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AN ABSTRACT OF THE THESIS OF Rachel Ann Carlin for the 

Master of Science in Geology presented June 29, 1988. 

Title: A Geochemical Study of the Eagle Creek Formation 

in the Columbia River Gorge, Oregon. 

APPROVED BY MEMBERS OF THE THESIS COMMITTEE: 

Robert 0. Van Atta 

The Early Miocene Eagle Creek Formation, a series of 

volcanic mudflows and debris flows, is exposed in the 

Columbia River Gorge about 64 kilometers east of Portland, 

Oregon. Eighty-seven samples were analyzed using 

instrumental neutron activation analysis for trace element 

concentrations. Eleven samples were analyzed by Dr. Peter 

Hooper at Washington State University using X-ray 

Fluorescence for major element chemistry. These data were 



used to determine that the Eagle Creek Formation composi­

tionally ranges from andesite to dacite. 
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Statistical analysis of the trace element chemistry 

showed that, at this point, no lateral correlations or chem-

ical stratigraphy can be determined. However, the use of 

principal component analysis and cluster analysis was shown 

to be very efficient at separating individual mudflow units, 

thereby, making trace element fingerprinting useful 

especially if field relationships are questionable. 

A comparison of the Eagle Creek samples to known 

hydrothermally altered Eagle Creek Formation samples showed 

that, on the whole, the bulk compositions of the formation 

has not been changed even though secondary clay 

mineralization is common. Additionally, the Late 

Eocene-Early Miocene Skamania Volcanic Series was tested as 

a possible source for the Eagle Creek Formation. The 

differences in trace element concentrations and the 

published ages eliminate this possibility. 

Finally, the Eagle Creek Formation was compared to 

other Miocene Western Cascade rocks. Chemically, all of 

these rocks follow trends which are probably attributable to 

andesitic volcanism and tectonic setting. A similar 

geochemical study of the thicker section of the Eagle Creek 

Formation on the Washington side of the Columbia River and 

also a study of the Clackamas River exposures might yet 

reveal a chemical stratigraphy of the Eagle Creek Formation. 
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The northernmost exposures of the Oligo-Miocene Little Butte 

Volcanic Series should also be analyzed as a possible source 

of the Eagle Creek Formation. 
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CHAPTER I 

INTRODUCTION 

LOCATION OF STUDY AREA 

The study area is located in Multnomah and Hood River 

Counties, Oregon, where the Columbia River Gorge provides 

exposure of the Early Miocene Eagle Creek Formation beneath 

the Columbia River Basalt Group. The area studied is 

roughly 6.5 square kilometers. Access to the nearly 

vertical outcrops is along Interstate Highway 84, the Union 

Pacific Railroad, and in the McCord, Tanner, and Eagle Creek 

valleys (Plate I). 

PURPOSE AND SCOPE 

The main purpose of this study was to obtain 

quantitative data on the Eagle Creek Formation to augment 

earlier qualitative work. The primary questions to be 

answered are as follows: 

1. What is the chemical rock type of the Eagle Creek 
Formation? 

2. Is the Skamania Volcanic Series a source of the 
Eagle Creek Formation? 

3. How much does alteration affect the trace element 
signatures? 

4. How much chemical variablity is there in different 



size fractions? 

5. Are there any lateral or vertical geochemical 
stratigraphic trends in the section? 

6. Are individual mudflow units distinguishable from 
each other? 

7. What was the tectonic setting of the Eagle Creek 
Formation and how does the formation compare to 
other Miocene andesitic volcanic rocks found in 
Oregon? 

~ethods used to answer these questions are: 

1. Field observation 
2. Instrumental neutron activation analysis 
3. X-ray fluorescence 
4. Statistical analysis 
5. Petrographic analysis 

PREVIOUS WORK 

Although fossil flora were collected from the Eagle 

Creek Formation as far back as 1871 by LeConte and somew~at 
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later by Diller (Williams, 1916), it was not until 1916 that 

it was named by I. Williams in his study of the Columbia 

River Gorge. Williams stated that LeConte dated the 

formation as Miocene based on the fossil flora. Williams 

(1916) specifically suggested that the Eagle Creek Formation 

was Late Miocene in age based on the fossils found by R.R. 

Chaney. However, Chaney (1918) later found 80 species of 

plants and suggested that the Eagle Creek Formation was 

"tentatively Upper Eocene because the flora assemblage 

resembled the fossils in the Upper Clarno beds of the John 

Day Basin .... " The dominant species was an oak which was 

interpreted to represent an upland environment. The 



presence of maples, elms, and sycamores was interpreted to 

indicate valleys because the delicate leaves of these trees 

could not be transported very far. Chaney also suggested 

that the source of the Eagle Creek Formation was an E-W 

trending mountain range to the north. 

Barnes and Butler (1930) included a section on the 

Eagle Creek Formation (their Warrendale Formation) in their 

work on the Columbia River Gorge. For the most part, their 

3 

work was a listing and rough description of every outcrop 

they could find. They described the formation as being 

composed of conglomerate with porphyritic andesite boulders. 

The presence of crystals of augite and plagioclase in the 

matrix enabled them to conclude that the Eagle Creek 

Formation was of volcanic origin. 

Allen (1932) also listed every exposure of the Warren­

dale Formation. He also subdivided the formation into five 

types of deposits: 

1. Dense fine-grained tuffs. 

2. Coarse tuff breccia. 

3. Crystal grit to fine-grained breccia. 

4. Boulder conglomerate. 

5. Tuff to fine tuff conglomerate. 

Allen stated that type four was practically universal on the 

Oregon side of the Columbia River; and that type five was 

most commonly found on the Washington side of the river. He 

also suggested that the Eagle Creek Formation was Early 
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Miocene in age because ''there was apparently a comparatively 

small time interval before the outpouring of the Columbia 

River Basalts.'' Additiortally, he suggested a source for the 

Eagle Creek Formation to be 6.4 kilometers southeast of Big 

Huckleberry Ridge and/or perhaps Three-Cornered Rock. 

Wise (1961) subdivided the Eagle Creek Formation into 

the Oligocene Weigle Formation and the Early Miocene Eagle 

Creek Formation based on a slight angular unconformity and 

the presence of a saprolite. He suggested that 

orthoconglomerates (<30% matrix) were deposited by rapid 

water. Paraconglomerates (>30% matrix) were deposited by 

mud flows. Sandstones and fine conglomerates were deposited 

by streams with lower velocities and smaller loads than the 

orthoconglomerates. Tuffaceous sandstones were ashfall 

deposits; some were locally reworked. Wise also contributed 

a measured section of Aldrich Butte (Figure 1) located on 

the Washington side of the river just north of Bonneville 

Dam. 

GEOLOGIC SETTING 

The Columbia River Gorge provides a spectacular cross­

section of the Cascade Range. To better understand the 

geologic history of the gorge, it is helpful to review the 

regional Cenozoic tectonic evolution of the northwestern 

United States. Igneous activity began in Washington, 

northern Idaho, and Montana about 55 Ma (Armstrong, 1978). 
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from the study area. 

5 



6 

The peak of volcanism occurred during the Challis episode in 

central Idaho and in the Absaroka arc in northwestern 

Wyoming and southwestern Montana 50-43 Ma (Armstrong, 1978). 

This basaltic volcanism (McBirney, 1978) in the east 

coincided with basaltic submarine eruptions off the coasts 

of Oregon and Washington (54-44 Ma). In the Portland area, 

the Waverly Heights basalt represents more Late Eocene 

subaerial basaltic volcanism which slightly predates the 

onset of calc-alkaline volcanism in the Western Cascades 

(Marvin Beeson, 1988, personal communication). The Clarno 

Formation of central Oregon correlates with the 

Challis-Absaroka arcs paleontologically and geochrono­

metrically (Armstrong, 1978). After the Challis episode, 

igneous activity shifted southward to Nevada and Utah and 

westward to the Cascade arc (Armstrong, 1978). See Figure 2 

for location of the Cascade arc. In the area of the 

Columbia River Gorge, the Skamania Volcanic Series (basalts, 

andesites, dacites, and volcaniclastic rocks) (Figure 3a) 

were erupted between the Late Eocene and Early Miocene 

epochs (Tolan, 1982). These rocks can be found extensively 

on the Washington side of the gorge and between Latourell 

Falls and Shepperd's Dell State Park on the Oregon side. 

During the fairly quiescent period from 38-18 Ma 

(Armstrong, 1978) volcanism became more and more calc­

alkaline (McBirney, 1978). It was toward the end of this 

period that the Eagle Creek Formation was deposited. 
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SYSTEM/SERIE~ UNIT DESCRIPTION . 
!QUATERNARY SEDIMENTARY Alluvium, talus, active land-

~ DEPOSITS slides, and flood deposits. 
~ - --- - - - - -

"""> 
BORING Chiefly olivine/plagioclase 

• AND phyric, high alumina basalt 
{m:GR CASCADE LAVAS flows erupted from small shield 
j volcanoes, cinder cones, and fis-

PLIOCENE j> sures. In the western end of the 
gorge and the Portland-Vancouver 
area these rocks are called the 

;• Boring Lavas. 

Fluvial conglomerates, sandstones, 
and siltstones deposited by the an-

TROUTDALE cestral Columbia River. East of the 
FORMATION axis of the Cascades in Washington, 

these sediments are considered part 
of the Ellensburg Formation. Thick-
ness: 0 to +365 m. 

~ RHODODENDRON 
Chiefly andesitic to dacitic lahars, 
mudflows, and agglomerates produced 

,
4> FORMATION by cascadian volcanism. Thickness: 
) 0 to 200 m. 

>o - --a: - - -< ... ,.. ~ Tholeiitic flood-basalt flows which a: were erupted in the eastern portion 'al 
MIOCENE COLUMBIA RIVER ,.. 

of the Columbia Plateau from 16.S BASALT GROUP to 12 m.y. B.P. Thickness: 0 to 
+l300 m. 

------- ..... ------------ f EAGLE CREEK Interst.ratified f:u,"ial co~1gl:Jmer-

~FORMATION ates and andesitic lahars/mudflows. 
Thickness: 150 to 365 m. 

-- -__ ,..,... _____ 
OLIGOCENE SKAMANIA Basaltic to dacitic flows, minor 

VOLCANIC amounts of pyroclastic material; 
SERIES minor to extensive alteration. 

EOCENE 

Figure 3a. Generalized stratigraphy of the Col­
umbia River Gorge. Modified from Tolan and 
others (1984). 
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Abruptly, eruption of the Columbia River Basalt Group (CRBG) 

from fissures or linear vents in northeastern Oregon, 

eastern Washington, and western Idaho (Tolan and others, 

1984) began about 16.S Ma and continued until about 6 Ma. 

According to McKee and others (1977), greater than 99% of 

the volume of the CRBG was erupted during the first 3.5 

million years (until 13.5 Ma). During this eruptive 

episode, a structural low in the Western Cascades near what 

is now the Oregon-Washington border allowed some of the CRBG 

to cross the Cascades and flow toward the Oregon coast 

(Armstrong, 1978). See Figure 2 for the distribution of the 

CRBG. The presence of the ancestral Columbia River can be 

inferred as far back as Frenchman Springs time (Figure 4) 

because of the intracanyon basalt flows which filled the 

river's channel (Tolan and others, 1984). 

Interbedded with the CRBG on the west flank of Mt. 

Hood (Tolan and others, 1984) and overlying the basalts 

elsewhere is the Rhododendron Formation (andesitic to 

dacitic volcaniclastics and lava flows). The distal 

equivalent of the Middle Miocene Rhododendron Formation 

(Gannett, 1982) fills the NE trending Dalles and Mosier 

Synclines in the CRBG and is now called the Chenoweth 

Formation of the Dalles Group (Farooqui and others, 1981). 

Overlying the Rhododendron Formation in northern Oregon is 

the mid-Miocene Pliocene Troutdale Formation. This 

formation consists of two facies of fluvial siltstones, 
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sandstones, and conglomerates. The Columbia River facies 

can be distinguished from the Cascadian stream facies by the 

presence of quartzite, schist, granite, and rhyolite clasts 

with no local source (Tolan and others, 1984). 

The culminating activity of the Cascade Range from the 

Pliocene to the present was the eruption of small basaltic 

shield volcanoes, the upwarping of the range (Allen, 1979), 

and the development of the High Cascades. See Figure 2 for 

locations of the most recently active High Cascade strata 

volcanoes. See Figure 3b for regional correlations in 

northern Oregon. 



CHAPTER II 

METHODS 

FIELD WORK 

Field work was done over a period of five months 

beginning in June, 1987. Almost all outcrops were found 

either in roadcuts along Interstate 84 or along the Elowah 

Falls, Tanner Creek, and Eagle Creek trails. Additional 

outcrop was found along the railroad cut below I-84 between 

Tanner Creek and Moffett Creek. 

Because all of the outcrops are cliffs, all measured 

sections have been scaled from photographs (Appendix F). 

Using a fluxgate magnetometer, magnetic orientations of the 

Columbia River Basalt Group (CRBG) were taken as near as 

possible to the Eagle Creek Formation/CRBG contact. Three 

sampling methods were used: 

1. In areas of minimal exposure, samples were 
collected where possible. 

2. In the roadcuts where sections were measured, 
samples were taken from each major unit. 

3. Along Eagle Creek, a pace and compass map of the 
trail was made (Figure 5). To obtain a vertical 
sequence in the type section, an attempt was made 
to collect samples every three to six meters using 
an altimeter (Figure 6). 

Additionally, samples of the Skamania Volcanic Series were 

collected from the outcrops Tolan (1982) found to be most 
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silicic (Figure 7), and therefore, a more likely source for 

volcanic mudflows. 

Approximate sample locations are marked on Plate I. 

Specific locations are labelled on photographs of the 

outcrops (Figures 8, 9, 10, 11). Appendix A contains hand­

sample descriptions of these samples. 

