
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1988

A new general purpose systolic array for matrix A new general purpose systolic array for matrix

computations computations

Hai Van Dinh Le
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Le, Hai Van Dinh, "A new general purpose systolic array for matrix computations" (1988). Dissertations
and Theses. Paper 3796.
https://doi.org/10.15760/etd.5680

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3796
https://doi.org/10.15760/etd.5680
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Hai Van Dinh Le for the Master

of Sciences in Electrical Engineering presented May 18, 1988.

Title: A New General Purpose Systolic Array for Matrix

Computations.

Marek P~rkowski, Chairman

Erasto Kashoro

Mohammad #,ha

It has been conservatively estimated that 75 percent

of all scientific applications involve some form of matrix

computations. In general, matrix computations are very

expensive in term of processing time. For real time

operation required by such applications as robotics, signal

processing and computer graphics animation, the processing

power of serial computers is simply inadequate.

2

In this thesis, we propose a new systolic architecture

which is based on the Faddeev's algorithm. Because

Faddeev's algorithm is inherently general purpose, our

architecture is able to perform a wide class of matrix

computations. And since the architecture is systolic based,

it brings massive parallelism to all of its computations.

As a result, many matrix operations including addition,

multiplication, inversion, LU-decomposition, transpose, and

solutions to linear systems of equations can now be

performed extremely fast. In addition, our design

introduces several concepts which are new to systolic

architectures:

- It can be re-configured during run time to

perform different functions with the uses of

various control signals propagating

throughout the arrays.

It allows for maximum overlaps of processing

between consecutive computations, thereby

increasing system throughput.

There have been other architectures proposed for this

problem. However, a thorough analysis performed in this

thesis reveals that they suffer from serious drawbacks,

design inefficiencies or even errors. Thus, they are

impractical for actual implementation. On the other hand,

the new architecture is free from all of these weaknesses

3

while offering many important advantages, some of which are
~

listed as follo~f

It is truly problem size independent, i.e.

matrices which are arbitrarily large can be

easily decomposed to be processed by a fixed

size array.

- It can solve sparse matrix problems

efficiently without requiring system re-

configuration.

- It provides the same level of performance as

the known architectures using a smaller

number of cells and arrays.

- It is fully expansible, i.e. linear

performance improvement can be achieved by

simple addition of identical component

arrays.

- Because of its simplicity, it can be

implemented inexpensively and with very

little effort.

We also describe in this thesis several extensions to

Faddeev's algorithm which are ideally suited for problem

size independent systolic architectures such as ours. These

extensions~classified as horizontal, vertical, and two-

dimensional~not only increase a system throughput from two

to four fold but also enhance the inherent programmability

of Faddeev's algorithm. This allows our architecture to

perform very complex matrix calculations.

4

An example of

this enhanced programmability for complex matrix calculation

is presented as well.

A NEW GENERAL PURPOSE SYSTOLIC ARRAY

FOR MATRIX COMPUTATIONS

by

HAI VAN DINH LE

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCES
in

ELECTRICAL ENGINEERING

Portland State University

1988

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Hai

Van Dinh Le presented May 18, 1988.

Marek Perkow/ki, Chairman

Rajinder Aggrawal
~

Erasto Kashoro

Mohammad,Ghffarzade

APPROVED:

~ '-<.l~.t:' ~v .. , ,_i1a.r'r, Department of Electrical Engineering

Bernard Ross, Vice Provost for Graduate Studies

ACKNOWLEDGMENTS

Faddeev's algorithm became infinitely clearer after

Dr. Robert Broussard illustrated a simple example. For

this, and also for the several office visits during which he

patiently answered my technical questions, I am sincerely

grateful.

I also wish to give thanks to Dr. Roy Rathja for

providing me with some important articles on the subject of

parallel computer architectures. They have been quite

valuable and are greatly appreciated.

Special thanks are due to Dr. Marek Perkowski, my

thesis advisor, who has suffered the indignation of many

long hours going through several "final" versions of this

thesis; his extensive detailed comments and suggestions have

helped me fix innumerable errors and omissions.

Finally, I would like to express my deepest gratitude

to my wife and best friend, Tuyet Uong, for her devotion and

unwavering support through all these years. Without her, my

entire higher education would have been impossible. This

thesis is lovingly dedicated to her.

TABLE OF CONTENTS

PAGE

ACKN'OWLEDGMENTS • iii

LIST OF FIGURES . .. vii

CHAPTER

I INTRODUCTION. • . 1

Ways and Obstacles in Speeding Up
Digital Systems................................ 2

The Systolic Architecture Concept.............. 6

Systolic Architecture Design Criteria.......... 9

Organization of This Thesis ...•................ 10

II FADDEEV'S ALGORITHM AND MATRIX
TRIANGULARIZATION SYSTOLIC ARRAYS 13

Faddeev's Algorithm•.............. 14

Systolic Arrays for Matrix Triangularization ... 17

Gaussian Elimination With
Neighbor Pivoting........................... 19
Orthogonal Triangularization ..•............. 20

III SYSTOLIC IMPLEMENTATIONS OF FADDEEV'S ALGORITHM ... 23

Nash's Implementation •.•....................... 23

Chuang and He's Implementation 30

Input Decomposition•.............. 35
Feedback System for Parallel Decomposition .. 37
Feedback System for Vertical Decomposition .. 42
Feedback System for Hybrid Decomposition 45
Sparsity in Matrices 46

Assessment Summary•....... 52

---~,

v

CHAPTER PAGE

IV A NEW SYSTOLIC ARRAY ARCHITECTURE•.•.......... 54

Architectural Description .•...••............... 54

PEs' Description. 56
Control Signals Interconnections•.... 59
Control Interface With Host 62

Data Flow Description•................... 64

Storage and Feedback of
Modification Factors ...••...•..•............ 65

Solving Size Independent Problems .•............ 66

Input Decomposition and
Vertical Feedback Path 67
Controls and Horizontal Feedback Path 72
Multiple Arrays Configurations 74
Intermediate Results Storage 79

Processing of Sparse Matrices 80

Overlaps in Processing Between Problems 83

V EXTENSIONS TO FADDEEV'S ALGORITHM AND CONCLUSION .. 86

Horizontal Extension to Faddeev's Algorithm 87

Vertical Extension to Faddeev's Algorithm 93

Two-Dimensional Extension to
Faddeev's Algorithm 97

Concluding Remarks 104

REFERENCES. . • . . • • • • • . . . • • • • • • . . . • . • • • . • • • • • • • . • 10 6

APPENDIX A EXAMPLES OF FADDEEV'S ALGORITHM 109

Using Ordinary Gaussian Elimination 109

Using Gaussian Elimination With
Neighbor Pivoting .•.......•.............. 113

Using Givens Rotations 123

vi

PAGE

APPENDIX B REAL TIME GRAPHICAL SIMULATION OF
SYSTOLIC ARRAYS. • • • • • • • • . • 131

APPENDIX C SAGS PROGRAM LISTING ...••.••...•.••.••...••. 170

LIST OF FIGURES

FIGURE PAGE

1. Some Matrix Operations Possible With
Faddeev' s Algorithm. 1 7

2. Triangular Systolic Array for Matrix
Triangularization. 18

3. Microcode Specifications of Boundary Cell
and Internal Cell for Gaussian Elimination
With Neighbor Pivoting•................... 21

4. Microcode Specifications of Boundary Cell and
Internal Cell for Orthogonal Triangularization ... 22

5. Nash's Systolic Implementation of Modified
Faddeev's Algorithm 25

6. Microcode Specifications of Boundary Cell and
Internal Cell Used in Nash's Array During the
First Phase, i.e. Givens Rotations 26

7. Microcode for Boundary Cell and Internal Cell
Used in Nash's Array During the Second Phase,
i.e. Gaussian Elimination ..•..................... 27

8. Chuang and He's Systolic Implementation of
Faddeev's Algorithm 31

9. Microcode Specifications of Cells Used by
Chuang and He's Array for Gaussian Elimination
With Neighbor Pivoting ..•........................ 33

10. Microcode Specifications of Cells Used by
the Array for Ordinary Gaussian Elimination 34

11. Three Ways to Decompose the Input Data Flow.
(a) Parallel Decomposition. (b) Vertical
Decomposition. (c) Hybrid Decomposition 36

12. Systolic System With 26 Subarrays of Types
T ands, Each of Width w ••••••••••••••.••..•.•••• 38

viii

FIGURE PAGE

13. Feedback Systolic System With a Smaller Number
of subarrays for Parallel Decomposition 39

14. Two-Dimensional Feedback System With One S
and One T Subarrays. . . . • . . • . . • . . • • • 41

15. Array System for Vertical Decomposition of
l:l11>1lt r>a.t:Ci FlolN. 42

16. Problem Size Independent Array System for
Vertical and Hybrid Decomposition of Input
Data Flow.. 44

17. Recycling Shift Registers for the Temporary
Storage of the X Values•........•........... 45

18. Parallel Decomposition of a Sparse Matrix
Problem With m = 6............................... 47

19. Systolic System for the Processing of Sparse
Problems. 4 9

20. Processing Sequence Showing the Order in
Which the Non-Zero Blocks of Figure 18 Are
Fed Into the System of Figure 19•..•..... 51

21. Dual Mode Systolic Implementation of
Faddeev's Algorithm. The Number of Cells
Needed Is Smaller and I/O Bandwidth
Requirement Is Reduced•............. 55

22. Microprogram Specifications of the Circular
and Square Cells for the Array's Dual
Mode Operation. 57

23. Dual Mode Array Shown Only With the
Interconnection Pattern for Control Signal Cl 60

24. Dual Mode Array Shown Only With the
Interconnection Pattern for Control Signal C2 61

25. Dual Mode Array Shown Only With the
Interconnection Pattern for Control Signal C3 62

26. Array Showing Only the Interconnection Pattern
of Control Signal C4. • . 63

27. First Iteration in the Processing of a Problem
Larger Than the Array Size•.•................ 68

ix

FIGURE PAGE

28. Second Iteration of the Problem 70

29. Control/Timing Sequences of Input and Output
Data Flow for Each Iteration. The Dash/Dotted
Lines Represent Input Strips, While the Dotted
Lines Represent the Output Strips .••....•..•..... 72

30. L-tuple Arrays System Processing a Problem
Larger Than the I/O Bandwidth w •••••••••••••••••• 75

31. Control/Timing Sequences for Each Array 77

32. An L-tuple Arrays System With a Common Data
Bus From Each Array to Host. The Vertical
Feedback Path Has a FIFO Queue Br for
Temporary Storage of Intermediate Results 79

33. Reduced System for Sparse Matrix Processing 81

34. Parallel Decomposition of x = 3 Horizontally
Compatible Problems 89

35. Parallel Decomposition of y = 3 Vertically
Compatible Problems .•............................ 95

36. Parallel Decomposition of x by y Compatible
Problems. 100

SEQUENCE OF SNAPSHOTS

B.1. Simulation of Nash's Systolic Array Solving
Ex amp 1 e (A . 4) • • . • . • . • • • . • . . • . . • . • . . • . . • . • • . . . 13 5

B.2. Simulation of Chuang and He's Systolic
Array Solving Example (A. 2) 142

B.3. Simulation of an L-tuple Arrays System
Solving Example (A.3), With L = 2•........ 150

CHAPTER I

INTRODUCTION

As a general class of problems, matrix computations

are found to be very useful, if not essential, within a

broad spectrum of scientific applications. However, they

are generally expensive in terms of storage space and

processing time. To be sure, numerous algorithms with

substantially reduced storage requirement have been devised

for specific matrix computations. Yet, it is with the

recent abundance of low cost memory that storage demands of

matrix computations in general cease to be an important

issue. On the other hand, the need for greater throughput

rate has become more acute as applications grew in power and

complexity. Indeed, for real time operation required in

such applications as robotics, signal processing and

computer animation, the computing power of serial computers

proved to be woefully inadequate. Before long, it was

evident that the only way to meet the ever growing

computational requirements of many applications is to build

faster systems.

2

WAYS AND OBSTACLES IN SPEEDING UP DIGITAL SYSTEMS

Essentially, there are two ways to build faster

systems. One is to use fast components, the other is to use

concurrency. 1 Since the technological trend clearly

indicates that we are reaching the maximum components speed

potential, any major gain in computational speed must come

from the concurrent use of many processing elements. 1
•

2
•

3
•

4

As it is, the architecture of conventional computers suffers

from two inherent difficulties:

(1) Long communication paths such as buses between

CPU and its memory substantially slow down the

transmission of information. Also, the system

I/O bandwidth provides an absolute upper bound

limit on the data rate, which acts as a

bottleneck in limiting the system speed. 4
•

5
•

6
•

7

{2) The single CPU sequentially fetches and executes

instructions thereby does not fully exploit its

hardware resources at all times, providing

little or no concurrency for speeding up

processing. 5
•

6
•

7

Indeed, the above problems are widely acknowledged for

quite some time. Nevertheless, they remain to be formidable

obstacles which must be surmounted before a substantial

speed increase is obtained. Several schemes were proposed

to address one or both of them while maintaining the same

degree of generality offered by the von

architecture. Most widely known among them are:

- pipelining,

- memory-caching,

3

Neumann

- replicating CPU's processing units (such as

adders, multipliers, ALUs),

- and multiprocessor systems. 4
•

7

Pipelining, as a form of parallelism, involves the

application of assembly line techniques to improve the

performance of an arithmetic or control unit. 7
•

8
•

9

Theoretically, maximum utilization of available components

can be achieved if the pipeline is kept full at all time.

However, in actual operation this ideal condition is

impossible to maintain and speed gains occur only in burst

between pipeline flushes. Al though widely implemented on

many high-speed systems today, pipelining does not fully

exploit the parallelism inherent in many applications and

only constitutes a minor architectural fine tuning of the

basic von Neumann structure. 7 • 10

Memory caching is used to reduce the cost of memory

and alleviate the communication bottleneck at the expense of

additional system complexities. A memory cache is a small

but high-speed memory system that tries to capitalize on

temporal locality, the theory of which basically states: if

a particular instruction or piece of data is read from

memory, then the probability of it being used again

increases.

instructions

Thus, after the

or data brought in

4

cache is filled with

from slower memory, the

number of subsequent reads by the CPU which can be performed

at full speed to the cache increases before access to slower

memory is required. The effectiveness of a cache memory is

known as the "hit ratio." Given a certain number of

instructions (or data) that must be fetched, the hit ratio

is the number that can be accessed from the cache versus how

many that must be accessed from slower memory. Generally,

the cache employs the highest-performance

technology~bipolar; 4 however with the performance of CMOS

technology steadily bridging the gap and its cost declining,

the trade-off seems less attractive. Furthermore, while

caches seem to work well with single processor computers,

they are difficult to incorporate into multiprocessor

systems because of the cache coherence problem. Cache

coherence relates to the integrity of data between various

caches within a system. Suppose a two processor system is

tightly coupled through a main memory but each processor has

its own data cache. A different routine is running on each

processor and the two tasks communicate through the shared

memory. If, however, a shared address is present in both

caches and the individual processors read and write that

address, then each processor would not have the same piece

of data in its respective cache. This results in neither

processor seeing the changes caused by the other. 7

5

Of course there are schemes to remove this problem,

but they invariably add further complexity to the system.

Thus, while partially improving the performance of the von

Neumann architecture, pipelining and caching create other

problems of their own.

At the other end, we have systems with replicated

processing units or multiple processors which incorporate a

very high degree of parallelism while striving to retain the

same level of generality available in von Neumann

architecture; however, run-time considerations such as tasks

synchronization and memory contention incur rather severe

system overhead. 7
• 11 • 12 Thus, full utilization of available

hardware can never be realized. 8 • 12

Simply stated, the price for generality in highly

parallel structures is decreased speed, decreased efficiency

of hardware utilization, and increased software

requirements. 1 2 During the last decade, there have been

many highly parallel general-purpose architectures proposed

or implemented. In general, they required many man-years

of efforts to design and, because of their complexity, were

very costly to build.

Tailored to meet specific application requirements or

to off-load computations especially taxing to general

purpose computers, 1 special-purpose systems provide a very

high degree of parallelism with minimum system overhead and

complexity. They are generally the fastest and most

efficient in hardware utilization. 12

6

However, because of

their limited applicability, their cost must be low enough

to justify their selection over a general-purpose approach.

THE SYSTOLIC ARCHITECTURE CONCEPT

Because special-purpose systems are seldom produced in

large quantities, their design cost is a lot higher

comparing to the parts cost. 1 •
6 This is particularly true

when special-purpose designs are implemented with VLSI

technology. Even though VLSI offers a number of major

benefits~low cost per component, high density, reliability

and ease of fabrication, 2
•

5
•

6 effective use of the

technology to achieve massive parallelism requires careful

consideration.

Briefly, a highly parallel VLSI structure should

adhere to the following principles: 1
•

3
•

10
•

11
•

12
•

13
•

14

(1) Simplicity and regularity: the design should

consist of only a few simple types of modules

which are replicated many times, thus reducing

design complexity. A simple and regular

structure is therefore highly cost-effective.

In addition, such a structure can be easily

expanded by increasing the number of basic

modules. This, in turn, leads to linear speed

improvements.

(2) Concurrency: The degree of concurrency in a

system is largely determined by the underlying

algorithm. Massive parallelism can be achieved

if the algorithm is designed to support a high

degree of pipelining and multiprocessing.

(3) Communication: Control and communication become

significant in a parallel computing structure,

especially with VLSI where routing costs

dominate the power, time and area required to

implement

underlying

a computation. The design's

algorithm should therefore employ

only simple, regular control and communication.

In a processor array, communications should

occur only between neighboring processors.

(4) I/O consideration: Since a special-purpose

device is typically attached to a host, its

computational rate should not exceed the host's

available I/O bandwidth. Therefore, if multiple

computations are performed per I/O access,

orders of magnitude improvements on system

throughput are possible.

7

To meet these requirements, Kung and Leiserson in 1977

introduced the concept of systolic architecture. Originally

proposed for VLSI implementation of some matrix

operations, 15 a systolic system consists of an array of

processing elements (PE's) called cells, each capable of

8

performing some simple operations. These cells communicate

only to their nearest neighbors, and communication with the

outside world-i. e. the host-occurs only at the boundary

cells. 1
•

5
•

6
•

15 Data flow from the host through the array in

a rhythmic fashion, and computations are synchronized by a

global clock signal. Each data item once brought out from

memory is used effectively at each cell while being moved

from cell to cell along the array.

Conceptually, computational tasks can be classified

into two categories-compute-bound computations and I/O

bound computations. In a computation, if the total number

of operations is larger then the total number of input and

output elements, then the computation is compute-bound,

otherwise it is I/O-bound. While speeding up an I/O-bound

computation must rely on an increase in memory bandwidth,

the systolic architecture allows a speed-up of a compute

bound computation without increasing the memory bandwidth

requirement. 1

Since cells in a systolic array are of only a few

simple types, cost-effectiveness and ease of VLSI

implementation are among the many advantages that systolic

architecture offers. Others include simple and regular

control and data flow, elimination of global broadcasting

and modular expansibility. 1

9

SYSTOLIC ARCHITECTURE DESIGN CRITERIA

Today, the systolic approach is increasingly being

considered for computational intensive problems and there

exist many systolic designs for a wide class of compute

bound applications. In several of his papers, 1
•

6 Kung

suggested a number of systolic design criteria which are

briefly outlined below.

(1) The design makes multiple use of each input data

item. This property allows systolic systems to

achieve high throughputs with modest I/O

bandwidths for outside communication.

(2) The design uses extensive concurrency. The

underlying algorithm should use as many of the

available cells as possible at any given time

during a computation. Even higher concurrency

is possible if another level of pipelining is

introduced to operations within the cells

themselves.

(3) There are only a few types of simple cells. A

large number of cells are required if a systolic

design is to achieve any great performance

gains. The cells must therefore be simple and

of only a few types to curtail design and

implementation costs. However, one should

remember that there is always a trade-off

between cell simplicity and flexibility. An

exact estimate can only be arrived at on a case

by case basis.

(4) Data and control flows are simple and regular.

Pure systolic systems totally avoid long

distance or irregular data communication wiring.

This is the principal reason why a systolic

array is adjustable to various performance

goals. The only global communicat.ion (besides

power and ground) is the system clock.

ORGANIZATION OF THIS THESIS

10

Even though the systolic architecture offers many

advantages, it is not without some drawbacks. One possible

problem is that if a systolic array is too large, its global

clock signal could be skewed to the point where two cells at

its opposite ends could not be synchronized properly. 1
•

11

Another issue is the degree of utility a systolic device can

support. Proposed as a special-purpose architecture, one

nonetheless wants a systolic array to be able to perform

more than one type of computation. These are issues which

cannot be resolved satisfactorily unless both architectural

and algorithmic considerations are reviewed carefully.

The rest of this thesis is divided into four chapters.

In Chapter II, a brief introduction to Faddeev's algorithm

is presented; because the main focus of this thesis is in

its architectural mapping, a more thorough treatment of the

11

algorithm is referred to the original book listed in the

REFERENCES section. Since matrix triangularization is an

essential component of Faddeev's algorithm, descriptions of

two systolic arrays for this matrix operation are also

included.

Chapter III contains detailed examinations of two

systolic implementations of Faddeev's algorithm. Analysis

of the designs performance and correctness of operation is

presented. Also, their advantages and weaknesses are

discussed in this chapter.

In Chapter IV, a new systolic array implementation of

Faddeev's algorithm is proposed. Again, a detailed

description and a performance analysis of the design are

offered. Necessary comparisons to the previous arrays

concerning modularity, expansibility, versatility and ease

of implementation will show it to be vastly superior.

In Chapter V, three different extensions to Faddeev's

algorithm are developed. It will be shown that these

techniques are ideally suited to the new systolic array.

This leads to a four fold increase in the array throughput

when matrix operations are to be solved continuously.

Lastly, concluding remarks are offered at the end of this

chapter.

Relevant materials that do not fall within the main

focus of this thesis but are nonetheless important are

included in the three appendices A, B and c. For the reader

12

who wish to verify how Faddeev's algorithm solves various

matrix computations, Appendix A contains examples which

illustrate different variants of the algorithm. If he

wishes to further investigate the operation of all

architectures put forth in this thesis, Appendix B contains

sequences of snapshots which show these arrays solving the

examples of Appendix A. Finally, Appendix C contains the

Pascal source listing of SAGS, a Systolic Arrays Graphical

simulator which produces those snapshots, and sample script

files.

CHAPTER II

FADDEEV'S ALGORITHM AND MATRIX TRIANGULARIZATION

SYSTOLIC ARRAYS

One aspect of systolic arrays that is the focus of

several recent research efforts is their lack of generality,

i.e. an array designed for one algorithm generally cannot

run another. An approach aimed at removing this drawback

taken by Kung is the use of a programmable systolic

chip. 16
•

17 While this allows different sequences of

operations to be performed within the cells of a systolic

array, it is only a partial solution to the problem since

the interconnections between neighboring cells are still

unalterable. To remove this inflexibility, Snyder proposed

a programmable switch lattice structure that gives an array

processor re-configurable interconnections between its

PEs; 1 3 however, the added complexity of such a network is

beyond the current integration technology for large array

sizes.

Another less drastic approach is to find algorithms

and their array implementations which are general-purpose

within a class of problems. This approach generally results

in simpler processor and/or simpler interconnections, thus

more array cells can be put into a single chip.

14

Consequently, the clock skew problem of large array sizes

will be effectively reduced since the number of chips

required would be smaller.

FADDEEV'S ALGORITHM

One general purpose algorithm, useful for a wide class

of matrix operations and especially suited for systolic

implementation, is the Faddeev's algorithm18 illustrated by

the simple case of computing the value of ex + D, given

AX= B, where A, B, c, and Dare known matrices of order n,

and X is an unknown matrix.

The problem can be formulated as

a a . . . a b b . . . b
1 1 1 2 ln 1 1 1 2 ln

a a . . . a b b . . . b
2 1 2 2 2n 2 1 22 2n

a a . . . a b b . . . b
n 1 n2 nn n 1 n2 nn

(2. 1)
-c -c . . . -c d d . . . d

1 1 1 2 ln 1 1 1 2 ln

-c -c . . . -c d d . . . d
2 1 2 2 2n 2 1 22 2n

-c -c . . . -c I d d . . . d
n 1 n2 nn n 1 n2 nn

or, in abbreviated form

* D
(2.2)

15

If by some means a suitable linear combination of the

rows of A and B is found and added to the rows of -c and D

as follow

A B

-C+WA D+WB

where W specifies the appropriate linear combination such

that only zeroes appear in the lower left hand quadrant,

then the lower right hand quadrant will become matrix

E = ex + D. This is because annihilating -c requires

W = CA- 1 so that D + WB = D + CA- 1 B, and since AX= B,

D + WB = D + ex. The elegance and simplicity of the

algorithm is apparent when one notes that to carry it out,

it is only necessary to annul the lower left hand quadrant

by applying a suitable matrix triangularization procedure to

16

the left side of (2.2) while extending the operation to its

right side. We will then have from (2 .1)

a' k > a ck> a ck> b' k) b' k) . . . b' k)
1 1 1 2 ln 1 1 1 2 ln

0 a ck> a ck> b' k) b' k) . . . b' k)

22 2n 2 1 2 2 2n

0 0
(k) a ck> b' k) b' k) b' k) a
3 3 3n 3 1 3 2 3n

.
0 0 . . . 0 a' k > b' k) b' k) . . . b' k)

nn n 1 n2 nn

-
0 0 0 e e . . . e

1 1 1 2 ln

0 0 0 e e . . . e
2 1 22 2n

. •
0 0 0 I e e . . . e

n 1 n2 nn

or, in short

A' k) I B' k)

0 I E

where A' k > is an upper triangular matrix and B' k > is B

modified k times by the procedure. Often used in solving

linear systems, Gaussian elimination is one of the better

known triangularization methods available to perform the

Faddeev's algorithm. Since the usual backsubstitution is

not needed here, considerable savings in computation and

storage are obtained.

With Faddeev's algorithm, a variety of matrix

operations can be performed by selective entries in the four

quadrants. For example, when D = O, C = I where I is the

17

identity matrix, and B is a column vector, E becomes X, the

solution to the linear system AX = B. Some other matrix

operations possible with Faddeev's algorithm are shown in

Figure 1 below. The reader is referred to Appendix A for a

detailed treatment of Gaussian elimination and the solutions

to a sample linear systems using Faddeev's algorithm.

* => CA- 1 B+D * => A- 1 B
D 0

* => CB * => A-1

0 0

* => CB+D
D

Figure 1. Some matrix operations possible
with Faddeev's Algorithm.

SYSTOLIC ARRAYS FOR MATRIX TRIANGULARIZATION

Since the underlying procedure to carry out Faddeev's

algorithm is matrix triangularization, any systolic

implementation of the algorithm should be based on a

structure which can perform triangularization efficiently.

Developed by Gentleman and Kung as a common platform for two

different triangularization methods, the triangular

systolic array of Figure 2 can execute both Gaussian

elimination with neighbor pivoting or orthogonal

triangularization. 19
•

20 The array consists of two types of

cells: the boundary cells (represented by circles) and the

Cycle 7 ----+ x ..
Cycle 6 ----+ x.J XJ•
Cycle 5 ----+ x.2 X33 X2•
Cycle 4 ----+ x., X32 X23 X14

Cycle 3 ----+ X31 X22 X13

Cycle 2 ----+ Xz1 X1z

Cycle 1 ----+ Xn

J. J. J. J. o::o::o::o::
J. J. J. o::o::o::

J. J.

Q::D::
J.

Q::

Fiqure 2. Triangular systolic array for matrix
triangularization.

18

internal cells (represented by squares). These cells are

locally interconnected into a triangular mesh. Each cell

stores a microprogram, enabling it to interact with its

neighbors in such a way that a triangularization procedure

can be carried out. Changing the microprograms of the cells

will allow the array to execute different procedures.

In the following discussion, the term data row refers

to a row of entries of matrix X, whereas the term array row

means a row of cells of the array. The triangularization of

matrix X by the array is as follow. Initially, all cells

contain only zeroes. As each data row i enters the array

via the top boundary, its entries are stored in the cells on

the it h array row. Before the data row i reaches its

19

respective array row however, its entries are modified by

cells of previous array rows such that the first i - 1

entries are discarded~i.e. became zeroes. The modification

of an incoming data row is initiated by a boundary cell.

This cell generates modification factors, values resulting

from computations performed on an incoming entry and the

cell's own stored value. The modification factors are then

sent rightward to meet other entries of the same data row in

the internal cells. There, they are used to modify the

entries which are subsequently outputed to the next array

row. While cells of any given array row are updating a data

row, they may also update their own currently stored values.

Note that because of the critical timing required for

the rightward data stream to reach internal cells at proper

moments, the input data flow is fed into the array in a

skewed order. After completion, modified x values left in

cells constitute elements of a triangularized matrix and can

then be readily read out, one from each cell.

Gaussian Elimination With Neighbor Pivoting

When Gaussian elimination procedure is performed using

finite-precision arithmetic, as would be the case for

electronic computing devices, a diagonal element that is

small compared to the entries below it in the same column

can lead to substantial roundoff error. Traditionally,

pivoting strategies such as partial or total pivoting have

been used to improve its numerical stability. 21 Because of

20

the global communication that may result from pivot

selection, they are not quite suitable for systolic

implementation. Thus, to maintain the same degree of

stability for the triangularization process described above,

Gentleman and Kung suggest the use of another pivoting

strategy, called neighbor pivoting. This technique

introduces a zero to a row by subtracting a multiple of an

adjacent row from it, interchanging the rows when necessary

to prevent the multiple from exceeding unity. 19 In

Appendix A, examples of Faddeev's algorithm using Gaussian

elimination with neighbor pivoting is shown.

The triangular array of Figure 2 can perform Gaussian

elimination with neighbor pivoting using the cells shown in

Figure 3. As its microcode reveals, the boundary cell

generates two modification factors: a multiplier M t , as
OU

well as a Boolean variable V t , which signals a row
OU

interchange when having value one. This occurs at every

array cycle, the maximum length of time necessary for a cell

to execute its microprogram once.

Orthogonal Triangularization

The orthogonal triangularization procedure involves

the execution of a series of plane rotations (also known as

Givens rotations) on the target matrix. They are applied

initially to the first row and the second row, the first row

and the third, the first row and the fourth, and so on to

the last row. At this point, all rows except the first will

BDUNDARY CELL 1

If IX.., I ~ IX I then

x,.
l
~~Mout
~~ Vout

begin

Vout ~ I

Mout ~ If X10 ;': 0 then -XIX'"

x ~ x ..
encl

else 0

else

INTERNAL CELL 1

x.,

l
M., ~ rFvil ~ Mout = M,n
v., ~~~ vout = v ..

l
Xout

vout ~ 0

Mout ~ -X., IX

If V.n then

begin

Xout ~ X + M., ,. X.,

x ~ x,.
end

else

Xout ~ X1n + M10 "' X

Fiaure 3. Microcode specifications of boundary
cell and internal cell for Gaussian elimination
with neighbor pivoting.

21

have zero entries on their first column. Next, the above

process is repeated starting with the second row, then again

with the third row, and so on until zeroes are introduced to

all columns such that the resultant matrix becomes upper

triangular, after which the triangularization procedure is

completed. In Appendix A, the reader will find a more

detailed description of Givens rotations along with examples

of Faddeev's algorithm illustrating their uses.

The systolic array of Figure 2 can perform orthogonal

triangularization using the cells specified in Figure 4.

While this method yields better numerical accuracy than that

of the previous section, 22 notice the added complexity

22

necessary for boundary cells because of the square roots.

Since all cells in the systolic array must operate at the

same throughput rate, the boundary cells could form a

bottleneck on the overall system performance. 20

BOUNDARY CELL •

X1n

1
~~ Cout
~~ Sout

11-ITERl•JAL CELL I

x,n

1
C"' ----+ rr=)(il ~ C out a C In

s," ~~~ sout & sin

1
Xout

If X., = 0 then

beg;n

else

Cout ~ I

Sout ~ 0

end

begin

Cout f--- X 1/x2 + xz In

sout ~ x,n /~~
x f--- /x2 + x2 In

end

xout f--- -s,n x + cln x,,,
x f--- con x + son x,0

Figure 4. Microcode specifications of boundary
cell and internal cell for orthogonal
triangularization.

CHAPTER III

SYSTOLIC IMPLEMENTATIONS OF FADDEEV'S ALGORITHM

In this chapter, we will look at two systolic

implementations of Faddeev's algorithm, originated from

different authors. Their basic arrays are remarkably

similar in most aspects such as interconnection topology,

cells layout, I/O requirements and general algorithm

mapping. This is not surprising since both are based on the

same triangular array we've just examined in the previous

chapter. However, they differ in the triangularization

methods used to implement Faddeev's algorithm, which lead to

dissimilar cells' control codes and numbers of pin-out. We

can attribute this to the respective authors' design choices

concerning the trade-offs between algorithm's stability and

array's throughput rate.

NASH'S IMPLEMENTATION

To improve its numerical stability, Nash et. al. 23
•

24

suggested a modification to Faddeev's algorithm by replacing

the Gaussian elimination procedure used to triangularize the

coefficient matrix A of (2.2) with orthogonal

triangularization.

24

For clarity, it is useful to divide their algorithm

into a two-phase procedure. In the first phase, A is

triangularized by a series of Givens rotations

(simultaneously applied to B): in the second phase, the

diagonal elements of the resulting triangular matrix are

used as pivoting elements in the Gaussian elimination

procedure on c and D, where columns of C will be zeroed out

and D will become the result. Note that for the Gaussian

elimination procedure to work properly, it is necessary that

these pivoting elements be non-zero, hence the requirement

that A be full rank, i.e. at least one of its square

submatrices of order n has a non-zero determinant.

Nash's systolic implementation, shown in Figure 5,

consists of a triangular array and its right extension, a

square array. The triangular array, based on Kung's design

in Figure 2 for orthogonal triangularization, performs

Givens rotations on A (first phase) and ordinary Gaussian

elimination on c (second phase). For higher efficiency in

performing Givens rotations, cells' microcodes of Figure 4

are slightly modified into those of Figure 6. Furthermore,

the added processing of ordinary Gaussian elimination

requires the extra codes of Figure 7. The square array

simply extends the corresponding processings to B and D and

thus consists only of square cells.

The input data flow involves feeding A and B through

the system from the top with cells executing the

Second Ph0-se
Go.ussio.n ellMino. tlon

First Ph0-se
Orthogono.l trio.ngulo.rlzo. "tion

dw
d~ d ..

d.. dn dH
du dR de dM c.. d., cl., cl,. b ..

c., c,. d., cl., b., b,.
C.. C~ c.. du b.. b.. bH

C4 C~ C~ Cl< bu bK ba bH
c.. c... c,. 0-.. b., b,. b,. 6
c., c,. 0-., 0-.. b., b., 6 0 delo.y cell

-7c., °' .. °'~ °' .. bu6o6/
°'"' °'~ °'~ J'" 6 DD a'.{ Squo_re 0-rr0-y

°'"' °'"" °'"00000
0-., 0-.. 600000

--;;. °'!" 6 o o o o o o
o(J1c)c)c)c)Q:: ~

/&OOO~Q OOOQ::Q
results

Trio.ngle o.rro.y
o::ooo::Q

999 x .. / 9 9 x,. x ..
9 x .. x .. x ••

X 41 Xx Xa XH

x .. x .. x ..
x .. x.,
Xu

Figure 5. Nash's systolic implementation of
modified Faddeev's algorithm. Note the use of
delay cells to skew the data flows.

25

microprograms of Figure 6 on each incoming row. This

corresponds to the first phase of the modified algorithm.

Notice that the required skewing of the data flow is

performed by a triangular array of delay cells (represented

by rectangles) above the system. The second phase is

accomplished by a similar flow of c and D, only this time

the cells execute the microprograms of Figure 7 on the data

26

elements and the resulting matrix will appear row by row

coming out from the bottom of the square array. These

output rows are straightened back to normal by another

triangular array of delay cells below the square array.

With a matching I/O bandwidth, the system will compute

CA- 1 B + D in 5n - 1 steps and solve a 1 inear system of n

equations in 4n steps.

BOUNDARY CELL '

Xin

l
fB:.. ---? c out
~---? sout

INTERNAL CELL

x,n

If x., = 0 then

begin

Cout = 1

Socrt = 0

r = 0

end

els" b"gln ~
t = "'re + x:;,

- r/t
Cou1 - /t
Sout = X1n

r = t

.,nd

l
c,n --79---? cout: c,n
s,n ---?~---? soui; -s,n

Xout = -s,n r + c,n x.,
r = c,n r + s,n x.,

l
xout

DELAY CELL :

x,n

l
[CJ X,n = Xocrt

l
xout

Figure 6. Microcode specifications of boundary
cell and internal cell used in Nash's array
during the first phase, i.e. Givens rotations.

BOUNDARY CELL •

x,n

l
fB..~ Mout

'el~*

!Nl ERNAL CELL I

x,n

l
M., ~ g ~ Mout = M,n * ~!!:2J~*

l
xout

* Te,.,poro.rily unused n-bit bus

Mout

xout

x,n
r

X1n - M1n r

Figure 7. Microcode for boundary cell and
internal cell used in Nash's array during the
second phase, i.e. Gaussian elimination.

27

The input data flow can be contiguous, i.e. matrices A

and B and then c and D can enter the array without any

interruption in between. Data flows of separate problems to

be solved by the array can also be fed continuously into the

array. For this to be possible, additional control

capabilities are necessary to switch the cells from one set

of codes to another at the proper time. Slight modification

of the microprograms will also be required.

Although Nash's modified Faddeev's algorithm is

mathematically sound, its systolic implementation,

unfortunately, contains some serious deficiencies. For

instance, it is possible for the array to produce erroneous

results, as illustrated by the following example. Suppose

28

we have a linear system AX = B of order n = 3 where X is an

unknown matrix, and one or more entries in column 1 of

matrix A are zeroes, in this case, a 21 :

A= [
1 2 3]
0 4 7
2 1 3

B = [n (3 .1)

Since the determinant of A, ~(A) = 9 is non-zero, A is

therefore full rank, thus guaranteeing that a solution to

the system exists and that it is unique with x
1

= 1. 33,

x
2

= -0.67 and x
3

= 1.67. However, when A is fed into the

array of Figure 5, because a
21

= o, during the second step

the boundary cell of row 1 column 1 will clear its r

register, previously storing a 11 = 1. This effectively

transforms A into another matrix, say E, whose entries are

identical to A's except for e
11

, which is zero, and all

further processings will be on the resulting linear system

E = [
0 2 3]
0 4 7
2 1 3

B = [n (3.2)

In this case, since ~ (E) = 4 is non-zero, E is also

full rank and therefore the procedure is completed

successfully, but with x 1 = 3, x
2

= 4 and x
3

= -1 which is

the solution to (3.2) instead of (3.1).

29

The cause of the above error can be traced to a bug in

the microprogram of the boundary cell. As Figure 6 reveals,

this microprogram has the line of code

r = 0

which always clears the content of register r whenever

xi n = 0. In fact, if at any time during processing the

boundary cell of a row i receives a zero-valued xin from an

internal cell of row i - 1, erroneous result will appear at

the end of processing. Thus, to correct the problem, this

line should be removed.

For the purpose of verification, the reader is

referred to Appendix A where correct solutions to examples

(3. 1) and (3. 2) are arrived at manually using Faddeev' s

algorithm with Givens rotations. Furthermore, he is

encouraged to examine the series of snapshots included in

Appendix B which shows the graphics simulation of Nash's

array computing (3 .1). These pictures illustrate clearly

the sequence of events leading up to the erroneous results.

Implementation errors aside, a drawback of Givens

transform is the square root needed to compute the values of

sine and cosine for each rotation. Execution time of this

operation can easily be ten times that of a multiplication

or division. Since timing is critical for proper

synchronization of data flow in a systolic array, it is

necessary to slow down the entire array correspondingly.

Thus the circular cells represent a bottleneck in the

30

system. Of course a hardware implementation of the square

root is possible, however, we have to bear in mind the cost

of added cell's complexity.

Another drawback of this implementation is the large

pin counts for individual cells because of the need to

transmit simultaneously the sine and cosine values to

neighboring PEs. Not counting clock and control signals,

the boundary cell will require one input and two output data

buses and the 'internal cell will require three input and

three output data buses. For n-bit operands, 3n and 6n I/O

pins are needed for the boundary cell and the internal cell,

respectively. This translates to a large chip area for each

cell. Bus sharing or multiplexing schemes to reduce I/O

lines are possible, but they would increase the processing

time and consequently, reduce the throughput rate.

CHUANG AND HE'S IMPLEMENTATION

Another systolic

algorithm, proposed by

implementation

Chuang and He, 25

of Faddeev' s

significantly

improves upon the previous array. As shown in Figure 8,

many similarities exist between the two arrays' design. To

compute CA- 1 B + D from (2.2), both systems use a triangular

array for the triangularization of A and the annulment of C,

and a square array for extending the corresponding

processing to B and D. The input data flow to both systems

are similarly organized and skewed, and pipelined through

31

each system in a similar fashion. For the processing of the

lower half of the input data flow (i.e. matrices c and D),

both employ ordinary Gaussian elimination.

Second Phnse
(without pivoting)

First Phnse
(with pivoting)

c,.
c .. c,.

c .. Cu

Ca c..,

--7 C11 °'•t

c..,
c,.,
CZI

c ..
n..,

Cl-33

0-e:i

c ...
c~

c ...
c ..
n ...

nlH

°'e•
n .. n .. n,.

n,. nu nllt 1
0-21 0.12 !

d.,.
d., d""

d,. d,. d.,..
cl .. d,, d., d ..
cl,. d •• d~ b ...
cl,. d,. b., b,..
clu b .. b., b,..
b .. b,. b., b ..
b,. b,. ba 1
btl bit l
b .. l
1

----7 °'11 l I
l I v

T

6:: .j. ' CJ00:: ' OQ , , r!-,_. _L_/. ~
6::[]::[]:![]::L_J.; - -

/f=iJ::boOO
600::~

l. .~
o.rro.y 1 I "'! l.

x
.j. x.., x,..

• X,t x .. Xe<

x .. x,, xt3 x ..
x,. x .. x.,
Xa x,.
Xn

S o.rro.y

results

/

Figure 8. Chuang and He's systolic
implementation of Faddeev's algorithm. The
triangularization method used here is Gaussian
elimination with neighbor pivoting.

32

However, Chuang and He's system processes the upper

half of the input data flow (i.e. matrices A and B) using

Gaussian elimination with neighbor pivoting instead of the

Givens transform. 19 Hence, while numerical accuracy is

somewhat inferior, this implementation is less expensive in

terms of processing time and hardware complexities. Because

the square root operation is not used, the array avoids the

bottleneck problem created by the boundary cells of the

Nash's array. And since the rightward data flow essentially

consists of only one operand, Mou t 1 the pin counts of

boundary cell and internal cell are correspondingly reduced

to 3n and 4n, respectively.

Since it is obvious that different phases of

processing are required for the upper half and the lower

half of the data flow, two separate sets of microprograms

for boundary cells and internal cells are needed, as shown

in Figure 9 and 10. The first set, the pivoting functions,

performs Gaussian elimination with neighbor pivoting on A

and B, while the second set, the non-pivoting functions,

performs regular Gaussian elimination on C and D and is

essentially the same as the functions of Nash cells in

Figure 7.

