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Abstract

This thesis contains contributions in three areas: the theory of generalized calcu-

lus, numerical algorithms for operations research, and applications of optimization

to problems in modern electric power systems. A geometric approach is used to ad-

vance the theory and tools used for studying generalized notions of derivatives for

nonsmooth functions. These advances specifically pertain to methods for calculating

subdifferentials and to expanding our understanding of a certain notion of derivative of

set-valued maps, called the coderivative, in infinite dimensions. A strong understand-

ing of the subdifferential is essential for numerical optimization algorithms, which are

developed and applied to nonsmooth problems in operations research, including non-

convex problems. Finally, an optimization framework is applied to solve a problem

in electric power systems involving a smart solar inverter and battery storage system

providing energy and ancillary services to the grid.
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Introduction

“Waste not, want not” goes the old saying. If you use a resource wisely, you will

never be in need. In this phrase lie the seeds of optimization...

This thesis concerns generalized differential calculus and applications of optimization

to location problems and electric power systems. Let us begin with a brief discussion

of the key terms in this sentence. Generalized differential calculus is a generalization

of classical calculus. In particular, this includes the study of generalized notions of

derivatives for nonsmooth functions and set-valued mappings. These topics generally

fall under the subject of variational or nonsmooth analysis. The term convex analysis

is used when such a study is restricted to functions that are convex. Optimization

problems ask for the best solution from a given set of feasible solutions; such problems

are ubiquitous in applied science, business, engineering, economics, social sciences and

everyday life. Optimization is the process by which solutions to optimization problems

are found.

Recently, nonsmooth analysis and optimization have become increasingly important

for applications to many new fields such as computational statistics, machine learning,

and sparse optimization. The work in this dissertation provides a more complete pic-

ture of generalized differentiation and develops nonsmooth optimization methods to

solve facility location problems. The optimization techniques and methods developed

significantly contribute to the field of variational analysis and nonsmooth optimiza-

tion as well as their applications. In addition, the applications of optimization to

1



electric power systems developed here will play an important role in the evolution of

modern energy markets and responsive electric grids. Collectively, this work develops

theory, numerical methods, and a practical solution, all related to optimization.

1.0.1. Convex Analysis, Nonsmooth Analysis, and Variational Analysis.

Inspired by Fenchel [18], in the 1960’s Rockafellar [66] and Moreau [45] independently

laid the groundwork for the field of convex analysis with their development of the

idea of the subdifferential. The subdifferential generalizes the idea of the derivative

in classical calculus from differentiable functions to functions that are convex but not

necessarily differentiable. The subdifferential of a convex function is a set, rather than

a single value as in the classical case. Related to the subdifferential, the geometric

idea of the normal cone to a convex set goes back to Minkowski [37].

Before Rockafellar and Moreau, generalized differentiation ideas had been discussed

in mathematics and applied sciences, for example by Saks [70] and Sobelev [75].

However, these generalized derivatives “ignore sets of measure zero” and hence are

not useful in optimization theory, where the behavior of functions at individual points

is of critical importance. Convex analysis contains the theoretical framework for

the numerical methods of convex optimization. The presence of convexity makes

it possible not only to comprehensively investigate qualitative properties of optimal

solutions and derive necessary and sufficient conditions for optimality but also to

develop effective numerical algorithms for solving convex optimization problems, even

with nondifferentiable objective functions. Convex analysis and convex optimization

have an increasing impact on many areas of mathematics and applications including

automatic control systems, estimation and signal processing, communications and

networks, electronic circuit design, data analysis and modeling, statistics, machine

learning, economics and finance.
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The beauty and applications of convex analysis motivated the search for a new theory

to deal with broader classes of functions and sets where convexity is not assumed. This

Variational Analysis /
Nonsmooth Analysis

Convex Analysis

search has been the inspiration for the devel-

opments of variational analysis, also known

as nonsmooth analysis, initiated in the early

1970’s. Variational analysis has now become

a well-developed field with many applications,

especially to optimization theory; see the cor-

nerstone references [9, 38, 64, 65] for more

history and recent developments of the field.

1.0.2. Optimization. Optimization is the process by which solutions to opti-

mization problems are found. In mathematics, an optimization problem includes

three things: an objective function, a constraint set, and a desired outcome. For

example, if f : Rn → R, then an optimization problem can be stated as:

minimize f(x)

subject to x ∈ C ⊂ Rn.

This means: find the function input x̄ ∈ C such that f(x̄) ≤ f(x) for all x ∈ C.

Such an x̄ would be called a solution to the optimization problem. If f is a convex

function and C is a convex set, then the optimization problem is a convex optimization

problem. Optimization problems may be further delineated by the nature of the

objective function as differentiable (smooth) or non-differentiable (nonsmooth). The

latter types of objective functions are of particular interest in convex optimization.

In practice, optimization problems are often so complicated that they cannot be solved

exactly with analytic methods. In these cases, a computer program can be written

3



to employ an optimization algorithm to find an approximate solution. Optimization

algorithms are typically iterative procedures that start with an initial guess x0 for

the solution and update that guess based on the logic provided by the algorithm. In

this way, a sequence of function inputs x0, x1, x2, ... is derived that converges to the

solution x̄. The optimization algorithms developed in this thesis utilize the theory

from convex, nonsmooth or variational analysis.

The field of operations research applies optimization to solve practical problems from

industry or logistics. Location problems are among the oldest class of problems studied

in operations research, and are discussed in detail in this dissertation.

1.0.3. Electric Power Systems. The generation, transmission, distribution

and consumption of electric power has shown itself to be an essential part of modern

life. Despite some incremental improvements, the electric power system

L
B
N
L

Figure 1.1. Electricity demand in California on

a hot day.

in the year 2000 was essen-

tially the same as the electric

power system originally built in

the early 1900s. The opera-

tion of this historical legacy sys-

tem was straight forward: build

large enough generation, trans-

mission and distribution facili-

ties so that consumer peak de-

mand can be met by increas-

ing or decreasing generation as

needed. Consumer demand for electricity varies throughout the day; it is not uncom-

mon for peak demand to be twice that of minimum demand over a 24 hour period.
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In recent decades, two major advances have caused system planners and operators

to rethink this legacy electric power system. These advances are (1) the significant

(and rapidly increasing) presence of “variable generation” such as wind and solar,

and (2) the advent of distributed energy resources, including rooftop solar, storage,

and “controllable loads”, that is, devices that have some flexibility in how much and

when they consume power, such as smart appliances, thermostats, heating and cooling

systems, other types of demand response, and electric vehicles. This new paradigm

provides a natural opportunity for optimization, including the minimization of system

cost, the maximization of revenue for individual participants, or the minimization of

emissions.

1.0.4. Overview of Research. The research presented in this thesis is generally

organized into Chapters 2, 3, and 4 as follows:

• Chapter 2: Use the optimal value function and coderivatives to establish

subdifferential formulas in locally convex topological vector spaces. Develop

formulas for coderivatives in infinite dimensions.

• Chapter 3: Apply nonsmooth optimization techniques to location problems:

– Apply Nesterov’s smoothing technique and accelerated gradient method

to facility location problems.

– Apply DC programming techniques to problems of multifacility location

and clustering.

• Chapter 4: Apply optimization techniques to a problem in electric power

systems: develop an optimal control scheme for a smart solar inverter and

battery-storage system operating in a transactive control setting.

The remainder of the present chapter is devoted to providing an overview of some

basic tools of convex analysis and optimization.

5



1.1. Basic Tools of Convex Analysis and Optimization

This section contains definitions and preliminary facts that will be useful later in the

document. Applications of convex analysis typically take place in the finite dimen-

sional space Rn. For greater generality (and, we feel, greater clarity), we provide

the basic definitions of convex analysis in the more abstract setting of locally convex

topological vector spaces. We begin with definitions and facts from convex analysis

and proceed to some basic algorithms for convex and non-convex optimization.

1.1.1. Definitions. In these definitions, we consider X and Y to be Hausdorff

locally convex topological vector spaces over R. A locally convex topological vector

space is a topological vector space where the topology can be generated by a basis

consisting of translations of balanced, absorbent, convex sets. We use X∗ and Y ∗ to

denote the topological dual of X and Y respectively: the set of all continuous linear

maps into R. We equip Y with a partial ordering as follows. Let Y+ be a cone in Y .

This means that αy ∈ Y+ for all y ∈ Y+ and all α ≥ 0. Then, for y, z ∈ Y , we say

y ≥ z ⇐⇒ z ≤ y ⇐⇒ y − z ∈ Y+.

Whenever Y = R we assume the typical ordering Y+ = [0,+∞). When Y = R :=

(−∞,∞], we assume Y+ = [0,∞]. (The equal sign proceeded by the colon := means

that we are defining the object on the left as the object on the right.) We say a map

φ : Y → R is non-decreasing if y ≤ z implies f(y) ≤ f(z).

A map f : X → Y is convex if f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) for all

x1, x2 ∈ X and all λ ∈ (0, 1). When Y = R, we define the domain of f to be the

set dom f := {x ∈ X | f(x) < ∞}. The epigraph of f is the set epif := {(x, y) ∈

X × Y | y ≥ f(x)}.
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A set Ω ∈ X is convex if for all x1, x2 ∈ Ω and all λ ∈ (0, 1) we have λx1+(1−λ)x2 ∈ Ω.

An important geometric property of convex functions is that f is convex if and only

if its epigraph is convex.

We use the double arrows →→ to denote set-valued maps. This means, for example,

the map G : X →→ Y has G(x) ⊆ Y for each x ∈ X. We allow the possibility that

G(x) is empty. The domain of a set-valued map is the set of all inputs that produce

nonempty output, which we denote domG := {x ∈ X | G(x) 6= ∅}. The graph of

a set-valued map G : X →→ Y is gphG := {(x, y) ∈ X × Y | y ∈ G(x)}, which is

the same as {(x, y) ∈ X × Y | x ∈ domG, y ∈ G(x)}. If the set gphG is convex in

X×Y then we say that G is a convex set-valued map. The subdifferential of a convex

function f : X → R at x̄ ∈ dom f is the set

∂f(x̄) := {x∗ ∈ X∗ | f(x) ≥ f(x̄) + 〈x∗, x− x̄〉 for all x ∈ X}.

Elements of this set are called the subgradients of f at x̄. In this way, the operator

∂f is a set-valued map ∂f : X →→ X∗. (The overline x̄ is often used to denote a point

of interest, not necessarily being the solution to an optimization problem.)

Another important set-valued map into X∗ is that of the normal cone. Let Ω ⊂ X

be convex and x̄ ∈ Ω. Then the normal cone to Ω at x̄ is defined by

N(x̄; Ω) := {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω}.

The following proposition provides a useful representation of the subdifferential via

the normal cone and epigraph is easily proven.

Proposition 1.1.1. Let f : X → R be convex and let x̄ ∈ dom f . Then we have

∂f(x̄) = {x∗ ∈ X∗ | (x∗,−1) ∈ N ((x̄, f(x̄)); epif)}.

7



Proof. For notation, set W = {x∗ ∈ X∗ | (x∗,−1) ∈ N ((x̄, f(x̄)); epif)}. Let

x∗ ∈ ∂f(x̄) and pick any (x, λ) ∈ epif . Then we have

〈(x∗,−1), (x, λ)− (x̄, f(x̄))〉 = 〈x∗, x− x̄〉 − (λ− f(x̄))

≤〈x∗, x− x̄〉 − (f(x)− f(x̄)) ≤ 0,

where the last inequality holds because x∗ ∈ ∂f(x̄), so x∗ ∈ W .

For the reverse containment, let u∗ ∈ W . Since 〈(u∗,−1), (x, λ)− (x̄, f(x̄))〉 ≤ 0 for

all (x, λ) ∈ epif , we have

〈x∗, x− x̄〉 − (f(x)− f(x̄)) ≤ 0

for all x ∈ dom f , so u∗ ∈ ∂f(x̄). This completes the proof. �

Two more important definitions for our geometric approach are those of the indicator

function and the support function. Let Ω ⊂ X. The indicator function δΩ : X → R is

defined by setting δΩ(x) equal to 0 if x ∈ Ω and to∞ if x 6∈ Ω. It follows directly from

the definition that ∂δΩ(x̄) = N(x̄; Ω) whenever Ω is convex. The support function

σΩ : X∗ → R is defined as σΩ(x∗) := sup{〈x∗, x〉 | x ∈ Ω}. If x̄ ∈ Ω, it follows from

the definition that x∗ ∈ N(x̄; Ω) ⇐⇒ σΩ(x∗) = 〈x∗, x̄〉.

1.1.2. Optimal Value Function. The following function plays an important

role in obtaining the subdifferential formulas in our generalized calculus setting (see

Chapter 2).

Definition 1.1.2. Given G : X →→ Y and φ : X × Y → R, we denote the optimal

value function µ : X → R by

µ(x) := inf{φ(x, y) | y ∈ G(x)}.

8



It can be helpful to think of φ(x, ·) as the “objective function” and G(x) as the

“constraint set”. We have as a standing assumption in this document that µ(x) > −∞

for all x ∈ X.

Definition 1.1.3. The solution set of µ at x̄ is M(x̄) := {y ∈ Y | µ(x̄) = φ(x̄, y)}.

1.1.3. Optimization Algorithms. Here we introduce some basic convex opti-

mization algorithms. These are provided for reference.

1.1.3.1. Subgradient Method. The subgradient method is a standard method for

solving nonsmooth optimization problems. It is outlined as follows.

Input x0 ∈ Rn. Then update

xk+1 := xk − tkwk where wk ∈ ∂f(xk),

and where tk > 0 is a pre-determined step size. When f is convex, the subgradient

method converges for all initial values x0, as long as the sequence of step sizes (tk) is

chosen so that
∑∞

k=1 tk = ∞ and
∑∞

k=1 t
2
k < ∞. In general, the subgradient method

is known to have a convergence rate of order
(

1√
k

)
.

1.1.3.2. Stochastic Subgradient Method. The stochastic subgradient method is a

variation on the subgradient method. It is particularly well-suited for problems where

the objective function is a sum of convex functions.

Definition 1.1.4. Let f : Rn → R be a convex function. A vector valued random

variable Ṽ ∈ Rn is called a noisy unbiased subgradient of f at x̄ if the expected

value E(Ṽ ) ∈ ∂f(x̄). That is

〈
E(Ṽ ), x− x̄

〉
≤ f(x)− f(x̄) for all x ∈ Rn.
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The stochastic subgradient method is outlined as follows.

Input x0 ∈ Rn. Then update

xk+1 := xk − tkṽk where E(ṽk) ∈ ∂f(xk)

and tk > 0 is a pre-determined step size.

Convex optimization is a growing field with many other available algorithms such as

smoothing methods, proximal point methods, bundle methods, majorization mini-

mization methods, and more. It has a wide range of applications including machine

learning and computational statistics, optimal control, neural network training, data

mining, engineering, and economics.

1.1.3.3. Optimization Beyond Convexity. We may often be presented with an op-

timization problem where the objective function is not convex. No complete theory

exists for finding solutions to these types of optimization problems, but certain results

may be obtained using the tools of convex analysis. A main focus of this thesis is

to develop optimization algorithms for optimization problems in which the objective

function is not necessarily convex. We present below one such class of non-convex

optimization problems, and an algorithm for find their solutions.

DC Programming:

DC programming stands for “Difference of Convex” programming. It offers a method

to solve the following types of optimization problems.

Let f(x) = g(x) − h(x), where g : Rn → R and h : Rn → R are convex functions.

Then f is called a DC function since it is the difference of convex functions.
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The problem

minimize f(x) = g(x)− h(x), x ∈ Rn,(1.1.1)

is a DC optimization problem.

The framework for DC programming was constructed by Tao and An in their papers

[79, 80] in the late 1990’s; its essential elements are presented below.

The DC Programming Algorithm (DCA):

One of the key components in the DCA is the Fenchel conjugate ϕ∗ of a convex

function ϕ : Rn → (−∞,+∞], defined by

ϕ∗(v) := sup{〈v, x〉 − ϕ(x) | x ∈ Rn}.

If ϕ is proper, i.e., domϕ 6= ∅, then ϕ∗ : Rn → (−∞,+∞] is also a convex function.

Some other important properties of the Fenchel conjugate of a convex function are

given in the following proposition.

Proposition 1.1.5. Let ϕ : Rn → (−∞,+∞] be a convex function.

(i) Given any x ∈ domϕ, one has that y ∈ ∂ϕ(x) if and only if

ϕ(x) + ϕ∗(y) = 〈x, y〉 .

(ii) If ϕ is proper and lower semicontinuous, then for any x ∈ domϕ one has that

y ∈ ∂ϕ(x) if and only if x ∈ ∂ϕ∗(y).

(iii) If ϕ is proper and lower semicontinuous, then (ϕ∗)∗ = ϕ.

The DC optimization problem (1.1.1) possesses useful optimality conditions, one of

which is given in the next proposition.

11



Proposition 1.1.6. If x̄ ∈ dom f is a local minimizer of (1.1.1), then

(1.1.2) ∂h(x̄) ⊂ ∂g(x̄).

Any point x̄ ∈ dom f satisfying condition (1.1.2) is called a stationary point of (1.1.1).

One says that x̄ a critical point of (1.1.1) if ∂g(x̄) ∩ ∂h(x̄) 6= ∅. It is obvious that

every stationary point x̄ is a critical point, but the converse is not true in general.

The Toland dual of (1.1.1) is the problem

(1.1.3) minimize h∗(y)− g∗(y), y ∈ Rn.

Using the convention (+∞) − (+∞) = +∞, we have the following relationship be-

tween a DC optimization problem and its Toland dual.

Proposition 1.1.7. Considering the function f = g − h given in (1.1.1), one has

inf{g(x)− h(x) | x ∈ Rn} = inf{h∗(y)− g∗(y) | y ∈ Rn}.

The DCA is based on Toland’s duality theorem and Proposition 1.1.5. The idea of

the DCA is to construct two sequences {xk} and {yk} such that the real sequences

g(xk) − h(xk) and h∗(yk) − g∗(yk) are both monotone decreasing and every cluster

point x̄ of {xk} is a critical point of problem (1.1.1). Similarly, every cluster point ȳ

of {yk} is a critical point of (1.1.3), i.e., ∂g∗(ȳ) ∩ ∂h∗(ȳ) 6= ∅.
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The DCA is summarized as follows:

Step 1. Choose x0 ∈ dom g.

Step 2. For k ≥ 0, use xk to find yk ∈ ∂h(xk).

Step 3. Use yk to find xk+1 ∈ ∂g∗(yk).

Step 4. Increase k by 1 and go back to Step 2.

In the case where we cannot find yk or xk+1 exactly, we can find them approximately

by solving a convex optimization problem. This idea is explored in Chapter 3.
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2

Generalized Differential Calculus

The term generalized differential calculus refers to calculus rules and generalized

derivatives developed for nonsmooth functions and set-valued mappings. These func-

tions and mappings arise naturally in many applications. The study of generalized

differential calculus provides the mathematical foundation for nonsmooth optimiza-

tion.

In this chapter we present results from a geometric approach to convex analysis and

generalized differential calculus. The term geometric approach was coined by B.S.

Mordukhovich. It builds on the concepts of normal cone, optimal value function and

coderivative to provide an easy way to prove new and existing generalized calculus

results. These new proofs become so easy, in fact, that they may now be taught to

beginning graduate or even undergraduate students, a challenge previously typically

avoided even for advanced graduate courses. As in the previous chapter, we assume X

and Y to be Hausdorff locally convex topological vector spaces over R unless otherwise

stated.

This chapter contains two sections. In section 2.1, we present a fundamental result

relating the subdifferential of the optimal value function to the coderivative. While

this result itself is not new, we apply it in new ways to derive formulas for the

subdifferentials of various convex functions. Having thus seen the importance of

coderivatives, in section 2.2 we derive new formulas for coderivatives of various set-

valued mappings.
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2.1. A Geometric Approach to Subdifferential Calculus

In this section we prove subdifferential calculus rules via the optimal value function

and coderivatives. The subdifferential of the optimal value function µ is related to

coderivatives by way of a fundamental theorem (Theorem 2.1.8), which we sometimes

refer to as “the fundamental theorem”. The proof of the fundamental theorem uses

the subdifferential sum rule, which is proven using the normal cone intersection rule.

The normal cone intersection rule is proven in a new way, using support functions

and the convex extremal principal. We first state a definition and then proceed to

the theorems.

Definition 2.1.1. We say that two nonempty sets Ω1,Ω2 ∈ X form an extremal

system if for any neighborhood V of the origin there exists a vector a ∈ V such that

(2.1.4) (Ω1 + a) ∩ Ω2 = ∅.

The next theorem is part of what is known as the convex extremal principal, a conse-

quence of the classical separation principle. For its proof and further discussion, see

the paper by Mordukhovich, Nam, Rector and Tran [39].

Theorem 2.1.2. Let Ω1,Ω2 ⊂ X be nonempty and convex. If Ω1 and Ω2 form an

extremal system and int (Ω1 − Ω2) 6= ∅, then Ω1 and Ω2 can be separated, i.e., there

exists some nonzero x∗ ∈ X∗ such that

(2.1.5) sup
x∈Ω1

〈x∗, x〉 ≤ inf
x∈Ω2

〈x∗, x〉 .

