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ABSTRACT 

Improving the STEM readiness of students from historically underserved groups 

is a moral and economic imperative requiring greater attention and effort than has been 

shown to date.  The current literature suggests a high school science sequence beginning 

with physics and centered on developing conceptual understanding, using inquiry labs 

and modeling to allow students to explore new ideas, and addressing and correcting 

student misconceptions can increase student interest in and preparation for STEM 

careers. 

The purpose of this study was to determine if the science college readiness of 

historically underserved students can be improved by implementing an inquiry-based 

high school science sequence comprised of coursework in physics, chemistry, and 

biology for every student.  The study used a retrospective cohort observational design to 

address the primary research question: are there differences between historically 

underserved students completing a Physics First science sequence and their peers 

completing a traditional science sequence in 1) science college-readiness test scores, 2) 

rates of science college-and career-readiness, and 3) interest in STEM? Small positive 

effects were found for all three outcomes for historically underserved students in the 

Physics First sequence. 
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CHAPTER 1 

STATEMENT OF THE PROBLEM 

Henry Levin (2009), who has conducted research over a span of more than 40 

years on the economic benefits of investing in education, asserts “educational equity is a 

moral imperative for a society in which education is a crucial determinant of life’s 

chances” (p. 5).  In Rising above the Gathering Storm, the National Academies (2007) 

note the rapid erosion in the U.S.’s competitiveness in science and technology—and thus 

the U.S. position as a global economic leader. At the same time, the U.S. population is in 

the midst of profound demographic change both in terms of the racial and economic 

composition of its citizens and the distribution of income among them.  Public schools in 

America have historically had greater success educating middle-to-upper income and 

White students in math and science than historically underserved students (Kannapel & 

Clements, 2005). Thus, improving the STEM readiness of students from historically 

underserved groups is a moral and economic imperative requiring greater attention and 

effort than has been shown to date. 

The current literature suggests a high school science sequence beginning with 

physics and centered on developing conceptual understanding, using inquiry labs and 

modeling to allow students to explore new ideas, and addressing and correcting student 

misconceptions can increase student interest in and preparation for STEM careers. This 

Physics First approach is grounded in constructivist learning principles and embeds 

aspects of culturally relevant pedagogy.  The Next Generation Science Standards and the 

increased emphasis on preparing all students to be college- and career-ready in STEM 

provide a supportive policy environment for districts to adopt a Physics First approach.  
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However, successful implementation of a Physics First science sequence requires 

ensuring teachers have the content and pedagogical knowledge, self-efficacy, and the 

belief in the ability of all of their students to engage in rigorous science. 

Background of the Problem 

“Educational equity is a moral imperative for a society in which education is a 

crucial determinant of life’s chances” (Levin, 2009, p.5). Some scholars argue that 

“rather than ameliorating educational inequality” (Schmidt, Burroughs, Zioda, & Huong, 

2015, p. 380), schools are exacerbating it. Others assert that schools have a “mixed and 

modest impact on the opportunity gap” (Putnam, 2015). While there are a number of both 

school and non-school factors that contribute to the achievement gap, I would argue that 

schools are morally obligated to increase efforts to reduce the gap in college and career 

readiness of Black and Latino students and their White and Asian peers, regardless of the 

sources.  

The lifetime earnings of a college graduate are more than double those of a high 

school graduate for both genders and for all races (Levin, 2009), yet Black collegians are 

about half as likely and Hispanic/Latinos one-third as likely to earn a degree as their 

White peers (Deming & Dynarski, 2009).  The median income among full-time workers 

with a bachelor’s degree in 2008 was $55,700 compared to $33,800 for high school 

graduates with no college degree and employed full-time (Baum, Ma, & Payea, 2010). 

Each new high school graduate generates over $200,000 in economic benefit to society 

through increased tax revenue and savings in expenditures for health care, crime, and 

welfare (Levin, 2009).  Even greater benefits accrue for high school graduates who 
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continue their education and pursue careers in science, technology, engineering and math 

(STEM) as well as bestowing “economic and other benefits on the nations and regions in 

which they live and work” (Zinth & Dounay, 2006, p.1).  Unfortunately, historically 

underserved high school students are less likely to graduate from high school and are less 

likely to have sufficient opportunity to learn critical content, receive high quality 

instruction, and take high school courses that prepares them for college and pursuit of 

post-secondary study in STEM (ACT, 2015; Ottmar, Konold, Berry, Grissmer, & 

Cameron, 2013; Schiller, Schmidt, Muller, & Houang, 2010; Schmidt et al., 2015; 

Schwartz, Sadler, Sonnert, & Tai, 2009).  This opportunity to learn gap has significant 

implications for individuals and for the country.  Ornstein (2010) notes: 

If the achievement gap in math and science had been closed between black and 

Hispanic students and white and Asian students by 1998 the Gross Domestic 

Product in 2008 would have been about $400 to $500 billion higher. If the gap 

between America’s low-income students and the remaining students had been 

similarly narrowed, GDP in 2008 would have been $400 to $670 billion higher. 

(p.426) 

 

The U.S. position as a global leader may be abruptly lost without a greatly 

expanded commitment to achieving success in advanced education in STEM (National 

Academies, 2007).  Only 15% of U.S. college graduates attain degrees in the natural 

sciences and engineering, compared to 50% in China (Freeman, 2008). It is estimated that 

the U.S. will need 1.75 million more engineers, a 20% increase, by the year 2010 

(Gasbarra & Johnson, 2008).  Demand for engineers is increasing at three times the rate 

of other professions (Gasbarra & Johnson, 2008), yet Blacks, Latinos, and Native 

Americans account for just 7% of science and engineering professionals in the United 

States, while constituting 25% of the U.S. population (Milloy, 2003). 
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At the same time, the U.S. is in the midst of profound demographic change both 

in terms of income distribution and in the racial and economic composition of its citizens. 

The poverty rate for young people under 18 in the U.S. rose from 16.7% to 21.8% in the 

years from 2002 to 2012 and more than a third of Hispanic/Latino and Black children live 

in poverty (Sparks, 2013).  Poverty among children in America correlates to completing 

fewer years of schooling, working fewer hours and earning lower wages as adults, and a 

greater likelihood of reporting poor health and nutrition (Children’s Defense Fund, 2012). 

The U.S. is projected to become a majority-minority nation for the first time in 2043 

(U.S. Census Bureau, 2012).  Sadly, public schools in America have historically had 

greater success educating middle-to-upper income and White students than poor students 

and students of color (Kannapel & Clements, 2005).  The Children’s Defense Fund 

(2012) warns that “more than three of four Black and Hispanic/Latino children, who will 

be a majority of our child population by 2019, are unable to read or compute at grade 

level in the fourth or eighth grade and will be unprepared to succeed in our increasingly 

competitive global economy” (p. 1). As the percentage of students living in low-income 

families has increased, the gap between the average reading and math skills of students 

from low- and high-income families (Duncan & Murnane, 2014; Reardon, 2013) and the 

gap in college graduation rates have increased substantially (Bailey & Dynarski, 2011).   

Nationally, the academic achievement gap as measured by the percentages of students 

meeting college readiness benchmarks in math and science is even more pronounced 

among Black and Hispanic/Latino students interested in STEM fields (ACT, 2015).  

There is little consensus on the primary cause of these educational disparities, but a body 
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of literature exists suggesting both in-school (e.g., schooling is geared toward the 

dominant White middle class culture, tracking practices, unequal distribution of quality 

teachers, low expectations for non-White and Asian students, normalization of failure) 

and out-of-school factors (e.g., family composition, poverty, student mobility, unequal 

per pupil expenditures, resegregation of neighborhoods) correlate with student 

achievement (Cowan Pitre, 2014; Jeynes, 2015).   

Research Problem  

While there are many factors contributing to disparate educational outcomes for 

low-income and Black and Hispanic/Latino students, the purpose of this study was to 

determine if the science college readiness of historically underserved students can be 

improved by implementing an inquiry-based high school science sequence comprised of 

coursework in physics, chemistry, and biology for every student.   

Significance 

The U.S. population will increasingly be comprised of citizens from racial or 

ethnic groups that are historically underrepresented in mathematics and science fields and 

who have historically underperformed on mathematics and science assessments (Zinth & 

Dounay, 2006).  It is increasingly necessary that all workers are skilled in approaching 

math and science problems and solving problems (Center for Education Policy Analysis, 

2008) as  “the great majority of newly created jobs are the indirect or direct result of 

advancements in science and technology” (National Academies, 2010, p.18).  Hence, the 

lack of preparation for and knowledge of STEM careers of historically underserved 

students both contributes to the threat of the global standing of the U.S. economy and  
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makes it less likely these  students will benefit from the economic and intellectual 

rewards of a STEM career or high-skills, high-wage jobs in general. 

U.S. students who report taking physics during high school are twice as likely to 

meet the ACT college readiness benchmark in science as other students (ACT, 2013c). 

Sadler and Tai (2007) find that high school courses in biology, chemistry, and physics 

prepare students for college courses in the same field. Unfortunately, only one in four 

Hispanic/Latino and Black students takes a physics course in high school; half the rate of 

their Asian peers (White & Tesfaye, 2011).  One approach to closing this opportunity to 

learn gap in STEM for historically underserved students might be to increase the number 

of science credits required for high school graduation or require all students to complete 

biology, chemistry, and physics in order to graduate. However, evidence suggests that 

policies that increase science graduation requirements may not be effective alone for 

improving student outcomes (Buddin & Croft, 2014; Teitelbaum, 2003) or improving 

overall college enrollment rates or persistence (Montgomery, Allensworth, & Correa, 

2010; Plunk, Tate, Bierut, & Grucza, 2014). Further, increased graduation requirements 

in math and science increase the likelihood a student will drop out of high school (Plunk, 

Tate, Bierut, & Grucza, 2014). Students who drop out do not benefit from increased 

science graduation requirements and the increased STEM readiness resulting from 

additional science coursework (Montgomery, Allensworth, & Correa, 2010).  

An alternative to increasing science graduation requirements is to implement a 

Physics First sequence for all students. Physics First is a framework for a three-year core 

curriculum for high school science which inverts the traditional order in which science is 
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taught in high school so that physics is followed by chemistry and then biology (Pasero, 

2001).  The objective of the Physics First approach “is to build knowledge of science and 

the concurrent use of mathematics, following the hierarchical nature of science as it has 

unfolded over the past century” (Bardeen & Lederman, 1998, p.178).  The beginning 

physics course in this inverted science sequence focuses on developing conceptual 

understanding rather than mathematical manipulation, uses inquiry labs to allow students 

to explore new ideas, and addresses and corrects student misconceptions (High School 

Committee of the American Association of Physics Teachers, 2009). 

 Despite better reflecting the evolving nature of science and how students learn, 

few schools begin their high school sequence with physics (Bardeen, & Lederman,1998; 

Ewald,  Hickman, Hickman, & Myers, 2005; Haber-Schaim, 1984).  A 2005 survey of 

physics teachers found only 3% of public schools employ such a “Physics First” 

approach (High School Committee of the American Association of Physics Teachers, 

2009).  Pasero (2001) laments the lack of quantitative documentation of the outcomes of 

a Physics First approach and cites this absence as the most significant finding of his study 

of schools using Physics First. In the dozen years following Pasero’s call for more 

research on the outcomes of a Physics First approach, a handful of published studies 

suggest that Physics First increases students’ conceptual understanding of physics 

(Gaubatz, 2013; Liang, L., Fulmer, G., Majerich, D., Clevenstine, R., & Howanski, R., 

2012;  O’Brien & Thompson, 2009) and advanced science course-taking and 

achievement (Gaubatz, 2013; Goodman & Etkina, 2008; Liang et al., 2012; Livanis, 

2006). While Gaubatz (2013) found no significant difference in mean ACT score gains 
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for students in a high school science sequence beginning with physics compared to their 

peers who took a traditional sequence, Dye, Cheatham, Rowell, Barlow, and Carlton 

(2013) found otherwise.  There remains a dearth of research measuring the effects of a 

Physics First approach on the science college readiness of historically underserved 

students.  Determining the effect of a Physics First approach on the science college 

readiness of students would inform the decisions of school and district leaders on how to 

better prepare their historically underserved students for post-secondary studies in STEM 

and STEM careers.  

Research Methods and Question 

This quantitative study utilized a retrospective cohort observational study design 

(Hoffmann & Lim, 2007; Mann, 2003) using extant data.  The primary research question 

was: Are there differences between historically underserved students completing a 

Physics First science sequence and their peers completing a traditional science sequence 

in: 

1.       11
th

 grade ACT science scores; 

2.       College- and career-readiness as measured by the ACT science test; and 

3.       Interest in STEM as measured by the ACT interest inventory? 

The study was situated in a suburban school district in the northwest United States 

with ten high schools. School enrollment varied from 200 to 2200 students with more 

than one-third of students qualifying for free or reduced price lunch and an equal number 

of students of color and White students.  Students entering grade 9 in the fall of 2010 and 

2011 served as the control group.  The treatment group consisted of grade 9 students 
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entering in the fall of 2012 and the fall of 2013 (who were scheduled into an inquiry-

based with modeling science sequence consisting of physics, chemistry, and biology). To 

reduce plausible rival explanations, statistical methods (i.e. multiple linear regression and 

binary logistic regression) were employed to adjust for initial differences between the two 

groups (if present) and reduce the effect of unwanted variables (Krathwohl, 2009). A 

number of confounding variables could not be controlled which weakened the internal 

integrity of the study, however.  These variables included any differences between the 

two groups in science instruction received in the 8
th

 grade between November and June 

and changes in teachers assigned to courses and their initial content and pedagogical 

knowledge.  As with the study by Gaubatz (2013), findings from a study of a single 

district “should be tempered with the understanding that successful change within 

educational settings is context-dependent” (p. 25). 

Key Concepts 

 For the purpose of this study, the following definitions are used: 

 

Black is a term that refers to a person whose ethnicity is not Hispanic or Latino 

“having origins in any of the Black racial groups of Africa” (Humes, Jones, & Ramirez, 

2011, p. 3).  Blacks are people who indicated their race(s) as “‘Black, African Am., or 

Negro’ or reported entries such as African American, Kenyan, Nigerian, or Haitian” 

(Humes et al., 2011, p. 3). 

College- and career-ready is a description of a high school student who possesses 

certain characteristics that are predictive of their success in college.  It describes a student 

has achieved a score at or above a given college readiness benchmark on an EXPLORE, 
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PLAN, or ACT assessment (ACT, 2013d). College readiness benchmarks are scores on 

the ACT subject-area tests that represent the level of achievement required for a student 

to have a 50% chance of obtaining a B or higher or about a 75% chance of obtaining a C 

or higher in the corresponding credit-bearing first-year college courses of college algebra 

(mathematics) and biology (science) (ACT, 2013d). The college benchmarks for these 

tests are 18, 20, and 23, respectively. While these assessments are primarily content 

knowledge assessments, the college readiness benchmarks established for these tests 

predict a student’s success in credit-bearing college coursework in the content area. 

Using a single assessment to predict college readiness is problematic, however 

(Maruyama, 2012).  Other scholars define college and career readiness using different 

constructs and measures (Maruyama, 2012). David Conley's (2010) key dimensions of 

college readiness are college knowledge, academic behaviors, content knowledge, and 

key cognitive strategies. College knowledge, also referred to by Conley as “contextual 

skills and awareness,” is defined as “the privileged information necessary to understand 

how college operates as a system and culture”. Academic behaviors that generally relate 

to self-management is the dimension of college readiness that includes a “range of 

behaviors that reflects greater student self-awareness, self-monitoring, and self-control of 

a series of processes and behaviors necessary for academic success”.  Content knowledge 

is described as “overarching academic skills,” which include reading and writing, and 

“core academic subjects knowledge and skills,” encompassing English, mathematics, 

science, social studies, world languages, and the arts. Key cognitive strategies include 

problem formulation, interpretation, research skills, communication, and precision and 



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

11 

accuracy (Radcliffe & Bos, 2013).  Spence (2007) defines college and career readiness as 

“the ability to read and write effectively and to think logically and symbolically, as taught 

in mathematics” (p. 42) while Burtnett (2010) writes that college and career readiness is 

“taking a core curriculum to prepare [students] for advanced career training or associate 

or bachelor's degrees — a ‘college-ready’ core of courses” (p. 42).   

Economically disadvantaged students are students who are eligible for the 

National School Lunch Program. 

Hispanic/Latino is a term that refers to “a person of Cuban, Mexican, Puerto 

Rican, South or Central American, or other Spanish culture or origin regardless of race” 

(Humes et al., 2011, p. 2). 

Historically underserved students are Black, Hispanic/Latino, Native American, 

Pacific Islander, English language learners, or economically disadvantaged students. I use 

the term historically underserved to emphasize the patterns of STEM achievement for 

these student groups as opposed to inadvertently evaluating current educational 

programming for these students by using only the term underserved.  Other scholars 

include different student groups in their definition of historically underserved and may 

substitute the word “underrepresented” for the word underserved. Hernandez, Schultz, 

Estrada, Woodcock, and Chance (2013) define underrepresented students in STEM as 

“women and African American and Latino students” (p. 89).  Contreras (2011) adds 

Native American youth and subtracts women from his definition (p.505).  For Shanahan, 

Pedretti, deCoito, and Baker (2011), students typically underrepresented in science are 

“English language learners (ELLs), girls, and students at low-achieving schools” (p. 131). 
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Native American is a term that refers to “a person having origins in any of the 

original peoples of North and South America (including Central America) and who 

maintains tribal affiliation or community attachment” (Humes et al., 2011, p. 3). 

Odds is “the probability of an event occurring divided by the probability of that 

event not occurring” (Fields, 2016, p. 880).  

Odds ratio is the ratio of the odds of an event occurring in one group compared to 

the odds of the same event occurring in a second group (Durlak, 2009; Fields, 2016).  

Opportunity to Learn (OTL) is the set of instructional activities provided to 

students to help them acquire the knowledge, skills, and abilities defined in a set of 

standards (Schmidt & McKnight, 2012). Tate (2008) deconstructs OTL into three 

aspects: 1) content exposure and coverage, 2) content emphasis, and 3) quality of 

instruction (Ottmar et al., 2013). 

Pacific Islander is a term that refers to “a person having origins in any of the 

original peoples of Hawaii, Guam, Samoa, or other Pacific Islands” (Humes et al., 2011, 

p. 3). 

Physics First is a high school curricular framework for a three-year core 

curriculum for high school science which inverts the traditional order in which biology, 

chemistry, and physics are taught in high school so that physics is followed by chemistry 

and then biology (Pasero, 2001). 

Scientific inquiry is a method of thinking that occurs when learners “construct 

explanations of phenomena in their world by generating questions, making predictions, 

marshaling evidence, building explanations, and integrating scientific concepts with real 
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world experience” (Marx, Blumenfeld, Krajcik, Fishman, Soloway, Geier, and Tali, 

2004). Thadani, Cook, Griffis, Wise, and Blakely (2010) write that scientific inquiry is 

not only about the production of knowledge, but also critique.  Moje (2007) defines 

scientific inquiry similar to Marx et al., but adds “communicating their findings to 

others” as an essential component (p. 11).  Finally, Lederman, Lederman, and Antink 

(2013) also expand on the definition of Marks et al., writing “scientific inquiry extends 

beyond the mere development of process skills such as observing, inferring, classifying, 

predicting, measuring, questioning, interpreting and analyzing data [and] also refers to 

the combining of these processes with scientific knowledge, scientific reasoning and 

critical thinking to develop scientific knowledge” (p.142).   

STEM is an acronym for a group of academic disciplines that are in the areas of 

science, technology, engineering, and mathematics (SEDTA, 2008). Other  richer 

concepts of STEM include emphasizing an interdisciplinary approach to real-world 

lessons and/or contexts (Gerlach, 2012) or an integrated approach in which the four 

disciplines are integrated into a single course or courses (Brown, Brown, Reardon, & 

Merrill, 2011). 
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CHAPTER 2 

A REVIEW OF RELATED LITERATURE 

The purpose of this retrospective cohort observational study was to determine if 

the science college readiness of historically underserved students can be improved by 

implementing an inquiry-based high school science curriculum comprised of coursework 

in physics, chemistry, and biology for every student.  The current literature indicates that 

student interest in and preparation for STEM careers may be increased by a Physics First 

approach centered on developing conceptual understanding, using inquiry labs and 

modeling to provide students opportunities to explore scientific phenomenon, and 

addressing and correcting student misconceptions.  

Theoretical Framework 

As the new century progresses, awareness has increased that high school diplomas 

too often leave young adults unprepared for success in college has increased (Conley, 

2010; Darling-Hammond, 2010). In 2010, the National Governors Association (NGA) 

and the Council of Chief State School Officers (CCSSO) released the final Common 

Core State Standards (CCSS) which are “academic benchmarks intended to define the 

knowledge and skills that high school graduates will need to be successful in college and 

careers” (Center for Public Education, 2014, p. 16). To support schools and districts in 

providing all students with an internationally-benchmarked science education, teams 

from 26 states collaborated with a 41-member writing team and partners throughout the 

country to develop the Next Generation Science Standards (NGSS) which were released 

in April 2013 (NSTA, 2011). The NGSS “seek not only to provide students with a 

foundation of essential knowledge, but also to lead young people to apply their learning 
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through scientific inquiry and the engineering-design process to deepen understanding” 

(Robelen, 2013, p.1). The adoption of the NGSS, along with aligned curriculum and 

instructional materials, is a necessary but insufficient strategy for increasing the 

preparation of students for STEM careers (Bair & Bair, 2014).  For students to attain the 

NGSS, educators must improve students’ opportunity to learn by focusing on “what and 

how well students are taught in classrooms” (Herman, 2007, p. 4).  Darling-Hammond 

(2010) asserts that “unequal access to high-level courses and challenging curriculum 

explains much of the difference in achievement between minority students and White 

students” (p.52). Lee (2005) concurs by noting that when historically underserved 

students “are provided with equitable learning opportunities in school or in their 

communities, they demonstrate academic achievement, interest, and agency” (p. 438).  