ANALYTICAL PROCEDURE 

Eighty-seven samples were analyzed using instrumental 

neutron activation analysis (INAA). Thirty-seven of these 

samples are replicates (repeated samples taken from the same 

outcrop). These are indicated in Appendix B by a letter 

after the sample number. Five to ten replicates of some 

samples were analyzed to provide a statistical base. All 

whole rock sample aliquots (16 grams) were crushed to a 

maximum of 0.701 mm. One sample (RC 7) was first sieved 

into four size fractions: very fine sand (0.061-0.208 mm), 

fine to medium sand (0.208-0.589 mm), coarse to very coarse 

sand (0.589-1.981 mm), and small to medium pebble gravel 

(greater than 3.962 mm). This sample was easily sieved 

because of poor induration. However, to obtain a clean 

pebble-sized sample, ultrasound was used to disaggregate the 

surrounding smaller sized grains. The larger fractions from 

this sample were also crushed to 0.701 mm or less. 

Sample splits of about one gram were placed in clean 

2/5 dram polyvials and heat sealed to prevent leakage. More 
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Figure 7. Sample location map for Skamania Vol­
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Figure 8. Outcrop on west side of McCord Creek 
with sample locations. Also note soil zone 
between two lower and one upper mudflow units. 

f 
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Figure 9. Outcrop on west side of Eagle Creek 
at exit ramp from I-84. Photograph shows sample 
locations. The very thin, whitish strata are 
interpreted to be tephra layers because of grain 
size, pumice fragments, and abundance of excel­
lently p-reserved leaves and tree bark. 
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Figure 10. Location of hydrothermally altered 
samples. Intrusion is on right; altered Eagle 
Creek Formation is on left. Pebble and cobble 
conglomerate texture is preserved. Outcrop is 
about 122 meters east of Figure 9. 
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Figure 11. Sample location on east side of Eagle 
Creek. Large clast samples (RC 11-13) taken from 
unstratified lower unit which contains many pet­
rified tree fragments and large sandstone rip-up 
clasts. Bedded unit is inversely graded and con­
tains conglomerate lenses near top of cliff. 
Cliff above bench is part of the Ruckel Landslide. 
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emphasis was placed on obtaining similar sample volumes than 

insuring a one gram mass. The samples were irradiated at 

250 kW for one hour at the Oregon State University TRIGA 

reactor. Gamma ray spectra were first obtained by counting 

five days after irradiation. A second count was done 18 22 

days after irradiation. Elemental abundances and errors 

were calculated by comparison to U.S.G.S. standards AGV-1, 

GSP-1, and to Portland State University standard 0-16. 

U.S.G.S. standard element concentrations were obtained from 

Flanagan (1976); PSU standard element concentrations were 

obtained from Gordon and others (1968). 

After element concentrations were calculated, selected 

samples and replicates were sent to Dr. Peter Hooper at 

Washington State University for major element analysis using 

X-ray fluorescence (XRF). Additionally, a thin section was 

made of each sample that was analyzed by XRF and then 

described using a petrographic microscope. 



CHAPTER III 

DATA ANALYSIS AND DISCUSSION 

PALEOMAGNETIC SURVEY 

The paleomagnetic orientation of the Columbi~ River 

Basalt Group flows was measured at three places using a 

fluxgate magnetometer. At Eagle Creek and Tanner Creek, the 

measurements were taken just above the Eagle Creek 

Formation/CRBG contact. At McCord Creek, no basalt was 

found in situ near the contact which is near the base of 

Elowah Falls. Therefore, the measurements were taken about 

91 meters above the contact at the base of the third CRBG 

flow above the top of Elowah Falls. 

At each location, the paleomagnetic orientation of 

four samples was measured to insure consistent results. At 

Eagle Creek, all samples recorded normal magnetic 

polarities. At Tanner and McCord Creeks, all samples 

recorded reversed magnetic polarities. According to Marvin 

Beeson (personal communication), the normal samples probably 

belong to the N1 magnetic polarity and the reversed samples 

belong to the R2 magnetic polarity in the Grande Ronde 

Basalt (see Figure 4). 

This survey indicates that at the time of the 

deposition of the CRBG there was some surface relief on the 
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Eagle Creek Formation. Also, to the south, more of the 

lower parts of the CRBG are exposed. Since the survey at 

Eagle Creek was done about 1 .5 kilometers farther south than 

at the other creeks, the differences in polarity are 

expected. 

GEOCHEMISTRY 

To characterize the Eagle Creek Formation in terms of 

chemical rock type, major element analysis was done on 11 

samples (See Appendix B). The whole rock silica content in 

these samples ranges from about 60-68 weight percent. On 

the chemical classification diagram of volcanic rocks 

(Figure 12), the bulk composition of the Eagle Creek For-

mation ranges from andesite to dacite. Many of the clasts 

in the formation are andesite. Therefore, one wonders why 

there is such a wide range in silica content. The 

explanation of this observation might stem from the nature 

of the Eagle Creek deposits. Mudflows contain many large 

clasts. Associated with these clasts is a large volume of 

matrix material which must be derived from the more 

explosive, higher silica tephras produced in a volcanic 

eruption. Thus, the range in chemical composition is not 

unexpected. 

For generalization, Table I contains the averages of 

19 trace elements detected in the Eagle Creek Formation and 

in the Skamania Volcanic Series. Of special importance here 
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Na La Sa Fe Sc 

Whole Rod 3.32 12.5 3.15 4. 9(1 12.2 
ln=B21 

Whole Rock 
excluding 3.28 12.2 3.12 5.44 12.B 
large Clasts 
and Tephra 
Layers 

(n=57l 

Large Clasts 3.b7 15.4 4.21 4.83 15.6 
ln=Sl 

Tephra 3.33 12.6 2.97 3.38 10.5 
Layers 
<n=20l 

Altered 
Sa11ples 1).32 13.7 1.57 5.02 23.b 

ln=2l 

Sta11ania 
Volcanic 3.B5 20.0 6.8 7.2 20. 2 
Series 

!n=2l 

K 

TABLE I 

~".'tRAbE Tf\ACE ELEMENT COllCENTRIHJONS 
IN ~knCT!UUS OF THE EAGLE CREEK FORMhllON 

,;;>II IN THE SL AMAN IA VOLCAtllC SEh IES 

Ta Eu Ce Hf Th Lu 

1.58 0.64 I. 07 24.5 3.35 2.42 O. IB 

Ba Tb Yb Nd 

346. 0.35 1. 23 18.4 
ln=rn (n=49l (n=641 (n=72l (n=28) (n=41l 

I. 90 (I, 1:.5 l. 02 23.2 '! .. 27 2.38 O. IB 347. 1), 34 I. 38 17.5 
!n=21) !n=351 (n=391 ln=471 ln=l51 (n=20l 

I. 26 o. 50 I. I B no 3.90 3.33 0.20 312. 0. 50 1.18 22.0 

0.73 0.65 1.17 26.l 3.43 2.31 1).14 7C"1 0.32 o. 97 18.6 .)J..'.i. 

(1i=l I l !n=BI (n=lb) 
!n=61 

ttD. I. 37 1).37 19.0 5.15 7. I N.D. 11.D. 0. 5} N.D. H.O. 

tl.D. 0. 87 !. 49 35.B 7.3 5.9 0,61) 480. 0.87 4 .1 rto. 

Cr Co Sr 

40.0 16.9 512. 
(n=6(!1 

37.0 19. (J 502. 
!n=37) 

49.(l I!. 7 530. 
(n=4l 

45.0 12.4 501. 

78.0 2.3 ti. 0. 

96.0 21. I) N.D. 
In= 1 l 

N 
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is the comparison between these two units. Since the 

Skamania Volcanic Series samples are an andesite and a 

dacite, it seemed logical to compare these samples only to 

the large clast samples in the Eagle Creek Formation to test 

whether the Skamania volcanoes could have been a source for 

the Eagle Creek mudflows. Figure 13 shows the trace element 

concentrations in these samples normalized to the Eagle 

Creek whole rock averages for reference. While some 

elements in both the clasts and the Skamania volcanics show 

similar enrichment and depletion patterns, there are 

significant differences between the two units as a whole. 

Also, the Eagle Creek clast concentrations are closer to the 

Eagle Creek whole rock concentrations than the Skamania 

Volcanic Series values. 

Additionally, when one compares only the rare earth 

elements normalized to the U.S.G.S. standard AGV-1 (Figure 

14), one observes a strongly negative Eu anomaly in the 

Skamania Volcanic Series whereas both the Eagle Creek 

Formation whole rock and large clast samples have a slightly 

positive anomaly. 

The published age of the Skamania Volcanic Series is 

26.6-28.1 Ma (Phillips and others, 1986). The Eagle Creek 

Formation is probably quite a bit younger than this age 

range. A reason for this suggestion is that the preser-

vation of 396 meters of mudflows requires either rapid 

subsidence or burial or both. It was mentioned earlier that 
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Figure 14. Rare earth element spider diagram of 
Eagle Creek Formation and Skamania Volcanic Series. 
Note pronounced negative Eu anomaly in the Skamania 
Volcanic Series and slightly positive Eu anomaly 
in the Eagle Creek Formation (whole rock and large 
clasts). 
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the Columbia River Basalt Group was able to cross the 

Cascade arc and proceed toward the modern Oregon coast. The 

required topographic low might have developed some time 

before the eruption of the CRBG and allowed the thick 

accumulation of the Eagle Creek Formation. This idea would 

also allow rapid burial of the formation by the CRBG. 

Within the Eagle Creek Formation, the rare earth 

elements are positively correlated with Na 20 as shown by a 

plot of Na 20 versus La (Figure 15). The samples which do 

not follow this pattern are RC 5, EC 12-A, and EC 12-B (see 

Figures 8 and 10 for sample locations): they are all 

significantly depleted in Na 2o. Sample RC 5 is a tuff 

clast. EC 12-A and -B are two samples altered as a result 

of an intrusion on the west side of Eagle Creek. Also 

plotted in Figure 15 are average compositions of basalt, 

basaltic andesite, and andesite from the Cascades, Alaska, 

and the Aleutians (Ewart, 1982). While it appears that 

there are a lot of secondary clays in hand samples of the 

Eagle Creek Formation (Appendix A), it seems that the bulk 

chemistry has not been affected because the Eagle Creek 

samples and the average rock samples plot on the same line. 

One final observation of the general geochemistry of 

the Eagle Creek Formation indicates that different size 

fractions do, indeed, have variable compositions. In a plot 

of Cr vs Co (Figure 16) the four size fractions of sample RC 

7 show a steady increase in Co concentration with a decrease 
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in size. There also seems to be high Cr concentrations in 

both the the finest and coarsest fractions. This phenomenon 

might be explained by a higher Cr content in the glass and 

volcanic rock fragments as compared to the plagioclase sand 

which makes up the matrix. 

STATISTICAL ANALYSIS 

The purpose for analyzing replicate samples in this 

study was to create a database on which to perform statis 

tical analysis which would allow conclusions to be drawn 

with some degree of certainty. In the following two 

examples, an attempt was made to make lateral correlations 

in the Eagle Creek Formation to establish stratigraphic 

markers. Although no correlations can be made at this 

point, a new method was developed to visualize the 

statistical conclusions. 

In the first example, sample sets MCC 25 and EC 15 

(see Figures 8 and 9 for sample locations) were tested. At 

McCord Creek, a 46 centimeter thick tephra layer (Figure 17) 

was found at the base of the outcrop on the west side of the 

creek. This layer is composed of 25.4 cm of light purple 

siltstone containing abundant carbonized wood fragments and 

abundant fine-grained, rounded clasts up to 5 mm in diameter 

which resemble accretionary lapilli. Above this layer is 

1.3 cm of altered, fine-grained sandstone which grades into 

17.9 cm thick layer of light gray, laminated, fine-grained 



Figure 17. Tephra layer at McCord Creek. Basal 
purple siltstone contains abundant carbonized 
wood fragments and rounded pumice fragments. 
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sandstone containing stringers of the apparent accretionary 

lapilli. Petrographically, these lapilli are only Tounded 

pumice fragments with little or no internal structure. 

However, because of the texture of this unit and the 

abundance of plant remains, this layer is still presumed to 

be a tephra deposit. 

At Eagle Creek, this same sequence was found on the 

bench above the exit ramp from I-84 (see Figure 9), except 

that the texture is much coarser. The best way to compare 

these samples would have been to analyze only the finer 

fractions since it was shown earlier that there are chemical 

variations between different size fractions. However, the 

Eagle Creek sample was so well indurated that it would have 

been practically impossible to remove the coarsest fractions 

in order to compare the unit to the one at McCord Creek. 

The variances and means of 12 elements were tested 

between the two units using the F-test and t-test (Tables II 

and III) at the 95% confidence level. The results show that 

seven of the twelve elements have statistically different 

means. Four of these seven elements are immobile elements 

which also supports the conclusion that these are different 

units. Thus, it is clear that the two units have different 

compositions and are not correlative. 

