Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
1988

A new general purpose systolic array for matrix
computations

Hai Van Dinh Le
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation

Le, Hai Van Dinh, "A new general purpose systolic array for matrix computations" (1988). Dissertations
and Theses. Paper 3796.

https://doi.org/10.15760/etd.5680

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3796&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3796
https://doi.org/10.15760/etd.5680
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Hai Van Dinh Le for the Master

of Sciences in Electrical Engineering presented May 18, 1988.

Title: A New General Purpose Systolic Array for Matrix

Computations.

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

It has been conservatively estimated that 75 percent
of all scientific applications involve some form of matrix
computations. In general, matrix computations are very
expensive in term of processing time. For real time
operation required by such applications as robotics, signal
processing and computer dgraphics animation, the processing

power of serial computers is simply inadequate.

2

In this thesis, we propose a new systolic architecture
which is based on the Faddeev’s algorithm. Because
Faddeev’s algorithm is inherently general purpose, our
architecture is able to perform a wide class of matrix
computations. And since the architecture is systolic based,
it brings massive parallelism to all of its computations.
As a result, many matrix operations including addition,
multiplication, inversion, LU-decomposition, transpose, and
solutions to linear systems of equations can now be
performed extremely fast. In addition, our design
introduces several concepts which are new to systolic
architectures:

- It can be re-configured during run time to

perform different functions with the uses of
various control signals propagating
throughout the arrays.

- It allows for maximum overlaps of processing

between consecutive computations, thereby
increasing system throughput.

There have been other architectures proposed for this
problem. However, a thorough analysis performed in this
thesis reveals that they suffer from serious drawbacks,
design inefficiencies or even errors. Thus, they are
impractical for actual implementation. On the other hand,

the new architecture is free from all of these weaknesses

3
while offering many important advantages, some of which are
listed as folloﬁ%

- It is truly problem size independent, i.e.
matrices which are arbitrarily large can be
easily decomposed to be processed by a fixed
size array.

- It can solve sparse matrix problems
efficiently without requiring system re-
configuration.

- It provides the same level of performance as
the known architectures using a smaller
number of cells and arrays.

- It is fully expansible, i.e. linear
performance improvement can be achieved by
simple addition of identical component
arrays.

- Because of its simplicity, it can be
implemented inexpensively and with very
little effort.

We also describe in this thesis several extensions to
Faddeev’s algorithm which are ideally suited for problem
size independent systolic architectures such as ours. These
extensions—classified as horizontal, vertical, and two-
dimensional—not only increase a system throughput from two
to four fold but also enhance the inherent programmability

of Faddeev’s algorithm. This allows our architecture to

4
perform very complex matrix calculations. An example of
this enhanced programmability for complex matrix calculation

is presented as well.

A NEW GENERAL PURPOSE SYSTOLIC ARRAY

FOR MATRIX COMPUTATIONS

by

HAI VAN DINH LE

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCES
in
ELECTRICAL ENGINEERING

Portland State University

1988

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Hai

Van Dinh Le presented May 18, 1988.

Rajinder Aggrawal

Erasto Kashoro

APPROVED:

Lee Casperson, Electrical Engineering

Bernard Ross, Vilice Provost for Graduate Studies

ACKNOWLEDGMENTS

Faddeev’s algorithm became infinitely clearer after
Dr. Robert Broussard illustrated a simple example. For
this, and also for the several office visits during which he
patiently answered my technical questions, I am sincerely
grateful.

I also wish to give thanks to Dr. Roy Rathja for
providing me with some important articles on the subject of
parallel computer architectures. They have been quite
valuable and are greatly appreciated.

Special thanks are due to Dr. Marek Perkowski, my
thesis advisor, who has suffered the indignation of many
long hours going through several "final" versions of this
thesis; his extensive detailed comments and suggestions have
helped me fix innumerable errors and omissions.

Finally, I would like to express my deepest gratitude
to my wife and best friend, Tuyet Uong, for her devotion and
unwavering support through all these years. Without her, my
entire higher education would have been impossible. This

thesis is lovingly dedicated to her.

TABLE OF CONTENTS

PAGE
ACKNOWLEDGMENTS......... e s e s cssssecessccncsessesenoanc e iii
LIST OF FIGURES. ¢ cccevsvcccccscscscscscssossosscsssnsencsess vii
CHAPTER

T INTRODUCTION. ..ceeceessosesssoscsoccsonsscsssscsssosnss 1

Ways and Obstacles in Speeding Up
Digital Systems.......eeeeeeeeesnenocccnacccsss 2
The Systolic Architecture Concept......cccecec... 6
Systolic Architecture Design Criteria.......... 9
Organization of This Thesis...... ceesenesaseans 10

ITI FADDEEV’S ALGORITHM AND MATRIX

TRIANGULARIZATION SYSTOLIC ARRAYS. ... ccieeeesescaass 13
Faddeev’s Algorithm........ D Y
Systolic Arrays for Matrix Triangularization... 17

Gaussian Elimination With
Neighbor Pivoting....... ceescsseessssceasenes 19
Orthogonal Triangularization.........cc00... 20

ITTI SYSTOLIC IMPLEMENTATIONS OF FADDEEV’S ALGORITHM... 23

Nash’s Implementation.....cceeeecceccccccascnss 23
Chuang and He’s Implementation................. 30
Input DecomposSition....veeeeeesecccrsscensnes 35
Feedback System for Parallel Decomposition.. 37
Feedback System for Vertical Decomposition.. 42
Feedback System for Hybrid Decomposition.... 45
Sparsity in Matrices..... ceesrtactesstasaanenn 46

Assessment SUMMAYY...oeeoeecccooossnsss ceeeesss b2

CHAPTER
IV A NEW SYSTOLIC ARRAY ARCHITECTURE..:.ccveesscecess
Architectural Description....eeeceeeceerececassns
PEs’ Description............. ceeeeeasenannan
Control Signals Interconnections............
Control Interface With Host.......cccvvvueen

Data Flow Description..... ce s et seacccccecnncen e

Storage and Feedback of
Modification Factors....cceeeeeerocccossanas

Solving Size Independent Problems..............

Input Decomposition and
Vertical Feedback Path.....ccvveeeeercsncens
Controls and Horizontal Feedback Path.......
Multiple Arrays Configurations......c..cc...
Intermediate Results Storage......ceeeeeeenn
Processing of Sparse Matrices..........c..... ..
Overlaps in Processing Between Problems........
V EXTENSIONS TO FADDEEV’S ALGORITHM AND CONCLUSION..
Horizontal Extension to Faddeev’s Algorithm....

Vertical Extension to Faddeev’s Algorithm......

Two-Dimensional Extension to

Faddeev’s Algorithm...coeeeerteeenososcesconncenas
Concluding RemMArKS...ieeeeeseecsesccossonsconas
REFERENCES..... e seccecescsrnsssecasean es e e s ero s annee .o
APPENDIX A EXAMPLES OF FADDEEV’S ALGORITHM....... e s s

Using Ordinary Gaussian Elimination......

Using Gaussian Elimination With
Neighbor Pivoting......cceveeieecennennns

Using Givens Rotations......cceveeucenens

PAGE
54
54
56
59
62

64

65
66
67
72
74
79

80

93

97

104

106

109

109

vi
PAGE

APPENDIX B REAL TIME GRAPHICAL SIMULATION OF
SYSTOLIC ARRAYS.ccccseostesscssscsscscscssss 131

APPENDIX C SAGS PROGRAM LISTING.:.eccceeeesccoccccsccess 170

10.

11.

12.

LIST OF FIGURES

PAGE

Some Matrix Operations Possible With
Faddeev’s Algorithm...iceveeeereeeeeceneeeeoonens 17

Triangular Systolic Array for Matrix
Triangularization......ccceeveeeeeeene Ceseeeannan 18

Microcode Specifications of Boundary Cell
and Internal Cell for Gaussian Elimination
With Neighbor Pivoting................. ceessenas 21

Microcode Specifications of Boundary Cell and
Internal Cell for Orthogonal Triangularization... 22

Nash’s Systolic Implementation of Modified
Faddeev’s Algorithm....cceeeeeenesccccacsaaoconns 25

Microcode Specifications of Boundary Cell and
Internal Cell Used in Nash’s Array During the
First Phase, i.e. Givens Rotations.........c..... 26

Microcode for Boundary Cell and Internal Cell
Used in Nash’s Array During the Second Phase,
i.e. Gaussian Elimination......cccceueecceces cee. 27

Chuang and He’s Systolic Implementation of
Faddeev’s Algorithm.......ccceeeeenen crteeeanea eee. 31

Microcode Specifications of Cells Used by
Chuang and He’s Array for Gaussian Elimination
With Neighbor Pivoting.....ceveeeeveneeccens eess. 33

Microcode Specifications of Cells Used by
the Array for Ordinary Gaussian Elimination...... 34

Three Ways to Decompose the Input Data Flow.
(a) Parallel Decomposition. (b) Vertical
Decomposition. (c¢) Hybrid Decomposition..... ce.. 36

Systolic System With 26 Subarrays of Types
T and S, Each of Width w....... cres e ettt e 38

FIGURE

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

viii

PAGE
Feedback Systolic System With a Smaller Number
of Subarrays for Parallel Decomposition....... .o 39
Two-Dimensional Feedback System With One S
and One T SUbaArrayS..cseescessescessscsccsscssscsas 41
Array System for Vertical Decomposition of
Input Data FloW.....cceeceeeoececcccosccnaccssocas 42
Problem Size Independent Array System for
Vertical and Hybrid Decomposition of Input
Data FloW....oceeeosscacceocoacosssssnes ceeeecesane 44
Recycling Shift Registers for the Temporary
Storage of the X Values......cicerieeieeensccencas 45
Parallel Decomposition of a Sparse Matrix
Problem With m = 6..ccveitreenecnnncnnanncnns ceee 47
Systolic System for the Processing of Sparse
Problems......cc.... Ceeeececceccssastetcecassseean 49
Processing Sequence Showing the Order in
Which the Non-Zero Blocks of Figure 18 Are
Fed Into the System of Figure 19......¢0c000000... 51
Dual Mode Systolic Implementation of
Faddeev’s Algorithm. The Number of Cells
Needed Is Smaller and I/O Bandwidth
Requirement Is Reduced....cieceteecsnnnenss ceenan 55
Microprogram Specifications of the Circular
and Square Cells for the Array’s Dual
Mode Operation....vieeeeereosceceasssesconasenness 57
Dual Mode Array Shown Only With the
Interconnection Pattern for Control Signal Cl.... 60
Dual Mode Array Shown Only With the
Interconnection Pattern for Control Signal C2.... 61
Dual Mode Array Shown Only With the
Interconnection Pattern for Control Signal C3.... 62
Array Showing Only the Interconnection Pattern
of Control Signal C4........ teevees ceeeeserseasas 63

First Iteration in the Processing of a Problem
Larger Than the Array Size...c.veeeeeenenennnn. ce.. 68

FIGURE PAGE
28. Second Iteration of the Problem......ccoeeeeseans 70
29. Control/Timing Sequences of Input and Output

Data Flow for Each Iteration. The Dash/Dotted
Lines Represent Input Strips, While the Dotted
Lines Represent the Output Strips......ccceeveeee 72
30. L-tuple Arrays System Processing a Problem
Larger Than the I/0 Bandwidth we..veeveeeeeeseaees 75
31. Control/Timing Sequences for Each Array......s... 77
32. An L-tuple Arrays System With a Common Data
Bus From Each Array to Host. The Vertical
Feedback Path Has a FIFO Queue B, for
Temporary Storage of Intermediate Results........ 79
33. Reduced System for Sparse Matrix Processing...... 81
34. Parallel Decomposition of x = 3 Horizontally
Compatible Problems...... e e secececceanan e ceeseas 89
35. Parallel Decomposition of y = 3 Vertically
Compatible ProblemS....c.oeeeecesscocsoscccsansas 95
36. Parallel Decomposition of x by y Compatible
Problems....... seccecceccrocsnannans ceeesseennaan 100
SEQUENCE OF SNAPSHOTS
B.1. Simulation of Nash’s Systolic Array Solving
Example (A.4).ecueeee.. Ceecesecscesscssesssreasssss 135
B.2. Simulation of Chuang and He’s Systolic
Array Solving Example (A.2) ..cescesccoccnsees eee. 142
B.3. Simulation of an L-tuple Arrays System

Solving Example (A.3), With L = 2...cccceeceeenns 150

CHAPTER I
INTRODUCTION

As a general class of problems, matrix computations
are found to be very useful, if not essential, within a
broad spectrum of scientific applications. However, they
are generally expensive 1in terms of storage space and
processing time. To be sure, numerous algorithms with
substantially reduced storage requirement have been devised
for specific matrix computations. Yet, it is with the
recent abundance of low cost memory that storage demands of
matrix computations in general cease to be an important
issue. On the other hand, the need for greater throughput
rate has become more acute as applications grew in power and
complexity. 1Indeed, for real time operation required in
such applications as robotics, signal processing and
computer animation, the computing power of serial computers
proved to be woefully inadequate. Before 1long, it was
evident that the only way to meet the ever growing
computational requirements of many applications is to build

faster systems.