After analyzing the 2012 Programme for International Student Assessment (PISA) 

results, Schmidt et al. (2015) conclude that “any serious effort to reduce educational 

inequalities must address unequal content coverage within schools” (p. 381). It logically 

follows that adoption of a science curriculum in which classes across schools are taught 

using common units of instruction aligned to standards would help address both across-

school and in-school variation in content coverage.  A science sequence with common 

standards and instruction would close the content gap, however I also assert that the 

instruction within such a sequence must be of high quality and culturally responsive. As 

Darling-Hammond reminds us: 

Decades of research have shown that teachers who produce high levels of learning 

for initially lower- and higher-achieving students alike provide active learning 

opportunities involving student collaboration and many uses of oral and written 

language, connect to students’ prior knowledge and experiences, provide hands-
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on learning opportunities, and engage students’ higher order thought processes. 

(p.55) 

 

Providing students with richer learning, inquiry-based instruction contributes to a 

socially-just pedagogy described by Moje (2007) and Thadani et al. (2010). I maintain 

that implementing a common science sequence for all students beginning with physics 

and grounded in inquiry and modeling (a Physics First approach) can close opportunity to 

learn (OTL) gaps experienced by traditionally underserved students in terms of both 

content and instructional quality while incorporating elements of a socially-just 

pedagogy.  Further, successful implementation of a Physics First approach requires 

school and district actions to ensure teachers have the knowledge, self-efficacy, and 

beliefs to implement the new science curriculum sequence effectively (Asghar, Ellington, 

 

   

Figure 1. Theoretical framework. 
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High School Center, 2008; Penuel, Fishman, Yamaguchi, & Gallagher, 2007).  This 

theoretical framework for closing opportunity to learn gaps using a Physics First 

approach is shown in Figure 1. 

Review of the Research Literature 

I begin the review of the literature with a brief description of Physics First and its 

effects on improving student achievement in science.  I then review the literature on 

opportunity to learn (OTL) gap and summarize the components of OTL.  I conclude the 

review by relating research on aspects of Physics First to the three components of OTL 

described by Ottmar et al. (2013): content coverage, content exposure and emphasis, and 

instructional delivery. 

Physics First.  Physics First is a framework for a three-year core curriculum 

which inverts the traditional science sequence of biology, chemistry, and physics in U.S. 

high schools so that physics is taught first followed by chemistry and then biology 

(Pasero, 2001).  The objective of the Physics First approach “is to build knowledge of 

science and the concurrent use of mathematics, following the hierarchical nature of 

science as it has unfolded over the past century” (Bardeen & Lederman, 1998, p.178).  

Understanding concepts of energy storage and transfer and electrostatic and nuclear 

forces in physics helps students master chemistry the following year.  Likewise, students 

well-grounded in the basics of atoms and molecules developed in physics and chemistry 

will better understand DNA and polymers in biology. Uri Haber-Schaim (1984), an early 

proponent of Physics First, provides clear examples from science textbooks of 
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prerequisite knowledge from physics that are found in high school chemistry texts and 

the same for chemistry prerequisites found in biology textbooks. 

A Physics First approach is not a mere reordering of the traditional high school 

science course sequence, however:   

In a beginning course in physics, students explore their own notions about 

common, everyday phenomena, discuss their observations with peers, and draw 

conclusions to be tested.  They begin to make predictions, practice data collection 

and graphing techniques, apply some mathematical skills to real situations, and 

start to make sense of observations.  

(High School Committee of the American Association of Physics Teachers, 2009, 

pp. 6) 

 

The beginning physics course in the inverted science sequence focuses on conceptual 

understanding rather than mathematical manipulation, uses inquiry labs to allow students 

to explore new ideas, and addresses and corrects student misconceptions (High School 

Committee of the American Association of Physics Teachers, 2009).  The literature 

supporting the use of these instructional approaches to improve student learning in 

science are discussed further in a later section of this paper.  

 Despite better reflecting the evolving nature of science and how students learn, 

few schools begin their high school sequence with physics.  A 2005 survey of physics 

teachers found only 3% of public schools employ a Physics First approach (High School 

Committee of the American Association of Physics Teachers, 2009).  Pasero (2001) 

laments the lack of quantitative documentation of the outcomes of a Physics First 

approach and cites this absence as one of “the most significant findings” of his study of 

schools using Physics First (p. 13). In the dozen years following Pasero’s assessment, 

several studies suggest that Physics First increases students’ conceptual understanding of 
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physics (Gaubatz, 2013; Liang et al., 2012;  O’Brien & Thompson, 2009) and increases 

advanced science course-taking and achievement (Gaubatz, 2013; Goodman & Etkina, 

2008; Liang et al., 2012; Livanis, 2006). While Gaubatz (2013) identified no significant 

difference in mean ACT score gains for students in a high school science sequence 

beginning with physics compared to their peers who took a traditional sequence, Dye et 

al. (2013) found otherwise.  Mean ACT science scores were higher for students in the 

Physics First sequence (effect size .14) and even higher for the Physics First with 

modeling (effect size .29).  The increase in the percentage of students graduating college 

ready in science was roughly 20 percentage points higher for both the Physics First and 

Physics First with modeling compared to the traditional sequence (Dye et al., 2013).  

Unfortunately, none of these studies reported results for historically underserved students.   

The opportunity to learn gap.  The concept of opportunity to learn (OTL) is 

defined by researchers in a number of ways.  Broadly speaking, opportunity to learn is 

the set of instructional activities provided to students to help them acquire the knowledge, 

skills, and abilities defined in a set of standards (Schmidt & McKnight, 2012). OTL 

originated in the work of the International Association of Educational Achievement 

during the 1960s to facilitate international comparisons of student achievement 

(McDonnell, 1995). Tate (2008) deconstructs OTL into three aspects: 1) content exposure 

and coverage, 2) content emphasis, and 3) quality of instruction (Ottmar et al., 2013).  

Stevens (1993) subdivides content exposure and content coverage into two distinct 

categories.  Boscardin, Aguirre-Munoz, Stoker, Kim, Kim, and Lee (2005) deconstruct 

opportunity to learn into the facets of curriculum content, instructional strategies, 
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instructional resources (including teacher preparation), and assessment preparation 

developed by Herman, Klein, and Abedi (2000). Content coverage refers to the extent to 

which students are exposed to the core concepts identified for their grade or class.  

Content exposure encompasses both time devoted to instruction and depth of teaching.  

Content emphasis refers to both which topics receive emphasis and the balance in 

instruction of lower-order and higher-order skills.  Finally, instructional delivery 

examines factors such as coherence, the quality of interactions between students and 

teachers, and the pace of instruction. (McDonnell, 1993; Stevens, 1993; Wang, 1998). 

 

Figure 2. Three of opportunity to learn (OTL). 

Over the past half century, numerous studies have demonstrated the link between 

OTL illustrated in Figure 2 and student achievement in mathematics and science 

(Schmidt et al., 2015).  In a study of the relationship between OTL and student 

achievement on high school end-of-course exams in Algebra and English, Boscardin et 

al. (2005) found that content coverage was positively correlated with student 

performance.  Ottmar et al. (2013) found an association between content exposure and 

achievement of 5
th

 grade students in mathematics.  The “pedagogy of poverty” 
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encompasses low quality instruction with an emphasis on lower-order thinking and low-

level content, often delivered by less prepared teachers (Berry, Ellis, & Hughes, 2013; 

Stevens, 1993).   For historically underserved students and Black students in particular, 

this opportunity to learn gap translates directly to an achievement gap (Berry et al., 2013; 

Tate, 2008).  Other researchers, however, point out other gaps outside the school setting, 

including residential segregation, unequal access to health care, differences in community 

assets, family structure and parental support, unequal access to community resources that 

influence the low achievement of historically underserved students (Ladson-Billings, 

2006; Milner, 2012; Putnam, 2015).  While these external influences undoubtedly 

influence student achievement, they cannot be directly addressed by schools.  Conscious 

efforts to close opportunity to learn gaps are within the purview of schools. As 

Rotherham and Willingham (2009) assert:  

Today we cannot afford a system in which receiving a high-quality education is 

akin to a game of bingo. If we are to have a more equitable and effective public 

education system, skills that have been the province of the few must become 

universal (p. 16). 

   

As demonstrated by Schmidt and McKnight (2012), this game of bingo and its 

prize of access to high quality opportunities to learn occurs at all levels of education 

(between communities, between schools, and between classrooms) with the greatest 

source of variation in opportunity to learn occurring between classrooms. Banks, 

Cookson, Gay, Hawley, Irvine, Nieto, Schofield, and Stephan (2001) argue schools must 

“ensure that all students have equitable opportunities to learn and to meet high standards” 

(p. 198).  
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Content coverage.  The creation and adoption of common standards by states 

provide an impetus for reducing the variation across states, schools, and classrooms by 

defining common content coverage for all students and thereby reduce inequality in 

opportunities to learn (Schmidt & Burroughs, 2013).  However, the number of science 

courses students have to choose from undermines this attempt at closing the opportunity 

gap.  As documented by Schmidt and McKnight (2012) in their analysis of course 

sequences in 16 districts participating in the Third International Math and Science Study 

replication (TIMSS-R), the number of science courses offered in high school ranged from 

7 to 55.  This variety in science courses results in many possible sequences or tracks 

students may experience in high school, “leading to very different learning experiences 

with science content” (Schmidt & McKnight, 2012). Students in different sequences or 

tracks have access to different types of content knowledge and experience different types 

of classroom instruction (Abedi & Herman, 2010; Callahan, 2005; Oakes, 1990).  Simply 

put, tracking promotes inequality:   

The achievement gap between students in high-level classes and those in low-

level classes grows over time. A major cause for increasing inequality is that the 

pace, complexity, and challenge of classroom instruction are higher in high-track 

classes than elsewhere (Gamoran, Porter, Smithson, & White, 1997, pp.325-326). 

 

English Language Learners, Black, Latino, and economically disadvantaged students are 

underrepresented in high track classes, even after controlling for prior achievement 

(Burris & Wellner, 2005; Callahan, 2005; Oakes, 1990; Oakes & Wells, 1998; Zuniga, 

Olson, & Winter, 2005).  Assigning students to a common high school science sequence 

would close OTL gaps in content coverage.  However, proponents of ability tracking 

argue that tracking improves learning for all students by reducing the extreme variation in 
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student abilities within individual classrooms (Zuniga et al., 2005).  In their analysis of 

10
th

 graders in the National Educational Longitudinal Study of 1998, Argys, Rees, and 

Brewer (1998) found that low-ability students improved on achievement tests when 

assigned to heterogeneous math classes while average and high-ability students lost 

ground.  Another study from the same data set found that all students learned more in 

tracked algebra classes than in heterogeneously grouped classes (Loveless, 1999).  In 

contrast, Oakes (1990) cites numerous studies demonstrating that high-ability students do 

as well in mixed-ability classes as in tracked classes. 

 It should be noted here that de-tracking or closing gaps in content coverage alone 

may not fully close the opportunity to learn gap for historically underrepresented 

students.  Based on their ethnographic study of a low-track Earth science classroom in a 

southern high school, Gilbert and Yerrick (2001) warn that detracking schools will not 

bring about positive results as long as school structures that rely on punitive means to 

maintain student compliance with school rules rather than resolve conflicts are not 

addressed. 

Research on high school course-taking patterns has shown that enrollment in 

advanced-level science and math courses is related to college aspirations, college 

attendance and degree attainment (Tyson, Lee, Borman, & Hanson, 2007).  In their study 

of course-taking patterns among Florida high school graduates, Tyson et al. (2007) found 

that Black and Hispanic/Latino students who complete advanced science and math 

coursework are at least as likely to obtain a STEM degree in college as their White 

counterparts.  I argue that a Physics First approach in which all students complete 
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physics, chemistry and biology during their first three years of high school reduces 

content variation and opens the door for more students, particularly historically 

underserved students, to take advanced coursework in science.  This approach answers 

the call of Schmidt & McKnight (2012) for “a sensible, limited number of tracks 

(sequences) that are less arbitrary and that reflect 21
st
-century economic realities” (p. 

122). I further assert that a Physics First approach for all students supports student 

success in science coursework in college.  Students earn higher grades in college biology, 

chemistry, and physics courses if they have taken the same subject in high school 

compared to students who have not had the corresponding course in high school (Sadler 

& Tai, 2007).  

Content exposure and emphasis.  Compared to other countries, the K-12 math 

and science curriculum in the United States has been criticized for having too many 

topics that are taught at a superficial level (Krajcik & Merritt, 2012; Robelen, 2010; 

Schmidt, Wang, & McKnight, 2005).  A Framework for K-12 Science Education 

(National Research Council, 2012), on which the NGSS are based, is an attempt to bring 

coherence and depth to the U.S. science curriculum. The second dimension of OTL, 

content emphasis and exposure, is concerned with depth of teaching, topic coverage, and 

the balance in instruction of lower-order and higher-order skills.  Like the debate over 

tracking, aspects of this dimension of OTL –depth versus breadth in the curriculum and 

how students best learn -- have been debated for decades.  In this section I examine the 

literature on depth versus breadth, scientific inquiry and modeling, the learning theory of 

Physics First, constructivism, and culturally relevant pedagogy. 
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Depth versus breadth. Time spent on topics and the cognitive demand of tasks are 

key components of quality curriculum and opportunity to learn (Schiller et al., 2010). 

Students in lower-level math tracks “receive lesser amounts of cognitively challenging 

instructional material in their courses than those in regular or advanced tracks” (Schiller 

et al., 2010, p.428).  Compared to their international peers, U.S. students and their 

teachers work with math and science textbooks that have more topics, a wider variety of 

topics across textbooks, and have more content breaks (Schmidt & McKnight, 2012). 

Textbooks determine the content for 75% to 90% of classroom instruction across the 

United States (Boone, 2006; Finn & Ravitch, 2001). The emphasis on breadth over depth 

in U.S. textbooks makes learning science and math more difficult for students in the U.S. 

(Schmidt & McKnight, 2012).  Further, students who race through more content in 

textbook-centered courses do less well in college coursework than students who report 

spending more time on fewer topics (Sadler & Tai, 2007; Schwartz et al., 2008; Tai, 

Sadler, & Mintzes, 2006).  Sadler and Tai (2007) also found that students whose high 

school science teachers emphasize conceptual understanding earn higher grades in 

college science coursework.  Scientific inquiry and modeling as methods for increasing 

the conceptual understanding of students are discussed in more detail below. 

Scientific inquiry and modeling. Scientific inquiry is a method of thinking that 

occurs when learners “construct explanations of phenomena in their world by generating 

questions, making predictions, marshaling evidence, building explanations, and 

integrating scientific concepts with real world experience” (Marx et al., 2004).  Scientific 

inquiry by students reflects the same type of behavior that real-life scientists use, 
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although “not on the same scale” (Lederman, 1998, p.10).  Inquiry pedagogy is 

prominent in the national standards documents promulgated during the last twenty years.  

The National Research Council’s A Framework for K-12 Science Education, which 

serves as the foundation for the Next Generation Science Standards, describes scientific 

inquiry in the Scientific and Engineering Practices dimension of the Framework listed in 

Table 1. 

The inquiry-oriented instruction outlined in A Framework for K-12 Science 

Education positive impacts student achievement (Kanter & Konstantopoulos, 2010; 

Schroeder, Scott, Tolson, Huang, & Lee, 2007). The meta-analysis conducted by Minner, 

Levy, and Century (2009) also finds a clear, positive trend favoring inquiry-based 

instructional practices, particularly pedagogy that emphasizes student active thinking and 

drawing conclusions from data.  As reported by Geier et al. (2008), the implementation of 

standards-based, inquiry science units also leads to standardized achievement test gains 

for historically underserved urban students.  Thus, inquiry instruction is a viable strategy 

for closing the achievement gap in science (Johnson, 2009; Marshall & Alston, 2014). 

Table 1: Scientific and Engineering Practices 

1. Asking questions (for science) and defining problems (for engineering) 

2. Developing and using models 

3. Planning and carrying out investigations 

4. Analyzing and interpreting data 

5. Using mathematics and computational thinking 

6. Constructing explanations (for science) and designing solutions (for engineering) 

7. Engaging in argument from evidence 

8. Obtaining, evaluating, and communicating information  

 

A Framework for K-12 Science Education (National Research Council, 2012, p. 42) 
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Modeling instruction emphasizes students constructing and applying conceptual 

models of physical phenomenon in order to learn science. Jackson, Dukerich, and 

Hestenes (2008) describe the essence of modeling instruction and provide strong 

evidence of effectiveness of the modeling approach.  The modeling cycle consists of two 

stages: model development and model deployment.  In the model development stage, the 

teacher sets the stage with a class demonstration and discussion related to a key question.  

Students then work in small groups to plan and conduct experiments to answer or clarify 

the question. In the second stage, model deployment, students deploy their newly-formed 

model to a new situation in order to refine and deepen their understanding of the concept. 

Jackson et al. assert that modeling instruction corrects many of the deficiencies of 

traditional science instruction, including fragmented knowledge, student passivity, and 

the persistence of student misconceptions. Data from the Force Concept Inventory (FCI) 

“the most widely used and influential instrument for assessing the effectiveness of 

introductory physics instruction” provide evidence supporting the effectiveness of 

modeling instruction compared to traditional instruction (Jackson et al., 2008, p. 15).  The 

results from over 30,000 students taking the FCI as both a pre- and post-test found that 

students in modeling classes demonstrated a gain of more than double the learning of 

students in traditional instruction (Jackson et al., 2008). 

The hands-on, minds-on nature of inquiry and modeling can also increase the 

interest of students in science.  Examining the experience of students in a chemistry class 

in an alternative high school, Peterson-Beeton (2007) reports that Latino students in the 

school lose interest in science due in part to the lack of hands-on activities. Review of the 
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literature suggests that inquiry and modelling are also compatible with both brain science 

and constructivist learning as summarized in the next two sections.    

Learning theory of Physics First.  In proposing an inverted science sequence 

beginning with physics, Lederman (1998) draws upon the neuro and cognitive sciences to 

reject a “mechanistic” paradigm of learning in favor of an “organic” one as outlined in 

Table 2 (p. 8).  According to Lederman (1998), this organic approach to learning requires 

that science teachers create conditions for learning that enable students to: 

• process many different kinds of information simultaneously; 

• understand information when it is embedded in messy yet relevant, authentic, 

novel, challenging and information-rich contexts; 

• construct meaning through connections and pattern formulation; 

• organize and associate new information with their existing knowledge; 

• collaborate with peers and adults in challenging (but not threatening) endeavors; 

and 

• actively and continuously engage in the practice of their new learning by 

constantly revisiting it at increasingly higher levels of complexity over extended 

periods of time (p. 8-9) 

 

 

Table 2: Mechanistic and Organic Paradigms of Learning 

Mechanistic Paradigm of 

Learning 

Organic Paradigm of Learning 

The brain as serial computer The brain acts as a parallel processor able to 

process many different kinds of information 

simultaneously. 

Learning as information 

accumulation 

Learning is an internally and socially mediated 

process of constructing meaning from patterns 

created through multiple representations of 

knowledge 

The mind as a tabula rasa The mind is a dynamic, self-organizing “plastic” 

neural network that learns best when the context of 

learning is embedded in the entire physiology—

including the body and the emotions. 
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An inverted science sequence beginning with physics creates these conditions by 

reflecting the nature of modern science.  Modern biology courses emphasize genetics, 

molecular methods, and biochemistry (O’Brien & Thompson, 2009).  Modern chemistry 

emphasizes atomic structure (O’Brien & Thompson, 2009).  Understanding modern 

chemistry requires a solid grounding in physics while a good understanding of modern 

biology requires fundamental understanding of principles and concepts of both chemistry 

and physics (Haber-Schaim, 1984; Liang et al., 2012; Mervis, 1998). Physics, “the most 

concrete of sciences,” provides a platform for students to understand “the unobservable 

interactions between atoms and molecules” fundamental in chemistry and biology (Hill, 

2013, p. 38). 

Constructivism. The conditions of learning in Lederman’s organic approach are 

consistent with constructivist learning principles: assimilation of knowledge into current 

knowledge structures/schema, collaborating with peers and more knowledgeable others 

during learning, challenging tasks appropriate for the learner’s Zone of Proximal 

Development, and extending learning at higher levels of complexity over time (Lutz & 

Huitt, 2004). 