We apply this result in the proof of the following theorem regarding support functions

to intersections of sets. As mentioned, we use this result to prove the normal cone

intersection rule, which in turn is used to prove the subdifferential sum rule.
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Theorem 2.1.3. Let Ω1,Ω2 ⊂ X be nonempty and convex. Suppose that either

(int Ω2) ∩ Ω1 6= ∅ or (int Ω1) ∩ Ω2 6= ∅. Then for any x∗ ∈ dom (σΩ1∩Ω2) there are

x∗1, x
∗
2 ∈ X∗ such that x∗ = x∗1 + x∗2 and

(2.1.6) σΩ1∩Ω2(x
∗) = σΩ1(x

∗
1) + σΩ2(x

∗
2).

Proof. First we note that for any x∗1, x
∗
2 ∈ X∗ with x∗1 + x∗2 = x∗, we have

〈x∗1, x〉+ 〈x∗2, x〉 ≤ σΩ1(x
∗
1) + σΩ2(x

∗
2)

for any x ∈ Ω1 ∩ Ω2. So the “≤” inequality is established in (2.1.6).

To prove the other direction, we will apply the convex extremal principal Theorem

2.1.2 to obtain the elements x∗1, x
∗
2 ∈ X∗ required to prove the “≥” inequality. First,

we set up the application of this theorem. Let x∗ ∈ dom (σΩ1∩Ω2) and set α =

σΩ1∩Ω2(x
∗), so

〈x∗, x〉 − α ≤ 0

for all x ∈ Ω1 ∩ Ω2. Next, we define the two sets to which we will ultimately apply

Theorem 2.1.2. Let

Θ1 = Ω1 × [0,∞),

Θ2 = {(x, λ) ∈ X × R | x ∈ Ω2, λ ≤ 〈x∗, x〉 − α}.

We can see from the construction of Θ1 and Θ2 that

(Θ1 + (0, γ)) ∩Θ2 = ∅ for any γ > 0,

so, Θ1 and Θ2 form an extremal system. To apply Theorem 2.1.2, we need to show

that int (Θ1 −Θ2) 6= ∅. We will use the assumption that (int Ω2) ∩ Ω1 6= ∅.
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The interior of Θ2 is expressed as

int (Θ2) = {(x, λ) ∈ X × R | x ∈ int (Ω2), λ < 〈x∗, x〉 − α}.

Let x′ ∈ (int Ω2)∩Ω1. We know 〈x∗, x′〉−α ≤ 0. Pick any λ′ such that λ′ < 〈x∗, x′〉−α.

Then (x′, λ′) ∈ int (Θ2). Since (x′, 0) ∈ Θ1, we have (0,−λ′) ∈ Θ1 − int (Θ2). Since

Θ1 − int (Θ2) ⊂ int (Θ1 −Θ2), we can conclude that int (Θ1 −Θ2) 6= ∅. Therefore we

can apply Theorem 2.1.2 to get nonzero (z∗, β) ∈ X∗ × R that separates Θ1 and Θ2:

(2.1.7) 〈z∗, x1〉+ βλ1 ≤ 〈z∗, x2〉+ βλ2 for all (x1, λ1) ∈ Θ1, (x2, λ2) ∈ Θ2.

It follows from the structure of Θ1 that β ≤ 0. If β = 0, then we would have

〈z∗, x1〉 ≤ 〈z∗, x2〉 for all x1 ∈ Ω1, x2 ∈ Ω2,

which yields z∗ = 0 because 0 ∈ int (Ω1 − Ω2), a contradiction. Thus β < 0.

Proceeding, take (x, 0) ∈ Θ1 and (y, 〈x∗, y〉 − α) ∈ Θ2. Then, as per (2.1.7) we get

〈z∗, x〉 ≤ 〈z∗, y〉+ β(〈x∗, y〉 − α).

It follows that

α ≥
〈
z∗

β
+ x∗, y

〉
+

〈
−z∗

β
, x

〉
for all x ∈ Ω1, y ∈ Ω2.

Setting x∗1 = z∗

β
+ x∗ and x∗2 = −z∗

β
, we get the desired conclusion

σΩ1∩Ω2(x
∗) ≥ σΩ1(x

∗
1) + σΩ2(x

∗
2).

This completes the proof. �
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Now we are ready to prove the normal cone intersection rule. The theorem after it is

known as the subdifferential sum rule.

Theorem 2.1.4. Let Ω1,Ω2 ⊆ X be convex with int (Ω1)∩Ω2 6= ∅ or Ω1∩int (Ω2) 6= ∅.

Then for any x̄ ∈ Ω1 ∩ Ω2 we have

N(x̄; Ω1 ∩ Ω2) = N(x̄; Ω1) +N(x̄; Ω2).

Proof. First we prove the set inclusion “⊂”. Let x∗ ∈ N(x̄; Ω1∩Ω2), so σΩ1∩Ω2(x
∗) =

〈x∗, x̄〉. By Theorem 2.1.3, there exists x∗1, x
∗
2 ∈ X∗ with x∗ = x∗1 + x∗2 such that

σΩ1∩Ω2(x
∗) = σΩ1(x

∗
1) + σΩ2(x

∗
2).

Since 〈x∗, x̄〉 = 〈x∗1, x̄〉 + 〈x∗2, x̄〉, and since σΩ1(x
∗
1) ≥ 〈x∗1, x̄〉 and σΩ2(x

∗
2) ≥ 〈x∗2, x̄〉,

this implies that σΩ1(x
∗
1) = 〈x∗1, x̄〉 and σΩ2(x

∗
2) = 〈x∗2, x̄〉. Thus we have x∗1 ∈ N(x̄; Ω1)

and x∗2 ∈ N(x̄; Ω2), so

x∗ ∈ N(x̄; Ω1) +N(x̄; Ω2),

and we have the desired set inclusion.

The opposite set inclusion is straightforward from the definition: let u∗1 ∈ N(x̄; Ω1)

and u∗2 ∈ N(x̄; Ω2). Then 〈u∗1, u− x̄〉 + 〈u∗2, u− x̄〉 ≤ 0 for all u ∈ Ω1 ∩ Ω2. So

u∗1 + u∗2 ∈ N(x̄; Ω1 ∩ Ω2) and the proof is complete. �

Theorem 2.1.5. Let f, g : x→ (−∞,∞] be convex. Assume that f or g are contin-

uous at some point in dom f ∩ dom g. Then we have

(2.1.8) ∂(f + g)(x̄) = ∂f(x̄) + ∂g(x̄)

for all x̄ ∈ dom (f) ∩ dom (g).
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Proof. Let x̄ ∈ dom f ∩ dom g be fixed for the entire proof. Since the inclusion

“⊂” in (2.1.8) can be easily checked by the definition, we now concentrate on proving

the opposite inclusion. Pick any x∗ ∈ ∂(f + g)(x̄). We will show how the geometric

results of Theorem 2.1.4 can be used in verifying x∗ ∈ ∂f(x̄) + ∂g(x̄). Having

〈x∗, x− x̄〉 ≤ (f + g)(x)− (f + g)(x̄),

define the following convex subsets of X × R× R:

Ω1 :=
{

(x, λ1, λ2) | λ1 ≥ f(x)
}
,

Ω2 :=
{

(x, λ1, λ2) | λ2 ≥ g(x)
}
.

It follows from the definition that (x∗,−1,−1) ∈ N((x̄, f(x̄), g(x̄)); Ω1∩Ω2). The fact

that f or g is continuous at a point in dom f ∩ dom g means that int (Ω1) ∩ Ω2 6= ∅

or Ω1 ∩ τ(Ω2) 6= ∅, so we can apply Theorem 2.1.4 to get

(2.1.9) (x∗,−1,−1) ∈ N
(
(x̄, f(x̄), g(x̄)); Ω1

)
+N

(
(x̄, f(x̄), g(x̄)); Ω2

)
,

which tells us therefore that

(x∗,−1,−1) = (x∗1,−λ1,−λ2) + (x∗2,−γ1,−γ2)

with (x∗1,−λ1,−λ2) ∈ N((x̄, f(x̄), g(x̄)); Ω1) and (x∗2,−γ1,−γ2) ∈ N((x̄, f(x̄), g(x̄)); Ω2).

By the construction of Ω1 and Ω2 we have λ2 = γ1 = 0 and hence find dual ele-

ments (x∗1,−1) ∈ N((x̄, f(x̄)); epif) and (x∗2,−1) ∈ N((x̄, g(x̄)); epig) satisfying the

relationships

x∗1 ∈ ∂f(x̄), x∗2 ∈ ∂g(x̄), and x∗ = x∗1 + x∗2.

This shows that x∗ ∈ ∂f(x̄) +∂g(x̄). Thus (2.1.8) holds and the proof is complete. �
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The following proposition sets up our use of the subdifferential sum rule in the proof

of the fundamental theorem that follows. Recall that the optimal value function µ

was defined in Definition 1.1.2.

Proposition 2.1.6. Let φ : X × Y → R be convex and let G : X →→ Y have convex

graph. Then for any x̄ ∈ X and ȳ ∈M(x̄), we have the subdifferential representation

(2.1.10) ∂µ(x̄) =
{
x∗ ∈ X∗

∣∣ (x∗, 0) ∈ ∂(φ+ δgphG
)(x̄, ȳ)

}
.

Proof. Let ȳ ∈M(x̄) be fixed for the entire proof.

For the first set inclusion, let x∗ ∈ ∂µ(x̄). It follows from the definitions that

〈x∗, x− x̄〉 ≤ µ(x)− φ(x̄, ȳ) ≤ φ(x, y)− φ(x̄, ȳ) for all y ∈ G(x).

Since (x̄, ȳ) ∈ gphG, we can add the indicator function on the right hand side to get

〈(x∗, 0), (x, y)− (x̄, ȳ)〉 ≤ (φ+ δgphG
)(x, y)− (φ+ δgphG

)(x̄, ȳ)

for all (x, y) ∈ X × Y , which proves (x∗, 0) ∈ ∂(φ+ δgphG
)(x̄, ȳ).

For the reverse containment, let (u∗, 0) ∈ ∂(φ+δgphG
)(x̄, ȳ). Then we have 〈u∗, x− x̄〉

≤ (φ+ δgphG
)(x, y)− (φ+ δgphG

)(x̄, ȳ) for all (x, y) ∈ X × Y . This implies

〈u∗, x− x̄〉 ≤ φ(x, y)− µ(x̄) for all y ∈ G(x).

Since this holds for all x ∈ X, and since φ is continuous on its domain, taking the inf

on the right hand side over all y ∈ G(x) yields

〈u∗, x− x̄〉 ≤ µ(x)− µ(x̄) for all x ∈ X,

which means u∗ ∈ ∂µ(x̄). This completes the proof. �
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Next we define the coderivative of a set-valued map.

Definition 2.1.7. Given a set-valued map G : X →→ Y and a point (x̄, ȳ) ∈ gphG,

the coderivative is a set-valued map D∗G(x̄, ȳ) : Y ∗ →→ X∗ defined by

D∗G(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x̄, ȳ); gphG)}.

Next we are ready to prove the fundamental theorem which gives us a precise rep-

resentation of the subdifferential of the optimal value function using coderivatives.

This theorem has been stated and proven in a variety of settings, including: Asplund

Spaces by Nam, Hoang and Rector in [49]; Hausdorff locally convex topological vec-

tor spaces by An and Yen in [1]; and in Rn by Mordukhovich and Nam [41]. Our

presentation here follows the paper [39] by Mordukhovich, Nam, Rector and Tran.

Theorem 2.1.8. Let G : X →→ Y be a convex set-valued map and φ : X × Y → R be

a proper convex function. If at least one of the following conditions is satisfied:

(i) int (gphG) ∩ domφ 6= ∅,

(ii) φ is continuous at a point (ū, v̄) ∈ gphG,

then for any x̄ ∈ X and ȳ ∈M(x̄) we have

∂µ(x̄) =
⋃

(x∗,y∗)∈∂φ(x̄,ȳ)

{x∗ +D∗G(x̄, ȳ)(y∗)},

where µ : X → R is the optimal value function defined using G and φ.

Proof. First we note that condition (i) implies that δgphG
is continuous at a point

in domφ∩ dom (δgphG
), and condition (ii) implies that φ is continuous at a point in

the same intersection. Either way, we will be able to apply the subdifferential sum

rule Theorem 2.1.5 to the function (φ+ δgphG
).
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By (2.1.10), we have that u∗ ∈ ∂µ(x̄) is equivalent to (u∗, 0) ∈ ∂(φ + δgphG
)(x̄, ȳ).

Under the set equality in Theorem 2.1.5, this is the same as saying that there exists

(x∗, y∗) ∈ ∂φ(x̄, ȳ) such that (u∗, 0) ∈ (x∗, y∗) + ∂δgphG
(x̄, ȳ). Since ∂δgphG

(x̄, ȳ) =

N((x̄, ȳ); gphG), which follows from the definition, this is equivalent to (u∗−x∗,−y∗) ∈

N((x̄, ȳ); gphG), which means u∗ − x∗ ∈ D∗G(x̄, ȳ)(y∗) by the definition of the

coderivative. Thus we see that u∗ ∈ ∂µ(x̄) is equivalent to there being some (x∗, y∗) ∈

∂φ(x̄, ȳ) such that u∗ ∈ x∗ +D∗G(x̄, ȳ)(y∗), and this completes the proof. �

The following corollary treats objective functions that do not change their definitions

with the choice of constraint set G(x). This corollary is used repeatedly in the proofs

of the results in the remainder of this section.

Corollary 2.1.9. Let G : X →→ Y be a convex set-valued map and ψ : Y → R be a

proper convex function. Define µ(x) as above but using ψ instead of φ, so µ(x) =

inf{ψ(y) | y ∈ G(x)}. If at least one of the following conditions is satisfied:

(i) there exists ū ∈ X and v̄ ∈ domψ such that (ū, v̄) ∈ int (gphG),

(ii) there exists (ū, v̄) ∈ gphG such that ψ is continuous at v̄,

then for any x̄ ∈ X and ȳ ∈M(x̄) we have

∂µ(x̄) =
⋃

y∗∈∂ψ(ȳ)

D∗G(x̄, ȳ)(y∗).

Proof. The result follows from an application of Theorem 2.1.8. The equivalence

of the conditions (i) and (ii) from the two theorems is clear. Define the function

φ : X × Y → R as φ(x, y) = ψ(y). Then we have

∂µ(x̄) =
⋃

(x∗,y∗)∈∂φ(x̄,ȳ)

{x∗ +D∗G(x̄, ȳ)(y∗)}.(2.1.11)
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The subdifferential ∂φ(x̄, ȳ) is equal to the set of all (x∗, y∗) ∈ X∗ × Y ∗ such that

〈(x∗, y∗), (x, y)− (x̄, ȳ)〉 ≤ φ(x, y)− φ(x̄, ȳ) for all (x, y) ∈ X × Y , which equals

{(x∗, y∗) ∈ X∗ × Y ∗ | 〈x∗, x− x̄〉+ 〈y∗, y − ȳ〉 ≤ ψ(y)− ψ(ȳ) for all (x, y) ∈ X × Y }.

Note that for any fixed r ∈ R we only have 〈x∗, x− x̄〉 ≤ r for all x ∈ X if x∗ ≡ 0.

Thus if (x∗, y∗) ∈ ∂φ(x̄, ȳ) we must have x∗ ≡ 0. So we can re-write (2.1.11) as

∂µ(x̄) =
⋃

(x∗,y∗)∈∂φ(x̄,ȳ)

{D∗G(x̄, ȳ)(y∗)}

=
⋃

y∗∈∂ψ(ȳ)

{D∗G(x̄, ȳ)(y∗)},

and the proof is complete. �

To help understand the optimal value function, the coderivative, and the fundamental

theorem, we provide the following example.

Example 2.1.10. In this example we have X = R and Y = R. We maintain the use

of X and Y (rather than just writing R) to help illustrate the previous presentation.

Let G : X →→ Y be the convex set-valued map defined by

G(x) :=

[
1

2
|x− 2|+ 1

2
(x− 2), ∞

)
.

Let ψ : Y → R be defined by

ψ(x) = |x+ 1|+ |x− 1| − 2.

Then it follows that the optimal value function µ : X → R has the closed form

expression

µ(x) = |x− 3|+ (x− 3) + 1.
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Figure 2.1. The set-valued map G.

Figure 2.2. The objective function ψ.

Figure 2.3. The resulting optimal value function µ.

We can then use the 2.1.11 version of the fundamental theorem to calculate the

subdifferential of µ at x̄ as follows.
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Let x̄ = 1. Then M(x̄) = [0, 1]. Choose ȳ = 0 ∈ M(x̄). Then ∂ψ(ȳ) = {0} and

D∗G(x̄, ȳ)(0) = {0}. So ∂µ(x̄) = {0}, as expected. If we were to use a different

ȳ ∈ M(x̄), say ȳ = 1, then we would have ∂ψ(ȳ) = [0, 2]. We can check that

D∗G(x̄, ȳ)(0) = {0} for all y∗ ∈ [0, 2], confirming that ∂µ(x̄) = {0}, as expected.

Let us calculate ∂µ(x̄) again but this time for x̄ = 3. In this case we have M(x̄) = {1},

so use ȳ = 1. Then we can see ∂ψ(ȳ) = [0, 2]. A quick calculation shows us that

for each y∗ ∈ [0, 2], we have D∗G(x̄, ȳ)(y∗) = [0, y∗]. Thus, taking the union over all

y∗ ∈ [0, 2] shows us that ∂µ(x̄) = [0, 2], as expected.

This concludes the example.

Next, we state a lemma that will be used in a subdifferential chain rule for affine

transformations. This lemma also serves to give better insight into the coderivative

map. Let B : X → Y be given by B(x) = A(x)+b where b ∈ Y is fixed and A : X → Y

is linear. Recall the adjoint of A is defined as A∗ : Y ∗ → X∗ where A∗(y∗) = y∗ ◦ A.

Lemma 2.1.11. Let B : X →→ Y be an affine set-valued map given by B(x) = {A(x)+

b} where A : X → Y is linear and b ∈ Y is fixed. Then the coderivative of B at

(x̄, ȳ) ∈ gphB is given by the formula

D∗B(x̄, ȳ)(y∗) = {A∗(y∗)}

Proof. Let x̄ ∈ X and ȳ = A(x̄) + b. Recall the coderivative of B at (x̄, ȳ) ∈ gphB

is a set-valued map D∗B(x̄, ȳ) : Y ∗ →→ X∗ given by

D∗B(x̄, ȳ)(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x̄, ȳ); gphB)}.

Thus we need to show that (x∗,−y∗) ∈ N((x̄, ȳ); gphB) is equivalent to x∗ = A∗(y∗).
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Let (x∗, y∗) ∈ N((x̄, ȳ); gphB). Since gphB is convex, this means that

〈x∗, x− x̄〉+ 〈y∗, y − ȳ〉 ≤ 0 for all x, y such that y = A(x) + b.

Since ȳ = A(x̄), this means

〈x∗, x− x̄〉+ 〈y∗, A(x− x̄)〉 ≤ 0 for all x ∈ X,

which is the same as saying

〈x∗, x− x̄〉+ 〈A∗(y∗), x− x̄〉 ≤ 0 for all x ∈ X.

So 〈x∗ + A∗(y∗), x− x̄〉 ≤ 0 for all x ∈ X, which is equivalent to x∗ + A∗(y∗) ≡

0, so x∗ = −A∗(y∗). Thus we have deduced the logical equivalence (x∗, y∗) ∈

N((x̄, ȳ); gphB) ⇐⇒ x∗ = −A∗(y∗), and hence can conclude D∗B(x̄, ȳ)(y∗) =

{A∗(y∗)}, as desired. This completes the proof. �

This allows us to prove the following chain rule for affine transformations.

Corollary 2.1.12. Let X and Y be locally convex topological vector spaces. Let

B : X →→ Y be an affine set-valued map given by B(x) = {A(x)+b} where A : X → Y

is linear and b ∈ Y is fixed. Let ψ : Y → R be a proper convex function. [Note that

the optimal value function µ in this case becomes simply µ(x) = inf{ψ(y) | y =

A(x) + b} = ψ(A(x) + b).] If there exists some point v̄ ∈ A(X) + b such that ψ is

continuous at v̄, then for any x̄ ∈ X with ȳ = A(x̄) + b, we have

∂µ(x̄) = A∗(∂ψ(ȳ)).
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Proof. By Corollary (2.1.9) we have

∂µ(x̄) =
⋃

y∗∈∂ψ(ȳ)

D∗B(x̄, ȳ)(y∗).

By Lemma (2.1.11) we have D∗B(x̄, ȳ)(y∗) = {A∗(y∗)}. Thus,

∂µ(x̄) = A∗(∂ψ(ȳ)),

which completes the proof. �

With the next corollary we obtain the results of [33] but prove using the optimal

value function, thus showing the usefulness of our geometric approach. First we state

a lemma.

Lemma 2.1.13. Let φ : Y → R be non-decreasing, ȳ ∈ domφ, and y∗ ∈ ∂φ(ȳ). Then

we have 〈y∗, z〉 ≥ 0 for all z ∈ Y+.

Proof. Let z ∈ Y+. Note that ȳ ≥ ȳ − z, and so

φ(ȳ) ≥ φ(ȳ − z) ≥ φ(ȳ)− 〈y∗, z〉 ,

which is to say, 〈y∗, z〉 ≥ 0. �

Corollary 2.1.14. Let X and Y be locally convex topological vector spaces. Let

f : X → Y be convex and φ : Y → R be convex and non-decreasing. If there exists

x ∈ X such that φ is continuous at some y ∈ Y with y ≥ f(x), then for all x̄ ∈ X we

have

∂(φ ◦ f)(x̄) =
⋃

y∗∈∂φ(f(x̄))

∂(y∗ ◦ f)(x̄).
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Proof. Define G : X →→ Y by G(x) = {y ∈ Y | y ≥ f(x)}. Then µ = (φ ◦ f) and so

by Corollary 2.1.9 we have

∂(φ ◦ f)(x̄) =
⋃

y∗∈∂φ(f(x̄))

D∗G(x̄, f(x̄))(y∗).

