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Intercommunication has been identified between the unconfined 

and uppermost confined aquifer systems underlying a portion of the 

U.S. Department of Energy's Hanford Site. Erosional thinning and 

fracturing of the basalt confining layer within the study area allows 

physical contact between the two aquifers, but the vertical hydraulic 

gradient (a required driving force) is small. To better conceptualize 

the distribution and volume of the leakage occuring between the aquifer 

systems, this study investigates the confined Rattlesnake Ridge Aquifer 

flow system, which appears to be more sensitive to the vertical leakage 

than the overlying unconfined aquifer. 



The flow system of the Rattlesnake Ridge Aquifer is poorly 

understood. The flow direction of this aquifer in the study area is 

difficult to define because most of the wells used to obtain data 

are concentrated in one area. The complexity of the flow in the 

study area makes extrapolation from these data points difficult. 

Several scenarios are formulated to describe plausible 

hydrogeologic settings that could produce the confined flow pattern 

observed. These scenarios include recharge to the aquifer derived 

from leakage from the overlying unconfined aquifer and the underlying 

deep confined aquifer system. Leakage amounts were computed from 

estimations of vertical head differentials between the unconfined 

and confined aquifer and from hydraulic conductivity data of the 

basalt confining layer. The hydraulic conductivity values of the 

basalt are controlled by vertical fractures. 

2 

Results of modeling show that the observed flow configuration 

can be simulated as the westward flanks of a ground-water mound 

produced from leakage between the unconfined and confined aquifers. 

This implies that leakage through vertical fractures and erosional 

windows in the basalt can play an important role in the interpretation 

of the Rattlesnake Ridge Aquifer's flow system and in our understanding 

of aquifer i ntercor.rmuni cation in the study area. 
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PREFACE 

This study is divided into four sections. The INTRODUCTION 

section summarizes background information {i.e. hydrology, geology) 

to aid in the understanding of the problem definition and the methods 

of investigation. A more detailed description of the hydrogeology, 

that is required for model development, is presented in the 

CONCEPTUAL MODEL section. The study's plan and premises are found 

in the MODEL STRATEGY AND ASSUMPTIONS section. MODEL CALIBRATION 

AND RESULTS present the simulated flow regime and leakage for a range 

of plausible input parameters. The development of the unconfined 

aquifer model is presented in Appendix A. The numerical model, 

presented in Appendix B, discusses the translation of this physical 

framework into mathematical terms, and how it is solved by a digital 

computer. A glossary of terms is included in Appendix c. 
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CHAPTER I 

INTRODUCTION 

BACKGROUND 

The federally operated Hanford Site was set up in 1943, by the 

Manhattan District of the Corps of Engineers, to produce plutonium. 

The site contains 1476 sq. km, just north of the town of Richland 

(Figure 1). Tasks conducted on the Hanford Site include the 

management of nuclear wastes from national sources. Rockwell Hanford 

Operations manages the chemical processing, waste storage, and waste 

disposal operations on the Hanford Site for the U.S. Dept. of Energy 

(DOE). Battelle Pacific Northwest Laboratory performs research tasks 

for Rockwell and DOE. 

The Separations Area is the site of major liquid waste disposal 

for the Hanford Site (see Figure 1). This area contains the 

facilities for irradiated uranium fuels processing, plutonium 

separations, and the major radioactive waste storage and disposal. 

Liquid Wastes, primarily consisting of large volumes of cooling water 

carrying low level radioactive wastes, are released to surface 

radioactive waste management facilities. 

The study area for this thesis is situated in the Separations 

Area. This location was chosen for study for two reasons: its 

proximity to the disposal area where liquid wastes perculate down to 

provide recharge to the unconfined aquifer, and to a Pleistocene 
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scabland channel, that eroded througn the site's upper most 

stratigraphic units (Gephart et al., 1976). 

SITE DESCRIPTION 

Climate 

The Pasco Basin is classified as a semi-arid desert (Stone et 

al., 1972). Summers are normally hot and dry with July average 

maximum temperatures of 33.2 C, and average minimum temperatures of 

16.1 degree C. Winters in the region are generally mild, with 

average maximum temperatures in January of 2.6 degree C and average 

minimum temperatures of -5.5 degree C. 

The climate in the Pasco Basin is dominated by the Cascade 

Range, which controls the regions temperature, winds, and 

precipitation. The range produces a rain shadow for the site, which 

only receives an average percipitation of 15 to 18 cm. (Stone et 

al., 1972) 

The climatological variables, precipitation and evaporation, 

can influence the groundwater system. Maximum precipitation occurs 

during months of low evaporation (37% of annual precipitation occurs 

during the months of November, December and January) and maximum 

evaporation occurs during the months of low precipitation (10% of 

annual precipitation occurs during the months of July, August, and 

September). Average pan evaporation is between 140 to 152 cm per 

year (Stone et al., 1972). 

3 



Geology 

This study focuses on a portion of the Pasco Basin, a 

structural and topographic low within the Columbia Plateau, located 

in south-eastern Washington. The Pasco Basin contains fluvial plains 

and scabland features, with basalt anticlinal ridges as its 

boundaries. The stratigraphy is summarized in Table I. 
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TABLE I 

GEOLCXlY/STRATIGAAFliY OF THE ~FINED Pm UPPBMJST <n!FINED PQJIFER 
IN THE SEPARATICl6 AA.EA 

(m:xiified fran Last and Fecht, 1984) 

Rml\TIOO MEM3ER/ THICKNESS LIOOLCXlY cctffNTS 
INTERBED 

Hanford Pasco 20-9Qn high energy facies- found in basin 1s 
Gravels variable size and center.lON energy 

sorting of sand facie not fourx:f in 
and gravel stldy area. 

Ringold Lfiper 0 l CM energy-silt generally not fourx:f 
and sand in study area. 

Mid:fle 0-lOOn high energy-sand, thickens to SE and 
gravel. carpact west. east-central 

l.CAYer 0-30n lCM energy sand only found in parts 
silt,clay inter- of 200 West area. 
beckied gravel and Thickens to the 
sand south 

Basal 0-4011 high energy sand only found in south 
gravel with silt. and west portion 
poorly cerented. of area.Thickens 

to the south. 

Saddle Elephant ll-3Sn 7.7m-average thickness of uppenrost flOil 
Mtn tt>untain (Elephant M1t II) 
Basalt 25m-average thickness of lOt\'enrost flCM 

(Elephant M1t I) 

Ellens- Rattle- 1-2lm sancMi ched in the basalt 
burg snake Ridge (!Sn average thickness) 

Sad:fle PaTDna 5fin avg. Thickens slightly to south 
Mtn thickness 
Basalt 

The Pasco Basin is one of several basins of the Columbia 

Plateau (Gephart et al., 1979). This downwarped region lies in the 

center of the main body of the Columbia River Basalt Group that 

extends from the Cascade Range eastward to the Rocky Mountains and 

from the Okanogan Highlands south to the mountains of central Oregon. 
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Swanson et al., (1975) described the geological history. The 

tholeiitic flood basalts emanated from fissures to the east and south 

of the Pasco Basin. These flows accumulated in the downwarped area 

from 6 to 15.4 m.y.a. and form the bedrock for the region. Because 

the basalt in the basin may reach a thickness of over 3048 meters, 

knowledge of formations older then the Columbia River Basalt Group 

is limited. 

The basin 1 s basalt consists of three formations that are 

included in the Yakima Basalt Subgroup. They are: the Grande Ronde 

Basalt (14.5 to 15.4 m.y.a.), the Wanapum Basalt (13.6 to 14.5 

m.y.a.) and the Saddle Mountains Basalt (6 to 13.6 m.y.a.)(Myers et 

al., 1979). Within the study area, the upper 250 meters consists of 

the Saddle Mountain Basalt. The stratigraphy of the basalt found in 

Pasco Basin is shown in Figure 2. The uppermost flow and interbed 

of this formation is of primary concern to this study. 

The Ringold Formation (Pliocene) overlies the basalt bedrock 

(see Figure 2). It is a fluvial/lacustrine unit, deposited by 

streams and the shifting currents of shallow-lake environments. 

Within the Pasco Basin, the Ringold Formation has a maximum thickness 

of up to 370 meters (Tallman et al., 1979), contrasting to the 

Separations Area, where these sediments have a maximum thickness of 

less the 170 meters, due to erosion (Brown, 1959). The Ringold 

Formation is divided into four units based on lithology (Gephart et 

al., 1979)(see Table I). These units can be described as alternating 

high and low-energy facies, composed of gravel, sand, silt, and clay. 

The higher-energy sand and gravel sequence may represent deposition 

-: 
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6 Ql 
Ui c: Hanford Formation ·- Ql .!! (,J 
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Figure 2. Stratigraphy of the Yakima Basalt Subgroup and the 
unconsolidated sediments within the Pasco Basin (modified 
from BWIP staff, 1982). 
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in current-carrying portions of a lake, while the lower-energy silty 

and clayey sand characterizes deposition in quieter, shallower and 

marginal portions (Newcomb and Strand, 1953). 

Portions of the Ringold Formation and the underlying basalt 

were locally eroded when catastropic floods of the Pleistocene 

glaciation period scoured channels in the Hanford Site (Bretz, 1959). 

The sediments of the Hanford Formation (informal name) were deposited 

when these flood waters were backed up to form glacial Lake Lewis 

(Newcomb and Strand, 1953). The slackwater sediments were deposited 

on the margins of the lake and were rhythmically bedded as silt and 

fine sand. Where the current was more rapid, near the center of the 

lake, gravels were deposited. 

The basalt is folded in the Pasco Basin to produce a series of 

anticlines and synclines that generally trend east-west. A location 

map of these basalt ridges is shown in Figure 3. The deformation 

initiated during the Miocene Epoch, is continuing today (Graham et 

al. 1981). The main anticlinal ridges to the west of the study area 

are the Yakima Ridge System; to the south are the Horse Heaven Hills; 

to the north are the Saddle Mountains; to the northwest is Umtanum 

Ridge; and to the southwest is Rattlesnake Mountain (see Figure 3). 

Gable Butte and Gable Mountain, both extensions of Umtanum Ridge, 

lie in the northern portion of the site. The Wahluke Syncline lies 

to the north of Umtanum/Gable Mountain Ridge and the Cold Creek and 

Pasco Synclines lie to the south. Folds located within the study 

site are shown in Figure 4. Faults in the region are generally 

related to the anticlines, responding to a north-south compressional 

8 
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folds, responding to a north-south compressional regional stress 

regime (see Figure 4). These faults are generally of a thrust type 

which strike sub-parallel to the axes of the folds. The synclinal 

folds are relatively undeformed. 

Hydrology 

Four hydrologic systems occur in the Pasco Basin. They are 

the surface-water bodies, the unsaturated zone, the unconfined 

aquifer system, and the confined aquifer system. Figure 5 

illustrates the relationship between the aquifer systems with two 

cross-sections through the study area. 

The Pasco Basin receives water from the Columbia, the Snake, 

and the Yakima Rivers. The Snake and the Yakima Rivers join the 

Columbia River near the Tri-Cities, south of the study site (see 

location map, Figure 1). The U.S. Geological Survey (Newcomb, et 

al., 1972) estimated that the average discharge from the Columbia 

River is 120,400 cubic feet per second, for a 60-year period, taken 

north of the Hanford Site. West Lake, an expression of the 

groundwater table, is located in the northwest corner of the study 

area (see Figure 1). Prior to artificial recharge from nearby waste 

disposal operations, West Lake was filled only during the wet months. 

An increased hydraulic gradient from this recharge now keeps the lake 

saturated during the entire year. 

The unsaturated (vadose) zone has a thickness up to one hundred 

meters within the study area (Gephart et al., 1979). It is defined 

by the groundwater table and the land surface. This zone is in the 

Hanford and/or Ringold Formations. 

11 
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The unconfined aquifer is composed of Ringold and/or Hanford 

sediments. It has a thickness of over 70 meters within the study 

area, and thins to zero where the sediments pinch out along the 

flanks of basalt ridges (Graham, 1981). 

The unconfined aquifer underlying the study site is mostly 

recharged from liquid waste disposal operations. This recharge 

amounts to approximately ten times the natural recharge flowing into 

the area (Graham et al., 1981). The regional flow direction is to 

the southeast, where the aquifer eventually discharges into the 

Columbia River (flow directions can be interpreted from the 

equipotential map of Figure A.1.1.). A smaller flow component 

discharges to the Columbia River to the north, past Gable Mountain. 

A more detailed description of the unconfined aquifer is presented in 

Appendix A. 

The confined aquifer system mainly consists of the permeable 

flow tops and interbeds of the Columbia River Basalt Group. The 

uppermost Rattlesnake Ridge aquifer, of primary concern in this 

study, consists of the flow bottom of the Elephant Mountain Basalt, 

the Rattlesnake Interbed, the flow top of the Pomona Basalt, (see 

Table I and Figure 5). The thickness of this aquifer ranges from 24 

to 34 meters near the Separations Area (Basalt Waste Isolation 

Project (BWIP) staff, 1982). The dense portion of the Elephant 

Mountain basalt flow acts as a confining layer which separates the 

unconfined aquifer and the Rattlesnake Ridge aquifer. Columnar 

jointing in the basalt can produce pathways for leakage between the 

two aquifers. Structural deformation may enhance the openings of 
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these fractures. However, these fractures are often filled with 

secondary mineralization (Last and Fecht, 1984). 

Recharge to this uppermost confined aquifer occurs in the 

highlands that bound the basin on west, north, and northeast where 

the interflow zones structurally intersect the land surface (Graham, 

1984). This aquifer has two flow components, which are similar to 

the unconfined aquifer. The predominate flow direction is to the 

southeast, south of Richland. The smaller component flows to the 

north, discharging into the unconfined aquifer in the West Lake area 

(Figure 6). 