As the data flow is pipelined through the array, each

boundary cell stores an input data element and sends a

multiplier M
0

u t rightwards to modify the input data that

enter the internal cells of the same row. Along with each

BOUNDARY CELL •

x,n

l
if.3Y.. ~ Hout

~~ Vout

INTERNAL CELL •

xm

If IX., I~ IX I then

begin

VIJ'Jt ~ I

If X1n ~ o then

Hout ~ -XIX.,

else Hout ~ 0

x ~ x.,
end

else
V0 .rt ~ 0

H0 ut ~ -X., IX

If v., then

begin

l
Hin ~fi'Xll~ Hout : M.,
Vin~~~ Vout -V.,

Xout ~ X + Min 1< X10

x ~ x.,

l
end

else
xout Xout ~ X10 + M., • X

Figure 9. Microcode specifications
used by Chuang and He's array for
elimination with neighbor pivoting.

of cells
Gaussian

33

M t it generates a one-bit boolean value V t to signal
0 u 0 u

whether pivoting is needed. Each internal cell stores a

data value arriving from the top and passes downward all the

following data after modification. M t and V t remain
OU OU

unchanged as they travel rightwards through the array. For

an input column of length and width 2n data elements, the

output will be a matrix of order n emerging from the bottom

of square array. It can be seen that when the system

matches the I/O bandwidth, Sn - 1 steps are required to

obtain CA- 1 B + D and 4n steps are needed to solve a linear

system of n equations.

BOUNDARY CELL

Xin

l
@=: M+t

Mout ~ -x,n /X

INTERNAL CELL

x,n

l
Min --7rr=;;=j1--7 Movt =Min

* -7~--7 *
Xovt ~ X,n + M,n ,. X

l
xou't

-if TeMporo.rily unused 1-bit bus

Figure 10. Microcode specifications
used by the array for ordinary
elimination.

of cells
Gaussian

34

Like in the Nash's implementation, the input data flow

of this array can be continuous if additional control

capabilities are used to individually switch each cell from

pivoting to non-pivoting mode as required. As published, no

technique was mentioned by the authors of both

implementations to perform this switching; however, we can

think of at least two different techniques to do this. One

is to have the host or a dedicated controller generate the

controls necessary for each individual cell, thus requiring

a complex cell addressing scheme. Another is to tag control

bits to input data elements which will then carry the

control information with them throughout the array. This

method assumes that the host, while generating the input

data, will add the necessary control information to it. Its

35

down side is that it will force an enlargement of the I/O

bandwidth between the host and the array. In the next

chapter, it will be shown that a combination of the above

mentioned techniques will be used in our design. Thus,

while having the advantages of both, it will avoid some of

their inefficiencies.

Input Decomposition

Often, problems in real-world applications are larger

in size than the available I/O bandwidth between the host

and the array. When this is the case, increasing the

array's size or speed does not bring about an increase in

throughput since the limiting factor is the I/O bandwidth

itself. One solution is to decompose the problems into

smaller sub-problems, which can then be stored in the host

and later processed in the array one at a time. In general,

the tasks of decomposition and post-processing are complex

and time consuming: passing intermediate results back and

forth between the host and the array reduces the throughput

that the I/O bandwidth can support. Furthermore, the array

throughput also suffers because of the pipeline flush

brought about by the interrupted data flow.

To avoid these problems, Chuang and He

structuring the array as a feedback array system.

propose

The idea

is that the system simulates the operation of an arbitrarily

large array by using the small arrays over and over, with

the output of the small arrays fed back to be processed with

36

other input data at the proper times. To match the input

data flow with the I/O bandwidth, it is necessary that the

data flow be decomposed. For an I/O width of w, it is

suggested that the data flow be cut into strips of width w

parallel to the direction of the data flow, or bands of

width w vertical to the data flow. These strips or bands

are further cut into blocks of length w. A problem of size

2n x 2n where n is m times w will yield 2m x 2m blocks.

Depending on the order in which these blocks are fed into

the array, we have parallel, vertical or

decomposition as shown in Figure 11.

c
0

~ f
0 •
D-
C o
0 -
u .. "' ,,
! ,...
0 ..
L

£

vw-tuo.1 •ldth

~ c c: 0 0 .µ . .µ .
iii iii " ! . 0 0 ..
"- Q_ . [

l 1

E 0 0 g u 0 u ~

l:
.,

"'
,,

" 0 "!! m
u '-µ ... Jl
'- >-.. .,. :i:
>

~ ~ ~

actual width actual width

w w

(o.) (b) (c)

Figure 11. Three ways to decompose the input
data flow. (a) Parallel decomposition. (b)
Vertical decomposition. (c) Hybrid
decomposition.

hybrid

37

In this figure, the series of vertical numbers

represent the order of the steps in which the strips or

bands are fed into an array. Note that in the parallel

decomposition (Figure lla), the end of the first strip

overlaps with the beginning of the second strip, i.e. the

last data item of the first strip enters the array at the

same time (step number 9) as the first data item of the

second strip. The bands

(Figure llb) are similarly

of the vertical decomposition

overlapped, as with the band

segments and the strips of the hybrid decomposition

(Figure llc). All this overlapping ensures that the input

data flow to the array is continuous.

Feedback Systems for Parallel Decomposition

Suppose we want to compute CA- 1 B + D for matrices of

size n using the full size array of Figure 12. Again the

available I/O bandwidth is w wide. We can decompose the

2n x 2n input data flow into 2m strips, each w wide as in

Figure lla, numbered from V
1

to V2 m. For m = 4, the full

size array of Figure 12 can be thought as consisting of 26

subarrays, with each subarray of type T or S and of size w.

Under the given I/O constraint, feeding the strips one after

another continuously into this array will not work since the

rightward data stream generated by a T subarray from one

strip will not meet the following strips at a proper time.

38

"' <--- ~

V1

l
V2

l
V3

l
V4

l
Vs

l
v6
l

V7

l
Vs

l
S3 S4 Ss Ss Ss Ss

S2 S3 S4 S4 S4 S4

T S2 S3 S3 S3 S3
y

"" subo.rro.ys ""- T S2 S2 S2 S2

l l l l
E1 E2 E3 [4

Fiaure 12. Systolic system with 26 subarrays of
types T and S, each of width w. The available
I/O bandwidth is also w.

On the other hand, the feedback array system of

Figure 13 will process the same data flow correctly under

the same I/O constraint. This feedback array system

simulates the large array of Figure 12 by using its

component arrays over and over again as follows. Initially,

as V
1

is fed into the T array, it generates a horizontal

data stream which is then stored into the memory buffer Bl.

The content of this buffer is recycled into arrays S
2

, S
3

,

S
4

and S
5

for the processing of strips V
2

, V
3

, V
4

and V
5

respectively as they arrive. When the intermediate result

from strip V
2

comes out of S
2

, it too goes into the T array

to produce another stream of horizontal data which is then

stored into buffer B2. Again, the content of B2 is fed back

into arrays S2 , S3 and S4 to process the intermediate

results of V3 , V4 , and V
5

coming out of S
3

, S
4

and S
5

input do:to. fro" host

Et ,Ee ,Ee ,E1

MQl'lory BuffQrs;

Bl• w x C2n)

Bo w x C2n - w>
B3o w x <2n - 2w)

B4' w x (2n - 3w)

Figure 13. Feedback systolic
smaller number of subarrays
decomposition. This system
problems with m > 4.

system with a
for parallel
cannot solve

39

respectively, and so on. To properly synchronize the

horizontal data streams, the buffers Bl, B2, B3 and B4 must

be of length 2n, 2n - w, 2n - 2w and 2n - 3w respectively.

Note that each successive buffer is shorter by w. This is

because as a data strip Vi goes through a square array S, it

is shortened by a w x w block of data, which remains inside

S. Hence, the T array processing this shortened data strip

40

will generate a correspondingly shortened horizontal stream

of modification factors.

This feedback array system achieves maximum throughput

using much less component arrays than the larger array in

Figure 12. The number of steps for it to compute CA- 1 8 + D

is

((2m) (2mw) + w - 1) + mw = (3. 3)

(4m + 1)n + w - 1 = O(mn)

where O(k) denotes order of k.

Since this system requires m s arrays and m buffers,

it is not quite independent of problem size. Because the s

arrays are identical, eliminating all but one reduces the

number of component arrays needed and, at the same time,

yields a design that is problem size independent. Figure 14

illustrates a one-T one-S feedback array system. The

feedback scheme is now two-dimensional, with horizontal and

vertical data streams. The input data flow is similarly fed

into the system as in the previous system. However, because

only one S array is available, each data strip V r where

r = 2, 3, ••. , 2m will be processed by the same S array r - 1

times. While intermediate results of strip V
2

will go

directly into the T array, an additional buffer B is needed
s

to store the intermediate results generated from strips V
3

,

V4 , ••• , and V2 m. The feedback of these intermediate results

to the S array is inserted in between adjacent strips thus

41

preventing data strips from V
3

onward to be fed continuously

into the system.

The throughput of this system is of course lower. The

number of steps necessary to complete CA- 1 B +Dis now

m

2mw + L (2m - k) (2m - k + l)w + 2w - 1 =
k= 1

7 5
-(m 2n) + -(n) + 2w - 1 = O(m 2n)
3 3

V2) V3) V4) V5) V6) V7) V8

vl

S2
E 4) E3) E2) El

Buffer for
lnterriecilo. te results

r== I 1 ~I Bs: C2n - w) x w I

MeMory Buffers

J ,_________.., ,___ ___ __,... Bl1 w x <2n)

B2: w x (2n - w)

B31 w x <2n - 2w)

.___ __ B4: w x <2n - 3w)

Figure 14. Two-dimensional feedback system with
one s and one T subarrays. This system is
problem size independent.

(3.4)

42

Feedback Systems for Vertical Decomposition

In Figure 15 below, Chuang and He illustrated how an

array wider than available I/O bandwidth can solve a

matching large problem when the input data flow is

decomposed vertically like in Figure llb. Again suppose the

I/O bus is w wide and the array is 2n = 2mw wide.

Essentially the same system as that of Figure 12, this array

system has in addition a 2m-way demultiplexer on the input

side and an m-way multiplexer on the output side. The input

data flow, consisting of 2m bands of 2m blocks each, is fed

Host

Figure 15. Array system for vertical
decomposition of input data flow. With I/O
bandwidth w, full utilization of available cells
is not possible.

43

into the array one band after another continuously. The

demultiplexer feeds the blocks of each band to the subarrays

on the first row of the system one at a time from left to

right. Since all the blocks are skewed, each overlapped

with its left and right neighbors and the whole band is

contiguous as it enters the system.

For this array, the total number of steps to complete

the process is

(c2m) (2mw) + w - 1) + mw =

(4m + l)n + w - 1 = O(mn)

which is identical to equation (3. 3) of Figure 13. While

the array of Figure 15 has many more subarrays, its

processing speed is not higher because maximum usage of all

cells is not realized due to the I/O bottleneck.

Furthermore, this array is not problem size independent.

Al though inefficient in terms of usage of available

hardware, the array of Figure 15 serves as an example of how

a vertically decomposed data flow should be processed. A

more flexible system, shown in Figure 16, is problem size

independent and delivers the same throughput using a smaller

number of subarrays. In this system, the 2m-way

demultiplexer of Figure 15 is reduced into a 2-way

demultiplexer which is repeated at the input side of every

row of subarrays. As the bands of the input data flow enter

the first row of the system continuously, the first block of

each band is routed into the T array while the rest are fed

HOST

BS

DEMUX

Bt I:=" MUX

Figure 16. Problem size independent array
system for vertical and hybrid decomposition of
input data flow. Available I/O bandwidth is w.

44

into the s array on the same row. The rightward data stream

generated by the T array is fed into the s array and

recycled until all blocks of the same band are processed.

Because these blocks form a contiguous data stream, no

buffer is needed to store the M
0

u t and V t
OU

values for

recycling. On the other hand, X values stored in the s

array cells need to be saved as shifting into the

neighboring block begins since they will be used later in

the processing of the next band of data. To simplify

control and reduce memory access, they will be stored into

45

the recycling shift registers implemented next to each cell

as illustrated in Figure 17.

+'
P'.l

L
0

f

E
0
L

L.._

recycling eve1-y w steps

p - I p - I

~--+-------:-------------------<-------~----

Q_
(l)

+'
lll

p - I >.
L

P - I

~--+----:------:--------------- ~ --+----:---~-----,

Xout

(l)

Ol
c

Li
>.

------------U
(l)

L

Xaut

Figure 17. Recycling shift registers for the
temporary storage of the X values. Implemented
next to each cell, each buffer is p in length.

outputs from the bottom of an S array, the x out

values, will be processed in the same way by the T and S

arrays on the next row. When the problem is larger than the

system, i.e. 2n > 4w of Figure 16, the outputs of the last

row's S array will be stored in buffer B to be recycled
s

back into the system for further processing.

Feedback System for Hybrid Decomposition

Due to the finite capacity p of the recycling shift

registers of Figure 17, the size of problems that can be

solved by the feedback system of Figure 16 is limited. A

46

way to circumvent this limitation is to use the hybrid

decomposition of Figure llc. The input data flow in this

case is divided into parallel strips of width pw. These

strips are in turn divided into band segments of width w and

length pw vertical to the direction of the data flow.

Segment by segment, the strips enter the system of Figure 16

one after another continuously as in parallel decomposition.

Blocks of each segment are processed as in vertical

decomposition and fill the recycling shift registers of the

cells with new X values, to be used later with the next

segment. The rightward stream of modification factors,

generated by segments of the first strip, is saved to be re

used on corresponding segments of the following strips,

hence the need for the memory buff er Bt .

Sparsity in Matrices

Another important merit of Chuang and He's feedback

array system is that, as they pointed out, it can skip

blocks of zeroes in the input data flow, and thus greatly

reduce the processing time.

linear system

As an example, consider the

AX = B (3.5)

where A is a lower blocked band matrix of order n, i.e.,

~l

A= ~1

~2

Ap2
~+l, 2

~- p+ 1 , m- p+ 1

~-p+2,m-p+2

~.m-p+1 ~m

47

and B = [B1 , B
2

, • I B]T
ID I n = mw, and each Aij or Bi

with i = 1, 2, ... , m, 1 s j s i, is a w x w submatrix,

or block.

The data flow is decomposed parallely into w wide

strips of w x w blocks as shown in Figure 18. The blank

blocks are the zero submatrices and the -li,j blocks are the

v1 v
2

V
3

V4 vs V
6

B (01~ ~. 1)
A11 B1

A21 A22 B2

A31 A32 A33 B3

A42 A43 AH B4

As3 As4 Ass BS

A64 A6s A66 B6
-1

-1

-1

-1

-1

-1

Fiaure 18. Parallel decomposition of a sparse
matrix problem with m = 6. Note that matrix B
in this case is the strip Vm+i·

48

diagonal submatrices of the -I matrix. Without loss of

generality, B is assumed to be an n x w matrix. In this

example, the bandwidth p of A is three blocks wide.

To understand how sparse matrices can be exploited to

yield better throughput, let us analyze what happens when

the system from Figure 12 process the data flow of

Figure 18. on its first row, as the 2m blocks of V
1

are

processed by the T array, 2m blocks of M t values are
OU

generated horizontally to modify data strips on the right.

Since only p + 1 blocks of V
1

are non-zero, only p + 1

blocks of M t values are non-zero. This is because when
OU

incoming X. = o, the boundary cells invariably generate in

M = O. out
Furthermore, because the internal cells always

generate XO u t = xi n when Min = 0 I as the data strip vm+ 1

(containing B matrix) goes through array sm+i on the first

row, only its corresponding p + 1 blocks are modified, with

the first zero block below Bm becoming the result X
1

• On

the other hand, strips V
2

to Vm emerge from the S arrays of

that row unmodified but minus their first blocks. This is

because as they pass through these arrays, all zero entries

of their leading blocks are retained in the cells' X

registers, and thus X t = Xi •
OU n

The above process is repeated on succeeding rows of

arrays until all results are computed. Since the S arrays

of column i (i = 2, ... , m) are not needed to process strip

Vi, they can be removed from the system and the strip's

49

leading blocks of zeroes can be skipped. Because they do

not contribute to the modification of data strips on the

right, the zero blocks above and below the diagonal band of

-I can also be skipped.

The architecture that most efficiently process sparse

matrix problems is shown in Figure 19. This system receives

the data flow of Figure 18 from the host, where all the zero

blocks are eliminated except those of the strip Vm+
1

• As

seen from Figure 19, the system uses only one s and one T

arrays. The single T array is fed with A's non-zero blocks,

one strip after another continuously. Its horizontal data

flow, consisting of modification factors M t and V t' is
0 u 0 u

0
A 22

-1
B3

M+l,l

A 31
B2

A 21
B1 , , , , B <ll B m

2 3

A 11

~ .. ~ s
~

\,/

~1 '\,/ I

'<!
'-It

X2
I

X1

Figure 19. Systolic system for the processing
of sparse matrix problems. Note that this
design requires an I/O bandwidth of 2w.

50

fed directly into the s array to modify Vm+l. Vm+l iterates

through the s array p + 1 blocks at a time, each iteration

is concurrent with a strip of A. During each iteration, the

leading non-zero block remains in the S array where it is

used to modify the next p - 1 non-zero blocks, and transform

the last block (originally a zero block) into a block of

results. The demultiplexer below the array S routes the

modified p - 1 non-zero blocks to buffer B and outputs the s

block of results to the host. As they emerge from B , the s

modified p - 1 non-zero blocks are then combined with a new

non-zero block and another zero block from Vm+ 1 to form

input data for the next iteration.

For instance, the first iteration sees the T array

process blocks A11 , A21 , ~ 1 and -lm+l,l of strip V1 at the

same time the S array process blocks B
1

, B
2

, B
3

and the

first zero block of strip Vm+l. This produces:

- block B
1

which remains in the s array,

- blocks B~ 1 > and B; 1 > which are temporarily stored in

buff er B ,
s

- and the block of results X
1

which is outputed.

During the second iteration, the T array will process

blocks ~ 2 , ~ 2 , A4 2 and -lm+ 2 • 2 of strip V2 , while the S

array process blocks B' 1 > 2 , B' 1 > 3 , B4 and the second zero

block of Vm+l. The entire sequence of processing is

illustrated by Figure 20.

x0 <6)
I

0 M""°' -
~~ (5) /µ,· (5) Mu -1"_

~ Au v6 B, (5) 0 M.,.~

' !l· (4) M~ -1~

x. (4) B~(4) M~ A~

l ~4>/ 0 '"'-........ A~ Vs M" ... •
4) B, (Q) M_. -1....,.

' B~<3) M~ A_.

tE~:; ~ (3)
M • A~

w '"'-........ A •• V4 :::E M ... u
1----i -1 ... 3.3 I- 3) Bs <0) M,.,

' _!3. (2) M., AS3

X,<2> ~2) M:s:s A ••

~. (2); o '"'-........ A:s:s V3 M.,.u
B3 <2) B4 (Q) M42 -1__..

' _!!3 (1) M:JZ A42
x, (1) B2 <D M22 A:JZ

~3 (1) I 0 ~ A22 V2 M.,.u
B2 <D B3 <0) M31 -1...u

' B2 <0) M21 A31
output B1 <0) Mu A21
fr OM ~ Au v1
s Input to

s Input to

T

Figure 20. Processing sequence showing the
order in which the non-zero blocks of Figure 18
are fed into the system of Figure 19.

51

Thus, the total number of steps it would take the

system to compute AX = B is

(m(p + 1)
p-1

- l k + 3)w - 1 = (3. 7)
k= 1

1
n (p + 1) - -(p - l)pw + 3w - 1

2

52

Note that this throughput rate requires that the

system process the data strips of A concurrently with the

data strip of B. Consequently, the total I/O bandwidth

needed must be 2w wide instead of w. Furthermore, if B has

more than one strip, the system of Figure 19 must be

modified. The reader should be aware that the formula (3.7)

was derived by the author of this thesis after it was found

that the one given in the original paper was erroneous.

ASSESSMENT SUMMARY

As we have examined both systolic implementations of

Faddeev's algorithm, several points should be noted. First,

the feedback system of Figure 13 as shown can not process

problems in which (2.1) is larger than 2n x 2n, where

n = mw; however, by adding another feedback path from the

output of its component array S
2

to the input of the top

demultiplexer and using external memory for all Bi buffers,

the system can be made independent of problem size.

With cells specification of Figures 6 and 7, system

configurations of Figures 13, 14 and 16 can perform

Faddeev's algorithm using orthogonal triangularization.

This means that Nash's implementation of Faddeev's algorithm

can be configured to have feedback paths which will allow it

to solve problems larger than the available bandwidth.

Since the configurations of Figures 13, 14 and 16

extensively multiplex data flows to and from their component

53

arrays, added control and hardware complexities are

unavoidable. Furthermore, because the data flows must be

skewed and overlapped, all multiplexers (and demultiplexers)

used will need the ability to switch paths sequentially for

each column of entries. This will require additional

control for each multiplexer (or demultiplexer) which, in

turn, adds to the complexity of the systems.

Lastly,

vertical or

al though the feedback array systems for the

the hybrid decompositions represent an

interesting approach to solve the size independent problems,

they require overly complex structures and controls while

offering no real benefits or throughput improvement over

their counterpart for parallel decomposition. These systems

are thus impractical for actual implementation.

CHAPTER IV

A NEW SYSTOLIC ARRAY ARCHITECTURE

In this chapter, we will introduce a new systolic

implementation of Faddeev' s algorithm which, in its basic

form, reduces the I/O bandwidth requirement by half and the

number of cells needed by more than one third. Furthermore,

it will eliminate some of the drawbacks that exist in both

of the previously described arrays.

ARCHITECTURAL DESCRIPTION

Our design consist of a square

cells are orthogonally connected

Figure 21. Data bus interconnections

array in which the

as illustrated in

between cells are

indicated by arrows. Functionally, there are two types of

cells. The first type consists of all the diagonal cells

(denoted by circles) of the array, and the second type of

all the non-diagonal cells (denoted by squares).

Depending on the actual processing phase, the array

functions in one of the two modes: the T (triangular) mode

or the s (square) mode. Together, these two modes implement

Faddeev's algorithm to compute CA- 1 B + D from (2.2).

~#

16

15
14

13

12

11

10

9

8

7

6

5

4

3

2

Cl C2 C4

d ..
d43 d34

d .. d .. cl ..
0 0 0 -··------ d<I d12 d23 d,4

o a o ·-·------ d3l d 22 d13 lo ..
Q Q Q --------- dZI d,. b43 b,.
o a o --·------ d11 lo42 lo33 lo24

o a a --·------ b., b.. b22 b ..
0 0 0 --·------ b3l b22 bl3 c ..
0 0 0 --------- lo 21 lo 12 C 43 C,.

0 0 1 -··------ b 11 c.. C., Ce•

0 0 -··------ C41 C12 C23 C14

0 0 ···------ C31 C22 C13 o. ..
0 0 -··------ C21 C12 0.43 O.,.

0 0 -------·- C11 0.42 0.33 0.2•

0 --------- O.., O.aa 0.22 O.,.

0 --·------ 0.31 0.22 0.13 l
• I

0 --·------ 0.21 0.12 : :
: ! !

o.ll : : i
l I I I

~t---r- 'W t---r-·
J. J. J. J.

c
0
.p
u
Qi
!...
'B

"" 0
c:;:
0
+'
0
"O

+>
:::s
c.
c: -
l

~----- 'W -----·

::t. er
-+9-+Q{~]~ T I

)
-+D-+0-+0-{]-h u P'.l

d
Sl £:
-0 0
QI '-°' (j... LL

J. J. J. J. 'W
Bq

\Kx'W -+D-+D-+0-{]--r-+
.[J.[J-{]-0-b+......._____,
! ! I i
! ! "" x
! l X43 X34
I
~ X 42 X33 X24

)

X41 X12 X23 X14

X31 X22 X13
Output results

x .. x ..
X11

+'
4- >.
~ d

'-
0 I.
+' d

:f. (j...
u 0
0

S2 QI
"O "O
~ iii

LL

Figure 21. Dual mode
Faddeev's algorithm.
is smaller and I/O
reduced.

systolic implementation of
The number of cells needed
bandwidth requirement is

55

56

When the array is in T mode, cells of rows i where

i = 1, 2, .. , wand columns j where j ~ i, form a triangular

sub-array which, based on Gentlemen and Kung's array of

Figure 2, performs Gaussian elimination with neighbor

pivoting on A, and ordinary Gaussian elimination on c.

During this mode of operation, the circular and square cells

essentially carry out the same functions specified by

Figure 3 boundary and internal cells, respectively.

When in s mode, the entire array is used to process B

and D. In this mode, every cell of the array acts similarly

to the internal cell of Figure 3, i.e. circular cells

functionally become square cells. In order to switch the

array from one mode to another, it is only necessary to

change the program of the diagonal cells. This is

accomplished with cells microprograms listed in Figure 22.

By alternating between the two operational modes T and

s, our array essentially simulates the system of Chuang and

He (the one-T and one-S system in Figure 8) to solve (2.2)

with a smaller number of cells and half the bandwidth

requirement. Naturally, the input data flow will have to be

slightly modified because of the differences in array's

topology ..

PEs' Description

The circular and square cells, as shown in Figure 22,

have identical I/O and control bandwidth: two n-bits data

input ports, two n-bits data output ports, four one-bit

CIRCULAR CELL I

Hn
C3,,

J.J-<.J~H..,.
Cl_.
ce..,.
C3..,.

x ...

If' C4 1n = 1 "then
x t- o.o J

If' Cl In = l "then
begin
If' I X 1n I ~ I X I and C2 In = 1 then

begin
C3out f- lJ

:-1f X 1n "# 0.0 then
I Mout t- - X/Xln
\else
L M out t- 0.0 J
Xf-X 1n;
end

else begin

end

C3 out t- 0 J

M out f- - Xn / X i
end

else begin ,\/ ~
1f c3-:- = 1 th~n

be91n
Xout f-X•M1nioX1ni
Xf-X 1nJ
end

else X out f- X In + M 1n M! X J
C3 out f- C3 In J
end J

Cl out t- Cl n J

C2 out t- C2 n J

C4 out f- C4 n J

SQUARE CELL I

"~
c1.
c2.
C3•

x.

c1...,
x ...

If C4 in = 1 then
x t- 0.0 J

If C3 in = 1 then
begin

H_.

C3,...

Xout f- X•M •XnJ
Xf-X 1nl
end

else x out f-X ... •Mn•X;

Cl out f- Cl In i

C2 out f- C2 In i

C3 out f- C3 1n;

C4 out f- C4 In i

,.,,, ,:,~ l <-- fl.I. -,.~ J ,_......, J

Fiaure 22. Microprogram specifications of
circular and square cells for the array's
mode operation.

the
dual

57

control input ports and four one-bit control output ports,

for a total bandwidth of 4n+8. In fact, this number is

comparable to the actual pin count that Chuang and He's

internal cell (in Figure 9) would need, since their cell

does require extra control capabilities to work properly.

58

Although the choice of processors for our cells will

be implementation dependent, the following observations

nevertheless can be of support.

Physically, one type of processor can be used to

implement both circular and square cells because of the same

I/O and control bandwidth requirement and similar general

functionalities.

Such a processor would have to be on a single chip for

the array's chip count to be kept at a minimum. Another

advantage is that functional blocks of the processor can

work together without the time and pin-out penalty of off

chip communication.

Internally, the architecture of the processor should

allow for a significant amount of parallelism, i.e CPU

functions should be partitioned into units that can operate

concurrently. To supply data efficiently to these uni ts,

multiple internal data buses are essential. Additionally, a

horizontal microinstruction set is mandatory to support such

a structure; this in turn will dramatically shorten

microprograms and will enhance performance.

A large internal storage for microprograms and a

microsequencer with good branching facility must be provided

by the processor for adequate cell programmability. Also,

provision must be made for the transmission of pipelined

systolic control signals, which are crucial for run time

operation of .the array.

59

And finally, the processor should have fast, on-chip

arithmetic and logical capabilities, with a rich set of

register files for flexibility of operation.

Because of these atypical requirements, conventional

microprocessors which are available commercially are not

quite suitable as PEs in a systolic array. For now,

dedicated systolic chips are scarce and the few that are

being offered on the market lack some of the above features.

However, this situation is expected to change soon as the

use of systolic architecture will become more widespread.

Control Signals Interconnections

As shown in Figure 21, the circular cell relies on

three external control signals Cl, C2, and C4 for internal

computation and itself generates signal C3, all of which it

broadcasts locally to its neighbors for correct operation of

the entire array. The square cell uses only C3 and C4, and

passes all control signals it receives to neighboring cells

unchanged. Cl, C2, C3, and C4 are all one-bit boolean

values whose functions and interconnection patterns are

described below.

Cl controls the behavior of diagonal cells and

consequently selects the operation mode of the array. When

Cl is true, the diagonal cells execute the portion of their

code that enables them to function like Kung's boundary

cells, thus changing the array into T mode. Otherwise, with

60

Cl false, diagonal cells function like square cells, and the

array is in s mode.

Because of the strict timing required, mode switching

should occur as entries of the first row of B reach each

cell, i.e. the switching sweeps across the array in skewed

waves as the transition between c and B flows through the

cells. This can be accomplished without the need to address

separate control signals to each individual diagonal cell.

In fact, Cl needs to be fed only to the top left diagonal

cell of the array and, with cell interconnections of

Figure 23, will be pipelined through the array to reach

every diagonal cell.

Cl

t
Cells used In

!-bit T Mode c-r= =-===============;iv
,~o~o o 01:

', J,

o,o~o o
' J, o o,o~o

' J,

DD Q,,o~
~---,:::::7--------·,~
Cells used in

S Mode

Figure 23. Dual mode array shown only with the
interconnection pattern for control signal Cl.

61

As the data flow changes from matrix A to matrix c, T

mode processing in the array gradually switches from

Gaussian elimination with pivoting to non-pivoting. This

event is started with C2, whose value is true for pivoting

allowed and false for pivoting not allowed. Again, C2 is

fed only to the top left diagonal cell and propagated

through the array via the connection patterns shown in

Figure 24.

C2

t 1-l:J;t

o~ooo
J,

oo~oo
J,

ooo~o
J,

00009
Figure 24. Dual mode array shown only with the
interconnection pattern for control signal C2.

Generated internally by diagonal cells when they are

in T mode, C3 is the functional equivalent of M t of the
OU

boundary cell from Figure 3. It is thus used to direct

square cells on the same row to pivot incoming data when

true, or not to pivot when false. Figure 25 shows C3

connections in the array.

CT -7o-7o-7o-7o+;tCJ
CT

""' ! -70-70-70-70-7 i
CT

D

~ -70-70-70-70-7 ~
~ ~

~ -70-70-70-70-7
Figure 25. Dual mode array shown only with the
interconnection pattern for control signal C3.

62

When switching between the T and S modes of operation,

it is essential that the X registers in each and every cell

of the array are cleared to zero before the new data

elements arrive. If C4 is true, a cell will clear its X

register prior to receiving X. from its northern neighbor.
in

The X register remains unchanged if C4 is false. C4 is

distributed throughout the array by the interconnections

illustrated in Figure 26.

Control Interface With Host

We have shown how external control signals are

distributed throughout the array with only simple and

regular interconnections. The need for complex individual

cell addressing scheme is thus effectively eliminated while

accurate timing at cell level is maintained.

Typically, systolic arrays are attached to a general

purpose host running UNIX, an operating system favored by

63

C4 t I-bit

QrQfcjQ
DODD

..!- .,!, ..!- J,

DD OD
..!- .,!, .,!, J,

DD DO
..!- .,!, .,!, .,!,

Figure 26. Array showing only the
interconnection pattern of control signal C4.

the scientific and engineering community. This is because

UNIX provides a programing support environment that is

crucial to the development of systolic application software.

However, the real time response of such host is inadequate

for the critical control timing of systolic arrays. This is

due to the software overhead associated with various

peripherals supported by the operating system. Thus, the

computational power of a systolic array cannot be fully

exploited unless effective interface with the host exists.

In our case, a cost effective approach would be to

generate and buffer all necessary control signals along with

data prior to the initialization of a process; if buffer

storage is sufficiently large, multiple problems can be

solved by the array in burst before refill is necessary.

For a small number of arrays, this approach is efficient and

64

rather simple to implement. However, it becomes less

desirable as the number of arrays increases.

A more efficient solution requires the use of a

dedicated controller for array management. Advances in VLSI

technology today have made the cost of fast and powerful

conventional microprocessors very affordable. Acting as an

intelligent interface between a slow host and fast arrays,

such a device requires minimum supervision from the host

while is able to control a large number of attached arrays.

In any case, the sequence of control signals needed by

the new array to solve (2.2) is simple and straightforward.

The task of programing the host or the controller to

generate it is trivial. In the next section, such a

sequence will be specified with the corresponding input data

flow.

DATA FLOW DESCRIPTION

Again suppose that A, B, C and D of (2.2) are n x n

matrices and the available bandwidth is w = n • The input

data flow, of width n and length 4n, will be continuous and

consists of matrices A, c, B and D, in that order, skewed as

shown in Figure 21. Note that the control signals necessary

for each step are displayed alongside the data flow.

Processing will be as follow. Initially, A enters the

array followed by C; because C4 is true (for the duration of

one cycle), all cells will clear their X register of values

65

left from any previous problem. With Cl and C2 both true,

cells of the upper triangle begin performing Gaussian

elimination (with neighbor pivoting) to triangularize A as

its data elements are upon them. As Cl reaches each

diagonal cell, the array gradually switches to T mode.

When entry c
11

of matrix C arrives at the top left

cell, C2 becomes false which disables neighbor pivoting in

the diagonal cells. Thus, only the ordinary Gaussian

elimination is performed to annul c. Throughout this

period, Cl remains true, hence the array remains in T mode.

Next, as B reaches the array, C4 goes true again for

the duration of one cycle (step) , long enough for the top

left cell to store this value; the signal is then propagated

to all cells and clears their X registers. At the same

time, Cl becomes false and remains so until the last row of

D is in the array. As Cl reaches each diagonal cell, it

turns it into a square cell and thus gradually changes the

array to S mode as the data elements of B are pipelined

through the array. The results, shown in Figure 21, fully

emerge from the bottom of the array after 6n - 1 steps for

CA- 1 B + D and Sn steps for the solution to a linear system.

Storage and Feedback of Modification Factors

During the processing of matrices A and c,

modification factors M
0

ut and pivoting control bits C3 are

generated by diagonal cells based on incoming values X.
1n

They are then sent rightwards to the square cells on the

66

same row to modify adjacent X
1

n values. As it reaches the

edge of the array, this rightward data stream is stored in

B , a FIFO queue of size w x w shown in Figure 21.
q

This

queue acts as a delay mechanism that will recirculate its

contents to the left side of the array for the processing of

B and D as they arrive at the array.

To reduce demands on available bandwidth between the

host and the array, B should not be implemented using host
q

conventional memory. Instead, the queue should be a

dedicated buffer made up entirely of shift registers and run

at the same clock rate as the array. This represents the

most efficient way to implement the horizontal feedback

path.

SOLVING SIZE INDEPENDENT PROBLEMS

~nother virtue of the array in Figure 21 is that it

can readily handle problems of arbitrary size without

requiring any architectural modification. Furthermore, the

throughput can be improved proportionally by adding any

number of arrays to an existing system. This gives the

array a degree of flexibility that makes it truly useful in

real life implementation: performance is adjustable

according to cost constraint while versatility is preserved

regardless of expansion of any size.

For problems larger than array size, the input data

flow shown in Figure 21 will be decomposed into smaller

67

strips which are processed continuously by the array, one

after another. The intermediate results from each strip

will then be fed back to the array for further processing.

This vertical feedback and the horizontal feedback of the

modification factors constitute two dimensional feedback

paths for the array.

Input Decomposition and Vertical Feedback Path

With matrices of size n where n is m times the

available bandwidth w, (2. 2) can be parallely decomposed

irito 2m strips, each w in width and 2n in length as in

Figure lla. Each strip in turn consists of 2m w x w blocks

which are of the same size as the array.

For w = 2, n = 4 and m = 2, Figure 27 shows an array

with its input data flow decomposed parallely into four

strips numbered from V1 to V4 • These strips are processed

by the array one after another continuously. The procedure

begins with the array set to T mode as V
1

arrives. While V
1

is being processed, a horizontal data stream consisting of

values M t and signals C3 is generated and moved rightwards
OU

into B . Subsequently, the array is switched to s mode for q

the computation of the remaining strips, V
2

to V
4

• In this

mode, the contents of B is recirculated back to the array q

as vertical data of each strip arrive, thus ensuring proper

processing.

cr

=>
l"l

£
0
s..

......

V3
r-1
y :

V2 c .. I
I

r-1 c., c .. I
y I I

I c .. c., I

V1 c.,. I c., c .. I
I I

c .. c .. I c .. o I
I I

c .. c.., I o.., o,. I

d ..
d ..
d.,
du
b ..

V4
r-1
y

d ..
d,.
d ..
d.,
b ..
b,.

<.-~-7

d ..
d., d,.
d,. d ..
ci., d,.
ci,, b
b,. b,..
b,. b.,,.

"'
2M'w'

I

I
I

b., b,. v
b1:1

b .. b ..
b., b.,

L ___ j

bu

c., CIZ I a. .. o., L ___ J I
Ca a. ... I a. .. o,.

I o., a. ... I 0.12

o,.. o.,.. L ___ J
o .. 0.12

Cla I
I <.-':!!-;:;;.. cu

.I .I
-0 >.

}625:1 ' '

I =>
iii Cl

Bq s.. s.. Cl
3\1 lK cu
I I -

.I .I 0 0 ,_
I
I

v<D ,
4 I d"' ..

"' r-1 d: d"' 34 y I
d~ d"'

v<n
I ..

<2M-D\I c1: I d~ d:!' 3 I
r-1 d~ cl"' I d; b'.! I

I
..

I I v '+' I cl~ cl~ I 1:i: b"' '
vm

"' \

c:! I d~ c1: I b~ 0 \

2 I I ' \ cf, c;! I d::' b: I 0 0 '
c~ c~

I
b~ b: I 0

\

I I \

c~ c~ I b: 0 L ___ J
\

\
I \

c: a.:: I 0 0 \

I '
a.: o.~ I 0
a.~ 0 L ___ J

1nterMecl10. te results

0 0
0

Figure 27. First iteration in the processing of
a problem larger than the array size. Note that
the strips of intermediate results all have
leading blocks of zeroes.

68

69

As shown in Figure 27, each input strip V
2

, V
3

, V
4

generates an output strip v< i >
2 I

v< i' 3 I
v< i'

4
of length

(2m - 1) w = 6 that is preceded by a block of zeroes as it

emerges from the array. In Figure 28, these intermediate

results are stripped of their zero blocks and then fed back

to the array where the above procedure is repeated. The

final results, strips E
1

and E
2

, come out from the bottom of

the array, each (2m - 2)w = 4 in length and likewise, is

preceded by a zero block.

)

CT
P=l

£
0
L

LL.

E1

vm
2

1-1
I I

V I
C~ I

C
<D I
34 I

c<D I
e4 I

c:~ I

vm
3

d <l>
41

d'.;

1-1
I I

V I
d~ I

d "' I
32 I

d"' I
22 I

vm
4

"' <---?

~10>
U43

d~

cl~

cl~

b~

cl~

cl~

cl~
cl(l)

14

b~
b(l)

34

d:;' d (I)

12 I b~

d<ll
11 lo~

b'..1: b~

b~

I
L ___ J c~

c~

c~

c:;'

o.~

o.~

o.~

o.~

I
L ___ J

I
I

+ +

=>
-to-to-t

+ + -to-to-t "' I \.I
I

'+I

x.1
X31

X21

Xu

0
0

E2
1-1

'1t I
I

x.2 I
I

X32 I
I

X22 I

+ +

x ...

X43 X34

X33 X2•

X23 X1• '\

X13 0 \,
0 0

X12 I 0
I L ___ J 0

0

"' <---7

~
------, =>

i
_______ J

"' I
I

M\J

'\

I
I

\Y

'\
\

'\
'\
'\

f1no.l results

"'
<2M-D\J

I
I
I

v

ClJ
<::5 >.
Vi 0

L
+' L
4- 0
ClJ
~ 4-
0 0

I-

Figure 28. Second iteration of the problem.
Intermediate results are stripped of their
leading blocks of zeroes before re-entering the
array.

70

71

Figure 29 shows a mapping of input and output data

flow of each iteration to array execution steps. Notice

that input data flow of the second iteration is optimized,

i.e. zero blocks that exist between output strips of the

first iteration are eliminated.

In general, a w x w array will solve a problem which

is decomposed into 2m strips of length 2mw and width w, in m

iterations. During the ith iteration, where

i = 1, 2, ... , m, the array eliminates the strip Vi (in T

mode) and reduces the length of each of the remaining strips

by w (in s mode) . This is because each remaining strip

leaves behind one w x w block of data in the X registers as

it is being processed by the array, and subsequently emerges

with a w x w block of zeroes preceding it. These zero

blocks can be skipped in the next iteration to shorten

processing time without incurring any error. Final results

after the mth iteration consists of m strips, each mw in

length and w in width.

The number of steps needed for the array of Figure 27

to compute CA- 1 B +Dis:

m
(2w - 1) + I (2m - k + lfw =

k=l

7 3 1
-(m2 n) + -(mn) + -(n) + 2w - 1 = O(m 2 n)
3 2 6

STEP ll Cl C2
--

54

53
52

51
50

49

48

47
46
4:5

44

43
42
41

40

3'3
38
37
36
35

34
33
32
31

30

29

28
27

26
25

24
23

22

21
20
19

18

17

16
15

14

13
12

11

10

'3 0

8
7

6

5 - 0
4
3
2
1

C3 LOOP 1

.. . ' vm
: ~--·-----d:) ~ 4
:1-" d,.;/

l 1:: ::i:
· .. Jd~.·······ro· v v4
no~ 1o";
I ,. .

. l~ ····.o:;.·L
,,b,, ~:
: ~-lo,. .-· .. : v.<ll . .- .. . 3
~ .. d ./
~~d. d·;~
~ ida d • i ~
'j"d . ·'·;·" v ·. • ···l"o : _,., 3
!"b"~ I... '"i
I ~-· !lo,. ·· 6""·1.

.·•b •··.
:i" ~,.: :"lo : (1) ~~-,.-- .. , Ve
:(C• C ./

:1~: /~=!
;·a.·~·· .. i 'V
I o. .. :.....----- f

iO.a O." !
i o.., o..J

~-/~
f"' C.i
!c• c i
I •j

!c• c.i
jCn o.,. i
l°'" o.. [........ ..V1
t°'· o.. i
;°'• o..l
io. • :-i
'- ~·

Cl C2 C3

0

0

0

0

l

0

LOCF 2

. E2
/

.. -----~. • (041 d'" i.: vm
: id: .. ··"d=~

4

··1·-d:··· d:;! "' .. ' ;a"'.·· "6;.;·;·· E
.. ~b·:·· ~= ! ~ l

: l!j .. --·., r : ra:. d: ;;' vm
\!d~ ... ·····d;~

3

la: d:;
!d: b: !
ib: kl;)
(5./~ re: c:i vm
;c: c:V 2

I "' ' c.. c:i
! c; a:d
' ., . ;aa a_;}
~ ·

RESULTS

.. -~-~-· ·><~ . E2
x .. /

x .. x ..
Xa Xw_ .. :

x~ .. ·······ti"
·o o
o ·""x~ • E1

.-··Xa x. ~
: x. x.
~ x. x • .. ·
[x~.·······o··
···o o

0

Figure 29. Control/timing sequences of input
and output data flow for each iteration. The
dash/dotted lines represent input strips, while
the dotted lines represent the output strips.