In the second example, sample sets RC 3 and TC 7 were 

tested. While petrified and carbonized wood is quite common 

in the Eagle Creek Formation, upright petrified trees are 
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TABLE II 

MEANS AND STANDARD DEVIATIONS OF ELEMENTS 
IN SAMPLES MCC 25 AND EC 15 

AND SAMPLES RC 3 AND TC 7 

MCC 25 EC 15 
(n=lO) (n=lO) 

ELEMENT MEAN STANDARD MEAN STANDARD 
DEVIATION DEVIATION 

Na 3. 16 0. 19 3.50 0. 19 
La 12.8 1. 11 12.3 1 . 1 1 
Sm 3. 23 0.28 2.71 0.34 
Fe 2.86 0. 16 3.90 0.58 
Sc 9.92 0.86 11 . 0 0.51 
Co 16.6 3.66 8.28 0.64 
Cr 29.9 5.02 60.1 6. 1 7 
Hf 3.94 0. 19 2.92 0.25 
Th 2.82 0. 2 3 1 . 81 0.21 
Ta 0.73 0.04 0.56 0.07 
Ce 27.2 2.58 25.0 1.70 
Eu 1 . 2 8 0.09 1. 06 0.05 

RC 3 TC 7 
(n=6) (n=6) 

Na 3.25 0.07 3. 19 0.05 
La 13.5 1. 37 11 . 6 1. 39 
Sm 3.4 0.21 2.88 0.20 
Fe 5.81 .032 6. 10 0.38 
Sc 13.6 0.53 13. 2 1. 2 7 
Co 18.0 0.90 19.8 2.08 
Cr 39.3 4. 13 33.5 8.89 
Hf 3.42 0.29 3.30 0.21 
Th 3.08 0.29 2.56 0.21 
Ta 0.63 0.06 0.60 0.09 
Ce 30.3 2. 27 24.5 3.03 
Eu 1 . 21 0.06 1.04 0.04 



ELEMENT F-VALIJE 
( •5%) 

Ha 1.01 
L11t 1.02 
Sm 1. 57 
Fe 13.4 
Sc 2.91 
Co 33.4 
Cr 1. 51 
Hf 1. 72 
Th 1. 27 
Tl'\ 3.60 
Ce 2.29 
Eu 2.89 

"" 2.29 
L" 1.03 
Sm 1.10 
F~ 1. 44 
Sc 5. 71 
Co 5.28 
Cr 4.63 
Hf 1. 86 
Th 2.03 
Ta 2.14 
Ce 1. 79 
Ett 2.24 

TABLE III 

STATISTICAL COMPARISON OF VARIANCES AND MEANS 
BETWEEN SAMPLES MCC 25 AND EC 15 

ANO SAMPLES RC 3 AND TC 7 

HCC 25 vs EC 15 

F-CRITICAL t-VALllE t-CRITICAL CONCLUSION 
( .. 5\) 

3.18 -4 .12 +/-2.10 MEANS DIFFERENT 
3.18 0.847 +/-2.10 CAN'T TELL IF MEANS DIFFERENT 
3.18 3.75 +/-2.10 MEANS DIFFERENT 
3.18 N.A. ------- VARIANCES DIFFERENT 
3.18 -0.057 +/-2 .10 CAN'T TELL TF MEANS DIFFERENT 
3.18 N.A. ------- VARIANCES DIFFERENT 
3.18 -12.0 +/-2.10 MEAN1' DIFF&RENT 
:.l.18 10.3 +/-2 .10 MEANS DIFFEHt'ENT 
3.18 10.4 +/-2.10 MEANS DIF'FE~ENT 
3.lR N.A. ------- VARIANCES DIFFERENT 
) .18 2.27 +/-2.10 MEANS DIFFERENT 
3.18 6.53 +/-2.10 MEANS DIFFERENT 

RC 3 vs T<" 7 

•;. 05 1. 68 +/-2.57 CAN'T TEL!, IF MEANS DIFFERENT 
•;.05 2.)9 +/-2.57 CAN'T TELL IF MEANS DIFFERENT 
5.05 4.33 +/-2.57 MEANS DIFFERF:NT 
5.05 -1.37 +/-2.57 CAN'T TELL IF MEANS DIFFERENT 
5.05 N.A. ------- VARIANCF:S DIFFERENT 
5.05 N.A. ------- VARIANCES DIFFERENT 
5.05 1. 45 +/-2.57 CAN'T TELL IF MEANS DIFFERENT 
5.05 0. 691 +/-2.57 CAN'T TELL IF MEANS DIFFERENT 
5.05 3.54 +/-2.57 MEANS DIFFER F:NT 
5.05 0.701 +/-2.57 CAN'T TELL IF MEANS DIFFERENT 
5.05 3.75 +/-2.57 MEANS DIFFERENT 
5.05 5.48 +/-2.57 MEANS DIFFERENT 

w 
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rare. In the outcrop on the west side of McCord Creek, a 

soil zone containing two upright petrified trees (Figure 18) 

separates two lower units from one upper unit. Sample RC 3 

was taken from the uppermost unit. On the west side of 

Tanner Creek three upright petrified trees were found near 

road level (Figure 19). Sample TC 7 was taken from above 

the soil zone. 

The attempt to correlate two seemingly different rock 

types (Appendix A) was undertaken because upright petrified 

trees are a rarity in the Eagle Creek Formation; perhaps 

they were preserved during the same eruptive episode. If 

so, another lateral stratigraphic correlation might be 

established. Again, the variances and means of 12 elements 

were tested (Tables II and III) at the 95% confidence level. 

In this example, only four of the twelve elements had 

statistically different means. But, one must still conclude 

that these two samples are not correlative, especially 

because three of these four elements are immobile elements. 

To better visualize the differences discussed above, a 

method to differentiate between sample sets was developed as 

part of a class project (Rachel Carlin and Willard Titus, 

1987). In this case, a composite of the same 12 elements 

used above was analyzed. Cluster analysis is a method to 

differentiate between dissimilar units. However, it was 

found that tuf f s and volcaniclastic sediments have too many 

genetic similarities to be efficiently clustered. The 



Figure 18. Eastern part of outcrop on the west side of 
McCord Creek. Significant unit here is soil zone containing 
two upright petrified trees. 

w 
\.0 



Figure 19. Western part of outcrop on the west 
side of Tanner Creek. Note three upright petri­
fied trees. Also note orange staining below 
trees which is almost always associated with pet­
rified wood in the Eagle Creek Formation. This 
associated is useful in identifying possible soil 
zones and tephras from a distance. 
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correlation coefficients between samples was greater than 

0.9. To alleviate this problem and to exaggerate 

differences between units, principal component analysis was 

run on the data first. Then the principal component scores 

(eigenvectors) which represented 90 95% of the variability 

of the 12 elements in the samples were used as the data set 

in cluster analysis. This method proved to be very good at 

producing the expected results. In Figure 20 all four of 

the samples sets used above were analyzed at the same time. 

Each branch off the basal sample is considered one group. 

It can be seen that each sample set falls into its own group 

with one exeption: TC 7-A is grouped with sample set RC 3. 

This one "mistake" in 32 samples is equivalent to a 97% 

success in producing the expected results. 

TRACE ELEMENT FINGERPRINTING 

The task of identifying individual mudflow units in 

the field without the presence of a soil zone, charcoal 

layer, or tephra layer is very difficult. This study was 

partly intended to determine whether mudflow units could be 

fingerprinted usinr trace element geochemistry. The dis­

cussion above on testing whether two samples were different, 

showed that, indeed, trace element signatures can be more 

useful than major element chemistry. Sample sets RC 3 and 

TC 7 are statistically different, but these two samples have 

nearly identical major element concentrations (Appendix C). 
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Figure 20. Dendrogram showing principal compon­
ent-cluster analysis groupings. All replicates 
of a sample are grouped together except for one, 
TC 7-A, which plots with the RC 3 samples. 
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The outcrop on the west side of McCord Creek was 

tested to see if trace element fingerprinting was possible. 

Here, field evidence indicated that there were three 

distinguishable units: two below and one above an 

identifiable soil zone (upright petrified trees exposed, see 

Figure 18) (Figure 21). 

difficult to identify. 

The two lower units were more 

The decision to call them two units 

was based on textural differences and the presence of an 

approximately 3 cm thick discontinuous ashy layer containing 

a high concentration of carbonized wood fragments. 

Texturally, the lower unit grades from a matrix- to 

clast-supported cobble/boulder conglomerate to 

coarse-grained volcaniclastic sandstone to medium-grained 

sandstone. The second unit is a matrix- to clast-supported 

cobble conglomerate. 

When the relationship between these three units is 

shown graphically (Figure 22a), it is quite evident that 

there are significant chemical differences among the three 

units. This result is also produced with other plots 

including the Fe/Sc versus La/Sm ratios (Figure 22b). The 

reason for using ratios is that in similar rocks, each 

element can have a relatively large concentration range, but 

ratios remain fairly constant (Marvin Beeson, oral 

communication). Therefore, using ratios emphasizes the 

differences between each rock unit. 

As a final test of these results, the principal 



Figure 21. Western part of outcrop on the west side of 
McCord Creek showing tree rnudflow units and soil_ zone. 

.t:::­

.t:::-



4.0 Jvf cCORD CREE I< 
() 

'? @ ~3.5 
6 

~ 0 6 RC 3 0 
() MCC 29 6 

~ 0 6 () 
~3.0 

DO MCC 13 

6 

2. 5 -4........,._..,._,................,..........,....,-......,....,.~...,....,-......,__,.-.-.-..-..-..................... ...,....,-,............ .......... ...,....,-.....,....,.... 

1.5 2.0 2.5 3.0 3.5 

4.50 

c 
h 4.25 

~ 
~ 4.00 

~ 3.75 
VJ 
)3.50 

~ 
3.25 

Th (ppm) 

0 
RC 3 

0 0 
0 

0 D 
MCC 29 

D 
0 

0 

3. 00 -i-,.....,.........,..............,.....,_,.....,...,.....,.......,....,.....,...,...,....,.....,.....,...,......-r-T"""l"-'1r-r-T~.....,....,-r-:1""'T""T-r--T'""1 

0.30 0.35 0.40 0.45 

Fe/Sc RATIO 
Figure 22. A and B: Trace element plots 
which show the distinctions between three rnud­
flow units at McCord Creek. Each point repre­
sents a replicate analysis. 

0.50 

45 



46 

component analysis-cluster analysis combination was used 

with the six elements shown in Table IV. Using three of the 

principal component scores (90% of variability in rocks), 

the cluster program produces the three groupings expected 

(Figure 23) with only three "mistakes". This deviation from 

the expected result is 81% accurate in dividing the outcrop 

into three units. 

As a result of these analyses, it can be seen that 

perceptible chemical differences exist between mudflow 

units. By being able to differentiate between units, this 

method is useful in substantiating questionable field 

relationships because well-lithified mudflows are difficult 

to distinguish from each other. 

GEOCHEMICAL STRATIGRAPHY 

Statistical analysis showed that determining lateral 

correlations using trace element chemistry is very difficult 

and may not always work, especially in rocks which are 

fairly uniform chemically. Using the principal component­

cluster analysis combination again, an attempt was made to 

determine a geochemical stratigraphy in the Eagle Creek 

Formation. Six immobile elements (Hf, Th, La, Sc, Co, and 

Ce) were chosen by plotting element concentrations against 

stratigraphic position of the 14 samples collected along the 

Eagle Creek Trail. Mobile elements and those elements with 

fairly constant concentrations throughout the section were 



TABLE IV 

ELEMENT CONCENTRATIONS IN THE 
THREE McCORD CREEK UNITS 

Sm La Fe Sc Hf Th 

3.24 12.7 6.28 13.65 3.90 3. 10 
3.73 16. 1 5.73 13.19 3.30 3.52 

RC 3 3.47 13.5 5.33 12.97 3.20 2.64 
3.49 13.6 5.81 14. 18 3.50 2.98 
3.37 12. 8 6.02 14. 1 7 3.50 3.00 
3. 12 12.3 5.72 13. 1 7 3. 10 3.25 

2.64 10.3 6.50 12.80 3.20 2.30 
3.22 13. 0 6.00 13.20 3.30 2.20 

MCC 13 2.26 9.80 5.60 11 . 30 2.80 2.28 
2.97 11 . 8 5.80 12.30 3. 10 2.28 
2.65 1 1 . 1 5.90 12.40 3.40 2.30 

3. 13 11 . 0 5. 10 13.50 3. 10 1. 80 
2.92 10.3 5.00 12.40 2.90 1. 72 

MCC 29 2.99 10.5 6.80 14.50 3. 10 1. 80 
3.25 10.5 5.50 14.90 2.90 1. 80 
3. 12 10.4 5.50 12.80 3.30 2.00 

All concentrations in ppm except for Fe which is in oxide 
weight %. 
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eliminated. In addition to these 14 samples, four other 

samples from the Eagle Creek area (RC 7-10) and seven 

samples from the Tanner Creek area (RC 6, TC 3 and 7-11) 

were analyzed. These samples represent a lower part of the 

section than those samples from the Eagle Creek Trail. The 

results show (Figure 24) that within each group, samples 

from the lower part of the section correlate chemically with 

samples from the upper part of the section; there are no 

recognizable patterns. 

One would think that there might be a chemical strat­

igraphy in a thick pile of volcanic mudflows if, over time, 

there was an evolution of the volcano from which these 

deposits were derived or if the mudflows were a product of 

more than one volcano. So, one must ask, why is there no 

obvious chemical stratigraphy? I believe the following 

reasons can answer that question. First, as explained 

earlier, using principal component analysis exaggerates 

differences between samples which would otherwise have a 

high correlation coefficient. This means that the examined 

section of the formation is chemically uniform on a large 

scale. Secondly, the thickness of the section analyzed in 

this study is only about 61 meters. It would not take very 

much time, geologically, to accumulate mudflow units this 

thick. Perhaps if a thicker section (at least 150 meters) 

were analyzed, significant chemical/stratigraphic 

differences would be found. 
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Thus, although no geochemical stratigraphy can be 

established now, enough data are available as a basis for an 

examination of the 396 meter thick section of the Eagle 

Creek Formation exposed in Washington. Perhaps correlation 

of sections of the formation from one side of the river to 

the other will be possible. 

TECTONIC ANALYSIS 

In order to put the information in the previous 

discussion into geologic perspective, the Eagle Creek For­

mation was compared to other Western Cascade rocks. The 

first question one might ask is how do the lower Miocene 

Eagle Creek mudflows which underlie the Columbia River 

Basalt Group compare to the middle Miocene Rhododendron and 

Dalles Formations mudflows and lavas which overlie the CRBG? 

Using two good discriminators, Ti0 2 and P 2o5 , Figure 25 

shows that, for the most part, the Eagle Creek Formation can 

be distinguished from the Rhododendron and Dalles Formations 

based on their Ti0 2 concentrations. Sometimes, the Eagle 

Creek Formation is considered part of the Oligo-Miocene 

Little Butte Volcanic Series (Peck and others, 1964) which 

ranges from basalt to rhyolite. Figure 25 also shows how 

the Eagle Creek Formation relates to the Little Butte 

Volcanic Series. Notably, three samples (one basalt and two 

andesites) fall into the Eagle Creek Field. The other group 

of Little Butte samples are all dacites and rhyolites. 
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One may now ask, "do other Western Cascade rocks have 

their own signatures also''? Or does arc volcanism produce 

trends into which the Eagle Creek, Rhododendron, and Dalles 

Formations and the Little Butte Volcanic Series fall? 