PREVIOUS STUDIES 

In Eastern Washington, geohydrological investigations began 

about the turn of the century, assessing the availability of 

groundwater resources. Numerous geohydrological investigations have 

been done since waste disposal practices became the responsibility 

of the Atomic Energy commission in the late 1940's. Tables II and 

III list representative reports that of the various geologic, 

hydrologic, and groundwater modeling studies of the Hanford Site. 

A review of the geology of the region was given in Myers and 

Price (1979). A more detailed account of the geology of the 

Separations Area is given by Fecht (1978b), Tallman et al. (1979), 

and Last and Fecht (1984). Geophysical studies of the Separations 

Area were conducted by Richard (1976), Myers and Price (1981), and 

Moore (1982). A general overview of the hydrology of the entire 

region was given in Gephart et al. (1979), while a more complete 
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TABLE II 

GEOLOGIC AND HYDROLOGIC STUDIES 

-GEOLOGY-

1949 Parker, G.G. and Piper, A.M.; U.S. Geel. Survey, Interim 
Report No.l WP-7, Geology and Hydrologic Features of the Richland 
Area, Washington, Relevant to Disposal of Waste at the Hanford 
Directed Operations of the H.E.C. 

1953 Newcomb, R.C. and Strand, J.R.; U.S. Geel. Survey, 
USGS-W-P-8, Geology and Ground-water Characteristics of the Hanford 
Reservation of the A.E.C., Washington. 

1959 Brown, D.J.; Hanford Atomic Products Operation, Subsurface 
Geology of the Hanford Separation Areas. 

1972 Newcomb, R.C.; Strand, J.R.; and Frank, F.J.; U.S. Geel. 
Survey Professional Paper 717, Geology and Groundwater 
Characteristics of the Hanford Reservation of the U.S. Atomic Energy 
Commission, Washington. 

1978b Fecht, K.R.; Rockwell Hanford Operations RHO-BWI-LD-5, 
Geology of the Gable Mountain-Gable Butte Area. 

1979 Myers, C.W. and Price, S.M., et al.; Rockwell Hanford 
Operations RHO-BWI-ST-4, Geologic Studies of the Columbia Plateau­
A Status Report. 

1982 Moore, B.A.; Rockwell Hanford Operations RHO-SA-239, 
Geophysical Investigations of the Gable Mountain Pond-West Lake 
Area, Hanford Site, South-Central Washington. 

1984 Last, G.V. and Fecht, K.R.; Rockwell Hanford Operations, 
Groundwater Geology of the Aquifer Intercommunication Study Area, 
Hanford Site, South-Central Washington. 

-HYDROLOGY-
1976 Ledgerwood, R.K. and Deju, R.A.; Atlantic Richfield 

Hanford Co. Hydrology of the Uppermost Confined Aquifers underlying 
the Hanford Reservation. 

1979 Gephart, R.E. et al.; Rockwell Hanford Operations 
RHO-BWI-ST-5 Hydraulic Studies within the Columbia Plateau, 
Washington: An Integration of Current Knowledge. 

1981 Graham, M.J. et al.; Rockwell Hanford Operations RHO-ST-42 
Hydrology of the Separations Area. 

1982 Strait, S.R. and Moore, B.A.; Rockwell Hanford Operations 
RHO-ST-38 Geohydrology of the Rattlesnake Ridge Interbed in the 
Gable Pond Area. 



TABLE III 

GROUNDWATER MODELING STUDIES 

1971 Cearlock, D.S.; Pacific Northwest Laboratories 
BNWL-SA-386 A Systems Approach to management of the Hanford 
Groundwater Basin. 

1972 Kipp et al.; Pacific Northwest Laboratory BNWL-1703 
Variable Thickness Transient Groundwater Flow Model: Theory and 
Numerical Implementation (updated 1976). 

1975 Cearlock, D.B.; Pacific Northwest Laboratories BNWL-1706 
Transmissivity Iterative Calculation Routine - Theory and numerical 
Implementation. 

1976 Arnett, R.C. et al.: Atlantic Richfield Hanford Company 
ARH-ST-140 Conceptual and Mathematical Modeling of the Hanford 
Groundwater Flow Regime. 

1976 Deju, R.A., and A.E. Reisenauer; Atlantic Richfield 
Hanford Company ARH-ld-148 Evaluation of the Hydrology of the 
Washington Public Power Supply System and the Fast Flux Test 
Facility Sites. 

1976 Intera Environmental Consultants, prepared for the 
Atlantic Richfield Hanford Company ARH-C-00017 Hydrologic Model 
Evaluation at the Hanford Waste Facilities. 

1976 Gephart, R.E.; Atlantic Richfield Hanford Company 
ARH-CD-775 Geohydrologic Study of the West Lake Basin. 

1977b Arnett, R.C. et al.,; Atlantic Richfield Hanford Company 
ARH-SA-292 Hanford Groundwater Scenario Studies. 

1981 Hall, M.D.; Rockwell Hanford Operations RHO-LD-157 Near 
Field Impact of 216-U-10 (U-Pond) Decommissioning on the Unconfined 
Aquifer. 

1982 Dove, F.H. et al; Battelle Northwest Laboratories 
Assessment of Effectiveness of Geologic Isolation Systems (AEGIS). 

1982 Lu, A.H.; Unpublished informal report, Hydrogeological 
Unit, Rockwell Hanford Operations. Calibration of a Groundwater 
Flow Model for the Separations Area. 

1983 Wilbur, J.S., M.J. Graham, and A.H. Lu; Rockwell Hanford 
Operations RHO-RE-SR-83-24P Results of the Separations Area 
Ground-Water Monitoring Network for 1982. 

1984 Mitchell, P.J.; Pacific Northwest Laboratory Internal 
Letter to L.S. Prater, Modeling of Ground-water Flow and Tritium 
Plume in the Hanford Unconfined Aquifer. 
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description of the Separations Area was given in Graham (1981). 

Brown and Rupert (1950) were the first to report radionuclide 

contamination in the unconfined aquifer. Intercommunication between 

the unconfined and confined aquifers was examined by Ledgerwood and 

Deju (1976), Graham (1984), Strait and Moore (1982), and Last and 

Fecht (1984). Several groundwater flow models of the unconfined 

aquifer developed for the Hanford Site are listed in Table III. 

Intera Environmental Consultants, Inc. (1976) constructed a 

three-dimensional model. The remaining models utilized simplifying 

assumptions to characterize a two-dimensional flow regime. The 

Intera model is not a quantitative analysis because meaningful values 

of vertical hydraulic conductivity, required for three-dimensional 

characterization, have not been obtained from well data on the 

Hanford Site. 

The groundwater code most commonly used for application at 

Hanford is the Variable Thickness Transient Code (VTT) (Kipp et al., 

1972). Other groundwater codes utilized include U.S. Geological 

Survey Trescott code, Illinois State Water Survey Prickett and 

Lonnquist code, Coupled Fluid, Energy, and Solute Transport (CFEST) 

code, and a code developed by Intera Environmental Consultants (see 

Table III). The above codes are solved by the finite difference 

numerical technique, with the exception of CFEST, which uses the 

finite element scheme. 
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GROUNDWATER FLOW MODELING 

Methodology for Model Development 

A groundwater model is an abstraction of a real aquifer system 

which is too complex to treat in actual terms. Simplifying 

assumptions are necessary to translate the system into mathematical 

terms. The process of selecting simplifying assumptions is very 

important since the model constructed is based on them. An example 

of a common assumption is that flow is horizontal (so that the flow 

in third dimension is negligible). 

Groundwater flow models have proved to be useful tools in waste 

management for the Hanford Site (see Table III for list of various 

studies). Computer simulations can aid in forcasting water-level 

variations in response to changes in liquid waste disposal. For 

example, a model can be used to estimate the impact of 

decommissioning waste ponds or increasing liquid waste disposal to 

the confined and unconfined aquifers underlying the Separations Area. 

In addition, groundwater flow simulations are used as input to 

radionuclide transport studies, which predict contaminant flow and 

concentration. 

Modeling of groundwater flow requires a conceptual model, an 

estimation of required parameters (including simplifying 

assumptions), a selection of a mathematical model and groundwater 

flow code, and a model calibration. These tasks are briefly 

summarized below. A complete site specific description of this 

study's model development starts in Chapter II. 
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The Conceptual Model 

Groundwater modeling begins with a conceptual understanding 

of the physical make-up of the aquifer system. The conceptual model 

describes the groundwater flow system and its relationship to the 

geology. 

Parameter selection is based on specific assumptions regarding 

the hydrology and geology as well as measurements. The following 

geohydrological parameters are used for building the physical 

framework of the conceptual model: hydraulic conductivity, 

transmissivity, formation thickness, storage coefficient, 

recharge/discharge, initial groundwater head surface, and altitude 

of top and bottom of the aquifer. Values for these parameters were 

collected from previous studies that included surface and borehole 

geophysical investigations, aquifer well tests, and geologic well 

logs (see Table II, Geologic and Hydrologic Studies). The conceptual 

model developed for this study is presented in Chapter II. 

The Numerical Model 

A numerical model first translates the physical characteristics 

into mathematical terms. Differential equations are transformed 

into a large set of coupled algebraic equations, which can be solved 

on a high speed digital computer. 

The derivations of the differential equations used in most 

groundwater applications are based on the conservation of mass and 

energy principles (Darcy's law). Groundwater flow equations have an 

infinite number of possible solutions. To make the solutions 

applicable to the Hanford Site, it is necessary to combine additional 
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input data that define the aquifer•s physical system. These 

constraints are referred to as the initial conditions and boundary 

conditions which define or describe the initial head in the aquifer 

and how the flow interacts with the surroundings. The combination 

of these initial and boundary conditions with the hydraulic 

properties of the aquifer produce site specific solutions to the 

flow equations. The differential equations are solved for the 

unknown or dependent variable, the hydraulic head. A detailed 

description of the numerical model developed for this study is found 

in Appendix 8. 

Model Calibration and Validation 

The calibration process involves the adjustment of model 

assumptions and geohydrological parameters, so that the model input 

and output reasonably agree with the constraints imposed by observed 

field data. In this study, the confined aquifer•s hydraulic 

conductivity, the source term, and the interaquifer transfer 

coefficient are varied to produce several scenarios. 

Validation, done after the model has been calibrated, further 

demonstrates the model •s predictive ability. If the model can not 

only simulate observed field data in a calibration period, but also 

reproduce historical events within a certain margin of error, then 

it is considered validated. The model •s predictive ability is of 

course related to the quantity and quality of available data used to 

build the model. 

Results from a model are only an approximation of the real 

aquifer system. Deviations in the predicted behavior of the aquifer 

21 



are expected to occur because of the underlying simplifying 

assumptions that the model is based on. Modeling is an iterative 

process; calibration is repeated as more data is collected, leading 

to an improved, better constrained model. The confined aquifer 

models in this study are considered "preliminary" in the iterative 

sense just described, because only one year of potentiometric data 

is available for calibrating the steady state simulations. 

Calibration of the confined aquifer is presented in Chapter IV. 

PROBLEM DEFINITION 

Intercommunication, the hydrologic mixing of two aquifers, has 

been identified between the unconfined and the confined aquifer 

systems in the study area (Graham, 1981). Erosional thinning and 

fractures in the basalt confining bed (that separates the unconfined 

aquifer and confined aquifer system) allow physical contact of the 

two aquifer systems in portions of the study area (Last and Fecht, 

1984). Erosional windows were illustrated in Figure 5. Since 

groundwater requires at the very least a small a hydraulic gradient 

for flow (and mixing) to occur, a head differential between the 

unconfined aquifer and the confined aquifer must exist, in addition 

to the erosion, for this vertical leakage to occur. Vertical 

hydraulic gradients in the Separations Area (interpreted from 

observed potentials between the unconfined and confined aquifer) 

create the potential for either upward or downward flow directions, 

depending on the location within the study area. 

The study area and its vicinity have been identified as a 
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regional discharge area (Ledgerwood and Deju, 1976; Dove et al., 

1982; Graham, 1981). Regional pieziometric data of the uppermost 

confined and unconfined aquifer systems indicate upward hydraulic 

gradients, i.e. the head decreases toward the ground surface (Dove 

et al., 1982). 

The potential for substantial vertical flow downward direction 

only occurs in the vicinity of the two major disposal pond 

facilities. Infiltration of liquid waste to the aquifer systems 

from Gable Mountain Pond and B Pond has developed large mounds in 

the unconfined aquifer's water table, creating a head larger than 

that of the confined aquifer beneath (Strait and Moore, 1982). 

23 

The unconfined aquifer within the Separations Area was first 

reported to be contaminated by waste disposal by Brown and Rupert 

(1950). Over the years the liquid discharges have caused an increase 

in concentration of Tritium, Nitrate, Iodine-129, and total beta 

levels. Intercommunication between the two aquifers has resulted in 

higher levels of Tritium and Iodine-129 concentrations in the 

uppermost confined aquifer in certain localities on the Hanford Site 

(Strait and Moore, 1982). 

PURPOSE AND SCOPE 

Leakage between the unconfined and confined aquifers may be 

an important factor for simulation of groundwater flow beneath the 

Separations Area. The potential for upward or downward movement in 

the Separations Area warrants an investigation of the possible role 



of this vertical flux between the unconfined and confined aquifer 

system. 

Previous Hanford computer models (see Table III) have not 

incorporated this leakage. This is due in part to the lack of 

knowledge of the spread of contamination to the confined aquifer, 

until recently (Gephart et al., 1976). Also, leaky simulations 

require additional data from the uppermost confined aquifers, which 

was not available until 1982 (Graham, 1984). The type of data 

required depends on the method chosen to analyze the problem. There 

are two basic methods: 

1. Full three-dimensional model - This is the ideal approach 

to the problem. It has the capabilities of modeling vertical flow 

patterns directly. The additional data requirements include the 

definition of vertical hydraulic conductivity, which have not been 

quantified for the uppermost aquifers on the Hanford site. These 

values can be determined by conducting appropriate multiple pump 

testing (Intera Environmental Consultants, 1976). 