Let y∗ ∈ ∂φ(f(x̄)). We will prove the desired result by showing D∗G(x̄, f(x̄))(y∗) =

∂(y∗ ◦ f)(x̄).

Let x∗ ∈ D∗G(x̄, f(x̄))(y∗). This implies that 〈y∗, y〉 ≥ 〈y∗, f(x̄)〉+ 〈x∗, x− x̄〉 for all

x ∈ X and y ≥ f(x). Let h ∈ X. Set x = x̄ + h and y = f(x). Since y ≥ f(x), this

means

〈y∗, f(x̄+ h)〉 ≥ 〈y∗, f(x̄)〉+ 〈x∗, h〉 ,

so x∗ ∈ ∂(y∗ ◦ f)(x̄).

For the reverse containment, let x∗ ∈ ∂(y∗ ◦ f)(x̄). This implies that

〈y∗, f(x̄+ h)− f(x̄)〉 ≥ 〈x∗, h〉 for all h ∈ X. Let x ∈ X and y ≥ f(x). Set h = x− x̄,

so f(x̄+ h) = f(x). Note that by Lemma 2.1.13 we have 〈y∗, y〉 ≥ 〈y∗, f(x)〉 and so

〈y∗, y − f(x̄)〉 ≥ 〈y∗, f(x)− f(x̄)〉 ≥ 〈x∗, x− x̄〉 ,

which means (x∗,−y∗) ∈ N((x̄, f(x̄)); gphG). Thus x∗ ∈ D∗G(x̄, f(x̄))(y∗), which

completes the proof. �

The next corollary provides a useful formula for the subdifferential of a max of convex

functions. This generalizes Theorem IV4.3.2 in Hiriart-Urruty [21], and is proven

using a much simpler technique. It is essentially an application of Corollary 2.1.14.

Corollary 2.1.15. Let fi : X → R be continuous convex functions for i = 1, ...,m.

Define f : X → R by fmax = max{f1, ..., fm}. Let I(x) := {i | fi(x) = fmax(x)} be
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the active index set. Then for x̄ ∈ X we have

∂fmax(x̄) = co{∂fi(x̄) | i ∈ I(x̄)}.

Proof. Define f : X → Rm by f(x) = (f1(x), ..., fm(x)) and g : Rm → R by

g(u1, ..., um) = max{u1, ..., um}. Then we have fmax = g ◦ f . It is well known [41]

that the subdifferential of g at (u1, ..., um) ∈ Rm can be written as ∂g(u1, ..., um) =

co{ei | ui = g(u1, ..., um)}, where e1, ..., em is the standard basis on Rm. Thus, for

x ∈ X, the subdifferential of g at f(x) = (f1(x), ..., fm(x)) is

∂g(f(x)) = ∂g(f1(x), ..., fm(x))(2.1.12)

= co{ei | i ∈ I(x)}

=

∑
i∈I(x)

λiei | λi ≥ 0,
∑
i∈I(x)

λi = 1

 .

Since g is non-decreasing (using Y+ = [0,∞)m), continuous at all u ∈ Rm, and there

is a point x̄ ∈ X such that each fi is continuous (and hence finite) at x̄, then we can

apply Corollary 2.1.14 to get

∂(fmax)(x̄) =∂(g ◦ f)(x̄) =
⋃

y∗∈∂g(f(x̄))

∂(y∗ ◦ f)(x̄).

We will complete the proof by showing that this union is equal to co{∂fi(x̄) | i ∈

I(x̄)}. First, let us consider y∗ ∈ ∂g(f(x̄)) and the resulting y∗ ◦ f : X → R.
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Let (λi)i∈I(x) be the associated scalars from the representation (2.1.12). Then we have

(y∗ ◦ f)(x) = y∗(f1(x), ..., fm(x))

=
∑
i∈I(x)

λi 〈ei, (f1(x), ..., fm(x))〉

=
∑
i∈I(x)

λifi(x) =

∑
i∈I(x)

λifi

 (x).

Thus, we can write

∂(y∗ ◦ f)(x) =∂

∑
i∈I(x)

λifi

 (x) =
∑
i∈I(x)

λi∂fi(x).

Therefore ⋃
y∗∈∂g(f(x̄))

∂(y∗ ◦ f)(x̄) ⊆ co{∂fi(x̄) | i ∈ I(x̄)}.

Furthermore, since every (λi)i∈I(x) with λi ≥ 0,
∑

i∈I(x) λi = 1 defines an element

y∗ ∈ ∂g(f(x̄)), we also have the opposite inclusion

⋃
y∗∈∂g(f(x̄))

∂(y∗ ◦ f)(x̄) ⊇ co{∂fi(x̄) | i ∈ I(x̄)},

and so can conclude the desired set equality

∂(fmax)(x̄) =
⋃

y∗∈∂g(f(x̄))

∂(y∗ ◦ f)(x̄)

=co{∂fi(x̄) | i ∈ I(x̄)}.

This completes the proof. �

The next corollary also generalizes and provides a simpler proof for Theorem IV4.5.1

in [21].
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Corollary 2.1.16. Let A : Y → X be a surjective linear map. Use A to define a

set-valued map G : X →→ Y by G(x) := A−1(x) = {y ∈ Y | A(x) = y}. Let ψ : Y → R

be a proper convex function and µ be the optimal value function associated with ψ

and G. If there exists v̄ ∈ Y such that ψ is continuous at v̄, then for any x̄ ∈ X and

ȳ ∈M(x̄) we have

∂µ(x̄) = (A∗)−1(∂ψ(ȳ)).

Proof. Since A is surjective, the condition that ψ is continuous at some v̄ ∈ Y implies

the regularity condition (ii) from Corollary 2.1.9. Therefore we have the formula

∂µ(x̄) =
⋃

y∗∈∂ψ(ȳ)

D∗G(x̄, ȳ)(y∗).

All that needs to be shown is that D∗G(x̄, ȳ) = (A∗)−1. Note that (A∗)−1 : Y ∗ →→ X∗

and is defined by (A∗)−1(y∗) = {x∗ ∈ X∗ | A∗(x∗) = y∗}. To show that D∗G(x̄, ȳ) =

(A∗)−1, we will show that (x∗, y∗) ∈ N((x̄, ȳ); gphG) is equivalent to A∗(x∗) = −y∗.

This is done easily with the following string of logical equivalences:

(x∗, y∗) ∈ N((x̄, ȳ); gphG)

⇐⇒ 〈(x∗, y∗), (x, y)− (x̄, ȳ)〉 ≤ 0 ∀(x, y) ∈ gphG

⇐⇒ 〈x∗, x− x̄〉+ 〈y∗, y − ȳ〉 ≤ 0 for all x ∈ X and y ∈ Y with x = A(y)

⇐⇒ 〈x∗, A(y)− A(ȳ)〉+ 〈y∗, y − ȳ〉 ≤ 0 for all y ∈ Y (since A is surjective)

⇐⇒ 〈A∗(x∗), y − ȳ〉+ 〈y∗, y − ȳ〉 ≤ 0 for all y ∈ Y

⇐⇒ A∗(x∗) ≡ −y∗.
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Thus D∗G(x̄, ȳ) = (A∗)−1, so

∂µ(x̄) =
⋃

y∗∈∂ψ(ȳ)

D∗G(x̄, ȳ)(y∗) = (A∗)−1(∂ψ(ȳ)),

which completes the proof. �

2.2. Coderivative Rules

As in the previous section, we continue to assume that our spaces X, Y and Z are

Hausdorff locally convex topological vector spaces. Our goal in this section is to derive

various formulas for coderivatives where the set-valued map involves, for example, the

sum, intersection, or composition of other set-valued maps. Such formulas may be

useful for future researchers using coderivatives in variational analysis. The formulas

presented here represent improvements to the formulas previously found in the liter-

ature, and the first time these formulas have been presented in infinite dimensions.

First, we note that the normal cone intersection rule Theorem 2.1.4 generalizes as

follows.

Proposition 2.2.1. Let A1, ..., An be convex subsets of X with A1 ∩ int (A2) ∩ · · · ∩

int (An) 6= ∅. Define A = A1 ∩ · · · ∩ An. Then for any x ∈ A we have

N(x;A) = N(x;A1) + · · ·+N(x;An).

Next we state the first of our coderivative formulas.

Let F1, F2 : X →→ Y . Define (F1 + F2) : X →→ Y by (F1 + F2)(x) = F1(x) + F2(x).

It is straightforward to check that F1 + F2 is convex when F1 and F2 are. Also,

dom (F1 + F2) = dom (F1) ∩ dom (F2). For (x̄, ȳ) ∈ gph (F1 + F2), define

S(x̄, ȳ) = {(ȳ1, ȳ2) ∈ Y × Y | ȳ = ȳ1 + ȳ2 and ȳ1 ∈ F1(x̄), ȳ2 ∈ F2(x̄)}.
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Theorem 2.2.2. Let F1, F2 : X →→ Y be convex set-valued graphs. Assume one of

the following holds:

(i) int (domF1) ∩ domF2 6= ∅ and int (gphF1) 6= ∅ or

(ii) domF1 ∩ int (domF2) 6= ∅ and int (gphF2) 6= ∅.

Then for all (x̄, ȳ) ∈ gph (F1 + F2) and v ∈ Y ∗ we have

D∗(F1 + F2)(x̄, ȳ)(v) = D∗F1(x̄, ȳ1)(v) +D∗F2(x̄, ȳ2)(v)

for each (ȳ1, ȳ2) ∈ S(x̄, ȳ).

Proof. Let v ∈ Y ∗ and (x̄, ȳ) ∈ gph (F1 + F2) and (ȳ1, ȳ2) ∈ S(x̄, ȳ) be fixed for the

entire proof.

We start with the inclusion “⊂”. Fix any u ∈ D∗(F1 + F2)(x̄, ȳ)(v). By definition,

this means

(u,−v) ∈ N((x̄, ȳ); gph (F1 + F2)).

Define the sets Ω1 and Ω2 as follows:

Ω1 ={(x, y1, y2) ∈ X × Y × Y | y1 ∈ F1(x)},

Ω2 ={(x, y1, y2) ∈ X × Y × Y | y2 ∈ F2(x)}.

It is easy to check that (u,−v,−v) ∈ N((x̄, ȳ1, ȳ2); Ω1∩Ω2). By construction, assump-

tion (i) in the statement of the theorem implies int (Ω1)∩Ω2 6= ∅ and assumption (ii)

implies Ω1 ∩ int (Ω2) 6= ∅. So we can apply Proposition 2.2.1 to get

(u,−v,−v) ∈ N((x̄, ȳ1, ȳ2); Ω1) +N((x̄, ȳ1, ȳ2); Ω2).
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This gives us the representation (u,−v,−v) = (u1,−v, 0) + (u2, 0,−v) where

(u1,−v) ∈ N((x̄, ȳ1); gphF1) and (u2,−v) ∈ N((x̄, ȳ2); gphF2).

Thus we have u = u1 +u2 ∈ D∗F1(x̄, ȳ1)(v)+D∗F2(x̄, ȳ2)(v), which proves the desired

inclusion.

For the opposite inclusion, let w ∈ D∗F1(x̄, ȳ1)(v) + D∗F2(x̄, ȳ2)(v) so w = w1 + w2

where w1 ∈ D∗F1(x̄, ȳ1)(v) and w2 ∈ D∗F2(x̄, ȳ2)(v). This means

〈(w1,−v), (x1, y1)− (x̄, ȳ1)〉 ≤ 0 for all y1 ∈ F1(x1) and

〈(w2,−v), (x2, y2)− (x̄, ȳ2)〉 ≤ 0 for all y2 ∈ F2(x2).

This implies

〈w1, x1 − x̄〉+ 〈w2, x2 − x̄〉 − 〈v, y1 − ȳ1〉− 〈v, y2 − ȳ2〉 ≤ 0

for all y1 ∈ F1(x1) and all y2 ∈ F2(x2).

Setting x1 = x2 = x then implies the more restrictive statement

〈w, x− x̄〉 − 〈v, y1 − ȳ1〉 − 〈v, y2 − ȳ2〉 ≤ 0 for all y1 + y2 ∈ (F1 + F2)(x).

Setting y = y1 + y2, we then get

〈w, x− x̄〉 − 〈v, y − ȳ〉 ≤ 0 for all (x, y) ∈ gph (F1 + F2).

Thus w ∈ D∗(F1 + F2)(x̄, ȳ)(v). �

Next we define composition for set-valued maps and present a theorem for coderiva-

tives defined by these types of maps.
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If F : X →→ Y and G : Y →→ Z are set-valued maps, then we define the composition

(G ◦ F ) : X →→ Z by

(G ◦ F )(x) =
⋃

y∈F (x)

G(y).

It is easy to check that if F and G are convex, then (G ◦ F ) is convex.

For any z̄ ∈ (G ◦ F )(x̄), define T (x̄, z̄) = F (x̄) ∩G−1(z̄).

Theorem 2.2.3. Let F : X →→ Y and G : Y →→ Z be convex set-valued maps. Assume

that one of the following holds:

(i) there exists (a, b) ∈ int (gphF ) with b ∈ domG; or

(ii) there exists (b, c) ∈ int (gphG) with b ∈ F (a) for some a ∈ X.

Then for all (x̄, z̄) ∈ gph (G ◦ F ) and for all w ∈ Z∗ we have

D∗(G ◦ F )(x̄, z̄)(w) = [D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)](w)

for each ȳ ∈ T (x̄, z̄).

Proof. Let (x̄, z̄) ∈ gph (G ◦ F ) and w ∈ Z∗ and ȳ ∈ T (x̄, z̄) be fixed for the entire

proof.

The “⊂” inclusion is proven as follows. Let u ∈ D∗(G ◦ F )(x̄, z̄)(w). By definition,

this means that

〈u, x− x̄〉 − 〈w, z − z̄〉 ≤0 for all (x, z) ∈ gph (g ◦ F ).

Define the following sets:

Ω1 ={(x, y, z) ∈ X × Y × Z | (x, y) ∈ gph (F )}

Ω2 ={(x, y, z) ∈ X × Y × Z | (y, z) ∈ gph (G)}.
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Since Ω1 ∩Ω2 contains gph (F ◦G) as its first and third entries, we have (u, 0,−w) ∈

N((x̄, ȳ, z̄); Ω1∩Ω2). Assumption (i) indicates that int (Ω1)∩Ω2 6= ∅ and assumption

(ii) indicates that Ω1 ∩ int (Ω2) 6= ∅, so by 2.2.1 we have

N((x̄, ȳ, z̄); Ω1 ∩ Ω2) = N((x̄, ȳ, z̄); Ω1) +N((x̄, ȳ, z̄); Ω2).

By the construction of Ω1 and Ω2, we have

N((x̄, ȳ, z̄); Ω1) =N((x̄, ȳ); gphF )× {0} and

N((x̄, ȳ, z̄); Ω2) ={0} ×N((ȳ, z̄); gphG).

So we can write (u, 0,−w) = (u,−v, 0)+(0, v,−w) where (u,−v) ∈ N((x̄, ȳ); gph (F ))

and (v,−w) ∈ N((ȳ, z̄); gph (G)). This means that v ∈ D∗G(ȳ, z̄)(w) and u ∈

D∗F (x̄, ȳ)(v) so we can conclude u ∈ [D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)](w).

For the opposite inclusion, let u ∈ [D∗F (x̄, ȳ) ◦ D∗G(ȳ, z̄)](w). This means there

exists v ∈ D∗G(ȳ, z̄)(w) so that u ∈ F (x̄, ȳ)(v). This means that

〈u, x− x̄〉 − 〈v, y1 − ȳ〉 ≤0 for all y1 ∈ F (x)

〈v, y2 − ȳ〉 − 〈w, z − z̄〉 ≤0 for all z ∈ G(y2).

Summing these two inequalities and restricting to the case when y1 = y2 = y, we get

〈u, x− x̄〉 − 〈w, z − z̄〉 ≤0 for all z ∈ (G ◦ F )(x).

Thus, u ∈ D∗(G ◦ F )(x̄, z̄)(w) and the set equality is established and completes the

proof. �

Next we discuss a formula for the coderivative of an intersection of set-valued map-

pings. Let F1, F2 : X →→ Y be set-valued mappings. Then (F1 ∩ F2) : X →→ Y is a
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set-valued map defined by

(F1 ∩ F2)(x) = F1(x) ∩ F2(x).

First we note the set equality gph (F1 ∩ F2) = (gphF1) ∩ (gphF2). Thus, if F1 and

F2 are convex, then so is (F1 ∩ F2). Then we have the following formula for the

coderivative of an intersection of set-valued maps.

Theorem 2.2.4. Let F1, F2 : X →→ Y be set-valued maps with convex graphs. If

int (gphF1) ∩ gphF2 6= ∅ or gphF1 ∩ int (gphF2) 6= ∅, then for any ȳ ∈ (F1 ∩ F2)(x̄)

and any v ∈ Y ∗, we have

D∗(F1 ∩ F2)(x̄, ȳ)(v) =
⋃

v1+v2=v

[D∗F1(x̄, ȳ)(v1) +D∗F2(x̄, ȳ)(v2)].

Proof. Let ȳ ∈ (F1 ∩ F2)(x̄) and v ∈ Y ∗.

First we prove the inclusion “⊂”. Fix any u ∈ D∗(F1∩F2)(x̄, ȳ)(v). Since int (gphF1)∩

gphF2 6= ∅ or gphF1 ∩ int (gphF2) 6= ∅, we can apply 2.2.1 to have

(u,−v) ∈ N((x̄, ȳ); gph (F1 ∩ F2)) = N((x̄, ȳ); gphF1) +N((x̄, ȳ); gphF2).

Thus (u,−v) = (u1,−v1) + (u2,−v2) where (u1,−v1) ∈ N((x̄, ȳ); gphF1) and

(u2,−v2) ∈ N((x̄, ȳ); gphF2). So u ∈ D∗F1(x̄, ȳ)(v1) + D∗F2(x̄, ȳ)(v2) where v =

v1 + v2, which proves the desired inclusion.

For the inclusion “⊃”, let v1, v2 ∈ Y ∗ with v1 + v2 = v. Let u ∈ D∗F1(x̄, ȳ)(v1) +

D∗F2(x̄, ȳ)(v2). This means u = u1 + u2 where u1 ∈ D∗F1(x̄, ȳ)(v1) and

37



u2 ∈ D∗F2(x̄, ȳ)(v2). So

(u,−v) = (u1,−v1) + (u2,−v2) ∈ N((x̄, ȳ); gphF1) +N((x̄, ȳ); gphF2)

= N((x̄, ȳ); gph (F1 ∩ F2)).

Thus u ∈ D∗(F1 ∩ F2)(x̄, ȳ)(v), which completes the proof. �

Next we derive a formula for the solution mapping of a generalized equation, defined

below. We start with a proposition that is used in the proof of the theorem.

Proposition 2.2.5. Let F : X →→ Y be a set-valued map with convex graph. Given

x̄ ∈ domF , we have

N(x̄; domF ) = D∗F (x̄, ȳ)(0)

for any ȳ ∈ F (x̄).

Proof. Since (x∗, 0) ∈ N ((x̄, ȳ); gphF ) ⇐⇒ x∗ ∈ N (x̄; domF ), the proof follows

directly from the definition. �

If F,G : X × Y →→ Z are set-valued mappings with convex graphs, we define their

generalized equation to be

0 ∈ F (x, y) +G(x, y).

The solution map associated with this generalized equation is S : X →→ Y defined by

S(x) = {y ∈ Y | 0 ∈ F (x, y) +G(x, y)}.

The following theorem gives us a formula for the coderivative of S.
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Theorem 2.2.6. Let F,G : X × Y →→ Z be convex set-valued maps and S : X →→ Y

be the associated solution map, as defined above. Assume that

int (gphF ) ∩ (int (−gphG)) 6= ∅. Then

D∗S(x̄, ȳ)(v)

=
⋃
w∈Z∗

{
u ∈ X∗

∣∣ (u,−v) ∈ [D∗F ((x̄, ȳ), z̄)(w) +D∗G((x̄, ȳ),−z̄)(−w)]
}

for every v ∈ Y ∗ and every z̄ ∈ F (x̄, ȳ) ∩ [−G(x̄, ȳ)].

Proof. Let v ∈ Y ∗ and z̄ ∈ F (x̄, ȳ)∩ [−G(x̄, ȳ)]. First, notice that gphS = dom [F ∩

(−G)]. Then the proof can be completed with a string of logical equivalences as

follows.

Let u ∈ D∗S(x̄, ȳ)(v). By definition, this means (u,−v) ∈ N((x̄, ȳ); dom [F ∩ (−G)]).

By Proposition 2.2.5 we have

N((x̄, ȳ); dom [F ∩ (−G)]) = D∗[F ∩ (−G)]((x̄, ȳ), x̄)(0),

and so by Theorem 2.2.4 we can write

(u,−v) ∈
⋃
w∈Z∗

[D∗F ((x̄, ȳ), z̄)(w) +D∗(−G)((x̄, ȳ), z̄)(−w)].

