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Title: Elastic-Plastic Analysis of Axisymmetrically Loaded Isotropic

Circular and Annular Plates Undergoing Large Deflections.

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

erman J. Migiior

The concept of load analogy is used in the elastic and
elastic-plastic analysis of isotropic circular and annular plates
undergoing moderately large deflection. The effects of the nonlinear terms
of lateral displacement and the plastic strains are considered as
additional fictitious lateral loads, edge moments, and in-plane forces

acting on the plate. The solution of an elastic or elastic-plastic Von



Karman type plate is hence reduced to a set of two equivalent elastic plate
problems with small displacements, namely, a plane problem in elasticity
and a linear elastic plate bending problem. The method of finite element
is employed to solve the plane stress problem. The large deflection
solutions are then obtained by utilizing the solutions of the linear
bending problems through an iterative numerical scheme. The flow theory of
plasticity incorporating a Von Mises layer yield criterion and the
Prandt1-Reuss associated flow rule for strain hardening materials is
employed in this approach.

Nonlinear elastic results for simply supported and clamped circular
and annular plates are found to be in excellent agreement with the
available solutions. The nonlinear elastic-plastic results show that the
lateral displacement is increased by the plastic strain while the maximum
fiber stresses are considerably relieved. Furthermore, the method of
solution used in this study is found to be computationally efficient and
offers an alternative method for obtaining nonlinear solutions to circular
and annular plate bending problems. The present formulation can be easily
extended to include other sources of nonlinearity such 5;creep and
relaxation in the analysis. Moreover, the approach is also well suited for

the nonlinear analysis of circular and annular composite plates.
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CHAPTER 1

INTRODUCTION

When the Yateral displacement of a plate is not small in comparison
with its thickness, the membrane forces play a more dominant role in
carrying the load, and hence the second order effects of lateral
displacement on the membrane stresses need to be considered (1, 2, 3). In
cases in which the vertical deflections are no longer small in comparison
with the thickness of the plate but are still small as compared with the
other dimensions, the analysis of the problem must be extended to include
the strain of the middle plane of the plate.

Nonlinear differential equations considering these effects were first
given by Von Karman (4). Solutions based on these nonlinear differential
equations are known as large deflection solutions in the sense of Von
Karman Theory. These differential equations have been used in the elastic
analysis of isotropic and orthotropic circular and annular plates with
various edge conditions subject to uniform lateral pressure, axisymmetric

line loads, or concentrated loads applied at the center of the plate.

SURVEY OF PREVIOUS WORK

Various investigators have provided solutions for such nonlinear

elastic problems. Among the earlier contributions is the work of Way (5)



which presents a series solution for uniformly loaded clamped circular
plates. Other series solutions for calculating finite deflections of
elastic simply supported and clamped circular plates have been proposed by
Alwar, et al. (6, 7), Berger (8), Federhofer and Egger (9), Mansfield (10),
Stoker (11), and Timoshenko and Woinowsky-Krieger (3). On the other hand,
various investigations of nonlinear elastic circular plates have been
attempted using numerical methods such as finite differences (12, 13),
finite element (14), dynamic relaxation (15, 16), perturbation (17-22),
integral collocation method (23) and rateform linearization (24).

Recently, Dumir, et al. (25-27) used point collocation method together with
Newmark-B scheme to analyze the static and transient nonlinear response of
isotropic and orthotropic circular plates.

A number of solutions for elastic annular plates with various inner
and outer edge conditions have also been obtained by different
researchers. Wempner and Schmidt (28) presented a series solution for an
isotropic annular plate with simply supported movable outer edge subjected
to a uniform line load at the free inner edge. Yeh (29) has given an
approximate solution using the perturbation method for a clamped immovable
isotropic annular plate with a plugged hole under a concentrated load at
the plug. Mah (13) presented a finite difference solution for isotropic
annular plates with simply supported and clamped immovable edges under a
uniform load. Recently, Dumir, et al. (30) presented a large deflection
analysis of orthotropic annular plates under uniformly distributed loads
using the method of interior global orthogonal point collocation. Alwar

and Reddy (7) analyzed the static and dynamic response of isotropic and



orthotropic annular plates using a Chebyshev series expansion, while Turvey
(16) considered the behavior of tapered annular isotropic plates under a
.uniformly distributed load using the dynamic relaxation technique.

A1l of the aforementioned methods were based on Von Karman's
nonlinear differential equations. The accuracy of these methods in
yielding numerical results is dependent on the number of terms utilized in
the series solution or the number of grid points used in the case of
numerical schemes. Furthermore, the foregoing solution methods assume
elastic behavior and, hence, are not applicable to plates loaded beyond the
elastic limit.

Small deflection elastic-plastic solutions for axisymmetrically
loaded circular and annular plates have been given by many investigators.
Sokolovsky (31, 32) presented solutions for simply supported plates
employing Henky type deformation theory of plasticity together with Von
Mises yield condition. Three loading conditions were investigated: a
uniformly distributed load, a uniformly distributed load over an inner
circular portion of the plate, and a concentrated load at the center of the
plate. Several other investigators extended Sokolovsky's solution to
plates with variable thickness (33), other loading conditions (34), and to
plates with clamped boundaries (35). Limit analysis has also been applied
extensively to obtain the collapse loads of isotropic circular plates
employing various yield criterion, loadings, and support conditions
(36-38). An early attempt to estimate the deflections of elasto-plastic
circular plates using incremental analysis based on the flow theory of

plasticity was carried out by Haythornthwaite (39). The yield condition of



Tresca and the associated flow rule were employed. The key assumption was
made that at any point within the plate the entire thickness was either
fully elastic or fully plastic. An example of an annular plate was given.
Lackman (40) employed an analogy between plastic strains and transverse
loads originally advanced by Lin (41) to obtain solutions for a uniformly
loaded, simply supported circular plate made of strain hardening 2024-T4
aluminum. The plate was divided into 40 layers along its thickness.

Unlike Haythornthwaite's full section plasticity model, the plastic strains
were considered to vary in the thickness direction. The incremental
plastic strains were obtained by the use of the Reuss-Mises incremental
polyaxial inelastic stress-strain relations. Popov, et al. (42) treated
the elastic-plastic bending of simply supported and clamped circular plates
by employing Von Mises-layer yield criterion and Prandtl-Reuss incremental
plastic stress-strain relations. The material was assumed to be
elastic-perfectly plastic.

Very few large deflection elasto-plastic solutions of circular and
annular plates have been reported and even fewer analytical-experimental
correlations exist (43). Naghdi (44) was the first to undertake full-range
analysis of axisymmetrically loaded circular plates. His numerical scheme
employed plastic stress-strain relations based on the deformation theory of
plasticity. The validity of his approach was established by comparing
deflections for a simply supported circular plate loaded at the center with
those obtained from experiment. Tensile stress-strain and octahedral shear
stress-shear strain curves for 24S-T aluminum were also provided. Ohashi,

et al. (35, 45-48) obtained solutions for elastic-perfectly plastic



circular and annular plates using an analytical technique based on the
deformation theory of plasticity. Their technique presents an extension of
Sokolovsky's small deflection analysis of the same problem. Transversely
loaded circular plates with simply supported (45) and clamped (46, 35)
immovable edges along with annular plates (47) with free inner, simply
supported immovable outer edges were tested. The validity of their
analytical solutions was established based on favorable comparison with the
experimental results. Myszkowski (49) developed a simplified version of
the elasto-plastic constitutive equations used by Ohashi, et al. and
incorporated them into a "shooting-type" analysis to solve circular plate
problems with simply supported and clamped edges under transverse

pressure, Recently, Turvey (50, 51) incorporated Myszkowski's

constitutive relations into the dynamic relaxation method to obtain large
elasto-plastic solutions to uniformly loaded circular plates. Several sets
of results for simply supported and clamped plates made of either mild or
high yield steel with constant and variable thicknesses were presented.

The accuracy of this approach was verified through favorable comparison
with experimental results obtained by Myszkowski (49) and Ohashi and
Murakami (39).

An interesting simplified and design oriented full-range analysis of
transversely loaded simply supported circular plates was published by
Sherbourne, et al. (52). In their analysis a cross section of the plate
was assumed to consist of two different types of elements, flexure and
membrane elements, which were assumed to act independently without any

interaction except in bond. Initially, the transverse pressure was assumed



to be supported solely by flexure action. When the flexure capacity of the
plate section was exhausted, membrane action was assumed to take up the
additional load-carrying requirement. Although Sherbburne, et al.
attempted to establish the validity of their analysis by comparing lateral
deflections of the solutions.with simply supported plate test data, their
methodology was regarded as too simplistic for general application (43).

The principal weakness of the approximate full-range analyses
outlined above is that they are incapable of taking proper account of any
local elastic unloading which may arise as the lateral pressure increases
and membrane action develops in the plate. These analyses, being based on
the deformation theory of plasticity, are load-path independent. 1In
reality, however, the plastic strain state is load-path dependent (2, 43,
53-55). The incremental analyses based on the flow theory of plasticity
permit the load-path to be taken into proper account and, therefore, are
regarded as being more accurate representations of the physical situation.
Only a few investigations of elastic-plastic circular plates undergoing
large deflections based on the incremental flow theory of plasticity have
been reported in the open literature. A brief account of these studies is
given below:

In 1969, Crose and Ang (56) proposed a discrete model of a plate
consisting of a system of flexible nodes, rigid bars, and torsional springs
to analyze the large deflection elastic-plastic behavior of circular
plates. Von Mises yield criterion was employed. The incremental plastic
strains were obtained by using the Prandtl-Reuss flow rule for

elastic-perfectly plastic materials. The reliability of the model was



verified through favorable comparison with theoretical (3) and experimental
(57) results. Tanaka (58) presented an iterative scheme for solving the
finite-difference approximations to the governing system of equations. His
analysis employed Von Mises-layer yield criterion and allowed all linear
combinations of isotropic and kinematic strain hardening to be accounted
for. This analysis was subsequently used by Hamada, et al. (59) to explore
the response of circular plates under slowly varying cyclic loading.
Recently, Turvey and Lim (43) employed the dynamic relaxation method to
obtain solutions for the finite-difference approximations to the governing
equations of elasto-plastic circular plates undergoing large deflections.
Their analysis was based on the flow theory of plasticity and incorporated
a Von Mises-layer plasticity model, an Ilyushin and Ivanov full-section
plasticity model, and the Prandt1-Reuss associated flow rule for
elastic-perfectly plastic materials. It was observed that the layer
analysis predicts the measured deflections more accurately than the
full-section analysis. The analytical-experimental deflection correlation
appeared to be accurate for slender clamped plates and less accurate for
thick plates. This finding is not surprising since the effect of
transverse shear deformation was not accounted for. However, the
analytical-experimental correlation for simply supported plates appeared to
be less favorable.