2. Pseudo three-dimensional model (Bredehoeft and Pinder, 

1970) - An alternative approach is to examine this vertical leakage 

by coupling the two-dimensional systems with a leakage term. 

Vertical hydraulic conductivity values of the aquifers are not 

necessary for this scheme since the vertical flow through the aquifer 

is not modeled, just the vertical coupling. In this approach, the 

additional data requirements include the effective hydraulic 

conductivity (vertical hydraulic conductivity of the confining 

layer), thickness, and the head differential between the two 
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aquifers. This study utilizes the pseudo three-dimensional approach 

in a preliminary attempt to incorporate leakage into a computer 

simulation of the confined aquifer. Several conceptual models were 

formulated to characterize a range of plausible hydrogeologic 

conditions. Sensitivity analyses were conducted by varying each 

condition separately in a computer simulation, while holding the 

remaining variable's values constant. 
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The purpose of this study is to gain insight into the 

relationship and sensitivities between leakage and selected input 

parameters (i.e., hydraulic conductivity, boundary conditions, source 

term, and interaquifer transfer coefficient). In this way, 

groundwater modeling aids in the conceptualization process and 

provides a foundation for future studies. Modeling results can guide 

data gathering efforts by ranking the uncertainty and importance of 

needed data, and where it should be collected. A complete 

quantification of the leakage requires a substantial amount of 

information about the confined aquifer, the aquitard, and the 

unconfined aquifer that does not exist at this time. 

CODE AND EQUIPMENT 

Groundwater flow codes are computer programs. These codes 

solve differential equations that attempt to describe the aquifer 

system. 

A set of computer codes known as the Variable Thickness 

Transient (VTT) groundwater code (Kipp, et al., 1972) was used for 

the flow simulations of this study. This set of cedes was developed 



through many years of groundwater modeling experience at Battelle 

Pacific Northwest Laboratory (PNL). The VTT code uses the finite 

difference technique to simulate two-dimensional saturated 

groundwater flow. The codes are written in a variation of the 

FORTRAN IV-PLUS language. The VTT code was run on a Digital 

Equipment Corporation PDP 11/70 Minicomputer at PNL. 
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CHAPTER II 

CONCEPTUAL MODEL 

This section describes the groundwater flow system and its 

relationship to the geology. Parameter selection is based on 

specific assumptions regarding the hydrology and geology as well as 

measurements. The following geohydrological parameters are used for 

building the physical framework of the conceptual model: hydraulic 

conductivity, transmissivity, formation thickness, storage 

coefficient, recharge/discharge, initial groundwater head surface, 

and altitude of top and bottom of the aquifer. Values for these 

parameters were collected from previous studies that included surface 

and borehole geophysical investigations, aquifer well tests, and 

geologic well logs. 

HYDROGEOLOGICAL PROPERTIES 

The capacity of an aquifer to store and transmit water is 

principally influenced by three parameters: aquifer thickness, 

hydraulic conductivity, and storage coefficient. In this section 

these properties will be described and compiled for the confined 

aquifer from the review of published and unpublished data. 

Data is acquired, to define the hydrogeological properties 

listed above, from information derived from boreholes (wells) or 

from pump testing of boreholes. Data shown on Figure 7 were obtained 
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from 13 boreholes for hydraulic conductivity and storativity values 

(Graham, 1984). Confined aquifer thickness values were derived from 

24 boreholes shown in Figure 8. 

Values of head were taken the same 13 boreholes that defined 

hydraulic conductivity and storativity values (see Figure 7). 

Collection of monthly head readings was initiated in 1982 (Last and 

Fecht, 1984). 

Aquifer and Confining Layer Thicknesses 

The Elephant Mountain Member, which confines the Rattlesnake 

Ridge aquifer throughout most of the study area, consists of two 

basalt flows, the lower Elephant Mountain I, and the upper Elephant 

Mountain II (see cross-section on Figure 5). Last and Fecht (1984) 

have described the geology of these flows. The thickness of the 

Elephant Mountain I flow ranges from O to 35 meters and averages 11 

meters within the study area. This flow thins out to about 6 meters 

over Gable Mountain, and thins to zero where it is fully eroded. 

The upper Elephant Mountain II flow has an average thickness of 8 

meters, but is present only in the southeastern and northern portions 

of the study area. 

The uppermost confined aquifer, the Rattlesnake Ridge aquifer, 

consists of the flow bottom of the Elephant Mountain Basalt, the 

flow top of the Pomona Basalt, and the Rattlesnake Interbed (see 

cross-section on Figure 5). The thickness of this aquifer ranges 

from 24 to 34 meters in the vicinity of the Separations Area (BWIP 

staff, 1982). An isopach map of the Rattlesnake Ridge Interbed is 

shown in Figure 8. 
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Hydraulic Conductivity/Transmissivity 

The hydraulic conductivity (K) is a proportionality coefficient 

that defines the ability of water to be transmitted through a 

permeable medium. This parameter describes the rate at which water 

can move, and is a function of both the medium and the fluid (i.e. 

density and viscosity) Darcy's Law defines the hydraulic conductivity 

(K) as: 

K = (Q/A} 1/(dh/dx) 

where K is proportional to the discharge (Q), and inversely 

proportional to both area of flow (A), and gradient of the hydraulic 

head (dh/dx) (Fetter, 1980). The dimensions of Kare length/time. 

The transmissivity (T) of an aquifer is a function of both the 

hydraulic conductivity and the thickness of the aquifer (b): 

T = Kb 

This property is more useful in quantitatively describing the 

transmittance of water through an aquifer. The dimensions of T are 

length squared/time. 

Several different tests were used to obtain hydraulic 

conductivity and transmissivity values at the Hanford Site. The 

most common was the aquifer pump test. Most of the pump test data 

were analyzed with the Theis (Theis, 1935) or the Cooper-Jacob 

(Cooper and Jacob, 1946) method. Values for hydraulic conductivity 

are listed in Table IV below. 
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TABLE IV 

RANGES OF HYDRAULIC CONDUCTIVITY IN THE STUDY AREA 
(unconfined aquifer data from Graham, 1981) 

INTERVAL TESTED 

UNCONFINED AQUIFER 

Hanford Formation 

Middle Ringold 

Lower Ringold 

HYDRAULIC CONDUCTIVITY 

m/day 

600 to 3000 

3 to 70 

1 to 3.6 

ft/day 

2000 to 10000 

9 to 230 

3 to 12 

(confined aquifer data from Deju and Fecht (1979); Summers and Weber 
(1978)) 

CONFINING LAYER 

Elephant Mountain Member .001 to .01 .01 to .1 

CONFINED AQUIFER 

Rattlesnake Ridge Interbed .01 to 1 .1 to 10 

Under the Separations Area, the hydraulic conductivity of the 

unconfined aquifer ranges from 1-3000 meters/day (Graham et al., 

1981). The large range is due to the differences in conductivity of 

the two formations representing the aquifer. The Hanford Formation 

consists of loose, unconsolidated sands and gravels of very high 

conductivity, whereas the lacustrine Ringold Formation consists of 

relatively compact finer grained material with low conductivity. 

The Elephant Mountain Member has very low conductivity, 

characteristic of the dense interior portion of the basalt flow. The 

interflow zone, which is located in the upper portion of the member, 

has much higher conductivity (approximately an order of magnitude) 

but is missing throughout most of the study site. Few tests were 
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conducted to obtain hydraulic conductivity data for this member. 

This study used the range of hydraulic conductivity data given for 

the Saddle Mountain Formation, the uppermost formation of the 

Columbia River Basalt Group (Summers and Weber, 1978; and Deju and 

Fecht, 1979) (Table IV). Values of hydraulic conductivity (which 

are mostly related to vertical fracturing) are reported to range 

between .001 to .01 meter/day. BWIP staff (1982) estimated much 
-6 -8 smaller values which range from 10 to 10 meter/day, assuming 

this member has similar characteristics to other Columbia River 

Basalts. 

The varying lithology of the Rattlesnake Ridge aquifer produces 

a rather large range of conductivity. Hydraulic conductivities are 

reported to range between .01 and 1 meter/day (Deju and Fecht 1979; 

and Summers and Weber 1978) and also reported to range from .01 to 

10 meter/day (BWIP staff, 1982). Graham (1984), summarized recent 

aquifer test results (transmissivities). Hydraulic conductivity 

values were computed for this study by dividing these transmissivity 

values by aquifer thickness (thickness values from Graham, 1984). 

The conductivity values ranged from .3 meter/day to 8.0 meter/day 

(see Figure 7). 

Storage Coefficient 

The storage coefficient is defined as the volume of water an 

aquifer releases from or takes into storage, per unit surface area 

of the aquifer per unit change in head. Values for the storage 

coefficient have been computed from the aquifer pump tests as 

previously described (Graham, 1984). The storage coefficient for 
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the unconfined aquifer ranges from .002 to .07 (Deju, 1974 and 

unpublished data, respectively) and is estimated to be 10-4 for the 

confined aquifer (Deju and Fecht, 1979). 

RECHARGE/DISCHARGE 

Recharge can be defined as the replenishment of water to the 

aquifer, while discharge is the withdrawal of water from the aquifer. 

Recharge to the aquifer system can occur from precipitation, rivers 

and creeks, disposal waters, irrigation, and by intercommunication 

between the overlying or underlying aquifers. Components of recharge 

and discharge for the confined Rattlesnake Ridge aquifer are 

illustrated in Figure 9. 

Soil moisture (lysimeter) studies in the Separations Area have 

found no appreciable recharge to the groundwater table from 

precipitation (Gee and Heller, 1985). Precipitation in the Pasco 

Basin is only 15 to 18 cm. per year, with potential 

evapotranspiration greatly exceeding this (Stone et al., 1972). 

Recharge to the unconfined groundwater system does occur in the 

highlands bordering the basin (see Figure 3) where there is increased 

precipitation from orographic effects. Recharge in the Pasco Basin 

also occurs from the Columbia and Yakima Rivers and a few ephemeral 

creeks that drain the area. Irrigation of Upper Cold Creek Valley, 

located outside the Hanford Site, contributes a considerable amount 

of recharge. A small amount of recharge may occur from irrigation 

still allowed to the west and north/northwest of the Hanford Site. 

The main source of recharge to the unconfined aquifer in the study 
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q2 = Leakage between confined aquifer and deeper confined system. Always in upward direction 

q3 = Recharge from outcropping in highlands (e.g. Gable Mountain) 

Q4 = Discharge to Columbia River 

Figure 9. Recharge/Discharge components of the Rattlesnake 
Ridge Aquifer. 
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area comes from the infiltration of waste waters from disposal sites 

in the 200 West and 200 East areas (Graham, 1984). The two major 

disposal ponds (Gable Mountain Pond and B pond) are shown in Figure 

1. This artificial recharge may be ten times the amount of natural 

recharge that the study area receives (Graham, 1981). The unconfined 

aquifer may also receive recharge from the underlying basalt 

aquifers, (see Figure 9, area qla• for example). The quantity of 

this recharge is likely to be larger in areas where the confining 

dense basalt is highly fractured, 1s completely eroded, or is small 

in thickness (Last and Fecht, 1984). 

The unconfined aquifer predominately discharges to the Columbia 

River to the north, east, and southeast of the study site. Discharge 

can also occur downward to the confined aquifer systems, when its 

hydraulic head is relatively greater than the confined aquifer (see 

Figure 9, area qlb• for example). This situation was documented as 

possible in the late 1960's and early 1970's, when the water table 

was at a higher level (Graham, 1984). 

Recharge of the uppermost confined Rattlesnake Ridge aquifer 

mainly occurs in the highlands that bound the basin to the west, 

north, and northeast where the interflow zones structurally intersect 

the land surface (Graham, 1984). Recharge from Gable Mountain may 

occur, but more data are needed to define a flux into the confined 

aquifer (see Figure 9, area q3, for example). Upward leakage from 

deeper confined aquifers also contribute to the recharge of the 

Rattlesnake Ridge Aquifer (see Figure 9, area q2, for example). 



The Rattlesnake Ridge aquifer has two discharge components, a 

horizontal one that leads to discharge at the Columbia River (see 

Figure 9, area q4, for example), and a vertical one, which can 

produce upward leakage to the unconfined aquifer when the hydraulic 

gradient is in the upward direction (see Figure 9, area q1a, for 

example}. Upward hydraulic gradients were interpreted from 

potentiometric data from the unconfined and confined aquifer system 

(Graham, 1984 and Dove et al., 1982). 

FLOW SYSTEM GEOMETRY 

Groundwater Movement 

Flow direction is governed by hydraulic head with groundwater 

moving from areas of higher to lower hydraulic head. Aquifer 

recharge and discharge areas influence the gradient. 
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Groundwater basins may have various areal systems. Each system 

can be thought of as a component of the flow, which may have unique 

recharge and discharge areas and be influenced by separate 

groundwater boundaries. These systems are described in this study as 

regional (Columbia Basin), intermediate (Pasco Basin and Hanford 

Site), and local flow systems (Separations Area and study site). 

Figures 6 and 10 show the potential surface of the confined system 

interpreted on a regional, intermediate and local scale. 

Confined Aquifer. Intermediate and regional flow systems play 

an important role in characterizing the confined aquifer boundaries 

and flow directions. The combination of a complex local 

hydrogeologic system and a limited local data base makes detailed 



definition on the local scale a difficult task. The groundwater 

flow geometry of the study area must be inferred from regional 

trends. 