Cakir (2008) posits that the growth in the use of constructivist pedagogy may be 

ascribed to the appeal of aspects of the constructivist learning theories of Piaget, Ausubel, 

and Vygotsky outlined above; “namely, the importance of ascertaining prior knowledge, 

or existing cognitive frameworks, as well as the use of dissonant events (relevant 

information) to drive conceptual change” (p. 196).  Based on his review of the literature, 

Cakir argues that science teachers would be more effective if “they understood the 
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barriers to conceptual learning (particularly the strong hold of prior misconceptions and 

the resistance to conventional instruction) and if they become familiar with the education 

research and strategies dealing with these misconceptions” (p. 202).  A study of 181 

middle school science teachers conducted by Sadler, Sonnert, Coyle, Cook-Smith, and 

Miller (2013) supports Cakir’s assertion.  Sadler et al. found that teachers’ understanding 

of their students’ most common misconceptions was correlated with increased gains in 

the learning of their students. In addition to providing learning experiences which directly 

confront student misconceptions, Cakir suggests teachers: 1)  recognize that science 

concepts are learned over time (through integration into student’s existing schemata); 2) 

understand effective science lessons are a social process in which the teacher and peers 

play a crucial role; 3) recognize the role of language in conceptual development; and 4) 

understand that learning science involves students being initiated into the ideas and 

procedures of the scientific community (enculturation) as well as making these ideas 

meaningful at the individual level of the student.  

While behaviorists would decry Lederman’s rejection of the mind as tabula rasa, 

his organic learning principles align with Haberman’s concept of “good teaching.” 

Haberman (1991) describes both the “pedagogy of poverty” experienced by students in 

high poverty, high minority urban schools and its alternative, good teaching.  The 

pedagogy of poverty is characterized by teacher-directed classrooms in which the core 

functions of a teacher are giving information, directions, assignments, and homework; 

monitoring student behavior and seatwork; and marking papers and giving grades.  The 

result of the pedagogy of poverty is “nonthinking, underdeveloped, unemployable” 
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citizens representing a “personal and societal tragedy” (Haberman, 1999, p. 294). The 

alternative to this pedagogy of poverty, good teaching, is comprised of student 

involvement in vital issues; explanations of human differences; instruction organized 

around big ideas; students applying ideals of fairness and equity; active student 

participation in planning and lessons; real-life experiences; students working in 

heterogeneous groups; and opportunities for students to polish work, critique big ideas, 

and reflect on the personal meaning of their learning. Haberman’s conception of good 

teaching is echoed over a decade later in the guiding principles of A Framework for K-12 

Science Education, a foundation for the Next Generation Science Standards:  

These principles include young children’s capacity to learn science, a focus on 

core ideas, the development of true understanding over time, the consideration 

both of knowledge and practice, the linkage of science education to students’ 

interests and experiences, and the promotion of equity. (National Research 

Council, 2012, p. 24) 

 

Thadani et al. (2009) examined the role that curriculum-based inquiry 

interventions in science might play in addressing Haberman’s pedagogy of poverty.  By 

providing students with richer learning, inquiry-based instruction contributes to a socially 

just pedagogy described by Moje (2007). Thadani et al. also describe how science inquiry 

contributes to a social justice pedagogy: 

Inquiry apprentices children into scientific practice by teaching them to generate 

questions and reason from and about evidence. . . And by positioning children as 

either producers or critics of scientific knowledge, inquiry-based learning disrupts 

traditional teacher-student roles. Students are required to take responsibility 

(albeit to varying degrees, in different inquiry projects) for their work. Their ideas 

(rather than teachers’ ideas or the ideas of some other scientific authority) become 

the central subject of discussion. Moreover, to the extent that inquiry-based 

instruction requires students to generate arguments and critique their own and 

each other’s ideas, it again disrupts the ‘teacher in charge’ model of instruction 

(i.e., the social context) that is emblematic of the pedagogy of poverty. (pp. 23) 
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Evaluating the effects of an inquiry-based intervention in three classrooms, Thadani et al. 

found teaching in intervention classrooms was more inquiry-based and less didactic than 

in control classrooms with differences in control/intervention teaching greatest at the two 

higher-need schools. Intervention students at these two schools had greater gains in 

content learning (effect size of .14 and .22) than control students in each school. The 

authors posit their findings support the “potential power of inquiry-based teaching for 

challenging the pedagogy of poverty” (Thadani et al., 2009, p. 35).  At the same time, 

Thadani et al. warn that access to science inquiry pedagogy curricula alone will not 

remedy the achievement gap in STEM: “teachers and students who are most entrenched 

in it [the pedagogy of poverty] are likely to have more difficulty using such interventions 

faithfully because inquiry-based practices run so counter to their prior experiences and 

beliefs” (p. 35). 

Critical theory.  Critical theorists would argue that even if the pedagogical 

inequities described earlier are addressed through the faithful use of inquiry-based 

science teaching practices, historically underserved students will not achieve at the same 

level as their peers in the dominant culture.  Lee and Buxton (2011) document three 

theoretical perspectives that have been applied to “the challenge of providing engaging 

and equitable science opportunities” for historically underserved students: (a) a 

cognitively based perspective, (b) a cross-cultural perspective, and (c) a sociopolitical 

perspective (p. 278).  I assert that a Physics First approach with modeling is well aligned 

with a cognitive perspective of engaging historically underserved students in science 

through the use of deep questions and vigorous argumentation. Students learn to use 
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language, to think, and to act as members of a scientific community. A Physics First 

approach also provides all students with equal access to high quality, inquiry driven 

instruction. However, I also maintain that the cross-cultural and socio-political 

perspectives described by Lee and Buxton (2011) and advocated by Banks et al. (2001) 

are largely unaddressed. 

 Many educators assert that the incorporation of culturally relevant pedagogy into 

a Physics First approach would address these cross-cultural and socio-political 

perspectives. For Ladson-Billings (1995), culturally relevant pedagogy rests on three 

propositions: (a) teachers use high quality instruction to develop academic skills so that 

students experience academic success; (b) teachers use students' culture as a vehicle for 

learning while students maintain their cultural identity; and (c) teachers provide students 

with opportunities to critically analyze society so that students develop a critical 

consciousness through which they challenge the status quo of the current social order.  As 

I argued earlier, a Physics First science sequence for all students incorporating inquiry 

and modeling develops the academic skills of all students through active learning and the 

construction of new knowledge using students’ prior experiences and misconception.  

“Goals of equity and social justice lie at the core” of this Physics First approach to 

science (Bardeen & Lederman 1998).  Engaging with peers in argumentation from 

evidence also draws upon the culture of historically underrepresented students (Kanter & 

Konstantopolous, 2010; Lee & Buxton, 2011).  Reframing science as constructing 

meaning instead of information acquisition is also culturally congruent and redistributes 

authority within the classroom (Kanter & Konstantopolous, 2010; Patchen & Cox-
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Petersen, 2008).  Nonetheless, I concede that the development of the critical 

consciousness of students remains divorced from the Physics First approach described 

here. 

Instructional delivery.  For the final domain of OTL, instructional delivery, I 

examine the literature related to teacher content and pedagogical content knowledge, the 

beliefs of teachers in their own teaching ability and their ability to impact student 

learning (self-efficacy), and teachers’ beliefs about the ability of their students to engage 

in the science as envisioned by the NGSS. Implementing Physics First requires science 

teachers to have strong content knowledge and possess the pedagogical knowledge to 

implement modeling and inquiry effectively with all students (Asghar et al., 2012; 

Gibson & Brooks, 2012; Kesson & Henderson, 2010; McGee et al., 2013; National High 

School Center, 2011; Penuel et al., 2007).  Converting to a Physics First approach will 

also require disruption of the teaching assignments of some science teachers in addition 

to the time and expense of professional development (Mervis, 1998; Popkin, 2009; 

Taylor et al., 2005). Based on the literature, I argue that professional learning 

opportunities addressing teacher knowledge and beliefs increases the likelihood of 

successful implementation of Physics First and thus improvement in the science college 

readiness of historically underserved students. 

Developing teacher content and pedagogical content knowledge.  Implementing an 

inverted science sequence grounded in inquiry and modeling requires professional 

development for teachers who may or may not have strong content backgrounds due to 

reassignment and/or incomplete understanding of how students learn science (National 
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Academies of Sciences, Engineering, and Medicine, 2015).  Further, “many teachers 

learned to teach using a model of teaching and learning that focuses heavily on 

memorizing facts, without also emphasizing deeper understanding of subject knowledge” 

(Garet, Porter, Desimone, Birman, & Yoon, 2001, p. 916).  Wallace and Kang (2004) 

assert that “teachers’ understanding of the nature of science may create barriers to 

implementing inquiry-based instruction” (p. 940).  High quality professional 

development that enhances teachers’ understanding of the nature of science, strengthens 

the content knowledge of science teachers and the pedagogical knowledge of how to 

teach the new physics course using inquiry and modeling methods is required (Asghar et 

al., 2012; Gibson & Brooks, 2012; Kesson & Henderson, 2010; McGee et al., 2013; 

National High School Center, 2008; Penuel et al., 2007).  Studies indicate that 

professional development opportunities for increasing content knowledge and 

pedagogical knowledge are motivating for teachers (Anderson, 2008; Fields, Levy, 

Karelitz, Martinez-Gudapakkam, & Jablonski, 2012).    

Developing teacher’s sense of self-efficacy.  In addition to strong science content and 

pedagogical knowledge, teachers must also believe in their own ability to change student 

achievement outcomes for their historically underserved students. 

For teachers to learn a new set of competences to help them leave fewer children 

behind in their classrooms, they may have to endure a temporary loss of confidence 

as they face the gap between the demands for performance and their current practice. 

To tell a teacher that she has to begin measuring her success by how well she raises 

test scores or teaches ‘unteachable’ students may challenge a great deal about what 

she was taught about her job. (Heifetz & Linsky, 2004, p. 35) 

 

“Change involves learning to do something new” (Fullan, 1994, p. 2843). Asking 

teachers to adopt new teaching techniques may engender feelings in teachers of being de-
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skilled (Altrichter, 2005). Gibson and Brooks (2012) note the tension between the 

genuine desire of teachers to improve practice and the need to maintain feelings of 

overall competence and self-efficacy. Self-efficacy refers to the belief in one’s ability to 

successfully perform a task while efficacy refers to the belief in the ability to impact 

student learning (Lakshmanan et al., 2011).  Lakshmanan et al. observe that both high 

teacher self-efficacy and efficacy have been linked to increased student achievement.  

Teacher self-efficacy and efficacy can be increased through professional learning 

(Lakshmanan et al., 2011).  Embedded professional learning opportunities for teachers 

can support their adoption of new teaching practices (Camburn, 2010; Hunzicker, 2012). 

Both Bair and Bair (2014) and Wallace and Kang (2013) argue that sustained and 

supported professional development is integral for enhancing teacher skills in 

implementing inquiry-based science.  Employing student centered approaches including 

inquiry and modeling can increase teacher self-efficacy (Hunzicker, 2012).  

Teacher beliefs about their students’ abilities to learn science.  When historically 

underserved students “are provided with equitable learning opportunities in school or in 

their communities, they demonstrate academic achievement, interest, and agency” (Lee, 

2005, p. 438).  However, as noted by Anderson in Larkin, Seyforth, and Lasky (2014), 

“many teachers see a tension between providing a strong education for the able and 

willing students and at the same time providing for the uninterested or less able students” 

(p. 828). Further, Wallace and Kang (2004) assert that “teacher beliefs about the 

limitations of their students in terms of ‘ability’ or ‘maturity’ can be an obstacle to more 

student-centered approaches to instruction” such as scientific inquiry (p. 940).  To 
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remove this obstacle, I assert that professional development must explicitly include the 

conception that inquiry and modeling develops the academic skills of all students through 

active learning and the construction of new knowledge using students’ prior experiences 

and misconception.  Providing evidence that inquiry and modeling “work” for all 

students supports teachers in the adoption of Physics First by addressing the “practicality 

ethic of teachers” (Altrichter, 2005).  Qualitative studies have demonstrated that teachers 

who do not believe their students are capable of or prepared for learning the science they 

are teaching make instructional decisions that lower the quality of instruction (Gilbert & 

Yerrick, 2001; Prime & Miranda, 2006). Conversely, teachers who hold high 

expectations for their students increase the participation of historically underserved 

students in science (Luft, da Cunha, & Allison, 1998). 

Now that I have reviewed the literature on the OTL gap that disproportionally 

impacts historically underserved students and how a Physics First approach addresses 

these gaps, I examine the methodological literature on the effects of a Physics First 

approach on improving student learning in science. 

Review of the Methodological Literature 

 A relatively small number of quantitative studies of Physics First have been 

completed and only those focused on student achievement in science or math are 

included here. Studies concerned that assessed changes in teacher pedagogy or gathered 

data through student surveys are excluded. The remaining studies are all causal-

comparative, quasi-experimental designs.  Two comparison designs are common. 

Students either self-select into either a traditional or Physics First science sequence and 
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results of the two groups are compared or all students are placed in the same course 

sequence during a period of time and results are compared between one or more cohorts 

experiencing each sequence.  A variety of measures of student achievement (e.g., teacher 

constructed pre- and post-tests, state tests, college-readiness exams, AP course 

enrollments and test scores) have been employed in these studies.  The use of inferential 

statistics to detect group differences (e.g., ANOVA, t-tests, and chi-square tests) is 

common. Disaggregation of results by gender is not uncommon, but reporting of results 

for students from historically underserved groups in these studies is non-existent. I now 

summarize the results of the ten studies of the effects on student achievement of inverting 

the high school science sequence with or without modeling instruction. 

O’Brien and Thompson (2009) investigated physics performance of ninth graders 

and twelfth graders in seven high schools in Maine. The 321 students formed five 

distinctive groups of students in this study: (a) ninth-grade students who experienced 

traditional instruction, (b) ninth-grade students who experienced modeling-based 

instruction, (c) ninth-grade honors-level students who experienced traditional instruction, 

(d) ninth-grade honors-level students who experienced modeling-based instruction, and 

(e) twelfth-grade students who experienced traditional instruction.  A 27-item multiple 

choice survey developed using items from three established instruments (including the 

Force Concept Inventory), served as the pre- and post-tests. Among all five groups, pre-

test results showed little understanding of concepts in kinematics and mechanics. The 

post-test scores indicated the honors-level ninth graders had the highest normalized gain 

between the pre- and post-tests scores regardless of whether or not modeling instruction 
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was used.  However, for non-honors 9
th

 graders, the students experiencing modeling 

instruction had six times the normalized gain scores of that of the non-honors students 

who did not have modeling instruction.  

Liang et al. (2012) conducted a causal-comparative study of Physics First with 

modeling in two predominantly White, middle class high schools in the Mid-Atlantic.  

The Force Concept Inventory (FCI) was used as a pre- and post-test in two comparisons. 

Liang, et al. (2012) used analysis of covariance to compare the mean pre- and post-test 

scores for groups of students on the FCI, controlling for differences in groups on the pre-

test.  For the comparison of mean scores on the FCI, 9
th

 grade honors physics course with 

modeling and the 12
th

 grade honors physics course without modeling, students in the 

honors physics course with modeling had significantly greater mean scores on the FCI (p 

< .001, effect size = 2.45) after controlling for pre-test scores.  A comparison of students 

in non-Physics First courses found similar results on the FCI for students in courses 

employing modeling compared to non-modeling courses (p < .001, effect size = 2.62).   

Bermudez (2014) examined the effects of transitioning from a biology-chemistry-

physics course sequence to a biology-physics-chemistry sequence (“physics second”) at a 

high-poverty, predominantly Latino public high school in California.  Eight years of state 

end of course exam results in physics and chemistry (four years for each sequence) were 

analyzed using independent t-tests for the means and chi-square tests for the proficiency 

level of the student.  A 2 x 2 factorial ANOVA was employed to detect differences in 

mean scores based on gender.  Bermudez found that student achievement, as measured by 

mean scores and proficiency level, on the end-of-course chemistry exam was 



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

40 

significantly greater (p<.001) for students in the “physics second” sequence, but was 

significantly lower (p<.001) on the end-of-course physics exam.  Gender differences in 

mean scores unrelated to course sequence were observed on the physics end-of course 

exam, although no gender differences were found for chemistry.  A significant limitation 

of this study noted by the researcher was the change in graduation requirements from two 

to three science courses that occurred concurrently with the implementation of the 

“physics second” sequence.  As a result of this change, the number of students taking the 

physics end-of-course exams increased eight-fold between the two cohorts.  A measure to 

determine the academic equivalence (or lack thereof) of the two groups would benefit 

efforts to interpret Bermudez’s findings (Isaac & Michael, 1995; Johnson, 2001). 

Mary (2015) examined the effect of science course sequence on student 

performance on annual end-of-course state science and math assessments at two large, 

diverse, suburban public high school in Texas. Three cohorts of students (9
th

 graders in 

2011, 2012, and 2013) who self-selected into a traditional sequence or a Physics First 

sequence were used. However, state testing requirements in 2014 eliminated end-of-

course assessments in chemistry, physics, and geometry so only the students in the 

traditional sequence in the first cohort provide data across all three years of either 

sequence, limiting Mary’s ability to investigate the impact of the full science course 

sequence. Mary reports that teachers were required to use the same instructional 

materials, district curriculum guides, resources, and common assessments regardless of 

which grade the course was taught.  To control for differences between groups due to 

student self-selection, Mary employed exact matching for gender, at-risk status, high 
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school, and ninth grade math course. Race/ethnicity was found not to be a covariate for 

matching. Regression was used to combine 8
th

 grade math and 8
th

 grade science 

performance into a single principal component score and included in the matching 

process. Employing t-tests of end of course means and ANOVA, Mary found there was 

not a statistically significant effect of science course sequence on student performance on 

end-of-course assessments in science or math.  

To explore the effects of a Physics First sequence on math achievement, Glasser 

(2012) used the scores from state end-of-course eighth grade math assessment as baseline 

data on six classes of students; three of which began the traditional course sequence 

(graduating classes of 2000-2002) and three in a Physics First sequence (graduating 

classes of 2003-2005). Students in all six cohorts in a private school in Pennsylvania 

were found to be equivalent in quantitative reasoning skills at the end of eighth grade 

using a chi-square test. In the fall of tenth grade all students took the PSAT exam. Using 

a t-test, Glasser found a statistically significant difference (p < .01) between the means of 

math reasoning percentiles favoring the last two of the three graduating classes enrolled 

in the Physics First sequence compared to the pooled mean percentile of the three classes 

enrolled in a tradition sequence of biology, chemistry, and physics. 

Bouma (2013) also reports increased math achievement for students in a Physics 

First sequence compared to those in a traditional science sequence in an urban, majority-

minority, private, all-boys, college-preparatory high school on the West Coast. Ex post 

facto measures from standardized math tests (High School Placement Test [HSPT] and 

SAT) at the school site were used to determine the math achievement of two groups of 
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students in the same graduating class (cohort) over their high school career. The ninth 

grade science course determined the two groups: those that took ninth-grade physics (PF) 

and those that took no science in the ninth grade (non-PF). Controlling for prior math 

achievement, race/ethnicity, and SES using ANCOVA, Bouma found students in the 

second PF cohort scored significantly higher on SAT math scores than non-PF students 

(p < .05 and effect size = .27), but there was no significant difference between the two 

groups in the first cohort. 

Williams (2009) examined the math and science achievement of three cohorts of 

students (graduating classes of 2007, 2008, and 2009) in a racially-diverse suburban high 

school in Illinois.  In this study, students self-selected into a Physics First science 

sequence or a traditional science sequence beginning with biology.  Students were then 

placed into an honors or regular section of each course based on their 8
th

 grade 

EXPLORE scores and math placement. Academic achievement was measured using the 

9th grade EXPLORE, 10th grade PLAN, and 11th grade ACT for both science and math 

and the state’s science test at grade 11. EXPLORE, PLAN, and ACT measure students’ 

scientific reasoning skills and mathematical computation and reasoning skills while the 

state science test measures content knowledge and skill application. A one-way, between-

groups analysis of variance (ANOVA) compared the mean score for each achievement 

test. An independent samples t-test identified between-groups differences on the state 

science test.  Williams (2009) determined that gains in science student achievement from 

the 9
th

 grade EXPLORE to the 11
th

 grade ACT from grade 9 to grade 11 varied 

significantly by course (p< .001). Gains were greater for honors and regular Physics First 
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students than for the honors and regular biology students. Honors biology students and 

honors Physics First students demonstrated similar levels of content knowledge and skills 

on the state science test.  There was also no significant difference in the mean scores of 

regular biology students and regular Physics First students on the state science test.  

Williams also found that science course sequence did not have a significant effect on 

mathematics achievement or growth, but there was a significant difference (p< .001) 

between honors students and regular students in terms of the amount of growth between 

the 9
th

 grade EXPLORE and 11
th

 grade ACT. Using two-way ANOVA, Williams found 

that female and male students exhibited similar achievement scores and growth over time 

in both math and science regardless of the science course sequence. 

