
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-6-2017

Fully Generic Programming Over Closed Universes of Fully Generic Programming Over Closed Universes of

Inductive-Recursive Types Inductive-Recursive Types

Larry Diehl
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Diehl, Larry, "Fully Generic Programming Over Closed Universes of Inductive-Recursive Types" (2017).
Dissertations and Theses. Paper 3647.
https://doi.org/10.15760/etd.5531

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3647&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3647&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3647
https://doi.org/10.15760/etd.5531
mailto:pdxscholar@pdx.edu

Fully Generic Programming

Over Closed Universes of Inductive-Recursive Types

by

Larry Diehl

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Tim Sheard, Chair

James Hook
Mark P. Jones

Andrew Tolmach
Robert Bass

Portland State University
2017

i

ABSTRACT

Dependently typed programming languages allow the type system to express

arbitrary propositions of intuitionistic logic, thanks to the Curry-Howard isomor-

phism. Taking full advantage of this type system requires defining more types

than usual, in order to encode logical correctness criteria into the definitions of

datatypes. While an abundance of specialized types helps ensure correctness, it

comes at the cost of needing to redefine common functions for each specialized

type.

This dissertation makes an effort to attack the problem of code reuse in de-

pendently typed languages. Our solution is to write generic functions, which can

be applied to any datatype. Such a generic function can be applied to datatypes

that are defined at the time the generic function was written, but they can also

be applied to any datatype that is defined in the future. Our solution builds upon

previous work on generic programming within dependently typed programming.

Type theory supports generic programming using a construction known as a

universe. A universe can be considered the model of a programming language, such

that writing functions over it models writing generic programs in the programming

language. Historically, there has been a trade-off between the expressive power of

the modeled programming language, and the kinds of generic functions that can

be written in it. Our dissertation shows that no such trade-off is necessary, and

that we can write future-proof generic functions in a model of a dependently typed

programming language with a rich collection of types.

ii

ACKNOWLEDGMENTS

I would like to thank Tim Sheard, my advisor, for giving me the freedom to ex-

plore my own research interests, for always being available to listen and provide

constructive feedback, and for instilling in me the importance of thoroughly ex-

plaining background material, supplemented by plenty of examples.

I would also like to thank my parents, for supporting my decision to pursue aca-

demic interests, despite needing to abandon a lucrative job and career in software

development.

Finally, I would like to thank Conor McBride, for inspiring me to work on

the topic of generic programming. This inspiration is in part due to his academic

publications and artifacts resulting from the Epigram programme, and is in part

due to him warmly and enthusiastically welcoming a naive industry programmer.

iii

TABLE OF CONTENTS

Abstract i

Acknowledgments ii

List of Figures ix

Color Conventions x

Part I Prelude 1

Chapter 1 Introduction 2
1.1 Dependently Typed Languages & Motivation 3

1.1.1 Curry-Howard Isomorphism 3
1.1.2 Indexed Types . 5
1.1.3 Motivation . 6

1.2 A Taste of Fully Generic Programming 6
1.2.1 Traditional Generic Programming 7
1.2.2 Fully Generic Programming . 9
1.2.3 Universes . 11
1.2.4 Fully Generic versus Deriving 14

1.3 Class of Supported Datatypes . 14
1.3.1 Dependent Algebraic Types . 14
1.3.2 Indexing versus Induction-Recursion 15
1.3.3 Smallness versus Largeness . 16

1.4 Thesis . 18
1.4.1 Thesis Statement . 18
1.4.2 Contributions . 19
1.4.3 Outline . 19

iv

Chapter 2 Types & Universes 24
2.1 Types . 25

2.1.1 Function Types . 25
2.1.2 Non-Inductive Types . 26
2.1.3 Inductive Types . 27
2.1.4 Parameterized Types . 27
2.1.5 Indexed Types . 28
2.1.6 Type Families . 31
2.1.7 Derived Types . 31
2.1.8 Infinitary Types . 34
2.1.9 Inductive-Recursive Types . 35
2.1.10Algebraic Types . 37
2.1.11Computational Families . 38
2.1.12Open Types . 39
2.1.13Closed Types . 39

2.2 Universes . 40
2.2.1 Universe Model . 40
2.2.2 Open Universes . 41
2.2.3 Closed Universes . 43
2.2.4 Inductive Universes . 44
2.2.5 Non-Inductive Universes . 44
2.2.6 Subordinate Universes . 45
2.2.7 Autonomous Universes . 45
2.2.8 Derived Universes . 46
2.2.9 Parameterized Universes . 47

Chapter 3 Generic Programming 50
3.1 Parametric Polymorphism . 51

3.1.1 Parametric over Types . 51
3.1.2 Parametric over Levels . 51

3.2 Ad Hoc Polymorphism . 52
3.2.1 Ad Hoc by Overloading . 52
3.2.2 Ad Hoc by Coercion . 53
3.2.3 Ad Hoc by Overloading & Coercion 54

3.3 Abstractness & Concreteness . 54
3.3.1 Abstract Types . 55

v

3.3.2 Concrete Types . 55
3.3.3 Abstract Data Types . 56
3.3.4 Fully Generic Programming . 56

3.4 Totality . 57
3.4.1 Non-Dependent Domain Change 57
3.4.2 Non-Dependent Codomain Change 58
3.4.3 Dependent Domain Change . 58
3.4.4 Dependent Codomain Change 59
3.4.5 Domain Predicates versus Domain Supplements 60

Chapter 4 Closed Type Theory 62
4.1 Closed Vector Universe . 63

4.1.1 Closed Vector Types . 63
4.1.2 Fully Generic Functions . 65

4.2 Closed Algebraic Universe . 69
4.2.1 Closed Well-Order Types . 70
4.2.2 Open Well-Order Types . 71
4.2.3 Inadequacy of Well-Orders . 73

Part II Open Type Theory 76

Chapter 5 Open Algebraic Universes 77
5.1 Open Non-Dependent Types . 79

5.1.1 Categorical Model . 79
5.1.2 Formal Model . 81
5.1.3 Examples . 86

5.2 Open Infinitary Types . 91
5.2.1 Categorical Model . 91
5.2.2 Formal Model . 93
5.2.3 Examples . 96

5.3 Open Dependent Types . 99
5.3.1 Categorical Model . 99
5.3.2 Formal Model . 102
5.3.3 Examples . 106

5.4 Open Inductive-Recursive Types . 111
5.4.1 Categorical Model . 112

vi

5.4.2 Formal Model . 117
5.4.3 Examples . 122
5.4.4 Agda Model . 131

Part III Closed Type Theory 133

Chapter 6 Closed Algebraic Universe 134
6.1 Open Inductive-Recursive Types . 135

6.1.1 Formal Model . 136
6.1.2 Source of Openness . 137

6.2 Closed Inductive-Recursive Types . 139
6.2.1 Formal Model . 139
6.2.2 Examples . 142
6.2.3 Kind-Generalized Universes . 150

6.3 How to Close a Universe . 152
6.3.1 Procedure . 152
6.3.2 Example Procedure Run . 153

6.4 Types versus Kinds . 157
6.4.1 Open Types and Kinds . 157
6.4.2 Gratuitous Kinds . 160
6.4.3 Types versus Descriptions . 161
6.4.4 Kind-Parameterized Types . 162

Chapter 7 Fully Generic Functions 167
7.1 Fully Generic Count . 169

7.1.1 Generic Types . 169
7.1.2 Counting All Values . 172
7.1.3 Counting Algebraic Arguments 173
7.1.4 Examples . 176

7.2 Fully Generic Lookup . 185
7.2.1 Generic Types . 186
7.2.2 Looking Up All Values . 188
7.2.3 Looking Up Algebraic Arguments 190
7.2.4 Splitting Functions . 193
7.2.5 Examples . 194

7.3 Fully Generic AST . 197

vii

7.3.1 Generic Types . 199
7.3.2 Marshalling Initial Algebras 200
7.3.3 Marshalling All Values . 201
7.3.4 Marshalling Algebraic Arguments 202
7.3.5 Generic Template . 204

Chapter 8 Closed Hierarchy of Universes 206
8.1 Closed Hierarchy of Well-Order Types 209

8.1.1 Formal Model . 209
8.1.2 Examples . 213
8.1.3 Agda Model . 215

8.2 Closed Hierarchy of Inductive-Recursive Types 220
8.2.1 Agda Model . 220
8.2.2 Examples . 228

8.3 Leveled Fully Generic Functions . 235
8.3.1 Counting in Universe Zero . 236
8.3.2 Counting in Universe One . 238
8.3.3 Leveled Generic Template . 241

Part IV Postlude 243

Chapter 9 Related Work 244
9.1 Fixed Open or Closed Universes . 244
9.2 Extendable Open or Closed Well-Order Universes 246
9.3 Extendable Open Algebraic Universes 247
9.4 Previous Work . 250

Chapter 10 Future Work 253
10.1Universe Polymorphism . 253
10.2 Large Induction-Recursion . 254
10.3 Induction-Induction . 255
10.4High-Level Generic Programming . 255
10.5 Efficient Implementation . 256
10.6 Termination of Intensional Closed Type Theory 256
10.7 Inductive Definitions over Infinitary Domain 257

Chapter 11 Conclusion 258

viii

References 260

Appendices 267

Appendix A Open Non-Algebraic Types 267

Appendix B Open Universe of Algebraic Types 268

Appendix C Closed Universe of Algebraic Types 269

Appendix D Closed Hierarchy of Universes 270

Appendix E Internalized Constructor Signatures 273

ix

LIST OF FIGURES

7.1 The natural number 1, as a closed algebraic type. 178
7.2 The natural number 2, as a closed algebraic type. 179
7.3 The length-1 vector of pairs of strings [("a", "x")], as a closed

algebraic type. 181
7.4 The length-2 vector of pairs of strings [("a", "x"), ("b", "y")],

as a closed algebraic type. 184
7.5 Definitions of the helper splitting functions (splitΣ, splitσ, and splitδ)

used in Section 7.2.2 and Section 7.2.3. The helpers are all just
shallow wrappers around the splitFin function (Section 7.2.4). 195

7.6 The inductive-recursive component of the length-1 vector of pairs of
strings [("b", "y")], as a closed algebraic type. This figure depicts
the inductive-recursive first component of the vector encoded as a
dependent pair (the second component is the length constraint). . . . 197

8.1 Closed natural number definitions in universe level 0. 236
8.2 Fully generic counting of values (count) and algebraic arguments

(counts) in universe level 0. 237
8.3 Fully generic counting of values (Count) and algebraic arguments

(Counts) in universe level 1. 239
8.4 Fully generic counting of types (CountSet) and algebraic arguments

(CountDesc) in universe level 1. 240

x

COLOR CONVENTIONS

This dissertation can be read in black and white, but it benefits from being read

in color. The main programming language used in this dissertation is Agda, which

is dependently typed. Agda does not use any syntactic conventions, like capi-

talization, to distinguish identifiers of various program elements, like datatypes,

definitions, and constructors (this is partially due to the fact most program ele-

ments can be legally used at both the type and value levels of the dependently

typed language).

Knowing which program element an identifier stands for depends on the envi-

ronment. In other words, readers of the black and white version of the dissertation

can check previous definitions to see what an identifier was declared as, in or-

der to understand a particular piece of code. Readers of the colored version of the

dissertation can understand a piece of code by being aware of color conventions (de-

scribed below), without needing to consult previous definitions of identifiers. The

Agda system keeps track of what identifiers were declared as in the environment,

allowing the appropriate color to be emitted when displaying syntax highlighted

code (because the syntax highlighting depends on the environment, it may make

sense to think of the output of Agda as semantics highlighted code).

We use the following Agda source code highlighting color conventions: Keywords

are orange, comments are red (and prefixed by a dash), strings are red (and

enclosed in quotes), datatypes are dark blue, definitions are light blue, constructors

are green, record projections are pink, and variables are purple.

1

Part I

Prelude

2

Chapter 1

INTRODUCTION

In this dissertation we expand the class of functions that can be written generically

for all types, in a type-safe manner, within a dependently typed language [3, 39].

Below, we contrast traditional generic programming [5, 32] with the approach we

describe in this thesis, which we call fully generic programming.

Traditional Generic Programming Traditional generic programming cap-

tures the pattern of folding an algebra through the inductive occurrences of an

algebraic datatype. For example, we could write a generic size function, that can

be applied to any datatype. For any constructor of any datatype, size returns 1

plus the sum of:

� The number of non-inductive arguments.

� The recursive size of the inductive arguments.

Applying size to a single-element list containing a pair of booleans ((True, False):[])

results in 3: the sum of the cons constructor, the pair, and the nil constructor. Be-

cause the pair is a non-inductive argument from the perspective of the list, its size

is counted atomically as 1 (it would be counted as 1 even if it were a value of an

inductive datatype other than lists, like a tree, since it is not inductive with respect

to lists).

Fully Generic Programming Fully generic programming (Section 3.3.4) cap-

tures the pattern of folding an algebra through both the non-inductive and in-

ductive occurrences of an algebraic datatype. For example, we could write a fully

3

generic count function that can also be applied to any datatype. For any construc-

tor of any datatype, count returns 1 plus the sum of:

� The recursive count of the non-inductive arguments.

� The recursive count of the inductive arguments.

Applying count to a single-element list containing a pair of booleans ((True,

False):[]) results in 5: the sum of the cons constructor, the pair (,) constructor,

the two booleans constructors, and the nil constructor. Notably, count (unlike size)

additionally recurses through the components of the pair.

In the remainder of this introduction we provide an overview of dependently

typed languages and motivate our work (Section 1.1), give an example of fully

generic programming over a limited collection of datatypes (Section 1.2), describe

the class of datatypes that we have been able to extend the fully generic pro-

gramming approach to (Section 1.3), and finally cover our thesis statement and

contributions (Section 1.4).

1.1 DEPENDENTLY TYPED LANGUAGES & MOTIVATION

A standard dependently typed language [38, 45] is purely functional (meaning an

absence of side effects), total (meaning all inductively defined functions terminate

and cover all possible inputs), and has a type system that captures the notion of

dependency. In this thesis we use the dependently typed language Agda [47] for

all of our developments.1

1.1.1 Curry-Howard Isomorphism

A single term language is used to write programs at the value and type levels. The

combination of total programming at the type level and a notion of dependency

1 This dissertation is written as a literate Adga program. The literate Agda source file and
accompanying code can be found at: https://github.com/larrytheliquid/thesis

https://github.com/larrytheliquid/thesis

4

between types allows any proposition of intuitionistic logic to be expressed as a

type. A value (or equivalently, a total program) inhabiting a type encoding a

proposition serves as its intuitionistic proof. This correspondence between values

and types, and proofs and propositions, is known as the Curry-Howard isomor-

phism [33]. For example, below we compare universally quantified propositions to

dependent function types, and existentially quantified propositions to dependent

pair types.

∀x. P(x) ≈ (x : A)→ P x

∃x. Q(x) ≈ Σ A (λ x→ Q x)

Using the Curry-Howard isomorphism, we can encode logical preconditions and

postconditions at the type level. For example, below we give the type of a lookup

function over lists with a precondition constraining the natural number (n) index

to be less than the length of the list (xs) being looked up. This allows an otherwise

partial lookup function to be defined totally by preventing out-of-bounds indexing.

lookup : (n : N) (xs : List A) → n < length xs → A

As another example, we give the type of an append function over lists with a

postcondition constraining the length of the output list (zs) to be equal to the sum

of the lengths of the input lists (xs and ys).

append : (xs ys : List A) → Σ (List A) (ń zs → length zs ≡ length xs + length ys)

The types of lookup and append correspond to the following two logical propo-

sitions respectively.

∀n, xs. n < |xs| ⇒ ∃x. >

∀xs, ys. ∃zs. |zs| = |xs|+ |ys|

5

1.1.2 Indexed Types

The less-than (<) precondition and equality (≡) postcondition in the examples

above are relations in the language of logic, and are called indexed types [19, 20]

in the language of dependent types. Indexed types are (commonly) types whose

arguments are values (rather than types). For example, less-than (<) takes two

natural number (N) arguments, and equality (≡) takes two values of some type A.

Rather than constraining a datatype (like lists) using relations after-the-fact, we

can create more specific (i.e., indexed) variants of datatypes that encode certain

properties before-the-fact.

For example, the type of vectors (Vec A n) is like a length-indexed version of

lists. Compared to lists, the type former of vectors gains an additional natural

number parameter (n) constraining its length. Because the property of the length

of a vector is encoded at the type level, we can write a variant of append where

calls to length have been replaced by an index.

append : (m n : N) (xs : Vec A m) (ys : Vec A n) → Vec A (m + n)

Additionally, the explicit equality proof (≡) postcondition can be dropped in

favor of expressing the postcondition directly in the index position of the output

vector. In other words, the extrinsic equality postcondition has been dropped in

favor of an intrinsic property about the codomain of append.

Another example of an indexed type is the type of finite sets (Fin n), indexed

by a natural number constraining the size of the finite set. A finite set is like

a subset of the natural numbers from 0 to n - 1. This subset property (whose

maximum value is n - 1) is the perfect datatype to act as an intrinsic version

of the extrinsic less-than (<) precondition of lookup. Hence, we can rewrite an

intrinsic-precondition version of lookup using vectors and finite sets as follows.

lookup : (n : N) (xs : Vec A n) (i : Fin n) → A

6

1.1.3 Motivation

Programmers of non-dependently typed languages already struggle with the issue

of needing to define logically similar versions of functions (like count, lookup, etc.)

for their various algebraic types (e.g., natural numbers, lists, binary trees, etc.).

This problem is more pronounced in a dependently typed language, where pro-

grammers also define indexed variants of types (e.g., finite sets, vectors, balanced

binary trees, etc.) that intrinsically capture preconditions and postconditions.

Rather than punishing programmers for creating new datatypes, our moti-

vation is to reward them with fully generic functions (like count, lookup, etc.),

which are new mechanisms for code reuse. Fully generic functions are predefined

once-and-for-all to work with any datatype of the language, whether it is defined

now or will be defined in the future. Programmers defining new types should be

able to apply fully generic functions to them, and programmers should also be able

to define new fully generic functions themselves.

1.2 A TASTE OF FULLY GENERIC PROGRAMMING

Generic programming in dependently typed languages [3, 39] is accomplished using

a construction known as a universe (Section 2.2). Rather than explaining how

universes work in detail (which we do in Section 2.2) in this introduction, we

develop our dependently typed Agda examples using universes in parallel with

examples in Haskell [35] using type classes [30, 36]. Later we learn why our analogy

with Haskell type classes makes sense, as ad hoc polymorphism (Section 3.2) is a

form of generic programming.

In the following, we first develop the size function using traditional generic

programming (in Haskell and Agda), and then develop the count function using

fully generic programming (albeit over a fixed and small language, and also in

Haskell and Agda), both described in the introduction.

7

1.2.1 Traditional Generic Programming

Recall (from the introduction) that size returns the sum of all inductive construc-

tors, inductive arguments, and non-inductive arguments. Notably, size only re-

curses into inductive constructor arguments.

Haskell In Haskell, we start by defining a type class (Size) for the size function.

class Size a where

size :: a -> Int

The size of a boolean is just 1. This is because it has no other non-inductive

or inductive arguments to sum.

instance Size Bool where

size b = 1

The size of a pair is 3, which is the sum of the pair constructor (1) and both

of its non-inductive arguments (1 + 1).

instance Size (a, b) where

size (a, b) = 3

The size of an empty list is just 1, because it has no arguments. The size of a

“cons” is the sum of the “cons” constructor (1), its single non-inductive argument

(1), and the recursive size of its single inductive argument.

instance Size [a] where

size [] = 1

size (x : xs) = 2 + size xs

Note that the Size type class is just ad hoc polymorphism by overloading

(Section 3.2.1), as each of its instances can be defined independently because they

only recurse into inductive arguments.

8

Agda In Agda, we start by declaring a new type (Size), which is a syntactic

reification of the types we wish to generically program size for. Unlike the Haskell

version, we must choose the types for which we will provide “instances” upfront.

data Size : Set1 where
‘Bool : Size
‘Pair : (A B : Set) → Size
‘List : (A : Set) → Size

Each constructor of Size is not a type, but rather an encoding of a type. Next,

we define a function (J_K) that interprets each encoded Size type as an actual Agda

type (i.e., a Set).

J_K : Size → Set
J ‘Bool K = Bool
J ‘Pair A B K = A × B
J ‘List A K = List A

We can generically define size as a dependent function from a code (A : Size),

to a value of the encoded type (J A K), to a number (N). We case-analyze the first

(Size) argument of size to distinguish each different “instance”. After that, each

second argument and body follows the same logic as the instances in the Haskell

version above.

size : (A : Size) → J A K → N
size ‘Bool b = 1
size (‘Pair A B) (a , b) = 3
size (‘List A) nil = 1
size (‘List A) (cons x xs) = 2 + size (‘List A) xs

A significant difference with the Haskell version is that we supply the encoded

type explicitly in recursive calls (i.e., ‘List A in the cons case).2

2 It is possible to make this an implicit argument so the Agda surface language also infers
it. However, the argument would still be explicit in the underlying core language to which the
surface language elaborates.

9

1.2.2 Fully Generic Programming

Recall (from the introduction) that count returns the sum of all inductive con-

structors, non-inductive constructors, inductive arguments, and non-inductive ar-

guments. Notably, count recurses into inductive and non-inductive constructor

arguments.

Haskell Again, we start by defining a Haskell type class (Count) for the count

function.

class Count a where

count :: a -> Int

The count of a boolean is still 1, because it has no arguments.

instance Size Bool where

size b = 1

The count of a pair is the sum of the pair constructor (1), and the recur-

sive count of both of its non-inductive arguments. Notably, count (unlike size)

recurses into its non-inductive arguments.

instance (Count a, Count b) => Count (a, b) where

count (a, b) = 1 + count a + count b

The count of an empty list is still 1. The count of a “cons” is the sum of the

“cons” constructor (1), the recursive count of its single non-inductive argument,

and the recursive count of its single inductive argument. Notably, count (unlike

size) recurses into its non-inductive argument.

instance (Count a) => Count [a] where

count [] = 1

count (x : xs) = 1 + count x + count xs

10

The Count instances for pairs and lists are able to recurse into their non-

inductive arguments because they have type class premises for their type parame-

ters (e.g., the left of the arrow in (Count a) => Count [a] in the list instance).

This allows instances of one type to recurse into instances of other types, and is

called ad hoc polymorphism by coercion (Section 3.2.2). The etymology of the

name is the idea that count for lists can be defined by “coercing” the meaning of

count for the parameter type of the lists.

Agda In Agda, we declare a new type (Count), reifying the types over which

we will generically program count. Unlike Size, Count is an inductive type, as the

arguments to ‘Pair and ‘List are inductive (i.e., the A and B arguments have type

Count below, but they have type Set in the Size datatype).

data Count : Set where
‘Bool : Count
‘Pair : (A B : Count) → Count
‘List : (A : Count) → Count

The types encoded by Count are interpreted (by the J_K function) as actual

Agda types. The J_K function interprets the inductive arguments of ‘Pair and ‘List

(representing datatype parameters) recursively.

J_K : Count → Set
J ‘Bool K = Bool
J ‘Pair A B K = J A K × J B K
J ‘List A K = List J A K

In Haskell, the Count instances for pairs and lists have Count type class premises

for their type parameters. This allows count to recurse into non-inductive argu-

ments of the parameterized types. In Agda, count can recurse into non-inductive ar-

guments (in addition to the inductive arguments) because its parameterized types

11

are encoded inductively in Count.

count : (A : Count) → J A K → N
count ‘Bool b = 1
count (‘Pair A B) (a , b) = 1 + count A a + count B b
count (‘List A) nil = 1
count (‘List A) (cons x xs) = 1 + count A x + count (‘List A) xs

The logic of count closely follows that of the count instances, except encoded

types are explicitly supplied in recursive calls. Significantly, count has access to

Count type encodings (A and B) in the pair (,) and cons cases, and these type

encodings are supplied to recursive calls of non-inductive arguments (a, b, and x).

Finally, count still recurses into the inductive argument xs in the cons case using

the encoded type ‘List A.

1.2.3 Universes

In Agda, generic programming (like the count function) is accomplished using

a universe (Section 2.2). A universe is the combination of a type of codes for

types (e.g., Count) and a meaning function (e.g., J_K) mapping codes to actual

types. Generic functions (over all types of the universe) are dependent function

parameterized over all type codes (Code below) and the meaning (Meaning below)

of the particular code supplied.

(c : Code) (m : Meaning c)→ ...

Fixed Types Universe In the count example (using the Count universe), we

have a seen how to perform a limited version of fully generic programming, in

which recursion into both non-inductive and inductive arguments is possible. The

problem with the Count universe is that it is fixed to a particular collection of

types, chosen ahead of time.

We can add more types (as in Section 2.2.3) to this universe (like natural

12

numbers, vectors, finite sets, dependent pairs, dependent functions, etc), naming

the new type of codes Type, until it contains enough types to model a depen-

dently typed language with a primitive collection of built-in types. Fully generic

programming over this universe then models fully generic programming over the

entire language modeled by the universe:

(A : Type) (a : J A K)→ ...

However, most modern dependently typed language allow users to declare new

algebraic datatypes. The Type universe does not model a language with datatype

declarations, as users can only work with the built-in types that have been fixed

ahead of time.

Extensible Algebraic Types Universe Alternatively, we may define a uni-

verse that models algebraic datatypes (as in Section 5.3). We call the type of codes

for this universe Desc, as they describe algebraic datatype declarations. The mean-

ing function for this universe, named µ, interprets a declaration as the declared

type.3 The Desc universe models an extensible collection of algebraic datatypes.

Generic programming over this universe allows users to write functions that can

be applied to any algebraic datatype a user might declare (whether the type is

already declared now or will be declared in the future):

(D : Desc) (x : µ D)→ ...

Actually, dependently typed languages can only contain the strictly positive

(Section 2.1.8) subset of algebraic datatypes (this restriction keeps the language

total, hence consistent as a logic under the Curry-Howard isomorphism). A conse-

quence of defining Desc as a strictly positive datatype is that generic programming

3 As we see in the next section, another way to think about Desc is a reification of pattern
functors from initial algebra semantics, whose least fixed point is calculated by µ.

13

over it corresponds to ordinary generic programming (like the size function), in

which recursion is restricted to inductive arguments.

Fixed Types Closed Under Algebraic Extension Universe A primary

contribution of this thesis is defining a universe that combines the fixed collection of

built-in types universe (Type) with the extensible collection of algebraic datatypes

universe (Desc), in a way that supports fully generic programming (while remaining

consistent under the Curry-Howard isomorphism).

One important property of what makes fully generic programming possible in

Count is that the arguments to its codes (i.e., the arguments to ‘Pair and ‘List) are

inductive. This makes Count a universe of booleans closed under pair formation and

list formation. Closure properties are an important defining feature of a universe.

The key to defining our combined universe it to make the Type universe not

only closed under expected types (like dependent pairs and dependent functions),

but also closed under algebraic datatype formation (µ) from datatype declarations

(Desc). The details of how to make this work are beyond the scope of this intro-

duction (see Section 6.2 for the full construction). However, the central idea has

to do with defining the Type and Desc universes mutually. Thus, fully generic pro-

gramming over this mutual universe corresponds to writing mutually dependent

functions over the following type signatures:

(A : Type) (a : J A K)→ ...

(D : Desc) (x : µ D)→ ...

Essentially, in our mutual universe Type is closed under Type formers (like ‘µ)

that can have Desc arguments, and Desc is closed under Desc formers that can

have Type arguments. The consequence of our closed universe is that it models

a dependently typed language supporting datatype declarations and fully generic

programming.

14

1.2.4 Fully Generic versus Deriving

Finally, we would like to make an analogy: Having access to fully generic functions

(e.g., count) defined for all possible types is like deriving a type class instance for

a datatype in Haskell. In both cases, users get to declare a new datatype and have

access to functions operating over it (i.e., fully generic count or derived count) for

free.

The big difference is that users of a closed but extensible dependently typed

language (like a variant of Agda) may define fully generic functions themselves.

Furthermore, because these are ordinary dependent functions defined within the

language, they are ensured to be type-safe. In contrast, users of a non-dependently

typed language like Haskell must rely on compiler writers to provide them with

derivable functions for a fixed collection of type classes.

1.3 CLASS OF SUPPORTED DATATYPES

Previously (in Section 1.2) we introduced the idea of fully generic programming

over a mutually defined universe, encoding a fixed collection of primitive types and

an extensible collection of algebraic datatypes. This section addresses the following

question: What properties of algebraic datatypes should we support to adequately

describe all possible types definable in a dependently typed language like Agda?

We explain why we choose inductive-recursive types, instead of indexed types,

as the answer to this question. Non-expert readers may wish to skim this section

and come back to it after finishing Part I: Prelude.

1.3.1 Dependent Algebraic Types

We certainly want to support algebraic datatypes with dependencies between their

arguments. In a non-dependent language like Haskell, the types of all arguments to

constructors of an algebraic datatype can be defined independently. In Agda, the

15

types of subsequent constructor arguments can depend on the values of previous

constructor arguments. There are 2 common generic encodings (i.e., semantic

models) of dependent algebraic datatypes:

� Containers (Section 4.2.2) These are data structures that represent types

using an analogy of shapes (capturing inductive structure) and positions

(capturing contained values). The least fixed points of containers [1] are

well-orderings [21], or W types.

� Dependent Polynomials (Section 5.3) These are pattern functors [26] from

initial algebra semantics, whose least fixed point is returned by the µ oper-

ator. The Desc type of Section 1.2 is a syntactic reification of dependent

polynomial pattern functors, whose meaning function is µ when considered

as a universe of dependent algebraic types.

A universe closed under W types, supporting fully generic programming, is

trivial to define (Section 4.2.1). Unfortunately, while W types adequately encode

algebraic types in Extensional Type Theory (as implemented by NuPRL [9]), they

inadequately [40] (Section 4.2.3) encode first-order algebraic types in Intensional

Type Theory (as implemented by Agda [47]). For this reason, we choose depen-

dent polynomials to model dependent algebraic types.

1.3.2 Indexing versus Induction-Recursion

Besides supporting algebraic types with dependencies between arguments, Agda

also supports algebraic types capturing intrinsic correctness properties. There

are 2 main special kinds of algebraic types used to capture intrinsic correctness

properties:

� Indexed Types (Section 2.1.5) These are collections of algebraic types,

indexed by some type I, such that each type in the collection may vary for

any particular value of I. For example, Vectors of A values are indexed by

16

the natural numbers and map to lists whose lengths are constrained to equal

the natural number index.

� Inductive-Recursive Types (Section 2.1.9) These are algebraic datatypes

mutually defined with a decoding function whose domain is the algebraic

type and codomain is some type O. For example, Arithmetic expressions

(Section 2.1.9) of “Big Pi” formulae are an inductive-recursive type, mutually

defined with an evaluation function (as their decoding function) returning the

number they encode. The upper bound of “Big Pi” arithmetic expressions is

calculated using the mutually defined evaluation function.

Somewhat surprisingly, indexed types [19, 20] and inductive-recursive types [22,

23] define isomorphic classes of datatypes [31]. That is, any indexed type (like Vec)

can be defined as an inductive-recursive type, and any inductive-recursive type (like

Arith) can be defined as an indexed type.

Thus, picking either indexed or inductive-recursive types is adequate to capture

all of the algebraic types we would like to encode in our closed universe. We choose

inductive-recursive types because there is little research on using them to even

do traditional generic programming, so we hope to make inductive-recursive types

more popular by providing more examples of programming with them.

1.3.3 Smallness versus Largeness

There are two more significant reasons why picking induction-recursion to showcase

generic programming is important. The first is merely an issue of encoding, but the

second emphasizes that the isomorphism between indexed and inductive-recursive

does not scale to “large” cases, defined below:

� Intensionality Even though indexed and inductive-recursive types are iso-

morphic, encoding “naturally” inductive-recursive types (like Arith) as in-

dexed types means reasoning about the low-level encoding rather than the

17

high-level intended type definition. Similarly, writing generic functions over

inductive-recursive types produces more “natural” results when applied to

“naturally” inductive-recursive types, as opposed to encoded indexed types.

� Largeness In this thesis we only cover small closed universe fully generic

programming, meaning the codomain of the inductive-recursive decoding

function is a type (like the natural numbers). In contrast, large inductive-

recursive types may have kinds (Set) as the codomain of their decoding func-

tions. The isomorphism between indexed and inductive-recursive types no

longer applies in the large case. Therefore, fully generic programming over

small inductive-recursive types may serve as a guide for how to do it in

the large case (where one cannot simply use indexed types and apply the

isomorphism).

Our arguments (the intensionality of functions and the lack of an isomorphism

in the large case) could also be used to justify choosing indexed types (where

we consider “naturally” indexed types and large type indices). Once again, we

choose inductive-recursive because they are less studied in the generic programming

literature.

Finally, because the isomorphism fails in the large case, the ideal choice would

be to use indexed inductive-recursive [24] algebraic types. These are a 3rd

option for expressing intensional correctness properties of datatypes, where both

indexing and induction-recursion are expressed naturally.4 While it is not tech-

nically challenging to extend our work on fully generic programming over closed

universes to indexed inductive-recursive types, we do not do this for pedagogical

reasons. The necessary background material to explain this combined approach,

and the resulting complexity it introduces in generic functions and examples, would

4 Interestingly, even indexed inductive-recursive types are isomorphic to indexed types and
inductive-recursive types in the small case [31].

18

obscure our lessons on how to define closed universes and perform fully generic pro-

gramming.

1.4 THESIS

Now we cover our thesis statement, contributions, and outline the remainder of

the dissertation.

1.4.1 Thesis Statement

Fully generic programming, supporting functions defined by recursion into all

non-inductive and inductive constructor arguments of all types in the universe, is

possible over a universe that:

� (Section 6.2) Models a dependently typed language (or type theory, sup-

porting the Curry-Howard isomorphism) with datatype declarations.

� (Section 5.4) Adequately (in intensional type theory) models small inductive-

recursive algebraic types via initial algebra semantics (in contrast to the

inadequate model of first-order types in the universe of Section 4.2).

� (Section 3.3.4) Supports the elimination of all (i.e., inductive and non-inductive)

values by:

– (Section 2.2.4) being inductively defined, allowing types to be closed

under other types.

– (Section 2.2.3) being closed, by not containing values defined using Set.

– (Section 2.2.7) being autonomous, by only containing values whose

types are in the universe.

– (Section 3.3.2) being concrete, by only containing types that have some

elimination principle.

19

1.4.2 Contributions

We make the following 3 primary contributions to the field of generic programming

using dependently typed languages:

1. Defining (Chapter 6) a closed universe (in Section 6.2), as an adequate

model of a dependently typed language with datatype declarations for inductive-

recursive types, supporting fully generic programming. Additionally, we de-

fine a procedure (in Section 6.3) to close any universe.

2. Examples (Chapter 7) of writing fully generic functions over all values of

our universe, including count (in Section 7.1), lookup (in Section 7.2), and

marshalling (ast, in Section 7.3) to an abstract syntax tree.

3. Extending (Chapter 8) our closed universe to a closed hierarchy of uni-

verses (in Section 8.2), supporting fully generic functions over all types in

the universe hierarchy (in addition to values), via fully generic programming

at any universe level (in Section 8.3).

1.4.3 Outline

The dissertation is broken up into 4 parts, the Prelude, a part on Open Type

Theory, a part on Closed Type Theory, and the Postlude:

Part I: Prelude

The prelude reviews background information on dependently typed programming,

and serves as a mini-version of our dissertation, in a simplified but unfortunately

inadequate setting.

Chapter 1: Introduction This chapter concludes the introduction. We already

reviewed dependently typed languages, and how code reuse serves as our motiva-

tion (Section 1.1). We also demonstrated what fully generic programming looks

20

like in a limiting setting, and compared how it works in Agda with how it works

in Haskell (Section 1.2). Finally, we explained why we chose inductive-recursive

types as the class of algebraic types we wish to write fully generic functions over

(Section 1.3).

Chapter 2: Types & Universes We review the concept of types (Section 2.1)

and universes (Section 2.2) in type theory. In particular, we classify both types

and universes according to a detailed account of various properties they can have.

Chapter 3: Generic Programming We clarify what we mean by generic

programming (i.e., programming over many types, using various forms of polymor-

phism [51]), because the meaning of this term is overloaded. We compare and

contrast generic programming as parametric polymorphism (Section 3.1) and ad

hoc polymorphism (Section 3.2). Additionally, we introduce the idea of concrete-

ness (Section 3.3) to help clarify what we mean by fully generic programming.

Programming total functions in type theory can be non-trivial, especially as the

class of types we program over expands during generic programming, so we review

techniques to make total programming possible (Section 3.4).

Chapter 4: Closed Type Theory This chapter contains examples of closed

type theories (i.e., those that do not contain Set) supporting fully generic program-

ming. We present (Section 4.1) the closed type theory of Closed Vector Types,

modeling a language with a built-in collection of types related to vector oper-

ations. We show how to write a fully generic sum function over the language of

Closed Vector Types. Then we present (Section 4.2) the closed type theory of Closed

Well-Order Types, modeling a language with algebraic datatype declarations. Un-

fortunately, while this closed universe model is easy to define and supports fully

generic programming, the W type it uses to model algebraic types is inadequate for

our purposes. Even though W types are inadequate for our purposes, it is helpful

21

to understand a closed universe of dependent types in this simpler setting, before

understanding the more complicated (but adequate) version in Chapter 6.

Part II: Open Type Theory

In this part we focus on modeling algebraic datatypes in open type theory, whose

collection of types grows as more types are declared. While algebraic types defined

using W are inadequate (in open type theory and closed type theory), types defined

using initial algebra semantics are not. This part explains how to model initial

algebra semantics in type theory (by defining the Desc and µ types), which is much

more involved than defining the W type.

Chapter 5: Open Algebraic Universes In this chapter we progress through

a series of initial algebra semantics for incrementally more expressive classes of

datatypes, starting with non-dependent algebraic types and ending with inductive-

recursive types. We motivate the (formal) type theory models with their category

theory equivalents. We also give examples of modeling values, not just types, using

initial algebra semantics.

Part III: Closed Type Theory

In this part we switch back to closed type theory, returning back to the setting

from which we diverged in Section 4.2.1, but this time using an adequate equivalent

of the language of Closed Well-Order Types. We also go one step further, defining

a closed hierarchy of closed types.

Chapter 6: Closed Algebraic Universe In this chapter we define the closed

type theory of Closed Inductive-Recursive Types. This adapts the previous initial

algebra semantics from an open type theory setting to a closed type theory setting.

We define the Closed Inductive-Recursive Types in Agda, serving as a formal model

22

of a closed dependently typed language supporting datatype declarations.

Chapter 7: Fully Generic Functions In this chapter we provide examples

of writing fully generic functions over Closed Inductive-Recursive Types. These

functions can be applied to values of any type in our model, can recurse into non-

inductive and inductive arguments, and can eliminate any value in our model.

Significantly, our generic functions are examples of how to deal with dependencies

among inductive arguments, as such dependencies only exist for inductive-recursive

types.

Chapter 8: Closed Hierarchy of Universes Up to this point we have worked

with a closed type theory modeling the first universe of a hierarchy, which con-

tains values but not types. In this chapter we show how to extend a closed type

theory to a hierarchy of universes, which contains types (in addition to values) at

every level of the hierarchy beyond the first. The chapter reviews how to model a

hierarchy of Closed Well-Order Types, and then defines a model of the hierarchy

of Closed Inductive-Recursive Types. We highlight the subtleties necessary to ade-

quately define a hierarchy containing algebraic types modeled using initial algebra

semantics.

In this chapter we also show how to extend fully generic functions to also be

universe-level generic. We call such functions leveled fully generic functions, and

show that they can be applied to any type at any level of the universe hierarchy.

Importantly, leveled fully generic programming is possible because our universe

hierarchy model is closed (i.e., the hierarchy still does not contain Set, but addi-

tionally does not contain Level).

23

Part IV: Postlude

Finally, we address Chapter 9: Related Work, Chapter 10: Future Work,

and summarize our dissertation in Chapter 11: Conclusion.

Major Ideas

Each chapter (besides the introduction and the postlude chapters) is preceded by

a paragraph titled Major Ideas. This paragraph explains the purpose of the

chapter, and anything unconventional, to help prevent readers from getting lost

in the details and forgetting the motivation. This paragraph may assume ideas

explained within the chapter, so it may be necessary to reference the major ideas

as the chapter is read.

24

Chapter 2

TYPES & UNIVERSES

A type is a collection of values, and a universe is a collection of types (possibly

closed under certain type formers). In this section we review different classes of

types (e.g., indexed types, infinitary types, etc). This allows us to be clear about

what each class adds to the expressive power of a language (i.e., what sorts of new

values we can construct.)

We also review properties of both types and universes (e.g., inductiveness,

openness, etc). These properties determine how we can use values (i.e., what

elimination principles are valid for them). With a thorough understanding of

classifications and properties of types and universes, we can precisely describe

which classifications and properties we need to perform the main goal of this thesis,

fully generic programming (Chapter 3) within closed type theory (Chapter 4).

Major Ideas The purpose of this chapter is to review mostly standard termi-

nology used to classify types and universes in DTT. Expert readers may wish to

skip this review. One deviation we make from standard terminology is calling a

universe inductively defined (Section 2.2.4). If the datatype of codes of a universe is

inductive, then the universe represented by the codes is “closed under” certain type

formers. Nevertheless, we call the universe inductive to not confuse that concept

with the idea of a closed universe (one not defined in terms of Set, as described in

Section 2.2.3).

We also introduce some new terminology for describing universes, namely sub-

ordinate (Section 2.2.6) and autonomous (Section 2.2.7) universes. Although the

25

concept of open-versus-closed types and universes is well established, we focus on

this uncommon distinction in this dissertation (we do so because a closed universe

is essential for fully generic programming). By defining all of these concept, we

can precisely capture the universe properties that are necessary to perform fully

generic programming in Section 3.3.4.

2.1 TYPES

In programming languages, a type is a construct used to capture the notion of

a collection of values. In this section we introduce many different properties of

types so that we may precisely describe types in future parts of this thesis. As the

primary motivation of a functional programming language is writing functions, we

also accompany datatype definitions with example functions operating over said

types.

2.1.1 Function Types

Dependently typed functional languages include dependent functions as a primi-

tive. The codomain of a dependent function type may depend on a value of its

domain.

(a : A)→ B a

Values of function types are lambda expressions, such as the lambda expression

in the body of the identity function (id) below.

id : (A : Set) → A → A
id = ń A → ń a → a

26

2.1.2 Non-Inductive Types

A non-inductive type is any type that is not recursively defined. A type can have

one or more constructors used to introduce its values. The definition of a non-

inductive type does not mention itself in the types of any of the arguments to its

constructors.

Functions are an example of a non-inductive type because the domain and

codomain of a λ does not recursively mention the function type. Booleans are

another example because the true and false constructors do not have arguments.

Below is the type of booleans, defined with the negation function not as an example.

data Bool : Set where
false true : Bool

not : Bool → Bool
not false = true
not true = false

An even simpler example is the unit type, which only has a single constructor

without any arguments.

data > : Set where
tt : >

A non-trivial example is the “maybe” type specialized to booleans (MaybeBool).

The just constructor has an argument, but its type is Bool rather than the type

being defined (MaybeBool).

data MaybeBool : Set where
nothing : MaybeBool
just : Bool → MaybeBool

27

2.1.3 Inductive Types

An inductive type mentions itself in its definition. That is, at least one constructor

has one argument whose type is the type being defined. For example, below is the

type of natural numbers (defined with the addition function + as an example).

The successor constructor of the type of natural numbers takes a natural number

argument, making it inductive.

data N : Set where
zero : N
suc : N → N

+ : N → N → N
zero + m = m
suc n + m = suc (n + m)

An alternative definition of an inductive type is a collection of values closed

under certain value constructors (e.g., N as zero closed under suc).

2.1.4 Parameterized Types

A parameterized type is a collection of types, parameterized by some type A, such

that the collection is uniformly defined for each of its types regardless of what A

is.

For example, below the type of disjoint unions (]) is non-dependent, non-

inductive, and parameterized by two types A and B. We define the type of disjoint

unions along with a function to case-analyze them.

data _]_ (A B : Set) : Set where
inj1 : A → A] B
inj2 : B → A] B

case : {A B C : Set} → A] B → (A → C) → (B → C) → C
case (inj1 a) f g = f a

28

case (inj2 b) f g = g b

Dependent pairs (Σ) are another example. They are dependent, non-inductive,

and parameterized by a type A and a function type B (whose domain is A and

codomain is Set). We define the type of dependent pairs along with its dependent

projections.

data Σ (A : Set) (B : A → Set) : Set where
, : (a : A) (b : B a) → Σ A B

proj1 : ∀{A B} → Σ A B → A
proj1 (a , b) = a

proj2 : ∀{A B} (ab : Σ A B) → B (proj1 ab)
proj2 (a , b) = b

A third example is the type of polymorphic lists. They are non-dependent,

inductive, and parameterized by some type A. The example function append com-

bines two lists into a single list.

data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

append : ∀{A} → List A → List A → List A
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

2.1.5 Indexed Types

An indexed type is a collection of types, indexed by some type I, such that each

type in the collection may vary for any particular value of I. For example, the type

of vectors (Vec), or length-indexed lists. Vectors are indexed by a natural number

n (representing their length) and also parameterized by some type A.

data Vec (A : Set) : N → Set where

29

nil : Vec A zero
cons : ∀{n} → A → Vec A n → Vec A (suc n)

Below we encode the 2-length vector of booleans [true,false] and the 3-

length vector of natural numbers [1,2,3] using Vec.

bits : Vec Bool 2
bits = cons true (cons false nil)

nums : Vec N 3
nums = cons 1 (cons 2 (cons 3 nil))

The example function append ensures that the length of the output vector is

the sum of the lengths of the input vectors.

append : ∀{A n m} → Vec A n → Vec A m → Vec A (n + m)
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

Another example is the type of finite sets (Fin), indexed by the natural numbers.

For each natural number n, the type Fin n represents the subset of natural numbers

from 1 to n.1

data Fin : N → Set where
here : ∀{n} → Fin (suc n)
there : ∀{n} → Fin n → Fin (suc n)

The type Fin 3 encodes the finite set {1,2,3}. Below we construct the numbers

1, 2, and 3 as values of the Fin 3 type.

one : Fin 3
one = here

two : Fin 3
two = there here

1 Note that the finite set Fin 0 is uninhabited, as the subset of natural numbers from 1 to 0
does not have any values.

30

three : Fin 3
three = there (there here)

We give an example function using finite sets, named prod, which computes the

product of a list of n natural numbers. However, we represent a list of numbers as

a function from Fin n to N. The idea is that each member of the finite set maps to

a number (a member of our “list”). For example, the list [1,2,3] is represented

as the function below.2

nums : Fin 3 → N
nums here = 1
nums (there here) = 2
nums (there (there here)) = 3
nums (there (there (there ())))

Once again, prod takes this functional list representation as an input and returns

the mathematical product of all members of the “list”. 3

The base case represents the empty list, for which we return the number one

(the identity of the product operation). The recursive case multiplies the current

number at the head position of the list (accessed by applying f to the here con-

structor of finite sets) with the recursive call on the tail of the list (we compute

the tail of a list represented as a function by composing the function with the there

constructor of finite sets).

prod : (n : N) (f : Fin n → N) → N
prod zero f = suc zero
prod (suc n) f = f here * prod n (f ◦ there)

Hence, prod applied to 3 and nums produces 6. This is the result of reducing

2 Technically this is a length-3 vector rather than a list. However, prod also takes a natural
number argument, and a dependent pair consisting of a number n and a vector of length n is
isomorphic to a list. See Section 2.1.7 on derived types for more discussion.