In all the foregoing studies the plate is assumed to behave in an
elastic-perfectly plastic manner. Therefore, the resulting solutions can
only be expected to yield approximate results for plates exhibiting

strain-hardening characteristics. Moreover, the solution techniques are



applicable to circular plates without a hole at the center and cannot
easily be extended to annular plates. Additionally, the need for
sophisticated modern full-range analytical techniques, i.e., techniques
which take proper account of the interaction between large deflections (in
the Von Karman sense) and elasto-plastic material characteristics, is
clearly evident. These techniques must be simple, amenable to programming,
and highly efficient for the practicing engineer to consider, yet they must
be accurate and highly versatile to be regarded worthy of general
application. Furthermore, full-range investigations based on the
incremental flow theory of plasticity incorporating strain-hardening
materials for circular and annular plates are clearly lacking.

This study attempts to present a simple, yet rather versatile
numerical technique for the analysis of large deflection elastic and
elasto-plastic circular and annular plates. An attempt to fill the void
regarding the use of incremental flow theory of plasticity incorporating

strain-hardening materials in full-range analyses will be initiated.

STATEMENT OF OBJECTIVES

The first objective of this study is to assess the accuracy and
efficiency of the equivalent load concept (1, 2, 40, 41, 60-63) in the
analysis of axisymmetrically loaded isotropic circular and annular elastic
plates undergoing large deflections. The motivation for this step has been
to validate the results of nonlinear elastic problems. The second
objective of this study is to extend the equivalent load concept to the

large deflection elastic-plastic analysis of axisymmetrically loaded



isotropic circular and annular plates. This analysis is based on the
incremental flow theory of plasticity and incorporates a Von Mises-layer
.yield criterion and the Prandtl-Reuss associated flow rule for
strain-hardening materials.

Accordingly, the equivalent load concept is employed in the large
deflection (in the Von Karman sense) analysis of elastic and elasto-plastic
circular and annular isotropic plates. The nonlinear terms of lateral
displacement and the plastic strain gradients are considered as an
additional set of body and surface forces acting on the plate. The
solution of an elastic or elasto-plastic Von Karman type plate is
hence reduced to a set of two equivalent elastic plate problems undergoing
small displacements, namely, a plane problem in elasticity and a linear
elastic plate bending problem. The numerical method of finite element (64)
is employed to solve the plane stress problem. The large deflection
solutions are then obtained by employing the solutions of the linear plate

bending problems (3, 65, Appendix B) through an iterative numerical scheme.



CHAPTER 11

MATHEMATICAL FORMULATION

The constitutive relations and governing equilibrium equations

derived herein describe the axisymmetric large deflection behavior of thin

circular and annular isotropic plates loaded beyond the elastic limit by

uniformly distributed transverse loads. In the development of these

relations the following assumptions are made:

1.
2.

The material is homogeneous and isotropic.

The body forces are negligible in comparison with the applied loads.
The lateral displacement of the plate is large (in the Von Karman
sense). Hence, the second order effects of lateral displacement must
be considered.

¢

dr

The curvature of the plate may be approximated by (-

The Kirchhoff's assumption is valid, i.e., the normal to the middle
surface of the plate remains straight, unextended, and normal to the
middle surface after deformation. Hence, transverse shear strains are
neglected.

The stress normal to the midplane is small compared with other stress
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components and may, therefore, be neglected.
Consequently, the resulting governing equations are in the realm of

classical large deflection theory.

CONSTITUTIVE RELATIONS

Let r,t,z be a curvilinear coordinate system with the rt plane
coinciding with the middle surface of the plate in its unloaded initial
state and z axis normal to it and pointing downward. Let uy and w be the
components of displacement of the middle surface in the radial and lateral
directions, respectively. The coordinate system and the sign convention
for forces are shown in Fig. 1.

Consider a circular or annular plate of uniform thickness h under the
action of a uniform lateral load g as shown in Fig. 2. Since the plate and
loading are axisymmetric, the displacements, stresses, and strains in the

plate are also axisymmetric, and hence

d

— =0 2.1.a
™ ( )
Opp = €pp = 0 (2.1.b)

where o and € denote the stress and strain components, respectively.
The slope ¢ of the deformed middle surface in the rz plane is given by

o= -w, (2.2)

r



dr

dt

Z,W
(a) COORDINATE SYSTEM

(b) SIGN CONVENTION

FIGURE 1. COORDINATE SYSTEM AT MIDDLE SURFACE AND SIGN

CONVENTION
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FIGURE 2.

13

(a) CIRCULAR PLATE (TOP VIEW)

2

(b) ANNULAR PLATE (TOP VIEW)

hI I | - | r,u,

(c) ANNULAR PLATE (FRONT VIEW)

CIRCULAR AND ANNULAR PLATE NOTATION
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where comma denotes differentiation. The curvature of the plate may be

approximated by

K = ¢’r = -.w’rr (2’3)

Utilizing the stated assumptions, the radial displacement field for an
axisymmetrically loaded plate may be expressed as

u(r,z) = uo(r) - IW, (2.4)

in which ug(r) denotes the radial displacement of the middle surface and
w denotes the lateral deflection as shown in Fig. 3. The nonlinear

strain-displacement relations for a Von Karman type plate are given by (3,

65)
€ = u, + l.wg =y + l-w? - ZW, (2.5.a)
r r 2 r 05 2 r rr
u
e =U=_0_2 W, (2.5.b)
t r r r

where wz,r represents the second order effect of lateral displacement.
For a plate loaded beyond the elastic limit, the total component of

strain may be expressed as the sum of its elastic and plastic components:

e = €S+ ¢ (2.6.a)
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h/2

al - - r
$ c ._I_Z h/2

) Yo Ny 5

FIGURE 3. RADIAL DISPLACEMENT OF POINT C



€, = si + € (2.6.b)

The stress-strain relations for a plane stress problem are given by

s =.E (ef+ veb) = E (e +ve - (e"+vs“)] (2.7.a)
roLgr -2 ot rot

g =_E (ee+ vee) -t [e +ve - (a" +vs")] (2.7.b)
t 1—\)2 t r 1- v2 toor t r

in which E and v are Young's modulus and Poisson's ratio, respectively.
The nonlinear stress-displacement relations are obtained by substituting

relations (2.5) into relations (2.7). On this basis, we may write

o = £ [0 Yu-zw, +Zw, W - (4 ve)] (2.8.a)
ro1.2 Orr.o rrr r 2 r r t

E Uo 1 v 2 " "
G = [__ +vu "Z(Vw, +_ w, )+_ w’ - (VE + € )] (2.8.b)
t 1—v2 r o,r r‘rr r 2 r r t

The sectional forces and moments are obtained by integrating the

stress components across the thickness of the plate. These relations are

defined by
N, = / o, dz (2.9.a)
Nt = J' o't dz (2.9.b)

16
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=
1]

/ crzdz (2.9.c)

=
1]

¢ f o, zdz . (2.9.d)

where sectional forces and moments are expressed per unit length of a given
cross section of the plate. Substituting relations (2.8) into relations

(2.9) and carrying out the required differentiations yield

Nr =N _ + Nr - Nr (2.10.a)
_ E + - n 2 1

Nt = Nt Nt - Nt (2.10.b)
= E ' 2.10

M. = Mr - Mr ( c)
- (2.10.d

M, = Mt - M . )

where
E Eh v
N = (u + - u ) (2.11.a)

u
E Eh
N = Crvu ) (2.11.b)
t 1 2 r o,r
-v
E v
M = -D(w, +—w,) (2.11.¢)
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E 1
M, = -D(.-IF Wy ¥V w,rr) (2.11.d)
3
p=_Eh 5 (2.12)
12(1-v7)
g = _Eh 2 (2.13.a)

Nt = W, (2.13.b)
2(1-v¢) "
N o= _E (e + ve) dz (2.14.a)
roo- 2 r t
v
N: = 1 > / (e: + ve:) dz (2.14.b)
-V
n E 1} 1]
M = [ (e + ve) zdz (2.14.¢)
roo- ? r
v
[} E 11} "
M = [ (e + ve) zdz (2.14.4d)
t 1-v2 t r

Expressions (2.11) represent the sectional forces and moments of an
axisymmetrically loaded elastic plate with small deflections (3, 65),
whereas the second order effect of lateral displacement and the influence
of the inelastic strains on the forces and moments are given by expressions

(2.13) and (2.14), respectively.
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The shear force Q,, shown in more detail in the next section, is
obtained by considering the equilibrium of an element of the plate and is
given for convenience as
M= My

Q=M +
roor,r r

(2.15)

Substituting relations (2.10.c & d) and (2.11.c & d) into equation (2.15)

yields
_ E n 2 1

Q, = Q, - Q, (2.16)
where

E 1 1

Q = -D (w, + _ w, - — W, ) (2.17.a)

r rrer r_ rr r2 r

) . MII— Mll

Qg =M +_"_t (2.17.b)

r r,r r

Again, we note that expression (2.17.a) represents the shear force of an
axisymmetrically loaded elastic plate undergoing small deflections (3,

65) in contrast to expression (2.17.b) which refers to the inelastic shear
force.

Substituting relations (2.11) and (2.13) into equations (2.8), we may write

E
6 =0 +0 -0 (2.18.a)
r r r



where

and

-

Z1
=2 N

=

19.

.20.

.20,

.21,

20
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GOVERNING EQUILIBRIUM EQUATIONS

Let us now consider the equilibrium of an element of the plate, such
as element abcd shown in Fig. 4 a & b, cut out from the plate by two
cylindrical sections ab and cd and by two diametral sections ad and bc.
Taking the sum of the projections in the radial direction of all the forces

acting on the element we obtain

dt _

(N +#N dr)(r +dr) dt - Nrdt - 2Ndr —= =0 (2.22)
r rer r t 2

neglecting N. p drdrdt as a small quantity of higher order, the first
equation of equilibrium may be stated as

N-N

r

N+ L (2.23)
r,r r

The second equation of equilibrium of the element is obtained by taking
moments of all the forces acting on the element with respect to an axis
perpendicular to the radius in the roz plane shown in Fig. 4b. Neglecting

the higher order terms resulting from q and Q., we obtain

(M + M dr)(r +dr)dt - M rdt- Q r drdt - M dr 9% =0 (2.24)
r r

roor,r

Disregarding M. rdrdrdt as a small quantity of higher order, the second

equation of equilibrium may be stated as
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(a) PLATE ELEMENT (TOP VIEW)

dMr
I dr

hIoz—:N;-ﬁm EE D*_d :

d
L

+

(b) PLATE ELEMENT (FRONT VIEW)

T I

0 . L¢

Q, . Q

(c) INNER CIRCULAR PORTION OF RADIUS r

FIGURE 4. EQUILIBRIUM OF A CIRCULAR PLATE



M o+t _q =0 (2.25)

Denoting the intensity of the load by q, the magnitude of the shearing
force Q. is evaluated by considering the equilibrium of an inner circular
portion of the plate of radius r shown in Fig. 4c. For a uniform pressure

such a consideration yields the relation

=9 _
Q 5 Nrw’r (2.26)

Substituting the expression for the shearing force Q. into expression
(2.25), the second equation of equilibrium may be rewritten as
M- M