Dye et al. (2013) also examined the effects of transitioning from a biology-

chemistry-physics course sequence to a physics-chemistry-biology sequence and then 

incorporation of modeling instruction in the inverted science sequence over an eight year 

period at a southeastern, urban, Catholic high school.  The first four cohorts were 

traditional instruction in the biology-chemistry-physics sequence (control group) 

followed by two cohorts of students taking a Physics First science sequence with 

traditional instruction (treatment 1).  The last two cohorts are students taking a Physics 

First sequence with modeling instruction (treatment 2). Gain scores were calculated for 

each group by subtracting the PLAN science mean score (administered in fall of the 9
th

 

grade year) from the 11
th

 grade ACT science mean scores.  Gain scores were largest for 

the students in the Physics First sequence with modeling (4.3) compared with a gain of 

4.1 for students in Physics First with traditional instruction and a gain of 2.8 points for 
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the control group.  Cohen’s d for the mean ACT scores reported by Dye et al.was .29 for 

the students in the Physics First sequence with modeling compared to the control group 

and.15 compared to Physics First with traditional instruction (treatment 1).  Changes in 

the percentage of students who were college- and career-ready in science were also 

reported with the gains for students in the Physics First sequence (20.8% for students 

experiencing modeling instruction and 17.8% for students experiencing traditional 

instruction) compared to a gain of 2.5% for students in the control group. Inferential 

statistics are not provided for the changes in percentage of students who are college- and 

career-ready in science. 

Goodman and Etkina (2008) investigated the benefits of teaching a 

mathematically rigorous ninth-grade physics course based on algebra alone. Topics for 

the ninth-grade physics course were drawn from the AP Physics B curriculum and the 

new science sequence was implemented in a New Jersey county vocational/technical high 

school founded in 1999.  The study focused on the number of students taking AP exams 

at the school compared to the average for the state as well as the number of students 

receiving scores of 3 or higher (considered “passing”) compared to the state. After four 

years of implementing this mathematically rigorous Physics First approach, students at 

the school took the AP Physics B exams at a rate 14 times that of the state and the 

percentage of students passing the exams was also 14 times higher than the state. 

Goodman and Etkina also report that the mean number of science courses completed by 

students in the school rose from 3.4 to 4.2 over the same four year period. 
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 Gaubatz (2013) examined the effects of transitioning from a biology-chemistry-

physics course sequence to a “modified” physics-chemistry-biology sequence at a 

diverse, suburban public high school in the Midwest. The modified physics course for 

freshman was either an Honors Physics course for students enrolled in geometry or other 

higher-level math or a “GeoPhysics” course. Results from eight cohorts of students, four 

from each course sequence were compared in this program evaluation. Enrollment in 

honors or AP courses increased significantly for students in the Physics First sequence 

(using a two-tailed t-test, p < .05 for freshmen, and p < .01 for sophomores and juniors), 

AP Biology enrollment tripled, and enrollment in AP Environmental Science, AP 

Chemistry, and AP Physics C doubled. Student growth in science as measured by 

increases in mean scores from the 8
th

 grade EXPLORE to the 11
th

 grade ACT was not 

statistically significant between the “modified” physics-chemistry-biology and the 

traditional sequence cohorts. 

 Overall, the results of these ten studies on the effects of inverting the high school 

science sequence on student achievement in math and science are ambiguous.  

Incorporating modeling instruction into physics significantly improves student 

achievement on the Force Concept Inventory (Liang et al., 2012; O’Brien & Thompson, 

2009,).  Both Gaubatz (2013) and Goodman and Etkina (2008) report a Physics First 

approach increases student enrollment and achievement in advanced science coursework. 

However, on more standardized measures of science (end-of-course exams), inverting the 

science sequence does not appear to improve student achievement (Bermudez, 2014; 

Mary, 2015).  The evidence of the effects of implementing a Physics First approach on 
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math and science achievement and growth is also mixed with some researchers reporting 

improvement in achievement and others reporting no effect (Bouma, 2013; Dye et al., 

2013; Gaubatz, 2013; Glasser, 2012; Williams, 2009). None of these studies report results 

for historically underserved students. 

 To determine if the science college readiness of historically underserved students 

can be improved by implementing a Physics First science sequence with modeling, a 

retrospective cohort observational study using multiple linear regression and logistic 

regression was conducted.  Change in science college- and career- readiness and interest 

in STEM careers between grades 8 and 11 will be examined for four successive cohorts 

of students.  The first two cohorts will be students experiencing a traditional science 

sequence and the two subsequent cohorts will be students experiencing a Physics First 

with modeling approach. Unlike the studies examined here, results will be disaggregated 

for students from historically underserved groups. 

There is major disagreement among authors of educational research texts as to the 

status of correlational design compared to causal-comparative designs (Johnson, 2001). 

Although many authors treat causal-comparative designs as superior to correlational 

designs, Johnson argues that both approaches are on an equal footing.  In both causal-

comparative and correlational designs, some evidence of causality can be obtained by 

identifying potential confounding variables and attempting to control for them (Johnson, 

2001). I used 8
th

 grade science college- and career- readiness test scores and interest in 

STEM to control for differences in prior achievement and interest between the cohorts 
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and thereby reduce the plausibility of rival explanations (Campbell & Stanley, 2015; 

Johnston, 2001; Krathwohl, 2009) 

Summary of the Research Literature and Application to the Study 

A Physics First science sequence for all students increases the access of 

historically underserved students to challenging science curriculum and high-quality 

instruction.  Incorporating inquiry and modeling develops the academic skills of all 

students through active learning and the construction of new knowledge using students’ 

prior experiences and misconception.  While some aspects of the Physics First approach 

described here are culturally responsive, the cross-cultural and socio-political 

perspectives of critical race theory are largely ignored.  Further, many will argue that 

schools alone cannot solve the achievement gap due to the pernicious effects of societal 

factors affecting the lives of students of color and families who are economically 

disadvantaged.  Nonetheless, I join many other voices for equity in calling on our schools 

to do more to close the opportunity gaps experienced by our historically underserved 

students. Overall, the review of the literature presented here suggests that using a Physics 

First approach for high school science has the potential to close opportunity to learn gaps 

experienced by historically underserved students in all three dimensions of OTL: content 

coverage, content exposure and emphasis, and instructional delivery. Closing these 

opportunity to learn gaps is a moral obligation holding the promise of increasing the 

science college readiness of these students and their preparation for STEM careers.  

Given the apparent absence of evidence of the effects of a Physics First approach on 

improving student achievement of historically underserved students in science, this 
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proposed quantitative study will contribute to the knowledge base of effective high 

school science practices (Krathwohl, 2009).  Specifically, the study will determine if, 

compared to their peers in a traditional science sequence, historically underserved 

students completing a Physics First science sequence have higher science achievement 

gains over time, higher rates of science college- and career-readiness, and greater interest 

in STEM.  I outline the study setting and participants as well as the instruments and 

methods for answering these questions next.  
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CHAPTER 3 

METHODOLOGY 

While there are many factors contributing to disparate educational outcomes for 

low-income and Black and Hispanic/Latino students, the purpose of this study was to 

determine if the science college readiness of historically underserved students can be 

improved by implementing a district-wide, inquiry-based high school science sequence 

comprised of coursework in physics, chemistry, and biology.  This Physics First approach 

to high school science has the potential to close opportunity to learn gaps experienced by 

historically underserved students in all three dimensions of OTL: content coverage, 

content exposure and emphasis, and instructional delivery.  Gaps in content coverage 

experienced by historically underserved students are closed by ensuring all students are 

exposed to the same content in physics, chemistry, and biology. Incorporating inquiry 

and modeling develops the academic skills of all students through active learning and the 

construction of new knowledge, closing gaps in content exposure and emphasis.  

Ensuring all science teachers have strong content and pedagogical knowledge, belief in 

their own abilities to teach all students, and belief that their students are capable of 

learning science concepts leading to science college-readiness closes gaps in instructional 

delivery. A retrospective cohort observational study (Hoffmann & Lim, 2007; Mann, 

2003) was used to address the primary research question: do historically underserved 

students in a Physics First science sequence have 1) higher science test scores, 2) higher 

rates of science college- and career-readiness, and 3) greater interest in STEM careers in 

grade 11 compared to their peers in a traditional science sequence? 
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Research Methods 

 Because the purpose of the study was to examine the relationship between the 

implementation of Physics First and the science college readiness of historically 

underserved students, a quantitative research design was appropriate (Krathwohl, 2009). 

A quantitative approach was also warranted since the three facets of the research question 

are predetermined, narrow and specific, and can be answered using quantifiable data in 

an objective manner (Plano Clark & Creswell, 2015). In contrast, qualitative studies seek 

to understand what is going on in a particular setting or with participants (Maxwell, 

2013). Given the relatively small number of studies that have examined the effects of 

implementing Physics First on student achievement, the inconsistent findings from these 

studies, and the lack of results reported for students from historically underserved 

populations, I argue that the first order of business is to determine the effects of 

implementing Physics First on the science college readiness of historically underserved 

students.  Without first ascertaining whether such an approach yields benefits, 

understanding how and why such an approach does or does not close science college- and 

career-readiness gaps is putting the cart before the horse. Qualitative studies to better 

understand how and why a Physics First approach does or does not work would be 

valuable follow-up studies (Maxwell, 2004).   

This study was a retrospective cohort observational design using pre-formed 

groups (Hoffmann & Lim, 2007; Mann, 2003); random assignment of students to the 

Physics First science sequence was neither feasible nor educationally justifiable 

(Cochran, 1983; Osbourne, 2008; Plano Clark & Creswell, 2015).  Offering a traditional 
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science sequence alongside a Physics First science sequence in each school and randomly 

assigning students to each sequence would have required adoption of instructional 

materials aligned with the NGSS for each sequence, as well as two strands of teacher 

professional development.  In addition, garnering educator and parental support for 

random assignment is often difficult as it is a forced choice.  Campbell and Stanley 

(2015) promote the consideration of single-group experiments when random assignment 

is not possible.  A matched-pair randomized control trial of schools within the district 

would present similar challenges as a randomized control trial at the classroom level, in 

addition to the limited number of schools (10) available for forming matched-pairs (Ji, 

DuBois, Flay, & Brechling, 2008).  Campbell and Stanley (2015) and Krathwohl (2009) 

assert that quasi-experimental designs done well can provide evidence for policy 

decisions when a true experimental design is not feasible.  They would also agree that, 

compared to a randomized experiment, a major weakness of quasi-experimental designs 

is the difficulty in eliminating rival explanations. 

I used a retrospective cohort observational study (Hoffmann & Lim, 2007; Mann, 

2003) with two groups consisting of two 9
th

 grade cohorts each. In this design, the 

cohorts were naturally formed based on year of enrollment in 8
th

 grade.  Pre- and post-

measures were administered to each cohort.  Campbell and Stanley (2015) assert a 

number of threats to internal validity are more effectively controlled when assignment to 

groups are similar (e.g., students do not self-select, assignment is not based on previous 

performance) and pre-measures are used to confirm similarities of the groups or control 

for initial differences between the groups. Nonetheless, a major confounding variable 
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(Krathwohl, 2009) that could not be controlled is the variability in science instruction 

students receive during the 8
th

 grade after the November administration of the pre-test.  

Other possible confounding variables are due to the use of four successive annual cohorts 

and include differences in instructional time (i.e., length of calendar, loss of instruction 

due to inclement weather), differences in class size, and changes in science teachers each 

year.  I argue that these confounds are unlikely rival explanations.  Further, the inclusion 

of all students from naturally formed groups enrolled for three years in high school 

eliminates selection bias.  I now discuss both the participants and the pre- and post-

measures used in the study. 

Participants 

 The study was situated in a suburban school district of 30,000 to 50,000 students 

in the northwest United States with approximately equal numbers of students of color and 

White students. Enrollment in each of the district’s 10 high schools ranged from 200 to 

2200 students, with more than one-third of students qualifying for free or reduced price 

lunch.  The district in this study implemented a Physics First model for all students in 

2012; thus, a randomized control trial was not possible (Cochran, 1983; Issac & Michael, 

1997; Krathwohl, 2009). Student experiencing the traditional science sequence entering 

9
th

 grade in the fall of 2010 and in the fall of 2011 served as the control group in this 

retrospective observational study.  Freshmen experiencing an inquiry-based science 

sequence consisting of physics, chemistry, and biology with modeling entering 9
th

 grade 

in the fall of 2012 and in the fall of 2013 were the treatment group. The use of two 

cohorts in the control and treatment groups increased the trustworthiness of the results 
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(Krathwohl, 2009) and mitigated any possible implementation dip during the first year of 

curriculum change (Fullan, 2002).  

In order to identify differences in outcomes between the two science sequences, 

only students enrolled on May 1 for three consecutive years in high school were included 

in the analysis. Science test scores and STEM interest in grade 8 were used to control for 

any initial differences between the two groups (Tuckman, 1994).  Krathwohl (2009) notes 

that dramatic effects are uncommon in education; therefore, researchers should “design 

studies with sensitivity sufficient to establish weak effects” (p. 228). Including all 

students, as opposed to randomized or stratified sampling, increased the certainty of 

inference and the power of inferential statistics produced for specific student groups (e.g., 

Hispanic/Latino students) within the historically underserved student category (Briggs, 

2008; Field, 2016; Krathwohl, 2009).  Larger sample sizes also increased the reliability of 

effect sizes (Slavin, 2008; Slavin & Smith, 2009) 

Procedures 

 For each of the four cohorts, 9
th

 grade students entering in the fall of 2010 and 

2011experiencing a traditional science sequence and 9
th

 grade students experiencing a 

Physics First science sequence entering in the fall of 2012 and 2013, the EXPLORE 

science test was administered to 8
th

 grade students during a three week window in 

November.  The 9
th

 grade EXPLORE, 10
th

 grade PLAN, and 11
th

 grade ACT were 

administered on a single day in the spring. The 9
th

 grade EXPLORE was administered in 

April for all four cohorts.  The 10
th

 grade PLAN was administered in April for the 2010, 

2011, and 2012 cohorts and in March for the 2013 cohort.  The 11
th

 grade ACT was 
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administered in April for the 2010, 2011, and 2013 cohorts and in March for the 2012 

cohort. Figure 3 summarizes the cohorts and testing dates.  All other conditions for the 

administration of the EXPLORE, PLAN and ACT were identical across all four cohorts, 

observing time and testing conditions specified for each test. 

 

Figure 3. Science college readiness testing by cohort. 

 Because this retrospective observational study relied on extant data from the 

district, I first obtained approval from the district’s Research Committee to receive 

electronic files of de-identified data to conduct the study.  The district’s criteria for 

approving applications to conduct research include IRB review and approval.  The 

requested files, one for each the four cohorts of students, consisted of all 8
th

 grade 

students enrolled on the first school day in May joined with the electronic files provided 

by ACT with results of college-readiness testing for each year in grades 8 – 11.  In this 

study, the group membership of a student is based on the race/ethnicity, eligibility for 

free or reduced-price school meals, and English Language Learner status on May 1 of the 

student’s 9
th
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any and all student identifiable information (i.e., student identification numbers, names, 

birthdates, addresses, telephone numbers) originating from any of the five files merged 

into the file for the cohort. These four merged and de-identified cohort files of extant data 

were used to answer the research questions.   

The four electronic cohort files were then imported into SPSS statistical software.  

In the SPSS files, I calculated fields to aid in answering the research questions. I assigned 

a subject number to each student in the four files and a variable designating which of the 

four cohorts the student was a member. Dummy variables were created for each 

race/ethnicity from the single race/ethnicity field in the files supplied by the district. An 

additional variable designating if the student was a member of a historically underserved 

population was calculated.  Historically underserved students are Native 

American/Alaskan Native, Black, Hispanic/Latino, Pacific Islander/Native Hawaiian, 

English language learners, and economically disadvantaged students. Variables to 

designate whether a student met the science college- and career-readiness benchmark 

were calculated for each assessment.  A field was also calculated to indicate if a student 

had an expressed or measured interest in STEM on the ACT Interest Inventory at the time 

of each assessment.  

 All source files and the SPSS files are password protected and stored on a 

password-protected computer on a password-protected network. Copies of the data sets 

are securely stored on an electronic storage device in a locked filing cabinet and securely 

stored remotely on a password protected server.  The files will be retained for three years 

after completion of the study and then destroyed.  
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Instruments and Measures 

The EXPLORE, PLAN, and ACT assessments are comprised of a standardized, 

curriculum-based battery of multiple-choice tests in reading, math, English, and, most 

importantly for this study, science (ACT, 2014). Results from these four tests along with 

the non-cognitive component of each of the assessments, the ACT Interest Inventory, 

“help students plan for further education and explore careers, based on their own skills, 

interests, and aspirations” (ACT, 2014, p. 2). The ACT is tied more closely to high school 

curricula than the SAT, is grounded in reviews of state content standards and periodic 

national curriculum surveys, and emphasizes content mastery over test-taking skills 

(Atkinson & Geyser, 2009).  Nonetheless, Atkinson and Geyser (2009) note that the ACT 

lacks the depth of subject matter coverage that one finds in other achievement tests such 

as AP exams or SAT subject tests, citing the science test as an example.  Instead, the 

ACT science test emphasizes understanding the practices and process of science rather 

that specific science content (Schultheis & Kjelvik, 2015; Williams, 2009). Content 

specifications for the ACT science test are included in Appendix A. The ACT 

EXPLORE, PLAN, and ACT assessments provide data on student growth over time in 

science reasoning, science college-readiness, and interest in STEM careers, all of which 

are central to the research question of this study.  The use of PLAN and ACT scores for 

program evaluation is supported by both the psychometric properties and content validity 

of the tests (ACT, 2014).  For fifteen years, the Standards for Educational and 

Psychological Testing authored by the American Educational Research Association, the 

American Psychological Association, and the National Council on Measurement in 
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Education (1999) opposed the use of college admissions tests for program evaluation. 

“Admission tests, whether they are intended to measure achievement or ability, are not 

directly linked to a particular instructional curriculum and, therefore, are not appropriate 

for detecting changes in middle school or high school performance” (American 

Educational Research Association et al.,1999,  p. 143). However, Slavin (2008) argues 

that nationally standardized tests can be used to assess differences in performance 

between two groups and may be more accurate measures because they are not directly 

linked to a curriculum or instruction received by one group and not the other.  Slavin’s 

argument appears to have prevailed.  The most current rendition of the Standards for 

Educational and Psychological Testing now states that a variety of tests can be used for 

evaluating programs, including standardized achievement tests (American Educational 

Research Association, American Psychological Association, & National Council on 

Measurement in Education, 2014).  The language in the previous version of the 

Standards asserting that the use of admission tests for program evaluation was 

inappropriate appears to have faded away. 

When tests are used to evaluate a program or policy, evidence of the validity of 

the use of test scores for that purpose should be provided (American Educational 

Research Association et al., 2014). “Validity refers to the degree to which evidence and 

theory support the interpretation of test scores entailed by proposed uses of tests” 

(American Educational Research Association, 1999, p. 9). Arguments for the validity of 

an intended inference made from a test usually combine logical, empirical, and/or 

theoretical sources (ACT, 2014; Krathwohl, 2009). Validity evidence for the ACT, the 
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College Readiness Benchmarks, and the Interest Inventory are described in the remainder 

of this section along with the instruments themselves. 

ACT college and career readiness science tests.  ACT’s college and career 

readiness tests are curriculum-based and measure what “students are able to do with what 

they have learned in school, not abstract qualities such as intelligence or aptitude” (ACT, 

2014, p.1).  The three tests are scored along a common scale extending from 1 to 36; the 

maximum score on ACT Explore (for students in grades 8 and 9) is 25, the maximum 

ACT Plan (grade 10) score is 32, and the maximum ACT score is 36 (ACT, 2014).  The 

standard error of measurement is approximately 2 scale score points for each of the 

subject-area test scores (ACT, 2014). ACT equates test forms across years so that “scale 

scores are comparable across test forms and test dates” (ACT, 2014, p.51).   

The ACT Science Test is a 40-item, 35-minute test that measures the 

interpretation, analysis, evaluation, reasoning, and problem-solving skills required in the 

natural sciences (ACT, 2014). The content of the Science Test is drawn from biology, 

chemistry, physics, and Earth/ space science and assumes students are both familiar with 

the nature of scientific inquiry and have been exposed to laboratory investigation (ACT, 

2014). “As with the NGSS, the ACT science readiness scores clearly emphasize the 

importance of understanding the practices and process of science rather than the 

memorization of facts” (Schultheis & Kjelvik, 2015, p.25). 

The PLAN Science test is a 30-item, 25-minute selected-response assessment that 

calls on students to critically examine information and possible interpretations and draw 

conclusions or make predictions. Content of the test is typically covered in early high 
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school general science courses and is drawn from the biological sciences, earth/space 

science, physics, and chemistry. Scientific reasoning skills are emphasized over recall of 

specific scientific content (ACT, 2013b). 

The EXPLORE Science test is a 30-item, 25-minute selected-response assessment 

measuring scientific reasoning skills acquired up to grade 8. The content of the test is 

typically covered in science courses through grade 8 related to life science, Earth/space 

science, and physical science. Like the PLAN assessment, EXPLORE emphasizes 

scientific reasoning skills (e.g., drawing conclusions, making predictions) over recall of 

specific scientific content (ACT, 2013a). 