Figure 26 is the same plot as Figure 25 with the addition of 

middle Miocene andesites collected from an area east of 

Oakridge, Oregon by Sherrod (1986). These data show 

variations in both Ti02 and P205 which, when combined with 

the data from Figure 26 produce a linear trend. This trend 

indicates that there is not much change in the Ti0 2/P 205 

ratio over time or space. Coupled with this interpretation 

is the fact that average basalt, basaltic-andesite, and 

andesite compositions of Tertiary-Recent age from the 

Cascades, Alaska, and the Aleutians also fall along the 

trend. 

As a final question, one is tempted to ask whether the 

tectonic setting of the Eagle Creek Formation can be deter-

mined by its chemistry. In their study of Paleozoic gray-

wackes in Australia, Bhatia and Crook (1986) determined that 

certain trace and minor element plots were very useful in 

differentiating between four tectonic settings: 

1. oceanic island arc, 
2. continental island arc, 
3. active continental margin, and 
4. passive continental margin. 

Since graywackes and mudflows represent mixed rocks, 

it seemed like an interesting idea to use Bhatia and Crook's 

plots to see which setting the Eagle Creek Formation 
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belonged to. Would the trace element relationships be more 

like oceanic or continental island arcs? It is worth noting 

Bhatia and Crook's descriptions of the crust associated with 

the sedimentary basins they studied. They define an 

"oceanic island arc" as an arc that was formed on oceanic 

crust or partly on thin continental crust; whereas, a 

"continental island arc" is defined as an arc that was 

formed completely on well-developed continental crust or 

thin continental margin. Bhatia and Crook's oceanic island 

arc graywacke consisted of 50-70% andesitic rock fragments 

with abundant plagioclase feldspar. The continental island 

arc graywacke was quartz intermediate with volcanic and 

argillaceous rock fragments. They determined that the 

quartz component was derived from felsic volcanism with only 

a minor contribution from older sedimentary rocks. They 

also noted that, modally, the continental island arc 

graywacke was similar to modern back-arc and continental arc 

sands. For distinguishing between the two arc settings, 

Bhatia and Crook concluded that the best discriminatory plot 

was La vs Th. These two elements are particularly 

well-suited for these interpretations because they are both 

immobile. Figure 27 shows that the Eagle Creek Formation 

and also the Rhododendron and Dalles Formations plot in the 

oceanic island arc field. The reason these rocks plot in 

the oceanic island arc field may be the result of geographic 

location. The volcanoes which produced these rocks were 
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Figure 27. Plot of La versus Th show­
ing tectonic settings. l=oceanic island 
arc, 2=continental island arc, 3=active 
continental margin, 4=passive contin­
enetal margin. Modified from Bhatia 
and Crook {1986). 
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developed in the Columbia embayment, the broad arc which 

extends from the Klamath Mountains to northeastern Oregon 

and southeastern Washington and then back to the Olympic 

Mountains. It is possible that the edge of this embayment 

represented the continental margin through the Mesozoic 

Period and that the floor of the embayment is composed of 

57 

oceanic crust (King, 1977). During the Cenozoic Period the 

embayment was filled with sediments and volcanic rocks 

(Hammond, 1979). Thus, any volcano erupting within the 

Columbia embayment would not be contaminated by continental 

crust and would not show this influence in plots like Figure 

27. 



CHAPTER IV 

CONCLUSIONS 

SUMMARY 

To summarize, the Eagle Creek Formation is the product 

of andesitic to dacitic island arc volcanism which developed 

on oceanic crust and produced thick deposits of debris flows 

and mudflows. A chemical comparison showed that the 

Skamania Volcanic Series is not the source rock for the 

Eagle Creek Formation. In fact, the Skamania Volcanic 

Series is probably too old to be the source for the Eagle 

Creek Formation. 

Within the Eagle Creek Formation, no lateral 

correlations were established. That is not to say that none 

can be found. Further study of this problem should focus on 

the many distinguishable tephras. Additionally, no vertical 

stratigraphic patterns were discovered. However, much of 

this difficulty is probably due to the lack of a thick 

exposure on the Oregon side of the Columbia River. Study of 

the Washington exposure might provide a thick enough 

sequence to establish a chemical stratigraphy. 

Although megascopic differentiations did not work, 

this study has shown that trace element geochemistry can be 

used macroscopically as a fingerprinting technique. This 



study also established the usefulness of the principal 

component-cluster analysis combination when trying to 

differentiate between units in rocks that are chemically 

homogeneous. 
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As a final result of this study, it was shown that the 

Eagle Creek Formation is distinguishable from the middle 

Miocene, post-CRBG Rhododendron and Dalles Formations. 

However, comparison of these three formations with Middle 

Miocene andesites from the central Oregon Western Cascades, 

shows that arc volcanism produces certain trends which are 

the result of a common tectonic setting. This idea is 

important for further study of volcanic mudflows because 

whole rock analyses of the Eagle Creek Formation including 

both matrix and coarse fractions did not produce anomalous 

results when compared to the other formations in which only 

lava clasts and lava flows were analyzed. 

RECOMMENDATIONS FOR FURTHER STUDY 

To establish any kind of stratigraphic relationships, 

the trace element chemistry should be completed on Eagle 

Creek Formation samples from the Washington side of the 

Columbia River. Furthermore, there are exposures of the 

Eagle Creek Formation in the Clackamas River area. These 

deposits should be analyzed and compared to the northern 

exposures of the formation. 

The strikes and dips obtained in this study (see Plate 
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I) seem to suggest that the source area for the Eagle Creek 

Formation is to the north. However, the only known possible 

source to the north, the Skamania Volcanic Series, can be 

eliminated. If one looks southward, the Little Butte 

Volcanic Series presents another possibility. Figure 25 

showed that there is some overlap of Ti02 and P20s 

concentrations with the Eagle Creek Formation. The 

northernmost exposures of the Little Butte Volcanic Series 

should be compared to both the Clackamas River and Columbia 

River Gorge exposures of the Eagle Creek Formation using 

trace element geochemistry. 
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RC 1 

RC 2 

RC 3 

RC 4 

RC 5 

RC 6 

RC 7 

RC 8 

RC 9 

RC 10 

APPENDIX A 

HAND SAMPLE DESCRIPTIONS 

Light gray, fine to coarse-grained, fairly well 
indurated volcaniclastic sandstone. 1-3 mm 
andesitic clasts in a plagioclase, hornblende, 
and clay matrix. 

Grayish black, massive, phyric hornblende 
pyroxene plagioclase andesite clast. 

Brown, matrix-supported pebble conglomerate with 
angular to subrounded 1-30 mm andesitic and 
pumiceous clasts in a volcaniclastic matrix of 
plagioclase and hornblende crystals. 

Whitish gray, massive, phyric hornblende 
plagioclase andesite with clay alteration. 

Dark gray, friable vesicular b3nded glassy 
pyroxene plagioclase welded tuff clast. 

Light gray volcaniclastic matrix-supported con 
glomerate containing angular to subrounded 1-15 
mm andesitic and pumiceous clasts in a plagio­
clase and clay matrix. 

Medium brown, very coarse-grained clast­
supported sandstone/conglomerate containing 
1-15 mm (rarely 10 mm) angular to subrounded 
andesitic clasts. 

Brown, fine- to coarse-grained silty volcani­
clastic sandstone containing 1-3 mm rock frag­
ments, wood fragments, and plagioclase and 
hornblende crystals. 

Yellow-tan, fine- to coarse-grained volcani­
clastic sandstone containing 1-10 mm pumiceous, 
andesitic, and possibly basaltic clasts in a 
glassy/clay matrix containing plagioclase and 
hornblende crystals and rare wood fragments. 
Some limonite present. 

Light brown, fine- to coarse-grained, silty 



RC 11 

RC 12 

RC 13 

MCC 25 

EC 15 

TC 7 

TC 6 

EC 16 

EC 17 

EC 18 
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volcaniclastic sandstone containing plagioclase 
crystals and plant debris. 

Dark gray-black phyric hornblende pyroxene plag 
ioclase andesite with epidotization of plagio­
clase. 

Dark gray-black vesicular coarsely phyric 
hornblende andesite clast with clay alter­
ation and/or zeolitization. 

Black glassy phyric pyroxene plagioclase basalt 
clast. 

Light gray, fine-grained, slightly laminated 
volcaniclastic sandstone with iron staining 
along fracture planes. Mostly plagioclase, 
rare microscopic f erromagnesian minerals and 
pumiceous rock fragments in a clayey matrix. 

Gray, coarse-grained, slightly laminated volcan 
iclastic sandstone with abundant limonite. 
Mostly plagioclase crystals, some hornblende, 
rare tuff clasts up to 3 cm in diameter. 
Abundant wood fragments. 

Gray, coarse-grained volcaniclastic sandstone. 
Mostly plagioclase crystals, some hornblende and 
carbonaceous material in a clayey matrix. 
Some limonite present. 

Brown and black silicified tree. 
still visible. 

Structures 

Light brown, friable volcaniclastic sandstone. 
Mostly plagioclase crystals, common microscopic 
ferromagnesian minerals and andesitic rock 
fragments. Yellow-brown clay coatings on 
grains. 

Brown-gray, friable, coarse-grained pebbly 
volcaniclastic sandstone. Common plagioclase 
crystals. Andesitic rock fragments up to 2 cm 
in diameter and altered pumiceous clasts in a 
fine-grained clayey matrix with ferromagnesian 
minerals. 

Light gray, friable, coarse-grained, pebbly 
volcaniclastic sandstone. Mostly plagioclase 
and some hornblende crystals in a fine-grained, 
iron-stained matrix. Common andesitic and pum­
iceous clasts up to 3 cm in diameter. 



EC 19 

EC 20 

EC 21 

EC 22 

EC 23 

EC 24 

EC 25 

EC 26 
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Light brown, coarse-grained, pebbly volcani- . 
elastic sandstone. Mostly plagioclase and some 
hornblende crystals in a clayey matrix. Common 
angular andesitic and altered pumiceous clasts 
up to 2 cm in diameter. Rare carbonized plant 
material. 

Light brown, friable, matrix-supported pebble 
conglomerate. Angular andesitic and altered 
pumiceous clasts up to 5 cm in diameter. 
Matrix mostly plagioclase and hornblende 
crystals and brown clay grain coatings. Some 
limonite present. 

Olive brown, coarse-grained pebbly volcaniclast­
ic sandstone. Mostly plagioclase, some horn­
blende crystals in a fine-grained clayey matrix. 
Angular andesitic pebbles up to 3 cm in 
diameter. 

Light gray, friable, coarse-grained pebbly vol­
caniclastic sandstone. Mostly clay, plagio­
clase crystals, rock fragments, and rare horn­
blende crystals. Andesitic and altered 
pumiceous clasts up to 3 cm in diameter. Limon­
ite coatings especially on clast/matrix inter­
faces. Common carbonized wood fragments. 

Brown, friable, coarse-grained pebbly volcani­
clastic sandstone. Mostly plagioclase crystals, 
common hornblende in a fine-grained matrix with 
some brown clay grain coatings. Andesitic 
clasts up to 4 cm in diameter. Altered pum­
iceous clasts up to 5 mm in diameter. 

Orange-brown, friable, matrix-supported conglom­
erate. Matrix mostly plagioclase and hornblende 
crystals and andesitic and pumiceous rock frag­
ments. Andesitic clasts up to 7 cm in diameter. 
Limonite along fracture surfaces and clast/ 
matrix interfaces. 

Olive brown, friable, coarse-grained, pebbly 
volcaniclastic sandstone. Matrix mostly plag­
ioclase, ferromagnesian minerals, and clay. 
Weathered andesitic clasts up to 4 cm in 
diameter. Black ferruginous coatings. 

Light brown, slightly friable, medium- to 
coarse-grained volcaniclastic sandstone. 
Mostly plagioclase crystals, common hornblende. 
Fine-grained matrix. Some yellow-brown clay. 
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MCC 13 

MCC 29 

TC 8 

TC 9 

TC 10 
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Rare andesitic rock fragments. 

Olive brown, friable, coarse-grained volcani­
clastic sandstone. Mostly plagioclase crystals, 
some hornblende and andesitic rock fragments. 
Limonite stained grains and grain coatings. 

Dark tan, medium-grained volcaniclastic sand­
stone. Mostly plagioclase crystals, common 
hornblende. Orange and black ferruginous 
staining common on fracture surfaces. Common 
carbonized plant material. 

Brown, friable, coarse-grained volcaniclastic 
sandstone. Mostly plagioclase crystals, common 
hornblende. Fine-grained matrix containing 
brown clay. 

Very light gray, medium-grained volcaniclastic 
sandstone. Mostly plagioclase crystals, some 
hornblende. Matrix altered to clay. Common 
limonite. Some secondary calcite. Rare carbon­
ized wood fragments. 

Olive brown, slightly friable, coarse-grained 
volcaniclastic sandstone. Mostly plagioclase 
crystals, common andesitic rock fragments up to 
5 mm in diameter, some hornblende. Possible 
altered pumice fragments. 

Gray, friable, coarse-grained, pebbly volcan­
iclastic sandstone. Mostly plagioclase and 
hornblende crystals, some clay. Angular ande­
sitic pebbles up to 5 cm in diameter. 

Very light gray, massive, medium-grained volcan­
clastic sandstone. Mostly plagioclase, some 
hornblende crystals. Rare pumiceous and ande­
sitic rock fragments. White botryoidal opaline 
interstitial fillings and grain coatings. 

Olive brown, fraible, coarse-grained, pebbly 
volcaniclastic sandstone. Mostly plagioclase, 
some hornblende crystals. Brown clay coatings. 
Numerous angular andesitic pebbles up to 10 mm 
in diameter. 