72

73

Controls and Horizontal Feedback Path

In Figure 29, values of Cl, C2, and C4 necessary for

the above example are illustrated at each step. C3 is not

shown since it is dependent on input data and generated on

the fly by the diagonal cells. For each control signal, a 1

represents the boolean value true and O represents false;

when a signal remains unchanged from its previous value, a

dash (-) entry is entered. The pattern is as follow: for

each iteration, Cl is true during the first strip and false

throughout the remaining strips. C2 is true only where

pivoting is allowed, i.e. the portion of the first strip

which contains data elements of matrix A, and false anywhere

else. C4 clears the X registers of the array each time a

new strip arrives, therefore it is true at the first step of

each strip and false elsewhere.

In general, an input strip with N blocks of vertical

data will generate a corresponding N blocks of horizontal

modification factors pairs (M t and C3); thus, the storage
OU

of the horizontal data stream should be N blocks long so

that timings for horizontal feedback are accurate. Because

the array itself acts as a w x w block of storage, for each

ith iteration, the FIFO queue B should be (2m - i)w long.
q

With m = 2 and w = 2, Figures 27 and 28

corresponding length of B for each iteration.
q

show the

The buffer B should have the addressing capability
q

such that its length can vary in uni ts of blocks. This

74

permits the array to solve problems of arbitrary size, as

long as B maximum length is adequate for the largest of
q

them. The control for the addressing can be generated by

the host or the dedicated controller.

Multiple Arrays Configurations

Even though both have throughput time O(m 2 n), the

system of Figure 13 is slightly faster when compared to the

array from Figure 27. Given a problem, the former will

solve it with

7 3 1
-(m2n) + -(mn) + -(n) + 2w - 1
3 2 6

7 5
- -(m2 n) - -(n) + 2w + 1 =

3 3

3
-(m - l)n
2

steps less than the latter. This stems from its use of two

subarrays, where some overlaps in processing are possible

when the S array is working on a strip while the T array

processes intermediate results from the previous strip.

Likewise, by using multiple arrays, the system of

Figure 30 gives better throughput than the single array of

Figure 27 under the same I/O constraint. This is because

each subarray effectively replaces one iteration, with

partial results from one subarray immediately processed by

the next, thereby maximizing concurrency while eliminating

the corresponding iteration. Such a system will be called

L-tuple arrays system (L = 2 in Figure 30), or L-subarrays

O"

ru
t:Q

"O
c
cs

O"
_.
t:Q

£
0
!....

l.J..

Ei

V2 ,-,
~ :

V1 c.., I
I

c., c .. I
I

C31 C22 I
c .. c,. I

I
CR o. .. I

I o.., 0.32 I

V3 ,-, cl.,
I I

d31 y I

c .. I d.,
I

c., c,. I du
I b., C3, c •• I

c., c,. I b31
I

c,, a. .. I b ..
I bu a.., o.,. I

V4
r-1
I I y I

cl.., I
I

d .. I

d22
I
I

d12 I
I

b.., I

b ..
I
I

v <---7

c1 ••
cl., cl,.
d., d ••
cl., d,.

cl,, b ••
b., b,.

b., b ••
b., b ..
b,,

b22 t_ ___ J
b,.

0.33 a. .. L ___ J
o.., o. ..
0.13

0.31 a. .. L ___ J

=J "' : 'y/

'{/

=J
,-,
v

x..,
x., X32

x,. x ..
x .. x,.
Xu 0
0 0

0.21 o.,.

o.. I
I

J. J.

·v~1 --o--o--
J. J.

·v~1 --o--o--
J. J.

I
I

E 2 I x.. Ii\
x., x,.
X 33 X 24

X20 X14

X"' 0
0 0
0 0
0 0
0

'

I
I

M'W
I

'-!t

' ' ' '
0 0
0 0

L ___ j

0

"\

'y/
<---7

~~!.<
~~: ~

" "\ "\
"\

"\

' '
Finni rP<;tJlt"'

I/I
>.
cs

I =J
!....
!....
cs

<+-
0

Qi

I =J
"ts
Vi
+'
<+-
~

0
I-

"'
2MV

I
I

\!

Fiqure 30. L-tuple arrays system processing a
problem larger than the I/O bandwidth w. Again
w = 2, n = 4 and m = 2. With L = 2 arrays, the
problem is solved in one iteration.

75

76

system. In Figure 31, control and timing sequences of

Figure 30 subarrays are illustrated. Because the input

strips v1 1
> of the second array are interspersed by blocks

of zeroes which cannot be removed, buffer B2 is required to
q

have the same length as Blq, instead of being one block

shorter.

In general, a problem requiring m iterations on a

single array will need only k = m / L iterations on a system

of L-tuple arrays, assuming that m is an exact multiple of

L. After each ith iteration, the length of partial results

will be (2m - iL) 2 w. Hence, the system will compute

CA- 1 B + D of such a problem in

mtL 2

(L + l)w - 1 + 2 (2m - (k - 1) L) w =
k= 1

7 3 1
-(kmn) + -(mn) + -(nL) + (L + l}w - 1 = O(kmn)
3 2 6

(4 .1)

steps. The first part of (4 .1) represents the number of

steps taken for input data of the last iteration to traverse

the system, and the summation term gives the number of steps

to feed input data of all iterations into the system. Final

results in this case always emerge from the bottom of the

last array of the system.

STEP e Cl C2 C3

54
53

52
51

so
49

48

47

46

45

44

4:3

42

41

40

3'J

38
37

:36

:3::5

34

:3:3

32

3l

30

29

es
27
e.6
25
24
23
22

2l

20

19

18 - - 0

17

16

l5
14

13

12
11

10

9 0

a
7

6

s - 0

4

3

2 - - 0

1 I 1 1

ARRAY l Cl C2 C3

.. ··
: . -· . : v<o -
: fJ./ 1C) ;......- 4 -

! td: ~::, -
: ;d.. d !;
:._jd ···1:i~·i·· v
!b~.. :.......- 4
! ~~i ,bi'> ··1o ..

.. -~i:; .. r·, -
;!"' b.J: (!)-: ~-,.--~ ; Y3
i ffi" d. i: -
: .d d . ; -

u:;/~:!' v
ib· b.;...--"' 3

0

_.j:~········kj~·~,
;~ ·~· v'"-

i1~r- ~~'~ · =
:a., o.., ;..--- 2

!O:a 0. i
:a .. ~··
~·a./ .. .- .
. C•i
;cs c.;
,c. c ~
jc. o. • i V
!o. ·~ l
I 0..'

!Oa O.ee i
!a .
, a O.e J

\?~----·- :;.t

0

0
0

ARRAY 2

.... ···· ·, E
:.,.......- 2

: .------~:
~ (6: d; i: (1)

: .d -;;., i v ...
:! "!'···· r--
lcl: cl~ i
!d: b:l
ib: b;J.
Uo;_,.,,.---o ·, E1

.. ·r o ~
: 0 ~: : ra: d; J·· (1)
: "d'" _...:.;,.,I V3
.I a .. ·· \,1-~

"-j-ai cl:I';
. d"' b"' !
l1o: bj}
~-/~
o ___ _...-c!\

r'f!G) Q) I
,-.. c .. i vm
!C: c:~ 2
(c: c: !
! c: a.:~
i a: o._;j
~-_...~
0

RESLLTS

.. ········ ·. i:-,. x.,,.: ~
x.. x* .. ~
x.. Xa4

X" Xw.:

·-~-~-- ... -g ..
0 0
0 0
o.· .··· ... x~ L.--E1
x., x., .

Xn Xu
:

Xn X 2 _:

x.~·········(j
·o 0
0 0
0 0
0

Figure 31. Control/timing sequences for each
array. Note that both arrays 1 and 2 process
their respective input strips concurrently.

77

78

Thus, when m = L (as with the example used in

Figure 30), CA- 1 B + D is computed in a single pass with

total processing time equal to

(4m + l)n + w - 1 = O(mn)

which is identical to the performances of the systems from

Figure 13 and 16. However, note that the system of

Figure 30 is totally independent of problem's size and the

number of cells used is smaller since the T arrays are

eliminated.

When m is not an exact multiple of L, that is when

mmodL * O, the number of iterations required to complete the

problem is k = rm;D, with the kth iteration employing only

the first mmodL subarrays of the system. The total

processing time will be

r mt .V
2

(m L + l)w - 1 + I (2m - (k - 1) L) w mod
k= 1

Again, the summation term represents the time

necessary to feed input data of k iterations into the

system. However, since only the first mm
0

d L subarrays of

the system are used during the kth iteration, final results

will emerge from the bottom of the mmodLth subarray, instead

of the last subarray. Therefore, the first term of the

throughput equation reflects the shorter path through which

data has to traverse during the kth iteration. Figure 32

froM host

V1 V2 ''' V2M

Blq
2MW X W

B2 q
2MW X W

BL q
2MW X W

XM ,,, X2 X1
flno.l results

(!)

VL+l

(!)

VL+2

V
(J)

2M

• l\J ,:::,,

Figure 32. An L-tuple arrays system with a
common data bus from each array to host. The
vertical feedback path has a FIFO queue B for

' ' r temporary storage of intermediate results.

79

shows a multiple arrays system which provides a common data

bus that delivers final results from any one of its

subarrays to the host.

Intermediate Results Storage

Until now it was assumed that the intermediate

results, generated in between iterations by all of the

systems discussed in this chapter, are handled by the host

and that the blocks of zeroes can be stripped in the host.

However, the resulting back and forth of data between host

and system places heavy demands on valuable I/O resources.

80

A more efficient approach, used in the system of Figure 32,

is to route this vertical feedback into the FIFO queue B .
r

Similar in concept to the use of B for the horizontal
q

feedback, this queue acts as a buffer storage in which

intermediate results emerging from the bottom of the system

are delayed from being fed back to its top until inputs of

the previous iteration are fully processed. An added

benefit is that, during processing, the queue can be used to

eliminate zero blocks generated by temporarily halting the

pipeline for some corresponding durations.

B should be (2m - L) 2 w - Lw long, i.e. long enough to
r

accommodate partial results of the first iteration of the

largest problem likely to be solved by the system, minus the

combined length of all subarrays. And since each iteration

produces ever shorter output streams, 1 ike B ,
q

B should
r

also be given the addressing capability which allows its

length to be altered by an external control. This ensures

that data enters the array continuously for maximum

throughput.

PROCESSING OF SPARSE MATRICES

Another feature which further enhances the versatility

of our array is that it can compute problems involving

sparse matrices efficiently by skipping blocks of zeroes,

similar to the system from Figure 19. Furthermore, because

the design functions in both triangle and square mode, only

81

one array is needed for problems of such type. While a

multi-array system like that in Figure 32 is fully capable

of processing sparse matrices efficiently, the procedure

involves only the first array; thus, in Figure 33, it was

reduced to a single array system for the sake of clarity.

In the following discussion, the example (3.1) will be used,

with p = 3 and the input data flow decomposed parallely like

in Figure 18. Because only one array is needed, the

continuous stream of input data alternates between non-zero

blocks of strips V1 , V2 , ••• , vm which are processed by the

array in T mode, and the corresponding blocks of strip Vm+i'

processed in S mode.

Figure 33.
processing.

0
B3
B2
B1

-1 ri+l,l

A31

A21

An (1) (1)
I I I B2 B3 I I I

Blq
3w x w

Br
2w x w

X2 I II X1

Reduced system for sparse matrix

82

Initially, non-zero blocks ~ 1 , ~ 1 , ••• , AP
1

and block

-lm+i,i of strip V1 are fed into the array. They in turn

generate corresponding blocks of M t and C3 which move
OU

rightward into buffer Bl . Of length pw, Bl is long enough
q q

to provide the required delay so that its contents can be

used by the array (in S mode) to modify subsequent blocks

B1 , B2 , ••• , BP and the first zero block below Bm.

Thereafter, B1 is left stored in the array, whereas B2 , ••• ,

BP emerge from the array as B~ 1 ' , ••• , B~ 1 ', to be stored in

queue B . Thus, the capacity of B should be (p - l)w to
r r

hold these modified B blocks. The zero block, after

modification, becomes the first block of result X
1

and is

sent to the host.

From V2 to Vm, the computation proceeds similarly with

blocks Ai, ... , p+ i- 1 • i and -lm+ i. i of strip Vi generating

their own Mout and C3 values to modify Bi~~~~ ,p+i- 2 , Bp+ i- 1

and zero block Bm+i" The modified block Bii- 1
> is then left

in the array; blocks B~ i - 1 > . ,
l.+l, ... ,p+l.-2 8

p+ i - 1
become blocks

B~i> .
l.+l, ... ,p+l.-1 which are then stored in B

r
for the

succeeding strip Vi+ 1 , and the modified Bm+ i emerges from

the array to become the result Xi.

The throughput time of this system is

(m(p + 1)
p-1

- l k)2w + w - 1 =
k=l

2n(p + 1) - pw(p - 1) + w - 1

83

which nearly doubles the throughput time of the system from

Figure 19. This is to be expected since the single array

from Figure 3 3 system is doing the work of two. However,

such a comparison would be misleading because it does not

take into account the fact that, for the two subarrays T and

S of Figure 19 to work concurrently, the total I/O bandwidth

of that system would have to be 2w. Or to put it in another

way, with a total I/O bandwidth of w, these two subarrays

will each have only a bandwidth of w /2. Consequently, a

problem will have to be decomposed into twice as many input

data strips with width that are only half as wide. This

effectively doubles the throughput time of the system such

that it is actually comparable to that of Figure 33.

OVERLAPS IN PROCESSING BETWEEN PROBLEMS

In the simplest term, a systolic architecture can be

thought of as a pipeline architecture in which each row of

cells of subarrays in the system represents a stage in the

pipeline. A pipeline reaches its peak performance when it

outputs a usable piece of data for each of its cycles. This

peak performance is attained only after the pipeline is

completely filled with data, a process termed pipeline fill.

To maintain its peak performance, the pipeline must be fed

continuously.

Similarly, a systolic system can reach its maximum

throughput rate only after it is completely filled with

84

data. This maximum throughput rate is defined as the rate

in which the

system, with

solution

minimum

sets to problems emerge

times elapse between

from the

any two

consecutive sets. Note that these elapsed times between

solution sets may be of different lengths since the sizes of

the problems themselves can vary. To maintain this maximum

throughput rate, the input data flow must be continuous,

i.e. problems to be solved must be fed into the system

without any empty gap in between them. An empty gap in the

data flow will result in a corresponding length of time

during which cells are idle, and solutions to problems will

be that much farther apart. A gap which exceeds the total

length of the system will cause the system to completely

empty itself of data, resulting in what is commonly termed a

pipeline flush. A pipeline flush is expensive because it

takes a finite amount of time to refill a system.

To put in another way, the maximum throughput rate of

a systolic system is achievable and, more important,

sustainable only if processing overlaps between problems are

fully exploited. Say that two matrix problems, PP and PN,

are to be solved in that order by a system of L subarrays.

For an I/O bandwidth w, PP is decomposed into mp data

strips. A processing overlap between PP and PN occurs when

data of the last iteration of PP and data of the first

iteration of PN are processed by the system at the same

time. Maximizing this processing overlap can shave off

substantial amount of computing time from PN.

85

It can be

seen that the time saved, in number of steps, is calculated

as the number of subarrays through which data of the last

iteration of PP must travel, times the size w of these

subarrays, plus the skew factor w - 1 of the data flow.

Thus, when mp is an exact multiple of L, the total number of

cycles necessary to solve PN is reduced by

(L + l)w - 1

When mp is not an exact multiple of L, the last

iteration of PP involved only mp mod L subarrays of the

system. Therefore, PN is solved with

(mp modL + l)w - 1

less cycles. Lastly, if PP is a sparse matrix as described

in the previous section, the number of cycles reduced from

the computation of PN will always be

2w - 1

This is because sparse matrices are processed only by

the first array of the system.

CHAPTER V

EXTENSIONS TO FADDEEV'S ALGORITHM AND CONCLUSION

In the previous chapter, the reader has seen the ease

with which the new systolic array uses massive parallelism

to solve many types of matrix problems via Faddeev's

algorithm. The actual size of the array, and therefore its

throughput, is shown to be restricted only by the available

bandwidth between the host and the array. Even this

restriction is effectively circumvented when a number of

such arrays are combined into a system to give a desired

level of performance. Such a multiple arrays system reach

its maximum throughput rate when its pipeline is completely

filled with data. By ensuring that the input data flow is

continous, this maximum throughput rate is maintained at all

times. It would seem then, algorithmically speaking, that

nothing further can be done to induce more parallelism into

matrix computations.

However, that last observation is simply not true. We

have found that, by extending Faddeev's algorithm, the

maximum throughput rate of a system can be nearly

quadrupled. Furthermore, such a tremendous improvement in

system throughput requires absolutely no architectural

modification to the system.

87

HORIZONTAL EXTENSION TO FADDEEV'S ALGORITHM

Before illustrating how we extend Faddeev's algorithm,

let us introduce the concept of compatibility between matrix

problems. Suppose we have matrices A, B and D of order n,

upon which we wish to perform the operations A- 1
, A- 1 B and

A- 1 + D. From Figure 2, we can solve these matrix problems

with Faddeev's algorithm by formulating them as

* = A- 1 ~ = A-1B

~ _: I : =
(5. 1)

A- 1 +D
0

(1) (2) (3)

where I is the identity matrix. These constructs reveals

that they all have identical left halves, i.e. they consist

of the same matrix A in their top left quadrant and the same

matrix -I in their bottom left quadrant. When this is the

case, we say that the problems are horizontally compatible.

Obviously, solving x horizontally compatible problems

involves repeating the calculations for the same left side x

number of times. In the case of (5.1) where x = 3, solving

(1), (2) and (3) requires repeating the process of

triangularizing A and annulling -I three times. If by some

means the redundant iterations of this process are

eliminated, nearly half of the calculations necessary to

solve (2) and (3) of (5.1) can be skipped. This would yield

a large savings in computing time.

88

To accomplish this, we extend Faddeev's algorithm

horizontally to the right so that (5.1) is reformulated as

A I I I B I I (5.2)
-I

(1) (2) (3)

Grouping (1), (2) and (3) together as in (5.2) allows

us to triangularize A and annul -I only once, and reuse the

multipliers generated from that several times on the right.

The results will appear as

Ack> I' k > Bek> I' k >

0 A- 1 A- 1 B A- 1 +D

(1) (2) (3)

It is easy to see that the horizontal extension to

Faddeev's algorithm maps particularly well to a system using

our systolic array design: it requires absolutely no

architectural nor algorithmic modification, either at the

system level, subarray level or cell level. When the

available I/O bandwidth is w, (5.2) is parallely decomposed

into (x + l)m input strips, each 2mw in length, as shown in

Figure 34.

VJ / ...-Ci;~
--- d.3 d:i.

. .-···'ci~ i d33 d2.' A

.. • ii ci [.,._,, I
f d., ci~: d23 ~: I

.· _ .. 6 .. ··.,i d31 d~i d;a/i ! :
Results /a· o H d ,.J U-.-e::o O ?1 1 . " 21 U,z,, /' '

(o. f ter Modifico:tion) .-······"6'\ ! 0 o ii d /0 ii 1 /'/'O i: 1
.. " . , >" . . _,, , I I

~ /a· 0 : ! 0 0 U,i) 0 ~ _,,0 0 : I

)-(b•i! o o ~ O/b:.!!}/f Ji.a;;;;~)
; o o jj o o/';! 'b.3 b.>f .. ·>/' _,, /' 1 .·······. ; ; ; <' ; ; b .-{_ ' ' 1 /' / / /'-·o \j o o :: o_,,/'IO.i!i: ~ 02•::, . ..-·> /'

/'/' I · ii !! .(;;-<_ b i ······-:;,/ /'/'
/' 1/0 o :: o 0Af c.1 b.>zn oZJ ?<f /' /

/'/' 1l ! ! / '; i; .··. / //'
/ :::1 ·\1l 0 0 ii 0,,,/ 1 :: b/l/b2~;,.,b_,_3_// /'/' /1 .. ··· '1' ;; '- ;;.-{_ b !,,,_/' /'/

/' /' /Q OLO OH'O 011to21 ~:/' /' / //' ii jlj .-e::/i i /,/' j j ... -;/ //
/' ··o \ 1:-1 O ii! 0 /' 0 ii 1 _,, 0 : : .. bu_ ·/ ,,, one do. to. strip

,,- .• / ii !I! L/' :;/,/ j ·······"// //
/ 0 0 jlj 0 0 !'r 0 0 < 0 0 ,; /' / . l '' /',, '/' /'
i O -1 iii 0 o. ... !I 0//1 ll.. 0 ;> /',,, Eli Mina. ted o. fter ' 'I' ' ' /, ' ·........ / /'
i 0 0 !1! 0.43 o.;J,t 0 0 j /',,, L __ --~ second ltera tlon

j-1 a.~:' ;".:d'~2•i t ~_ ;·;> /
: a.., o.~~ 0.23 o.,1; /' /'
i 0.31 Qj i 0.13 ;-:./

! : \ :;_;-> EllMino:ted o. ft er
; O.zi O.iz., /

i a.- L----~ first itero.tion
\ 11_ ••. ...-

·· ··

Figure 34. Parallel decomposition
horizontally compatible problems.
example, n = 4, w = 2 and m = 2.

of x = 3
For this

89

90

As before, the L-subarrays system of Figure 32 will

process this input data flow in k iterations, where the

value of k depends on m and L. When m is an exact multiple

of L, we have k = m/L and the system will compute x

horizontally compatible problems in

mtL

(L + 1) w - 1 + I [(x + 1) m - (k - 1) LJ [2m - (k - 1) LJ w

k= 1

(5.3)

cycles. In the above equation, the first product term of

the summation represents the number of input strips for each

iteration, while the second term indicates the strips

length. The solution to the first problem will come out

after

cmtL>-1

(L + l)w - 1 + I [ex + l)m - (k - l)L] [2m - (k - l)L]w

k= 1

2 + (m + L) w

cycles, with the second line of the equation indicating that

only part of the kth iteration is needed. Afterward,

solutions to subsequent (x - 1) problems are outputed one

for every (m + L)n cycles. In the special case when m = L,

we have k = 1 and the system will solve the first problem in

(4m + l)n + w - 1

cycles. As to subsequent problems, the system will complete

one every 2mn cycles. The difference between the two

91

throughput equations of the first problem is due to the fact

that the input data flow for x horizontally compatible

problems consist of (x - 1) m more strips than that of a

single problem. This means that during each iteration, the

system has that many more strips to process. Thus when

k > 1, the previous iterations will delay the output of

results whereas with k = 1, those delays are non-existent.

When m is not an exact multiple of L, the number of

iterations required for the system to process (5.2) is

k = rm;fl, with the kth iteration involving only the first

mmodL subarrays of the system. The total throughput will be

rm, H
(m L + l)w - 1 + \ [(x + l)m - (k - l)L] [2m - (k - l)L]w

mod L
k= 1

(5.4)

with solution to the first problem coming out after

LID/~

(m L + l)w - 1 + \ [(x + l)m - (k - l)L] [2m - (k - l)L]w
mod L

k= 1

2 + (m + m L) w mod

cycles. Again, the second line of the above equation

indicates that only part of the last iteration is needed by

the system to compute the first problem. Afterward,

solutions to subsequent x - 1 problems will emerge one for

every (m + mmodL)n cycles.

------,

92

Since the input data flow of x horizontally compatible

problems consists of only (x + l)m strips, versus the 2xm

strips required if they are not compatible, large saving in

storage space can be gained on the host side. On the other

hand, the length of the FIFO buff er B
r

should be

((x + l)m - L) (2m - L)w - Lw since the intermediate results

after the first iteration have many more strips. Because

the length of each strip is still 2mw, the capacity of the

buffers B should remain unchanged.
q

To get an idea of how much the system throughput can

be improved when horizontal extension is applied, suppose

that we have a system of L = 4 subarrays, with each array of

size w = 32. On this system, we wish to perform x = 50

operations with matrices of order n = 128. If these

operations are not compatible, solving them one at a time

without processing overlaps will take a total of 110, 350

steps. With processing overlaps, this number is reduced to

102,559. However, if the operations are horizontally

compatible, they can be processed by the system in 52, 383

steps. The improvement in throughput is

102,559
= 1.96,

52,383

nearly by a factor of two. Of course, this number can vary

depending on x. As x gets larger, the improvement factor

gets closer to two.

93

VERTICAL EXTENSION TO FADDEEV'S ALGORITHM

Even when a group of matrix problems are not

horizontally compatible, they may exhibit another type of

compatibility which can also be exploited to give an

equivalent speedup in system throughput. To expand on this,

let's suppose that we have y = 3 matrix operations to

perform, namely CB, B + D and EB + D where B, c, D and E are

of order n. Like before, we can express these problems as

* = CB
0 * = B+D

D * = EB+D
D

(5.5)

(1) (2) (3)

Because the left side of problems (1), (2) and (3) of

(5.5) are not the same, they are not horizontally

compatible. However, it can be observed that they all have

the identity matrix I in their top left quadrant and matrix

B in their top right quadrant. To put it differently, these

problems all have identical top half. When this is the

case, we say that the problems are vertically compatible.

94

To avoid repeating the same calculations on the

identical top sides of vertically compatible problems, we

extend Faddeev's vertically such that (5.5) becomes

-~ (1)

(5.6)

-* (2)

-E D (3)

When y vertically compatible problems are grouped

together as in (5. 6) , the common top side needs to be

processed only once. This means that after the top left

quadrant is triangularized and the top right quadrant is

modified with the generated multipliers, they can be used

repeatedly to annul the left side of succeeding stages and

transform their right side into solutions.

In the case of (5. 6) , solving it involves only the

annulment -c, - I and - E. This is because the identity

matrix I in the top left quadrant is, by its nature, already

triangularized; as a consequence, matrix B in the top row

will remain unmodified. Annulling -c, -I and -E while

extending the operations to the right will give

I I B

0 CB

0 B+D

0 EB+D

(1)

(2)

(3)

95

which shows the solutions to (1), (2) and (3) in the right

quadrants.

As with horizontal extension, systems using our array

design can handle vertical extension to Faddeev's algorithm

without any modification. Shown in Figure 35, the input

\.I ·:_t··.
W ····· U44'

< > ./ ;
/1 .····.. i d43 d34:

/ ··~1 ·.~I .
/ I U4i;: U33 d24:

// I .. ·· " ,
,,.,. 1(ci41 d32! j d23 d14!

// .. ···· .. : :: :
/ ,,, ······~e ~,i: d31 d22i: d13 d44:

/ /I .. ·· 'I' :: :
,,/ .,,,./ l/~43 -e34l1l cl21 d12!! d4:i d34:
// ... ········ .. I' q: : : ----'--: --- Results

,,.,. -e ~i:-.e 33 -e e1:1: ci It d 12] : d33 d 21]
/ iii iii ci ~1 i ; "' "' ; >e 11 -e :ie>-e 23 -e H:: 11 un:: ue:i u11: . ·~ ·t .. .

(o. fter Modlfico. ti on)

i-e31 -ee.J1!-el3 -1 i1! d31 d22ii dl3 0 .
j-e21 -eie'lj 0 0 ill d21 d 12 ·· 0 0 ~
;-e 11 0 :1: -1 0 ;I; d 11 0 ; ; 0 0 j ~
' 'I' 'I' ,. ' 1

0 0 !1! 0 0 i1! 0 0 ii 0 0 [,../ 1 one do. ta strip
l 'I' : ' /: I

0 -1 !1i 0 -C44l1l 0 0 !! 0 ... /b44! I
0 Q !i1-C43 -C34!:· 0 0 .,,,.~b43 bpj1 :

-1 -C~l;-C33 -C24H: 0 /b42i: b_p/b24: I I
l '~ ' '' 'I I

-C41 -c~1i-C23 -C14i: b41 bp!f 623 b,~} I I
l .. ~ .. .)

-Ca1 -C~ j-cl3 1 ! ! bj,/ KJ 22!!_ b13- I
;I; ;; 6 ;·· ···· _,/")

-C21 -C12il; 0 0 q-· 21 bia-: .,,,. ,,.,. 'I';, .. / /
-C

11
0 ll! 1 /(j 1!. b 11- // //

:: / :· ... · / /
0 !!f..'6 0 ; ········· // //

1
ii

0
....... ·--' // // Elif"lino. teci o. fter

'' .·· / L---? ,.J t t

0
0

0
! ·· ··~// seconu i ero. ion

..' /
0
1 /

·· ·· ····· (EliMino. ted o. fter
--->

first itero. tion

Figure 35. Parallel decomposition of
vertically compatible problems. Again
w = 2 and m = 2.

y = 3
n = 4,

96

data flow of y vertically compatible problems consists of 2m

strips, where each strip is (y + l)m blocks long. The

L-subarrays system of Figure 32 will process this data flow

in k iterations. When m is an exact multiple of L, k = m/L

and the process will be completed in

mtL

(L + l)w - 1 + 2 [2m - (k - l)L][(y + l)m - (k - l)L]w

k= 1

(5.7)

cycles. When m is not an exact multiple of L, k = rm/fl and

the throughput is computed as

r mt il
(m L + 1) w - 1 + \ [2m - (k - 1) L] [(y + 1) m - (k - 1) L] w

mod L
k= 1

(5.8)

In throughput equations (5. 7) and (5. 8) , the first

product term within the summation represents the number of

input strips for each iteration. The length of each strip,

on the other hand, is indicated by the second product term.

Even so, note that (5.7) and (5.8) are identical to (5.3)

and (5.4), respectively, save for the variables x and y.

After the kth iteration, the set of y solutions

emerges in m output strips. As shown in Figure 35, an

output strip consists of y segments, each of width w and

length mw. Each segment i = 1, 2, ... , y is part of the

solution to the ith problem. Because a solution is divided

into m segments with each segment part of an output strip,

97

the solutions will not be completely out until the last

strip has emerged. Thus, the number of steps needed for the

first solution to come out is computed by subtracting

(y - l)mw from (5.7) or (5.8). Each following solutions

takes another mw steps.

Again, storage space needed on the host side is

greatly reduced since the input data flow of y vertically

compatible problems is only 2(y + l)m2 w long, as opposed to

4ym 2 w were they not compatible. However, the length of the

FIFO buffer B should be ((y + l)m - l)w to accommodate
q

longer strips of modification factors. In addition, the

length of B should be (2m - L) ((x + l)m - L)w - Lw to
r

adequately hold intermediate results with longer strips.

TWO-DIMENSIONAL EXTENSION TO FADDEEV'S ALGORITHM

While using either one of the previously described

extensions yields substantial reduction in computing time,

still greater improvement in throughput is possible when

both techniques are combined into a two-dimensional

extension to Faddeev's algorithm. To illustrate, consider

the matrix operations AB, AE + F, B + D and E + G. As

before, A, B, D, E, F and G are all matrices of order n.

Formulating the operations as follow:

98

*-AB *=AE+F
(1) (2) (5.9)

* = Bt-D * = E+G

(3) (4)

reveals that (1) and (2) are horizontally compatible, as

with (3) and (4). Furthermore, (5.9) also shows that (1)

and (3) are vertically compatible, as with (2) and (4).

Thus, using horizontal extension, (5.9) becomes

I I B I E

-A

(1) (2) (5.10)

I I B I E

-I

(3) (4)

Since both constructs of (5. 10) have identical top

halves, vertical extension can also be used to further

obtain

I B E

-A 0 F (1) and (2) (5 .11)

-I D G (3) and (4)

This results in a two-dimensional extension to

Faddeev's algorithm. Annulling -A and -I in (5.11) and

99

extending the operations to its right prompt the solutions

to (1), (2), (3) and (4) to appear as

I B E

0 AB AE+F (1) a n d (2)

0 B+D E+G C 3) a n d C 4)

As (5.11) reveals, the two-dimensional extension to

Faddeev's algorithm allows a compatible matrix problem to

share three of its quadrants with others, instead of two.

This translates into the elimination of a larger number of

calculations per problem.

The input data flow of (5.11) for the L-subarrays

system is shown in Figure 36. When the number of problems

is x across by y long, the input data flow is decomposed

into (x + l)m parallel strips, each (y + l)mw in length. If

m is an exact multiple of L, the total number of steps for

the L-subarrays system of Figure 32 to process this data

flow is

mtL

(L + l)w - 1 + I [ex + l)m - (k - l)LJ

k= 1

[(y + l)m - (k - l)L]w (5.12)

Resul-ts
944:

(.'943 934:
(o. f ter Modifico. tion) . . .

~
....... 942: : 933 924:

.···· (g41 932! l 923 914:

one do. to. strip "' .--~~j I Q31 922 j Qf13 ff44j
.···· : l.A43 lil34; : Qzi 912: : 43 34:

//I ... ·········· .. ci42': : d33 d24! I gll f ~ if 33 f 241
/// . (d41 d32i : d23 dH! j f 41 f ~ j f 23 f l~--1

/ ·-_, : : : : : : : /,. / : I

Z
/I .. · .. ······· -1 \ \ d 31 d 22j : d 13 0 j : f 31 f ~ i f y/ e 44j I

/ / ... : : : : : : : /, : l
/ / / .····.. { 0 0 j j d 21 d 12: j 0 0 j ! f zi f y(e 43 e ~ 1 I

/ / 0 ··1 0 .. d 0 ··o 0 .. f /,. .. /.I / .. · : : : : : : : : : : / : / : r : : 11 : : : : y,,, e 42j : e 3)' e 24: 1 1
... , , , , = = , '......:: , , ,,, = I

(O o j j o o j j o o j : o o,,, H e 41 e ~>re 23 e 14: 1 1
: : : : : ' ' -<- : : ,,, ,,, : : .. ')1 I : 0 -1 : : 0 -o. 44: : 0 0 : : 0 ,,, KJ 44: : e 3Y e 221 : e 13 ,)
: : : : : : t-r:' : j,. / : :... / / /
: 0 0 : ~0.43 -0.34: : 0 0 ,;,.-: K..l43 bw., e21 e12: ···· ,,, /
: :: :: /:: //jj > ////
t 1 -0. 4e: ~o. 33 -0. e4: j 0 / 'b 42: j b ~ b 24: j e 11 .. ······. / /
: : : :I L,/ : : / : ·,_ ,,, ,,, ,,, ,,,
~0.41 -0.3e! ~O.e3 -0.14:'fb41 b~'fb23 b14: · · / /
: : : : : / : : _; // //

~O. 31 -0. ee! ~O. 13 1 : ! b av /b 2e: : b 13 ··· ·· / /
: : : : : / : · / / / /

~O.e1 -0.12j j 0 0) 1"be1 b12j / /
: : : /;(: : j // //
:-0.u 0 : ' 1 , U : : b 11 ·· / / · · · ,.. · · ·· ,,, ,,, El' ·n....,t d '"'f te :
0 0

::;<
0

:"... ··,,,,,, 1M1 ...,._ e v.. r , , i..ru = ,,, L.._ 7
j
0 1

j j
0

) ,,,,,, - second itero. ti on
: : : /

Io o I :.... ;·;,,,,,,
EliMino. ted o. fter

:. 1 ,..: L,,, --> first itero. tion
·· ··

< >
'W

Figure 36. Parallel decomposition of x by y
compatible problems. x = 2 is the number of
horizontally compatible problems, and y = 2 is
the number of vertically compatible problems.
As before, n = 4, w = 2 and m = 2.

100

101

If m is not an exact multiple of L, then the number of

steps needed is computed as

r mt fl
(m L + l)w - 1 + \ [ex + l)m - (k - l)L]

mod L
k- 1

[(y + l)m - (k - l)L]w (5.13)

Subtracting [(x - 1) (ym + L) + (y - 1)]mw from (5.12)

or [(x - l)(ym + mmodL) + (y - l)]mw from (5.13) will, in

both cases, give the number of steps elapsed before the

solution to the first problem is completely out. The

interval between solutions to problems on the same column is

mw steps. Between problems on the same row, this interval

is computed as (ym + L)mw when mmodL = O, or (ym + mmodL)mw

when mm
0

d L '¢ 0 •

Because of the increases in number of strips and in

their length, the capacity of buffers B and B should be q r

expanded as previously indicated.

To see how much of an improvement over single

dimension extensions this technique is capable of, let us

again assume that we have a system of L = 4 subarrays, with

each array of size w = 32. With this system, 10000

operations are to be performed on a number of matrices of

order n = 128. Solving the problems one at a time without

processing overlaps will take a total of 22,070,000 steps.

Maximizing processing overlaps will reduce this number to

20,480,159. If single dimension extensions can be used, the

102

problems can be solved in 10,241,183 steps. The improvement

in throughput is

20,480,159
= 2.0

10,241,183

However, if compatibilities between these problems are

exploited such that the two-dimensional extension can be

used with x = 100 and y = 100, the total throughput will be

5,223,071 steps. The improvement factor is thus

20,480,159
= 3.92,

5,223,071

almost doubling the speedup figure achieved with single

dimension extension. As was noted before, the improvement

factor grows closer to four as x and y get larger.

Another advantage of the two-dimensional extension is

that it further enhances the inherent programmability of

Faddeev's algorithm. For example, should it be necessary to

compute U, where

U = (AE + F) (E + G)- 1 (B + D) +AB, (5.12)

(5.11) can be rearrange to become

I E B

-I G D (5.13)

-A F 0

103

Solving (5.13), that is annulling -I and -A while

extending the operations to the right will give

I E B

0 E+G B+D (5.14)

0 AE+F AB

Observe that within the box of (5.14), the necessary

components of (5.12) are already correctly positioned such

that repeating the Faddeev's procedure on them will produce

the final result

I E B

0 (E+G) ck> (B+D) ck> (5.15)

0 0 u

In short, to compute U from (5.13), one only needs to

triangularize the augmented matrix formed from I, E, -I and

G, then annul the augmented matrix formed from -A and F

while extending both operations to the rightmost column of

(5.13). Using the L-subarrays system, U is computed from

the input data flow of (5.13) in 2k iterations. The first k

iterations are needed to compute the matrices in the box of

(5 .14) . This intermediate results is immediately fed back

into the system for another k iterations, after which U is

outputed.

104

CONCLUDING REMARKS

By now, it is clearly obvious that the symbiosis of

Faddeev's algorithm and the new systolic array system

described in Chapter IV has given rise to a very powerful

and versatile tool. The algorithm itself provides a

considerable generality of operation which should allow the

system to have a large range of application in the

scientific and industrial fields. In return, the system has

brought massive parallelism to the multitude of matrix

operations capable by the algorithm. Furthermore, the

system's enormous potential for parallelism can now be fully

exploited to yield very high throughput with the Faddeev's

algorithm extensions described in Chapter V.

As compared to other designs from Chapter III, this

system does not suffer any of their drawbacks while

providing many practical advantages, some of which can be

summarized as follow:

- Either in single or multiple arrays form,

the system is totally independent of problem

size and will solve sparse matrix problems

efficiently without any reconfiguration.

- The system provides identical performance

using a smaller number of cells or arrays.

Indeed, given an equal number of arrays, its

performance will be superior. When taken

into account the fact that its design is

ideally suited for the extensions made to

Faddeev's algorithm, its throughput

potential far outdistances any other system

previously considered.

- From a

system

user point of

is exceedingly

view, operating the

simple: the input

data flow is fed only to the top array and

system controls consist of a few signals to

each array top left cell.

- The design of the system is truly modular,

with simple and regular interconnections

between cells and between modules. Hence it

is very amenable to expansion: adding extra

blocks of shift registers will allow it to

handle correspondingly larger problems,

while increasing the number of arrays will

yield higher throughput.

- Since all modules are square blocks w x w in

size, it is topologically more economical

and efficient in terms of PC board area.

105

In conclusion, the system's most important advantage

is that while its design is simple enough for implementation

to be an easy task, it is abundantly powerful and versatile

to make that task worthwhile. Therefore, it is this

author's opinion that the system should be built as soon as

possible.

-----i

REFERENCES

1. H. T. Kung, "Why Systolic Architectures?" IEEE Computer
Magazine, Vol. 15, No. 1, January 1982, pp. 37-46.

2. Dan I. Moldovan, "On the Design of Algorithms for VLSI
Systolic Arrays," Proc. of the IEEE, Vol. 71, No. 1,
January 1983, pp. 113-120.

3. Kai Hwang and Fay~ A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill, New York, 1984, pp.
768-774.

4. Charles L. Seitz and Juri Matisoo, "Engineering Limits
on Computer Performance," Physics Today, Vol. 37,
No. 5, May 1984, pp. 38-45.

5. c. A. Mead and L. A. Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading, MA, 1980, pp.263-292.

6. H. T. Kung, "Notes on VLSI Computation," in Parallel
Processing Systems, ed. by David J. Evans, Cambridge
University Press, Cambridge, MA, 1982, pp.339-356.

7. Ronald Collett, "CPU Architecture, Part I: Problems And
Limitations of Von Neumann Computers," Digital Design,
Vol. 14, No. 11, November 1984, pp. 90-95.

8. Wolfgang Handler, "Innovative Computer
Architecture~How to Increase Parallelism but Not
Complexity," in Parallel Processing Systems, ed. by
David J. Evans, Cambridge University Press, Cambridge,
MA, 1982, pp.23-32.

9. R. W. Hockney and c. R. Jesshope, Parallel Computers,
Adam Hilger, Ltd., Bristol, 1981, pp. 1-51.

10. P. M. Dew, "VLSI Architectures for Problems in
Numerical Computation," in Supercomputers and Parallel
Computation, ed. by D. J. Paddon, Oxford University
Press, New York, 1984, pp. 2-21.

11. s. Y. Kung, "VLSI Array Processors, " IEEE ASSP
Magazine, Vol. 2, No. 3, July 1985, pp. 4-22.

107

12. Leonard s. Haynes et al., "A Survey of Highly Parallel
Computing," IEEE Computer Magazine, Vol. 15, No. 1,
January 1982, pp. 9-24.

13. Lawrence Snyder, "Introduction to the Configurable,
Highly Parallel Computer," IEEE Comouter Magazine,
Vol. 15, No. 1, January 1982, pp. 47-56.

14. Douglas G. Fairbairn, "VLSI: A New Frontier for Systems
Designers," IEEE Computer Magazine, Vol. 15, No. 1,
January 1982, pp. 87-96.

15. H. T. Kung and c. E. Leiserson, "Systolic Arrays (for
VLSI) , " Sparse Matrix Proc. 197 8, Society for
Industrial and Applied Mathematics, 1979, pp. 256-282.

16. A. L. Fisher et al., "Design of the PSC: A Programmable
Systolic Chip," in Proc. of the Third Cal tech
Conference on Very Large Scale Integration, ed. by R.
Bryant, Computer Science Press, Rockville, MD, March
1983, pp. 287-302.

17. A. L. Fisher et al .c, "The Architecture of a
Programmable Systolic Chip," Journal of VLSI and
Comouter Systems, Vol. 1, No. 2, Computer Science
Press, Rockville, MD, 1984, pp. 153-169.