WAYS AND OBSTACLES IN SPEEDING UP DIGITAL SYSTEMS

Essentially, there are two ways to build faster
systems. One is to use fast components, the other is to use
concurrency.? Since the technological trend <clearly
indicates that we are reaching the maximum components speed
potential, any major gain in computational speed must come
from the concurrent use of many processing elements.!:2-3:*%
As it is, the architecture of conventional computers suffers
from two inherent difficulties:

(1) Long communication paths such as buses between

CPU and its memory substantially slow down the

transmission of information. Also, the system

I/0 bandwidth provides an absolute upper bound

limit on the data rate, which acts as a

bottleneck in limiting the system speed.®-3:%:7

(2) The single CPU sequentially fetches and executes
instructions thereby does not fully exploit its
hardware resources at all times, providing
little or no concurrency for speeding up

processing.®' %7

Indeed, the above problems are widely acknowledged for
quite some time. Nevertheless, they remain to be formidable
obstacles which must be surmounted before a substantial

speed increase is obtained. Several schemes were proposed

to address one or both of them while maintaining the same

3
degree of generality offered by the von Neumann
architecture. Most widely known among them are:

- pipelining,

- memory-caching,

- replicating CPU’s processing units (such as
adders, multipliers, ALUs),

- and multiprocessor systems.‘'’

Pipelining, as a form of parallelism, involves the
application of assembly 1line techniques to improve the
performance of an arithmetic or control unit.’-8:°%
Theoretically, maximum utilization of available components
can be achieved if the pipeline is kept full at all time.
However, 1in actual operation this ideal condition is
impossible to maintain and speed gains occur only in burst
between pipeline flushes. Although widely implemented on
many high-speed systems today, pipelining does not fully
exploit the parallelism inherent in many applications and
only constitutes a minor architectural fine tuning of the
basic von Neumann structure.’:!?

Memory caching is used to reduce the cost of memory
and alleviate the communication bottleneck at the expense of
additional system complexities. A memory cache is a small
but high-speed memory system that tries to capitalize on
temporal locality, the theory of which basically states: if

a particular instruction or piece of data is read from

memory, then the probability of it being wused again

4
increases. Thus, after the cache is filled with
instructions or data brought in from slower memory, the
number of subsequent reads by the CPU which can be performed
at full speed to the cache increases before access to slower
memory is required. The effectiveness of a cache memory is
known as the "hit ratio." Given a certain number of
instructions (or data) that must be fetched, the hit ratio
is the number that can be accessed from the cache versus how
many that must be accessed from slower memory. Generally,
the cache employs the highest-performance
technology—bipolar;* however with the performance of CMOS
technology steadily bridging the gap and its cost declining,
the trade-off seems less attractive. Furthermore, while
caches seem to work well with single processor computers,
they are difficult to incorporate into multiprocessor
systems because o0f the cache coherence problem. Cache
coherence relates to the integrity of data between various
caches within a system. Suppose a two processor system is
tightly coupled through a main memory but each processor has
its own data cache. A different routine is running on each
processor and the two tasks communicate through the shared
memory. If, however, a shared address is present in both
caches and the individual processors read and write that
address, then each processor would not have the same piece
of data in its respective cache. This results in neither

processor seeing the changes caused by the other.’

5

Of course there are schemes to remove this problem,
but they invariably add further complexity to the systemn.
Thus, while partially improving the performance of the von
Neumann architecture, pipelining and caching create other
problems of their own.

At the other end, we have systems with replicated
processing units or multiple processors which incorporate a
very high degree of parallelism while striving to retain the
same level of Ggenerality available in von Neumann
architecture; however, run-time considerations such as tasks
synchronization and memory contention incur rather severe
system overhead.’ ''-!'2 fThus, full utilization of available
hardware can never be realized.®:!?

Simply stated, the price for generality in highly
parallel structures is decreased speed, decreased efficiency
of hardware utilization, and increased software
requirements.'? During the last decade, there have been
many highly parallel general-purpose architectures proposed
or implemented. 1In general, they required many man-years
of efforts to design and, because of their complexity, were
very costly to build.

Tailored to meet specific application requirements or
to off-load computations especially taxing to general-
purpose computers,' special-purpose systems provide a very
high degree of parallelism with minimum system overhead and

complexity. They are generally the fastest and most

6
efficient in hardware utilization.!? However, because of
their limited applicability, their cost must be low enough

to justify their selection over a general-purpose approach.
THE SYSTOLIC ARCHITECTURE CONCEPT

Because special-purpose systems are seldom produced in
large gquantities, their design cost is a 1lot higher

comparing to the parts cost.!'®

This is particularly true
when special-purpose designs are implemented with VLSI
technology. Even though VLSI offers a number of major
benefits—low cost per component, high density, reliability

6 effective wuse of the

and ease of fabrication,?'?:
technology to achieve massive parallelism requires careful
consideration.
Briefly, a highly parallel VLSI structure should
adhere to the following principles:!-3®-10.,11.,12,13,134
(1) Simplicity and regularity: the design should
consist of only a few simple types of modules
which are replicated many times, thus reducing
design complexity. A simple and regular
structure is therefore highly cost-effective.
In addition, such a structure can be easily
expanded by increasing the number of basic
modules. This, in turn, leads to linear speed

improvements.

(2) Concurrency: The degree of concurrency in a
system is largely determined by the underlying
algorithm. Massive parallelism can be achieved
if the algorithm is designed to support a high
degree of pipelining and multiprocessing.

(3) Communication: Control and communication become
significant in a parallel computing structure,
especially with VLSI where routing ©costs
dominate the power, time and area required to
implement a computation. The design’s
underlying algorithm should therefore employ
only simple, regular control and communication.

In a processor array, communications should

occur only between neighboring processors.

(4) I/0 consideration: Since a special-purpose
device 1is typically attached to a host, its
computational rate should not exceed the host’s
available I/O0 bandwidth. Therefore, if multiple
computations are performed per I/O access,
orders of magnitude improvements on system
throughput are possible.

To meet these requirements, Kung and Leiserson in 1977
introduced the concept of systolic architecture. Originally
proposed for VLSI implementation of some matrix
operations,'® a systolic system consists of an array of

processing elements (PE’s) called cells, each capable of

8
performing some simple operations. These cells communicate
only to their nearest neighbors, and communication with the
outside world—i.e. the host—occurs only at the boundary

cells.! 5815

Data flow from the host through the array in
a rhythmic fashion, and computations are synchronized by a
global clock signal. Each data item once brought out from
memory is used effectively at each cell while being moved
from cell to cell along the array.

Conceptually, computational tasks can be classified
into two categories—compute-bound computations and I/O-
bound computations. In a computation, if the total number
of operations is larger then the total number of input and
output elements, then the computation is compute-bound,
otherwise it is I/O-bound. While speeding up an I/O-bound
computation must rely on an increase in memory bandwidth,
the systolic architecture allows a speed-up of a compute-
bound computation without increasing the memory bandwidth
requirement.!

Since cells in a systolic array are of only a few
simple types, cost-effectiveness and ease of VLSI
implementation are among the many advantages that systolic
architecture offers. Others include simple and regular
control and data flow, elimination of global broadcasting

and modular expansibility.!

considered for computational intensive problems and there
exist many systolic designs for a wide
bound applications. In several of his papers,!’

suggested a number of systolic design criteria which are

SYSTOLIC ARCHITECTURE DESIGN CRITERIA

Today, the systolic approach is increasingly being

6

briefly outlined below.

(1)

(2)

(3)

The design makes multiple use of each input data
item. This property allows systolic systems to
achieve high throughputs with modest 1I/O
bandwidths for outside communication.

The design uses extensive concurrency. The
underlying algorithm should use as many of the
available cells as possible at any given time
during a computation. Even higher concurrency
is possible if another level of pipelining is
introduced to operations within the cells
themselves.

There are only a few types of simple cells. A
large number of cells are required if a systolic
design 1is to achieve any great performance
gains. The cells must therefore be simple and
of only a few types to curtail design and
implementation costs. However, one should
remember that there is always a trade-off

between cell simplicity and flexibility. An

class of compute-

10

exact estimate can only be arrived at on a case
by case basis.

(4) Data and control flows are simple and regular.
Pure systolic systems totally avoid 1long-
distance or irregular data communication wiring.
This is the principal reason why a systolic
array 1is adjustable to various performance
goals. The only global communication (besides

power and ground) is the system clock.
ORGANIZATION OF THIS THESIS

Even though the systolic architecture offers many
advantages, it is not without some drawbacks. One possible
problem is that if a systolic array is too large, its global
clock signal could be skewed to the point where two cells at
its opposite ends could not be synchronized properly.!'!?!
Another issue is the degree of utility a systolic device can
support. Proposed as a special-purpose architecture, one
nonetheless wants a systolic array to be able to perform
more than one type of computation. These are issues which
cannot be resolved satisfactorily unless both architectural
and algorithmic considerations are reviewed carefully.

The rest of this thesis is divided into four chapters.
In Chapter II, a brief introduction to Faddeev’s algorithm

is presented; because the main focus of this thesis is in

its architectural mapping, a more thorough treatment of the

11
algorithm is referred to the original book listed in the
REFERENCES section. Since matrix triangularization is an
essential component of Faddeev’s algorithm, descriptions of
two systolic arrays for this matrix operation are also
included.

Chapter III contains detailed examinations of two
systolic implementations of Faddeev’s algorithm. Analysis
of the designs performance and correctness of operation is
presented. Also, their advantages and weaknesses are
discussed in this chapter.

In Chapter IV, a new systolic array implementation of
Faddeev’s algorithm is proposed. Again, a detailed
description and a performance analysis of the design are
offered. Necessary comparisons to the previous arrays
concerning modularity, expansibility, versatility and ease
of implementation will show it to be vastly superior.

In Chapter V, three different extensions to Faddeev’s
algorithm are developed. It will be shown that these
techniques are ideally suited to the new systolic array.
This leads to a four fold increase in the array throughput
when matrix operations are to be solved continuously.
Lastly, concluding remarks are offered at the end of this
chapter.

Relevant materials that do not fall within the main
focus of this thesis but are nonetheless important are

included in the three appendices A, B and C. For the reader

12
who wish to verify how Faddeev’s algorithm solves various
matrix computations, Appendix A contains examples which
illustrate different variants of the algorithm. If he
wishes to further investigate the operation of all
architectures put forth in this thesis, Appendix B contains
sequences of snapshots which show these arrays solving the
examples of Appendix A. Finally, Appendix C contains the
Pascal source listing of SAGS, a Systolic Arrays Graphical
Simulator which produces those snapshots, and sample script

files.

CHAPTER II

FADDEEV’S ALGORITHM AND MATRIX TRIANGULARIZATION

SYSTOLIC ARRAYS

One aspect of systolic arrays that is the focus of
several recent research efforts is their lack of generality,
i.e. an array designed for one algorithm generally cannot
run another. An approach aimed at removing this drawback
taken by Kung is the use of a programmable systolic
chip.t®-1’ While this allows different sequences of
operations to be performed within the cells of a systolic
array, it is only a partial solution to the problem since
the interconnections between neighboring cells are still
unalterable. To remove this inflexibility, Snyder proposed
a programmable switch lattice structure that gives an array
processor re-configurable interconnections between its
PEs;!'?® however, the added complexity of such a network is
beyond the current integration technology for large array
sizes.

Another less drastic approach is to find algorithms
and their array implementations which are general-purpose
within a class of problems. This approach generally results
in simpler processor and/or simpler interconnections, thus

more array cells can be put into a single chip.

14
Consequently, the clock skew problem of large array sizes
will be effectively reduced since the number of chips

required would be smaller.
FADDEEV’S ALGORITHM

One general purpose algorithm, useful for a wide class
of matrix operations and especially suited for systolic
implementation, is the Faddeev’s algorithm!'® illustrated by
the simple case of computing the value of CX + D, given
AX = B, where A, B, C, and D are known matrices of order n,
and X is an unknown matrix.