Olive brown, massive, coarse-grained volcani­
clastic sandstone. Mostly plagioclase crystals, 
common hornblende and andesitic rock fragments 
up to 3 mm in diameter. Brown clay coatings. 
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Olive brown, massive, coarse-grained volcani 
elastic sandstone. Mostly plagioclase crystals, 
rare ferromagnesian minerals. Fine-grained 
matrix. Common brown clay coatings. 

Brown-gray, massive, medium-grained volcani­
clastic sandstone. Mostly plagioclase crystals, 
ferromagnesian minerals, and rock fragments. 
Common rounded pumice fragments altered to clay. 
Fine grained matrix. 

Brown-gray, massive, medium-grained volcani­
clastic sandstone. Mostly plagioclase, common 
microscopic ferromagnesian minerals. Andesitic 
clasts up to 3 cm in diameter. Abundant clay. 
Limonite on weathered surfaces and on clast/ 
matrix interfaces. 

Light gray, massive, medium-grained volcani­
clastic sandstone. Mostly plagioclase, abundant 
hornblende crystals. Common andesitic clasts up 
to 10 mm in diameter. Rare altered pumiceous 
grains. Common limonite. White botryoidal 
opaline interstitial fillings and grain coat­
ings. 

Light gray, massive, matrix-supported volcanic 
conglomerate. Andesitic clasts ranging up to 
5 cm in diameter. Matrix mostly plagioclase 
crystals, common hornblende, and clay. 

Black vitric phyric plagioclase andesite with 
limonite-coated fracture surfaces. 

Dark gray vitric phyric plagioclase dacite with 
limonite-coated fracture surfaces. 

Blocky-fractured, coarse-grained volcaniclastic 
sandstone completely altered to white waxy­
textured clay. Rock fragments still recognize­
able but composition unknown (presume andesitic 
and pumiceous fragments). Limonite on all 
fracture surfaces. 



APPENDIX B 

TRACE ELEMENT DATA 

SAl'IPLE Ma K Sc Cr Fe Co Zn As 

RCI 3.b8 t: .01 .9 i; .2 11.10 t: .10 43. ± b. 4. b9 :t:: .fJ7 14.0 .,.... • 5 • 00 1:;. • 00 .oo :t. .00 -
RC2 3. 76 .01 I. I .2 12.32 .OB 20. 3. 3.71 .04 9.0 1! .00 .oo .00 .00 . -· 
R3 3.12 .01 • 77 • lb 12.00 .09 38. "' 4.97 .06 16.0 .4 .oo .00 .00 .00 .J. 

RC4 3. 72 .01 .75 .19 14.74 • 09 79. 10 . 4.03 .OS 8.9 '3 .00 .00 .oo .00 

RC5 I .2b .oo .52 .Ob 9.90 .07 30. 4. 4.44 .OS 14.5 . 4 70 . a. .oo .00 

RC6 3.29 .01 .88 • lb 11.02 .OB 43. b. S.44 .Ob 22.S .b .oo ,(J(l .oo .oo 
RC7 3.40 .01 1.06 .18 12.88 • 09 42 . b. b.00 .08 27.0 . 7 .00 • 00 .00 .00 

3.4S .01 .e "' I0.3S • OB 43 • 6. S.13 .06 11.0 .4 .00 .00 .00 .oo RCB 'L 

RC9 3.25 .01 1.17 .lb 9.98 • 07 29 • 4. 2.75 .04 2S.O .6 .oo .00 100. 20. 

RC10 2.88 .OI • 78 . IB 12.78 .09 40, " 5.22 .07 23.5 . 6 .oo .oo 130 . 30. 
Jo 

RC11 3.43 .01 1.67 • 18 15.24 .09 48. b. 4.47 .OS 10.1 "" .oo .oo 70. 20 . ... 
RC12 4.07 .01 I. 4 "' lb.3b . 10 75 • 9. 4.87 .06 15.2 c • (l(I .00 .00 .00 oL • J 

3.39 .01 1. 4 .... 19.17 .II 25. 4. 7.0S .OB 15.3 .4 .00 .oo BO. 20 . RCl3 •'-
4.29 • 02 3.4 .. 13.29 . 11 14. 3. 6.72 .oa 14.0 c .oo .oo .oo .oo AGVl-3 ,.) ,,J 

GSPl-3 2.64 .01 s.o .4 6.09 .Ob 17. 3. 3.86 • 05 5.4 .3 .oo .00 .00 . 0(1 

AGVl-9 4.26 .01 2.9 'J 13.40 .OB 12. "' 6.76 .Ob 14.1 • 4 .00 ,l)l) .oo .oo 
• L Lo 

GSPl-9 2.61 .01 5.4 1! 6.05 .04 lb. 2. 3.84 . 04 5.78 • IB 84 . 7 . .00 ,(10 . _, 

Na, K, Fe in oxide weight %, all others in ppm. 
Uncertainties given as one standard deviation based on counting statistics. 
*As calculated based on arbitrary concentration in RC 9. 

MCC and RC l from McCord Creek 
TC and RC 6 from Tanner Creek 
EC and RC 7-RC13 from Eagle Creek 



SA"PLE Rb Sr Cs # Ba 

RCI • oo ± .oo 460. !:. 120. 100. :!:: 30. 280. :t 60. 
RC2 • oo .oo 570. 100 • 70. 20. 2BO. 40. 
R3 • oo .oo 4BO • 100. 70. 20. 320. 50. 
RC4 . oo .oo 490 • 110. BO. 30. 2BO. 50. 
RC5 21. 5. 3BO. 80. 100. 20. 240. 50. 

RC6 .oo • oo 530. 110. 90. 30. 330. 50. 
RC7 .00 .oo .oo .oo • 00 • 00 260 • 60. 
RCB .oo . oo 370. 100 • BO, 20. 400. 50. 
RC9 20, 5. 400. 80, 70. 20. 420. 40. 
RCIO .00 • oo 450. 120 • 90. 30. 280. 60. 

RCll 31. 6. 540. 100. 100. 20. 310. 50. 
RC12 .oo .00 .oo .00 .oo .oo 400. 60. 
RC13 30. 8. 550. 120. 110. 30. 290, 90. 
A6Yl-3 67. 10. 740. 150. • 00 .oo 1350 • 90. 
6SP1-3 240. 20. .oo .oo .oo .oo 1200. 10. 

A6Yl-9 67. 7. 660. 100. .00 .00 1210. 60. 
65Pl-9 245. 19. 220. 50. . oo . oo 1180 • 60. 

*cs calculated based on arbitrary concentration in RC l 

La Ce 

14. 0 .± .6 2B. 7 .±. 1.2 
13.4 .4 26.8 .9 
12.0 .4 26.1 .9 
lB.4 .5 40.6 1. 2 
9.6 .3 26.B ,9 

12.6 .4 25.2 1.0 
12.7 .5 28.l l. 2 
11.0 .4 21.4 l.O 
12.6 .4 22.7 • 8 
12.7 .5 28.0 l. 2 

12.l .4 25.7 .9 
18.9 .6 39.6 1.3 
14.0 .4 32.3 I. 2 
34.7 .B 62.0 1.8 

155. 2. 345. 7. 

35.0 .6 63.0 1.6 
156. 2 • 337. 6. 

Nd 

15. ±: 3 • 
17. 3. 
14. 3. 
24. 3. 
17. 2. 

16 • 3. 
IB. 3. 
12. 3. 
17 • 2. 
17. 4. 

20. 3. 
22. 4. 
25. 4. 
35. 5. 

229. 17. 

39. 4. 
237. 16. 

51 

3.43 ':!:. .08 
3.56 .06 
2.99 .06 
5.03 .07 
2.33 .04 

2.89 .06 
3.04 .07 
2.52 .06 
2.46 .05 
3.06 .06 

3.32 .05 
4.69 .08 
4.44 .07 
5.74 .09 

24.5 .2 

5.90 .07 
24.0 .2 

--J 
0 



SA"PLE Eu Tb Yb 

RC1 1.18 ±" .05 .32 '±:. .06 1.4 ± 
RC2 l.16 .04 .39 .05 1.2 
Rl .98 ,04 .29 .05 .7 
RC4 1.34 .05 .51 .06 1.3 
RC5 .86 .03 .34 .05 .9 

RC6 .90 • 04 .24 .06 .oo 
RC7 .96 .04 .51 .07 .e 
RCB .84 .04 .39 .06 .oo 
RC9 .82 .03 .27 .04 .e 
RC10 .98 .05 .50 .07 .e 
RC11 .96 .04 .37 .05 .79 
RC12 1.25 .05 .67 .07 1.2 
RCll 1.19 .05 .54 .OB l. 4 
A6Yl-3 I.BO .07 .65 .08 I. 9 
6SP1-3 1.82 .07 .00 .oo 1.8 

A6Vl-9 1. 70 • 05 .70 .06 I. 7 
6SP1-9 1.57 .05 .oo .oo I. 9 

Lu Hf 

.4 .13 :!: .03 3.5 :!" .2 

.2 .15 .02 3.09 • IB 

.2 .14 .03 3.2 .2 

.3 .23 .03 2.B .2 

.2 .17 .02 l.09 .18 

.oo ,JO .03 3.2 .2 

.2 .18 .03 3.4 .2 
.oo .14 .03 3.0 .2 
.2 .12 .02 3.30 .19 
.2 .23 .04 3.7 .2 

.19 .19 .03 3.8 .2 

.3 .18 .04 5.7 .3 

.3 .25 .04 4.1 .3 

.3 .27 .04 5.4 .3 
• 4 .22 .04 14.1 .6 

.3 .28 .03 5.2 .3 

.3 .20 .02 12.3 .s 

Ta 

.76 ~ .09 
.40 .06 
.45 .07 
.47 .08 
• 52 .07 

.57 .08 

.75 .10 

.57 .08 

.69 .07 
.55 .09 

.42 .07 
.87 .10 
.35 .08 
.86 • 13 
.oo . oo 

.90 .09 

.76 .OB 

Th 

2.28 :!:' .lb 
2.05 .13 
2.55 .13 
1.66 .15 
2.28 .11 

2.21 .14 
2.43 .16 
1. 98 .16 
2.00 .11 
4.13 .IB 

3.58 .16 
5.2 .2 
4.15 .19 
6.0 .2 

97 • 2 • 

6.41 • IB 
93.5 I. 9 

-....) 

I-' 



SANPLE Na K Sc Cr Fe 

"cc 25-A 3. 28 :!:' .01 .oo ±. .oo u.65 t. .00 40. .:t 5. 2.88 t. .05 
"cc 25-B 3.05 .01 .oo .oo 9.85 • OB 28. 4 • 2.96 .05 
"cc 25-c 3.41 .01 .oo .oo 10.07 .OB 31 • 4. 2.92 .05 
NCC 25-D 3.05 .01 .oo . oo 9.15 .07 28. 4. 2.87 .04 
"cc 25-E 3.25 .01 .oo .oo 10.65 .OB 37. 5 • 2.96 .05 

NCC 25-F 3.07 .01 .oo . oo 9.30 .07 24. 4. 2.62 .05 
"cc 25-6 3.24 .01 .00 .oo B.46 .06 25. 4. 2.71 .04 
"cc 25-H 2.77 .01 .oo .oo 10.10 • oe 30 • 4. 3.18 .05 
NCC 25-1 3.13 .01 .oo .oo 9.99 .OB 28. 4. 2. 77 .05 
"cc 25-J 3.35 .01 .oo .oo 10.00 .08 28. 4. 2. 77 .05 

EC 15-A 3.54 .01 .7 .2 11.07 .OB 66 • a. 4.32 .06 
EC 15-B 3.35 .01 .e • 2 9.94 .08 65. a. 4.44 .06 
EC 15-C 3.83 .01 .7 .2 11. 72 .09 68 • 9. 4.17 .06 
EC 15-D 3.45 • 01 .oo .oo 10.75 .09 54 • 7. 3.27 .05 
EC 15-E 3.32 .01 • 7 .2 11.48 .08 66 • 8. 4.87 .07 

EC 15-F 3.68 .01 .7 • 2 10. 74 .09 56 • 7. 3.25 .05 
EC 15-6 3.68 • 01 .B .2 10.67 .09 49. 7. 3.34 .05 
EC 15-H 3.40 .01 .oo .oo 11.31 .09 57. 7. 4.24 .06 
EC 15-1 3.24 .01 .oo .00 11.27 • OB 60 • 8. 3.64 .05 
EC 15-J 3.54 .01 .oo .oo 11. 14 .09 60. 8. 3.47 .05 

Co As 

20.1 :t: .5 3.3 :t 
19.2 .5 1.9 
12.0 .4 .oo 
10.8 • 3 .oo 
17.2 .5 .00 

18.8 .5 1. 3 
13.5 .4 l. 7 
20.1 .6 1. 7 
14.0 .4 .oo 
20.2 .6 t. 7 

8.9 .3 2.2 
8.4 .3 5.3 
8.9 .3 3.3 
7.6 .3 .oo 
8.7 .3 7.6 

7.2 .3 .00 
7.4 .3 . oo 
8.3 .3 2.5 
8.6 .3 .oo 
a.a .3 .oo 

.e 

.5 

.oo 

.oo 

.oo 

.4 

.5 

.5 

.oo 

.5 

.6 
1. 2 
.8 
.oo 

1.6 

.00 

.oo 

.7 

.oo 
.oo 

Rb 

.oo :!: .00 

.00 .oo 

.oo .oo 

.oo .00 

.oo .oo 

.oo .oo 

.00 .00 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.oo .oo 

.00 .oo 

.oo .oo 
19 • 6. 