18. D. K. Faddeev and V. N. Faddeeva, Computational Methods
of Linear Algebra, W. H. Freeman and Company, 1963, pp.
150-158.

19. W. W. Gentleman and H. T. Kung, "Matrix

20.

Triangularization by Systolic Arrays," Proc. SPIE-The
International Society of Optical Engineering, vol. 298,
1981, pp. 19-26.

H. T. Kung, "Systolic Array for
Triangularization," Proc. SPIE, San Diego,
pp. 19-26.

Orthogonal
CA, 1981,

21. Richard L. Burden et al, Numerical Analysis, PWS
Publishers, Boston, MA, 1981, pp. 289-294.

2 2 . W. M. Gentleman, "Error Analysis of QR Decompositions
by Givens Transformations," Linear Algebra and Its
Application, American Elsevier Publishing Company, New
York, 1975, pp. 189-197.

23. J. Greg Nash, "A Systolic/Cellular Computer
Architecture for Linear Algebraic Operations," Proc.
1985 IEEE International Conference on Robotics and
Automation, March 1985, pp. 779-784.

108

24. J. G. Nash and s. Hansen, "Modified Faddeev Algorithm
for Matrix Manipulation," Proc. SPIE, Vol. 495, August
1984, pp. 39-46.

25. Henry Y. H. Chuang and Guo He, "A Versatile Systolic
Array For Matrix Computations," The International
Symposium on Computer Architecture, 1985, pp. 315-322.

/

APPENDIX A

EXAMPLES OF FADDEEV'S ALGORITHM

In the following, we will solve sample matrix problems

using Faddeev's algorithm and its variants. The unmodified

Faddeev's procedure, involving only ordinary Gaussian

elimination, is illustrated with the first example. Its

variant form using Gaussian elimination with neighbor

pivoting is illustrated in the next two examples. Taken

from chapter III, examples (3.1) and (3.2) are solved using

the Faddeev's procedure combined with Givens rotations.

All calculations in the examples are carried out using

nine decimal places precision; however, because this thesis'

line formatting allows only a finite number of characters,

results are shown rounded off to two decimal places.

Using Ordinary Gaussian Elimination

Suppose we want to compute CA- 1 B + D, where A, B, c

and D are matrices of order n = 3 and

[
2 -1 3]

A = -1 0 2
4 -4 5

B = [
1 2 4]
3 1 -3
1 7 9

[
-1 2 3] [0 4 - 6]

C = O 7 -4 D = -2 1 O
1 -5 0 7 3 2

110

With Faddeev's algorithm,

expressed as

this problem can be

2 -1 3

-1 0 2

1 2 4

3 1 -3

*
4 -4 5 1 7 9

= 1 -2 -3 0 4 -6

0 -7 4 -2 1 0

-1 5 0 7 3 2

(A.1)

where, by means of matrix triangularization, all entries

below the diagonal elements of A are zeroed out such that A

is triangularized and c is annulled. After completion, the

results should appear in the place of D.

Matrix triangularization procedures are often used,

among other things, to solve linear systems. In solving a

linear system, three operations are permitted on its rows:

1) Entries of row Ri can be multiplied by any non

zero constant "II.. and the resulting row used in

place of R i.

("11..R i) ' (R i)

This operation will be denoted

2) Entries of row Rj can be multiplied by any

constant "II.., added to row Ri, and the resulting

row used in place of Ri. This operation will be

denoted (Ri + "11..Rj)' (Ri).

3) Rows Ri and Rj can be transposed in order. This

operation will be denoted (Ri) ~ (Rj).

When used within Faddeev's algorithm, the third

operation has a restriction which states that i and j cannot

111

be larger than the order n of the matrices, i.e. transposing

the order of the two said rows is not allowed if either one

or both rows belong to the lower half of (A.1).

Furthermore, although the entries in the affected rows are

expected to change after any of these three operations, for

ease of notation we will again denote the entry in the ith

row and the jth column of matrix X (X here represents A, B,

C or D of (A.1)) by xij" With this in mind, we can apply

Gaussian elimination procedure to (A.1) by sequentially, for

i = 1, 2, •.. , n-1, perform the operation

(Rj - (aji/aii)Ri) -+ (Rj) on the upper half of (A.1) with

j = i+l, i+2, ••• , n, and the operation

(Rk - (-ck-n,i/aii)Ri) -+ (Rk) on the lower half of (A.1)

with k = n+l, n+2, ... , 2n, provided that aii * O. When

8 ii - O, a search is made for the first non-zero element aji

where j = i+l, i+2, ••• , n and the operation (Ri) (Rj) is

performed so that the procedure can continue.

112

Thus, by performing the operations (R2 + .5R
1

) ~ (R2),

(R3 - 2R
1

) ~ (R 3) , (R
4

- • 5R
1

) ~ (R
4

) , and

(R
6

+ • 5R
1

) ~ (R
6

) on (A.1), row R
1

is effectively used to

zero out all entries below a
11

to give:

2 -1 3 1 2 4

0 -.5 3.5 3.5 2 -1

0 -2 -1 -1 3 1

0 -1.5 -4.5 -.5 3 -8

0 -7 4 -2 1 0

0 4.5 1.5 7.5 4 4

In this system, Rz is used to eliminate entries below

8 22 by the operations (R3 - 4R2) ~ (R3) ' (R4

(Rs - 14R2) ~ (Rs) and (R6 + 9R2) ~ (R6) •

system is then

2 -1 3

0 -.5 3.5

0 0 -15

0 0 -15

0 0 -45

0 0 33

1 2 4

3.5 2 -1

-15 -5 5

-11 -3 -5

-51 -27 14

39 22 -5

- 3R2) ~ (R4) '

The resulting

113

Finally, with the operations (R4 - R3) (R4) '

(R
5

- 3R3) (R
5

) and (R
6

- 2. 2R3) (R
6

) , we obtain the

system

2 -1 3 1 2 4

0 -.5 3.5 3.5 2 -1

0 0 -15 -15 -5 5

0 0 0 4 2 -10

0 0 0 -6 -12 -1

0 0 0 6 11 6

which shows the result CA- 1 B + D in its lower right hand

quadrant.

Using Gaussian Elimination With Neighbor Pivoting

We have indicated earlier that obtaining a zero for a

diagonal element aii during the Gaussian elimination

procedure necessitated a row interchange of the form

(R i) ++ (R j) where i < j < n was the smallest integer with

8 ji '¢ O. Actually, it is often desirable to perform row

interchanges (or pivoting) involving the diagonal elements

even when they are not zero. This is because when the

calculations are performed using finite-digit arithmetic, as

would be the case for calculators or computer-generated

solutions, a diagonal element that is small compared to the

entries below it in the same column can lead to substantial

roundoff error.

Referred to as neighbor pivoting, the two adjacent

rows R i and R j where i < j < n are interchanged whenever

114

I a iii < I a j ii , immediately before an operation of the form

(Rj - (aji/aii)Ri) ~ (Rj) can be performed on them. To

illustrate this, let us consider the problem of computing

CA- 1 B + D with matrices of order n = 3

[-1 5 -3] [-2 -7 6]
A= 3 4 1 B = 1 3 1

6 7 -2 5 9 4

[1 -2 4] [2 1 -5] c = 3 4 -1 D = 2 4 6
-5 3 2 -3 2 9

Like before, the problem is expressed as

-1 5 -3 -2 -7 6

3 4 1 1 3 1

*6
7 -2 5 9 4

= -1 2 -4 2 1 -5
(A. 2)

-3 -4 1 2 4 6

5 -3 -2 -3 2 9

Since (A. 2) shows that I 8 11 I < I 8 2 1 I pivoting is

therefore required between rows R
1

and R
2

• Thus, performing

the operation (Rl) ++ (R2) gives us

3 4 1 1 3 1

-1 5 -3 -2 -7 6

6 7 -2 5 9 4

-1 2 -4 2 1 -5

-3 -4 1 2 4 6

5 -3 -2 -3 2 9

where, after the operation (R
2

+ .33R 1) ~ (R 2), we have

3 4 1

0 6.33 -2.67

6 7 -2

-1

-3

5

2

-4

-3

-4

1

-2

1 3 1

-1.67 -6 6.33

5 9 4

2 1

2 4

-3 2

-5

6

9

115

Note that how neighbor pivoting has just been carried

out by the two previous steps. Once again, the above system

shows that pivoting is required between R
1

and R
3

since

I a
11

I < I a
3 1

I . Therefore the operation (R
1

) ++ (R
3

) will

subsequently give

6 7 -2

0 6.33 -2.67

3

-1

-3

5

4

2

-4

-3

1

-4

1

-2

5 9 4

-1.67 -6 6.33

1 3

2 1

2 4

-3 2

1

-5

6

9

116

which, after the operations (R
3

- • 5R
1

) -+ (R
3

) ,

(R
4

+ . 17R
1

) -+ (R 4) , (Rs + • SR
1

) -+ (Rs)

(R
6

- • 83R
1

) (R
6

) , becomes

6 7 -2

0 6.33 -2.67

0 .5 2

0 3.17 -4.33

0 -.5 0

0 -8.83 -.33

9 4 5

-1.67 -6 6.33

-1.5 -1.5 -1

2.83 2.5 -4.33

4.5 8.5 8

-7.17 -5.5 5.67

and

The procedure is carried out further with the

elimination of entries below a
22

by applying the operations

(R
3

- • 08R
2

) -+ (R
3

) , (R
4

- • 5R
2

) -+ (R
4

) , (Rs + . 08R
2

) -+ (Rs)

and (R
6

+ 1.39R2) -+ (R 6). We thus have

6 7 -2

0 6.33 -2.67

0

0

0

0

0 2.21

0 -3

0 -.21

0 -4.05

5

-1. 67

9 4

-6 6.33

-1.37 -1.03 -1.5

3.67 5.5 -7.5

4.37 8.03 8.5

-9.49 -13.87 14.5

117

After the elimination of the entries below a
3 3

with

the operations (R
4

+ 1. 36R
3

) (R
4
), (R

5
+ . 09R

3
) (R

5
) and

(R
6

+ 1. 83R
3

) (R
6

) , the solution to CA- 1 B + D appears in

the lower right hand quadrant of

6 7 -2 5 9 4

0 6.33 -2.67 -1.67 -6 6.33

0 0 2.21 -1. 37 -1. 03 -1.5

0 0 0 1.81 4.11 -9.54

0 0 0 4.24 7.93 8.36

0 0 0 -12 -15.75 11.75

The following is another example of Faddeev's

algorithm with neighbor pivoting. Given matrices A, B, c

and D of order n = 4, with

[2 -1 3 0] [-8 3 0 3 l 4 -2 7 0 -20 5 1 6
A= -3 -4 1 5 B = -2 -9 7 8

6 -6 8 0 4 7 4 2

[1 -1 2 -1] [1 3 -5 7] 2 -2 3 -3 0 -4 1 7
c = 1 1 1 0 D = 2 1 3 0 I

1 -1 4 3 1 -3 -1 9

118

we want to compute CA- 1 B + D. Formulating the problem as

follow

2 -1 3 0 -8 3 0 3

4 -2 7 0 -20 5 1 6

-3 -4 1 5 -2 -9 7 8 * 6-6 8
0 4 7 4 2

= -1 1 -2
(A. 3)

1 1 3 -5 7

-2 2 -3 3 0 -4 1 7

-1 -1 -1 0 2 1 3 0

-1 1 -4 -3 1 -3 -1 9

reveals that, because la 11 I < I az 1 I ' pivoting of rows R
1

and

Rz is necessary. Thus, the operation (Rl) ++ (Rz) produces

the system

4 -2 7 0 -20 5 1 6

2 -1 3 0 -8 3 0 3

-3 -4 1 5 -2 -9 7 8

6 -6 8 0 4 7 4 2

-1 1 -2 1 1 3 -5 7

-2 2 -3 3 0 -4 1 7

-1 -1 -1 0 2 1 3 0

-1 1 -4 -3 1 -3 -1 9

119

which, after we perform the operations (R2 - . 5R
1

) -+ (R2)

and (R
3

+ . 75R
1

) -+ (R
3
), becomes

4 -2 7 0 -20 5 1 6

0 0 -.5 0 2 .5 -.5 0

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

6 -6 8 0 4 7 4 2

-1 1 -2 1 1 3 -5 7

-2 2 -3 3 0 -4 1 7

-1 -1 -1 0 2 1 3 0

-1 1 -4 -3 1 -3 -1 9

Before we can proceed any further in eliminating

entries in the first column, because I ai 1 I < I a 4 1 I ' we have

to perform the operation (R
1

) ++ (R4) :

6 -6 8 0 4 7 4 2

0 0 -.5 0 2 .5 -.5 0

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

4 -2 7 0 -20 5 1 6

-1 1 -2 1 1 3 -5 7

-2 2 -3 3 0 -4 1 7

-1 -1 -1 0 2 1 3 0

-1 1 -4 -3 1 -3 -1 9

120

Now, all remaining entries in the first column can be

eliminated with (R4 - .67R
1

) -+ (R4) ' (Rs + .17R
1

) -+ (Rs) '

(Rs + .33R
1

) -+ (Rs) ' (R7 + .17R
1

) -+ (R7) and

(Rs + .17R
1

) -+ (R
8

), to give

6 -6 8 0 4 7 4 2

0 0 -.5 0 2 .5 -.5 0

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

0 2 1. 67 0 -22.67 .33 -1.67 4.67

0 0 -.67 1 1. 67 4.17 -4.33 7.33

0 0 -.33 3 1. 33 -1. 67 2.33 7.67

0 -2 .33 0 2.67 2.17 3.67 .33

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33

Prior to zero out entries in the second column,

because a 22 = o, the operation (R 2) ++ (R3) is used to obtain

6 -6 8 0 4 7 4 2

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

0 0 -.5 0 2 .5 -.5 0

0 2 1. 67 0 -22.67 .33 -1.67 4.67

0 0 -.67 1 1. 67 4.17 -4.33 7.33

0 0 -.33 3 1.33 -1.67 2.33 7.67

0 -2 .33 0 2.67 2.17 3.67 .33

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33

121

Applying (R4 + . 36R
2

) -+ (R4) and (R7 - • 36R
2

) -+ (R7)

to the above system, we are left with

6 -6 8 0 4 7 4 2

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

0 0 -.5 0 2 .5 -.5 0

0 0 3.94 1.82 -28. 85 -1. 58 1.15 9.21

0 0 -.67 1 1. 67 4.17 -4.33 7.33

0 0 -.33 3 1. 33 -1. 67 2.33 7.67

0 0 -1.94 1.82 8.85 4.08 .85 -4.21

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33

which requires pivoting of rows R 3 and R4 • Therefore, after

(R3) ++ (R 4), we have

6 -6 8 0 4 7 4 2

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

0 0 3.94 1.82 -28. 85 -1. 58 1.15 9.21

0 0 -.5 0 2 .5 -.5 0

0 0 -.67 1 1.67 4.17 -4.33 7.33

0 0 -.33 3 1.33 -1.67 2.33 7.67

0 0 -1.94 1.82 8.85 4.08 .85 -4.21

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33

122

where we can proceed to eliminate all entries below a
33

with

the operations (R4 + .13R
3

) -+ (R 4), (Rs + .17R
3

) -+ (Rs),

(R
6

+ • 08R
3

) -+ (R
6

) , (R
7

+ • 49R
3

) -+ (R
7

) and

(Ra + .68R3) -+(Ra>· The resulting system will be

6 -6 8

0 -5.5 6.25

0

5

1.82

.23

0

0

0

0

0

0

0 3.94

0 0

0

0

0

0

0 1.31

0 3.15

0 -.92

0 -1. 77

4 7 4 2

-17 -5.25 7.75 12.5

-28.85 -1.58 1.15 9.21

-1.66 .3 -.35 1.17

-3.22 3.9 -4.14 8.89

-1.11 -1.8 2.45 8.45

-5.35

-17.86

3.3

-2.9

1.42 .32

.45 15.57

Finally, annulling the lower left hand quadrant

completely with the operations (Rs - 5.67R4) -+(Rs),

(R6 - 13. 67R4) (R6) I (R
7

+ 4R
4

) -+ (R
7

) and

(Ra + 7.67R 4) -+(Ra) will give us the solution in the lower

right hand quadrant of

6 -6 8

0 -5.5 6.25

0

5

0

0

0

0

0

0

0 3.94 1.82

0 0 • 23

0

0

0

0

0

0

0

0

0

0

0

0

4 7 4 2

-17 -5.25 7.75 12.5

-28. 85 -1. 58 1.15

-.35

9.21

1.17 -1.66 .3

6.2

21. 6

-12

-30.6

2.2 -2.13 2.27

-5.9 7.27 -7.53

4.5 0 5

-.6 -2.27 24.53

123

Using Givens Rotations

A Givens transformation rotating the two row vectors

Ri and Rj

0 • • • 0 8 ii
0 • • • 0 aji

8 i,i+1
8 j,i+1

•
8 ik • • • 8 in

• ajk • • • ajn

of a given matrix A of order n replaces them with two new

vectors

0 . . . 0 a :u a i, i+ i . . . a.fk . . . a.fn

0 . . . 0 0 a j, i+ i . . . aJk . . . a Jn

such that, with k = i+l, i +2 I • • • I n, their entries are

8 Li = 0 ij

a'.k = cosa . . a .k + sin<X .. a .k
i 1) i 1) J (A.E.1)

aJk = -sin<Xijaik + cos<Xijajk

where

<Xij = ~ 2
8 ii

2 + aji

8 ii
cos <X ij =

<Xij

sin<Xij
a j i

= --
<Xij

2
cos <X ij + . 2 sin <Xij = 1.

The transformation obviously leaves unchanged zeroes

appearing in corresponding entries of both vectors. Thus a

matrix of order n can be triangularized by applying a

succession of Givens rotations to its rows Ri and Ri+i' Ri

124

and Ri+ 2 , ••• , Ri and Ri+n for i = 1, 2, .•• , n-1 such that

zeroes are introduced into every columns below the diagonal

elements.

When combined with Faddeev's algorithm, Givens

rotations are used on the rows above the horizontal line to

triangularize A and ordinary Gaussian elimination is used on

rows below the horizontal line to annul c. The procedure

involved can be illustrated much easier with an example.

Let us find the solutions of the linear system (3.1)

of chapter III. This system has three unknowns, x
1

, x
2

and

x
3

, and its equations are represented here in matrix form as

A= [
1 2 3]
0 4 7
2 1 3

B = [n
The solutions' column vector X can then be expressed

as X = A- 1 B or, by expanding it to become X = IA- 1 B + o
-where I is the identity matrix and O is a zero vector

I = [
1 0 0]
0 1 0
0 0 1

0 = [n

!

125

allows us to formulate the problem as

1 2 3 5

0 4 7 9

*2 1 3 7

= -1
(A. 4)

0 0 0

0 -1 0 0

0 0 -1 0

Since a
2 1

= O in (A. 4), we can skip row R
2

and, by

directly rotating rows R
1

and R
3

using the equations of

(A.E.1) with

a1, 3 = ~ 2
al, 1

2 + a3, 1 = ~ 1 + 4 = 2.24

al , 1 1
cosa1 , 3

=--=--= .45
a1, 3 2.24

a3, 1 2
sina1 , 3

=--=--= .89,
a1 , 3 2.24

subsequently get the following system

2.24 1.79 4.02 I 8.5

0 4 7 9

0 -1. 34 -1. 34

-1

0

0

0

-1

0

0

0

-1

-1. 34

0

0

0

Gaussian elimination is now used to continue

procedure below the horizontal line. Performing

operation (R4 + • 45R
1

) (R 4) , we have

2.24 1.79 4.02 8.5

0 4 7 9

0 -1.34 -1.34 -1.34

0 .8 1.8 3.8

0 -1 0 0

0 0 -1 0

Once again, we rotate rows R
2

and R3
with

()2 ' 3 = J 2
a 2 , 2

2 + a3,2 = J 16 + 1.8 = 4.22

cosa2 , 3 =

sina2 ,3 =

to obtain

a 2 ,2 --
()2 ' 3

4
= -- = .95

4.22

-1. 34 a 3 , 2
---- = = -.32

()2 ' 3 4.22

2.24 1.79 4.02

0 4.22 7.06

0

0

0

0

0 0.95

• 8 1. 8

-1 0

0 -1

8.5

8.96

1.59

3.8

0

0

126

the

the

127

which we can further modify by applying the operations

(R4 - .19R
2

) -+ (R 4) and (R
5

+ . 24R
2

) -+ (R 5), giving us

2.24 1.79 4.02 8.5

0 4.22 7.06 8.96

0 0 0.95 1.59

0 0 .46 2.1

0 0 1.67 2.12

0 0 -1 0

Since A is now fully triangularized, performing the

operations (R4 - .48R 3) ... (R4) I (Rs - 1. 75R
3

) -+ (Rs) and

(Rs + 1. 05R
3

) -+ (Rs) to completely annul the lower left hand

quadrant of the above system yields X = A- 1 B in the lower

right hand quadrant of

2.24 1.79 4.02

0 4.22 7.06

0

0

0

0

0 0.95

0

0

0

0

0

0

8.5

8.96

1.59

1. 33

-0.67

1. 67

For the purpose of comparison, we will also present

here the solutions to example (3.2) of chapter III. Later

on in appendix B, this example will be used for the graphics

simulation of Nash's array to show that it produces

erroneous results as mentioned in chapter III.

128

Example (3.2) gives us a linear system which is

expressed in matrix form as

A=[nn B=[n.
Solving this linear system with Faddeev's algorithm

requires us to formulate it as

0 2 3 5

0 4 7 9

*2 1 3 7

= -1
(A. 5)

0 0 0

0 -1 0 0

0 0 -1 0

Because 8 1, 1 = 0 and 8
2. 1 = o, we can make things a

lot easier by interchanging rows R 1 and R 3 of (A. 5) with the

operation (R1) ++ (R3) ' to give

2 1 3 7

0 4 7 9

0 2 3 5

-1 0 0 0

0 -1 0 0

0 0 -1 0

129

Performing the operation (R 4 + .5R 1) ~ (R 4) reduces

all entries below a 1 , i to zeroes, and the above system

becomes

2 1 3 7

0 4 7 9

0 2 3 5

0 .5 1.5 3.5

0 -1 0 0

0 0 -1 0

Rotating rows R
2

and R
3

with

lX2 • 3 = J 2
8

2,2
2

+ 8 3 2 = J 16 + 4 = 4.47

8
2,2

4
COSlX 2 ' 3

=---=---= .89
lX2 • 3 4.47

8
3,2

2
sina2 • 3

=---=---= .45
lX2 • 3 4.47

will completely triangularize A to give

2 1 3 7

0 4.47 7.6 10.29

0 0 -.45 .45

0 .5 1.5 3.5

0 -1 0 0

0 0 -1 0

in which all entries in the second column of the lower left

hand quadrant can be eliminated with the operations

130

(R 4 - .11R
2

) -+ (R4) and (R
5

+ . 22R
2

) -+ (R
5

) • This produces

the system

2 1 3 7

0 4.47 7.6 10.29

0 0 -.45 .45

0 0 .65 2.35

0 0 1.7 2.3

0 0 -1 0

Finally, the procedure is completed with the

operations (R4 + 1. 45R 3) -+ (R4) ' (R5 + 3.8R3) -+ (R5) and

(Rs - 2.24R
3

) -+ (Rs), to yield

2 1 3 7

0 4.47 7.6 10.29

0 0 -.45 .45

0 0 0 3

0 0 0 4

0 0 0 -1

which shows the solutions to the linear system in its lower

right hand quadrant.

APPENDIX B

REAL TIME GRAPHICAL SIMULATION

OF SYSTOLIC ARRAYS

Simulation techniques play an important role in the

verification of a design's correctness of operation and

debugging. Because serial computers are by nature

sequential machines, their software simulators are often

little more than conventional language interpreters.

For systolic arrays, this is simply inadequate. To

verify whether a given algorithm is correctly mapped into a

corresponding array architecture, a system designer must be

able to observe, at all times, the movement of every piece

of data as they traverse through the array, as well as the

results from operations performed on each of them by any of

the cells. Furthermore, for debugging purposes, he must be

able to look into the registers of every cell at any one

time, and see the values of all control signals present in

that cell. In short, he must have the most detailed view of

the entire system, which may consists of many arrays and

many cells, at all times.

To meet the above requirements, a new breed of

simulator-a systolic arrays simulator-was developed and

built to aid a hardware or software designer in the task of

~

132

designing and debugging systolic systems. For reasons which

will become clear later, it was deemed essential that this

simulator should be graphics based, hence its name Systolic

Arrays Graphical Simulator, or SAGS in short.

From the very beginning, SAGS was designed to simulate

systolic systems of any configurations. These

configurations are specified to SAGS by way of script files.

A script file contains vital informations about a system

such as its number of arrays, their types and sizes, the way

they are linked together and the microprograms each cell

will use. A script file also specifies when and where input

data and control signals should be fed into~and output data

taken from~a system. SAGS allows for systems with multiple

input, control and output data streams. Each input or

control stream is stored into ASCII files prior to being

accessed by SAGS. Similarly, outputs of SAGS are written

into ASCII files.

During run time simulation, SAGS executes all steps of

a problem one after another without pause, showing results

of each step on the screen. This is called multi-step mode

of execution; it can be stopped and restarted at any time.

Alternatively, SAGS can single-step through the problem,

allowing a more detailed inspection of the results.

Switching between these two modes can be accomplished easily

at any time.

133

Visually, SAGS allows all arrays of a system to be

seen on a monitor screen, as long as each array has a

reasonable number of cells. Because the real estate of a

monitor screen is limited, arrays can be overlapped such

that one in the background can be brought into the

foreground for observation at any time. In addition,

individual arrays can be interactively positioned anywhere

on the screen to closely match the system schematic. SAGS

allows an array to have two different views: a real view,

with the array and its cells appearing smaller and therefore

containing less information, and a full view, where the

cells show all their registers content. The view of an

array can be specified in the script file, or changed during

run time. All visual changes made to a system configuration

during run time can be recorded back to the script file for

reuse. A status bar on top of the screen displays

additional informations such as the current step number, the

total execution time and the array being selected.

In this author's experience, SAGS has been quite

useful in verifying and debugging the designs presented in

this thesis. Indeed, it is while using SAGS to simulate

Nash's implementation of Faddeev's algorithm that the bug in

its boundary cell microprogram was discovered and

identified. For the reader's convenience, SAGS source code

is listed in Appendix c.

134

In the following, three series of snapshots illustrate

the simulations of three different systolic designs. Each

snapshot is a screen output of SAGS for one execution step.

All problems used in these simulations are examples taken

from Appendix A.

The first series of snapshots B.1 shows the simulation

of Nash's system (from Figure 5) as it solves example (A.4).

It can be seen that this implementation of Faddeev's

algorithm produces erroneous results.

The second series of snapshots B.2 shows the

simulation of Chuang and He's system (from Figure 8) using

example (A.2).

In the last series B.3, the L-tuple arrays system of

Figure 30 is simulated, with L = 2.

here solving example (A.3).

This system is shown

-IUDf: MW•tGfWIQIJU W!Jttil$MJN_M_a:Lii5i DI! -ii ~
j v uo; 1 o.uoj
1 o i ! o I Delay Cells for

r::R~. 1 1 Input Data Flow
Status Bar

I o.oo 1Ho, , .uol o.oo: Skewing
I 0 0 . I 0 0 I

r---+--+--- ~. ----1-.....
1 i I 11 i I I
, 0.001 0.001 0.001 ! o.oon ll.001 0.001

ionolo 1 /o!o!o; r

r ~ I I I Y ----:... o oo · o .ool o oo! I o .ool o 001 o oo!
I I I l • '

C4 1 0~0 11 ~.olv 1 ---A 11 I I Triangular __....-- o oo o ool I o ooi o ool o ool-- Square Array in
. II I I I

Q I fl nnl n nnl n nnl

Anay rn Roal Mod~i ~ Real Mode

Ta Bits · ··1 • · ··1 ·. ·1 · ··1
g u l'l'I''

I I · o.oo" o.oo o.ooJ
o I o o_ Delay Cells

.. i ... 1
U.UIJ. IJ .IJVj

o I o !
---#-

I !
I o .OOJ
I o I
L--J

Snapshot B .1.1. simulation of Nash's systolic
array solving example (A.4).

---------. - . , ~ . , , . " ~. . ' : --------
a13--"-l.OOI I O.OOj

! 0 I I n I
. 1,_;_,_i

I j ! !
al2 --r-2.001 o.oo: I 0.001 o oo:

I o c · I o o ! I I __ ____ _,

r
all

I
--...1.00! 0.001 0.00

I 0 ! 0

~ ... r .. 1,..,..,.,,.,M ,.,AI
' \;\' ... ' \,>.VI.' u I II .\JI,/ ... i

c ---i-1.00 I 0 .00 I 0 .00 I

I • •• ! o "" I o •o I I _.,......-r· ,. I ,.. • ! I
s ! o.oo Yo.oo I o.oo 1 1

7' •oood •• ,.1r .. , ,,
X / ! 1.00 o.oo 1 I
out I • no I • •o I I I . .. I . .. I I

1 o.oo v.oo t f
I ~ .1{1 {!: i I

Triangular ~ i uo i I
I o .oo 1 I

Array in Full Mode I • •. I I -- ~

I t I .
o.ool o ool o.t:-7 Tag Bits
0 I 0 I 0 1 I I

; c. ~c c M ~. tC c I
o.oo I o.oo • o.oo I
• o I I I •. o I o .oo I o .oo 1
o.oo ! o.oo I o.oo I

o.oc q o.oo cl o.oc oi
o.oo I o.oo I o.oo 1
o .oo I o oo I • •• 1-- Square Array I . I "_,.. I •

1uo I o.oo I o.oo I in Full Mode
fJ.{l:{I {l i i:i.i:i{l ., {t_~ ~I

Ii .uo I o .oo : Ii .oo I
o.oo I o.oo I o oo !

UC : UC : H~ l
• ••' o 'Cl • •. ,I '. •·· 1 .• I • _..,'
o I o I o 1

"' ... ,,~ ... ,..,..!
.. "I , ":

I 0 ~ (I I ---
0 ~' ~ '

Snapshot B.1.2

135

_...,,., ••••s.1•HJM• •e'd"te-iu ____ ''•d=· • M· -

a 23 ~ ' ooi i o ooi
I 0 ! I 0 I

a22
~ ool J ool I o ool 0.001

• I 0 I I " " I .:......J....,; I " r,; I

a21 I H I I I I I I
--+-o.ooll 2.001 o.ool I o.ool o.oo 0.001

iololoilolo cl

a 11 --+ 1. OC 0 ; 0. OC 0 : 0 . GU V : : Ci . 00 Ci ; 0. Gt. 0 ~ (..OU ~ 1

o.oo I 1.00 I o.oo ! I o.oo I o.oo I o.oo
I.CO : ~.00 I 000 : I 0.00 : 0.00 : 0.00 I
o.oo tt o.oo ~ o.oo J I o.oo j o.oo • o.oo /

" M " i n ""' n I I n ,..., n ij ,.. ,..,n n ! n "" n ! • " ' i ' ' I I •. " • I . "" . I '." . I
1 1.00 I 1.00 I I e.oo I o.oo H o.oo /
1 nnn len• ilnon lnon lnnn I
1:···1··"1~."·a···ff·--1
~~ u.ilO il.Oil UO I

Snapshot B.1.3

~f(l.~oo 1 Q.t1{1ttH!t.t':!tt1l
I LUO 1 / 1.00 f u.oil I O.ilil !
! 0.00 I I 0.00 I 0.00 I 0.00
~ I G.GO I G.00 I 0.00

o.ool o.oo o.ooj
o I o o I

o:•!
o ool
~

I 0 .oo,
o I

. ~~ ~ ~.

a2l clears~o.oo o;
all from t I oo I

~egister r l o.oo I
instead of 1 o.oo 1
passing thru ---[

I
I
I

I o I o I
1 3.ooi r-H' o.ooi

H I
1.001 '.001 I o .001 o .001

0 0 : I 0 I 0 :

" I 11 ' I I 2.00~ •.ool 3.ool I o.ool o.oo o.ool
.1.1 0 11.1 0 1 0 1
' I • I ' I I • I I I

0 .00

uo
0.00

0 .00

1.00
{l.{11)

o; o.oo rtl J o.oo o; o.oo ~;
I 1.00 ! I o.oo I o.oo
I A II I I •. oo I I o.oo I o.oo
f o.oo I / o.oo f o.oo •

•f'OTo'Ol I' o.oo •I o.oo .1
I 1.00 I 1.00 W o.oo

1 0 .Ou
I e.oo : 1 uo I o.oo

~I°"" I u I
{I. {l{I {I ! I ti. (II) !) ~ I) .1)1) t;i •

LUO I I i.UO ' i.oo I
I o .oo I i o .oo I o .oo I

0.GU 0

0.00

0.00 . ..
0 .00 0

0.00

~.{l{I

ii fill

1).012 {I

u.uv
0 .00

~ I uo I 0.00 I I n 00

Snapshot B.1.4

0/01
o.ool o.ooi
o I o I -

ti .VO!
i 0__..,

I 0 .001
0 i

136

-

l£1

oo·o
oo·o
00·1

o oo·o

I
oo·o
00"0
00·1

Io oo·o
WO
ot·o
oo·o

o oo·o

0

oo·o oo·o

0 0 0

00"0 oo·o oo·•

00"0 I 00"0

oo·o I oo·o
00·1

Io
ot•1

oo·o °'·o
ot•o oo·o
oo·o oo·o
oo·r oo·r
00"0 oo·o
0t•t oo·o
oo·o oo-r
00·1 oo·o

o oo·o o oo·s

00-0 oo·o

oo·o oo·o

0

loo·• ,

fo/,

fdiS* nzii vu4iiiiiiiieffEiii-MMi1

oo·o

I oo·o
I oo·r
Io co·o
I oo·o

I
co·o
oo·o

0 09"0

I 00'0

I 1)1)"9
I
I oo· o
Io I oo·o

o I o
oo· o loo-o

0

100·0 oo·o

oo·o oo·o
00"0 I oo·o
00·1 I 00·1

cc·o 'c etro
oo·o

I
oo·o

co·o 00"0

oo·r
L

oo·r
(t l){l•tt oo·o

00'0 00'0
I l)l)"(t

'
00' 0

I I
I 00'0 I 00· 1

Io . oo·o Ne . oo·o

9·1·a :+oqsd-eus

I

~ oo·o 1
00· 1

I co·o
oo·o oo·o
oo·o wr
00·1 oo·o

0 00"0 o oo·•
oo·c oo·i-oo·o
oo·o oo·r ot·r
00·1 oo·o os·o-

o oo·(0 00"1 I oo·;

r I r
oo·o f oo·o I

~·1·a :+oqsd-eus

IOo:oJ
I oo·o I

I 00· 1 I I I 0 co·c I

11
oo·o I oo·o
oo·o I co·o I

I'
00·1

Io
00·1

0 M"I) l)l)"(t

I I oo·o I oo·• I oo·o
11 00' I I {11)·9 I OO'I
11 i I
11 oo·o I 00' I

Io
oo·o

II o oo· t Io 90' i oo·i I .

8£1

0
100·•

joo·:
I 0
l(lt"O

oe·e
co·e
00·1
co·e
oo·e
oo·o
Ot"I

oo·o
oe·1
00"1
oo·o

o oo·o

0

WO

oe·1
cc·o
oo·o
00"0

00·1
o oo·o

oo·o
oo·o
00·1

• 01·0

I o
(00"0

I I I I I 100·0 I . .

0
oo·o

00·1
oo·o
oo·o
00·1
oo·o

0 OO"S

oo·s-

I
00"1

I oo·o
.. 00" l

41.P iiiiwwzca;;;;; ... ;;;;

a·1·a ~oqsd~us

I
00·1

0 co·o
n·o oo·o
S\"0-n·o-1
u·o 11·0

°'" l I o··
os·1 00-1· t oo·o
00·1 00·1 I 00"1

I

11
os·o-I oo·o I oo·o
00"(I 1 00·1 II oo· i

00·1-oo·o

l

!on!
f Piiifiii£fiW--Mftl!JM-

L
0
1·a ~oqsd~us

I

I 0
100·0

0
oo·e

oo·o oo·o I
oo·o oo·o I

I

I 0
00·1 00"1 I
oo·o Io oo·o Io

&

I
00·1

I
oo·o

I oo·o

i.
oo·o

I.
00·1 00·1 I
oo·o oo·o Io

&
I oo·o

I
oo·o I

I
oo·o oo·r I

I
I 00·1 I oo·o I
Io oo·o Io 09"0 Io I I

l00·

0

o I I
I 0 I lonl
I I

I 0
IOO"o

oo·o
oo·o

I 00·1
co·o , , 0

oo·o

1
1
•

oo·o
oo·r
oo·o

I . 00"'

oo·o

11 00·1
oo·s II o

00· 1
oo·o

l
oo·o

I
oo·o I oo·r H"0-1

oo·o
Io I 00" l ti" I

oo·c-os·o i
00"1 I 00"1 I oo-o I os·o-I
00"(!r OO"l !r

6£1

----11'\:J"

oo·•
oo·o
00·1

o oo·o
I oo·o

H"T
oo·o

o oo·o
00·1

00·1

~
l
rot-oi oo·o 100·1 I

0

oo·o
0

oo·o

I

ot"O

00·1

oo·o
I o S\"O·

st"0-1
5'"0-

u·o

oo·o I
sn I

oo·o
00·1

s•·1
I st"O

Ol"I

s•·o-
n·o-

0 00"0 ! I
n·o I n-01 I I ,,. ,

oo·o
I

oo·o 00"1•

00·1 00·1 00·1

l

I os·o-I oe·o I oo·o oo·o
on i1 oo·o i 1 0 OO"l 11 00"(11

l I I l ! ! I I
WO iiO"ii

Ion 11••.-o
vu·~

I l I I I

oo·o oo·o 100·0 oo·o

T
I

T
oo·o

I
100·0

01·1·g ~oqsd-eus

oo·o
5'"0·

oo·o
I , ... Ot"O ! oo·o I 00·1 I OO"I I

oo·o oo·o I
00·1 11 oo·• I

l !
iiii"O I

--
AQH•W-=no-"'?.,."9' ..

fFIUfPJ"M ____
KFtt."W;-

6°1·g ~oqsd-eus

oo·o

0 0

oo·o loo·o
I

,./. I
I

0 I 0

100·0 Ion
I oo·o I oo·o I oo·o I iOo:Ol

I
00'0

I oo·o I oo·o 11 OO"I I 00·1 I 00·1

Io

00·1 I 00"0 I Io oc·e 0 oo·o e~·c I I c ffC
I I

oo·o I oo·o I n-o· I I s,·o I oo·o I
cc·o I co·1

I
s.-c-I I Sl"c· I H"C· I

I I 11 I
I ot"I I oo·o I ..-o 11 wo I n·o-1
1, oo·o Io oo·o ••

•n1l l1 ff l 11 ln I
I I ,. . Ii

i
L

I oo·o I oo·o I OS"(I I oo·o oo·o I oo·o
I oo·o

I
00·1 I

OO"I 11
00·1 I 00·1 I o~·'

I I I
I 00·1 00·1 os· o-I oo·o I oo·o I oo·o
o oo·o o oo·o l oo·'

'I'
00"(

!'
00·1 ,, (U)'t

I 0 I I I I 11 l I I I I I
loo·o I···. Ion I Ion-vu·u l•o·o I I I

I
l

oo·o oo· o , ... 0 oo· o
i

I i i i
100 0 1(10 Ct i

am;;;;1J!"J;lll!Qll(L'7lI_Jll··~H'I'lt·~·!f!l.~I'.!f_@.U~~IH.a!G;J

Ww.u

OvI

i 0 I

;.,., .• j

I 0 -0 f

;oov :oo·o
1

(snoauo.z.ia)
Ix

1)0' c C1J· C oo· \ ~
00· 1 00· 1 00" l I I 00 l I
oo· o Si" l 03" ! I i \Z" 't-I

i ij_ •••• i I II iH I iUUUU~

~!(tl)"(t (tl:t"(I. I 00"0 ~ i M.CI
I _ .. I ... i ... I ' ... I I
I n u-I :n u-i :J• 11• I I .. ·-1 ifl1-I
I II" 0 I n·o-oo· o I I oo·o I oo·o I
i. cc· 3 I. co· o , I 1.