Moo+ T tenw +3 =0 (2.27)
r,r r rr 2

Equation (2.23) may expressed in terms of displacements by using the first
two parts of relations (2.10) and (2.11). The first equation of

equilibrium becomes

(u +—u -— u)+R(r)+R(r) =0 (2.28)

where

(2.29.a)

23



R(r) = - (N +-T % (2.29.b)

In a similar manner, the second equation of equilibrium may be written in
terms of the middle surface displacement by substituting equations (2.10)

and (2.11.c & d) in (2.27). MWe then have

D VW =g+ 3 (r) +a(r) (2.30)
where

V4w = w, tg W, - l- w, + l- W, (2.31)

rrrr v rrr 2 rr 3 r
r r

g (r) = Iy w, +N w, +Nw, (2.32.a)
rror rsror rorr

q(r) =-2 (@ - e M (2.32.b)

r r,r t,r r,rr

Equations (2.28) to (2.32) may be rewritten in terms of the plate
displacements and plastic strains by making use of relations (2.13) and

(2.14). The resulting governing equations are

(u + - - i- uo) +R(r) +R(r) =0 (2.33.a)

24



25

pvhy = q+q (r)+ q“(r) (2.33.b)
where
R(r) = [w, w, +1¥) 29 (2.34.a)
1 2 rr 2r r
-V
G0 =LNw, +N W, +tNw (2.34.b)
rrr r,ror rrr
R"(r) =__F [.2_ / (e" + ve") dz + (1-v) / (e"—e“)dz] (2.35.a)
1_v2 dr r t r r t
q?r) -.E 1d [rg_ i (e"+ ve")zdz + (1-v)] (e"-e")zdz](2.35.b)
1_v2 r dr ~ dr r t r t

Expressions (2.33-2.35) show that the nonlinear effects of finite lateral

displacement and the plastic strains are given by R, q and R, q,
respectively. It is also seen that R, R have the same effect in causing
displacements as the in-plane radial body forces. Thus R, R may be

considered as equivalent radial body forces. In a similar fashion, g

and g have the same effect in causing lateral deflections as the applied

lateral load q and, hence, q, q may be treated as equivalent lateral
loads. Therefore, relations (2.33) are identical to the governing equations

for small deformation of an elastic thin plate subjected to a radial body

force R + R and a lateral load of magnitude g + g + q. The solution of an
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elastic or elasto-plastic Von Karman type plate can, therefore, be reduced
to that of an equivalent elastic plate subjected to additional body and

surface forces and undergoing small displacements.



CHAPTER 111

PLASTIC STRESS-STRAIN RELATIONS

The fundamental problem in applying plasticity theory is to determine
the total plastic strain as a function of the history of loading or history
of stress. To calculate the plastic strains at a final load condition, it
is necessary to integrate the infinitesimal plastic strain increments over
the actual loading path (2, 53-55). This may be accomplished by applying
the load in small finite increments and calculating the finite increments
of plastic strain for each of the load increments. A1l these increments of
plastic strain are then added to give the total plastic strain,

Let the total loading path be divided into n increments of load.
Assume that the plastic strains have been computed for the first n-1
increments of load and we now wish to compute them for the nth increment
of load. The total strains at the end of the nth increment can be

written as

+ de, . (i,J = 1,2,3) (3.1)

where the first term on the right side of equation (3.1) represents the
elastic part of the total strain, the second term is the plastic strain

accumulated in the first n-1 increments of load, and the third term is the
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plastic strain increment due to the nth increment of load. In the above

equation the sum is assumed to be known and the problem is to calculate the
plastic strain increment for the current or nth increment of load and its
corresponding stresses.

The first step of any plastic flow analysis is to decide on a yield
criterion, i.e., what combination of multiaxial stresses will cause
yielding. Beyond the elastic limit, a set of incremental plastic
stress-strain relations are needed in order to describe the behavior of the
material after yielding has occured.

In the most general case, the yield criterion will depend on the
complete state of stress at the point under consideration and will
therefore be a function of the nine components of stress at the point.
Since the stress tensor is symmetric, we can reduce this function to a
function of the six independent components of the stress tensor. The yield
criterion for a virgin material is then essentially the extension of the
single yield point of the uniaxial tensile test to the six-component stress
tensor. For a material loaded to the initial yield, it can be expressed by

the relationship

Flogy) = k (1,3 = 1,2,3) (3.2)

Equation (3.2) represents a convex hypersurface in the six-dimensional
stress space and any point on this surface represents a point at which
yielding can begin. For example, for the simple tensile test with a yield

point oy, the point 011 = °y’°22 = 033 = 012 = 013 = 023 = 0 must lie on

this surface. The function appearing in equation (3.2) is called the yield
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function, and the surface described by it in the stress space is called the
yield surface.

If isotropy is assumed so that the rotation of the axes does not
affect the yielding function, equation (3.2) can be expressed in terms of

the principal stresses as

Fl(ol’ 02, 03) =k (3.3)

Based on extensive experimental studies, it has been found that hydrostatic
pressure has negligible effect on the yield point until extremely high
pressures are reached. It has also been shown that the density, and
consequently the volume, does not change for very large plastic
deformations. Thus, in the plastic range a material can be considered as
incompressible. The yield function may then be expressed in terms of the

stress deviators as

Fy(Sys Spn S3) = K (3.4)

Alternatively, S, Sy, and S3 can be written in terms of the

invariants of the stress deviator tensor. Since the first invariant of

this tensor is always zero, we can write

F3(J2, J3) = k (3.5)

Subject therefore to the above assumption, the yield criterion has been
reduced to a function of the two nonzero invariants of the stress deviator

tensor (55).
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The two most widely used criteria, the Tresca maximum shear criterion
and the Von Mises criterion, are specific cases of equation (3.5). The Von
Mises criterion is by far the simplest one that can be associated with
equation (3.5) and is, therefore, the initial yield criterion utilized in

this study.

VON MISES INITIAL YIELD CRITERION

Von Mises (1913) stated that initial yielding will occur when the
second invariant Jy of the stress deviator tensor reaches a critical
value, i.e., the value of Jp at yield in simple tension.

Let x; (i = 1,2,3) refer to a set of Cartesian coordinate system.
The components of stress with respect to xj are denoted by oij (i,j =

1,2,3). For this general state of stress, J, is given by

2 2 2 1
J =0+ 0+ 0+ —
2 12 23 13 6

2 2 2
[(0. -0 2) +(o_ - 033) +(o33- 011) ] (3.6)

11 2 22

At the yield point in simple tension, equation (3.6) reduces to

1 2
J =20 3.7
2°3° (3.7)
As a result, the Von Mises initial yield criterion may be mathematically

expressed in the following form

0%(3.8)

y

+

2 2 2
13

2 2 1
+ + o -0 = =
12" %3 ¢ ) 1= 3

2
- + -
[(0),= 0,p) #(0,,= 053) #{0y5 0,

o
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Specializing this equation to an axisymmetrically loaded circular or
annular plate in a state of plane stress, the yield criterion may be
expressed in terms of radial and tangential stresses as

? ? _
d + d - 9.0 * %i (3.9)

which plots as an ellipse, called the Von Mises ellipse, in the oprot
plane as shown in Fig. 5. It is worth noting that the Von Mises yield
criterion implies equal yielding in tension and compression.

The Von Mises criterion of initial yielding was first proposed due to
its simplicity and mathematical convenience. Nevertheless, the famous
experiments of Taylor and Quininney (1921) along with most other test
results have shown this criterion to exhibit good correlation with
experimental data (2, 53-55). Attempts have been made to improve the
correlation of the data by including the effect of the third invariant J3
into the yield criterion (66). It seems, however, that from an engineerng
viewpoint the accuracy of the Von Mises criterion for yielding is amply
sufficient when considering the general scatter and lack of uniformity in
the properties of nominally the same material obtained from different
batches. For these reasons, this criterion is widely utilized in the

inelastic analysis of metals.

SUBSEQUENT YIELD SURFACES

Thus far, the discussion has been confined to the initial yield



FIGURE 5. GRAPHICAL REPRESENTATION OF THE VON MISES INITIAL
YIELD CRITERION FOR AXISYMMETRICALLY LOADED PLATES

32



33

surface at which a material will first start yielding. For a perfectly
plastic material, the yield surface remains fixed, as seen from the
_uniaxial tensile test data where the stress after yielding remains constant
at the initial yield. However, for a material that strain hardens, such as
aluminum, the yield surface must change for continued straining beyond the
initial yield. In equation (3.2) rewritten below for convenience, the

yield function was defined by the relation

F(o..) =k (1,d = 1,2,3) (3.10)

iJ
such that whenever the function F became equal to the constant k, yielding
would begin. Then k represented an initial yield surface in the stress
space. This type of relation can now be generalized to subsequent yield
surfaces,

After yielding has occured, k takes on a new value depending on the
strain-hardening properties of the material. If the material is unloaded
and then loaded again, additional yielding will not occur until the new
value of k is reached. The function F can then be looked upon as a loading
function which represents the load being applied, and the function k is a
yield function which is dependent on the complete previous stress and
strain history of the material and its strain-hardening properties. Three

distinct cases may be encountered for a strain-hardening material:

F 46 >0 (3.11.a)

bcij 1J

(1) F =k and dF =
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This case constitutes loading

(2) F=kandd =X __do =0 (3.11.b)
00. . 1)
1
This is called neutral Tloading
_ _ OF
(3) F =k and dF = do, <0 (3.11.¢)
adij 1]

Which defines the unloading. The following geometric interpretation of the
conditions expressed by relations (3.11) is readily evident: F = k means
that the stress state is on the yield surface. dF > 0, on the other hand,
describes the case where the stress is "moving out" from the yield surface
and plastic flow is occuring, while dF < 0 refers to a state when the
stress is "moving in" from the yield surface and unlaoding is therefore
taking place. dF = 0 corresponds to the case of the stress state moving on
the yield surface and is called neutral loading. For a strain-hardening
material no plastic flow occurs for neutral loading. It is obvious that F
< k defines the elastic region,

There is one more ingredient necessary in constructing the plasticity
theory, namely, the relations between stress and strain when plastic flow
is occuring. In this study the incremental plastic strains are obtained by

utilizing the Prandt1-Reuss polyaxial inelastic stress-strain relations,
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PRANDTL-REUSS INCREMENTAL PLASTIC
STRESS~STRAIN RELATIONS

In 1870 Saint Venant proposed that the principal axes of strain
increments coincide with the axes of principal stresses. Levy (1871) and
subsequently Von Mises (1913) introduced the general relations between
strain increments and the deviatoric stresses. Prandtl (1924) and Reuss
(1930) assumed that the plastic strain increment tensor is, at any instant
of loading, proportional to the instantaneous deviated stress tensor,
expressed as

n
dsi. ‘
1 = g (i,j = 1,2,3) (3.12)

where dh is an instantaneous positive constant of proportionality which may
vary during the loading process and Sjj are the deviatoric stress
components. dA = 0 for unloading and neutral loadings.

