the plate is readily obtained 

by superposing the deflections induced by the inner moment M1, 

equation (B.15), on the deflections induced by the total shearing 

force P given by equation (B.14). Thus, we can write 

M 2 2 2 2 le r a r a 
w = _)[2(1+v)+ 1-v Ln a - 2(1+v)] 

2 I 
P [ r ( r ) 4 2 r ] + - - Ln - - 1 - - r - I Ln - + I 

4IlD 2 a 4 5 a 6 
( B. 22) 

where 

2 
1 = 1-v _ 2c Ln .:_ (B.23.a) 
4 l+v 2 2 a a - c 

l+v a2c2 c (B.23.b) I = - - Ln -
5 1-v 2 2 a a - c 

2 2 
a 1 1-v c c ) (B.23.c) I = - ( 1 + - - - Ln -

6 2 2 l+v 2 2 a 
a - c 

The slope of the inner boundary of the outer portion of the plate 

may, therefore, be expressed as 
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M c2 2 
( w, } = 1 r _c_ + a ] 

r c D(a2- c2) - l+v (1-v)c 

+ ~ f Ln £ - _!_ - ~ - !2 1 
4TIO - a 2 2 2 . 

c 
{ B. 24) 

Equating expressions (B.21) and {B.24) yields the value of the 

inner moments Mi as a function of the total applied line load P 

c 1 I4 Is Ln - - - - _ -
Pc a 2 2 -2 

M = - - c 1 4ITD l 2 2 2 {B.25) 
c ( ~ c c __ +_)+ [+a] 

D ( 1- ~2 ) 1 + v 1- v D ( a2 - c2 ) 1 + v ( 1- v) c 

I. Outer portion solution r > c and r = c 

The solution for this portion of the plate is given by 

expression (B.22) where I4, I5, 16 and Ml are given by 

equations (B.23) and (B.25), respectively. 

II. Inner portion solution b < r < c 

The deflection of the inner portion have been defined by 

equation (B.17.a) 

Il 2 
w = - - r - I Ln r - I 

4 2 3 
{B.26) 

where Ii and I2 are defined by equations (B.19). The value 
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of I3 is found from the condition of continuity along the 

circle r = c, from which it follows that both portions of the 

plate have, at that circle, the same deflection. Using equation 

(B.26), the third constant of integration is found to equal 

11 2 I = - - c - I Ln c - w 
3 4 2 c 

(B.27) 

Utilizing the continuity condition, the deflection at the outer 

boundary of the inner plate may be obtained from expression 

( B. 22) as 

M c2 2 2 
w = 1 [ c + ~a~ Ln ~ -
c o(a2-c2) 2{1+v) (1-v) a 

2 
_a_)] 

P [ c
2 

( c ) 
1
4 2 c ] + - - Ln - - 1 - - c - I Ln - + I 

4IID 2 a 4 5 a 6 
(B.28) 

Substituting expression (B.27) into (B.26), the solution 

corresponding to the inner portion is found to equal 

I 
w = __.!._ (c2 - r 2) + I Ln _:. + w 

4 2 r c 
(B.29) 

where I1, I2 and We are given by expressions (B.19) and 

(B.28) respectively. 
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Clamped annular plates 

A. Subjected to a uniformly distributed lateral l~ad 

The solutionn of this problem may be obtained by superposing on the 

deflections obtained for a clamped circular plate, equation (B.6), 

the deflections produced by the removal of the bending moments and 

the shearing forces of the clamped circular plate at the inner edge 

location of the annular plate as shown in Fig. Sla. These shearing 

forces and bending moments are given by (53) 

2 p = - qilb 

2 b2 
M = - qa [ (l+v) - - (3+v) J 

1 16 2 a 

(B.30) 

(B.31) 

Analytical expressions for deflections produced by the inner edge 

bending moments and shearing forces are given by expressions (B.35) 

and (B.34), respectively. Therefore, the solution of a clamped 

annular plate subjected to a uniformly distributed lateral load may 

be expressed as 

2 c 
q 2 2)2 qb [ 2 r 1 ( 1 2 r ) ] w = - (a - r - - r ( Ln - - 1) + - - - r - C Ln - + C 

640 so a c4 4 2 a 3 

2 2 2 
qa [ (l+v) - E__ (3+v) ] (- ..!:. r 2 + a2 Ln ~ + ~ ) 

160C4 a2 2 a 2 
(B.32) 
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where 