.oo .oo 

.oo .oo 

.oo .oo 

-i 
N 



SA"PLE Sr Sb Cs Ba 

"cc 25-A 490. !: 110. • 00 ::!:' .oo • oo ~ • oo :no. ± 60. 
"cc 25-B 380. 110. .oo .00 • oo • oo 360. 60 • 
"cc 25-c 410. 110. .oo .oo • oo • 00 310. 60 • 
"cc 25-D 470. too. .oo .oo • oo • oo 230. 60 • 
"cc 25-E 540. 110. .oo .oo • oo • 00 280. 70 • 

"cc 25-F 460. 100. .oo .oo • 7 .2 260. 60 • 
"cc 25-6 530. too. .00 .oo .00 .oo 310. 60. 
"cc 25-H 420. 110. .oo .oo • oo .oo 280. 70 • 
"cc 25-1 680. 120. .oo .oo • oo • oo 300 • 60 • 
"cc 25-J 540. 110. .00 .00 • oo • oo 330 • 60 • 

EC 15-A 480. 110. .oo .oo I.I .2 340. 60. 
EC 15-B 510. 110. .oo .oo I. 3 .2 420. 60. 
EC 15-C 700. 120. .00 .00 I.I • 2 420. 70 • 
EC 15-D 430. 100. .oo .oo I. 3 • 2 460. 60 • 
EC 15-E 530. 110. .oo .oo ,9 .2 430. 60. 

EC 15-F 370. 100. .00 .oo 1.0 .2 430. 70. 
EC 15-G 520. 110. .oo .00 1.2 • 2 450. 70 • 
EC 15-M 510. 110. .oo .00 I. 3 .2 380. 70. 
EC 15-1 500. 110. .oo .00 1.5 • 2 400 • 70. 
EC 15-J 550. 110. .oo .oo 1.1 .2 330. 70. 

La Ce 

11.6 ~ .4 25.4 ± .9 
13.3 .5 28.0 1.0 
13.8 .5 30.4 I.I 
14.5 .5 31.1 1.0 
13.3 .5 27.4 1.0 

11.0 .4 23.0 ,9 
13.2 .5 24.6 .9 
12.8 • 4 29.2 t. I 
11.4 • 5 26.0 l .O 
12.7 .5 26.5 l. 0 

12.0 .4 24.9 1.0 
11.2 .4 23.2 I. 0 
12.6 .5 23.0 1.0 
12.6 • 4 27.t 1.0 
10.3 .4 22.3 1.0 

13. 7 • 5 25.9 1.0 
13.9 .5 25.5 1.0 
12.5 • 5 26.4 1.1 
11.6 .4 24.3 1.0 
13.0 .5 26.9 t.O 

Nd 

19. :t 3 • 
16. 4 . 
19. 4 • 
19. 3 • 
16. 4. 

15. 3. 
34. 3. 
18 • 4. 
l 9. 4 • 
18. 4. 

.oo .00 
14. 3. 
15. 4. 
19. 4 • 

.00 .oo 

18. 4 • 
.oo .00 

20. 4 • 
.oo .00 

18. 4. 

S1 

3.01 ±:' .07 
3.42 .07 
3.49 .OB 
3.66 .07 
3.33 .07 

2.69 .06 
3.26 .07 
3.27 .06 
3.04 .07 
3.17 .07 

2.63 .07 
2.16 .06 
2.77 .01 
2.85 .07 
2.17 .06 

3.11 .07 
3.13 .07 
2.62 .06 
2.65 .06 
3.02 .07 

-.I 
w 



SMft.E Eu Tb Yb 

"cc 25-A 1.24 ::!::: .os • 36 ::!: .OS 1.1 ± .3 
"cc 25-B 1.26 .05 .40 .06 I. I .3 
"cc 25-c 1. 41 .06 .34 .06 I.I .2 
"cc 25-o 1.14 .04 .36 .05 .00 .oo 
"cc 25-E l.36 .06 .35 .06 .8 .2 

~C 25-F 1.23 .OS .3S .OS .74 .19 
"cc 25-6 1.18 .OS .32 ,06 .oo .oo 
"cc 2s-H 1.28 .06 .43 .07 1. 2 .3 
"cc 2s-1 1.40 .OS .37 .06 .8 .2 
"cc 2s-J 1.27 .OS .33 .os .oo .oo 

EC 15-A I.II .os .25 .os .oo .oo 
EC IS-8 1.08 .os .32 .OS .oo .oo 
EC 15-C l .Ol .os .23 .06 .oo .oo 
EC 15-D 1.08 .05 .23 .OS .oo .oo 
EC 15-E .97 .04 .18 .OS .oo .oo 

EC IS-F 1.03 .OS .20 .OS .oo .00 
EC IS-6 1.08 .OS .36 .06 .oo .00 
EC 15-H 1.10 .OS .24 .OS .oo .00 
EC IS-I 1.03 .os .33 .OS .oo .oo 
EC IS-J 1.15 .OS .35 .OS .9 .3 

Lu Hf 

.14 : .03 3.7 ± .2 
.ts .03 4.2 .2 
.oo .oo 3.8 .2 
.14 .03 3.9 .2 
.15 .04 4.0 .2 

.oo .oo 3.9 .2 
.18 .04 3.8 .2 
.13 .04 4.3 .3 
.IS .04 4.0 .3 
.13 .04 3.8 .2 

.oo .oo 2.9 .2 

.oo .oo 2.6 .2 
.oo .oo 3.4 .2 
.11 .03 2.B .2 
.13 .04 3.1 .2 

.oo .oo 2.7 .2 
.00 .00 3.1 .2 
.oo .00 3.1 .2 
.14 .04 2.e .2 
.oo .oo 2.7 .2 

Ta 

.72 :t .07 

.70 .08 
• 73 .08 
.6'1 .07 
.75 .09 

.71 .07 

.78 .07 

.78 .10 

.70 .OB 

.78 .OB 

.52 .OS 

.48 .06 

.66 .07 

.44 .07 
.60 .07 

.61 .08 
.63 .07 
.58 .07 
.55 .07 
.56 .07 

Th 

2.34 :±: .15 
2.94 • t7 
3.0S .17 
3.05 .15 
2.9 .2 

2.60 .15 
2.83 .IS 
2.9S .18 
2.61 .16 
2.89 .17 

1.79 .15 
1.47 .14 
2.08 .16 
1.93 .14 
1.50 .14 

1.85 .15 
2.06 .16 
1. 79 .15 
I. 86 .15 
1.74 .16 

-.J 
.i::. 



SA"PLE Na K Sc Cr Fe Co As Rb 

RC 3-A 3.30 :t .01 l.O :!: .2 13.65 :!: .10 39. ± 5. 6.28 :!: .07 19.I :!: .5 • 00 :t. . 00 .oo ~ .00 

RC 3-8 3.29 .01 1. 6 .2 13.19 .09 33. 5. s. 73 .07 17.0 ,5 .oo .oo .oo .00 

RC 3-C 3.32 .01 1.1 .2 12.97 • 09 37 • 5. 5.33 .07 17. I .4 .oo .oo .00 .00 

RC 3-D 3.26 .01 1.1 .3 14.18 • 10 40. 6 • 5.81 .07 18.3 .5 .oo .oo 23. 7. 

RC 3-E 3.22 • 01 .oo • 00 14.17 .10 42. 6 • 6.02 .OB 18.9 .5 .00 .oo 25. 7. 

RC 3-F 3.12 .01 .9 .2 13.17 .09 45. 6. 5.72 .07 17.6 .5 .oo .oo .oo .00 

TC 7-A 3.16 .01 .oo .oo 12.99 • 09 42 • 6. 5.80 .07 18.1 .5 .oo .oo .00 .00 

TC 7-8 3.17 .Ol .00 .oo 14.32 • 10 44 • 6. 6.06 .07 18.0 .5 .00 .oo .00 .oo 
TC 7-C 3.26 .01 .9 .3 15.01 • 11 20. 4 • 5.78 .07 18.6 .5 .oo .oo .00 .oo 
TC 7-D 3.21 .01 .9 .3 12.94 • 10 33 • 5. 6.27 .OB 23.4 .6 .oo .oo .oo .oo 

TC 7-E 3.23 .01 .oo .oo 11. 93 • 10 28 • 4. 5.88 .07 19.6 .5 l.8 .5 .oo .00 

TC 7-F 3.13 .01 .oo .oo 11.87 • 10 34 • 5. 6.78 .07 20.B .6 .oo .oo .oo .oo 
RC 7-A 3.06 .01 .oo .oo 14.65 • 11 39. 6. 7.08 .OB 46. l .9 .00 .oo .00 .oo 
RC 7-8 3.51 .02 1.1 .3 13.47 .10 33. 5. 5.87 .OB 24.2 .6 .00 .oo .oo .00 

RC 7-C 3.84 .Ol .oo .oo 13.50 .10 33. 5. 6.05 .08 18.8 .5 .oo .00 .oo .oo 

RC 7-D 4.15 .01 .oo .00 11.67 .09 41. 6. 4.80 .07 12.5 .4 .00 .00 .oo .oo 
TC 6 .08 .00 .oo .oo .30 .01 6.5 1. 2 .70 .02 2.05 .14 22. c .oo .00 .i. 

AGVH 4.27 .02 2.9 .4 13.11 .10 12. 3. 6.69 .08 13.5 • 4 .00 .oo 63. 9. 

GSPl-1 2.81 .01 S.1 .6 4.44 .05 .00 .oo I. 71 .03 .70 . 11 .oo .oo 117. 10. 

016-1 4.45 .02 4.8 .4 6.80 • 07 17 • 3. 4.45 .06 6.0 .3 .oo .oo 231. 19. 

AGVl-3 4.26 .01 2.9 .2 13.40 • OB 12 • 2. 6.76 .06 14 .1 . _; .oo .00 67. b. 

GSPl-3 2.00 .01 3.8 .3 4.45 .03 5.5 I. I l.1b .02 .90 .(17 .00 • 00 112. B • 

016-3 4.47 .01 5.1 .3 6.68 • 04 14 • 2. 4.39 .04 6.24 .19 1.8 c 227. 16. ,.J 

-1 
Ul 



SA11PLE 

RC 3-A 
RC 3-B 
RC 3-C 
RC 3-D 
RC 3-E 

RC 3-F 
TC 7-A 
TC 7-B 
TC 7-C 
TC 7-D 

TC 7-E 
TC 7-F 
RC 7-A 
RC 7-B 
RC 7-C 

RC 7-D 
TC b 
A6Vl-3 
0-lb-3 
GSPl-3 

AGVl-9 
O-lb-9 
6SPl-9 

Sr 

390. '!: 120. 
SBO. 120. 
420. 110. 

.oo .oo 
bbO. 130. 

bbO. 130. 
.oo .oo 

5BO. 130. 
460. 130. 
570. 130. 

640. 130. 
450. 120. 

.oo .00 

.oo .oo 

.00 .00 

4BO. 120. 
.oo .00 

500. 130. 
.oo .00 
.00 .00 

bbO. 90. 
.oo .oo 
.00 .00 

Sb 

.oo ± .oo 

.oo .00 

. oo .oo 

.00 .oo 

. oo .00 

.oo 
.oo 
.00 
.oo 
.00 

.oo 
.00 
.oo 
.oo 
.00 

.oo 
2.7 

10.2 
l.b 
9.3 

4.5 
1.29 
4.9 

.oo 

.00 

.00 

.00 

.oo 

.00 
.oo 
.00 
.00 
.oo 

.oo 

.4 
I.I 
. s 

I.I 

.4 
• lb 
• 4 

Cs Ba 

.00 :t .00 400. :!= 90. 
.00 .00 320. 70. 
.oo .00 360. 70 • 
• 9 .3 .00 .00 

1.3 .3 360. BO . 

1.4 
.oo 
.00 
.oo 
.00 

.oo 

.9 

.00 
• 00 
• 00 

• 00 
.oo 
. oo 

3.3 
. 00 

. oo 
3.SO 
.00 

.2 310. BO. 

.00 .oo .00 

.00 .00 .00 
.00 .00 .00 
.oo .oo .00 

.oo .00 

.2 .oo 

.00 .00 
. 00 340 • 
• 00 430. 

.oo 460. 

.00 .00 
• 00 1240 • 
• 2 700. 
.00 1490. 

.00 1210. 
• IS b70. 
. 00 141 o • 

.00 

.oo 

.oo 
80 . 
BO • 

BO • 
.00 

120 • 
bO • 

100 • 

70 • 
40. 
70. 

La 

12.7 
lb. I 
13.S 
13.b 
12.B 

12.3 
13.b 
12.S 
10.2 
10.0 

12.0 
11. 2 
10.2 
13.S 
I b. 4 

IS.B 
b.b 

3b.O 
173. 
37.b 

35.0 
ISi. 4 
37.3 

+ " ... 
" ,J 

.s 

. 5 

.5 

. s 

.5 
• 4 
. 5 
• 4 

• 5 
• 4 
.4 
. 5 
. 5 

.s 
• 2 
. B 

2. 
.B 

.5 
1.8 
.b 

Ce 

31.5 ::t: 1.2 
33.5 1.2 
2b.9 I.I 
30.1 1.2 
31.0 1.3 

Nd 

20. ~ 
21. 
13. 
18. 
20. 

4. 
4. 
4. 
4 • 
5. 

28.9 
29.4 
24.0 
21. 5 
21. 3 

I. I 18. 4 . 

2b. I 
24.5 
20.b 
27. 7 
35.5 

33.5 
13.7 
bl.O 
73.5 

39B. 

63.0 
70. I 

401. 

I. 2 .oo .00 
I. I 19. 4. 
1.2 21. 5 • 
I. 2 . 00 . 00 

I. 2 
1.2 
I. I 
I. 2 
I. 7 

I. 3 
.5 

l.b 
I. s 
b. 

I. 2 
I. 2 
6. 

IS. 
.oo 
.oo 

14. 
23. 

22. 
7.1 

35. 
41. 

280. 

39. 
39. 

280. 

4 . 
.00 
.00 

4 • 
s . 

5. 
I. 6 
b • 
s. 

20. 

4. 
4. 

20. 