Equation (3.12) states that the increments of plastic strain depend
on the current values of the deviatoric stress state, not on the stress
increments required to reach this state. The relation also implies that
the principal axes of stress and of plastic strain increment tensors
coincide, Furthermore, the condition of zero plastic dilitation is
satisfied. For an axisymmetrically loaded circular or annular plate,

equation (3.12) may be written as

der = Sr da (3.13.a)



36

de, =5, dA (3.13.b)

where the radial and tangential deviatoric stress components are given by

Zcr- at
S = (3.14.a)

S = _t T (3.14.b)

Substituting equations (3.14) into equations (3.13), the incremental
plastic stress-strain relations can be written in terms of the radial and
tangential stresses as

" 20r - %

de = — __~dX (3.15.a)
r 3

de. = —— dX (3.15.b)

Once the value of dA is known, the desired stress-strain relations are

*
defined. To determine di, let us define effective stress o and and

*N
effective plastic strain increment de as

* 2 2 1/2

g = (cr + 0 - orct) (3.16)

8" = 2 (qe? + ge? + ge ge )12 (3.17)
3 r t r t



For a uniaxial tensile state of stress in the radial direction, the
*

effective stress o reduces to op. Utilizing the incompressibility

assumption, i.e., dst = de = -.% de the effective plastic strain

* U n
increment de , likewise, reduces to der. For the unjaxial state of

stress, equation (3.15.a) becomes

de = 2 o g (3.18)

de = é-g dA (3.19)

The constant dX can now be written as

* 0
_ 3 de
dX - —2- * (3.20)
g
And the stress-strain relations (3.15) become
1 d*"
u €
d = g - — O —— 3.21.
er ( r 2 t) * ( a)
g
1, de
n €
= -z - 3.21.b
det (ct 2 0r') * ( )
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The generalization of the uniaxial stress-strain relation to a multiaxial

* 1 *
stress state is defined by € = g(o). For strain-hardening aluminum, this

function is approximated by (67)

*h c
& ()" (3.22)

where 0y, and n are constants.

And hence
*
%1 6 -0 - * *
de =N ("L 45 when 5> o (3.23.a)
o %o Y
*n * *
de =0 when o< o, oro=o (3.23.b)

Substituting equation (3.23.a) into equations (3.21), the incremental
plastic stress-strain relations for axisymmetrically loaded plates made of

strain-hardening aluminum may be expressed as

" p 1 o - 9. n-1 dz
de == (o -50)(— Iyt =2 (3.24.a)
o o) o
* *
g -0
" n 1 n-1 do
de, == (o, = 50 )(— Hnt = (3.24.b)
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where

2 2 i/2

g = (or + oy - orot) (3.25.a)
hence

* ] 1 1
do=_|(c -Z0)do + (0 -_- 0 ) do 3.25.b
s l(o =g o) do + (o~ 50) do] (3.25.b)
n n *

and der = de = 0 when do < 0 (3.26)

It is worth noting that the Prandtl-Reuss assumptions imply the Von Mises
yield criterion. This can readily be seen by comparing the equation
defining the effective stress (3.25.a) with equation (3.9), which gives the
Von Mises yield criterion. Such a comparison shows that yielding will

initiate when

*
g=0 (3.27)

The equivalent stress is thus the same as the Von Mises yield function and,
therefore, the Von Mises initial yield criterion may be restated as:
initial yielding will occur when the effective stress reaches a critical

value, i.e., the value of the yield stress in simple tension.



CHAPTER 1V

METHOD OF SOLUTION

In the earlier discussion, it was stated that the inelastic strains
as well as the nonlinear terms of lateral displacement can be considered as
a combination of lateral loads, edge moments, and in-plane forces acting on
an equivalent plate. The solution of an elastic or elasto-plastic Von
Karman type circular or annular plate is, therefore, reduced to that of an
equivalent elastic plate subjected to additional body and surface forces
with small displacements. The incremental plastic stress-strain relations
(3.25) are employed in this analysis. The displacement, stress, and strain
fields are obtained by the solution of the governing equilibrium equations
(2.33) together with the constitutive relations (2.10) in their incremental
forms,

A general discussion of the equivalent load theory (2) as it relates
to circular and annular plates undergoing large deflections, along with a
detailed account of the incremental numerical scheme utilized to solve the

nonlinear set of governing equilibrium equations are presented herein.

EQUIVALENT LOAD THEORY

The well known analogy between thermal strains and applied forces

(Duhamel's Analogy) was first generalized by Lin (41, 62) to include creep
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and plastic strains. Lin (2) showed that the lateral deflections and
stresses in an inelastic simply supported plate undergoing small
deflections may be calculated by considering the inelastic strains as an
additional set of lateral loads and edge moments acting on an equivalent
elastic plate. Lackman (40) employed the analogy between inelastic strains
and applied lateral loads to obtain the solution for a simply supported
elasto-plastic circular plate with small deflections. Later, Lin (61, 63)
extended the concept to obtain the large deflection solutions to
elasto~plastic and creep bending problems of isotropic rectangular plates.
Recently, Gorji (1, 60) has used this approach to obtain solutions for
elastically isotropic-plastically orthotropic rectangular plates as well as
symmetric composite plates with large deflections. The present study
utilizes this method to obtain the elastic and elasto-plastic solutions to
circular and annular plates undergoing large deflections.

Accordingly, the equivalent load concept is used in the analysis of
large deflection (in the Von Karman sense) of elastic and elasto-plastic
circular plates with or without a hole at the center. The nonlinear terms
of lateral displacement and the plastic strains are considered as an
additional set of loads acting on the plate. The solution of an elastic or
elasto-plastic Von Karman type plate is hence reduced to a set of two
equivalent elastic plate problems with small displacements, namely, a plane
problem in elasticity and a linear plate bending problem. Examination of
equation (2.33.a) showed that the nonlinear effects of finite lateral

displacement and the inelastic strains have the same effect in causing
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radial displacement as the in-plane body force R. Thus R and R were
called equivalent radial body forces due to finite lateral displacement and

the plastic strains, respectively. In a similar fashion, equation (2.33.b)

"

indicated that the equivalent lateral forces q and q have the same
influence in causing lateral deflections as the applied load q, and
therefore were considered as equivalent lateral loads induced by these
nonlinear effects. Hence, if the displacements are prescribed at the
boundaries of the plate, the deformation of a Von Karman type plate under
the action of a lateral load g would be the same as that of an equivalent

plate undergoing small displacements and subjected to a radial body force

R+R, and a lateral load q + q + q? This is true because the governing
equations (2.33) and the boundary conditions are identical for both cases.
On the other hand, if forces are prescribed on some portion of the
boundary, the same conclusion can still be reached provided the
corresponding boundary forces of the equivalent plate are modified to
reflect the nonlinear terms of lateral displacement and the plastic strains
given by equations (2.13), (2.14), and (2.17.b).

Since the radial force N, as well as the moment M, and
Kirchhoff shear V. (equivalent to Q. for an axisymmetric plate) are the
prescribed at the inner free edge of the annular plates considered in this
study, the corresponding forces acting on the inner edge of the equivalent
plate are modified in order to account for the nonlinear terms of
displacement and the effect of the plastic strains present in equations
(2.10.a), (2.10.c) and (2.16). In a similar manner, the moment M. at the

outer boundary of the simply supported equivalent plate is modified in
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order to reflect the prescribed moment at the corresponding boundary of the
actual plate. For a clamped plate, however, displacements are prescribed
at its outer boundary and no modification of the boundary conditions of the
equivalent plate is needed. The actual and corresponding equivalent
boundaries for the three classes of circular boundaries discussed above are
shown in Fig. 6.

The sectional forces and stresses in the equivalent plate may be
calculated from the displacement field as can be readily seen by examining
expressions (2.11) and (2.19). Therefore, the influence coefficients for
radial and lateral nodal displacements due to unit body and surface forces
must be known in order to evaluate the sectional forces and stresses in the
equivalent plate. Since the equivalent plate is elastic, the method of
superposition is utilized to obtain the nodal displacements due to body and
surface forces of various magnitudes.

While the influence coefficients of elastic plate bending problems
under arbitrary surface loading conditions are generally known (3, 65,
Appendix B), the influence coefficients for the plane stress problems of
finite region under body forces are not always available. However, with
the use of numerical techniques such as the finite element method (64), the
influence coefficients of elastic plane stress problems under arbitrary
body loading conditions are obtainable. In this study, a finite element
program (SAP IV) was utilized to obtain the influence coefficients due to
unit radial in-plane forces.

The stresses in the Von Karman type plate may be obtained by

superposing on the stresses obtained from the corresponding equivalent
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FIGURE 6. ACTUAL AND CORRESPONDING EQUIVALENT PLATE BOUNDARIES
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plate solutions, the stresses arising from the nonlinear terms of lateral
displacement and the plastic strains as seen from constitutive relations
(2.10) and (2.18).

Due to the symmetry of the loading and boundaries about the plate
axis, the plane of the plate is divided into a number of equal segments
along a typical radial direction. Moreover, the variation of the plastic
strain in the thickness direction is considered by dividing the plate into
four equal layers along its thickness. The method discussed earlier is
then used to solve the governing equations of equilibrium in their
incremental forms in order to obtain the displacement, stress, and strain
fields. The iteration technique utilized in the solution procedure is

discussed in the following section.

INCREMENTAL NUMERICAL SCHEME

Consider a circular or annular plate with arbitrary boundary
conditions subjected to a uniformly distributed load g. Let this load be
increased by equal increments Aq until the desired load is reached. The
increments of lateral displacement, plastic strain, stress, etc. are
denoted by double subscribed notations, where the first subscript is
associated with the load increment and the second subscript denotes the

and Ae" refer, respectively,

cycle of iteration. Thus, Aw( ij(n+1)m

n+l)m
to the increments of lateral displacement and plastic strain due to the
(n+1)th 10ad increment at the end of the mth iteration cycle. When the

final values of these variables are reached for any load increment, the
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second subscript is deleted. Assume that the increments of lateral
displacement and plastic strain due to the (n+l)th increment of load are
~equal to those obtained at the end of the nth 1oad increment. This

indicates that
M (1)1 T M(n)

Aen(nt1)1 = BEr(n)

Bt (nt1)1

and

W11 T ) T M1

Substituting these assumed values in relations (2.34.a) and (2.35), a trial

set of values for of the equivalent radial body forces AR(n+1)1’ AR(n+1)1
and lateral load Aq"(p+1)1 are obtained. Note that the magnitude of