3 The final clause serves as a proof that Fin 3 has no inhabitants beyond three. The parentheses
() serve as a witness that a value of the type that would be there there (Fin 0 in this case, which
is Fin 3 minus 3 theres) is uninhabited. Such witnesses are required for type checking to be
decidable in Agda.

31

the expression 1 · 1 · 2 · 3. Note that the first 1 is from the zero case of prod, and

the second 1 is the first element of nums.

2.1.6 Type Families

A type family is a collection of types, represented as a function from some domain

A to the codomain Set.

A→ Set

Any parameterized datatype is a type family, for example the type of lists.

List : Set → Set

Any indexed type is also a type family, for example the type of vectors.

Vec : Set → N → Set

Although the type of vectors contains two arguments rather than one, it is isomor-

phic to an uncurried version with a single argument:

Vec : Set × N → Set

2.1.7 Derived Types

Thus far we have only seen primitive types. The type of functions already existed

as a primitive in the language. We defined each other type using a datatype

declaration, extending our language with a new primitive type. Alternatively,

many types can be derived from existing types. A derived datatype should be

isomorphic to the type we have in mind. Rather than writing a function for each

derived type, we derive its constructors as examples of how the derived type is

used. For example, we can derive the type of booleans as the disjoint union of two

unit types.

Bool : Set
Bool = >] >

32

false : Bool
false = inj1 tt

true : Bool
true = inj2 tt

An indexed type can be derived as a function by computing an appropriate

existing type from its index. This is because the type former of an indexed type

(such as the type of vectors or finite sets) is a function.

For example, we can derive the indexed type of vectors of length n as a right-

nested tuple of pairs containing n values of type A. Each occurrence of A represents

a cons). The tuple terminates in the unit type, representing nil.

Vec : Set → N → Set
Vec A zero = >
Vec A (suc n) = A × Vec A n

nil : ∀{A} → Vec A zero
nil = tt

cons : ∀{A n} → A → Vec A n → Vec A (suc n)
cons x xs = x , xs

As another example, consider the type of finite sets. The finite set type can

be derived as a right-nested tuple of disjoint unions of unit types, ending with a

bottom type (⊥, the type without any constructors). This makes sense because

the finite set of zero elements is uninhabited, and the finite set of any other number

n offers a choice (of heres and theres) to index any sub-number of n. Here “choice”

is interpreted as disjoint union.

Fin : N → Set
Fin zero = ⊥
Fin (suc n) = >] Fin n

33

here : ∀{n} → Fin (suc n)
here = inj1 tt

there : ∀{n} → Fin n → Fin (suc n)
there p = inj2 p

Besides deriving vectors as a function whose type is computed from its index,

we can also derive the type of vectors as a constant function. Vectors are a special

case of a class of datatypes called containers [1], which are functions from datatype

positions to contained values. Below, the type of vectors is represented as a con-

stant function (i.e., one that does not vary for n) whose domain is a finite set of n

elements, and whose codomain is A. Think of the function as an n-ary projection

for each A value in the vector.

Vec : Set → N → Set
Vec A n = Fin n → A

nil : ∀{A} → Vec A zero
nil ()

cons : ∀{A n} → A → Vec A n → Vec A (suc n)
cons x f here = x
cons x f (there p) = f p

Above, the nil function receives bottom (⊥) as an argument, so we need not

define it. The cons function “extends” the function f by returning x if the finite set

points to the head of the vector, and otherwise calls the “tail” by applying f to the

sub-index p. Notice that in Section 2.1.5 the “list” argument to prod was actually

this functional vector representation, so it could have been written as:

prod : (n : N) (f : Vec N n) → N

Finally, we can derive non-indexed types from indexed types by using a depen-

dent pair. The dependent pair acts like an existential, where the first component

is a value from the index domain and acts as a witness, and the second component

34

is the indexed type former applied to the witness and acts like a predicate. For

example, we can derive the type of lists from the type of vectors as follows.

List : Set → Set
List A = Σ N (ń n → Vec A n)

nil : {A : Set} → List A
nil = zero , vnil

cons : {A : Set} → A → List A → List A
cons x (n , xs) = suc n , vcons x xs

The first component is zero for the nil constructor. For the cons constructor,

the first component is the successor of the natural number n contained within the

list being extended (the second argument to cons) represented as a pair.

2.1.8 Infinitary Types

An infinitary type is an inductive type where at least one constructor has one

function argument whose codomain is the type being defined.4 The domain can

never be the type being defined because negative datatypes make type theory

inconsistent [11]. For example, the datatype below is inconsistent with type theory.

{-# NO_POSITIVITY_CHECK #-}
data Neg : Set where

neg : (Neg → Neg) → Neg

To motivate the definition of an infinitary type, consider the type of rose trees

containing values in node positions and allowing each node to have any finite

number of branches.

data Rose (A : Set) : Set where

4 Infinitary types are also referred to as generalized inductive definitions [37].

35

rose : A → List (Rose A) → Rose A

Now recall the derived definitions of vectors and lists from Section 2.1.7.

Vec : Set → N → Set
Vec A n = Fin n → A

List : Set → Set
List A = Σ N (ń n → Vec A n)

If we expand this derived definition of lists (and the inner derived definition of

vectors) in the definition of Rose above, we arrive at an alternative but isomorphic

definition of rose trees.

data Rose (A : Set) : Set where
rose : A → (n : N) (f : Fin n → Rose A) → Rose A

Our new definition of rose trees is an example of an infinitary type, as it contains

an argument (f) whose domain is a finite set but whose codomain is the type being

defined (Rose).

2.1.9 Inductive-Recursive Types

An inductive-recursive type is a collection of values mutually defined with a func-

tion parameterized by said type. The mutually defined function is called the decod-

ing function. An example of an inductive-recursive type is the type of arithmetic

expressions Arith. Values of type Arith encode “Big Pi” mathematical arithmetic

product equations up to some finite bound, such as the one below.
3∏

i=1
i

The intuition is that this expression should evaluate to something (the number

6 in this case). The mutually defined (decoding) function is exactly the evaluation

function. The type is defined as follows.

mutual

36

data Arith : Set where
Num : N → Arith
Prod : (a : Arith) (f : Fin (eval a) → Arith) → Arith

eval : Arith → N
eval (Num n) = n
eval (Prod a f) = prod (eval a) (ń i → eval (f i))

A literal number is represented using the Num constructor, evaluating to said

number. A mathematical product is represented using the Prod constructor, where

the first argument a is the upper bound of the product as an arithmetic expression

(3 in the example above), and the second argument f is the body of the product

(i in the example above) as a functional representation of a vector of arithmetic

expressions. Note that Arith is also an infinitary type, as the codomain of f is Arith.

The length of the vector (the argument to Fin in the type of f) should be

the evaluation of the upper bound a. Hence, the evaluation function eval must

be mutually defined with the type Arith. The Prod constructor evaluates to the

product computed with our prod function from Section 2.1.5. We can represent

the mathematical equation given earlier as follows.

six : Arith
six = Prod (Num 3) (ń i → Num (num i))

The result of applying eval to the inductive-recursive (Arith) equation six is the

natural number 6. An Arith equation may be nested in its upper bound (a) or

body (codomain of f), but the lower bound is always 1. Note that above we define

the expression six with the helper function num, which converts the finite set value

i to a natural number using one-based indexing.

A more typical example of an inductive-recursive type is a universe modeling

a dependently typed language, which we will see in Section 2.2.3.

37

2.1.10 Algebraic Types

An algebraic type is a type defined as the fixpoint of a suitable algebra. Although

this fixpoint construction is not given directly, it is the semantics of types defined

using data declarations. For example, the inductive type of lists is defined as the

fixpoint below.

List , λA. µX. 1 + A · X

In the equation, X is used to ask for recursive arguments (such as the second

argument to cons). A non-inductive type like booleans can also be defined by

ignoring X.

Bool , µX. 1 + 1

We would like to emphasize that this definition of booleans corresponds to the

semantics of defining Bool using a data declaration (as in Section 2.1.2). Although

it looks syntactically similar to the derived definition of booleans using unit and

disjoint union in Section 2.1.7, that derived definition is not algebraic because it is

not defined with µ (either syntactically or semantically). However, some derived

types can be algebraic if we internalize µ as a type former µ [12], and use this

type former to derive type definitions. In the scope of this thesis, an algebraic

type is one defined using a data declaration, a µ type former, or a W type former

(introduced in Section 4.2.2). Although W types are not syntactically fixpoint

constructions, they are semantically very similar so we still call them algebraic.

Finally, below is an example of an indexed type defined algebraically. The

index is given as a lambda argument (n) just like the parameter (A). However, the

nil and cons constructor must appropriately constrain the index argument (to zero

or the successor of the previous vector respectively). Additionally, the recursive

argument X takes the index as an argument.

Vec , λA. λn. µX. (n = zero) + ((m : N) · A · X m · n = suc m)

38

Notice that in cons (i.e., the second summand) the index of the previous vector

is given as an explicit argument (m), and the index (n) is constrained to be the

successor of that argument.

2.1.11 Computational Families

A computational family is an indexed type defined by computing over its index.

We have already seen a non-algebraic computational family, namely the derived

type of vectors from Section 2.1.7.

Vec : Set → N → Set
Vec A zero = >
Vec A (suc n) = A × Vec A n

However, computational families can also be algebraic. In the previous section,

vectors are algebraically defined by constraining the input index given as a lambda

argument. As a computational algebraic family, we case-analyze the lambda in-

dex argument to determine the algebra that we take the fixpoint of rather than

constraining the input.

Vec , λA. λn. µX. case n of
zero 7→ 1

suc n 7→ A ·X n

Agda does not currently support a high-level syntax (like data) for defining

computational algebraic families. Nonetheless, we semantically model them using

an internalized µ type [12].

39

2.1.12 Open Types

An open type is any type whose definition mentions the type of types (Set).5 In an

open type theory datatype declarations add new types to the language, extending

Set with additional type formers. Therefore the collection of type formers (values of

type Set) is considered to be “open”. Consequently, open languages must prohibit

case analysis over Set, because a total function matching against currently defined

types becomes partial when a new datatype is declared. One example of an open

datatype is the type of heterogenous lists (HList).

data HList : Set1 where
nil : HList
cons : {A : Set} → A → HList → HList

append : HList → HList → HList
append nil ys = nil
append (cons x xs) ys = cons x (append xs ys)

HList is an open type because its cons constructor has an argument A of type

Set, and an argument a whose type is the open type A.

The parametric lists from Section 2.1.4 are another example of an open type, as

the a argument in the cons constructor has type A. The type of lists parameterized

by A is open because cons uses A, and A has type Set.

2.1.13 Closed Types

A closed type is any type whose definition does not mention Set. For example, if

we specialize the type of parametric lists to booleans (as the type Bits) the source

5 A type is open if its definition directly mentions Set, for example as an argument to one of its
constructors. However, a type is also open if its definition indirectly mentions Set. For example,
an argument to one of its constructors may be another open type (which is open because it either
directly or indirectly mentions Set).

40

of openness (the parameter A of type Set) disappears.

Bits : Set
Bits = List Bool

all : Bits → Bool
all nil = true
all (cons false xs) = false
all (cons true xs) = all xs

2.2 UNIVERSES

A universe is a collection of types, possibly closed under certain type formers.

Just as we accompanied types with example functions operating over them in

Section 2.1, we accompany universes with example generic functions in this section.

A generic function is any function defined over multiple types.

2.2.1 Universe Model

In a dependently typed language, a universe can be modeled as a type of codes

(representing the actual types of the universe), and a meaning function (mapping

each code to its actual type).

For example the BoolStar universe is comprised of the type of booleans, lists

of booleans, lists of lists of booleans, and so on. In other words, it is the Kleene

star version of Bits (non-nested lists of booleans) from Section 2.1.13. The type

of codes is BoolStar, and its meaning function is J_K. As a convention, we prefix

constructors of the code type with a backtick to emphasize the distinction between

a code (e.g., ‘Bool) and the actual type it denotes (e.g., Bool).

data BoolStar : Set where
‘Bool : BoolStar
‘List : BoolStar → BoolStar

41

J_K : BoolStar → Set
J ‘Bool K = Bool
J ‘List A K = List J A K

To get the actual universe type, we apply the dependent pair type former (Σ) to

the codes and meaning function. Therefore, values of the universe are dependent

pairs whose first component is a code and second component is a value (the type

of the value is the meaning function applied to the code).

BoolStarU : Set
BoolStarU = Σ BoolStar J_K

As a convention, we append the letter U to the type of codes to define the

universe type. Our first example member of this universe represents the list of

booleans [true, false].

bits1 : BoolStarU
bits1 = ‘List ‘Bool , cons true (cons false nil)

Our second example universe value represents the list of lists of booleans

[[true], [false]].

bits2 : BoolStarU
bits2 = ‘List (‘List ‘Bool) , cons (cons true nil) (cons (cons false nil) nil)

Our example generic function over this universe is all, which returns true if all

the booleans in any potential list and nested sublists are true.

all : (A : BoolStar) → J A K → Bool
all ‘Bool b = b
all (‘List A) nil = true
all (‘List A) (cons x xs) = all A x ∧ all (‘List A) xs

2.2.2 Open Universes

An open universe mentions Set in its type of codes or meaning function. Just

as open types grow their collection of values when new types are declared, open

42

universes grow their collection of types when new types are declared.

An example open universe is DynStar, the universe of dynamic lists closed under

list formation. A dynamic list may contain values of any type, but the type must

be shared by all values.

data DynStar : Set1 where
‘Dyn : Set → DynStar
‘List : DynStar → DynStar

J_K : DynStar → Set
J ‘Dyn A K = A
J ‘List A K = List J A K

Again, we can encode the actual Kleene star of dynamic types universe (rather

than just its codes or meaning function) using a dependent pair.

DynStarU : Set1
DynStarU = Σ DynStar J_K

In our first example, we represent the list of booleans [true, false]. The

‘Dyn part of the first component of the pair indicates the type of values contained

in our list, namely Bool.

bits1 : DynStarU
bits1 = ‘List (‘Dyn Bool) , cons true (cons false nil)

Our second example represents the list of lists of natural numbers [[1], [2]].

This time, ‘Dyn is applied to the type of natural numbers (N).

nums2 : DynStarU
nums2 = ‘List (‘List (‘Dyn N)) , cons (cons 1 nil) (cons (cons 2 nil) nil)

A common function to define over parameterized lists is “concat”, which flattens

a list of lists to a single list. Ordinarily we might define multiple versions of this

function, each flattening an increasing number of outer lists.

concat1 : {A : Set} → List (List A) → List A

43

concat2 : {A : Set} → List (List (List A)) → List A
concat3 : {A : Set} → List (List (List (List A))) → List A

Using the DynStar universe, we can define a generic concat function that flattens

any number of outer lists. The return type of this function should be a List of As,

where A is the dynamic type for the dynamic lists to be flattened. Thus, we first

define a function Dyn to extract the dynamic type from a DynStar code by recursing

down to the base case ‘Dyn.

Dyn : (A : DynStar) → Set
Dyn (‘Dyn A) = A
Dyn (‘List A) = Dyn A

Note that Dyn is a computational family (Section 2.1.11). Later in the thesis we

introduce more specific terminology, calling Dyn a computational argument family

(Section 3.4.3) that serves as a domain supplement (Section 3.4.5). Having defined

Dyn, we can define a generic concat function to return a flattened list of dynamic

universe values.

concat : (A : DynStar) → J A K → List (Dyn A)
concat (‘Dyn A) x = cons x nil
concat (‘List A) nil = nil
concat (‘List A) (cons x xs) = append (concat A x) (concat (‘List A) xs)

Note that a dynamic ‘Dyn value is flattened by turning it into a single-element

list.

2.2.3 Closed Universes

A closed universe does not mention Set in its type of codes or meaning function.

The BoolStar universe of Section 2.2.1 is an example of a closed universe.

As an edge case, consider the universe (HListStar) of heterogenous lists closed

under list formation below.

data HListStar : Set where

44

‘HList : HListStar
‘List : HListStar → HListStar

J_K : HListStar → Set1
J ‘HList K = HList
J ‘List A K = List J A K

Even though HListStar does not mention Set directly in its codes or meaning

function, it does mention it indirectly because the ‘HList code maps to the open

type HList (which mentions Set). Therefore, the HListStar universe is open!

2.2.4 Inductive Universes

We call a universe inductive if its types are closed over one or more type formers.

For example, the BoolStar, DynStar, and HListStar universes above are inductive

because they are closed under List formation (via the inductive ‘List code construc-

tor).

2.2.5 Non-Inductive Universes

A universe is non-inductive if its types are not closed under any type formers. For

example, the Truthy universe below represents types that we want to consider as

boolean conditional values.

data Truthy : Set where
‘Bool ‘N ‘Bits : Truthy

J_K : Truthy → Set
J ‘Bool K = Bool
J ‘N K = N
J ‘Bits K = List Bool

Below we define the isTrue operation, allowing us to consider any value of the

universe as being true or false.

isTrue : (A : Truthy) → J A K → Bool

45

isTrue ‘Bool b = b
isTrue ‘N zero = false
isTrue ‘N (suc n) = true
isTrue ‘Bits nil = true
isTrue ‘Bits (cons false xs) = false
isTrue ‘Bits (cons true xs) = isTrue ‘Bits xs

2.2.6 Subordinate Universes

A universe is subordinate if one of its types contains a nested type that is not a

member of the universe. Hence, a universe is subordinate if one of its types has a

constructor with an argument whose type is not a member of the universe.

For example, the open HListStar universe from Section 2.2.3 is subordinate

because it contains HList, which has a Set argument in the cons constructor, and

Set is not a member of HListStar.

Closed universes can be subordinate too, for example the universe BitsStar

contains lists of booleans closed under list formation. The ‘Bits values of this

universe contain booleans in cons positions, but booleans are not members of the

universe.

data BitsStar : Set where
‘Bits : BitsStar
‘List : BitsStar → BitsStar

J_K : BitsStar → Set
J ‘Bits K = List Bool
J ‘List A K = List J A K

2.2.7 Autonomous Universes

A universe is autonomous if all nested types of its types are also types in the

universe. Hence, the type of every argument to every constructor of a universe

type must also be a type in the universe.

46

For example, the closed BoolStar universe of Section 2.2.1 is closed because Bool

does not have constructor arguments, and because the universe is closed under List

formation (thus any sublist only contains types also in the universe).

Note that open universes can be autonomous. For example, DynStar from

Section 2.2.2 includes all types A (of type Set) via the ‘Dyn constructor. Regardless

of any other types (such as lists) in the universe, DynStar is autonomous because

any type can be injected using ‘Dyn.

2.2.8 Derived Universes

Thus far we have constructed universes with certain properties from scratch, ex-

tending the primitive types of our language with a primitive universe. However,

we can also derive a universe from any type family by considering the type of its

indices as the codes and the type family itself as the meaning function. If we do

this for the indexed type of finite sets (Fin), we get a universe (Pow) like powerset

but without the empty set (because Fin zero is not inhabited).

Pow : Set
Pow = Σ N Fin

one1 : Pow
one1 = 1 , here

one2 : Pow
one2 = 2 , here

two2 : Pow
two2 = 2 , there here

That is, for every natural number (each N code) we get the subset of the natural

numbers from zero to that number minus one (the Finite set).

We can use the same method to derive type of dynamic lists (DList) from the

type of parameterized lists. Note that this is the type of dynamic lists, rather than

47

the Kleene star of dynamic values (DynStar from Section 2.2.2).

DList : Set1
DList = Σ Set List

bits : DList
bits = Bool , cons true (cons false nil)

nums : DList
nums = N , cons 1 (cons 2 nil)

Reflect on the fact that universes are modeled in type theory as a dependent

pair consisting of codes and a meaning function. This pair is just another type,

therefore whether we consider Pow and DList to be derived types (Section 2.1.7)

or derived universes is merely a matter of perspective.

2.2.9 Parameterized Universes

A parameterized universe is a collection of universes, parameterized by some type

A, such that the collection is uniformly defined for each universe regardless of what

A is.

The model of a parameterized universe (i.e., its representation in type the-

ory) may depend on its parameter in its codes, meaning function, or both. The

Kleene star universes of booleans (BoolStar), heterogenous lists (HListStar) and

bits (BitsStar) all have a similar structure, namely a specialized base type closed

under list formation. Our example parameterized universe abstracts out the base

type as a parameter.

data ParStar : Set where
‘Par : ParStar
‘List : ParStar → ParStar

J_K : ParStar → Set → Set
J ‘Par K X = X

48

J ‘List A K X = List (J A K X)

The ‘Par code represents the parameterized type, and is interpreted as the sec-

ond argument to the meaning function. To more easily see how this is a “param-

eterized” universe, we give the type of the universe as a parameterized dependent

pair below.

ParStarU : Set → Set
ParStarU X = Σ ParStar (ń A → J A K X)

bits1 : ParStarU Bool
bits1 = ‘List ‘Par , cons true (cons false nil)

bits2 : ParStarU Bool
bits2 = ‘List (‘List ‘Par) , cons (cons true nil) (cons (cons false nil) nil)

We can still write concat by injecting values of the parameterized type into

a singleton list as with DynStar (Section 2.2.2). Recall that concat for DynStar

required a special function Dyn to extract the base type. When defining concat for

ParStar, the base type is already an explicit parameter that we can refer to in the

return type.

concat : ∀{X} (A : ParStar) → J A K X → List X
concat ‘Par x = cons x nil
concat (‘List A) nil = nil
concat (‘List A) (cons x xs) = append (concat A x) (concat (‘List A) xs)

We’ve seen how to derive a universe from a type family in Section 2.2.8, but we

can also derive a universe from a universe family. As an example, we derive the

DynStar universe from the ParStar universe. In Section 2.2.2 we defined the type of

DynStar codes as a primitive, whereas below we derive DynStar codes as the pair

of ParStar and Set (the parameter type of ParStarU).

DynStarU : Set1
DynStarU = Σ (ParStar × Set) (ń { (A , X) → J A K X })

49

bits1 : DynStarU
bits1 = (‘List ‘Par , Bool) , cons true (cons false nil)

bits2 : DynStarU
bits2 = (‘List (‘List ‘Par) , Bool) , cons (cons true nil) (cons (cons false nil) nil)

50

Chapter 3

GENERIC PROGRAMMING

Generic programming is the act of writing functions that can be applied to values

of a collection of types (a universe). Given a collection of types, a generic function

can be applied to values of any type in the collection. A polymorphic function

universally quantifies over some collection of values and references an arbitrary

member of that collection in its type signature. Therefore, generic functions are

merely polymorphic functions. The type of the quantified variable can be seen as

the codes of the universe, followed by the meaning function applied to a particular

code, followed by the remainder of the type signature.

(c : Code) (m : Meaning c)→ ...

We have already seen many generic functions fitting this pattern in Section 2.1

and Section 2.2. Below we reconsider some of them, while classifying them by

different forms of polymorphism. In each of these examples, we emphasize the

definition of Code (i.e., what the function is polymorphic over).

Major Ideas This chapter clarifies our definition of generic programming, re-

lating it to parametric (Section 3.1) and ad hoc (Section 3.2) polymorphism. It

also introduces non-standard terminology, namely the properties of abstractness

(Section 3.3.1) and concreteness (Section 3.3.2), which can apply to both types and

universes. This final bit of terminology allows us to precisely capture the universe

properties (along with properties from Section 2.1 and Section 2.2) necessary to

perform fully generic programming in Section 3.3.4.

51

We also include a section on dependently typed programming techniques used

to write total functions (Section 3.4), which often become necessary when writing

sufficiently complex generic functions. The techniques of Section 3.4 are primarily

used in Chapter 7.

3.1 PARAMETRIC POLYMORPHISM

A parametrically polymorphic function is defined uniformly over its codes and their

meanings. That is, the function does not inspect the type of codes and therefore

does not behave differently for any code or its interpretation (i.e., it does not behave

differently for different values in the type returned by the meaning function applied

to a code).

3.1.1 Parametric over Types

A common form of parametric polymorphism is over types(i.e., where Code is

defined to be Set).

append : {A : Set} → List A → List A → List A
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

Notice that append over lists behaves the same way for any type A that it is

applied to.

3.1.2 Parametric over Levels

Functions can also be defined parametrically over universe Levels.1 Types in Agda

are arranged in a hierarchy, where base types are classified by Set0, kinds are

1 Here, a “universe” refers to all types, or all kinds, or all superkinds, etc. This use of the
word universe is distinct from a type of codes and a meaning function. While these are related
(the former is the image of the meaning function of the latter), the former refers to a level in a
hierarchy of types, while the latter is a technical formal device used for generic programming or
modeling a domain.

52

classified by Set1, superkinds are classified by Set2, and so on. Rather than defining

different functions operating over types in each of these levels, we can define a single

function level-polymorphically.

append : {` : Level} {A : Set `} → List A → List A → List A
append nil ys = ys
append (cons x xs) ys = cons x (append xs ys)

Note that append now behaves the same way for any type at any level that it

is applied to.

3.2 AD HOC POLYMORPHISM

An ad hoc polymorphic function is defined non-uniformly over its codes or their

meanings. That is, the function may inspect codes and its interpretation (the

values in the type returned by the meaning function applied to a code).

3.2.1 Ad Hoc by Overloading

If the type of Codes for our universe is algebraic and non-inductive, then generic

functions over the universe amount to a kind of syntactic overloading of function

names.

For example, consider the isTrue function from Section 2.2.5 over the Truthy

universe. Before defining isTrue for the universe, we can define versions of the

function for each type in the universe.

isTrueBool : Bool → Bool
isTrueBool b = b

isTrueN : N → Bool
isTrueN zero = false
isTrueN (suc n) = true

isTrueBits : List Bool → Bool

53

isTrueBits nil = true
isTrueBits (cons false xs) = false
isTrueBits (cons true xs) = isTrueBits xs

Now we can define isTrue by matching on each type code, and returning the

appropriate function specialized to that type.

isTrue : (A : Truthy) → J A K → Bool
isTrue ‘Bool = isTrueBool
isTrue ‘N = isTrueN
isTrue ‘Bits = isTrueBits

Another way to say this is that we can make recursive calls on interpretations,

but not codes. For example, below we inline the specialized functions as is done

in Section 2.2.5. The ‘Bits cases make recursive calls on inductive values, but the

codes stay constant in recursive calls.

isTrue : (A : Truthy) → J A K → Bool
isTrue ‘Bool b = b
isTrue ‘N zero = false
isTrue ‘N (suc n) = true
isTrue ‘Bits nil = true
isTrue ‘Bits (cons false xs) = false
isTrue ‘Bits (cons true xs) = isTrue ‘Bits xs

3.2.2 Ad Hoc by Coercion

If the type of Codes for our universe is algebraic, inductive, and autonomous, then

generic functions over the universe can make recursive calls on both codes and their

interpretations. Because we can make recursive calls on types of our universe, we

can effectively coerce recursive values of our universe to an appropriate output

type.

For example, consider the concat function from Section 2.2.2 over the DynStar

universe. Each value and subvalue of this dynamic Kleene star universe can be

54

coerced to a dynamic list.

concat : (A : DynStar) → J A K → List (Dyn A)
concat (‘Dyn A) x = cons x nil
concat (‘List A) nil = nil
concat (‘List A) (cons x xs) = append (concat A x) (concat (‘List A) xs)

3.2.3 Ad Hoc by Overloading & Coercion

Ad hoc polymorphic functions may also be a hybrid of the overloading and coercion

styles. For example, if universe Codes are algebraic, inductive, and subordinate then

we can recurse on the codes and interpretations for the autonomous types in the

universe (coercion), but can only recurse on the interpretations of the subordinate

types (overloading). For example, consider the all function for the BitsStar universe

of Section 2.2.6.

all : (A : BitsStar) → J A K → Bool
all ‘Bits nil = true
all ‘Bits (cons false xs) = false
all ‘Bits (cons true xs) = all ‘Bits xs
all (‘List A) nil = true
all (‘List A) (cons x xs) = all A x ∧ all (‘List A) xs

The ‘Bits cases only recurse over the interpretation (keeping the code constant),

hence they are defined by overloading. The ‘List cases recurse both over the codes

and the interpretation, hence they are defined by coercion.

3.3 ABSTRACTNESS & CONCRETENESS

In this section we define additional non-standard terminology for types and uni-

verses, namely abstractness and concreteness. We cover these properties here

rather than in Section 2.1 on types and Section 2.2 on universes because the ter-

minology (as it is used) and our emphasis on it is unique to this thesis.

55

3.3.1 Abstract Types

An abstract type is any type that does not have an elimination principle. For

example, open types (Section 2.1.12) mentioning Set are abstract because you

cannot pattern match on values of Set (or otherwise eliminate Set).

Types mentioning Level (used to indicate which level in a hierarchy a type

inhabits) are also abstract. Once again, Agda types are arranged in a hierarchy,

where base types are classified by Set0, kinds are classified by Set1, superkinds are

classified by Set2, and so on. Rather than defining different datatypes inhabiting

each of these levels, we can define a single datatype that can be instantiated at

any level.

In the example below, we define parameterized lists that can be instantiated

at any level in the type hierarchy. The definition also enforces the constraint that

a list must inhabit the same level as its type parameter.

data List {` : Level} (A : Set `) : Set ` where
nil : List A
cons : A → List A → List A

Just like Set, Agda does not expose an elimination principle for Level (thus you

cannot, for example, pattern match on levels in a function definition).2

3.3.2 Concrete Types

A concrete type is any type that does have an elimination principle. For the

purpose of this thesis, this will mean any type that does not mention Set or Level.

Therefore, concrete types have the special properties that all of its values and

subvalues may be eliminated. Algebraic datatypes are concrete and they may be

eliminated by pattern matching. Function types are concrete and they may be

eliminated by application.

2 Nevertheless, we can write parametrically level-polymorphic functions over List as in Sec-
tion 3.1.2.

56

3.3.3 Abstract Data Types

This thesis does not consider abstract data types (ADT’s), but we touch upon them

briefly here to relate them to our terminology of abstract and concrete types.

An ADT allows the user to expose a type former, constructors, and elimination

principles while hiding their implementation. For example, a dictionary may be

exposed as a list of key/value pairs but internally be implemented as a balanced

binary search tree. Therefore, an ADT defined to expose its type former and con-

structors, but not its elimination principle, is abstract by our definition. However,

if such an ADT also exposed its elimination principle we would call it concrete

(despite the fact that the ADT would be hiding its true implementation).

3.3.4 Fully Generic Programming

We call a universe abstract if at least one of the types it contains is abstract. We

call a universe concrete if all of the types it contains are concrete. This brings us

to the primary ambition of this thesis, which we call fully generic programming. A

fully generic function is a special kind of ad hoc polymorphic function by coercion

(Section 3.2.2) with the additional property that the universe is concrete.3 By

consequence, fully generic functions can eliminate any value or subvalue (includ-

ing both inductive and non-inductive constructor arguments) and recurse on any

universe code.

For example, the BoolStar universe (Section 2.2.1) allows us to define nor as a

fully generic function (returning true if all values and subvalues contain false).

nor : (A : BoolStar) → J A K → Bool
nor ‘Bool true = false
nor ‘Bool false = true
nor (‘List A) nil = true

3 Because the universe is both inductively defined (Section 2.2.4) and concrete (Section 3.3.2),
it is also closed (Section 2.2.3).

57

nor (‘List A) (cons x xs) = nor A x ∧ nor (‘List A) xs

In addition to making recursive calls on codes and interpretations (thanks to

an algebraic, inductive, and autonomous universe) for the ‘List cases, we can also

pattern match on all [sub]codes and all [sub]values (thanks to concreteness). Com-

pare this to concat for DynStar in Section 3.2.2. The concat function cannot pat-

tern match on the interpretation of the ‘Dyn base case because the type is Set (the

source of abstractness). By contrast, nor can match on the interpretation of ‘Bool

by distinguishing between true and false (because Bool is a concrete type).

3.4 TOTALITY

Functions written in dependent type theory (DTT) must be total (defined over all

inputs). Thus, partial functions written in traditional languages cannot be directly

encoded as functions in DTT. In this section, we explain a general technique for

altering the type signature of a partial function so that it may be encoded as a total

function in DTT. We use the head function as our running example of a partial

function that we wish to encode in a total language.

head : {A : Set} → List A → A

Applying head to a non-empty list should return the first element, but applying

head to an empty list should be undefined. Below we explain how to encode head

as a total function by altering either the domain or codomain, first by using non-

dependent types and then by taking advantage of dependent types.

3.4.1 Non-Dependent Domain Change

In a non-dependent language, we could write head as a total function by adding

an extra A argument to the domain. This extra argument serves as a “default”

58

argument to return in the (otherwise partial) empty list case.

head : {A : Set} → List A → A → A
head nil y = y
head (cons x xs) y = x

3.4.2 Non-Dependent Codomain Change

In a non-dependent language, we could also write head as a total function by

changing the return type to Maybe A. This allows us to dynamically model par-

tiality by failing with nothing in the empty list case, and succeeding with just in

the non-empty list case.

head : {A : Set} → List A → Maybe A
head nil = nothing
head (cons x xs) = just x

3.4.3 Dependent Domain Change

Without dependent types we can add a default argument to head. Unfortunately,

a user must supply this default argument even if they are taking the head of a

non-empty list. With dependent types, we can add an extra dependent argument

to head. The type of the extra argument depends on the input list, and is defined

below as a computational argument type (a type family defined as a computation

as in Section 2.1.11, in an argument position of a function).

HeadArg : {A : Set} → List A → Set
HeadArg {A = A} nil = A
HeadArg (cons x xs) = >

If the input list is empty, HeadArg computes to A, the type of the default

argument that is required. If the input list is non-empty, HeadArg returns the unit

type (>). Because a value of type unit can always be trivially constructed, this is

equivalent to not having an extra argument at all when the input list is non-empty.

59

Now we can define head with HeadArg as its extra argument.

head : {A : Set} (xs : List A) → HeadArg xs → A
head nil y = y
head (cons x xs) tt = x

Notice that head only receives the default argument y in the empty list case.

Otherwise, it receives the trivial tt constructor of the unit type.

3.4.4 Dependent Codomain Change

Without dependent types we can change the codomain to dynamically model par-

tiality using the Maybe type. Dependent types allow us to statically enforce par-

tiality. We define the return type to be a computational return type (a type family

defined as a computation, in the return type position of a function).

HeadRet : {A : Set} → List A → Set
HeadRet nil = >
HeadRet {A = A} (cons x xs) = A

If the input list is non-empty, HeadRet computes the standard return type A.

However, if the list is empty then HeadRet computes the unit type. A function

returning unit may as well be undefined, as its output is uniquely determined to

be tt.

head :{A : Set} (xs : List A) → HeadRet xs
head nil = tt
head (cons x xs) = x

Rather than dynamically enforcing partiality by returning a nothing failure

value for non-empty lists, head is statically “partial” as its definition for the empty

list case is uniquely determined.

60

3.4.5 Domain Predicates versus Domain Supplements

We have seen two different ways (in Section 3.4.3 and Section 3.4.4) to make head

total using dependent types, first by adding missing data (the default argument

A), and second by effectively making the function undefined for its “partial” cases.

A more common approach is to directly model partiality as a computational

argument type that requests an argument of the empty type for the empty list

case. This in contrast to modeling partiality as a computational return type (Sec-

tion 3.4.4) that returns unit for the empty list case.

HeadArg : {A : Set} → List A → Set
HeadArg {A = A} nil = ⊥
HeadArg (cons x xs) = >

This allows us to leave the empty list case undefined, as a value of type ⊥ is

known not to exist.

head : {A : Set} (xs : List A) → HeadArg xs → A
head nil ()
head (cons x xs) tt = x

It is clear that the computational argument type HeadArg above acts a domain

predicate, refining the domain of all lists to be undefined for the empty list by

asking the user to provide a value of the empty type (⊥). Compare this to the

version of HeadArg in Section 3.4.3, which requests an extra argument (A) in the

empty list case. The Section 3.4.3 HeadArg is also technically a domain predicate,

as it restricts the input of all lists to supply additional data (A) in the empty list

case (i.e., head is no longer defined for all lists, only those with additional data).

However, this usage of the word “predicate” feels unnatural, as predicates are

associated with logically restricting a domain (rather than requesting additional

data). For this reason, we prefer to call the Section 3.4.3 HeadArg a domain

supplement (this is a non-standard term that we are introducing). Thus, we have

two options when embedding a partial function in type theory:

61

1. Use a domain predicate to restrict the domain, avoiding definitions for the

partial cases. For example, adding an empty type argument or returning

unit.

2. Use a domain supplement to request additional data, computing results for

the partial cases using the additional data. For example, returning a default

value provided as an additional argument.

This thesis focuses more on the second option. Functions made total using

domain supplements are more interesting than ones using domain predicates, as

the supplement adds computationally relevant data rather than just restricting

the domain to be undefined for certain cases. Thus, a domain supplement is like a

proof-relevant version of a domain predicate (even though both technically restrict

the domain).

Conclusion

We have seen how to encode partial functions within total type theory by mod-

ifying the domain or codomain of a function, with and without the benefits af-

forded by dependent typing. Previously, when writing ordinary functions over

types (Section 2.1), and especially when writing generic functions over universes

(Section 2.2), we deliberately chose examples that were naturally total to avoid

using the techniques of this section.

However, as we write generic programs over larger universes (those containing

more types), it often becomes necessary to use computational argument or return

types to make generic functions total. This is particularly true when writing fully

generic functions (Section 3.3.4), as it might not be possible to define them for

certain values of a universe without domain supplements.

62

Chapter 4

CLOSED TYPE THEORY

A closed type theory is a dependently typed language with a built-in collection

of types (i.e., primitives) that will never be extended. Such a type theory can

be modeled as a fully closed universe. To qualify as a closed type theory, we

require that its collection of types is at least closed under dependent function (Π)

formation.

It is reasonable to assume that programming in a closed type theory would

be limiting, as programmers can only work with the types that are built into the

theory (compared to an open theory where users may extend the language with

custom types). However, it turns out that a closed theory with an appropriate

collection of primitives can be used to model any custom type using only the

primitives. Hence, instead of extending an open theory with custom types using

datatype declarations, isomorphic versions of custom types may be formed in a

closed theory from its primitives.

Therefore, a closed type theory can model a dependently typed programming

language supporting custom types. Assume that we make the universe model

of such a theory algebraic, inductive, autonomous, and concrete. This language

supports fully generic programming (Section 3.3.4), allowing programmers to write

functions over all types of the language, including custom types!1

1 By analogy, consider generic functions (like equality via Eq or comparison via Ord) that a
language like Haskell can derive for any appropriate type using the deriving keyword. While
users of Haskell are limited to deriving the generic functions built into the compiler, users of such
a closed type theory may write their own generic functions operating over any appropriate type.

63

Major Ideas This chapter gives two examples of closed universes that can serve

as models of dependently typed languages. The first universe models a language

with a fixed collection of of built-in types related to vectors (Section 4.1). The

second universe models a language supporting user-declared types, by including

the type of well-orderings (W) as a built-in type (Section 4.2.1). Although we could

perform fully generic programming over this universe, the universe is inadequate

for our purposes (Section 4.2.3). Nevertheless, it is easy to understand, and is good

background material for the universe of user-declared types in Chapter 6 that we

actually use for fully generic programming (which replaces the built-in well-order

type W with a built-in fixpoint type µ1).

4.1 CLOSED VECTOR UNIVERSE

In this section we present one example of a closed type theory, which we call

the universe of Closed Vector Types. This universe contains some standard types

along with some types specifically for writing programs operating over vectors.

The Closed Vector Types universe is an example of a simple closed type theory

(or programming language) with a fixed set of primitives that does not support

custom user-defined types.

4.1.1 Closed Vector Types

Below is the formal model (that is, the model within type theory) of the Closed

Vector Types universe. It has standard types like the empty type (⊥), the unit

type (>), booleans (Bool) and is closed under dependent pair formation (Σ) and

dependent function (Π) formation. However, we call it the Closed Vector Types

universe because it also includes types for writing vector-manipulating programs,

namely the natural numbers (N) and finite sets (Fin), and is closed under vector

64

(Vec) formation.

data ‘Set : Set where
‘⊥ ‘> ‘Bool ‘N : ‘Set
‘Fin : N → ‘Set
‘Vec : ‘Set → N → ‘Set
‘Σ ‘Π : (A : ‘Set) (B : J A K → ‘Set) → ‘Set

J_K : ‘Set → Set
J ‘⊥ K = ⊥
J ‘> K = >
J ‘Bool K = Bool
J ‘N K = N
J ‘Fin n K = Fin n
J ‘Vec A n K = Vec J A K n
J ‘Σ A B K = Σ J A K (ń a → J B a K)
J ‘Π A B K = (a : J A K) → J B a K

Recall our naming convention of prefixing universe code constructors (e.g.,

‘Bool) with a backtick to distinguish the code (the “quoted” version of the type)

from the actual type it models (in this case Bool, which is the result of applying

the meaning function to the code). For closed type theories we establish the new

naming convention of prefixing the type of codes (e.g., ‘Set) with a backtick. Thus

the type of the meaning function is a function whose domain is ‘Set (a “quoted”

type of types) and whose codomain is Set (the actual type of types). This promotes

our definition-level quoting analogy (J ‘Bool K = Bool) to the type signature level

(J_K : ‘Set → Set).

Finally, notice that ‘Set is inductive-recursive (Section 2.1.9), as its ‘Σ and ‘Π

constructors refer to the meaning function in their codomain argument (B). Any

universe modeling a dependently typed language is similarly inductive-recursive,

as the universe must have Π types to qualify as a model for DTT.

65

4.1.2 Fully Generic Functions

Just like the fully closed BoolStar universe of Section 3.3.4, ‘Set also supports

writing fully generic functions. Fully generic functions, over a universe model of

a closed type theory, model pattern matching on types (Set) by pattern matching

on codes (‘Set) instead. Therefore, a generic function over all values of all types is

modeled by matching on a code, then a value from the interpretation of that code,

followed by any additional arguments and the return type.

(A : ‘Set)→ J A K→ ...

Thus pattern matching on types is supported in a closed type theory, because

we know ahead of time that the collection of types will never be extended (hence

total functions over types never become partial).

Fully Generic Sum without Function Body

Our example fully generic function is sum, summing up all natural numbers (and

values that can be coerced into natural numbers) contained within a value of the

closed vector universe.2

sum : (A : ‘Set) (a : J A K) → N

Let’s begin with summing values of base types (non-function type formers, like

Bool): Summing a natural number just means returning it. We can never receive a

value of the empty type, so we need not define that case. The sum of unit is 0. The

sum of a boolean is 0 if it is false, and 1 if it is true (true is the second constructor

of Bool, just as suc zero is the second value in the ordered natural numbers). The

sum of a finite set Fin value is 0 for the here index, and the successor of the previous

2 The sum function is different from the count function (from Section 1.2.2, which sums the
total number of nodes). Instead, sum returns the sum of all values that have been interpreted as
natural numbers by coercion.

66

index for the there case.

sum ‘N n = n
sum ‘⊥ ()
sum ‘> tt = 0
sum ‘Bool true = 0
sum ‘Bool false = 1
sum (‘Fin (suc n)) here = 0
sum (‘Fin (suc n)) (there p) = suc (sum (‘Fin n) p)

We sum a vector by adding together all of the values it contains, where each

value is interpreted as a natural number by recursive application of sum. The

empty vector contains no values, so its sum is 0.

sum (‘Vec A zero) nil = 0
sum (‘Vec A (suc n)) (cons x xs) = sum A x + sum (‘Vec A n) xs

A pair is like a two-element vector, so we sum a pair by adding its components.

Finally, the sum of a function is 0.

sum (‘Σ A B) (x , xs) = sum A x + sum (B x) xs
sum (‘Π A B) f = 0

Defining the sum of a function to be 0 may seem unsatisfying, as its body

contains other values of our closed vector universe. Consider the types of variables

in context when defining the function case of sum:

B : J A K → ‘Set
f : (x : J A K) → J B x K

The sum cases for pairs and functions are actually for dependent pairs (‘Σ) and

functions (‘Π). Notice that, in our definition of sum for pairs, the recursive call of

sum for the second component applies the codomain B to an J A K value. Luckily,

the first component of the pair (x) is exactly the value we need. If we wanted

to provide an alternative definition of sum for functions, we would have no such

luck because the value we are summing (f) is itself a function (i.e., there is no x in

67

sight). In the next section we change our definitions to end up with an x in the

function case that we can pass to both B and f.

Fully Generic Sum with Function Body

Step back for a moment and consider what the sum of a function should mean.

One interpretation is to consider the sum of a function to be many possible sums,

one for each argument in the domain of the function. Under this interpretation our

sum is missing an argument, one that provides a domain value for each occurrence

of a function in the closed vector universe value we wish to sum.

In other words, we consider our previous definition of sum to be a partial

function (we cannot appropriately define the function case). In Section 3.4.5 we

learned how to create a total function from a partial one by adding a domain

supplement. Below, we define the computational argument family Sum to be used

as a domain supplement for sum.

The most significant case is the supplement for functions, in which we request

the interpretation of A as an additional argument (let’s call it x). When defining

sum we will want to use x to recursively sum the body of the function, so we also

recursively request a supplement for the codomain of our function (B) applied to

x.

Sum : (A : ‘Set) → J A K → Set
Sum (‘Π A B) f = Σ J A K (ń x → Sum (B x) (f x))

A pair may contain functions in either of its components, so we recursively

request supplements for its domain and codomain. An empty vector requires no

supplement, but a non-empty vector requires one for each of its elements. Finally,

the base types do not need supplemental values to sum them, so their supplement

is a trivial unit value.

Sum (‘Σ A B) (x , xs) = Sum A x × Sum (B x) xs
Sum (‘Vec A zero) nil = >

68

Sum (‘Vec A (suc n)) (cons x xs) = Sum A x × Sum (‘Vec A n) xs
Sum A a = >

Below the domain of sum’s type is altered to take the supplement Sum as an

additional argument.

sum : (A : ‘Set) (a : J A K) → Sum A a → N

The only change we make to defining sum for base types and Fin is to ignore the

additional trivial unit value (tt), and to supply it as an argument in the recursive

case of ‘Fin.

sum ‘⊥ () tt
sum ‘> tt tt = 0
sum ‘Bool false tt = 0
sum ‘Bool true tt = 1
sum ‘N n tt = n
sum (‘Fin (suc n)) here tt = 0
sum (‘Fin (suc n)) (there p) tt = suc (sum (‘Fin n) p tt)

Summing pairs and vectors is also relatively unchanged. For pairs the only

difference is that we thread along the left component of the supplement (y) when

summing the left component of the pair (x), and the right component of the sup-

plement (ys) when summing the right component of the pair (xs). Summing a

non-empty vector is similar to summing a pair, and summing an empty vector

remains 0.

sum (‘Σ A B) (x , xs) (y , ys) = sum A x y + sum (B x) xs ys
sum (‘Vec A zero) nil tt = 0
sum (‘Vec A (suc n)) (cons x xs) (y , ys) = sum A x y + sum (‘Vec A n) xs ys

Finally, we can sum a function by summing its body. Its body is obtained

by applying the function f to x (whose type is the interpretation of A), readily

available in the domain supplement. Of course, the body may have additional

69

functions to sum, so we thread along the domain supplement y for any of those.

sum (‘Π A B) f (x , y) = sum (B x) (f x) y

Conclusion

The Closed Vector Types universe has enough types to write a lot of interesting

functions, but the specific collection of types that our closed type theory contains

is arbitrarily chosen. What if we later decide we also want binary trees? By

definition we cannot add custom types to a closed type theory (and if we did it

would violate the totality of generic functions over the original universe). Next (in

Section 4.2) we see how to model a closed type theory that does support custom

user-defined types.