The problem can be formulated as

a a - | b b . o .
11 12 in 11 12 1n
a e . e . .
21 22 2n 21 22 2n
a a e« « « Q b b « « « Db
nl n2 nn nl n2 nn
(2.1)
-C -C e « + =C d d . .+ . d
11 12 in 11 12 in
-C -C « « =C d . .
21 22 2n 21 22 2n
-C -C e o« o =C d d . + . d
nl n2 nn nl n2 nn
or, in abbreviated form
A B
(2.2)

15
If by some means a suitable linear combination of the
rows of A and B is found and added to the rows of -C and D

as follow

AlB

~C+WA I D+WB

where W specifies the appropriate linear combination such
that only zeroes appear in the lower left hand quadrant,
then the 1lower right hand quadrant will become matrix
E=CX + D. This 1is Dbecause annihilating -C requires

W

CA'! so that D+ WB =D+ CA' !B, and since AX = B,
D+ WB =D + CX. The elegance and simplicity of the
algorithm is apparent when one notes that to carry it out,
it is only necessary to annul the lower left hand quadrant

by applying a suitable matrix triangularization procedure to

16
the left side of (2.2) while extending the operation to its

right side. We will then have from (2.1)

k k k (k
a(k) a(k) e o o a() b() b() . « « b)
11 12 1n 11 12 1n
k k k X (k)

o a‘* a® [.. .b
22 2n 21 22 2n
k k k X (k)

0 4] a() o o a() b() b() . + . b
33 3n 31 32 3n
(k (k) (k) (k)

0 o ...0 a*’ |bp b . . .b
nn nl n2 nn

0 0 e o s+ e o o e e S -
11 12 1n

0 o . . <« < 0 e e « . . €
21 22 2n

0 0 e o o e e (0] e e e« e« o €
nl n2 nn

or, in short

k k
A()IB()

0 | E

where A‘*¥’ is an upper triangular matrix and B‘*’ is B
modified k times by the procedure. Often used in solving
linear systems, Gaussian elimination is one of the better
known triangularization methods available to perform the
Faddeev’s algorithm. Since the usual backsubstitution is
not needed here, considerable savings in computation and
storage are obtained.

With Faddeev’s algorithm, a variety of matrix
operations can be performed by selective entries in the four

quadrants. For example, when D= 0, C = I where I is the

17
identity matrix, and B is a column vector, E becomes X, the
solution to the linear system AX = B. Some other matrix
operations possible with Faddeev’s algorithm are shown in
Figure 1 below. The reader is referred to Appendix A for a
detailed treatment of Gaussian elimination and the solutions

to a sample linear systems using Faddeev’s algorithm.

A B A B
——— => CA !B+D —t+— =>A'B
-C D -I 0

I B A I
—F— =>cB —t— =>n1a"'
-C 0 -I 0

I B
——— => CB+D

-C D

Figure 1. Some matrix operations possible
with Faddeev’s Algorithm.

SYSTOLIC ARRAYS FOR MATRIX TRIANGULARIZATION

Since the underlying procedure to carry out Faddeev'’s
algorithm is matrix triangularization, any systolic
implementation of the algorithm should be based on a
structure which can perform triangularization efficiently.
Developed by Gentleman and Kung as a common platform for two
different triangularization methods, the triangular
systolic array of Figure 2 can execute both Gaussian
elimination with neighbor pivoting or orthogonal

198,20

triangularization. The array consists of two types of

cells: the boundary cells (represented by circles) and the

18

Cycte 7 ___, Xaa
CyClE’ 6 : Xz Xas
Cycte 3 X Xa Xed
Cycle 4 __, X4 X Xa Xu
Cycle 3 5 Xy X X
Cycle 2 ——, Xu Xz
Cycle 1 _——, Xy

i 4 4 {

Figure 2. Triangular systolic array for matrix

triangularization.
internal cells (represented by squares). These cells are
locally interconnected into a triangular mesh. Each cell
stores a microprogram, enabling it to interact with its
neighbors in such a way that a triangularization procedure
can be carried out. Changing the microprograms of the cells
will allow the array to execute different procedures.

In the following discussion, the term data row refers
to a row of entries of matrix X, whereas the term array row
means a row of cells of the array. The triangularization of
matrix X by the array is as follow. Initially, all cells
contain only zeroes. As each data row i enters the array
via the top boundary, its entries are stored in the cells on

the i*® array row. Before the data row i reaches its

19
respective array row however, its entries are modified by
cells of previous array rows such that the first i -1
entries are discarded—i.e. became zeroes. The modification
of an incoming data row is initiated by a boundary cell.
This cell generates modification factors, values resulting
from computations performed on an incoming entry and the
cell’s own stored value. The modification factors are then
sent rightward to meet other entries of the same data row in
the internal cells. There, they are used to modify the
entries which are subsequently outputed to the next array
row. While cells of any given array row are updating a data
row, they may also update their own currently stored values.

Note that because of the critical timing required for
the rightward data stream to reach internal cells at proper
moments, the input data flow is fed into the array in a
skewed order. After completion, modified x values left in
cells constitute elements of a triangularized matrix and can

then be readily read out, one from each cell.

Gaussian Elimination With Neighbor Pivoting

When Gaussian elimination procedure is performed using
finite-precision arithmetic, as would be the case for
electronic computing devices, a diagonal element that is
small compared to the entries below it in the same column
can lead to substantial roundoff error. Traditionally,
pivoting strategies such as partial or total pivoting have

been used to improve its numerical stability.?! Because of

20
the global communication that may result from pivot
selection, they are not quite suitable for systolic
implementation. Thus, to maintain the same degree of
stability for the trianqularization process described above,
Gentleman and Kung suggest the use of another pivoting
strategy, called neighbor pivoting. This technique
introduces a zero to a row by subtracting a multiple of an
adjacent row from it, interchanging the rows when necessary
to prevent the multiple from exceeding unity.!® In
Appendix A, examples of Faddeev’s algorithm using Gaussian
elimination with neighbor pivoting is shown.

The triangular array of Figure 2 can perform Gaussian
elimination with neighbor pivoting using the cells shown in
Figure 3. As its microcode reveals, the boundary cell

generates two modification factors: a multiplier M as

¢ !

well as a Boolean variable V, which signals a row

ut ’
interchange when having value one. This occurs at every
array cycle, the maximum length of time necessary for a cell

to execute its microprogram once.

Oorthogonal Triangularization

The orthogonal triangularization procedure involves
tﬁe execution of a series of plane rotations (also known as
Givens rotations) on the target matrix. They are applied
initially to the first row and the second row, the first row
and the third, the first row and the fourth, and so on to

the last row. At this point, all rows except the first will

21

ROUNDARY CELL

i 1Xat 201X then
begin

Xln Vout «— 1
My €— If X, #£0 then -X/X,
——) :out else 0
— out X €— X,
end
else
V, «— 0

out
Moy €— X /X

INTERNAL CELL

Xin If V, then
begin
e O Fout €= X 4 Mo X Xy
Vo — — Vout © Vi X — X,

end

out else
Xout € Xip + M, % X

Fiqure 3. Microcode specifications of boundary

cell and internal cell for Gaussian elimination

with neighbor pivoting.
have zero entries on their first column. Next, the above
process is repeated starting with the second row, then again
with the third row, and so on until zeroes are introduced to
all columns such that the resultant matrix becomes upper
triangular, after which the triangularization procedure is
completed. In Appendix A, the reader will find a more
detailed description of Givens rotations along with examples
of Faddeev’s algorithm illustrating their uses.

The systolic array of Figure 2 can perform orthogonal
triangularization using the cells specified in Figure 4.
While this method yields better numerical accuracy than that

of the previous section,?? notice the added complexity

22
necessary for boundary cells because of the square roots.
Since all cells in the systolic array must operate at the
same throughput rate, the boundary cells could form a

bottleneck on the overall system performance.??

BOUNDARY CELL

iIf X, =0 then
begin
xji‘ Cout € |
Sout € O
——) Cout end°”
-— Sout
else
begin
Cout €— X7/X2 4+ X2
Sout € X0 7Y X2 + X2
X & /x2+ x2
end
MTERMAL CELL ¢
xII'\
Ci —.\'—')cout-cln Xout €= =S5, X + Cp X,
S — = Sout = S X €= C, X+ S, X,

X

out

Figqure 4. Microcode specifications of boundary
cell and internal cell for orthogonal
triangularization.

CHAPTER III
SYSTOLIC IMPLEMENTATIONS OF FADDEEV’S ALGORITHM

In this chapter, we will 1look at two systolic
implementations of Faddeev’s algorithm, originated from
different authors. Their basic arrays are remarkably
similar in most aspects such as interconnection topology,
cells layout, I/0 requirements and general algorithm
mapping. This is not surprising since both are based on the
same triangular array we’ve just examined in the previous
chapter. However, they differ in the triangularization
methods used to implement Faddeev’s algorithm, which lead to
dissimilar cells’ control codes and numbers of pin-out. We
can attribute this to the respective authors’ design choices
concerning the trade-offs between algorithm’s stability and

array’s throughput rate.
NASH’S IMPLEMENTATION

To improve its numerical stability, Nash et. al.?3:2%
suggested a modification to Faddeev’s algorithm by replacing
the Gaussian elimination procedure used to triangularize the
coefficient matrix A of (2.2) with orthogonal

triangularization.

24

For clarity, it is useful to divide their algorithm
into a two-phase procedure. In the first phase, A is
triangularized by a series of Givens rotations
(simultaneously applied to B); in the second phase, the
diagonal elements of the resulting triangular matrix are
used as pivoting elements in the Gaussian elimination
procedure on C and D, where columns of C will be zeroed out
and D will become the result. Note that for the Gaussian
elimination procedure to work properly, it is necessary that
these pivoting elements be non-zero, hence the requirément
that A be full rank, 1i.e. at least one of its square
submatrices of order n has a non-zero determinant.

Nash’s systolic implementation, shown in Figure 5,
consists of a triangular array and its right extension, a
square array. The triangular array, based on Kung’s design
in Figure 2 for orthogonal triangularization, performs
Givens rotations on A (first phase) and ordinary Gaussian
elimination on C (second phase). For higher efficiency in
performing Givens rotations, cells’ microcodes of Figure 4
are slightly modified into those of Figure 6. Furthermore,
the added processing of ordinary Gaussian elimination
requires the extra codes of Figure 7. The square array
simply extends the corresponding processings to B and D and
thus consists only of square cells.

The input data flow involves feeding A and B through

the system from the top with cells executing the

25

44

4

22

Q.
&

s

L
o
]
o
§

k4

N
:
2
Q
R
Q
]

a

n
n
¢
o
[+
o
]
5
P

3
[e3
£
T
g

*

d
d
d
d
b4
b
b
b

0

&

0N

"

0

8

n
T Qo

[+

R

[+

3

Y

L
[+2
R
[<3
]

=

5 delay cell

n
[:§
N
3
2
O 0O
- I
O T
g n
o
»

Second Phase 5 Gy Qe Qs

Gaussion elinination O Q
Gu Ox O Qu Square array

000000

First Phase —> Gy 4
Orthogonal triangularizetion l T 1

-0
L0000

i
QI
d

results
Triangle array

Figure 5. Nash’s systolic implementation of
modified Faddeev’s algorithm. Note the use of
delay cells to skew the data flows.
microprograms of Figure 6 on each incoming row. This
corresponds to the first phase of the modified algorithm.
Notice that the required skewing of the data flow is
performed by a triangular array of delay cells (represented
by rectangles) above the system. The second phase is

accomplished by a similar flow of C and D, only this time

the cells execute the microprograms of Figure 7 on the data

26

elements and the resulting matrix will appear row by row

coming out from
output rows are
triangular array
With a matching

CA''B+ D in 5n

the bottom of the square array. These
straightened back to normal by another
of delay cells below the square array.
I/0 bandwidth, the system will compute

- 1 steps and solve a linear system of n

equations in 4n steps.

Figure 6.
cell and

during the

BOUNDARY CELL
if X, =0 then

kegn
Cout =1
Xin Sour = 0
l r=20
_) Cout end
— Sout else begin
t=/r2+ x2
Cout = r/t
Scu* = xln /t
r =1
end
INTERNAL CELL :
XIn
Cn —)—9 Cout = Cin Xout = “Sip r * L Xy
Sin = — St = Siq r=C,r + S, X
xou*t
DELaY CELL :
Xln
Xin = Xourt

Microcode specifications of boundary
internal cell used in Nash’s array
first phase, i.e. Givens rotations.

27

BOUNDARY CELL

X

—> Mout M - in
N * out r

INTERNAL CELL :

X

in

Mo — — Mout = M,
‘*_’)_’)*o " out

x
Il
x
!
X
5

X

out

% Temporarily unused n-bit bus

Figure 7. Microcode for boundary cell and
internal cell used in Nash’s array during the
second phase, i.e. Gaussian elimination.

The input data flow can be contiguous, i.e. matrices A
and B and then C and D can enter the array without any
interruption in between. Data flows of separate problems to
be solved by the array can also be fed continuously into the
array. For this to be ©possible, additional control
capabilities are necessary to switch the cells from one set
of codes to another at the proper time. Slight modification
of the microprograms will also be required.