2 
C = 2[ (l+v)(2Ln ~) + (1-v) - ~ (1-v) ] 
1 a b2 

(B.33.a) 

C = -a2 [ (l+v)(2 Ln !: ) + 2 ] 
2 a 

(B.33.b) 

2 2 
C = ~ [ (l+v)(2 Ln ~) + (3+v) + ~ (1-v) ] 
3 2 a b2 

(B.33.c) 

2 
C = (l+v) + ~ (1-v) 
4 b2 

(B.33.d) 

B. Subjected to a uniformly distributed line load at the inner edge 

of the plate (65) 

P [ 2 ( r 1 cl 2 r ) ] w = - r Ln- - 1) + - (- - r - C Ln - + C 
SITO a c4 4 2 a 3 

(B.34) 

where C1, C2, C3 and C4 are defined by expressions (8.33) 

C. Subjected to a uniformly distributed moment at the inner edge (65) 

Ml 1 2 2 r a2 
w = - (- - r + a Ln - + - ) 

DC4 2 a 2 
(B.35) 

where C4 is defined by expression (8.33.d) 

D. Subjected to a uniformly distributed line load at r = c 

The solution of this problem may be obtained by dividing the 
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clamped annular plate into two parts as shown in Fig. 51.b. 

Following a procedure similar to that outlined for simply supported 

annular plates in section 30, we obtain 

(2Ln .£ - 1) + ..!_ ( 

a 14 

IS 16 
----) 

2 2 
M = -~ 

1 8IIO c 1 a2 
~2 (- + } 

0(1-a ) l+v 1-v 

where 

2 
I = (l+v) + ~ (1-v) 
4 2 c 

+ _1_ ( 
014 

2 
I = 2[ (l+v)(2 Ln ~} + {1-v} (1 - ~) ] 
5 a 2 c 

I = -a2 [ (l+v) {2 Ln ~) + 2 ] 
6 a 

a = b 
c 

I. Outer portion r > c and r = c 

c 
2 

c + ~) 
c 

(B.36) 

(B.37.a) 

(B.37.b} 

{B.37.c) 

(B.38) 

Substituting the expression for Mi (B.36) into equation 

{B.35), we obtain the deflections due to moments Mi. The 

deflections due to the total shearing force P are obtained from 

equation (B.34). Adding together both these deflections we 
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obtain the outer portion solution stated as 

_ Ml 1 2 2 r a2 
w - - (- - r + a Ln - + -

DI4 2 a 2 

P [ 2 r 1 
1s 2 r ] +_ r (Ln--1) +-(--r - I Ln-+ I) (B.39) 

8I1D a I 4 4 6 a 7 

where 

2 2 
I = ~ ( ( 1 + v) ( 2 L n .£) + ( 3+ v) + ~ (1- v) ) 
7 2 a c2 

and I4, 15, I5 and Mi are given by equations (B.37) and 

(B.36), respectively. 

II. Inner portion solution b < r < c 

The inner portion solution for fixed annular plates is 

(B .40) 

equivalent to that of simply supported annular plates outlined 

in section 3.D.II. Thus, we can write 

I 
w = ___!. (c2 - r 2) + I Ln .£ + w 

4 2 r c 
(B.41) 

where I1 and 12 are given by equation (B.19) 

Utilizing the continuity condition, the deflection at the outer 

boundary of the inner plate portion may be obtained from 

equation (B.39) as 
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w = ~ (- _!._ c2 + a2 Ln ~ + ~) 
c DI 4 2 a 2 

P f 2 c 1 
1s 2 c J + - c (Ln - - 1) + - (- - c - I Ln - + I ) (B.42) 

8IID - a I 
4 

4 6 a 7 

where Mi and I4, 15, 15, I7 are defined by equations 

(B.36), and (B.40), respectively. 

For the aforementioned simply supported and fixed annular plate expressions 

the following symbols are used: 

a= radius of plate; 

b = radius of the circular hole at the center of the plate; 

c = radial location of applied line load; 

D = elastic flexural rigidity; 

M1,M2 = applied inner edge and outer edge moments; 

Mr = sectional moment per unit length; 

P = total applied line load; 

q = applied uniformly distributed lateral load; 

r = radial location of a point on the middle surface of the 

p 1 ate; 

w = lateral deflection; 

v = Poisson's ratio; 

II= 3.1416; and 

Ln = natural logarithim. 
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