4.2 CLOSED ALGEBRAIC UNIVERSE

On one hand, we would like a closed type theory because it supports fully generic

programming (Section 3.3.4) via pattern matching on types (modeled by pattern

matching on codes of types). On the other hand, we want to support custom user-

defined types (like an open type theory) that may not be present in the closed

collection of types we fixed ahead of time.

What if our closed theory had enough primitive base types and type families

to simulate adding new algebraic datatypes to the language? That is, we want to

support translating any “new” type declaration into an isomorphic type defined in

terms of our closed collection of primitive types. In this section we present such a

theory and call it the Closed Well-Order Types universe.

70

4.2.1 Closed Well-Order Types

The type of well-orderings (W) is used to define the semantics of inductive datatypes

in type theory, and is the key to solving our problem. After pruning some deriv-

able types from the previous universe and adding W types, we get a closed type

theory (the Closed Well-Order Types universe) that can internally represent any

type that would normally extend the language in an open type theory. Before

explaining what W types are and how they can be used to derive inductive types

(Section 4.2.2), we use them below to define a closed type theory universe sup-

porting custom user-defined types.

data ‘Set : Set where
‘⊥ ‘> ‘Bool : ‘Set
‘Σ ‘Π ‘W : (A : ‘Set) (B : J A K → ‘Set) → ‘Set

J_K : ‘Set → Set
J ‘⊥ K = ⊥
J ‘> K = >
J ‘Bool K = Bool
J ‘Σ A B K = Σ J A K (ń a → J B a K)
J ‘Π A B K = (a : J A K) → J B a K
J ‘W A B K = W J A K (ń a → J B a K)

The closed type theory above consisting of the empty type (⊥), the unit type

(>), and booleans (Bool) closed under dependent pair (Σ) formation, dependent

function (Π) formation, and well-order (W) formation allows us to model datatype

declarations. We show how to model datatype declarations by translating them

into W types and other primitive types in Section 4.2.2. In Section 4.2.3 we show

that the universe of this section is sufficient for all such translations.

71

4.2.2 Open Well-Order Types

The type of well-orderings [21] (W) can be used to model inductive datatype decla-

rations as well-founded trees.3 It is defined below, where the A parameter encodes

non-inductive arguments for each constructor of an algebraic datatype, and the

cardinality of B a encodes the number of inductive arguments for each construc-

tor.4 The W type of well-orderings is open due to its two open type parameters,

A and B (in contrast, the arguments of the closed ‘W constructor are closed ‘Set

types.).

data W (A : Set) (B : A → Set) : Set where
sup : (a : A) (f : B a → W A B) → W A B

We show how to model the semantics of inductive datatypes using W by:

1. Starting with a high-level inductive datatype declaration.

2. Translating between a series of isomorphic datatype declarations.

3. Finally reaching a datatype declaration that can be encoded using a W type.

As an example of elaborating a datatype declaration to a W type, we begin

with the Tree type below. In the series of paragraphs that follow, we change the

definition of Tree by applying isomorphisms. Our binary Tree type begins with

leaves containing A values and binary branches containing B values in the middle

of each branch.

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : Tree A B → B → Tree A B → Tree A B

3 The etymology of “well-orderings” comes from W being the constructive version of the
classical notion of a well-order. A well-order interprets a set as an ordinal α and a relation
specifying which ordinals are less than α. However, in this thesis we focus on the more practical
interpretation of W types as a means to define algebraic datatypes.

4 Besides cardinailty, the content of the B parameter also determines the domain of infinitary
arguments [37].

72

A × B → C ∼= A → B → C Replace multiple arguments of constructors by a

single uncurried argument. Single argument constructors remain unchanged.

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : Tree A B × B × Tree A B → Tree A B

A × B ∼= B × A By commutativity of pairs, rearrange inductive constructor

arguments to all appear at the end.

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : B × Tree A B × Tree A B → Tree A B

A × B ∼= Π Bool (ń b → if b then A else B) A non-dependent pair can

be defined as a dependent function from a boolean to each component of the

pair. Replace all pairs of inductive constructor arguments with such a dependent

function whose domain cardinality is equal to the number of inductive arguments

for that constructor (i.e., Bool for 2 inductive arguments and ⊥ for 0 inductive

arguments).

data Tree (A B : Set) : Set where
leaf : A × (⊥ → Tree A B) → Tree A B
branch : B × (Bool → Tree A B) → Tree A B

(A → C)] (B → C) ∼= A] B → C Replace the collection of constructors

with a single constructor. The new constructor’s argument type is the tuple of

right-nested disjoint unions formed from the argument types of each old construc-

tor.

data Tree (A B : Set) : Set where
list : (A × (⊥ → Tree A B))

73

] (B × (Bool → Tree A B))
→ Tree A B

(A × B)] (A’ × B’) ∼= Σ (A] A’) (ń x → if isLeft x then B else B’)

Replace the disjoint union of pairs whose domain is non-inductive arguments and

codomain is inductive arguments, with a single pair whose domain is the disjoint

union of non-inductive arguments and codomain is the disjoint union of inductive

arguments.5

data Tree (A B : Set) : Set where
list : Σ (A] B) (ń x → if isLeft x

then (⊥ → Tree A B)
else (Bool → Tree A B))
→ Tree A B

data ∼= W Encode the final datatype declaration as a W type by using the first

component of the pair for the A parameter, and the domains of each function in

the second component of the pair for the B parameter.

Tree : Set → Set → Set
Tree A B = W (A] B) ń x → if isLeft x

then ⊥
else Bool

4.2.3 Inadequacy of Well-Orders

It would seem like W is a sufficient datatype to represent any inductive datatype

a user would define. Any Open Well-Order Type (i.e., any open algebraic type

defined using W) can be translated to a Closed Well-Order Type, or a value of type

‘Set, by using the sufficient collection of primitive ‘Set constructors.

5 For datatypes with infinitary arguments, B and B’ may depend on A and A’ respectively,
so the if conditional is replaced by case analysis.

74

For example, below we derive closed disjoint unions in terms of closed dependent

pairs (‘Σ) and booleans (‘Bool), and then translate the open Tree type to a closed

version defined using the closed well-ordering (‘W) type former.

‘] : ‘Set → ‘Set → ‘Set
A ‘] B = ‘Σ ‘Bool (ń b → if b then A else B)

‘Tree : ‘Set → ‘Set → ‘Set
‘Tree A B = ‘W (A ‘] B) ń x → if (not (proj1 x))

then ‘⊥
else ‘Bool

If W were adequate for our purposes, then this thesis could focus on writing fully

generic functions over the Closed Well-Order Type universe (‘Set) of Section 4.2.

We could write functions similar to sum from Section 2.2.3, except they would

work for any custom user-defined type! W types can be extended to support

definitions of indexed types (Section 2.1.5), which are isomorphic to inductive-

recursive (Section 2.1.9) types. However, there is one major issue:

Inadequacy The base cases of inductively defined datatypes using W have an

infinite number of intensionally distinct values. Recall that the base case leaf had

⊥ → Tree A B as its inductive argument. Because the domain of the function

is bottom, we can write it many different ways (i.e., elim⊥, elim⊥ ◦ elim⊥, etc.).

Even though all leaves containing such functions are extensionally equivalent, it

is inadequate [40] to have an infinite number of intensionally (or, definitionally)

distinct canonical forms for the model of Tree (whose initial declaration was first-

order).6

6 McBride also explains [40] that W types are inadequate for representing inductive types in
Observational Type Theory (OTT) [4], where evidence of extensional equality is internalized in
the types of the theory (unlike Extensional Type Theory, where the evidence is at the judgmental
level). In OTT, coercion between extensionally equal values requires explicit evidence of the
extensional equality, but this evidence is erased when coercing between equal values (rather than
neutral terms, and also assuming that the evidence is a value rather than a neutral term). In

75

W types are inadequate for our purposes because we are interested in depen-

dently typed languages (like Agda) implementing intensional type theory, rather

than extensional type theory. For this reason, we represent algebraic datatypes

using initial algebra semantics (instead of W types), as covered in Chapter 5. In

Chapter 6 we define a universe suitable for modeling closed type theory (i.e., a

dependently typed language supporting fully generic programming), using closed

initial algebra semantics, and analogous to the Closed Well-Order Types universe

of Section 4.2.

OTT, the induction principle of an inductive type can be derived from the induction principle
of W. However, coercion only erases the equality evidence used in the definition of the derived
induction principle for one of the infinitely many base cases of an inductive type (for example,
zero as elim⊥ would be erased, but elim⊥ ◦ elim⊥, and subsequent compositions of elim⊥, would
not).

76

Part II

Open Type Theory

77

Chapter 5

OPEN ALGEBRAIC UNIVERSES

In Section 4.2.2 we derived custom user-defined types as well-founded trees, or

well-orderings (W types). W types can be used to model datatype declarations in

a closed type theory (Section 4.2.1), without actually extending the metalanguage

as done in open type theory. Unfortunately, W types are inadequate (Section 4.2.3)

models of first-order canonical terms.

In this chapter we present an adequate alternative to modeling datatype decla-

rations, using initial algebra semantics. In initial algebra semantics a datatype is

modeled as the least fixed point (or fixpoint for short) of a pattern functor. First,

we define an initial algebra semantics for datatypes in the language of category

theory, denoting types by their categorical model. Then, we show the equivalent

initial algebra semantics in the language of type theory (as implemented by Agda),

denoting types by their formal model. We do not fully define the constructions in

the categorical model, but rather appeal to widely known concepts to inspire and

elucidate the equivalent constructions in the formal model. For example, the syn-

tax of pattern functors from the categorical model becomes the type of descriptions

(Desc) in the formal model, and the fixpoint operator from the categorical model

becomes the µ type (parameterized by Desc) in the formal model.

This chapter defines the initial algebra semantics for a series of progressively

more expressive classes of datatypes. All formal models in the series are expressed

as an open universe. The series ends with a formal model for inductive-recursive

types, which can also be used to model indexed types. In Chapter 6 we adapt the

formal model of inductive-recursive types as an open universe (Section 5.4) to a

78

closed universe (Section 6.2), suitable for fully generic programming.

Major Ideas The purpose of this chapter is to define the type of fixpoints (µ1)

used to model inductive-recursive types. This fixpoint type is added as a built-in

type to our closed universe of user-declared types in Chapter 6, over which we per-

form fully generic programming in Chapter 7. This chapter reviews initial algebra

semantics for datatypes, and does not contain any novel technical contributions.

But, we build up to defining inductive-recursive fixpoints by starting from fixpoints

for non-dependent types (Section 5.1), then moving to infinitary non-dependent

types (Section 5.2), then moving to dependent types (Section 5.3), and finally

arriving at fixpoints for inductive-recursive types (Section 5.4).

Our non-technical contribution is relating initial algebra semantics for these

progressively more complex classes of datatypes using common terminology, while

providing both a categorical and formal model of each class of datatypes. The

model of non-dependent types in Section 5.1 is the same as the model given by

Norell [48]. We make a minor extension of that model in Section 5.2 to support

infinitary types. The model of inductive-recursive types in Section 5.4 is due to

Dybjer and Setzer [22, 23]. In Section 5.3 we present a restriction of the model of

Dybjer and Setzer to support dependent and infinitary types, but not inductive-

recursive types. This restriction is somewhat interesting because its functors are

still defined as a sequence of dependent pairs, ending in the unit type, or a “depen-

dent tuple”. More conventionally, dependent polynomials are not restricted to such

a dependent tuple format. We only use dependent tuple functors for dependent

types in Section 5.3 so that the explanation of functors for inductive-recursive types

in Section 5.4 progresses naturally from the explanation of functors for dependent

types in Section 5.3.

79

5.1 OPEN NON-DEPENDENT TYPES

In this section we review the initial algebra semantics for non-dependent and po-

tentially inductive (Section 2.1.3) types. We begin with the categorical model, and

then transition to the formal model (i.e., within type theory) by converting ab-

stract mathematical constructs to concrete datatypes (analogous to how we model

the abstract notion of a universe as concrete code and meaning function types in

Section 2.2.1).1 Henceforth, when we say “categorical model” or “formal model”,

we omit clarifying that these models are used as an initial algebra semantics of

types.

5.1.1 Categorical Model

The categorical model of an inductive datatype is the least fixed point of a poly-

nomial equation represented as a pattern functor (F : Set → Set). The pattern

functor is an endofunctor from the category of sets to itself. We are only concerned

with the object map of the pattern functor, which maps a Set (representing a type)

to another Set.

The input of the pattern functor (conventionally named X) represents the in-

ductive set being defined, and its output must be a set formed by polynomial

set constructions. The polynomial set constructions are denoted 1, (+), (·), and

X, and represent the unit set, the sum of two sets, the product of two sets, and

inductive occurrences of the set. Hence, algebraic datatypes can be encoded as

sums-of-products by using pattern functors, where “pattern” means that the func-

tors are restricted to the language of polynomial set expressions.

1 Here the words “abstract” and “concrete” have their general meanings, not the technical
meanings we defined in Section 3.3.

80

Natural Numbers For example, consider the datatype declaration for the nat-

ural numbers.

data N : Set where
zero : N
suc : N → N

The categorical model of the N type is the following fixpoint equation.

N , µX. 1 +X

The plus operator (+) represents a choice between constructors, and is analo-

gous to the disjoint union type (]). Thus, above the left summand (1) represents

the zero constructor and the right summand (X) represents the suc constructor.

The zero constructor is represented by 1 (analogous to the unit type >) because

it lacks arguments (or isomorphically, it has a single trivial argument). The suc

constructor is represented by the variable X, indicating that it takes an inductive

argument. This is because µ is binding X (in the semantic expression µX. 1 +X)

so that it may be used for inductive occurrences of N.

The equation used above is actually a shorthand for explicitly defining a pattern

functor F : Set→ Set and obtaining its least fixed point by applying µ : (Set→

Set)→ Set.

F , λX. 1 +X

N , µ F

Consider the notation using µ as a binder to be a shorthand for taking the

fixpoint of an anonymous functor obtained by replacing the binding with a λ.

µX. 1 +X , µ (λX. 1 +X)

81

Binary Trees As another example, consider the type of binary trees (parame-

terized by A and B) containing A’s in leaf positions and B’s in branch positions (as

presented in Section 4.2.2).

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : Tree A B → B → Tree A B → Tree A B

The categorical model of the Tree type is the following fixpoint equation.

Tree , λA. λB. µX. A+X ·B ·X

The leaf constructor takes a single argument of type A, so the constructor

is represented by A (which is bound by a λ). The branch constructor has two

inductive arguments and a non-inductive argument of type B. Thus, its inductive

arguments are represented by X (bound by µ) and its non-inductive argument is

represented by B (bound by another λ). The multiplication operator (·) represents

multiple arguments of a constructor as a conjunction, and is analogous to the pair

type (×). Hence, the multiplication operator is used to define the “products” part

of a constructor with multiple arguments, in the sum-of-products representation

of datatypes.

5.1.2 Formal Model

To take advantage of a categorical model of initial algebra semantics within type

theory, we create a formal model by translating abstract definitions to concrete

datatypes and functions. Recall that µ semantically defines a datatype by taking

the fixpoint (using µ) of a pattern functor F : Set → Set. It is called a pat-

tern functor because its “pattern” must be restricted to using the polynomial set

constructions covered in Section 5.1.1.

Informally (in the categorical model), we can check that a functor is defined

under these restrictions, but in type theory (in the formal model) we must formally

82

capture these restrictions. We define the formal model by reifying:

1. The pattern fragment (enforcing the restriction to a polynomial language) of

functors as a datatype (Desc below).

2. The actual pattern functor as a computational type family (J_K below)

3. The fixpoint operator as a datatype (µ below).

Descriptions The first part of our formal model is the type of descriptions

(Desc), a syntax for the pattern fragment of functors. A Desc is the syntactic

reification of the polynomial expression language that must be used for a functor

to qualify as a pattern functor (i.e., a Desc “describes” a valid, or pattern, functor).

Rather than defining a pattern functor directly, we first represent it as a Desc such

that any well-typed description can be converted into a functor meeting all pattern

restrictions.

Below, the Desc constructors ‘1, ‘X, (‘+), and (‘•) respectively reify a syntax

for the 1, X, (+), and (·) polynomial set constructions. Of special note is the

‘κ constant constructor. The constant constructor reifies a syntax for injecting

non-inductive constructor arguments (such as A in the leaf constructor of Tree). 2

data Desc : Set1 where
‘1 ‘X : Desc
‘+ _‘•_ : Desc → Desc → Desc
‘κ : Set → Desc

For example, below is the description for the natural numbers datatype.

NatD : Desc
NatD = ‘1 ‘+ ‘X

Technically, ‘1 is subsumed by ‘κ applied to the unit type (>), but we keep

2 As is often the case with injections, its syntax is implicit (i.e., invisible) when defining
pattern functors using polynomial set constructions. For example, the categorical model of trees,
using κ for explicit non-inductive arguments, would be λA. λB. µX. κ A+X · κ B ·X.

83

‘1 for legibility. For example, natural numbers can equivalently be described as

follows.

NatD : Desc
NatD = ‘κ > ‘+ ‘X

Finally, note that we establish another convention of “quoting” description

constructors with a backtick (e.g., ‘X for X). This emphasizes that they are a

syntactic encoding of polynomial set constructions. As we will see, quoting Desc

constructors is natural as they also act as codes of a universe (Section 8.2.1).

Pattern Functors The next part of our formal model is the reification of pattern

functors (F : Set→ Set) as type families (Section 2.1.6) with Set as their domain

(F : Set → Set). Rather than defining F directly, we define a computational type

family (Section 2.1.11) to interpret (J_K : Desc → Set → Set) the language of

polynomial set constructions (Desc) as a pattern functor.

J_K : Desc → Set → Set
J ‘1 K X = >
J ‘X K X = X
J A ‘+ B K X = J A K X] J B K X
J A ‘• B K X = J A K X × J B K X
J ‘κ A K X = A

By partially applying the interpretation function to a description, we get a

model of a pattern functor F (rather than an arbitrary non-pattern functor).

∀D. J D K , F

For example, below we instantiate D to be the description of natural numbers

(NatD, defined as ‘1 ‘+ ‘X), and demonstrate the functor produced by partially

applying the interpretation function to NatD.

J NatD K ≡ (ń X → >] X)

Recall that the input to the pattern functor (F : Set → Set) represents the

84

inductive occurrences of the datatype being modeled. A sound model must rule

out pattern functors representing datatypes that are not consistent in type theory,

such as negative datatypes like Neg of Section 2.1.8.

In Agda, we could directly define the functor for Neg to be (F X = X → X),

modeling the negative inductive occurrence of Neg in the argument to neg by using

X in the domain of the function type. However, defining a fixpoint datatype for

such a negative functor would be rejected by Agda’s positivity checker, as it would

make the language unsound.

Instead, we choose to define functors indirectly by partially applying a descrip-

tion to the interpretation function (rather than defining functors directly like the

one for Neg above). In other words, the output Set of F is only composed of type

theory equivalents of polynomial set constructions. For example, the output Set

may use disjoint unions (]), modeling (+), by interpreting the (‘+) description. It

may not use other arbitrary types lacking a polynomial set construction equivalent

(because their is no Desc for them), like functions (→) with negative occurrences

of X.

Finally, note that it may appear that ‘κ could be used to inject many non-

polynomial types. While this is true, it is not problematic because the type (A)

that ‘κ injects must be non-inductive. The non-inductivity of A is enforced because

A must be a type defined independently of X. In other words, the interpretation

of ‘κ (i.e., J ‘κ A K X = A) does not pass X to A.

Fixpoints The final part of our formal model is the reification of the least fixed

point operator (µ : (Set → Set) → Set) for pattern functors. We reify the least

fixed point operator (µ : Desc→ Set) as a datatype parameterized by a description,

rather than a pattern functor (Set→ Set).

While the categorical model applies the least fixpoint operator directly to a

pattern functor (µ F), our model instead applies it to a description (µ D). The

85

pattern functor (Set → Set) argument of µ can be derived by the model µ by

partially applying the interpretation function to the description argument (J D K :

Set → Set). Below is the datatype declaration for the fixpoint operator (µ), and

its constructor (init) is declared shortly thereafter.

data µ (D : Desc) : Set where

In the categorical model the initial algebra (αinit) is used to construct values of

the fixpoint of a functor F .

αinit : F (µ F)→ µ F

Applying F to its least fixed point (µ F) results in a type isomorphic to its

fixpoint. In other words, the Set (or Set in the formal model) resulting from

F (µ F) represents the types of constructors (and the types of their arguments)

of µ F . Therefore, the formal model of the fixpoint operator (µ) has a single

constructor named init (for initial algebra), corresponding to αinit in the categorical

model.

init : J D K (µ D) → µ D

Recall that we model the pattern functor (F) by partially applying (J D K)

the interpretation function to the description of the pattern functor. Additionally,

our model of the fixpoint operator applies it to a description (µ D), rather than a

pattern functor directly. Therefore, the type of the argument to init represents the

types of the constructors (and the types of their arguments) for µ D.

For example, we can define the type of natural numbers (described by NatD as

‘1 ‘+ ‘X) as follows.

N : Set
N = µ NatD

Natural numbers are constructed by applying init to values of the following

86

type.

J NatD K N ≡ (>] N)

Finally, notice that descriptions and fixpoints can also be interpreted as a

universe (i.e., the universe of open algebraic types) by considering them to be

codes (Desc : Set) and a meaning function (µ : Desc → Set) respectfully.

5.1.3 Examples

Having formally modeled initial algebra semantics by reifying parts of the cate-

gorical model as datatypes of type theory, now we provide examples of modeling

specific type formers and values (using the formal model).

Natural Numbers We have already seen how to encode the type of natural

numbers as the disjunction of the unit type and an inductive occurrence.

NatD : Desc
NatD = ‘1 ‘+ ‘X

N : Set
N = µ NatD

Recall that the type of the argument to the init constructor represents a choice of

which constructor to use, and the types of the arguments for the chosen constructor.

For the natural numbers, this type specializes as follows.

J NatD K N ≡ (>] N)

To model the zero constructor, we choose the left injection of the disjoint union

type (defined in Section 2.1.4), and apply it to the trivial unit constructor.

zeroArgs : >] N
zeroArgs = inj1 tt

To construct a value of a fixpoint (e.g., µ NatD), rather than the meaning

87

function applied to its fixpoint, we must apply the initial algebra (init). We leave

out describing this step explicitly in future exposition.

zero : N
zero = init zeroArgs

To model the suc constructor, we apply the right injection of disjoint union to

the previous natural number (n), given as a function argument.

suc : N → N
suc n = init (inj2 n)

There is no need to provide examples of using natural numbers encoded using

our formal model. Once we model the type former and constructors according

to their standard interface (i.e., their standard type signatures), their usage is

indistinguishable from using type formers and constructors defined using datatype

declarations (rather than µ).

two : N
two = suc (suc zero)

The example above expands to the encoded term below, but by using the

standard interface of type formers and constructors we do not need to construct it

manually.

two’ : µ (‘1 ‘+ ‘X)
two’ = init (inj2 (init (inj2 (init (inj1 tt)))))

Similarly, any function defined by pattern matching can retain its standard ap-

pearance of pattern matching on declared constructors by using pattern synonyms.

Pattern synonyms are a notational feature of Agda that expands the left hand

syntax to the term on the right hand side. Pattern synonyms can be used in the

pattern matching fragment of the language. Thus, by defining pattern synonyms

for zero and suc to expand into their init encodings, we can write functions like

88

plus in a way that is oblivious to the underlying encoding.

pattern zero = init (inj1 tt)
pattern suc n = init (inj2 n)

plus : N → N → N
plus zero m = m
plus (suc n) m = suc (plus n m)

The addition function above expands to the version below, defined by pattern

matching on constructors of our encoding (init et al.). The encoding also expands

in the body of the function, such as the successor case of the addition function.

plus’ : µ (‘1 ‘+ ‘X) → µ (‘1 ‘+ ‘X) → µ (‘1 ‘+ ‘X)
plus’ (init (inj1 tt)) m = m
plus’ (init (inj2 n)) m = init (inj2 (plus’ n m))

In future examples, we omit examples of non-constructor values and functions

defined over modeled types. As explained, once we have derived the type former

and constructors of a type using the primitives of our formal model, using the types

to define values and function definitions is indistinguishable from using declared

types thanks to syntactic conveniences afforded by Agda. Hence, all functions

defined over declared types in Section 2.1 can be reused as functions over our

formally modeled algebraic types.

Binary Trees The type of binary trees (Section 5.1.1) is modeled by a function

taking its parameters (A and B), and returning the description of the disjoint

union of A (encoding the leaf constructor), and the triple (as 2 right-nested pairs)

consisting of two inductive occurrences and B (encoding the branch constructor).

TreeD : Set → Set → Desc
TreeD A B = ‘κ A ‘+ (‘X ‘• (‘κ B ‘• ‘X))

Tree : Set → Set → Set

89

Tree A B = µ (TreeD A B)

J TreeD A B K (Tree A B) ≡ (A] (Tree A B × (B × Tree A B)))

To model the leaf constructor, we apply the left disjoint union injection to the

function argument of type A (i.e., the node value for the leaf).

leaf : {A B : Set} → A → Tree A B
leaf a = init (inj1 a)

To model the branch constructor, we apply the right disjoint union injection to

a triple (2 right-nested pairs). The triple consists of the first inductive function

argument (i.e., the left branch), the function argument of type B (i.e., the node

value for the branch), and the second inductive function argument (i.e., the right

branch).

branch : {A B : Set} → Tree A B → B → Tree A B → Tree A B
branch t1 b t2 = init (inj2 (t1 , (b , t2)))

λ-Calculus Terms We introduce the type of untyped λ-calculus terms (Term)

as a final and slightly more complex example (i.e., modeling a type with more than

2 constructors). Below we declare the Term type consisting of variable references

(var), lambda abstractions (lam), and applications (app).

data Term : Set where
var : (n : N) → Term
lam : (b : Term) → Term
app : (f : Term) (a : Term) → Term

Our untyped lambda calculus terms use a deBruijn [15] encoding for variables.

A deBruijn-encoded term references variables by a natural number index, where 0

refers to the variable bound by the most recent λ (and 1 refers to the next most

recent, and so on). For example, below is a high-level syntax for the Church-

encoded [8] numeral one and its deBruijn-encoded equivalent. In the example,

90

the term on the left names its variables, while the term on the right uses deBruijn

variables, but both terms Church-encode the numeral one.

one , λf. λx. f x , λ (λ 1 0)

As a Term, we write the deBruijn-encoded numeral one as follows. Note the

applications of the variable constructor (var) to natural numbers (N) to refer to

variables by their deBruijn index.3

one : Term
one = lam (lam (app (var 1) (var 0)))

To model Term, we describe the disjoint union of the natural numbers (encoding

var) with the disjoint union of an inductive occurrence (encoding lam) and a pair

of inductive occurrences (encoding app). This models three constructors using two

right-nested disjoint unions.

TermD : Desc
TermD = ‘κ N ‘+ (‘X ‘+ (‘X ‘• ‘X))

Term : Set
Term = µ TermD

J TermD K Term ≡ (N] (Term] (Term × Term)))

To model the var constructor, we apply the left disjoint union injection to the

natural number argument.

var : N → Term
var n = init (inj1 n)

To model the lam constructor, we apply the left disjoint union injection to: the

3 Our Term type is not scope safe in the sense that their could be natural numbers that are out
of bounds with respect to the number of lam occurrences. We could index Term by the natural
numbers to enforce scope safety, but this additional complexity only makes later examples (of
the semantics for Term, already defined using indexed types) harder to read without introducing
new concepts.

91

right disjoint union injection applied to the inductive argument.

lam : Term → Term
lam b = init (inj2 (inj1 b))

To model the app constructor, we apply the left disjoint union injection to:

another left disjoint union injection but applied to a pair of inductive arguments.

app : Term → Term → Term
app f a = init (inj2 (inj2 (f , a)))

5.2 OPEN INFINITARY TYPES

In this section we review the initial algebra semantics for infinitary (Section 2.1.8)

non-dependent types. We extend our previous categorical model, formal model,

and examples, to support infinitary constructor arguments.

5.2.1 Categorical Model

The categorical model of infinitary inductive datatypes reuses the 1, (+) and (·)

polynomial set constructions. However, the inductive occurrences construction X

is subsumed by the infinitary occurrences construction XA. Functions are the

type theoretic equivalent of exponential terms, where X raised to the power of A

is equivalent to a function with domain A and codomain X.4

XA , (A→ X)

Therefore, XA is notation for an infinitary polynomial set construction whose

domain is A and whose codomain is an inductive occurrence. Any non-infinitary

inductive argument X can be isomorphically expressed as an infinitary argument

by raising X to the power of 1 (or equivalently, a function whose domain is 1 and

whose codomain is X).

4 If A and X are finite sets, then the cardinality of XA is equal to the cardinality of the graph
of the function A→ X.

92

X ∼= (X1 , 1→ X)

Natural Numbers For example, consider the infinitary (but isomorphic) dec-

laration of the natural numbers below. The inductive argument to the suc con-

structor has been replaced with the infinitary argument f, using the unit type as

its domain.

data N : Set where
zero : N
suc : (f : > → N) → N

The categorical model of the infinitary N type is the fixpoint equation below.

N , µX. 1 +X1

The only difference between the non-infinitary and infinitary N is that con-

structing it with suc must supply a function ignoring a > argument, and destruc-

ting suc requires applying f to the trivial value tt to access the inductive value in

the body of f.

Binary Trees Below is a straightforward infinitary encoding of binary trees,

replacing both inductive arguments of branch with infinitary ones by using the

unit type as the domain.

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : (f : > → Tree A B) (b : B) (g : > → Tree A B) → Tree A B

This translates to the categorical model of infinitary binary trees below, without

any surprises.

Tree , λA. λB. µX. A+X1 ·B ·X1

However, recall our series of isomorphic translations of the binary tree declara-

tion used to model Tree via W types (Section 4.2.2). We can borrow two of those

93

isomorphisms to transform Tree into a less trivial instance of an infinitary type

(i.e., one whose infinitary domains are types other than unit).

First, we reorder the b argument (of type B) to the front via symmetry (A ×

B ∼= B × A), swapping b and the inductive argument t1 so that both inductive

arguments (t1 and t2) to appear at the end of branch.

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : (b : B) (t1 : Tree A B) (t2 : Tree A B) → Tree A B

Second, we appeal to the isomorphism that defines a non-dependent pair (the

two arguments t1 and t2 above) as a dependent function (f below) from Bool to

each component of the pair (A × B ∼= Π Bool (ń b → if b then A else B)).

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : (b : B) (f : Bool → Tree A B) → Tree A B

This translates both inductive arguments into a single infinitary argument,

where the domain is now Bool instead of >. It makes sense for the domain (i.e.,

branching factor) to be Bool, as we are defining binary trees. Given that the

cardinality of Bool is 2, we use initial algebra semantics to define a categorical

model of infinitary binary trees by raising X to the power of 2 in the encoding of

the branch constructor.

Tree , λA. λB. µX. A+B ·X2

5.2.2 Formal Model

To formally model infinitary types, we make minor changes to our previous non-

infinitary formal model (Section 5.1.2). In all aspects of our formal model, we

change from modeling merely inductive occurrences of types (X) to infinitary oc-

currences (XA).

94

Descriptions Our formal model of descriptions stays the same, except that we

replace the syntax for inductive occurrences (‘X) with a syntax for infinitary oc-

currences (‘X^). While inductive occurrences (‘X) have no arguments, infinitary

occurrences (‘X^) have a Set argument representing the domain of the infinitary

function type.

data Desc : Set1 where
‘1 : Desc
‘+ _‘•_ : Desc → Desc → Desc
‘κ ‘X^ : Set → Desc

For example, below we convert the suc constructor in the description of natural

numbers to take an infinitary argument with a trivial domain.

NatD : Desc
NatD = ‘1 ‘+ ‘X^ >

Finally, note that the “caret” in the syntax of infinitary occurrences (‘X^)

connotes raising an inductive occurrence to some power (the power being the car-

dinality of the domain argument of type Set).

Pattern Functors Again, pattern functors (F : Set → Set) are not formally

modeled directly. Instead, the formal model of a pattern functor (F : Set → Set)

is the result of partially applying the interpretation function to a description (J_K

: Desc → Set → Set).

The interpretation of all patterns besides the infinitary pattern ‘X^ remains the

same. The infinitary pattern ‘X^ A is interpreted as a function with domain A and

codomain X. It is crucial that X (representing an inductive occurrence) appears

in the codomain (rather than domain) of the function. Otherwise, our subsequent

fixpoint construction (µ) would support negative datatypes (the Agda positivity

checker prevents us from defining µ with X in the interpreted function domain

95

even if we tried).

J_K : Desc → Set → Set
J ‘1 K X = >
J A ‘+ B K X = J A K X] J B K X
J A ‘• B K X = J A K X × J B K X
J ‘κ A K X = A
J ‘X^ A K X = A → X

Partially applying NatD (‘1 ‘+ ‘X^ >) to the interpretation function results in

the following pattern functor for an infinitary encoding of natural numbers.

J NatD K ≡ (ń X → >] (> → X))

Notice how the argument of the suc constructor, which is the type to the right of

the disjoint union, is an function from the unit type to the inductive X occurrence.

Fixpoints The initial algebra semantics for least fixed points (µ : (Set →

Set) → Set) of infinitary types is formally modeled (µ : Desc → Set) the same

way as the non-infinitary version. The init constructor of µ, modeling the initial

algebra (αinit), is also unchanged.

data µ (D : Desc) : Set where
init : J D K (µ D) → µ D

The natural numbers can be defined as a fixpoint of their description, as before.

N : Set
N = µ NatD

The type of the argument to the initial algebra of natural numbers is like the

type of the natural number pattern functor, except with X replaced by the type

of natural numbers. This makes the argument to the suc constructor an infinitary

type, as the codomain ends with an inductive occurrence (the N) type.

J NatD K N ≡ (>] (> → N))

96

5.2.3 Examples

Now we repeat the examples of formal models of non-infinitary types (Section 5.1.2),

converting models to their infinitary counterparts. A straightforward translation

from the non-infinitary to the infinitary models infinitary versions of both the

pattern functors and the exposed datatypes.

Alternatively, we can expose a model of non-infinitary datatypes that are de-

fined in terms of unexposed infinitary pattern functors. In this scenario type for-

mers do not require special treatment (i.e., their definitions can be equivalent to

their non-infinitary counterparts). However, we must take special care when mod-

eling constructors by exposing a non-infinitary type signature (i.e., interface) that

is defined in terms of an infinitary (hidden, or unexposed) implementation.

Natural Numbers Let’s begin with the straightforward model of infinitary nat-

ural numbers, defined with a model of an infinitary pattern functor. The infinitary

(due to the f argument) definition of natural numbers is below.

data N : Set where
zero : N
suc : (f : > → N) → N

The infinitary pattern functor for this type is described by NatD. Its type former

N appears below, and is modeled the same way as its non-infinitary counterpart

in Section 5.1.2.

NatD : Desc
NatD = ‘1 ‘+ ‘X^ >

N : Set

97

N = µ NatD

J NatD K N ≡ (>] (> → N))

The model of the zero constructor is also the same as its non-infinitary coun-

terpart.

zero : N
zero = init (inj1 tt)

The model of the suc constructor is different, because it takes an infinitary

argument (f).

suc : (> → N) → N
suc f = init (inj2 f)

But what if we wanted to model the non-infinitary definition of natural numbers

below, even though we can only Describe infinitary pattern functors?

data N : Set where
zero : N
suc : N → N

To expose a model of a non-infinitary type, with an unexposed infinitary pattern

functor, we never need to change the type former (so our definition of N above

suffices). Because zero was never infinitary to begin with, its previous definition

can also be reused.

However, we take special care to expose a model of a non-infinitary suc con-

structor in terms of its underlying (unexposed) infinitary pattern functor NatD.

We expose the non-infinitary type signature of suc, acting as an interface. The

implementation of the infinitary pattern functor of the formal model is hidden by

this interface.

suc : N → N

98

suc n = init (inj2 (ń u → n))

The implementation ignores the trivial argument u when constructing the pre-

decessor as an infinitary function using the inductive input n.

Binary Trees Our pattern functor for binary trees models the infinitary defini-

tion of binary trees below.

data Tree (A B : Set) : Set where
leaf : A → Tree A B
branch : (b : B) (f : Bool → Tree A B) → Tree A B

The description of the binary tree pattern functor, and its type former, are

given below.

TreeD : Set → Set → Desc
TreeD A B = ‘κ A ‘+ (‘κ B ‘• ‘X^ Bool)

Tree : Set → Set → Set
Tree A B = µ (TreeD A B)

J TreeD A B K (Tree A B) ≡ (A] (B × (Bool → Tree A B)))

The model of the leaf constructor is straightforward, as it is not infinitary.

leaf : {A B : Set} → A → Tree A B
leaf a = init (inj1 a)

However, we model a non-infinitary branch constructor in terms of its underly-

ing infinitary pattern functor. Below the model of the branch constructor is non-

infinitary because its type signature does not contain any infinitary arguments

(despite the fact that its implementation supplies infinitary values to the initial

algebra, defined in terms of an infinitary pattern functor).

branch : {A B : Set} → Tree A B → B → Tree A B → Tree A B

99

branch t1 b t2 = init (inj2 (b , (ń x → if x then t1 else t2)))

The second component of the pair (in the right disjoint union injection) is an

infinitary function from Bool to Tree A B. Therefore, we simulate a non-infinitary

branch by applying a conditional to the boolean argument of the function, returning

the inductive t1 argument in the true case and the inductive t2 argument in the

false case.

Above, we use the infinitary domain of Bool (which is isomorphic to >] >) to

model 2 inductive arguments. In general, the number of inductive arguments can

be modeled with an appropriate type according to the pattern below.

0 ⊥

1 >

2 >] >

3 >] >] >

n ...

5.3 OPEN DEPENDENT TYPES

In this section, we review the initial algebra semantics for dependent types. We ex-

tend our previous infinitary and non-dependent categorical model (Section 5.2.1),

and formal model (Section 5.2.1), to support constructor argument types that

depend on previous constructor arguments.

5.3.1 Categorical Model

Compared to non-dependent types, the categorical model’s “type signatures” for

pattern functors (F : Set→ Set) and least fixed points (µ : (Set→ Set)→ Set)

remain unchanged in the setting of dependent initial algebra semantics. However,

we change the language of polynomial set constructions to be able to describe

pattern functors of types involving dependencies.

100

We mostly keep the syntax of the non-dependent polynomial set constructions

1, (+), (·), and X. However, the meaning of the product of two sets (·) is actually

the dependent product (or dependent pair). The syntax of a dependent product

uses type ascription (e.g., (x : A) · B x), allowing the type (B) of the second

component of the pair to depend on the value (x) of the first. In contrast, the

syntax of a non-dependent product (e.g., A ·B) does not name the type of the first

component of the pair. For example, dependent product can be used to express the

set of pairs of natural numbers and finite sets (whose size depends on the natural

number first component of the pair).

(n : N) · Fin n

While we continue to use the sum of two sets operator (+), it can now be derived

using dependent (·) rather than be a primitive polynomial set construction. The

definition of (+) is derived as the dependent product of a boolean (the 2-element

set) and a choice of either subterm.

(+) , λA. λB. (b : 2) · if b then A else B

We impose an additional restrictions on pattern functors (which are already

restricted to contain only positive inductive occurrences) to always end in the unit

set 1. That is, pattern functors must take the form of a (possibly empty) sequence

of products (of either non-dependent or dependent arguments), ending in 1.5 For

example, below is the product of a dependent natural number, a non-dependent

infinitary occurrence, and 1.

F , λX. (n : N) ·XFin n · 1

In general, the pattern functor is a (possibly dependent) product of n (possibly

0) sets, ending in a multiplication by the unit set 1. Each of the n sets (i.e.,

5 Any set A is isomorphic to A · 1. This is analogous to any type A being isomorphic to the
pair type A × >, as the unit type only adds trivial (tt) information.

101

each Ai below) may dependent on the values of previous sets (i.e., each xi below).

Additionally, each Ai may be non-inductive (not using X) or infinitary (using X).

F , λX. (x0 : A0) · (x1 : A1 x0) · (x2 : A2 x1 x2) · ... · (xn : An x0 ... xn−1) · 1

The purpose of these additional constraints may not be readily apparent now.

However, they allow us to seamlessly extend the categorical model of dependent

types to include induction-recursion (in Section 5.4).

Finally, note that any use of sums (+) obeys our constraint as long as the left

and right subterms obey the constraint. This is because the derived definition of

(+) expands to a product.

F , (λX. 1 + 1) , (b : 2) · if b then 1 else 1

Natural Numbers We reuse the infinitary definition of the natural numbers

from Section 5.2.1.

data N : Set where
zero : N
suc : (f : > → N) → N

Compared to the infinitary and non-dependent (Section 5.2.1) natural numbers

fixpoint, the only difference in our dependent setting is that the suc constructor

ends by multiplying by 1 (obeying our constraint).

N , µX. 1 +X1 · 1

Technically, the (+) is just notation so the true fixpoint is the expanded defi-

nition below.

N , µX. (b : 2) · if b then 1 else X1 · 1

102

Rose Trees We use the infinitary definition of finitely branching rose trees from

Section 2.1.8. In this definition of Rose, the list-of-branches argument is isomor-

phically expressed as a natural number and an infinitary argument with a finite

set (whose size is equal to the natural number) as its domain.

data Rose (A : Set) : Set where
rose : A → (n : N) (f : Fin n → Rose A) → Rose A

The categorical model of infinitary rose trees must be defined in terms of de-

pendent product, as the finite set (Fin n) infinitary domain is dependent on the

natural number (n) argument.

Rose , λA. µX. A · (n : N) ·XFin n · 1

5.3.2 Formal Model

Our formal model of least fixed points is similar to previous versions. However,

formally modeling dependencies in pattern functors requires significant changes,

especially changes to the structure of pattern functor descriptions.

Descriptions Recall from Section 5.3.1 that we constrained dependent pattern

functors to be a sequence of products ending in 1. Recall also that descriptions

are the reification (or formal model) of the language used to create legal pattern

functors. Hence, we change the type of descriptions to enforce that pattern functors

(representing definitions of datatypes) are sequences of dependent pairs (Σ) ending

in the unit type (>). Now we explain the definition of Desc for dependent algebraic

types, and subsequently compare it to the Desc for non-dependent types from

Section 5.2.2.

Below (in the definition of Desc), the ‘Ì constructor models the pattern of ending

a functor with the unit type. For now, this is simply a renaming of the former

103

‘1 constructor.6 The ‘σ constructor models a dependent (but non-infinitary, thus

also non-inductive) argument. The ‘δ constructor models an infinitary (but non-

dependent) argument.7 Thus, while the pattern functor of the categorical model

uses a single product (·) for any argument, our new description syntax distinguishes

between dependent (‘σ) and infinitary non-dependent (‘δ) arguments.

data Desc : Set1 where
‘Ì : Desc
‘σ : (A : Set) (D : A → Desc) → Desc
‘δ : (A : Set) (D : Desc) → Desc

Compare this with the non-dependent description datatype (Section 5.2.2).

The non-dependent pair (‘•) there is replaced by the (no longer infix) dependent

pair ‘σ and infinitary non-dependent pair ‘δ. For example, RoseD, defined below,

is the description of Rose trees. RoseD uses ‘σ to request a dependent A argument

(although the dependency a is unused), then uses ‘σ to request a dependent nat-

ural number argument (n), then uses ‘δ to request a non-dependent but infinitary

argument (whose domain is Fin n), and finally ends with ‘Ì.

RoseD : Set → Desc
RoseD A = ‘σ A (ń a → ‘σ N (ń n → ‘δ (Fin n) ‘Ì))

When ‘σ is used to request an argument of type A, the rest of the description

D may depend on a value of A. This is formally modeled by the infinitary type

of D, namely A → Desc. Notice that the first argument of the non-dependent

pair (‘•) from Section 5.2.2 is a description (Desc), but the first argument of the

dependent pair ‘σ is a type (Set). Imagine that A was a description, and that

6 However, in our subsequent extension supporting inductive-recursive types (Section 5.4)), ‘Ì
gains additional arguments.

7 At this point it does not make sense for an infinitary argument (‘δ) to be dependent. At
the time a datatype is defined, no functions exist that could operate over it. Hence, inductive
occurrences need not be dependent arguments because there is no way to use the type being de-
fined yet. However, once we extend descriptions to model inductive-recursive types (Section 5.4)
we will need to add a notion of dependency to ‘δ.

104

D could depend on a value of the inductive type being defined (as the argument

to the infinitary domain of D). Then, our type of descriptions (Desc) would be

negative (and we could subsequently use it to model pattern functors of negative

types). Hence, the first component of a dependent pair (A) must be restricted to

a Set (guaranteed to be non-inductive) so that the infinitary type D (representing

subsequent arguments in the description) remains positive.

The infinitary pair constructor ‘δ is like a specialized combination of the former

infinitary constructor ‘X^ and the non-dependent pair constructor (‘•). The A

argument represents the domain of the infinitary function (like the argument to

‘X^), and the non-dependent D argument represents the rest of the description

(which cannot depend on the inductive occurrence because the inductive type has

not been defined yet).

We can use ‘σ to derive (‘+) as a dependent pair of a boolean and a choice

of branches, similar to how we derived sums (+) from dependent products (·) for

pattern functors (Section 5.3.1).

‘+ : Desc → Desc → Desc
D ‘+ E = ‘σ Bool (ń b → if b then D else E)

Additionally, we can derive ‘κ and ‘X^ using ‘σ and ‘δ respectfully, then im-

mediately ending with ‘Ì (as these derived constructors do not require additional

arguments).

‘κ : Set → Desc
‘κ A = ‘σ A (ń a → ‘Ì)

‘X^ : Set → Desc
‘X^ A = ‘δ A ‘Ì

Finally, we emphasize that (‘•) cannot be derived from ‘σ and ‘δ. It is not clear

whether the first argument (a Desc) to (‘•) contains an infinitary (hence inductive)

105

occurrence, so we cannot decide whether to proceed by using ‘σ (disallowing in-

ductiveness) or ‘δ (allowing inductiveness). Additionally, we would somehow need

to convert the first argument of (‘•), a Desc, to the first argument of ‘σ or ‘δ, a

Set.

Pattern Functors Now we define the interpretation function (J_K : Desc→ Set

→ Set) that can be partially applied to descriptions of dependent types to produce

formal models (F : Set → Set) of pattern functors (F : Set→ Set) for dependent

types. The type signatures of these constructions (J_K and F) remains the same

when adding dependent arguments, but the implementations change (because the

constructors of Desc changed).

J_K : Desc → Set → Set
J ‘Ì K X = >
J ‘σ A D K X = Σ A (ń a → J D a K X)
J ‘δ A D K X = (A → X) × J D K X

We interpret the ‘Ì constructor as the unit type (>). We interpret the ‘σ

constructor as a dependent pair (Σ) whose first component is an A, and whose

second component is the interpretation of the rest of the description (which may

depend on the first component). We interpret the ‘δ constructor as a non-dependent

pair (×) whose first component is an infinitary function from A to X (representing

an inductive occurrence), and whose second component is the interpretation of the

rest of the description (which may not depend on the first component).

Partially applying RoseD (along with its parameter A) to the interpretation

function results in the following pattern functor for rose trees.

RoseD : Set → Desc

106

RoseD A = ‘σ A (ń a → ‘σ N (ń n → ‘δ (Fin n) ‘Ì))

J RoseD A K ≡ (ń X → Σ A (ń a → Σ N (ń n → (Fin n → X) × >)))

Notice how the A and natural number arguments are interpreted using de-

pendent pairs (Σ), and how the infinitary argument is interpreted using a non-

dependent pair (×).