C'' ~ 11 ~\. ~ I
I' i' .;, v• f I
i oo· o -~ oo· o oo· o I i oo· o I oo·o I
I 00· 1 I C0' 1 00" l I i 00" l I 00· 1 I
I j I i I

• I oo· o I oo· o 00" 0 I I oo· o
II

oo·o I
11 ,o· o i oo· o 1 ~o· L I 11 00"(00·1 11 al I I

I I
I

l
11 I I

100· 0 oo·o 100·0 I 100·0 oo·o 100·0

I I 11 I i
I

;
i

I

100·0 oo· o loo-0 oo·o
I I

i l
! 0

loo·o loo· o .

zI·I·a ~oqsd'eus

oo· o
00· 1

oo· o
oo·::

' mT-~--

I O
' jc~· G

I 0 I 0

...----.
I o I
loo·. I
I' • i

l oe-o co·o en ! I co·o ! 1 oo-o I 00·1 I 00·1 1 I 00-1 1
I on M oo· o I sn I 1 os· r I
lo wo 1o wo 11 io·o-

1 1
1 ff~ 1

~j on-I oo-ol
I :i\"0-t in-I i\O· I l i\ o-I S>o-I

II·I·a ~oqsd-eus

I u-o I 11"0 ~ n-o-I I oo·o I oo·o I
i. "·• ff. i 1 .••. 0.1 I. ,., .•. I. , 1
~,~ ... ;J ·~··l
I oo·o I oo·o ! oo·o I l!o--oo-·-o~l-o-o-·o-i,.1-o-o-·o--.
: on I 00"1 I 001 I I 00"! I 00! I 001
I os·o-I oo·o I oo·o I I oo·o I oo·o I oo·o
I 1 oo · o I 1 oo · o ! 1 oo L I . ! 1 on I 1 on Ii on

: I I I I I l 1 I I I I
;oo·o too·o 100·0 I ;oo·o 100·0

I I I l~l~+---;L~~ l ., I • I

loo-'o loo •o :
I I !

i ;
iOO" 0
I
; l

100· 0 i

Jl'f't:D•P.iWl&l

--u• t•••tti••·~w· . ·•'ltttiel~"*-.-- ,,, .•.
I o .001 i 0 .001

I 0 I I 0 I
1---i

o .ool o .oo! I I I I o.oo 0.001

0 I ~
! I 1 f ! I

~ I i I I f I
o.ooH o.oo 0.001 ! o.ool o.ool 0.001

' 1 I 1 I 1 11 1 I 1 I 1 I
I 11 I I

UO l : lOv 1 ; > 00 1 : : i. GO q UO i; 0. 00 i!
0 .00 ! 0.00 i 0 .00 I I 0 .00 I o.oo I o.oo I

I LOO ! UC I 1.00 i I 1.0C f 100 I :.oo I
I

~ 0.00 I 0.00 I I 0.00 I 0.00 I 0.00 I
: ,_,7 i; 7.60 1 i 10.:' :; 0.00 I: 0.00 1:

I 0.00 I 0.00 I I 0.00 I 0.00 1 ·0.22 I
: ·o. •! 1-us \ 1 -o •5 1-us I ·o. •5 l
I 0.00 I uo 11 0 00 I 0.00 I 0.0.i I

f o. •5 1 I I ·o •! ! I o. oo 1 i o. oo 1 I
I o .oo f I ·2.H I ; .io I u; f
I 1.00 I ' 1.00 • 1.00 i ~::: ~ :-1.00 I o.oo

I .
x ___,..•.col o.oo

2 I I t 1

(erroneous) ,....._........
? .eel o ooi
1 I o I ______.
• o-' U. Uj

~

o oo/
o I

Snapshot B.1.13

..... ___

---~~~~,.' ,,,;., ~ ;•:

I

o .ooi
o I

I I
0.001 o.oof I o.oo

i I ,c 1 o,---'c
I I Ii I o.ool o.oo 0.001 j o.ool o.oo

0 ! 0 0 ! , 0 ! I

o .ooi
o I

I
0 .001

o I

I
0.001
1 I

Z.OG ii l.00 1 I 3. 00 1 I I '. 00 1 I 0. 0-0 I I 0. 00 1 I
o.oo I o.oo o.oo I o.oo o.oo o.oo I

I I I I LOC I I.CO I 1.CO I I.CC I l.00 I 1 . cc i
o.oo ~ o.oo I o.oo I I o.oo I o.oo o.oo 1

·, ,,7 i; 7.~0 1) 10.:, 1, 0.00 1, 0.00 11
I 0.00 i 0.00 I 0.00 • 0.00 I 0.00 I
'·0.IS 1 ·0.I! i 1 ·0.H ,-G.IS ·O.IS I
~I 0.00 I I 0.01) I 0.00 I 0.00 I

\~ ,·0.1~ 1, 0.00 11 uo 1\
t 0.00 I I li.Otl t ·2.2' I s.~o j

I 1.00 I I 1.00 I 1.00 I 1.00

~luc t 0.00 ; uo

l .. ~J J I
3 i I I I 1 !

x ___... '"t c o.
1

uo
1

(erroneous) . . .
' 1 oo: o oo/

Snapshot B.1.14

I I I

! ... l"~· !
I__

I l

141

lllW!!!ffi!!!'. --...-.:nirJr!r;rJ, .w.w.1.10iiwi:t:u:w ... llirnT'lw.
=~-- -- -

I II
•. OOJ I 0 .001

Q I I • I
~I --l--l__JI .
I 0 .oof •. 001 I I I I 0.001

x. I 0 0 1 I o c vDelay
in--- I I I II I

Cells

.• --i-o.oo o.oof o.0011 o ool I
0

I I 1 · 1 o.ool
I ,c_c,c o o

X "'--~ I I I
I c_-oc~ o.ocll ucl I c.MI o.col

Tag Bit ~! o o I 1 o I o

Tag Bits

------rj I
T Array in o.ool I o.oo~ o.oo o.oo
Real Mode L.!_j I o 0 0 -- S Array in G

1

, I . Real Mode

0.00

0

I 0~0·1
I o.ool

L:J

0.001 o.ooj
o I

Snapshot B.2.1. Simulation of
systolic array solving example

Delay Cells

Chuang
(A.2).

and

e!!Mfl14't'·I mJll•ttilflM»O• •Z®1lOOCSmMi11!11ml! ·il:li!).1$1el!!l,\I

I -;.••j
I o

o.oo

I I I r
1 uo1 0.001 1 o.ool o.oo
I o I o I I o o I

I J I I I J I
T B. I I " I I ag its 1-1.001 o.oo 0.001 I 0.001 o.oo o.ooj

o I o o I I o I o o Tag Bi ts

He's

X I o.oo t I o.oo t o.oo o

11
1 o.oo o

1
1 o .. oo or o.oo •?

ou 1 rray in v t ~-GO I 0.00 0.00 0.00 0.00 0.00 I s A .
M .oo o.oo o.oo o.oo o.oo o.oo --

out ;..o.oo 1 o.oo o.oo I 1 o.oo f o.oo o.oo Full Mode
-Mout -- I o.oo o o.oo ol I o.oo ol o.oo ol o.oo ol

I 'I I I I 1.00 o.oo I o.co o.oo I o.oo I
I o.oo o.oo I I o.oo I o.oo I o.oo I

T Array -------I o.oo o.co 11 o.oo ! o.oo I o.oo !---- X
in Full Mode o.oo o I I o.oo o I o.oo o 1 •.of=f=o V - II out I.CO 0.00 0.00 0.0

o.oo o.oo I o.oo o.oo Mout
~ ! 0.00 I 0.00 I u I xout

---..---.

I o c o I
I o.oo~ool

0 .001 t.001

I 0 : 0 I

I 0.00
1

1_•_1

Snapshot B.2.2

142

£vt

v·c:·s: ~oqsd-eus

llGl
oo·o

00'0 oo·o

0

oo·o Ion

o.ro oo·o oo·o
oo·o 00·1 oo·o
oo·o 00"1

I
00'1

Io oo·o oo·o II 00·1 I

I GO'G I oo·o I oo·o GO'O I oo·o I
I oo·• I oo·o I ot'O oo·o I OO't

I co·o I co·o
L

00·1 00·1 I 00·1
I I I 0 OO't Io oo·o oo·o oo·o Io 00'0

I oo·o
I

oo·o

I 0

co·o 00'0 oo·o ffO·

I
oo·o oo·o oo·o oo·o oo· o [['0

oo·o
Io

00'0 00'0 00·1 OO'l 00'1 I

I• oo·o oo·o oo·o I oo·o oo·s 0 OO'i I

jo..°o
0 I 0

00'0 loo·o oo·,
I

EP
I 0

I Ion OO'l

I 0 I
!oo o , !on-!

•Guwjjj;iii+ffiiiifEJ.•· f~iCifiii·i•iiW a &Hiiiijjil

c·c:·s: ~oqsd-eus

o o I o
100· o oo· o 100-o I

L__J

on ; .wo on I~

:::: I :::: :::; 11 :::: I
o oo·o Io oo·o 1 oo·o 11 o oo·o I oG·o I oo·o oo·o 11 oo·o I' on I

oo·o I co·o oo·o I en en
oo·o I oo·o oo·o I I oo·e oo·o I

o oo·o Io oo·o o oo·o I 1 oo·o Io oo·o I oc·o I oo·o oo·o I , -oo-·-o...;;..1-o-o-·o...;.._o_o_·o~I
oo·o I oo·o oo·o l 1 00·1

1
oo·o i oo·o I

I oo·o I oo·o oo·o I I oo·o I on I 00·1 I
~lo oo·o l1 on lo on-!

;==~:::;:::::~;.;_:,_J
0 I 0 I 0

t'lo·o oo·o •oo·o loo-o oo· s 00'(
I I I .___.
I 0 0 I I 0 0 I ,(!{I. 0

loo· o I Jon-Ion I
I I

I •
i • i

l,'fl" i(I,, t I

aa.:;:ite»1·1r1i_~~~~==~";.,:;: ~~·i-illifl!lflio!~'l£~a

9·z·g ~oqsd-eus

lo/o I
~ 0

I o 0
I

0

100·1 00·1 oo·o

I
o.J"i I ilO"il I

w"il I I
I oo·o I oo·o I oo·o 00"1

l1
00·1 I 00·1 I 00·1 00·1 I
01·1 p oo·o II oo·o 00·1
oo·o oo·o oo·o oo·o oo·o
oo·o oo·o oo·o oo·o oo·o
00·1 OO"I I co·1 OO"T 00·1

l 11·0 1 oo·o Ii Ol"O l 00·1 f 1 [["9

oo·o oo·o oo·o £n-1
OS"O ll" o-

oo·o
I

oo·o
I

oo·o Et"O os·o-Ll"O

oo·o 00·1 00"1 00·1 00·1 oo·o
Oil"O •1 fO"O •1 ... ,. l 00·1 oo· L I OO"t

0 0 l

oo·o 00" l· loo-I
I

00·1-00·1

0 0 l I

jon oo·r loo·•-
I

oo·•-I

-
Mlpl .,..__

s·z·g ~oqsd-eus

I o 0 I
0

oo·o oo·o 100-0

I ;;o·o I
••••

I
vil"O lfWGl

I
I I

oo·o
I

oo·o I oo·o
II

oo·o I on on I ~v·i

l1
I

I 1
I on

I oo·o

"
oo·o oo·o Io 00·1

oo·o oo·o I oo·o 00"0 oo·o
oo·o

I
oo·o I oo·o oo·o

I OO"O I oo·o I
00·1

I
00·1

I
00·1 00·1

t • oo·o p oo·o fl oo·o 11 oo·o o oo·o
I oo·o

I
co·o

i
oo·o 11 oo·o I (f"! I on I I I

I 00·1 I oo·o I oo· o 11 oo·o I [["O I OS"O-I
I oo·o I oo·o I •o· 1 I I WI I on I 00·1 I

I• o;;·o I• •••• : I ~--· I l1 ••«-I 1 vr.· • I. vv·;, I
1 • I

0 I 0 I 0 I

oo·e oo·o loo·;-I 00· 1 00" l loo·1-
I A 11 I I
I

I I'--' I I 0 0 0
100· 0 100 I· : :00· 1-oo·;

! o I I I
inn .,. l{')(I· •· I

··~~!rft'B1illl!liillllr~tTitmllii~:-:-rJ11~iirl.'"an1mdc·Ei·' • • ~nnm15;

vv1

a·z·a ~oqsdeus
IOI
Ion I

0

loo·o
0

loo·o

oo·o oo·o oo·o

I r.v·o
I

OV"O I w"O oo·• I
I oo·o oo·o oo·o OO"t

11
I

Ir
oo·r I oo·r I cG·l 00·1

Ir
I 11 oo·o II oo·o I Io oo·o

oo·o oo·o I oo·o n·i os·o
oo·o oo·o I oo·o , os·o-
oo·r I on I co-r 11 oo·e oo·e I

I 1 l)"l· I. l oo·o

"
oo·o l)"J-l £1"9

oo·o I
00"!· os·r· I ff\-' CS"O-I u·o I

OS"0· 11 ll"O I I I oo·o I
(("0

I IS"t I E.-0·1

on I WI I WI I I oo·o I oo·o I oo·o I
,;o·; •r UU'i II vu·s I I 0 UV"i-li vu·l Ii uv·; I

I

lo..°1
0 I l I I I

OO"i ,, .. , oo·c· oe·o

0 l

w~ on 100-i· oo·o

I r I I

fotrs·. !{19'{1 . ijjjjj_...,.Hi,.._....Q"•=-+rn;;;;;wiv-ooua;:;w;;-?Aft;W;jjjl

L·z·a ~oqsdeus

oo·o

o I o
oo·o 101>·0

0 0

oo·o loo·o

Oil"il oo·o OO"il nm oo·o oo·o I oo·o I oo·• I
on I on I on 11 co-I I

r oo·o 1 r oo·o 1 r oo-o I Io oo·o I

:::: I :::: I :::: '1 i :::: I :::~ 11
on I on I on i I on ! oo·o 1
~ 11 ffl·1• ff' I
I on I on i ~~:'.· i I on ll"t I on· I

oo o I oo·o I tc·o 11 os·o-1 ll"O I os·o I
on 00-1 I w1 11 on • oo·o I oo·o I
w o I 1 ;,o· L· ~ 1 w 1 I 1 i Oi.-r· f 6 W" l l 1 ;,o·; \

:==::::;:::::::;:=~-'-' I I I I

I 0 0 I 0 II I I I I I I
... , 00'(

1··· s I loo·•· oo· •· oo· s I
I

I 0 0 I I I I

100· 1 00· 1
I

100· 1 oo· £· I I

I • '
I

9v1

01 • i ·a ::t.oqsdtms

Ot"O

oo·o

l1
OO"l
oo·o
oo·o
oo·o
OO"I

I [["J

00·1-
os·o-
on

11 lii"ii

oo·o o•·• oo·o

oo·o oo·o
oo·o oo·o
OO"l

I 1 I oo·o I n·i
(0" I· ff(1n--
IO"O-os·o-•••• oo·o oo·o oo·o
oo· t-f o O"I• I

os·\ ffO-

:!:: I os·o 11 u·o·

~~:~ .
wo oo·o

Io UV • I u oo·; 110 on-lo

I I

loo·s-
I I I j 1 I I I

00· 1 IOO"E· joo·o oo·o
I I

I I I
Ot"J I oo·o oo-o

,n.i U"I

oo·o
ff J

oo·o oo·o
oo·• oo·o
oo·o oo·o
oo·' f 1 Oi"i

I I I oo·o I

et:t.JT -p.zrtpwn•wuw mw ... ,, __ ?FT .,.,__

G·i·a ::t.oqsd"eus

p:i
m oo·o oo·o

I
o I o

oo· o oo· o 100· o

l :::: 'I ::~: 11 :::: I ::: l I 00-1 00·1 co·1 00·1 I l 1 oo·o 1 oo·o I 1 oo·o I o n·z
~ --.0-.-, ;--~-.-•. ~,
I oo·o I o.i·o I wo-J os·o-I 10·0 I
I on I 00·1 I oo·o I 00·1 I oo·o I l1 oo·o 11 w'·IO ffl·I o ffi-11 ff' J

ffJ os·1· fft oo·o 1
1 En· I

..... ,. 1 ffO os·o· I ll"O J wo I •
I

00·1 00·1 I oo-o I oo·o oo·o

oo·o
00·1

oo·o
w·r. ~ OV"l·luuu·lll

I 0 I I I ::=.=;1;::=1:::;;;:=1~--....J
loo·• 00-1 loo 1 I oo·z· 100"0 loo·o
I I II I
1-1 -, +-1 -, _,..r __,. 1- 1

1

-. -+-1 -. ~r__,

:oo·s· 00·1 I 1
00·0 l•o·o I

I I I I I
ion! !oo-o I

Lv1

oo·o oo·o

oo·o oo·o u·1~---

I.
oo·o j 1n I u·i.
oo·o 9["1 I 01 ·o

00·1 I oo·o oo·o
OS"I• I [O"l• i • l["I·

I
os· ,. , (O"J I , .. ,. os·o-10·0 u·1

I oo·o I oo·o I on j
• (["9 , . oo·,. I 0 O"I·

0

...

00·1
os·o
oo·o
oo· •

oo·o
oo·o

os·s· oo·o
u·o-oo·o
oo·o 00"0

o oo·• o oo·s

I

OO"i

I

00"0

I

oo·o

I

oo-'o I 00"1

I

oo·o

l'
o

00·1

o I o
oo·o 100·0

I I

r
0·1

oo·o
I U"J

oo·o
oo·e
oo·o

o o·i· 11

oo·o
oo·•
00·1

o oo·i· 0

I I

oo·o oo·o

I I

00"0 oo·o

0

!~n

00"0
.... oo·o
ff)

oo·o
00·1

oo·o
oo· L

I
01·1

on 1 Ii" 1 lvi7i-l
I 00"0 I)£"! I 1 Ol"I I

00·1 I 00·1 ! oo·o 11 oo·o I
j, oo·o 11 €0"1· o L€"1· I 11 n·i I ~..;..;......;;.....~.....;;.~~~
w~ ~·s a·• w~ wo

1
1

10·0· 1 os·o-10·0 u·1 I oo·o

l1"l"H ~oqsd12us

oo·o
oo·o
oo·o

I oo·t

11"l"H ~oqsd12us

oo·o j oo·o I oo·o I oo·o oo·o 1
I 00. ·-1' o I • [["9 •• , l9'1• ~

~,--!-t-.• -.~j--c-s-·s-..:il---,1-.-,_~l I oo·o I oo·o j oo:o i
I ll"o I os·o I u·o-I I oo·o oo·o I 00·01

I
oo·o M"O oo·o I oo·o oo·o I oo·o

10 oo·;. 1• oo·• lo oo·; 1 o Wt· o 011·t 11 oo·;
'-'--~========:! I

I lw
1

0

I

loo·
1

o 100·9 oo·; oo·o oo·o
11

I I I I I I I I
lw1 ~o·" I

:··· 0
1)0' 0 I

I I I

i l I ' I
!,,,. (I I Inn· n I

;;,:;;mr!J'fr:mxrITlllizl:lr=ll.a:uo:·~·~?~~-1pa_ :...niii~

~~!!~~~}!!~·JP·'~·ll~~-~t~ll~~
1 o .~~, I t.l. co;
I o I o I
I---'

. I ... 1 I .. 1 I v .uv u .uu1 I 0 .uul O.Ovl

i 0 0 I ! I I I I
I I 111 I
I 0.001 0.001 0.001 I 0.001 o.ov 0.001

! I I I I ! I I ' I I

I uo 1; 1.0• ol·uo ol I s.oo ol !.oo •I uo •I
I Ii.vu t o.uo I o.oo I I o.ou I o.uo I o.oo I

I :·:: I :·:: ; :·: ! o.oo I o.oo -o.n I
~ o.oo o.oo s.,7

• ,_]) i J ·t.,7 0

0.00 • o.oo
-1.'1 01-,.00 o '·J) •

Snapshot B.2.13

0.00 0.00

0.00 0.00

x21

X12

I.ti I

o.co

o.oo 1 o.oo 0.00

o.oo I u' O.H

13 .~7 I.SO
o 1-1.03 o 1-uo • I 0.00 0.00

0.10 t.1'

? .!~ I •!.5•

.uF-
I 0

1.IJ 0.00

I I ' 0 I
I 0.0•1
~

~Wll:t•ft':'f.XU - MtlWEWXAW-_~ -
o.ou

•
0.001 o.oo

O.Ori'

~ I 6.olul o .ool
I o

I
·~001 0.001 0.00

~.oo 1

1
1 7 .ot o -1.00 o 11 s.oo o I !.oo o ,.oo

o.oo •.oo o.oo o.oo I o.oo •.• o
o.oo o.oo o.oo I o.oo I o.oo 1.00

0.00 0.00 0.00 0.00 0.00 0.00

Snapshot B.2.14

,.)) I 1-t.'7 0 -t.'7 0 I"'··· 0, ,.]3 •
o.oo I 0.00 I o.oo I 0.00 o.oo
1.00 t.00 o.oo o.oo 1.U

0.00 0.00 I o.co I 0.00 I 1'.SO I

X31

X22

o I -1.03 o I -1.so 1
I c.co I o.oo
I 1.n I
L1s.1s I

7 .'3

I

•.n, • .111
~

I.Ill ,_._1_

~-

X13

148

91 · z ·s: -=l.Oqsdt:ms

I l I
Sl' 11 OO't 00'0

Otl'O

I
o.i·o ' oo·o

00'0 oo·o I 00'0

UU"i

oo·o
00'0

I oo·o co·o 00'0
t OS'l• 0 CO'l• 0 l('I· I n·i

oo·o 00'0 oo·o 00'0 oo·o
Ot't 00·1 00'0 00·1 OO't

oo·o oo·o oo·o oo·o 00'0
0 [['' o oo·,. 0 l9'1· 0 l,.,. •

[[''

00' 0 oo·o oo·o
I oo·o 00'0 00'0

oo·o oo·o oo·o
I

oo·o 00' 0 oc·o
oo·o 1 oo·o oo·•
oo·o 1 00'0

Io
00'0

o ,;o·i· o UV' L oo·;

0
0 I 0 I 00'0 00'0 100'0

0 0

00'0 W9

lnn·
0
n

-_.-un:a ••. ,, -=zcww!,,,....,.. ·r:m;•wn• .,, _
~T·z·s: -=l.Oqsd'eus

I
il'll i

w'O
I UU"i>

I
~

O'I 00'0 I 00'0 I oo·o
I oo·o 00'0 I CO'O I I oo·o
I I I
I• OS'I· I 0 co·1· Io ff I· I 11 U'I

I co·o I co·o 1 oo·o 1 oo·o 00'0

I
I

oo·· I oo·o I
I

oo·o
I

I oo·o oo·•
oo·o I oo· o oo·o

I oo·o 1 oo·o 1 I
Io [['' Io oo·,. Io ffl· (I I l'' i· I [[''

I
oo·o oo·c I

oo·o oo·o oc·o 00'0

oo·o oo·o I 00'0 I I 00' 0 oo·o OO't

I oo·o I 00'0 I i;i~·o I I 00'0 oo·o
Io

oo·o

I·
vu·~ I 0 U'1'1i I 0 uu·s

I I. U9' ?· uu· L vv·; I I•

loo·
0

o
0 I 0

I !woo loo·oo
I 0

00' 0 loo·o loo· t
i

I 0 0 i 0 I
loo·o oo· o

I
oo·o 00' l\ I

I I

' 0 j 0
:{I~ (I ' ! l,, ~· '

~i,1riTrn=;<.im>11&mmm;rirna::-~1Jln~~;;;;;§rmn:=""=!r.iillW3

6v1

IJi1EaiU» Ll&.811tlI«JJlL ·lt\!1.t.fi?t*tf?W.M3JUM lf.ll!IWfmi.I

~-
I . I •.• i

xin Delay Cell

Buffer Blq
I •. ool ,

Cl, C2, C3, C4 . .
0 '-~-.,..---f-:--r-~Mout

o.ool o.ool o.ool o.ool o.oo
o I o I o o

UOj C2 C3 C4
.~''

0.00

0

~ ~,, 2 Arrays i --,
R 1 Mode A o.ool I e.oo
~ • • II

0.00

0

i
I o.ool

L!J

o.ool 0.001 0.001 o.oo
0 I 0

I I . o.ool o.oo o.tol o.oo
0 I 0 I 0 I 0

! I

o.ool o.ool 0.001 •.oo
0 0 0 •

Delay

o.ooj
0

o.ool
o I

B2q

Snapshot B.3.1. Simulation of an L-tuple arrays
system solving example (A.3), with L = 2. Note
that n = 4, w = 2 and therefore m = 2.

~--,~·-·~~

Cl, C2, C3, C4

Cl, C2, C3,

Mout

xoi.lt

2 Arrays in
Full Mode

x
1
-a.ce

G4 --+0.00

+ooo

Cl, C2, C3, C4

r:
o.oo i I o.~ol o.ool o.oo o.oof o.oo
o .oo I o o o o o 0 ···I

0 ~ --+-~·~-·~·-41~--~
~ 1-•••

0 .00 0 I I . I I

<
i:::: 0 00 o.oo o.ool o.oo o.oo o.oo o.oo

· 11 0 .1 0 1.1. 0 t
o .oo I I I • I I • I • I I
0.00

8.00 0

~i :::o::.oo=~' ~~
I uo o1

I

I o.oo

'1 0.00
0.00

I I o.oo
I o.oo
I I o .oo
I o.oo

I

0.00 ,.

I o.oo I
I o.oo I

of7.Go01
I o.oo I
I
1 e.oc I
I o.oo

I o.ool o.oo
I o

0 ···1'
~

•
0.00 0.001 0.00 0.001 0.00 0.00
0 0 0 0 0 0

• I

I o.oo o.col o .oo I
o/oj 0 .001 0 .co

I o o I o 0 0

Snapshot B.3.2

150

1S1

v"£"H ~oqsd-eus

0
oo·o

0
oo·o

0
oo·•

0

. I o oo·o oo·o

• I o
oo·o loo·o

i

•
0

oo·o oo·o

0 0

o I • OG"O oo·o
I

o I o
... 0 100· 0

0 0

0
oo·o

0 l
oo·o 1

0

0
oo·o oo·o

I I

oo·o
oo·o

I oo·o
Io oo·o

oo·o
oo·o
oo·o

0 00"0

I
oo·o

I oo·o
I oo·o
Io oo·o

WO

oo·o
o oo·o

I Io

oo·o
oo·o

oo·o
oo·o
oo·o
oo·o
oo·o

oo·o 00"0 oo·o oe·o oo·o oo·o oo·o O)"O-I
oo·' I oo·u I

~I 00·1-~I oo·~
I

II I
oo·i-oo·t-I

oo-.-

£"£"H ~oqsd-eus

I oo·o I oo·o
I WO I

lololo o o oil I
I I 00 .. 1 j I oo·o I oo·o
loo·o oo·o oo·o oo·o oo·o •
1--~+-~~!.._~+-~~~-+-~"'" ~lo~o~o·~c...i..!o~o~o·~o~
I o o I o o o o I I oo· o I oo· o
joo·o oo·o ,1oo·o oo·o oo·o oo·o 11 oo·o I on

I oo·o I oo·t

I o
oo·o oo· o 100· o oo·o oo·o

oo·o

o oo·o o oo·o

I I
o I I

wo I I
lo

w• 11
I

l 0

; on I I on I
I oo·~ I

I
I 0 wo I

oo·o I
I

wo I OO'SI I
1: oo·: I

I ;, II
l·N-1-oo·•
I I

'--'
Ml.lC-)i.W--7't*!"''''~~~.d.J..:J_)°fll!!--

=
.,

I o o o o
loo·o oo·o 1

00·0 oo·o foo·o

o o I o o
oo·o oo·o oo·o oo·o oo·o

I o I o o
100·0 oo·o 100·0 oo·o 100·0

0
oo·• oo·o loo-0

, ntre1;;a;; i ;

I 0 ft

IGG'O oG·Q •oo:o I

! 0 0 I 0

ioo·o oo·o loo·o
I

I o I o
100· o oo· o 100· o

oo·o oo·o

Uii

0
GO' 0 •oo·o

0 I 0
cc·o co·o

0 0
oo· o loo· o

I

9"£"S: :+oqsd-eus

I

o I
oo·o oo·o I

oo·o I on I
on 11 oo·o

• Io

oo·o
00'0

oo·o
oo·o

oo·o

oo·o

' on-I

oo·o
oo·o

I oo·o
Io on I Io

os·s-
s.:· o I
oo·• I

I oo·t· I

i I
100·,. on-I

0 I 100·1 I
L__J

oo·•
oo·o
oo·o
00"0

oo·c
00'0

oo·o
oo·o
oo·o
ffO·
oo·.i
oo·s

+ae;;Jii:u

--
E,_iiiii

00"0

0

oo·o

oo·o

S"£"S: :+oqsd-eus

I 0
loo-o
I

I oo·o
• I oo·o I

I 00'0 I
Io 00'0 Io
I oo·o !
I oo·o I
I I
I oo·o
Io oe·o 0

I oo·o I

I
I •

oo·o
1

1

I W£
L I.
r uu·u I II

,,,,.(1 ..
I i
I V> •• i
I oo·, ~

~:on ~1

I • 1 ii
100-.. Joo·!
I I
' . '
I " '
100 ,. I

...---.
I • I 100·0 I

oo·o

00'0

oo·o
oo·o
oo·o
oo·o
00"0

10·0

oo·o

oo·o I
00'0 I
oo·o i

I
uu·u I oo·o

1 it·u I
00· 11 I
on l

£S1

L

I
o o I o

oo·• oo·o 100·0 oo·o

0
GO'G

0

oo·o I

00'0

s·c·a:

Io
I
I
I

I Io

I
I
[_ I

loo-:
!

OO't
oo· G

oo·e
oo·o
oo·o
oc·o
00'0

00-0 0

00'0

st· o
00'1

Ui' i·

t I
00· 1· I

I o I
fOO'I· I
L_J

~oqsdtms

~
100· 0

loo'o
I
oo·o
oc·c
oo·o
co·o
oo·o
co·c
oo·o
00'0

oo·o
oo· o
'Jtt"(t

U(t'U

oo·t

~· . . . ~, ~ . . '

0 I 0 0 I 0
00'0 00'0 •oo·o GO' 0 •oo·o I

lo/c
0 I o 0 I 0

:}0"0 lcc·c cc·o 0 , ..

0 0 0 0
I ' loo·o 10•·· oo·o oo· o 100·0

c 0
I ... •. ' l···· f ou· u l•i o- 1uu u uu· u

I I I I I

oo· o

)L •

L"£"S: ~oqsdeus

lo!
ion J

I
I I I •

0

100·0 loO'O I

'
!

00'0

I
oo·o I

oo· o co· o I
I

oo·o oo·o I
oo·o Io oo·o I I
oo·o 00'0 I
co·o cc·c I

I
00'0 00'0 I
oo·o 0 oo·o I

I

I 00'0 oc·c
I
I 00'0 .~,. 0

I ... , M·o

f'
Iii' i-~ u v;;,-u
01ri oo·o

I
.wo· I ffO I

i 00'' I oo·t
~I oc· s· Ii oc· 3

I o i I
100·1 oo· ?· I
I I

i 0
1c·o·; !
:___j

::ui;;;;iill!U .• Wi'.Oiiilll:r:~FJ?!i'·~fll:·pp;gwmiil!iriEila '*-;;+;•<Zttilil-

-

0 0 0 o I o
oo·o oo·o oo·o oo·o GO"O

!
• 0 0 o I 0

oo·o oo·o loo·o oo·o Ion I

0 l
' ' I • oo·e oo·t oo·o oo·o 19£"0

i

l
' • ' ! 0

100·0 on-15n £9"0-1£1"0
i i

----~,

01°£
0

9: ~oqsd-eus

0
oo·o

0
oo·o

0
oo·o

0
ffO I ;

oo·o
oo·o I eo·o

Io
I•

oo·o
I

IHl"O I
I oo·o I
I I
I oo·o

" Io oo·o Io
oo·o
oo·o 1

It
oo·o I os·s-o
onl

I Ll"O I I
I oo·o I
I. oc·i-f; I•

I I

oo·t I 00·1

0
100·0 I
L_J

i

lo!
loo·o I
I I

0

oo·o

oo·o
oo·o
oo·o
co·o
oo·o
oo·o
oo·o
oo· o

oo·o
u·o
oo·o
oo·o
oo·o
Ll"O

00·1

00·3

'Fmir••mww• .,,. ... _
6"£"S: ~oqsd-eus

loo-°o I

I 0

I°'.' oo·o

I oo·o I oo·o
I

1 I
00"0 oo·o

I 0
I./.

I • I 0 I • I • I
lco·c •oc:c le;· c loc:c 11 oo·o I oo·o

Io I' 0 0 0 I 0 0

oo·o oo·o
1

00·0 co·o Ion oo·o
I

• 10··· oo·o 100·0 oo·o 100·0 19£" 0

l
' • ' c

•••• •••• los· o-;.cu l.:;·0-l.:1· 0

oo·o

11
co· o

I
oo·o

I oo·o
! 0 oo·o ! 0

I cc·o I I
I oo· o

• I

' l i
oo·o
.is·s-: o
oo·o I

11 ffO I
I I I

I oo·o I
I. CG. 9· l; I•

I v
100·1-00·1-

I I i
I . I
I • I
((1(1·1 I

!...____J

oo·o
oo·o
oo·c
oo·o
1)1)'1)

oo·c
oo·o
oo·o
••. 0

oo·o
.:1 ·o
00·1

~o 3

-~~ffiiiiQ3i M\&&C&ril~~'"!WC•t ti:U1•1•11-iii1M:· -

z1·c·a :+oqsdtms

~
100·0

• • I
loo·o •••• I
I I !

I
oo·o I oo·o

I
I 0 0 I 0 I I c:ra

'
oo·o

0 0

Ion oo·o Ion oo·o Ion oo·o I oo·o I Io oo·o Io oo·o

I./. f c..°o

I I
0 0 0

• 1 I
oo·o oo· •

oo·o oo·e oo·o co·o
I

oo·o oo·o
oo·o 0 09·0 oo·o

I
oo·o

I oo·c I
I

I , , I • o I o 0
100·0 oo·o ,,., oo·e 100·0 9['0-

i
I
• '

0 0 0 0

!s.:·o li'O-.:1·0 ffO ll'O ll'O

I
oo·o I oo·• I
oo·o I oo·' I

l i Vi'S· ll oo·o 1

on-1 oo·o
I oo·o I on-I I OO'l I ... , I , , oo·o Is oo·' I

I
0

100·0 00·1

0

LJ ~ ... ~

I o
!en
!

olo •1• o
oo·o loc·o oo·o ioo·o oo·o

!

os·o· s.:-o ffo· .:1·0 ££'0 .:1·0

11 · £ • g :+oqsdtms

....----.

loo-°o
I

0
.... oo·o

I oo·o I oo·o
I o~rc

' oo·o I I I
I I oo·o I oe·o
I 1. oo·o

I'
cc·o I,

I I oo·o I oo·o
I I oo·o I oo·o
I I I

I oo·o I oo·t
Io oo·o I• oo·o

I oo·o I oo·o I
i "·o-I •••• I I oo·o I oo·o

I I. r.s·s-1 o r.o·o I'

oo·o oo·o
Lt ·v

I
oo·•

I oo·o oo·'
Ii oo· J· I l co· t

I 0 (I
I

100·0 oo· t I
I

I I

' 1<10· (I

, __ ,
__r._ a

9 0 0 0

!on oo·o Ion oo·o loo·o

lo/o
0 0 0

oo·o oo·o oo·o 00"0

• o I o 0 0
,[. 0 oo·o joo·o S(" o-oo·o

i

0 o I o 0

' !ff' ffO jll"O ffl o.i·o
i

I 0 0

'en co·o oo·o

I 0 0

00"0 oo·o oo·o oo·o oo·o

•
0

loo·o 100·. '["0 oo·o 19!" o-

'
c L.o. lffO· ll "O ll "O ii. u 1u u

9~1

v1"£"EI ~oqsd-eus

lo!
joo-o I

0 I
oo·o t

I oo·o oo·o

I oo·o oo·o

oo·o I oo·o oo·o
Io oo·c oo·c

0 oo·o oo·o
oo·o oo·o oo·o

oo·o oo·o
o oo·o o oo·o

oo·o os·o-
I oo·o I oo·o
I I on I ' l

oo·o I oo·,

I·
uu· v sn 1

oo·s
""' I ' I. I sco ffo-I I

I
OS"il-

oo·o

oo·o

oo·o

oo·o

I oo·• oo·, I

I• oc·o
I' en I

0
jOO"O oo·i-t
I

I
0

I
jOO"l I
L__j

£1"£"EI ~oqsd-eus

lei Ion I
I I

I 0 0 I
loo·o oo·o I
I

I oo·o I oo·o
I I

11 oo·o
I

oc·c
11 oo·o oo·o
I I 0 oo·o • 0 oo·o

I p
I oo·o I oo·e

I
oo·o I oo·o I

I oo·o •••• Io oo·o o oo·o

I

I
I

I oo·o I
I oo·o I
I I 00"£
I. I.
IL

i:n}'V

r (1(1:'(.'l
I I
I us· v-1
! oo·, !

I'
OG';

I•
o I

1oo·s 00·1 I
I ! I
I ~

: __ ,

oo·o
WO

I oo·,
on-1

q·• I -. I
i.C\i i
oo-.

I cc·~

0 0 0 0 0

ion oo·o •oo·o oo· o 100·0

I I 0 0 0 0 I 0
Ion oo·o foo-c 00"0 •oo·o

0 0 0 '
,

oo·o 9["0• oo·o oo· o oo·o

0 0 '
, •

.:1·0 .:ro awo o;·o· ;,·o
i

- ..
'"§HMW~''WW

oo· o oo·o lo/o oo·o loo·
0
o

loo·~ G I 0 0 I 0

oo·o fon oo·c Ion

I 0
loo·o 100· 0 oo·o u·o- oo· o

0 0 0 ' lffo IL1"i1 ILi"O ilo"O l•n-

At1rt11D'!f S}~i~·W·I·•·

LSI

91°£ 0 8: ~oqsd-eus

lo!
Joo o J

I 0 0 I
loo· o oo·o I

I

I oo·o g oo·o I
I co·o I I

0

Io

I oc·c I
oo·o oo·o • oo·o I

oo·o Io ce·c I
I I I

• 11 00·1 I 00"0 I
oo·o 11 oc·o I !n I

I oo·' I oo·u I
~l oo·o ~I H"E I

n·t L9"0·

o/. I
Jt"O oo·o I
oo·• oo·o I

• oo·; 1 o ;n I
~

' lt"O- I ~~:: ; :~:~-I
I oo·o I oo·o I
lo oo·o lo on I

00"(00"1•1

I
I o I
100·0 I
L__J

&gwemwemW.j

oo·o

oo·c

OG" 0

ii' u

S1"E"S: ~oqsd-eus

I o o I
loo·o oo·o i
! I !

I oo·o I I 00"0 I
I oo·o I
Io oo·o 1.
I c
I oo·o I

11 oo·c • I I
oo·o I

Io oo·o t-1
I oo·o I
I I
I oo·o ' I. oo· ! I

OU'i N.

I' 1 • I oo·o
11

ffO· l 11
I oo·, I
Is c:ro Io
I o 0 i
100·1 OO"t· 1

' ' ' I •
1VO (

'--·

oo·o I co· o I
00"0 I
oo·o !

I
oo·o I
cc·c I

I
oo·s1 I
~<· n- j •. I

\6"(I
I

J("O I
00"\ I

I ..-; I
l~· n-.. i
li"U I
oo·o
~c: t

iiii ijjfii

BS1

81°£
0

8: :+oqsdeus

~ I SI
" oo·• oo·o

oo·o oo·o
oo· o oo· o

ot·o oo·o oo·o oo·o oo·o oo·o oo·' oo· o
ffO oo·o

t o I ' '
oo·t oo·o 1

00·0 oo·o lco·o ffO

l('I

I
oo·o

ffO so·o
I oo·o I 00·1

I•
WI

I• Ii'!

0
' ' ' •

0
oo·• oo·o oo·o oo·t n·o oo· o

' ' . ' 0
0

oo·• o;· o-I•« o fft· lll·o ffol
i i

I
oo·E I ln-1
oo·o I '['0· 1

I.
oo·o

I.
oo· o .

OO'S si-; I
oo·o t'-·'--I

I I ,;. ~ I I ff 0 I
I 00'0

Io
oo·o I

Io oo·o Go·; I
I

'DJ" -Wfi;pr;;;;; .. fffj.iiWi!ji5jjii.,,

ocrc

o olo olo'
loo·o oo·o loo·o oo·o loo·o oo·o

I o
,,1·0-oo·o loo·o oo· o 100·0 u·o

0
' • ' lll'o oo· o lo;·o-il'ol l<n-£1'0

L1"£"S: :+oqsd-eus

I
I 11

oo·o I oo·o 1

~I
oo·'
oo·o

I
Io

u·o
ffO

00·1

I n·1

I I
I
1,

loll lwo
I -I

o:ro
oo·o
oo·o

I OO'I ffO· I I OO'o I oo·o I
I I oo·o I w• I

'ioonl"'~~1 I oo·! (('O .

11 ••· • ~ ii• l I oo·o I oo·o I
I ••.•.• N.0

... ., ·· I I
~

I o u I
100·0 oo·•-1
I I
' • I
I " I
j{•O E-I
L__j

a<ncuawww;11.g.:.a. 'itr1Ulll!Jl;;tllmI~~~=

6£1

iiii

•
0 0

, I , 04·· oo·o oo·o oo· o oo· o

0 •
l

' I • oo·o oo·o oo·o ffO I" ·o

' ' •
0 0

00·1 oo·o KO oo·o oo·o

\

'
0 0 0

:iCO ffO-ffl •••• Ll"O

l"Il F @iiiiiffiiiiiifijij!jj!

0
ffS-

0

IO"O

0
)("0-

0
LI "O

I

oz·c·a ::ioqsdt?us

0

'l

oo·o
ff(I.

1
oo·o !
Et"O f o

n·o-1
~•·o
oo·o I
in ,,
oo·t-I
oo·o

I •••• oo·;; l

oo·o
oo·o I
00" l

' OO'E '3
0

on-1

Ill
joo·o

• I oo·o
i

oo·o
oo·o
oo·o
oo·e
oo·o
!l'O

00'1

16"E

on
oo·o
M"l

oo·o
oo· i
o;;·o-1
00·9 i
co· oij

61·c·a ::ioqsdt?US

\I t I
oo·o oo·o I

i

oo·o I oo·e
o~·c

lo/o
0

lo/o f oo·'o lo/o
11 ts· s-I

oo·o oo·o 11 oo· o I oo·o
I I e ! 0

I 0 0 I 0 I
' loo·e eo·o loo-a

I
00"0 El"O '1"0

loo· o I '
0

oo·o oo·o "". ••••• oo·o

'
I

' lo;;·o-•,;;-o- iL'll ll" 0 ffO LI 'O

I
I

I
ffO oo·o
SJ"(I oo·o
sn • ffO

I
oo·o I 00·1

t !I"! ! 16"E

I in-; I
I 91·0-1

I I l)l)"(t

Io I. l}ij''i u

oo· £·

Ll 'U I
09'0 I
oo·o L

I'

I o
100-.
I I

o I
oo· e<i

I i
I '
I '' I
JC•U 5i I
L__J

tn-1 oo·o I
I (ti).('
I ii" j

oo·o I
uv· u I
oo· l !
oo· ~-I

-~u~aiiiiiiiliii&&Unm;;_."t_..~,.w.•1•.. i%ftiJifii2ii ____ ,

ft

!oo-'o !co:o co·o

loo·~ ' 1,/0 U-0

•
0 0

9(·0 oo· o oo·o

0 0 0
,,.0 ££°0 1£1°0

I
' 04·0 oo·o oc·o

0
'

I
' Ion oo·o lrn

' ' loo·•
w I C

tc·o loo·o
I I

! ' c ! 0

ltn-,;1·0 1£i·u i i

091

zz · £ ·s: ~oqsdtms

1.1 loo·o I
I 1

I I I
loo·o
I

00' 0

oo·o I oo·o
,:.9· /.

I oo· o
00'0 I 00'0

ffO Io 00' 0

0 0 0

lS'S· lffn· oo·•

0

10-0 ffO

0 0
9c·o-oo·o

0
' £1°0 oo·o

oo·o I lS'OS·

0

£1'0 10·0

0 0
01·0 9€·0-

0 0

ff• ,;1 ·o

0 oo·o ! oo·o
00'0 I 00'0

I
8,-0

00'0 I 00'1

t U'I 1, u· E

00'0 00'?

oo·o I oo·o I
I I

l I
oo·, I)('''

I. uv· Lt 1 vs·o , oo·o I I
s~·s-I l'''t~

sn I .ffO·

oo·• I 00'' I
os·'o-I

0
00'0

' oo·o I

•
o~rs Is oo·• I

• 100·'
00·1

lo/£ I L_J

TZ • £ ·s: ~oqsd1ms

I • • I
loo-o oo·o I

oo·o
OC"\

00'0

8 H'O

u·1-
u·o I

I
oo·o

f, WI

oo·o
I eG' 0

I I. oo·' I.
IL

vu· u
r os·,

I
I

····-' ! '
00'' I
3G. ~ I. I•

o I
foo·,;. oo· • 1
I I I
I .. I
I • I
100· .(i
, __ ,

oo·o
co·o
oo·o
oo·o
oo· o
co·o
00'.