Although Nash’s modified Faddeev’s algorithm is
mathematically sound, its systolic implementation,
unfortunately, contains some serious deficiencies. For
instance, it is possible for the array to produce erroneous

results, as illustrated by the following example. Suppose

28
we have a linear system AX = B of order n = 3 where X is an
unknown matrix, and one or more entries in column 1 of

matrix A are zeroes, in this case, a,_ :

12 3 5
A=]|047 B=|9 (3.1)
213 7
Since the determinant of A, A(A) = 9 is non-zero, A is

therefore full rank, thus guaranteeing that a solution to

the system exists and that it is unique with x, = 1.33,
x, = =-0.67 and x, = 1.67. However, when A is fed into the
array of Figure 5, because a,, = 0, during the second step

the boundary cell of row 1 column 1 will clear its r

register, previously storing a,, = 1. This effectively

transforms A into another matrix, say E, whose entries are

identical to A’s except for e which is zero, and all

11/

further processings will be on the resulting linear system

023 5
E = 0 4 7 B = 9 (3.2)
213 7
In this case, since A(E) = 4 is non-zero, E is also
full rank and therefore the procedure 1is completed
successfully, but with x. = 3, x, = 4 and x, = -1 which is

1 2 3

the solution to (3.2) instead of (3.1).

29
The cause of the above error can be traced to a bug in
the microprogram of the boundary cell. As Figure 6 reveals,

this microprogram has the line of code
r =0

which always clears the content of register r whenever

x, = 0. In fact, if at any time during processing the
boundary cell of a row i receives a zero-valued x,, from an
internal cell of row i - 1, erroneous result will appear at

the end of processing. Thus, to correct the problem, this
line should be removed.

For the purpose of verification, the reader is
referred to Appendix A where correct solutions to examples
(3.1) and (3.2) are arrived at manually using Faddeev’s
algorithm with Givens rotations. Furthermore, he |is
encouraged to examine the series of snapshots included in
Appendix B which shows the graphics simulation of Nash’s
array computing (3.1). These pictures illustrate clearly
the sequence of events leading up to the erroneous results.

Implementation errors aside, a drawback of Givens
transform is the square root needed to compute the values of
sine and cosine for each rotation. Execution time of this
operation can easily be ten times that of a multiplication
or division. Since timing is critical for proper
synchronization of data flow in a systolic array, it is
necessary to slow down the entire array correspondingly.

Thus the circular cells represent a bottleneck in the

30
system. Of course a hardware implementation of the square
root is possible, however, we have to bear in mind the cost
of added cell’s complexity.

Another drawback of this implementation is the large
pin counts for individual cells because of the need to
transmit simultaneously the sine and cosine values to
neighboring PEs. Not counting clock and control signals,
the boundary cell will require one input and two output data
buses and the internal cell will require three input and
three output data buses. For n-bit operands, 3n and 6n I/O
pins are needed for the boundary cell and the internal cell,
respectively. This translates to a large chip area for each
cell. Bus sharing or multiplexing schemes to reduce I/O
lines are possible, but they would increase the processing

time and consequently, reduce the throughput rate.
CHUANG AND HE’S IMPLEMENTATION

Another systolic implementation of Faddeev’s
algorithm, proposed by Chuang and He,?° significantly
improves upon the previous array. As shown in Figure 8,
many similarities exist between the two arrays’ design. To
compute CA"!B + D from (2.2), both systems use a triangular
array for the triangularization of A and the annulment of C,
and a square array for extending the corresponding
processing to B and D. The input data flow to both systems

are similarly organized and skewed, and pipelined through

31
each system in a similar fashion. For the processing of the
lower half of the input data flow (i.e. matrices C and D),

both employ ordinary Gaussian elimination.

d«

dao ds

dlt d!’ da

dl\ dse d¢3 dtl

Ciz Cx Ca Ca b b b
Cu Cyu Cm Ciu bu by bu b
Cx Cu Cu Ou bu bu bu l
Ca Ce Oq On bu by |
Second Phose —> Cu Q4 Gn O oy !
(without pivoting) 0y Osx Qe O]
Oy Opr Oy l
Ga T‘l S array
First Phase —> Oa
(with pivoting) 1 | W
STHICH I
LI R
LR O]
ODEPD:C]
T array |w| L results
l Xau
N Xa X
v X Xp Xe
xll xﬁt x!: x“
Xy Xee Xn»
xﬂ x!
Xn
Figure 8. Chuang and He’s systolic
implementation of Faddeev’s algorithm. The

triangularization method used here is Gaussian
elimination with neighbor pivoting.

32

However, Chuang and He’s system processes the upper
half of the input data flow (i.e. matrices A and B) using
Gaussian elimination with neighbor pivoting instead of the
Givens transform.!® Hence, while numerical accuracy is
somewhat inferior, this implementation is less expensive in
terms of processing time and hardware complexities. Because
the square root operation is not used, the array avoids the
bottleneck problem created by the boundary cells of the
Nash’s array. And since the rightward data flow essentially
consists of only one operand, M .., the pin counts of
boundary cell and internal cell are correspondingly reduced
to 3n and 4n, respectively.

Since it 1is obvious that different phases of
processing are required for the upper half and the lower
half of the data flow, two separate sets of microprograms
for boundary cells and internal cells are needed, as shown
in Figure 9 and 10. The first set, the pivoting functions,
performs Gaussian elimination with neighbor pivoting on A
and B, while the second set, the non-pivoting functions,
performs regular Gaussian elimination on € and D and is
essentially the same as the functions of Nash cells in
Figure 7.

As the data flow is pipelined through the array, each
boundary cell stores an input data element and sends a
multiplier M ., rightwards to modify the input data that

enter the internal cells of the same row. Along with each

33

BOUNDARY CELL

if IX,t 21X then
begin

Vout € 1
Xin f X, £0 then
" Mot € -X/X,
—> Jout else M «— 0
—)Vout out
X — X,
end
else
Vour €— ©
Mout — X /X
INTERNAL CELL ¢
iIf V, then
Xin begin
Xoug € X + Mo x X,
My — — Mout = My, X — X
o SISV "
end
else
Xout Xout €= Xjp *+ M x X
Figure 9. Microcode specifications of cells

used by Chuang and He’s array for Gaussian
elimination with neighbor pivoting.

M it generates a one-bit boolean value V__

ut to signal

t
whether pivoting is needed. Each internal cell stores a
data value arriving from the top and passes downward all the
following data after modification. M ., and V_ remain
unchanged as they travel rightwards through the array. For
an input column of length and width 2n data elements, the
output will be a matrix of order n emerging from the bottom
of square array. It can be seen that when the systeh
matches the I/0 bandwidth, 5n - 1 steps are required to

obtain CA"'B + D and 4n steps are needed to solve a linear

system of n equations.

34

BOUNDARY CELL :

Xin

d
: ";:t Mout € ~X@o /X

INTERNAL CELL :

xln

M —)—) Mout = Min Xout € Xy + My ® X
¥ - ¥

X

out

* Temporarily unused 1-bit bus

Figure 10. Microcode specifications of cells

used by the array for ordinary Gaussian

elimination.

Like in the Nash’s implementation, the input data flow
of this array can be continuous if additional control
capabilities are used to individually switch each cell from
pivoting to non-pivoting mode as required. As published, no
technique was mentioned by the authors of both
implementations to perform this switching; however, we can
think of at least two different techniques to do this. One
is to have the host or a dedicated controller generate the
controls necessary for each individual cell, thus requiring
a compléx cell addressing scheme. Another is to tag control
bits to 1input data elements which will then carry the
control information with them throughout the array. This
method assumes that the host, while generating the input

data, will add the necessary control information to it. 1Its

35
down side is that it will force an enlargement of the I/0
bandwidth between the host and the array. In the next
chapter, it will be shown that a combination of the above
mentioned techniques will be used in our design. Thus,
while having the advantages of both, it will avoid some of

their inefficiencies.

Input Decomposition

Often, problems in real-world applications are larger
in size than the available I/O bandwidth between the host
and the array. When this is the case, increasing the
array’s size or speed does not bring about an increase in
throughput since the 1limiting factor is the I/O bandwidth
itself. One solution is to decompose the problems into
smaller sub-problems, which can then be stored in the host
and later processed in the array one at a time. In general,
the tasks of decomposition and post-processing are complex
and time consuming: passing intermediate results back and
forth between the host and the array reduces the throughput
that the I/O0 bandwidth can support. Furthermore, the array
throughput also suffers because of the pipeline flush
brought about by the interrupted data flow.

To avoid these problems, Chuang and He propose
structuring the array as a feedback array system. The idea
is that the system simulates the operation of an arbitrarily
large array by using the small arrays over and over, with

the output of the small arrays fed back to be processed with

36
other input data at the proper times. To match the input
data flow with the I/O0 bandwidth, it is necessary that the
data flow be decomposed. For an I/O0 width of w, it is
suggested that the data flow be cut into strips of width w
parallel to the direction of the data flow, or bands of
width w vertical to the data flow. These strips or bands
are further cut into blocks of length w. A problem of size
2n x 2n where n is m times w will yield 2m x 2m blocks.
Depending on the order in which these blocks are fed into
the array, we have parallel, vertical or hybrid

decomposition as shown in Figure 11.

virtuat width

one strip
one strip

steps

é~—= data flow

123 45678 9 10
Hybrid decomposition

Vertical decomposition

Parallel decomposition
one band
1 23 436789 10 steps

{2 349678 9 10 steps

w actual width actual width
v v

(ad)] ()

Figure 11. Three ways to decompose the input
data flow. (a) Parallel decomposition. (b)
Vertical decomposition. (c) Hybrid
decomposition.

37

In this figure, the series of vertical numbers
represent the order of the steps in which the strips or
bands are fed into an array. Note that in the parallel
decomposition (Figure 1la), the end of the first strip
overlaps with the beginning of the second strip, i.e. the
last data item of the first strip enters the array at the
same time (step number 9) as the first data item of the
second strip. The bands of the vertical decomposition
(Figure 11b) are similarly overlapped, as with the band
segments and the strips of the hybrid decomposition
(Figure 11c). All this overlapping ensures that the input

data flow to the array is continuous.

Feedback Systems for Parallel Decomposition

Suppose we want to compute CA'!B + D for matrices of
size n using the full size array of Figure 12. Again the
available I/O0 bandwidth is w wide. We can decompose the
2n x 2n input data flow into 2m strips, each w wide as in
Figure 1la, numbered from V, to V,_ . For m = 4, the full
size array of Figure 12 can be thought as consisting of 26
subarrays, with each subarray of type T or S and of size w.
Under the given I/0 constraint, feeding the strips one after
another continuously into this array will not work since the
rightward data stream generated by a T subarray from one

strip will not meet the following strips at a proper time.

38

subarrays T SE 82 SE SE

LDl

£, B2 B3 Ey

Figure 12. Systolic system with 26 subarrays of

types T and S, each of width w. The available

I/0 bandwidth is also w.

On the other hand, the feedback array system of
Figure 13 will process the same data flow correctly under
the same I/O constraint. This feedback array system
simulates the 1large array of Figure 12 by using its
component arrays over and over again as follows. Initially,
as V, is fed into the T array, it generates a horizontal
data stream which is then stored into the memory buffer Bl.
The content of this buffer is recycled into arrays S,, S,,
S, and S, for the processing of strips V,, V,, V, and V;
respectively as they arrive. When the intermediate result
from strip V, comes out of S,, it too goes into the T array
to produce another stream of horizontal data which is then
stored into buffer B2. Again, the content of B2 is fed back
into arrays S,, S, and S5, to process the intermediate

results of V,, V , and V., coming out of S,, S, and 8,

39

input data fromn host

DEMUX

MUX
o

g
K

i
%

B
<

Ee b5 B2

L Memory Buffers

X Bl v _x_(2nd
x
[}
(=]

Lﬁwx@n—w—
[B3 w x @n - 2w)]
B4 w x (2n - 3w)

LHERT] &

Figure 13. Feedback systolic system with a
smaller number of subarrays for parallel
decomposition. This systen cannot solve

problems with m > 4.

respectively, and so on. To properly synchronize the
horizontal data streams, the buffers Bl, B2, B3 and B4 must
be of length 2n, 2n - w, 2n - 2w and 2n - 3w respectively.
Note that each successive buffer is shorter by w. This is
because as a data strip V; goes through a square array S, it
is shortened by a w x w block of data, which remains inside

S. Hence, the T array processing this shortened data strip

40
will generate a correspondingly shortened horizontal stream
of modification factors.

This feedback array system achieves maximum throughput
using much less component arrays than the larger array in
Figure 12. The number of steps for it to compute CA'!B + D

is

((2m)(2mw) + w - 1) + mw

(3.3)

(4m + 1)n + w - 1 = 0(mn)

where 0(k) denotes order of k.