Fixpoints The formal model (µ : Desc → Set) of least fixed points (µ : (Set→

Set)→ Set) of dependent types is unchanged, as is the formal model (init) of the

initial algebra (αinit).

data µ (D : Desc) : Set where
init : J D K (µ D) → µ D

As an example, below is the datatype of rose trees defined as a fixpoint.

Rose : Set → Set
Rose A = µ (RoseD A)

J RoseD A K (Rose A) ≡ Σ A (ń a → Σ N (ń n → (Fin n → Rose A) × >))

5.3.3 Examples

Now we model the type formers and constructors of (possibly) dependent datatypes.

The descriptions of these datatypes are interpreted as models of pattern functors

constrained to be sequences of dependent and non-dependent infinitary pairs, end-

ing in the unit type.

Rose Trees We begin by modeling rose trees, because they demonstrate depen-

dencies between argument types while also being simple because they only have a

single constructor. First, we repeat the definition of the rose tree description, its

107

pattern functor, and its type former as a fixpoint.

RoseD : Set → Desc
RoseD A = ‘σ A (ń a → ‘σ N (ń n → ‘δ (Fin n) ‘Ì))

Rose : Set → Set
Rose A = µ (RoseD A)

J RoseD A K (Rose A) ≡ Σ A (ń a → Σ N (ń n → (Fin n → Rose A) × >))

Now we model the single constructor (rose) of Rose trees. Note that we are

modeling the infinitary rose constructor (Section 2.1.8), rather than its List of roses

variant, as indicated by the type signature of our derived rose constructor.

rose : {A : Set} (a : A) (n : N) (f : Fin n → Rose A) → Rose A
rose a n f = init (a , (n , (f , tt)))

Because our dependent types are modeled as least fixed points of functors

constrained to be sequences of pair types, values (e.g., like the rose constructor)

are simply the initial algebra of a tuple encoded as a sequence of right-nested pairs

(ending in the trivial unit value tt).

Natural Numbers Let’s encode a model of natural numbers using descriptions

for dependent types. We begin with the pattern functor for a dependent and

infinitary encoding of the natural numbers. The zero constructor immediately ends

with ‘Ì. The suc constructor uses ‘δ to demand a trivial (i.e., where the domain is

the unit type) infinitary argument (similar to Section 5.2.3), then ends with ‘Ì.

NatD : Desc
NatD = ‘Ì ‘+ ‘δ > ‘Ì

Recall from Section 5.3.2 that a choice of constructors (‘+) is derived as a

dependent pair with a boolean domain and a choice between descriptions, so the

108

NatD above expands to the version below.

NatD : Desc
NatD = ‘σ Bool (ń b → if b then ‘Ì else ‘δ > ‘Ì)

For legibility (especially when describing types with more than 2 constructors),

we often create a specialized enumeration type (NatT below) that takes the place

of Bool. Then, we define the second argument to ‘σ as a separate function (NatDs

below) mapping enumeration tags (representing constructors) to descriptions (rep-

resenting constructor arguments). For example, we can encode the description of

natural numbers by matching on “tags” of the enumeration type NatT.

data NatT : Set where
zeroT sucT : NatT

NatDs : NatT → Desc
NatDs zeroT = ‘Ì
NatDs sucT = ‘δ > ‘Ì

NatD : Desc
NatD = ‘σ NatT NatDs

By convention, names of tags are suffixed with "T". Tags are merely enu-

merations and do not have arguments themselves. Rather, we match on tags in

descriptions to declare the descriptions of arguments for each constructor (where

each constructor is represented by a tag case).

Now let’s finish by modeling the type of natural numbers as a fixpoint, and its

constructors as initial algebras of that fixpoint.

N : Set
N = µ NatD

zero : N
zero = init (zeroT , tt)

suc : N → N

109

suc n = init (sucT , ((ń u → n) , tt))

Now we are encoding constructor choices as the initial algebra applied to a

dependent pairs whose domain is an enumeration of tags and codomain is the

description of arguments for each constructor tag. Hence, the first component

(e.g., zeroT or sucT) in the tuple that the initial algebra is applied to is always the

tag name.

Finally, note that the same pair constructor (,) is used for both dependent pair

arguments (encoded by σ), and non-dependent infinitary pair arguments (encoded

by δ). This is because our Agda definition of non-dependent pairs (×) is defined

as a special case of dependent pairs (Σ) that ignores its first argument.

λ-Calculus Terms As a final example, we model the untyped λ-calculus terms

introduced in Section 5.1.3 using descriptions of dependent types. We will first

encode Term using nested booleans for constructor choices, and then repeat the

example with named constructor enumeration tags.

Compared to the model of natural numbers, no new concepts are required to

encode Terms. However, because Term has 3 constructors, we gain a greater appre-

ciation of the legibility afforded by constructor tags compared to nested constructor

choices encoded using booleans. Let’s refamiliarize ourselves with the high-level

declaration of Term.

data Term : Set where
var : (n : N) → Term
lam : (b : Term) → Term
app : (f : Term) (a : Term) → Term

First, let’s describe the 3 constructors as a right-nested tuple of 3 choices using

(‘+). The 1st choice describes var, the 2nd choice describes lam, and the 3rd choice

describes app.

TermD : Desc

110

TermD = ‘σ N (ń n → ‘Ì) ‘+ (‘δ > ‘Ì ‘+ ‘δ Bool ‘Ì)

Let’s expand the definition of (‘+) to see the nested choices.

TermD : Desc
TermD = ‘σ Bool ń b → if b

then ‘σ N (ń n → ‘Ì)
else ‘σ Bool ń b → if b

then ‘δ > ‘Ì
else ‘δ Bool ‘Ì

The var constructor is encoded in the true branch of the first choice, and the

lam and app constructors are encoded in a nested choice within the false branch.

Below we model the type former and constructors of Term.

Term : Set
Term = µ TermD

var : N → Term
var n = init (true , n , tt)

lam : Term → Term
lam b = init (false , true , (ń u → b) , tt)

app : Term → Term → Term
app f a = init (false , false , (ń b → if b then f else a) , tt)

Notice how the 2nd and 3rd constructors (lam and app) are both defined as two

nested choices, using false as the first pair component, and then another choice

(true and false respectively) as their second component. Additionally, we expose

an inductive (non-infinitary) model of app (having two non-infinitary Term argu-

ments) using an if to branch on the infinitary Bool domain (as we did for Tree in

Section 5.2.3).

Below we repeat the entire Term model, but using constructor tags instead of

111

nested boolean choices.

data TermT : Set where
varT lamT appT : TermT

TermDs : TermT → Desc
TermDs varT = ‘σ N (ń n → ‘Ì)
TermDs lamT = ‘δ > ‘Ì
TermDs appT = ‘δ Bool ‘Ì

TermD : Desc
TermD = ‘σ TermT TermDs

Term : Set
Term = µ TermD

var : N → Term
var n = init (varT , n , tt)

lam : Term → Term
lam b = init (lamT , (ń u → b) , tt)

app : Term → Term → Term
app f a = init (appT , (ń b → if b then f else a) , tt)

Note how, in the tagged construction, the first component of the pair is always

a single tag, hence lam and app are not defined with nested choices.

5.4 OPEN INDUCTIVE-RECURSIVE TYPES

In this section, we extend the initial algebra semantics of infinitary and dependent

types (Section 5.3) to inductive-recursive types (Section 2.1.9). An inductive-

recursive type is mutually defined with a decoding function that may be used in

the inductive definition of the type.

112

5.4.1 Categorical Model

In all of the previous categorical models we have worked with, the pattern functors

were endofunctors between the category of sets. That is, each functor (F : Set→

Set) mapped each set to another set. Consequently, the fixpoint (µ : (Set →

Set) → Set) of such a functor gave us back a set (µ F : Set). Hence, previously

each type could be semantically modeled as a set (Set).

To define a categorical model of inductive-recursive types, we need to model

a type (X : Set) along with its mutually defined decoding function (d : X →

O), mapping values of the type to values of some output type (O : Set). For

example, Section 2.1.9 presents the type of arithmetic expressions (X , Arith)

mutually defined with a decoding function (d , eval : Arith → N) that evaluates

an expression to its natural number (O , N) result. Thus, the categorical model

of inductive-recursive sets involves the dependent product of a set and its decoding

function. Such a dependent product is called a slice, notated as Set/O (where O

is the output set).

Set/O , (X : Set) · (X → O)

Pattern functors for inductive-recursive types are endofunctors (F : Set/O →

Set/O) of the slice category Set/O8, and the fixpoint (µ : (Set/O → Set/O) →

Set/O) of such a pattern functor returns a slice (µF : Set/O). It is convenient to

separate the definition of F into 2 parts, where we denote the part by a subscript

(i.e., F1 and F2).

F1 : Set/O → Set

F2 : (R : Set/O)→ F1 R→ O

The first part (F1) maps a slice to a set (modeling a type), similar to the

8 Objects of the slice category Set/O are functions f : X → O (where X is some object-
specific set and O is a set fixed for the category). Its morphisms are functions h : X → Y
between objects f : X → O and g : Y → O such that f = g ◦ h.

113

functors of previous subsections. The second part (F2) maps a slice and a member

of the set mapped by F1, to a member of O (modeling a decoding function). By

convention we use the letter R to refer to the slice argument to distinguish it from

the contained set X and decoding function d. We can put these two components

of the functor together as a dependent pair to form the actual endofunctor over

slices.

F : Set/O → Set/O , λR. (F1 R, F2 R)

We can separate the definition of least fixed points to be defined similarly in

terms of a fixed point operator (µ1, returning a set), and its decoding function (µ2,

taking an µ1 F and returning an O).

µ1 : (Set/O → Set/O)→ Set

µ2 : (F : Set/O → Set/O)→ µ1 F → O

µ : (Set/O → Set/O)→ Set/O , λF. (µ1 F, µ2 F)

Recall our restriction of pattern functors to a sequence of dependent products

of non-inductive or infinitary arguments, terminating in 1.

F1 , λ(X, d). (x0 : A0) · (x1 : A1 x0) · (x2 : A2 x1 x2) · ... · (xn : An x0 ... xn−1) · 1

Before, it only made sense for non-inductive arguments to be dependent. For

example, we could have a functor like the following (where A : Set and B : A →

Set).

F1 , λ(X, d). (x1 : A) · (x2 : B a) · 1

With the introduction of inductive-recursive types, it is now actually possible

to use an inductive dependent argument by applying the decoding function (d).

Below, we define functors like F in 2 parts, where F1 defines the first (set) part

and F2 is defines the second (decoding function) part. For example, now we can

have a functor like the following (where A : Set and B : O → Set).

F1 , λ(X, d). (x1 : X) · (x2 : B (d x1)) · 1

114

Any decoder (F2) of F1 has a tuple of arguments similar to the dependencies in

the sequence of products defined in F1 (the only difference is that the tuple ends in

the unit argument •, corresponding to the unit set 1 that terminates the product).

For example, below the arguments x1 and x2 in F2 correspond to the dependencies

x1 and x2 in F1 (where f : (x : X)→ B (d x)→ O).

F2 , λ(X, d). λ(x1, x2, •). f x1 x2

Now we finally introduce a new notation that takes advantage of our structure

of pattern functors as a sequence of dependent products terminating in 1. The new

notation gives us a succinct way to simultaneously define the F1 and F2 parts of

the pattern functor F by exploiting the shared structure between the dependencies

in F1 and arguments in F2. Now we define F by terminating the sequence of

products with ι (replacing 1) applied to an element of O. Because ι appears at

the end of the sequence, it can be defined with access to all of the dependencies of

the product that came before it. For example, below we define F directly (where

f : (x : X)→ B (d x)→ O).

F , λ(X, d). (x1 : X) · (x2 : B (d x1)) · ι (f x1 x2)

Once again, this is merely notation for directly defining F as a dependent pair

(a member of the slice Set/O). Hence, ι is also just notation rather than being

a primitive set construction. For example, the notation above expands to the F

below (first in terms of F1 and F2, and second once the definitions of F1 and F2

have been expanded).

F , λ(X, d). (F1 (X, d), F2 (X, d))

F , λ(X, d). ((x1 : X) · (x2 : B (d x1) · 1, λ(x1, x2, •). f x1 x2))

In general, our new notation for inductive-recursive pattern functors is a se-

quence of dependent products of non-inductive or infinitary arguments, terminat-

ing in ι applied to an element of O, with dependencies x0 through xn in scope

115

(where n is the number of products).

F , λ(X, d). (x0 : A0) · (x1 : A1 x0) · ... · (xn : An x0 ... xn−1) · ι (f x0 ... xn)

Natural Numbers Any ordinary inductive type can instead be modeled as a

trivial inductive-recursive type by combining the inductive type with a trivial de-

coding function from its values to unit. The inductive type can thus be defined

normally, without referring to its trivial function. For example, below we define

the type of natural numbers along with the trivial function (point) from natural

numbers to unit.9

data N : Set where
zero : N
suc : (> → N) → N

point : N → >
point _ = tt

Borrowing from our previous subscript notation for functors and fixpoints, we

can rename the inductive definition of N to N1 and its trivial decoding func-

tion point to N2. Then we can isomorphically model the natural numbers as an

inductive-recursive type by combining the type and its decoding function using a

pair.

data N1 : Set where
zero : N1

suc : (> → N1) → N1

N2 : N1 → >
N2 n = tt

9 The intuition behind the name of the decoding function, point, is that any inhabitant of
the function is forced to eventually return tt, the sole inhabitant of the unit type (>). Hence,
all point functions are extensionally equivalent, as they all “point” to tt. Additionally, the single
inhabitant tt of > can be considered a “point”.

116

N : Σ Set (ń A → A → >)
N = N1 , N2

First we define the categorical model for this trivially inductive-recursive type

using the componentized definition of µ in terms of its set (µ1) and decoding

function (µ2). Below, 1 (similar to >) is the name of the unit set and • (similar

to tt) is the name of its single inhabitant.

N1 , µ1(X, d). 1 +X1 · 1

N2 , µ2(X, d). λn. •

N , µR. (µ1 R, µ2 R)

Alternatively, we can define N directly as a dependent pair where we inline the

definition of N1 into the first component, and inline the definition of N2 into the

second component.

N , µ(X, d). ((1 +X1 · 1), (λn. •))

Finally, we can define it most succinctly with our ι notation as follows.

N , µ(X, d). ι •+X1 · ι •

Because ι • appears twice, once on either side of (+), the ι-based N technically

models the decoding function N2 below, which matches against zero and suc but

returns tt in either case.

N2 : N1 → >
N2 zero = tt
N2 (suc f) = tt

As a final example, consider a pattern functor of the natural numbers that takes

advantage of the decoding function (d below) and dependency on an infinitary

argument (f below).

N , µ(X, d). ι •+(f : X1) · ι (d (f •))

117

Above the result of applying the decoding function to a successor of a natural

number is specified to be a recursive call of the decoding function d applied to:

the infinitary predecessor f applied to the unit value •. Hence, the pattern above

is the categorical model of the decoding function below (notice the recursive call

of decoding function N2 in the suc case).

N2 : N1 → >
N2 zero = tt
N2 (suc f) = N2 (f tt)

Now we understand the essence of induction-recursion: While the X param-

eter of the fixpoint operator µ allows us to construct inductive arguments, the d

parameter allows us to perform recursive calls of the decoding function.

5.4.2 Formal Model

In this section we extend the formal model of dependent types (Section 5.3.2)

to support inductive-recursive types. The previous description type (Desc), in-

terpretation function (J_K) and least fixed point operator µ are all modified to

be parameterized over an output type (O : Set), the codomain of the decoding

function.

Descriptions Descriptions (of Section 5.3.2) must be modified to be parameter-

ized over an output type O. Recall that descriptions are the syntactic reification

of legal pattern functors. In Section 5.4.1 we presented 3 different ways to define

pattern functors for inductive-recursive types.

1. Single pattern functors (F) as a dependent pair.

2. Two-part pattern functors (F1 and F2).

3. Single pattern functors (F) using ι.

Our descriptions formally model the syntax of the 3rd (ι) version of legal pattern

functors. Recall that ι is applied to an O, hence we had an argument o of type

118

O to the ‘Ì constructor. However, we also change ‘δ in a more subtle way (from

Section 5.3.2).

data Desc (O : Set) : Set1 where
‘Ì : (o : O) → Desc O
‘σ : (A : Set) (D : A → Desc O) → Desc O
‘δ : (A : Set) (D : (A → O) → Desc O) → Desc O

Recall that ‘σ denotes a dependent non-inductive argument (of type A) that

subsequent arguments, encoded byD, may depend on in. With induction-recursion,

‘δ denotes an infinitary (hence inductive) argument (whose domain is A) that sub-

sequent arguments (D) may depend on. However, subsequent arguments in D do

not depend directly on an infinitary argument (i.e., A → X). Instead, D depends

on a function (i.e., A→ O) that is an implicit composition of the decoding function

and the infinitary function. This implicit composition hides the underlying infini-

tary argument, preventing an inductive argument (X) from appearing negatively

in the domain of the infinitary argument D (instead, O appears). Below is an

example of the natural numbers encoded as a trivially (i.e., where the codomain

of the decoding function O is the unit type >) inductive-recursive description.10

NatD : Desc >
NatD = ‘σ Bool (ń b → if b then ‘Ì tt else ‘δ > (ń f → ‘Ì (f tt)))

In the example above ‘Ì tt is returned in the zero branch. The suc branch

returns the result of applying the composition (f) of the decoding function and the

infinitary function to tt. This describes the definition of natural numbers below.

data N1 : Set where
zero : N1

suc : (> → N1) → N1

N2 : N1 → >

10 It also happens to be a trivially infinitary type, because ‘δ is applied to >, encoding a trivial
infinitary domain.

119

N2 zero = tt
N2 (suc n) = N2 (n tt)

N : Σ Set (ń A → A → >)
N = N1 , N2

To understand where the implicit composition of the decoding function and

the infinitary function is happening, recognize that in the successor case of the

definitions of NatD and N2 above, f = N2 ◦ n.

Pattern Functors Now we turn to the task of formally modeling pattern func-

tors (F : Set/O → Set/O) of inductive-recursive types. Before we can even

consider doing so, we must formally model the concept of a slice Set/O. A slice is

formally modeled as a dependent pair type (Σ) parameterized by an output type

(O). The first component of the pair is a type and the second component is its

decoding function.

Set/ : Set → Set1
Set/ O = Σ Set (ń A → (A → O))

We formally model pattern functors (F : Set/O → Set/O) as the functor

(F : Set/ O → Set/ O) resulting from the partial application of a description to

the interpretation function (J_K : {O : Set} → Desc O → Set/ O → Set/ O).

In Section 5.4.1 we showed the categorical model of F in terms of a component

mapping slices to sets (F1) and a component mapping slices to a decoding function

(F2). Our formal model similarly defines the interpretation function (J_K) in terms

of a type component (J_K1) and a decoding function component (J_K2), which also

result in the pattern functor components (F1 and F2) when partially applied to a

description.

J_K : {O : Set} → Desc O → Set/ O → Set/ O

120

J D K R = J D K1 R , J D K2 R

First, consider the interpretation function component (J_K1) mapping slices to

types. The ‘Ì and ‘σ cases are much like they were for the interpretation function

of dependent types in Section 5.3.2.

J_K1 : {O : Set} → Desc O → Set/ O → Set
J ‘Ì o K1 R = >
J ‘σ A D K1 R = Σ A (ń a → J D a K1 R)
J ‘δ A D K1 R@(X , d) = Σ (A → X) ń f → J D (d ◦ f) K1 R

The infinitary ‘δ case now needs to be interpreted as a dependent pair type.

The left component of the pair is the infinitary argument (f : A → X). The right

component is the interpretation of the description D applied to the composition

of the decoding function (d) and the dependent infinitary argument (f). Thus the

subsequent argument types contained in D can depend on the composed function

(returning an O), but cannot directly depend on the infinitary function (returning

an inductive X).

Before providing an example, we redefine the description of natural numbers by

extracting the “if-statement” component into a separate definition. This separate

definition (NatDs) returns the description of a particular constructor when applied

to the appropriate boolean branch.

NatDs : Bool → Desc >
NatDs b = if b then ‘Ì tt else ‘δ > (ń f → ‘Ì (f tt))

NatD : Desc >
NatD = ‘σ Bool NatDs

To keep the example simple, we look at the result of applying the type compo-

nent of the interpretation function to the description of the successor constructor

121

(rather than the entire natural numbers description).

J NatDs false K1 ≡ ń { (X , d) → Σ (> → X) (ń f → >) }

The left component of the pair type is the infinitary argument of suc. The

right component is just the unit type that terminates every sequence of dependent

arguments, ignoring f (the composition of the decoding function and infinitary

argument).

Second, consider the interpretation function component (J_K2) mapping slices

to decoding functions. The decoding function works by consuming the arguments

(of type J D K1 R) while recursing down to the ‘Ì base case and returning the o it

contains.

J_K2 : {O : Set} (D : Desc O) (R : Set/ O) → J D K1 R → O
J ‘Ì o K2 R tt = o
J ‘σ A D K2 R (a , xs) = J D a K2 R xs
J ‘δ A D K2 R@(X , d) (f , xs) = J D (d ◦ f) K2 R xs

The arguments are consumed by applying dependent descriptions (D) to the

head argument (a non-inductive a or infinitary f), and recursively consuming the

tail (xs). The ‘σ case recursively searches the subsequent arguments xs, which

are described by the dependent description (D) applied to the non-inductive first

component (a). The ‘δ case also searches the subsequent arguments (xs), but they

are described by the dependent description (D) applied to the composition of the

decoding function (d) and the infinitary argument f.

Fixpoints The fixpoint operator (µ : (Set/O → Set/O)→ Set/O) of inductive-

recursive types is reified as a derived function (µ : {O : Set}→ Desc O→ Set/ O),

parameterized by the output type O and producing slices from descriptions. The

pattern functor argument (Set/O → Set/O) of µ can be derived by the formal

model of µ by partially applying the interpretation function to the description

argument (J D K : Set/ O → Set/ O).

122

In Section 5.4.1 we showed the categorical model of the fixpoint operator µ,

defining it in terms of a set component (µ1) and a decoding function component

(µ2). Our formal model similarly derives the fixpoint (µ) as a dependent pair

consisting of a type component (µ1) and a decoding function component (µ2). We

define these 3 constructions (a type synonym µ, a datatype µ1, and a function µ2)

mutually below.11

mutual
µ : {O : Set} → Desc O → Set/ O
µ D = µ1 D , µ2 D

data µ1 {O : Set} (D : Desc O) : Set where
init : J D K1 (µ D) → µ1 D

µ2 : {O : Set} (D : Desc O) → µ1 D → O
µ2 D (init xs) = J D K2 (µ D) xs

The argument to the initial algebra needs to be a type representing construc-

tors (of µ1, and their arguments). This type is computed by applying the first

component (J_K1) of the interpretation function to the description (D) and its fix-

point (µ D). The output of the decoding function (µ2) is computed by applying

the description (D), its fixpoint (µ D), and the argument of the initial algebra (xs)

to the second component (J_K2) of the interpretation function.

5.4.3 Examples

Now we formally model the type formers and constructors of inductive-recursive

datatypes. Typically inductive-recursive datatypes are defined mutually in terms

of a type and its decoding function. In our formal model, a single description

captures definition of both the type and its decoding function.

11 The type µ1 and the function µ2 in this section can only be defined by disabling Agda’s
positivity and termination checkers. In Section 5.4.4, we present an alternative model that need
not disable any Agda checkers.

123

Natural Numbers Let’s refamiliarize ourselves with the definition of natural

numbers as a trivially inductive-recursive datatype. We use the variant of the

inductive-recursive natural numbers where the suc case of decoding function (point)

is defined recursively (rather than constantly returning tt).

data N : Set where
zero : N
suc : N → N

point : N → >
point zero = tt
point (suc n) = point n

We expose the formal model of the non-infinitary natural numbers presented

above. As in Section 5.3.3, this means our type former and constructors will have

the names and types corresponding to the ones above. However, our underlying

pattern functor formally models the infinitary and slice-based definition of natural

numbers below.

The non-infinitary type N above corresponds to infinitary type N1 below. The

decoding function point above corresponds to N2 below. Finally, the slice N below

does not correspond to anything above. While slices are commonly used to describe

the semantics of inductive-recursive types, they are rarely used in conventional

programming with inductive-recursive types.

data N1 : Set where
zero : N1

suc : (> → N1) → N1

N2 : N1 → >
N2 zero = tt
N2 (suc n) = N2 (n tt)

N : Set/ >

124

N = N1 , N2

Now we specify the pattern functor of the datatype as an inductive-recursive

description. We use a datatype of tags (NatT), representing each constructor (as

in Section 5.3.2). We also explicitly define the function (NatDs) taking tags to the

description of arguments for the constructor that each tag represents.

data NatT : Set where
zeroT sucT : NatT

NatDs : NatT → Desc >
NatDs zeroT = ‘Ì tt
NatDs sucT = ‘δ > (ń f → ‘Ì (f tt))

NatD : Desc >
NatD = ‘σ NatT NatDs

We model the type (N) and decoding function (point) by applying the type

component (µ1) and decoding function component (µ2) of the fixpoint operator to

the description (NatD). Once again, we are modeling the non-infinitary and slice-

less type of natural numbers in terms of its underlying infinitary and slice-based

pattern functor.

N : Set
N = µ1 NatD

point : N → >
point = µ2 NatD

Finally, we model the constructors. As done previously, the suc constructor

creates an infinitary argument as a function ignoring the infinitary domain value

(u), and constantly returning the non-infinitary predecessor (n).

zero : N
zero = init (zeroT , tt)

125

suc : N → N
suc n = init (sucT , (ń u → n) , tt)

Arithmetic Expressions Now we model a non-trivially inductive-recursive and

non-trivially infinitary type, namely the type of arithmetic expressions (Arith).

You may wish to revisit Section 2.1.9 for examples of what arithmetic expressions

represent. An Arith can be evaluated to the natural number that the arithmetic

expression represents, using the eval decoding function.

mutual
data Arith : Set where

Num : N → Arith
Prod : (a : Arith) (f : Fin (eval a) → Arith) → Arith

eval : Arith → N
eval (Num n) = n
eval (Prod a f) = prod (eval a) (ń i → eval (f i))

Our pattern functor models the slice-based and infinitary version of the arith-

metic expressions below.

mutual
data Arith1 : Set where

Num : N → Arith1

Prod : (a : > → Arith1) (f : Fin (Arith2 (a tt)) → Arith1) → Arith1

Arith2 : Arith1 → N
Arith2 (Num n) = n
Arith2 (Prod a f) = prod (Arith2 (a tt)) (ń i → Arith2 (f i))

Arith : Set/ N
Arith = Arith1 , Arith2

The description of the slice-based pattern functor is defined in terms of a func-

tion (ArithDs) taking arithmetic expression constructor tags (ArithT) to descrip-

tions of the arguments for the constructor that each tag represents.

126

Compare the index that Fin is applied to in the type Arith1 above and de-

scription ArithDs below. Notice that the dependent infinitary a in the description

below represents the composition of the decoding function Arith2 and the infinitary

a above.

data ArithT : Set where
NumT ProdT : ArithT

ArithDs : ArithT → Desc N
ArithDs NumT = ‘σ N ń n → ‘Ì n
ArithDs ProdT =

‘δ > ń a →
‘δ (Fin (a tt)) ń f →
‘Ì (prod (a tt) f)

ArithD : Desc N
ArithD = ‘σ ArithT ArithDs

Also notice how each description, in the NumT and ProdT cases of ArithDs, ends

in ‘Ì. The description prior to ‘Ì represents the type Arith1 above, and the natural

number contained in ‘Ì represents the output of the decoding function Arith2 above.

Finally, the arguments of the decoding function cases are represented by the non-

inductive (‘σ) and infinitary (‘δ) dependencies of the description prior to ‘Ì.

We model the type (Arith) and decoding function (eval) by applying the type

component (µ1) and decoding function component (µ2) of the fixpoint operator to

the description (ArithD).

Arith : Set
Arith = µ1 ArithD

eval : Arith → N

127

eval = µ2 ArithD

The same techniques used to model the non-infinitary and slice-less construc-

tors of the N type are used to model the constructors of the Arith type.

Num : N → Arith
Num n = init (NumT , n , tt)

Prod : (a : Arith) (f : Fin (eval a) → Arith) → Arith
Prod a f = init (ProdT , (ń u → a) , f , tt)

Vectors Now we show how to derive an indexed type, like vectors, from a non-

trivially inductive-recursive type. But first, let’s refamiliarize ourselves with the

high-level indexed vector definition we wish to derive.

data Vec (A : Set) : N → Set where
nil : Vec A zero
cons : (n : N) (a : A) (xs : Vec A n) → Vec A (suc n)

Before describing the transformation [31] to turn this indexed type into an

isomorphic type using induction-recursion, we describe the intuition behind the

transformation. A well-known derived (isomorphic) representation of vectors is

the dependent pair (Σ) of a List and a constraint on its length, using the equality

type (≡).

data List (A : Set) : Set where
nil : List A
cons : (a : A) (xs : List A) → List A

length : {A : Set} → List A → N
length nil = zero
length (cons a xs) = suc (length xs)

Vec : Set → N → Set

128

Vec A n = Σ (List A) (ń xs → length xs ≡ n)

While this is a nice and simple translation, it doesn’t capture the notion of a

vector as intensionally as we would like. Specifically, the cons constructor of List

does not a contain the non-inductive natural number argument (n). Additionally,

while the outermost derived Vec contains the index constraint (≡), the inductive

List argument (xs) of cons does not.

Instead of deriving Vec from List and length like above, we can use induction-

recursion to mutually define these 3 components. Induction-recursion allows us

to derive an inductive datatype (Vec1, analogous to List) with the same collection

of non-inductive constructor arguments as our high-level indexed Vec, and adds

index constraints to go along with every inductive-argument.

mutual
data Vec1 (A : Set) : Set where

nil : Vec1 A
cons : (n : N) (a : A) (xsq : Vec A n) → Vec1 A

Vec2 : {A : Set} → Vec1 A → N
Vec2 nil = zero
Vec2 (cons n x xsq) = suc n

Vec : Set → N → Set
Vec A n = Σ (Vec1 A) (ń xs → Vec2 xs ≡ n)

We transform (as above) a high-level indexed type (like Vec) into a derived

version (like Vec), using induction-recursion, by changing 3 things:

1. The original indexed type (Vec) becomes an inductive-recursive type (Vec1),

with a decoding function (Vec2). The inductive-recursive type (Vec1) still

contains all non-inductive arguments (like n of cons).

2. Original inductive arguments (xs) of the indexed type are replaced by a

value (xsq) of a derived dependent pair type (Vec). The first component

129

of the dependent pair is the inductive-recursive type Vec1, and the second

component constrains the index of the original inductive argument (n) to

equal what the decoding function (Vec2) returns.

3. The decoding function (Vec2) is defined by matching on the constructors of

the inductive-recursive type (Vec1), and returning what the original high-

level indexed type (Vec) had in the index position of the codomain for the

corresponding constructor.

Finally, we make one last change, allowing us to formally model the indexed

type of vectors using our initial algebra semantics of inductive-recursive types. The

inductive-recursive type Vec1 curries inductive occurrences of the derived depen-

dent pair (Vec) as 2 separate arguments. Below, xsq is replaced by xs (the inductive

argument of Vec1) and q (the constraint). By consequence, the dependent pair Vec

no longer needs to be defined mutually.

mutual
data Vec1 (A : Set) : Set where

nil : Vec1 A
cons : (n : N) (a : A) (xs : Vec1 A) (q : Vec2 xs ≡ n) → Vec1 A

Vec2 : {A : Set} → Vec1 A → N
Vec2 nil = zero
Vec2 (cons n x xs q) = suc n

Vec : Set → N → Set
Vec A n = Σ (Vec1 A) (ń xs → Vec2 xs ≡ n)

Now we formally model the slice-based pattern functor of the inductive-recursive

Vec1 type.

data VecT : Set where
nilT consT : VecT

VecDs : Set → VecT → Desc N

130

VecDs A nilT = ‘Ì zero
VecDs A consT =

‘σ N ń n →
‘σ A ń a →
‘δ > ń xs →
‘σ (xs tt ≡ n) ń q →
‘Ì (suc n)

VecD : Set → Desc N
VecD A = ‘σ VecT (VecDs A)

We model the inductive-recursive type (Vec1) and decoding function (Vec2) by

applying the type component (µ1) and decoding function component (µ2) of the

fixpoint operator to the description (VecD).

Vec1 : Set → Set
Vec1 A = µ1 (VecD A)

Vec2 : (A : Set) → Vec1 A → N
Vec2 A = µ2 (VecD A)

Finally, we model the indexed type (Vec) as a dependent pair, derived in terms

of the inductive-recursive type (Vec1) and an index constraint using the decoding

function (Vec2).

Vec : Set → N → Set
Vec A n = Σ (Vec1 A) (ń xs → Vec2 A xs ≡ n)

The main thing to notice about the way we model the constructors is that our

model of indexed vectors (Vec) is in terms of a dependent pair.

nil : {A : Set} → Vec A zero
nil = init (nilT , tt) , refl

cons : {A : Set} → (n : N) (a : A) (xs : Vec A n) → Vec A (suc n)
cons n a (xs , q) = init (consT , n , a , (ń u → xs) , q , tt) , refl

Both nil and cons return an inductive-recursive Vec1 in the first component of

131

the pair, and an index constraint proof (in terms of Vec2) in the second component

of the pair. Additionally, cons destructs its “inductive” Vec arguments in terms of

the underlying pair components xs and q.

5.4.4 Agda Model

In previous sections on non-dependent types (Section 5.1.2), infinitary types (Sec-

tion 5.2.2), and dependent types (Section 5.3.2), the formal model (i.e., a model in

type theory) corresponded to the Agda model (i.e., a model in an implementation

of type theory). Unfortunately, this is not the case for the formal model presented

for inductive-recursive types in Section 5.4.2.

Although we used Agda syntax in the formal model of Section 5.4.2, we had to

turn off the positivity and termination checkers when inductive-recursively defining

the fixpoint datatype (µ1) and its decoding function (µ2). Even though Agda

(the implementation of type theory that we are using) cannot confirm that this

definition preserves consistency, Dybjer and Setzer have proven the consistency of

the construction in a model of set theory (extended by the Mahlo cardinal) [23].

To pass Agda’s positivity and termination checkers, we define the following

Agda model as an alternative to the formal model in Section 5.4.2. Our Agda

model mutually defines the pattern functor interpretation functions (J_K1 for the

interpretation of types, and J_K2 for the interpretation of decoding functions),

along with the inductive-recursive fixpoint type µ1 and fixpoint decoding function

(µ2).

mutual
J_K1 : {O : Set} (D R : Desc O) → Set
J ‘Ì o K1 R = >
J ‘σ A D K1 R = Σ A (ń a → J D a K1 R)
J ‘δ A D K1 R = Σ (A → µ1 R) ń f → J D (ń a → µ2 R (f a)) K1 R

J_K2 : {O : Set} (D R : Desc O) → J D K1 R → O

132

J ‘Ì o K2 R tt = o
J ‘σ A D K2 R (a , xs) = J D a K2 R xs
J ‘δ A D K2 R (f , xs) = J D (ń a → µ2 R (f a)) K2 R xs

data µ1 {O : Set} (D : Desc O) : Set where
init : J D K1 D → µ1 D

µ2 : {O : Set} (D : Desc O) → µ1 D → O
µ2 D (init xs) = J D K2 D xs

Notice that the types of the pattern functor interpretation functions (J_K1 and

J_K2) have changed. In the type of the interpretation functions, the R argument is

now a description (Desc O), instead of a slice (Set/ O). Because R is now a descrip-

tion (rather than a slice), partially applying a description D to the interpretation

function (J_K, defined as the dependent pair of J_K1 and J_K2 in Section 5.4.2)

no longer results in a pattern endofunctor on slices. While we lose some of the

beautiful correspondence with our categorical model, we have effectively inlined

a specialized version of the interpretation functions that allows Agda to confirm

that the type fixpoint component (µ1) is positive and that the decoding function

fixpoint component (µ2) terminates.

All of our earlier examples of inductive-recursive type encodings (Section 5.4.3)

still work. This is because our examples of type formers and constructors only rely

on the interfaces exposed by µ1 and µ2, so changing their implementations to

mutually be defined in terms of J_K1 and J_K2 does not break anything.

Finally, this construction of open algebraic types can also be found in Ap-

pendix B. In the Appendix, we remove backticks from the Desc constructor names,

so that we may distinguish open descriptions from closed descriptions in Chapter 6.

We also change the O parameter of µ1 to be an explicit argument. The primitive

types assumed in the construction of Appendix B are defined in Appendix A.

133

Part III

Closed Type Theory

134

Chapter 6

CLOSED ALGEBRAIC UNIVERSE

In this chapter1 we formally model a closed type theory, or dependently typed

language, supporting declared datatypes and fully generic programming. The

high-level idea is to define a closed type theory, similar to the Closed Well-Order

Types universe of Section 4.2.1, but replacing W types (Section 4.2.2) with fix-

points (µ1) of descriptions (formally modeling initial algebra semantics, as in Sec-

tion 5.4.2). Initial algebra semantics, unlike well-orderings, adequately models

declared datatypes in intensional (as opposed to extensional) type theory.

We begin with a naive, failing attempt at defining a closed type theory using

fixpoints (Section 6.1). After explaining why the simple but naive attempt actually

defines an open (rather than closed) type theory, we explain how to properly close

the theory (Section 6.2). Then, we define a procedure to close any type theory

(Section 6.3), rather than just the universe we chose for generic programming in

this dissertation. Finally, we conclude by comparing and contrasting types and

kinds (Section 6.4).

Major Ideas The purpose of this chapter is to define a closed universe that

models a dependently typed language supporting user-declared types, so that we

may perform fully generic programming over it in Chapter 7. The key to defining

the universe is to define a closed universe of built-in types, which includes the type

of fixpoints (µ1) from Section 5.4 as a built-in type. Essentially, we are replacing

the W type in the closed universe of Section 4.2 with the fixpoint type µ1.

1 This chapter is adapted from work by myself and Sheard [18], as explained in Section 9.4.

135

Crucially, this requires us to mutually define the universe of closed built-in

types (‘Set in Section 6.2) with a closed equivalent (‘Desc in Section 6.2) of the

open descriptions (Desc) from Section 5.4. This way, the code of closed fixpoints

(‘µ1) can take a closed description (‘Desc) as its argument, and the closed functor

description codes for non-inductive arguments (‘σ‘) and infinitary arguments (‘δ)

can take a closed type (‘Set) as an argument (for the non-inductive argument type

and the non-inductive infinitary domain, respectively).

The closed codes of built-in types (‘Set) and the closed codes of functor descrip-

tions (‘Desc) both have meaning functions that map the closed codes to their open

equivalents. Specifically, the type meaning function (J_K) maps a closed type ‘Set

to an open type Set, and the description meaning function («_») maps a closed

description ‘Desc to an open description Desc.

6.1 OPEN INDUCTIVE-RECURSIVE TYPES

In this section, we present a naive, failing attempt at creating a closed universe

using fixpoints. It is a failing attempt because it actually defines an open universe.

We will define a universe similar to the Closed Well-Order Types of Section 4.2.2,

but replacing W with µ1 (of Appendix B), and adding the identity (or equality)

type Id. First, let’s remind ourselves of the definitions of the identity type, and

the type of fixpoints for inductive-recursive definitions.

data Id (A : Set) (x : A) : A → Set where
refl : Id A x x

data µ1 (O : Set) (D : Desc O) : Set where
init : J D K1 D → µ1 O D

The identity type allows us to state propositionally that two values (x and y)

are equal. If they are indeed equal, the constructor refl serves as a proof of the

proposition. In previous parts of this dissertation, we used an infix version of the

136

identity type (≡), in which the type of the compared values is implicit. Here, we

use Id so we can explicitly refer to the type (A) of the compared values. Similarly,

above we define a version of the fixpoint operator (µ1) that explicitly takes the

codomain (O) of the inductive-recursive decoding function. The fixpoint operator

(µ1) also takes an explicit description argument (D), as before, where the kind of

inductive-recursive descriptions (Desc) is defined in Section 5.4.2.

6.1.1 Formal Model

In the vector example of Section 5.4.3 we saw that indexed types can be derived

from inductive-recursive types and equality constraints (i.e., use of identity type).

In our universe below, we want to encode indexed types in addition to inductive-

recursive types, thus we replace ‘W with ‘µ1, and add ‘Id.

mutual
data ‘Set : Set1 where

‘⊥ ‘> ‘Bool : ‘Set
‘Σ ‘Π : (A : ‘Set) (B : J A K → ‘Set) → ‘Set
‘Id : (A : ‘Set) (x y : J A K) → ‘Set
‘µ1 : (O : ‘Set) (D : Desc J O K) → ‘Set

J_K : ‘Set → Set
J ‘⊥ K = ⊥
J ‘> K = >
J ‘Bool K = Bool
J ‘Σ A B K = Σ J A K (ń a → J B a K)
J ‘Π A B K = (a : J A K) → J B a K
J ‘Id A x y K = Id J A K x y
J ‘µ1 O D K = µ1 J O K D

Nothing immediately problematic stands out as our universe looks quite like

the Closed Well-Order Types universe. Let’s take a closer look at why the addition

of the identity type (‘Id) is not problematic, but the addition of fixpoints (‘µ1)

is, by constructing values of both. First, we construct the (uninhabited) boolean

137

proposition that true is equal to false, using the identity type.

‘Bottom : ‘Set
‘Bottom = ‘Id ‘Bool true false

Above, the proposition (‘Bottom) can be encoded in the universe (i.e., defined

as a value of ‘Set) by using the encoded identity type (‘Id, rather than Id). Addi-

tionally, the type of the compared values in the proposition can also be encoded

in the universe (as ‘Bool, rather than Bool).

Hence, the identity type (Id) can be encoded in the universe using its backtick

equivalent (‘Id). Additionally, its type argument can be ‘Bool, the backtick universe

encoding of type Bool. Next (in Section 6.1.2), we will see that, while the fixpoint

type (µ1) can be encoded in the universe using its backtick equivalent (‘µ1), its

description argument cannot be a backtick encoding of a Desc constructor, which

is the source of openness of our universe.

6.1.2 Source of Openness

To discover why ‘Set actually defines an open universe, let’s try to define the type

of natural numbers in the universe (i.e., as a member of ‘Set).

NatDs : Bool → Desc >
NatDs true = Ì tt
NatDs false = δ > (ń u → Ì tt)

NatD : Desc >
NatD = σ Bool NatDs

‘N : ‘Set
‘N = ‘µ1 ‘> NatD

Above, the type of natural numbers (‘N) and the codomain of the decoding

function can be defined within the universe (using ‘µ1 and ‘> respectively, rather

than µ1 and >). However, the description (NatD) of the natural numbers is defined

138

outside of the universe. This is because σ and δ are respectively applied to the

types Bool and >, which are not members of the universe ‘Set. Instead, they are

types (Set) of our open metatheory (Agda). The second argument (D) of encoded

fixpoints (‘µ1) has type Desc, which seems harmless. However, let’s inspect the

definition of descriptions.

data Desc (O : Set) : Set1 where
Ì : (o : O) → Desc O
σ : (A : Set) (D : A → Desc O) → Desc O
δ : (A : Set) (D : (A → O) → Desc O) → Desc O

The root of the problem is that the A argument of σ and δ has Agda’s type Set,

rather than a code of our universe ‘Set. Hence, the universe ‘Set that we defined is

actually open because ‘µ1 has an argument D of type Desc, which is an open type

because it has Set arguments. There are 2 major consequences resulting from ‘µ1

having an open type argument (D):

1. Encodings of declared algebraic datatypes can include non-inductive argu-

ments (and decoding codomains) whose types are not in the universe ‘Set.

For example, a constructor could have a vector (Vec) argument, which is in

Agda’s open universe Set, rather than our universe ‘Set (that we intended to

be closed).

2. We cannot write fully generic functions over the universe, which requires

defining generic functions that work over any ‘µ1 applied to any Desc. We

would get suck on the σ and δ cases of such functions because we could not

case-analyze (or recurse into) the A arguments of type Set.

Both of these consequences are a result of Desc being a valid model of algebraic

datatype declarations in an open universe (where we can use any type, or Set, of

the Agda metalanguage to construct a Desc), but not in a closed universe (where

we need to restrict Desc to only be constructed from closed types, or ‘Sets). We

139

overcome these problems, by truly defining ‘Set as a closed universe (in terms of a

closed equivalent of descriptions, named ‘Desc), in the next section.

6.2 CLOSED INDUCTIVE-RECURSIVE TYPES

The key to creating an adequate2 closed universe of algebraic datatypes in in-

tensional type theory, is paying attention not only to types (Set), but also kinds

(Set1). Previously, we created the Closed Vector Types universe (Section 4.1) and

the Closed Well-Order Types universe (Section 4.2). In those universes, the kind

(Set1) of types (Set) is the only kind around. Now we create the Closed Inductive-

Recursive Types universe, where we additionally account for the kind (Set1) of

descriptions (Desc of Appendix B).3 The lesson to learn is that closing a universe

is not only about closing over some collection of types, but more generally some

collection of kinds.

6.2.1 Formal Model

We wish to formally model a closed type theory, supporting user-declared datatypes,

within an open type theory (Agda). To do so, we define a type of closed types (‘Set),

and a meaning function mapping each closed type (‘Set) to an open type (Set) of

our model.

We saw in Section 6.1 that descriptions (Desc) are actually open. Therefore,

to model closed type theory we must also close over descriptions! To do so, we

define a type of closed descriptions (‘Desc), and a meaning function mapping each

2 By adequate we mean that values of algebraic types have intensionally unique canonical
forms. This property is violated when values of algebraic types are encoded using well-orderings,
as explained in Section 4.2.3. In contrast, encoding values of algebraic types using descriptions
and fixpoints (like the examples in Section 5.4.3) is adequate.

3 The “type” of types is actually a kind because Set : Set1. Similarly, the “type” of descriptions
is actually a kind because Desc : (O : Set) → Set1. Distinctively, the type former of descriptions
is a function. Even though the function domain (O) is a type (Set), descriptions are still kinds
because the codomain of the functional type former is a kind (Set1). In other words, the codomain
of a type former determines whether it is a type or a kind, not its domain.

140

closed description (‘Desc) to an open description (Desc) of our model. Below,

we mutually define closed types (‘Set) and closed descriptions (‘Desc), and their

meaning functions (J_K and «_» respectively).

mutual
data ‘Set : Set where

‘⊥ ‘> ‘Bool : ‘Set
‘Σ ‘Π : (A : ‘Set) (B : J A K → ‘Set) → ‘Set
‘Id : (A : ‘Set) (x y : J A K) → ‘Set
‘µ1 : (O : ‘Set) (D : ‘Desc O) → ‘Set

J_K : ‘Set → Set
J ‘⊥ K = ⊥
J ‘> K = >
J ‘Bool K = Bool
J ‘Σ A B K = Σ J A K (ń a → J B a K)
J ‘Π A B K = (a : J A K) → J B a K
J ‘Id A x y K = Id J A K x y
J ‘µ1 O D K = µ1 J O K « D »

data ‘Desc (O : ‘Set) : Set where
‘Ì : (o : J O K) → ‘Desc O
‘σ : (A : ‘Set) (D : J A K → ‘Desc O) → ‘Desc O
‘δ : (A : ‘Set) (D : (o : J A K → J O K) → ‘Desc O)
→ ‘Desc O

«_» : {O : ‘Set} → ‘Desc O → Desc J O K
« ‘Ì o » = Ì o
« ‘σ A D » = σ J A K (ń a → « D a »)
« ‘δ A D » = δ J A K (ń o → « D o »)

Closed fixpoints (‘µ1) of closed types (‘Set) now take a closed description (‘Desc)

as their D argument, compared to Section 6.1, where D was an open description

(Desc). Correspondingly, closed non-inductive arguments (‘σ) and closed infinitary

arguments (‘δ) of closed descriptions (‘Desc) now take a closed type (‘Set) as their

A argument. In contrast, the A argument of σ and δ in the definition of open

141

descriptions (Desc) is an open type (Set).