The study site is located in a discharge area for the uppermost 

confined aquifer system as suggested by the converging equipotential 

lines of the Saddle Mountain/Wanapum Basalt Aquifer System (regional 

and intermediate systems) of Figure 10. Pieziometric readings of 

the Mabton Interbed, the Rattlesnake Ridge Interbed, (see Figures 2 

and 5 for stratigraphic location) and the watertable indicate an 

increase of head with depth (Figure 11). A flow component of the 

confined aquifer also discharges into the Columbia River, southeast 

of the study area. 
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On a local scale, the converging nature of the flow creates a 

complex flow system that is difficult to delineate. Within the 

north-west quadrant of the study area, where most of the confined 

aquifer wells are located, the flow direction appears to be roughly 

northeast to west/northwest (see Figure 6). Since little well data 

for the Rattlesnake Ridge Aquifer exists northeast of the study site, 

the extent of this flow vector is unknown and may be just a iocalized 

gradient. Three possibilities that would lead to this westwardly 

flow configuration are: 

1) Recharge from Highlands to the Northeast of the Study Site. 

This hypothesis requires the Rattlesnake Ridge aquifer's westwardly 

flow vector (of the study site) be extensive, i.e. coincident with 

the regional confined system's flow originating in northeastern 

Washington (see Figure 10). There is no evidence that this extensive 
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relationship exists, and furthermore, Hanford well data suggests 

that this regional flow vector changes direction on the Hanford site 

to a southeasterly direction (see Figure 10). 

Strait and Moore (1982) suggest that recharge from Gable 

Mountain could possibly produce the westward flow lines, but give no 

direct evidence for this occurance. 

2) Recharge (leakage) from Overlying Unconfined Aquifer. 

Recharge from downward leakage of the unconfined aquifer in the 

vicinity of Gable Mountain Pond could create a mounding of elevated 

head in the confined aquifer. This hypothesis suggests that the 

westward flow component may be a local expression of the west flanks 

of this mound. This westward flow component, however, is found just 

northeast of Gable Mountain Pond, suggesting that the pond's leakage 

cannot be the sole contributing factor unless the recharge to the 

confined aquifer is translated off to the east. 

3) Recharge (Leakage) from Underlying Confined Aquifers. The 

observed westward flow vector could be a flank of a mound possibly 

created from a deep source. The complex geology (i.e., folding) 

found in the Gable Mountain Pond area (see Figure 4) could cause 

fracturing and faulting of the basalt layer, providing avenues for 

vertical leakage from deeper aquifers. 

Unconfined aquifer. The groundwater flow direction of the 

unconfined aquifer is predominately west to east in the study area 

(Graham, 1981) (see Appendix A, Figure A.l.). This flow is 

interrupted by the recharge of waste waters perculating down from 

disposal ponds. This recharge produces groundwater mounds that form 
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steep radial gradients away from the disposal ponds. Two mounds 

predominately alter the natural flow regime in the study site. They 

occur in the vicinity of B Pond and the eastern portion of Gable 

Mountain Pond. In these areas, the unconfined hydraulic potential 

may be higher than the underlying basalt confined potential, 

resulting in a downward gradient. 

Hydraulic Conductivity 
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Values of horizontal hydraulic conductivity are shown in Figure 

7. Two areas were found to have relatively lower values of hydraulic 

conductivity. It is interesting to note that these areas correspond 

to the trend of the two folds shown in Figure 4. Perhaps the folding 

has decreased the horizontal conductivity of the Rattlesnake Ridge 

Aquifer by producing vertical fractures that were later filled with 

secondary mineralization. 

The possibilities listed above are tested in a variety of 

modeled conditions, to be described in the "model strategy" and 

"model calibration" sections. 

Hydraulic Boundaries 

The uppermost confined aquifer, the Rattlesnake Ridge aquifer, 

is bounded to the north by the Umtanum/Gable Mountain anticline, and 

to the northwest by scoured paleochannels, consisting of permeable 

sands and gravels from the Missoula Flood (Hanford Formation) (see 

cross-sections of Figure 5 for scoured paleochannels). 



The unit may extend laterally outside the Hanford S1te (Myers 

et al., 1979). To the west, south, and east, its natural boundaries 

are not eas1ly def1ned due to lack of data. 
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CHAPTER III 

MODEL STRATEGIES AND ASSUMPTIONS 

This study utilizes recently obtained head values for the 

Rattlesnake Ridge aquifer in a preliminary attempt to model the 

groundwater flow with a computer simulation. Aquifer 

intercommunication was modeled in a pseudo three-dimensional modeling 

approach, as previously described. Since the Rattlesnake Ridge 

aquifer has a limited data base, several scenarios were modeled, 

testing a variety of plausible conditions that may exist. This study 

seeks basically to produce models that include the following 

features: 

A. Create a model that contains a vertical hydraulic gradi~nt 

(head differential) that allows upward leakage throughout most of 

the site (with the exception of areas in the vicinity of the two 

major waste disposal ponds). Upward leakage requires the heads of 

the confined aquifer to be greater than the unconfined heads. 

B. Create a model that possesses a downward hydraulic gradient 

in the vicinity of Gable Mountain Pond and B Pond, where recharge to 

the unconfined aquifer from disposal practices produces a net 

downward leakage. 

C. Create a model that mimics the interpreted flow 

configuration, extrapolated from observed data (see Figure 6). This 

data suggests that a westward flow component exists in the center of 



the study site. The data are mostly concentrated in a small region 

of the site, hence the extent of this flow component is unknown. 

Hanford site readings indicate the predominant flow direction of the 

confined aquifer is to the southwest, suggesting that this westward 

component may be local in extent (compare Figures 6 and 10). In 

addition to the three features listed above, this study seeks to 

produce models that contain head differentials shown in Figure 12. 

Differentials were estimated for this study by measuring the 

difference between potentiometric readings in the confined and 

unconfined aquifers (from closely spaced wells) during 1981-83. 

SENSITIVITY ANALYSIS 

The features outlined above can be simulated in an infinite 

number of ways. Since aquifer properties are not well constrained, 

a range of plausible values are assigned to each model component 

(defined here as a combination of parameters or properties) which is 

allowed to vary in the study. In order to reduce the number of 

possibilities for a more manageable analysis, this study limited the 

number of varying components to four. They are: 

1. Source term 

2. Interaquifer transfer coefficient 

3. Hydraulic conductivity 

4. Boundary conditions 

Furthermore, not only is the number of variables limited but 

the range of values assigned to each one and its spatial extent must 

also be constrained for this study. Various sets of plausible values 
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characterizing each model component are described in the calibration 

section. Each set is referred to in this study as a "condition". 

Model components and their associated conditions (designated as A-W) 

are outlined in Table V. The number of conditions chosen for each 

component is related to the size of the range of values deemed 

plausible. Table V shows for example, the source term having eight 

conditions (Conditions A - K) to characterize its distribution of 

values, while the hydraulic conductivity and the boundary conditions 

have only three conditions each (Conditions R - T and U - W, 

respectively). This is because relatively less is known about the 

source term than the other properties. Therefore, its influence on 

the model needs to be tested. A total of twenty three conditions 

are defined for the distribution of values of the four variable model 

components. 

A brief description of each of the four components is included 

in the calibration section (Chapter IV). In addition, magnitudes 

are assigned to the components along with their underlying 

assumptions and limitations (which aids in assessing the credibility 

of these interpretations). 

One of the objectives of constructing these models is to gain 

insight into the relationships between the aquifer system's 

properties. A sensitivity analysis was performed to examine this. 

It consisted of varying one model component while holding the 

remaining aquifer's property values constant. The model's 

sensitivity to this change is reflected in the solution. For 

example, if small changes in a given component induces large changes 
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in the model's solution, the modeled system is described as being 

sensitive to the given component. The sensitivity of the model to 

the variance of a model component is also dependent on the values 

assigned to the other aquifer properties. As a consequence this 

produces a large number of possible scenarios to test. Therefore, 

as done previously, the possibilities were reduced to a more 

reasonable number (and still tested the model adequately). Table V 

illustrates the various combinations of conditions describing the 

four variable model components that make up twenty eight simulation 

runs chosen in the analysis. Each run was solved for the head 

distribution in the confined aquifer. Hydraulic head differentials 

were then computed at each nodal location (see Appendix B) as the 

difference between the head of the confined aquifer and the 

unconfined aquifer. Unconfined potential 's were obtained from a 

separate computer model described in Appendix A. 

The physical plausibility of the differential values of each 

simulation was evaluated by calculating their corresponding residual 

error, computed in this study as the standard deviation of the 

difference between the calculated differentials and the differential 

values as interpreted from observed data. Furthermore, the 

plausibility of these simulations is judged by how reasonable each 

simulation is, e.g., how well each fits into the regional conceptual 

model picture. 

These twenty eight simulation runs were broken into seven 

groups for easier evaluation (Table V). Groups I through VI were 

constructed with confined boundary condition values estimated by 
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extrapolating from the unconfined potential surface. By prescribing 

boundary conditions extrapolated from a planar regression of observed 

data points, Group VII examined the model •s sensitivity to this type 

estimate of the boundary values. Eleven conditions of varying source 

term were evaluated in Groups I through IV. The interaquifer 

transfer coefficient was varied in six conditions of Group V. The 

hydraulic conductivity distribution, representing two conditions, is 

evaluated in Group VI. 

The range of values defined for each mode component and their 

corresponding spatial extent are further described in the calibration 

section. 

TIME FRAME 
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Disposal of liquid waste to ponds and cribs over the last 30 

years has caused fluctuations in both the unconfined and confined 

aquifer's potentiometric surfaces, as shown in the hydrograph of 

Figure 13. Hydrographs from the unconfined aquifer indicate that the 

potentiometric surface remained fairly constant from approximately 

1975 to 1981. Potential fluctuations began after 1981, with a larger 

rate of increase occurring after 1983. A large increase in the rate 

of disposal discharge occurs after 1979. Hydraulic head measurements 

for the confined aquifer suggested that the confined system probably 

was in a relatively steady state period in 1982, when a program for 

data collection was initiated. Perturbations in the head readings 

occur the following year. 

A groundwater flow model can be run in either a steady state or 
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transient time frame. Steady state conditions imply that the 

hydraulic heads in the system are independent of time i.e, that the 

system is in equilibrium, while a transient condition implies 

disequilibrium. Transient runs require more detailed data for 

calibration, such as hydraulic heads as a function of time. Most 

systems are not in an ideal steady state condition, and further, the 

additional data to construct a transient model is not available. 

Models are commonly run in steady state if perturbations in head 

values are minimal, with the time frame chosen to represent the most 

steady period. 

A steady state period in the unconfined and confined aquifer 

system was chosen for calibration. A time frame that represents the 

best steady state period was chosen by examining hydrographs of both 

the unconfined and confined aquifers and disposal rates of liquid 

waste. A period limited to the last decade was desired for the 

calibration since there is more confidence in the quality of data 

collected then. Monitoring of the confined aquifer's potential has 

only recently been initiated. 
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The rate of waste disposal discharge increased after 

approximately 1979. Because of the lagtime in the unconfined aquifer 

(period of time elapsed for aquifer to respond to stress in system), 

this increase in flux doesn't show up in the unconfined aquifer's 

potentials until roughly 1980-1981, with a major increase in 1983. 

The confined aquifer's potentials increase after 1983, soon after 

measurements were initiated. 



The time frame chosen for calibration was 1977 to 1979, when 

data indicates the best steady state period. 

BOUNDARY CONDITIONS FOR THE CONFINED AQUIFER 

Boundary conditions for the confined aquifer were estimated 

since no natural boundaries (other than the impermeable boundary 

created by Gable Mountain) occur in the study area. Potential values 

characterizing the confined aquifer were assigned to boundary nodes 

and held constant. Two methods were used to derive these potential 

values since no data exists at the study site's boundary. 

The first method estimates potentials at boundary nodes by 

fitting a planar regression through the 13 observed potential values 

shown in Figure 6. These boundaries are characterized in Condition 

V and W, and are simulated in Group VII (Table V). A more detailed 

description is presented in the calibration section (Chapter IV). 

This condition would produce a southwestwardly flow and hence 

characterize recharge from highlands (to the northeast) shown in 

Figure 10. 

Estimation of the potentials at boundary nodes by the second 

method is more complicated and needs a detailed description of the 

aquifer system's physics as justification. 

The Rattlesnake Ridge and the unconfined aquifer have similar 

flow patterns within the study area. Evidence of this relationship 

is shown in many hydrographs of the unconfined and confined aquifers 

from readings of wells located in the study area. Figure 13 shows, 

as an example, this relationship in a hydrograph of wells 699-47-50 
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(confined aquifer) and 699-47-46A (unconfined aquifer). The head 

values of the unconfined aquifer increased during 1983, soon after 

waste disposal increased. The confined aquifer shows the same 

increase, but with some lagtime (for leakage to occur). 

The resemblance in flow patterns (of the two aquifers) is 

caused by their intercommunication. This relationship is 

hypothesized to cause the confined aquifer's heads (which is larger 

than the unconfined in most of the study area) to approach values of 

the unconfined potential. The difference in heads of the two 

aquifers is related to the degree of intercommunication. For 

instance, if the two aquifers were completely connected, the head 

differential would approach zero. Differentials have been estimated 

for this study by measuring the difference between potentiometric 

readings of the confined and unconfined aquifers (from closely spaced 

wells) during 1982-83. The average differential from June 1982 to 

June 1983 was estimated to be .3 meters in the study area. 

If this intercommunication extends out to the study area's 

boundaries, then we can assume that the confined aquifer mimics the 

unconfined aquifer in this region. This relationship permits the 

potentials of the unconfined aquifer along the perimeter of the study 

area to be used for estimating boundary conditions for the confined 

aquifer. Potentials of the unconfined aquifer, derived from a model 

described in Appendix A, are a preferred datum for this estimation 

of boundary conditions, since a large data set (in constrast to the 

confined aquifer) defines this aquifer. 
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Boundary potentials for the confined aquifer were estimated by 

adding .3 meters (the averaged differential value) to the potentials 

assigned to the unconfined aquifer along most of the study area's 

boundary (with exceptions of this assignment occurring along the 

southwest and northern boundary described below). In this way, the 

modeled boundary potentials of the unconfined aquifer were used as a 

datum. These boundary conditions are used in Condition U of Groups 

I-VI (see Table V). A more detailed description of these runs are 

included in the calibration section. 