AQ(n+1)1 is not known at this time. With the trial values of

of Aﬁ(n+1)1and AR(n+1)1 known, equation (2.33.a) is solved for the

in-plane radial displacement increment of Aug(pn+1)1. This equation
represents an elastic plane stress problem for which influence coefficients
have been obtained by the method of finite element. The membrane forces
MNy(n+1)1 and Mi(n+1)1 are evaluated by substituting the incremental
in-plane displacement along with the assumed values of incremental lateral

displacement and incremental plastic strain into constitutive relations
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(2.10.a) and (2.10.b). The sectional forces Ne(n+1)1 and Ng(pel)] are

then obtained by
Nr(n+1)1 - Nr(n) * ANr(n+1)l

Nt(n+1)1

having obtained the in-plane radial forces, the lateral load Aa(n+1)1 and

consequently a(n+1)1 may now be determined from relation (2.34.b). Using
the trial values of lateral displacement, plastic strain and in-plane

displacement in relations (2.24), stresses Acr(n+1)1’ Aot(n+1)1 and hence
°r(n+1)1’ °t(n+1)1 are determined. The incremental plastic stress-strain

relations (3.24) are subsequently utilized to evaluate a new set of values

of incremental plastic strains Aer(n+1)2 and Aet(n+1)2' Inserting the

values of Aq(n+1)1, Aq(n+1)1, and the applied load increment Aq in
equation (2.33.b) allows for the determination of M(n+1)2. This is a
linear elastic plate bending problem for which influence coefficients have

been obtained using analytical solutions (Appendix B). With the new

calculated values of Aw(p+1)2 and Aep(pn+1)2, Aeg(p+l)2 known, the

same procedure is repeated until the difference between the successive

(1] n
values of Aw, Aer, and Aet are within the desired tolerances. In this

way the lateral displacements, stresses, and strains of Von Karman type

circular and annular plates are obtained.
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NUMERICAL SOLUTION CONVERGENCE
ACCURACY AND STABILITY

The convergence process was significantly enhanced by assuming new
trial values of lateral displacement and plastic strains based on a linear
combination of the trial and calculated values obtained in the preceding
iteration cycle. A numerical scheme used for that purpose is presented in

the following.

ij(n)m"l and AW(n) Ae

he m> " ij(n)m®

Let Aw denote, respectively,
(n)

m-1°
the trial and calculated values of the incremental lateral displacement and
incremental plastic strain components at the mth cycle of iteration due

to the nth loading increment. Furthermore, assume that the difference

]
between these successive values of Aw and Ac. .

i are not within the desired

1imit so that further iteration is required. The trial values of Aw and

B, 5 for the (m+l1)th iteration are obtained by

D S
Aw(n)m+1 " Tva [ Aw(n)m-l+ Aw(n)m]

’ 1 ’ ; :

A = A + A
Eij(n)m+1 l+a [ Eij(n)m—l Eij(n)m

As a approaches zero or infinity, the new trial magnitudes of Aw and

Aeijfor the (m+1)th iteration tends to equal the calculated and trial

values of displacement and plastic strain components of the previous cycle,
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respectively. Hence for an a value between zero and infinity, intermediate
values of Aw and Asij are obtained.

In general, two factors affecting the accuracy of the numerical
solution are the degree of convergence tolerance and the mesh size. The
accuracy of numerical solutions may be increased by utilizing a low
convergence tolerance and a high number of grid points. This would result
in an increase in the number of iterations for convergence to the final
solution. There is, of course, a trade off between solution accuracy and
computational efficiency which must be taken into account. In this study
the accuracy of fixed boundary solutions was observed to be highly
sensitive to the number of grid points utilized adjacent to the clamped
boundary. For simply supported and free boundaries, however, far less
sensitivity to the number of grid points was observed.

For elasto-plastic solutions, the magnitude of the applied lateral
load increment Aq has also been found to influence the stability and speed
of convergence of the numerical procedure. Hence, it is preferable to use
a constant small load increment when attempting elasto-plastic solutions.
This is specially true for plates with other clamped edges.

In the example problems considered in this study, convergence to
final solutions was achieved quite rapidly even when small tolerances and a
rather large number of grid points were considered. The method of solution
presented herein has been found to be computationally efficient and offers
an alternate means of obtaining elasto-plastic solutions to circular and

annular plate problems with moderately large deflections.



CHAPTER V

NUMERICAL RESULTS AND DISCUSSION

A computer program based on the previously discussed method of
solution was written. Solutions for two distinct classes of plates were
obtained using this program:

1. Circular Plates

Elastic and elasto-plastic solutions of uniformly loaded simply

supported and clamped circular plates undergoing large deflections

have been obtained. The edges for both support conditions have been
assumed immovable in the plane of the plate. Accordingly, the
boundary conditions are given as:

simply supported plates @r=a, w=M=uy-=20

clamped plates @r=a, Ww=¢=u=0

2. Annular Plates
Uniformly loaded annular plates with a free inner edge at r = b and
both simply supported and clamped outer edges were also considered.
In all cases, the ratio of the inner to outer radii was assumed to be
0.25 and the edges were considered immovable. Hence, the boundary
conditions are:

simply supported, free edges @ r = a, W =M. =uyy; =0

@r

]
o
-
==
3
i
=
=5
u
-
=
)
o
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clamped, free edges @r

"
&
x
]
o
(]
5
n
o

@r=>b, Np=M.=Ve=0
Where V,. = Kirchhoff shear = Q, for an axisymmetric plate. The
plate material is made of 2024-T351 aluminum alloy and is considered
isotropic in the elastic and plastic regions. The following material
properties and constants oy and n have been used in the numerical example

problems:

b

E=10 x 10° psi (69 GPa) , v=0.3" o, = 32 ksi (221 WPa)

5, = 7.435 x 10* psi (513 MPa) , n = 3.08

Initially, a suitable mesh size was selected in the nonlinear elastic
analysis of circular and annular plates. The results were then compared
with the available solutions in order to establish the accuracy of the
solution procedure and to asses the computational efficiency of the
method. The nonlinear elastic solutions for circular and annular plates
are shown in Figs. 7 through 16. The corresponding available solutions are
also included for comparison.

As a next step, the problem was extended beyond the elastic limit by
considering the elastic-plastic behavior of circular and annular plates

undergoing moderately large deflections. The plate is first loaded

* A value of v = 0.25 has been used in the elastic simply supported
circular plate example problem in order to facilitate comparison with the

available solutions.
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elastically until the effective stress of the extreme fiber at the center
or the inner edge of the plate reaches the yield stress. Beyond the
_elastic limit, the incremental plasticity theory together with the
iteration technique, discussed earlier, are used to obtain solutions to the
example problems. The results of elastic-plastic plates are shown in

Figs. 17 through 50. The nonlinear elastic solutions are also included for
the purpose of comparison. The elastic-plastic analyses reported by other
investigators have largely been confined to elastic-perfectly plastic
material wherein the effect of strain-hardening has been neglected.
Furthermore, the majority of the studies found in the open literature have
employed the deformation theory of plasticity. The plastic strains can not
in general be independent of the loading path and deformation theories can
not generally be correct. Accordingly, no quantitative comparison of the
present solutions can be made with the available solutions. However, it is
possible to compare, on a qualitative basis, the elastic-plastic solutions
of this study with the existing solutions of plates made of
elastic-perfectly plastic materials which are based on an incremental
plasticity theory.

A general discussion of the nonlinear elastic and elasto-plastic
results obtained for the circular and annular plates considered in this
study are presented herein. All results are presented in nondimensional
form in order to facilitate comparison with those of other investigators

when applicable.
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LARGE DEFLECTION, ELASTIC RESULTS

The nonlinear elastic results for both uniformly loaded simply
supported and clamped circular plates are shown in Figs. 7 through 10.

Fig. 7 shows the variation of the center deflection with load for a simply
supported circular plate, while those corresponding to the extreme fiber
radial stress at the center and the radial membrane stress at the edge of
the plate are given in Fig. 8. The results of the present method are seen
to agree very well with those of Nath, et al. (27) and Alwar and Nath (6).

The results for a clamped circular plate are presented in Figs. 9 and
10. The center deflection of the clamped circular plate, given in Fig. 9,
was calculated and found to compare very well with the results of Nath, et
al. (27) and Alwar and Nath (6). Fig. 10 shows the variation of the radial
membrane and bending stresses with center deflection at the edge and the
center of the plate. The comparison of these results with the existing
solutions is also shown.

It is important to note that the solutions for both simply supported
and clamped circular plates are in good agreement with the available
solutions. The present solutions are, however, closer to those given in
reference (27) for the range of the load considered. Moreover, an
extremely favorable comparison with the series solution of clamped plates
given by Way (5) is also noted. Although not shown in the figures, as a
further check on the accuracy of these solutions, the present results have
been compared with dynamic relaxation solutions of Turvey (16) and found to

be in close agreement.
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The nonlinear elastic solutions for both uniformly loaded simply
supported and clamped annular plates are shown in Figs. 11 through 16. The
load-deflection curves at the inner edge of the plate for both types of
supports are given in Figs. 11 and 14, while the relations between the
radial and tangential bending stresses at the inner and outer edges of the
plate and the applied lateral pressure are shown in Figs. 12 and 15.

Figs. 13 and 16 represent the radial and tangential membrane stresses at
the plate boundaries as computed by the proposed method. The solutions for
simply supported and clamped annular plates show excellent agreement with

the results of Dumir, et al. (30) and Turvey (16).

LARGE DEFLECTION, ELASTIC-PLASTIC RESULTS

The results of the elastic-plastic analysis for simply supported and
clamped circular plates are shown in Figs. 17 through 32. The
corresponding nonlinear elastic solutions are also included in the figures
for comparison. Fig. 17 shows the variation of the deflection at the
center with the nondimensional load q(a/h)4/E for a simply supported
circular plate. The load deflection curve of the classical theory is also
shown in the figure. This plot clearly indicates the effects of membrane
forces and the plastic strain on the behavior of the plate. The
displacement at the center of the plate is noted to increase by the plastic
strain. The results for the radial and tangential membrane stresses at the

center and the edge of the plate are plotted in Fig. 18. Fig. 19 gives the
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variation of the radial and tangential stresses with load at the center and
edge of the plate. The results for stresses indicate that while the
membrane stresses are only slightly affected by plastic strain, the
corresponding maximum fiber stresses at the center are considerable
relieved by the inelastic action, resulting in additional load carrying
capacity for the plate and, of course, make better use of the material, an
important consideration in aerospace applications. The distribution of the
effective plastic strain at a nondimensional load of 7.15 is presented in
Fig. 21. The results indicate that the center of the plate at the lower
surface yields initially. As the load is increased, the plastic range
propagates toward the top and the edges. Before the plastic deformation
completely reaches the edges, however, the upper surface of the edge starts
yielding and the plastic deformation in turn propagates toward the center
of the plate. Figs. 21, 22, 23, and 24 plot, respectively, the radial
profiles of lateral deflection, extreme radial stress and radial membrane
stress, extreme tangential stress and the corresponding membrane stress,
and sectional moments My and My for the nonlinear elastic and
elasto-plastic solutions of the simply supported circular plate.