Before, the meaning function (J_K) for closed types only recursed on closed

types (‘Set), but now it must mutually recurse using the meaning function («_»)

for closed descriptions (‘Desc). For example, consider the case of defining the

meaning of closed fixpoints (‘µ1), where J_K is recursively applied to the closed

type O, and «_» is recursively applied to the closed description (D).

Conversely, the ‘σ case of the meaning function («_») for closed descriptions

(‘Desc) must mutually recurse using the meaning function (J_K) for closed types

(‘Set). For example, consider the case of defining the meaning of non-inductive

arguments (‘σ), where «_» is recursively applied to the closed description (D a),

and J_K is recursively applied to the closed type A.

Notice that closed descriptions (‘Desc) are parameterized by closed types (O of

type ‘Set). Take a look at the type of the meaning function («_») for descriptions,

mapping a closed description (‘Desc O) to an open description (Desc J O K). Be-

cause open descriptions expect an open type (Set) parameter, we must apply the

meaning function of types (J_K) to the closed type O, to ensure that our parameter

for open descriptions is well-typed (i.e., is a Set rather than a ‘Set).

Finally, recall that our naive attempt (in Section 6.1) at closing the universe

failed because the resulting universe is actually open. In Section 6.1, ‘Set contains

a D argument (in ‘µ1) whose kind (Set1) is Desc. Therefore, ‘Set of Section 6.1 must

be a kind, to account for the size of its D argument. In contrast, the closed universe

of types (‘Set) of this section, and the closed universe of descriptions (‘Desc), are

merely types (Set). Moreover, a measure of success for closing a universe is the

ability to fit it in the size of types (Set) rather kinds (Set1). The closed universe

of algebraic types presented in this section can also be found in Appendix C.

142

6.2.2 Examples

In Section 5.4.3 we demonstrated various examples of encoding types and construc-

tors using the universe of open inductive-recursive types (Section 5.4.2). Now, we

repeat these examples in our closed universe (Section 6.2).

Datatypes encoded with open descriptions (Appendix B) can use any open type

(Set) for the O parameter of descriptions (Desc), and the A argument of σ and δ.

In contrast, closed descriptions (‘Desc) may only use closed types (‘Set) for the O

parameter and A argument.

Natural Numbers We will encode a closed version of the following trivially

infinitary and trivially inductive-recursive definition of the natural numbers.

data N : Set where
zero : N
suc : (> → N) → N

point : N → >
point zero = tt
point (suc f) = point (f tt)

Below, we encode the closed description of the natural numbers. Compared

to the description in Section 5.4.3, the one below uses the closed type ‘> in the

codomain of NatDs and argument to ‘δ, and uses the closed type ‘Bool in the

argument to ‘σ.

NatDs : Bool → ‘Desc ‘>
NatDs true = ‘Ì tt
NatDs false = ‘δ ‘> (ń f → ‘Ì (f tt))

NatD : ‘Desc ‘>
NatD = ‘σ ‘Bool NatDs

Below, we define the type former for natural numbers in two parts. First, we

define the code for the closed type of natural numbers, naming it ‘N and having

143

type ‘Set. Second, we define the interpretation of the closed code for the natural

number type into our open formal model, naming it N and having kind Set. By

convention, we prefix closed type formers with a backtick to distinguish them from

their interpretation in our open formal model.

‘N : ‘Set
‘N = ‘µ1 ‘> NatD

N : Set
N = J ‘N K

Defining the decoding function point for closed natural numbers amounts to

applying the decoding function component µ2 (from our open model of algebraic

types in Section 5.4.2) to an open description. Hence, we apply the interpreta-

tion function («_») to our closed description (‘Desc) of natural numbers (NatD),

translating it to the open description (Desc) expected by µ2.

point : N → >
point = µ2 « NatD »

Defining the constructors for the natural numbers is no different from the open

version in Section 5.4.3. While we encode the closed type of natural numbers as

‘N, we also interpret it as the open type N in our formal model. While we encode

types in a closed way, we can use values of the underlying open formal model.

That is why constructors (e.g., zero and suc, below) appear no differently than in

Section 5.4.3.

zero : N
zero = init (true , tt)

suc : N → N
suc n = init (false , (ń u → n) , tt)

It is worth pointing out that creating named constructor tags, like the NatT

below, is no longer possible in our closed universe. Instead, a choice of constructors

144

is encoded by applying ‘σ to ‘Bool, in a derived-sum way. Creating named tags like

NatT requires extending an open theory with the new enumeration type, which is

not possible in a closed theory.

data NatT : Set where
zeroT sucT : NatT

Vectors Next, we will encode a closed version of the trivially infinitary and

non-trivially inductive-recursive vectors using the translation from indexed types

to inductive-recursive types described in Section 5.4.3. We will encode a closed

version of the vector type below.

mutual
data Vec1 (A : Set) : Set where

nil : Vec1 A
cons : (n : N) (a : A) (xs : Vec1 A) (q : Id N (Vec2 xs) n) → Vec1 A

Vec2 : {A : Set} → Vec1 A → N
Vec2 nil = zero
Vec2 (cons n x xs q) = suc n

Vec : Set → N → Set
Vec A n = Σ (Vec1 A) (ń xs → Id N (Vec2 xs) n)

We get the closed description of vectors from the open description in Sec-

tion 5.4.3 by replacing every instance of an open type with a closed type. For

example, the decoding function codomain is the natural numbers, as specified by

applying the type of closed descriptions (‘Desc) to the type of closed natural num-

bers (i.e., ‘N, which we just defined above). Every first argument to ‘σ and ‘δ is a

closed type (i.e., one with a backtick). The A parameter of VecDs and Vec is also

a closed type (‘Set).

VecDs : ‘Set → Bool → ‘Desc ‘N
VecDs A true = ‘Ì zero

145

VecDs A false =
‘σ ‘N ń n →
‘σ A ń a →
‘δ ‘> ń xs →
‘σ (‘Id ‘N (xs tt) n) ń q →
‘Ì (suc n)

VecD : ‘Set → ‘Desc ‘N
VecD A = ‘σ ‘Bool (VecDs A)

Next, we define the codes for the closed inductive-recursive vector type (‘Vec1),

its decoding function (‘Vec2), and the indexed vector type (‘Vec). Again, this

mostly involves adding backticks to type arguments.

‘Vec1 : ‘Set → ‘Set
‘Vec1 A = ‘µ1 ‘N (VecD A)

‘Vec2 : (A : ‘Set) → J ‘Vec1 A K → N
‘Vec2 A = µ2 « VecD A »

‘Vec : ‘Set → N → ‘Set
‘Vec A n = ‘Σ (‘Vec1 A) (ń xs → ‘Id ‘N (‘Vec2 A xs) n)

Above, the “length” decoding function (‘Vec2), and the closed indexed vec-

tor type former (‘Vec), take interpreted closed codes as their second arguments.

The former does this by applying the type interpretation function (J_K) to closed

inductive-recursive vectors codes (‘Vec1), while the latter takes closed natural num-

bers (N), which were also previously defined by applying the type interpretation

function (J_K) to closed natural number codes (N1).

Additionally, the body of the definition of the closed decoding function (‘Vec2)

must apply the open decoding function fixpoint component (µ2) to an open descrip-

tion, which it obtains by applying the description interpretation function («_») to

the closed description defined by VecD.

Finally, we can define the formal model of closed indexed vectors and their

146

constructors.

Vec : ‘Set → N → Set
Vec A n = J ‘Vec A n K

nil : {A : ‘Set} → Vec A zero
nil = init (true , tt) , refl

cons : {A : ‘Set} {n : N} (a : J A K) (xs : Vec A n) → Vec A (suc n)
cons {n = n} a (xs , refl) = init (false , n , a , (ń u → xs) , refl , tt) , refl

Above, the types of the vector type former and its constructors are visually

similar to the type data declaration (of Vec) presented at the beginning. One key

difference is that every open type (Set) is replaced by a closed type (‘Set). While

the natural number argument (N) is defined as the interpretation of the natural

numbers, the type argument (‘Set) remains uninterpreted. Keeping the closed

type (‘Set) argument uninterpreted is the key to writing fully generic functions (in

Chapter 7) by pattern matching against closed type codes (i.e., the constructors

of ‘Set).

Finite Sets Now we give the type of finite sets (Fin) as another example (in

addition to Vec) of modeling an open indexed type as an open inductive-recursive

type. First, review the high-level open indexed type of finite sets.

data Fin : N → Set where
here : (n : N) → Fin (suc n)
there : (n : N) (i : Fin n) → Fin (suc n)

Using the same procedure to derive indexed vectors from inductive-recursive

vectors (in Section 5.4.3), we derive indexed finite sets (Fin) from the inductive-

recursive type of finite sets (Fin1) and its decoding function (Fin2). The decoding

147

function computes the index of the codomain of each constructor, from its argu-

ments.

mutual
data Fin1 : Set where

here : (n : N) → Fin1

there : (n : N) (i : Fin1) (q : Id N (Fin2 i) n) → Fin1

Fin2 : Fin1 → N
Fin2 (here n) = suc n
Fin2 (there n i q) = suc n

Fin : N → Set
Fin n = Σ (Fin1) (ń i → Id N (Fin2 i) n)

Converting the open type above to a closed description follows the same rules

that we followed to convert open vectors to a closed description. The primary

difference is that the description of closed finite sets is not parameterized by a

closed type A, because the type of finite sets is not parameterized.

FinDs : Bool → ‘Desc ‘N
FinDs true = ‘σ ‘N ń n → ‘Ì (suc n)
FinDs false =

‘σ ‘N ń n →
‘δ ‘> ń i →
‘σ (‘Id ‘N (i tt) n) ń q →
‘Ì (suc n)

FinD : ‘Desc ‘N
FinD = ‘σ ‘Bool FinDs

Finally, we define the closed type code components (‘Fin1, ‘Fin2, and ‘Fin) of

finite sets. We also define the type former (Fin) and its constructors (here and

there) by interpreting closed codes in our open model.

‘Fin1 : ‘Set
‘Fin1 = ‘µ1 ‘N FinD

148

‘Fin2 : J ‘Fin1 K → N
‘Fin2 = µ2 « FinD »

‘Fin : N → ‘Set
‘Fin n = ‘Σ ‘Fin1 (ń i → ‘Id ‘N (‘Fin2 i) n)

Fin : N → Set
Fin n = J ‘Fin n K

here : {n : N} → Fin (suc n)
here {n} = init (true , n , tt) , refl

there : {n : N} (i : Fin n) → Fin (suc n)
there {n} (i , refl) = init (false , n , (ń u → i) , refl , tt) , refl

Nothing new is required to understand the constructions above. One minor

change, compared to the data declaration of indexed finite sets earlier, is that we

expose an implicit natural number (n) argument in the here and there constructors.

We presented the closed type of finite sets for two reasons. First, as another

example of an indexed (but not parameterized) type derived from an inductive-

recursive type. Second, our next example is defining closed arithmetic expressions

(Arith), which depends on closed finite sets as an argument.

Arithmetic Expressions Now we will close the type of arithmetic expres-

sions (Arith), an example of a non-trivially infinitary and non-trivially inductive-

recursive type. All previous examples were trivially infinitary (N, Fin, and Vec).

Additionally, arithmetic expressions are “naturally” inductive-recursive, whereas

Vec and Fin are indexed types derived from inductive-recursive encodings. First,

review the high-level declaration of arithmetic expressions.

mutual
data Arith : Set where

Num : N → Arith

149

Prod : (a : Arith) (f : Fin (eval a) → Arith) → Arith

eval : Arith → N
eval (Num n) = n
eval (Prod a f) = prod (eval a) (ń i → eval (f i))

Below, we define the closed description of arithmetic expressions, which is quite

similar to its open description in Section 5.4.3. The interesting difference is that

the second ‘δ encodes the infinitary domain of f to be a closed finite set (‘Fin).

Hence, there is no issue defining closed inductive-recursive types that use closed

indexed types derived from closed inductive-recursive types.

ArithDs : Bool → ‘Desc ‘N
ArithDs true = ‘σ ‘N ń n → ‘Ì n
ArithDs false =

‘δ ‘> ń a →
‘δ (‘Fin (a tt)) ń f →
‘Ì (prod (a tt) f)

ArithD : ‘Desc ‘N
ArithD = ‘σ ‘Bool ArithDs

Now we can define the closed type of (codes for) arithmetic expressions (‘Arith),

and its decoding function (eval).

‘Arith : ‘Set
‘Arith = ‘µ1 ‘N ArithD

eval : J ‘Arith K → N
eval = µ2 « ArithD »

Finally, we define the type former (Arith) and its constructors (Num and Prod)

by interpreting closed codes in our open model. In the definition of Prod, we

expose a non-infinitary a argument (of type Arith), so its position in the init tuple

of arguments is wrapped in a trivially infinitary function that ignores its u argument

(of type unit). In contrast, the second argument f is naturally infinitary, hence no

150

such wrapping is necessary for f, within init.

Arith : Set
Arith = J ‘Arith K

Num : N → Arith
Num n = init (true , n , tt)

Prod : (a : Arith) (f : Fin (eval a) → Arith) → Arith
Prod a f = init (false , (ń u → a) , f , tt)

6.2.3 Kind-Generalized Universes

Because we are claiming that we are formally modeling a closed universe (Sec-

tion 2.2), we must be able to inhabit the type of codes and its meaning function.

A universe (Univ) can be formally modeled as a dependent record consisting of a

Code type, and a Meaning function mapping codes to types (Set).4

record Univ : Set1 where
field

Code : Set
Meaning : Code → Set

As expected, we can model the Closed Inductive-Recursive Types universe as a

member Univ, by using ‘Set for the codes and J_K for the meaning function.

‘SetU : Univ
‘SetU = record { Code = ‘Set ; Meaning = J_K }

Thus, ‘SetU is the evidence that Closed Inductive-Recursive Types defines a

universe, where closed type codes ‘Set are formally modeled by the kind of open

types Set via the meaning function J_K. Now that we have defined a closed universe

4 In Section 2.2, universes are modeled as a dependent pair (Σ) type, where the first component
is the type of codes and the second is the meaning function. The Univ record is really just a
dependent pair that we have named Univ, and whose components we have named Code and
Meaning.

151

modeled in terms of the kind of open types (Set), can we similarly define a closed

universe modeled in terms of our other kind, namely the kind of open descriptions

(Desc)?

We can, and we call it the Closed Inductive-Recursive Descriptions universe.

But first, we must generalize what it means to be a universe. Previously, we defined

the Univ record with a Meaning function whose codomain is the kind Set. Now,

we define a generalized version where the codomain of the Meaning function is an

arbitrary kind (K : Set1).

record Univ (K : Set1) : Set1 where
field

Code : Set
Meaning : Code → K

We can still define Closed Inductive-Recursive Types as a kind-generalized uni-

verse by specializing K to the kind Set.

‘SetU : Univ Set
‘SetU = record { Code = ‘Set ; Meaning = J_K }

However, now we can also define Closed Inductive-Recursive Descriptions as a

kind-generalized universe by specializing K to the kind Desc.

‘DescU : (O : ‘Set) → Univ (Desc J O K)
‘DescU O = record { Code = ‘Desc O ; Meaning = «_» }

Thus, ‘DescU is the evidence that Closed Inductive-Recursive Descriptions

is a parameterized universe (Section 2.2.9), where the parameter O represents

the codomain of the decoding function of the closed inductive-recursive algebraic

datatypes. If we modeled standard (i.e., not inductive-recursive) dependent alge-

braic datatypes (like in Section 5.3.2), then this parameter would disappear.

By creating a closed universe of types that includes closed user-declared datatypes

modeled using initial algebra semantics, we learn that the standard notion of a uni-

verse in type theory can be generalized. A universe normally maps codes to types

152

(Set), but more generally the meaning function can map codes to any kind, such

as descriptions (Desc). This generalization explains why we call J_K the meaning

function for closed types (‘Set), but also call «_» the meaning function for closed

descriptions (‘Desc).

6.3 HOW TO CLOSE A UNIVERSE

The closed universe of Section 6.2 is a fine result, because it supports user-declared

datatypes, but also fully generic programming (demonstrated in Chapter 7). How-

ever, readers may be curious how we arrived at this universe. Perhaps, more

importantly, what procedure turns an open universe into a closed version? You

may want to support fully generic programming over a universe that represents

algebraic datatypes with different properties, or uses a different encoding of de-

scriptions, or uses an entirely different style of semantics. We describe a procedure

to close a universe below.

6.3.1 Procedure

1. Select a kind K, then mutually:

(a) Declare a kind ‘K, representing (what will be) closed codes of K.

(b) For each formation rule of K, encode it as a constructor of ‘K.

(c) Define a meaning function (J_K) mapping each encoded constructor of

‘K to the actual K formation rule it represents.

2. In the kind former and constructors of ‘K, and in the body of the meaning

function (J_K), simultaneously:

(a) Replace occurrences of the kind K with its closed encoding ‘K.

(b) Replace references to A of kind K with the meaning function applied to

the reference (J A K).

153

3. Recursively apply this procedure for another kind J.

(a) Select J from the arguments of either the kind former, or formation

rules, of K.

(b) In the recursive Step 1, for any K that has already been closed over,

implicitly replace K and its references with ‘K and applications of its

meaning function (J_K).

4. Change ‘K from a kind to a type, by replacing Set with Set1 in the codomain

of the kind former of ‘K.

In the procedure above, all closed codes ‘K, and their meaning functions (J_K),

are mutually defined. Once the procedure terminates, all closed codes ‘K will be

types (Set), rather than kinds (Set1), thanks to Step 4.

6.3.2 Example Procedure Run

Typically, we are interested in closing over a universe of types, so our initial K will

be the kind of open types (Set), and its formation rules will be some finite collection

of type formers (e.g., Bool, Id, Σ, µ1, etc.) Subsequently, other kinds K (e.g., Desc)

that we encounter have constructors (e.g., Ì, σ, and δ) as their formation rules. For

example, consider closing over the subset of the kind Set below.

data N : Set where
zero : N
suc : N → N

data Vec (A : Set) : N → Set where
nil : Vec A zero
cons : {n : N} → A → Vec A n → Vec A (suc n)

data µ1 (O : Set) (D : Desc O) : Set where
init : J D K1 D → µ1 O D

154

Step 1 We select K to be kind Set, and the type formers of the collection of types

above are its formation rules. Once this step is complete, ‘K is ‘Set (representing

what will be closed types), and its meaning function is J_K. We present both

below.

data ‘Set : Set1 where
‘N : ‘Set
‘Vec : (A : Set) (n : N) → ‘Set
‘µ1 : (O : Set) (D : Desc O) → ‘Set

J_K : ‘Set → Set
J ‘N K = N
J ‘Vec A n K = Vec A n
J ‘µ1 O D K = µ1 O D

Step 2 Next, we replace occurrences of Set with ‘Set, and references A of kind

Set with J A K.

data ‘Set : Set1 where
‘N : ‘Set
‘Vec : (A : ‘Set) (n : N) → ‘Set
‘µ1 : (O : ‘Set) (D : Desc J O K) → ‘Set

J_K : ‘Set → Set
J ‘N K = N
J ‘Vec A n K = Vec J A K n
J ‘µ1 O D K = µ1 J O K D

At this point, our universe is quite like our failing attempt of a closed universe

(Section 6.1), because Desc in argument D of ‘µ1 is not closed yet.

Step 3 Next, we encounter the kind of descriptions (Desc) in the D argument of

the ‘µ1 constructor, so we must recursively apply the procedure by choosing J to

be Desc. For the next part of this procedure run, we need to start over at Step

1 when recursively closing over the kind Desc. However, we will instead call this

155

Step 3.1, where the 3 prefix indicates that the recursion was initiated by Step 3

when closing over the kind Set. For reference, we present the kind of descriptions

(Desc) below.

data Desc (O : Set) : Set1 where
Ì : (o : O) → Desc O
σ : (A : Set) (D : A → Desc O) → Desc O
δ : (A : Set) (D : (A → O) → Desc O) → Desc O

Step 3.1 The constructors of Desc above are its formation rules. Once this step

is complete, ‘J is ‘Desc (representing what will be closed descriptions), and its

meaning function is «_». We present both below.

data ‘Desc (O : ‘Set) : Set1 where
‘Ì : (o : J O K) → ‘Desc O
‘σ : (A : ‘Set) (D : J A K → Desc J O K) → ‘Desc O
‘δ : (A : ‘Set) (D : (J A K → J O K) → Desc J O K) → ‘Desc O

«_» : {O : ‘Set} → ‘Desc O → Desc J O K
« ‘Ì o » = Ì o
« ‘σ A D » = σ J A K D
« ‘δ A D » = δ J A K D

Notice that the kind former argument O (of ‘Desc) already has kind ‘Set (rather

than Set) because Set was previously encoded as ‘Set. Similarly, A arguments of

‘Desc constructors, and the O argument in the type of the closed descriptions

meaning function («_»), already have kind ‘Set. In all three of these places, and

in the body of the closed descriptions meaning function («_»), references (e.g., A)

to kinds ‘Set already have the meaning function of closed types applied to them

(e.g., J A K).

156

Step 3.2 Next, we replace occurrences of Desc with ‘Desc, and references D of

kind Desc with « D ».

data ‘Desc (O : ‘Set) : Set1 where
‘Ì : (o : J O K) → ‘Desc O
‘σ : (A : ‘Set) (D : J A K → ‘Desc O) → ‘Desc O
‘δ : (A : ‘Set) (D : (J A K → J O K) → ‘Desc O) → ‘Desc O

«_» : {O : ‘Set} → ‘Desc O → Desc J O K
« ‘Ì o » = Ì o
« ‘σ A D » = σ J A K (ń a → « D a »)
« ‘δ A D » = δ J A K (ń o → « D o »)

Notice that ‘Desc (which replaced Desc in the D arguments of the ‘µ1, ‘σ, and

‘δ constructors) is applied to O, without the closed types meaning function (J_K),

because the ‘Desc kind former expects a closed type (‘Set).

Additionally, the ‘σ and ‘δ cases of the closed descriptions meaning function

(«_») now recursively apply «_» to the result of the infinitary function D.

Step 4 Because there are no kinds left to recursively apply the procedure to,

Step 4.1 and Step 4.2 can be completed by changing closed types (‘Set) and

closed descriptions (‘Desc) from kinds to types. Any kinds that were arguments

of the original collection of type formers have been replaced by types, making the

final universe closed. Below is the final result of the procedure.

mutual
data ‘Set : Set where

‘N : ‘Set
‘Vec : (A : ‘Set) (n : N) → ‘Set
‘µ1 : (O : ‘Set) (D : ‘Desc O) → ‘Set

J_K : ‘Set → Set
J ‘N K = N
J ‘Vec A n K = Vec J A K n
J ‘µ1 O D K = µ1 J O K « D »

157

data ‘Desc (O : ‘Set) : Set where
‘Ì : (o : J O K) → ‘Desc O
‘σ : (A : ‘Set) (D : J A K → ‘Desc O) → ‘Desc O
‘δ : (A : ‘Set) (D : (J A K → J O K) → ‘Desc O) → ‘Desc O

«_» : {O : ‘Set} → ‘Desc O → Desc J O K
« ‘Ì o » = Ì o
« ‘σ A D » = σ J A K (ń a → « D a »)
« ‘δ A D » = δ J A K (ń o → « D o »)

Reflecting upon how the procedure operates, we come to understand that only

kind arguments of the original type formers are encoded, and the meaning function

is only applied to members of kinds. This explains why the N argument of the

vector type former (encoded as ‘Vec) did not get encoded. Hence, we did not create

a code (i.e., ‘N) and meaning function for the type of natural numbers, but we did

(i.e., ‘Desc) for the kind of descriptions. Additionally, the type meaning function

(J_K) does not recurse on n in the ‘Vec case, nor does the description meaning

function («_») recurse on o in the ‘Ì case, because both n and o are values of a

type rather than members of a kind.

6.4 TYPES VERSUS KINDS

In Section 6.3 we explain how to close over a subset of types, mutually by closing

over descriptions. In this section we examine the distinctions between kinds and

types in more detail. In particular, we compare and contrast the kind of types (Set

: Set1) and the kind of descriptions (Desc : Set → Set1), and where they show up

(and do not show up) in the universe construction.

6.4.1 Open Types and Kinds

While both types (Set) and descriptions (Desc) are open kinds (Set1), somehow

Desc feels “more closed” than Set. We will precisely identify the properties that

158

cause that feeling, by comparing and contrasting the open kinds Set and Desc.

First, let’s revisit the idea of open types from Section 2.1.12.

Lists Consider the type of lists (List below), parameterized by some type A

(representing the type of the elements of the list). List is an open type, because its

collection of values is open. Hence, whenever a new type is declared (in open type

theory), it can be used as the A parameter (e.g., by applying List to Bool, Tree,

etc.). This is because the kind of the A parameter is Set, the canonical source of

openness.

data List (A : Set) : Set where
nil : List A
cons : (a : A) (xs : List A) → List A

While the type of lists (List) is open, it is inductively defined by a closed col-

lection of constructors. This may seem obvious, but we will return to this point

when discussing the difference between the kinds Set and Desc.

Descriptions Now let’s consider the kind of descriptions (Desc below), param-

eterized by some type O, representing the codomain of the inductive-recursive

decoding function. Desc is an open kind, because its collection of elements is open.

Henceforth, we refer to the inhabitants of kinds as large values (we could emphasize

the distinction with inhabitants of types by calling them small values).

data Desc (O : Set) : Set1 where
Ì : (o : O) → Desc O
σ : (A : Set) (D : A → Desc O) → Desc O
δ : (A : Set) (D : (A → O) → Desc O) → Desc O

Similar to why List is an open type, Desc is an open kind because its collection

of large values grows as its O parameter is instantiated to different types, and

is used as the type of the o argument in the Ì constructor. Another reason why

descriptions are an open kind is that the A argument of the σ and δ constructors

159

have kind Set. Because Desc constructors define elements of a kind, we sometimes

call them large constructors.

While the kind of descriptions (Desc) is open, it is inductively defined by a

closed collection of constructors. The List type and Desc kind are both open, but

are defined by a closed collection of constructors, because they are both inductively

defined.

Types Finally, consider the kind of types (Set). The kind of types is open, as

it is the canonical source of openness. Unlike Desc, Set is not inductively defined.

Every time a new type is declared, its type former becomes a new “constructor”

of the kind of types (Set). For example, consider the datatype declarations below.

data N : Set where
zero : N
suc : N → N

data Vec (A : Set) : N → Set where
nil : Vec A zero
cons : {n : N} → A → Vec A n → Vec A (suc n)

data µ1 (O : Set) (D : Desc O) : Set where
init : J D K1 D → µ1 O D

We can split a datatype declaration into 2 parts.

1. The signature, containing the type former between data and where keywords.

2. The body, containing the constructors after the where keyword.

The formation rules of kind Set are defined by the signature part of datatype

declarations, but the collection of formation rules is open to extension (i.e., when-

ever a new type is declared). In contrast, the formation rules of kind Desc is

defined by the body part of its datatype declaration, using the closed collection of

constructors in the body.

160

6.4.2 Gratuitous Kinds

An algebraic declaration introduces a type into our open theory if the codomain

of the signature of the declaration is Set. In contrast, an algebraic declaration

introduces a kind into our open theory if the codomain of the signature of the

declaration is Set1.

But what determines that a declaration needs to be a kind, as opposed to a

type? If all non-inductive arguments of all constructors are classified by types (like

n : N, b : Bool, and a : A where A : Set), then we can choose to algebraically

declare a type. For example, lists (List, below) can be declared as a type because

the only non-inductive constructor argument is a of type A (where A : Set, and is

the parameter of the lists).

data List (A : Set) : Set where
nil : List A
cons : (a : A) (xs : List A) → List A

However, we may choose to declare lists gratuitously as a kind (List1, below),

even though it is consistent to declare them as a type.

data List1 (A : Set) : Set1 where
nil : List1 A
cons : (a : A) (xs : List1 A) → List1 A

If at least one algebraic constructor has an argument that is classified by a kind

(like A : Set, D : Desc O, etc.), then we must algebraically declare a kind. For

example, heterogenous lists (HList, below) must be declared as a kind, because the

cons constructor contains argument A of kind Set.

data HList : Set1 where
nil : HList
cons : {A : Set} → A → HList → HList

Finally, we emphasize that both types and kinds can be closed or open, so the

type versus kind distinction is orthogonal to the closed versus open distinction.

161

For example, the type of parameterized lists (List, above) is open (we explain how

parameterization makes this possible in Section 6.4.4). On the other hand, below

we gratuitously declare closed natural numbers (N1) as a kind.

data N1 : Set1 where
zero : N1

suc : (n : N1) → N1

6.4.3 Types versus Descriptions

In an open type theory like Agda, Set is a unique kind because it is not inductively

defined (i.e., it has an open collection of formation rules, extended by type formers

in the signature of datatype declarations). Every other kind (like Desc) is defined

by a closed collection of formation rules (i.e., the constructors in the body of the

datatype declaration for the kind).

The open-versus-closed formation rules distinction between kinds Set and Desc,

and the difference in the way the formation rules are defined by datatype decla-

ration signatures or bodies, is what made coming up with an adequate definition

of a closed universe difficult. In fact, we first defined an inadequate definition of

a closed universe [18], where certain algebraic types (like natural numbers) were

(adequately) encoded in the first universe, but others (like parameterized lists)

needed to be (inadequately) lifted to the second universe.

The solution to defining a closed universe adequately (as in Section 6.2, fol-

lowing the procedure in Section 6.3) is to create codes for types (‘Set) mutually

with codes for descriptions (‘Desc). At first, this may seem odd because descrip-

tions (Desc) can already be viewed as codes (whose interpretation function is the

fixpoint operator µ1). Hence, ‘Desc can be viewed as a code for codes. However,

this is necessary because Desc codes are open descriptions, while ‘Desc codes are

closed descriptions.

Part of what led us to realizing that codes for closed types (‘Set) need to

162

be defined mutually with codes for closed descriptions (‘Desc), was viewing the

“constructors” of kinds Set and Desc in a unifying way as kind formers. Rather

than focusing on the syntactic difference that a type former (of Set) appears in the

signature of a declaration, and a large constructor (of Desc) appears in the body

of a declaration, we can simply focus on the fact they are both formation rules of

some kind. For example, below we list the formation rules for the kind Set and

the kind Desc in a unified way.

Set : Set1 Desc : (O : Set) → Set1

N : Set Ì : (o : O) → Desc O

Vec : (A : Set) (n : N) → Set
σ : (A : Set)

(D : A → Desc O) → Desc O

µ1 : (O : Set) (D : Desc O) → Set
δ : (A : Set)

(D : (A → O) → Desc O) → Desc O
The first row contains the kind formers Set and Desc. Subsequent rows in the

first column contain type formers, serving a role analogous to large constructors,

but for kind Set. Subsequent rows in the second column contain the large con-

structors of kind Desc. This unified way of presenting Set and Desc leads us to

refer to large constructors of Desc as description formers.

6.4.4 Kind-Parameterized Types

To perform fully generic programming, our original goal was to create a closed

universe of types. This universe corresponds to the first universe in a hierarchy

of universes (we define the hierarchy in Chapter 8). For the first universe to be

adequate, it should contain all possible small values. In other words, ‘Set should

encode types like ‘Bool, ‘Σ, and ‘Vec, whose elements are small values. However, it

should not encode kinds like ‘Set and ‘Desc, whose elements would be large values.

Encoding large values in the first universe leads to inconsistency due to a type in

type paradox [28, 34].

163

If ‘Desc should not be encoded in our first universe, then why do we need to

close over it when defining our universe at all? The answer is that the kind Desc

appears as an argument to the type former of µ1. This is similar to how the kind

Set appears as an argument to the type former of Vec. However, this leads us to

the next question: why can a type like Vec have a kind-level type former argument

(i.e., its parameter A of kind Set) while remaining a type itself (rather than being

lifted to a kind)? The answer has to do with both Vec and µ1 being defined as

kind-parameterized types.

Vectors Consider the type of vectors, parameterized by elements of some type

A, and indexed by the natural numbers.

data Vec (A : Set) : N → Set where
nil : Vec A zero
cons : {n : N} → A → Vec A n → Vec A (suc n)

Vectors are types, rather than kinds, because the codomain of their type former

is Set (rather than Set1). An algebraic datatype can consistently be classified as a

type so long as its constructors do not contain a kind (e.g., Set) as a formal argu-

ment. Datatype parameters give us a way to refer to A (of kind Set) in the vector

constructors, without actually taking A as a formal argument in the declaration of

each constructor. Hence, the declarations of the nil and cons constructors do not

have an A argument. However, if we consider the types of the constructors (rather

than their declarations), we see that A appears as an informal argument to each

constructor.

nil : {A : Set} → Vec A zero
cons : {A : Set} {n : N} (a : A) → Vec A n → Vec A (suc n)

Notice that the cons constructor must take n as a formal argument so that it

may determine the index to be suc n. We call A an informal argument because the

underlying constructor declaration does not store the type A (even though cons

164

does store the value a of type A, because a is not a parameter of Vec). It is exactly

this fact, that the declaration of the nil and cons constructors do not formally store

A (of kind Set) as an argument, that allows Vec to be a type (Set) rather than a

kind (Set1). To see the difference, we define vectors to be indexed by A, rather

than parameterized by A, below.

data Vec : (A : Set) → N → Set1 where
nil : {A : Set} → Vec A zero
cons : {A : Set} {n : N} → A → Vec A n → Vec A (suc n)

The type former Vec declares A to be an index because it appears to the right

of the colon in the datatype declaration signature (appearing to the left makes it a

parameter). Now the nil and cons constructors must take A as a formal argument,

because it is no longer available as a parameter. Because A is a kind (Set), and it

appears as formal constructor arguments, the indexed vector type must be a kind

(hence, the codomain of its former is Set1).

Fixpoints Now let’s reconsider the definition of the type of fixpoints, parameter-

ized by the decoding codomain O and the description D. Below, we only present

the definition of the interpretation function (J_K1) and the fixpoint datatype (µ1).

For the full definition, including the decoding function, see Section 5.4.2.

J_K1 : {O : Set} (D R : Desc O) → Set
J Ì o K1 R = >
J σ A D K1 R = Σ A (ń a → J D a K1 R)
J δ A D K1 R = Σ (A → µ1 _ R) ń f → J D (µ2 R ◦ f) K1 R

data µ1 (O : Set) (D : Desc O) : Set where
init : J D K1 D → µ1 O D

Both parameters (O and D) of the fixpoint datatype (µ1) are kinds (Set and

Desc, respectively). Hence, µ1 can be a type (Set), rather than a kind (Set1), be-

cause its constructor (init) does not contain any formal arguments that are classified

165

by kinds. While the type parameter (O) is used similarly to the type parameter

(A) of vectors, the description parameter (D) is used in a significant way. The

interpretation function (J_K1) is applied to the D parameter to compute the type

of the argument to init. While J_K1 takes a kind (D) as an input, it returns a

type as an output. Hence, init never actually stores a description (i.e., a kind) as

a formal argument.

We discuss the significance of computing over a large (i.e., a kind) parameter

in a constructor argument of a type in Chapter 10. The consequence is that fix-

points can be defined as a type, hence they model algebraic datatypes as types,

whose inhabitants are (small) values. It would be inadequate to model algebraic

datatypes (like natural numbers or vectors) at the level of kinds, because users ex-

pect to declare them as types. Significantly, by defining closed descriptions (‘Desc)

mutually with closed types (‘Set), we preserve the adequate encoding of ‘µ1 as a

closed type, allowing our formal model of closed algebraic datatypes (like in ‘N and

‘Vec in Section 6.2.2) to adequately classify small values (like ‘zero and ‘nil).

Heterogenous Lists We have learned that certain datatypes can be declared

as types, rather than kinds, by changing datatype indices to datatype parameters.

However, if a datatype is not indexed, then this change is not applicable, and the

type must be declared as a kind. For example, consider the kind of heterogenous

lists (HList below).

data HList : Set1 where
nil : HList
cons : {A : Set} → A → HList → HList

Because the cons constructor of heterogenous lists takes A of kind Set as a

formal argument, there is no choice but to make HList a kind (Set1). We could

imagine indexing HList by the collection of types it contains, and then using our

trick to turn the index into a parameter. However, this would not adequately define

166

heterogenous lists, because the types of elements would be statically determined.

For similar reasons, the descriptions (Desc) must be a kind, rather than a type.

The first closed universe (of Section 6.2) cannot encode kinds like Set, Desc, and

HList. However, Chapter 8 defines a closed hierarchy of universes, allowing kinds

to be represented in the next (i.e., second) universe (i.e., the universe of closed

kinds). Further levels of the universe correspond to closed superkinds (Set2), and

so on (Set3, Set4, ... , Setω).

167

Chapter 7

FULLY GENERIC FUNCTIONS

In this chapter1 we formally model fully generic programming in a closed de-

pendently typed language. We write fully generic functions in the universe of

Section 6.2, supporting user-declared datatypes while remaining closed.

Thus far we have focused on defining concrete datatypes in our universe of

(inductive-recursive) algebraic types. Smart constructors (defined as functions,

first demonstrated in Section 5.1.3), for the type former and constructors of a

concrete algebraic datatype, allow us to construct concrete types and their values

while hiding their generic encoding in terms of initial algebra semantics. Similarly,

pattern synonyms (demonstrated in Section 5.1.3), for constructors of concrete

types encoded using initial algebra semantics, allow us to deconstruct generically

encoded values by writing functions defined by pattern matching while hiding

underlying algebraic encodings.

While smart constructors and pattern synonyms shelter users from generic en-

codings when they construct and deconstruct concrete datatypes, fully generic

programming requires users to understand how to generically construct and de-

construct encoded datatypes, by applying and matching against the initial algebra

constructor of µ1. By definition, fully generic functions can be applied to (and

may return) values of any user-declared type, thus understanding the underlying

generic encoding (or something isomorphic to it) is necessary. In this chapter we

define three fully generic functions:

1 This chapter is adapted from work by myself and Sheard [18], as explained in Section 9.4.

168

1. count, in Section 7.1, counting the number of nodes in a generically encoded

value.

2. lookup, in Section 7.2, looking up any subnode of a generically encoded value.

3. ast, in Section 7.3, marshalling any generically encoded value to an abstract

syntax tree (AST), defined as a rose tree.

Major Ideas The purpose of this chapter is to demonstrate examples of fully

generic programming over the universe defined in Section 6.2 (which also appears

in Appendix C). Traditional generic programs (as explained in the introduction

of Chapter 1) only recurse into inductive constructor arguments. We could write

a traditional generic size function, like the one in Section 1.2.1, over the open

universe of inductive-recursive types in Section 5.4.4. We could also write other

traditional generic functions that only need to recurse into inductive constructor

arguments, such as map and fold.

In contrast, this chapter focuses on writing fully generic programs, like the

count function of Section 1.2.2. Fully generic programs can recurse into both the

inductive and non-inductive arguments of constructors. In Section 7.1, we define

a fully generic count function over the closed universe of Section 6.2, modeling a

dependently typed language supporting user-declared types. Functions that mar-

shal data into another format (such as binary, JSON, XML, etc.) are a prime

example of fully generic programming. When marshaling data, it is not enough to

marshal just the inductive structure of values, we also want to marshal all of the

non-inductive values contained in the structure.

Section 7.3 features a fully generic function (ast) that marshals data into a

common rose tree format, used to visualize values with Graphviz [25]. The primary

thing to notice in this chapter is that the definitions of generic functions recurse

into non-inductive arguments. This includes recursion into both components of the

built-in type of pairs (in the ‘Σ case of closed built-in types ‘Set), and recursion into

169

non-inductive constructor arguments (in the ‘σ case of closed functor descriptions

‘Desc).

7.1 FULLY GENERIC COUNT

In this section, we develop a fully generic count function that counts the number

of nodes that make up a generically encoded value. The count function is used

in the type of the subsequently-defined generic lookup in Section 7.2. The count

function is used as the maximum bound for the index argument of lookup.

7.1.1 Generic Types

Before covering the details of implementing count, we return to the introduction of

our dissertation to clarify our intuition about the type signatures of fully generic

functions. In Section 1.2.3, we hinted that any fully generic function can be de-

fined by mutually defining a function over all types and another function over all

descriptions (whose fixpoint is a special case of the function over all types).

(A : Type) (a : J A K)→ ...

(D : Desc) (x : µ D)→ ...

Specializing this template to a generic count, and making some changes to work

with our closed universe of Section 6.2 (discussed below), results in the following

two mutually defined functions.

count : (A : ‘Set) → J A K → N
countµ : {O : ‘Set} (D : ‘Desc O) → µ1 J O K « D » → N

The intuition (presented in Section 1.2.3 of the introduction) behind the closed

count function is largely correct. The only difference is that we have renamed Type

to ‘Set, to notationally emphasize that its interpretation as a Set is obtained by

“removing the backtick”.

170

However, the intuition behind the closed countµ function is simplified in the

introduction. A minor difference is that we must add an O parameter, to account

for the codomain of the inductive-recursive decoding function.

The first major difference is that the intuition from the introduction leads to

defining countµ over all open descriptions (Desc), but fully generic programming

demands that we define it over all closed descriptions (‘Desc). Let’s remind our-

selves of the definition (from Section 5.4.4) of the type component of the fixpoint

operator:

data µ1 (O : Set) (D : Desc O) : Set where
init : J D K1 D → µ1 O D

Recall that µ1 expects O to be the kind of open types (Set), and D to be the

kind of open descriptions (Desc). When we write the type of a generic function,

like countµ, we quantify over all closed types O (of type ‘Set), and all closed

descriptions D (of type ‘Desc).

The third argument to countµ is the result of applying the type meaning func-

tion (J_K) to the closed type (‘µ1 O D), which definitionally reduces to µ1 applied

the type meaning (J_K) of O and the description meaning («_») of D. This models

values of closed types within our open metalanguage, Agda (using open types like

µ1).

The second major difference between the types we use for fully generic program-

ming, and the types behind the intuition in the introduction, is that we cannot

directly define a function like countµ over all closed descriptions. The problem is

that the inductive hypothesis is not general enough in the infinitary (hence, also

inductive) ‘δ case. If we tried to write countµ directly, we would not remember the

original inductive description when we reach the ‘δ case, because countµ would be

defined by recursively destructing the description argument.

Instead of mutually defining count with countµ (a function over all algebraic

171

types), we mutually define count with counts (a function over all arguments of al-

gebraic types, isomorphic to countµ). The counts function has an extra description

argument, R, that stays constant to remember the original description as the D

description argument is recursively destructed.

counts : {O : ‘Set} (D R : ‘Desc O) → J « D » K1 « R » → N

Recall that J_K1 (defined below, for reference) is the type component of the

interpretation function for descriptions. It appears as the sole argument to the

initial algebra constructor of µ1. Because µ1 O D is isomorphic to J D K1 D,

defining counts is an acceptable alternative to defining countµ.

J_K1 : {O : Set} (D R : Desc O) → Set
J Ì o K1 R = >
J σ A D K1 R = Σ A (ń a → J D a K1 R)
J δ A D K1 R = Σ (A → µ1 _ R) ń f → J D (ń a → µ2 R (f a)) K1 R

The interpretation function (J_K1) recurses over the first argument (D) to de-

termine the type of constructor arguments, while holding the second argument (R)

constant. This allows J_K1 to remember the original complete description (R) of

the algebraic type, even though it is destructing a copy of it (D) as it recurses.

By remembering the original description (R), the open δ case can request an

infinitary (hence, also inductive) argument as the first argument to Σ. For anal-

ogous reasons, counts is generically defined over all descriptions (D), but also a

copy (R) of the original complete description that it can use to count infinitary

arguments in the closed ‘δ case.

In summary, we define how to generically count values of the closed universe in

terms of 2 mutually defined functions, count and counts. The first is defined over

all closed types (‘Set) and the second is defined over all closed descriptions (‘Desc).

172

7.1.2 Counting All Values

First, let’s define count fully generically for all values of all types (of Appendix C).

This involves calling counts in the ‘µ1 case, defined mutually (in Section 7.1.3) over

all arguments of the initial algebra. Below, we restate the type of count, and then

define count by case analysis and recursion over all of its closed types.

count : (A : ‘Set) → J A K → N

Recall that we wish to define count as the sum of all constructors and the

recursive count of all constructor arguments. It may be helpful to review count for

the fixed closed universe in the introduction (Section 1.2.2), to see how it compares

to our new count, defined over an extendable closed universe (by user-declared

datatypes).

Dependent Pair We count a dependent pair by summing the recursive count of

both its components (a and b), plus 1 to also count the pair constructor (,).

count (‘Σ A B) (a , b) = 1 + count A a + count (B a) b

Notice that the dependent type of the second component (b) is computed by

applying the codomain of the dependent pair (B) to the first component (a).

Algebraic Fixpoint We count an algebraic fixpoint by recursively counting its

arguments (xs) using counts, plus 1 to account for the init constructor.

count (‘µ1 O D) (init xs) = 1 + counts D D xs

When we initially call counts, D is used for both of its arguments. However, as

counts recurses, the first description argument will be destructed while the second

(original) description argument is held constant.

Remaining Values All constructors of the remaining types (such as Bool) do

not have arguments, so we count them as 1 (for their constructor, plus 0 for their

173

arguments). Note that this includes functions (the ‘Π case), which we treat as

a black box by counting the λ constructor as 1, without recursively counting its

body.

count A a = 1

7.1.3 Counting Algebraic Arguments

Second, let’s define counts fully generically for all arguments of the initial algebra.

This involves calling count in the ‘σ and ‘δ cases, defined mutually (in Section 7.1.2)

over all values of all types. Below, we restate the type of counts, and then define

counts by case analysis and recursion over all of its closed descriptions (for refer-

ence, the declaration of Desc appears in Appendix B).

counts : {O : ‘Set} (D R : ‘Desc O) → J « D » K1 « R » → N

Recursion is performed over the first description argument (D), while the second

argument (R) is kept constant, so we have access to the original description in the

inductive ‘δ case.

Finally, our intention is to count an algebraic value init xs as 1 (for init) plus

the recursive sum of all of its arguments (for xs). Even though xs is technically

implemented as a sequence of dependent pairs (,), we will not add 1 for each

pair constructor (,), which we choose to view as part of the encoding rather than

something to be counted. Hence, counts treats its argument xs as a single n-tuple,

rather than several nested pairs.2

2 Although we are hiding the nested-pairs (of the initial algebra) aspect of the encoding, we
are exposing the encoding when counting constructors. Constructors are encoded as a depen-
dent pair, representing a disjoint union. Our count function counts the boolean and the pair
constructor, rather than hiding that aspect of the encoding. We could create a separate universe
of codes that explicitly represents constructors, along with a new meaning function mapping to
the underlying Descriptions, so that our generic count could hide the encoding of constructors
as derived disjoint unions. However, we chose not to do so to make the presentation easier to
follow.

174

Non-Inductive Argument When we come across a non-inductive argument in

a sequence of arguments, we sum the count of the non-inductive argument (a) with

the counts of the remainder of the sequence of arguments (xs).

counts (‘σ A D) R (a , xs) = count A a + counts (D a) R xs

Note that a is counted using our mutually defined count over all values, and

xs is recursively counted (via counts) using the description resulting from applying

the dependent description D (of ‘σ) to the value a. The original description R is

passed to counts unchanged.