Validity Evidence for ACT Test Scores.  Examining the first year college 

success rates of over 190,000 students at 192 institutions, Sawyer (2010) found that both 

high school GPA and the ACT composite score predict academic success in the first year 

of college, with the ACT composite score a better predictor of higher GPAs (i.e., 3.5 and 

above) in the first year of college. After examining the performance of nearly 190,000 

first-time freshmen at four-year colleges and universities, Westrick, Le, Robbins, 

Radunzel, and Schmidt (2015) conclude that ACT Composite scores are highly correlated 

with first year academic performance across a range of institutions from selective to open 

enrollment.  In contrast, Bettinger, Evans, and Pope (2011) found that after controlling 

for selectivity of enrolled college, high school GPA, race/ethnicity and gender, and 

college major, the ACT science test score was not correlated with first year overall 

college GPA, second year overall college GPA, or persistence in college (although the 

math and English test scores were predictive).  Based on their findings, Bettinger et al. 



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

60 

argue that since the composite score includes the non-predictors of the ACT reading and 

science scores, using only the ACT math and English test scores may better identify 

students who will be successful in college. 

ACT College Readiness Benchmarks. The ACT Science College Readiness 

Benchmark of 23 is the minimum ACT test score required for students to have a high 

probability of success in a college biology class (ACT, 2013d). Corresponding Science 

Benchmarks for EXPLORE (18 at grade 8; 19 for grade 9) and PLAN (20 in grade 10) 

gauge student progress in becoming ready for studying science in college (ACT, 2013d). 

Students who meet the science benchmark on the ACT have approximately a 50% chance 

of earning a B or better and approximately a 75% chance or better of earning a C or better 

in college biology (ACT, 2014). Students who meet the benchmark on the EXPLORE or 

ACT PLAN science tests have approximately a 50% chance of meeting the ACT 

Benchmark in science, and are likely to have approximately this same chance of earning 

a B or better grade in college biology by the time they graduate high school (ACT, 2014). 

After examining freshman college math grades and ACT math benchmark scores of 

Minnesota students, Maruyama (2012) concluded that the math ACT college readiness 

benchmark is a more accurate threshold for earning a B or better grade than the C or 

better grade.  Maruyama also suggests college readiness results from the ACT would be 

more usable if probabilities of success were provided to students at every score point, not 

just for the college readiness benchmark.  For example, a student with an ACT science 

score of x has a 40% chance of attaining a grade of B or higher in college biology. 
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ACT College Readiness Benchmarks are empirically derived based on the actual 

performance of students in college. Data from 214 institutions and over 230,000 students 

were used to establish the benchmarks (ACT, 2014).  The sample of colleges is weighted 

by ACT so that it is representative of all ACT-tested college students in terms of college 

type (2-year and 4-year) and selectivity (ACT, 2014). The College Readiness 

Benchmarks for EXPLORE and PLAN were developed using records of students who 

had taken EXPLORE or PLAN, followed by the ACT in grades 11 or 12 (ACT, 2014). 

Separate benchmarks were developed for EXPLORE for grade 8 and for grade 9 (ACT, 

2014). The sample sizes used to develop the EXPLORE and PLAN Benchmarks ranged 

from 210,000 to approximately 1.5 million students depending on the test (ACT, 2014). 

To establish the benchmarks, the probability of meeting the appropriate ACT Benchmark 

was estimated for each EXPLORE and PLAN score (ACT, 2014). The EXPLORE and 

PLAN science test scores corresponded most closely to a 50% probability of meeting the 

benchmark for science on the ACT (ACT, 2014). 

Validity Evidence for ACT College Readiness Benchmarks.  Using logistic 

regression, Allen and Sconing (2005) established readiness benchmarks for common 

first-year college courses based on ACT scores. These benchmarks for the EXPLORE, 

PLAN, and ACT were updated in 2013 using data from more recent high school 

graduates (Allen, 2013). Based on Allen’s analysis of over 40,000 students from 90 

colleges, the science college readiness benchmark was decreased by one point on each 

assessment.  These updated 2013 benchmarks were applied to all science test scores in 

this study.  Noble, Davenport, Schiel, and Pommerich (1999) used stepwise multiple 
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regression to investigate the extent to which non-cognitive characteristics explained 

differential ACT performance of racial/ethnic and gender groups. The researchers found 

that 36% of the variability in ACT science scores was attributable to specific coursework 

taken and grades earned in high school, while less than 3% of variance in ACT science 

scores was related to gender or race/ethnicity (Noble et al., 1999). McNeish, Radunzel, 

and Sanchez (2015) replicated these findings.   However, the findings related to race and 

ethnicity are only for Black students due to the small number of Latino and Native 

American students in the study’s data set. In a study of 190,000 ACT-tested students 

enrolling in college as first-time students in fall of 2000 through 2006, Radunzel and 

Noble (2013) found that ACT Benchmark scores overestimated the chances of success 

for students of color in college degree attainment, but less so than the use of high school 

GPA.  The authors also found that ACT benchmark scores “slightly over-predicted 

students’ chances of progressing towards and completing a degree for lower-income 

students” (Radunzel & Noble, 2013, p. 41). 

ACT Interest Inventory.  The ACT Interest Inventory (UNIACT) helps students 

explore personally relevant career options (both educational and occupational) during 

high school (ACT, 2014).  UNIACT results are reported for six scales paralleling the six 

interest and occupational types in Holland’s theory of careers (ACT, 2014).  Scale names 

(and corresponding Holland types) are Science & Technology (Investigative), Technical 

(Realistic), Administration & Sales (Enterprising), Arts (Artistic), Business Operations 

(Conventional), and Social Service (Social) (ACT, 2014). Each scale consists of work-

relevant activities (e.g., build a picture frame, conduct a meeting, help settle an argument 
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between friends) familiar to students, either through participation or observation (ACT, 

2014).  Two work task dimensions underlie Holland’s six interest and occupation types: 

1) working with data versus ideas and 2) working with things versus people (Prediger & 

Swaney, 2004). The term data refers to working with numbers, files, accounts, or 

business procedures while working with ideas is about forming insights, theories, new 

ways of saying or doing something (ACT, 2009a). The term people refers to helping, 

serving, informing, caring for, or selling things to people as opposed to working with 

things (e.g., machines, tools, living things, and materials) (ACT, 2009a). Students 

respond to 72 items on the UNIACT using a three-choice response format (dislike, 

indifferent, like) (ACT, 2014).  Nationally representative norms for grades 8, 10, and 12 

are based on a nationally representative sample of 257,567 students from 8,555 schools. 

(ACT, 2009a; ACT, 2014).  Internal consistency reliability coefficients for the six 12-

item scales range from .84 to .91 (ACT, 2014).  

Validity Evidence for the ACT Interest Inventory.  A number of studies have 

confirmed the criterion-related validity and structural validity of the ACT Interest 

Inventory (ACT, 2009a). Evidence of criterion-related validity occurs when individuals 

with the same occupational choice, college major, or occupation express interest that 

would assign them to the same career cluster in the inventory (ACT, 2009a).   In a study 

of nearly 11,000 high school seniors who indicated they were very sure of their career 

choice, 42% were assigned to the same career cluster based on their expressed interests 

(ACT, 2009a). Principal component analysis has been used to confirm that the data 

versus ideas and things versus people work task dimensions underlie the six ACT Interest 
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Inventory scores (ACT, 2009a). After analyzing three databases providing a wide range 

of perspectives on basic worktasks, Prediger and Swaney (2004) confirmed that the data 

versus ideas and things versus people work task dimensions underlie diverse types of 

occupational data.  Day, Rounds, and Swaney (1998) examined factor loadings on the 

data versus ideas and people versus things work task dimensions for racial/ethnic groups 

and concluded that “the ACT Interest Inventory has validity for use with diverse 

racial/ethnic groups in the United States” (ACT, 2009a, p. 7).  

STEM Interest.  A student is classified as having interest in STEM if, on the 

ACT Interest Inventory, the student plans a STEM major or occupation following high 

school (expressed STEM interest) or the student had a highest ACT Interest Inventory 

score in Science & Technology or had a highest ACT Interest Inventory score in 

Technical and a second-highest score in Science & Technology (measured STEM 

interest) (ACT, 2015).  Science & Technology are work tasks that involve “investigating 

and attempting to understand phenomena in the natural sciences through reading, 

research, and discussion” (ACT, 2009a, p. 4). Technical work tasks involve “working 

with tools, instruments, and mechanical or electrical equipment. Activities include 

designing, building, repairing machinery, and raising crops/animals” (ACT, 2009a, p. 4). 

On the ACT, a student identifies a major or occupation from a comprehensive list.  For 

the interest inventories accompanying the EXPLORE and PLAN assessments, students 

are asked to identify one of 26 career areas the student is most interested in (ACT, 

2009a).  Five of these career areas – Computer/Info Specialties, Engineering & 

Technologies, Natural Science & Technologies, Medical Technologies, and Medical 
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Diagnosis & Treatment – are “the closest you can get to ACT’s STEM occupation titles”, 

encompassing 83 of the 93 STEM careers (Kyle Swaney, personal communication, 

October 6, 2016). 

Role of the Researcher 

 My experience in education includes teaching mathematics at the high school 

level as well as administrative experience at a state education agency and in a local 

education agency.  My administrative experience includes supervising the administration 

of standardized testing, reporting of testing results for accountability and improvement, 

supplying data to inform the selection of instructional materials, and conducting program 

evaluations.  I have not been involved in the selection of science curriculum or teacher 

professional development related to science curriculum implementation nor do I 

administer college readiness assessments nor instruct high school students in science.  

For the past fifteen years, a substantial portion of my duties has been the compilation, 

examination, and analysis of data which repeatedly reveal the disproportionate outcomes 

in student achievement and graduation rates for students of color and students from low-

income families.  I intentionally began my dissertation with the powerful assertion by 

Henry Levin (2009) that “educational equity is a moral imperative for a society in which 

education is a crucial determinant of life’s chances” (p. 5).  My commitment to 

educational equity, the moral imperative I share with Mr. Levin, is a source of potential 

bias toward positive outcomes for historically underserved students in this study.  My use 

of extant data in a retrospective observational study greatly reduced researcher 

expectancy bias (Krathwohl, 2009; Mann, 2003).  Further, I took several steps to increase 
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the integrity of the results and diminish researcher bias including: 1) specifying the 

research question in advance of the study, 2) identifying in advance data to answer the 

research question, 3) applying statistical techniques to analyze the data, and 4) specifying 

significance levels for inferential statistical tests in advance of analyzing the data.  I now 

describe the statistical analysis used to answer each part of the research question in this 

pre-planned study. 

Data Collection and Analysis 

To reduce plausible rival explanations, statistical methods were employed to 

adjust for initial differences in science achievement between the two groups (if present) 

and reduce the effect of unwanted variables (Krathwohl, 2009).  Science test scores, 

science college readiness, and STEM interest in the 8
th

 grade year were used to control 

for any initial group differences (Tuckman, 1994).  Statistical controls for initial 

differences work well when initial differences between treatment and control groups are 

small (Slavin, 2008). Inferential statistics were computed using the conventional 

significance level (α) of 0.05 for social science research to detect if there are differences 

between the populations (Bloom, Hill, Black, & Lipsey, 2008).  A significance test does 

not tell the size of a statistical difference between two measures, but effect size does 

(Bloom et al., 2008; Fields, 2016).  Effect size can be interpreted in various ways and the 

method selected should be determined by the research question (Fields, 2016). The effect 

size represents the magnitude of an intervention in statistical terms, specifically in terms 

of the number of standard deviation units by which the treatment group outperforms (or 

underperforms) the comparison group (Fields, 2016). The commonly used interpretation 
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suggested by Cohen classifies effect sizes as small (d=0.2), moderate (d=0.5), and large 

(d=0.8) (Bloom et al., 2008; Fields, 2016). Bloom et al. assert that there is no reason to 

believe Cohen’s rule of thumb applies to the effects of educational interventions or, more 

specifically, to effects on the standardized achievement tests widely used as outcome 

measures” for such interventions (p. 295). Bloom et al. calculated average gains in effect 

size for year-to-year growth based on data from national norming studies from six 

standardized tests in math and science. Their table of average annual gains in effect size 

(p. 305) served as a benchmark for interpreting the meaning of the effect size in the 

difference in 11
th

 grade science scores between students in a traditional science sequence 

and students in a Physics First sequence. 

To compare 11
th

 grade science scores of students in a traditional science sequence 

and students in a Physics First sequence, multiple linear regression was used.  Multiple 

linear regression is appropriate for predicting outcomes when the independent variable is 

continuous and multiple predictor variables are either categorical or continuous (Field, 

2016). Assumptions of linear regression include linearity, independent errors, 

homoscedasticity, normally distributed errors, and lack of multicollinearity (Field, 2016).  

The assumption of independent errors was tested using the Durbin-Watson test (Field, 

2016).  The assumptions of homoscedasticity (the residuals at each level of the predictor 

variables having the same variance) and linearity were assessed by examining the graphs 

of standardized residuals and standardized predicted values of the independent variable 

(Field, 2016).  The Variance Inflation Factor (VIF) was used to assess the assumption of 

non-multicollinearity (Field, 2016).  Because large sample sizes are available, the 
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assumption of normally distributed errors was met (Field, 2016). The first independent 

variables in the models were the categorical demographic variables for subgroups of 

historically underserved students (e.g., race/ethnicity, economically disadvantaged status, 

and English language learner status). Because prior achievement is the strongest predictor 

of current achievement (Sawyer, 2013), the 8
th

 grade EXPLORE science score was 

entered as the next predictor in the model.  The variable indicating membership in a 

traditional science or Physics First cohort was then added to the model, followed by 

interaction terms.  The proportion of variance explained by the model, R
2
, was reported 

to indicate how well each dependent variable in the model predicts the outcome variable, 

in this case, a student’s score on the ACT science test in grade 11 (Field, 2016).  The F 

statistic was used to assess if each model was a significant fit of the data overall (Field, 

2016).  The t-statistic was used to determine if a predictor made a significant contribution 

to the outcome using a significance level of α = .05 (Field, 2016). The standardized beta 

values quantified the effect of each predictor variable in the final model on a student’s 

science score in grade 11 (Field, 2016).  

Differences between the two groups in student interest in STEM (i.e., students 

with expressed or implied interest in STEM careers) and in science college- and career-

readiness in grade 11 were assessed using binary logistic regression.  Binary logistic 

regression can accommodate multiple predictor variables that can be either categorical or 

continuous (Field, 2016). Binary logistic regression is appropriate for predicting 

outcomes when the independent variable is dichotomous and group sizes are unequal 

(Anderson & Rutkowski, 2008).  Assumptions of binary logistic regression are that a 



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

69 

linear relationship exists between any continuous predictors and the logit of the outcome 

variable and independence of errors (Field, 2016).  The first assumption does not apply in 

this case since the predictor variables are all categorical.  Independence of errors was 

assessed by computing the chi-squared goodness of fit statistic and comparing it to the 

degrees of freedom (Field, 2016).  In addition, contingency tables were run to ensure 

complete information was available (expected frequencies in each cell are all greater than 

1 and less than 20% of cells have frequencies less than 5) (Field, 2016).  When more than 

20% of cells have frequencies less than 5, Fisher’s exact test was used rather than the chi-

square test (Field, 2016). The first independent variables in the models were the 

categorical demographic variables for subgroups of historically underserved students 

(e.g., race/ethnicity, economically disadvantaged status, and English language learner 

status). Because prior achievement or interest is the strongest predictor of current interest, 

8
th

 grade status was used as the next predictor in the model. The variable indicating 

membership in a traditional science or Physics First cohort was then added to the model, 

followed by interaction terms.  The Wald statistic was used to determine if a predictor 

made a significant contribution to the outcome using a significance level of α = .05 

(Field, 2016). Odds ratios and the 95% confidence interval of the odds ratios quantified 

how membership in a group affects STEM interest and science college- and career-

readiness in grade 11 after controlling for the student’s status on each of these measures 

in 8
th

 grade (Durlak, 2009; Fields, 2016).  R
2
 was reported using the Cox and Snell’s 

statistic and the Nagelkerke statistic to indicate how well each model predicted the 11
th

 

grade outcome (Field, 2016).  A summary of the statistical method and predictor 
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variables for each part of the research question is shown in Figure 4. 

 

Figure 4. Research question outcome variables, methods, and predictors.  

Conclusion 

This retrospective observational study sought to determine if, compared to their 

peers in a traditional science sequence, historically underserved students completing a 

Physics First science sequence have higher science test scores, higher rates of science 

college- and career-readiness, and greater interest in STEM in grade 11.  Quasi-

experimental designs done well can provide evidence for policy decisions when a true 

experimental design is not feasible (Campbell & Stanley, 2015; Krathwohl, 2009). 

Compared to a randomized experiment, a major weakness of quasi-experimental designs 

is the difficulty in eliminating rival explanations (Campbell & Stanley, 2015; Krathwohl, 

2009).  To eliminate rival explanations, I conducted a retrospective cohort observational 

study (Hoffmann & Lim, 2007; Mann, 2003) with a control group and a treatment group 

consisting of two cohorts each comprised of naturally-formed groups of students based 

on year of enrollment in 8
th

 grade.  In addition, a number of threats to internal validity 

were effectively controlled using pre-tests measures to confirm similarity of these two 
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• Method: Binary Logistic Regression 
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groups (Campbell & Stanley, 2015).  Additional strengths of the design included the 

relatively large number of students in each cohort (more than 2,000) and the use of 

repeated and vertically scaled measures.  Nonetheless, a major confounding variable 

(Krathwohl, 2009) that could not be controlled is the variability in science instruction 

students received prior to entering the high school after the November administration of 

the 8
th

 grade EXPLORE test and the ACT Interest Inventory.  Further, some would argue 

that the assessment of science college- and career-readiness using a single measure like 

the ACT science test is a limited measure of this construct.  Even so, the assessment of 

the ability of students to reason in science and the quantitative research linking the 

science college-readiness benchmarks to success in first year science courses cannot be 

dismissed.  Finally, as with the study by Gaubatz (2013), findings from a study conducted 

in a single school district “should be tempered with the understanding that successful 

change within educational settings is context-dependent” (p. 25).  Nonetheless, I hope 

districts and schools seeking to close opportunity to learn gaps in science and increase the 

STEM preparedness of historically underserved students find the results of this study 

useful due to the methodological strengths of the study, the rigor of the statistical analysis 

methods, and the disaggregation of results for historically underserved student groups. 
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CHAPTER 4 

RESULTS/ANALYSIS 

While there are many factors contributing to disparate educational outcomes for 

low-income and Black and Hispanic/Latino students, the purpose of this study was to 

determine if the science college- and career-readiness and interest in STEM of 

historically underserved students can be improved by implementing a district-wide, 

inquiry-based high school science sequence comprised of coursework in physics, 

chemistry, and biology.  Historically underserved students are Black, Hispanic/Latino, 

Native American, Pacific Islander, English language learners, or economically 

disadvantaged students. This Physics First approach to high school science seeks to close 

gaps in science content coverage experienced by historically underserved students by 

ensuring all students are exposed to the same content in physics, chemistry, and biology.  

As discussed in Chapter 2, incorporating inquiry and modeling develops the academic 

skills of all students through active learning and the construction of new knowledge; 

thereby closing gaps in content exposure and emphasis more frequently experienced by 

historically underserved students compared to their White, economically advantaged 

peers whose first language is English.   

A quantitative retrospective cohort observational study (Hoffmann & Lim, 2007; 

Mann, 2003) was used to address the primary research question: do historically 

underserved students completing a Physics First science sequence have 1) higher science 

college-readiness test scores, 2) higher rates of science college and career readiness, and 

3) greater interest in STEM careers in grade 11 compared to their peers who experienced 

a traditional science sequence?  To compare science test scores of students experiencing a 
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traditional science sequence and students experiencing a Physics First science sequence, 

multiple linear regression was used.  Differences in student interest in STEM (i.e., 

students with expressed or implied interest in STEM careers as described in Chapter 3) 

and science college- and career-readiness of students experiencing a traditional science 

sequence and students experiencing a Physics First science sequence were assessed using 

binary logistic regression.  A number of threats to internal validity were controlled 

through the inclusion of pre-measures from 8
th

 grade in the regression models to control 

for any initial differences between the two groups (Campbell & Stanley, 2015).  

Additional strengths of the design included the large number of students (more than 

4,500) in each group and the use of repeated and vertically scaled measures of science 

college-readiness.  I now present the results of the data analysis and the statistical 

methods used to derive the results. 

Analysis of Data and Presentation of Results 

A major disadvantage of a retrospective cohort observational study is the inability 

to control for all factors that may differ between the two groups (Hoffmann & Lim, 2007; 

Mann, 2003).  Hoffmann and Lim (2007), Mann (2003) and others refer to these factors 

as confounding variables. Multivariate models, including linear and logistic regression 

models, can be used to control for such confounding variables (Hoffmann & Lim, 2007; 

Pourhoseingholi, Baghestani, & Vahedi, 2012). An additional potential problem in this 

study was bias. Mann (2003) asserts that “bias can occur in any research and reflects the 

potential that the sample studied is not representative of the population it was drawn from 

and/or the population at large” (p. 55). To identify sources of bias, I begin the data 
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analysis with a thorough examination of the demographic differences between the 

students who began 9
th

 grade in a traditional science sequence and those students who 

entered a Physics First sequence, including the attrition of students over the course of 

their first three years of high school.  I then examine initial differences of the two groups 

on the 8
th

 grade pre-measures of science test score, science college- and career-readiness 

status, and STEM interest.  I conclude the analysis by presenting the results of the 

regression models that control for any initial differences. 