Next, the elastic-plastic behavior of a clamped circular plate under
a uniformly distributed load is analyzed. The results are presented in
Figs. 25 through 32. The plot of the lateral displacement of the center,
given in Fig. 25, shows that, unlike a simply supported plate, when the
load parameter increasess beyond a certain value, the displacement
corresponding to the elastic-plastic large deflection solution exceeds

slightly that of the linear elastic case. This behavior is attributed to
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the fact that the increase in displacement due to the effect of plastic
strain exceeds the reduction in the value of the deflection resulting from
the second order effects of lateral displacement. This finding is
consistent with the results of Crose and Ang (56) and Turvey and Lim (43).
The plots for the radial and tangential membrane stresses at the center and
the edge of the plate are given by Fig. 26; it is noted that the membrane
stresses are slightly increased by the inelastic action. Fig. 27 shows the
variation of the radial and tangential stresses at the center and the edge
of the plate. Again, the maximum stresses are observed to be considerably
reduced in the elastic-plastic case. The distribution of the effective
plastic strain in the clamped circular plate is shown in Fig. 28. As seen
from the figure, yielding starts initially at the top surface of the edge.
At a slightly higher load, the bottom surface of that boundary also yields
and the plastic strain propagates toward the center of the plate. However,
before it reaches the center, the lower surface of the center yields and
the plastic strain in turn propagates toward the edge. Fig. 29 shows the
radial profile of lateral deflections of the plate at a nondimensional load
of 5.96. Figs. 30 and 31 show the distribution of the maximum radial and
tangential stresses together with the corresponding membrane stresses for
the nonlinear elastic and elasto-plastic solutions. Additionally, the
variation of the nondimensional moments M, and Mt along a radial line
are given in Fig. 32.

The results of the elastic-plastic analysis of simply supported and
clamped annular plates are shown in Figs. 33 through 50. The corresponding

nonlinear elastic solutions are also included. Figs. 33 and 42 show,
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respectively, the variation of the deflection at the inner edge of the
simply supported and clamped plates with the nondimensional load. The load
deflection curves of the classical linear theory are also shown in these
figures. The radial and tangential membrane stresses at the inner and
outer boundaries of both plates are plotted in Figs. 34, 35, and 43, 44
while the result for the extreme fiber stresses are shown in Figs. 36 and
45. The distribution of the effective plastic strain, shown in Figs. 37
and 46, clearly indicate the regions of the plates that have yielded.

Figs. 38 and 47 plot the radial profiles of lateral deflections at
the nondimensional loads of 3.58 and 5.96 for simply supported and clamped
annular plates, respectively. Additionally, the distributions of the
maximun radial and tangential stresses together with the corresponding
membrane stresses and sectional moments M. and Mt for the
elastic-plastic and nonlinear elastic solutions are given in Figs. 39 to 41
and 48 to 50.

The interpretation of the results for the simply supported and
clamped annular plates is similar to that of corresponding circular plates

and, therefore, will not be repeated.
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CHAPTER VI

CONCLUSIONS

Solutions of Von Karman type circular and annular plates were
obtained by considering equivalent plates with small displacements, where
the nonlinear terms of lateral displacement and the plastic strain were
treated as fictitious body and surface loads acting on the plate. In this
way, solutions for many difficult nonlinear problems may be obtained by
using the known solutions of the linear problems through an iteration
procedure. The numerical iteration scheme used in this investigation
resulted in rapid convergence to the final solutions. The method of
solution presented in this study is found to be computationally efficient
and offers an alternative method for obtaining the nonlinear solutions to
plate bending problems.

Nonlinear elastic results for simpTy supported and clamped circular
and annular plates have been shown to be in excellennt agreement with the
available solutions. The results of the nonlinear elastic-plastic
solutions show that the lateral displacement is increased by the plastic
strain while the maximum fiber stresses are considerably relieved. The
consideration of the behavior beyond the elastic limit is important since a
high premium is currently being placed on the saving of weight in aircraft,

missile, and space applications.
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The procedure used in this study can be employed to solve a variety
of nonlinear plate bending problems under different loading and boundary
conditions. Furthermore, the present formulation can easily be extended to
include other sources of nonlinearity such as creep and relaxation and to
obtain solutions for orthotropic plates undergoing large deflections. In
concluding this chapter, it is perhaps worth pointing out that the present
approach does not require the large computational storage and high cost
normally involved in the nonlinear analysis of composite plates by the
finite element method (1). The procedure is thus well suited for the

nonlinear analysis of this class of annular plates.



10.

11.

BIBL IOGRAPHY

. Gorji, M., "On Large Deflection of Symmetric Composite Plates Under

Static Loading,”" Journal of Mechanical Engineering Science,
Proceedings of the Institution of Mechanical Engineers, Part C,
Vol. 200, No. Cl, 1986, pp. 13-19.

. Lin, T.H., Theory of Inelastic Structures, John Wiley and Sons, Inc.,

New York, N.Y., 1968.

. Timoshenko, S., and Woinowsky-Krieger, S., Theory of Plates and

Shells, 2nd ed., McGraw-Hi11 Book Co., Inc., New York, N.Y.,
1959,

. Von Karman, T., "Festigkeits Probleme Im Maschinenbau,” Encyklopaedie

Der Mathematischen Wissenschaften, Germany, Vol. 4, 1910, pp.
348-352.

. Way, S., "Bending of Circular Plates with Large Deflection," Journal

of Applied Mechanics, Vol. 56, 1934, pp. 627-636.

. Alwar, R.S., and Nath, Y., "Applications of Chebyshev Polynomials to

the Nonlinear Analysis of Circular Plates," International Journal
of Mechanical science, Vol. 18, 1976, pp. 589-595.

. Alwar, R.S., and Reddy, B.S., "Large Deflection Static and Dynamic

Analysis of Isotropic and Orthotropic Annular Plates,"
International Journal of Non-Linear Mechanics, Vol. 14, 1979,
pp. 347-359.

Berger, H.M., "A New Approach to the Analysis of Large Deflections of
Plates," Journal of Applied Mechanics, Vol. 22, 1955, pp.
465-472.

. Federhofer, K., and Egger, H., "Berechnung der dunnen Kreisplatte mit

grosser Ausbiegung," Sitzungsberichte der Akademischen
Wissenschaften, Vienna, Austria, Vol. 155, 1946, pp. 15-43.

Mansfield, E.H., The Bending and Stretching of Plates, Pergamon
Press, 1964.

Stoker, J.J., Nonlinear Elasticity, Gordon and Breach Science
Publishers, 1968,



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Keller, H.B., and Reiss, E.L., "Nonlinear Bending of Circular
Plates," Proceedings of the Third National Congress of Applied
Mechanics, Providence, RI, 1958, pp. 375-385.

Mah, G.B.J., "Axisymmetric Finite Deflection of Circular Plates,"
Journal of the Engineering Mechanics Divison, ASCE, Vol. 95,
1969, pp. 1125-1143.

Furlong, R.W., Becker, E.B., and Colville, J., "Large Displacement
Analysis of Thin Plates," Journal of Structural Engineering,
ASCE, Vol. 99, No. ST3, 1973, pp. 349-364.

Murthy, S.D.N., and Sherbourne, A.N., "Nonlinear Bending of Elastic
Plates of Variable Profile,"” Journal of Engineering Mechanics
Division, ASCE, Vol. 100, 1974, pp. 251-265.

Turvey, G.J., "Large Deflection of Tapered Annular Plates by Dynamic
Relaxation," Journal of the Engineering Mechanics Division,
ASCE, Vol. 104, 1978, pp. 351-366.

Chien, W.Z., "Large Deflections of a Circular Clamped Plate Under
Uniform Pressure," Chinese Journal of Physics, Vol. 7, 1947,
pp. 102-114.

Chien, W.Z., and Yeh, K.Y., "On the Large Deflection of Circular
Plates," Acta scient. Sin., Vol. 3, 1954, pp. 405-436.

Schmidt, R., "lLarge Deflections of a Clamped Circular Plate," Journal
of the Engineering Mechanics Division, ASCE, Vol. 94, 1968,
pp. 1603-1606.

Schmidt, R., "Finite Deflections of a Loosely Clamped Circular Plate
Loaded at its Center," Journal of Indust. Math. Society, Vol.
23, Part 1, 1973, pp. 45-51.

Schmidt, R., and Da Deppo, D.A., "Several Perturbation Solutions in
the Nonlinear Theory of Circular Plates and Membranes," Journal
of Indust. Math. Society, Vol. 25, Part 2, 1975, pp. 83-96.

Stippes, M., and Hausrath, A.H., "Large Deflection of Circular
Plates," Journal of Applied Mechanics, Vol. 19, 1952, pp.
287-292.

Krayterman, B.L., and Fu, C.C., "Nonlinear Analysis of Clamped

Circular Plates,” Journal of Structural Engineering, ASCE,
Vol. 111, 1985, pp. 2402-2415.

Batternam, S.C., and Lehner, J.R., "Nonlinear Static and Dynamic
Deformations of Shells of Revolution," International Journal of
Nonlinear Mechanics, Vol. 9, 1974, pp. 501-519.

105



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Dumir, P.C., Gandhi, M.L., and Nath, Y., "Nonlinear Static and
Transient Analysis of Orthotropic Thin Circular Plates with
Elastically Restrained tdge under Central Load,"” Journal of
Composite Materials, Vol. 17, 1983, pp. 478-491.

Dumir, P.C., and Shingal, L., "Nonlinear Analysis of Thick Circular
Plates," Journal of Engineering Mechanics Division, ASCE, Vol.
112, 1986, pp. 260-272.

Nath, Y., Dumir, P.C., and Bhatia, R.S., "Nonlinear Static and
Dynamic Analysis of Circular Plates and Shallow Sperical Shells
Using the Collocation Method," International Journal for
Numerical Methods in Engineering, Vol. 21, 1985, pp. 565-578.

Wempner, G.A., and Schmidt, R., "Large Symmetric Deflections of
Annular Plates," Journal of Applied Mechanics, Vol. 25, 1958,
pp. 449-452.

Yeh, K.Y., "Large Deflection of a Circular Plate with a Circular
Hole at the Center," Acta Scient. Sin., Vol. 2, 1953, pp.
127-144.

Dumir, P.C., Nath, Y., and Gandhi, M.L., "Non-Linear Axisymmetric
Static Analysis of Orthotropic Thin Annular Plates,”
International Journal of Non-Linear Mechanics, Vol. 19, 1984,
pp. 255-272.

Sokolovsky, V.V., "Elastic-Plastic Bending of Circular and Annular
Plates," Prikladnaya Mate matika i Mekhanika, Moscow, U.S.S.R.,
Vol. 8, No. 2, 1944, pp. 141-166.

Sokolovsky, V.V., "Elasto-Plastic Bending of Circular and Annular
Plates," Brown University, Division of Applied Mathematics,
Technical Report No. 3, 1955,

Grigoriev, A.S., "Bending of Circular and Annular Plates with
Variable Thickness Beyond the Elastic Limit," Inzherneryi
Shornik, Moscow, U.S.S.R., Vol. 20, 1954, pp. 52-92.

Dvorak, J., "Circular Ring Plate in Elastic-Plastic State,"
Proceedings, Non-Homogeneity in Elasticity and Plasticity,
Warsaw, 1959, pp. 519-521.