Moving a minus sign in the second coderivative then allows us to rewrite as

u ∈
⋃
w∈Z∗

{
u ∈ X∗

∣∣ (u,−v) ∈ [D∗F ((x̄, ȳ), z̄)(w) +D∗G((x̄, ȳ),−z̄)(−w)]
}
,

which completes the proof. �
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3

Applications to Facility Location Problems

Facility location problems include a broad range of optimization problems with many

generalizations. The term facility location, true to its name, refers to the problem

of finding the optimal location for a facility (typically thought of as some sort of

product distribution center) to serve a fixed set of demand centers (typically thought

of as customers, often referred to as targets). These problems have intrinsic geometric

appeal and attracted interest from the likes of Descartes, Fermat, and Gauss (see some

history below), but also stand as one of the oldest classes of problems in operations

research due to their obvious practical applications. For example, facility location

models have been applied to choose locations for emergency medical services [62],

fast-food restaurants [36], and vehicle inspection stations [23].

Many generalized versions of the location problem have been stated and studied

over the years; see, for example, [4, 40, 42, 43, 44, 47, 48, 78]. In this thesis,

we consider two different generalizations, both concerning an arbitrary number of

targets in Rn, and both leading to nonsmooth optimization problems. In particular,

the second generalization we consider leads to a non-convex optimization problem.

Both generalizations are explained in the two sections below.
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3.1. Introduction to the Fermat-Torricelli Problem and Nesterov’s

Method

In 1638, Descartes wrote a letter to Fermat which discussed curves in the plane

whose points had a constant sum of distances to a given set of four points. These

curves came to be know as multifocal ellipses or polyellipses. Five years later, possibly

prompted by this discussion, Fermat posed the following problem: Find the point that

minimizes the sum of distances to three given points in the plane. Early contributions

and solutions to this problem were given by Torricelli, Cavalieri, and Viviani. The

problem became know as the Fermat-Torricelli problem, and its solution the Fermat-

Torricelli point. [31]
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Figure 3.1. Polyellipses with three foci.

The original solutions to this problem were based on ruler and compass constructions.

But it can be shown via Galois theory that no such construction exists when the

number of points is greater than or equal to five. That is to say that “no exact

algorithms under computational models with arithmetic operations and extractions
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of kth roots can be used, leaving only numerical or symbolic approximation methods

for more than four given points.”[31]

3.1.0.4. An Early Computational Solution: The Weiszfeld Algorithm. In 1937,

Endre Weiszfeld (also known as Andrew Vázsonyi) presented an algorithm to nu-

merically solve the Fermat-Torricelli problem for m points. For clarity, we state the

problem here.

Let a1, ..., am be given points in Rn, and let ‖ · ‖ be the Euclidean norm in Rn. Then

the Fermat-Torricelli problem is:

minimize
m∑
j=1

‖x− aj‖, x ∈ Rn.

The Weiszfeld algorithm is given by

xk+1 :=

(∑m
j=1

aj
‖xk−aj‖

)
(∑m

j=1
1

‖xk−aj‖

) .

In this way, the algorithm makes a weighted average where the weight associated with

each point aj is inversely proportional to its distance to the current estimate. But, as

can be seen, the algorithm fails when an estimate xk coincides with one of the given

points aj. A modification to the algorithm was given in the year 2000 by [81] that

converges for all initial points.

3.1.0.5. Methodology. In general, a natural approach for solving nonsmooth opti-

mization problems is to approximate the original nonsmooth problem by a smooth

one and apply a smooth optimization scheme to the smooth approximation. One suc-

cessful implementation of this idea was provided by Nesterov. In his seminal papers
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[51, 52], Nesterov introduced a fast first-order method for solving convex smooth op-

timization problems in which the cost functions have Lipschitz gradient. In contrast

to the convergence rate of O(1/k) when applying the classical gradient method to this

class of problems, Nesterov’s accelerated gradient method gives a convergence rate

of O(1/k2). In Nesterov’s nonsmooth optimization scheme, an original nonsmooth

function of a particular form is approximated by a smooth convex function with Lip-

schitz gradient. Then the accelerated gradient method is applied to solve the smooth

approximation. This method is considered to be a highly significant contribution to

the field of convex optimization, and has sparked a vast array of applications and

related research.

3.1.1. Nesterov’s Smoothing Technique. We introduce Nesterov’s smooth-

ing technique in its full generality. The class of functions under consideration for

Nesterov’s smoothing technique are those given by

f(x) := max{〈Ax, u〉 − φ(u) | u ∈ Q}, x ∈ Rn,

where A is an m× n matrix, Q is a nonempty compact convex subset of Rm, and φ

is a continuous convex function on Q.

Example 3.1.1. A simple example is as follows. If Q = {u ∈ Rn | ‖u‖1 ≤ 1},

A = I, and φ ≡ 0, then we have f(x) = ‖x‖∞.

Let d be a continuous strongly convex function on Q with parameter σ > 0. This

means that d(x)− σ
2
‖x‖2 is convex on Q. The function d is called a prox-function; it

is used to define the smooth approximation of f presented below. Since d is strongly

convex on Q, it has a unique optimal solution on this set. Denote

ū := arg min{d(u) | u ∈ Q}.
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Without loss of generality, we assume that d(ū) = 0. From the strong convexity of d,

we also have

d(u) ≥ σ

2
‖u− ū‖2 for all u ∈ Q.

Throughout the chapter we will work mainly with the choice of d(u) = 1
2
‖u− ū‖2.

Let µ be a positive number which we will call a smooth parameter. Define

(3.1.13) fµ(x) := max{〈Ax, u〉 − φ(u)− µd(u) | u ∈ Q}.

The function fµ will be the Nesterov smooth approximation of f . The forthcoming

theorem provides a detailed understanding of this fµ as an approximation of f .

For an m× n matrix A, define

(3.1.14) ‖A‖ := max{‖Ax‖ | ‖x‖ ≤ 1}.

The definition gives us

‖Ax‖ ≤ ‖A‖ ‖x‖ for all x ∈ Rn.

We also recall the definition of the Euclidean projection from point x ∈ Rn to a

nonempty closed convex subset Ω of Rn:

π(x; Ω) := {w ∈ Ω | d(x; Ω) = ‖x− w‖},

where d(·; ·) is the distance function

(3.1.15) d(x; Ω) := inf{‖x− w‖ | w ∈ Ω}.
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The theorem below is a simplified version of [52, Theorem 1] that involves the usual

inner product of Rn. In the paper by An, Nam, Rector and Sun [46], a new detailed

proof is provided for the convenience of the reader.

Theorem 3.1.2. Consider the function f given by

f(x) := max{〈Ax, u〉 − 〈b, u〉 | u ∈ Q}, x ∈ Rn,

where A is an m× n matrix and Q is a compact subset of Rm. Let d(u) =
1

2
‖u− ū‖2

with ū ∈ Q.

Then the function fµ in (3.1.13) has the explicit representation

fµ(x) =
‖Ax− b‖2

2µ
+ 〈Ax− b, ū〉 − µ

2

[
d

(
ū+

Ax− b
µ

;Q

)]2

and is continuously differentiable on Rn with its gradient given by

∇fµ(x) = A>uµ(x),

where uµ can be expressed in terms of the Euclidean projection

uµ(x) = π

(
ū+

Ax− b
µ

;Q

)
.

The gradient ∇fµ is a Lipschitz function with constant

`µ =
1

µ
‖A‖2.

Moreover,

(3.1.16) fµ(x) ≤ f(x) ≤ fµ(x) +
µ

2
[D(ū;Q)]2 for all x ∈ Rn,
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where D(ū;Q) is the farthest distance from ū to Q defined by

D(ū;Q) := sup{‖ū− u‖ | u ∈ Q}.

The following examples illustrate this result.

Example 3.1.3. Let ‖ · ‖X1 and ‖ · ‖X2 be two norms in Rm and Rn, respectively,

and let ‖ · ‖X∗1 and ‖ · ‖X∗2 be the corresponding dual norms, i.e.,

‖x‖X∗i := max{〈x, u〉 | ‖u‖Xi ≤ 1}, i = 1, 2.

Denote BX1 := {u ∈ Rm | ‖u‖X1 ≤ 1} and BX2 := {u ∈ Rn | ‖u‖X2 ≤ 1}. Consider

the function g : Rn → R defined by

g(x) := ‖Ax− b‖X∗1 + λ‖x‖X∗2 ,

where A is an m × n matrix, b ∈ Rm, and λ > 0. Using the prox-function d(u) =

1

2
‖u‖2, one finds the Nesterov smooth approximation of g as:

gµ(x) =
‖Ax− b‖2

2µ
− µ

2

[
d

(
Ax− b
µ

;BX1

)]2

+ λ

(
‖x‖2

2µ
− µ

2

[
d

(
x

µ
;BX2

)]2
)
.

The gradient of gµ is

∇gµ(x) = A>π

(
Ax− b
µ

;BX1

)
+ λπ

(
x

µ
;BX2

)
,

and its Lipschitz constant is

Lµ =
‖A‖2 + λ

µ
.

Moreover,

gµ(x) ≤ g(x) ≤ gµ(x) +
µ

2
([D(0;BX1)]

2 + [D(0;BX2)]
2) for all x ∈ Rn.
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For example, if ‖ · ‖X1 is the Euclidean norm, and ‖ · ‖X2 is the `∞−norm on Rn, then

∇gµ(x) = A>
Ax− b

max{‖Ax− b‖, µ}
+ λmedian

(
x

µ
, e,−e

)
,

where e = [1, . . . , 1]> ∈ Rn.

Let us provide another example involving support vector machines, well-known from

machine learning. Our approach simplifies and improves the results in [86].

Example 3.1.4. Let S := {(Xi, yi)}mi=1 be a training set, where Xi ∈ Rp is the ith

row of a matrix X and yi ∈ {−1, 1}. The corresponding linear support vector machine

problem can be reduced to solving the following problem:

minimize g(w) :=
1

2
‖w‖2 + λ

m∑
i=1

`i(w), w ∈ Rp,

where `i(w) = max{0, 1− yiXiw}, λ > 0.

Let Q := {u ∈ Rm | 0 ≤ ui ≤ 1} and define

f(w) :=
m∑
i=1

`i(w) = max
u∈Q
〈e− Y Xw, u〉 ,

where e = [1, . . . , 1]> and Y = diag(y) with y = [y1, . . . , ym]>.

Using the prox-function d(u) =
1

2
‖u‖2, one has

fµ(w) = max
u∈Q

[〈e− Y Xw, u〉 − µd(u)].

Then

uµ(w) = π

(
e− Y Xw

µ
;Q

)
=

{
u ∈ Rm

∣∣∣∣ ui = median

(
1− yiXiw

µ
, 0, 1

)}
.
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The gradient of fµ is given by

∇fµ(w) = −(Y X)>uµ(w),

and its Lipschitz constant is `µ =
‖Y X‖2

µ
, where the matrix norm is defined in

(3.1.14).

Moreover,

fµ(w) ≤ f(w) ≤ fµ(w) +
mµ

2
for all w ∈ Rp.

Then we use the following smooth approximation of the original objective function g:

gµ(w) :=
1

2
‖w‖2 + λfµ(w), w ∈ Rp.

Obviously,

∇gµ(w) = w + λ∇fµ(w),

and a Lipschitz constant is

Lµ = 1 + λ
‖Y X‖2

µ
.

3.1.2. Nesterov’s Accelerated Gradient Method. The smooth approxima-

tion obtained above is convenient for applying Nesterov’s accelerated gradient method,

presented as follows. Let f : Rn → R be a differentiable convex function with Lips-

chitz gradient. This means that there exists ` > 0 such that

‖∇f(x)−∇f(y)‖ ≤ `‖x− y‖ for all x, y ∈ Rn.

Let Ω be a nonempty closed convex set. In his paper [52], Nesterov considered the

optimization problem

minimize f(x) subject to x ∈ Ω.
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For x ∈ Rn, define

TΩ(x) := arg min

{
〈∇f(x), y − x〉+

`

2
‖x− y‖2

∣∣ y ∈ Ω

}
.

Let ρ : Rn → R be a strongly convex function with parameter σ > 0 and let x0 ∈ Rn

such that

x0 := arg min {ρ(x) | x ∈ Ω}.

Further, assume that ρ(x0) = 0. Then Nesterov’s accelerated gradient method is

outlined as follows.

Algorithm 1. Nesterov’s Accelerated Gradient Method.

INPUT: f , `.

INITIALIZE: Choose x0 ∈ Ω.

Set k = 0

Repeat the following

Find yk := TΩ(xk).

Find zk := arg min

{
`

σ
ρ(x) +

∑k
i=0

i+ 1

2
[f(xi) + 〈∇f(xi), x− xi〉]

∣∣∣∣ x ∈ Ω

}
.

Set xk+1 :=
2

k + 3
zk +

k + 1

k + 3
yk.

Set k := k + 1.

until a stopping criterion is satisfied.

OUTPUT: yk.

For simplicity, we choose ρ(x) =
σ

2
‖x− x0‖2, where x0 ∈ Ω and σ = 1. Then

the terms yk and zk in Algorithm 1 take on the following closed-form expressions.

Following the proof of Theorem 3.1.2 (as provided in [46]), it is not hard to see that

yk = TΩ(xk) = π

(
xk −

∇f(xk)

`
; Ω

)
.
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Moreover,

zk = π

(
x0 −

1

`

k∑
i=0

i+ 1

2
∇f(xi); Ω

)
.

These closed-form expressions are essential to the practical implementation of the

algorithms presented in the next section.

3.2. Generalized Fermat-Torricelli Problems Involving Points

Here we present our generalized version of the Fermat-Torricelli problem. Our aim

is to apply Nesterov’s smoothing technique and accelerated gradient method to this

nonsmooth optimization problem. Our version of the problem is associated with the

generalized notion of distance as generated by a Minkowski gauge.

Let K be a nonempty, closed, bounded, and convex set in Rn containing the origin

in its interior. Define the Minkowski gauge associated with K by

ρK(x) := inf{t > 0 | x ∈ tK}.

Note that, if K is the closed unit ball in Rn, then ρK(x) = ‖x‖.

Given a nonempty and bounded set F , the support function associated with F is

given by

σF (x) := sup{〈x, y〉 | y ∈ F}.

It follows from the definition of the Minkowski gauge (see, e.g., [20, Proposition 2.1])

that ρF (x) = σF ◦(x) and ρF ◦(x) = σF (x), where F ◦ is the polar of F defined by

F ◦ := {y ∈ Rn | 〈x, y〉 ≤ 1 for all x ∈ F}.

Under these general notions of distance, we pursue the following generalized version

of the Fermat-Torricelli problem. Let Ω be a nonempty closed convex subset of Rn
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and let ai ∈ Rn for i = 1, . . . ,m. Our generalized version of the problem is:

(3.2.17) minimize H(x) :=
m∑
i=1

σF (x− ai) subject to x ∈ Ω.

Let us start with some properties of the function σF . The following proposition can

be proven easily.

Proposition 3.2.1. For the function σF defined as part of (3.2.17), the following

properties hold for all u, v ∈ Rn and λ ≥ 0:

(i) |σF (u)− σF (v)| ≤ ‖F‖‖u− v‖, where ‖F‖ := sup{‖f‖ | f ∈ F}.

(ii) σF (u+ v) ≤ σF (u) + σF (v).

(iii) σF (λu) = λσF (u), and σF (u) = 0 if and only if u = 0.

(iv) σF is a norm if we assume additionally that F is symmetric, i.e., F = −F .

(v) γ‖u‖ ≤ σF (u), where γ := sup{r > 0 | B(0; r) ⊂ F}.

Let Θ be a nonempty closed convex subset of Rn and let x̄ ∈ Θ. The normal cone in

the sense of convex analysis to Θ at x̄ is defined by

N(x̄; Θ) := {v ∈ Rn | 〈v, x− x̄〉 ≤ 0 for all x ∈ Θ}.

It follows from the definition that the normal cone mapping N(·; Θ) has a closed

graph in the sense that for any sequence xk → x̄ and vk → v̄ where vk ∈ N(xk; Θ),

one has that v̄ ∈ N(x̄; Θ).

Given an element v ∈ Rn, we also define cone {v} := {λv | λ ≥ 0}.

In what follows, we study the existence and uniqueness of the optimal solution of

problem (3.2.17). The following definition and the proposition afterward are impor-

tant for this purpose. We use bdF to denote the boundary of F .
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Definition 3.2.2. We say that F is normally smooth if for every x ∈ bdF there

exists ax ∈ Rn such that N(x;F ) = cone {ax}.

Example 3.2.3. For a given a positive definite matrix A, let

‖x‖A :=
√
x>Ax.

It is not hard to see that the set F := {x ∈ Rn | ‖x‖A ≤ 1} is normally smooth.

Indeed, N(x;F ) = cone {Ax} if ‖x‖A = 1; see [41, Proposition 2.48].

Define the set

B∗F := {u ∈ Rn | σF (u) ≤ 1}

and recall that a convex subset Θ of Rn is said to be strictly convex if tu+ (1− t)v ∈

int Θ whenever u, v ∈ Θ, u 6= v, and t ∈ (0, 1).

Proposition 3.2.4. We have that F is normally smooth if and only if B∗F is strictly

convex.

Proof. Suppose that F is normally smooth. Fix any u, v ∈ B∗F with u 6= v and

t ∈ (0, 1). Let us show that tu+(1−t)v ∈ intB∗F , or equivalently, σF (tu+(1−t)v) < 1.

We only need to consider the case where σF (u) = σF (v) = 1. Fix x̄, ȳ ∈ F such that

〈u, x̄〉 = σF (u) = 1 and 〈v, ȳ〉 = σF (v) = 1,

and fix e ∈ F such that

〈tu+ (1− t)v, e〉 = σF (tu+ (1− t)v).

It is obvious that σF (tu+ (1− t)v) ≤ 1. By contradiction, suppose that σF (tu+ (1−

t)v) = 1. Then

1 = 〈tu+ (1− t)v, e〉 = t 〈u, e〉+ (1− t) 〈v, e〉 ≤ t 〈u, x̄〉+ (1− t) 〈v, ȳ〉 = 1.
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This implies 〈u, e〉 = 〈u, x̄〉 = 1 = σF (u) and 〈v, e〉 = 〈v, ȳ〉 = 1 = σF (v). Then

〈u, x〉 ≤ 〈u, e〉 for all x ∈ F,

which implies u ∈ N(e;F ). Similarly, v ∈ N(e;F ). Since F is normally smooth,

u = λv, where λ > 0. Thus,

1 = 〈u, e〉 = 〈λv, e〉 = λ 〈v, e〉 = λ.

Hence λ = 1 and u = v, a contradiction.

Now suppose that B∗F is strictly convex. Fix x̄ ∈ bdF and fix any u, v ∈ N(x̄;F )

with u, v 6= 0. Let α := σF (u) and β := σF (v). Then

〈u, x〉 ≤ 〈u, x̄〉 for all x ∈ F

and

〈v, x〉 ≤ 〈v, x̄〉 for all x ∈ F.

It follows that 〈u, x̄〉 = α and 〈v, x̄〉 = β. Moreover,

σF (u+ v) ≥ 〈u, x̄〉+ 〈v, x̄〉 = α + β = σF (u) + σF (v),

and hence σF (u+ v) = σF (u) + σF (v). We have u/α, v/β ∈ B∗F and

σF

(
u

α

α

α + β
+
v

β

β

α + β

)
= 1.

Since B∗F is strictly convex, one has
u

α
=
v

β
, and hence u = λv, where λ := α/β > 0.

The proof is now complete. �
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Remark 3.2.5. Suppose that F is normally smooth. It follows from the proof of

Proposition 3.2.4 that for u, v ∈ Rn with u, v 6= 0, one has that σF (u+ v) = σF (u) +

σF (v) if and only if u = λv for some λ > 0.

The proposition below gives sufficient conditions that guarantee the uniqueness of an

optimal solution of (3.2.17).

Proposition 3.2.6. Suppose that F is normally smooth. If for any x, y ∈ Ω with

x 6= y, the line connecting x and y, L(x, y), does not contain at least one of the points

ai for i = 1, . . . ,m, then problem (3.2.17) has a unique optimal solution.

Proof. It is not hard to see that for any α ∈ R, the set

Lα := {x ∈ Ω | H(x) ≤ α}

is compact, and so (3.2.17) has an optimal solution since H is continuous. Let us

show that the assumptions made guarantee that H is strictly convex on Ω, and hence

(3.2.17) has a unique optimal solution.

By contradiction, suppose that there exist x̄, ȳ ∈ Ω with x̄ 6= ȳ and t ∈ (0, 1) such

that

H(tx̄+ (1− t)ȳ) = tH(x̄) + (1− t)H(ȳ).

Then

σF (t(x̄− ai) + (1− t)(ȳ − ai)) = tσF (x̄− ai) + (1− t)σF (ȳ − ai)

= σF (t(x̄− ai)) + σF ((1− t)(ȳ − ai))

for all i = 1, . . . ,m.

54



If x̄ = ai or ȳ = ai, then ai is obviously contained in L(x̄, ȳ). Otherwise, by Remark

3.2.5, there exists λi > 0 such that

t(x̄− ai) = λi(1− t)(ȳ − ai).

This also implies that ai ∈ L(x̄, ȳ). We have seen that ai ∈ L(x̄, ȳ) for all i = 1, . . . ,m.

This contradiction shows that (3.2.17) has a unique optimal solution. �

Let us consider the smooth approximation function given by

(3.2.18) Hµ(x) :=
m∑
i=1

(
‖x− ai‖2

2µ
+ 〈x− ai, ū〉 −

µ

2

[
d

(
ū+

x− ai
µ

;F

)]2
)
,

where ū ∈ F .