Inductive Argument When we come across an inductive argument, in a se-

quence of arguments, we sum the count of the inductive argument (x) with the

counts of the remainder of the sequence of arguments (xs).

counts (‘δ ‘> D) R (f , xs) = count (‘µ1 _ R) (f tt) +
counts (D (µ2 « R » ◦ f)) R xs

Inductive arguments are a special case of infinitary arguments where the domain

of the infinitary function is the unit type (>). The first argument to the closed

description ‘δ is a closed type. Because the first argument is a closed type, we can

pattern match against the closed unit type (‘>). This allows us to distinguish how

we count inductive arguments from how we count infinitary arguments, and is only

possible because our universe is closed (i.e., if the argument had kind Set, it would

be open and we could not pattern match against it)!

The inductive argument is obtained by applying the infinitary argument f to the

trivial value tt. But what type should we use to count it? Because it is an inductive

(hence, algebraic) value, the type should be the fixpoint (‘µ1) applied to some

description. We kept the original description (R) to count inductive arguments for

exactly this case.

The remaining sequence of arguments (xs) is recursively counted (via counts)

175

using the description resulting from applying the dependent description D (of ‘δ) to

the composition of the decoding function fixpoint component (µ2) and the infinitary

value f. Recall (from Section 5.4.2) that the D argument of ‘δ is a description that

depends on the decoding function for our inductive-recursive type. The type of the

decoding function is the implicit composition of the decoding fixpoint component

(µ2) and the infinitary value f (the nature of the implicit composition is explained

in Section 5.4.2). In our generic function above, we explicitly create the value of this

decoding function to satisfy the implicit expectation in the type of its description.

Infinitary Argument When we come across an infinitary argument, in a se-

quence of arguments, we add 1 to the counts of the remainder of the sequence of

arguments (xs). This counts the infinitary λ constructor as 1, treating it as a black

box, analogous to how we count the ‘Π case as 1.

counts (‘δ A D) R (f , xs) = 1 + counts (D (µ2 « R » ◦ f)) R xs

The remaining sequence of arguments (xs) is recursively counted just like the

inductive (‘δ ‘>) case, where the dependent description D is applied to the com-

position of the fixpoint interpretation component (µ2) and the infinitary argument

(f).

Last Argument Every sequence of algebraic constructor arguments terminates

in the trivial value tt of type unit (>), which we count as 1.

counts (‘Ì o) R tt = 1

We could choose to count the trivial (tt) last argument as 0, hiding the aspect

of the encoding that every sequence of arguments is terminated by tt. However, we

choose to count tt as 1 because the subsequently defined generic function, lookup

in Section 7.2, treats the result of count as an index into all values and subvalues

176

of a type.3

7.1.4 Examples

Now that we’ve defined count fully generically, let’s run it on some examples to

better understand how it works. The key lesson to take away is that count and

counts use a depth-first traversal to count values and subvalues.

Natural Numbers First, we consider counting the closed encoding of the nat-

ural number 0. It may be helpful to review the closed definition of the natural

numbers in Section 6.2.2. The natural number 0 is encoded (below) by zero as

the initial algebra applied to a dependent pair (,) consisting of the boolean true

(selecting the zero-constructor branch of the dependent description used to encode

the natural numbers), and the unit value (tt).

zero : J ‘N K
zero = init (true , tt)

We generically count the closed zero by summing 1 for the initial algebra con-

structor, 1 for the true argument, and 1 for the terminating unit argument (tt),

3 Given our generic encoding of inductive-recursive types, the ability to count or lookup the
trivial value (tt) may not seem useful. Nevertheless, we include this functionality because it
becomes useful when generalizing our universe to include indexed algebraic types. In the initial
algebra semantics for indexed types, the final unit type (>) is replaced by the identity type (Id),
used as a constraint on the index of the algebraic type. Being able to count and lookup the
constraint is important in the indexed universe.

177

resulting in 3.4

count ‘N zero ≡ 3

Next, let’s define the closed natural number 1. We can define one by applying

our closed successor (from Section 6.2.2) to our closed zero.

one : J ‘N K
one = suc zero

Expanding these definitions results in the closed encoding of 1 below.

one ≡ init (false , (ń _ → init (true , tt)) , tt)

The false value in the closed one definition selects the successor branch of the

description, and the next argument contains the inlined definition of zero, wrapped

in a function ignoring its trivial unit argument. Recall that inductive natural num-

bers are encoded as trivially infinitary types, using the unit type (>) as the domain

of the infinitary function. The Inductive case of counts is able to recursively count

the inductive body of the successor (i.e., zero) because it is able to pattern match

against the closed type ‘> to distinguish counting inductive (or trivially-infinitary)

arguments from counting (truly) infinitary arguments.

count ‘N one ≡ 6

Finally, we count closed one as 6, adding up 1 for each constructor appearing

in the encoded definition (init, false, init, true, tt, and tt), from left to right. The

reason behind that order is that count and counts recursively add 1 for each encoded

constructor by doing a depth-first traversal. To help visualize the traversal, and

4 Once again, this is an encoding-aware count, because it is used to index which nodes (in
a generically encoded data structure) to lookup (in Section 7.2). It would also be possible to
define an encoding-unaware count, that does not count true (encoding constructor choice) and
tt (encoding the end of the sequence of constructors). Encoding-unaware count could be generi-
cally defined over a universe of constructor-aware descriptions, equipped with an interpretation
function to translate constructor-aware descriptions into our constructor-unaware descriptions.
Applying an encoding-unaware count to zero would result in 0, as it would not count constructor
choice data (like true) or argument sequence data (like tt).

178

aid in the legibility of encoded values, refer to Figure 7.1. The edges of Figure 7.1

are labeled according to a depth-first traversal of nodes (where 0 is an implicit

edge for the root node). Because count (and counts) traverses in a depth-first

manner, each edge represents the aggregate count at the time count is called for

the corresponding node. Note that the result of applying count to the root node

is 1 plus the final edge (1 + 5, above).5

init

false

1

init

2

tt

5

true

3

tt

4

Figure 7.1: The natural number 1, as a closed algebraic type.

The depth-first labeling of edges pointing to nodes that count performs makes

it an ideal function to index positions of arguments in generically encoded values.

For example, in Figure 7.1 we can see value zero at edge 2, and value one at edge

0 (the root node). Finally, let’s define closed two.

two : J ‘N K

5 All algebraic types in figures hide the infinitary λ constructor at inductive argument posi-
tions, because count (whose depth-first traversal the Figure represents) implicitly applies trivially
infinitary functions to tt in the Inductive (‘δ) case.

179

two = suc one

init

false

1

init

2

tt

8

false

3

init

4

tt

7

true

5

tt

6

Figure 7.2: The natural number 2, as a closed algebraic type.

Counting closed two results in 9, as can be seen in Figure 7.2 (by adding 1 to

the final edge 8). In Figure 7.2, two appears at edge 0, one appears at edge 2, and

zero appears at edge 4.

count ‘N two ≡ 9

Vectors Now let’s encode the closed 0-length empty vector ([]). Again, it may

be helpful to review the closed definition of vectors in Section 6.2.2. Recall that

indexed vectors are encoded as a dependent pair whose first component is an

inductive-recursive ‘Vec1 (like a list, but with natural number arguments and index

180

constraints on inductive occurrences), and whose second component constrains (via

the equality type Id) the decoding (via ‘Vec2, or the length function) of the first

component to be the appropriate index.

Below, the closed empty vector [] is encoded by nil as such a dependent pair,

where the first component is an initial algebra value (of type ‘Vec1), and the second

component is a proof (using refl, the constructor of equality type Id) that ‘Vec2

applied to the first component is indeed zero (the expected length of the empty

vector, as specified by its type).

nil : {A : ‘Set} → J ‘Vec A zero K
nil = init (true , tt) , refl

Our examples count vectors of pairs of strings. The generic count of the empty

vector (i.e., nil) of pairs of strings is 5, the sum of 1 for init, true, tt, (,), and refl.

count (‘Vec (‘String ‘× ‘String) zero) nil ≡ 5

Next, let’s define length-1 closed vector of pairs of strings [("a", "x")]. We

can define vec1 by applying our closed cons constructor (from Section 6.2.2) to our

closed zero constructor.

vec1 : J ‘Vec (‘String ‘× ‘String) one K
vec1 = cons ("a" , "x") nil

Expanding these definitions results in the closed encoding of [("a", "x")]

below.

vec1 ≡ (init
(false
, init (true , tt)
, ("a" , "x")
, (ń _ → init (true , tt))
, refl
, tt)

181

, refl)

To understand this, it is worth remembering that indexed vectors (‘Vec) are

defined as a constraint paired with an inductive-recursive (but not indexed) version

of the vector (‘Vec1). Below, we directly define the indexed vector vec1 (of type

‘Vec), without using the smart constructors cons and nil, in terms of the auxiliary

definition vec11 for the inductive-recursive (‘Vec1) left component of the pair (of

type ‘Vec1).

,

init

1

refl

14

false

2

init

3

,

6

init

9

refl

12

tt

13

true

4

tt

5

"a"

7

"x"

8

true

10

tt

11

Figure 7.3: The length-1 vector of pairs of strings [("a", "x")], as a closed alge-

braic type.

vec11 : J ‘Vec1 (‘String ‘× ‘String) K
vec11 = init

(false
, init (true , tt)
, ("a" , "x")

182

, (ń _ → init (true , tt))
, refl
, tt)

vec1 : J ‘Vec (‘String ‘× ‘String) one K
vec1 = vec11 , refl

To understand how vec1 is counted (as 15), we refer to our visual presentation

in Figure 7.3, depicting the depth-first traversal of count. The root node is vec1

(of type ‘Vec), the dependent pair. Node 14 is the constraint (of type Id) that the

left component has length one. Node 1 is the inductive-recursive vec11 (of type

‘Vec1).

We establish the convention that suffixing a term or constructor by 1 refers

to the inductive-recursive (of type ‘Vec1) equivalent of the constraint pair of type

‘Vec. For example, nil1 refers to an empty inductive-recursive vector of type ‘Vec1,

the left component of the constraint pair nil of type ‘Vec (mirroring the relationship

between vec11 and vec1, above).

In Figure 7.3 (and all of our figures), we draw boxes around the outermost

occurrence of an inductive value. For example, the root node does not have a

box around it, because it is a non-inductive pair (of type ‘Σ). However, node 1

has a box around it, for the inductive ‘Vec1 value (vec11). Within a box, any

occurrence of init represents an inductive occurrence whose type shares the type

of the box. For example, node 9 is a nil1 value of type ‘Vec1. Recall that each

inductive argument of the inductive-recursive ‘Vec1 is packaged with a constraint

on its length (calculated by the inductive-recursive decoding function ‘Vec2). Node

12 is the constraint that the length of node 9 (encoding the inductive occurrence

of nil1 within the box for vec11, at node 1) is 0.

Node 2 is false, representing the choice of the cons1 constructor in the de-

scription of ‘Vec1. Node 6 is the non-inductive pair (_,_) of strings "a" and "b"

183

contained by the vector. Node 3 contains a box around it, meaning it is an occur-

rence of an inductive type distinct from ‘Vec1. Specifically, node 3 is the natural

number zero, constrained to equal the length of the empty vector (nil1) at node

9, in the type of the constraint (refl) at node 12. Finally, nodes 5, 11, and 13 all

represent the terminating unit (tt) of an algebraic sequence of arguments.

count (‘Vec (‘String ‘× ‘String) one) vec1 ≡ 15

Finally, let’s define the length-2 closed vector of pairs of strings [("a", "x"),

("b", "y")]. We can define vec2 with our closed constructors nil and cons of

closed Vectors.

vec2 : J ‘Vec (‘String ‘× ‘String) two K
vec2 = cons ("a" , "x") (cons ("b" , "y") nil)

The fully generic count of vec2 is 28, as justified by Figure 7.4. In Figure 7.4,

node 12 is the length-1 "b" and "y" component of type ‘Vec1. Node 14 is the

natural number zero, the length of nil1 at node 20. Node 3 is the natural number

zero, the length of the "b" and "y" vector at node 12.

count (‘Vec (‘String ‘× ‘String) two) vec2 ≡ 28

We conclude this section by reflecting on how the relationship between al-

gebraically defined length-indexed vectors and their algebraically defined natural

numbers is elegantly captured in Figure 7.4. Notice how natural numbers (nodes 3

and 14) appear at the same level, and have the same height, as their vector equiv-

alents (nodes 12 and 20). This visually demonstrates how the natural number

argument of cons is mirrored by the structure of the inductive argument of cons,

enforced by their relationship in the definition of the indexed type of vectors.

184

_,
_

in
it

1

re
fl

27

fa
lse

2

in
it

3

_,
_

9

in
it12

re
fl

25

tt

26

fa
lse

4 in
it

5

tt8

tru
e

6

tt

7

"a
"

10

"x
"11

fa
lse

13

in
it14

_,
_

17

in
it

20

re
fl

23

tt

24

tru
e

15

tt16

"b
"18

"y
"

19

tru
e

21

tt

22

Fi
gu

re
7.
4:

T
he

le
ng

th
-2

ve
ct
or

of
pa

irs
of

st
rin

gs
[(

"a
",

"x
")

,
("

b"
,
"y

")
],

as
a
cl
os
ed

al
ge
br
ai
c
ty
pe

.

185

7.2 FULLY GENERIC LOOKUP

In this section, we develop a fully generic lookup function that can retrieve any

node of a generically encoded value. The input to lookup is a value and an index

into a position within the value. To prevent out-of-bounds errors during lookups,

we generalize the type of lookup for vectors (Vec).

To retrieve a value within a vector, we apply lookup to a vector (Vec) and a

finite set (Fin), where Fin acts as an index whose maximum value is constrained to

equal the length of the vector. Recall the type of finite sets from Section 2.1.5.

data Fin : N → Set where
here : {n : N} → Fin (suc n)
there : {n : N} → Fin n → Fin (suc n)

We think of the type of finite sets as a 0-based index whose maximum value

is the natural number that Fin is applied to, minus 1. For all n, there are n

inhabitants of Fin n (representing indices 0 through n-1), where the first is here,

and the rest are successive applications of there (ending in here). For example, the

inhabitants of Fin 3 are here (for index 0), there here (for index 1), and there (there

here) (for index 2).

To lookup a Vector of length n, we index by Fin n. The implementation of

lookup returns the head of the vector (at index position 0) if the index is here. If

the index is there, lookup recursively searches the tail of the vector (until it finally

finds a value to return, indicated by peeling off enough theres to arrive at a here).

lookup : {A : Set} {n : N} → Vec A n → Fin n → A
lookup (cons x xs) here = x
lookup (cons x xs) (there i) = lookup xs i

Instead of using vectors, we can define lookup equivalently over lists, by com-

puting the maximum bound of the index (Fin) from the length of the List.

lookup : {A : Set} (xs : List A) → Fin (length xs) → A

186

lookup nil ()
lookup (cons x xs) here = x
lookup (cons x xs) (there i) = lookup xs i

The implementation for Lists is the same as the implementation for Vectors,

other than needing to supply explicit evidence by pattern matching against the

uninhabited empty Fin 0 index (using empty parentheses, which is Agda syntax

for explicitly pattern matching against an uninhabited type) in the nil case.

Our fully generic lookup is defined similarly to the List lookup, except that

length (calculating the bound of index Fin) is replaced by our fully generic count

from Section 7.1. Recall that count sums the number of nodes in a generic value

according to a depth-first traversal. Therefore, looking up a node in a generic value

(using lookup) corresponds to supplying a Fin index representing the depth-first

label of the node (seen in the figures of Section 7.1.4).

7.2.1 Generic Types

Before covering the details of implementing lookup, let’s consider what its type

should be. As mentioned above, we expect lookup to have a Fin index argument

whose bound is calculated by the generic count of the value that lookup is applied

to.

Looking up a List A results in an A, but looking up a node in a generic value

causes the return type of lookup to depend on the type of node being looked up.

Thus, we must define a computational return type (Section 3.4.4), named Lookup

below, to determine what the return type of lookup should be. In other words, the

Lookup function, with an uppercase ’L’, computes the return type of the lookup

function, with a lowercase ’l’.

Lookup : (A : ‘Set) (a : J A K)
→ Fin (count A a) → Set

lookup : (A : ‘Set) (a : J A K)

187

(i : Fin (count A a)) → Lookup A a i

Wemust also mutually define Lookups, to compute the return type when looking

up an argument of an algebraic constructor, via lookups. The lookups and Lookups

functions are defined over all closed descriptions (‘Desc), analogous to how the

lookup and Lookup functions are defined over all closed types (‘Set).

Lookups : {O : ‘Set} (D R : ‘Desc O) (xs : J « D » K1 « R »)
→ Fin (counts D R xs) → Set

lookups : {O : ‘Set} (D R : ‘Desc O) (xs : J « D » K1 « R »)
(i : Fin (counts D R xs)) → Lookups D R xs i

The computational return types (Lookup and Lookups) are defined by pattern

matching on some arguments. The functions using these types (lookup and lookups)

must match the same arguments in the same way, in order for the computational

return types to definitionally unfold. Instead of defining the value and type func-

tions separately, thereby repeating the pattern matching structure twice, we will

actually define single functions returning dependent pairs (Σ).

lookup : (A : ‘Set) (a : J A K)
→ Fin (count A a) → Σ Set (ń T → T)

lookups : {O : ‘Set} (D R : ‘Desc O) (xs : J « D » K1 « R »)
(i : Fin (counts D R xs)) → Σ Set (ń T → T)

The first component of the pair corresponds to the computational return type

(Lookup or Lookups), and the second component of the pair corresponds to the

function typed by the first component (the formerly named lookup or lookups).

We can still recover the original type and value functions by taking the first (proj1)

and second (proj2) projections of the dependent pairs (Σ) resulting from the new

versions of lookup and lookups. By convention, we refer to the first projection (type

component) of these functions by suffixing 1 (e.g., lookup1), and to the second

projection (value component) version by suffixing 2 (e.g., lookup2).

188

7.2.2 Looking Up All Values

First, let’s define lookup fully generically for all values of all types. This involves

calling lookups in the ‘µ1 case, defined mutually (in Section 7.2.3) over all argu-

ments of the initial algebra. Below, we restate the type of lookup, and then define

lookup by case analysis and recursion over all of its closed types, and its Fin indices.

lookup : (A : ‘Set) (a : J A K) → Fin (count A a) → Σ Set (ń T → T)

Before we actually define lookup, let’s consider what the type of the index Fin

argument could be before we pattern match against it, and what lookup should

return once we do match against the index. Below, we give a template of 3 differ-

ent Fin types that appear when when defining lookup (as well as lookups). Each

template represents a possible type of Fin, due to partially unfolding a case of

count (in Section 7.1.2) or counts (in Section 7.1.3).

1. Case (Fin 1) There is only one possible index, so we define a here case that

returns the value at this index.

2. Case (Fin (1 + n)) We define a here case (for the 1), returning the value at

this index. We also define a there case (for the n), giving us a new argument

of type Fin n. In the there case, we return the recursive call of lookup or

lookups, depending on whether n is count or counts.

3. Case (Fin (1 + n + m)) We define a here case (for the 1), returning the value

at this index. We also define a there case (for the n + m), giving us a new

argument of type Fin (n + m). Within the there case, we must translate the

single Fin (n + m) index to the disjoint union of the two potential indices Fin

n] Fin m. After case-analyzing the disjoint union (]), we make a recursive

call using the index within the left (inj1) or right (inj2) injection. Once again,

the recursive call is either lookup or lookups, depending on whether n or m

(whichever one we find in the disjoint union) is count or counts.

189

To know which Case template to use for lookup at some type A, match the

template with the case of count in Section 7.1.2 that A corresponds to.

Algebraic Fixpoint For the there case of algebraic fixpoints (Case 2), we re-

cursively lookup its arguments (xs), using the mutually defined lookups.

– i : Fin (counts D D xs)
lookup (‘µ1 O D) (init xs) (there i) = lookups D D xs i

For clarity, we include the type of the index i (the argument of the there con-

structor) as a comment. In Agda, comments are colored red and are prefixed by

a dash. In the type of i, the value that Fin is applied to corresponds to the value

of n in Case 2.

Dependent Pair For the there case of dependent pairs (Case 3), we use the

helper function splitΣ (defined in Figure 7.5) to turn i, a single index (Fin) con-

taining a sum (+), into a disjoint union (]) of two indices.

– i : Fin (count A a + count (B a) b)
lookup (‘Σ A B) (a , b) (there i) with splitΣ A B a b i
– j : Fin (count A a)
... | inj1 j = lookup A a j
– j : Fin (count (B a) b)
... | inj2 j = lookup (B a) b j

If the disjoint union is the left injection (inj1), we recursively lookup the first

component of the pair (a). If the disjoint union is the right injection (inj2), we

recursively lookup the second component of the pair (b). The two possible values

that Fin is applied to in the two possible types of j correspond to n and m in Case

3.

Remaining Values Finally, the here case can be defined uniformly over all types.

If the index points to here, we simply return the value a at this position, along

190

with the type meaning function (J_K) applied to the closed type (A) of the value,

as a dependent pair (,).6

lookup A@(‘Σ _ _) a here = J A K , a

For ‘µ1 this is the here component of the definition of Case 2, and for ‘Σ this

is the here component of the definition of Case 3. For all other types, this is the

definition of Case 1 (which does not have a there component).

7.2.3 Looking Up Algebraic Arguments

Second, let’s define lookups fully generically for all arguments of the initial alge-

bra. This involves calling lookup in the ‘σ and ‘δ cases, defined mutually (in Sec-

tion 7.2.2) over all values of all types. Below, we restate the type of lookups, and

then define lookups by case analysis and recursion over all of its closed descriptions,

and its Fin indices.

lookups : {O : ‘Set} (D R : ‘Desc O) (xs : J « D » K1 « R »)
→ Fin (counts D R xs) → Σ Set (ń T → T)

We will also classify the cases in the definition of lookups by the Case template

numbers. Below, we repeat the first 2 Case templates from Section 7.2.2 verbatim.

However, the 3rd template is different because it lacks a “1 + ...” prefix.7

1. Case (Fin 1) There is only one possible index, so we define a here case that

returns the value at this index.

6 We use an @-pattern to bind A to the matched ‘Σ type. Unfortunately Agda makes us
repeat this definition for all other remaining types, but at least the right-hand sides are all the
same because of the @-pattern. The problem with lookup is that count appears in its type, which
is defined using a catch-all pattern clause. Unfortunately, we cannot write lookup using the same
catch-all pattern structure, and must instead enumerate all types and duplicate their right-hand
sides manually. Defining lookup by repeating the catch-all structure of count would be possible
if Agda were changed to type-check code after coverage checking.

7 The lack of the “1 + ...” prefix is because we allow indexing into any argument of a sequence,
but prevent indexing into the sequence itself or subsequences. Instead, we hide that aspect of the
algebraic encoding, making init (containing the sequence of arguments) seem like one big n-ary
tuple, rather than containing n nested pairs.

191

2. Case (Fin (1 + n)) We define a here case (for the 1), returning the value at

this index. We also define a there case (for the n), giving us a new argument

of type Fin n. In the there case, we return the recursive call of lookup or

lookups, depending on whether n is count or counts.

3. Case (Fin (n + m)) There is only one possible index, so we define its there

case (for n + m). Within the there case, we must translate the single Fin

(n + m) index to the disjoint union of the two potential indices Fin n]

Fin m. After case-analyzing the disjoint union (]), we make a recursive call

using the index within the left (inj1) or right (inj2) injection. Once again,

the recursive call is either lookup or lookups, depending on whether n or m

(whichever one we find in the disjoint union) is count or counts.

To know which Case template to use for lookups at some description D, match

the template with the D case of counts in Section 7.1.3.

Non-Inductive Argument For the (only) there case of a non-inductive argu-

ment (Case 3), in a sequence of arguments, we use the helper function splitσ

(defined in Figure 7.5). The helper function turns i, a single index (Fin) containing

a sum (+), into a disjoint union (]) of two indices. While splitΣ operates over a

dependent pair, splitσ is specialized to operate over a non-inductive argument (a)

and its dependent sequence (xs).

– i : Fin (count A a + counts (D a) R xs)
lookups (‘σ A D) R (a , xs) i with splitσ A D R a xs i
– j : Fin (count A a)
... | inj1 j = lookup A a j
– j : Fin (counts (D a) R xs)
... | inj2 j = lookups (D a) R xs j

If the disjoint union is the left injection (inj1), we recursively lookup the non-

inductive argument (a). If the disjoint union is the right injection (inj2), we recur-

sively lookups the tail of the sequence of arguments (xs).

192

Inductive Argument For the (only) there case of an inductive argument (Case

3), in a sequence of arguments, we use the helper function splitδ (defined in Fig-

ure 7.5). The helper function turns i, a single index (Fin) containing a sum (+),

into a disjoint union (]) of two indices. The splitδ function is specialized to work

with an inductive (i.e., not infinitary) argument, and its dependent sequence (xs).

Hence, we apply splitδ to (f tt), computing the inductive codomain from the triv-

ially infinitary f.

– i : Fin (count (‘µ1 _ R) (f tt) + counts (D (µ2 « R » ◦ f)) R xs)
lookups (‘δ ‘> D) R (f , xs) i with splitδ (D ◦ const) R (f tt) xs i
– j : Fin (count (‘µ1 _ R) (f tt))
... | inj1 j = lookup (‘µ1 _ R) (f tt) j
– j : Fin (counts (D (µ2 « R » ◦ f)) R xs)
... | inj2 j = lookups (D (µ2 « R » ◦ f)) R xs j

Infinitary Argument For the there case of an infinitary argument (Case 2),

in a sequence of arguments, we recursively call lookups on its arguments (xs).

lookups (‘δ A@‘Bool D) R (f , xs) (there i) = lookups (D (µ2 « R » ◦ f)) R xs i

For the here case of an infinitary argument (Case 1), we return the infinitary

function. The type of infinitary function has the type meaning (J_K) of A as its

domain, and the type component of the fixpoint µ1, applied to the description

meaning («_») of R, as its codomain.

lookups D@(‘δ A@‘Bool _) R (f , xs) here = (J A K → µ1 _ « R ») , f

Recall that lookup (in Section 7.2.2, as a special case of Remaining Values)

only has a here case for functions (‘Π). Similarly, there is only a here case of lookups

for infinitary functions (‘δ, where A is not ‘>). This is because we treat functions as

a black box, so we can point at an entire function (using here), but not something

within its body (using there).

193

Last Argument Finally, the here case of the last argument (Case 1), described

by ‘Ì , simply returns the unit type and value.

lookups (‘Ì o) R tt here = > , tt

Note also that ‘Ì does not have a there case, because it encodes the final (trivial)

argument, so there is nothing left to index.

7.2.4 Splitting Functions

When defining lookup (in Section 7.2.2) and lookups (in Section 7.2.3), we appealed

to the helper functions splitΣ, splitσ, and splitδ. All three of these helpers are

defined as shallow wrappers (in Figure 7.5) around a more general function, splitFin.

Recall that if we match against index there i in Case 3 of Section 7.2.2, then

i has type Fin (n + m), where n and m each represent either count or counts. In

an instance of Case 3, such as the ‘Σ case of lookup (Section 7.2.2), we need to

convert i into the disjoint union of Fin n and Fin m, so that we may recursively

lookup the first component of the pair (a) using the left injection, or the second

component of the pair (b) using the right injection. The splitFin function helps us

do this.

splitFin : (n m : N) (i : Fin (n + m)) → Fin n] Fin m

We only need to define splitFin by pattern matching on the first (n) and third

(i) arguments, but not the second argument (m). This is related to the fact that

addition (+) is defined by pattern matching on its first argument, so we only need

to match n (not m) for the type of i, namely Fin (n + m), to reduce.

Because lookup is defined as a depth-first search, the splitFin function must be

left-biased (i.e., biased to return a Fin index whose bound is n, the left component

of the sum). Hence, splitFin should return the left injection if index i points to

194

here, and n is greater than 0 (i.e., it is the successor of some other number).

splitFin (suc n) m here = inj1 here

If n is zero, then the left injection is uninhabited (because it has type Fin 0),

so we are forced to return the right injection (of type Fin m).

splitFin zero m i = inj2 i

Finally, if n is greater than 0 and the index is there i, then we recursively split

i.

splitFin (suc n) m (there i) with splitFin n m i
... | inj1 j = inj1 (there j)
... | inj2 j = inj2 j

If the recursive call of splitFin on i results in a left injection, it will have type

Fin n. Hence, we must wrap the left injection in another there to bump the index

and get the expected return type (Fin (suc n)). If the recursive call of splitFin on i

results in a right injection, it already has the expected return type (Fin (suc m)).

In the input pattern of case above, there i has type Fin (suc (n + m)). In the

recursive call, i has type Fin (n + m). Hence, in the recursive call n becomes

smaller (compared to suc n), while m remains the same. This explains why we

bump the index (using there) if the recursive call results in a left injection, but not

if it results in a right injection.

7.2.5 Examples

Now we run lookup on some examples. The expected behavior of lookup is to

return the value associated with the nth (where n is the Fin index) position in a

depth-first search. Hence, here of type Fin corresponds to the position 0, and there

i of type Fin corresponds to the successor of the position associated with i.

195

splitΣ : (A : ‘Set) (B : J A K → ‘Set)
(a : J A K) (b : J B a K) →
Fin (count A a + count (B a) b) →
Fin (count A a)] Fin (count (B a) b)

splitΣ A B a b i = splitFin (count A a) (count (B a) b) i

splitσ : {O : ‘Set} (A : ‘Set) (D : J A K → ‘Desc O) (R : ‘Desc O)
(a : J A K) (xs : J « D a » K1 « R ») →
Fin (count A a + counts (D a) R xs) →
Fin (count A a)] Fin (counts (D a) R xs)

splitσ A D R a xs i = splitFin (count A a) (counts (D a) R xs) i

splitδ : {O : ‘Set} (D : J O K → ‘Desc O) (R : ‘Desc O)
(x : µ1 J O K « R ») (xs : J « D (µ2 « R » x) » K1 « R ») →
Fin (count (‘µ1 O R) x + counts (D (µ2 « R » x)) R xs) →
Fin (count (‘µ1 O R) x)] Fin (counts (D (µ2 « R » x)) R xs)

splitδ D R x xs i = splitFin (count (‘µ1 _ R) x) (counts (D (µ2 « R » x)) R xs) i

Figure 7.5: Definitions of the helper splitting functions (splitΣ, splitσ, and splitδ)

used in Section 7.2.2 and Section 7.2.3. The helpers are all just shallow

wrappers around the splitFin function (Section 7.2.4).

Natural Numbers Let’s lookup2 some values in the closed natural number two.8

To see the expected value of lookup2 for two at some index, simply consult Fig-

ure 7.2. The labels in the Figure 7.2 correspond to natural number indices, ordered

according to a depth-first search. Thus, by viewing here of Fin as zero of N, and

there of Fin as suc of N, we can always consult the figure to determine the expected

return value of lookup2.

Looking up index here corresponds to position 0, or the root node in Figure 7.2.

8 Recall that we define lookup as a dependent pair, where the first component is a type and
the second component is a value (whose type is the first component). As a shorthand, lookup1
refers to the type component, while lookup2 refers to the value component.

196

Hence, lookup2 using index here is the identity function.

lookup2 ‘N two here ≡ two

If we lookup position 1 (using index there here) of two (visualized by Figure 7.2),

we get false (encoding the choice of the cons constructor).

lookup2 ‘N two (there here) ≡ false

If we lookup position 2 (using index there (there here)) of two (visualized by

Figure 7.2), we get one (visualized by Figure 7.1).

lookup2 ‘N two (there (there here)) ≡ one

To make lookups of higher positions more readable, we use a helper function

(#) coercing natural numbers to finite sets by converting zero to here, and suc to

there. Therefore, we can repeat the lookup2 of position 2 above as follows.

lookup2 ‘N two (# 2) ≡ one

Finally, looking up position 4 of two results in zero.

lookup2 ‘N two (# 4) ≡ zero

Vectors Looking up vectors is just as easy as looking up natural numbers, by

considering the Fin argument as a natural number index of a depth-first traversal

of the closed value. For example, the lookup2 of vec2 (visualized by Figure 7.4) at

position 3 is the natural number one (visualized by Figure 7.1).

lookup2 (‘Vec (‘String ‘× ‘String) two) vec2 (# 3) ≡ one

The lookup2 of vec2 (visualized by Figure 7.4) at position 10 is the string "x".

lookup2 (‘Vec (‘String ‘× ‘String) one) vec1 (# 8) ≡ "x"

Finally, the lookup2 of vec2 (visualized by Figure 7.4) at position 12 is the

197

init

false

1

init

2

,

5

init

8

refl

11

tt

12

true

3

tt

4

"b"

6

"y"

7

true

9

tt

10

Figure 7.6: The inductive-recursive component of the length-1 vector of pairs of

strings [("b", "y")], as a closed algebraic type. This figure depicts

the inductive-recursive first component of the vector encoded as a de-

pendent pair (the second component is the length constraint).

inductive-recursive component of the vector [("b", "y")] (visualized by Fig-

ure 7.6).

lookup2 (‘Vec (‘String ‘× ‘String) two) vec2 (# 12) ≡ cons1 ("b" , "y") nil

7.3 FULLY GENERIC AST

In this section we develop a fully generic function (ast) to marshal values to an

abstract syntax tree (AST). Previously (in Section 7.1.4 and Section 7.2.5), we

visualized generically encoded data in figures (such as Figure 7.6). Those figures

were created using fully generic programming, rather than drawn by hand. They

are the result of applying ast to the value they visualize, converting the resulting

AST to a graph in the DOT language [27], and rendering the DOT code using

198

Graphviz [25].9

The result of ast is a specialized version of a Rose tree. We use the standard

List-based rose tree, rather than an infinitary version (Section 2.1.8). Additionally,

throughout this section the “cons” constructor of List is denoted by (::), an infix

constructor, and the “nil” constructor of List is denoted by [].

data Rose (A : Set) : Set where
tree : A → List (Rose A) → Rose A

Specifically, the result of ast is a Rose tree containing Node values. A Node is

one of the following constructors.

data Node : Set where
non str : String → Node
ind : Bool → Node
lam : Node

Each Node constructor is translated to a DOT node differently (for example,

the constructor determines the name of the DOT node, and the color of the name).

Below, we describe what each Node constructor represents and how it affects the

translation to DOT code:

� non: Used for non-inductive constructors, such as the pair constructor (_,_

of type Σ). The name of the node is determined by the String argument, and

is colored green.

� str: Used for string values. The name of the node is determined by the String

argument. The string argument is colored red and is enclosed in quotes.

� ind: Used for the inductive initial algebra constructor (init of type µ1). The

name of the node is “init”, and is colored green. If the Bool argument is true,

then a rectangle is drawn around the node.

9 In this dissertation, we define the fully generic function ast to convert any value to an AST.
The function to convert the AST to DOT code does not involve generic programming, so it can
be found in the accompanying source code of this dissertation.

199

� lam: Used for higher-order values (i.e., the function case ‘Π and the infinitary

case ‘δ). The name of the node is “λ”, and is colored black.

Finally, we abbreviate the result of ast as the type synonym AST, standing for

Rose trees specialized to contain Nodes.

AST : Set
AST = Rose Node

7.3.1 Generic Types

Before implementing the fully generic marshalling functions, we consider the func-

tions involved and their generic types. Two functions are unsurprising: ast defined

over all closed types (‘Set) and asts defined over all closed descriptions (‘Desc).

But, we will define one extra generic function, named astInd, also over all closed

descriptions (‘Desc).

As expected, we will define (in Section 7.3.3) ast to fully generically translate

any value to an AST.

ast : (A : ‘Set) (a : J A K) → AST

Additionally, we will define (in Section 7.3.4) asts to fully generically translate

algebraic arguments (of init), to a list of ASTs. Recall that the first argument of

the tree constructor of AST (i.e., Rose specialized to Node) is a Node. The second

argument to tree is a list of other rose trees (or ASTs). Hence, asts returns a List

of ASTs, as it will be used for the second argument of tree.

asts : {O : ‘Set} (D R : ‘Desc O) → J « D » K1 « R » → List AST

Finally, we will define one additional helper function, astInd (in Section 7.3.2).

The astInd function is defined fully generically over the fixpoint of any description.

astInd : {O : ‘Set} (D : ‘Desc O) → µ1 J O K « D » → Bool → AST

Normally, we inline the definition of such a function by pattern matching on

200

init (in the ‘µ1 case of ast, and the ‘δ ‘> case of asts), and applying asts to the

contained algebraic arguments. However, we prefer to extract the definition of

astInd to define ast and asts.

Notice that astInd has an extra Bool argument. We will supply this argument

to the ind constructor of Node, indicating whether or not to draw a box around the

inductive node. Recall from Section 7.1.4 that we draw boxes in figures around the

first occurrence of an inductive value, and suppress drawing boxes for any contained

inductive arguments of the same type. However, inductive values of different types

should start process over, beginning by drawing a box around the inductive node.

In Section 7.3.3 and Section 7.3.4 (when defining ast and asts), we will see how

passing the appropriate boolean to astInd implements this box drawing logic.

7.3.2 Marshalling Initial Algebras

First, let’s define astInd fully generically over all descriptions and their fixpoints.

Below, we restate the type of astInd, and define the only case that needs to be

considered, the case for the lone initial algebra constructor of µ1.

astInd : {O : ‘Set} (D : ‘Desc O) → µ1 J O K « D » → Bool → AST
astInd D (init xs) b = tree (ind b) (asts D D xs)

The first argument of the rose tree constructor has type Node. Because initial

algebras encode inductive types, we use the ind node. The boolean b argument is

also passed along to the ind node.

The second argument of the rose tree constructor is a List of rose trees. Hence,

the second argument to tree is the result of recursively applying the mutually de-

fined asts function to the algebraic arguments (xs). Hence, the number of children

of the resulting rose tree is equal to the number of arguments in xs.

201

7.3.3 Marshalling All Values

Second, let’s define ast fully generically for all values of all types. Below, we restate

the type of ast before defining it by its cases.

ast : (A : ‘Set) (a : J A K) → AST

Algebraic Fixpoint To define the fixpoint case, we simply apply the mutually

defined astInd function to the algebraic argument x.

ast (‘µ1 A D) x = astInd D x true

Importantly, we use true for the boolean argument of astInd. Hence, applying

ast to any algebraic value (having type ‘µ1) results in drawing a box around it

using the DOT language.

Dependent Pair The dependent pair case creates a rose tree with two chil-

dren (in the second argument to tree, below), by recursively applying ast to each

component of the pair (a and b).

ast (‘Σ A B) (a , b) = tree (non "_,_") (ast A a :: ast (B a) b :: [])

Because dependent pairs are non-inductive types, the first (Node) argument to

tree is non. The argument to non is a string representing the name of the infix

dependent pair constructor (_,_).

Dependent Function We treat higher-order values, like dependent functions,

as black boxes. Hence, the ast of a function is a childless tree, whose Node is lam.

ast (‘Π A B) f = tree lam []

202

String Strings are non-inductive values, so we use the str constructor of Node.

Strings also have no additional arguments, so their AST tree has no children.

ast ‘String x = tree (str x) []

Note that the string value x is supplied as the argument to the str constructor

of Node, so a quoted version of x can act as the name of the node when interpreted

as DOT code.

Remaining Non-Inductive Values All remaining non-inductive values use the

non constructor of Node, and are childless (except for the ‘⊥ value, which is unin-

habited).

ast ‘⊥ ()
ast ‘> tt = tree (non "tt") []
ast ‘Bool true = tree (non "true") []
ast ‘Bool false = tree (non "false") []
ast (‘Id A x y) refl = tree (non "refl") []

Each occurrence of non is applied to a string name corresponding to the name

of the marshalled constructor.

7.3.4 Marshalling Algebraic Arguments

Third, let’s define asts fully generically for all arguments of the initial algebra.

Below, we restate the type of asts before defining it by its cases.

asts : {O : ‘Set} (D R : ‘Desc O) → J « D » K1 « R » → List AST

Recall (from Section 7.1.3) that the arguments of the initial algebra are treated

as one big n-tuple, rather than n nested pairs. This is why each case of asts returns

a List of ASTs, rather than tree (non "_,_") applied to such a list.10

10 If each case of asts did return such a tree (non "_,_") xs, then each init constructor in figures
would have a pair (_,_) as its child node. The first component of the pair would be the head of
xs. The second component of the pair child node would be a nested sequence of pairs, i.e., the

203

Non-Inductive Argument The non-inductive argument case results in a list

whose head is the AST of the non-inductive argument (a), and whose tail is the

List of ASTs for the remaining arguments (xs).

asts (‘σ A D) R (a , xs) = ast A a :: asts (D a) R xs

Inductive Argument The inductive argument case results in a list whose head

is the AST of the inductive argument (f tt), and whose tail is the List of ASTs for

the remaining arguments (xs).

asts (‘δ ‘> D) R (f , xs) =
astInd R (f tt) false :: asts (D (µ2 « R » ◦ f)) R xs

Note that the AST of the inductive argument (f tt) is computed by astInd.

Importantly, false is supplied as the boolean argument to astInd. This is because

the inductive argument we are marshalling is known to be one of the arguments

of some previous initial algebra (that was already marshalled with a box in the ‘µ1

case of ast). Hence, we do not want to draw a box around this inductive argument

occurrence, so we choose false as the argument to astInd.

Infinitary Argument The infinitary argument case results in a list whose head

is a childless lam node, and whose tail is the List of ASTs for the remaining argu-

ments (xs).

asts (‘δ A D) R (f , xs) = tree lam [] :: asts (D (µ2 « R » ◦ f)) R xs

The reason why the head of the returned list is a lam node, is because we treat

the higher-order infinitary function f as a black box. This is similar to how we

treat functions as black boxes in the ‘Π of ast.

nested representation of the tail of arguments xs.

204

Last Argument Finally, the asts of the last argument (in the sequence of initial

algebra arguments) results in a single element list.

asts (‘Ì o) R tt = tree (non "tt") [] :: []

The single element of the returned list is a childless non node (because the type

of tt is >, which is non-inductive). The name of the non is “tt”, after the name of

the trivial value tt.

7.3.5 Generic Template

We conclude this chapter by presenting a generic template that can be used to

define fully generic algorithms. If the return type of a fully generic algorithm is

not dependent on its inputs, then the algorithm can be implemented by mutually

defining 2 functions.

generic : (A : ‘Set) → J A K → · · ·
generics : {O : ‘Set} (D R : ‘Desc O) → J « D » K1 « R » → · · ·

The first function (generic) is defined over all closed types (‘Set) and their

values. The second function (generics) is defined over all closed descriptions (‘Data)

and arguments of the described initial algebra.

If the return type of a fully generic algorithm is dependent on its inputs, then

the algorithm can be implemented by mutually defining 4 functions.

Generic : (A : ‘Set) → J A K → Set
generic : (A : ‘Set) (a : J A K) → Generic A a
Generics : {O : ‘Set} (D R : ‘Desc O) → J « D » K1 « R » → Set
generics : {O : ‘Set} (D R : ‘Desc O)

(xs : J « D » K1 « R ») → Generics D R xs

The 2 uppercase functions (Generic and Generics) determine the return types of

the 2 lowercase functions (generic and generics). Alternatively, we may mutually

205

define 2 functions that return dependent pairs (Σ).

generic : (A : ‘Set) (a : J A K) → Σ Set (ń T → T)
generics : {O : ‘Set} (D R : ‘Desc O)

(xs : J « D » K1 « R ») → Σ Set (ń T → T)

The first component of the pair corresponds to the generic dependent type

of the function (Generic and Generics), and the second component corresponds to

its generic inhabitant (formerly generic and generics, from the 4 mutually defined

functions).

206

Chapter 8

CLOSED HIERARCHY OF UNIVERSES

Chapter 6 demonstrates closing a universe of algebraic (inductive-recursive) types,

and Chapter 7 demonstrates fully generic programming over that universe. In this

chapter1, we expand the closed universe of Section 6.2 to also include kinds, su-

perkinds, and an infinite hierarchy of such classifications. Types (Set) are classified

by kinds (Set1).

Set : Set1

Going one level up, kinds (Set1) are classified by superkinds (Set2).

Set1 : Set2

This pattern repeats itself indefinitely. We refer to any such construction (e.g.,

a type, or a kind, or a superkind, etc.) as a universe.2 In Section 6.2, we only

considered the first (or zeroth, because we count universe levels by starting with

0) closed universe (i.e., the universe of types, classified by kinds). Now, we expand

this notion to a closed infinite hierarchy of universes, where each universe in the

hierarchy is classified by another universe, one level above.

Setn : Setsuc n

There are three primary things we achieve by creating a closed hierarchy of

universes:

1 This chapter is adapted from work by myself and Sheard [16], as explained in Section 9.4.
2 In this context, a universe refers to a level in a hierarchy of types (e.g. the types level, or

the kinds level, or the superkinds level, etc.). This is distinct from a universe as a formal device
consisting of a type of codes and a meaning function. Although these are distinct concepts, the
image of a particular meaning function could be a universe level of a hierarchy.

207

1. We can encode formers and constructors of kinds (as well as superkinds,

etc.) in the closed hierarchy. This includes the two primitive kinds, closed

types (‘Set) and closed descriptions (‘Desc). It also includes closed algebraic

user-declared kinds, such as heterogenous lists (‘HList).

2. We can write leveled fully generic functions. By this we mean universe poly-

morphic fully generic functions, which can be applied to members of any

universe in the hierarchy. Hence, we can extend fully generic functions (like

count, lookup, ast, etc.) from working over all types and their values, to

working over all kinds and their types (and all superkinds and their kinds,

etc.).

3. We can internalize the kind (and superkind, etc.) signatures of formers,

constructors, and functions, by writing them as the meaning of a closed code

in our universe.

Let’s clarify what we mean by the third point, above. Throughout this disser-

tation we have written the signatures of closed formers, constructors, and functions

using our Agda metatheory, which is external to our closed universe. For example,

consider the type signature of the successor of closed natural numbers, below.

suc : (n : J ‘N K) → J ‘N K

The type signature of suc uses Agda’s open dependent function type (→).

Instead, we may internalize the type signature of suc as the meaning (J_K) of a

closed dependent function (‘Π).

suc : J ‘Π ‘N (ń n → ‘N) K

Another way to look at this, is that we can fit the entire type signature of suc

into the meaning brackets (J_K), as a single closed type (‘Set). In contrast, let’s

208

consider the kind signature of the cons constructor of closed parameterized lists.

cons : (A : ‘Set) (a : J A K) (xs : J ‘List A K) → J ‘List A K

We cannot internalize the kind signature of the cons function. Even though

cons returns a list value, its signature is kinded because the A argument is a kind

(‘Set). We would like to internalize the kind of cons as three nested uses of ‘Π (for

arguments A, a, and xs). However, the domain of the first ‘Π would need to be a

constructor of closed kinds (‘Set), which does not exist in the universe of closed

types (Appendix C).

Similarly, we cannot internalize the kind signature of fully generic functions

(like count), or even parametrically polymorphic functions (like the identity func-

tion), because they need to quantify over all closed types. By defining a closed

hierarchy of universes in Section 8.2, we can internalize kind (and superkind, etc.)

signatures, thereby fitting them within meaning brackets. In the final examples of

Section 8.1.2, we also discuss a sanity check for our closed hierarchy of inductive-

recursive universes, making sure that the signature of every constructor in the

universe can be internalized (the evidence is in Appendix E).

Major Ideas The purpose of this chapter is to expand the closed universe of

types from Section 6.2 to a hierarchy of universes, including kinds, superkinds,

etc. Because the universe of Section 6.2 only models the types of a dependently

typed language, it does not model a language that supports polymorphism. This

is because there is no way to quantify over all types or descriptions (i.e., there

is no code for ‘Set or ‘Desc). Because types and descriptions are kinds, a model

of a language supporting polymorphism must model kinds in addition to types.

We go one step further and model the entire closed hierarchy of universes (in

Section 8.2.1). Hence, the closed hierarchy of universes in this chapter models a

dependently typed language that supports polymorphic functions, including fully

generic ones!