Since this system requires m S arrays and m buffers,
it is not quite independent of problem size. Because the S
arrays are identical, eliminating all but one reduces the
number of component arrays needed and, at the same time,
yields a design that is problem size independent. Figure 14
illustrates a one-T one-S feedback array system. The
feedback scheme is now two-dimensional, with horizontal and
vertical data streams. The input data flow is similarly fed
into the system as in the previous system. However, because
only one S array is available, each data strip V_ where
r =2, 3,..., 2m will be processed by the same S array r - 1
times. While intermediate results of strip V, will go
directly into the T array, an additional buffer B, is needed
to store the intermediate results generated from strips V,,
V..., and V, .. The feedback of these intermediate results

to the S array is inserted in between adjacent strips thus

41
preventing data strips from V, onward to be fed continuously

into the system.
The throughput of this system is of course lower. The

number of steps necessary to complete CA"!B + D is now

m
2mw +) (2m - k)(2m - k + 1)w + 2w - 1

k=1
7 5
—(m?n) + —(n) + 2w = 1 = 0(m?n)
3 3
Vo Vs, Vy Vs, Ve V5, Ve
MUX \/
1 > E4) E3 J Ea) E]
X 88 Buffer for
= intermediate results

> Bs: (2n — w) x w_[—

MUX
Memory Buffers
T é——————ﬁlx w x (2n) }———
=
= l—-{B&wx(Bn—w)]——

—>!B3x w x (2n - Ew)l—
L—{B4: w x (@n - 3w)}—,

Figure 14. Two-dimensional feedback system with
one S and one T subarrays. This system is
problem size independent.

42

Feedback Systems for Vertical Decomposition
In Figure 15 below, Chuang and He illustrated how an
array wider than available I/0 bandwidth can solve a
matching 1large problem when the input data flow is
decomposed vertically like in Figure 11b. Again suppose the
I/O bus is w wide and the array 1is 2n = 2mw wide.
Essentially the same systém as that of Figure 12, this array
system has in addition a 2m-way demultiplexer on the input
side and an m-way multiplexer on the output side. The input

data flow, consisting of 2m bands of 2m blocks each, is fed

-
<

}
’_(/)

;
’_(/)

v
_(/)

!
"(/)

}
_(/)

<

’_(/)

3]

12

:._‘
(2
(2]
)
)
(2]

MUX
W
Host
Figure 15. Array system for vertical

decomposition of input data flow. With 1I/0
bandwidth w, full utilization of available cells
is not possible.

43
into the array one band after another continuously. The
demultiplexer feeds the blocks of each band to the subarrays
on the first row of the system one at a time from left to
right. Since all the blocks are skewed, each overlapped
with its left and right neighbors and the whole band is
contiguous as it enters the system.

For this array, the total number of steps to complete

the process is

((2m)(2mw) + w - l) + mw =

(4m + L)n + w - 1 0 (mn)

which is identical to equation (3.3) of Figure 13. While
the array of Figure 15 has many more subarrays, its
processing speed is not higher because maximum usage of all
cells 1is not realized due to the 1I/0 bottleneck.
Furthermore, this array is not problem size independent. |
Although inefficient in terms of usage of available
hardware, the array of Figure 15 serves as an example of how
a vertically decomposed data flow should be processed. A
more flexible system, shown in Figure 16, is problem size
independent and delivers the same throughput using a smaller
number of subarrays. In this system, the 2m-way
demultiplexer of Figure 15 is reduced into a 2-way
demultiplexer which is repeated at the input side of every
row of subarrays. As the bands of the input data flow enter
the first row of the system continuously, the first block of

each band is routed into the T array while the rest are fed

44

HOST
v
MUX/DEMUX
T x>
B 1 g S] <
s 27,
DEMUX
e
Bt
Figure 16. Problem size independent array

system for vertical and hybrid decomposition of

input data flow. Available I/O bandwidth is w.
into the S array on the same row. The rightward data stream
generated by the T array is fed into the S array and
recycled until all blocks of the same band are processed.
Because these blocks form a contiguous data stream, no

buffer is needed to store the Mou and Vo values for

t ut

recycling. On the other hand, X values stored in the S
array cells need to be saved as shifting into the
neighboring block begins since they will be used later in
the processing of the next band of data. To simplify

control and reduce memory access, they will be stored into

45
the recycling shift registers implemented next to each cell

as illustrated in Figure 17.

recycling every w steps

»
[2a]
<
(o]
—
€
o]
<
[V
Figqure 17. Recycling shift registers for the
temporary storage of the X values. Implemented

next to each cell, each buffer is p in length.

Outputs from the bottom of an S array, the X
values, will be processed in the same way by the T and S
arrays on the next row. When the problem is larger than the
system, i.e. 2n > 4w of Figure 16, the outputs of the last

row’s S array will be stored in buffer B, to be recycled

back into the system for further processing.

Feedback System for Hybrid Decomposition
Due to the finite capacity p of the recycling shift
registers of Figure 17, the size of problems that can be

solved by the feedback system of Figure 16 is limited. A

46
way to circumvent this 1limitation is to use the hybrid
decomposition of Figure 1lc. The input data flow in this
case is divided into parallel strips of width pw. These
strips are in turn divided into band segments of width w and
length pw vertical to the direction of the data flow.
Segment by segment, the strips enter the system of Figure 16
one after another continuously as in parallel decomposition.
Blocks of each segment are processed as 1in vertical
decomposition and fill the recycling shift registers of the
cells with new X values, to be used later with the next
segment. The rightward stream of modification factors,
generated by segments of the first strip, is saved to be re-
used on corresponding segments of the following strips,

hence the need for the memory buffer B, .

Sparsity in Matrices

Another important merit of Chuang and He’s feedback
array system 1is that, as they pointed out, it can skip
blocks of zeroes in the input data flow, and thus greatly
reduce the processing time. As an example, consider the

linear system

AX = B (3.5)

47

where A is a lower blocked band matrix of order n, i.e.,

-All -
- Ay,

Sl e T

A711-p+1,m-p+1
‘ -pt2,m-p+2

] Am,m-p+1 ¢ ° Amm i
T
and B = [B,B, ..., B,] , n = mw, and each Aij or B;
with i =1, 2, . . . , m, 1 £ j < i, is a w x w submatrix,

or block.
The data flow is decomposed parallely into w wide
strips of w x w blocks as shown in Figure 18. The blank

blocks are the zero submatrices and the —1i j blocks are the

V.V, VY, WLV, B v

AL B,
ALlAL, B,
A Az Aas B,
Al B ulBL, B,
Al Al Py B,

A A A |B

64 63 66 76

Figu;e 18. Parallel decomposition of a sparse
matrix problem with m = 6., Note that matrix B

in this case is the strip L/

48
diagonal submatrices of the -I matrix. Without 1loss of
generality, B is assumed to be an n x w matrix. In this
example, the bandwidth p of A is three blocks wide.

To understand how sparse matrices can be exploited to
yield better throughput, let us analyze what happens when
the system from Figure 12 process the data flow of
Figure 18. On its first row, as the 2m blocks of V, are
processed by the T array, 2m blocks of M , values are

generated horizontally to modify data strips on the right.

Since only p + 1 blocks of V, are non-zero, only p + 1

blocks of M_ , values are non-zero. This is because when
incoming X, = 0, the boundary cells invariably generate
M ,. = 0. Furthermore, because the internal cells always
generate X . =X _ when M, =0, as the data strip V_,,

(containing B matrix) goes through array S_,,, on the first
row, only its corresponding p + 1 blocks are modified, with
the first zero block below B, becoming the result X . On
the other hand, strips V, to V_, emerge from the S arrays of
that row unmodified but minus their first blocks. This is
because as they pass through these arrays, all zero entries
of their leading blocks are retained in the cells’ X
registers, and thus X ., = X, e

The above process is repeated on succeeding rows of

arrays until all results are computed. Since the S arrays
of column i (i = 2,..., m) are not needed to process strip
v

jr they can be removed from the system and the strip’s

49
leading blocks of zeroes can be skipped. Because they do
not contribute to the modification of data strips on the
right, the zero blocks above and below the diagonal band of
-I can also be skipped.

The architecture that most efficiently process sparse
matrix problems is shown in Figure 19. This system receives
the data flow of Figure 18 from the host, where all the zero
blocks are eliminated except those of the strip V_, . As
seen from Figure 19, the system uses only one S and one T
arrays. The single T array is fed with A’s non-zero blocks,
one strip after another continuously. 1Its horizontal data
flow, consisting of modification factors M ,, and V_

at ! ls

1 m+11 BE
A 5 W 4P
B, B;" Bj
Az
Ay MUX
T [Mas
e BN
v
<--->
! A
BS R
PR \'2
xe
Xy

Figure 19. Systolic system for the processing
of _Sparse .matrix problens. Note that this
design requires an I/0 bandwidth of 2w.

50
fed directly into the S array to modify V_ ,. V., . iterates
through the S array p + 1 blocks at a time, each iteration
is concurrent with a strip of A. During each iteration, the
leading non-zero block remains in the S array where it is
used to modify the next p - 1 non-zero blocks, and transform
the last block (originally a zero block) into a block of
results. The demultiplexer below the array S routes the
modified p - 1 non-zero blocks to buffer B, and outputs the
block of results to the host. As they emerge from B_, the
modified p - 1 non-zero blocks are then combined with a new
non-zero block and another zero block from V_ . to form
input data for the next iteration.

For instance, the first iteration sees the T array

process blocks A ,, A,,, A, and -1__ . of strip V, at the

, 1

same time the S array process blocks B, B,, B, and the

first zero block of strip V, ,. This produces:
- block B, which remains in the S array,
- blocks B{'’ and B{'’ which are temporarily stored in
buffer B_,
- and the block of results X which is outputed.
During the second iteration, the T array will process
blocks A,,, A,,, A,, and “1p., , ©f strip V,, while the S

array process blocks B{'’, B{!’, B, and the second zero

block of v _. . The entire sequence of processing is

illustrated by Figure 20.

51

| X, (6>
a 0 | Mewcs
X5 (3> LI Be(S) | Mg [~ L ness
EX<AR) _MM,_A“ Ve
B _Be(4) _ﬂw ;]-R"-'-.S
[X.C4) [Bs(4) My | Aes
B, /10 (Moo s Vs
r§;£_<_4>_B,,<o> | Moo "Lt
B __Bs (¢ | Ms, | A
X;(3> | B(3 | My [Asq
L },(3)/55_ :";:_u_éL Vs
= [Bi(® |Bs(® | Me =10
B R\gxa | Mo | Asa
Xe @ | By (@ | Mg A
5. /o Meee A V3
[Ba @ | B0 [Mg 1 ez
r_;;,m | Mz A
X, (D [Be (D | Mp | Aae
_B,(l)/_o | Moy . Vo
[B> B30 | My = Lot
NB 0 [Ma | Aa
output 1B (> | My | An
from _A.“_ \/1
S input to
S input to
T

Figure 20. Processing sequence showing the
order in which the non-zero blocks of Figure 18
are fed into the system of Figure 19.

Thus, the total number of steps it would take the

system to compute AX = B is

p-1
[m(p + 1) - z

k + 3)w -1 = (3.7)
k=1

1
n(p +1) - —(p - 1)pw + 3w - 1
2

52

Note that this throughput rate requires that the
system process the data strips of A concurrently with the
data strip of B. Consequently, the total I/O0 bandwidth
needea must be 2w wide instead of w. Furthermore, if B has
more than one strip, the system of Figure 19 must be
modified. The reader should be aware that the formula (3.7)
was derived by the author of this thesis after it was found

that the one given in the original paper was erroneous.
ASSESSMENT SUMMARY

As we have examined both systolic implementations of
Faddeev’s algorithm, several points should be noted. First,
the feedback system of Figure 13 as shown can not process
problems in which (2.1) 1is larger than 2n x 2n, where
n = mw; however, by adding another feedback path from the
output of its component array S, to the input of the top
demultiplexer and using external memory for all B; buffers,
the system can be made independent of problem size.

With cells specification of Figures 6 and 7, system
configurations of Figures 13, 14 and 16 can perfornm
Faddeev’s algorithm using orthogonal triangularization.
This means that Nash’s implementation of Faddeev’s algorithm
can be configured to have feedback paths which will allow it
to solve problems larger than the available bandwidth.

Since the configurations of Figures 13, 14 and 16

extensively multiplex data flows to and from their component

53
arrays, added <control and hardware complexities are
unavoidable. Furthermore, because the data flows must be
skewed and overlapped, all multiplexers (and demultiplexers)
used will need the ability to switch paths sequentially for
each column of entries. This will require additional
control for each multiplexer (or demultiplexer) which, in
turn, adds to the complexity of the systems.

Lastly, although the feedback array systems for the
vertical or the hybrid decompositions represent an
interesting approach to solve the size independent problems,
they require overly complex structures and controls while
offering no real benefits or throughput improvement over
their counterpart for parallel decomposition. These systems

are thus impractical for actual implementation.

CHAPTER IV
A NEW SYSTOLIC ARRAY ARCHITECTURE

In this chapter, we will introduce a new systolic
implementation of Faddeev’s algorithm which, in its basic
form, reduces the I/0 bandwidth requirement by half and the
number of cells needed by more than one third. Furthermore,
it will eliminate some of the drawbacks that exist in both

of the previously described arrays.
ARCHITECTURAL DESCRIPTION

Our design consist of a square array in which the
cells are orthogonally connected as illustrated in
Figure 21. Data bus interconnections between cells are
indicated by arrows. Functionally, there are two types of
cells. The first type consists of all the diagonal cells
(denoted by circles) of the array, and the second type of
all the non-diagonal cells (denoted by squares).