Proposition 3.2.7. The function Hµ defined by (3.2.18) is continuously differen-

tiable on Rn with its gradient given by

∇Hµ(x) =
m∑
i=1

π

(
ū+

x− ai
µ

;F

)
.

The gradient ∇Hµ is a Lipschitz function with constant

Lµ =
m

µ
.

Moreover, one has the following estimate

Hµ(x) ≤ H(x) ≤ Hµ(x) +m
µ

2
[D(ū;F )]2 for all x ∈ Rn.

Proof. Given b ∈ Rn, define the function on Rn given by

f(x) := σF (x− b) = max{〈x− b, u〉 | u ∈ F}, x ∈ Rn.
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Consider the prox-function

d(u) :=
1

2
‖u− ū‖2.

Applying Theorem 3.1.2, one has that the function fµ is continuously differentiable

on Rn with its gradient given by

∇fµ(x) = uµ(x) = π

(
ū+

x− b
µ

;F

)
.

Moreover, the gradient ∇fµ is a Lipschitz function with constant

`µ =
1

µ
.

The explicit formula for fµ is

fµ(x) =
‖x− b‖2

2µ
+ 〈x− b, ū〉 − µ

2

[
d

(
ū+

x− b
µ

;F

)]2

.

The conclusions then follow easily. �

We are now ready to write a pseudocode for solving the Fermat-Torricelli problem

(3.2.17) via Nesterov’s smoothing technique and accelerated gradient method.
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Algorithm 2.

INPUT: ai for i = 1, . . . ,m, µ.

INITIALIZE: Choose x0 ∈ Ω and set ` =
m

µ
.

Set k = 0

Repeat the following

Compute ∇Hµ(xk) =
∑m

i=1 π

(
ū+

xk − ai
µ

;F

)
.

Find yk := π(xk − 1
`∇Hµ(xk); Ω).

Find zk := π(x0 − 1
`

∑k
i=0

i+ 1

2
∇Hµ(xi); Ω).

Set xk+1 :=
2

k + 3
zk +

k + 1

k + 3
yk.

until a stopping criterion is satisfied.

Remark 3.2.8. When implementing Nesterov’s accelerated gradient method, in or-

der to get a more effective algorithm, instead of using a fixed smoothing parameter

µ, we often change µ during the iteration. The general optimization scheme is:

INITIALIZE: x0 ∈ Ω, µ0 > 0, µ∗ > 0, σ ∈ (0, 1).

Set k = 0.

Repeat the following

Apply Nesterov’s accelerated gradient method with µ = µk and starting point xk

to obtain an approximate solution xk+1.

Update µk+1 = σµk.

until µ ≤ µ∗.

Example 3.2.9. In the case where F is the closed unit Euclidean ball, σF (x) = ‖x‖

is the Euclidean norm and

π(x;F ) =


{

x

‖x‖

}
, ‖x‖ > 1

{x}, ‖x‖ ≤ 1.
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Consider the `1-norm on Rn. For any x ∈ Rn, one has

‖x‖1 = max{〈x, u〉 | ‖u‖∞ ≤ 1},

In this case,

F = {x ∈ Rn | |xi| ≤ 1 for all i = 1, . . . , n}.

The smooth approximation of the function f(x) := ‖x‖1 depends on the Euclidean

projection to the set F , which can be found explicitly. In fact, for any u ∈ Rn, one

has

π(u;F ) = {v ∈ Rn | vi = median {ui, 1,−1}}.

Now we consider the `∞-norm in Rn. For any x ∈ Rn, one has

‖x‖∞ = max{〈x, u〉 | ‖u‖1 ≤ 1}.

In this case,

F = {x ∈ Rn | ‖x‖1 ≤ 1}.

It is straightforward to find the Euclidean projection of a point to F in two and three

dimensions. In the case of high dimensions, there are available algorithms to find an

approximation of the projection; see, e.g., [17].

3.2.1. Numerical Examples. To demonstrate the presented methods, let us

consider a numerical examples below.

Example 3.2.10. The latitude/longitude coordinates in decimal format of 1217 US

cities are recorded at http://www.realestate3d.com/gps/uslatlongdegmin.htm.

We convert the longitudes provided by the website above from positive to negative

to match with the real data. Our goal is to find a point that minimizes the sum of

the distances to the given points representing the cities.
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If we consider the case where σF (x) = ‖x‖, the Euclidean norm, Algorithm 2 allows

us to find an approximate optimal value V ∗ ≈ 23409.33 and an approximate optimal

solution x∗ ≈ (38.63,−97.35). Similarly, if σF (x) = ‖x‖1, an approximate optimal

value is V ∗ ≈ 28724.68 and an approximate optimal solution is x∗ ≈ (39.48,−97.22).

With the same problem setup but considering the `∞-norm, an approximate optimal

value is V ∗ ≈ 21987.76 and an approximate optimal solution is x∗ ≈ (37.54,−97.54).

The graph below shows the relation between the number of iterations k and the

optimal value Vk = H(yk) generated by different norms.
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Figure 3.2. Generalized Fermat-Torricelli problems with different norms.

3.2.2. Additional Work: Location Problems involving Sets. The above

techniques can be extended to apply to location problems where the targets are

sets, as opposed to points. Such models may be appropriate when the targets have

non-negligible sizes. This extension depends on an application of the minimization
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majorization (MM) principle, which is described below. A detailed presentation of

the algorithms and additional discussion can be found in [46].

3.2.2.1. MM Principle. This section describes an important tool of convex opti-

mization and computational statistics called the MM Principle (minimization ma-

jorization); see [15, 25, 32] and the references therein. Here we provide a more

general version (as we apply in [46]) for generalized Fermat-Torricelli problems when

the targets are sets rather than points. Let f : Rn → R be a convex function and let

Ω be a nonempty closed convex subset of Rn. Consider the optimization problem

(3.2.19) minimize f(x) subject to x ∈ Ω.

LetM : Rn×Rp → R and let F : Rn →→ Rp be a set-valued mapping with nonempty

values such that the following properties hold for all x, y ∈ Rn:

f(x) ≤M(x, z) ∀z ∈ F (y), and f(x) =M(x, z) ∀z ∈ F (x).

Given x0 ∈ Ω, the MM algorithm to solve (3.2.19) is given by

Choose zk ∈ F (xk) and find xk+1 ∈ arg min{M(x, zk) | x ∈ Ω}.

Then

f(xk+1) ≤M(xk+1, zk) ≤M(xk, zk) = f(xk).

Finding an appropriate majorization is an important step in this algorithm. It has

been shown in [14] that the MM Principle provides an effective tool for solving the

generalized Fermat-Torricelli problem. Figure 3.3 below illustrates the MM principle

as applied to the generalized Fermat-Torricelli problem with sets Ω1,Ω2, and Ω3.
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Figure 3.3. The first steps of an application of the MM principle for
a generalized Fermat-Torricelli problem with sets. The initial guess x0

is projected onto the sets and the Fermat-Torricelli problem is solved
using those points as the targets, resulting in the next iterate x1.

3.3. Multifacility Location Problems and Non-convex Optimization

In this section we develop algorithms to solve a version of the generalized Fermat-

Torricelli problem that is both nonsmooth and non-convex. Specifically, we consider a

multifacility location problem (i.e. a facility location problem with multiple centers)

where the targets can take on both positive and negative weights and where distance

is determined by Minkowski gauges. Using the Nesterov smoothing technique and an

algorithm for minimizing differences of convex functions introduced by Tao and An,

effective algorithms are developed for solving these problems.
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3.3.1. Introduction to Multifacility Location. To solve the classical Fermat-

Torricelli problem, one finds a point that minimizes the sum of the Euclidean distances

to three points in the plane. This problem was introduced by Pierre de Fermat in

the 17th century and originally solved by Evangelista Torricelli. A more general

model asks for a point that minimizes the sum of the Euclidean distances to a finite

number of points in a finite dimensional Euclidean space. In spite of its simplicity,

this problem has been a topic of extensive research due to both its mathematical

beauty and practical applications in the field of facility location. The first algorithm

for solving the Fermat-Torricelli problem was introduced in 1937 by Weiszfeld in [83].

This algorithm was studied in depth by Kuhn in [29]. The Fermat-Torricelli problem

and Weiszeld’s algorithm have been revisited and further studied by many authors;

see, e.g., [10, 16, 30, 81] and the references therein.

Several generalized models for the Fermat-Torricelli problem have been introduced

and studied in the literature. The Fermat-Torricelli problem in general normed

spaces was considered in [35]. The generalized Fermat-Torricelli problems involving

Minkowski gauges and distances to convex sets were the topics of [26, 40, 46, 48]. In

particular, the recent paper by Nam, An, Rector and Sun [46] focused on numerical

algorithms with the use of the Nesterov smoothing technique and accelerated gradient

method to study these problems.

Given the locations of a finite number of “customers”, the multifacility location prob-

lem asks for the optimal locations of a finite number of “facilities” (also known as

centroids) to serve these customers, where each customer is assigned to the near-

est facility. The multifacility location problem has a close relationship to clustering

problems. A recent paper by An, Belghiti, and Tao [2] uses the so-called DCA (Dif-

ference of Convex functions Algorithm) to solve a clustering problem that involves
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squared Euclidean distances. Their method shows robustness, efficiency, and superi-

ority compared with the well-known K−means algorithm, when applied to a number

of real-world data sets. The DCA was introduced by Tao in 1986, and then exten-

sively developed in the works of An, Tao, and others; see [79, 80] and the references

therein. An important feature of the DCA is its simplicity compared with other

methods, while still being very effective for many applications. In fact, the DCA is

one of the most successful algorithms for solving non-convex optimization problems.

We consider the weighted Fermat-Torricelli problem with both positive and nega-

tive weights. Additionally, we consider a continuous multifacility location problem,

which involves distance measurements generated by Minkowski gauges. Considering

Minkowski gauges, it is possible to unify the problems generated by arbitrary norms

and even more generalized notions of distances; see [26, 40, 46] and the references

therein. Our approach is based on the Nesterov smoothing technique [52] and the

DCA. We also propose a method to solve a new model of clustering called set clus-

tering. This model involves squared Euclidean distances to convex sets, and hence

coincides with the model considered in [2] when the sets reduce to singletons. Using

sets instead of points allows us to classify objects with non-negligible sizes.

The remainder of this section is organized as follows. In Section 3.3.2, we give an

accessible presentation of DC programming and the DCA. Section 3.3.3 is devoted

to developing algorithms to solve generalized weighted Fermat-Torricelli problems

involving possibly negative weights and Minkowski gauges. Algorithms for solving

multifacility location problems with Minkowski gauges are presented in Section 3.3.4.

We demonstrate the effectiveness of our algorithms through a variety of numerical

examples in Section 3.3.5. In Section 3.3.6, we introduce and develop an algorithm

to solve the set clustering model.
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3.3.2. Tools of DC Programming. This section provides background on DC

programming and the DCA for the convenience of the reader. Most of the results in

this section can be found in [79, 80], although the present presentation is tailored to

the algorithms presented in the subsequent sections.

Consider the problem

(3.3.20) minimize f(x) := g(x)− h(x), x ∈ Rn,

where g : Rn → (−∞,+∞] and h : Rn → R are convex functions. The function f in

(3.3.20) is called a DC function and g − h is called a DC decomposition of f .

For a convex function ϕ : Rn → (−∞,+∞], the Fenchel conjugate of ϕ is defined by

ϕ∗(y) := sup{〈y, x〉 − ϕ(x) | x ∈ Rn}.

Note that, if ϕ is proper, i.e. dom (ϕ) := {x ∈ Rn | ϕ(x) < +∞} 6= ∅, then

ϕ∗ : Rn → (−∞,+∞] is also a convex function. Given x̄ ∈ dom (ϕ), an element

v ∈ Rn is called a subgradient of ϕ at x̄ if

〈v, x− x̄〉 ≤ ϕ(x)− ϕ(x̄) for all x ∈ Rn.

The collection of all subgradients of ϕ at x̄ is called the subdifferential of ϕ at this point

and is denoted by ∂ϕ(x̄). If ϕ is proper and lower semicontinuous, then v ∈ ∂ϕ∗(y)

if and only if y ∈ ∂ϕ(v); see, e.g., [22, 41, 64].

Introduced by Tao and An [79, 80], the DCA is a simple but effective optimization

scheme for minimizing differences of convex functions. Although the algorithm is

used for non-convex optimization problems, the convexity of the functions involved

still plays a crucial role with the presence of elements of convex analysis such as

subgradients and Fenchel conjugates. The algorithm is summarized below, as applied
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to problem (3.3.20). As can be seen, a “zig-zag” approach is taken between the primal

variables xk and the dual variables yk. The result is a sequence xk that descends in

value of the objective function f at each step.

DC Algorithm 1.

INPUT: x1 ∈ Rn, N ∈ IN .

for k = 1, . . . , N do

Find yk ∈ ∂h(xk).

Find xk+1 ∈ ∂g∗(yk).

end for

OUTPUT: xN+1.

The convergence properties of this algorithm are discussed in Theorem 3.3.1.

Let g, h : Rn → (−∞,+∞] be proper, lower semicontinuous, and convex functions.

It is well-known that v ∈ ∂g∗(y) if and only if

(3.3.21) v ∈ argmin
{
g(x)− 〈y, x〉 | x ∈ Rn

}
.

Moreover, w ∈ ∂h(x) if and only if

(3.3.22) w ∈ argmin
{
h∗(y)− 〈y, x〉 | y ∈ Rn

}
.

Thus, in the case where we cannot find yk or xk+1 exactly in Algorithm 1, we can find

them approximately by solving two convex optimization problems in each iteration,

as in the algorithm below.
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DC Algorithm 2.

INPUT: x1 ∈ Rn, N ∈ IN .

for k = 1, . . . , N do

Find yk ∈ ∂h(xk) or find yk approximately by solving the problem:

minimize ψk(y) := h∗(y)− 〈y, xk〉 , y ∈ Rn.

Find xk+1 ∈ ∂g∗(yk) or find xk+1 approximately by solving the problem:

minimize φk(x) := g(x)− 〈yk, x〉 , x ∈ Rn.

end for

OUTPUT: xN+1.

Let us now discuss the convergence of the DCA. Recall that a function h : Rn →

(−∞,+∞] is called γ-convex (γ ≥ 0) if the function defined by k(x) := h(x)− γ
2
‖x‖2,

x ∈ Rn, is convex. As mentioned previously, if there exists γ > 0 such that h is

γ−convex, then h is called strongly convex.

We say that an element x̄ ∈ Rn is a critical point of the function f from (3.3.20) if

∂g(x̄) ∩ ∂h(x̄) 6= ∅.

Obviously, in the case where both g and h are differentiable, x̄ is a critical point of f

if and only if x̄ satisfies the Fermat rule ∇f(x̄) = 0.

The theorem below provides a convergence result for the DCA. The result can be

derived directly from [80, Theorem 3.7].

Theorem 3.3.1. Consider the function f defined in (3.3.20) and the sequence {xk}

generated by Algorithm 1. Then the following properties are valid:
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(i) If g is γ1-convex and h is γ2-convex, then

(3.3.23) f(xk)− f(xk+1) ≥ γ1 + γ2

2
‖xk+1 − xk‖2 for all k ∈ IN.

(ii) The sequence {f(xk)} is monotone decreasing.

(iii) If f is bounded from below, g is lower semicontinuous, g is γ1-convex and h is

γ2-convex with γ1 +γ2 > 0, and {xk} is bounded, then every subsequential limit of the

sequence {xk} is a critical point of f .

The following propositions serve as a discussion for the constructibility of the sequence

{xk}, which give sufficient conditions for [80, Lemma 3.6].

Proposition 3.3.2. Let g : Rn → (−∞,+∞] be a proper, lower semicontinuous, and

convex function. Then

∂g(Rn) :=
⋃
x∈Rn

∂g(x) = dom ∂g∗ := {y ∈ Rn | ∂g∗(y) 6= ∅}.

Proof. Let x ∈ Rn and y ∈ ∂g(x). Then x ∈ ∂g∗(y), which implies ∂g∗(y) 6= ∅, and

so y ∈ dom ∂g∗. The opposite inclusion follows by a similar argument. �

We say that a function g : Rn → (−∞,+∞] is coercive of superior order if

lim
‖x‖→+∞

g(x)

‖x‖
= +∞.

Proposition 3.3.3. Let g : Rn → (−∞,+∞] be a proper, coercive of superior order,

and convex function. Then dom (∂g∗) = Rn.

Proof. By [22, Proposition 1.3.8] and the fact that f is proper, the Fenchel conjugate

g∗ is a finite convex function. Therefore, ∂g∗(y) is nonempty for all y ∈ Rn, which

completes the proof. �
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3.3.3. The DCA for a Generalized Multifacility Location Problem. In

this section we develop algorithms for solving weighted Fermat-Torricelli problems

involving Minkowski gauges. In particular, the algorithms developed here are appli-

cable to solving the unweighted version introduced and studied in [26]. The present

method is based on the Nesterov smoothing technique and the DCA. This approach

allows us to solve generalized versions of the Fermat-Torricelli problem generated by

different norms and generalized distances.

Let F be a nonempty, closed, bounded, and convex set in Rn containing the origin in

its interior. Recall that the Minkowski gauge associated with F is defined by

ρF (x) := inf{t > 0 | x ∈ tF}.

Note that, if F is the closed unit ball in Rn, then ρF (x) = ‖x‖.

Given a nonempty and bounded set K, recall that the support function associated

with K is given by

σK(x) := sup{〈x, y〉 | y ∈ K}.

It follows from the definition of the Minkowski function (see, e.g., [20, Proposi-

tion 2.1]) that ρF (x) = σF ◦(x), where

F ◦ := {y ∈ Rn | 〈x, y〉 ≤ 1 for all x ∈ F}.

Let us present below a direct consequence of the Nesterov smoothing technique given

in [52]. In the proposition below, d(x; Ω) denotes the Euclidean distance and P (x; Ω)

denotes the Euclidean projection from a point x to a nonempty, closed, and convex

set Ω in Rn.
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Proposition 3.3.4. Given any a ∈ Rn and µ > 0, a Nesterov smoothing approxima-

tion of ϕ(x) := ρF (x− a) has the representation

ϕµ(x) =
1

2µ
‖x− a‖2 − µ

2

[
d

(
x− a
µ

;F ◦
)]2

.

Moreover, ∇ϕµ(x) = P
(
x−a
µ

;F ◦
)

and

(3.3.24) ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) +
µ

2
‖F ◦‖2,

where ‖F ◦‖ := sup{‖u‖ | u ∈ F ◦}.

Proof. The function ϕ can be represented as

ϕ(x) = σF ◦(x− a) = sup{〈x− a, u〉 | u ∈ F ◦}.

Using the prox-function d(x) = 1
2
‖x‖2 in [52], one obtains a smooth approximation

of ϕ given by

ϕµ(x) := sup
{
〈x− a, u〉 − µ

2
‖u‖2

∣∣ u ∈ F ◦}
= sup

{
−µ

2

(
‖u‖2 − 2

µ
〈x− a, u〉

) ∣∣∣∣ u ∈ F ◦}

= sup

{
−µ

2

∥∥∥∥u− 1

µ
(x− a)

∥∥∥∥2

+
1

2µ
‖x− a‖2

∣∣∣∣ u ∈ F ◦
}

=
1

2µ
‖x− a‖2 − µ

2
inf

{∥∥∥∥u− 1

µ
(x− a)

∥∥∥∥2 ∣∣∣∣ u ∈ F ◦
}

=
1

2µ
‖x− a‖2 − µ

2

[
d

(
x− a
µ

;F ◦
)]2

.

The formula for computing the gradient of ϕµ follows from the well-known gradient

formulas for the squared Euclidean norm and the squared distance function generated
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by a nonempty, closed, and convex set: ∇d2(x; Ω) = 2[x− P (x; Ω)]; see, e.g., [41,

Exercise 3.2]. The estimate (3.3.24) can be proved directly. �

Let ai ∈ Rn for i = 1, . . . ,m and let ci 6= 0 for i = 1, . . . ,m be real numbers. In

this setup, the points ai will represent the targets and the numbers ci represent the

weights. For the remainder of this section, we study the following generalized version

of the Fermat-Torricelli problem:

(3.3.25) minimize f(x) :=
m∑
i=1

ciρF (x− ai), x ∈ Rn.

The function f in (3.3.25) can be written as

f(x) =
∑
ci>0

ciρF (x− ai)−
∑
ci<0

(−ci)ρF (x− ai).

Let I := {i : ci > 0} and J := {i | ci < 0} with αi = ci if i ∈ I, and βi = −ci if i ∈ J .

Then

(3.3.26) f(x) =
∑
i∈I

αiρF (x− ai)−
∑
j∈J

βjρF (x− aj).

An essential step in applying DC Algorithm 1 for minimizing a function f represented

as the difference of two convex functions g and h is to find subgradients of g∗. The

function f given in (3.3.26) has the obvious DC decomposition f = g − h, where

g(x) :=
∑
i∈I

αiρF (x− ai) and h(x) :=
∑
j∈J

βjρF (x− aj).

However, there is no explicit formula for subgradients of this g∗, and hence we cannot

apply DC Algorithm 1. The following Proposition 3.3.5 gives a Nesterov-type ap-

proximation for the function f , which is more favorable for applying this algorithm.
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Proposition 3.3.5. Consider the function f defined in (3.3.26). Given any µ > 0,

an approximation of the function f has the following DC decomposition:

(3.3.27) fµ(x) := gµ(x)− hµ(x), x ∈ Rn,

where

gµ(x) :=
∑
i∈I

αi
2µ
‖x− ai‖2,

hµ(x) :=
∑
i∈I

µαi
2

[
d

(
x− ai

µ
;F ◦

)]2

+
∑
j∈J

βjρF (x− aj).