WE

co·o
oo·o
on I
. ··-I
"'" ' ~

.urrn•cH•••RE? ·-•~11.~lil

191

'
0 I 0 I 0 • loo·o ffS· lfftl· 00'1 1'S' L oo· o

I •
0 0

loo·~
0

ll 'O !O'C
·~.-0

~,-. CO'C
I

0 o I o ' I , ' oo·e u·o· 100·0 00' 0 100·0 00'0

0 0 l
' • ' Ill' i Lt·o U(,-V O:l'i· :IL'O L:I' O·

I

vz • £ ·s: ~oqsdtms

I • • I
loo·o oo·o I
I I

I
00' 0 I 00'0

I I
I

OG"O
I oo·o

I 11 oo·o I 00' l
11. E?·o I, ll'll'l"I\ I ,. H. I

I I
00' 0 I ,,.,.I
co·o I tT'l'I I

I I I I 00' l
I,

oo·, I

'
05'0 sn;J

85'1· ff I

!E'O I 00'0

I·
oo·~ I oo·o I
ii··· I. UU' LI~
LI' I ((';

I
ll'li I ii"O I

I I
I 00'0 I 00'0 I
Io GO' L Io cc·• I

I

I 0

101>'•· 00''
I

I
0

I 100·1 I
L_J

£Z"£"S: ~oqsdt:?US

oo·o I oo·o I
•

I 00'0 oo·o

loo·'o ' 1,/s.
I I I

00'0 ff El
~··

o·i. I,
00'0 I 00' 0

I !?'O Io 00'0
I I

I
'

0 I 0 0 I 0

£1'0 .!t·o l!O"C ffC l!s·o

I o 0
I

0

oo·• 00'0 !!E' 0· 00' 0

0 0 I o
' l£i'. LI 'O jff 0 iiO'O lus· o-

I I I I

0

co·o

' 00'0

:1.:· 0

I
I I oo·o I
I I oe·o I
I I I

I oo·o I

! '
H'I

I'
I

os·o I
I 00' 0 I

I I
I

oo·,
I 1.

• ii' i· .
I

tE' 0

I I
,!j'\t·

I I 00'! I

I'
Q~' t L .. I o

IOO'E
I

o I
oo· o I

I I

i i
1(10 ti· I
,_. __

oo·o I
co·c I

I
00' l I
oo·; I I
sa · szi
lE'O I

I 00' I
00' Li I
ffl

.£1 'U

oo·o
on.

·ft'fkiiR.CllWiii_111111:~~il~m

l91

jjjji •a

oo· o oo·o

0 0
n-e u·o

0 I
' oo·o Ion

3 3
• I oo·o oo·o 100-0 oo·o l'C"O

' ' . Ion os· o-f s,-o ffo-1.:1·0

[fff __,.,..,_...,,.11!'*'"'

I
o o I o o

1so·o ffo 1,,-o oo·o joo·o

9l"£"S: -;+oqsd-eus

oo·•

Cl"O

oo·o

ffO

' 100·0

oo·o
oo·o
oo·'

'
oc·o 0

K"C

.!I "O

oo·o
0 15· 1-0

I I ""'·I oo·o I
I oo·o I

I Io
ff:i· I· 1 I
ll"r,

I I ,, .. l
I oo·o I
I c oc·' I G

I 0 I
1oo·c-oo·o

I
o I

oo·c I
L_J

WWW

I
I

.,..,.,.,.nm --

!
0010

I
0 I

oo·o I
I

.,.,
"·s-1 oo·o
,,.1. I

11·1-I
:~·c I

I
oo·o I
s1·nj

sn I
3£"0· I M"O I
••. LI I
,,. J 1 . I
Ll"O I
oo-o I
GO'. I

., jjjj

Sl"£"S: -;+oqsd-eus

...----.., t I
oo· o I
I I

I ••. •• L.'o i ! I I

roo:o1~
I oo-o I oo·o I 11 I

I I oo·' I oo·' !
, ,,,.,_,

' I
oo-o I I

11

WC· I

...__...__.___.___.__...____. I ;::: ,.
... , 'S'J· I 0

ll"O l oo·o i
s,· 'ti

0 0
I '

j
I ' jtt"t-oo·o oo·o oo·o •••. 0

0
' • ' iffo lo;· O· :ii" u j;;· O· ov·.i

!["0

LI. 0 I
I

1. ,.
.!l"t; I

I oo·o I
I oo·o
I. it• i· u

I 14'l-
I ;~ .• I I
I
I •
I"
I .
I u

oo·o I
vu ' Io

100· 1 00· 1

; ~; I
100 <-I , __ ,

.:~·' l
I

oo·o i
nn·n f
~~· ~1 i

-~li!Q!._ __ ...l!.!1!f.'@l:D'!"'fIIl:!'Wcl·Fhi•ai&illmtfl'lJW===~~m

£91

0
• lc/o

•
lff l oo·o oo· o loo:o

0
• lo/o

0

oo·o oo·o ffO £1'0

100·•

' 0 0
:il'I £;'0• i:t'O ii"O l<l'O

~~~~~~~~ 

... : ..... 

I I I I I 

·· a z · £ • s: :+oqsdtms 

I on-i oo·n~ 

I ff(I~ cc·\ I 0 

ffs-' 1 eo·o I oo· o I 
Io O!"O Io !n-1 • 0 I 0[" [ I '8" lli 

30'0 
I 

ffO 
I u·o I 

I oo·o I oo·o I 
Io ~n-lo snr-1 

ffl-; cc·o 
oo·o I oo·o 
oo·o I 00" l 

'["0· 
si·;-1, illl"O 

oo·o os·o-
oo·o I us-o-I 
oo· t I ... , I OO"i 13 oo·: I 

I 
I t) 
I 100·, 00' l 
I 

0 

LJ 
§lfiiikk--+iilii? 4,1aHjiiii 

I 
I 

• 11 

Lz·c·s: :+oqsd12us 

lo/o I I I 

' o I 
loo-o on+-IIx 

I 

oi·; u·nj 
ffS· lS"Hl 

0 t 0 
lc/c ' Ion ltn Ion Ion lcc:c 11 oo·o oo·o I 

I I 0 !!'1-I I o!·o 
0 0 l I 

' 
0 I 01·1-SI'S· I 

tn oo·o oo·o oe·c ln·o !n I io·o ffO I 
oo·o 00'0 J 0 95·1-0 59· 11 I 

ao·• ffl I 
I !!"O· oo·o I 

I I , \ 
I o 0 

I 
loo·o oo·o WO 100· 0 Ot'O 100·. ,[ .. 100· 0 

. .. -' I• 
Sl' S· ~ ti 

uu "., 

' • ' 
0-1· oo·o 

Ion-Sl"O lffo-41·0 €["0 41·0 I £1·• I WO I 
I oo·o I oo· t 
lo oo· c: 'l OG' V 

I o 
jOO"[ oo· I 
I ! : . iCIO" !ll 

~ 

~~·~lii-Mt--WM!•llP! 'tfU.afWJ"ll-~1 -



I • ioo:o oo·o oo·o 

l 

joo·o ffO ffO 

• l'C"O OO't 100·0 

0 
li:T ·u ffO •'1' 0 

m --· _._._, __ ._. __ ._. 

)oo·~ leo·
0
c lee·~ 

I 0 
' ioo·o I oo·o (!'0 

100· 0 9[" 0 oo· o 

I ... '. 
0 c 

l._.o 10 .... it' 0 

v91 

0 0 

ffS-llS"n-
0 

ao·o ffO 

ffol 

oo·o lS'S-

0 
ll'O io·o 

00'0 

.:1·. 

0£" £ ·g ~oqsd'eus 

lo! 
lonii 

G(-ffi-- X os·• o,·o 
I17x 

0 
oo·• 

U'O 

00'0 

os·o-

l3'(l 

00'0 

oo·o I 

I OJ"0-1 

I 
0" l 

11 oo·o I 
I I 0 o~·o Io 
I 

n 
oo·o I 

II oo·o I 
Io 

00'0 

ts'l-0 

I 
oo·o 

I oo·o 
11 oo·, I 

I. I. , OO'ii , 
os·i1 
Sl'O 

eo·• 
• oo·s 

I tl o I 
100· i oo· s-I 
I I 
I 0 I rj 

00'0 I oo·o 
oo·o I "'!-
oo·o I 
oo-o I 
oe·o 
srai 

os·o-1 
oo·o 
oo·, I 
ii" L 

lS"l-

ffo-1 
00'' I 
oo·• 

6C:"£"H ~oqsd'eus 

lo! 
lorn! I 
j I 

I 0 0 I 
,o,·s-1on1i 

OS'• 0''0(~ 
oo·• t3" l. I 

I 
oo·o 00'0 I 
0('0 93"1-

oo· o I 
U'O oo·o I 

I 
00'0 oo·o I 15'1-0 s~·•i-

oo·o 00"0 

oo·o I oo·o 
I 00'' I oo·' 

I. I. I 
IL 

uu·u 
r 

Ui"U· 1 

Ota' O Sl'l 
I -··· I 11 Oi'ii-1 >L U I 

oo·, I 
3 GO'S 

'· I o o I 
100·1 oo·• 
I ! l (i I 
JOO ;: i 
, __ : 

oo· • I 
I ... 

·•tX-.. ·•t•Fiiiiiii=~aa 



S91 

Z£. £·a -=l-OQSdt:ms 

/./o I I" I 

I o o I 
oo·o oo·o I 

I 

oo·o I 
WO I I 

'olo loo 
1
00·0 ffS· 1,,·n-oo·• ""' oo·o 

lo ojo 010 o 
ll"o so·o n-o sn oo·o oo·o 

oo·o 
oc·o 
oo·, 
oo·o 

SE"O· I 
u-o I 

I 
oo·, I 

' Ko-100·0 oo·o 100-0 oo·o 

n·, 
'£"0 

00"\ 

os·n 1 o 
ffl 
.:1 ·o 

0 
100·0 l L_J 

sn I 

(("\• 

oo·o 
oo·o 

I ii. i 

[("7, 

ii-u 

oo·o 
oo· • 

. ,, . .-,---.. -.-,--,.-_-,-.-~ 

I ' 
!oo·o 

! ' 
l!l'O 

0 

:..-. I 

o I o 
'l'O H'ft 
. !". 

0 0 

1.:1 ·o l.:n I I 

o I o 
l3"U 00'\ 

l 
o I o 

ffO lffO I 

1 £ • £ ·a -=l-OQsd-eus 

~J 
'····· , .... , 

lo-t--;-1 
1,··o-loo~o I 

Z17x --I I ! 
oo·o I oo·o I 
on I oo·o I 

o I I 
oo·o I oo·o L.9'' 

0 
oo·o 

oo·o 

O O!"O O 9!"1· 

oo·o oo· o I 
oo·c cc·c I 

I 
oo·o oo·' I 

0 tS"I· 
' 

OS"O· I 

oo·o I sn 
oo·o I ""0 

00"! \ oo·' 

' 
Vi' ti • 

Si' i 

""' 
ff+-I 

, .... r··1sn 
I I ffu-1 

.... I 
I I ... I 

I I I 00·9 I oo·o I 

Is vv • ~ 0 

I 0 

100·' 

I c I 
100 ' i 
L-...! 

0 
00· 1 

v~· • I 
I 

I 
I 

•ftft'if•i!Hlii8.-;-....-.µru~.-iiii 



ff£!· oo· \ l9' l oo·o oo·o 00·1 

0 0 

lo/o 
0 

' '~.-o en oo·o ~·o ffO 

' ' \ ' 0 loo·o o;·o-ls«o l.:;-0-l.:1·0 Ei"O 

?i5i •p.u;w•E£Hi53i;;;;; 

I 0 o I o 0 I 0 0 
l~n-l3"H1~a·~ LS" l 100·0 CQ' Q 

0 o I o 0 0 
' u·o ffo 1u·o oo·o oo·o oo·o 

,,.,_ oo·o loo·o oo·o lo/o ![" 0 

\ 

' i.l"O oo·o 1.in-ii' Ii lli"O-ll"O 

991 

vc·c·a ~oqsd-eus 

o I 
oo·o I 

~~~:=:::' 
u·i-1

Io

0

oo·o
00-0

oo·,
.!J"f

n·'
ffO
oo·o
n-~

".' oo·o
oo·o
ffZI

ffO
..

I

,,.,.
oo· o I
S("O-I

oo·e I
• 0 Sl"I I

SS"O :
KO-I
oo·o I

u sci. I
ffO· I
... I

I
Li •

oo·o
0 ~3''

oo· o !

iijiiNiiijjjl

cc·c·s: ~oqsd-eus

I

J

oo·o oo·o

oo·o oo·o
oo·o wo
oo·, oo·,

' oo·o ' st·o-
ll "J

I
ttil"fl•

U"O .!l"O

oo·, oo·o
ff~ Io SI" I

tt•' I ~t·?
I I

I·
oo·o I oo·o
00"0 oo·o
Oi"Zl 0 iL" l

""' I
l!I"(

I
ffO I Ll"O

oo·o

oo·o

I
I
I
I

~ !!!:litl!' !]!!- 11.l•iiUFIJo .w,f,f,i,'ft W!l'J2W-m':'lT'l'W

r--i
,, "QI
0 I

0 .00 o.oo]
0

0.00 7, 2.0C 0
7.00 0.00

o.oo I 0.17
•. 00 9.33

I 7.75 o; lt.5~
! .;_.;.; 1 ii.uu
I o.oo I -o.u
I -o.33 l-u1

I. SS 0 ,.21
0.00 0.00

I o.u I o.oa
I i.u t.'5

o I

'' I

l
0 I
I

0. 17 0.33 •. 17
0 0 0

0.00 o.ool o.i,
0 0 ! ,

0.17 o.n, o.oo
0 ' 7

i-G.35 ol 1.17
I o.oo i o.oo

~-S.t7

!

1 c .eel c.oof c .ec
I ' 7 I u

oj
I

2.27 J

-0.,7 0.75 -0.50

' ' '
0.00 e.ool

'

0.00 0.00
0/81

0 0

I c.cc, 7 .,7 uc,
o I o • i

I x --+=2~131 0.00

13 ~ 'i
O.OOj

~

Snapshot B.3.35

0.00
0

0.001 0.00
0 t

I o.oo '~ I LOO I 7.00

, -:::: ! uo r;-;;;;-;; 0. 00

1 •.oo 7

1
1!.50 ol

I 7 .00 0.00

o.oo I o.oo
I 7.7S I 3.33 I
I I.IS 0 I 9.21 •I

0.17
0 0

-o .)6 0.00
0 0

o.~~ 0.17 -0.,7 t.751
0 0 '

,
0 .00 0.3' 0.00 t.00
0 , ' '

0.00 , 0.00 I ~-~-~-~------.-~
I

o.u 1' 0.'9 0.08 0.17 0.13 0.00 0.00 0.00
0.'5 O.Jt 0 0 i

'1 ·US 0 '1 1.17 0 ' I I 0.00 0.00 I -S.(7 o.oo, 0.00 0.00 0.00 7.,7
I l u •11 u o u
1 •.oo J t3.i7
I o.oo -7 .n

X,3~XJ4
Cd

Snapshot B.3.36

167

-~T'Wf-~ ·---

891

8£"£"H ~oqsd-eus

~
oo·o

I 0 £7x
OO"S

£S"H 5£"'

I n
'

I • 0 l
ff£ oo·o

o I o loo:o 00'0 •oo:o ffS· lfftl· on I
I I Io

oo·o oo·o
.!I"f 0 S!"O·

loo·~ '
0

o I o tl"O ll'O 80"8 ffO
:

I
0

0 ' 0
,,["~ 0

06"0 00'0 9£"0· 100·0

0 0 0 0
' £1"0 [["0 £1"0 £1"0 oo·o

' oo·o co·o •en oc·o £3" S·

I 0
'

I
' loo-o oo·o lffo £1"0 so·o I

I
9 • I

0 0
I

0

100· 0 ,c·o 100·0 00·1 IKO·

'
0 . 0 0

ld.U~ I ff ii 1..-0 .:1 ·o Ill"•

• I oo·o oo·•
u·o

I oo·o oo·o
oo·o 00·1

0 n·g 0 s1·1
I oo·o

I
oo·o

I oo·o oo·o

I j
oo·,

I.
~-,

oo·o J ov·o ' oo·o

'
oo·o oo·o

os·o-SL"O Lt'O·

oo·, I
oo·o

I 0 I
LJ +i*N@HM .. , ...

0
.:s·n

ffO

oo·o I

iiii"O I
I

L£"£"H ~oqsd-eus

oo·s
oo· •

U'O

oo·o
0 H'6

oo·o I
I oo·o

' I I
I.

Wl
I.

IL
iiv·v

r oo·o
I Oi'O· : I
I oo·, I

/ s oo· o : . I o o
100·0 oo·o

I ~ I I
)"° O I

o I
oo·o I

I

ffi·

ff£ I oo·o I
St'O•

SC£

oo·c

oo·•
00' 0

{1(1"'

uu·u
~I)' !I

ii"U

oo·•
~o· o

691:

6£"£"S: ~oqsd~us

lff
0
~. I I I

I
oo·o I oo·~ I

I
I oo·o 1 oo-o

1
oo·o I oo· o

, I o
ioo·o oo·o lffs-fftl oo·• "°' I 0 ff I I 0 st" O· I

' o I o o I o o I I oo· o j s1·1 I l~n ffO l~n u-e 1wo on I I oc-o I oc·o 1
~-~-----~-_._ _ __,_~

1
1 oo·o I oo·,

0 H"(I, WO

oo·o oo·o I ~-~-~-~---~--I oo-o I 9t·o I
I

0
I

0
I

0
I oo·' I oo· ~ I 100·0 oo·o 91·0-oo·o oo·o oo·o :i •Hi°il 1 • uu·o I

;--c~--c-0--0--1----.g.--,--1--."""" ~I oo·o
1

oo·o
1

l..-• 1!1·u l;i-o ut·o fos·o-s.:·o ,; o-1 ffli 1
~-~-----~-....... ----'-~ I oo·, I oo·o I

i 3 00 0 I 0 OGO I

APPENDIX C

SAGS PROGRAM LISTING

SAGS was developed on an IBM Personal Computer,

running the MS/DOS operating system. It was written in

Turbo Pascal, a dialect of the Pascal programing language as

described by Wirth and Jensen in Pascal User Manual and

Report. The source code of SAGS is listed in this appendix

along with a sample script file. This script file

represents the simulation that produces the third series of

snapshots in Appendix B. Input and control files are also

included. The source code of SAGS and many sample script

files are also available in ASCII format on floppy disks.

To produce an executable copy of SAGS, two software
n

packages are needed: a copy of the DOS-based Turbo Pascal

compiler (version 3. O) and a copy of the Turbo Graphix

ToolboxT" (version 1. 07), both available commercially from

Borland International, Inc. Also, since SAGS is graphics

based, a video card with bit-mapped graphics capabilities is

needed to run the program. The included source code is

written for the EGA standard; however, simple changes can be

made to the program so that it will run on other PC graphics

standards. Entry points for these modifications are fully

documented in the source code to ease that task.

171

Because computer graphics and simulations are

floating-point intensive applications, the use of a numeric

coprocessor is highly recommended. For SAGS to take

advantage of the numeric coprocessor, it must be compiled

using a version of the compiler that support 8087 floating

point math.

-------i

172

(*******
* * * SAGS is a Systolic Array Graphical Simulator program for a recon- *
* figurable set of arrays of processors. 1he Max nuniber of arrays is 15. *
* This is because of the limitation of Turbo Graphix, not of SAGS. *
* This module is the main module. *
* *
**)

program SAGS;

($1 c: \bin\ tbl \ tbgraphx\ typedef. sys}
($1 c: \bin\ tbl \ tbgraphx\graphix. sys}
($1 c: \bin\ tbl \ tbgraphx\kernel. sys}
($1 c:\bin\tbl\tbgraphx\windows.sys}
($1 typedef.pas}
($1 initglbl.pas}
($1 initcell.pas}
($1 initsqre.pas}
($1 initrngl.pas}
($1 initrng2.pas}
($1 initrng3.pas}
($1 initrng4.pas}
($1 wri text. pas}
($1 drwsqre.pas}
($1 drwtrngl.pas}
($1 drwtrng2.pas}
($1 drwtrng3.pas}
($1 drwtrng4.pas}
($1 drwstat.pas}
($1 drwsystm.pas}
($1 xcolor.pas}
($1 dpmode.pas}
($1 swchwind.pas}
($1 writscrp.pas}
($1 promptus.pas}
($1 seeknxtw.pas}
($1 statemnt.pas}
($1 getsystm.pas}
($1 sidetrav.pas}
($1 lnkioflw.pas}
($1 getioflw.pas}
($1 lnkdtflw.pas}
($1 getdtflw.pas}
($1 readscrp.pas}
($1 pecodes.pas}
($1 updatear.pas}
($1 snglstep.pas}
($1 multstep.pas}

(include the graphics system code}

(include others of SAGS modules}

begin

PromptUser;
if not Read.Script then

begin
close(ScriptFile);
writeln('!! SAGS aborted!!');
exit;

end
else close(ScriptFile);

InitGraphic;
SetAspect(l);
DefineWorld(FirstWorld,

0,0,WrldCoordXY,
WrldCoordXY);

DefineWorld(StatusWorld,
0,0,StatWorldX,
StatWorldY) ;

Foreground:=DefltColor;
SetForegroundColor(Foreground);
SetBreakOff;
SetMessageOff;
DrawSystem(CurrntPtr);

repeat
read(Kbd,Ch);
if (Ch=#27) and

keypressed then
read(Kbd,Ch);

with CurrntPtrA do
case Ch of

#13 : MultiStepsExec;

#27
#32 : SingleStepExec

(IOPtr);
#59 : ChangeColor(-1);
#60: ChangeColor(l);
#61 : HardCopy(False,l);
#62 : WriteScriptFile;
#72 : begin

MoveVer(-2,TRUE);
StoreWindow(Number);
HiY:=Y1RefGlb;
end;

#75 : begin
MoveHor(-1,TRUE);
StoreWindow(Number);
HiX:=XlRefGlb;
end;

{gets script file name}
{reads in the script file and build}
{system's internal structures}

{init. the graphix system and screen}
{sets aspect ratio for true circle}
{defines the shared world}

{defines the shared world}

{establishes system default}
{drawing color}
{don't error when window edge hit}

{read the keystroke}
{one more char ?}

{RETURN ? multi steps execution}
{until a key (any key) is pressed}
{ESC ? waits for end of current loop}
{SPACE ? single step execution}

173

{Fl? changes to last drawing color .. }
{F2? changes to next drawing color .. }
{F3 ? prints the screen image}
{F4 ? writes updated script file}
{up arrow ?}
{then moves current window and .. }
{stores it with new position}

{left arrow ?}

#77 : begin
MoveHor(l,TRUE);
StoreWindow(Nurnber);
HiX:=XlRefGlb;
end;

#80 : begin
MoveVer(2,TRUE);
StoreWindow(Nurnber);
HiY:-=YlRefGlb;
end;

#73 : SwitchWindow
(CurrntPtr,O);

#81 : SwitchWindow
(CurrntPtr,l);

#82 : ChangeDisplayMode
(CurrntPtr);

else begin
sound(500);
delay(300);
nosound;

end;
end;

until Ch=#27;
SetForegroundColor(O);

LeaveGraphic;
while IOPtr<>NIL do

with IOPtr" do
begin

end.

case IO of
INPUT: if Active then

Close(FileVar);
OUTPUT: begin

Flush(FileVar);
Close(FileVar);
end;

end;
IOPtr:=NextIO;
end;

{right arrow ?}

{down arrow ? }

{PgUp ?}

{PgDn ?}

{Ins ?}

{for any other keys .. }
{screams at 1000 Hertz}
{for 3 tenths of a second}
{then shuts up}

{ESC char exits program}
{sets foreground color to black}
{before exits}

174

{gracefully shuts down graphix system}
{and the IO system by .. }

{closing any active input file,}

{and flush internal disk buffers .. }
{of any output files and closes them}

175

(*
* * * This is the header file of SAGS. It contains all global definitions and *
* declarations of constants, types and variables. All of SAGS data struc- *
* tures are explained here. Be sure to include this file at compile time. *
* * *AA***)

const

TimeUnit = 0.000001;
Defl tColor = 13;

TextSize = 8;
FirstWorld = l;

StatusWorld = 2;
MaxArraySize = 5;
MaxSequence = 5;
MaxFileName = 64;

MaxStr = 10;
MaxWord = 12;
MaxLine = 45;

MaxError = 16;
MaxBox = 4;

MaxRegs = 4;
MaxCodes = 12;

MaxTxtCoord = 5;
MaxBus = 2;

CharSizeX = 4;
CharSizeY = 6;

Digits = 6;
Deciml = 2;

Gap= l;
WrldCoord.XY = 1000.0;

StatWorldX = 79.0;
StatWorldY = 12.0;

MaxRadRatio = 0.023;

StringList : array
[1. .MaxStr]
of string[MaxWord]
(I ARRAYSIZE''

I SYSTEMSPECS I '

'INFILES',
I OUTFILES I '

'SETUP',
'Pecodes',
'Northlnput',
'Eastlnput',
'Southlnput' ,
'Westlnput');

{execution time for each step}
{default drawing color value}
{max no. of char displayed in PE}
(world shared by all windows}
(world used by status box}
(max no. of PEs/array side allowable}
(max no. of procedures in a script}
(max no. of filenames}
{max no. types of script statements}
(max length of statement}
(max length of error message}
{max no. error message}
(max no. boxes in status window}
(max no. registers of one type in PE}
(max no. of PE executable codes}
(max no. displayable text lines in PE}
(max no. of pair I/O bus on each side}
(character size in pixel}
(character size in pixel}
(no. of digits of value displayed}
(no. of decimal places}
(size of gap between PEs in PIXEL.s}
(default world coord.}
(world coords. for status window}

(l.15*2/100 ratio of twice the radius)
(of the largest circle that will fit}
{inside a lOOxlOO PIXEL.s window}

(list of valid script statements}

Error List

type

array (list of all possible error messages}
[1. . MaxError]
of string[MaxLine]
(' ! Bad statement ! ! ' ,

' ! Array size too large ! ! ' ,
' ! Delimiter 11

•
11 not found ! ! ',

' ! Bad delimiter or delimiter not
' ! IO file name too long ! ! ' ,
' ! Non-existing array ! ! ' ,
' ! Bad statement in context ! ! ' ,
' ! Statement out of sequence!!',

found I I' .. ,

' ! Arrays are allowed to have only 4 sides !!',
' ! Bad type of array ! ! ' ,
' ! Array number should be within 1 to 16 ! ! ' ,
' ! Triangular arrays only have 3 sides ! ! ' ,
' ! Input file not found!!',
' ! Invalid bus specification ! ! ' ,
' ! Unknown display mode ! ! ' ,
' ! Unknown PE code ! ! ') ;

(pointer to reals}
(pointer to link info between arrays}
(pointer to IO buffers}
{pointer to array processors}
{file name storage}

{storage for text for screen output}

176

RealPtrtype = Areal;
LinkPtrType = ALinkType;

IOPtrtype = AIOtype;
ArrayPtrtype = ASysArraytype;

FileName = string
[MaxFileNarne];

Textype = string
[TextSize];

SrcDstType = array
[l.. 2]

{pair indicating sides of src. & dest.}
{arrays for dataflow info}

of integer;
Pointype = record

X,Y
end;

Pointstype = record
X,Y

end;
DisplayMode = (F\J.11,Arrays,Buffer);

PEtextype = record

Mode
Lines,
PEsize,
WDSizeX,
WDSizeY

{pair of coord. for a point}
: real;

{All of PE's texts coords.}
array
[1 .. MaxTxtCoord]
of real;

{mode of display of an array}
{stores default coord. for each PE's}
{text in an array, essentially acts}
{as a template for a particular}
{display mode}
: DisplayMode;

integer;

PEsizeXY,
GapXY,
TrueRad,
Radius
TextCoord

end;
PEtype = record

X_Reg
Out_Regs,
Last Out

In_Regs

Regs_Txt

Cl24,
C3
TAG,
Code

end;
StatusBox = record

Xhi,Yhi,
Xlo,Ylo,
Xdgt,Xtxt,
Ytxt
Txt,Dgt

end;

: real;
{storage for all PEs' text coord.}
{of an array}

array
[l .. MaxArraySize,
1. .MaxArraySize]
of Pointstype;

{internal PE representation, with}
{all necessary registers}

real;

array
[1. . MaxRegs ,
1. .MaxBus]
of real;

{pointers to X_out registers in}
{neighboring PE cells}

array
[1 .. MaxRegs ,
1. .MaxBus]
of RealPtrtype;

{Regs_Txt[l] is for TAG}
{Regs_Txt[2] is for X,}
{ [3] Vout}
{ [4] Mout}
{ [SJ Xout}

array
[1. . MaxTxtCoord]
of Textype;

{control codes registers}
: integer;
{for display purpose only}
{holds PE's execution code number}
: byte;

{coord. of box and texts within box}

real;
string [15] ;

177

LinkType = record

Sides,

ArNums
ArPtrs

LnkStart,
LnkStop
NxtLink

end;
IOflag = (INPUT,OUTPUI');
IOtype = record

Name
ArNlllll,
Side,
Bus,
!OS tart

Filevar
ArPtr
NextIO
Active

case
IO
of
INPUT

OUTPUT

end;
TypeOfArray = (Square,

Trianglel,

Triangle2,

Triangle3,

Triangle4,

Status);

{storage for dataflow info to}
{other arrays}
{from which side of src. array to}
{which side of dest. array}

SrcDstType;
array
[1.. 2]
of ArrayPtrType;

integer;
LinkPtrType;

{IO link to and from host, that is}
{to and from external data files}
: FileNarne;
{links with which array}
{to which of its side}
{and which bus}
{step to start feeding data}

integer;
text;
ArrayPtrtype;
IOPtrtype;

{is it still feeding data or not}
boolean;

IO flag

(InR.egs

) ;
(OutRegs

) ;

array
[l .. MaxArraySize]
of real

array
[l .. MaxArraySize]
of RealPtrtype

{square array of PE's}
{upper triangular array of PEs with}
{diagonal line from top left corner}
{to lower right corner}
{lower triangular array of PEs with}
{diagonal line from top left corner}
{to lower right corner}
{upper triangular array of PEs with}
{diagonal line from top right corner}
{to lower left corner}
{lower triangular array of PEs with}
{diagonal line from top right corner}
{to lower left corner}
{storage for each box in status band}

178

SysArrayType = record
Number,
HiX,HiY
Last,Next
StatTxt

var

case ArrayType
of

end;

Status

Trianglel,
Triangle2,
Triangle3,
Triangle4,
Square

ErrorType = set of 1. .MaxError;

Foreground ,
ArraySize : integer;

Zero : real;
ZeroPtr : RealPtrtype;

PEtxtArray : array
[DisplayMode]
of PEtextype;

ScriptName : FileName;
ScriptFile : text;

IOPtr : IOPtrtype;
LinkPtr : LinkPtrType;

FixedPtr
CurrntPtr

StatPtr : ArrayPtrtype;
ErrorSet : ErrorType;

Ch : char;

{storage for systolic array's data}
{including all PEs within it}

integer;
ArrayPtrType;
Textype;
TypeOfArray

(LoX
LoY : integer;

Boxes : array
[1. .Max.Box]
of StatusBox;

Steps : integer;
Ti.mes : real

) ;

(DPmode : DisplayMode;

) ;

PE : array
[l .. MaxArraySize,
l .. MaxArraySize]
of PEtype

{current drawing color}
{size of bandwidth of dataflow}
{value for PE's grounded input}

{stores all display mode's templates}

{always points to top of linked list}
{always points to top of linked list}
{always points to top of linked list}
{always points to the current array}
{always points to status window}
{stores error type values}
{keyboard input storage}

179

180

(*
* *
* This procedure initializes all global variables needed for drawing *
* an array. Depending on the specified array size, it will find a *
* suitable window size and world coordinates for the array. It also *
* computes an array of coordinates for PEs' text. *
* This procedure is very machine-dependent, i.e. graphics card specific, *
* and is used only once after the script file is read in. *

* *
*'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAlrl<AAAAAA********)

procedure InitGlbStorage;

var I
Xcnt
Ycnt : integer;

Templ ,
Temp2 ,
Temp3 ,
Temp4 : real;

begin

with PEtxtArray[Full] do
begin
Mode : = Full;
Lines := MaxTxtCoord;
PEsize := CharSizeY*(Lines-1)+22;
WDSizeY:=(PEsize+Gap)

*ArraySize
+Gap;

WDSizeX:=round(WDSizeY
/(8*AspectFactor));

GapXY:=Gap*WrldCoordXY
/(ArraySize*PEsize
+(ArraySize+l)*Gap);

PEsizeXY:=(WrldCoordXY
-GapXY*(ArraySize+l))
/ArraySize;

TrueRad:=PEsizeXY/2;
Radius:=MaxR.adRatio*PEsize/2;
Templ:=PEsizeXY+GapXY;
Temp2:=PEsizeXY-GapXY;
Temp3:-Temp2/4;
Temp4:=Temp3/2;
for Xcnt:=l to ArraySize do
for Ycnt:=l to ArraySize do
with TextCoord[Xcnt,Ycnt] do

begin
for 1:=2 to Lines

do begin
X[I]:=Templ*Ycnt-Temp2;

{value 22 is for EGA; 2 is for CGA}
{computes window dimensions for}
(a particular array size}

(compute value of gap in w.c.)

(compute value of PE size in w.c.)

(compute round PE's radius in w.c.)

(compute text coord. for array of PEs)

Y[I]:-Templ*Xcnt
-PEsizeXY
-Temp4
+Temp3*(1-l);

end;
X[l] :-Templ*Ycnt

-l.S*Temp4;
Y[l] :=Y[2];

end;
end;

with PEtxtArray[Arrays] do
begin
Mode :=Arrays;
Lines := 2;
PEsize := CharSizeX*Digits+lO;
WDSizeX:=trunc(((PEsize+Gap)

*ArraySize+l)/8+1);
WDSizeY:=trunc(WDSizeX*8

*AspectFactor
+1);

GapXY:=l.3*WrldCoordXY
/(ArraySize*PEsize
+(ArraySize+l)*Gap);

PEsizeXY:=(WrldCoordXY
-GapXY*ArraySize)
/ArraySize;

TrueRad:=PEsizeXY/2;
Radius:=MaxRadR.atio*PEsize/4.1;
Templ:=PEsizeXY+GapXY;
Temp2:=PEsizeXY-GapXY;
Temp3:=PEsizeXY/5;
for Xcnt:=l to ArraySize do
for Ycnt:=l to ArraySize do
with TextCoord[Xcnt,Ycnt] do

begin
X[2]:=Templ*Ycnt-Temp2;
Y[2]:=Templ*Xcnt

-PEsizeXY
+Temp3*2;

X[l]:=X[2]+Temp3*2;
Y[l]:=Y[2]+Temp3*1.8;

end;
end;

with PEtxtArray[Buffer] do
begin
Mode := Buffer;
Lines := 2;
PEsize := CharSizeX*Digits+lO;
WDSizeX:=trunc(((PEsize+Gap)

*ArraySize+l)/8+1);

{text coord. for TAG bit}

{computes window dimensions for}
{arrays displays}

{compute value of gap in w.c.}

{compute value of PE size in w.c.}

{compute round PE's radius in w.c.}

181

{compute text coord. for array of PEs}

{text coord. for TAG bit}

{computes window dimensions for}
{arrays displays}

WDSizeY:=trunc(WDSizeX*8
*AspectFactor
+1);

GapXY:-l.3*WrldCoordXY
/(ArraySize*PEsize
+(ArraySize+l)*Gap);

PEsizeXY:=(WrldCoordXY
-GapXY*ArraySize)
/ArraySize;

TrueRad:=PEsizeXY/2;
Radius:=MaxR.adRatio*PEsize/3.87;
Templ:=PEsizeXY+GapXY;
Temp2:=PEsizeXY-GapXY;
Temp3:-PEsizeXY/5;
for Xcnt:=l to ArraySize do
for Ycnt:=l to ArraySize do
with TextCoord[Xcnt,Ycnt] do

begin
X[2]:=Templ*Ycnt-Temp2;
Y[2]:=Templ*Xcnt

-PEsizeXY
+Temp3*2;

X[l]:=X[2]+Temp3*2;
Y[l]:=Y[2]+Temp3*1.8;

end;
end;

New(StatPtr);
with StatPtr" do

begin
ArrayType:=Status;
Number:=Max.WindowsGlb;
HiX:=2;HiY:=O;
LoX:=77;LoY:=l2;
StatTxt:='STATIJS';
Steps:=O;
Ti.mes :=O. 0;
for Xcnt:=l to 4 do

with Boxes[Xcnt] do
begin
Yhi:=2.0;
Ylo:=lO.O;
Ytxt:=S.0;
end;

Boxes[l].Xhi:-4.0;
Boxes[l].Xlo:=20.0;
Boxes[l].Xtxt:=6.0;
Boxes[l].Xdgt:=lS.O;
Boxes[l] .Txt:='STEP # : ';
Boxes[2].Xhi:=23.0;
Boxes[2].Xlo:=52.0;
Boxes[2].Xtxt:=25.0;

182

{compute value of gap in w.c.}

{compute value of PE size in w.c.}

{compute round PE's radius in w.c.}

{compute text coord. for array of PEs}

{text coord. for TAG bit}

{STATIJS panel window ntunber is 16}
{for IBM CGA : HiX=O, HiY=O}
{for IBM CGA : LoX=79, LoY=l2}

Boxes[2].Xdgt:-38.0;
Boxes[2].Txt:='TIME EIAPSED
Boxes[4].Xtxt:=47;
Boxes[4].Txt:-'secs';
Boxes[3].Xhi:-55.0;
Boxes[3].Xlo:-75.0;
Boxes[3].Xtxt:=57.0;
Boxes[3].Xdgt:-67.0;
Boxes[3].Txt:='ARRAY # :';

end;
Zero := 0.0;
ZeroPtr:-Addr(Zero);

end;

. ,

183

,

{get address of ground value}

184

(~***

* * * This procedure initializes all registers and texts storages of a cell to *
* zero.