Depending on the actual processing phase, the array
functions in one of the two modes: the T (triangular) mode
or the S (square) mode. Together, these two modes implement

Faddeev’s algorithm to compute CA"!B + D from (2.2).

e Os
Step # Cl C2C4 du dza dm
16 0 0 5
15 0 0 49:
14 0 0 <
13 0 0 s
. E
12 00 o
[
11 00 3
10 0 0 et
ke
9 00 4;
8 1 0 a
7 1 ~
6 1 0
S 1 0
4 1 1
3 1 1
2 1 1
1 1 1
«< A" i > “-—-—-- W----- >

=

] {
+’
4 £ 4 ~ &
-O-L L g3
y © T 1 T 3 o £
g = LPO-L] Bq ® 9
2 €
£ 6 3 $ i 3 W WxW X«
te /O OUH :
o 4 o w
] O i
- 0
b d ud ad Vv L?_"
T T 7]
P %
; i XKz XKas
i
¢ Xe Xz Xes

X X X X
“ e Dutput results
Xa Xe Xa

Figure 21. Dual mode systolic implementation of
Faddeev’s algorithm. The number of cells needed
is smaller and I/O bandwidth requirement is
reduced.

56

When the array is in T mode, cells of rows i where
i=1, 2,.., w and columns j where j 2 i, form a triangular
~sub-array which, based on Gentlemen and Kung’s array of
Figure 2, performs Gaussian elimination with neighbor
pivoting on A, and ordinary Gaussian elimination on C.
During this mode of operation, the circular and square cells
essentially carry out the same functions specified by
Figure 3 boundary and internal cells, respectively.

When in S mode, the entire array is used to process B
and D. In this mode, every cell of the array acts similarly
to the internal cell of Figure 3, 1i.e. circular cells
functionally become square cells. In order to switch the
array from one mode to another, it is only necessary to
change the program of the diagonal cells. This is
accomplished with cells microprograms listed in Figure 22.

By alternating between the two operational modes T and
S, our array essentially simulates the system of Chuang and
He (the one-T and one-S system in Figure 8) to solve (2.2)
with a smaller number of cells and half the bandwidth
requirement. Naturally, the input data flow will have to be
slightly modified because of the differences in array’s

topology.

PEs’ Description

The circular and square cells, as shown in Figure 22,
have identical I/0 and control bandwidth: two n-bits data

input ports, two n-bits data output ports, four one-bit

CIRCULAR CELL .

Xn
Clyn
.2,
C4,,

gm

M 1

c3, @ e,
cs -

Ch o

Xoue

if C4 , =1 then

SQUARE CELL

o, - Mo
cen X~ e

if C4, =1 then

X €00 X €00 ;
If C1 ,, =1 then If C3,, =1 then
begin begin
I IXpl 21X aond C2, =1 then Xgut €& X+ M x X
begin X & X1
C3out €& 1y end
L X # 00 then else X 4 € X+ M ®x X
| Maout & - X/ X Cl ot & Cl
| else C2 ¢ € C2pi
| Mout €< 00 C3 ot < n i
X 6 X C4w1(_'C4|n"
end A >
else begin Mot e ML, 5 i
C3°u1 «— 0
Mout €& — Xp 7/ X
end
end

else begin_ Moo
If C3,, =1 the
begin
xou’t (__x*'Mln‘xln;
X 6= Xpnt
end
else X o4 € X+t My x X
C3 o0t €< C3,
end ;
Cl gu¢ € Cl
CRout €& C2i
4our € C4p

Figure 22. Microprogram specifications of the

circular and square cells for the array’s dual

mode operation.
control input ports and four one-bit control output ports,
for a total bandwidth of 4n+8. In fact, this number is
comparable to the actual pin count that Chuang and He’s

internal cell (in Figure 9) would need, since their cell

does require extra control capabilities to work properly.

58

Although the choice of processors for our cells will
be implementation dependent, the following observations
nevertheless can be of support.

Physically, one type of processor can be used to
implement both circular and square cells because of the same
I/0 and control bandwidth requirement and similar general
functionalities.

Such a processor would have to be on a single chip for
the array’s chip count to be kept at a minimum. Another
advantage is that functional blocks of the processor can
work together without the time and pin-out penalty of off-
chip communication.

Internally, the architecture of the processor should
allow for a significant amount of parallelism, i.e CPU
functions should be partitioned into units that can operate
concurrently. To supply data efficiently to these units,
multiple internal data buses are essential. Additionally, a
horizontal microinstruction set is mandatory to support such
a structure; this in turn will dramatically shorten
microprograms and will enhance performance.

A large internal storage for microprograms and a
microsequencer with good branching facility must be provided
by the processor for adequate cell programmability. Also,
provision must be made for the transmission of pipelined
systolic control signals, which are crucial for run time

operation of the array.

59

And finally, the processor should have fast, on-chip
arithmetic and logical capabilities, with a rich set of
register files for flexibility of operation.

Because of these atypical requirements, conventional
microprocessors which are available commercially are not
quite suitable as PEs in a systolic array. For now,
dedicated systolic chips are scarce and the few that are
being offered on the market lack some of the above features.
However, this situation is expected to change soon as the

use of systolic architecture will become more widespread.

Control Signals Interconnections

As shown in Figure 21, the circular cell relies on
three external control signals Cl1l, C2, and C4 for internal
computation and itself generates signal C3, all of which it
broadcasts locally to its neighbors for correct operation of
the entire array. The square cell uses only C3 and C4, and
passes all control signals it receives to neighboring cells
unchanged. Cl, €2, €3, and C4 are all one-bit boolean
values whose functions and interconnection patterns are
described below.

Cl controls the behavior of diagonal cells and
consequently selects the operation mode of the array. When
Cl is true, the diagonal cells execute the portion of their
code that enables them to function 1like Kung’s boundary

cells, thus changing the array into T mode. Otherwise, with

60
Cl false, diagonal cells function like square cells, and the
array is in S mode.

Because of the strict timing required, mode switching
should occur as entries of the first row of B reach each
cell, i.e. the switching sweeps across the array in skewed
waves as the transition between C and B flows through the
cells. This can be accomplished without the need to address
separate control signals to each individual diagonal cell.
In fact, Cl needs to be fed only to the top left diagonal
cell of the array and, with cell interconnections of
Figure 23, will be pipelined through the array to reach

every diagonal cell.

Cells used in
ij 1-hit T mode

//’\

el A |
/)

4 O N

i N

7z Iy

/ I

i

1]

It

J i

I

H

Il

li

Il

I

il

]

- :<i:::?

Cells used in
S mode

Figure 23. Dual mode array shown only with the
interconnection pattern for control signal C1.

61

As the data flow changes from matrix A to matrix C, T

mode processing in the array gradually switches from
Gaussian elimination with pivoting to non-pivoting. This
event is started with C2, whose value is true for pivoting
allowed and false for pivoting not allowed. Again, C2 is
fed only to the top 1left diagonal cell and propagated
through the array via the connection patterns shown in

Figure 24.

(-

O

Figure 24. Dual mode array shown only with the
interconnection pattern for control signal C2.

Generated internally by diagonal cells when they are
in T mode, C3 is the functional equivalent of M ., of the
boundary cell from Figure 3. It is thus used to direct
square cells on the same row to pivot incoming data when

true, or not to pivot when false. Figure 25 shows C3

connections in the array.

62

1-bit
e<::>a - - — C3

From FIFO queue B q
To FIFO queue B q

Figure 25. Dual mode array shown only with the

interconnection pattern for control signal C3.

When switching between the T and S modes of operation,
it is essential that the X registers in each and every cell
of the array are cleared to =zero before the new data
elements arrive. If C4 is true, a cell will clear its X
register prior to receiving X, from its northern neighbor.
The X register remains unchanged if C4 is false. C4 is
distributed throughout the array by the interconnections

illustrated in Figure 26.

Control Interface With Host

We have shown how external control signals are
distributed throughout the array with only simple and
regular interconnections. The need for complex individual
cell addressing scheme is thus effectively eliminated while
accurate timing at cell level is maintained.

Typically, systolic arrays are attached to a general

purpose host running UNIX, an operating system favored by

63

l $ J J
y l) l
l 1 1 l
Fiqure 26. Array showing only the

interconnection pattern of control signal C4.

the scientific and engineering community. This is because
UNIX provides a programing support environment that is
crucial to the development of systolic application software.
However, the real time response of such host is inadequate
for the critical control timing of systolic arrays. This is
due to the software overhead associated with various
peripherals supported by the operating system. Thus, the
computational power of a systolic array cannot be fully
exploited unless effective interface with the host exists.
In our case, a cost effective approach would be to
generate and buffer all necessary control signals along with
data prior to the initialization of a process; if buffer
storage is sufficiently 1large, multiple problems can be
solved by the array in burst before refill is necessary.

For a small number of arrays, this approach is efficient and

64
rather simple to implement. However, it becomes 1less
desirable as the number of arrays increases.

A more efficient solution requires the use of a
dedicated controller for array management. Advances in VLSI
technology today have made the cost of fast and powerful
conventional microprocessors very affordable. Acting as an
intelligent interface between a slow host and fast arrays,
such a device requires minimum supervision from the host
while is able to control a large number of attached arrays.

In any case, the sequence of control signals needed by
the new array to solve (2.2) is simple and straightforward.
The task of programing the host or the controller to
generate it 1is trivial. In the next section, such a

sequence will be specified with the corresponding input data

flow.
DATA FLOW DESCRIPTION
Again suppose that A, B, C and D of (2.2) are n X n
matrices and the available bandwidth is w = n. The input

data flow, of width n and length 4n, will be continuous and
consists of matrices A, C, B and D, in that order, skewed as
shown in Figure 21. Note that the control signals necessary
for each step are displayed alongside the data flow.
Processing will be as follow. Initially, A enters the
array followed by C; because C4 is true (for the duration of

one cycle), all cells will clear their X register of values

65
left from any previous problem. With C1 and C2 both true,
cells of the upper triangle begin performing Gaussian
elimination (with neighbor pivoting) to triangularize A as
its data elements are upon them. As Cl reaches each
diagonal cell, the array gradually switches to T mode.

When entry c of matrix C arrives at the top left

11
cell, C2 becomes false which disables neighbor pivoting in
the diagonal cells. Thus, only the ordinary Gaussian
elimination is performed to annul C. Throughout this
period, Cl remains true, hence the array remains in T mode.
Next, as B reaches the array, C4 goes true again for
the duration of one cycle (step), long enough for the top
left cell to store this value; the signal is then propagated
to all cells and clears their X registers. At the sanme
time, C1 becomes false and remains so until the last row of
D is in the array. As Cl1 reaches each diagonal cell, it
turns it into a square cell and thus gradually changes the
array to S mode as the data elements of B are pipelined
through the array. The results, shown in Figure 21, fully

emerge from the bottom of the array after 6n - 1 steps for

CA"'B + D and 5n steps for the solution to a linear system.

Storage and Feedback of Modification Factors
During the processing of matrices A and C,

modification factors M .. and pivoting control bits C3 are

t

generated by diagonal cells based on incoming values X, . -

They are then sent rightwards to the square cells on the

66
same row to modify adjacent X, values. As it reaches the
edge of the array, this rightward data stream is stored in
B , a FIFO queue of size w x w shown in Figure 21. This
queue acts as a delay mechanism that will recirculate its
contents to the left side of the array for the processing of
B and D as they arrive at the array.

To reduce demands on available bandwidth between the
host and the array, B, should not be implemented using host
conventional memory. Instead, the dqueue should be a
dedicated buffer made up entirely of shift registers and run
af the same clock rate as the array. This represents the
most efficient way to implement the horizontal feedback

path.
SOLVING SIZE INDEPENDENT PROBLEMS

Another virtue of the array in Figure 21 is that it
can readily handle problems of arbitrary size without
requiring any architectural modification. Furthermore, the
throughput can be improved proportionally by adding any
number of arrays to an existing system. This gives the
array a degree of flexibility that makes it truly useful in
real 1life implementation: performance 1is adjustable
according to cost constraint while Versatility is preserved
regardless of expansion of any size.

For problems larger than array size, the input data

flow shown in Figure 21 will be decomposed into smaller

67
strips which are processed continuously by the arfay, one
after another. The intermediate results from each strip
will then be fed back‘to the array for further processing.
This vertical feedback and the horizontal feedback of the
modification factors constitute two dimensional feedback

paths for the array.

Input Decomposition and Vertical Feedback Path

With matrices of size n where n is m times the.
available bandwidth w, (2.2) can be parallely decomposed
into 2m strips, each w in width and 2n in length as in
Figure 1la. Each strip in turn consists of 2m w x w blocks
which are of the same size as the array. |
‘ For w = 2, n =4 and m = 2, Figure 27 shows an array
with its input data flow decomposed parallely into four
strips numbered from V, to V,. These strips are processed
by thé arraonne after another continuously. The procedure
begins with the array set to T mode as V, arrives. While V,
is being processed, a horizontal data stream consisting of

values M . and signals C3 is generated and moved rightwards

t
into B . Subsequently, the array is switched to S mode for
the computation of the remaining strips, V, to V,. 1In this
mode, the contents of Bq is recirculated back to the array

as vertical data of each strip arrive, thus ensuring proper

processing.