Moreover, fµ(x) ≤ f(x) ≤ fµ(x) + µ‖F ◦‖2
2

∑
i∈I αi for all x ∈ Rn.

Proof. By Proposition 3.3.4,

fµ(x) =
∑
i∈I

[
αi
2µ
‖x− ai‖2 − µαi

2

[
d

(
x− ai

µ
;F ◦

)]2
]
−
∑
j∈J

βjρF (x− aj)

=
∑
i∈I

αi
2µ
‖x− ai‖2 −

[∑
i∈I

µαi
2

[
d

(
x− ai

µ
;F ◦

)]2

+
∑
j∈J

βjρF (x− aj)

]
.

The inequality estimate follows directly from (3.3.24). �

Proposition 3.3.6. Let γ1 := sup{r > 0 | B(0; r) ⊂ F} and

γ2 := inf{r > 0 | F ⊂ B(0; r)}. Suppose that

γ1

∑
i∈I

αi > γ2

∑
j∈J

βj.

Then the function f defined in (3.3.26) and its approximation fµ defined in (3.3.27)

have absolute minima.
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Proof. Fix any r > 0 such that B(0; r) ⊂ F . By the definition, for any x ∈ Rn,

ρF (x) = inf{t > 0 | t−1x ∈ F} ≤ inf{t > 0 | t−1x ∈ B(0; r)}

= inf{t > 0 | r−1‖x‖ < t} = r−1‖x‖.

This implies ρF (x) ≤ γ−1
1 ‖x‖. Similarly, ρF (x) ≥ γ−1

2 ‖x‖.

Then

∑
i∈I

αiρF (x− ai) ≥ γ−1
2

∑
i∈I

αi‖x− ai‖ ≥ γ−1
2

∑
i∈I

αi
(
‖x‖ − ‖ai‖

)
,

∑
j∈J

βjρF (x− aj) ≤ γ−1
1

∑
j∈J

βj
(
‖x‖+ ‖aj‖

)
.

It follows that

f(x) ≥

[
(γ2)−1

∑
i∈I

αi − (γ1)−1
∑
j∈J

βj

]
‖x‖ − c,

where c := γ−1
2

∑
i∈I αi‖ai‖+ γ−1

1

∑
j∈J βj‖aj‖.

The assumption guarantees that lim‖x‖→+∞ f(x) = +∞, and so f has an absolute

minimum.

By Proposition 3.3.5,

f(x) ≤ fµ(x) +
µ‖F ◦‖2

2

∑
i∈I

αi.

This implies that lim‖x‖→+∞ fµ(x) = +∞, and so fµ has an absolute minimum as

well. �

Remark 3.3.7. We see that hµ from (3.3.27) is the sum of a smooth function and

a nonsmooth function. We can calculate the gradient of the smooth term as follows.

Define

h1
µ(x) :=

∑
i∈I

µαi
2

[
d

(
x− ai

µ
;F ◦

)]2

, h2
µ(x) :=

∑
j∈J

βjρF (x− aj).
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Then hµ = h1
µ + h2

µ and h1
µ is differentiable with

∇h1
µ(x) =

∑
i∈I

αi

[
x− ai

µ
− P

(
x− ai

µ
;F ◦

)]
.

The next proposition gives us a formula for the gradient of g∗µ, as per (3.3.21).

Proposition 3.3.8. Consider the function gµ defined in Proposition 3.3.5. For any

y ∈ Rn, the function

φµ(x) := gµ(x)− 〈y, x〉 , x ∈ Rn,

has a unique minimizer given by

x =
y +

∑
i∈I αia

i/µ∑
i∈I αi/µ

.

Proof. The gradient of the convex function φµ is given by

∇φµ(x) =
∑
i∈I

αi
µ

(x− ai)− y.

The result then follows by solving ∇φµ(x) = 0. �

Based on DC Algorithm 1, the DC decomposition (3.3.27), Remark 3.3.7, and (3.3.21),

we present the following DC Algorithm 3 to solve the generalized Fermat-Torricelli

problem (3.3.25). As can be seen by the use of the subdifferential, this algorithm still

retains some of the nonsmooth structure of the original problem, but the calculation

of subgradients of the original g∗ is avoided, as intended. Following DC Algorithm 3,

we develop another algorithm which does not require the use of the subdifferential.
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DC Algorithm 3.

INPUT: µ > 0, x1 ∈ Rn, N ∈ IN , F , a1, . . . , am ∈ Rn, c1, . . . , cm ∈ R.

for k = 1, . . . , N do

Find yk = uk + vk, where

uk :=
∑

i∈I αi

[
xk−ai
µ
− P

(
xk−ai
µ

;F ◦
)]
,

vk ∈
∑

j∈J βj∂ρF (xk − aj).

Find xk+1 =
yk+

∑
i∈I αia

i/µ∑
i∈I αi/µ

.

OUTPUT: xN+1.

Let us introduce another algorithm to solve the problem. This algorithm is obtained

by using the Nesterov smoothing method for all functions involved in the problem

and in the following proposition. The proof of the proposition follows directly from

Proposition 3.3.4, as in the proof of Proposition 3.3.5.

Proposition 3.3.9. Consider the function f defined in (3.3.26). Given any µ > 0,

a smooth approximation of the function f has the following DC decomposition:

fµ(x) := gµ(x)− hµ(x), x ∈ Rn,

where

gµ(x) :=
∑
i∈I

αi
2µ
‖x− ai‖2,

hµ(x) :=
∑
j∈J

βj
2µ
‖x− aj‖2 −

∑
j∈J

µβj
2

[
d

(
x− aj

µ
;F ◦

)]2

+
∑
i∈I

µαi
2

[
d

(
x− ai

µ
;F ◦

)]2

.

Moreover,

fµ(x)− µ‖F ◦‖2

2

∑
i∈I

βi ≤ f(x) ≤ fµ(x) +
µ‖F ◦‖2

2

∑
i∈I

αi
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for all x ∈ Rn.

Note that both functions gµ and hµ in Proposition 3.3.9 are smooth with the gradients

given by

∇gµ(x) =
∑
i∈I

αi
µ

(x− ai),

∇hµ(x) =
∑
j∈J

βj
µ

(x− aj)−
∑
j∈J

βj

[
x− aj

µ
− P

(
x− aj
µ

;F ◦
)]

+
∑
i∈I

αi

[
x− ai

µ
− P

(
x− ai

µ
;F ◦

)]

=
∑
j∈J

βj

[
P

(
x− aj

µ
;F ◦

)]
+
∑
i∈I

αi

[
x− ai

µ
− P

(
x− ai

µ
;F ◦

)]
.

Based on the same approach as in DC Algorithm 3, we obtain another algorithm for

solving problem (3.3.25).

DC Algorithm 4.

INPUT: µ > 0, x1 ∈ Rn, N ∈ IN , F , a1, . . . , am ∈ Rn, c1, . . . , cm ∈ R.

for k = 1, . . . , N do

Find yk = uk + vk, where

uk :=
∑

i∈I αi

[
xk−ai
µ
− P

(
xk−ai
µ

;F ◦
)]
,

vk :=
∑

j∈J βj

[
P
(
xk−aj
µ

;F ◦
)]
,

Find xk+1 =
yk+

∑
i∈I αia

i/µ∑
i∈I αi/µ

.

OUTPUT: xN+1.

Remark 3.3.10. When implementing Algorithm 3 and Algorithm 4, instead of using

a fixed smoothing parameter µ, we often change µ during the iteration. The general

optimization scheme is
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INITIALIZE: x1 ∈ Rn, µ0 > 0, µ∗ > 0, 0 < σ < 1.

Set k = 1.

Repeat the following

Apply DC Algorithm 3 (or DC Algorithm 4) with µ = µk and starting point xk

to obtain an approximate solution xk+1.

Update µk+1 = σµk.

Until µk ≤ µ∗.

3.3.4. Multifacility Location. In this section, we consider multifacility loca-

tion problems involving distances generated by Minkowski gauges. Given ai ∈ Rn for

i = 1, . . . ,m, we need to choose x` for ` = 1, . . . , k in Rn as centroids and assign each

member ai to its closest centroid. The objective function to be minimized is the sum

of the assignment distances:

minimize f(x1, . . . , xk) =
m∑
i=1

min`=1,...,k ρF (x` − ai), x` ∈ Rn, ` = 1, . . . , k.

(3.3.28)

Let us first discuss the existence of an optimal solution.

Proposition 3.3.11. The optimization problem (3.3.28) admits a global optimal so-

lution (x1, . . . , xk) ∈ (Rn)k.

Proof. We only need to consider the case where k < m because otherwise a global

solution can be found by setting x` = a` for ` = 1, . . . ,m, and x`+1 = · · · = xk = am.

Choose r > 0 such that

r > max{ρF (ai) | i = 1, . . . ,m}+ max{ρF (ai − aj) | i 6= j}.

Define

Ω := {(x1, . . . , xk) ∈ (Rn)k | ρF (xi) ≤ r for all i = 1, . . . , k}.

76



Then Ω is a compact set. It suffices to show that

inf{f(x1, . . . , xk) | (x1, . . . , xk) ∈ Ω} = inf{f(x1, . . . , xk) | (x1, . . . , xk) ∈ (Rn)k}.

Fix any (x1, . . . , xk) ∈ (Rn)k. Suppose without loss of generality that ρF (xi) > r for

all i = 1, . . . , p, where p ≤ k, and ρF (xi) ≤ r for all i = p + 1, . . . , k. Since ρF is

subadditive,

ρF (x` − ai) ≥ ρF (x`)− ρF (ai) > r − ρF (ai) ≥ ρF (a` − ai),

for all ` = 1, . . . , p, i = 1, . . . ,m.

Therefore,

f(x1, x2, . . . , xk) =
m∑
i=1

min`=1,...,k ρF (x` − ai)

≥ f(a1, a2, . . . , ap, xp+1, . . . , xk)

≥ inf{f(x1, . . . , xk) : (x1, . . . , xk) ∈ Ω}.

Thus,

inf{f(x1, . . . , xk) | (x1, . . . , xk) ∈ Ω} ≤ inf{f(x1, . . . , xk) | (x1, . . . , xk) ∈ (Rn)k},

which completes the proof. �

For our DC decomposition, we start with the following formula:

min`=1,...,k ρF (x` − ai) =
k∑
`=1

ρF (x` − ai)− max
r=1,...,k

k∑
`=1,` 6=r

ρF (x` − ai).
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Then

f(x1, . . . , xk) =
m∑
i=1

[
k∑
`=1

ρF (x` − ai)

]
−

m∑
i=1

max
r=1,...,k

[
k∑

`=1,`6=r

ρF (x` − ai)

]
.

Similar to the situation with minimizing the function f in (3.3.26), this DC decom-

position is not favorable for applying the DCA from Algorithm 1. Our approach

here is to apply the Nesterov smoothing technique to obtain an approximation of the

objective function favorable for applying the DCA.

By Proposition 3.3.4, the objective function f then has the following approximation:

fµ(x1, . . . , xk)

=
1

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

−

[
µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F ◦

)]2

+
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

ρF (x` − ai)

]
.

Thus, fµ(x1, . . . , xk) = gµ(x1, . . . , xk) − hµ(x1, . . . , xk) is a DC decomposition of the

function fµ, where gµ and hµ are convex functions defined by

gµ(x1, . . . , xk) :=
1

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2 and

hµ(x1, . . . , xk) :=
µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F ◦

)]2

+
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

ρF (x` − ai).

Let X be the k× n-matrix whose rows are x1, . . . , xk. We consider the inner product

space M of all k × n matrices with the inner product of A,B ∈M given by

〈A,B〉 := trace(ABT ) =
k∑
i=1

n∑
j=1

aijbij.
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The norm induced by this inner product is the Frobenius norm.

Then define

Gµ(X) := gµ(x1, . . . , xk) =
1

2µ

k∑
`=1

m∑
i=1

(
‖x`‖2 − 2

〈
x`, ai

〉
+ ‖ai‖2

)
=

1

2µ

(
m‖X‖2 − 2 〈X,B〉+ k‖A‖2

)
=
m

2µ
‖X‖2 − 1

µ
〈X,B〉+

k

2µ
‖A‖2,

where A is the m × n-matrix whose rows are a1, . . . , am and B is the k × n-matrix

with a :=
∑m

i=1 a
i for every row.

Then the function Gµ is differentiable with gradient given by

∇Gµ(X) =
m

µ
X − 1

µ
B.

From the relation X = ∇G∗µ(Y ) if and only if Y = ∇Gµ(X), one has

∇G∗µ(Y ) =
1

m
(B + µY ).

Let us now provide a formula to compute the subdifferential of Hµ (defined below)

at X.
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First, consider the function

H1
µ(X) : =

µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;F ◦

)]2

=
µ

2

{[
d

(
x1 − a1

µ
;F ◦

)]2

+ · · ·+
[
d(
x1 − am

µ
;F ◦)

]2
}

+ · · ·

+
µ

2

{[
d(
xk − a1

µ
;F ◦)

]2

+ · · ·+
[
d(
xk − am

µ
;F ◦)

]2
}
.

The partial derivatives of H1
µ are given by

∂H1
µ

∂x1
(X) =

x1 − a1

µ
− P

(
x1 − a1

µ
;F ◦

)
+ · · ·+ x1 − am

µ
− P

(
x1 − am

µ
;F ◦

)
=

m∑
i=1

[
x1 − ai

µ
− P

(
x1 − ai

µ
;F ◦

)]
,

...

∂H1
µ

∂xk
(X) =

xk − a1

µ
− P

(
xk − a1

µ
;F ◦

)
+ · · ·+ xk − am

µ
− P

(
xk − am

µ
;F ◦

)
=

m∑
i=1

[
xk − ai

µ
− P

(
xk − ai

µ
;F ◦

)]
.

The gradient ∇H1
µ(X) is the k × n-matrix whose rows are

∂H1
µ

∂x1
(X), . . . ,

∂H1
µ

∂xk
(X).

Let Hµ(X) := hµ(x1, . . . , xk). Then Hµ = H1
µ +H2, where

H2(X) :=
m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

ρF (x` − ai).

In what follows, we provide a formula to find a subgradient of H2 at X.
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Define the function

F i,r(X) :=
k∑

`=1,`6=r

ρF (x` − ai).

Choose the row vector vi,` ∈ ∂ρF (x`−ai) if ` 6= r and vi,r = 0. Then the k×n-matrix

formed by the rows vi,r for i = 1, . . . , k is a subgradient of F i,r at X.

Define

F i(X) := max
r=1,...,k

F i,r(X).

In order to find a subgradient of F i at X, we first find an index r ∈ Ii(X), where

I i(X) := {r = 1, . . . , k | F i(X) = F i,r(X)}.

Then, choose Vi ∈ ∂F i,r(X) and we have that
∑m

i=1 Vi is a subgradient of the function

H2 at X. This results in our first algorithm for the multifacility location problem.

DC Algorithm 5.

INPUT: X1 ∈M, N ∈ IN , F , a1, . . . , am ∈ Rn.

for k = 1, . . . , N do

Find Yk = Uk + Vk, where

Uk := ∇H1
µ(Xk), Vk ∈ ∂H2(Xk).

Find Xk+1 = 1
m

(B + µYk).

OUTPUT: XN+1.

Let us now present the second algorithm for solving the multifacility problem. By

Proposition 3.3.4, the function F i,r(X) :=
∑k

`=1,`6=r ρF (x` − ai) has the following

smooth approximation:

F i,r
µ (X) =

k∑
`=1,` 6=r

[
1

2µ
‖x` − ai‖2 − µ

2

[
d(
x` − ai

µ
;F ◦)

]2
]
.
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For a fixed r, define the row vectors vi,` = P (x
`−ai
µ

;F ◦) if ` 6= r and vi,r = 0. Then

∇F i,r
µ (X) is the k × n matrix Vi,r formed by these rows.

Now we define the function F i
µ(X) := maxr=1,...,k F

i,r
µ (X). This is an approximation

of the function

F i(X) := max
r=1,...,k

k∑
`=1,`6=r

ρF (x` − ai).

As a result, H2
µ :=

∑m
i=1 F

i
µ is an approximation of the function H2.

Define the active index set

I iµ(X) := {r = 1, . . . , k | F i
µ(X) = F i,r

µ (X)}.

Choose r ∈ I iµ(X) and calculate Vi = ∇F i,r
µ (X). Then V :=

∑m
i=1 Vi is a subgradient

of the function H2
µ at X.

DC Algorithm 6.

INPUT: X1 ∈M, N ∈ IN , F , a1, . . . , am ∈ Rn.

for k = 1, . . . , N do

Find Yk = Uk + Vk, where

Uk := ∇H1
µ(Xk), Vk ∈ ∂H2

µ(Xk).

Find Xk+1 = 1
m

(B + µYk).

OUTPUT: XN+1.

Remark 3.3.12. Similar to the case of DC Algorithm 3 and DC Algorithm 4, when

implementing DC Algorithm 5 and DC Algorithm 6, instead of using a fixed smooth-

ing parameter µ, we often change µ during the iteration.
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3.3.5. Numerical Implementation. We demonstrate the above DC algorithms

on several problems. All code was written in MATLAB. Unless otherwise stated,

we use the closed Euclidean unit ball for the set F associated with the Minkowski

gauge. In accordance with Remark 3.3.10, we use µ∗ = 10−6, decreasing µ over 3

implementations, each of which runs until
∑k

`=1 d(x`j, x
`
j−1) < k · 10−6, where k is the

number of centers and j is the iteration counter. The starting value µ0 is specified in

each example.

Example 3.3.13. In this example we implement DC Algorithms 3 and 4 to solve

the generalized Fermat-Torricelli problem under the `1 norm with randomly generated

points as shown in Figure 3.4 . This synthetic data set has 10,000 points with weight

ci = 1 and three points with weight ci = −1000. For the smoothing parameter,

we use an initial µ0 = 0.1. Both algorithms converge to an optimal solution of

x ≈ (17.29, 122.46). The convergence rate is shown in Figure 3.5 .
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Figure 3.4. A generalized Fermat-Torricelli problem in R2. Each
negative point has weight of -1000; each positive point has a weight
of 1; the optimal solution is represented by • for the `1 norm.
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Figure 3.5. The objective function values for Algorithm 4 for the gen-
eralized Fermat-Torricelli problem under the `1 norm shown in Figure
3.4.

Example 3.3.14. We implement DC Algorithm 5 to solve multifacility location prob-

lems given by function (3.3.28). We use the following six real data sets1: WINE

contains 178 instances of k = 3 wine cultivars in R13. The classical IRIS data set

contains 150 observations in R4, describing k = 3 varieties of Iris flower. The PIMA

data set contains 768 observations, each with 8 features describing the medical history

of adults of Pima American-Indian heritage. IONOSPHERE contains data on 351

radar observations in R34 of free electrons in the ionosphere. USCity2 contains the

latitude and longitude of 1217 US cities; we use k = 3 centroids (See Figure 3.6).

Reported values are as follows: m is the number of points in the data set; n is the

dimension; k is the number of centers; µ0 is the starting value for the smoothing

parameter µ, as discussed in Remark 3.3.10 (in each case, σ is chosen so that µ

decreases to µ∗ in three iterations); Iter is the number of iterations until convergence;

CPU is the computation time in seconds; Objval is the final value of the true objective

1Available at https://archive.ics.uci.edu/ml/datasets.html
2http:/www.realestate3d.com/gps/uslatlongdegmin.htm
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m n k µ0 Iter CPU Objval
WINE 178 13 3 10 690 1.86 1.62922 · 104

IRIS 150 4 3 0.1 314 0.66 96.6565
PIMA 768 8 2 10 267 2.22 4.75611 · 104

IONOSPHERE 351 34 2 0.1 391 1.68 7.93712 · 102

USCity 1217 2 3 1 940 16.0 1.14211 · 104

Table 3.1. Results for Example 6.3, the performance of Algorithm 5
on real data sets.

function (3.3.28), not the smoothed version fµ. Implementations of Algorithm 6

produced nearly identical results on each example and thus are not reported.
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Figure 3.6. The solution to the multifacility location problem with
three centers and Euclidean distance to 1217 US Cities. A line connects
each city with its closest center.

85



3.3.6. Additional Work: Set Clustering. Here we provide a brief discussion

of how the above work can be extended to location problems where the targets are

sets, as opposed to points. Applications include location problems where the targets

have non-negligible sizes and set clustering problems. More details and additional

discussion can be found in [50].

D
an
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l
G
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s

Figure 3.7. The fifty most populous US cities, approximated by a
ball proportional to their area. Each city is assigned to the closest of
five centroids (•), which are the optimal facilities.

3.3.6.1. Set Clustering. In this section, we study the problem of set clustering,

where the objects being classified are sets rather than points. Given a nonempty,

closed, and convex set Ω ⊂ Rn, observe that

[d(x; Ω)]2 = inf{‖x− w‖2 | w ∈ Ω}

= inf{‖x‖2 − 2 〈x,w〉+ ‖w‖2 | w ∈ Ω}

= ‖x‖2 + inf{‖w‖2 − 2 〈x,w〉 | w ∈ Ω}

= ‖x‖2 − sup{〈2x,w〉 − ‖w‖2 | w ∈ Ω}.
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Proposition 3.3.15. Let Ω be a nonempty, closed, and convex set in Rn. Define the

function

ϕΩ(x) := sup{〈2x,w〉 − ‖w‖2 | w ∈ Ω} = 2 sup{〈x,w〉 − 1

2
‖w‖2 | w ∈ Ω}.