*

procedure InitializeCell
(var Cell : PEtype);

var I,J : integer;

begin

with Cell do
begin
X_Reg:==O.O;

end;

for I:=l to MaxRegs do
for J:=l to MaxBus do

begin
Out_Regs[I,J] :=0.0;
Last Out[I,J]:==O.O;
end;

Cl24:==0;
C3:==0;
TAG:==O;
Regs_Txt[l] :='0';
for 1:=2 to MaxTxtCoord do

Regs_Txt[I]:=' 0.00';
end;

{with this cell, Thou shall}
{initialize all of its registers}
{on all buses to zero .. }

{ .. and all of its texts storage to}
{strings ' 0.00' or '0'}

*
*
)

185

(*
* * * This procedure initializes a newly allocated square array specified in *
* the script. It is called by the procedure : *
* - GetSystemSpecs. *
* *
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'ldrlrl<;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAA**-k)

procedure InitializeSquare
(Ptr : ArrayPtrType);

var I,X,Y : integer;

begin

with Ptr" do

end;

for X:=l to ArraySize do
for Y:=l to ArraySize do

begin
InitializeCell(PE[X,Y]);

with PE[X,Y] do
for I : = 1 to Max.Bus do

begin

end;

if X=l then
In_Regs[l,I]:=ZeroPtr

else In_Regs[l,I] :=
Addr(PE[X-1,Y].
Last_Out[3, I]);

if Y=ArraySize then
In_Regs[2,I]:=ZeroPtr

else In_Regs[2,I] :=
Addr(PE[X,Y+l].
Last_Out[4, I]);

if X=ArraySize then
In_Regs[3,I]:=ZeroPtr

else In Regs[3,I]:=
Addr(PE[X+l,Y].
Last_Out[l, I]);

if Y=l then
In_Regs[4,I]:=ZeroPtr

else In_Regs[4,I]:=
Addr(PE[X, Y-1].
Last_Out[2,I]);

end;

{for each PEs in square array}

{ .. init. all of its registers on all}
{buses and all of its texts storages}

{with all buses, link PEs together}
{as follow .. }
{if PE is on north border of array .. }
{its north input is grounded for now}
{else its north input is from its}
{north neighbor}

{and so on for the east border .. }

{except this time we have the south)
{border and .. }

{the west border to take care of.}

186

(*'>.'-k

* * * This procedure initializes a newly allocated type 1 triangle array *
* specified by the script. It is called by the procedure : *
* - GetSystemSpecs. *
* * AAA***************)

procedure InitializeTrianglel
(Ptr : ArrayPtrType);

var I,X,Y : integer;

begin

with Ptr" do

end;

for X:=l to ArraySize do
for Y:=X to ArraySize do

begin
InitializeCell(PE[X,Y]);

with PE[X,Y] do
for I :=l to MaxBus do

begin
if X=l then

In_Regs[l,I]:=ZeroPtr
else In_Regs[l,I] :=

Addr(PE[X-1,Y].
Last_Out[3, I]);

if Y=ArraySize then
In_Regs[2,I]:=ZeroPtr

else In_Regs[2,I] :=
Addr(PE[X,Y+l].
Last_Out[4, I]);

if X=Y then
begin
In_Regs[3,I]:=ZeroPtr;
In_Regs[4,I] :=ZeroPtr;
end

else begin
In_Regs[3,I]:=

Addr(PE[X+l,Y].
Last_Out[l,I]);

In_Regs [4, I]:=
Addr(PE[X,Y-1].
Last_Out[2 ,I]);

end;
end;

end;

{for each PE in triangle array .. }

{ .. init. all of its registers on all}
{buses and all of its texts storages}

{then for all existing buses .. }

{if PE is on north border of array .. }
{its north input is grounded for now}
{else its north input is from its}
{north neighbor}

{east border is grounded if PE's on}
{east boundary, .. }
{else it's connected to the east}
{neighbor}

{south and west inputs are grounded}
{if PE's on the diagonal boundary .. }

{else they are connected to the south}
{and west neighbors}

187

(***'~~******-lrkti~******'~~***'~~******'~~******'~~***tt

* * * This procedure initializes a newly allocated type 2 triangle array *
* specified by the script. It is called by the procedure : *
* - GetSystemSpecs. *
* * AAA"********)

procedure InitializeTriangle2
(Ptr : ArrayPtrType);

var I,X,Y : integer;

begin

with Ptr" do

end;

for X:-1 to ArraySize do
for Y:=l to X do

begin
InitializeCell(PE[X,Y]);

with PE[X,Y] do
for I:=l to MaxBus do

begin

end;

if X:=Y then
begin
In_Regs[l,I]:=ZeroPtr;
In_Regs[2,I] :=ZeroPtr;
end

else begin
In_Regs[l, I]:=

Addr(PE[X-1,Y].
Last_Out[3,I]);

In_Regs[2,I]:=
Addr(PE[X, Y+ l] .
Last_Out[4,I]);

end;
if X=ArraySize then

In_Regs[3,I]:=ZeroPtr
else In_Regs[3,I] :=

Addr(PE[X+l,Y].
Last_Out[l,I]);

if Y=l then
In_Regs[4,I]:=ZeroPtr

else In_Regs[4,I]:=
Addr(PE[X,Y-1].
Last_Out[2,I]);

end;

{for each PE in triangle array .. }

{ .. init. all of its registers on all}
(buses and all of its texts storages}

{then, for all existing buses .. }

{if PE's on the diagonal boundary}
{then its north and east inputs}
{are grotlllded for now .. }

{else they are connected to PE's}
{north and east neighbors}

{south input is grounded if PE's}
{at the bottom of array .. }
(else it's connected to PE's south}
{neighbor}

{west input is grounded if PE's}
{at the west boundary .. }
{else it's connected to the west cell}

188

(*"k*

* * * This procedure initializes a newly allocated type 3 triangle array *
* specified by the script. It is called by the procedure : *
* - GetSystemSpecs. *
* *
AA~)

procedure InitializeTriangle3
(Ptr : ArrayPtrType);

var I,J,X,Y : integer;

begin

with Ptr" do

end;

for X:=l to ArraySize do
begin
I:=ArraySize+l-X;
for Y:=l to I do

begin
InitializeCell(PE[X,Y]);
with PE[X,Y] do
for J:=l to MaxBus do

begin
if X=l then

In_Regs[l,J] :=ZeroPtr
else In_Regs[l,J] :=

Addr(PE[X-1,Y].
l.ast_Out[3 ,J]);

if Y=I then
begin
In_Regs[2,J]:=ZeroPtr;
In_Regs[3,J]:=ZeroPtr;
end

else begin
In_Regs[2 ,J] :=
Addr(PE[X,Y+l].
last Out[4,J]);
In_Regs[3,J] :=
Addr(PE[X+l, Y].
l.ast_Out[l,J]);
end;

if Y=l then
In_Regs[4,J] :=ZeroPtr

else In_Regs[4,J]:=
Addr(PE[X,Y-1].
l.ast_Out[2,J]);

end;
end;

end;

{for each PE in this triangular array}

{ .. init. all of its registers on all}
{buses and all of its texts storages}
{then, for all existing buses .. }

{if PE's on the north border}
{then ground its north input .. }
{else connect the north input}
{to the northern neighbor}

{if PE's on the diagonal boundary}

{then its east input and .. }
{its south input is grounded for now}

{else .. }
{its east input is from its}
{east neighbor and .. }

{its south input is from its south}
{neighbor}

{west input is grounded if PE's on}
{the west boundary .. }
{else connect it to the west}
{neighboring PE}

189

(***************
* * * This procedure initializes a newly allocated type 4 triangle array *
* specified by the script. It is called by the procedure : *
* - GetSystemSpecs. *
* *
*k'k'k"l~****'Hd.~**'fnri~****'~****'Hd.~**'~t'*'***''k'k"l~****'Hd.~**''k'k"I~*******)

procedure InitializeTriangle4
(Ptr : ArrayPtrType);

var I,J,X,Y : integer;

begin

with Ptr" do

end;

for X:=l to ArraySize do
begin
I:=ArraySize+l-X;
for Y:=I to ArraySize do

begin
InitializeCell(PE[X,Y]);
with PE[X,Y] do
for J:-1 to MaxBus do

begin
if Y=I then

begin
In_Regs[l,J]:=ZeroPtr;
In_Regs[4,J]:=ZeroPtr;
end

else begin
In_Regs [l,J] :=
Addr(PE[X-1, Y].
last_Out[3 ,J]);
In_Regs[4,J] :=
Addr(PE[X,Y-1].
last_Out[2 ,J]);
end;

if Y=ArraySize then
In_Regs[2,J]:=ZeroPtr

else In_Regs[2,J]:=
Addr(PE[X,Y+l].
last_Out[4,J]);

if X=ArraySize then
In_Regs[3,J]:=ZeroPtr

else In_Regs[3,J]:=
Addr(PE[X+l,Y].
last_Out[l,J]);

end;
end;

end;

{for each PE in this triangular array}

{ .. init. all of its registers on all}
{buses and all of its texts storages}
{then, for all existing buses .. }

{if PE's on the diagonal boundary}

{then its north input and}
{its west input is grounded for now}

{else .. }
{its north input is from its .. }
{north neighbor and .. }

{its west input is from its west .. }
{neighbor}

{if PE's on the east border then}
{ground its east input .. }
{else connect it to the eastern}
{neighboring PE. }

{if PE's on the south border then}
{ground its south input .. }
{else connect it to the southern}
{neighboring PE}

190

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA******l<AAAAAAAAAAAAAAAAAAAAAAAAAA*************

* * * This procedure writes text inside each PE of an array according to *
* values of the PE's registers. It's smart enough to know the display mode *
* of the array and write texts accordingly. *
* * AA"******)

procedure WritePEtxt
(X,Y : integer;
Ptr : ArrayPtrtype);

var I integer;

begin

with Ptr" do

end;

with PEtxtArray[DPmode} do
for I:=l to Lines do

DrawTextW
(TextCoord[X,Y] .X[I],
TextCoord[X,Y] .Y[I],
l,PE[X,Y].Regs_Txt[I]);

{depending on array's display mode .. }
{writes all displayable registers}
{values}

191

(**-k-.lc*iri~******-lrlrlrlrk********'~******-lc*iri~******"lrlrlrl~******'~******tt

* *
* This procedure define a window, give it a world coordinate system, *
* and then depending on array's display mode, will draw a square systolic *
* array inside the window. This window will overlap on top of all *
* previously defined windows. *

* *
AAk*AAAAAAA~)

procedure DrwSquare
(WorldNum : integer;

var

Ptr : ArrayPtrtype);

X,Y
TempXY

integer;
real;

begin

with Ptr"' do

end;

with PEtxtArray[DPmode] do
begin
DefineWindow(Ntunber,

HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY) ;

SelectWorld(WorldNum);
SelectWindow(Ntunber);
SetBackground(O);

TempXY:=PEsizeXY+GapXY;
for X:=l to ArraySize do
for Y:=l to ArraySize do

end;

begin
if (Y=X) and

(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,

else

TempXY*X-TrueRad,
Radius)

DrawSquare
(TempXY*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y,TempXY*X,
false);

WritePEtxt(X,Y,Ptr);
end;

{define window where drawing}
{will take place}

{select world for array window}
{select the window}
{give it a (black) background .. }
{else it won't overlap others}

{if PE's boundary type then draw}

{it as a circle. Else .. }

{ .. draw PE as a square}

192

(******'~~'***'*********"'"**"''***'*********"'"'**''***'*********'***"'Hrlril-**>l'**I<*******

* *
* This procedure define a window, give it a world coordinate system, *
* and then depending on array's display mode, will draw a type 1 triangu- *
* lar systolic array inside the window. This window will overlap on top of *
* all previously defined windows. *

* *
"'~~'rlr:*~r.~*k'l~**''rlr:*~r**.~*k'l~**''rlrir'**"rk*:~~~**'~**"'~**A~·**)

procedure DrwTrianglel
(WorldNurn : integer;

var

Ptr : ArrayPtrtype);

X,Y
TernpXY

integer;
real;

begin

with Ptr" do

end;

with PEtxtArray[DPrnode] do
begin
DefineWindow(Number,

HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY);

SelectWorld(WorldNurn);
SelectWindow(Number);
SetBackground(O);

TernpXY:=PEsizeXY+GapXY;
for X:=l to ArraySize do
for Y:=X to ArraySize do

end;

begin
if (Y=X) and

(DPrnode=Arrays)
then DrawCircle

(TernpXY*Y-TrueRad,

else

TernpXY*X-TrueRad,
Radius)

DrawSquare
(TernpXY*Y-PEsizeXY,
TernpXY*X-PEsizeXY,
TernpXY*Y,TernpXY*X,
false);

WritePEtxt(X,Y,Ptr);
end;

{define window where drawing}
{will take place}

{select world for array window}
{select the window}
{give it a (black) background .. }
{else it won't overlap others}

{if PE's boundary type and display}

{mode is Arrays then draw it as a}
{circle.}

{ .. Else draw PE as a square}

193

(***-Hrlrl~'*"*'****"'lrlrlrlr-Jrlrlr.******'~~***-tt-k>~******"-lrlrlrir-Jrlrlr.******'~~***tt

* *
* This procedure define a window, give it a world coordinate system, *
* and then depending on array's display mode, will draw a type 2 triangu- *
* lar systolic array inside the window. This window will overlap on top of *
* all previously defined windows. *

* *
kAAkAkkkkAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAAAAAAAAAAAk***AAAAAAAAAAA~)

procedure DrwTriangle2
(WorldNun : integer;

var

Ptr : ArrayPtrtype);

X,Y
TempXY

integer;
real;

begin

with Ptr" do

end;

with PEtxtArray[DPmode] do
begin
DefineWindow(Ntnnber,

HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY);

SelectWorld(WorldNum);
SelectWindow(Ntnnber);
SetBackground(O);

TempXY:=PEsizeXY+GapXY;
for X:=l to ArraySize do
for Y:=l to X do

end;

begin
if (Y=X) and

(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,

else

TempXY*X-TrueRad,
Radius)

DrawSquare
(TempXY*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y,TempXY*X,
false);

WritePEtxt(X,Y,Ptr);
end;

{define window where drawing}
{will take place}

{select world for array window}
{select the window}
{give it a (black) backgrotnld .. }
{else it won't overlap others}

{if PE's boundary type and display}

{mode is Arrays then draw it as a}
{circle.}

{ .. Else draw PE as a square}

194

(***'~rk"k****'~rk-k***lri'"*****'**ld~***"~rk"k****''"**'I'******"'"***'******"'"******

* *
* 1his procedure define a window, give it a world coordinate system, *
* and then depending on array's display mode, will draw a type 3 triangu- *
* lar systolic array inside the window. 1his window will overlap on top of *
* all previously defined windows. *

* *
**~)

procedure DrwTriangle3
(WorldNum : integer;

var

Ptr: ArrayPtrtype);

I,X,Y
TempXY

integer;
real;

begin

with Ptr" do

end;

with PEtxtArray[DPmode] do
begin
Define'Window(Number,

HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY);

Select'World(WorldNum);
Select'Window(Number);
SetBackground(O);

TempXY:=PEsizeXY+GapXY;
for X:=l to ArraySize do

begin
I:=ArraySize-X+l;
for Y:=l to I do

begin
if (Y=I) and

(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,

else

TempXY*X-TrueRad,
Radius)

DrawSquare
(TempXY*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y,TempXY*X,
false);

WritePEtxt(X,Y,Ptr);
end;

end;
end;

{define window where drawing}
{will take place}

{select world for array window}
{select the window}
{give it a (black) background .. }
{else it won't overlap others}

{if PE's boundary type and display}

{mode is Arrays then draw it as}
{a circle.}

{ .. Else draw PE as a square}

195

(*
* * * This procedure define a window, give it a world coordinate system, *
* and then depending on array's display mode, will draw a type 4 triangu- *
* lar systolic array inside the window. This window will overlap on top of *
* all previously defined windows. *

* *
AA~)

procedure DrwTriangle4
(WorldNum : integer;

var

Ptr: ArrayPtrtype);

I,X,Y
TempXY

integer;
real;

begin

with Ptr" do

end;

with PEt:xtArray[DPmode] do
begin
DefineWindow(Number,

HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY);

SelectWorld(WorldNum);
SelectWindow(Number);
SetBackground(O);

TempXY:=PEsizeXY+GapXY;
for X:=l to ArraySize do

begin
I:=ArraySize-X+l;
for Y:=I to ArraySize do

begin
if (Y=I) and

(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,

else

TempXY*X-TrueRad,
Radius)

DrawSquare
(TempXY*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y,TempXY*X,
false);

WritePEt:xt(X,Y,Ptr);
end;

end;
end;

{define window where drawing}
{will take place}

{select world for array window}
{select the window}
{give it a (black) background .. }
{else it won't overlap others}

{if PE's boundary type and display}

{mode is Arrays then draw it as}
{a circle.}

{ .. Else draw PE as a square}

196

('*"*'**:
* * This procedure will draw the status window at the default location and *
* writes initial text within its boxes. It is used only once. *
* * AAk*)

procedure DrwStatusWindow
(WorldNtun : integer;

Ptr : ArrayPtrtype);

var I integer;

begin

with Ptr" do

end;

begin
Define'Window(Ntnnber,

Hi.X,HiY,
!.DX,LDY);

SelectWorld(WorldNum);
SelectWindow(Ntnnber);
SetBackground(O);

DrawBorder;
for I:-1 to 3 do

with Boxes[!] do
begin
DrawSquare (Xhi, Yhi,

Xlo,Ylo,
false);

DrawTextW(Xtxt,Ytxt,
l,Txt);

end;
DrawTextW(Boxes[4].Xtxt,

Boxes [4] . Ytxt,
l,Boxes[4].Txt);

Str(Steps:4,Boxes[l].Dgt);
Str(Times:9:6,Boxes[2].Dgt);
Boxes[3].Dgt:==CurrntPtr".StatTxt;
for I:-1 to 3 do

end;

with Boxes[!] do
DrawTextW(Xdgt,

Ytxt,l,
Dgt);

{define window where drawing}
{will take place}

{select world for array window}
{select the window}
{clears window of all possible}
{background garbage}

197

(AAAAAAAAAAAAAAAAAAAAAAAAAAA**AAAAAAAAAAAAAAAAAAAAAAA************~

* * * This procedure draws up the configuration of arrays read in from script *
* file. It also stores all configured windows in the window stack for *
* later updating. Depending on the type of the array, it will call these *
* procedures : *
* - DrwSquare () , *
* - DrwTrianglel (), *
* - DrwTriangle2 (), *
* - DrwTriangle3 (), *
* - DrwTriangle4 () *
* to properly draw the array itself. *
* * AAA***********)

procedure DrawSystem
(Ptr: ArrayPtrType);

var TempPtr : ArrayPtrType;

begin

SelectScreen(2);
case PtrA.ArrayType of

Square:
DrwSquare(FirstWorld,Ptr);

Trianglel:
DrwTrianglel(FirstWorld,Ptr);

Triangle2:
DrwTriangle2(FirstWorld,Ptr);

Triangle3:
DrwTriangle3(FirstWorld,Ptr);

Triangle4:
DrwTriangle4(FirstWorld,Ptr);

end;
StoreWindow(PtrA.Number);
ClearScreen;
TempPtr:=PtrA.Next;
while TempPtr<>Ptr do

begin
if TempPtr<>StatPtr then

with TempPtrA do
begin

case ArrayType of
Square:
DrwSquare(FirstWorld,

TempPtr);
Triangle!:
DrwTrianglel(FirstWorld,

TempPtr);

(points to current array}

(moving array pointer}

(at RAM screen .. }
{draw the current array, depending}
{on which type it is}

(and stores it in window stack}
(then clears RAM.}
(starts with a non-current array}
{and as with all non-current array .. }

(except the status window}

(draws them and .. }

Triangle2:
DrwTriangle2(FirstWorld,

TempPtr);
Triangle3:
DrwTriangle3(FirstWorld,

TempPtr);
Triangle4:
DrwTriangle4(FirstWorld,

TempPtr);
end;
StoreWindow(Number);

end;
TempPtr:=TempPtrA.Next;
end;

DrwStatusWindow(StatusWorld,
StatPtr);

StoreWindow(StatPtrA.Number);
CopyScreen;
SelectScreen(l);
RestoreWindow(PtrA.Number,0,0);

SelectWindow(PtrA.Number);
InvertWindow;

end;

198

{stores their image into window stack}

{then draw status window}

{don't forget to stores it}
{and copy'm all to displayed screen. }
{now selects displayed screen .. }
{restores current window to its}
{current position,}
{selects it}
{then shows that it's current.}

199

(***
* * * This procedure changes the displays' color, backward or forward. *
* *
AAA*****)

procedure ChangeColor
(Direction: integer);

begin

Foregrotmd:=
(Foregrotmd+Direction)

mod 16;
if Foregrotmd=O then

if Direction<O then
Foreground:=l5

else if Direction>O then
Foregrotmd:=l;

SetForegrotmdColor
(Foregrotmd);

end;

(negative for previous color,}
(positive for next.}

(computes next or previous color}

(remember to skips color black}

{set it}

200

(***tt-k-.~~~******~~~*********'~~*********'k**i~~******frk**

* * * This procedure redraws the current array in the next display mode. This *
* will allow a user to look at all registers of PEs in the array at the *
* same time for easy debuging. Depending on the type of array it will call *
* these procedures : *
* - DrwSquare () , *
* - DrwTrianglel () , *
* - DrwTriangle2 () , *
* - DrwTriangle3 (), *
* - DrwTriangle4 () *
* to properly draw the array itself. *
* *
'~rlr**'~***'k"kkJ~***~~***":lrlrlrl.r*lrk**-ln'<"klrl.******"'~******"'~"**)

procedure ChangeDisplayMode
(Ptr : ArrayPtrType);

var TempPtr : ArrayPtrType;

begin

if Ptr=StatPtr then
begin
sound(SOO);
delay(300);
nosmmd;
end

else with Ptr" do
begin
case DPrnode of

Full : DPrnode:=Arrays;
Arrays : DPrnode:=Buffer;
Buffer : DPrnode:=F\.tll;
end;

ClearWindowStack(Number);
SelectScreen(2);
ClearScreen;
case ArrayType of

Square:
DrwSquare(FirstWorld,Ptr);

Triangle!:
DrwTrianglel(FirstWorld,Ptr);

Triangle2:
DrwTriangle2(FirstWorld,Ptr);

Triangle3:
DrwTriangle3(FirstWorld,Ptr);

Triangle4:
DrwTriangle4(FirstWorld,Ptr);

end;
StoreWindow(Ntnnber);
ClearScreen;

{points to current array}

{moving array pointer}

{if this is the status panel then .. }

{screams at 1000 Hertz}
{for 3 tenths of a second}
{then shuts up}

{erase old window from window stack}
{select RAM screen .. }
{wipes it clean and .. }
{draw the current array, depending}
{on which type it is}

{and stores it in window stack}
{then clears RAM.}

end;

TempPtr:-Next;
while TempPtr<>Ptr do

begin
if TempPtr<>StatPtr then

Restore'Window
(TempPtrA.Number,0,0);

TempPtr:-TempPtrA.Next;
end;

Restore'Window
(StatPtrA.Number,0,0);
CopyScreen;
SelectScreen(l);
Restore'Window(Number,0,0);

Invert'Window;
end;

{starts with a non-current array)
{and as with all non-current array ..)

{except the status window}
{restores all windows to their)
{current position,)

{then restore status window to its)
{current position)
{and copy RAM to displayed screen.)
{now selects displayed screen ..)
{restores current window to its)
{current position,)
{then shows that it's current.)

201

202

(**************AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*AAAAAAAA~

* * * This procedure makes either the previous or the next window current for *
* any operation, for example moving a window. The current window can *
* overlaps other windows without destroying them. *
* *
AAAAAAA**********AAAAAAAAAAAAAAAAAAAAAAAAA***A*A*AAAAAAAAAA*AA"******AAAAAAAk)

procedure SwitchWindow

var

(var Ptr : ArrayPtrType;
I : integer) ;

TempPtr
TempStr

Temp No

ArrayPtrType;
Textype;
integer;

begin

TempStr:=PtrA.StatTxt;
TempNo:-PtrA.Number;
if I=O then Ptr:=PtrA.Last
else Ptr:=PtrA.Next;
TempPtr:=PtrA.Next;
InvertWindow;
StoreWindow(TempNo);
SelectScreen(2);
ClearScreen;
with StatPtrA,Boxes[3] do

begin
RestoreWindow(Number,0,0);
SelectWorld(StatusWorld);
SelectWindow(Number);
SetColorBlack;
DrawTextW(Xdgt,Ytxt,l,TempStr);
SetColorWhite;
DrawTextW(Xdgt,Ytxt,l,

PtrA.StatTxt);
StoreWindow(Number);
end;

ClearScreen;
while TempPtr<>Ptr do

with TempPtrA do
begin
if NumBer<>MaxWindowsGlb then

RestoreWindow(Number,0,0);
TempPtr:-Next;
end;

if Ptr<>StatPtr then
RestoreWindow
(MaxWindowsGlb,0,0);

CopyScreen;
SelectScreen(l);

{points to current array}
{0 for previous, 1 for next}

{remember text and number of}
{current window}
{if backward, makes previous window}
{current, else next window.}

{Shows window isn't current anymore}
{and stores it in window stack}
{now, selects the RAM screen .. }
{clears it, then .. }
{updates the AJ]J{AY # box of the}
{status window by .. }

{erasing the old status text}

(and write in status text of}
(current window}

(and as with all non-current windows .. }

(except the status window}
(brings them back to RAM screen at}
(their current position.}

(now draw status window if it's}
(not the current one.}

(copy to displayed screen .. }
(then selects displayed screen,}

RestoreWindow(PtrA.Number,0,0);

SelectWindow(PtrA.Number);
InvertWindow;

end;

(restores current window to}
(its current position,}
(selects it}
{and shows that it's current}

203

204

(*****
* * * '!his procedure writes back out the (possibly updated) script file to *
* disk. Since its logic is fairly straightforward, no connnents within its *
* body will be needed. So, there will be none. *
* *
AAA***)

procedure WriteScriptFile;

var SysPtr
IOPntr

LnkPtrl
LnkPtr2

Intl,Int2 ,

ArrayPtrtype;
IOPtrtype;

LinkPtrType;

X,Y : integer;

begin

assign(ScriptFile,ScriptName);
rewrite(ScriptFile);
writeln(ScriptFile,'ARRAYSIZE :');
writeln(ScriptFile,ArraySize,' .');
writeln(ScriptFile,'SYSTEMSPECS :');
SysPtr:-FixedPtr;
while SysPtr<>StatPtr do
with SysPtr" do

begin
Intl:=integer(ArrayType);
Int2:=integer(DPmode);
writeln(ScriptFile,Number,' '

Intl, ' ' , lnt2 , ' ' ,
HiX,' ',HiY,' , ');

write(ScriptFile,'Pecodes :');
for X:=l to ArraySize do

begin
for Y:=l to ArraySize do

write(ScriptFile,
' ',PE[X,Y].Code:2);

if X<ArraySize then
begin
writeln(ScriptFile);
write(ScriptFile,

end;
end;

I I);

if Next<>StatPtr then
writeln(ScriptFile,' ; ')

else writeln(ScriptFile,' .');
SysPtr:-Next;
end;

IOPntr:=IOPtr;

writeln(ScriptFile,'INFILES :');
while IOPntr". IO= INPUT do
with IOPntr" do

begin
write(ScriptFile,Name,' ',

ArNum,' ',Side,' ',
Bus,' ',IOStart);

if NextIO".IO=INPlJf then
writeln(ScriptFile,' ,')

else writeln(ScriptFile,' .');
IOPntr:=NextIO;
end;

writeln(ScriptFile, 'OUfFILES : ');
while IOPntr<>NIL do
with IOPntr" do

begin
write(ScriptFile,Name,' ',

ArNum,' ',Side,' ',
Bus,' ',IOStart);

if NextIO<>NIL then
writeln(ScriptFile,' ,')

else writeln(ScriptFile,' .');
IOPntr:=NextIO;
end;

LnkPtrl:=LinkPtr;
LnkPtr2:=LinkPtr;
writeln(ScriptFile,'SETUP :');
while LnkPtrl<>NIL do
with LnkPtrl" do

begin
writeln(ScriptFile,ArNums[l]);
while (LnkPtr2<>NIL) and

(LnkPtr2".ArNums[l]=
ArNums [1]) do

begin
case LnkPtr2".Sides[l] of

1: write(ScriptFile,
'Northinput: ');

2: write(ScriptFile,
'Eastinput : ');

3: write(ScriptFile,
'Southinput: ');

4: write(ScriptFile,
'Westinput : ');

end;
write(ScriptFile,

LnkPtr2".ArNums[2],' I

LnkPtr2".Sides[2] ,' ',
LnkPtr2".I.nkStart,' ',
LnkPtr2".I.nkStop,' ');

if LnkPtr2".NxtLink=NIL then
writeln(ScriptFile,' .')

205

end;

else if LnkPtr2A.NxtLinkA.
ArNtm1S[l]<>ArNums[l]
then
writeln(ScriptFile,';')

else writeln(ScriptFile,' ,');
lnkPtr2:-lnkPtr2A.NxtLink;
end;

lnkPtrl:=lnkPtr2;
end;
close(ScriptFile);

206

207

(AAAAAAAAAAAAAAAAAAAAAAA***

* * * This procedure gets script file name specified by user on the conunand *
* line or failing that it will prompt user for it. *
* * AAA****kAAAAAA**********)

procedure PromptUser;

var OK : boolean;

begin

ClrScr;
if ParamCount=O then

begin
writeln('** Script filename?');
write('>');
readln(ScriptName);
end

else ScriptName:=ParamStr(l);
repeat

assign(ScriptFile,ScriptName);
{$!-}
reset(ScriptFile);
{$!+}
OK:=(IOresult=O);
if not OK then

begin

{clears out display}
{if no parameter on command line}

{prompts user and reads in script}
{file name}

{IO loop check here}

{check IO result for error}

writeln(' !! File not found!!'); {let user knows if error}
writeln('** Script filename?'); {prompts user again}
write (' > ') ;
readln(ScriptName);
end;

until OK;

end;

{until no more IO error}

208

(*******************
* * * This function returns the first (non-space) char of the next word on *
* the current line. If EOln is encounter, it will return a '@' character. *
* *
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAA)

function SeekNxtWord
(var FileVar : text)

char

var TempChr char;

begin

if SeekEoln(FileVar) then
SeekNxtWord:='@'

else begin
read(FileVar,TempChr);
SeekNxtWord:=TempChr;

end;

end;

{skips all spaces and tabs to first}
{non-blank char. Return@ if char}
{is EOln .. }
{else return it}

209

(***********************
* * * This function reads statements out of the script file and returns *
* their type to the calling block. It will set an appropriate error value *
* and returns a zero if there are any syntax error in the statements. *
* *
AA***AAAAAA~)

f1.ll1ction StatementType
integer

var I : integer;
TempStr : string[Max.Word] ;

begin
I:=O;
while SeekEoLn(ScriptFile) do

readln(ScriptFile);
repeat

I:=I+l;
read(ScriptFile,TempStr[I]);

until Eoln(ScriptFile) or
(!=Max.Word) or
(TempStr[I]=' ') or
(TempStr[I]=' :');

if (TempStr[I]=' ') and
not SeekEoln(ScriptFile) then
read(ScriptFile,TempStr[I]);

if TempStr[I]=' :' then
begin
TempStr[O]:=Chr(I-1);
I:=l;
while (I<=MaxStr) and

(TempStr<>StringList[I])
do I:=I+l;

if I<=MaxStr then
begin
StatementType:=I;
if SeekEoln(ScriptFile) then

readln(ScriptFile);
end

{skips all spaces, tabs}
{and blank lines}
{then reads in the statement}

{then finds the delimiter.}

{if found, see what type of}
{statement it is}

{and return its type}

else {else, sets error-type value}
begin StatementType:=O;
ErrorSet:=[l]; end;

end
else {screams here too}

begin
StatementType:=O;
ErrorSet:=[l];
end;

end;

210

(*******k*k-k-kk**

* * * This procedure build and initializes an array specified in the script *
* file. It does minimal syntax error checking on the script. *
* It is called by : *
* - procedure ReadScript(). *
* *

procedure GetSystemSpecs
(var Ptr: ArrayPtrType);

var ArType ,

begin

Mode
X,Y

TempChr
integer;
char;

with Ptr" do
begin
read(ScriptFile,Number,

ArType , Mode, HiX, Hi Y) ;
if not (Number in

[1. .MaxWindowsGlb-1]) then
begin
ErrorSet:=[lO];
exit
end;

ArrayType:-TypeOfArray(ArType);
if not (ArrayType in

[Square,Trianglel,Triangle2,
Triangle3,Triangle4]) then

begin
ErrorSet:=[ll];
exit;
end;

DPmode:=DisplayMode(Mode);
if not (DPmode in

[Fu.11,Arrays,Buffer]) then
begin
ErrorSet: = [15] ;
exit;
end;

TempChr:=SeekNxtWord
(ScriptFile);

If not (TempChr=' , ') then
begin
ErrorSet:=[4];
exit;
end

else readln(ScriptFile);

(retrieve values for the array}

(error if array number is >= 16}

(stores the type of array or .. }
(error when type is unknown}

(stores the array's display mode .. }
(or error when type is unknown}

(look for delimiter}

(and if not found, gives error}

**)

end;

if StatementType=6 then
for X:-1 to ArraySize do

for Y:=l to ArraySize do
begin
read(ScriptFile,

PE[X,Y] .Code);
if not (PE[X,Y].Code in

[0 .. MaxCodes]) then
begin
ErrorSet:=[l6];
exit;
end

end
else begin

ErrorSet:=[8];
exit;
end;

case ArrayType of
Square: InitializeSquare

(Ptr);
Trianglel: InitializeTrianglel

(Ptr);
Triangle2: InitializeTriangle2

(Ptr);
Triangle3: InitializeTriangle3

(Ptr);
Triangle4: InitializeTriangle4

(Ptr);
end;

Str(Number:4,StatTxt);

new(Next);
NextA.Last:=Ptr;
Ptr:=Next;
end;

(Next, look for array's PEs codes}
(layout and read it in}

(error if something is wrong}

(error if something is wrong}

(depending on type of array, call}
(propper procedure to initialize}
(its PEs}

(convert the array number to its}
(string equivalent for status panel}
(then get storage space for next}
(array}

211

212

(***
* * * This procedure sets the start and stop index values to traverse the side *
* of an array depending on the array type and which side of the array. *
* *

procedure SideTraversal
(Side : integer;

ArType : TypeOfArray;
var Xl,X2 ,

Yl,Y2 : integer);

begin

case Side of

1: case ArType of
Square,
Trianglel,
Triangle3: begin

Xl:=l;X2:=1;
Yl:=l;
Y2:=ArraySize+l;
end;

Triangle2: begin
Xl:=l;
X2:=ArraySize+l;
Yl:=l;
Y2:=ArraySize+l;
end;

Triangle4: begin
Xl:=ArraySize;
X2:=0;

end;

Yl:=l;
Y2:=ArraySize+l;
end;

2: case ArType of
Square,
Trianglel,
Triangle4: begin

Xl:=l;
X2:-=ArraySize+l;
Yl:=ArraySize;
Y2:=ArraySize;
end;

Triangle2: begin
Xl:=l;
X2:=ArraySize+l;

(depending on which side and type}
(of array is involved, prepares}
(the start and stop index values}
(to traverse the side of array}
(North side}

(East side}

Yl:=l;
Y2:=ArraySize+l;
end;

Triangle3: begin

end;

Xl: =ArraySize;
X2:=0;
Yl:=l;
Y2:-ArraySize+l;
end;

3: case ArType of
Square,
Triangle2,
Triangle4: begin

Xl:=ArraySize;
X2:=ArraySize;
Yl:=l;
Y2:=ArraySize+l;
end;

Trianglel: begin
Xl:=l;
X2:=ArraySize+l;
Yl:=l;
Y2:=ArraySize+l;
end;

Triangle3: begin
Xl:=ArraySize;
X2:=0;

end;

Yl:=l;
Y2:=ArraySize+l;
end;

4: case ArType of
Square,
Triangle2,
Triangle3: begin

Xl:=l;
X2:=ArraySize+l;
Yl:=l;Y2:=1;
end;

Trianglel: begin
Xl:=l;
X2:=ArraySize+l;
Yl:=l;
Y2:=ArraySize+l;
end;

Triangle4: begin
Xl: =ArraySize;
X2:=0;
Yl:=l;
Y2:=ArraySize+l;
end;

213

{South side}

{West side}

:pua
:pua

:pua

215

(*********************
* * * This procedure, given the info contains in a IOType record, will link *
* a buffer of an IO file to a side of an array at the proper time. If the *
* IO file is of type INPUT, all In_Regs of PEs' on the proper side of the *
* array will contain the addresses of the buffer's individual registers. *
* If the IO file is of type OUTPUT, the reverse is true. *
* This procedure is called by : *
* - procedure MultiStepsExec(). *
* - procedure SingleStepExec(). *
* *
'~'***'~'******"~'*"**'Hriri'"******'~'******'H-H+*****'H-k-A'*"*****'H-k-A**)

procedure LinkIOFlow

var

(Ptr : IOPtrType;
Step : integer);

I
Xl,X2,X3 ,
Yl,Y2,Y3 : integer;

begin
while Ptr<>NIL do

with Ptr" do
begin

end;

if IOStart=Step then
begin
Active:=TRUE;
SideTraversal(Side,

ArPtr".ArrayType,
Xl , X2 , Y1, Y2) ;

X3:=Xl; Y3:=Yl; I:=l;
repeat

with ArPtr" do case IO of
INPUT:

PE[X3,Y3].
In_Regs[Side,Bus]:=
Addr(InR.egs[I]);

OUTPUT:
OutRegs[I] :=
Addr(PE[X3, Y3] .
Last_Out[Side,Bus]);

end;
if Xl<X2 then X3:=X3+1
else if Xl>X2 then X3:=X3-l;
if Yl<Y2 then Y3:=Y3+1;
I:=I+l;

\.U1til (X3=X2) and (Y3=Y2);
end;

Ptr:=NextIO;
end;

{if it's time to link IO to array .. }

{marks that IO channel is now active.}
{depending on which side and type}
{of array is involved, prepares the}
{start and stop index values}

{actual linking is done here while}
{traversing the side of array}

{PE's input registers gets addresses}
{of IO channel's input buffers}

{IO channel output buffer gets}
{addresses of PE's output registers}

(

216

* * * This procedure build and initializes the IO system of the configuration *
* from the script file. It does lots of error checking on the script. *
* It is called by : *
* - procedure ReadScript(). *
* Also, it called : *
* - procedure LinkIOFlow(). *
* *
AAA*****************)

procedure GetIOSpecs

var

(var Ptr : IOPtrtype;
Flag: IOflag);

Can
I

TempChr

boolean;
integer;
char;

begin

repeat with PtrA do
begin
IO:=Flag;
Active:=FAL.5E;
ArPtr:=CurrntPtr;
Can:=SeekEoln(ScriptFile);
I:==O;
repeat

I:=I+l;
read(ScriptFile,Name[I]);

until (Name[I]=' ') or
(I=MaxFileName);

If Name[I]<>' ' then
ErrorSet:=[S];

Name[O]:=char(I-1);
assign(FileVar,Name);
case Flag of

INPUT: begin
{$I-}reset(FileVar);
{$1+}
if not (IOresult=O)

then ErrorSet:=
ErrorSet+ [13] ;

end;
OUTPUT: rewrite(FileVar);
end;

Can:=SeekEoln(ScriptFile);
read(ScriptFile,ArNum,Side,

Bus,IOStart);
if not (ArNum in

[l .. MaxWindowsGlb-1])

{garbage can for expediency}

{does this 'til " 11 or error is met .. }

{set IO type}
(IO channel is not active yet}
{gets the address of systems arrays}
{get all blanks in between data}

(retrieves IO filename to storage}

(if bad name, sets error alarm}

(sets the length of the name string}
(IO file preprocessing starts here}

{if input file, open for reading .. }

(then checks IO result for error}
(and set error if there are any.}

{if output file, open for writing.}

{get all blanks in between data}
{then get all remaining data.}

(valid array number ?}

then ErrorSet:=[ll]
else

while (ArPtr".Number<>ArNum)
and (ArPtr" .Next<>CurrntPtr)
do ArPtr:=ArPtr".Next;

if ArPtr".Number<>ArNum then
ErrorSet:=ErrorSet+[6];

if not (Side in [l. .MaxR.egs])
then ErrorSet:-ErrorSet+[9];

if not (Bus in [1 .. MaxBus])
then ErrorSet:-ErrorSet+[l4];

case Flag of
INPUT:
for I:-1 to MaxArraySize do

InRegs [I] :=(). 0;
OUTPUT:
for I:=l to MaxArraySize do

OutR.egs[I]:=ZeroPtr;
end;

TempChr:=SeekNxtWord(ScriptFile);
If not (TempChr in[',','.'])

then ErrorSet:=ErrorSet+[4]
else readln(ScriptFile);
if (TempChr=' , ') or (Flag=INPUT)

then begin
new(NextIO);
Ptr:=NextIO;
end

else NextIO:=NIL;
end;

until (ErrorSet<>[]) or
(TempChr='. ');

end;

{search for the specified array .. }

{does array exist ?}

{valid side ?}

{valid bus ? }

{init. all IO buffer's registers}

{where is delimiter ?}

{gets storage space for next}
{IO unit and points to it}

217

218

(******"'~~'**"'*********"'/d("k"inhl-il~******->hhh~~*********'h\"*ihhhi~*******

* *
* This procedure, given the info contains in a list of LinkType records, *
* will link a side of a source array to a side of an destination array, *
* or it will cut off the link by pointing input registers to value zero *
* The link is achieved by having all In_Regs of PEs' on the proper side of *
* the destination array store addresses of Out_Regs of all PE's on the *
* proper side of the source array. *
* This procedure is called by : *
* - procedure MultiStepsExec(). *
* - procedure SingleStepExec(). *
* *
AA~)

procedure LinkDataFlow
(Link : LinkPtrType;
Step : integer);

var Xl,X2,X3 '
Yl,Y2,Y3

I
SrcDstType;
integer;

begin

while Link<>NIL do
with Link" do

begin
if lnkStart=Step then

begin
for I:=l to 2 do

begin
SideTraversal(Sides[I],

ArPtrs[I]".ArrayType,
Xl[I] ,X2[I],
Yl[I] ,Y2[I]);

X3[I] :=Xl[I];
Y3[I] :=Yl[I];
end;

repeat
for I:=l to MaxBus do

ArPtrs[l]".
PE [X3 [l] , Y3 [l]] .
In_Regs[Sides[l],I]:=
Addr(ArPtrs[2]".

PE[X3[2],Y3[2]].
l.ast_Out[Sides[2] ,I]);

for I:=l to 2 do
begin
if X1 [I]<X2 [I] then

X3 [I] : =X3 [I]+ 1
else if Xl[I]>X2[I] then

X3 [I] : =X3 [I] -1 ;

{start at begining of Link list}
{and until the end of list .. }
{do all things below.}
{if the moment of truth arrives}
{then .. }
{ .. for both source and destination,}
{depending on which side and type}
{of array is involved, prepares}
{the start and stop index values}
{to traverse the side of array}

{repeats doing the following .. }
{for all buses, points Input registers}
{of destination array to the Output}
{registers of the source array}

{increments side traversal index}
{values for both source and}
{destination array}

end;

if Yl[I]<Y2[I] then
Y3 [I] : =Y3 [I]+ 1 ;

end;
until (X3 [1] =X2 [1]) and

(Y3[l]=Y2[1]) ;
end

else if (LnkStart<Step) and
(LnkStop=Step) then

begin
SideTraversal(Sides[l],

ArPtrs[l]A.ArrayType,
Xl[l] ,X2[1],
Yl[l],Y2[1]);

X3[1] :=Xl[l];
Y3[1] :=Yl[l];
repeat

for I :=l to MaxBus do
ArPtrs[l]A.
PE[X3[1],Y3[1]].
In_Regs[Sides[l],I]:=
ZeroPtr;

if Xl[l]<X2[1] then
X3 [l] :=X3[1]+1

else if Xl[l]>X2[1] then
X3 [1] : =X3 [1] -1 ;

if Yl[l]<Y2[1] then
Y3[1] :=Y3[1]+1;

until (X3[l]=X2[1]) and
(Y3[l]=Y2[1]);

end;
Link:=NxtLink;
end;

{until array's side is fully}
{traversed}

{when it's time to cut the link}

{for the destination array, prepares}
{the start and stop index values}
{to traverse its side}

{repeats doing the following .. }

219

{for all buses, points Input registers}
{of destination array to the}
{value zero}

{increments side traversal index}
{values for destination array}

{until array's side is fully}
{traversed}

220

(***
* *
* This procedure gets info of the data flow from array to array, including*
* feedback paths, according to a script file. It does some error checking *
* on the script file and on the way user specified cormective path between *
* arrays.
* The procedure is called by
* - procedure ReadScript().
* It calls :
* - procedure LinkDataFlow().

*
*
*
*
*

* *
AAk*lri<AAAAAAAA°**********)

procedure GetDataFlow
(var Link : LinkPtrType;

var

Ptr : ArrayPtrType);

TempChr : char;
New Link
TmpLink : LinkPtrType;

begin

new(Link);
TmpLink:=Link;
NewLink:=Link;
repeat

with TmpLink"' do
begin
ArPtrs[l] :=Ptr;
ArPtrs[2] :=Ptr;
read(ScriptFile,ArNums[l]);
while (ArPtrs[l]"'.Number<>

ArNums[l]) and
(ArPtrs[l]"'.Next<>Ptr)
do ArPtrs[l]:=ArPtrs[l]"'.Next;

if (ArPtrs[l]"'.Number<>
ArNums [1]) or
(ArNums[l]--Max.WindowsGlb)

then begin
ErrorSet:=ErrorSet+[6];
exit;
end;

end;
repeat

with NewLink"' do
begin
Sides[l]:=StatementType-6;
if not (Sides[l] in

[1. .MaxRegs]) then
ErrorSet:=ErrorSet+[7];

(does all this until '.' encountered}

(initializes pointers}

(gets the destination array .. }
(is it valid ?}

(if not, sets error and says goodbye}

(then does all this until ';' is met}

(gets input side of destination array}
(array. If it's not valid, sets error}

read(ScriptFile,ArNums[2],
Sides[2),Lnk.Start,
I.nkStop);

while (ArPtrs[2]".Number<>
ArNums[2]) and (ArPtrs[2]"
.Next<>Ptr) do
ArPtrs[2]:=ArPtrs[2]".Next;

if (ArPtrs[2]".Number<>
ArNwns [2]) or
(ArNums[2]=MaxWindowsGlb)

then begin
ErrorSet:-ErrorSet+[6];
exit;
end;

if not (Sides[2]
in [l. .MaxR.egs]) then
ErrorSet:=ErrorSet+[9];

if ErrorSet<>[] then exit;
end;

TernpChr:=SeekNxtWord
(ScriptFile);

If not (TernpChr in
[' , ' , ' ; ' , ' . ']) then

begin
ErrorSet:-[4];
exit;
end

else if (TempChr=' ,')then
begin
new(NewLink".NxtLink);
NewLink:=NewLink".NxtLink;
NewLink".ArPtrs[l]:=

TmpLink".ArPtrs[l];
New Link" . ArNwns [1] : =

TmpLink".ArNums[l];
NewLink".ArPtrs[2]:=Ptr;
end

else if (TempChr=';') then
begin
new(NewLink".NxtLink);
TmpLink:=NewLink".NxtLink;
NewLink:=TmpLink;
end

else NewLink".NxtLink:=NIL;
readln(ScriptFile);

until (TempChr in[';','.']);

until (TempChr='. ') or
Eof(ScriptFile);

end;

{Now, gets source array, its output}
{side and start and stop values}

{validates source array here .. }

{and the output side here}

{leaves if any errors}

{then seeks out delimiter. If none}
{found, sets error}

{create new link storages and .. }
{and points to it}

{stops getting input direction for}
{destination array}
{stops reading dataflow set up infos}
{entirely}

221

222

(***tt-k-.~~*********"-l<**ihhhl'*********'~'<*lrl'************'lc*k-Jhhl">l~******H-**

* * * This function sets up the SAGS internals according to a script file *
* specified by the user. It will generate error messages and returns *
* a FALSE boolean value if any error or inconsistency is encountered in *
* the file. Graphics errors such as drawing a window out of screen range *
* will not be handle by this function. *
* *
"'"*k".~~~~**"rk*'**"rk*'**"'****"'****"'****"''****"'"'****'lrlrlc**'lrlrl<'**'~~**"'****)

function ReadScript
: boolean

var
ActionType ,

Sequencer
TempChr
TempPtr

TempIOPtr

integer;
char;
ArrayPtrType;
IOPtrtype;

begin

ErrorSet:=[];
Sequencer:-1;
while (ErrorSet=[])

and (Sequencer<=MaxSequence)
do begin
ActionType:=StatementType;
if ActionType=Sequencer then

begin
case ActionType of
1: begin

read(ScriptFile,ArraySize);
if ArraySize>MaxArraySize

then ErrorSet:=
ErrorSet+ [2] ;

if SeekNxtWord
(ScriptFile)<>'.'
then ErrorSet:=

ErrorSet+[3]
else readln(ScriptFile);
end;

2: begin
InitGlbStorage;
new(FixedPtr);
FixedPtrA.Last:=StatPtr;
StatPtrA.Next:=FixedPtr;
CurrntPtr:=FixedPtr;
TempPtr:=FixedPtr;
repeat

GetSystemSpecs(TempPtr);

{clears error register and init.)
{sequence counter)
{continues the system setup sequence)
{until error occurs)

{gets the step ntunber and if it's)
(in sequence then proceeds)

(reads in array size of system)

(if array size too large, sets error)

{look for the delimiter and)

{ if not found, error)

{creates arrays system here)
{init. all global graphics values)

TempGhr:-SeekNxtWord
(ScriptFile);

If not
(TempGhr in[';','.'])
then ErrorSet:=

ErrorSet+[4]
else readln(ScriptFile);

tmtil (ErrorSet<>[]) or
(TempGhr='. ');

if ErrorSet=[] then
begin

TempPtr:=TempPtrA.Last;
Dispose(TempPtrA.Next);
TempPtrA.Next:=StatPtr;
StatPtrA.Last:=TempPtr;

end;
end;

3: begin
new(IOPtr);
TempIOPtr:=IOPtr;
GetIOSpecs(TempIOPtr,

INPlJf);
end;

4: GetIOSpecs(TempIOPtr,
OUTPUT);

5: GetDataFlow(LinkPtr,
CurrntPtr);

end;
Sequencer:=Sequencer+l;

end
else ErrorSet:=ErrorSet+[8];
end;

if ErrorSet<>[] then
begin
for Sequencer:=l to Max.Error do

begin
if Sequencer in ErrorSet

then writeln
(ErrorList[Sequencer]);

ErrorSet:=
ErrorSet-[Sequencer];

end;
ReadScript:=FAIBE;
end

else ReadScript:-TRUE;

end;

{look for delimiter)

{and if not fotmd, gives error)

{if no error,)
{then create a circular)
{doubly linked list which included)
{the status window.)