511 

3.24 .:t .07 
3.73 .07 
3.47 .07 
3.49 .07 
3.37 .07 

3.12 
3.0b 
3.17 
2.B2 
2.b4 

2.8B 
2.71 
2.51 
3.33 
4.04 

3.n 
1.33 
b.07 

27. 2 
b.34 

5.90 
24.B 
6.39 

.07 

.07 

.07 

.07 

.Ob 

.07 

.Ob 
.Ob 
.07 
.08 

.08 

.03 

.10 
.3 
.10 

.07 
..., 

'L 

.07 

-J 
O'\ 



SAltPLE Eu Tb Yb Lu Hf Ta Th 

RC 3-A 1. 29 ±. .06 • 33 ".t. • 06 • 00 ;!; .oo .16 :!::: .05 3. 9 :!:. .3 .64 t .09 3.10 :!: .19 
RC 3-B 1.22 .05 .45 .06 .oo .oo .oo .oo 3.3 .2 .57 .07 3.52 .1B 
RC 3-C 1.11 .05 .29 .05 .00 .oo .14 .04 3.2 .2 .59 .OB 2.64 .17 
RC 3-D 1.25 .06 .38 .06 .oo .00 .15 .04 3.5 .2 .74 .11 2.9B .19 
RC 3-E 1.19 .06 .31 .Ob 1.3 • :s .lB .05 3.5 .:s .63 .11 3.0 .2 

RC 3-F 1.17 .05 .29 .Ob .00 .oo .18 .04 3.1 .2 .62 .08 3.25 .19 
TC 7-A 1.01 .05 • :SI .Ob .00 .oo .lb .05 3.0 .2 .bO .09 2.40 .17 
TC 7-8 1.07 .05 .33 .Ob .00 .00 .lb .05 3.1 .2 .6b .09 2.23 .17 
TC 7-C 1.10 .05 .27 .07 .oo .oo .oo .00 3.5 .2 .43 .07 2.B .2 
TC 7-D 1.05 .05 .oo .00 .00 .00 .oo .oo 3.4 .2 .62 .08 2.62 .19 

TC 7-E t.01 .05 .29 .Ob .oo .00 .oo .oo 3.3 .2 .66 .08 2.b9 .18 
TC 7-F .99 .05 .32 .06 .oo .oo .oo .00 3.5 .2 .63 .10 2.59 .1B 
RC 7-A .87 .05 .26 .06 .oo .00 .oo .oo 4.1 .3 .78 .08 2.25 .18 
RC 7-8 1.03 .05 .oo .00 .oo .oo .oo .oo :S.4 .2 .68 .OB 2.49 .lB 
RC 7-C 1.19 .06 .30 .06 .00 .oo .23 .05 4.2 .3 .83 .10 3.13 .19 

RC 7-D 1.05 .05 .44 .06 .02 .00 .17 .05 3.6 .3 .17 .11 3.0 .2 
TC 6 .IB .02 .OB .02 .07 .00 .13 .02 .oo .oo .oo .oo .oo .oo 
A6Yl-3 t. 76 .07 .64 .01 .08 .01 .2B .Ob 5.2 .3 .B4 .11 6.3 .3 
0-16-3 .52 .o• 1.02 .07 1.69 .05 .Bl .OB 8.5 .3 2.10 .16 u.o .3 
6SP1-3 2.24 .09 7.6 • 4 .25 .02 .26 .06 16.5 .7 • 72 .12 112. 2 • 

A6Vl-9 I. 70 .06 .10 .05 t. 70 .01 .2B .04 5.2 .2 .90 .OB 6.41 .18 
0-11,-9 .58 .03 1.03 .06 .b2 .02 • 81 .OB 7.B .3 1.9 .6 11.2 .3 
6SPl-9 1.95 .06 7.1 .4 .02 .oo .30 .04 14.6 .5 ,64 .OB 114. 2. 

-..J 
-J 



SAltPl.E Na K Sc Cr 

EC 16 3.37 ± .01 2. 2 :!:. .3 ll.71 :t .10 34. ±' 5. 
EC 17 3.54 .01 1.3 .3 11. 24 .10 33. 5. 
EC 18 3.79 .01 1.2 .3 11.82 .10 29. 4. 
EC 19 3.73 • 01 1.s .3 11.83 .09 28. 4. 
EC 20 3.38 .01 .oo • oo 12.31 .10 28. 4 • 

EC 21 3.37 .01 I. 2 .3 11.79 .09 3b. s. 
EC 22 3.48 .02 .oo .oo IS.30 .12 40. 6. 
EC 23 3.35 .01 .oo .oo 12.55 .10 41. b. 
EC 24 3.11 .01 .oo .oo 12.56 .10 40. 6. 
EC 25 2.98 .01 • oo .oo 12.91 .10 40 • 6. 

EC 26 3.52 .02 • oo .oo B.87 • OB 19 • 3 • 
EC 27 3.24 .01 .oo • oo 14.60 .10 54. 7 • 
EC 28 3.32 .01 • oo .oo 10.09 .oe 34 • 5. 
EC 29 3.64 .01 .oo • oo II.SB .09 38. 5 • 
EC 30 3.53 .02 .oo .oo 11. 20 .10 24. 4. 

"cc 13-A 3.22 .01 .oo .oo 12.46 .10 45. 6. 
"cc t3-B 3.27 .01 .oo .oo 12. 75 .10 43. 6. 
"cc 13-c 2.98 .01 .oo .oo 12.07 .10 41. 6. 
"cc 13-D 3.31 .01 .oo .oo 11.62 .09 43. 6. 
"cc 13-E 3.44 .02 .oo • oo 12.40 .10 42 • 6. 

Fe Co 

4.50 ":!:. .07 12.4 ±. .4 
5.06 • 08 21. 5 .6 
3.08 • 06 23.B .7 
2.65 .OS 17.7 . s 
S.92 .OB 18.6 • 6 

4.10 .Ob lb.I .5 
4.24 .07 15.B .s 
6.42 .08 17.l .s 
7.53 .09 20.8 • 6 
S.04 .08 17.0 .6 

4.14 .07 17.8 .6 
6.43 .08 18.9 .6 
4.4B .07 II. 9 .4 
S.65 • oe 14.4 .5 
3.21 .06 14.0 .5 

5.98 .OB 16.3 .5 
5.85 .OB 15.7 .5 
S.B2 .08 15.0 .5 
S.65 .08 15.1 .5 
S.91 .09 16. l .5 

Rb 

33. :t 
• oo 
.oo 
.00 
.oo 

25. 
.oo 
.oo 
.oo 
.00 

.oo 

.oo 

.oo 
.00 
.oo 

.oo 

.00 

.oo 

.00 
.00 

Sr 

9. .oo±:: .oo 
• 00 470 • 150 • 
.oo 490 • 150. 
.oo 490 • 140 • 
.oo 550. 150 • 

e. 450. 140. 
.oo .00 .oo 
.oo 460. 140. 
.oo 480 • ISO. 
.oo .oo .oo 

.00 .oo .oo 

.oo .oo .00 
• 00 530. 140 • 
.00 540. 150 • 
.00 .oo .oo 

.oo .oo .oo 

.oo .oo .oo 
.oo .00 .oo 
.oo 5SO. 150. 
.oo .oo .00 

-.J 
co 



SAnPLE C:s Ba La Ce 

EC: 16 l. l :t .3 570. :!: 80. 10.8 ::t .s 19.l ±: 1.2 
EC: 17 1. 7 .4 390. 70. 16.B .6 29.4 1.4 
EC: 18 .oo .oo 520. 80. 14.6 .6 24.4 1.3 
EC: I 'I .00 .oo 560. 70. 14.0 .5 25.4 l.2 
EC 20 .oo .00 260. 70. ll.O .s 17.6 1.2 

EC 21 1.1 .3 260. 70, 18.9 .6 42.3 I. 4 
EC 22 .00 .oo 430. BO. 13.B .6 22.0 1.3 
EC 23 .oo .oo 320. 10. 11.8 .s IB.7 1. 2 
EC 24 1.2 .3 310. 70. 10.1 .5 12.6 l. 2 
EC 25 .oo .oo 340. 10. 9.1 .5 16.7 l. 2 

EC 26 .oo .oo 230. 60. 9.7 .5 17. 2 I. I 
EC 27 .oo .oo .oo .oo 13.& .5 22.5 1. 3 
EC 2B 1.2 .3 280. 60. 9.9 .s 17.7 1.1 
EC 2'1 .oo .oo 280. 70. 12.B .5 19.7 1. 2 
EC 30 .oo .oo 310. 70. 7.9 .s lS.I 1.2 

nee 13-A .oo .oo .oo .oo 10.3 .s 16.S 1.3 
nee 13-B .oo .oo .oo .oo 13.0 .5 23.3 1.3 
nee tJ-c .oo .oo .oo .00 9.B .s 18.S 1. 2 
nee 13-D .oo .oo .00 .oo 11. B .s 21. l 1.2 
nee t3-E .oo .oo 360. 90. 11. I .s 17.9 1.3 

S1 Eu 

2.4B j: .07 l.00 :t .05 
5.96 .10 1.88 .07 
3.16 .OB 1.12 .06 
3.13 .07 .97 .05 
2.83 .07 .90 .OS 

6.&4 .10 I .S7 .06 
3.42 .08 1.17 .ot. 
2.79 .01 .91 .OS 
2.B7 .07 .89 .OS 
2.28 .06 .82 .05 

2.17 .01 .81 .OS 
3.47 .07 .94 .05 
2.2S .06 .B9 .OS 
3.07 .oe .90 .OS 
l. 92 .01 .B9 .OS 

2.64 .07 .99 .OS 
3.22 .07 ,96 .OS 
2.26 .06 .87 .OS 
2.97 .07 .97 .OS 
2.&S .07 • 91 .OS 

Tb 

.33 :±:. .07 

.78 .10 

.32 .OB 

.22 .06 

.33 .07 

.73 .09 

.38 .OB 

.32 .01 

.00 .00 
,JI .08 

.oo .oo 

.26 .OB 

.2S .07 

.30 .07 

.oo .oo 

.32 .OB 

.27 .01 

.30 .07 

.34 .07 

.25 .OB 

Yb 

1. 4 :t: 
3.6 
1. 5 
.00 
.oo 

3.4 
.oo 
.oo 
.00 
.oo 

.oo 

.oo 

.oo 

.oo 

.00 

.oo 

.oo 

.oo 

.00 

.oo 

.4 

.7 

.4 

.00 

.oo 

.6 

.oo 

.00 

.oo 

.00 

.oo 

.oo 

.oo 

.00 

.oo 

.oo 

.00 

.oo 

.oo 

.oo 

-...) 

\0 



SA"PLE Lu Hf 

EC 16 .17 ±' .05 l.6 .:!: .l 
EC 17 .56 .00 3.7 .l 
EC 18 .16 .05 l.B .l 
EC 19 .16 .04 3.5 .2 
EC 20 .oo .oo 3.4 .2 

EC 21 .47 .07 3.1 .2 
EC 22 .16 .05 3.6 .l 
EC 23 .oo .oo 3.1 .2 
EC 24 .oo .oo 2.B .2 
EC 25 .oo .oo 3.1 .2 

EC 26 .oo .oo 2.6 .2 
EC 27 .oo .oo 2.4 .2 
EC 28 .16 ,04 2.B .2 
EC 29 .oo .oo 3.2 .2 
EC 30 .18 .05 3.2 .2 

"cc ll-A .00 .oo 3.2 .3 
"cc 13-B .20 .05 3.3 .2 
ftCC 13-C .00 .oo 2.8 .2 
ftCC 13-D .24 .05 3.1 .2 
ftCC 13-E .oo .oo 3.4 .3 

Ta 

.74 -:!:: .10 

.50 .10 

.78 . II 

.60 .09 

.58 .09 

.48 .10 

.54 .10 

.52 .09 

.69 .10 

.64 .10 

.53 .00 

.62 .10 
.57 .08 
.61 .10 
,70 .11 

.79 . II 
.74 .10 
.64 .09 
.71 .10 
• 77 .11 

Th 

2.l :t: 
2.5 
2.5 
2.42 
2.32 

l.71 
2.8 
2.04 
l. 9 
2.1 

1.76 
1.67 
l. 79 
1.76 
2.9 

2.3 
2.2 
2.28 
2.28 
2.3 

.2 

.2 

.2 

.18 

.19 

• 18 
.2 
.19 
.2 
.2 

.17 

.19 

.17 

.18 

.2 

.2 

.2 

.19 

.19 

.2 

CD 
0 



SAflPLE Na K Sc Cr Fe Co Rb Sr 

"cc 29-A 3.62 ±' .02 .oo :::t. .oo 13.46 ±:. .ll 55. ± 8. 5.30 :t .OB 23.0 t .7 .oo j; .oo 650. ::t 170. 
ICC 29-B 3.45 .02 .oo .oo 12.48 .10 52. 7. 5.18 .07 21.9 .6 .oo .oo 440. 140. 
"cc 29-c 3.25 • 02 .oo .oo 13.81 . ll 45. 7 • 6.41 .09 ll.3 • 8 .oo .00 7SO • 180. 
NCC 29-D 3.50 • 02 .00 .00 14.30 .10 54. 7 • 5.38 .07 23.6 .7 .oo .oo .oo .oo 
NCC 29-E 3.63 .02 .oo .oo 12. 74 • 10 46. 7. 5.41 • 08 25.0 .7 .oo .oo 500 • 160 • 

TC B 3.25 .02 .00 .oo 12.94 .10 31. 5. 5.95 .08 18.0 .6 .oo .oo 690. 170. 
TC 9 3.18 .02 .oo .oo 12.93 .to 38. 5. 6.0t .09 t7.1 .5 .oo .oo 540. t60. 
TC tO 3.23 .02 .oo .oo t0.97 .09 29. 4. 5.t4 .00 t 4. t .5 .oo .00 590. 150. 
TC II 3.32 • 02 .00 .oo t2.39 .10 36. 5 • 5.47 .OU t8.8 .6 .00 • oo 430. t40 . 
ICC 1 t 2.90 • 02 .oo .oo 12.84 .to 3t • 5. 5.12 .01 16.7 .5 .oo .oo .00 .oo 

MCC 22 3.27 .02 .oo .oo t4.42 .12 25. 4. 5.57 .08 t4.7 .s .oo .oo .oo .00 
TC 3 3.01 .02 .oo .oo 16.98 .12 60. 8. B.t5 .to 24.9 .7 .00 .oo .oo .oo 
EC 4 3.06 .02 .00 .oo 11.27 .09 35. 5. 5.63 .08 15.0 .5 .oo .00 .oo .oo 
SKV-l 4.22 .02 • oo .oo t5.74 . II .00 .oo 6.14 .09 9.5 .4 b6. 12 • .oo .oo 

. SKV-2 3.47 .02 .oo .oo 24.70 .16 9b. 13. 8.26 .to 32.4 .8 38. II. .oo .oo 

EC t2-A .32 .Ot .oo .oo 24.24 .t5 73. to. 4.84 .08 2.3 .2 .00 .oo .oo .oo 
EC 12-B .3t .01 .00 .oo 22.99 .15 82. II. 5.20 .08 2.3 .3 .oo .00 .oo .oo 
AGVl-1 4.25 .03 3.0 ,8 13.07 • II .oo • oo b.74 .09 13. 9 .5 68. t3. 930. 200 • 
Ot6-I 4.41 .02 5.0 .8 4.29 .OS 6.3 1.8 t.b5 .04 .84 • t4 t24. 13. .oo .oo 
65Pt-t 2.74 .02 6.t .9 6.47 .07 t4. 3. 4.19 .07 5.8 .3 290. 30. .oo .oo 

AGVl-3 4.26 .Ot 2.9 .3 IJ.40 • OB t2. 2. b.76 .07 t4. t .4 67. B. 660. 120 • 
Olb-3 4.45 .01 5.2 .5 4.33 .03 5.t t. 2 I. 70 .03 .85 • 08 130. 12. .00 .00 
6SPt-3 2.76 .01 5.6 .6 6.66 .05 14. 2. 4.29 .05 b.3 .2 280. 30. .oo .oo 

co 
...... 