<Yo»
\P du A
i T R
2 R T
t
Vs Ou : Cles Ol oM
{_'_—] O O 1 Oy bu :
Vo] da O | ba b
Vo Cul dade ! bu b
r_'l Ce Cu | dy Ve ll o by v
A\ Il Cop Cea || b¢ bg { bn
V, Ce : Ces Cu : e be Il_____]
Ca Ce | Cy O : by b
Cyn Cwm (I Qg Q3 | bu
Ca Cu | On Gu L_]
Cy Oe | Op Qu -
{
Qn Qn] Qu
On Om L___
Qn Qu
Gy !
4 l <-->

From Bq
<>
QL]
L A
€
¥ n
| € _
To left side
of arroay

Vg)
=71 dg
v g
Ve ezl oag
ch cx | dy
cs cx : be
s ck | b2
cz ol | 0
ad o : 0
ag 0 !
0 0 -
0
Fiqure 27.

+ 4
] 1
14)) : :
Vo' da A
r"'} a2 of !
v o dg dg !
@M-DHVW
ag | oy o :
gz | d bE !
R I AN
of | by 0 ‘\\
| 0 0 \\
= : 0 N\
0 ! .
o - \

Intermediate results

First iteration in the processing of

a problem larger than the array size. Note that
the strips of intermediate results all have
leading blocks of zeroes.

68

69
As shown in Figure 27, each input strip v,, Vv,, V,

generates an output strip Vv{'’, v{!’, v{!’ of 1length
(2m - 1)w = 6 that is preceded by a block of zeroes as it
emerges from the array. In Figure 28, these intermediate
results are stripped of their zero blocks and then fed back
to the array where the above procedure is repeated. The
final results, strips E, and E,, come out from the bottom of
the array, each (2m - 2)w = 4 in length and likewise, is

preceded by a zero block.

<>
Ve e A
i
|

r___T ds dsi
A\ ' ds dS !
\/g> o : ® go (EMTDV
“2 a3 14
i
T A dg oR bR
\1/ | w dm | :1; b$ \l/
W I e
\/2 ca : de dip : bs
cS Cc8 ay ke L J
o) [b o -
C:n Cae [41 32
Ce Cie : ba
cxoh |]
Q [¢9) -
Qo Oa
0% | W
o
. N ¢
$on 0D, [T i
E)
o) ! ZAVER SRV :)
- > + -
‘-'L- v {;’ Q e : o] 3
i ! =
i |
\ A
Ea ! Xu !
{_ j X Xu Ml\n/
\% : X3z Xas !
El X2 : X2z Xu\ v
Xu X32 ' XB 0 \\
Xa Xee : 0 0 N
Xot X : 0 AN
Xy O N
0 0 L___"l final results

Figure 28. Second iteration of the problem.
Intermediate results are stripped of their
leading blocks of zeroes before re-entering the
array.

71
Figure 29 shows a mapping of input and output data
flow of each iteration to array execution steps. Notice
that input data flow of the second iteration is optimized,
i.e. zero blocks that exist between output strips of the
first iteration are eliminated.
In general, a w x w array will solve a problem which
is decomposed into 2m strips of length 2mw and width w, in m
iterations. During the ith iteration, where
i=1,2,..., m, the array eliminates the strip V; (in T
mode) and reduces the length of each of the remaining strips
by w (in S mode). This is because each remaining strip
leaves behind one w x w block of data in the X registers as
it is being processed by the array, and subsequently emerges
with a w x w block of zeroes preceding it. These zero
blocks can be skipped in the next iteration to shorten
processing time without incurring any error. Final results
after the m'" iteration consists of m strips, each mw in
length and w in width.
The number of steps needed for the array of Figure 27

to compute CA'!B + D is:

m
(2w - 1) +z (2m-k+l)2w=
k=1
7 3 1
—(m?n) + —(mn) + —(n) + 2w = 1 = 0(m?n)
3 2 6

STEP # C1 Cc2 C3 Looe 1 cL c2 c3 LoP 2 RESULTS
54 “e
53 B, *u i Ep
se . Xo X
S1 . _.,.@ _E a> Xeo prm
o - - - @ e Ve ik x
49 - - - -d;_...~~"d:‘2;/ P Xy 0
48 - - - a3 dRi N 0 .
47 - - - dgemRbh B 0kt By
46 - - 9 b2 Iﬂo;u\'g/ Xa Xm
43 - - 1 bg .- ..i_s @ Xu X o
44 - - - ida dey V3 i Xa X
43 - = - ud;‘g‘ Xg. .. 0
2 - - - Jea da 00
4 - - - id? b3} 0
40 - -0 M g::<‘

39 o - 1 '2,-—'c‘.‘:; ®
38 - - - C: :‘ 2
37 - -, - ice c;‘:i
36 . e]cz cgi
35 - o - i o
34 . @w - - ¢ zoﬁ agn
33 _,—d:q 4 1 1 1 (@g.-7
e T ¢ |

31 - - - =§d,, Oy}t

- - - ilde dyif

R g

28 - - - :'b. ‘.9.‘.‘.:

a7 - - - iBg. bu

&6 - - - e g%; Vi

25 - - - iba_.-tay; V3

24 - - - h: i ?

23 - - - ids dali

22 - - - da dp i’

R

20 - - - by ba!

19 - - - bRl

B8 - - 0 g';b, e) Vs

17 - - 1 g TRy VR

16 - - - %C: C..§;/

15 - - - liCs Cali

13 N |-Vt v

12 - - - %Qn Q_!/VE

1 - - - 0a Qui

10 - - 0 ‘e 0w

9 e - 1 10p _.-Te

8 - - - Ca Caj

7 - - - iCa Ce!

6 - - - 'Ca c.é

S - 0 - Cun Qe

4 - - - Ea. 0.5/\/1

3 - - - % Ou!

2 - - 0 ‘aa oy

1 11 1 Qe

Figure 29.

Control/timing sequences of input
and output data flow for each iteration. The
dash/dotted lines represent input strips, while
the dotted lines represent the output strips.

72

73
Controls and Horizontal Feedback Path
In Figure 29, values of Cl, C2, and C4 necessary for
.the above example are illustrated at each step. €3 is not
shown since it is dependent on input data and generated on
the fly by the diagonal cells. For each control signal, a 1
represents the boolean value true and 0 represents false;
when a signal remains unchanged from its previous value, a
dash (=) entry is entered. The pattern is as follow: for
each iteration, Cl is true during the first strip and false
throughout the remaining strips. C2 1is true only where
pivoting is allowed, i.e. the portion of the first strip
which contains data elements of matrix A, and false anywhere
else. C4 clears the X registers of the array each time a
new strip arrives, therefore it is true at the first step of
each strip and false elsewhere.
In general, an input strip with N blocks of vertical
data will generate a corresponding N blocks of horizontal

modification factors pairs (M ., and C3); thus, the storage

t
of the horizontal data stream should be N blocks 1long so
that timings for horizontal feedback are accurate. Because
the array itself acts as a w x w block of storage, for each
i*®? iteration, the FIFO queue B, should be (2m - i)w long.
With m =2 and w = 2, Figures 27 and 28 show the
corresponding length of Bq for eachviteration.

The buffer B, should have the addressing capability

such that its length can vary in units of blocks. This

74
permits the array to solve problems of arbitrary size, as
long as B maximum length is adequate for the largest of
them. The control for the addressing can be generated by

the host or the dedicated controller.

Multiple Arrays Configqurations

Even though both have throughput time O0(m?n), the
system of Figure 13 is slightly faster when compared to the
array from Figure 27. Given a problem, the former will

solve it with

7 3 1l
—(m2n) + —(mn) + —(n) + 2w -~ 1
3 2 6
7 5 3
- —(m?n) - =(n) + 2w + 1 = —-(m - 1)n
3 2

steps less than the latter. This stems from its use of two
subarrays, where some overlaps in processing are possible
when the S array is working on a strip while the T array
processes intermediate results from the previous strip.
Likewise, by using multiple arrays, the system of
Figure 30 gives better throughput than the single array of
Figure 27 under the same I/O constraint. This is because
each subarray effectively replaces one iteration, with
partial results from one subarray immediately processed by
the next, thereby maximizing concurrency while eliminating
the corresponding iteration. Such a system will be called

L-tuple arrays system (L = 2 in Figure 30), or L-subarrays

3
CTT ds o
vV ool dy de
1 l
Ve dep de it oy
{_ - dn daz | dn bu :
\4 |I d:n dez : b‘a 3 :
\/2 Cu : dn du : bn bu :
:___‘ Ca Ca : o{u b4z : bes bu \'2
v : Cas Ca bu b:a | bxa
V1 Ce : Co Cu : by be IL____J
Ca Ce | Co Ou | La b
Cn Ce | Qa Oa | bu
Ca Ce ; Qs Oe L
Cy O : Qea Oy -
Oy Oz | 3
On Oz L____l
On O
Oy | v
q Lo <> g
¥ O T :
2 A 3w qv P
- - - x P
dU v [;i Q : :)
. OLH 52,
£ T 3 9 +»
e L PO N g
w < s 2
1 1 8
1 1
!
Eotv X A
"_"_1 Xeg Xae \
\ { Xy Xeo MW
E, Xe | Xa XV
Xe Xg | Xy 0
Xe Xe |0 0
Xa Xe : 0 0 \\\
X, 0 1 0 0 N
0 O : 0 N
o o ! J \
= \
0 0 N
0 Final recudts

Figqure 30. L-tuple arrays system processing a
problem larger than the I/0O bandwidth w. Again
w =2, n=4 and m = 2. With L = 2 arrays, the
problem is solved in one iteration.

75

76
system. In Figure 31, control and timing sequences of
Figure 30 subarrays are illustrated. Because the input
strips V{!’ of the second array are interspersed by blocks
of zeroes which cannot be removed, buffer B2 is required to
have the same length as qu, instead of being one block
shorter.

In general, a problem requiring m iterations on a
single array will need only k = m / L iterations on a system
of L-tuple arrays, assuming that m is an exact multiple of
L. After each i*" iteration, the length of partial results
will be (2m - il)%w. Hence, the system will compute

CA"'B + D of such a problem in

m; L

2
(L + 1)w - 1 + z (Zm - (k - 1)L)w= (4.1)
k=1
7 3 1
—(kmn) + —(mn) + —(nl) + (L + 1)w - 1 = O0(kmn)
3 2 6

steps. The first part of (4.1) represents the number of
steps taken for input data of the last iteration to traverse
the system, and the summation term gives the number of steps
to feed input data of all iterations into the system. Final
results in this case always emerge from the bottom of the

last array of the systen.

STEP ¢ €L ce C3 ARRAY 1 L 2 c3 ARRAY 2 RESLLTS
54
53
s2
51
50
49
48
47
16
45
44
43
42
4
40
39
m ..
37 £, %. @ Fo
36 . : . / X Xae /
3 R AT D Xe X
34 ; - - @8 dgy Ve P X Xyl
33 - - lidg.Egi Y4, 0
- - - o a2 g o
3 - - - - - id3 bg! 0 0
30 - - - - 0 :bg b;} 0 0
2 - - - -1 '\?_;_.,,r‘ﬁ E, 0 Ko E/,El
e8 - - - - - o 0 : S Xy Xa |
ez - - - R - A D Xa Xa !
66 - - - - - aE e xe xe
s - - - - - ipdg.edRi T3 D oxg .0
24 - - - b I S
s - - - - id? by 0 0
2z - - - - 0 HO-S -9 0 0
21 - - - -1 e ..-0 0
m - ST
I - - 0_.-ER)
8 - - 0 - - €8 c2} o
17 - -1 - - ic3 cki e
16 - - - - - lcg c®i
15 - - - 0 - ics o]
e - - - 0 o3 ay)
13 - - - 1t L:Dz:,«-‘o
12 - - - 0
1t - - -)
v - - 0
9 o - 1
8 - - -
7 - - -
6 - - -
s - o -
4 - - -
3 - - -
2 - - 0
1 111

Figure 31. Control/timing sequences for each
array. Note that both arrays 1 and 2 process
their respective input strips concurrently.

77

78
Thus, when m =L (as with the example used in
Figure 30), CA''B + D is computed in a single pass with

total processing time equal to

(4m + 1)n + w - 1 = 0(mn)

which is identical to the performances of the systems from
Figure 13 and 16. However, note that the system of
Figure 30 is totally independent of problem’s size and the
number of cells used is smaller since the T arrays are
eliminated.