Then ϕ is convex and differentiable with ∇ϕΩ(x) = 2P (x; Ω).

Proof. It follows from the representation of [d(x; Ω)]2 above that

ϕΩ(x) = ‖x‖2 − [d(x; Ω)]2.

Note that the function ψ(x) := [d(x; Ω)]2 is differentiable with∇ψ(x) = 2[x−P (x; Ω)];

see, e.g., [41, Exercise 3.2]. Then the function ϕΩ is differentiable with

∇ϕΩ(x) = 2x− 2[x− P (x; Ω)] = 2P (x; Ω),

which completes the proof. �

Let Ωi for i = 1, . . . ,m be nonempty, closed, and convex sets in Rn. We need to

choose x` for ` = 1, . . . , k in Rn as centroids and assign each member Ωi to its closest

centroid. The objective function to be minimized is the sum of these distances.

Then we have to solve the optimization problem:

minimize f(x1, . . . , xk) :=
m∑
i=1

min`=1,...,k [d(x`; Ωi)]2, x` ∈ Rn, ` = 1, . . . , k.

(3.3.29)

Proposition 3.3.16. Suppose that the convex sets Ωi for i = 1, . . . ,m are nonempty,

closed, and bounded. Then (3.3.29) has a global optimal solution.
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Proof. Choose r > 0 such that Ωi ⊂ B(0; r) for all i = 1, . . . ,m. Fix ai ∈ Ωi for

i = 1, . . . ,m. Define

S := {(x1, . . . , xk) ∈ (Rn)k | ‖xi‖ ≤ 6r for i = 1, . . . , k}.

Let us show that

inf{f(x1, . . . , xk) | (x1, . . . , xk) ∈ (Rn)k} = inf{f(x1, . . . , xk) | (x1, . . . , xk) ∈ S}.

Fix any (x1, . . . , xk) ∈ (Rn)k. Without loss of generality, suppose that k < m and

‖x`‖ > 6r for ` = 1, . . . , p, and ‖xp+1‖ ≤ 6r, . . . , ‖xk‖ ≤ 6r, where p ≤ k. Let

p`,i := P (x`; Ωi). Then for ` = 1, . . . , p, we have

[d(x`; Ωi)]2 = ‖x` − p`,i‖2

= ‖x`‖2 − 2
〈
x`, p`,i

〉
+ ‖p`,i‖2

≥ ‖x`‖2 − 2‖x`‖ ‖p`,i‖

= ‖x`‖(‖x`‖ − 2‖p`,i‖) ≥ ‖x`‖(6r − 2‖p`,i‖) ≥ 4r‖x`‖ ≥ 4r2.

In addition, for all ` = 1, ...,m, we have

[d(a`; Ωi)]2 ≤ ‖a` − ai‖2 ≤ 4r2 ≤ [d(x`; Ωi)]2.

It follows that

f(x1, . . . , xk) =
m∑
i=1

min`=1,...,k [d(x`; Ωi)]2

≥ f(a1, . . . , ap, xp+1, x`)

≥ inf{f(x1, . . . , xk) : (x1, . . . , xk) ∈ S}.
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The rest of the proof follows from the proof of Proposition 3.3.11. �

For our DC decomposition, we use the following formula

min`=1,...,k [d(x`; Ωi)]2 =
k∑
`=1

[d(x`; Ωi)]2 − max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Ωi)]2.

Then

f(x1, . . . , xk) =
m∑
i=1

k∑
`=1

[d(x`; Ωi)]2 −

[
m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Ωi)]2

]

=
m∑
i=1

k∑
`=1

‖x`‖2 −
[ m∑
i=1

k∑
`=1

ϕΩi(x
`) +

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Ωi)]2
]
.

Define

g(x1, . . . , xk) :=
m∑
i=1

k∑
`=1

‖x`‖2

h(x1, . . . , xk) :=
m∑
i=1

k∑
`=1

ϕΩi(x
`) +

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Ωi)]2.

Then we have the DC decomposition f = g − h.

For X ∈M, define

G(X) :=
m∑
i=1

k∑
`=1

‖x`‖2 = m‖X‖2.

Thus, ∇G∗(X) = 1
2m

(X).

Define

H1(X) :=
m∑
i=1

k∑
`=1

ϕΩi(x
`).

89



Then

∂H1

∂x1
= 2P (x1; Ω1) + · · ·+ 2P (x1; Ωm),

...

∂H1

∂xk
= 2P (xk; Ω1) + · · ·+ 2P (xk; Ωm).

Then ∇H1(X) is the k × n matrix whose rows are ∂H1

∂xi
for i = 1, . . . , k.

Let us now present a formula to compute a subgradient of the function

H2(X) =
m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Ωi)]2.

Define

H i
2(X) := max

r=1,...,k

k∑
`=1,`6=r

[d(x`; Ωi)]2 = max
r=1,...,k

H i,r
2 ,

where

H i,r
2 :=

k∑
`=1,` 6=r

[d(x`; Ωi)]2.

Consider the following row vectors

vi,` := 2(x` − P (x`; Ωi)) if ` 6= r,

vi,r := 0.

Then ∇H i,r
2 is the k × n matrix whose rows are these vectors.

Define the active index set

I i(X) := {r = 1, . . . , k : H i,r
2 (X) = H i

2(X)}.
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Choose r ∈ I i(X) and let Vi := ∇H i,r
2 (X). Then V :=

∑m
i=1 Vi is a subgradient of

H2 at X. This leads to our algorithm for solving the set clustering problem (3.3.29).

Algorithm 7.

INPUT: X1 ∈M, N ∈ IN , Ω1, . . . ,Ωm ∈ Rn.

for k = 1, . . . , N do

Find Yk = Uk + Vk, where

Uk := ∇H1(Xk), Vk ∈ ∂H2(Xk).

Find Xk+1 = 1
2m

(Yk).

OUTPUT: XN+1.
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4

Applications to Electric Power Systems

Historically, the electric grid was designed for a one-way flow of both power and

control signals from central generation and control centers down toward end-users.

Today, two significant problems facing the electric grid are (1) the large scale in-

tegration of renewable (i.e. intermittent and non-dispatchable) generation and (2)

the massive control problem posed by a large number of Distributed Energy Re-

sources1 (DERs). These electric grid modernization problems are being approached

with distributed control techniques that require individual participants in the grid

to carry out their own optimization [60, 77]. This paradigm creates fertile ground

for inter-disciplinary work and applications of optimization. One such distributed

control technique, called transactive control or transactive energy, seeks to control

grid connected devices through price or value signals. Background information on

transactive energy is presented in this thesis in section 4.2.1

In this thesis, we identify one particular component of the electric grid that would re-

quire optimization in a transactive control setting: a smart solar inverter with battery

storage. A smart solar inverter is a device that converts direct current generated by

photovoltaic (PV) panels into the alternating current synchronized with the electric

grid. The battery allows the electricity generated by the PV panels to either be sold

immediately to the grid or to be saved for later. The inverter also allows for electricity

to be purchased from the grid and used to charge the battery.

1Distributed Energy Resources are include, for example, residential and rooftop solar, in-home bat-
tery storage, commercial cogeneration facilities, and demand-response technologies.
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4.1. Introduction

Distributed solar and storage have presented themselves as an integral part of the fu-

ture electric grid. As installed capacity continues to increase, challenges have emerged

regarding the coordination and control of such distributed energy resources [60, 77].

In a smart grid, a utility or other DER resource owner will seek to maximize eco-

nomic value and optimize the operation of the DER asset(s) while considering other

generation and demand response resources, environmental conditions, and external

market forces. A transactive control system is one potential method for coordinating

and controlling a smart grid efficiently in real-time [13, 55].

In this paper we develop an optimal control scheme for the smart solar inverter and

battery storage system in terms of providing real power sales, reactive power support,

and spinning reserve capacity in a transactive energy market setting. The method con-

siders transactive market prices, the state-of-charge of the storage resource, weather,

and solar-with-storage system dynamics to model revenue earned. The value of DER

services provided to the grid in a transactive market varies in time and reflects real-

time conditions at a single location of the electric grid. In such a setting, consumers

and DER devices are expected to respond to transactive price signals in a way that

maximizes their own best interest. The prices are set (or “settled on”) so that this

response, in turn, maximizes benefit to the greater electric grid.

The principal technology under consideration here is the smart solar inverter. This

device converts direct current (DC) from the storage system and PV panels into

alternating current (AC) synchronized with the electric grid. The simplified diagram

in Figure 4.1 shows the system topology. This system also allows for electricity to be

purchased from the grid and used to charge the battery. Additionally, the smart solar

inverter can assist in the management of reactive power. Thus the inverter, coupled
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Figure 4.1. PV Panel, Battery, and Smart Solar Inverter diagram.

with battery storage, can offer reactive power support and spinning reserve capacity

as ancillary services.

Various methods exist for incorporating real-time pricing and weather forecasts into

DER decision making, but none of these methods incorporate all three revenue

streams: real power sales, reactive power support, and spinning reserve capacity.

Bilevel optimization methods have been used [11, 87, 69, 82] to coordinate DERs

and help retailers determine price-setting strategies while considering the response

from end-users. These methods contain explicit lower-level objective functions and

constraints that model a general end-user’s response to price signals, but are not

formulated for the specific solar inverter with storage system we describe and do not

take into account reactive power support or spinning reserve capacity.

Much work has been done from a technical standpoint to develop control strategies for

enlisting DERs (and microgrids) in the management of reactive power (for example,

[7, 67]). These perspectives originate from a centralized “grid operator” point of

view and may be useful for determining how prices are set for providing reactive
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power support. The works in [8, 76] propose strategies for management of energy

storage connected to PV panels but is not formulated to maximize revenue for the

DER owner. The work in [3] minimizes operation cost and energy import to a system

comprised of PV and energy storage. The comprehensive paper [63], which seeks

to optimize power flow management in a grid-connected PV system with storage,

incorporates onsite loads, but does not include the possibility that revenue could be

earned from providing reactive power support or spinning reserve capacity.

4.1.1. Chapter Organization. The remainder of this chapter is organized as

follows. In section 4.2 we describe the problem setting. This includes brief discussions

of transactive energy itself, how our method enables transactive control, and the

physical system constraints. In section 4.3, we state the optimization problem and

develop our solution. In section 4.4, we provide the results of a numerical experiment

using historical data from the Midcontinent Independent System Operator (MISO)

to simulate a transactive market. We compare the resulting operations profile of our

control scheme to a business-as-usual control scheme in financial terms. Finally, we

offer some concluding remarks and directions for further research.

4.2. System Overview

4.2.1. Transactive Energy Systems. Transactive energy provides a means for

embedding economic control signals into the operation of the electric grid. It is espe-

cially well-suited for the management of DERs and the integration of renewable energy

sources. The ideas behind transactive energy originated in 1981 with a paper [72]

by Schweppe and other researchers at MIT. At the same time, work was being done

by Smith at Stanford [74] to develop a high-level protocol for communication among
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nodes in a distributed problem solver. Nearly 25 years later, the term transactive con-

trol was introduced in a report by Pacific Northwest National Laboratory [13], bring-

ing together the ideas of Smith and others. Additional background on transactive

control and related ideas can be found in [12, 19, 24, 27, 28, 53, 54, 55, 59, 60, 77].

A discussion of the difference between the terms transactive energy and transactive

control can be found in [5].

In practice, there are several methods currently claiming recognition as transactive

energy systems, including but not limited to extended financial market systems [6],

double-auction type systems [68], and hierarchical economic control systems [19, 55].

Here, we apply concepts from [55], where there are two signals exchanged in the

transactive system: a value signal and a demand signal. The value signal contains

the predicted price for future time periods, called transactive intervals. The demand

signal contains the predicted load in response to that set of prices. These signals are

exchanged frequently as prices are “settled on” so that the cost or need for a service

is reflected by the price at that specific location of the grid at that specific time.

Thus any device participating in a transactive energy system must not only decide

its own operation during the current transactive interval, but also must forecast its

operation for all upcoming transactive intervals, based on the current value signal.

The transactive intervals themselves may be defined by any length of time, although

the transactive value signal used in [55] was composed of three days of forward prices

consisting of minute, hourly, and daily average values.

The value signal and the demand signal are communicated through a network of

nodes. A node is defined as a physical point in the grid where demand may be

aggregated and predicted. The nodes can be classified in a hierarchical structure

as described by Hammerstorm, et al. in [19]. The five different classes of nodes
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are: generation, transmission, distribution substations, distribution transformers, and

sites. In a transactive energy system, each node must have some method by which

it determines its optimal response to the given value signal. The work presented in

this thesis provides such a method specifically for generation-level nodes consisting

of PV panels, a smart inverter and energy storage. The method is easy to use and

simple enough that the optimal response to a given value signal can be determined

in real-time.

4.2.2. Economic Model. In our transactive control setting, a smart solar in-

verter and storage system (as shown in Figure 4.1), known from now on simply as

a smart inverter system, can earn revenue for providing the following services to the

grid: real power sales, reactive power support, and spinning reserve capacity. As

discussed above, the prices for these services vary in real-time and are forecast for

the upcoming transactive intervals by the transactive value signal. As time incre-

ments, the value signal is updated so that it always contains the most up-to-date

information. We also assume that our smart inverter system has access (via some

external information feed) to forecasted solar irradiance values (that is, the expected

generation of the PV panels) for each of the upcoming transactive intervals. Again,

as time increments, these forecasted values are updated so that they always contain

the most up-to-date information.

4.2.3. System Constraints. The smart inverter system is subject to certain ef-

ficiencies and limitations posed by the physical constraints of the inverter and battery

as well as the system dynamics. These are:

(1) Maximum Rated Capacity of the Inverter. The inverter cannot import or

export more power than rated over a given time period.
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(2) Battery Capacity. The storage device is limited by a maximum and minimum

amount of energy it can hold.

(3) Battery Discharge Rate Limitation. The battery capacity is effectively di-

minished under a faster discharge rate.

(4) Constraints on Reserve Capacity. The amount of energy sold as reserve

capacity must not exceed the amount available.

(5) Battery Efficiency. A certain efficiency must be applied when charging and

discharging the battery.

(6) Power Factor. The amount of reactive power support provided is subject to

power factor limitations of the inverter.

Mathematical formulations of these parameters and constraints are given in the next

section.

4.3. The Optimization Problem

4.3.1. Problem Statement. We maximize revenue earned by the smart inverter

system in a transactive control setting for providing real power sales, reactive power

support and spinning reserve capacity, subject to the constraints described in section

4.2.3. This process involves determining a sequence of control decisions over the n

transactive intervals given the forecasted value signal and expected solar irradiance

over the same n intervals.

4.3.2. Problem Solution. In the following sections, we proceed to solve this

general optimization problem by developing an objective function and formulating

the system constraints so that optimal inputs may be obtained by off-the-shelf opti-

mization software. This process involves making precise statements of the problem
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variables, parameters and constraints, and various problem-simplifications leading to

the final objective function.

4.3.3. Variables and Parameters. We group the variables into four categories:

decision variables, problem variables, state variables, and parameters. The decision

variables model the behavior of the inverter, such as selling or purchasing energy

from the grid. The problem variables inform the decisions made by the inverter.

They are inputs into the function and assumed to be given at the beginning of each

optimization cycle. The state variable reflects the system’s state in each time period.

It is a function of the problem variables and decision variables. The parameters

define the performance limits of the smart inverter system. We write each decision

and problem variable as an n-dimensional vector, representing the values during each

of the n transactive time periods of equal length.

Decision Variables

(1) s = (s1, ..., sn): The amount of energy to sell to the grid (MVAh); represents

the combination of real (MWh) and reactive power support (MVARh) sold

to the grid

(2) r = (r1, ..., rn): The amount of energy to be sold as spinning reserve capacity

(MWh)

(3) t = (t1, ..., tn): The amount of energy purchased from the grid (MWh)

Problem Variables

(4) a = (a1, ..., an): The price of real energy for sales to the grid ($/MWh)

(5) b = (b1, ..., bn): The price of reactive energy for sales to the grid ($/MVARh)

(6) c = (c1, ..., cn): The cost of energy purchased from the grid ($/MWh)
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(7) d = (d1, ..., dn): The price of energy for reserve capacity ($/MWh)

(8) e = (e1, ..., en): The solar iradiance during that time period (MWh)

State Variables

(9) l = (l2, ..., ln+1): The charge in the battery at the beginning of that time pe-

riod (kWh). (Note: the value of l1 is input into the function. The remainder

of the values l2, ..., ln+1 are a result of the choices for the values in s, r, and

t, as formulated in 4.3.7.)

Parameters

(10) F : The limit on power factor for power supplied by the inverter (%)

(11) M : The maximum rated power output of the inverter (MW)

(12) γ: Accounts for the discharge rate limitations on the battery (%)

(13) η: One-way efficiency loss due to charging or discharging the battery (%)

(14) L: The maximum charge capacity of the battery (MWh)

(15) l1: The initial charge in the battery (MWh)

4.3.4. Objective Function Intuition. Initially, we denote our objective func-

tion by g. We model the revenue earned as a stock and flow such that the revenue

earned is the “money coming in minus the money going out”:

Revenue earned = (Revenue from energy sales) + (Revenue from reserve capacity) –

(Cost of energy purchased).
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An objective function g that defines the revenue earned during transactive interval i

can then be stated as

g(si, ri, ti ; ai, bi, ci, di, ei) = h(si ; ai, bi) + (di)(ri)− (ci)(ti),(4.3.30)

where the function h(si ; ai, bi) equals the revenue earned from real and reactive

power sales given the values of si, ai, and bi. (We use the semi-colon “;” in g and h

to separate the decision variables from the problem variables.)

4.3.5. Details on the energy sales revenue function h. As denoted, the

function h(si ; ai, bi) should return the maximum possible revenue earned from selling

real and reactive power given si, ai, and bi. That is, the function h returns the function

value from the following optimization problem:

(4.3.31) Maximize f̃(p, q | ai, bi) := aip+ biq over p, q,

where p, q represent the real and reactive energy sold to the grid, respectively, with

the restrictions

p2 + q2 = s2
i , p ≥ Fsi.

The constant F is the power factor limit on the inverter.2 We use the constraint

p2 + q2 = s2
i ⇒ q =

√
s2
i − p2 to write a new function f in place of f̃ , thus rewriting

(4.3.31) as

(4.3.32) Maximize f(p ; ai, bi, si) = aip+ bi

√
s2
i − p2 over p,

2This formulation of the constraint represents a symmetric limitation on the power factor. In practice
this may not be the case, but could easily be adopted into this scheme. A typical value for F may
be 0.8, although some modern inverters may be able to operate with a power factor as low as F = 0.
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where p represents the real energy sold to the grid, with the constraint

p ≥ Fsi.

Figure 4.2 below shows the graph of the function f(p ; ai, bi, si) for hypothetical

values of ai, bi, and si. In the figure, we can see how the amount of revenue earned

is related to the power factor of the inverter for the given prices ai and bi.

Figure 4.2. The energy sales revenue function h is the maximum of
f over the feasible region. The graph of f is shown with the example
input values ai = 15 ($/MWh), bi = 2.5 ($/MVARh), si = 10 (MVAh),
and constant L = 0.8.
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4.3.6. An analytic solution for h. Considering the earlier formulation (4.3.31),

we can see that a maximum occurs for some combination of p and q for values on the

circle p2 + q2 = s2
i (with the additional constraint p ≥ Fsi). Let θi be the phase angle

of the power supplied in transactive interval i, so cos θi = p/si. Then f̃ from (4.3.31)

can be equivalently written as

(4.3.33) ˜̃f(θi ; ai, bi) := ai(cos θi)si + bi(sin θi)si.

The goal is to find the value of θi that maximizes this quantity, so we can disregard

the si terms. Taking the derivative with respect to θi and setting that equal to zero

yields

θi = tan−1

(
bi
ai

)
.

The restriction p ≥ Fsi means that we must have θi ≤ cos−1(F ). Thus we can write

the analytic solution for h as

h(si ; ai, bi) = ai cos(θi)si + bi sin(θi)si,(4.3.34)

where

θi = min

{
tan−1

(
bi
ai

)
, cos−1(F )

}
.

This makes h a linear function of si, for fixed ai, bi. That is, h(si ; ai, bi) =

(ai cos(θi) + bi sin(θi))si. In this formulation, the value of θi is completely deter-

mined by ai and bi (and L). Thus, the quantity ai cos(θi) + bi sin(θi) (and hence ai

and bi themselves) can be replaced by a single value, which we call pi, completely

determined by ai, bi, and F .

We note that we have posed the problem here all in terms of a positive θi, corre-

sponding to reactive power q with positive phase angle. If the grid requested q with
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negative phase angle (still with price bi), these calculations would follow in exactly

the same way; the calculated value of θi should take on the same sign as the phase

angle of the requested reactive power.

4.3.7. Problem Constraints. In this section we discuss the incorporation of

the battery charge li and the solar irradiance ei into the revenue function g. Notably,

g may be simplified by setting the reserve capacity sold ri in terms of other variables,

thereby eliminating it as an independent “controllable” variable.

4.3.7.1. Constraints on Reserve Capacity. The reserve capacity sold must be the

smaller of the two:

• The charge in the battery minus the planned real energy sales plus the ex-

pected solar irradiance, with the appropriate efficiency corrections, or

• The maximum rated capacity of the inverter, M , minus the planned real

power sales.