SA"PLE Cs Ba la 

HCC 29-A 2.0 ± .4 • 00 ::!: .oo 11.0 -±: .s 
"cc 29-B .oo .oo 300. 70. 10.3 .s 
lfCC 29-C .oo .00 .oo .oo 10.5 .5 
nee 29-D 6.9 .s .00 .oo 10.S .5 
nee 29-E .oo .oo 300. BO. 10.4 .5 

TC B .00 .oo 310. 90. 1 t. l .5 
TC 9 .oo .oo 3tO. 80. 16.6 .6 
TC 10 .oo .oo 410. 70. 11. 7 .5 
TC 11 .oo .00 320. 90. 13.0 .5 
nee 11 l .3 .3 .oo .oo 11.4 .s 

nee 22 .oo • oo 310 • 90. 12.7 .5 
TC 3 1.3 • 4 350. 90. 9.7 .s 
EC 4 I. 4 .3 .oo .oo 14.0 .s 
SKV-1 3.2 • 4 S30 • 90. 21.0 .7 
SKV-2 7.3 .6 430. too. 19.0 .b 

EC t2-A .oo .oo .oo .00 14.B .s 
EC 12-D I. 7 .4 .oo .oo 12.6 .s 
AGVl-3 3.7 .4 1160. ttO. 34.B .9 
016-3 3.5 .3 550. 60. 3B.l .9 
65P1-3 3.8 .4 1260. 100. 170. 3. 

AGVl-9 4.1 .3 1210. 80. 3S.O .b 
0!6-9 3.5 .2 640, 40. 37.6 .6 
6SP1-9 3.6 • 2 1310. 70. 172. 2 • 

Ce 5• 

19.2 ::t 1.3 3.13 :!:. • OB 
17.5 1.2 2.92 .07 
17.0 I. 3 2.99 .07 
17. 9 1.3 3.25 .07 
17.7 1.3 3.12 .OB 

19.0 1. 3 3.15 .07 
2B.O 1.4 4.09 .OB 
17.3 I. 2 2.n .07 
19.S t. 2 3.36 .07 
18.5 I. 2 3.23 .07 

22.0 1.4 3.72 .09 
12.1 I. 3 2.BO .07 
24. b I. 3 3.03 .07 
42.7 1. 7 7.81 .12 
28.9 t .6 S.79 .to 

21. 1 I. 5 I .b2 .05 
16.9 I. 4 t.52 .OS 
57.7 1. 9 S.92 .11 
71. s 1.B b.11 . II 

39B. 7. 2S.O .3 

b3.0 1. 4 5.90 .OB 
75.1 I. S 6.28 .OB 

413. 7. 25.5 ~ --· 

Eu Tb 

1.03 .:!:' .OS • (10 :!' 
.Yb .OS .oo 
.94 .05 .oo 

1.07 .05 .31 
.92 .Ob .oo 

.82 .OS .00 

.9b .05 .33 
.90 .OS .28 
.93 .OS .26 
. 91 .OS .34 

1. 3B .Ob .40 
.B7 .OS .35 
.99 .05 .3B 

1.65 .07 l.07 
1.32 .Ob .bl 

.34 .OS .54 
.39 .OS .SI 

I. SB .07 .ba 
.4b .04 l. 25 

2.21 .09 7.6 

1.70 .OS .70 
.50 .03 1. 12 

2.16 .07 7.9 

, 1)0 

.oo 

.00 

.08 

.00 

.00 

.07 

.07 

.07 

.07 

.09 
.OB 
.07 
.12 
• 11 

.to 

.10 

.10 
• 11 
.6 

.07 

.09 
• 6 

Yb 

.oo :t .oo 
1.4 .4 
.oo .oo 
.oo .oo 
.00 .oo 

.00 .00 
• 00 .oo 
.00 .00 
.oo .oo 

I. 2 .4 

1.S .5 
.oo .00 
.00 .00 

S.b I. 0 
2.5 .6 

.00 .oo 
.oo .00 

2.1 .6 
6.1 I. 0 
2.3 .6 

I. 7 .4 
b.O ,9 
2.4 .s 

ro 
N 



SAMPLE Lu Hf Ta Th 

"cc 29-A .oo ± .oo 3.1 ± .3 • 74 ± .11 t.B :t .2 
MCC 29-B .oo .oo 2.9 .2 .52 .09 1. 72 .19 
"cc 29-C .oo .oo 3.1 .3 .7t .11 t.8 .2 
MCC 29-D .18 ,05 2.9 .2 .64 .10 1.8 .2 
"cc 29-E .22 .06 3.3 .3 .71 • 1 t 2.0 .2 

TC 8 .oo .oo 2.9 .2 .57 .to 2.3 .2 
TC 9 .oo .oo 3.2 .2 .69 .10 2.7 .2 
TC 10 .oo .oo 2.7 .2 .82 .10 2.4 .2 
TC 11 .16 .OS 2.6 .2 .56 .09 1.47 .19 
"cc 11 .22 .05 2.9 .2 .53 .09 2.11 .19 

"cc 22 .20 .06 4.5 .3 .91 .12 2.9 .2 
TC 3 .24 .06 3.2 .3 .74 • 1 t 1. 7 .2 
EC 4 .oo .oo 3.4 .2 .73 .to 2.7 .2 
SKV-1 • 77 .11 9.2 .4 t.07 .t4 7.4 .3 
SKV-2 .42 .08 5.4 .3 .66 .12 4.4 .3 

EC t2-A .oo .oo 5.3 .3 1.3t .14 7. t .3 
EC 12-B .oo .oo 5.0 .3 l.43 .15 7.0 .3 
AGVl-3 .30 .07 4.9 .3 1.04 .13 b.O .3 
016-3 • 77 .10 7.8 .3 2.18 .18 10.4 .3 
6SPl-3 • 25 .07 14.9 .6 • BO • IS 112 • 3 • 

A&Vt-9 .28 .OS 5.2 .2 .90 .09 6.4 .2 
016-9 .85 .10 7.7 .3 2.04 .16 11.1 .3 
6SPl-9 • 30 .OS 15.3 .5 .84 .10 114. 3 • 

co 
w 



APPENDIX C 

NORMALIZED MAJOR ELEMENT DATA (WEIGHT %) 

SAMPLE Si02 Al 20 3 Ti02 Fe203 FeO MnO Cao 

EC 15-A 67.95 16. 10 1. 009 0.832 3.328 0.031 5.31 
EC 16 63.34 18.02 0.874 0.894 3.576 0.047 4.47 
EC 1 7 64.85 18.54 0.893 1.032 4 .128 0.022 4.54 
EC 22 64.43 19.35 1 . 029 0.810 3.240 0.025 5. 14 
EC 25 62.56 18.33 0.926 1.038 4. 15 2 0.052 5.57 
MCC 13-D 59.81 19.40 1.099 1.290 5. 160 0.038 6.04 
MCC 25-G 63.84 20.73 0.804 0.576 2.304 0.019 6.08 
MCC 29-D 61 . 18 18.28 0.992 1 . 06 2 4.248 0.093 6 .11 
RC 3-D 61.42 18.08 0.917 1.128 4.512 0.091 5.96 
TC 7-E 61 .00 18. 11 0.834 1 . 1 70 4.680 0.092 6.05 
RC 7 62.68 16.50 0.900 1.184 4.736 0.069 5.30 

MgO K20 Na20 P205 

EC 15-A 0.93 0.71 3.62 0. 177 
EC 16 2.96 2 . 11 3.58 0. 127 
EC 17 0.76 1. 34 3. 71 0. 172 
EC 22 0.97 1.07 3.71 0.233 
EC 25 2.81 0.91 3.50 0. 150 
MCC 13-D 3. 13 0.43 3.45 0. 164 
MCC 25-G 1. 32 0.46 3.70 0. 158 
MCC 29-D 3.32 0.85 3.67 0. 19 2 
RC 3-D 3.23 1.04 3.44 0. 191 
TC 7-E 3.58 0.92 3.41 0. 154 
RC 7 3.59 1.04 3.83 0. 179 



APPENDIX D 

XRF TRACE ELEMENTS (ppm) 

SAMPLE N' ' l Cr Sc v Ba Rb Sr Zr y 

EC 15 A 23 49 17 120 336 13 517 135 10 
EC 16 28 29 14 96 610 32 473 147 1 1 
EC 17 33 27 15 112 325 24 437 152 58 
EC 22 19 35 16 111 466 21 519 155 13 
EC 25 35 36 21 81 308 17 498 140 1 1 
MCC 13-D 33 51 22 164 188 7 533 154 11 
MCC 25-G 29 27 16 73 273 10 578 161 1 1 
MCC 29D 43 48 20 122 254 28 502 136 1 1 
RC 3-D 37 34 19 110 279 22 54 144 11 
TC 7 E 34 26 20 106 245 15 526 142 11 
RC 7 40 33 19 92 350 14 438 153 13 

Nb Ga Cu Zn 

EC 15-A 10.2 17 38 46 
EC 16 12.4 20 65 76 
EC 17 11. 2 23 81 104 
EC 22 11. 1 25 86 72 
EC 25 11. 4 21 75 80 
MCC 13-D 13.0 21 66 82 
MCC 25-G 12.5 23 65 63 
MCC 29-D 9.8 21 73 75 
RC 3-D 11.1 24 54 77 
TC 7-E 11. 0 17 65 78 
RC 7 12.0 19 58 88 



RC 3 

RC 5 

RC 7 

RC 13 

EC 15 

EC 29 

TC 7 

MCC 13 

APPENDIX E 

THIN SECTION DESCRIPTIONS 

43% plagioclase/clay matrix, 30% anhedral to 
subhedral plagioclase phenocrysts (An52), 20% tuff 
clasts, 2% hornblende, 2% pyroxene, 2% opaques, 1% 
zeolites. 

50% dark brown glass/clay, 45% zoned anhedral to 
subhedral plagioclase, 5% hypersthene. 

80-90% andesite rock fragments, 19-9% anhedral to 
subhedral plagioclase phenocrysts and microlites, 
1% hornblende, oxyhornblende, and smectite. 
Smectite rims on rock fragments and phenocrysts. 

60% plagioclase microlites/microcrystalline 
matrix, 30% anhedral to subhedral plagioclase 
phenocrysts (An64), 5% clinopyroxene with some 
chlorite alteration, 3% smectite, 2% opaques. 

75% crystal tuff clasts (plagioclase, hornblende 
and oxyhornblende), 15% anhedral to subhedral 
zoned plagioclase phenocrysts, 5% hornblende, 
oxyhornblende, and orthopyroxene phenocrysts, 5% 
matrix and alteration minerals (smectite, iron 
oxides). 

35% plagioclase microlites/microcrystalline 
matrix, 30% anhedral to subhedral plagioclase 
phenocrysts (An45), 25% andesite rock fragments, 
5% hornblende, 3% smectite, 2% opaques. 

Slightly laminated with abundant organic material. 
Anhedral to subhedral plagioclase phenocrysts 
in a microcrystalline/plagioclase matrix. 50% 
plagioclase phenocrysts, 40% matrix, 5% andesite 
fragments, 1% hornblende, 1% oxyhornblende, 1% 
clinopyroxene, 1% organic material, 1% opaques, 
<1% zeolites. 

40% microcrystalline/glass-clay matrix, 30% 
anhedral to subhedral plagioclase phenocrysts 
(many zoned), 25% andesite rock fragments, 10% 
clinopyroxene, orthopyroxene, opaques, oxyhorn-



MCC 25 

MCC 29 

87 

blende. Smectite rims on fragments and crystals. 

Laminated. Two discontinuous "layers" of rounded 
pumice fragments and tuf f clasts parallel to 
lamination. One organic lamination. 50% anhedral 
plagioclase fragments, 50% microcrystalline/clay 
matrix. 

50% matrix (80% plagioclase, 15% clays, 4% 
hornblende, 1% pyroxene, opaques), 25% subhedral 
plagioclase phenocrysts (An40), 25% andesite rock 
fragments. 



APPENDIX F 

MEASURED SECTIONS 
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Outcrop on east side of Eagle Creek along 
entrance to I-84. 
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