Differences in 9
th

 Grade Demographics. Enrollment in grade 9 on May 1 is 

shown in Table 3.  Students entering 9
th

 grade in the fall of 2010 and 2011 experienced a  

Table 3 

Demographics of 9
th

 Grade Students by Cohort 

 Traditional Science Physics First  

Student Group Fall 2010 Fall 2011 Fall 2012 Fall 2013 Total 

Native American Count 20a 14a 16a 18a 68 

% within Group 0.6% 0.5% 0.6% 0.6% 0.6% 

Asian Count 377a 381a 374a 378a 1510 
 

% within Group 12.1% 13.1% 12.9% 13.0% 12.8% 

Black Count 86a 87a 80a 80a 333 
 

% within Group 2.8% 3.0% 2.8% 2.7% 2.8% 

Latino Count 690a 629a 648a 683a 2650 

 % within Group 22.1% 21.6% 22.3% 23.5% 22.4% 

Pacific Islander Count 28a 28a 23a 22a 101 
 

% within Group 0.9% 1.0% 0.8% 0.8% 0.9% 

Multiracial Count 191a 182a 215a 215a 803 
 

% within Group 6.1% 6.3% 7.4% 7.4% 6.8% 

Economically Disadv. Count 1288a 1117b 1165a, b 1183a, b 4753 

% within Group 41.3% 38.4% 40.1% 40.7% 40.1% 

English Lang. Learner Count 292a 196b 178b 174b 840 
  

% within Group 9.4% 6.7% 6.1% 6.0% 7.1% 

Each subscript letter denotes a subset of Student Group categories whose column proportions do not 

differ significantly from each other at the .05 level. 



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

75 

traditional science sequence. Students entering 9
th

 grade in the fall of 2012 and 2013 

experienced a Physics First curriculum with modeling. Table 4 displays the percentage 

of students in each cohort enrolled for three consecutive years in grades 9, 10, and 11. 

Table 4 

Demographics of 9
th 

Grade Students Enrolled Three Years by Cohort 

 Traditional Science Physics First  

 Fall 2010 Fall 2011 Fall 2012 Fall 2013 Total 

Native Am. Count 14a 10a 10a 14a 48 

% within Group 0.6% 0.4% 0.4% 0.6% 0.5% 

Asian Count 324a 345a 341a 335a 1345 
 

% within Group 13.8% 14.6% 14.1% 13.7% 14.0% 

Black Count 55a 63a 53a 63a 234 
 

% within Group 2.3% 2.7% 2.2% 2.6% 2.4% 

Latino Count 465a 466a 510a, b 551b 1992 

 % within Group 19.8% 19.7% 21.0% 22.6% 20.8% 

Pacific Islander Count 15a 13a 19a 17a 64 
 

% within Group 0.6% 0.5% 0.8% 0.7% 0.7% 

Multiracial Count 147a 159a 177a 187a 670 
 

% within Group 6.3% 6.7% 7.3% 7.7% 7.0% 

Economically Disadv. Count 805a, b 785b 864a, b 898a 3352 

% within Group 34.4% 33.2% 35.6% 36.8% 35.0% 

English Lang. Learner Count 168a 135b 115b 130b 548 
  

% within Group 7.2% 5.7% 4.7% 5.3% 5.7% 

Each subscript letter denotes a subset of Group categories whose column proportions do not differ 

significantly from each other at the .05 level. 

 

The results in Table 5 suggest that the populations of 9
th

 grade students enrolled 

on May 1 for three consecutive years in each cohort are significantly different (α=.05) for 

all economically disadvantaged students (p< .05) and English language learners (p< .01).  

Table 4 reveals that the percentage of English language learners enrolled in the first 

cohort (7.2%) is significantly higher (α=.05) compared to the other three cohorts.  Table 4 
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also shows that the percentages of economically disadvantaged, and Hispanic/Latino 

students are significantly different between some of the cohorts. 

Table 5 

Pearson Chi-Square Tests on Cohort Demographics by Enrollment Status 

 All Students Enrolled Three Years 

Student Group Value  Value   

Native American (AI) 0.816  1.317  

Asian (AS) 1.708  0.839  

Black (BL) 0.457  1.429  

Hispanic/Latino (Latino) 3.057  7.835  

Pacific Islander (PI) 0.947  1.050  

Multiracial (MU) 6.784  4.166  

Economically Disadvantaged (ECD) 5.755  7.839 * 

English Language Learners (ELL) 34.676 *** 14.138 ** 

df = 3    *p< .05     **p<.01     ***p< .001 

 

Enrollment in grade 9 on May 1 and enrollment on May 1 for three consecutive 

years by science sequence is shown in Table 6.  Students in the 2010 and 2011 cohorts 

are labeled traditional science and students in the cohorts of 2012 and 2013 are labeled 

Physics First.  Pearson chi-square tests of significance for students enrolled on May 1 are 

shown in Tables 7.  The results in Table 7 again suggest that the populations of students 

enrolled on May 1 in grade 9 are significantly different (α=.05) only for English language 

learners.  The results in Table 7 suggest that the populations of 9
th

 grade students enrolled 

on May 1 for three consecutive years are significantly different (α=.05) for the 

Hispanic/Latino, economically disadvantaged, and English language learner student 

groups. The percentage of students enrolled for three years who are English language 

learners are higher in the traditional science group while the percentages of students who 

are economically disadvantaged or Hispanic/Latino are higher in the Physics First group.   



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

77 

By including demographic variables in the regression models, these differences were 

controlled for (McNamee, 2005).  

Table 6 

9
th

 Grade Demographics by Science Sequence 
  

Student Group 

All students Enrolled Three Years 

Traditional 

Science Physics First 

Traditional 

 Science Physics First 

n % n % n % n % 
 

Native American/Alaskan Native 34 0.6 34 0.6 24 0.5 24 0.5 

Asian 758 12.6 752 12.9 669 14.2 676 13.9 

Black 173 2.9 160 2.8 118 2.5 116 2.4 

Hispanic/Latino 1319 21.9 1331 22.9 931 19.8 1061 21.8 

Pacific Islander/Native Hawaiian 56 0.9 45 0.8 28 0.6 36 0.7 

White 3312 55.0 3066 52.7 2635 55.9 2589 53.2 

Multiracial 373 6.2 430 7.4 306 6.5 364 7.5 

Economically Disadvantaged 2405 39.9 2348 40.4 1590 33.8 1762 36.2 

English Language Learner 488 8.1 352 6.1 303 6.4 245 5.0 

Historically Underserved 2857 47.4 2775 47.7 1930 41.0 2117 43.5 

Total 6025 100.0 5818 100.0 4711 100.0 4866 100.0 

 
Table 7 

Pearson Chi-Square Tests of Student Demographics by Science Sequence 

                     All Students Students Enrolled Three Years 

Student Group Value Value 

Native American (AI) 0.021  0.013  

Asian (AS) 0.316  0.189  

Black (BL) 0.159  0.147  

Hispanic/Latino (Latino) 1.654  6.059 * 

Pacific Islander (PI) 0.852  0.763  

Multiracial (MU) 6.743 ** 3.570  

Economically Disadvantaged (ECD) 0.239  6.365 * 

English Language Learners (ELL) 18.865 *** 8.657 ** 

df = 1     *p< .05      **p<.01     ***p<.001 

 

Differences in demographics due to attrition.  As may be expected, the 

percentages of economically disadvantaged students enrolled for three consecutive years 
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on May 1was 4 to 6 percentage points lower than the total 9
th

 grade enrollment shown in 

Table 6.  Students who are economically disadvantaged are less likely to attend school in 

the same district due to the economic challenges facing lower income families (Temple & 

Reynolds, 2000; Voight, Shinn, & Nation, 2012).  Z-scores for each population reported 

in Table 8 suggest that the differences in the percentages of economically disadvantaged, 

English language learners, and Hispanic/Latino students in the traditional science and 

Physics First groups enrolled for three years are not equivalent to the percentages of 9
th

 

grade students enrolled on May 1, with the exception of Hispanic/Latino students in the 

Physics First group.  While these differences are statistically significant (α=.05) and may 

represent sample bias, in order to answer the research questions for this study, students 

must be enrolled for three consecutive years in order to identify and quantify any 

differences in student outcomes between the two science sequences. 

Table 8 

Z-Scores of Demographics of Students by Enrollment Status 

 Traditional Science Physics First 

Student Group Z-score Z-score 

Native American (AI) 0.3849  0.6387  

Asian (AS) -2.4535 ** -1.4627  

Black (BL) 1.1608  1.1883  

Hispanic/Latino (Latino) 2.6907 ** 1.3249  

Pacific Islander (PI) 1.9556  0.1996  

Multiracial (MU) -0.6434  -0.1759  

Economically Disadvantaged (ECD) 4.3878 *** 6.5993 *** 

English Language Learners (ELL) 3.2826 ** 2.2753 ** 

*p< .05      **p<.01     ***p<.001 

 Differences in 8
th

 grade science test scores, college-readiness, and STEM 

interest.  Science test scores, science college-readiness, and STEM interest in the 8
th

 

grade year were used to control for initial group differences (Tuckman, 1994). Because 
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the standard error of measurement is approximately 2 scale score points for each of the 

subject-area test scores (ACT, 2014), differences of more than 1 scale score point on the 

8
th

 grade scores would suggest non-equivalent groups.  As shown in Table 9, the mean 8
th

 

grade science scores of students entering a traditional science sequence and students 

entering a Physics First science sequence are within 0.3 points, less than one-tenth of a 

standard deviation of the mean scores in either group. Mean 8
th

 grade science scores for 

students who are Native American, Black, Hispanic/Latino, Pacific Islander, 

economically disadvantaged, and English language learners in the traditional science 

instruction cohorts and students in the Physics First cohorts are all within 0.5 points of 

each other and are less than two-tenths of a standard deviation.  With the exception of 

Native American students, the differences in 8
th

 grade mean scale scores are higher for 

students receiving traditional science instruction. 

Independent sample t-tests were performed on the mean 8th grade science scores 

for each of the historically underserved student groups to determine if there were 

statistically significant differences in the mean 8
th

 grade science scores between students 

in the traditional science cohorts and students in the Physics First cohorts.  A two-tailed t-

test was employed with a significance level of α = .05.  Differences in mean 8
th

 grade 

science scores between the traditional science cohorts and the Physics First cohorts were 

statistically significant for all students, t(8367) = 2.925, p =.003, and for economically 

disadvantaged students, t(2804) = 2.871, p =.004. Differences in mean 8
th

 grade science 

scores between the traditional science cohorts and the Physics First cohorts were not 

statistically significant for Native American students, t(37) = -0.479, p =.635; Black  
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Table 9 

Mean Science Scores by Year 

 Traditional Science  Physics First 

Grade N M SD  N M SD 

 All Students 

8 4089 18.11 3.444  4286 17.89 3.704 

9 4333 19.30 3.662  4339 19.27 3.707 

10 4221 20.80 4.588  4203 20.85 4.885 

11 4229 21.55 5.744  4349 21.91 5.937 

 Native American 

8 19 16.74 3.478  20 17.25 3.210 

9 21 19.29 3.379  23 18.39 3.738 

10 20 20.10 3.919  22 19.32 4.099 

11 23 20.83 5.852  22 20.77 4.710 

 Black 

8 83 15.82 2.812  89 15.53 3.425 

9 103 16.63 3.178  95 16.80 3.512 

10 99 17.17 3.273  89 17.60 3.878 

11 99 17.07 4.415  95 17.79 5.329 

 Hispanic/Latino 

8 786 15.95 2.948  939 15.71 3.249 

9 805 16.99 3.376  916 16.99 3.367 

10 755 17.92 3.708  868 17.82 3.898 

11 764 17.55 5.038  911 17.99 4.967 

 Pacific Islander 

8 23 15.96 2.513  33 15.94 3.544 

9 25 17.28 4.005  32 17.50 4.197 

10 23 18.48 4.621  31 18.19 5.782 

11 25 18.72 4.852  29 18.48 6.294 

 Economically Disadvantaged 

8 1307 16.37 3.066  1515 16.02 3.296 

9 1379 17.42 3.509  1502 17.30 3.485 

10 1306 18.46 3.923  1420 18.28 4.162 

11 1307 18.44 5.220  1474 18.50 5.141 

 English Language Learner 

8 183 13.75 2.271  139 13.25 2.774 

9 225 14.74 3.190  165 14.36 2.988 

10 223 15.82 3.001  169 15.18 2.904 

11 232 14.61 4.206  193 15.18 4.420 
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students, t(170) = 0.607, p =.545; Hispanic/Latino students, t(1723) = 1.612, p =.107; 

Pacific Islander students, t(54) = 0.020, p =.984; and English language learners, t(320) = 

1.766, p =.078. To control for initial differences, 8
th

 grade science scores were included 

in the multiple linear regression model. 

The percentage of students who were college-ready in science in 8
th

 grade, shown 

in Table 10, differed by 4 percentage points, with a lower percentage of students in the 

Physics First sequence meeting the science college readiness benchmark (49.6%) than 

students in the traditional science sequence (53.6%).  Differences in science college 

readiness between students in the traditional science cohorts and students in the Physics 

First cohorts were also within 5 percentage points for the Native American, Black, 

Hispanic/Latino, economically disadvantaged, and English language learners student 

groups. As with the mean science scores, the percentage of students who met the college-

readiness benchmark in science in grade 8 were higher for students in the traditional 

science cohorts compared with students in the Physics First cohorts for all of these 

students groups, except Native Americans.  For Pacific Islanders, there was a 12 

percentage point difference in favor of students entering the traditional science sequence.  

Chi-square tests (Table 11) suggest that these differences in the percentages of students 

scoring at or above the college readiness benchmark of 18 on the EXPLORE science test 

in grade 8 in the traditional science cohorts and in the Physics First cohorts were not 

equivalent (α = .05) for the all students (p<.001) and economically disadvantaged groups 

(p<.01).  The percentages of science college readiness of Native American, Black, and 

Hispanic/Latino students in the traditional science cohorts and in the Physics First cohorts 
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were not significantly different at α = .05.  The percentages of science college readiness 

of Pacific Islanders and English language learners in the traditional science cohorts and in 

the Physics First cohorts were also not significantly different at α = .05 using Fisher’s 

exact test.  Fisher’s exact test computes the exact probability of the chi-square statistic 

when one or more cells have frequencies less than 5 (Field, 2016).  

Table 10 

College Ready in Science by Year 

 All Students 

Native 

American Black 

Hispanic/ 

Latino 

Pacific 

 Islander 

Economically 

Disadvantaged 

English 

Language 

Learners 

 Grade 

n % n % n % n % 

                 

n % n % n % 

Traditional Science 

 8 2191 53.6 7 36.8 20 24.1 190 24.2 6 26.1 407 31.1 4 2.2 

9 2545 58.7 13 61.9 31 30.1 242 30.1 9 36.0 516 37.4 20 8.9 

10 2467 58.4 10 50.0 24 24.2 217 28.7 8 34.8 469 35.9 29 13.0 

 11 1893 44.8 10 43.5 15 15.2 128 16.8 6 24.0 296 22.6 12 5.2 

 Physics First 

 8 2126 49.6 8 40.0 19 21.3 208 22.2 5 15.2 404 26.7 2 1.4 

 9 2474 57.0 13 56.5 23 24.2 267 29.1 10 31.3 491 32.7 6 3.6 

 10 2392 56.9 7 31.8 24 27.0 240 27.6 9 29.0 460 32.4 11 6.5 

 11 1997 45.9 6 27.3 15 15.8 159 17.5 7 24.1 327 22.2 11 5.7 

 

Table 11 

Pearson Chi-Square Tests on 8
th

 Grade Science College Readiness 

Student Group N Value Significance  

All students 8375 13.268 .000 *** 

Native American 39 5.449 .839  

Black 172 0.185 .667  

Hispanic/Latino 1725 0.985 .321  

Pacific Islander 56  .249
 a
  

Economically Disadvantaged 2822 6.856 .009 ** 

English Language Learners 322  .702
b
  

df=1     *p< .05      **p<.01     ***p<.001 

a. 1 cell (25.0%) had expected count less than 5; Fisher’s exact statistic reported. 

b. 2 cells (50.0%) had expected count less than 5; Fisher’s exact statistic reported. 
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The percentages of students interested in STEM (expressed or measured) in 8
th

 

grade for students in the traditional science sequence and in the Physics First science 

sequence are within 5 percentage points for all students, Hispanic/Latino students, 

economically disadvantaged students, and English language learners (Table 12).  For the 

Native American and Black student groups, the differences are less than 10 percentage 

points. With the exception of Pacific Islander students, where the difference was 13 

percentage points, a greater percentage of students were interested in STEM prior to 

entering the Physics First sequence compared to the students entering the traditional 

science sequence.  The results of chi-square tests shown in Table 13 are all non-

significant at α = .05 and thus do not detect statistically significantly differences between 

the groups in each case. Nonetheless, STEM interest in 8
th

 grade was included in the  

Table 12 

STEM Interest by Year 

 

All  

Students 

Native 

American Black 

Hispanic/ 

Latino 

Pacific 

Islander 

Economically 

Disadvantaged 

English 

Language 

Learners 

 Grade n % n % n % n % n % n % n % 

 Traditional Science 

 8 2037 52.4 7 38.9 40 51.3 381 52.2 8 44.4 636 52.2 636 52.2 

9 2112 51.8 9 47.4 49 52.7 359 48.6 8 44.4 629 50.2 629 50.2 

10 2028 50.6 8 42.1 44 50.0 314 45.7 10 52.6 576 48.0 576 48.0 

 11 1423 45.3 7 41.2 27 40.9 211 40.0 6 50.0 393 43.2 393 43.2 

 Physics First 

 8 2191 53.8 9 47.4 47 57.3 469 53.5 10 31.3 750 52.9 70 55.1 

 9 2136 54.4 8 40.0 42 48.8 413 51.2 8 30.8 689 51.9 60 44.4 

 10 2127 54.0 7 36.8 38 46.3 398 50.6 14 56.0 685 52.6 67 48.2 

 11 1897 52.5 5 35.7 32 44.4 332 47.2 14 66.7 559 49.3 65 50.8 
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Table 13 

Pearson Chi-Square Tests on 8
th

 Grade STEM Interest 

Student Group N Value 

All students 7962 1.481 

Native American 37 0.271 

Black 160 0.587 

Hispanic/Latino 1606 0.290 

Pacific Islander 50 0.870 

Economically Disadvantaged 2637 0.135 

English Language Learners 291 0.583 

df=1 

 

regression model to control for the non-significant differences between the groups.  As 

Tryon (2001) correctly notes “absence of positive evidence for statistical difference does 

not constitute presence of positive evidence for statistical equivalence” (p. 379). 

Results of regressions and analysis of outcomes.  To control for initial 

differences in demographics, science achievement and STEM interest between students 

entering a traditional science sequence and students entering a Physics First sequence 

with modeling, regression models developed for this study included these potential 

confounding variables. I now describe the development of the models and the results for 

each of the three measures of interest: ACT science scores, science college- and career-

readiness status, and STEM interest in grade 11. 

Mean 11
th

 grade science scores.  Multiple linear regression was used to answer 

the first part of the research question -- do historically underserved students in a Physics 

First science sequence have higher ACT science scores in grade 11 than their peers in a 

traditional science sequence. Multiple linear regression is appropriate for predicting 

outcomes when the dependent variable is continuous and multiple predictor variables are 
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either categorical or continuous (Field, 2016).  Student characteristics (i.e., race/ethnicity, 

economic disadvantaged status, and English language learner status) were entered into 

the model first. Because prior achievement is the strongest predictor of current 

achievement (Sawyer, 2013), the 8
th

 grade EXPLORE science score was entered as the 

next predictor in the model. The variable capturing whether a student entered 9
th

 grade in 

the traditional science sequence or in the Physics First sequence was entered as the next 

predictor. Finally, two-way interaction terms were entered into the model. Three-way 

actions were entered for any two-way interaction terms that were significant. The 

proportion of variance explained by the model, R
2
, explains how well each independent 

variable in the model predicts a student’s score on the ACT science test in grade 11 

(Field, 2016).  The F statistic was used to assess if each model was a significant fit of the 

data overall (Field, 2016).  The t-statistic indicated if a predictor makes a significant 

contribution to the outcome using a significance level of α = .05 (Field, 2016).  Effect 

sizes for the differences in the science mean scores are reported using the standardized 

beta coefficients.  

The linear regression model (see Appendix B) predicts that the 11
th

 grade mean 

science score for a student in a Physics First sequence to be .74 points higher than for a 

student in a traditional science sequence, regardless of the student’s 8
th

 grade science 

score (p< .001).   The 95% confidence intervals of the estimate are .53 and .95.  Adding 

the treatment group status increased R
2
 by .003 to .561 and was a significant 

improvement in the model (change in F = 51.783, p<.001).  However, economically 

disadvantaged students in the Physics First sequence benefitted less than other student 
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groups.  The interaction term of enrollment in Physics First and being economically 

disadvantaged was -.45 and was also significant (p = .016). Thus, for economically 

disadvantaged students, the difference in 11
th

 grade science score for students in Physics 

First was only .29 (.74 - .45) points higher than for their economically disadvantaged 

peers in a traditional science sequence. 