This approach requires three assumptions: 

1. The difference between the potentials of the unconfined 

and confined aquifers have remained fairly constant over time. 

2. Intercommunication extends out to the study area's 

boundaries. 

3. Error in computing potentials (modeled) for the unconfined 

aquifer is small. 

In the West Lake area, the differential was assigned a value 

of zero, i.e., the confined aquifer's boundary potentials were 

estimated to be equal to the unconfined (see differentials of Figure 

11). Scouring of the Elephant Mountain Member, confirmed by 

geophysical evidence (Moore, 1982) has produced a hydraulic 

interconnection between the confined and unconfined aquifer, which 

has equilibrated the two aquifer systems {Gephart et al, 1976). 

Boundary conditions were also calculated differently in two 

regions (for both methods described above): one in the southwest 

corner of the site, and the other in Gable Mountain. Liquid waste 
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disposal occurring west of the study area has produced elevated 

potentials in the unconfined aquifer in the southwest corner of the 

study site (shown in Figure A.1., Appendix A). Therefore it is 

possible that the unconfined aquifer's potential is greater than the 

confined aquifer's potential in this area. A reasonable estimate of 

the head differential is thus subtracted from the unconfined 

potential in this region for the estimation of the confined model 

boundary potentials (Figure 6, southwest corner). The second region 

is located in the northeast portion of the site, where nodes are 

assigned as impermeable boundaries to represent "no flow" through 

Gable Mountain. 

Because of the limited data base, estimating the potentials 

at the (held) boundaries was a preferred strategy for boundary 

condition values, rather than the conventional implementation of 

extending boundaries out great distances away from study area. 

Enlarging this model with all its complexities and uncertainties 

(based only on thirteen data points) may promote errors, and was 

thus avoided. 

ASSUMPTIONS 

The major assumptions applied in the confined aquifer model 

include: 

1. System's flow is horizontal (two dimension). 

2. Porous medium is non-homogeneous, isotropic and is treated 

as a continuum. 

3. Steady state conditions 
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Errors are inherent in constructing a model for any physical 

system. Since all of the uncertainties can not be described, some 

of the major ones are given: 

1. Transmissivity values - a) Rarely do wells fully penetrate 

an aquifer, therefore these values only represent a portion of the 

aquifer tested. b) Using a variety of aquifer testing methods can 

lead to inconsistent results. c) The high variability of the 

transmissivity in the confined aquifer can produce large 

uncertainties when extrapolating observed values throughout the study 

area. 
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2. Potentiometric surfaces I Head differentials - a) Head 

potential values from observation wells can contain errors due to 

inaccurate reading and faulty well surveying. b) Measurements may 

not be a good representation of the aquifer due to penetration depth 

or variable characteristics of the aquifer's hydrogeologic properties 

(i.e., "perched" readings due to clay lenses). c) Errors also result 

from averaging and extrapolating observed values throughout the study 

area. 

3. Head differentials are constant with time - Head 

differential for the steady state period of 1977-1979 do not exist 

for the confined aquifer and hence were estimated. A head 

differential computed for 1982 was used. 

4. Potentials derived from the unconfined aquifer model- Most 

of the residual errors in the modeled unconfined potential surface 

must be considered reasonable and minimal when compared to previous 

studies (Kipp et al., 1972). Leakage calculations in this study, 



though, require smaller residuals in these modeled potentials, since 

leakage is proportional to the head differential. The largest 

residual errors are located south of Gable Mountain, and in the 

vicinity of B Pond. 
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Source Term 

CHAPTER IV 

MODEL CALIBRATION AND RESULTS 

INPUT PARAMETERS ADJUSTED IN CALIBRATION 

Vertical head gradients, interpreted from well data and shown 

in Figure 12, are upward in the majority of the study site. This 

condition, which implies that the confined aquifer's potential is 

greater than the unconfined aquifer's potential, is modeled by adding 

a flux volume to the uppermost confined aquifer. This volume can be 

given to portions of the confined aquifer in the following forms (as 

shown in Figure 9): 

a. upward leakage from the deeper confined aquifers 

b. downward leakage from the overlying unconfined aquifer 

c. recharge where the aquifer outcrops in nearby Gable 

Mountain 

Leakage can be incorporated in the model in two ways. First, 

the model can calculate the leakage between the two aquifers, as 

previously described by giving the effective hydraulic conductivity 

as input, and the vertical gradient computed in the model. Another 

approach is to simply give the model an estimated leakage volume as 

a source term. This second method is more suited for the Gable 

Mountain Pond and B Pond area due to limited confined aquifer 

potential data and relatively high residuals in the potential surface 



of the unconfined aquifer (see Appendix A) making it difficult to 

estimate the vertical hydraulic gradient. Leakage is calculated by 

the model in the remainder of the site and will be discussed in the 

interaquifer transfer coefficient section. 

Upward Leakage from Deep Confined Aquifers. Flux from deep 

confined aquifers can act as recharge to the uppermost confined 

aquifer (see flux component q2, Figure 9). Faulting and fractures 

associated with the folded strata in the study area (see Structural 

Map, Figure 4) may act as avenues for enhanced vertical leakage. 

Evidence from regional potentiometric data (shown in Figure 10) 

suggest the study site is in an area of discharge for the confined 

aquifer system. This could produce the gradient direction necessary 

for upward leakage to the Rattlesnake Ridge aquifer. 

The spatial distribution of this intercommunication is unknown, 

but regional potentiometric values shown in Figure 10 suggest that 

vertical leakage from the deeper aquifers is most likely uniform 

over the entire site. If the leakage was concentrated instead in 

small zones, areas of steeper hydraulic gradients in the confined 

aquifer would have been observed. 

The magnitude of this upward leakage is limited since the 

vertical hydraulic gradient observed within the deeper confined 

system is extremely small. Figure 11 shows this gradient in a 

comparison of head values of the unconfined, Rattlesnake Ridge, and 

Mabton aquifers (refer to stratigraphic section in Figure 2). An 

upper bound leakage rate is estimated, by assuming that this flux 

alone is not adequate enough to produce a significant mound in the 
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Rattlesnake Ridge aquifer. An upper bound flux of 9.lxlO-S meter/day 

(3xlo-4 feet/day) was found. This would produce 300 ft3/day per 106 

square foot nodal area (VTT input units). Model nodes are described 

in Appendix B. 
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Three zones outlining the estimated distribution of this upward 

leakage are shown in Figure 14. The largest flux is assigned to 

areas in the vicinity of folded basalt (see Figure 4). The southern 

zone is given the smallest value, which is located furthest away from 

the folded area. An intermediate value is assigned to the remaining 

northern zone, south of Gable Mountain. 

Three conditions defining the magnitudes of these three zones 

were defined for this study (see Table V, Conditions A,B, and C). 

Varying the distribution of upward leakage in three conditions was 

thought to be adequate in evaluating the sensitivity of changing this 

component. The values assigned to these conditions, chosen in an 

arbitrary manner, while remaining within the bounds previously 

mentioned, are shown in Table VI. 



CONDITION 

A meter/day 

ft3/day 

B meter/day 

ft3/day 

C meter/day 

ft3/day 

(see Figure 14) 

TABLE VI 

UPWARD LEAKAGE VALUES 

Zones of Leakage 

HIGHEST INTERMEDIATE LOWEST 

3xl0-5 7xlo-6 3xl0-6 

100 25 10 

6xl0-5 lxl0-5 6xl0-6 

200 50 20 

9xlo-5 2x10-5 9xl0-6 

300 75 30 

Values given in units of ft3/day represent flux to model nodal 

area of 106 ft2 (input to VTT), while values given in meter/day 

represent flux per unit area. 

Downward Leakage from Unconfined Aquifer. The elevated 

potentials of the unconfined aquifer located in the waste disposal 

areas (see Figure A.1., Appendix A) produce a downward gradient 

between the unconfined and confined aquifers (see flux component 

qlb• Figure 9). Unfortunately, there are only a few wells in this 

area to obtain data for defining the extent and magnitude of this 

leakage. Figure A.2. shows well locations used in estimating the 

extent and magnitude of the elevated potential surface. Figure 12 

shows location of data points used in estimating head differentials, 

and Figure 15 shows locations of wells used in defining thickness 
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200 EAST AREA 

Fi ure 15. Isopach map of the Elephant Mountain Member 
modified from Graham, 1984). 
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of the confining layer that separates the two aquifers in this. The 

range of leakage, downward from the unconfined aquifer to the 

Rattlesnake Ridge aquifer, can be estimated by: 

q = Ke/b * Ah 

where 

q = downward leakage from unconfined aquifer per unit area 

(lit) . 

Ke = effective hydraulic conductivity of confining layer 

(Elephant Mountain Member), estimated to range between .001 and .03 

meter/day (.01 and .1 feet/day) (Summer and Weber, 1978, and Deju 

and Fecht, 1979) (lit) 

b = thickness of confining layer, estimated to range between 

15 and 30 meters (50 and 100 feet) in the vicinity the of disposal 

ponds (see Figure 15) (l) 

Ah = head differential between aquifers in vicinity of disposal 

pond, estimated to range from 1.5 and 7.6 meters (5 and 25 feet) 

(see Figure 12) (l) 

Keib is referred to as the interaquifer transfer coefficient 

(lit) 
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Given the range of values above, the corresponding range of 

leakage is computed as: 

Ke I b 

lowest leakage 

* L\h = q to ta 1 flux per 
model node (VTT input) 

.001 m/d I 30.5 m * 1.5 m = .0001 m/d 

(.01 ft/d) I (100 ft) * (5 ft) = (.0005 ft/d) (500 ft3/day) 

highest leakage 

.03 mid I 15 m * 7.6 m = .01 mid 

(.1 ft/d) I (50 ft) * (25 ft) = (.04 ft/d) ( 42000 ft3 Id) 

The range of leakage to the Rattlesnake Ridge aquifer was 

estimated to be between .0001 meter/day (.0005 ft/day) and .01 

meter/day (.04 ft/day) per unit area. This is equivalent to a range 

of 500 ft 3/day and 42000 ft 3/day per nodal area of 106 ft2 (VTT 

input units). This upperbound value of .01 meter/day (42000 ft3/day 

per node) may be excessive when compared with the maximum values of 

liquid disposed to the unconfined aquifer (Anderson and Poremba, 

1978; Anderson and Poremba, 1979; Sliger, 1979). A value of 500,000 

ft 3/day per model node was estimated to be the maximum measured rate 

to a model node of area 106 ft2• 

Values assigned to the downward leakage distribution of the 

source term were varied in five conditions in Table VII below (also 

see Table V, Conditions D - H). More conditions were necessary to 

test the range of the downward leakage than the upward leakage 

(previously described) because of the relatively large range of 

possible values indicated. 

66 



Condition 

TABLE VII 

DOWNWARD LEAKAGE VALUES 

Leakage Magnitude 

B POND GABLE MOUNTAIN POND 
meter/day cu.ft./day meter/day cu.ft./day 

(per unit area) (per node) (per unit area) (per node) 

D 

E 

F 

G 

H 

.0002 

.0003 

.0006 

.0012 

.0024 

500 

1000 

2000 

4000 

8000 

.0001 

.0002 

.0003 

.0006 

.0012 

250 

500 

1000 

2000 

4000 

Leakage values assigned to the B Pond area in Conditions D - H 

ranged from .0002 meter/day (500 ft 3/day) to .0024 meter/day (8000 

ft 3/day), while the leakage assigned to the Gable Mountain pond area 

ranged from .0001 meter/day (250 ft 3/day) to .0012 meter/day (4000 

ft3/day) (Figure 16). Condition D was assigned the lower bound value 

(previously computed), while Conditions E - H were assigned larger 

values, increased successively by a factor of two. A maximum value 

of .0024 meter/day was assigned as the upper bound for downward 

leakage since the model error increased dramatically with this value 

as input. 

An estimate of the spatial extent of this leakage is shown in 

Figure 16. Nodes containing the two ponds are assigned the highest 

leakage, with adjacent nodes given smaller amounts, depending on the 

estimated trend of the vertical gradients. For example, nodes to 

the west of Gable Mountain Pond were given relatively smaller values 

than to the east, due to the anomalously low potential reading at 
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well 699-55-50C (see Figure A.2., Appendix A), suggesting that the 

mound may be limited to the eastern portion of the pond. Nodes to 

the south of the pond contain no leakage because the basalt outcrops 

above the water table. The gradient of the unconfined aquifer is 

much steeper to the west of the pond. Leakage originating from the 

B Pond mound is assigned greater values than from Gable Mountain 

Pond mound because of B Pond's relatively higher unconfined 

potentials observed from well data (see Figure A.1., Appendix A). 

Also, the isopach map of the Elephant Mountain Member (Figure 15) 

suggests that this confining layer has a relatively smaller thickness 

in the B Pond area, which would increase the possibility of leakage. 

Recharge from Gable Mountain. Strait and Moore (1982) suggest 

that recharge from Gable Mountain could possibly produce the westward 

flow lines, but give no direct evidence for this occurance. 

Therefore, this source term option will be considered only for Group 

IV. Three (I,J, and K) are tested in Group IV, depicting fluxs of 
-5 -5 -4 1.5xl0 , 4.SxlO , and 1.5x10 meter/day (per unit area) given to 

nodes outlining the southern flanks of Gable Mountain. This is 

equivalent to 50,150, and 500 ft3/day (per unit node). 