Ohashi, Y., and Murakami, S., "On the Elastic-Plastic Bending of a
Clamped Circular Plate Under a Partial Circular Uniform Load,"
Bulletin, Japan Society of Mechanical Engineers, Vol. 7, No. 27,
1964, pp. 491-498.



36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

107

Drucker, D.C., and Hopkins, H.G., "Combined Concentrated and
Distributed Load on Ideally-Plastic Circular Plates,"
Proceedings, 2nd U.S. National Congress of Applied Mechanics,
Ann Arbor, MI, 1954, pp. 517-520.

Hopkins, H.G., and Prager, W., "The Load-Carrying Capacities of
Circular Plates," Journal of the Mechanics and Physics of
Solids, London, Vol. 2, 1953, pp. 1-13.

Pell, W.H., and Prager, W., "Limit Design of Plates," Proceedings,
1st U.S. National Congress of Applied Mechanics, Chicago, IL,
1951, pp. 547-550.

Haythornthwaite, R.M., "Deflection of Plates in Elastic-Plastic
Range," Proceedings, 2nd U.S. National Congress of Applied
Mechanics, Ann Arbor, MI, 1954, pp 521-526.

Lackman, L.M., "Circular Plates Loaded into the Plastic Region,"
Journal of the Engineering Mechanics Division, ASCE, Vol. 90,
No. EM6, 1964, pp. 21-30.

Lin, T.H., "Bending of a Plate with Nonlinear Strain Hardening
Creep," Proceedings of the Colloquium on Creep Structures,
International Union of Applied Mechanics, Julius Springer,
Berlin, 1962, pp. 215-228.

Popov, E.P., Khojesteh-Bakht, M., and Yaghmai, S., "Analysis of
Elastic Plastic Circular Plates," Journal of the Engineering
Mechanics Division, ASCE, Vol. 93, 1967, pp. 49-65.

Turvey, G.d., and Lim, G.T., "Axisymmetric Full-Range Analysis of
Transverse Pressure-Loaded Circular Piates,” International
Journal of Mechanical Science, Vol. 26, No. 9110, 1984, pp.
489-502.

Naghdi, P.M., “"Bending of Elastoplastic Circular Plates with Large
Deflection,”" Journal of Applied Mechanics, ASME, Vol. 19, 1952,
pp. 293-300.

Ohashi, Y., and Murakami, S., "Large Deflection in Elastoplastic
Bending of a Simply Supported Circular Plate Under a Uniform
Load," Journal of Applied Mechanics, ASME, Vol. 33, pp. 866-870.

Ohashi, Y., and Murakami, S., "The Elasto-Plastic Bending of a
Clamped Thin Circular Plate,"” Proceedings of the 1llth
Interational Congress of Applied Mechanics, Munich, 1964, pp.
212-223.

Ohashi, Y., Murakami, S., and Endo, A., "Elasto-Plastic Bending of an
Annular Plate at Large Deflection," Ingenieur-Archiv, Vol. 35,
1967, pp. 340-350.



48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

108

Ohashi, Y., and Murakami, S., "Axisymmetric Elasto-Plastic
Deformation of Circular Plates Under Combined Action of Lateral
Load and Membrane Force," Memories of the Faculty of
Engineering, Nagoya University, Vol. 21, 1969, pp. 79-121.

Myszkowski, J., "Endliche Durchbiegungen Beliebig Eingspannter Dunner
Kreis-und Kreisring Platten Im Plastischen Materialbereich,"
Ingenieur-Archiv, Vol. 40, 1971, pp. 1-13.

Turvey, G.J., "Axisymmetric Elasto-Plastic Flexure of Circular Plates
in the Large Deflection Regime," Proceedings of the Institution
of Civil Engineers, Part 2, Vol. 67, 1979, pp. 81-92.

Turvey, G.J., "Thickness-Tapered Circular Plates, An Elasto-Plastic
Large Deflection Analysis," Journal of Structural Mechanics,
Vol. 7, 1979, pp. 247-271.

Sherbourne, A.N., and Srivastava, N.K., "Elastic-Plastic Bending of
Restrained Pin-Ended Circular Plates," International Journal of
Mechanical Science, Pergamon Press, Vol. 13, 1971, pp. 231-241.

Hi11, R., Mathematical Theory of Plasticity, Oxford University Press,
London, 1950.

Kachanov, L.M., Foundation of the Theory of Plasticity, North-Holland
Publishing Co., Amsterdam, 1971.

Mendelson, A., Plasticity: Theory and Application, The Macmillan
Company, New York, NY, 1968.

Crose, J.G., and Ang, A.H.S., "Nonlinear Analysis Method for Circular
Plates," Journal of the Engineering Mechanics Division, ASCE,
Vol. 95, 1969, pp. 979-999.

Onat, E.T., and Haythornthwaite, R.M., “The Load Carrying Capacity of
Circular Plates at Large Deflection," Journal of Applied
Mechanics, Vol. 23, 1956, pp. 49-55.

Tanaka, M., "Large Deflection Analysis of Elastic-Plastic Circular
Plates with Combined Isotropic and Kinematic Hardening,"
Ingenieur-Archiv, Vol. 41, 1972, pp. 342-356.

Hamada, M. and Tanaka, M., "A Numerical Method Considering the
Bauschinger Effect for Large Deflection Analysis of
Elastic-Plastic Circular Plates,” Bulletin, Japanese Society of
Mechanical Engineers, Vol. 15, No. 87, 1972, pp. 1029-1040.

Gorji, M., "Nonlinear Analysis of Plates with Plastic Orthotropy,”
Journal of Structural Engineering, ASCE, Vol. 3, No. 10, 1985,
pp. 2214-2226. '



61.

62.

63.

64.

65.

66.

67.

Lin, T.H., Lin, S.R., and Mazelsky, B., "Elastic-Plastic Bending of
Rectangular Plates with Large Deflection," Journal of Applied
Mechanics, ASME, Vol. 39, 1972, pp. 978-982,

Lin, T.H., "On the Associated Flow Rules of Plasticity Based on
Crystal Slips," Journal of the Franklin Institute, Vol 270, No.
4, 1960.

Lin, T.H., and Ho, E., "Elasto-Plastic Bending of a Rectangular
Plate," Journal of Engineering Mechanics Division, ASCE, Vol.
94, EM1, 1968, pp. 199-210.

Zienkiewicz, 0.C., The Finite Element Method, 3rd ed., McGraw-Hill
Book Co., Inc., London, 1977.

Ugural, A.C., Stresses in Plates and Shells, McGraw-Hill Book Co.,
Inc., New York, NY, 1981.

Stockton, F.D., and Drucker, D.C., "Fitting Mathematical Theories of
Plasticity to Experimental Results, Journal of Colloid Sciences
(Rheology issue), Vol. 5, 1950, pp. 239-250.

Ramberg, W., and Osgood, W.R., "Description of Stress-Strain Curves
by Three Parameters,” NACA TN 902, 1943.

109



APPENDICES



The

1> 72> 73

APPENDIX A

NOTATION

following symbols are used in this study:

radius of plate;

radius of the circular hole at the center of the plate;
elastic flexural rigidity;

modulus of elasticity in tension and compression;
loading function;

function relating effective plastic strain and effective
plastic stress;

plate thickness;

first, second, and third invariants of the stress deviator

tensor;
yield function;

sectional moments per unit length;

inelastic sectional moments per unit length;

equivalent sectional moments per unit length;

sectional forces per unit length;
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sectional forces per unit length due to

geometric nonlinearity;

inelastic sectional forces per unit length;

equivalent sectional forces per unit length;

constant;
shearing force per unit length of the cylindrical section

of radius r;
inelastic shearing force per unit length of the cylindrical

section of radius r;

intensity of uniformly distributed lateral load;

intensity of fictitious Tateral load due to nonlinear terms

of lateral displacement;

intensity of fictitious lateral load due to the plastic

strains;

radial component of intensity of fictitious body force due

to nonlinear terms of lateral displacement;

radial component of intensity of fictitious body force due
to the plastic strains;

radial and tangential cylindrical coordinates;

displacement components along radial and lateral directions;
lateral coordinates;

radial and tangential components of total strain;

radial and tangential components of elastic strain;
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e e, = radial and tangential components of plastic strain;

e = effective plastic strain;
de = effective plastic strain increment;
de.. = components of incremental plastic strain tensor;
ij = components of deviatoric stress tensor;
dh = positive constant of proportionality;

v = Poisson's ratio;

015 %o» 337 normal stress components in general coordinates;
955 913> Op3" shear stress components in general coordinates;
opr, Ot = radial and tangential components of stress;

o = effective stress;

a
Q*
]

effective stress increment;
gy = yield stress in simple tension;

constant;

Q
o
1]

a = convergance parameter;
¢ = slope; and

K = curvature.



APPENDIX B

ANALYTICAL SOLUTIONS OF LINEAR PLATE
BENDING PROBLEMS

The small deflection elastic solutions of isotropic circular and
annular bending plate problems with various loading conditions of interest

for this study are presented herein,
Simply supported circular plates (3, 65)

A. Subjected to a uniformly distributed lateral load

B. Subjected to a concentrated load at the center

2 r
—— +2r Ln-— B.2
161D ) ] ( )

1+v a

C. Subjected to a uniformly distributed line load at r = b
I. Outer portion solution r > b
a2-b2

2 1+v 2
a

) + (b%+rd)in % | (B.3)




II. Inner portion solution r < b and r = b

W= % [(b%+r?) Ln.‘a’.+ (a2-b2)(3+v)az - (1';) r’ ] (B.4)
2 (1+v) a

Subjected to a uniformly distributed edge moment

W= ﬁ(_“;rv)(az-rz) (B.5)
Clamped circular plates (3, 65)

Subjected to a uniformly distributed lateral load

R (B.6)

Subjected to a concentrated load at the center

W= T%ﬁﬁ [(az—rz) + or? Ln-%] (B.7)

Subjected to a uniformly distributed line load at r = b

I. Outer protion solution r > b

W= 55[_0 [(a%-r?) s (b%+r?) Ln L (B.8)

2a2
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II. Inner portion solution r < b and r = b

2.2
W= % [(b%r?) Ln .;l + (a%-b?) %l ] (8.9)

Where for the aforementioned expressions of simply supported and clamped

circular plates the following symbols are used:

1"

a = radius of the circular plate;
b = radial location of the applied lateral line load;
D = flexure rigidity;
M = applied edge moment;
P = applied concentrated center load; or
total applied line load;
q = applied uniformiy distributed lateral load;
r = radial location of a point on the middle surface of the plate;
w = lateral deflection;
v = Poisson's ratio;

m = 3.1416; and

Ln = natural logarithm.
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Simply supported annular plates

Subjected to a uniformly distributed lateral Toad

The solution of this problem may be obtained by superposing on the
deflections obtained for a simply supported circular plate,
equation (B.1), the deflections produced by the removal of the
bending moments and the shearing forces of the simply supported
circular plate at the inner edge location of the annular plate as
shown in Fig. 51.a. These shearing forces and bending moments are

given by (3)

P = —qmb? (8.10)
= - ?g (3+v) (a’- b) (B.11)