That is,

ri ≤ min{γli − cos(θi)si + ei, M − cos(θi)si}

where γ is a constant that accounts for the discharge rate limitations on the battery3.

But in order to maximize revenue, we assume that the value of ri should be as large

as possible. That is, we replace “≤” in the above expression with “=” to obtain:

ri = min{γli − cos(θi)si + ei, M − cos(θi)si}

= min{γli + ei, M} − cos(θi)si

3In general, a faster discharge rate in a battery results in a smaller effective capacity. We approximate
this phenomenon with a constant coefficient γ < 1. This means that the amount of energy actually
available is proportional to the charge in the battery. In practice, this “discharge efficiency” follows
a non-linear curve, but we approximate it with the linear term γ.
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This has the benefit, as mentioned above, of removing ri as a “controllable variable”,

leaving us with only two controllable variables, si and ti. We henceforth consider g

under this new formulation of ri.

4.3.7.2. Incorporating the Battery Charge li. A certain efficiency must be applied

when discharging (or charging) the battery 4. We denote the loss associated with

that efficiency by η. The level of battery charge in the next transactive interval

must equal the current charge level plus the energy purchased minus the energy sold

plus the irradiance, while accounting for η. This leads to the following formula for

updating the charge level li:

li+1 =li + (ti)(1− η)(4.3.35)

− (max{cos(θi)si − ei, 0}︸ ︷︷ ︸
Real energy sold

from battery

)(1 + η) + (max{ei − cos(θi)si, 0}︸ ︷︷ ︸
Solar applied

to battery charge

)(1− η),

where L is the maximum charge the battery can hold5.

This can be rewritten as

(4.3.36) li+1 = li + (ti)(1− η) + (ei − cos(θi)si)− η| cos(θi)si − ei|

4.3.7.3. Constraints on Energy Sold and Purchased. The energy sold (si) and pur-

chased (ti) in the transactive market must be greater than or equal to zero and less

than or equal to the maximum rated capacity of the inverter M . In addition, the

amount of energy purchased or sold in transactive interval i cannot result in the bat-

tery having charge greater than its capacity L or less than zero in transactive interval

i+ 1.

4This efficiency is different than the discharge rate limitation γ.
5Many batteries also have a lower limit on the charge they hold (that is, they must maintain some
minimum level of charge). Without loss of generality, we assume that the lower limit is 0.
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Thus we enforce the following effective constraints on si and ti:

0 ≤si ≤M,

0 ≤ti ≤M,

0 ≤li+1 ≤ L.

It is notable that these choices of constraints allow for energy to be purchased and

sold to the grid in the same transactive interval. Such a situation could arise in a

traditional market if it were cheaper to purchase electricity than sell it. We keep this

possibility to add flexibility to our objective function in consideration of traditional

market interaction. In any case, the energy sold (or purchased) cannot exceed the

rated capacity of the inverter.

4.3.8. Optimization Problem Statement. We restate the function g (without

ri) as follows. Compare with the initial formulation (4.3.30):

g(si, ti ; pi, ci, di, li, ei) = (pi)(si) + (di)(min{γli + ei, M} − cos(θi)si)− (ci)(ti),

where the term pi is given by

pi = ai cos θi + bi sin θi

with θi = min
{

tan−1
(
bi
ai

)
, cos−1(F )

}
, as per the formulation (4.3.34).

Since the terms pi, ci, di, ei are fixed at the beginning of the problem, we can absorb

them into the function g itself, now writing gi instead of g and no longer listing them

as function inputs. Rearranging terms then leads to the formulation:

gi(si, ti ; li) = (pi − di cos(θi))(si)− (ci)(ti) + (di)(min{γli + ei, M}).(4.3.37)
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This will be the term under the summation in the objective function.

Also for notational convenience, let us denote our update rule (4.3.36) by fi. That

is, li+1 = fi(si, ti; li) where

(4.3.38) fi(si, ti; li) := li + (ti)(1− η) + (ei − cos(θi)si)− η| cos(θi)si − ei|.

Finally, some value must be assigned to the level of charge ln+1 left in the battery after

the n intervals have passed. We denote this final price as pf ; the user may determine

the process by which it is calculated. The total revenue earned by the inverter can

then be modeled as the sum of the gi function over the i = 1, ..., n time periods plus

the product pf ln+1.

We complete our objective function formulation and optimization problem statement

as follows:

Given L, η, γ,M, F, l1 and ai, bi, ci, di, ei for i = 1, ..., n,

maximize

(
n∑
i=1

(pi − di cos(θi))(si)− (ci)(ti) + (di)(min{γli + ei, M})

)
+ pf ln+1

(4.3.39)

over s1, t1, ..., sn, tn

subject to

0 ≤si ≤M,

0 ≤ti ≤M,

0 ≤li+1 ≤ L for all i = 1, ..., n,
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where l2, ..., ln+1 are given by

li+1 = li + (ti)(1− η) + (ei − cos(θi)si)− η| cos(θi)si − ei|,

and where p1, ..., pn are given by

pi = ai cos θi + bi sin θi

with θi = min
{

tan−1
(
bi
ai

)
, cos−1(F )

}
.

4.3.9. Implementation Considerations. This section is dedicated to discus-

sion of some specific issues related to implementing the method.

4.3.9.1. Time Horizon. Determining the optimal values s1, t1, ..., sn, tn in (4.3.39)

provides the control decisions s1, t1 for the current time period and the best guess

at the control decisions for time periods 2, ..., n. After time period 1 has passed,

the value signal and irradiance forecasts for the next n time periods are updated

and the algorithm is run again. In a transactive energy system, the number n of

transactive intervals is fixed and is the same for all participants. Our model has the

added flexibility of allowing the user to determine the pf value, thus reflecting any

information or assumptions she or he has about prices beyond the nth transactive

interval. The time periods in our formulation are all of equal length, but the method

is extensible to time periods of varying lengths.

4.3.9.2. Battery Degradation. The current model provides a tool for determining

the amount of revenue that could be earned by a smart inverter system (for investment

decision purposes), or to determine optimal operation once the equipment is already

in place. If the user wanted to associate a cost with the charge or discharge of the

battery, this could be done via the efficiency parameter η.
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4.3.9.3. Inverter Power Electronics. The inverter can provide reactive power with-

out depleting the energy reserves of the battery. In this way, there is “nothing to

optimize” regarding the ratio of real to reactive power provided, except when the

inverter is being asked to provide power at its rated capacity M . In this case, there

is a trade-off between providing real and reactive power, which is taken into account

in the present model via the energy revenue function h, as discussed previously. In

any case, the amount of real energy actually discharged from the battery is taken into

account by the cos(θi) term in (4.3.38).

4.3.9.4. Concavity of the Objective Function. The objective function in (4.3.39) is

concave as long as the terminal price pf is not negative, as explained in the Appendix.

4.3.9.5. Uncertainty. It is well-known that electricity prices in traditional markets

are uncertain. In a transactive market, that uncertainty is accounted for in the process

by which the value signal is determined. Additionally, the value signal is updated with

each time step so it always reflects the most accurate forecast. From an operation

standpoint, the only decision variable values that are actually of consequence are s1

and t1, which depend mostly on the problem variables a1, b1, c1, d1 and l1, which are

known with certainty.

The solar irradiance forecast e = (e1, ..., en) is updated with each real-time step, and

naturally contains the most accurate values for the nearest time periods.

4.3.9.6. Settings other than transactive control. Although the method is formu-

lated in a transactive control setting, it can easily be applied under other rate or

compensatory structures. For example, if the market does not offer compensation

for reactive power support or spinning reserve capacity, those prices can simply be

set to zero. Fixed time-of-use or even flat rates can be input for the energy price

a = (a1, ..., an) or cost c = (c1, ..., cn).
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4.4. Numerical Experiment.

This section describes a numerical experiment in which we use the objective function

to develop the optimal control scheme s1, t1, ..., sn, tn for the smart solar inverter and

battery storage system. The input data for this experiment was carefully selected

from the Midcontinent Independent System Operator (MISO) historical market data

and is intended to closely represent a transactive value signal consisting of n = 24

transactive intervals, all one hour in length.

As discussed previously, the solution s1, t1, ..., s24, t24 to the optimization problem

(4.3.39) provides the values of the decision variables s1 and t1 for the current time

period and a prediction of the values s2, t2, ..., s24, t24 for the upcoming time periods.

After the algorithm is executed to find s1, t1 for the current time period, those values

are recorded, and the information a2, b2, c2, d2, e2, ..., a25, b25, c25, d25, e25 is updated

with the best available values. The problem (4.3.39) is then solved again but using

l2 and a2, b2, c2, d2, e2, ..., a25, b25, c25, d25, e25 as inputs to find s2 and t2. This process

continues over the one-month time span of the numerical experiment.

4.4.1. Input data. To demonstrate the use of our objective function, we uti-

lize price data from a Locational Marginal Price (LMP) node in Clinton, Illinois,

(AMIL.CLINTO51) located in MISO territory. The cost to buy and price to sell

energy are provided by the publicly available LMP historical data [56]. Specifically,

we use the “Day-Ahead ExAnte Market LMPs”, providing $/MWh hourly data. The

Day-Ahead data simulates the predicted prices that would be used to inform DERs in

a transactive energy market. The same value was used for both the cost to purchase

(ci) and the price to sell (ai) real power. In the absence of a real-time market for

reactive power, we estimate a price for reactive power (bi) using the MISO Historical
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Rate Information [57], June 2015, Schedule 2 for Reactive Supply and Voltage Con-

trol under Ameren Illinois, the electric utility that serves Clinton, IL. This gives us

bi = $0.86 during on-peak (6 a.m. – 10 p.m.) and bi = $0.41 during off-peak. For the

terminal price pf we use the average of the last five prices pf = 1
5

∑n
i=n−4 pi.

The price for spinning reserve is provided by the Market Clearing Price (MCP) for

operating reserves historical data [56]. Specifically, we use the report “ASM Day-

Ahead Market ExAnte MCPs”, providing $/MWh hourly data. Both the LMP and

MCP Day-Ahead ExAnte values are calcualted by MISO using a Security Constrained

Economic Dispatch process. For more information, please see the MISO Pricing

Reports Reader’s Guide [58].

The solar irradiance data is provided by the Surface Radiation Budget Network

(SURFRAD) weather station in Bondville, IL., approximately 30 miles east of Clin-

ton, IL. The SURFRAD network was established through the National Oceanic &

Atmospheric Administration (NOAA). These solar irradiance datasets are publicly

available via FTP download [61].

The data used are from the one-month period covering the month of June, 2015.

Since the algorithm “looks ahead” at each iteration for the upcoming 24 hours, data

from July 1, 2015 were used as well. The average price of energy over this time period

is 23.72 $/MWh, with a high of 49.26 $/MWh and a low of -13.92 $/MWh. Negative

LMP values occur when there is an over-supply of electricity or voltage on the grid,

so that devices are actually paid to consume real power, or have to pay to produce

it. During this time, these negative (day-ahead) LMP values occur twice, on June

6 from 2-5am and on June 7 from 2-6am. The ability of our objective function to

handle negative price signals is highly important to its usefulness to DERs operating
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in such a system. The average price for spinning reserve over this time period was

2.41 $/MWh, with a high of 12.98 $/MWh and a low of 0.20 $/MWh.

The following parameters were used for the numerical experiment:

• F = 0.8: The limit on power factor for power supplied by the inverter (%)

• M = 10: The maximum rated power output of the inverter (MW)

• γ = 0.9: Accounts for the discharge rate limitations on the battery (%)

• η = 0.05: One-way efficiency loss from charging/discharging the battery (%)

• L = 50: The maximum charge capacity of the battery (MWh)

• l1 = 20: The starting charge in the battery (MWh)

4.4.2. Numerical Results. With these input values, the inverter earns

$70,184.25 over the 30-day period using our optimal control scheme. The total energy

generated by the PV system over the 30-day period is 1,596 MWh. Thus, our control

method allows the inverter to earn $43.98 per MWh generated by the PV panel, on

average.

We compare our results to a second control method called business-as-usual (BAU).

Using this method, the inverter is programmed to sell exactly the amount of real

power generated by the PV panels to the market for all periods where production is

available. This method does not utilize the battery capability. In our BAU method

we set the controller to sell zero energy during any negative LMP periods. Using the

BAU method, the inverter would earn $45,810.98, or $28.70 per MWh. Thus, our

algorithm, together with the battery and smart inverter capability, offers a $15.28 per

MWh, or 53%, increase in revenue earned.

The figures below show the input variables and inverter behavior over a typical 3-day

period. Figure 4.3 shows that the energy sold is not always exactly what is generated
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by the PV panels. Figure 4.4 shows that the inverter tends to purchase energy in the

early morning when prices are the lowest, but the amount purchased depends on the

expected solar irradiance and prices. Moreover, when exceptionally high prices are

anticipated, the inverter retains energy in the battery to be available for sale at that

time. Figure 4.5 shows the price of energy and spinning reserve.

4.5. Chapter Conclusion

This work represents a contribution to the implementation of a transactive control

system, demonstrating optimal control of a smart solar inverter with battery backup

based on price signals. As the electric grid modernizes and becomes more responsive,

a deep understanding of how DER devices may respond to price changes will be

necessary. This understanding is key to enabling the distributed decision making

necessary and desirable for the grid of the future. Further work in this direction is

suggested below.

4.5.0.1. Control on a large scale. What are the appropriate prices to encourage

DERs to optimally support the grid? How should these prices be set? Transactive

energy alludes to such a method but other, more deterministic options may be ex-

plored. Additionally, the incorporation of an energy sales “smoothing parameter”

may be explored, to prevent violent swings in energy sales based on price.

4.5.0.2. Optimization methods. We use the built-in optimization tool fmincon in

MATLAB to obtain our optimal values. A more efficient or elegant solution may

be explored. Fast optimization approaches are needed as electricity markets become

more and more granular. A constrained DC programming approach may be applied

to the problem, since the objective function can be expressed as a difference of convex

functions when the terminal price pf is negative, as explained in the Appendix. A
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Figure 4.3. Typical charge and discharge behavior can be seen over
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version of stochastic gradient descent may also be fruitful, since the objective function

can be expressed as a sum of convex functions (with the additional restriction that

pf ≥ 0). A method known as dynamic programming may also be useful in these types

of problems. This method has already been used to approach various problems within

smart grid [63, 3, 84, 73, 85, 34], and is well-known in economics [71].

4.5.0.3. Valuation of the final charge. The valuation of the final charge in the

battery may significantly effect the accuracy of the s2, t2, ..., sn, tn control estimates,

especially those closer to n. Further work could provide a more accurate estimate.

Also, the discharge rate limitation could be more accurately modeled with some non-

linear function, rather than the linear estimate γ.
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4.5.1. Significance of this Research. As residential-based energy storage and

distributed PV generation become even more prevalent, customers and utilities alike

will require a method for deciding when to use the PV generated energy to charge

the battery, when to sell to the grid, and when to purchase energy from the grid. In

certain cases, customers are dissuaded from purchasing energy from the grid to charge

their onsite batteries since enacting such capabilities negates the Income Tax Credit

(ITC) benefit from installing solar panels. A method such as the one presented here

enables customers to perform an evaluation to see if the additional money earned is

worth the loss from forfeiting the ITC. In general, enabling an optimal control scheme

for smart solar inverters from a revenue standpoint contributes toward a more efficient

electricity market.
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5

Conclusion

This thesis contains contributions in three areas, all of which are related to optimiza-

tion. The work in Chapter 2 demonstrates the usefulness of the geometric approach

in variational analysis. We see how this approach provides new proofs to fundamental

results in convex analysis. These new proofs are such an improvement, in fact, that

these arguments can now be presented to a beginning graduate or even undergraduate

audience. This represents an important step forward for the field of convex analysis

and for variational analysis as a whole. In addition, this chapter contains new the-

orems giving practitioners new facility with coderivative mappings. These theorems

represent improvements to those previously found in the literature, and represent the

first time these formulas have been proven in an infinite dimensional setting.

The work in Chapter 3 represents a significant contribution in the application of

fast first-order methods and DC programming to convex and non-convex problems

in location science. As demonstrated, this type of distance minimization has direct

applications to data science including machine learning (support vector machines) and

clustering, as well as the practical applications of facility location. Some of the work

in this chapter also utilizes the theoretical findings on the subdifferential presented

in the previous chapter.

Finally, in Chapter 4 we see an application of optimization to a control problem

in the modern energy landscape. As variable generation becomes more prevalent,

individual resources must be equipped to respond to real-time market signals in a
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way that maximizes their own best interest and hence provides optimal support to

the electric grid. In such a transactive type system, resources settle on prices for

services locally, so that the price reflects the value of that service to that specific

location of the grid at that time. The work provided in this chapter provides valuable

insight into how distributed resources may respond to price signals in such a system.

This work also solves the very practical optimization problem of solar plus storage

resource providing energy and spinning reserve in a wholesale market. In addition,

the presented model provides the additional flexibility that revenue could be earned

by providing reactive power support, a forward-looking market feature.
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Appendix

Concavity of the Smart Solar Inverter Objective Function.

The purpose of this Appendix is to discuss the concavity of the objective function

presented in (4.3.39). Recall that a function f is concave if −f is convex. As we will

see, this objective function is concave when the terminal price pf is not negative.

Let s = (s1, ..., sn) and t = (t1, ..., tn) be the decision variables and p = (p1, ..., pn)

and θ = (θ1, ..., θn) be the price and phase angle as formulated in section 4.3.6. Then

the objective function is

n∑
i=1

[
(pi − di cos(θi))(si)− (ci)(ti) + (di)(min{γli + ei,M})

]
+ pf ln+1,(0.0.40)

where

li+1 =fi(si, ti; li) = li + (ti)(1− η) + (ei − cos(θi)si)− η| cos(θi)si − ei|.(0.0.41)

Note that each function fi is concave in si, ti since the first part, li + (ti)(1 − η) +

(ei − cos(θi)si), is affine, and the second part, −η| cos(θi)si − ei|, is concave. Also

note that we can rewrite equation (0.0.41) as

li+1 =fi(si, ti; li)

=l1 +
i∑

j=1

[
(tj)(1− η) + (ej − cos(θj)sj)− η| cos(θj)sj − ej|

]
.(0.0.42)
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This shows us how li+1 can be expressed as a function of l1 and s1, ..., si and t1, ..., ti.

Since each piece under the sum in (0.0.42) is concave, the entire sum is concave, and

so the function fi can be seen as a concave function of the (entire) vectors s and t.

To reflect all this, we now write li+1 = fi(s, t) for i = 1, ..., n with the formulation as

in (0.0.42). We define f0(s, t) := l1.

The entire sum (0.0.40) can then be rewritten as

n∑
i=1

[
(pi − di cos(θi))(si)

]
−

n∑
i=1

[
(ci)(ti)

]
︸ ︷︷ ︸

Part A

(0.0.43)

+
n∑
i=1

[
(di)(min{γfi−1(s, t) + ei,M})

]
︸ ︷︷ ︸

Part B

+ pf ln+1︸ ︷︷ ︸
Part C

.

We see that Part A of (0.0.43) is linear in s, t. Let us inspect Part B. Consider a

single member of the sum:

(dj)(min{γfj−1(s, t) + ej,M}).

As discussed above, the function fj−1 is concave in s, t. Since γ is not negative, the

function γfj−1(s, t) + ej is also concave in s, t. The minimum of concave functions is

concave, so min{γfj−1(s, t) + ej,M} is concave. Finally, since dj ≥ 0 (there would

never be a negative price for reserve capacity), we can see that the entire expression

is concave in s, t. So the sum in Part B is concave. Finally, we look at Part C. Since

ln+1 = fn(s, t) is concave, we can see that pf ln+1 is concave as long as the price pf is

not negative.

Thus the expression (0.0.43) is concave as long as the terminal price pf is not negative.
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Numerical Testing of the Concavity of the Objective Function.

We randomly draw s, t and α to confirm the concavity of the objective function. For

notational convenience, denote the objective function (0.0.40) as g(x) where x = [s; t]

is a single vector containing s and t. The following is a summary of the process used

for testing. First, we fix the number of time periods n ∈ IN .

Step 1. Choose uniformly at random x1 ∈ [0,M ]2n, x2 ∈ [0,M ]2n, and α ∈ [0, 1].

Step 2. Calculate A := g(αx1 + (1− α)x2) and B := αg(x1) + (1− α)g(x2).

Step 3. Calculate the difference A−B. If g is concave, we expect A−B ≥ 0.

For our test we use n = 24 as in section 4.4. The input data used to define g for each

execution of Step 2 are chosen at random as follows. For each execution, randomly

choose an hour in the March-July MISO data to be the starting hour for the n = 24

contiguous time periods of input data. Vary the input data starting place at random

in the available March-July time frame for each execution of the steps above. The

remainder of the function parameters are the same as in the numerical experiment in

section 4.4.

In one such experiment, we executed these steps 10,000 times. Out of these 10,000

draws, the concavity of g was violated 25 times. In each of these 25 occurrences,

the terminal price pf was negative, which confirms our assertion that the objective

function is concave as long as the terminal price is not negative. These 10,000 draws

are shown in the plots below. The plot titled Value of the difference A-B gives a sense

of how “strongly” concave the function g is. The plot titled Terminal Price pf shows

the value of the terminal price pf , arranged in the same order as the other plot.
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The plots for another run of the same experiment with 500 draws are shown below.

Out of these 500 draws, concavity was violated 3 times, all having negative terminal

price, as can be seen below.
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