Interaguifer Transfer Coefficient 

Leakage between the Rattlesnake Ridge Interbed and the 

unconfined aquifer is also incorporated into the model by allowing 

this flux to be calculated within the simulation run (by VTT) and is 

a function of a interaquifer transfer coefficient (an input 

parameter) and the vertical head differential (difference between 

the unconfined aquifer's (held) potentials and the potentials modeled 
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for the confined aquifer). In the vicinity of the waste disposal 

ponds, the interaquifer transfer coefficient was set to zero and 

leakage was included instead in the source term. 

Leakage between the unconfined aquifer and the Rattlesnake 

Ridge aquifer is related to the relative thickness of the confining 

layer (Elephant Mountain Member), which separates the two aquifers. 

A smaller thickness may create a shorter path for intercommunication 

to occur. Also, scouring of this member may have released overburden 

pressure to produce and enlarge fractures. The distribution and 

magnitude of the interaquifer transfer coefficient (shown in Figure 

17) is represented in three zones based on the isopach map of the 

Elephant Mountain layer (see Figure 15). The oblong shaped zone, 

which represents the area of deepest scour along an ancient flood 

channel •s major path through Gable Gap, was assigned the highest 

interaquifer transfer coefficient. The remaining northern portion•s 

thickness is greater and therefore has a much smaller magnitude. 

The southern portion was assigned the smallest coefficient since the 

scouring potential of the flood water channel lessened as the channel 

spread out. 

Plausible values of the confining layer•s (Elephant Mountain 

Member) hydraulic conductivity and thickness allowed a range of 

interaquifer transfer coefficients (Keib) to be estimated (Table 

VIII). 

The interaquifer transfer coefficient is varied for six 

conditions with values tabulated above, represented in Table V and 

further illustrated in Figure 17. The set of values for each 

70 



TABLE VIII 

VALUES OF INTERAQUIFER TRANSFER COEFFICIENT 

Condition Zones of Interaguifer Transfer Coefficient 

HIGH INTERMEDIATE LOW 

L 

l/day 3x18-6 1. 5xl8-S 9xl8-6 

ft2/day 188 58 38 

M 

l/day 6x18-5 3xlB-6 2xlB-6 

ft2/day 288 188 68 

N 

1/day 1x18-4 6x1B-6 4x1B-6 

ft2/day 488 288 128 

0 

1/day 2x18-4 lxlB-4 7x1B-6 

ft2/day 888 488 248 

p 

1/day SxlB-4 2x1B-4 lxlB-4 

ft2/day 16118 888 488 

q 

1/day lxlB-3 5x1B-4 3xur4 

ft2/day 3288 1688 968 

Units of 1/day represent values per unit area, while ft2/day represent values per 1odel node. 

Ke= .881 meter/day (.Bl feet/day) to .83 1eter/day (.1 feet/day) 
(Summer and Weber, 1978, and Deju and Fecht, 1979) 

b = 15 to 45 meter (58 to 158 feet) (from Figure 15) 

Ke/b (lower bound) = 2xl8-5
2
meter/day/meter or l/day 

(68 ft /day per node) 

Ke/b (upper bound) = 2xls-3 l~day 
(2888 ft /day per node) 

(noda I area = lx186 ft2) 
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condition is successively increased a factor of 2. Since the model 

was found to be rather sensitive to this variable, values for 

Conditions L and Q were included in the analysis, even though their 
-5 -4 magnitudes fall outside the bounds of 2xl0 1/day and 6x10 1/day 

previously defined. 

Hydraulic Conductivity 

The hydraulic conductivity values given in Figure 7 were 

computed from transmissivity values (Graham et al., 1984) derived 

from aquifer pump tests on 13 wells penetrating the confined aquifer. 

Two regions outlined in Figure 7 were found to have relatively lower 

values of hydraulic conductivity. A reduction of hydraulic 

conductivity could furthermore increase the confined aquifer's 

potential in the region. 

Three conditions represent the hydraulic conductivity surface 

(Table V). The first two conditions represent simple uniform 

distributions of the (1) average value of all measurements (Condition 

R, 2 meter/day), and (2) twice the average (Condition S, 4 

meter/day). The third condition (Condition T) differentiated the 

study area into two regions, consisting of a region of relatively 

low hydraulic conductivity, and a region consisting of the remaining 

area (shown in Figure 7). The region of low hydraulic conductivity 

was assigned an average value from the lower measurements (.5 

meter/day), and the remaining region has an average value of all 

measurements (2 meter/day) assigned. 
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Boundary Conditions 

Boundary conditions were estimated in two ways, as previously 

described in the "model strategy" section: 

1. Groups I through VI assume a relationship between the 

unconfined and the confined aquifers that allow the use of the 

unconfined aquifer's boundary potentials to be used as a datum 

surface for the estimation of the confined aquifer's boundary 

potentials (Condition U). 

2. Groups VII consists of two conditions. The first 

(Condition V) assumed a simple regression through the 13 data points 

by extrapolating a flat plane out to the confined aquifer's 

boundaries. The second Condition (W), further investigated the 

model's sensitivity to the estimated boundary conditions by 

arbitrarily varying the boundaries in Condition V. 

The strategy behind the first estimation (Groups I through VI) 

has more feasibility when compared with the second (Group VII). A 

regression as an estimator of boundary values (Group VII) is not 

applicable to a model with a small spatial distribution of data 

points, as is represented in this study. The small region where 

data exists may not be representative of the entire study area i.e., 

the data may characterize only a localized hydrologic trend. 

Knowledge of the system's physics futhermore supports the 

choice of the first estimation of boundary head values. Within areas 

of intercommunication between the Rattlesnake Ridge aquifer and the 

unconfined aquifer, evidence shows the two aquifers linked, i.e., 

the confined aquifer's potential track those of the unconfined 
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aquifer. Therefore, by mimicking the unconfined aquifer, the confined 

aquifer should take on similar flow patterns. 

RESULTS 

The twenty-eight simulation runs were evaluated on three 

criteria: 

1) how well the simulated results "matched" observations (i.e., 

flow as interpreted from Figures 6 and 12). 
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2) the simulation's credibility i.e., the ability to match the 

conceptual model proposed and the regional system understanding 

discussed (and remain in the ranges of parameter values tabulated in 

previous section). 

3) the model's sensitivity to variation of given parameters. 

The strategy of calibration in this study is to choice one simulation 

run from each of the seven groups in Table V to represent the best 

match. The selection is performed in seven stages, so that each run 

uses the previous best choose. Therefore Group VII consists of the 

best matches of Group I - Group VI. The values given for parameters 

characterizing each simulation run are compared with the range of 

plausible magnitudes given in the calibration model section. If the 

magnitude chosen is found to be representative, then the next group 

is evaluated with the chosen value, and so on. This strategy makes 

the sensitivity analysis more manageable given the large number of 

variations possible. 

Quantification of the simulations's "match" (of the first 

criteria described) was accomplished by computing the root mean 



square (RMS) of the difference between the simulated head 

differentials and the interpreted head differentials, averaged for 

1982-1983 (Figure 12). The RMS difference, commonly referred to as 

a residual, error, or residual error, is defined as (Bevington, 

1969): 

RMS= [1/N E(h5 - hi) 2]·5 

h5 = simulated head differentials 

hi = interpreted (from data) head differentials 

N = number of measurements 

The errors representing these 28 simulation runs are quantified 

in two different ways: 

1. Well residual - referred to the error calculated for only 

the 13 data points. 

2. Site residual - referred to the error calculated for the 

entire site. An average head differential interpreted from the data 

was subtracted from the modeled head differential surface. Hence, 

this error represents a biased residual in that the comparison 

involves an interpreted surface of the conceptual model. Residuals 

of the seven groups are plotted in Figure 18. Three error curves 

are plotted for each run: one represents the trend of the errors for 

the site residual, another the well residual, and the third, a mean 

value of the two previous curves. Not only does this tabulation 

clarify the runs with the least error values, with the combination 

of Table V and Figures 14, 16, and 17, one can evaluate parameter 

sensitivity by examining the relative change in error with the 
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magnitude of parameter variation. 

Group I. The five simulation runs of Group I (runs 1-5) show 

the sensitivity of the downward leakage component (Conditions D - H) 

of the source term (Table V). Groups II and III also examine the 

sensitivity of this term. Downward leakage from B Pond ranges from 

.0002 meter/day per unit area (p.u.a.) (equivalent to 500 ft3/day 

per model node) to .0024 meter/day p.u.a. (8000 ft3/day per model 

node). Leakage from Gable Mountain Pond ranges from .0001 meter/day 

p.u.a. (250 ft 3/day per model node) to .0012 meter/day p.u.a. (4000 

ft3/day per model node). These ranges are illustrated for Conditions 

D through H in Figure 16 and tabulated in Table VII. The other 

parameters remained constant while the five conditions were varied. 

The residual error, associated with varying each downward 

leakage term, is an indicator of the parameter's relative influence 

to the model. Figure 18 depicts graphically the change in error 

with variable leakage. The site's residual error decreases in runs 

1 - 4, while the error increases with run 5. The error calculated 

from just the well data points does not show the sensitivity of the 

source term in runs 1 - 3, but is very sensitive to the change made 

in Condition D. Run la was added to check the sensitivity of 

decreasing the source term of run 1. The sharp rise in residual 

err-or associated with run 5 has a leakage of .0024 meter/day (8000 

ft3/day per model node). 

The smallest well error is represented by run 3, while the 

site error is smallest in run 4. When averaging the two error 

curves, run 3 is found to have the smallest error (Figure 18). 
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Group II. Group II also checks the sensitivity of varying the 

downward leakage term. A larger upward leakage term is incorporated 

in this group to test its influence. The site's error became less 

sensitive (relative to Group I), with run 9 the preferred run. The 

error in the well data points is more sensitive than with Group I, 

showing a large increase of error in runs 9 and 10 (Conditions G and 

H), leaving runs 6 and 7 the better choices. Run 7 was found to 

have the smallest error, with run 8 a close runner up, when the two 

curves were averaged. 

Group III. This group again investigated the sensitivity of 

the downward leakage component, while incorporating the largest 

upward leakage term assigned in this model. As expected by the trend 

outlined in Groups I and II, this added flux from upward leakage has 

created higher sensitivities of well data error, with run 11 having 

the least error. The averaged error also shows run 11 as the best 

choice. A sharp increase in residual error occurs in runs 13 and 14 

(Conditions F and G). 

Source Term Discussion. By comparing the residuals of Groups 

I, II, and III (see Table V, and Figure 18), a best choice to 

represent the upward leakage term can be found. Group II (containing 

Condition B), was found to contain the smallest error. Of the five 

simulation runs characterizing the downward leakage sensitivity of 

Group II (each containing Conditions D - H respectively), run 7 

(containing Condition E) has the least error. 

A value of effective hydraulic conductivity and interaquifer 

transfer coefficient associated with each condition (representing 
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downward leakage) can be calculated from the relationship (previously 

described: 

q = Ke/b * Ah 

where 

Ke = effective hydraulic conductivity of Elephant Mountain Member 

b = thickness of Elephant Mountain Member 

Ah = head differential between the unconfined and confined aquifer 

Keib is referred to as the interaquifer transfer coefficient 

The effective hydraulic conductivity associated with Condition 

E was calculated to be roughly .001 meter/day (.005 ft/day). This 

represents a lower bound of hydraulic conductivity when compared 

with the range defined in Table IV (.01 to .1 ft/day). An 

interaquifer transfer coefficient associated with Condition E was 
-5 estimated to be roughly 7xl0 /day. 

Group IV. Increasing a flux derived from infiltration to the 

Rattlesnake Ridge Interbed, that outcrops at Gable Mountain, reduced 

the site but increased the well error. Results are therefore mixed 

and furthermore, more data would be necessary to prove that this flow 

component exists. It was not considered further in the remaining 

analysis. 

Group V. The seven simulation runs of Group V examine the 

sensitivity of the interaquifer transfer coefficient (Table V). This 

transfer coefficient is related to the hydraulic conductivity of the 

Elephant Mountain Member, which also influences the downward leakage 

from disposal ponds previously tested in Groups I - III (see Figure 

9 for illustration of flux components). Therefore, hydraulic 
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conductivity values computed from transfer coefficient values of 

Group V can be compared to values derived from Groups I - III. The 

choice of source term comes from conditions that make up run 7 

(represented the best choice). 

The plot of the well error shown in Figure 18 shows a trend of 

decreasing residual with increasing leakage transfer (runs 18 - 22). 

This is because the more communication between the aquifers, the 

more the confined aquifer's potentials resemble the unconfined 

aquifer, and hence match the small head differential observed on the 

study site. The residual plot for the site error shows a leveling 

off of residual change for runs 20,21,and 22 and begins to increase 

with run 22. 

Runs 23 and 24 further checked the sensitivity of varying the 

source term. Results show minimal model sensitivity to a reduction 

in flux from the deep aquifer system (Run 23) but when the flux is 

increased, (run 24), the well data residual also increases. This 

verifies the previous choice of Condition B (of run 7) by showing 

that it remains the best choice even after varying the transfer 

leakage magnitude. 

Smaller residuals were produced with an increased transfer 

flux. To choose a value of interaquifer transfer coefficient that 

best represents Group V, results of Groups I - III (downward leakage 

to the confined aquifer from the unconfined aquifer) were examined. 

Results of Group I - III were able to help constrain a best choice 

of interaquifer transfer coefficient for Group V because downward 

leakage, as previously mentioned, is influenced by the same 
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interaquifer transfer coefficient (i.e., related to the effective 

hydraulic conductivity and thickness of the Elephant Mountain Member) 

Values of transfer for Group V were compared with the transfer 

associated with the best choice of downward leakage (7xl0-5/day). 

Values of transfer for Conditions M and N of Group 7 were the closest 

match to this. The interaquifer transfer coefficient of Condition N 

was used in further testing the sensitivity of hydraulic conductivity 

(Group VI) and boundary conditions (Group VII) that follows. 