209

The fully generic functions of Chapter 7, like count of Section 7.1, are written

using the function space of Agda (our metalanguage), by quantifying over ‘Set

and ‘Desc. In contrast, in Section 8.3, we write a fully generic count within the

dependently typed language that we are modeling, because the kind signature of

the generic function can be internalized using codes from our hierarchy of universes

(i.e., by quantifying over kind codes ‘Set and ‘Desc).

8.1 CLOSED HIERARCHY OF WELL-ORDER TYPES

In this section we extend the Closed Well-Order Types universe of Section 4.2.1 to a

closed hierarchy of universes. At first, we present a formal model (in Section 8.1.1)

of the hierarchy. Agda does not recognize our definition of the universe hierarchy

type to be positive. However, we explain why the formal model presented in this

section is consistent, and use it as motivation to define a model (in Section 8.1.3)

that Agda recognizes as positive.

By extending the Closed Well-Order Types universe to a hierarchy, we can

explain how a hierarchy is formalized in a simpler setting where Set is the only

kind being closed over (Section 8.1.1 and Section 8.1.3). With this background

material under our belt, we move on to extending the Closed Inductive-Recursive

Types universe in Section 8.2.1. There, we must close over a hierarchy involving

two kinds, Set and Desc.

8.1.1 Formal Model

Now we define a formal model of a Closed Hierarchy of Well-Order Universes.

We do this by mutually defining a type of universe codes (‘Set[_]), indexed by

the natural numbers, and a meaning function (J_|_K) mapping a universe in the

hierarchy to an Agda type (i.e., a type of our metalanguage). Henceforth, we refer

to ‘Set[_] as the leveled types and J_|_K as the leveled type meaning function.

210

The natural number index represents the universe level, in a hierarchy of uni-

verses. For example, ‘Set[0] models closed types (whose open equivalent is Set),

‘Set[1] models closed kinds (whose open equivalent is Set1), ‘Set[2] models closed

superkinds (whose open equivalent is Set2), and so on.

Closed Leveled Types Below, we state the type former of of the closed leveled

types, and subsequently define its constructors.

data ‘Set[_] : N → Set where

The name of the indexed type (‘Set[_]) is Agda syntax for defining an infix

operator, such that the natural number index appears where the underscore is

located. For example, the universe of closed types is represented by ‘Set[0]. The

left component of the infix operator name is ‘Set[, and the right component of the

name is].

Closed Types Now let’s define the closed types. The closed types inhabit ‘Set[

0], where the natural number index is 0, encoding the zeroth universe of types.

However, we want a version of all closed types (especially closed type formers like

‘Π) to appear at higher universes as well.

‘⊥ ‘> ‘Bool : ∀{`} → ‘Set[`]
‘Σ ‘Π ‘W : ∀{`} (A : ‘Set[`]) (B : J ` | A K → ‘Set[`]) → ‘Set[`]
‘Id : ∀{`} (A : ‘Set[`]) (x y : J ` | A K) → ‘Set[`]

Above, the index in the codomain of all constructors is `. Thus, we have defined

closed types as the special case where ` is 0, and a copy of the closed types at all

higher levels. The constructors of these types are similar to the constructors of

‘Set in Section 4.2.1, but with an extra polymorphic level (`) threaded throughout.

Closed Kinds Now let’s define the closed kinds. The closed types inhabit ‘Set[

1], where the natural number index is 1, encoding the first universe of kinds. We

211

also want a version of all closed kinds to appear at higher universes.

‘Set : ∀{`} → ‘Set[suc `]
‘J_K : ∀{`} → ‘Set[`] → ‘Set[suc `]

Above, the index in the codomain of all constructors is suc `. Thus, we have

defined closed kinds as the special case where ` is 0, and a copy of the closed kinds

at all higher levels.

At universe level 1, ‘Set is the closed kind of types (‘Set : ‘Set[1]). At universe

level 0, the ‘Set constructor is uninhabited because its index specifies that it should

be greater than or equal to 1.

We have also added a closed meaning function constructor (‘J_K), allowing us

to lift a type from the previous universe to be a kind in the current universe. The

closed meaning function (‘J_K), or type lifting operator, ensures that our universes

form a hierarchy. This is because we can apply the type lifting operator ‘J_K to

any universe ‘Set[`], making the lifted value a member of the subsequent universe

‘Set[suc `].

Meaning of Closed Leveled Types Second, we state the signature of the

meaning function of closed leveled types.

J_|_K : (` : N) → ‘Set[`] → Set

The name of the meaning function (J_|_K) is Agda syntax for defining a mixfix

operator. The natural number argument (`) appears in the location of the first

underscore, and the closed leveled type (‘Set[_]) argument appears in the location

of the second underscore.

Meaning of Closed Types The meaning of closed types (or their copies at

higher levels) is straightforward.

J ` | ‘⊥ K = ⊥
J ` | ‘> K = >

212

J ` | ‘Bool K = Bool
J ` | ‘Σ A B K = Σ J ` | A K (ń a → J ` | B a K)
J ` | ‘Π A B K = (a : J ` | A K) → J ` | B a K
J ` | ‘W A B K = W J ` | A K (ń a → J ` | B a K)
J ` | ‘Id A x y K = Id J ` | A K x y

The leveled closed type meaning function (J_|_K) is similar to the unleveled

version (J_K) in Section 4.2.1, but with an extra polymorphic level (`) threaded

throughout.

Meaning of Closed Kinds The meaning of closed kinds interprets the code of

types ‘Set as a leveled type ‘Set[_], and the code of the closed meaning function

‘J_K as the leveled meaning function J_|_K.

J suc ` | ‘Set K = ‘Set[`]
J suc ` | ‘J A K K = J ` | A K

Importantly, the level decreases, from suc ` to `, when interpreting closed kinds

(and their copies at higher universe levels). Hence, we interpret the code of types

in this universe (‘Set) as the actual leveled type of the previous universe (‘Set[`

]).

Consider the case where ‘Set : ‘Set[1]. This implies that the interpretation

J 1 | ‘Set K is equal to ‘Set[0]. In this model, the level decreasing (from 1 to 0)

captures the high-level notion that Set0 : Set1, preventing a “type in type” (or

“kind in kind”, etc.) paradox (i.e., Set1 : Set1, if the level did not decrease).

Failing Positivity Check The problem with the formal model presented above

is that it fails Agda’s positivity checker. The meaning function (J_|_K) appears in

the domain of the B argument of the ‘Σ, ‘Π, and ‘W constructors of leveled types

(‘Set[_]). If this meaning function is applied to the code of types (e.g., J 1 | ‘Set K),

then the result will be a leveled type (e.g., ‘Set[0]), making B a negative infinitary

argument.

213

By external analysis of the definition of the leveled types indexed by the nat-

ural numbers, we can see that the index decreases (from 1 to 0) when a negative

occurrence manifests. Furthermore, there are no constructors of ‘Set[_] with an

argument whose level increases. Therefore, no leveled type in the hierarchy con-

tains types from levels above it (it only contains types from levels below it). Hence,

argument B is not actually a negative occurrence, because it only contains lower

types, which cannot contain any types at the current level. Currently, Agda’s pos-

itivity checker cannot perform such an analysis, so Section 8.1.3 defines an Agda

model that reifies our positivity argument in its structure.

8.1.2 Examples

Let’s consider some examples where we internalize the signatures of functions using

codes of our universe hierarchy.

Negation Function First, we define the negation function (not), whose type is

defined using a dependent function (→), external to our closed hierarchy (i.e., from

our Agda metalanguage). Below, we insert the type of not in open type theory as

a comment.

– not : (b : Bool) → Bool
not : (b : J 0 | ‘Bool K) → J 0 | ‘Bool K
not true = false
not false = true

Note that the signature is a type because the universe level (i.e., the first ar-

gument to the meaning function) is 0. Now, we internalize the type signature of

negation.

not : J 0 | ‘Π ‘Bool (ń b → ‘Bool) K
not true = false

214

not false = true

It is good that we can internalize the type of negation, but we could already

do that using our universe of closed types in Section 4.2.1. Our next example

(the identity function) shows how to internalize a kind, which the universe of

Section 4.2.1 cannot do.

Identity Function First, we define the identity function (id), whose type is

defined using a dependent function (→) external to our closed hierarchy. Below,

we insert the type of id in open type theory as a comment.

– id : (A : Set) (a : A) → A
id : (A : ‘Set[0]) (a : J 0 | A K) → J 0 | A K
id A a = a

The type of the identity function quantifies over all types in the zeroth uni-

verse. Hence, the universe of closed types (in Section 4.2.1) cannot internalize the

signature of id, because it is a kind signature that requires quantifying over all

types. The universe of closed types (in Section 4.2.1) does not have a code for

closed types (‘Set), making such a quantification impossible.

id : J 1 | ‘Π ‘Set (ń A → ‘Π ‘J A K (ń a → ‘J A K)) K
id A a = a

Above, we have internalized the kind signature of id. The signature is a kind,

because the universe level (i.e., the first argument to the meaning function) is 1.

At universe level 1, the closed type constructor ‘Set and closed meaning function

constructor (‘J_K) are inhabited, allowing us to internalize the signature of id as a

closed kind.

Note that the argument A in the closed kind of id is the meaning of ‘Set. At

kind level 1, the meaning function of ‘Set returns a closed type (‘Set[0], at level

0). Hence, the second argument of id, and the codomain of id, must lift (using

‘J_K) the type A (at level 0), so that the entire signature of id can be a kind (at

215

level 1).

8.1.3 Agda Model

Now we define an Agda model of a Closed Hierarchy of Well-Order Universes. Pre-

viously (in Section 8.1.1), we defined a formal model of the hierarchy as a datatype

indexed by the natural numbers, which Agda fails to recognize as a positive defi-

nition. The Agda model of a Closed Hierarchy of Well-Order Universes is due to

McBride [42].

Now, we define the hierarchy in 2 stages, allowing Agda to recognize the pos-

itivity of the definition. In the first stage, we define an open datatype (SetForm),

parameterized by an abstract notion of the previous universe level (Level). In the

second stage, we define the closed hierarchy (‘Set[_]) of universes, indexed by the

natural numbers, but as a computational family (Section 2.1.11). In other words,

we model the indexed definition (‘Set[_]) by deriving it as a function from the

natural numbers to types, and this function is defined in terms of the parame-

terized definition (SetForm). Correspondingly, we also define a meaning function

abstracted over the previous universe level (J_/_K), which is used to derive the

meaning function over all levels (J_|_K).

Abstract Universe Levels First, we define the abstract notion of the previous

universe (whose level is the predecessor of the current universe), as the dependent

record Level. The Level record is used as the parameter of the type defined in the

first stage of our hierarchy construction.

record Level : Set1 where
field

SetForm : Set
J_/_K : SetForm → Set

The SetForm field represents a closed type from the previous universe, and the

216

J_/_K field represents the closed type meaning function from the previous universe.

Note that Level is isomorphic to the Univ record of Section 6.2.3, just with different

field names. Additionally, note that SetForm is a Set, and the codomain of J_/_K

is Set, so Level is an open kind.

Pre-Closed Leveled Types Next, we state the type former (SetForm) of a

type at an arbitrary level, parameterized by the universe at the previous level.

Technically, SetForm is an open type, due to its use of the open Level parameter.

However, we plan to fill in the parameter with a closed universe in stage 2 of the

construction. Hence, we refer to SetForm, and associated constructions, as being

pre-closed.

data SetForm (` : Level) : Set where

We name our parameterized pre-closed type “SetForm”. Whereas ‘Set[_] is

indexed by natural numbers, SetForm is parameterized by the previous universe

level. We call this type SetForm, because we intend to “fill in” the abstract universe

level with a concrete universe in the second stage of the construction (i.e., when

deriving the indexed type ‘Set[_]), just like we would “fill in” a “form”.

Pre-Closed Types The pre-closed type constructors of our parameterized type

(SetForm) are similar to the corresponding constructors of the indexed formal

model (‘Set[_]).

‘⊥ ‘> ‘Bool : SetForm `

‘Σ ‘Π ‘W : (A : SetForm `) (B : J ` / A K → SetForm `) → SetForm `

‘Id : (A : SetForm `) (x y : J ` / A K) → SetForm `

Compared to ‘Set[_], the main difference is that the constructors of SetForm

do not take the level ` as a formal argument. This is because ` is now a parameter

(because it appears to the left of the colon in the datatype declaration), hence it

is an informal and implicit argument of all constructors. Importantly, this allows

217

SetForm to be a type, even though it is parameterized by Level, which is a kind (as

explained in Section 6.4.4).

Pre-Closed Kinds The main change in the pre-closed kinds appears in the

pre-closed meaning function constructor (‘J_K).

‘Set : SetForm `

‘J_K : Level.SetForm ` → SetForm `

The indexed closed meaning function constructor takes ‘Set[`] as an argument

and returns a ‘Set[suc `]. In this parameterized version of the constructor, we

cannot return a SetForm `, because the parameter ` must remain constant for

all constructors. However, we can make the argument to the constructor be a

pre-closed type from the previous universe, by projecting SetForm out of our Level

record parameter `. Hence, the argument in the indexed and parameterized version

of the meaning function constructor (‘J_K) both represent a closed type from the

previous universe, just in different ways.

Meaning of Pre-Closed Leveled Types Now let’s define the meaning function

for pre-closed types parameterized by the previous universe.

J_/_K : (` : Level) → SetForm ` → Set

The only difference in the syntax of the type signature is that we use a slash

(/), instead of a pipe (|), to distinguish the abstract Level version of the meaning

function (J_/_K) from the natural number version (J_|_K).

Meaning of Pre-Closed Types The meaning of pre-closed types using abstract

levels is syntactically identical to the natural number version, besides replacing

pipes with slashes.

J ` / ‘⊥ K = ⊥
J ` / ‘> K = >

218

J ` / ‘Bool K = Bool
J ` / ‘Σ A B K = Σ J ` / A K (ń a → J ` / B a K)
J ` / ‘Π A B K = (a : J ` / A K) → J ` / B a K
J ` / ‘W A B K = W J ` / A K (ń a → J ` / B a K)
J ` / ‘Id A x y K = Id J ` / A K x y

Meaning of Pre-Closed Kinds The meaning of pre-closed kinds is interpreted

by projecting the field in the Level record ` associated with the pre-closed kind

being interpreted.

J ` / ‘Set K = Level.SetForm `

J ` / ‘J A K K = Level.J ` / A K

The meaning of a pre-closed type (‘Set) is a pre-closed type (SetForm) from

the previous universe (`). The meaning of the pre-closed meaning function is the

meaning function (J_/_K) from the previous universe (`).

Passing Positivity Check In the definition of SetForm, the codomain of the B

argument of the ‘Σ, ‘Π, and ‘W constructors is still an application of the meaning

function (J_/_K). However, now the meaning of ‘Set of is an abstract Set from

the Level record parameter `, whose field we happened to call SetForm. This name

simply documents that we plan to instantiate the field with a SetForm of the pre-

vious universe, in the second stage of our indexed universe hierarchy construction.

From the point of view of the definition of SetForm, SetForm contains an arbitrary

Set, so positivity is not violated when checking the infinitary B argument.

Derived Indexed Hierarchy of Universes Now we derive closed leveled types

(‘Set[_]), indexed by the natural numbers, from pre-closed leveled types (SetForm),

parameterized by levels (Level).

For each natural number, we need to apply SetForm to a closed Level encoding

the previous universe in the hierarchy that the natural numbers represent. To do

219

so, we define the level function that maps each natural number, representing the

current universe, to a Level, encoding the previous universe.

level : (` : N) → Level

If the universe level is 0, then there is no previous universe. Hence, we define

the previous closed types (SetForm) to be uninhabited (i.e., the bottom type ⊥).

The meaning function J_/_K for these previous closed types is also uninhabited,

as indicated by a λ term matching against its empty argument (empty parenthe-

ses, in an argument position, is Agda syntax for matching against a value of an

uninhabited type).

level zero = record
{ SetForm = ⊥
; J_/_K = ń()
}

If the universe level is the successor of some natural number, then the previous

closed types (SetForm) are the pre-closed types (SetForm), whose parameter is

instantiated with level applied to the predecessor of the input natural number.

The previous closed meaning function (J_/_K) is defined by the previous pre-closed

meaning function (J_/_K) in the same fashion.

level (suc `) = record
{ SetForm = SetForm (level `)
; J_/_K = J_/_K (level `)
}

Thus, we inductively define closed universe Levels, for any natural number, by

applying pre-closed constructions to previous closed levels, and defining the zeroth

level to be uninhabited.

Finally, we derive (indexed) closed leveled types (and their meaning functions)

by composing pre-closed types (and their meaning functions) with level.

‘Set[_] : N → Set

220

‘Set[`] = SetForm (level `)

J_|_K : (` : N) → ‘Set[`] → Set
J ` | A K = J level ` / A K

The indexed leveled types are derived from the parameterized pre-closed types,

because the pre-closed types are used to define level.

8.2 CLOSED HIERARCHY OF INDUCTIVE-RECURSIVE TYPES

In Section 8.1, we extend the Closed Well-Order Types universe of Section 4.2.1

to a Closed Hierarchy of Well-Order Universes. In this section, we extend the

Closed Inductive-Recursive Types universe of Section 6.2 to a Closed Hierarchy of

Inductive-Recursive Universes. We define the Agda model of the hierarchy (as in

Section 8.1.3), skipping the formal model (as in Section 8.1.1).

8.2.1 Agda Model

Now we define an Agda model of a Closed Hierarchy of Inductive-Recursive Uni-

verses. Just like the Agda model of the Closed Hierarchy of Well-Order Universes

in Section 8.1.3, we derive closed leveled types and their meaning from closed level

universes, defined in terms of pre-closed constructions parameterized by Level.

Recall (from Section 6.2) that the Closed Inductive-Recursive Types universe

is mutually defined by closed types (‘Set), closed descriptions (‘Desc), and their

respective closed meaning functions (J_K and «_»). Similarly, the Closed Hierarchy

of Inductive-Recursive Universes is mutually defined by pre-closed leveled types

(SetForm), pre-closed leveled descriptions (DescForm), and their respective pre-

closed leveled meaning functions (J_/_K and «_/_»).

Abstract Universe Levels Once again, we define a dependent record (Level)

as the abstract notion of the previous universe to be used as the parameter of

221

SetForm and DescForm.

record Level : Set1 where
field

SetForm : Set
J_/_K : (A : SetForm) → Set

As before (in Section 8.1.3), the SetForm field represents the closed types of the

previous universe, and the J_/_K field is their meaning function. Now we require

three additional fields.

DescForm : (O : SetForm) → Set
J_/_K1 : {O : SetForm} (D R : DescForm O) → Set
µ1’ : (O : SetForm) (D : DescForm O) → Set

The DescForm represents the closed descriptions of the previous universe. The

µ1’ field represents the type component of the fixpoint operator of closed descrip-

tions from the previous universe. Recall (from Section 5.4.2) that the type compo-

nent of fixpoints (µ1) is defined in terms of the type component of the interpretation

function for descriptions (J_K1). The J_/_K1 field represents the type component

of the interpretation function for closed descriptions of the previous universe.

Three Versions of Fixpoints We now take a brief intermission to warn the

reader that there are three versions of closed fixpoints in this closed leveled universe

construction. We explain why all three are necessary as this chapter unfolds, but

for now just recognize that they are distinct (watch out for backtick prefixes and

prime prefixes in the names of the three closed fixpoints):

1. ‘µ1 This is a constructor of SetForm, and represents the fixpoint of descrip-

tions in the current universe.

2. µ1’ This is a record field of Level, and represents the abstract version of the

fixpoint of descriptions in the previous universe.

222

3. ‘µ1’ This is a constructor of SetForm, and represents the concrete version

of the fixpoint of descriptions in the previous universe. Hence, ‘µ1’ is the

concrete version of µ1’.

Recall that there is also µ1, the open fixpoint operator of Section 5.4.2. We

now return you to your regularly scheduled generic programming.

Pre-Closed Leveled Types Below we give the type former of pre-closed leveled

types, this time parameterized by our Level record containing description compo-

nents, in addition to type components, from the previous universe.

data SetForm (` : Level) : Set where

Pre-Closed Types The pre-closed types are no different from the well-order

hierarchy of Section 8.1.3. The only exception is that we exchange the well-order

constructor (‘W) for the fixpoint constructor (‘µ1).

‘⊥ ‘> ‘Bool : SetForm `

‘Σ ‘Π : (A : SetForm `) (B : J ` / A K → SetForm `) → SetForm `

‘Id : (A : SetForm `) (x y : J ` / A K) → SetForm `

‘µ1 : (O : SetForm `) (D : DescForm ` O) → SetForm `

Notice that the D argument of ‘µ1 is a mutually defined DescForm, in the same

universe level (`) as our current SetForm. This is a natural generalization of ‘µ1

from the closed universe in Section 6.2, which which takes a ‘Desc and constructs

a ‘Set.

Pre-Closed Kinds The pre-closed kind of types (‘Set) and their meaning func-

tion (‘J_K) are no different from the well-order hierarchy of Section 8.1.3.

‘Set : SetForm `

‘J_K : Level.SetForm ` → SetForm `

‘Desc : Level.SetForm ` → SetForm `

223

‘J_K1 : {O : Level.SetForm `} (D R : Level.DescForm ` O) → SetForm `

‘µ1’ : (O : Level.SetForm `) (D : Level.DescForm ` O) → SetForm `

We now add the pre-closed kind of descriptions (‘Desc), and pre-closed kinds

for the interpretation (‘J_K1) and fixpoint (‘µ1’) of descriptions. Recall that the

pre-closed meaning function of types (‘J_K) can also be considered a function that

lifts a type from the previous universe to the current universe. Similarly, the

interpretation (‘J_K1) and fixpoint (‘µ1’) of descriptions both lift a description

from the previous universe to the current universe.

Finally, we highlight the difference between the pre-closed fixpoint (‘µ1), taking

a DescForm of the current universe, and the pre-closed lifting fixpoint (‘µ1’, notice

the “prime” suffix), taking a DescForm from the previous universe. The former is

used to construct algebraic types (like the natural numbers) in the zeroth universe

or higher, while the latter is used to construct algebraic kinds (like heterogenous

lists) in the first universe or higher.

If we use ‘Π to quantify over a ‘Set, then the domain (A) of the dependent

argument (B) will be the meaning of ‘Set, which is a TypeForm of the previous

universe. Thus, if we want to use A in the type of B, we must lift it to the current

universe with ‘J_K. Similarly, if we use ‘Π to quantify over ‘Desc, then we can

use the argument A in the type of B by lifting A (a DescForm) from the previous

universe to the current universe via ‘J_K1 or ‘µ1’. Distinctively, we could not apply

‘µ1 to A, because ‘µ1 expects a DescForm from the current universe, not a DescForm

from the previous universe.

Meaning of Pre-Closed Leveled Types Let’s define the meaning function for

pre-closed leveled types, having the signature below.

J_/_K : (` : Level) → SetForm ` → Set

224

Meaning of Pre-Closed Types The meaning of pre-closed types is no different

from the well-order hierarchy version (Section 8.1.3), except we replace the ‘W case

with the ‘µ1 case.

J ` / ‘⊥ K = ⊥
J ` / ‘> K = >
J ` / ‘Bool K = Bool
J ` / ‘Σ A B K = Σ J ` / A K (ń a → J ` / B a K)
J ` / ‘Π A B K = (a : J ` / A K) → J ` / B a K
J ` / ‘Id A x y K = Id J ` / A K x y
J ` / ‘µ1 O D K = µ1 J ` / O K « ` / D »

In the fixpoint case (‘µ1), we compute the meaning of the description argument

(D) using the mutually defined meaning of leveled pre-closed descriptions («_/_»).

Meaning of Pre-Closed Kinds The meaning of each pre-closed kind code is

defined using its corresponding Level field, using the previous universe level `.

J ` / ‘Set K = Level.SetForm `

J ` / ‘J A K K = Level.J ` / A K
J ` / ‘Desc O K = Level.DescForm ` O
J ` / ‘J D K1 R K = Level.J ` / D K1 R
J ` / ‘µ1’ O D K = Level.µ1’ ` O D

Note that the arguments of each pre-closed kind code have exactly the types

expected by the Level fields, so meaning translations (via J_/_K or «_/_») are

unnecessary.

Pre-Closed Leveled Descriptions Let’s define the meaning function for pre-

closed leveled descriptions, having the signature below.

data DescForm (` : Level) (O : SetForm `) : Set where

Note that pre-closed leveled descriptions are parameterized by O, a pre-closed

type (SetForm) at the same level (`) as the current pre-closed description (DescForm),

225

encoding the codomain of the decoding function for this inductive-recursive de-

scription.

Pre-Closed Descriptions The leveled pre-closed description constructors are

just like the closed descriptions of Section 6.2. The only difference is that we

replace closed constructions (‘Desc, ‘Set, and J_K) with their pre-closed leveled

counterparts (DescForm, SetForm, and J_/_K), at level `.

‘Ì : (o : J ` / O K) → DescForm ` O
‘σ : (A : SetForm `) (D : J ` / A K → DescForm ` O) → DescForm ` O
‘δ : (A : SetForm `) (D : (o : J ` / A K → J ` / O K) → DescForm ` O)
→ DescForm ` O

Meaning of Pre-Closed Leveled Descriptions Let’s define the meaning func-

tion for pre-closed leveled descriptions, having the signature below.

«_/_» : (` : Level) {O : SetForm `} → DescForm ` O → Desc J ` / O K

Meaning of Pre-Closed Descriptions The meaning of leveled pre-closed de-

scriptions is also just like the meaning of closed descriptions in Section 6.2. This

time we replace closed meaning functions (J_K and «_») with their pre-closed lev-

eled counterparts (J_/_K and «_/_»), at level `.

« ` / ‘Ì o » = Ì o
« ` / ‘σ A D » = σ J ` / A K (ń a → « ` / D a »)
« ` / ‘δ A D » = δ J ` / A K (ń o → « ` / D o »)

Derived Indexed Hierarchy of Universes Now that we’ve defined pre-closed

leveled types and descriptions, parameterized by levels (Level), we can derive closed

leveled types and descriptions, indexed by natural numbers (as a computational

family). First, we define level to map each natural number to a Level representing

226

the previous universe (i.e., a natural number n is mapped to universe n-1).

level : (` : N) → Level

At level 0, there is no previous universe. Thus, field SetForm is bottom, field De-

scForm is a constant function returning bottom, and the meaning functions match

against their uninhabited arguments (signified in Agda by empty parentheses in

the argument position).

level zero = record
{ SetForm = ⊥
; J_/_K = ń()
; DescForm = ń O → ⊥
; J_/_K1 = ń ()
; µ1’ = ń ()
}

If the universe level is the successor of some natural number, then the previous

closed type and description fields (SetForm and DescForm) are the pre-closed types

and descriptions (SetForm and DataForm), whose parameters are instantiated with

level applied to the predecessor of the input natural number. The previous closed

meaning function for types field (J_/_K) is defined by the previous pre-closed

meaning function for types (J_/_K) in the same fashion.

level (suc `) = record
{ SetForm = SetForm (level `)
; J_/_K = J_/_K (level `)
; DescForm = DescForm (level `)
; J_/_K1 = ń D R → J « level ` / D » K1 « level ` / R »
; µ1’ = ń O D → µ1 J level ` / O K « level ` / D »
}

The closed description interpretation and fixpoint fields (J_/_K1 and µ1’) are

defined using the open description interpretation function and fixpoint (J_K1 and

µ1) from Appendix B.

227

The open description interpretation function (J_K1) expects open description

arguments, but the field J_/_K1 has leveled closed description arguments (D and

R). Thus, we translate the leveled closed descriptions (D and R) using the leveled

description meaning function («_/_») at the predecessor level (`).

Similarly, the open description fixpoint (µ1) expects an open type and an open

description, but the field µ1’ has a leveled closed type argument (O) and a leveled

closed description argument (D). The closed type (O) is translated using the leveled

type meaning function (J_/_K), and the closed description (D) is translated using

the leveled description meaning function («_/_»). Both of the leveled meaning

functions are translated at the predecessor level (`).

Finally, we can derive indexed closed leveled types (‘Set[_]) from parameterized

pre-closed leveled types (SetForm), by instantiating the parameter with the result

of applying level to the input natural number index, as in Section 8.1.3. The leveled

closed type meaning function (J_|_K) is also derived from the pre-closed version

(J_/_K), as in Section 8.1.3.

‘Set[_] : N → Set
‘Set[`] = SetForm (level `)

J_|_K : (` : N) → ‘Set[`] → Set
J ` | A K = J level ` / A K

Now, we additionally derive the indexed closed leveled descriptions (‘Desc[_])

from parameterized pre-closed leveled descriptions (DescForm), also by instantiat-

ing the parameter with the result of applying level to the input index. The leveled

closed description meaning function («_|_») is derived from the pre-closed version

(«_/_») in the same way.

‘Desc[_] : (` : N) → ‘Set[`] → Set
‘Desc[`] O = DescForm (level `) O

«_|_» : (` : N) {O : ‘Set[`]} → ‘Desc[`] O → Desc J ` | O K

228

« ` | D » = « level ` / D »

8.2.2 Examples

The Closed Inductive-Recursive Types universe examples in Section 6.2.2 corre-

spond to examples that we can demonstrate in the zeroth universe of our hier-

archy. The Closed Inductive-Recursive Types universe does not include the kinds

‘Set and ‘Desc, hence all of the signatures (e.g., NatDs, ‘N, etc.) used to construct

the examples were defined externally to the universe (using types from our Agda

metalanguage, like the function space).

We can port all of the examples in Section 6.2.2 to the zeroth universe of

our hierarchy by patching them using the table below. For each definition (in its

signature and body), replace occurrences of the left table column with the right

table column.

Closed Types Universe Universe 0 in Hierarchy

‘Set ‘Set[0]

‘Desc ‘Desc[0]

J A K J 0 | A K

« D » « 0 | D »

However, we can also choose to internalize the signatures used in the examples,

as we see below. By “internalize” we mean that each signature can be represented

as the leveled type meaning (J_|_K), of some closed type, at some level in our

hierarchy.

Natural Numbers Let’s internalize the signatures used in the natural number

examples. The definition bodies remain the same as those in Section 6.2.2, so we

only present the signatures below. First, we internalize the signatures of the closed

229

description and type kinds (i.e., at universe level 1).

NatDs : J 1 | ‘Bool ‘→ ‘Desc ‘> K
NatD : J 1 | ‘Desc ‘> K
‘N : J 1 | ‘Set K

Crucially, internalizing the kinds above relies on having codes for closed types

(‘Set) and closed descriptions (‘Desc). If an internalized signature needs to refer to

a type, it must refer to the internalized “backtick” version of the type. Because we

can internalize all signatures, we no longer need to define non-backtick versions of

types (e.g., N). We can always recover a non-backtick version of a type by applying

the meaning function (J_|_K) to the backtick version, at the appropriate level.

zero : J 0 | ‘N K
suc : J 0 | ‘N ‘→ ‘N K

Above, we internalize the value (i.e., typed at universe level 0) constructors of

the natural numbers.

Vectors Now, let’s internalize the kinds used to derive indexed vectors from

inductive-recursive vectors.

VecDs : J 1 | ‘Set ‘→ ‘Bool ‘→ ‘Desc ‘N K
VecD : J 1 | ‘Set ‘→ ‘Desc ‘N K
‘Vec1 : J 1 | ‘Set ‘→ ‘Set K
‘Vec2 : J 1 | ‘Π ‘Set (ń A → ‘J ‘Vec1 A K ‘→ ‘J ‘N K) K
‘Vec : J 1 | ‘Set ‘→ ‘J ‘N K ‘→ ‘Set K

Notice that the decoding function (‘Vec2) quantifies over the kind ‘Set, binding

variable A. The bound variable A is a type, the inhabitant of the kind ‘Set. Hence,

in order to ask for argument of ‘Vec1 applied to A, we must first lift this type to

the kind level (using ‘J_K). Also recall that ‘N is defined to be a type. Hence, when

asking for a natural number argument, in kind signatures of ‘Vec2 and ‘Vec, we

230

also lift the ‘N type to the kind level (using ‘J_K).

nil : J 1 | ‘Π ‘Set (ń A → ‘J ‘Vec A zero K) K
cons : J 1 | ‘Π ‘Set (ń A → ‘Π ‘J ‘N K (ń n →

‘J A K ‘→ ‘J ‘Vec A n K ‘→ ‘J ‘Vec A (suc n) K)) K

Above, we internalize the value constructors of the vectors. Even though the

signatures of nil and cons are kinds (at universe level 1), their codomains return

lifted (using ‘J_K) vector types (at universe level 0). For similar reasons, the natural

number argument of cons is actually a value of type ‘N, which has merely been

lifted to the kind level to fit in the signature of cons.

To determine what level an argument or codomain lives at, substract the num-

ber of liftings (i.e., nested occurrences of ‘J_K) from the level of the signature (i.e.,

the number to the left of the pipe in the meaning function). For example, the

codomain of nil is 1 minus 1 lifting, thus nil returns a value of type (i.e., universe

level 0) ‘Vec, even though its signature is kinded (i.e., at universe level 1).

Finally, note that both nil and cons have explicit type arguments, and cons

also has an explicit natural number argument. To change these to be implicit

arguments, we would need to update our universe to include an implicit version of

the ‘Π code (this is easy to to do).

Heterogenous Lists Previously, we defined types, like the natural numbers,

whose signatures were kinds (at universe level 1). Now, we give an example of

defining a kind, the heterogenous lists, whose signature is a superkind (at universe

level 2). Defining the kind of heterogenous lists is not possible in the Closed

Inductive-Recursive Types universe of Section 6.2, which only supports types. First,

let’s review the kind of heterogenous lists.

data HList : Set1 where
nil : HList

231

cons : (A : Set) → A → HList → HList

The signatures of the closed description and closed type, used to define het-

erogenous lists, are superkinded at universe level 2.

HListDs : J 2 | ‘Bool ‘→ ‘Desc ‘> K
HListDs true = ‘Ì tt
HListDs false =

‘σ ‘Set ń A →
‘σ ‘J A K ń a →
‘δ ‘> ń xs →
‘Ì tt

HListD : J 2 | ‘Desc ‘> K
HListD = ‘σ ‘Bool HListDs

‘HList : J 2 | ‘Set K
‘HList = ‘µ1 ‘> HListD

Notice that the description of the first argument of the cons constructor (the

false case of HListDs) takes a type as an argument (‘Set), and the second argument

takes a value of the lifting of that type. We can also see that ‘HList is a closed

kind, because it is classified as a ‘Set at universe level 2. The meaning of ‘Set at

universe level 2 is the SetForm of the previous universe level, or Set[1]. Hence,

closed ‘HList is classified as a closed kind (Set[1]), just like open HList is classified

as an open kind (Set1).

nil : J 1 | ‘HList K
nil = init (true , tt)

cons : J 1 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘HList ‘→ ‘HList) K
cons A a xs = init (false , A , a , (ń u → xs) , tt)

Above, we define the kind (i.e., universe level 1) constructors of the heteroge-

nous lists. We know that nil and cons construct kinds, because their codomains do

not have any liftings (i.e., occurrences of ‘J_K), so 1 - 0 leaves the codomains at

232

universe level 1, the level of kinds.

Identity Function In Section 8.1.2, we demonstrate internalizing the signature

of the identify function in level 0 of the Closed Hierarchy of Well-Order Universes.

We can still do this in our Closed Hierarchy of Inductive-Recursive Universes, as

the internalized type below demonstrates.

id : J 1 | ‘Π ‘Set (ń A → ‘Π ‘J A K (ń a → ‘J A K)) K
id A a = a

For reference, we also present the external type signature that the meaning of

our internal type above expands to.

id : (A : ‘Set[0]) (a : J 0 | A K) → J 0 | A K
id A a = a

Dependent Pair As a sanity check for the construction of our Closed Hierarchy

of Inductive-Recursive Universes (Section 8.2.1), we should be able to internalize

each signature (whether it be a type or kind) of every constructor of every datatype

in the universe. This sanity check can be found in Appendix E.

As one illustrative example, we show how to internalize the pair constructor of

dependent pairs. In open type theory (Appendix B), the pair constructor has the

following type.

, : {A : Set} {B : A → Set} (a : A) → B a → Σ A B

Below, we define pair’ to be pair constructor init, while internalizing the kind

signature of _,_.

pair’ : J 1 | ‘Π ‘Set (ń A → ‘Π (‘J A K ‘→ ‘Set) (ń B →
‘Π ‘J A K (ń a → ‘Π ‘J B a K (ń b →
‘Σ ‘J A K (ń a → ‘J B a K))))) K

pair’ A B a b = a , b

Internalizing the kind of the pair constructor (,) as pair’ takes advantage of being

233

able to quantify over closed types (‘Set), and the closed type meaning function

(‘J_K), used to lift types to the kind level. Really, it is just a slightly more involved

example of internalizing the signature of the identity function (id).

Note that we must use explicit function arguments for A and B, as our universe

does not currently support an implicit version of dependent functions (‘Π). For

reference, we also present the external type signature that the meaning of our

internal type above expands to.

pair’ : (A : ‘Set[0]) (B : J 0 | A K → ‘Set[0])
(a : J 0 | A K) (b : J 0 | B a K)
→ Σ J 0 | A K (ń a → J 0 | B a K)

pair’ A B a b = a , b

Initial Algebra As our final example, we internalize the signature of the initial

algebra constructor (init) of fixpoints. The internalization of the signature for init

is unique, as it quantifies over the closed kind of descriptions (‘Desc), and must

be defined with description-lifting operations. First, review the type of the init

constructor in open type theory (Appendix B).

init : {O : Set} {D : Desc O} → J D K1 D → µ1 O D

Below, we define init’ to be init, while internalizing the kind signature of init.

init’ : J 1 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D →
‘J D K1 D ‘→ ‘µ1’ O D)) K

init’ O D xs = init xs

We internalize the D argument by quantifying over a closed description (‘Desc).

Because D is a description from the previous universe, the subsequent argument

uses the lifting description interpretation function (‘J_K1). Similarly, the codomain

uses the lifting fixpoint constructor (‘µ1’). Importantly, the codomain of init is

internalized with the prime-variant of closed fixpoint constructor (‘µ1’), defined

over descriptions of the previous universe, not the non-prime fixpoint constructor

234

(‘µ1), defined over descriptions of the current universe.

It is not obvious that the definition of our hierarchy needs fixpoints of descrip-

tions in the current (‘µ1) and previous (‘µ1’) universes. It is also not obvious that

the hierarchy needs to internalize the description interpretation function (‘J_K1),

for descriptions of the previous universe. However, our sanity check, in Appendix E,

exposes that both ‘µ1’ and ‘J_K1 are necessary to internalize the kind signature of

the init constructor. For reference, we also present the external type signature that

the meaning of our internal type above expands to.

init’ : (O : ‘Set[0]) (D : ‘Desc[0] O)
→ J « 0 | D » K1 « 0 | D » → µ1 J 0 | O K « 0 | D »

init’ O D xs = init xs

Lifting Functions We conclude this section by reflecting upon the internaliza-

tion of the kind signatures for the pair (_,_) and initial algebra (init) constructors

(as pair’ and init’), in the examples above.

The former is evidence that we need to quantify over the kind of closed types

(‘Set), and then lift the quantifier to the kind level using the closed meaning

function of types (‘J_K).

The latter is evidence that we need to quantify over the kind of closed de-

scriptions (‘Desc), and then lift the quantifier to the kind level using the closed

interpretation function (‘J_K1) of descriptions, and the (lifting) closed fixpoint op-

erator (‘µ1’) of descriptions.

Hence, our sanity check in Appendix E, that the signature of all datatype

constructors can be internalized in our closed universe hierarchy, drives the need

for quantification over closed kinds (‘Set and ‘Desc). In turn, quantification over

closed kinds drives results in types (i.e., the previous universe), which drives the

need for lifting functions appropriate to each kind (‘J_K, ‘J_K1, and ‘µ1’). Thus,

we recognize the sanity check in Appendix E as a good way to measure whether

235

we have appropriately closed our hierarchy, and are grateful for the structure that

the check provides to the definition of our hierarchy.

As one final note, we emphasize that it is not enough that we can exhibit kind

signatures for every datatype constructors. It is also important that the meaning

of our closed kind signatures reduce to exactly the signatures expected by the

underlying Agda constructors of our open type theory model.

8.3 LEVELED FULLY GENERIC FUNCTIONS

Chapter 7 demonstrates writing fully generic functions (like count, lookup and ast)

over all values of the Closed Inductive-Recursive Types universe (of Section 6.2). In

this section, we show how to write leveled fully generic functions, or fully generic

functions at any level of the Closed Hierarchy of Inductive-Recursive Universes (of

Section 8.2).

In Section 8.3.1, we patch fully generic count (of Section 7.1.2), converting

it to work in level 0 of our hierarchy, over all values of types. Subsequently, in

Section 8.3.2, we define fully generic Count in level 1 of our hierarchy, over all types

of kinds. As we shall see, the Count function at level 1 must be defined in terms

of the count function at level 0, because the values of level 0 are lifted to the type

level 1, which can be expected because our universes form a hierarchy.

We only patch count to work at level 0 (and extend it to work at level 1), but

other fully generic functions (like lookup and ast) can be similarly defined as leveled

fully generic functions. Leveling a function primarily involves 2 things:

1. The type of the fully generic function must be internalized as a kind (i.e., we

move from level 0, to the subsequent level, 1).

2. Additional cases must be handled, for the closed kinds ‘Set and ‘Desc, and

their associated lifting functions (‘J_K, ‘J_K1, and ‘µ1’).

236

one : J 0 | ‘N K
one = suc zero

two : J 0 | ‘N K
two = suc one

+ : J 0 | ‘N ‘→ ‘N ‘→ ‘N K
init (true , tt) + m = m
init (false , n , tt) + m = n tt + m

Figure 8.1: Closed natural number definitions in universe level 0.

8.3.1 Counting in Universe Zero

Step 1 of patching the count function (defined over all values in Section 7.1.2),

and the mutually defined counts function (defined over all algebraic arguments

in Section 7.1.3), to be defined in level 0 of our hierarchy, is internalizing their

signatures, as follows.

count : J 1 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘J ‘N K) K
counts : J 1 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D → ‘Π (‘Desc O) (ń R →

‘J D K1 R ‘→ ‘J ‘N K))) K

Because count and counts quantify over kinds (‘Set and ‘Desc, respectively),

they have internalized kind signatures (universe level 1). However, the A argument

of count, and the returned natural number (‘N) codomain are types, because they

are lifted using ‘J_K. Similarly, ‘J_K1 is used to lift the last argument of counts

from the type level to the kind level. Hence, count and counts operate on values,

classified by types, albeit lifted to the kind level in the signatures of count and

counts.

Both count and counts now return internalized natural numbers (‘N), hence we

must patch the body of count from Section 7.1.2 and counts from Section 7.1.3,

according to the table below. The left column of the table contains values external

237

count : J 1 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘J ‘N K) K
count (‘Σ A B) (a , b) = one + count A a + count (B a) b
count (‘µ1 O D) (init xs) = one + counts O D D xs
count ‘Set ()
count (‘Desc ()) ()
count (‘J () K) a
count (‘J () K1 ()) xs
count (‘µ1’ () ()) x
count A a = one

counts : J 1 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D → ‘Π (‘Desc O) (ń R →
‘J D K1 R ‘→ ‘J ‘N K))) K

counts O (‘σ A D) R (a , xs) = count A a + counts O (D a) R xs
counts O (‘δ ‘> D) R (f , xs) = count (‘µ1 O R) (f tt) +

counts O (D (‘µ2 R ◦ f)) R xs
counts O (‘δ A D) R (f , xs) = one + counts O (D (‘µ2 R ◦ f)) R xs
counts O (‘Ì o) R tt = one

Figure 8.2: Fully generic counting of values (count) and algebraic arguments

(counts) in universe level 0.

to our closed hierarchical type theory, and the right side contains their internal

equivalents.3

Closed Types Universe Universe 0 in Hierarchy

1 : N one : J 0 | ‘N K

+ : N → N → N + : J 0 | ‘N ‘→ ‘N ‘→ ‘N K

The definitions of count and counts in universe level 0, which are the result

of patching their equivalents in Section 7.1.2 and Section 7.1.3, are in Figure 8.2.

Recall that step 2 of the patching process is to handle cases for the closed kinds

3 We use the closed definition of natural numbers at level 0 from Section 8.2.2, and the closed
definitions of one and +, appearing in the right column of the table, are defined in Figure 8.1.

238

(‘Set and ‘Desc), and their lifting functions (‘J_K, ‘J_K1, and ‘µ1’), in the definition

of count.

In Figure 8.2, the first argument of count is ‘Set, and the second argument is

its meaning (or lifting). However, at universe level 0 the meaning of ‘Set is ⊥,

so the second argument is empty parentheses, which is Agda syntax for matching

against an uninhabited argument. This makes sense intuitively because count at

level 0 is defined over values, hence we do not need to define a case for counting

types (inhabitants of ‘Set). The same is true for the ‘Desc case. Finally, each lifting

function constructor (‘J_K, ‘J_K1, and ‘µ1’) takes a closed type or description as

one of its arguments. Because we know that closed types and descriptions are not

inhabited at universe level 0, we also do not need to define cases for the lifting

functions.

8.3.2 Counting in Universe One

Previously (Section 8.3.1), we defined count and counts to count the inhabitants

of universe level 0 in our closed hierarchy. Now, we define fully generic functions

to count the inhabitants of universe level 1 in our closed hierarchy.

Counting Values Even though we think of level 1 as the level of types, there

are copies of type constructors (like dependent pairs, or ‘Σ) at every level of our

hierarchy, whose values we must be able to count. Thus, we mutually define (in

Figure 8.3) Count for values at level 1, and Counts for algebraic arguments at level

1. Notice the capitalization of Count and Counts, indicating that they are the

universe level 1 equivalents of count and counts (from universe level 0).

Count : J 2 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘J ‘J ‘N K K) K
Counts : J 2 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D → ‘Π (‘Desc O) (ń R →

‘J D K1 R ‘→ ‘J ‘J ‘N K K))) K

Notice that because the internalized superkind signatures of Count and Counts

239

Count : J 2 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘J ‘J ‘N K K) K
Count (‘Σ A B) (a , b) = one + Count A a + Count (B a) b
Count (‘µ1 O D) (init xs) = one + Counts O D D xs
Count ‘Set A = CountSet A
Count (‘Desc O) D = CountDesc O D
Count (‘J A K) a = count A a
Count (‘J D K1 R) xs = counts _ D R xs
Count (‘µ1’ O D) (init xs) = one + counts O D D xs
Count A a = one

Counts : J 2 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D → ‘Π (‘Desc O) (ń R →
‘J D K1 R ‘→ ‘J ‘J ‘N K K))) K

Counts O (‘σ A D) R (a , xs) = Count A a + Counts O (D a) R xs
Counts O (‘δ ‘> D) R (f , xs) = Count (‘µ1 O R) (f tt) +

Counts O (D (‘µ2 R ◦ f)) R xs
Counts O (‘δ A D) R (f , xs) = one + Counts O (D (‘µ2 R ◦ f)) R xs
Counts O (‘Ì o) R tt = one

Figure 8.3: Fully generic counting of values (Count) and algebraic arguments

(Counts) in universe level 1.

are at level 2, we must lift the return type of natural numbers twice (because ‘N is

defined in level 0). However, the A argument must only be lifted once, which lifts

the quantified kind (‘Set at level 1) to level 2 (the level of the superkind signature).

Recall (from Section 6.2) that the lifting constructor ‘J_K is defined at every level

of our universe hierarchy (so is ‘Σ), but ‘N is only defined at level 0.