Interaction terms of a student’s demographic and the student’s 8
th

 grade science 

score was significant at α=.05 for Black, Hispanic/Latino, economic disadvantaged, and 

English language learner students groups, indicating in each case that students from these 

groups experience lower 11
th

 grade science scores compared to the reference group of 

White students with the same initial 8
th

 grade score.  Adding the interaction term of 

Physics First enrollment and 8
th

 grade science score did not significantly improve the 

model at α=.05 (t=-0.242, p = .808), which suggests that Physics First benefits all 

students regardless of a student’s 8
th

 grade science score. The full final regression model 

is reported in Appendix B.  

Science college- and career-readiness in grade 11. The science college- and 

career-readiness status of three in four students in both the traditional science sequence 

and the Physics First sequence did not change between the fall of 8
th

 grade and spring of 

11
th

 grade.  In both the traditional science sequence and the Physics First sequence, 

across all populations with more than 10 students meeting the science college readiness 

benchmark in grade 8, greater percentages of students moved from college ready to not 

college ready between 8
th

 and 11
th

 grade than the reverse. With the exception of the 

English language learners group (which is comprised of very few students meeting 
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science college-readiness benchmarks at either grade 8 or grade 11), the differences in the 

percentages of students losing science college readiness status versus students gaining 

science college-readiness status were narrower for students experiencing a Physics First 

science sequence with modeling. For example, 15.5% of economically disadvantaged 

students in the traditional science sequence met the science college-readiness benchmark 

in grade 8 but failed to do so in grade 11compared to the 5.8% who were not science 

college-ready in grade 8 but met the science college-readiness benchmark in grade 11 

(see Table 14), a difference of 9.7 percentage points.  In contrast, for economically 

disadvantaged students in the Physics First sequence with modeling, the corresponding 

difference was 5.6 percentage points (10.6% - 5.0%). 

To answer the second part of the research question -- do historically underserved 

students completing a Physics First science sequence have higher rates of science 

college- and career-readiness compared to their peers who experienced a traditional 

science sequence -- differences in science college- and career-readiness in 11
th

 grade 

between the groups were assessed using binary logistic regression.  Binary logistic 

regression is appropriate for predicting outcomes when the dependent variable is 

dichotomous and group sizes are unequal (Anderson & Rutkowski, 2008).  Binary 

logistic regression can accommodate multiple predictor variables that can be either 

categorical or continuous (Field, 2016). Student characteristics (i.e., race/ethnicity, 

economic disadvantaged status, and English language learner status) were entered first 

into the model as predictors. Because prior achievement is the strongest predictor of 

current achievement (Sawyer, 2013), 8
th

 grade science college readiness status was used  
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Table 14 

Science College Readiness Status in Grades 8 and 11 by Science Sequence 
C

o
ll

eg
e 

R
ea

d
y

 i
n

 S
ci

en
ce

 G
ra

d
e 

1
1
 

 Traditional Science           Physics First 

 College Ready in Science Grade 8 

 No Yes No Yes 

 All Students 

No 1442 611 1605 481 

38.2% 16.2% 41.0% 12.3% 

Yes 250 1467 310 1522 

6.6% 38.9% 7.9% 38.8% 

 Native American 

No 10 1 10 6 

 55.6% 5.6% 50.0% 30.0% 

Yes 1 6 2 2 

 5.6% 33.3% 10.0% 10.0% 

 Black 

No 49 12 55 6 

 69.0% 16.9% 75.3% 8.2% 

Yes 3 7 2 10 

 4.2% 9.9% 2.7% 13.7% 

 Hispanic/Latino 

No 466 95 600 86 

 68.6% 14.0% 72.4% 10.4% 

Yes 36 82 35 108 

 5.3% 12.1% 4.2% 13.0% 

 Pacific Islander 

No 16 1 19 0 

 72.7% 4.5% 73.1% 0.0% 

Yes 0 5 2 5 

 0.0% 22.7% 7.7% 19.2% 

 Economically Disadvantaged 

No 690 176 875 140 

 60.9% 15.5% 66.5% 10.6% 

Yes 66 201 66 235 

 5.8% 17.7% 5.0% 17.9% 

 English Language Learners 

 No 145 3 121 1 

  95.4% 2.0% 96.8% 0.8% 

 Yes 3 1 2 1 

  2.0% 0.7% 1.6% 0.8% 
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as the next predictor in the model.  The variable capturing whether a student entered 9
th

 

grade in the traditional science sequence or in the Physics First sequence was entered as 

the next predictor. Finally, two-way interaction terms were entered into the model. Three-

way actions were entered for any two-way interaction terms that were significant. Using a 

significance level of α = .05, the Wald statistic indicated if a predictor made a significant 

contribution to the model for 11
th

 grade science college readiness (Field, 2016). Odds 

ratios and the 95% confidence interval of the odds ratios are reported to quantify how  

membership in a group influences science college- and career-readiness after controlling 

for the student’s science college- and career-readiness status in grade 8 (Durlak, 2009; 

Fields, 2016).  R
2
 is reported using the Cox and Snell’s statistic and the Nagelkerke 

statistic to indicate how well each model predicts the outcome (Field, 2016). 

Students in the Physics First sequence were 1.28 times as likely to be science 

college ready in grade 11 as students in the traditional science sequence (χ
2
(1)=18.146, 

p<.001).  The 95% confidence interval of this odds ratio is 1.14 and 1.43. Including the 

interaction of science college readiness in grade 8 and membership in the Physics First 

sequence in the model was not significant at α=.05 (χ
2
(1)=1.544, p = .214).   

Interaction terms of a student’s demographic and the student’s 8
th

 grade college 

readiness status were not significant (α=.05) for any of the groups of students who are 

traditionally underserved in STEM.  This suggests that students in Physics First are more 

likely to be college and career ready in science in grade 11 compared to their peers in a 

traditional science sequence regardless of their demographics.  Adding the interaction 

term of Physics First enrollment and 8
th

 grade science college readiness status did not 
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significantly improve the model which implies that Physics First with modeling benefits 

students regardless of a student’s 8
th

 grade science college- and career-readiness status. 

The final logistic regression model is reported in Appendix C. 

STEM interest in grade 11. For 65% of students with career choices and interest 

inventory scores, interest in STEM, whether expressed or measured, did not change 

between the fall of 8
th

 grade and spring of 11
th

 grade in both the control and treatment 

groups.  Across all populations in both the traditional science sequence and the Physics 

First sequence, greater percentages of students lost interest in STEM careers between 8
th

 

and 11
th

 grade than gained interest. Across all groups, the differences in the percentages 

of students losing interest versus students gaining interest in STEM were narrower for 

students experiencing a Physics First science sequence with modeling. For example, 

23.5% of economically disadvantaged students in the traditional science sequence lost 

interest in STEM compared to 13.9% who gained interest between grades 8 and 11 (see 

Table 15), a difference of 9.6 percentage points.  In contrast, for economically 

disadvantaged students in the Physics First with modeling sequence, the corresponding 

difference is 4.7 percentage points (21.2% - 16.5%). 

Differences in STEM interest in 11
th

 grade between students in the traditional 

science sequence and students in the Physics First sequence with modeling were assessed 

using binary logistic regression in order to answer the third part of the research question -

- do historically underserved students completing a Physics First science sequence have 

greater interest in STEM careers compared to their peers who experienced a traditional 

science sequence?  Binary logistic regression is appropriate for predicting outcomes 
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Table 15 

STEM Interest in Grade 8 and 11 by Science Sequence 
S

T
E

M
 I

n
te

re
st

 i
n

 G
ra

d
e 

1
1
 

 Traditional Science           Physics First 

 STEM Interest in Grade 8 

 No Yes No Yes 

 All Students 

No 894 571 897 555 

32.8% 20.9% 28.8% 17.8% 

Yes 375 887 515 1153 

13.8% 32.5% 16.5% 37.0% 

 Native American 

No 4 2 4 4 

 33.3% 16.7% 33.3% 33.3% 

Yes 3 3 1 3 

 25.0% 25.0% 8.3% 25.0% 

 Black 

No 18 14 17 12 

 37.5% 29.2% 31.5% 22.2% 

Yes 5 11 8 17 

 10.4% 22.9% 14.8% 31.5% 

 Hispanic/Latino 

No 156 116 177 146 

 34.6% 25.7% 28.8% 23.8% 

Yes 65 114 98 193 

 14.4% 25.3% 16.0% 31.4% 

 Pacific Islander 

No 2 3 4 3 

 18.2% 27.3% 21.1% 15.8% 

Yes 2 4 8 4 

 18.2% 36.4% 42.1% 21.1% 

 Economically Disadvantaged 

No 247 179 280 205 

 32.4% 23.5% 28.9% 21.2% 

Yes 106 230 160 323 

 13.9% 30.2% 16.5% 33.4% 

 English Language Learners 

 No 28 20 21 17 

  32.6% 23.3% 29.6% 23.9% 

 Yes 13 25 13 20 

  15.1% 29.1% 18.3% 28.2% 
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when the dependent variable is dichotomous and group sizes are unequal (Anderson & 

Rutkowski, 2008).  Binary logistic regression can accommodate multiple predictor 

variables that can be either categorical or continuous (Field, 2016). Student 

characteristics (i.e., race/ethnicity, economic disadvantaged status, and English language 

learner status) were entered first into the model as predictors. To control for any initial 

group differences, STEM interest in grade 8 was used as the next predictor in the model. 

The variable capturing whether a student entered 9
th

 grade in the traditional science 

sequence or in the Physics First sequence was entered as the next predictor. Finally, two- 

way interaction terms were entered into the model. Three-way actions were entered for   

any two-way interaction terms that were significant. Using a significance level of α = .05, 

the Wald statistic indicated if a predictor made a significant contribution to model for 11
th

 

grade STEM interest (Field, 2016). Odds ratios and the 95% confidence interval of the 

odds ratios are reported to quantify how membership in a group influences STEM interest 

in grade 11 after controlling for the student’s STEM interest in grade 8 (Durlak, 2009; 

Fields, 2016).  R
2
 is reported using the Cox and Snell statistic and the Nagelkerke statistic 

to indicate how well each model predicts the outcome (Field, 2016). 

Students in Physics First were 1.37 times as likely to be interested in STEM in 

grade 11 as students in a traditional science sequence (χ
2
(1)=29.694, p<.001). The 95% 

confidence interval of this odds ratio is 1.23 and 1.53.  The interaction of STEM interest 

in grade 8 and enrollment in Physics First was not significant (χ
2
(1)=0.064, p = .800) 

which suggests that, compared to a traditional science sequence, Physics First increases 

student interest in STEM regardless of a student’s interest in STEM in grade 8. 
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Interaction terms of a student’s demographic and the student’s 8
th

 STEM interest 

were not significant (α=.05) for any of the groups of students who are traditionally 

underserved in STEM with the exception of Latino students and Pacific Islanders.  This 

suggests that for all other demographic groups, students in Physics First are more likely 

to be interested in STEM in grade 11 compared to their peers in a traditional science 

sequence.  Latino students interested in STEM in grade 8 are less likely to be interested 

in STEM in grade 11 compared to their White peers whether they were in a traditional 

science sequence or a Physics First sequence in high school.  Drawing a similar 

conclusion for Pacific Islander students is more problematic due to the small number of 

students in the data set. Adding the interaction term of demographics and Physics First 

enrollment did not significantly improve the model, suggesting that Physics First 

increases the likelihood a student will be interested in STEM in grade 11 regardless of 

his/her demographic group membership.  The final logistic regression model is reported 

in Appendix C. 

Interpretation of Findings  

Do historically underserved students completing a Physics First science sequence 

have 1) higher science test scores, 2) higher rates of science college- and career-

readiness, and 3) greater interest in STEM careers compared to their peers who 

experienced a traditional science sequence?  The results of the multiple linear regression 

and binary logistic regressions outlined above suggest the answer is a qualified yes. 

Science test scores.  The 11
th

 grade science score for students experiencing a 

Physics First with modeling science sequence was 0.74 points higher than that of students 
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in a traditional science sequence when controlling for any initial differences. Figure 5 

puts this difference in context in two ways.  First, the science college- and career-

readiness benchmark increases by 5 points between grades 8 and 11, so this difference 

represents 15% of the increased learning characterized by these college-readiness 

expectations.  Second, the mean science gain scores of students in the traditional science 

sequence are shown in the same figure.  The effect of enrollment in Physics First is 

equivalent to 21% of the mean gain science scores between grades 8 and 11 of students in 

a traditional science sequence and almost half or more of the mean gain scores for Black 

and Hispanic/Latino students.  A nationally representative sample of approximately 

150,000 students reported that the average growth on the ACT science test between grade 

8 and grade 12 is 3.3 points (ACT, 2009b). 

 

Figure 5. Effect of Physics First on 11
th

 grade ACT science score.  11
th

 grade score 

difference predicted by the multiple linear regression model between students in a 

Physics First sequence compared to students in a traditional science sequence (bar at left) 

compared to the mean gain score of students in traditional science and to the increase in 

science college readiness benchmark between grades 8 and 11 (black line). 
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 Standardized beta coefficients are used as standardized effect sizes for multiple 

linear regression (Kelley & Preacher, 2012). The effect size of these differences between 

students in the Physics First with modeling sequence and students in a traditional science 

sequence was .06.  This effect size represents small positive effects in the context of 

student achievement gains in high school on standardized tests of science (Bloom et al., 

2008).  For economically disadvantaged students, however, the 11
th

 grade science score 

for students experiencing a Physics First with modeling science sequence was only 0.29 

points higher than that of students in a traditional science sequence when controlling for 

initial differences, less than half the effect for all students and for other historically 

underserved populations. As illustrated in Figure 6, the effect of Physics First is less than 

15% of the mean gain science score from grade 8 to grade 11 for economically 

disadvantaged students in a traditional science sequence. 

 

 Figure 6. Effect of Physics First for economically disadvantaged students.  11
th

 grade 

score difference predicted by the multiple linear regression model between economically 

disadvantaged students in a Physics First sequence and economically disadvantaged 

students in a traditional science sequence (bar at left) compared to the mean gain score of 

economically disadvantaged students in traditional science (bar at right) and to the 

increase in science college readiness benchmark between grades 8 and 11 (black line). 
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Science college readiness.  Students experiencing a Physics First science 

sequence with modeling, including historically underserved student, were 1.28 times as 

likely to meet the college- and career-readiness benchmark on the ACT science test as 

their peers experiencing a traditional science sequence.  This odds ratio and its 95% 

confidence interval are shown on the left in Figure 7.     

 

Figure 7. Odds ratios produced by the binary logistic regressions. Odds ratios shown with 

95% confidence intervals quantify how many times as likely a student in a Physics First 

science sequence is to achieve an outcome compared to a student in a traditional science 

sequence after controlling for initial differences in demographics and 8
th

 grade status.  

 

Interest in STEM.  Students experiencing a Physics First with modeling science 

sequence, including historically underserved student, were 1.37 times as likely to express 

interest in STEM in grade 11 as their peers experiencing a traditional science sequence.  

This odds ratio and its 95% confidence interval are shown on the right side in Figure 7. 

After controlling for initial differences in 8
th

 grade, this study found historically 

underserved students in a Physics First science sequence had higher ACT science test 

scores, higher rates of science college- and career-readiness, and greater interest in STEM 

careers in grade 11 than their peers in a traditional science sequence. Unfortunately, for 
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economically disadvantaged students, the 11
th

 grade science score difference between 

students experiencing a Physics First with modeling science sequence and students in a 

traditional science sequence was less than half the effect for all students and for other 

historically underserved populations.  However, as with other retrospective cohort 

observational studies, these results have several limitations (Mann, 2003). 

Limitations of the Study 

Compared to a randomized experiment, a major weakness of quasi-experimental 

designs is the difficulty in eliminating rival explanations (Campbell & Stanley, 2015; 

Krathwohl, 2009). Multiple linear regression and binary logistic regression models were 

used to account for any initial differences between students in the traditional science 

cohorts and students in the Physics First cohorts in demographic as well as 8
th

 grade 

science scores, science college- and career-readiness status, and interest in STEM.  Other 

possible confounding variables could not be controlled, however. These variables, which 

weaken the internal validity of the study (Krathwohl, 2009), included any differences 

between the two cohorts in science instruction received in the 8
th

 grade between 

November and June and changes in teachers assigned to courses and their initial content 

and pedagogical knowledge.  It is important to keep in mind that this district 

implemented a Physics First sequence in response to the NGSS. Professional 

development in the NGSS for 8
th

 grade science teachers could influence the instruction 

that occurred in 8
th

 grade science occurring between November and June. In addition, it is 

possible that instructional changes in other content areas during the study period such as 

mathematics or English language arts could influence student achievement in science. 
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This study also did not adjust for the earlier 11
th

 grade ACT testing experienced by 

students in the first cohort of the Physics First sequence, which may underestimate the 

effects of Physics First. 

The use of two cohorts in each group and the large number of students in each 

group provided strong observed statistical power for the regression analysis (Soper, 

2016).  However, the small numbers of students in the Native American and Pacific 

Islander groups warrant interpreting findings for these groups with caution. 

While the college readiness benchmarks established for the EXPLORE and ACT 

science tests predict a student’s success in credit-bearing college coursework in college 

biology, the use of a single assessment alone to predict college readiness is “imperfect, 

incomplete, and limited in what it can assess” (Maruyama, 2012, p. 254). However, 

single dimension benchmarks have advantages, including, in the case of the ACT science 

assessment, providing more information about a student’s areas of need compared to high 

school GPA (Mattern, Radunzel, & Westrick, 2015).  More significantly, Mattern, 

Radunzel, and Westrick assert that the ACT college readiness benchmarks were not 

developed to assess “a student’s readiness for a specific college major or career field” (p. 

5). Using hierarchical logistic regression on ACT science scores and grades from STEM-

identified college science courses of nearly 70,000 students, Mattern, Radunzel, and 

Westrick found that an ACT science score of 25 (as opposed to the science college 

readiness benchmark of 23) resulted in students having an approximately 50% chance of 

earning a B or better in a first-year STEM science course in college.  STEM science 

readiness benchmarks were not identified for the EXPLORE and PLAN tests, however.  



PREPARING HISTORICALLY UNDERSERVED STUDENTS FOR STEM 

 

99 

For this study, higher percentages of all students and historically underserved students in 

the Physics First science sequence (30% and 14%, respectively) attained the STEM 

science college readiness benchmark of 25 developed by Mattern, Radunzel, and 

Westrick compared to their peers in a traditional science sequence (28% and 12%, 

respectively).    

 Finally, as with all studies conducted in a single district, the findings of this study 

“should be tempered with the understanding that successful change within educational 

settings is context-dependent” (Gaubatz , 2013, p. 25). I now attempt to put these findings 

in context as well as identify the implications of the results for policy and practice.  
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CHAPTER 5 

DISCUSSION/CONCLUSION 

The purpose of this study was to determine if the science college readiness and 

interest in STEM of historically underserved students can be improved by implementing 

a system-wide, inquiry-based high school science sequence with modeling comprised of 

coursework in physics, chemistry, and biology.  This Physics First approach to high 

school science seeks to close gaps in content coverage experienced by historically 

underserved students by ensuring all students are exposed to the same content in physics, 

chemistry, and biology.  Incorporating inquiry and modeling in this approach develops 

the academic skills of all students through active learning and the construction of new 

knowledge; thereby closing gaps in content exposure and emphasis more frequently 

experienced by historically underserved students compared to their White, economically 

advantaged peers whose first language is English.   

A quantitative retrospective cohort observational study (Hoffmann & Lim, 2007; 

Mann, 2003) addressed the primary research question: do historically underserved 

students in a Physics First science sequence have 1) higher science college-readiness test 

scores, 2) higher rates of science college- and career-readiness, and 3) greater interest in 

STEM careers in grade 11 compared to their peers in a traditional science sequence?  

Multiple linear regression was used to compare 11
th

 grade ACT science scores of students 

in a traditional science sequence and students in a Physics First sequence after controlling 

for 8
th

 grade science scores and demographic differences between the two groups.  Binary 

logistic regression was used to calculate odds ratios for 11
th

 grade science college 

readiness status and interest in STEM of students in a Physics First sequence compared to 
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students in a traditional science sequence, again taking into account 8
th

 grade science 

college readiness status or STEM interest as well as any demographic differences.  

Varying degrees of positive effects for students in the Physics First with modeling 

sequence were observed on all three measures. 

Synthesis of Findings 

Students experiencing a Physics First with modeling science sequence had 11
th

 

grade science scores .74 points higher compared to their counterparts in a traditional 

science sequence. The differences in the mean scores represent between 18% and 42% of 

the mean gain science scores between grades 8 and 11 of students in traditional science 

instruction. The effect sizes of the increased science scores for students in the Physics 

First sequence was .06, representing a small treatment effect. Bloom et al. (2008) report 

the average annual gain in effect size on nationally-normed science tests is .19 between 

grades 9 and 10 and .15 between grades 10 and 11.  Students experiencing a Physics First 

with modeling science sequence were 1.28 times as likely to meet the college- and 

career-readiness benchmark on the ACT science test as their peers experiencing a 

traditional science sequence.  Students experiencing a Physics First with modeling 

science sequence were 1.37 times as likely to express interest in STEM in grade 11 as 

their peers experiencing a traditional science sequence.  These three findings apply to 

students from historically underserved populations with one exception: the increase in 

11
th

 grade science scores for economically disadvantaged students enrolled in Physics 

First is .29 points higher than economically disadvantaged students in the traditional 

science sequence, compared to .74 points for other student populations.  These three 

findings, summarized in Figure 8, suggest that a Physics First science sequence with 
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modeling better prepares historically underserved students for STEM careers than a 

traditional science sequence. 