Group VI. Two simulations were run to investigate the 

sensitivity of the hydraulic conductivity. All previous groups 

incorporated a variable hydraulic conductivity (Condition T), while 

run 25 represents a constant 50 gal/ft2/day, and run 26, 100 

gal/ft2/day (see conceptual model for details on these magnitudes). 

Comparing these two runs with run 19 (Condition T) reveals a 

relatively large increase in error. Hence, Condition T is chosen to 

represent the hydraulic conductivity distribution. 

Group VII. Three conditions characterize the boundary 

conditions for the study site. All previous groups used Condition 

U, which utilized the unconfined aquifer's potential as an estimate 

for potential values. Boundary values for Conditions V and W were 

derived from fitting a planar regression from data points and 

extending this plane to boundary nodes. An estimate of boundary 

values were taken from the potential values at these nodes. 

Results of run 27 (with boundaries of Condition U) and run 19 

(with boundaries of Condition V) are illustrated in Figures 19 and 

20, respectively. These figures contour resulting potentials and 
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also portray them in a three-dimensional mesh. The difference 

between these two extremely different boundary conditions are more 

easily conceptualized by comparing the three-dimensional mesh plots. 

Figure 20 includes the boundary potentials from the unconfined 

aquifer (see Appendix A) of which most of the confined boundaries 

were derived from. Even though the confined aquifer's boundaries in 

Figures 19 and 20 differ greatly, the results near the center of the 

two plots are very similar. 

Only the well data error was calculated for Conditions V and W 

(see Figure 18) because comparing the resulting potentials of the 

entire site with potentials representing a regression from data 

points would be meaningless. 

The regression derived conditions (runs 27 and 28) proved to 

produce less errors than previous runs (compare with run 19, which 

consists of the combination of "best choices" calculated previously). 

This is because the gradient produce by boundaries in Conditions V 

and W enhance a westward flow direction, while the boundary 

conditions of Condition U enhance a southward flow direction. In 

this way, Conditions V and W "work with" the data points, i.e., they 

don't oppose the data as Condition U does (compare Figures 19 and 

20). 

The selection of a best condition to represent the boundary 

conditions for the confined aquifer, in the manner performed 

previously for the analysis of other model components, was not done 

since no data exists for calibration. Instead the credibility of 

each condition, as described in the previous section, is taken into 
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consideration. Problems with the credibility of Condition V and W 

arise from extrapolating a small region of data points, over a large 

distance. The data may reflect just a localized phenomenon, in a 

very complex geohydrological setting. 

SUMMARY AND CONCLUSIONS 

The study site is located in a regional discharge area for the 

confined aquifer within the Saddle Mountain Basalt Formation, thereby 

creating the potential for upward leakage to the unconfined aquifer. 

Disposal of liquid waste to the unconfined aquifer creates the 

potential for downward leakage as a result of the associated 

mounding. Furthermore, results from this study indicate that 

potentials of the Rattlesnake Ridge confined aquifer are sensitive 

to this leakage term, perhaps due to the confined aquifer•s 

relatively small transmissivity. 

Results show that the observed flow configuration can be 

simulated as the westward flanks of a ground-water mound produced 

from leakage between the unconfined and confined aquifers. This 

implies that leakage through vertical fractures in the basalt can 

play an important role in the interpretation of the Rattlesnake Ridge 

Aquifer•s flow system and in out understanding of aquifer 

intercommunication in the study area. 

Recharge is produced chiefly from two sources. Leakage from 

the overlying unconfined aquifer occurs in areas where the 

unconfined 1 s potential exceeds the Rattlesnake Ridge aquifer•s 

potential principally at and around (Hanford operations) disposal 
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areas. Likewise, leakage to the Rattlesnake Ridge aquifer occurs 

from the underlying deeper basalt aquifers in areas where the deep 

basalt aquifer's potential exceeds the Rattlesnake Ridge aquifer's 

potential. 

Four components of the model were varied resulting in twenty 

eight different simulation runs. These components are the source 

term, interaquifer transfer coefficient, hydraulic conductivity, and 

boundary conditions. A plausible range of values was determined for 

each of these. These values were used as simulation run inputs to 

test and rank the ability of the model to match observed potentials 

and head differentials. The comparisons are quantified in a form of 

standard deviation referred to as residual error. 

The sensitivity and uncertainty of each component was 

investigated to rank the importance of data, required to develop a 

more quantitative model. The sensitivity was demonstrated by 

observing the relationship between the component's magnitude and its 

consequence impact on the model results (Figures 14, 16, 17, and 18) 

in the form of site and well residual errors. Uncertainties are 

related to the quality and quantity of data available for 

constraining the magnitude of the various model components and areal 

distributions. The relative sensitivities and uncertainties of the 

four components are summarized below: 

Source Term 

Upward Leakage. The model is relatively insensitive to this 

leakage from the deeper aquifers, perhaps because the range of values 

deemed feasible in the conceptual model is relatively small. The 
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uncertainty in this parameter's value is related to the interaquifer 

transfer coefficient (function of effective vertical hydraulic 

conductivity and layer thickness) of the Pomona Basalt layer, which 

separates the deeper aquifers from the Rattlesnake Ridge aquifer, 

and also the hydraulic gradient between them. 

Downward Leakage. Within the upper range of leakage values, 

model sensitivities become notably higher, but otherwise 

sensitivities are minimal. The uncertainty of this parameter is 

related to the head differential in the areas of waste disposal, and 

the interaquifer transfer coefficient assigned to the Elephant 

Mountain Member confining layer. No data exists for the head 

differential, therefore this value was extrapolated from the closest 

data points. Of more importance is the value of the effective 

vertical hydraulic conductivity of the eroded basalt confining layer, 

which is probably a function of the degree of fracturing. (Data to 

quantify this value is not available). 

Interaguifer Transfer Coefficient 

88 

This component dominates model sensitivity and is more 

important in regions with direct physical contact between the 

unconfined and confined aquifers. 

Uncertainties inherent in the interaquifer transfer coefficient 

are related to both the effective hydraulic conductivity of the 

aquitard and vertical head differentials between the unconfined and 

confined aquifers. The effective hydraulic conductivity of the 

Elephant Mountain Member was estimated from regional studies since 

no data exists for the study area. This value is believed to be 



variable since it is dependent on the degree of fracturing, as 

mentioned previously. Values for head differentials only exist for 

two areas which contain pieziometer nests, hence the head differences 

between the two aquifers were estimated from separate but closely 

spaced wells penetrating the Rattlesnake Ridge confined and the 

unconfined aquifer. 

Hydraulic Conductivity of Interbed 

The model is very sensitive to this parameter. Fortunately 

twelve wells have been tested for this value (Graham et al., 1984), 

thereby constraining this parameter. These wells are mostly located 

in the northern portion of the site, where the structure is more 

complex, and therefore may not be representative of the remainder of 

the site. 

Boundary Conditions 

The range of residual errors, derived from comparing the model 

results with well data, is relatively insignificant for the three 

cases of boundary node values (Conditions U, V, and W). The 

insensitivity of the boundary conditions when comparing results at 

data point locations (as shown in Figures 19 and 20) occur because 

well data is mostly located in the portion of the study area that 

demonstrated the maximum physical contact between the aquifers. As 

a consequence, leakage dominated the model sensitivity at points 

where error values were calculated. Note that the two simulated 

potentiometric surfaces of Conditions U and V (Figures 18 and 19, 
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out points confined to a small region. Note the unlikely large 

vertical head differentials between the unconfined and confined 

aquifers that are generated on the eastern boundary of the study 

area (Figure 19). 

Values of the unconfined aquifer's potential, which were 

treated as a held head boundary for leakage calculations in this 

model, are known to contain uncertainties (see Figure A.5., Appendix 

1). Residuals were relatively high south of Gable Mountain and in 

the vicinity of B Pond. Clay lenses may produce anomalous well 

readings in the Gable Mountain area, and a steep hydraulic gradient 

may be a problem in the B Pond region. 

RECOMMENDATIONS 

A more meaningful calibration of the Rattlesnake Ridge aquifer 

requires a full three-dimensional analysis. Multiple well tests and 

piezometer nests that quantify the vertical hydraulic conductivity 

and record the potential with depth, respectively, would enhance the 

three-dimensional conceptualization, thereby allowing for a more 

definitive analysis. Other testing in the form of tracer tests and 

long-term pump tests could also help investigate the importance and 

role of aquifer intercommunication in controlling groundwater flow 

direction and transport of contaminants. 

Additional wells penetrating the Rattlesnake Ridge aquifer can 

help delineate the flow pattern inside and adjacent to the study 

site. Existing wells are mostly concentrated in a small region on 

the site, thereby leaving the general flow direction ill-defined. 
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Wells into the confined system and located outside this region are 

necessary for adequate definition of boundary conditions required in 

future computer models. Wells located northeast of the Separations 

Area would define the flow direction "upstream" from data points. 

This would help in investigating the source of the elevated head 

pattern, observed in the confined aquifer (Figure 6). 

One of the most important advantages that future models of the 

Rattlesnake Ridge aquifer will acquire is a simple record of data 

produced with time. One year of steady state data used in this study 

gives only a foundation to work on. 
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A model of the unconfined aquifer was developed for the study 

area. Incorporating unpublished data reported in 1985 helped to 

improve an existing groundwater flow model. Resulting potentials 

from this revised model was used in calculating leakage between the 

unconfined and confined aquifers, which is driven by the difference 

in head potential of the two aquifers. 

The unconfined aquifer within the study area consists of 

Ringold and/or Hanford sediments (Tallman et al., 1979). The aquifer 

is defined by the water table from above and the Elephant Mountain 

basalt surface (or the clay member of the Ringold Formation, if it 

exists) below. This aquifer is discontinuous only in areas where 

the basalt extends above the water table surface, such as Gable 

Mountain, Gable Butte, and subcrops south of Gable Mountain. These 

basalt boundaries are shown in watertable maps of the Hanford Site 

and the study area (Figure A.1. and A.2., respectively). 
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The unconfined aquifer has a thickness of over 70 meters within 

the study area, and thins to zero where the sediments pinch out along 

the flanks of the basalt ridges (Graham, 1981). The varying 

thickness of the aquifer and its corresponding formation type, are 

shown in the cross-sections of Figure 5. The aquifer's thickness 

increases to the south, in relation to the dip of its underlying 

basalt. 

A groundwater flow model of the Hanford Site which uses the 

Variable Thickness Transient (VTT) code, is presently being used by 

contractors of the Department of Energy to predict the rate of 
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calibration) of transmissivity and aquifer bottom values was 

conducted in 1982 (Eddy et al., 1982). These properties were revised 

for this study. 

Newly acquired well core data from over 400 wells located 

within the Hanford Site(l) were used to calibrate the unconfined 

aquifer for this study. This data was extrapolated and digitized to 

allow a detailed interpretation of the aquifer bottom surface for the 

Separations Area. A three-dimensional representation of this 

digitized surface is shown in Figure A.3. Erosional channels and 

potholes produced from flood waters previously described can be 

interpreted from the extrapolated surface. The upper basalt surface 

represents the aquifer bottom through most of the site, with the 

exception of the southern portion, where a clay layer forms the 

aquifer bottom. Thickness values of the unconfined aquifer were 

produced from subtracting this revised aquifer bottom surface from 

water table elevations (shown in Figure A.2.). Impermeable 

boundaries were assigned to the unconfined aquifer in areas where 

the basalt bottom subcrops above the water table. Values of 

hydraulic conductivity were computed by dividing transmissivity 

values (Graham, 1981) by the revised thickness surface described 

above. 

Two models of the unconfined aquifer were developed, one of 

the entire Hanford Site, and a sub-model of the study area. The 

(1) Myers, D.A., G.V. Last, and M.D. Freshley, 1985. "Status 
Report on the Hydrogeologic Conceptual Model for the Unconfined 
Aquifer of the Hanford Site", unpublished report. 





finite difference model of the Hanford Site was composed using 

existing data and newly revised hydraulic conductivity and aquifer 

thickness values described above. An existing grid of the Hanford 

Site model (Kipp et al., 1972) was used. Each rectangular element 

of the two-dimensional model has a grid space of 610 meters (2000 

feet). Natural boundaries are the Columbia and Yakima River 

(specified held head), bedrock (impermeable, zero flux) where the 

basalt rises above the water table, and recharge at aquifer 

boundaries from irrigation (constant flux). These boundaries are 

shown in Figures A.1. and A.4. Steady state hydraulic heads were 

solved using the VTT code. 

102 

A sub-model characterizing the study area was constructed by 

first reducing this Hanford Site grid as shown in Figure A.4. Since 

few natural boundaries occur for the unconfined aquifer in the study 

area, boundaries were derived from the larger Hanford Site model. 

This was accomplished by assigning potential values along the 

perimeter of the study area, as shown in Figure A.4., derived from 

the solution of the larger Hanford Site model. These boundary 

potentials do not change in the simulation process, hence are 

commonly ca 11 ed "held head" boundaries and represent Di rich 1 et 

boundary conditions. The northern portion of the study area has 

natural impermeable boundaries (Gable Mountain). "Zero-flux" 

boundaries are assigned to this impermeable zone. 

Hydraulic heads (potentials) were solved within the study area 

using the VTT code. The simulation was evaluated by comparing the 

resulting potentials with observed data. The difference between the 
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results and the observed (referred to as an error) were recorded as 

a means for quantifying the quality of the simulation. Results were 

excellent (i.e., low errors) in most of the site, except in two 

areas, south of Gable Mountain and in the vicinity of B Pond. 
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The hydraulic conductivity was adjusted in these two problem 

areas in an attempt to reduce the errors. Reductions in the 

hydraulic conductivity in the B pond area improved the resulting 

potentials. Adjustment of the hydraulic conductivity in the vicinity 

south of Gable Mountain however, did not improve results in that 

region. Perhaps the sandwiching effect of the basalt ridges is to 

blame for the difficulty of calibrating this area. Figure A.5. shows 

the errors of 51 well locations associated with this calibrated run. 