Analytical expressions for the deflections produced by the inner
edge bending moments and shearing forces are given by equations
(B.15) and (B.14), respectively. Therefore, the solution of a
simply supported annular plate subjected to a uniformly distributed

lateral load may be expressed as

2 2 C
_q 2 2.,5+v 2 2 gb” (r r 1.2 r
= ri)jc—a-r)-—j|—(tn--1) -—=r"-CL
ey (G ) s gy b (g ) g - Cples ]
2 2 2
_gb " (3+v) r __+ 2 nt. _EE__.] (B.12)

16D 2(1+v)  1-v a  2(1+v)
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(a) SUBJECTED TO A UNIFORMLY DISTRIBUTED LATERAL LOAD
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oS e

(b) SUBJECTED TO A UNIFORMLY DISTRIBUTED LATERAL LINE LOAD

FIGURE 51. DECOMPOSITION OF TWO LINEAR ANNULAR PLATE BEDNING
PROBLEMS
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where

l-v  2b° b

v a-b a
2 2

c =-Mvab .b (B.13.b)
2 1-v a2_b2 a

2 2
c =& q+ilv_ b . by (B.13.¢)
3 3 2Ty 22 a

Subjected to a uniformly distributed line load at the inner edge of

the plate (3, 65)

W= -E—-[ﬁ tnFf-1)-—=rc-¢Cc Lnl+ C3] (B.14)

where C1, C», and C3 are defined by expressions (B.13).
Subjected to a uniformly distributed moments at the inner and outer

edges (3, 65)

_ M1b r2 a2 r a2
W et T T sy
D(a -b ) ( V) -V a ( V)
2
M,a 2 pa 2
.+ 2 - - % i+ 2 (B.15)

where Mj and Mp denote the uniformly distributed moments at

the inner and outer edges, respectively.
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Subjected to a uniformly distributed line load at r = ¢

The solution of this problem may be obtained by dividing the simply
supported annular plate into two parts as shown in Fig. 51.b. It
is seen that the inner portion of the plate is in the condition of
pure bending produced by the uniformly distributed moments Mj and
that the outer portion of the plate is bent by the moments Mj and
the shearing force P, The magnitude of the inner moment Mj is
found from the condition of continuity along the circle r = ¢, from
which it follows that both portions of the plate have, at that
circle, the same slope.

Since the shearing forces on the inner plate portion are equivalent
to zero, the governing equation for the inner plate portion may,

therefore, be expressed as (3, 65)

4 18 (+My-g (8.16)

W= - il P o1 Lnr- 1 (B.17.a)
4 2 3 e
I I
w, =-_Lp.2 (B.17.b)
r 2 r
I I
W, = - 1 + 2 (B.17.C)



121
where 11, Iz, and I3 are constants of integration.
The sectional moment M, is given by

I I,

M = -D(w, +w, ) M_ (1+v)- 2 (1-v)] (B.18)
r rr r r 2

At r = b, corresponding to the inner free edge, the sectional
moment M, is equivalent to zero. At r = ¢, corresponding to the
outer boundary of the inner plate portion, the sectional moment
M, is equivalent to Mj. Substituting these boundary conditions
into expressions (B.18) and solving the two resulting equations
simultaneously, the values of the first and second constants of

integration are found to equal

2M1
l= - (B.19.a)
L op(1+v)(1-6%)

M1b2
1 = (B.19.b)
2 p(1-v)(1-8%)
where
g=0 (B.20)

C

Substituting the values obtained for I and I2 into expression
(B.17.b), the slope of the outer boundary of the inner portion of

the plate (r = c) may be expressed as
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M. c 2
1 1 B

(w, ) = - ( + —) (B.21)
rc D(l-BZ) 1+v 1

The solution of the outer portion of the plate is readily obtained
by superposing the deflections induced by the inner moment Mj,
equation (B.15), on the deflections induced by the total shearing

force P given by equation (B.14). Thus, we can write

2
. Mc : [ ;i , laz LT az+ |
D(az-c ) 2(1+v) 1l-v 2(1+v)
2 I
P r r 4 2 r
+ | — _— - - - —_
) [ > (Ln - 1) 7" ISLn St 16] (B.22)
where
v 2% ¢
I = - ln = (B.23.a)
4 1+ 2 2 a
a-Cc
2 2
[ = v _ac ¢ (B.23.b)
5 1-v 2 2 a
a - ¢C
2 2
1 1-v c C
1 =3 (1+2 - n & .23.
s -2 LT3 72 n3) (B.23.c)

The slope of the inner boundary of the outer portion of the plate

may, therefore, be expressed as
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2
(w, ) = M;c 5 [ 1$ 1a2 ]
D(al- ) v {1-v)c
I I
Pc c 1 4 5
+ > L - e e e e .24
R Sl Cz] (8.24)

Equating expressions (B.21) and (B.24) yields the value of the

inner moments M; as a function of the total applied line load P

I I
S
Moo= - _PC ¢ (B.25)
1 411D 1 2 2 2
C ( + 8 ) + C c , a ]
D(l-Bz) 1+v  1-v D(aZ } CZ) 1+v  (1-v)c

I. Outer portion solution r > c and r = ¢
The solution for this portion of the plate is given by
expression (B.22) where I3, I5, Ig and M} are given by
equations (B.23) and (B.25), respectively,

II. Inner portion solution b < r < c
The deflection of the inner portion have been defined by

equation (B.17.a)

W=~——r - 12 Ltn r -1 (B.26)

where I1 and Io are defined by equations (B.19). The value
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of I3 is found from the condition of continuity along the
circle r = ¢, from which it follows that both portions of the
plate have, at that circle, the same deflection. Using equation

(B.26), the third constant of integration is found to equal

I_=- ¢ - 12 lnc-w (B.27)

Utilizing the continuity condition, the deflection at the outer

boundary of the inner plate may be obtained from expression

(B.22) as
2
_ M1C c2 a2 c a2
"= Gt sz
c D(a2-c?) (1+v) (1-v) a 2(1+v)
+ _B_.[ E? (tn £-1) - Eﬂ.cz -I1inS+1] (B.28)
4 2 a 4 5 a 6 )

Substituting expression (B.27) into (B.26), the solution

corresponding to the inner portion is found to equal

W= (c2 - r2) + 12 tn £+ w (B.29)
r

where 17, I2 and we are given by expressions (B.19) and

(B.28) respectively.
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Clamped annular plates

Subjected to a uniformly distributed lateral load

The solutionn of this problem may be obtained by superposing on the
deflections obtained for a clamped circular plate, equation (B.6),
the deflections produced by the removal of the bending moments and
the shearing forces of the clamped circular plate at the inner edge
location of the annular plate as shown in Fig. 5la. These shearing

forces and bending moments are given by (53)

P = - qub’ (8.30)
2 2
_ Qqa _b

Ml = -1 [ (1+v) ;E (3+v) ] (B.31)

Analytical expressions for deflections produced by the inner edge
bending moments and shearing forces are given by expressions (B.35)
and (B.34), respectively. Therefore, the solution of a clamped
annular plate subjected to a uniformly distributed lateral load may

be expressed as

2 c
S DD IRNCAV | R (VT ST RN [ IR0 S-SR S T
Weggg () g 2 - 1) c4( 7" TG ]
2 2 2
_ _9a 1+v) - b 3+v 12y 2 inFr 4+ 2 B.32
16DC[( ) 2( )](ZV‘ anaZ) ( )
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where
b 2
C.=2[ (1+v)(2n 2 ) + (1-v) - 2 (1-v) ] - (B.33.a)
1 a b2
c, = _8 [ (1+v)(2 Ln_: )+ 2 ] (8.33.b)
2 2
C =2 [ (1+v)(2 Ln B) + (3+v) + & (1-v) ] (B.33.c)
3 2 a b
- 32
C4 = (1+v) + EE (1-v) (B.33.d)

Subjected to a uniformly distributed line load at the inner edge

of the plate (65)

2 r r
= . + 2 (- = - T4 .34
W 5D [ v (Ln - 1) c ( 7 r C2 Ln - C3) 1 (B.34)

where C1, C2, C3 and C4 are defined by expressions (B.33)
Subjected to a uniformly distributed moment at the inner edge (65)
2 2 r 2

1 a
= __~ (-2 + In — + — B.35
W (zr a - 2) ( )

where C4 is defined by expression (B.33.d)
Subjected to a uniformly distributed line load at r = ¢

The solution of this problem may be obtained by dividing the
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clamped annular plate into two parts as shown in Fig. 51.b.
Following a procedure similar to that outlined for simply supported

annular plates in section 3D, we obtain

(2ln E -1 +1 (2.8,
L I, 27 2 (5.36)
1~ 8mD L & A 2 '
- e T (7 © )
D(1-8%) N 4 ¢
where
K.

I4 = (1+v) + ;E (1-v) (B.37.a)
I =2[ ()2 &) + (1-v) (1 - a2) ] (B.37.b)
; : X .37.
- -a% [ (14v) (2 Ln SREN (8.37.c)
g =D (B.38)

C

I. OQuter portionr >c and r = ¢
Substituting the expression for M; (B.36) into equation
(B.35), we obtain the deflections due to moments Mj. The
deflections due to the total shearing force P are obtained from

equation (B.34). Adding together both these deflections we
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obtain the outer portion solution stated as

M 2
w=_1_(-_1_r2+aan£+.a__)
DI4 2 a 2
P 2 r 1, 5 2 r
+— [ " tnl-1)+(-=2r" -1 Lnl+1.)](B.39)
81D a I, 4 6 a 7
where
2 c ,2
=2 [ (1+v) 2 Ln3) + (3+v) + 2 (1-v) ] (B.40)
7 2 a 2

and I4, Ig, Ig and M} are given by equations (B.37) and
(B.36), respectively.
II. Inner portion solution b < r < ¢
The inner portion solution for fixed annular plates is
equivalent to that of simply supported annular plates outlined

in section 3.0.1I. Thus, we can write

(c2 - rz) + 1 Ln.% + W (B.41)

where I] and Io are given by equation (B.19)
Utilizing the continuity condition, the deflection at the outer
boundary of the inner plate portion may be obtained from

equation (B.39) as
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w=._.1_(—lc2+aan_c_+._a_)
c 14 2 a 2
PRI (Ln—-1)+1—-(-—1—5c2-1 in £+ 1.) ] (B.42)
81D I 2 6 7 :

where M; and 14, I5, Ig, 17 are defined by equations

(B.36), and (B.40), respectively.

For the aforementioned simply supported and fixed annular plate expressions

the following symbols are used:

L]

a = radius of plate;

b = radius of the circular hole at the center of the plate;
¢ = radial location of applied line load;

D = elastic flexural rigidity;

Ml,M2 = applied inner edge and outer edge moments;
M. = sectional moment per unit length;

P = total applied line load;

q = applied uniformly distributed lateral load;

r = radial location of a point on the middle surface of the
plate;

w = lateral deflection;

v = Poisson's ratio;

= 3,1416; and

Ln = natural logarithim.
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