{creates IO system here)
{starts IO linked list)

{then reads in IO specs ..)

{and reads in some more then ..)

{get description of the flow of data)

{setup sequence ends here.)
{looks through error list actunUlated}
(thus far and displays appropriate}
(error message}

(if no error, signal calling block}
{to continue)

223

224

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"***1<AAAAAAAAAAAAAAAAAAAAk***AAAAAAA"********

* * * 'lllis procedure represents the execution code of a shift down register *
* array. 'lllis array moves data in the North to South direction. *
* _ R is X _Reg *
* _ Xin is ln_Regs[l,l]A *
* _ TAGin is ln_Regs[l,2]A *
* _ Xout is Out_Regs [3, l] *
* TAGout is Out_Regs[3,2] *
* *
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~)

procedure N2Scode
(var PE : PEtype);

begin

with PE do

end;

begin
Out_Regs[3,l]:-In_Regs[l,l]A;
Out_Regs[3,2]:=In_Regs[l,2]A;
X_Reg:=Out_Regs[3,l];
TAG:=Trunc(Out_Regs[3,2]);
end;

{put value in here for display}

225

(***
* * * This procedure represents the execution code of a shift left register *
* array. This array moves data in the East to West direction. *
* _ R is X_Reg *
* _ Xin is In_Regs [2, l]" *
* _ TAGin is ln_Regs(2,2)A *
* _ Xout is Out_Regs [4, l] *
* _ TAGout is Out_Regs[4,2] *
* *
AAA**1<AAAAAAA~)

procedure E2Wcode
(var PE: PEtype);

begin

with PE do

end;

begin
Out_Regs[4,l]:=In_Regs[2,l]A;
Out Regs[4,2]:=In Regs[2,2]A; - -
X Reg:=Out Regs[4,2];

- -
TAG:=Trunc(Out_Regs[4,1]);
end;

{put values in these registers for}
{display}

226

(***
* * * 1his procedure represents the execution code of a shift up register *
* array. 1his array moves data in the South to North direction. *
* _ R is X _Reg *
* _ Xin is In_Regs[3,l]A *
* - TAGin is In_Regs[3,2]A *
* _ Xout is Out_Regs[l, l] *
* TAGout is Out_Regs[l,2] *
* *
AAA*******)

procedure S2Ncode
(var PE : PEtype);

begin

with PE do

end;

begin
Out_Regs[l,l]:=In_Regs[3,l]A;
Out_Regs[l,2]:-In_Regs[3,2]A;
X_Reg:=Out_Regs[l,l];
TAG:=Trunc(Out_Regs[l,2]);
end;

{put values in these registers for}
{display}

227

(*****
* * * This procedure represents the execution code of a shift up register *
* array. This array moves data in the West to East direction. *
* _ R is X _Reg *
* _ Xin is In_Regs[4,l]" *
* - TAGin is In_Regs[4,2]A *
* _ Xout is Out_Regs[2, l] *
* _ TAGout is Out_Regs[2,2] *
* *
AA**********)

procedure W2Ecode
(var PE: PEtype);

begin

with PE do

end;

begin
Out_Regs[2,l]:=In_Regs[4,l]A;
Out_Regs[2,2]:=In_Regs[4,2]A;
X_Reg:=Out_Regs[2,2];
TAG:=Trunc(Out_Regs[2,l]);
end;

{put values in these registers for}
{display}

228

(***"'frlrlnl">hhl~***'~'"**"*'******'~r-k*****~l">hhl~***'~'"**"*'******'~r-k*****~

* * * lhis procedure represents the execution code of HE's systolic array *
* for botmdary cell. *
* X is X_Reg *

Xin ic In_Regs[l,l]" * --
TAG in ic In_Regs[l,2]A * --
Vout is ic Out_Regs[2,l] *
Mout ic Out_Regs[2,2] * --
-Mout is ic Out_Regs[3,l] *

* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkAAAAAAAAAA*******"kAAAAAAAAAA*******)

procedure HEcodel
(var PE: PEtype);

begin

with PE do
begin

end;

Out_Regs[4,2] :=In_Regs[l,l]A;
TAG:=Trunc(In_Regs[l,2]A);
if (TAG=O) and

(abs(Out_Regs[4,2])>=
abs(X_Reg)) then

begin
Out_Regs[2,l]:=l.O;
if Out_Regs[4,2]<>0.0 then

Out_Regs[2,2] :=
-X_Reg/Out_Regs[4,2]

else Out_Regs[2,2]:=0.0;
X_Reg:=Out_Regs[4,2];
end

else begin
Out_Regs[2,l]:=O.O;
Out_Regs [2 ,2] :=

-In_Regs[l,l]A/X_Reg;
end;

Out_Regs[3,l]:=-Out_Regs[2,2];
end;

{get Xin and .. }
(pivoting TAG bit values}
(if pivoting is allowed and Xin is}
(greater in magnitude than X, then .. }

(tell the East neighboring cell to}
(pivot and send it a modifying value}

(else, no pivoting .. }
{with modifying value}

{moves Mout}

229

(***

* * * 'lllis procedure represents the execution code of HE's systolic array *
* for internal cell. *
* *
*
*
*
*
*
*
*

X is X_Reg
Xin is
Vin is
Min is
Xout is
Vout is
Mout is

In_Regs [l, l]"
In_Regs[4,l]"
In_Regs[4,2]"
Out_Regs[3,l]
Out_Regs[2,l]
Out_Regs[2,2]

*
*
*
*
*
*
*
* :AAA**********)

procedure HEcode2
(var PE: PEtype);

begin

with PE do

end;

begin
Out_Regs[2,l]:-In_Regs[4,l]";
Out_Regs[2,2] :=In_Regs[4,2]";
TAG:=Trunc(Out_Regs[2,l]); {get TAG bit for display}
if TAG=l then

begin
Out_Regs[3,l] :=X_Reg

+Out Regs[2,2]
*In Regs[l,l]";

X_Reg:=In_Regs[l,l]";
end

else Out_Regs[3,l]:=In_Regs[l,l]"
+Out_Regs[2,2]
*X Reg;

Out_Regs[3,2]:=In_Reg~[l,2]"; {pass on pivoting allowed bit}
end;

230

(***
* * * '!his procedure represents the execution code of NASH's systolic array *
* for botmdary cell. *
*
*
*
*
*

R is
TAG is
Xin is
Cout or Xout is

* X_Reg * In_Regs[l,2]A * In_Regs[l,l]A * Out_Regs[2,l] *

* ·~) :AA

Sout is Out_Regs[2,2] *
*

procedure NASHcodel
(var PE : PEtype);

var T : real;

begin

with PE do

end;

begin
TAG:=Trtmc(In_Regs[l,2]A);
if TAG=O then

if In_Regs[l,l]A = 0.0 then
begin
Out_Regs[2,l]:=l.O;
Out_Regs[2,2]:=0.0;
X_Reg:=O.O;

end
else begin

T:= sqrt(sqr(X_Reg)
+sqr(In_Regs[l,l]A));

Out_Regs[2,l]:=X_Reg/T;
Out_Regs[2,2] :=

In_Regs[l,l]A/T;
X_Reg:=T;
end

else Out_Regs[2,l]:=
In_Regs[l,l]A/X_Reg;

end;

{'!his line will give us incorrect}
{result. Delete it will cure all of}
{Nash's ailments.}

231

(**AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****'AAAAAAAAAAAAAAAAAAAA********'*********

* * * 'lbis procedure represents the execution code of NASH's systolic array *
* for internal cell. *
* *
*
*
*
*
*
*
*
*
*
*

R is
TAG is
Xin is
Cin or Y is
Sin is
TAGout is
Xout is
Cout is
Sout is

X_Reg
In_Regs[l,2]"
In_Regs [l, l]"
In_Regs[4,1]"
In_Regs[4,2]"
Out_Regs[3,2]
Out_Regs[3,1]
Out_Regs[2,l]
Out_Regs[2,2]

*
*
*
*
*
*
*
*
*
*

~~~~..i-.i-..i-.i-..i-.i-.w-.w-.w-.w--.w--.w--hhl-.!-..hHhHl-.Hl-.HhHhh!hh!hh!-.1--.1-.1--.1-.!--k+-k+-k~·******************) 

procedure NASHcode2 
(var PE: PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[3,2]:=In_Regs[l,2]"; 
TAG:=Trunc(Out_Regs[3,2]); 
if TAG=O then 

begin 
Out_Regs[3,l]:= 

-(In_Regs[4,2]" * X_Reg) 
+(In_Regs[4,l]" 

* In_Regs[l,l]"); 
X_Reg:=In_Regs[4,l]" 

end 

* X_Reg + In_Regs[4,2]" 
* In_Regs[l,l]"; 

else Out_Regs[3,l]:=In_Regs[l,l]" 
-In_Regs[4,l]" 
*X_Reg; 

Out_Regs[2,l]:=In_Regs[4,l]"; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
end; 



232 

( *** 
* * * This procedure represents the execution code of my systolic array * 
* design for diagonal cell. * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

x 
Xin 
Cl24in 
C3in 
Min 
Xout 
Cl24out 
C3out 
Mout 

is 
is 
is 
is 
is 
is 
is 
is 
is 

X_Reg 
In_Regs[l,l]" 
In_Regs[l,2]" 
In_Regs[4,l]" 
In_Regs[4,2]" 
Out_Regs[3, l] 
Out_Regs[3,2] 
Out_Regs[2,l] 
Out_Regs[2,2] 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

'k'k:lrlrih\-***k-lri~*k'k'k:~'****lrlrl'rlrl<**~\*i\*k**'~'****'lrlrl'****~~*k'k'k:lrlrlrk-k*******) 

procedure LEcodel 
(var PE: PEtype); 

begin 

with PE do 
begin 
Cl24 :- Trunc(In_Regs[l,2]"); 
C3 := Trunc(In_Regs[4,l]"); 
if Odd(Cl24) then 

X_Reg :-= 0.0 
if Cl24>7 then 

begin 
if (abs(In Regs[l,l]")>= 

abs (X _Reg) ) and 
(Cl24>11) then 
begin 
if Cl24 in [12,13] then 

Out_Regs[2,l]:=Cl24+2 
else Out_Regs[2,l]:=Cl24; 
if (In_Regs[l,1]"<>0.0) then 

Out_Regs[2,2] := 
-X_Reg/In_Regs[l,l]" 

else Out_Regs[2,2]:=0.0; 
X_Reg:=In_Regs[l,l]"; 
end 

else begin 
if Cl24 in [10,11,14,15] 

then Out_Regs[2,l]:= 
Cl24-2 

else Out_Regs[2,l]:=Cl24; 
Out_Regs[2, 2] := 

-In_Regs[l,l]" 
/X_Reg; 

end; 

{stores Cl, C2, C3, and C4} 

{if C4 is 1 then clear X} 

{if Cl is 1 then Triangle mode} 

{if 3Xin3 r 3X3 and C2 is 1 then} 
{pivoting is needed and allowed} 

{set C3 to 1..} 

{else pivoting is not allowed} 
.{set C3 to O .. } 



end; 

TAG:=Cl24; 
end 

else begin 
If C3 in [2,3,6,7] then 

begin 
Out_Regs[3, l] :=X_Reg 

+In_Regs[4,2]" 
*In_Regs [l, l]"; 

X_Reg:-In_Regs[l,l]"; 
end 

else Out_Regs[3,l]:
In_Regs[l,l]" 

+In_Regs[4,2]" 
*X_Reg; 

Out_Regs [2, l] :-C3; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
TAG:-C3; 
end; 

Out_Regs[3,2] :=Cl24; 
end; 

procedure LEcode2 
(var PE: PEtype); 

begin 

with PE do 
begin 
Cl24 := Trunc(In_Regs[l,2]"); 
C3 := Trunc(In Regs[4,l]"); 
if Odd(Cl24) then 

X_Reg := 0.0 ; 
if Cl24>7 then 

begin 
if (abs(In_Regs[l,l]")>= 

abs(X_Reg)) and 
(Cl24>11) then 
begin 
if Cl24 in [12,13] then 

Out_Regs[2,l]:=Cl24-6 
else Out_Regs[2,l]:=Cl24-8; 
if (In_Regs[l,1]"<>0.0) then 

Out_Regs[2,2] := 
-X_Reg/In_Regs[l,l]" 

else Out_Regs[2,2]:=0.0; 
X_Reg:=In_Regs[l,l]"; 
end 

else begin 

{display that cell is triangle mode} 

{else Cl is in Square mode.} 
{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{pass on C3.} 
{Pass on Min.} 
{display that cell in square mode} 

{In any case, pass on Cl, C2, C4.} 

{stores Cl, C2, C3, and C4} 

{if C4 is 1 then clear X} 

{if Cl is 1 then Triangle mode} 

{if 3Xin3 r 3X3 and C2 is 1 then} 
{pivoting is needed and allowed} 

{set C3 to 1..} 

{else pivoting is not allowed} 

233 



end; 

if Cl24 in [10,11,14,15] 
then Out_Regs[2,l]:= 

Cl24-10 
else Out_Regs[2,l]:=Cl24-8; 
Out_Regs[2,2] := 

end; 
TAG:=Cl24; 
end 

else begin 

-In_Regs [l, l]" 
/X_Reg; 

If C3 in [2,3,6,7] then 
begin 
Out_Regs[3,l]:=X_Reg 

+In_Regs[4,2]" 
*In_Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out_Regs[3,l]:= 
In_Regs[l,l]" 

+In_Regs[4,2]" 
*X_Reg; 

Out_Regs[2,l] :=C3; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
TAG:=C3; 
end; 

Out_Regs[3,2] :=Cl24; 
end; 

{set C3 to 0 .. } 

{display that cell is triangle mode} 

{else Cl is in Square mode.} 
{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{pass on C3.} 
{Pass on Min.} 
{display that cell in square mode} 

{In any case, pass on Cl, C2, C4.} 

234 



235 

(**+k**"l-*+>l+****+~'"**-k******'l->hhl'*"****+k**"l-*+>l+****le.l<-*-Hrk-H***'***'l<-*-H'*"*****'~ 

* * * This procedure represents the execution code of my systolic array * 
* design for square cells. * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

x 
Xin 
C3in 
Min 
Xout 
C3Eout 
C3Sout 
Mout 

is X_Reg 
is In_Regs [l, l]" 
is In_Regs[4,l]" 
is In_Regs[4,2]" 
is Out_Regs[3,l] 
is Out_Regs[3,2] 
is Out_:Regs[2,l] 
is Out_Regs[2,2] 

procedure LEcode3 
(var PE : PEtype); 

begin 

with PE do 
begin 

end; 

C3 := Trunc(In_Regs[4,l]"); 
TAG:=C3; 
if Odd(C3) then 

X_Reg :- 0.0 
If C3 in [2,3,6,7, 

10,11,14,15] then 
begin 
Out_Regs[3,l]:=X_Reg 

+In_Regs[4,2]" 
*In_Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out Regs[3,l]:= 
In_Regs [l, l]" 

+In_Regs[4,2]" 
*X_Reg; 

Out_Regs[3,2]:=C3; 
if C3>7 then 

Out_Regs[2,l]:-=C3-8 
else Out_Regs[2,l]:=C3; 
Out_Regs[2,2]:-In_Regs[4,2]"; 
end; 

{stores Cl, C2, C3, C4.} 
{display control code} 
{if C4 is 1 then clear X} 

{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{pass on Cl, C2, C3, C4.} 

{Pass on Min.} 

* 
* 
* 
* 
* 
* 
* 
* 
* 
) 



236 

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAA********AAAAAAAAAAAAAAAAAAAAA * ********~* 
* 

* 'lllis procedure represents the execution code of my systolic array * 
* design for square cells. 
* 
* x is X_Reg -
* Xin is In_ Regs [ 1 , 1] " -
* Cl24in is In_ Regs [l, 2]" -
* C3in is In Regs [ 4, 1 ]" -
* Min is In_ Regs [ 4, 2] " -
* Xout is Out_Regs[3,l] -
* Cl24out is Out_Regs[3,2] -
* C3out is Out_Regs[2,l] -
* Mout is Out_Regs[2,2] -
* 

procedure LEcode4 
(var PE: PEtype); 

begin 

with PE do 
begin 

end; 

Cl24 := Trunc(In_Regs[l,2]"); 
C3 := Trunc(In_Regs[4,l]"); 
TAG:=C3; 
if Odd(Cl24) then 

X_Reg := 0.0 ; 
If C3 in [2,3,6,7) then 

begin 
Out_Regs[3,l]:=X_Reg 

+In_Regs[4,2]" 
*In_Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out_Regs[3,1]:= 
In Regs [1, 1]" 

+In-Regs[4,2]" 
*X_Reg; 

Out_Regs[2,l]:=C3; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
Out_Regs[3,2]:=Cl24; 
end; 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********************"'-*"k) 

{stores Cl, C2, C3, and C4} 

{display control code} 
{if C4 is 1 then clear X} 

{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{Pass on Min.} 
{In any case, pass on Cl, C2, C4.} 



237 

( *** 
* * * 'Ibis procedure updates the image of an array in its window to reflect * 
* the state of the computation at a particular step. Depending on the * 
* particular type of array, it will only updates allowable PEs. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***-AAAAAAAAAAAAAAAAAAAAA~**) 

procedure UpdateArray 
(Ptr : ArrayPtrType); 

var X,Y,I integer; 

begin 

with Ptr" do 
begin 
RestoreWindow(Number,0,0); 
SelectWindow(Number); 
SetColorBlack; 
with PEtxtArray[DPmode] do 

for X:-1 to ArraySize do 
for Y:-1 to ArraySize do 

with PE[X,Y] do 
if Code<>O then 

for I:~l to Lines do 
DrawTextW 
(TextCoord[X,Y] .X[I], 
TextCoord[X,Y].Y[I], 
l,Regs_Txt[I]); 

{brings out the proper window,} 
{selects it, and .. } 
{erase the old texts .. } 
{depending on array's display mode.} 
{within every PE of the array .. } 

{if the PE has a valid code then .. } 
{erases all displayable registers} 
{values} 



end; 

for X:=l to ArraySize do (Then, with every PE of the array .. } 
for Y:=l to ArraySize do 

with PE[X,Y] do if Code<>O then (if it has a valid code .. } 
begin 
Str(X_Reg:6:2, (updates its text storages of X,} 

Regs_Txt[2]); 
Str(Out_Regs[2,1]:6:2, (of Vout,} 

Regs_Txt[3]); 
Str(Out_Regs[2,2] :6:2, (of Mout,} 

Regs_Txt[4]); 
Str(Out_Regs[3,1]:6:2, (of Xout,} 

Regs_Txt[S]); 
Str(TAG:l, (of TAG} 

Regs_Txt[l]); 
end; 

SetColorWhite; 
with PEtxtArray[DPmode] do 

for X:=l to ArraySize do 
for Y:=l to ArraySize do 

with PE[X,Y] do 
if Code<>O then 

for I:=l to Lines do 
DrawTextW 
(TextCoord[X,Y].X[I], 
TextCoord[X,Y] .Y[I], 
l,Regs_Txt[I]); 

StoreWindow(Number); 
end; 

(At last, write in the new texts .. } 
(depending on array's display mode.} 
(within every PE of the array .. } 

(if the PE has a valid code then .. } 
(rewrites all new registers} 
(values} 

(Now, stores the updated window.} 

238 



239 

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'k*AAAAAAAAAAAAAAAA****-AAAAAAAA~* 

* * * This procedure simulates a single step of execution of the systolic * 
* system of arrays. It first links all necessary IO channels for the * 
* current step to the system of arrays, then it feeds data into input * 
* buffers, gets data from arrays into output files, then for each PE, it * 
* executes its microcodes until the entire system of arrays is traversed. * 
* At last it will move the result of each PE's micro-execution into its * 
* suitable output register and updates the graphics image of each array * 
* and the status panel. It really can do that much works in so short a * 
* time span. * 
* This procedure is called by : * 
* - main block. * 
* This procedure calls : 
* - procedure LinkIOFlow(). 
* - procedure LinkDataFlow(). 
* - procedure UpdateArray(). 
* - procedures HEcodel(), HEcode2(). 
* - procedures NASHcodel(), NASHcode2(). 
* - procedures lEcodel(), LEcode2() 
* - procedures N2Scode(), S2Ncode(), E2Wcode(), W2Ecode(). 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

****************************"->h\"":>h\"":'-"*'>'-"*'>l"*'>l"*'>~~~rk"/<rk"/<~~~"k*"k*"k*"k************) 

procedure SingleStepExec 
(IOPntr: IOPtrtype); 

var SysPtr 
I,J,X,Y 

ArrayPtrtype; 
integer; 

begin 

with StatPtr" do 
begin 
Times:=Times+TimeUnit; 
Steps:=Steps+l; 
LinkDataFlow(LinkPtr,Steps); 
LinkIOFlow(IOPntr,Steps); 
while IOPntr<>NIL do 

with IOPntr" do 
begin 
if Active then 

case IO of 
INPUT: 
if EOF(FileVar) then 

begin 
Close(FileVar); 
Active :=FALSE; 
for I:=l to ArraySize 

do InR.egs[I]:=O.O; 
end 

{update status panel's registers} 

{increments time .. } 
{and step counters} 
{establishes all necessary links and} 
{IO channels for this step} 
{starts at begining of IO linked list} 
{for each I/O channel .. } 

{if channel is still active, then} 
{depending on the type of IO channel} 
{for input channel .. } 
{if all data in file are read} 

{then closes input file,} 
{marks input channel as inactive} 
{and grounds input buffers. } 



else begin 
for I:=l to ArraySize 

do read(FileVar, 
InRegs[I]); 

readln(FileVar); 
end; 

OUIPUT: begin 
for I:=l to 

ArraySize do 
write(FileVar, 

OutRegs[I]" 
:12:2); 

writeln(FileVar); 
end; 

end; 
IOPntr:=NextIO; 
end; 

end; 
SysPtr:=FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr" do 
begin 
for X:=l to ArraySize do 
for Y:=l to ArraySize do 

case PE[X,Y].Code of 
0: 
1: N2Scode(PE[X,Y]); 
2: E2Wcode(PE[X,Y]); 
3: S2Ncode(PE[X,Y]); 
4: W2Ecode(PE[X,Y]); 
5: HEcodel(PE[X,Y]); 
6: HEcode2(PE[X,Y]); 
7: NASHcodel(PE[X,Y]); 
8: NASHcode2(PE[X,Y]); 
9: LEcodel(PE[X,Y]); 

10: LEcode2(PE[X,Y)); 
11: LEcode3(PE[X,Y]); 

MaxCodes: LEcode4(PE[X,Y]); 
end; 

SysPtr:-Next; 
end; 

SysPtr:=FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr" do 
begin 
for X:=l to ArraySize do 
for Y:=l to ArraySize do 
with PE[X,Y] do 

if Code<>O then 
for l:=l to MaxRegs do 
for J :=l to MaxBus do 

{else reads in data on line .. } 

{and go to next line} 

{for output channel .. } 
{write data to file} 

{then goes to next IO channel} 

240 

{start with the 1st array in system .. } 
{as with all arrays except STATUS .. } 

{with every single PE of array .. } 

{depending on its individual code .. } 
{do nothing, or .. } 
{executes the proper PE's microcode} 

{then go to the next array} 

{THEN moves the flow of data} 
{of each array except the STATUS} 
{by updating each PE' s Last_Out} 
{buffers on all sides and bus .. } 

{if its code is not 0} 



Last_Out[I,J] := 
Out_Regs[I,J]; 

SysPtr:==Next; 
end; 

lnvertWindow; 

StoreWindow(CurrntPtrA.Number); 
SelectScreen(2); 
ClearScreen; 
if CurrntPtr<>StatPtr then 

begin 
SelectWorld(FirstWorld); 
UpdateArray(CurrntPtr); 
ClearScreen; 
end; 

with StatPtrA do 
begin 
RestoreWindow(Ntunber,0,0); 
SelectWorld(StatusWorld); 
SelectWindow(Number); 
SetColorBlack; 
for X:-1 to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
Str(Steps:4,Boxes[l].Dgt); 
Str(Times:9:6,Boxes[2].Dgt); 
SetColorWhite; 
for X:=l to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
StoreWindow(Ntunber); 
end; 

ClearScreen; 
SysPtr:=CurrntPtrA.Next; 
SelectWorld(FirstWorld); 
while SysPtr<>CurrntPtr do 

with SysPtrA do begin 
if NumBer<>MaxWindowsGlb 
then UpdateArray(SysPtr); 
SysPtr:-Next; 
end; 

if StatPtr<>CurrntPtr then 
RestoreWindow 
(MaxWindowsGlb,0,0); 

CopyScreen; 
SelectScreen(l); 
RestoreWindow 

(CurrntPtrA.Ntunber,0,0); 
SelectWindow(CurrntPtrA.Nt.Unber); 
lnvertWindow; 

end; 

{then of course, go to next array} 

{updates graphics image of system 
{starts here. First, invert current} 
{window to normal .. } 
{ .. then stores it.} 
{Now, on the RAM screen,} 
(clears it .. } 
(then, if current window is not .. } 
(the status window, updates it and} 

(clears RAM screen again} 

(then with the status panel,} 

(restores it to the RAM screen .. } 
(and starts updating the panel .. } 

(by erasing the old status text} 

(and write in new status. text} 

(and stores the new panel.} 

{then updates all other windows} 
(to the RAM screen .. } 

(except the status panel .. } 

(which, if it's not the current .. } 
(window, restores it last to the .. } 
(RAM screen} 

241 

(Now, dump contents of RAM screen to} 
(the MAIN screen, and select it .. } 
(and restore the current window to it} 

(then select current window and .. } 
(hilite it. } 



242 

(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA****"AAAAAA***** 

* * * This procedure simulates a single step of execution of the systolic * 
* system of arrays. It first links all necessary IO channels for the * 
* current step to the system of arrays, then it feeds data into input * 
* buffers, gets data from arrays into output files, then for each PE, it * 
* executes its microcodes until the entire system of arrays is traversed. * 
* At last it will move the result of each PE's micro-execution into its * 
* suitable output register and updates the graphics image of each array * 
* and the status panel. It will keeps executing until a key is hit on the * 
* keyboard. * 
* This procedure is called by : * 
* - main block. * 
* This procedure calls : 
* - procedure LinkIOFlow(). 
* - procedure LinkDataFlow(). 
* - procedure UpdateArray(). 
* - procedures HEcodel(), HEcode2(). 
* - procedures NASHcodel(), NASHcode2(). 
* - procedures LEcodel(), LEcode2() 
* - procedures N2Scode(), S2Ncode(), E2Wcode(), W2Ecode(). 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

'****-!~**'l<'IN'***'*"~**'k'lrl'********************) 

procedure MultiStepsExec; 

var SysPtr 
IOPntr 

I,J,X,Y 
Chr 

ArrayPtrtype; 
IOPtrtype; 
integer; 
char; 

begin 

if CurrntPtr<>StatPtr then 
begin 
InvertWindow; 
StoreWindow(CurrntPtrA.Number); 
with StatPtrA do 

begin 
SelectWindow(Number); 
InvertWindow; 
StoreWindow(Number); 
end; 

end 
else StoreWindow(CurrntPtrA. 

SelectScreen(2); 
repeat 

Number); 

with StatPtrA do 
begin 
Times:=Times+TimeUnit; 

(first, if current window is not} 
(the status panel then stores it} 
(as a non-current window and} 
(then make the status panel current} 
(by inverting it.} 

(else stores the status panel as} 
(current} 
(Then select RAM screen} 
(REPEAT all following until a key is} 
(pressed .. } 
(update status panel's registers} 

(increments time .. } 



Steps:-Steps+l; 
LinkDataFlow(LinkPtr,Steps); 
LinkIOFlow(IOPtr,Steps); 
IOPntr:=IOPtr; 
while IOPntr<>NIL do 

with IOPntr" do 
begin 
if Active then 

case IO of 
INPUT: 
if EOF(FileVar) then 

begin 
Close(FileVar); 
Active:-FAl.SE; 
for I:-1 to ArraySize 

do InR.egs[I]:=O.O; 
end 

else begin 
for I:=l to ArraySize 

do read(FileVar, 
InR.egs[I]); 

readln(FileVar); 
end; 

OUTPUT: begin 
for I:=l to 

ArraySize do 
write(FileVar, 

OutRegs[I]" 
:12:2); 

writeln(FileVar); 
end; 

end; 
IOPntr:=NextIO; 
end; 

end; 
SysPtr:=FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr" do 
begin 
for X:-1 to ArraySize do 
for Y:=l to ArraySize do 

case PE[X,Y].Code of 
0: 
1: N2Scode(PE[X,Y]); 
2: E2Wcode(PE[X,Y]); 
3: S2Ncode(PE[X,Y]); 
4: W2Ecode(PE[X,Y]); 
5: HEcodel(PE[X,Y]); 
6: HEcode2(PE[X,Y]); 
7: NASHcodel(PE[X,Y]); 
8: NASHcode2(PE[X,Y]); 
9: l.Ecodel(PE[X,Y]); 

{and step counters} 
{establishes all necessary links and} 
{IO channels for this step} 

243 

{starts at begining of IO linked list} 
{for each I/O channel .. } 

{if channel is still active, then} 
{depending on the type of IO charm.el} 
{for input charm.el .. } 
{if all data in file are read} 

{then closes input file,} 
{and marks input charm.el as inactive} 
{and grounds input buffers.} 

{else reads in data on line .. } 

{and go to next line} 

{for output channel .. } 
{write data to file .. } 

{and go to next line} 

{then go to next IO channel} 

{start with the 1st array in system .. } 
{as with all arrays except STATUS .. } 

{with every single PE of array .. } 

{depending on its individual code .. } 
{do nothing, or .. } 
{executes the proper PE's microcode} 



10: LEcode2(PE[X,Y]); 
11: LEcode3(PE[X,Y]); 

MaxCodes: LEcode4(PE[X,Y]); 
end; 

SysPtr:==Next; 
end; 

SysPtr:-FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr"' do 
begin 
for X:-1 to ArraySize do 
for Y:-1 to ArraySize do 
with PE[X,Y] do 

if Code<>O then 
for I:=l to MaxR.egs do 
for J:=l to MaxBus do 

La.st_Out[I,J] := 
Out_Regs [I ,J]; 

SysPtr:==Next; 
end; 

SysPtr:=FixedPtr"'.Next; 
ClearScreen; 
SelectWorld(FirstWorld); 
while SysPtr<>StatPtr do 

begin 
UpdateArray(SysPtr); 
SysPtr:-SysPtr"'.Next; 

, end; 
UpdateArray(FixedPtr); 
with StatPtr"' do 

begin 
RestoreWindow(Number,0,0); 
SelectWorld(StatusWorld); 
SelectWindow(Number); 
for X:=l to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
Str(Steps:4,Boxes[l].Dgt); 
Str(Times:9:6,Boxes[2].Dgt); 
SetColorBlack; 
for X:=l to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
StoreWindow(Number); 
SetColorWhite; 
end; 

CopyScreen; 
until keypressed; 
read(Kbd,Chr); 
ClearScreen; 
SysPtr:-CurrntPtr"'.Next; 
while SysPtr<>CurrntPtr do 

begin 
if SysPtr<>StatPtr then 

(then go to the next array} 

(THEN moves the flow of data} 
(of each array except the STATUS} 
(by updating each PE' s La.st_Out} 
(buffers on all sides and bus .. } 

(if its code is not 0} 

(then of course, go to next array} 

(start with the first array .. } 
(clears the RAM screen .. } 
(select the array's world .. } 
(for all windows that are not status} 
(panel or current, updates them to} 
(reflect the new values in each} 
(PE's registers.} 

(Then updates the status panel..} 

(and copy RAM to displayed screen.} 
(end of REPEAT} 
(clears stdin of recent key pressed} 
(Now that multiple step execution .. } 
(is stop, clears the RAM screen to .. } 
(start re-displaying all system in} 
(the same order before execution .. } 
(starting with restoring all non-} 

244 



RestoreWindow(SysPtrA. 
Number ,0,0); 

SysPtr:-SysPtrA.Next; 
end; 

if StatPtr<>CurrntPtr then 
with StatPtrA do 

begin 
RestoreWindow(Number,0,0); 
SelectWindow(Ntnnber); 
InvertWindow; 
StoreWindow(Number); 
end; 

CopyScreen; 
SelectScreen(l); 
with CurrntPtrA do 

begin 
RestoreWindow(Nunber,0,0); 
SelectWindow(Number); 
end; 

if CurrntPtr<>StatPtr then 
InvertWindow; 

end; 

245 

{current, non-status windows first .. } 

(then restore status panel .. } 

(then updates displayed screen .. } 
(and at last, select displayed screen} 
(to restore current window} 

(and invert it if it's not already} 
(invert, meaning if the current} 
(window is not the status panel} 



246 

**************************"'*'"'*'"'*'~~hhlhhl~~~~***************************""kk 

* * * This is the script file for the simulation of Nash's array solving * 
* example (A.4). It allows SAGS to produces the sequence of snapshots B.l * 
* with the data and control files below. * 
* Remove all comments before using them with SAGS. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~~AAAAA~* 

ARRAYSIZE : 
3 . 
SYSTEMS PEGS 
1 1 1 21 129 ' 
Pecodes : 7 8 

0 7 
0 0 

2 0 2 37 129 ' 
Pecodes : 8 8 

8 8 
8 8 

3 4 2 21 29 ' 
Pecodes : 0 0 

0 1 
1 1 

4 4 2 37 29 ' 
Pecodes : 0 0 

0 1 
1 1 

5 3 2 37 229 
Pecodes : 1 1 

1 1 
1 0 

INFILES : 
triang34 3 1 1 1 
trtag3 3 1 2 1 , 
square34 4 1 1 4 
sqtag3 4 1 2 4 . 
OUTFILES 
result 5 3 1 14 
SETUP : 
1 

8 
8 
7 

8 
8 
8 

1 
1 
1 

1 
1 
1 

1 
0 
0 

Northlnput : 3 3 1 1 
2 
Northlnput : 4 3 1 1 
Westlnput : 1 2 1 1 ; 
5 
Northlnput : 2 3 1 1 . 



247 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAAAA~*** 

* * * Infile triang34. * 
* Contains the input data flow to be fed into the triangular array of the * 
* system. * 
* * 1111111111111111111111111111111111111111111111111111111111111111111111111&111* 

1.00 
0.00 
2.00 

-1.00 
0.00 
0.00 

2.00 
4.00 
1.00 
0.00 

-1.00 
0.00 

3.00 
7.00 
3.00 
0.00 
0.00 

-1.00 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK*k-AAAAAAAAAAAAAAk*AAAAAAAAAA'***********k*** 

* * * Infile square34. * 
* Contains the input data flow to be fed into the square array of the * 
* system. * 
* * 
********************k*'k*'hhhh'*''*''*'hHhHnHhH:-b\:-b\:-k'll'**-'**'**'*********************** 

5.00 
9.00 
7.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*******k******* 

* * * Infile trtag3. * 
* Contains the control signals necessary for the triangular array of the * 
* system. * 
* * ********************k*'k*<hh"*>l:*''*''*''*'hhihHhH:-bl:-k'll'**'************************** 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 



248 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAAAAAA*'******k* 

* * 
* Infile sqtag3. * 
* Contains the control signals necessary for the square array of the * 
* ~st~. * 
* * 1111111111111111111111111111111111111111111111111111111111llllllllllllllllllll 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 
0.00 



249 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~kAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*********** 

* * * This is the script file for the sinru.lation of Chuang and He's array * 
* solving example (A.2). It allows SAGS to produces the sequence of * 
* snapshots B.2 with the data and control files below. * 
* Remove all couments before using them with SAGS. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~* 

ARRAYSIZE : 
3 . 
SYSTEMSPECS 
1 1 1 22 121 
Pecodes : 5 6 6 

0 5 6 
0 0 5 

2 0 2 38 121 
Pecodes : 6 6 6 

6 6 6 
6 6 6 

3 4 2 22 21 , 
Pecodes : 0 0 1 

0 1 1 
1 1 1 

4 4 2 38 21 , 
Pecodes : 0 0 1 

0 1 1 
1 1 1 

5 3 2 38 221 
Pecodes : 1 1 1 

1 1 0 
1 0 0 

INFILES : 
triang32 3 1 1 1 
trtag3 3 1 2 1 , 
square32 4 1 1 4 , 
sqtag3 4 1 2 4 . 
OUfFILES 
result 5 3 1 14 . 
SETUP : 
1 
Northlnput : 3 3 1 1 
2 
Northlnput : 4 3 1 1 
Westlnput : 1 2 1 1 ; 
5 
Northlnput : 2 3 1 1 . 



250 

******~~rlrl'rlri'rlrilnhlnh"*""*""*"********************:-k-A:-k-Arlrlrlri~lnhlnhl.-*1k*.**************** 

* * * Infile triang32. * 
* Contains the input data flow to be fed into the T array of the system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk-k** 

-1.00 
3.00 
6.00 

-1.00 
-3.00 
5.00 

5.00 
4.00 
7.00 
2.00 

-4.00 
-3.00 

-3.00 
1.00 

-2.00 
-4.00 
1.00 

-2.00 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrlrlrloAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*********** 

* * * Infile square32. * 
* Contains the input data flow to be fed into the S array of the system. * 
* * 
******************************~~~~'rlrirk?.rk?.**:-k-A******************'*********** 

-2.00 
1.00 
5.00 
2.00 
2.00 

-3.00 

-7.00 
3.00 
9.00 
1.00 
4.00 
2.00 

6.00 
1.00 
4.00 

-5.00 
6.00 
9.00 

* * * Infile trtag3. * 
* Contains the control signals necessary for the T array of the system. * 
* * 
********~hhl************"*"~************~hhl************"*"~************** 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 



251 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk-k* 

* * * Infile sqtag3. * 
* Contains the control signals necessary for the S array of the system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***** 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 
0.00 



252 

* * 
* This is the script file for the simulation of a double arrays system of * 
* our own design. This system is shown in the sequence of snapshots B.3 * 
* solving example (A.3). It uses the data and control files below. * 
* Re100ve all comments before using them with SAGS. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk-k-AAAAAAAA*****-k 

ARRAYSIZE : 
2 . 
SYSTEMSPECS 
1 0 1 19 106 ' 
Pecodes : 9 11 

12 10 
2 0 2 30 106 . 
Pecodes : 4 4 

4 4 
3 0 2 40 106 
Pecodes : 4 4 

4 4 
4 0 2 so 106 ' 
Pecodes : 4 4 

4 4 
s 0 1 19 172 ' 
Pecodes : 9 11 

12 10 
6 0 2 30 172 ' 
Pecodes : 4 4 

4 4 
7 0 2 40 172 ' 
Pecodes : 4 4 

4 4 
8 0 2 so 172 ' 
Pecodes : 4 4 

4 4 
9 4 2 19 37 ' 
Pecodes : 0 1 

1 1 
10 3 2 19 242 . 
Pecodes : 1 1 

1 0 
INFILES 
data241 9 1 1 1 ' 
controll.24 9 1 2 1 
control2.24 S 1 2 14 
OlITFILES : 
result 10 3 1 28 . 
SETUP : 
1 
Westlnput : 4 2 1 1 , 
Northlnput : 9 3 1 1 ; 



2 
Westlnput : 1 2 1 1 
3 
Westlnput : 2 2 1 1 
4 
Westlnput : 3 2 1 1 
5 
Westlnput : 8 2 1 1 , 
Northlnput : 1 3 14 14 
6 
Westlnput : 5 2 1 1 
7 
Westlnput : 6 2 1 1 
8 
Westlnput : 7 2 1 1 
10 
Northlnput : 5 3 1 1 . 

253 



254 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlrlrlrlrlr"AAAAAAAAAAAAAAAAAAAAAAAAA************** 

* * * Infile data241. * 
* Contains the input data flow to be fed into the first array of the * 
* system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****'**AAAAAAAAAAAAAA*'XAAAAAAAAAAAAAAAAAAAAA** 

2.00 
4.00 

-3.00 
6.00 

-1.00 
-2.00 
-1.00 
-1.00 
3.00 
7.00 
1.00 
8.00 

-2.00 
-3.00 
-1.00 
-4.00 
-8.00 

-20.00 
-2.00 
4.00 
1.00 
0.00 
2.00 
1.00 
0.00 
1.00 
7.00 
4.00 

-5.00 
1.00 
3.00 

-1.00 

-1.00 
-2.00 
-4.00 
-6.00 
1.00 
2.00 

-1.00 
1.00 
0.00 
0.00 
5.00 
0.00 
1.00 
3.00 
0.00 

-3.00 
3.00 
5.00 

-9.00 
7.00 
3.00 

-4.00 
1.00 

-3.00 
3.00 
6.00 
8.00 
2.00 
7.00 
7.00 
0.00 
9.00 



255 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~***** 

* * * Infile controll.24. * 
* Contains the control signals necessary for the first array of the system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*** 

13 0 
12 0 
12 0 
12 0 

8 0 
8 0 
8 0 
8 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 



256 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-k*-k-AAAAAAA*********** 

* * * lnfile control2.24. * 
* Contains the control signals necessary for the second array of the * 
* system. * 
* * 
****************************************************************************** 

13 0 
12 0 

8 0 
8 0 
8 0 
8 0 
8 0 
8 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 


	A new general purpose systolic array for matrix computations
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1504818133.pdf.YuM1t