The resulting potentials from this run were used in leakage 

calculations described in this study. Potentials along the perimeter 

of the study area (derived from the regional model) were used for 

estimating boundary conditions for the confined aquifer. 
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Figure A.5. Residual error of unconfined model's results. 
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The mathematical model in this study translates the physical 

characteristics described in the conceptual model into a set of 

differential equations. The derivation of these equations are based 

on Darcy's law and conservation principles. 

CONTINUITY EQUATION FOR STEADY STATE FLOW 

Darcy's law, based on empirical evidence, describes the physics 

of groundwater flow. It is written in differential form for each of 

the x,y, and z components of three-dimensional flow as: 

where 

qx = -Kx ah/ax 

qy = -Ky ah/ay 

qz = -Kz ah/az 

q = specific discharge or Darcy velocity (l/t) 

K =proportionality constant or hydraulic conductivity (l/t) 

h = hydraulic head (1) 

ah/ax, ah/ay, ah/az = components of head drop over distances 

x,y,z (unitless) 

The differential equations governing groundwater flow for 

steady state conditions can be derived from a physical point of view 

using principles just described. 

Conservation of mass states that there can be no net change in 

the mass of a fluid contained in a small volume of an aquifer. 
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Therefore, this requires that the volume of water flowing into a 

representative elemental volume (i.e. the cube pictured below in 

Figure 8.1.) equal to the volume flowing out. A change in mass 

flowing in must then be balanced by a change flowing out. The 

discharge Q, is a product of the flow rate per unit area and the 

area of the face from which flow occurs. Therefore: 

where 

Qx = [(aqx/ax)Ax] AyAz 

QY = [(aqy/ay)Ay] AxAz 

Qz = [(aqz/az)Az] AyAx 

Q =discharge (1 3/t) 

q = specific discharge over face of cube which flow occurs (l/t) 

x,y,z = lengths of cube (1) 

Oz 

t 
l 71T 

Oy • .. I .- ll.z 

_/ l i -1i-ay 
,r - ~ 

Ox ~ 

Figure B.1. Representative elemental volume cube 
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Setting the sum of all discharges to zero (conserving mass) 

and dividing through by the volume (x,y,z), we are left with: 

aqx/ax + aqy/ay + aqz/az = o (1) 

substituting Darcy•s law into equation 1 gives: 

a/ax (-K ah/ax) + a/ay (-K ah/ay) + a1az (-K ah/az) = o (2) 

Assumptions: 

1. head is independent of time 

2. water is incompressible 

3. volume contains no sources or sinks 

4. principal components of the hydraulic conductivity tensor 

are oriented with the x,y,z directions 

5. aquifer is isotropic 

6. system is everywhere saturated with liquid at all times 

7. flow system is confined 

Since this study allows water to be added and removed from the 

aquifer (e.g. leakage, recharge), a source/sink term is incorporated 

in equation 2 by setting the right hand side equal to the addition 

or withdrawal of groundwater (see equation 3). 

If flow is essentially horizontal such that the vertical 

component of flow (z) is considered minimal, a two-dimensional 

representation of the actual three-dimensional aquifer can be 

assumed: 

a/ax(-K ah/ax) +a/ay(-K ah/ay) = R(x,y) (3) 
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where 

R = source or sink term 

Leakage through semi-permeable confining layers was 

incorporated into the source/sink term (Bredehoeft and Pinder, 1970): 

q = (-Ke/m)A(h1-h2) 

where 

q = interaquifer transfer flux (1 3/t) 

Ke = effective transfer conductivity (vertical hydraulic 

conductivity of confining layer, i.e. Elephant Mountain Member in 

this study) (1 /t} 

m = effective thickness (of confining layer) (1) 

A = nodal area (1 2) 

h1,h2 = hydraulic potentials in the upper and lower aquifer (1) 

-Ke/m (1/t) is referred to as the interaquifer transfer 

coefficient (Variable Thickness Transient code users manual), 

and when multiplied by A, it represents the interaquifer transfer 

coefficient per node (1 2/t). 

NUMERICS 

The Variable Thickness Transient (VTT) code (used in this 

study) utilizes the finite difference technique in transforming the 

differential equations, previously described, into a large set of 

coupled algebraic equations. 

The finite difference approximation to Laplace's 

(two-dimensional) equation (equation 2 with constant K) can be 
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derived by considering the function plotted below (Figure B.2.) and 

a regularly spaced grid. 

Y (x) 

Y (xi+Ax) 

Y (Xi) 

Y (xi-Ax) 

Xi-AX Xi Xi+Ax 

x 

Figure B.2. Function plot 

To approximate the function above, the basic definition of 

the derivative at xi is given as: 

dy/dxlxi ~ lim x+O [y(xi +Ax) - y(xi)] I Ax 

The central difference approach is common way to express the 

approximation of the derivative above. This method approximates the 

derivative as the difference between two points that are separated 

by 2Ax: 

dy/dxjxi ~ [y(xi + Ax) - y(xi - Ax)] I 2Ax 

d2y/dx2 
i::: 1/2 
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In the finite difference approximation, the derivative is 

estimated by the differences between nodal points in the 

configuration given below (Figure B.3.). 

{i, j-1) 

T 
1 I 1 6.y 

1 (i-i,j) (i,j) (i+l ,j) 

I 
y 

(i,j+l) 

j+- 6.x--+j 

x 

Figure B.3. Finite difference grid 

The central difference method estimates a2h/ox2 (see equation 

2) by taking the first derivative as the difference between the head 

values at (i,j) and ((i+l),j) and the difference between (i,j) and 

((i-1),j) and lastly taking the difference between the two 

derivatives: 

h ·..1-1 . - h. . l· ,J l,J h - h. 1 j . . l - , l , J 

a2h/ox2 
j::$ 

t.x flx 
h.x 

which simplifies to: 

2 2 h. . - 2h + h a h/ay j::$ l,J-1 i,j i,j+l 
(flx) 2 
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and likewise for they component: 

a2h/ay2 ~ hi,j-1 - 2hi,J + hi,J+l 
(Ay)2 

As stated previously, the continuity principal requires that 

changes in mass flowing in and out of a unit volume must balance 

out. Therefore, the combination of the two derivatives listed above 

must equal zero: 

h,·+1 j - 2hi j + hi-1 j hi j-1 - 2hi j + hi j+l 
r r r + r r r =O 

Ax2 Ay2 

If Ax = Ay, and combining terms, the generalized form of the 

finite difference approximation states: 

h. +l - 4h; . + h. 1 . + h. . 1 + h. . +1 = 0 1 ,J 1- ,J 1,J- 1,J 

and forms the basic framework for the VTT code. 

By incorporating the source and sink terms and given boundary 

conditions that make the model unique, this equation solves for the 

head (the unknown) at node i,j. In this manner, an equation for 

each node (unknown) is derived. These sets of linear equations are 

simultaneously solved by the Cholesky decomposition technique. 

Details on this common elimination method are described in most 

numerical method textbooks (James et al., 1985, for example). 
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MODEL GRID 

A finite difference grid was developed by superimposing a 

system of 1023 nodal points over the study area's domain as shown in 

Figure B.4. Lattice points were spaced equidistanced apart, with Ax 

= Ay = 305 meters (1000 feet). 

Boundary conditions assigned to the confined aquifer consisted 

of either held head or zero flux (impermeable). Held head values, 

assigned along most of the perimeter of the study area, were derived 

from the regional unconfined aquifer model. A detailed description 

of this derivation is included in Chapter 3, Model Strategy and 

Assumptions. Impermeable boundaries were assigned to nodes 

containing Gable Mountain, located in the northern portion of the 

site. 

Potentials of the unconfined aquifer (see Appendix A) were 

used for computing head differentials, which are input parameters in 

the leakage calculations (described in the calibration section). In 

summary, the unconfined aquifer was treated as a held head surface 

(see Figure B.4.). At each node, a head differential was computed 

by taking the difference between this held head potential and the 

potential resulting from the confined aquifer simulation. 
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Aquifer Pump Test: A test to determine hydraulic characteristics of 
an aquifer by pumping a well and observing the change in hydraulic 
head of the aquifer. 

Aquifer Intercommunication: The hydrologic mixing of two or more 
aquifers. 

Aquifer: Saturated porous rock or sediment. 

Borehole: Well drilled for exploratory work. 
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Boundary Condition: In groundwater modeling, boundaries may by 
physical (impermeable, specified flux, or constant head) or derived 
from a larger model (e.g., taken from a model with physical boundaies 
assigned, and then held constant). These boundaries, which are 
translated into mathematical terms, are required by Laplace's 
equation to constrain the problem and make solutions unique. 

Conceptual Model: Contains the understanding of the aquifer system's 
physical makeup. 

Condition: Referred to in this study as a variation on the value 
assigned to a model component (see table 5). 

Constant Flux Boundary: see Specified Flux 

Constant Head Boundary: see Held Potential Boundary 

Darcy's Law: A law based on empirical evidence that describes the 
physics of groundwater flow. 

Discharge Area: Region where water is withdrawled. 

Disposal Pond: Natural or diked surface depression which allows 
liquid effluent to percolate into the underlying sediment. Effluent 
consists mainly of cooling water and steam condensates from chemical 
processing facilities. The major disposal ponds in the study area 
are Gable Mountain Pond and B Pond. 

Dupuit Assumption: The assumptions that (a) the hydraulic gradient 
is equal to the slope of the watertable, which is assumed small and 
{b) flow is horizontal. 

Equipotential line: A line mapped of equal hydraulic head values. 

Grid (finite difference): A translation of a given continuous 
aquifer to a simplified network of points, when connected forms a 
pattern of rectangular cells. Each cell, also referred to as a node, 
represents a uniform hydrogeological distribution. Solving a flow 
equation for each node yields a solution for the unknown variable. 
The grid spacing defines the size of each node and hence the spatial 
resolution of the model and its solution. 



Head Differential: The difference of head values. In this study 
the term commonly refers to the difference between the heads of the 
unconfined and confined aquifers. 

Held Potential Boundary: A type of boundary condition where head is 
known or approximated across a surface (also referred to as a 
Dirichlet Condition, Held Head, or Constant Head). 
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Hydraulic Conductivity: A coefficient of proportionality defining an 
aquifer's ability to transmit water. Effective Hydraulic 
Conductivity in this study is referred to as the conductivity in the 
direction of expected flow, e.g. in the confining bed, the direction 
is vertical. 

Hydraulic Gradient: The ratio of the change in head and the change 
in distance in a given direction. 

Interaquifer Transfer Coefficient: A coefficient which when 
multiplied by the vertical head differential yields the flow quantity 
being transferred between two aquifers separated by a semi-permeable 
confining layer. The coefficient's value is computed as the vertical 
hydraulic conductivity (effective) divided by the thickness of the 
confining layer. 

Impermeable Boundary: see No-Flow Boundary 

Mathematical Model: Translates the physical characteristics of the 
conceptual model into continuous differential equations based on 
principles of conservation of mass and Darcy's Law. 

Model Component: A constituent of the physical makeup of a model. 
Values are assigned to these constituents to define the 
geohydrological setting. Examples of model components in this study 
are: source term, interaquifer transfer coefficient, hydraulic 
conductivity, and boundary conditions (see table 5). 

Model Calibration: A process that involves the adjustment of 
geohydrological parameters, so that the model output reasonably 
agrees with observed field data. 

Mound (ground water): Elevated potentiometric surface. 

No-Flow Boundary: A groundwater divide or an impermeable barrier to 
groundwater flow. Also called zero flux or impermeable boundary. 

Numerical Model: Transforms the differential equations of the 
mathematical model into a large set of coupled algebraic equations, 
which can then be solved on a digital computer. 

Potential/Potentiometric Surface: The surface that represents the 
level of which water will rise in a well. Also referred in this 
study to head, head potential, hydraulic head, and piezometric 



surface. Observed (field) potential is used in this study in 
reference to values measured from well readings, while modeled 
potential is used in reference to resulting values from a computer 
simulation. It has units of length. 

Recharge Area: Region where water replenishs an aquifer. 

Residual (error): A means of quantifying the validity of a modeled 
potential surface. In this study the error is calculated as the 
standard deviation of the difference between the modeled head 
differentials and the head differential values as interpreted from 
observed data. 

119 

Sensitivity Analysis: The sensitivity of a groundwater system to its 
hydrologic properties and boundary conditions. Testing involves 
evaluating the response of the system to variations on values 
assigned to selected properties. 

Separations Area: Major liquid waste disposal location for the 
Hanford Site. Gable Mountain Pond and B Pond contain the largest 
volumes of liquid effluent. 

Simulation (run): The combination of all necessary input variables 
that describe a given scenario. Results of a simulation consist of 
values of an unknown variable (the solution). 

Source Term: The recharge term of Poisson's equation. It has units 
of length per unit time. 

Specified Flux: Recharge boundary to a surface that recives a 
constant rate of groundwater flo~. Also referred to as constant 
flux. 

Steady State: A condition that states that the hydraulic heads in 
the system are independent of time, which implies a state of 
equilibrium. 

Storage Coefficient: The volume of water an aquifer releases from 
or takes into storage, per unit surface area of the aquifer per unit 
change in head. Unitless. 

Transient: A condition that states that the hydraulic heads in a 
system are dependent of time. This implies a state of 
disequilibrium. 

Transmissivity: Describes the transmittance of water through an 
aquifer as a function of both the hydraulic conductivity and the 
thickness of the aquifer. It has units of length squared per unit 
time. 

VTT (Variable Thickness Transient): A set of computer codes that 



uses the finite difference method to simulate groundwater flow in 
two-dimensions. 

Water Table: The surface of an unconfined aquifer. 

Zero Flux: see No-Flow Boundary. 
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