The definitions of Count and Counts are in Figure 8.3. All cases are the same as

the level 0 count and counts variants of Figure 8.2, except for the kind (‘Desc and

‘Desc) and lifting (‘J_K, ‘J_K1, and ‘µ1’) cases. In the lifting cases, the inhabitant

argument comes from the previous universe, so we count the lifted inhabitants

using level 0 functions (count and counts). For the kind cases (‘Set and ‘Desc),

the inhabitants are closed types and descriptions. Hence, we must additionally

240

mutually define (in Figure 8.4) CountSet to count types and CountDesc to count

descriptions.

CountSet : J 1 | ‘Set ‘→ ‘J ‘N K K
CountSet (‘Σ A B) = two + CountSet A
CountSet (‘Π A B) = two + CountSet A
CountSet (‘Id A x y) = one + CountSet A + count A x + count A y
CountSet (‘µ1 O D) = one + CountSet O + CountDesc O D
CountSet (‘Desc ())
CountSet (‘J () K)
CountSet (‘J () K1 ())
CountSet (‘µ1’ () ())
CountSet A = one

CountDesc : J 1 | ‘Π ‘Set (ń O → ‘Desc O ‘→ ‘J ‘N K) K
CountDesc O (‘Ì o) = one + count O o
CountDesc O (‘σ A D) = two + CountSet A
CountDesc O (‘δ A D) = two + CountSet A

Figure 8.4: Fully generic counting of types (CountSet) and algebraic arguments

(CountDesc) in universe level 1.

Counting Types and Descriptions To write fully generic functions at level

1, to count closed types and descriptions, we must internalize their signatures as

follows.

CountSet : J 1 | ‘Set ‘→ ‘J ‘N K K
CountDesc : J 1 | ‘Π ‘Set (ń O → ‘Desc O ‘→ ‘J ‘N K) K

Notice that CountSet and CountDesc are defined in level 1. This is because they

are applied to the inhabitants of the ‘Set and ‘Desc cases of Count (Figure 8.3).

Because the inhabitants are classified as the meaning of the closed kind of ‘Set or

‘Desc, the inhabitants live at the previous level. Hence, while Count is defined at

level 2, CountSet and CountDesc are defined at level 1.

241

The definitions of CountSet and CountDesc are in Figure 8.4. They count

each type (e.g., ‘Σ) and description (e.g., ‘σ) the same way that count and counts

(Figure 8.2) count values.

For example, the ‘Σ case of CountSet is counted as 2 plus a recursive call for

the A type. We count 1 for the ‘Σ itself, and add another 1 for the dependent

and higher-order B argument, which we treat as a black box (just like we do when

counting functions in Section 7.1.2, or infinitary arguments in Section 7.1.3). For

the same reason, the ‘σ case of CountDesc is counted as 2 plus a recursive call for

the A type. Once again, the dependent and higher-order D argument is treated as

a black box.

Notice that the x and y arguments of the identity type ‘Id are actually values.

Hence, we apply count to them, rather than CountSet. The same is true for o in

the ‘Ì case of CountDesc. Finally, notice that the kind (‘Set and ‘Desc) and lifting

function cases of CountSet are undefined. This is because CountSet counts types at

level 1, so kinds at level 2 are uninhabited. If we defined another version of count

and all the associated function at universe level 3 (of superkinds), then the kind

and lifiting cases of CountSet at level 3 would call their variants at level 2 (e.g.,

the ‘Set case of CountSet at level 3 would pass its argument to CountSet of level

2).

8.3.3 Leveled Generic Template

In Section 7.3.5, we conclude Chapter 7, on fully generic programming, with a

template for writing fully generic functions over all types (in universe 0). We

conclude this chapter similarly, but this time we present a generic template for

writing fully generic functions over all types (in universe 1). In other words, we

generalize the signatures of Section 8.3.2, requiring the mutual definition of 4

functions.

Generic : J 2 | ‘Π ‘Set (ń A → ‘J A K ‘→ · · ·) K

242

Generics : J 2 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D → ‘Π (‘Desc O) (ń R →
‘J D K1 R ‘→ · · ·))) K

GenericSet : J 1 | ‘Set ‘→ · · · K
GenericDesc : J 1 | ‘Π ‘Set (ń O → ‘Desc O ‘→ · · ·) K

These 4 functions are defined over different things, described below, but all

functions inhabit universe level 1.

1. Generic is defined over all values.

2. Generics is defined over all algebraic arguments of the initial algebra.

3. GenericSet is defined over all types.

4. GenericSet is defined over all descriptions.

Recall (from Section 8.3.2) that the types that make up universe 0 are included

in the collection of values of universe 1. Hence, Generic must call GenericSet (in

the ‘Set case), as well as a version of lowercase generic (like count in Section 8.3.1)

of universe 0 (in the ‘J_K case).

The ellipses (· · ·) in the first two functions (Generic and Generics) represents

a closed type (‘Set[1]). The ellipses (· · ·) in the next two functions (GenericSet

and GenericDesc) represents a closed kind (‘Set[2]). If our leveled fully generic

function has a dependent type, then we would need to define 8 functions instead

of 4. The additional 4 functions would compute the types of the 4 functions given

above. The additional 4 functions would be applied in the ellipses (· · ·) positions

of the 4 functions given above.

243

Part IV

Postlude

244

Chapter 9

RELATED WORK

The topic of this dissertation falls under the broad practice of generic programming,

but we will only discuss work related to generic programming within dependent

type theory. Namely, intrinsically type-safe generic programming as dependent

functions over some universe, taking a code argument (A : Code) and a subsequent

dependently typed argument, whose type is the meaning of the code (J A K) within

type theory:

generic : (A : Code) (a : J A K) → · · ·

9.1 FIXED OPEN OR CLOSED UNIVERSES

By a fixed universe, we mean a universe that encodes some fixed collection of

type formers, but does not support encoding user-declared datatypes. Generic

programming over fixed universes, whether they are open (as in Section 2.2.2) or

closed (as in Section 2.2.3), is standard dependently typed programming practice.

File Formats For example, Oury and Swierstra [49] demonstrate “The Power

of Pi” (or dependently typed programming), by creating a file Format universe,

and writing fully generic parse and print functions for all file formats that the

universe encodes. The universe is closed under (among other things) dependent

pair formation (whose code they call Read), as well as a base universe (U) encoding

bits, characters, natural numbers, and even vectors.

245

Even though parse and print are fully generic functions, they are defined over

a fixed universe of types. This makes sense for the problem at hand, where file

formats should be able to use dependent pairs and vectors to encode the length of

the remaining file format, after reading a natural number specifying said length. In

their setting, it does not make sense to support arbitrary user-declared types when

defining file formats. In contrast, our goal is to model an entire closed dependently

typed programming language (as in Section 6.2 or Section 8.2), rather than file

formats, so this dissertation concerns itself with a closed extendable universe (by

user-declared datatypes).

Termination A more theoretical example of generic programming is Coquand’s

proof [10] that an operational semantics of type theory terminates. This is achieved

using a logical relation defined as an inductive-recursive universe, which can be

viewed as an extension of a universe of natural numbers (‘N), closed under depen-

dent function formation (‘Π). Below, we give the signature for the type of expres-

sions (E), the indexed logical relation type (Ψ), and the logical relation meaning

function (ψ), used in Coquand’s formal development.

data E : Set where
mutual

data Ψ : (A : E) → Set where
ψ : (A : E) → Ψ A → (a : E) → Set

The codes (Ψ) of the logical relation are additionally indexed by a syntax of

expressions (A : E). The codes are inhabited for all the expressions corresponding

to types in the language. The meaning function (ψ) of the logical relation is

indexed by two expressions, where the first represents the type (A) and the second

represents values of that type (a). The meaning function is inhabited whenever

the expression value is a valid member of the expression type.

The meaning function is also indexed by the result of applying the code type

246

former (Ψ) to the expression index representing the type (A), or evidence that

the type is well-formed. One final difference between the logical relation and an

ordinary universe of types, is that the logical relation also contains termination ev-

idence, in the form of inhabitants of the operational semantics judgement (defined

as a type that is indexed by expressions).

Once again, we emphasize that the logical relation for a dependent type theory

can be considered a universe, albeit one with additional indexing and containing

additional data in the form of termination witnesses. The fundamental theorem,

used to prove that the operational semantics terminates, is defined over this uni-

verse (i.e., the logical relation is one of its arguments). Hence, the fundamental

theorem can be seen as a fully generic function. Many lemmas used in the proof of

termination can likewise be seen as fully generic functions. Finally, we note that

even though these functions are fully generic, they operate over a fixed universe of

natural numbers, closed under dependent function formation.

9.2 EXTENDABLE OPEN OR CLOSEDWELL-ORDERUNIVERSES

Open Universes Morris [44] demonstrates generic programming over small in-

dexed containers in an open universe. Because indexed containers can represent

arbitrary user-declared datatypes, the universe is also extendable.

Morris writes generic functions, like map, over the open universe of indexed

containers. This corresponds to writing generic functions over the open universe

of inductive-recursive types in Section 5.4.2, because small induction-recursion and

small indexing are equivalent [31].

Recursive containers are represented using the W type of well-orderings, which

is the fixpoint of containers. As we explained in Section 4.2.3, W types inadequately

encode first-order types in intensional type theory, which is why we use the more

complicated (but adequate) algebraic semantics of Section 5.4.4, defined in terms

of Desc and µ1.

247

Closed Universes We expect that it would be straightforward to extend the

generic functions that Morris wrote over an open universe of containers, to operate

over a closed universe of well-orderings (like the universe in Section 4.2.1). Once

again, we were not interested in this option for adequacy reasons (Section 4.2.3).

9.3 EXTENDABLE OPEN ALGEBRAIC UNIVERSES

There is a lot of work on generic programming over an open algebraic universe,

similar to the one in Section 5.4.2. It should be possible to extend any such

generic functions, over an open universe, to be fully generic, over a closed universe

(or hierarchy of universes), using techniques from Chapter 7 (and Section 8.3).

Universal Algebra Benke et al. [6] perform generic programming in the domain

of universal algebra. Various restrictions of the open inductive-recursive universe of

Section 5.4.2 are used for each algebra (e.g., one-sorted term algebras, many-sorted

term algebras, parameterized term algebras, etc.). Some of these algebras restrict

the universe to be finitary, some remain infinitary, but all of them restrict the use of

induction-recursion. As they state, their work could have been instead defined as

restrictions over a universe of indexed inductive types without induction-recursion.

Induction Principles Chapman et al. [7] define Descriptions for indexed de-

pendent types (without induction-recursion). Defining generic induction principles

for types encoded by Descriptions requires a computational argument type for all

the inductive hypotheses (All, also called Hyps). Although Desc is not inductive-

recursive, it is still infinitary so generic functions over such types, like ind, share

many of the same properties as our generic functions.

Our previous work [17] expands upon the work of Chapman et al. [7], defin-

ing an alternative interface to induction as generic type-theoretic eliminators for

Descriptions. Defining these eliminators involves several nested constructions,

248

where both computational argument types (to collect inductive hypotheses) and

return types (to produce custom eliminator types for each description) are used

for information retrieval but not modification of infinitary descriptions.

Ornaments McBride [41] builds a theory of Ornaments on top of Descriptions

for indexed dependent types (without induction-recursion). Ornaments allow a

description of one type (such as a Vector) to be related to another type (such

as a List) such that a forgetful map from the more finely indexed type to the

less finely indexed type can be derived as a generic function. This allows the

length function over lists (List) to be derived from the length function of (the more

finely) indexed vectors (Vec). Dagand and McBride [13] expand this work to also

work in the opposite direction, allowing functions over more finely indexed types

to be derived from functions over less finely indexed types, after providing some

structured missing information.

Disjointness and Injectivity Goguen et al. [29] demonstrate how to elaborate

a high-level syntax of dependent pattern matching to low-level uses of eliminators.

Part of this elaboration process depends upon proofs that constructors are injective

and disjoint. McBride et al. [43] define these proofs externally, at the level of

metatheory. Dagand [12] also internalizes these proofs, as generic programs over

the open universe of algebraic datatypes (using Desc and µ).

Strictly Positive Families In addition to writing generic functions over open

container-based datatype encodings, Morris also writes generic functions over an

open universe of “Strictly Positive Families” (whose type is called SPT). He writes

functions like generic map, a generic decision procedure for equality (over the

first-order subset of the universe), and generic zipper operations. The SPT uni-

verse can be considered an alternative way to define Desc and µ. Due to the way

249

SPT is defined, you can write functions that can make recursive calls on induc-

tive arguments of varying types, in a way that feels very similar to fully generic

programming. Nonetheless, ultimately SPT is still an open universe, as function

domains and infinitary domains are still encoded using the open Set type.

In Section 7.1, we define fully generic count to specialize the way it operates

over inductive arguments (infinitary argument whose domain is the unit type ‘>),

as opposed to truly infinitary arguments (whose domain is a type other than unit).

This would not be possible in the SPT universe, because we could not match on

the domain argument (of open kind Set, rather than closed type ‘Set).

Static Constructors and Arguments Sijsling [50] defines an open algebraic

universe, using a “static” variant of the datatype of descriptions (Desc). This

universe statically encodes the structure of constructors and their arguments, so

that we statically know the number of constructors and arguments of a datatype.

In contrast, the type of the second argument of the σ constructor (of Section 5.3.2),

depends on the value of the first argument. Hence, we cannot statically determine

the number of remaining constructor arguments, encoded by the second argument

of σ, because its type may depend on the first argument of σ (i.e., a value, only

dynamically available).

Sijsling reflects datatype declarations written in high-level Agda (using Agda’s

reflection machinery), and uses the reflected declarations to automatically derive

encodings of the datatypes in terms of his static Desc. He then writes generic

programs over his static Desc, some of which can be automatically converted be-

tween their high-level Agda representations and the low-level static Desc-based

representations.

Sijsling leaves extending his static Desc to account for infinitary arguments and

induction-recursion as future work, which we believe is possible. We also do not

foresee any problems with defining a closed universe in terms of such static Desc

250

types, by applying our closing procedure from Section 6.3.

Arity-Generic and Datatype-Generic Programming Weirich and Casingh-

ino [53] demonstrate writing arity-generic and datatype-generic functions, such as

a map function for any type (i.e., the datatype-generic part) with any number

of datatype parameters (i.e., the arity-generic part). They also define generic zip

and equality functions. Note that all of these functions are traditional generic

programs, because they do not recurse into the structure of datatype parameters.

Instead, functions like equality are parameterized by a function to compare the

values of the parameterized types.

The universe used by Weirich and Casinghino captures the class of datatypes

that can be built from non-dependent functions, the unit type, natural numbers,

non-dependent pairs, and disjoint unions. Some indexed types can be built this

way, like vectors. But, their universe cannot represent indexed types whose con-

structor arguments have indices that are structurally larger than the index returned

by the constructor. This is because their indexed types are derived as computa-

tional families (Section 2.1.11), as a non-dependent function in their universe, so

a function deriving such an indexed type would not terminate. Additionally, their

universe cannot represent indexed types with dependencies between indices, be-

cause their function-space is non-dependent.

9.4 PREVIOUS WORK

Now we discuss how the contributions of this dissertation relate to our previously

published work.

Closed Universe Zero and Fully Generic Programming In a previous pub-

lication [18], Sheard and I defined the closed universe of inductive-recursive alge-

braic types, and wrote fully generic functions over the universe. That work is the

251

basis of Chapter 6 and Chapter 8. An important contribution of our disserta-

tion from Chapter 6, not present in our previous publication [18], is the generic

procedure to close any universe of kinds (Section 6.3).

The fully generic function count (Section 7.1) and ast (Section 7.3) functions

of Chapter 6 are also novel to this dissertation. In Section 7.2, we define a generic

lookup function, that takes a finite set (Fin) argument, which is indexed by the

count of the argument being looked up. We also define a lookup function in our

previous publication, but it is indexed by a custom index type (unique to each type

being looked up), rather than using Fin and a dependent application of count. Our

previous publication also features a generic update function. While this dissertation

treats higher-order arguments as black-boxes, our previous publication [18] uses

domain supplements (Section 3.4.5) to also recurse into higher-order arguments.

Closed Universe Hierarchy and Leveled Fully Generic Programming In

another previous publication [16], Sheard and I defined a closed hierarchy of alge-

braic (but not infinitary or inductive-recursive) types. That work is the basis of

Chapter 8. The novel part of Chapter 8 is adapting McBride’s Closed Hierarchy

of Well-Order Universes [42] (reviewed in Section 8.1.3) to a Closed Hierarchy of

Inductive-Recursive Universes (presented in Section 8.2).

While our previous publication featured both description lifting functions, ‘J_K1

and ‘µ1’, it did not feature the non-lifting fixpoint operator ‘µ1. At the time, we

did not know how to adequately represent datatypes of the current universe level.

This resulted in needing to inadequately define certain types at one level higher in

the hierarchy, so that they may be defined in terms of the lifting fixpoint ‘µ1’.

My (i.e., Diehl’s) novel solution to this problem appears in Chapter 8, where

I add a non-lifting fixpoint ‘µ1, whose argument is a mutually defined DescForm.

Hence, the novelty of Chapter 8 is combining the idea of mutually defined code

types (‘Set and ‘Set) and mutually defined translation functions (J_K and «_»),

252

from Chapter 6, with the idea of description lifting functions (‘J_K1 and ‘µ1’) from

our previous publication [16].

253

Chapter 10

FUTURE WORK

This dissertation demonstrates that leveled fully generic programming is possible,

using a universe modeling a closed dependently typed language supporting user-

declared datatypes. But, there is still much work left to do! We discuss a small

slice of this future work, below.

10.1 UNIVERSE POLYMORPHISM

In Section 8.2.2, we define the type (in universe 0) of closed natural numbers, whose

signature is a kind (in universe 1).

‘N : J 1 | ‘Set K

In Section 8.3.1, we define fully generic count over all values of all types (in

universe 0), whose signature is also a kind (in universe 1). When we use the type

of natural numbers in the kind signature of count, it must be lifted to the kind

level via ‘J_K.

count : J 1 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘J ‘N K) K

In Section 8.3.2, we define fully generic Count over all types of all kinds (in

universe 1), whose signature is a superkind (in universe 2). When we use the type

of natural numbers in the superkind signature of Count, it must be lifted to the

kind level by using ‘J_K twice.

Count : J 2 | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘J ‘J ‘N K K) K

Types like dependent pairs (‘Σ) are built into the universe, and appear at

254

every level of the hierarchy. Therefore, we must handle the ‘Σ case of Count (in

universe 1) in exactly the same way that we handled it for count (in universe 0).

Furthermore, if we want to count all kinds of superkinds (in universe 2), we must

define yet fully generic counting function (and so on, for every level). We could

eliminate a lot of duplications by defining both algebraic datatypes and functions

universe polymorphically, so they can be instantiated at any level of the universe.

‘N : (` : N) → J suc ` | ‘Set K
count : (` : N) → J suc ` | ‘Π ‘Set (ń A → ‘J A K ‘→ ‘N (suc `)) K

Notice that the natural number codomain of count does not need to be lifted,

because we can just request a version of the natural numbers at the succesor to

level `. Also notice that we can define count once at every level, so we do not need

to separately define Count.

Unfortunately, universe polymorphic definitions rely on quantifying over lev-

els in our metalanguage. In other words, universe polymorphic definitions do

not model fully generic programs that we could write in our modeled closed de-

pendently typed language. For future work, we would like to add universe level

quantification as a code of our universe, so that the types of definitions like ‘N and

count can be internalized (i.e., made to appear within the brackets).

10.2 LARGE INDUCTION-RECURSION

In this dissertation, we close over inductive-recursive types (in Section 6.2), but

they are small. Inductive-recursive types are small if the codomain of the decoding

function can be any type, but it cannot be any kind (like ‘Set or ‘Desc). We are not

sure if it is possible to define a closed universe of large inductive-recursive types,

but we would like to try. It may be the case that we need a more expressive type

theory, like Homotopy Type Theory [52], to close over large inductive-recursive

types of Martin-Löf’s type theory [39].

255

If we are able to close over large inductive-recursive types, then we would

need to encode indexed inductive-recursive algebraic types. This is because the

isomorphism between indexed types and inductive-recursive types only holds in

the small case [31], so inductive-recursive algebraic types would not be enough.

Finally, note that we cannot achieve large induction-recursion simply by moving

up a universe level. At universe level 1, the codomain of a small decoding function

could be any kind, but a large decoding function would allow the codomain to be

any superkind.

10.3 INDUCTION-INDUCTION

We close over small inductive-recursive types in Section 6.2. We have also applied

our closing procedure (Section 6.3) to close over an encoding of small indexed

inductive-recursive types [24]. This dissertation does not cover the closed uni-

verse of indexed inductive-recursive because no problems arise when applying our

closing procedure. Nordvall has shown how to formally model inductive-inductive

types [46]. An inductive-inductive type is defined as a pair of mutually defined

types, where the second type is indexed by the first. We have not yet attempted to

close over a universe of inductive-inductive types, but we plan to in future work.

10.4 HIGH-LEVEL GENERIC PROGRAMMING

In Chapter 7, we mention that we can hide our algebraic encodings via smart

constructors and pattern synonyms, when defining concrete functions (i.e., over

concrete datatypes). However, we need to understand the underlying initial-algebra

base encoding, when defining fully generic functions.

McBride [29] defines how to elaborate dependent pattern matching, a high-

level language feature, to eliminators, which can be considered low-level induction

principles of a core language. We would like to explore implementing a closed

256

dependently typed language. It would be nice if we had a high-level feature for

writing fully generic functions, that could be elaborated to the fully generic func-

tions of this dissertation, which explicitly match on low-level encodings (like the

initial algebra).

Just as McBride allows users to define functions by dependent pattern match-

ing, without understanding how to program directly with eliminators, we would

like users to be able to define fully generic functions, without understanding our

closed universe model. Finally, note that Dagand [14] has already shown how to

elaborate high-level datatype declarations to their description-based (Desc) encod-

ings.

10.5 EFFICIENT IMPLEMENTATION

Al-Sibahi [2] shows how to efficiently implement traditional generic programming

over a (description-based) open algebraic universe of non-infinitary indexed types.1

He uses partial evaluation to remove most of the overhead associated with encoding

datatypes as fixpoints of functor descriptions. It would be interesting to explore

extending Al-Sibahi’s work to fully generic programming over a closed universe,

to see if any complications arise in the closed setting. We expect that his open-

universe optimizations will continue to work in the closed-universe setting, and we

hope that further optimizations will be possible in the closed-universe setting.

10.6 TERMINATION OF INTENSIONAL CLOSED TYPE THEORY

In our related work (Chapter 9), we discus how Coquand [10] proves that an

operational semantics of type theory, consisting of the natural numbers closed

1 Al-Sibani also demonstrates a form of fully generic programming by writing functions like a
generic pretty printer (gshow). Rather than closing the universe of descriptions, he adds extra ar-
guments that constrain non-inductive constructor arguments (inspired by type class constraints).
Unlike fully generic programming over a closed universe, custom constraints must be defined for
each fully generic function.

257

under dependent function formation, terminates.

The logical relation of this termination proof can be considered an extended ver-

sion of the closed universe model of natural numbers closed under dependent func-

tion formation. We would like to explore extending our model of closed inductive-

recursive types (Appendix C) to a logical relation (following Coquand’s approach),

and proving that an operational semantics of closed type theory, supporting user-

declared datatypes (via Desc and µ1), terminates.

10.7 INDUCTIVE DEFINITIONS OVER INFINITARY DOMAIN

Our fully generic count (Section 7.1), lookup (Section 7.2), and ast (Section 7.3)

functions all treat the case of inductive arguments of the initial algebra as a special

case of infinitary arguments. Being able to pattern match against the domain of

an infinitary argument, and ensuring that it is the unit type (‘>), demonstrates

the power of closed type theory (because we can match against a type).

In our previous work [18], we have also defined higher-order domain supple-

ments (Section 3.4.5) that allow us to write fully generic functions over higher-

order data (like the body of functions, or truly infinitary arguments). However,

neither the definition of count in Section 7.1 (which requires matching against ‘>),

nor the fully generic functions using higher-order domain supplements [18], are

defined by induction on the higher-order domains (like the domain of functions or

the domain of infinitary arguments). In the future, we would like to explore what

horizons have opened up to us now that our closed universe allows us to write

functions by induction on closed higher-order domains.

258

Chapter 11

CONCLUSION

Generic programming, within dependently typed programming languages, over a

universe closed under a fixed collection of type formers (e.g., Section 4.1) has a rich

history. If we consider such a universe to be a model of a closed dependently typed

programming language, then users of that language may use its fixed collection of

types, but may not declare their own domain-specific types.

Inspired by categorical models of algebraic semantics, which model algebraic

datatypes as least-fixed points of pattern functors, type theorists have also defined

formal models (i.e., in type theory) of algebraic semantics. We can view strictly-

positive polynomial functors (Desc) as codes of a universe, whose meaning is their

fixpoints (µ1). Generic dependently typed programming over this algebraic uni-

verse also has a rich history. Algebraic semantics is modeled as an open universe,

which grows as users of the underlying open type theory declare new datatypes.

The first major contribution of this dissertation (Chapter 6) is creating a closed

universe, modeling the types of a closed dependently typed programming language

that supports user-declared datatypes (‘Desc). We still do this by defining a uni-

verse closed under a fixed collection of type formers, but one of the type formers

is a closed variant of the fixpoint operator (‘µ1) from algebraic semantics. This

variant is parameterized by a mutually defined closed variant of strictly-positive

polynomial functors (‘Desc).

The second major contribution of this dissertation (Chapter 7) is demonstrating

what we call fully generic programming. Fully generic functions are defined over

a closed universe including user-declared datatypes. They can be defined once,

259

working over all current datatypes, but they continue to work as users declare

additional datatypes in the future.

The third major contribution of this dissertation (Chapter 8) is extending the

model of closed types (supporting user-declarations) to also model closed kinds,

closed superkinds, etc. Hence, we model a closed hierarchy of universes support-

ing user-declared datatypes. The closed hierarchy of universes models a closed

dependently typed programming language with a universe hierarchy, supporting

user-declared datatypes at every level of the hierarchy. We also demonstrate lev-

eled fully generic programming, or writing fully generic functions at any level in

the universe hierarchy (over values, types, kinds, superkinds, etc.). This achieves

our goal, of modeling fully generic programming in a closed dependently typed

programming language, supporting user-declared datatypes.

260

REFERENCES

[1] Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: construct-

ing strictly positive types. Theoretical Computer Science, 342(1):3–27, 2005.

[2] Ahmad Salim Al-Sibahi. The Practical Guide to Levitation. Master’s thesis,

IT University of Copenhagen, 2014.

[3] Thorsten Altenkirch and Conor McBride. Generic programming within depen-

dently typed programming. In Generic Programming. Proceedings of the IFIP

TC2 Working Conference on Generic Programming, pages 1–20. Springer,

2003. Held in Schloss Dagstuhl.

[4] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational

equality, now! In Proceedings of the 2007 workshop on Programming languages

meets program verification, PLPV ’07, pages 57–68, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-677-6. doi: 10.1145/1292597.1292608. URL

http://doi.acm.org/10.1145/1292597.1292608.

[5] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens.

Generic programming. In International School on Advanced Functional Pro-

gramming, pages 28–115. Springer, 1998.

[6] Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic pro-

grams and proofs in dependent type theory. Nord. J. Comput., 10(4):265–289,

2003.

[7] James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris.

The Gentle Art of Levitation. In Proceedings of the 15th ACM SIGPLAN

http://doi.acm.org/10.1145/1292597.1292608

261

International Conference on Functional Programming, ICFP ’10, pages 3–14,

New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3. doi: 10.1145/

1863543.1863547. URL http://doi.acm.org/10.1145/1863543.1863547.

[8] Alonzo Church. The calculi of lambda-conversion, volume 6. Princeton Uni-

versity Press, 1941.

[9] Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Bromley, W. R.

Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock,

N. P. Mendler, P. Panangaden, Scott F. Smith, James T. Sasaki, and S. F.

Smith. Implementing Mathematics with The Nuprl Proof Development System.

Prentice-Hall, 1986.

[10] Catarina Coquand. A realizability interpretation of Martin-Löf’s type theory.

In Twenty-Five Years of Constructive Type Theory. Proceedings of a Congress

Held in Venice, Oxford, 1998. Clarendon Press.

[11] Thierry Coquand and Christine Paulin. Inductively defined types. In COLOG-

88, pages 50–66. Springer, 1990.

[12] Pierre-Evariste Dagand. A Cosmology of Datatypes. PhD thesis, University

of Strathclyde, 2013.

[13] Pierre-Evariste Dagand and Conor McBride. Transporting Functions Across

Ornaments. In Proceedings of the 17th ACM SIGPLAN International Confer-

ence on Functional Programming, ICFP ’12, pages 103–114, New York, NY,

USA, 2012. ACM. ISBN 978-1-4503-1054-3. doi: 10.1145/2364527.2364544.

URL http://doi.acm.org/10.1145/2364527.2364544.

[14] Pierre-Evariste Dagand and Conor Mcbride. Elaborating inductive definitions.

In JFLA-Journées francophones des langages applicatifs, 2013.

http://doi.acm.org/10.1145/1863543.1863547
http://doi.acm.org/10.1145/2364527.2364544

262

[15] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the Church-

Rosser theorem. In Indagationes Mathematicae (Proceedings), volume 75,

pages 381–392. Elsevier, 1972.

[16] Larry Diehl and Tim Sheard. Leveling Up Dependent Types: Generic Pro-

gramming over a Predicative Hierarchy of Universes. In Proceedings of the

2013 ACM SIGPLAN Workshop on Dependently-typed Programming, DTP

’13, pages 49–60, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-

2384-0. doi: 10.1145/2502409.2502414. URL http://doi.acm.org/10.1145/

2502409.2502414.

[17] Larry Diehl and Tim Sheard. Generic constructors and eliminators from de-

scriptions: type theory as a dependently typed internal DSL. In Proceedings

of the 10th ACM SIGPLAN workshop on Generic programming, pages 3–14.

ACM, 2014.

[18] Larry Diehl and Tim Sheard. Generic Lookup and Update for Infinitary

Inductive-recursive Types. In Proceedings of the 1st International Workshop

on Type-Driven Development, TyDe 2016, pages 1–12, New York, NY, USA,

2016. ACM. ISBN 978-1-4503-4435-7. doi: 10.1145/2976022.2976031. URL

http://doi.acm.org/10.1145/2976022.2976031.

[19] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and

their set-theoretic semantics. Logical frameworks, 2:6, 1991.

[20] Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465,

1994.

[21] Peter Dybjer. Representing inductively defined sets by wellorderings in

Martin-Löf’s type theory. Theoretical Computer Science, 176(1-2):329–335,

1997.

http://doi.acm.org/10.1145/2502409.2502414
http://doi.acm.org/10.1145/2502409.2502414
http://doi.acm.org/10.1145/2976022.2976031

263

[22] Peter Dybjer. A general formulation of simultaneous inductive-recursive def-

initions in type theory. The Journal of Symbolic Logic, 65(02):525–549, 2000.

[23] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive

definitions. In Typed Lambda Calculi and Applications, volume 1581 of Lecture

Notes in Computer Science, pages 129–146. Springer, 1999.

[24] Peter Dybjer and Anton Setzer. Indexed induction-recursion. In Proof Theory

in Computer Science, pages 93–113. Springer, 2001.

[25] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gor-

don Woodhull. Graphviz—open source graph drawing tools. In International

Symposium on Graph Drawing, pages 483–484. Springer, 2001.

[26] Nicola Gambino and Martin Hyland. Wellfounded trees and dependent poly-

nomial functors. In International Workshop on Types for Proofs and Programs,

pages 210–225. Springer, 2003.

[27] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs

with dot, 2006.

[28] Jean-Yves Girard. Functional interpretation and elimination of superior order

arithmetic breaks. PhD thesis, Universite Paris VII, 1972.

[29] Healfdene Goguen, Conor McBride, and James McKinna. Eliminating de-

pendent pattern matching. In Algebra, Meaning, and Computation, pages

521–540. Springer, 2006.

[30] Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L

Wadler. Type classes in Haskell. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 18(2):109–138, 1996.

264

[31] Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten

Altenkirch. Small induction recursion. In International Conference on Typed

Lambda Calculi and Applications, pages 156–172. Springer, 2013.

[32] Ralf Hinze. Generic Programs and Proofs. PhD thesis, Universität Bonn,

2000.

[33] William A Howard. The formulae-as-types notion of construction. In To

HB Curry: essays on combinatory logic, lambda calculus and formalism, vol-

ume 44, pages 479–490. Academic Press, 1980.

[34] Antonius JC Hurkens. A simplification of Girard’s paradox. In Interna-

tional Conference on Typed Lambda Calculi and Applications, pages 266–278.

Springer, 1995.

[35] Simon L Peyton Jones. Haskell 98 language and libraries: the revised report.

Cambridge University Press, 2003.

[36] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an explo-

ration of the design space. In Haskell workshop, pages 1–16, 1997.

[37] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive

definitions. Studies in Logic and the Foundations of Mathematics, 63:179–216,

1971.

[38] Per Martin-Löf. An intuitionistic theory of types: Predicative part. Studies

in Logic and the Foundations of Mathematics, 80:73–118, 1975.

[39] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin, 1984.

Bibliopolis, Naples.

[40] Conor McBride. W-types: good news and bad news. Blog post, March 2010.

URL http://mazzo.li/epilogue/index.html%3Fp=324.html.

http://mazzo.li/epilogue/index.html%3Fp=324.html

265

[41] Conor McBride. Ornamental algebras, algebraic ornaments. 2011.

[42] Conor McBride. Hier Soir, an OTT Hierarchy. Blog post, November 2011.

URL http://mazzo.li/epilogue/index.html%3Fp=1098.html.

[43] Conor McBride, Healfdene Goguen, and James McKinna. A few constructions

on constructors. In Types for Proofs and Programs, pages 186–200. Springer,

2006.

[44] Peter Morris. Constructing Universes for Generic Programming. PhD thesis,

University of Nottingham, 2007.

[45] Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in Martin-

Löf’s type theory, volume 85. Oxford University Press, 1990.

[46] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis,

Swansea University, 2013.

[47] Ulf Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Chalmers University of Technology, 2007.

[48] Ulf Norell. Dependently Typed Programming in Agda. In Proceedings of the

4th International Workshop on Types in Language Design and Implementa-

tion, TLDI ’09, pages 1–2, New York, NY, USA, 2009. ACM. ISBN 978-1-

60558-420-1. doi: 10.1145/1481861.1481862. URL http://doi.acm.org/10.

1145/1481861.1481862.

[49] Nicolas Oury and Wouter Swierstra. The Power of Pi. In Proceedings of the

13th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’08, pages 39–50, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-

919-7. doi: 10.1145/1411204.1411213. URL http://doi.acm.org/10.1145/

1411204.1411213.

http://mazzo.li/epilogue/index.html%3Fp=1098.html
http://doi.acm.org/10.1145/1481861.1481862
http://doi.acm.org/10.1145/1481861.1481862
http://doi.acm.org/10.1145/1411204.1411213
http://doi.acm.org/10.1145/1411204.1411213

266

[50] Yorick Sijsling. Generic programming with ornaments and dependent types.

Master’s thesis, Utrecht University, 2016.

[51] Christopher Strachey. Fundamental Concepts in Programming Languages.

Higher Order Symbol. Comput., 13(1-2):11–49, April 2000. ISSN 1388-

3690. doi: 10.1023/A:1010000313106. URL http://dx.doi.org/10.1023/A:

1010000313106.

[52] The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. https://homotopytypetheory.org/book, In-

stitute for Advanced Study, 2013.

[53] Stephanie Weirich and Chris Casinghino. Arity-generic datatype-generic pro-

gramming. In Proceedings of the 4th ACM SIGPLAN workshop on Pro-

gramming languages meets program verification, PLPV ’10, pages 15–26, New

York, NY, USA, 2010. ACM. ISBN 978-1-60558-890-2. doi: 10.1145/1707790.

1707799. URL http://doi.acm.org/10.1145/1707790.1707799.

http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1023/A:1010000313106
https://homotopytypetheory.org/book
http://doi.acm.org/10.1145/1707790.1707799

267

Appendix A

OPEN NON-ALGEBRAIC TYPES

data ⊥ : Set where

record > : Set where
constructor tt

data Bool : Set where
true false : Bool

infixr 4 _,_
record Σ (A : Set) (B : A → Set) : Set where

constructor _,_
field

proj1 : A
proj2 : B proj1

data Id (A : Set) (x : A) : A → Set where
refl : Id A x x

268

Appendix B

OPEN UNIVERSE OF ALGEBRAIC TYPES

data Desc (O : Set) : Set1 where
Ì : (o : O) → Desc O
σ : (A : Set) (D : A → Desc O) → Desc O
δ : (A : Set) (D : (A → O) → Desc O) → Desc O

mutual
J_K1 : {O : Set} (D R : Desc O) → Set
J Ì o K1 R = >
J σ A D K1 R = Σ A (ń a → J D a K1 R)
J δ A D K1 R = Σ (A → µ1 _ R) ń f → J D (ń a → µ2 R (f a)) K1 R

J_K2 : {O : Set} (D R : Desc O) → J D K1 R → O
J Ì o K2 R tt = o
J σ A D K2 R (a , xs) = J D a K2 R xs
J δ A D K2 R (f , xs) = J D (ń a → µ2 R (f a)) K2 R xs

data µ1 (O : Set) (D : Desc O) : Set where
init : J D K1 D → µ1 O D

µ2 : {O : Set} (D : Desc O) → µ1 O D → O
µ2 D (init xs) = J D K2 D xs

269

Appendix C

CLOSED UNIVERSE OF ALGEBRAIC TYPES

mutual
data ‘Set : Set where

‘⊥ ‘> ‘Bool ‘String : ‘Set
‘Σ ‘Π : (A : ‘Set) (B : J A K → ‘Set) → ‘Set
‘Id : (A : ‘Set) (x y : J A K) → ‘Set
‘µ1 : (O : ‘Set) (D : ‘Desc O) → ‘Set

J_K : ‘Set → Set
J ‘⊥ K = ⊥
J ‘> K = >
J ‘Bool K = Bool
J ‘String K = String
J ‘Σ A B K = Σ J A K (ń a → J B a K)
J ‘Π A B K = (a : J A K) → J B a K
J ‘Id A x y K = Id J A K x y
J ‘µ1 O D K = µ1 J O K « D »

data ‘Desc (O : ‘Set) : Set where
‘Ì : (o : J O K) → ‘Desc O
‘σ : (A : ‘Set) (D : J A K → ‘Desc O) → ‘Desc O
‘δ : (A : ‘Set) (D : (o : J A K → J O K) → ‘Desc O)
→ ‘Desc O

«_» : {O : ‘Set} → ‘Desc O → Desc J O K
« ‘Ì o » = Ì o
« ‘σ A D » = σ J A K (ń a → « D a »)
« ‘δ A D » = δ J A K (ń o → « D o »)

270

Appendix D

CLOSED HIERARCHY OF UNIVERSES

record Level : Set1 where
field

SetForm : Set
J_/_K : (A : SetForm) → Set
DescForm : (O : SetForm) → Set
J_/_K1 : {O : SetForm} (D R : DescForm O) → Set
µ1’ : (O : SetForm) (D : DescForm O) → Set

mutual
data SetForm (` : Level) : Set where

‘⊥ ‘> ‘Bool ‘String : SetForm `

‘Σ ‘Π : (A : SetForm `) (B : J ` / A K → SetForm `) → SetForm `

‘Id : (A : SetForm `) (x y : J ` / A K) → SetForm `

‘µ1 : (O : SetForm `) (D : DescForm ` O) → SetForm `

‘Set : SetForm `

‘J_K : Level.SetForm ` → SetForm `

‘Desc : Level.SetForm ` → SetForm `

‘J_K1 : {O : Level.SetForm `} (D R : Level.DescForm ` O) → SetForm `

‘µ1’ : (O : Level.SetForm `) (D : Level.DescForm ` O) → SetForm `

J_/_K : (` : Level) → SetForm ` → Set
J ` / ‘⊥ K = ⊥
J ` / ‘> K = >
J ` / ‘Bool K = Bool
J ` / ‘String K = String
J ` / ‘Σ A B K = Σ J ` / A K (ń a → J ` / B a K)
J ` / ‘Π A B K = (a : J ` / A K) → J ` / B a K
J ` / ‘Id A x y K = Id J ` / A K x y
J ` / ‘µ1 O D K = µ1 J ` / O K « ` / D »

271

J ` / ‘Set K = Level.SetForm `

J ` / ‘J A K K = Level.J ` / A K
J ` / ‘Desc O K = Level.DescForm ` O
J ` / ‘J D K1 R K = Level.J ` / D K1 R
J ` / ‘µ1’ O D K = Level.µ1’ ` O D

data DescForm (` : Level) (O : SetForm `) : Set where
‘Ì : (o : J ` / O K) → DescForm ` O
‘σ : (A : SetForm `) (D : J ` / A K → DescForm ` O) → DescForm ` O
‘δ : (A : SetForm `) (D : (o : J ` / A K → J ` / O K) → DescForm ` O)
→ DescForm ` O

«_/_» : (` : Level) {O : SetForm `} → DescForm ` O → Desc J ` / O K
« ` / ‘Ì o » = Ì o
« ` / ‘σ A D » = σ J ` / A K (ń a → « ` / D a »)
« ` / ‘δ A D » = δ J ` / A K (ń o → « ` / D o »)

level : (` : N) → Level
level zero = record

{ SetForm = ⊥
; J_/_K = ń()
; DescForm = ń O → ⊥
; J_/_K1 = ń ()
; µ1’ = ń ()
}

level (suc `) = record
{ SetForm = SetForm (level `)
; J_/_K = ń A → J level ` / A K
; DescForm = DescForm (level `)
; J_/_K1 = ń D R → J « level ` / D » K1 « level ` / R »
; µ1’ = ń O D → µ1 J level ` / O K « level ` / D »
}

‘Set[_] : N → Set
‘Set[`] = SetForm (level `)

J_|_K : (` : N) → ‘Set[`] → Set
J ` | A K = J level ` / A K

272

‘Desc[_] : (` : N) → ‘Set[`] → Set
‘Desc[`] O = DescForm (level `) O

«_|_» : (` : N) {O : ‘Set[`]} → ‘Desc[`] O → Desc J ` | O K
« ` | D » = « level ` / D »

273

Appendix E

INTERNALIZED CONSTRUCTOR SIGNATURES

bot’ : J 0 | ‘⊥ ‘→ ‘⊥ K
bot’ p = p

tt’ : J 0 | ‘> K
tt’ = tt

true’ : J 0 | ‘Bool K
true’ = true

false’ : J 0 | ‘Bool K
false’ = false

pair’ : J 1 | ‘Π ‘Set (ń A → ‘Π (‘J A K ‘→ ‘Set) (ń B →
‘Π ‘J A K (ń a → ‘Π ‘J B a K (ń b →
‘Σ ‘J A K (ń a → ‘J B a K))))) K

pair’ A B a b = a , b

lambda’ : J 1 | ‘Π ‘Set (ń A → ‘Π (‘J A K ‘→ ‘Set) (ń B →
‘Π (‘Π ‘J A K (ń a → ‘J B a K)) (ń f →
‘Π ‘J A K (ń a → ‘J B a K)))) K

lambda’ A B f = ń a → f a

refl’ : J 1 | ‘Π ‘Set (ń A → ‘Π ‘J A K (ń a → ‘Id ‘J A K a a)) K
refl’ A a = refl

init’ : J 1 | ‘Π ‘Set (ń O → ‘Π (‘Desc O) (ń D →
‘J D K1 D ‘→ ‘µ1’ O D)) K

init’ O D xs = init xs

	Fully Generic Programming Over Closed Universes of Inductive-Recursive Types
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	Color Conventions
	I Prelude
	Introduction
	Dependently Typed Languages & Motivation
	Curry-Howard Isomorphism
	Indexed Types
	Motivation

	A Taste of Fully Generic Programming
	Traditional Generic Programming
	Fully Generic Programming
	Universes
	Fully Generic versus Deriving

	Class of Supported Datatypes
	Dependent Algebraic Types
	Indexing versus Induction-Recursion
	Smallness versus Largeness

	Thesis
	Thesis Statement
	Contributions
	Outline

	Types & Universes
	Types
	Function Types
	Non-Inductive Types
	Inductive Types
	Parameterized Types
	Indexed Types
	Type Families
	Derived Types
	Infinitary Types
	Inductive-Recursive Types
	Algebraic Types
	Computational Families
	Open Types
	Closed Types

	Universes
	Universe Model
	Open Universes
	Closed Universes
	Inductive Universes
	Non-Inductive Universes
	Subordinate Universes
	Autonomous Universes
	Derived Universes
	Parameterized Universes

	Generic Programming
	Parametric Polymorphism
	Parametric over Types
	Parametric over Levels

	Ad Hoc Polymorphism
	Ad Hoc by Overloading
	Ad Hoc by Coercion
	Ad Hoc by Overloading & Coercion

	Abstractness & Concreteness
	Abstract Types
	Concrete Types
	Abstract Data Types
	Fully Generic Programming

	Totality
	Non-Dependent Domain Change
	Non-Dependent Codomain Change
	Dependent Domain Change
	Dependent Codomain Change
	Domain Predicates versus Domain Supplements

	Closed Type Theory
	Closed Vector Universe
	Closed Vector Types
	Fully Generic Functions

	Closed Algebraic Universe
	Closed Well-Order Types
	Open Well-Order Types
	Inadequacy of Well-Orders

	II Open Type Theory
	Open Algebraic Universes
	Open Non-Dependent Types
	Categorical Model
	Formal Model
	Examples

	Open Infinitary Types
	Categorical Model
	Formal Model
	Examples

	Open Dependent Types
	Categorical Model
	Formal Model
	Examples

	Open Inductive-Recursive Types
	Categorical Model
	Formal Model
	Examples
	Agda Model

	III Closed Type Theory
	Closed Algebraic Universe
	Open Inductive-Recursive Types
	Formal Model
	Source of Openness

	Closed Inductive-Recursive Types
	Formal Model
	Examples
	Kind-Generalized Universes

	How to Close a Universe
	Procedure
	Example Procedure Run

	Types versus Kinds
	Open Types and Kinds
	Gratuitous Kinds
	Types versus Descriptions
	Kind-Parameterized Types

	Fully Generic Functions
	Fully Generic Count
	Generic Types
	Counting All Values
	Counting Algebraic Arguments
	Examples

	Fully Generic Lookup
	Generic Types
	Looking Up All Values
	Looking Up Algebraic Arguments
	Splitting Functions
	Examples

	Fully Generic AST
	Generic Types
	Marshalling Initial Algebras
	Marshalling All Values
	Marshalling Algebraic Arguments
	Generic Template

	Closed Hierarchy of Universes
	Closed Hierarchy of Well-Order Types
	Formal Model
	Examples
	Agda Model

	Closed Hierarchy of Inductive-Recursive Types
	Agda Model
	Examples

	Leveled Fully Generic Functions
	Counting in Universe Zero
	Counting in Universe One
	Leveled Generic Template

	IV Postlude
	Related Work
	Fixed Open or Closed Universes
	Extendable Open or Closed Well-Order Universes
	Extendable Open Algebraic Universes
	Previous Work

	Future Work
	Universe Polymorphism
	Large Induction-Recursion
	Induction-Induction
	High-Level Generic Programming
	Efficient Implementation
	Termination of Intensional Closed Type Theory
	Inductive Definitions over Infinitary Domain

	Conclusion

	References
	Appendices
	Appendix Open Non-Algebraic Types
	Appendix Open Universe of Algebraic Types
	Appendix Closed Universe of Algebraic Types
	Appendix Closed Hierarchy of Universes
	Appendix Internalized Constructor Signatures