 

 

Figure 8. Grade 11 outcomes and effects of Physics First.  

The Larger Context 

For all students to meet the expectations of the Next Generation Science 

Standards (NGSS), educators must improve students’ opportunity to learn by focusing on 

“what and how well students are taught in classrooms” (Herman, 2007, p. 4).  Darling-

Hammond (2010) asserts that “unequal access to high-level courses and challenging 

curriculum explains much of the difference in achievement between minority students 

and White students” (p.52).  After analyzing the 2012 Programme for International 

Student Assessment (PISA) results, Schmidt et al. (2015) conclude that “any serious 

effort to reduce educational inequalities must address unequal content coverage within 

schools” (p. 381). The implementation of a common Physics First science sequence with 

modeling consisting of common units of instruction aligned to the Next Generation 

Science Standards is an effort to close the opportunity to learn gap experienced by 
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historically underserved students by reducing variation in content coverage both within 

and across schools in this district. In this district, students in a traditional science 

sequence could choose from a multitude of science course sequences.  In the Physics 

First approach, all students were scheduled into a common sequence of physics, 

chemistry, and biology.  

Reducing opportunity to learn gaps extends beyond content coverage (Conrad-

Curry, 2011). Closing opportunity to learn gaps requires competent teachers who are 

informed by the research on best practices and provide excellent instruction (Conrad-

Curry, 2011).  This excellent instruction is captured by Darling-Hammond (2010): 

Decades of research have shown that teachers who produce high levels of learning 

for initially lower- and higher-achieving students alike provide active learning 

opportunities involving student collaboration and many uses of oral and written 

language, connect to students’ prior knowledge and experiences, provide hands-

on learning opportunities, and engage students’ higher order thought processes. 

(p.55) 

 

Providing students with richer learning, inquiry-based instruction contributes to a 

socially-just pedagogy described by LeBlanc and Larke (2011), Moje (2007) and Thadani 

et al. (2010).  Implementing a common science sequence for all students beginning with 

physics and grounded in inquiry and modeling (a Physics First approach) can close 

opportunity to learn (OTL) gaps experienced by traditionally underserved students in 

terms of both content and instructional quality while incorporating elements of a socially-

just pedagogy.  Lee (2005) asserts that when historically underserved students “are 

provided with equitable learning opportunities in school or in their communities, they 

demonstrate academic achievement, interest, and agency” (p. 438).  The results of this 

study quantify improved science achievement and science college- and career-readiness 
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in grade 11 for historically underserved students experiencing a Physics First science 

sequence with modeling (after controlling for initial differences). Nonetheless, large gaps 

in 11
th

 grade science achievement and college- and career-readiness remain between 

historically underserved students and their peers who are not historically underserved. 

These achievement gaps were evident in grade 8 as well. Disappointingly, no evidence 

from this study suggested the Physics First approach narrowed achievement gaps.  

Rather, all student groups benefitted equally (with the notable exception of less 

improvement in 11
th

 grade science scores for economically disadvantaged students).  In 

contrast, interest in STEM by historically underserved students is similar to the STEM 

interest of their peers who are not historically underserved. The implementation of a 

Physics First science sequence with modeling boosted STEM interest for all student 

groups, including historically underserved students, compared to their peers experiencing 

a traditional science sequence.  Increasing interest in STEM and the science achievement 

of historically underserved students better positions these students to pursue further study 

and careers in STEM (Radunzel et al., 2016). 

Implications 

Given the small positive effects on 11
th

 grade science scores, science college- and 

career-readiness, and interest in STEM for historically underserved students in the 

Physics First science sequence with modeling, I offer recommendations for policy and 

practice as well as for further study. 

Recommendations for policy and practice.  Academic preparation to succeed in 

post-secondary coursework is an essential component of college and career readiness 

(Harvey, Slate, Moore, Barnes, & Martinez-Garcia, 2013).  Unfortunately, historically 
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underserved students continue to have less access to high quality academic preparation 

for post-secondary coursework leading to STEM degrees and careers (Berry et al., 2013; 

Tate, 2008). Implementing a common science sequence for all students beginning with 

physics and grounded in inquiry and modeling (a Physics First approach) can close 

opportunity to learn (OTL) gaps experienced by traditionally underserved high school 

students in terms of both content and instructional quality.  However, as documented in 

this study and elsewhere, historically underserved students enter 9
th

 grade with lower 

science achievement scores than their White and Asian peers (LeBlanc & Larke, 2011; 

Schmidt et al., 2015).  In addition to closing opportunity to learn gaps at the high school 

level, better academic preparation of students in elementary and middle school is crucial 

for increasing the number of historically underserved students prepared for successful 

pursuit of STEM careers (Venkataraman, Riordan, & Olson, 2010).  As noted by Bair and 

Bair (2014), students who arrive at high school lacking the prerequisite skills for 

successfully attaining the NGSS need additional supports and more time for learning. 

Findings from this study suggest this may be especially true for economically 

disadvantaged students. A first step for districts would be to identify the supports less 

prepared students need to be successful in a Physics First sequence. These supports may 

extend beyond science to mathematics.  Districts implementing Physics First should then 

consider how, and in what forms, these supports will be made available to less prepared 

students.   

Closing opportunity to learn gaps requires more than placing all students in a 

common high school sequence.  As discussed in Chapter 2, quality instruction is critical 
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(Darling-Hammond, 2010; Haberman, 1991; Ladson-Billings, 1995).  High quality 

professional development that enhances teachers’ understanding of the nature of science 

and strengthens both the content knowledge and the pedagogical knowledge of how to 

effectively teach Physics First courses using inquiry and modeling methods is required 

(Asghar et al., 2012; Gibson & Brooks, 2012; Kesson & Henderson, 2010; McGeeet al., 

2013; National High School Center, 2008; Penuel et al., 2007).  In addition, districts 

should assess and address the professional development needs of their science teachers 

related to effectively instructing students from historically underserved populations.  

Recall from Chapter 1 that Black and Hispanic/Latino students are underrepresented in 

physics classrooms (White & Tesfaye, 2011)   Although collaborative scientific inquiry 

and modeling in this Physics First approach are culturally responsive instructional 

approaches for students from historically underserved populations (Kanter & 

Konstantopolous, 2010; Lee & Buxton, 2011; Patchen & Cox-Petersen, 2008); teachers 

must also believe all students from historically underserved populations are capable of 

successfully learning physics (and chemistry and biology) (Lakshmanan et al., 2011). 

Professional development to help science teachers leverage nontraditional funds of 

knowledge of their historically underserved students and build stronger understanding of 

and relationships with students of different cultures and backgrounds should be provided 

when needed (Banks et. al, 2001; Lee & Buxton, 2011; Tan & Barton, 2010; Yerrick, 

Schiller, & Reisfeld, 2011).  Multiple studies have found that students with better 

teacher-student relationships have higher student achievement (Gehlbach, Brinkworth, 

King, Hsu, McIntyre, & Rogers, 2016). 
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Recommendations for further study.  This study has quantified the effects of 

implementing Physics First on the science college- and career-readiness and STEM 

interest of historically underserved students.  Qualitative studies to better understand how 

and why a Physics First approach produced positive results for historically underserved 

students could be of value (Maxwell, 2004).  While students in the Physics First with 

modeling sequence are more likely to be interested in STEM in grade 11, do students 

express more confidence in their abilities to learn science?  And while historically 

underserved students are interested in STEM at similar levels as their non-historically 

underserved peers, do historically underserved students envision their success in a future 

STEM career?  Further, how does the implementation of a Physics First sequence with 

modeling influence advanced science course taking by historically underserved students 

in grade 12? 

Assessing teacher beliefs about the implementation of Physics First may also be 

informative.  Do “teachers see a tension between providing a strong education for the 

able and willing students and at the same time providing for the uninterested or less able 

students” (Anderson in Larkin, et al., 2014, p. 828)?  To what extent are “teacher beliefs 

about the limitations of their students in terms of ‘ability’ or ‘maturity’ an obstacle” to 

more student-centered approaches to instruction of scientific inquiry and modeling in the 

Physics First sequence (Wallace & Kang, 2004, p. 940)?  To what extent are teacher 

beliefs and practices congruent with the changes in science instruction called for in the 

Next Generation Science Standards and embedded in this Physics First approach 

(Januszyk, Miller, & Lee, 2016)?  And how do teachers respond pedagogically when 
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faced with perceived or real challenges of teaching all students physics, chemistry, and 

biology (Prime & Miranda, 2006)?  Answering these questions might help explain the 

smaller positive effect of Physics First for economically disadvantaged students than for 

other student groups.  Findings from such qualitative studies addressing these questions 

could also assist districts considering or implementing a Physics First approach. 

Given that there were significant differences in 11
th

 grade science test scores and 

interest in STEM between students in a Physics First science sequence with modeling and 

their peers who experienced traditional science instruction, additional quantitative 

analysis could yield additional insights.  One natural area for further exploration would 

be to assess the impact of a Physics First approach on advanced science course taking of 

historically underserved students.   Students who take advanced science courses, such as 

Advanced Placement or International Baccalaureate are more likely to enter college 

prepared for science coursework and to major in STEM (Klopfenstein, 2004; Radunzel, 

Mattern, & Westrick, 2016; Tai, et al., 2006; Trusty, 2002).  A second avenue of inquiry 

would be to assess the relative contribution of each of the three courses of the Physics 

First sequence to gain in achievement and interest in STEM.  Third, this study was 

conducted in a district with ten high schools.  A number of the schools are large enough 

that school level effects could be explored and used by the district to identify schools 

where particularly effective instructional is occurring as well as schools where additional 

professional development or support for the change process would be beneficial.  

Coupling school level results with qualitative studies on factors affecting implementation 
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and success might assist other district in developing a plan to implement Physics First 

with modeling. 

An examination of the relationship between science achievement and math 

achievement could also be of value.  To what extent are mathematics skills as measured 

by the 8
th

 grade EXPLORE test acting as a gatekeeper to student achievement in high 

school science?  Is the lower effect on 11
th

 grade science test scores for economically 

disadvantaged students in this study correlated with mathematics achievement prior to or 

during high school? Also, do students in a Physics First sequence have better math skills 

in 11
th

 grade compared to their peers in a traditional science sequence controlling for any 

differences in 8
th

 grade math test scores? The emphasis on the development and use of 

mathematical models (e.g., linear, quadratic, inverse) and emphasis on conceptual 

understanding in the Physics First approach can deepen students understanding of these 

mathematical relationships (Hill, 2013; O’Brien & Thompson, 2009).  Glasser (2012) 

provides evidence of improved PSAT math scores for student in a Physics First sequence, 

however the study was conducted in a single private high school with a very small 

sample size. 

Additional quantitative analysis of results by gender may also informative.  Women 

are also identified as a historically underserved population in STEM degree attainment 

and employment, particularly in physics, computer science, and engineering (Beede, 

Julian, Langdon, McKittrick, Khan, & Doms, 2011; Cheryan, Ziegler, Montoya, & Jiang, 

2017).  Did the increases in STEM interest and science college readiness of students in 

this Physics First implementation benefit male and female students equally? 
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Finally, this study examined the effects of implementing a Physics First on the 

science achievement and STEM interest of the first two cohorts of students in the 

sequence.  As noted by Fullan (1994), “change involves learning to do something new” 

(p. 2843). Asking teachers to implementing a new curriculum and associated methods of 

teaching, in this case inquiry and modeling, may engender feelings in some teachers of 

being de-skilled (Altrichter, 2005) despite professional development provided by the 

district.  Altrichter (2005) also recognized that teacher learning in the context of 

curriculum implementation extends over time.  Analysis of student achievement and 

STEM interest from the third and even fourth cohorts of students in Physics First would 

assess the effects of long term implementation and could also be used by the district to 

both monitor and improve the adopted Physics First approach.   

Improving the STEM readiness of students from historically underserved groups is a 

moral and economic imperative (Levin, 2009; National Academies, 2007).  The purpose 

of this study was to determine if the science college readiness of historically underserved 

students could be improved by implementing this Physics First approach for all students.  

A retrospective cohort observational study using multiple linear regression and binary 

logistic regression assessed the differences in 11
th

 grade science college- and career-

readiness test scores, rates of science college- and career-readiness, and interest in STEM 

between historically underserved students in a Physics First science sequence and their 

peers in a traditional sequence. The results of this study found implementing a high 

school science sequence beginning with physics and centered on developing conceptual 

understanding through inquiry labs and modeling had small positive effects on science 
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college- and career-readiness and interest in STEM careers for historically underserved 

students.  While findings from a study conducted in a single district “should be tempered 

with the understanding that successful change within educational settings is context-

dependent” (Gaubatz , 2013, p. 25), this study adds to the limited literature on the 

effectiveness of a Physics First approach (Glasser, 2012) and confirms positive effects 

found in the study by Dye et al.(2013).  This study also breaks new ground by 

quantifying outcomes of Physics First for historically underserved students, a topic which 

has been unexplored to date, but is more important than ever in an era of increasing racial 

and ethnic diversity, income inequality, technological advancement and global 

competition.  
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APPENDIX A 

CONTENT SPECIFICATIONS FOR THE ACT SCIENCE TEST  

The ACT Science Test is a 40-item test drawing on content typically covered in high 

school science courses (ACT, 2014). The test emphasizes scientific reasoning skills over 

recall of scientific content.  Materials are drawn from biology Earth/space science, 

physics, and chemistry with at least one passage, and no more than two passages, from 

each content area (ACT, 2014).  Advanced knowledge in these four subjects is not 

required, but background knowledge acquired in general introductory science courses is 

necessary for some questions (ACT, 2014).  Questions are presented in three formats: 

Data Representation, Research Summaries, and Conflicting Viewpoints (ACT, 2014).   

Data Representation (30% of questions) present students with graphics and tables similar 

to that found in science journals and texts to measure student skills in reading graphs, 

interpreting scatterplots, and interpreting information presented in tables, diagrams, and 

figures (ACT, 2014).  Research Summaries (50% of questions) provides students with 

descriptions of one or more related experiments to assess student skills in design of 

experiments and the interpretation of experimental results (ACT, 2014).  Conflicting 

Viewpoints (20% of questions) presents students several hypotheses or views based on 

differing premises or on incomplete data which are inconsistent with one another in order 

to assess student understanding, analysis, and comparison of alternative viewpoints or 

hypotheses (ACT, 2014). 
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APPENDIX B 

LINEAR REGRESSION MODEL 

Model Summary
h
 

Model R R Square 

Adjusted R 

Square 

Std. Error 

of the 

Estimate 

Change Statistics 

R Square 

Change F Change 

Sig. F 

Change 

1 .391
a
 .153 .152 5.360 .153 230.403 .000 

2 .451
b
 .203 .202 5.198 .051 487.109 .000 

3 .473
c
 .224 .223 5.130 .021 206.960 .000 

4 .747
d
 .558 .558 3.870 .334 5811.246 .000 

5 .749
e
 .561 .561 3.858 .003 51.783 .000 

6 .755
f
 .570 .569 3.823 .008 18.411 .000 

7 .755
g
 .570 .569 3.822 .000 5.824 .016 

a. Predictors: (Constant), MU, AI, PI, BL, AS, Latino 

b. Predictors: (Constant), MU, AI, PI, BL, AS, Latino, EconDsvntgFg 

c. Predictors: (Constant), MU, AI, PI, BL, AS, Latino, EconDsvntgFg, LEPFg 

d. Predictors: (Constant), MU, AI, PI, BL, AS, Latino, EconDsvntgFg, LEPFg, Science 

Score 

e. Predictors: (Constant), MU, AI, PI, BL, AS, Latino, EconDsvntgFg, LEPFg, Science 

Score, Treat 

f. Predictors: (Constant), MU, AI, PI, BL, AS, Latino, EconDsvntgFg, LEPFg, Science 

Score, Treat, PI_SS8, BL_SS8, Latino_SS8, AI_SS8, MU_SS8, ELL_SS8, AS_SS8, 

ECD_SS8 

g. Predictors: (Constant), MU, AI, PI, BL, AS, Latino, EconDsvntgFg, LEPFg, Science 

Score, Treat, PI_SS8, BL_SS8, Latino_SS8, AI_SS8, MU_SS8, ELL_SS8, AS_SS8, 

ECD_SS8, ECD_Treat 

h. Dependent Variable: ACT Science Score  
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Model 

Unstandardized 
Coefficients 

Standa
rdized 
Coeffic
ients 

Sig. 

95.0% Confidence 
Interval for B 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound 

7 (Constant) 2.365 0.363   .000 1.653 3.077 

Native Am. (AI) -0.816 3.347 -.010 .807 -7.377 5.745 

Black (BL) 1.986 1.754 .046 .258 -1.452 5.424 

Latino 0.137 0.733 .009 .851 -1.300 1.574 

Pacific Isl. (PI) -3.926 2.829 -.053 .165 -9.472 1.620 

Asian (AS) -1.776 0.723 -.107 .014 -3.194 -0.358 

Multirace (MU) -1.424 0.942 -.064 .131 -3.272 0.423 

Econ Disadv. (ECD) 0.473 0.617 .038 .444 -0.738 1.683 

Engl. Lang. Learn. 9.303 1.354 .298 .000 6.649 11.958 

8
th
 Science Score (SS8) 1.085 0.019 .656 .000 1.048 1.122 

Treat 0.742 0.106 .064 .000 0.534 0.949 

AI_SS8 0.008 0.192 .002 .966 -0.368 0.385 

AS_SS8 0.140 0.037 .170 .000 0.069 0.212 

BL_SS8 -0.227 0.107 -.085 .035 -0.437 -0.016 

Latino_SS8 -0.084 0.042 -.094 .048 -0.167 -0.001 

PI_SS8 0.193 0.172 .043 .261 -0.143 0.529 

MU_SS8 0.097 0.050 .081 .053 -0.001 0.195 

ECD_SS8 -0.084 0.034 -.113 .014 -0.151 -0.017 

ELL_SS8 -0.804 0.096 -.357 .000 -0.992 -0.616 

ECD_Treat -0.455 0.188 -.029 .016 -0.824 -0.085 
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APPENDIX C 

LOGISTIC REGRESSION MODELS 

Science College Readiness 

  B S.E. Wald Sig. Exp(B) 

95% C.I.for 
EXP(B) 

Lower Upper 

 Native American -0.655 0.422 2.405 0.121 0.520 0.227 1.189 

Black -0.985 0.265 13.791 0.000 0.373 0.222 0.628 

Hispanic/Latino -0.723 0.095 58.284 0.000 0.485 0.403 0.584 

Pacific Islander -0.303 0.398 0.577 0.447 0.739 0.339 1.613 

Asian (AS) 0.117 0.150 0.613 0.434 1.124 0.839 1.507 

Multiracial 0.090 0.107 0.707 0.400 1.094 0.887 1.350 

Econ Disadv. -0.717 0.073 97.346 0.000 0.488 0.423 0.563 

Engl. Lang. Learn. -1.719 0.410 17.562 0.000 0.179 0.080 0.400 

College Ready 2.354 0.064 1341.748 0.000 10.526 9.280 11.939 

Treat 0.247 0.058 18.046 0.000 1.280 1.142 1.434 

AS*College Ready 0.529 0.182 8.506 0.004 1.698 1.190 2.424 

Constant -1.331 0.064 427.990 0.000 0.264   

Note: R Square = .340 (Cox & Snell), .454 (Nagelkerke); Model chi square = 3194.796, p <.001.   

 

STEM Interest 

  B S.E. Wald Sig. Exp(B) 

95% C.I.for 
EXP(B) 

Lower Upper 

 Native American -0.254 0.443 0.328 0.567 0.776 0.325 1.850 

Black -0.354 0.221 2.570 0.109 0.702 0.456 1.082 

Hispanic/Latino 0.095 0.116 0.671 0.413 1.100 0.876 1.381 

Pacific Islander 1.238 0.520 5.664 0.017 3.449 1.244 9.562 

Asian 0.481 0.081 35.178 0.000 1.618 1.380 1.898 

Multiracial 0.201 0.110 3.330 0.068 1.222 0.985 1.516 

Econ Disadv. -0.057 0.071 0.648 0.421 0.944 0.821 1.086 

Engl. Lang. Learn -0.046 0.176 0.068 0.794 0.955 0.677 1.348 

STEMInt8 1.367 0.063 476.093 0.000 3.922 3.469 4.434 

Treat 0.317 0.056 32.222 0.000 1.374 1.231 1.533 

Latino* STEMInt8 -0.500 0.142 12.359 0.000 0.606 0.459 0.801 

PI* STEMInt8 -1.495 0.752 3.949 0.047 0.224 0.051 0.980 

Constant -0.942 0.059 254.106 0.000 0.390     

Note: R Square = .111 (Cox & Snell), .148 (Nagelkerke); Model chi square = 689.975, p <.001.   
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