When m is not an exact multiple of L, that is when
m . ,1 * 0, the number of iterations required to complete the
problem is k = rﬁ/ﬂ, with the k®P iteration employing only
the first m _,; subarrays of the systen. The total

processing time will be

Fm, 1!)
()
(mmodL + 1)w - 1 + z 2m - (k - 1)L w
k=1
Again, the summation term represents <the time

necessary to feed input data of k iterations into the
system. However, since only the first m _, ; subarrays of
the system are used during the k*® iteration, final results
will emerge from the bottom of the mmosth subarray, instead
of the last subarray. Therefore, the first term of the

throughput equation reflects the shorter path through which

data has to traverse during the k®" iteration. Figure 32

79

from host

\G \/é [N} \/én
(69
L
¢V
L Bl Vise
r onw X W 7 E
T V(l)
2m
r 8 i’ ariaxqw _]
1

1

B,

[ew - L%w - Lwlx w

r L Mi er-Equw -1

:

[MUx/DEMUX]

L X, 0 X2 X

final results

Figure 32. An L-tuple arrays system with a
common data bus from each array to host. The
vertical feedback path has a FIFO queue B for
temporary storage of intermediate results.

shows a multiple arrays system which provides a common data

bus that delivers final results from any one of its

subarrays to the host.

Intermediate Results Storage

Until now it was assumed that the intermediate
results, generated in between iterations by all of the
systems discussed in this chapter, are handled by the host
and that the blocks of zeroces can be stripped in the host.
However, the resulting back and forth of data between host

and system places heavy demands on valuable I/O resources.

80
A more efficient approach, used in the system of Figure 32,
is to route this vertical feedback into the FIFO queue B_.
Similar in concept to the use of B, for the horizontal
feedback, this queue acts as a buffer storage in which
intermediate results emerging from the bottom of the system
are delayed from being fed back to its top until inputs of
the previous iteration are fully processed. An added
benefit is that, during processing, the queue can be used to
eliminate zero blocks generated by temporarily halting the
pipeline for some corresponding durations.

B, should be (2m - L)?w - Lw long, i.e. long enough to
accommodate partial results of the first iteration of the
largest problem likely to be solved by the system, minus the
combined length of all subarrays. And since each iteration
produces ever shorter output streams, like Bq, B, should
also be given the addressing capability which allows its
length to be altered by an external control. This ensures
that data enters the array continuously for maximum

throughput.
PROCESSING OF SPARSE MATRICES

Another feature which further enhances the versatility
of our array is that it can compute problems involving
sparse matrices efficiently by skipping blocks of zeroes,
similar to the system from Figure 19. Furthermore, because

the design functions in both triangle and square mode, only

81
one array is needed for problems of such type. While a
multi-array system like that in Figure 32 is fully capable
of processing sparse matrices efficiently, the procedure
involves only the first array; thus, in Figure 33, it was
reduced to a single array system for the sake of clarity.
In the following discussion, the example (3.1) will be used,
with p = 3 and the input data flow decomposed parallely like
in Figure 18. Because only one array 1is needed, the
continuous stream of input data alternates between non-zero
blocks of strips V., V,,..., V_ which are processed by the
array in T mode, and the corresponding blocks of strip V

m+1/!

processed in S mode.

>
. B BY .,

MUX

pEN g,
B,

CW X W

- Xelll X1

Figure 33. Reduced system for sparse matrix
processing.

82

Initially, non-zero blocks A ., A, ,..., Apl and block

-1,,, , of strip V. are fed into the array. They in turn

generate corresponding blocks of M ,. and C3 which move
rightward into buffer Bl . of length pw, Bl is long enough
to provide the required delay so that its contents can be

used by the array (in S mode) to modify subsequent blocks

B, B,..., Bp and the first zero block below B, .
Thereafter, B, is left stored in the array, whereas B,,ccey
B, emerge from the array as B, ..., Bél), to be stored in

queue B . Thus, the capacity of B should be (p - 1)w to
hold these modified B blocks. The 2zero block, after
modification, becomes the first block of result X, and is
sent to the host.

From V, to V_, the computation proceeds similarly with

blocks A; and -1 of strip V; generating

.,p+i-1,1 m+i, 1

their own M B
ou

t T T TEeEEe EE e L, p+i-27 Tp+i-1

and zero block B_, ;. The modified block Bgi'l) is then left

in the array; blocks B&f;l?._ pri-2+ Bpyj., become blocks
Bgfi ’’’’ p+ri-1 which are then stored in B for the

succeeding strip V emerges from

j+1+ and the modified B_,

i
the array to become the result X;.

The throughput time of this system is

(m(p + 1) -Z;Zik)zw +w - 1=

2n(p + 1) - pw(p = 1) +w = 1

83
which nearly doubles the throughput time of the system from
Figure 19. This is to be expected since the single array
from Figure 33 system is doing the work of two. However,
such a comparison would be misleading because it does not
take into account the fact that, for the two subarrays T and
S of Figure 19 to work concurrently, the total I/O bandwidth
of that system would have to be 2w. Or to put it in another
way, with a total I/O bandwidth of w, these two subarrays
will each have only a bandwidth of w/2. Consequently, a
problem will have to be decomposed into twice as many input
data strips with width that are only half as wide. This
effectively doubles the throughput time of the system such

that it is actually comparable to that of Figure 33.
OVERLAPS IN PROCESSING BETWEEN PROBLEMS

In the simplest term, a systolic architecture can be
thought of as a pipeline architecture in which each row of
cells of subarrays in the system represents a stage in the
pipeline. A pipeline reaches its peak performance when it
outputs a usable piece of data for each of its cycles. This
peak performance is attained only after the pipeline is
completely filled with data, a process termed pipeline fill.
To maintain its peak performance, the pipeline must be fed
continuously.

Similarly, a systolic system can reach its maximum

throughput rate only after it is completely filled with

84
data. This maximum throughput rate is defined as the rate
in which the solution sets to problems emerge from the
system, with minimum times elapse between any two
consecutive sets. Note that these elapsed times between
solution sets may be of different lengths since the sizes of
the problems themselves can vary. To maintain this maximum
throughput rate, the input data flow must be continuous,
i.e. problems to be solved must be fed into the system
without any empty gap in between them. An empty gap in the
data flow will result in a corresponding length of time
during which cells are idle, and solutions to problems will
be that much farther apart. A gap which exceeds the total
length of the system will cause the system to completely
empty itself of data, resulting in what is commonly termed a
pipeline flush. A pipeline flush is expensive because it
takes a finite amount of time to refill a system.

To put in another way, the maximum throughput rate of
a systolic system is achievable and, more important,
sustainable only if processing overlaps between problems are
fully exploited. Say that two matrix problems, P, and P,
are to be solved in that order by a system of L subarrays.
For an I/O bandwidth w, P, is decomposed into m, data
strips. A processing overlap between P, and P, occurs when
data of the last iteration of P, and data of the first

iteration of P, are processed by the system at the same

time. Maximizing this processing overlap can shave off

85
substantial amount of computing time from P,. It can be
seen that the time saved, in number of steps, is calculated
as the number of subarrays through which data of the last
iteration of P, must travel, times the size w of these
subarrays, plus the skew factor w - 1 of the data flow.

Thus, when m_, is an exact multiple of L, the total number of

P

cycles necessary to solve P, is reduced by
(L + 1)w - 1

When m, 1is not an exact multiple of L, the last

iteration of P, involved only m, __,; Subarrays of the

P

system. Therefore, P, is solved with

(mP nodl + 1)w - 1

less cycles. Lastly, if P, is a sparse matrix as described
in the previous section, the number of cycles reduced from

the computation of P, will always be
2w = 1

This is because sparse matrices are processed only by

the first array of the system.

CHAPTER V
EXTENSIONS TO FADDEEV’S ALGORITHM AND CONCLUSION

In the previous chapter, the reader has seen the ease
with which the new systolic array uses massive parallelism
to solve many types of matrix problems via Faddeev’s
algorithm. The actual size of the array, and therefore its
throughput, is shown to be restricted only by the available
bandwidth between the host and the array. Even this
restriction is effectively circumvented when a number of
such arrays are combined into a system to give a desired
level of performance. Such a multiple arrays system reach
its maximum throughput rate when its pipeline is completely
filled with data. By ensuring that the input data flow is
continous, this maximum throughput rate is maintained at all
times. It would seem then, algorithmically speaking, that
nothing further can be done to induce more parallelism into
matrix computations.

However, that last observation is simply not true. We
have found that, by extending Faddeev’s algorithm, the
maximum throughput rate of a system can be nearly
quadrupled. Furthermore, such a tremendous improvement in
system throughput requires absolutely no architectural

modification to the system.

87

HORIZONTAL EXTENSION TO FADDEEV’S ALGORITHM

Before illustrating how we extend Faddeev’s algorithm,
let us introduce the concept of compatibility between matrix
problems. Suppose we have matrices A, B and D of order n,
upon which we wish to perform the operations A"!, A 'B and
A"! + D. From Figure 2, we can solve these matrix problems

with Faddeev’s algorithm by formulating them as

Al I Al| B Al I (5.1)
= A! =AlB = A '+D
-I o -I o -I D
(1) (2) (3)
where I is the identity matrix. These constructs reveals

that they all have identical left halves, i.e. they consist
of the same matrix A in their top left quadrant and the same
matrix -I in their bottom left quadrant. When this is the
case, we say that the problems are horizontally compatible.

Obviously, solving x horizontally compatible problems
involves repeating the calculations for the same left side x
number of times. In the case of (5.1) where x = 3, solving
(1), (2) and (3) requires repeating the process of
triangularizing A and annulling =-I three times. If by some
means the redundant iterations of this process are
eliminated, nearly half of the calculations necessary to
solve (2) and (3) of (5.1) can be skipped. This would yield

a large savings in computing time.

88
To accomplish this, we extend Faddeev’s algorithm

horizontally to the right so that (5.1) is reformulated as

(5.2)

Grouping (1), (2) and (3) together as in (5.2) allows
us to triangularize A and annul -I only once, and reuse the
multipliers generated from that several times on the right.

The results will appear as

It is easy to see that the horizontal extension to
Faddeev’s algorithm maps particularly well to a system using
our systolic array design: it requires absolutely no
architectural nor algorithmic modification, either at the
system level, subarray 1level or cell 1level. When the
available I/0O bandwidth is w, (5.2) is parallely decomposed
into (x + 1)m input strips, each 2mw in length, as shown in

Figure 34.

£
Z

5
Q.
£

8
2 o

¥

\

N e N

~
&

\

]
®

Results)
(after modification) ..

— g oo Q.

\

o o\\o =\

\

&
o oNQ 2 9 Q_

A

ocog oo
\)

\

\
o =
o o

\L

one data strip

Eliminoted after
second teration

: . Eliminated after
oy “TTTTF first iteration

Figure 34. Parallel decomposition of x = 3
horizontally compatible problems. For this
example, n = 4, w = 2 and om = 2.

89

90
As before, the L-subarrays system of Figure 32 will
process this input data flow in k iterations, where the
value of k depends on m and L. When m is an exact multiple
of L, we have k = m/L -and the system will compute x
horizontally compatible problems in
m/ L

(L + 1w - 1 + Z [(x + 1)m - (k - 1)L][2m - (k - 1)L]w

k=1
(5.3)

cycles. In the above equation, the first product term of
the summation represents the number of input strips for each
iteration, while the second term indicates the strips
length. The solution to the first problem will come out
after

(m/L)y-1

(L + 1)w = 1 + [(x + 1)m - (k - 1)L] [2n - (k - 1)L]w
k

1
2
+ (m + LY w

cycles, with the second line of the equation indicating that
only part of the k'" iteration is needed. Afterward,
solutions to subsequent (x - 1) problems are outputed one
for every (m + L)n cycles. In the special case when m = L,

we have k = 1 and the system will solve the first problem in

(4m + 1l)n + w - 1

cycles. As to subsequent problems, the system will complete

one every 2mn cycles. The difference between the two

91
throughput equations of the first problem is due to the fact
that the input data flow for x horizontally compatible
problems consist of (x - 1)m more strips than that of a
single problem. This means that during each iteration, the
system has that many more strips to process. Thus when
k > 1, the previous iterations will delay the output of
results whereas with k = 1, those delays are non-existent.

When m is not an exact multiple of L, the number of
iterations required for the system to process (5.2) is
k = Tmy/, with the k*P iteration involving only the first

m ; subarrays of the system. The total throughput will be

mod

Ty I
+ 1)w - 1 + z [(x + 1)m - (k - 1)L][2m - (k - 1)L]w
k=1

(mmodL

(5.4)
with solution to the first problem coming out after

Lm/ L

(m_

odL+ 1)w - 1 + Z [(x + 1)m - (k - 1)L][2m - (k - 1)L]w

k=1

2
+ +
(m mmodL)w

cycles. Again, the second 1line of the above equation
indicates that only part of the last iteration is needed by
the system to compute the first problem. Afterward,
solutions to subsequent x - 1 problems will emerge one for

every (m + m__, 1)n cycles.

92

Since the input data flow of x horizontally compatible
problems consists of only (x + 1)m strips, versus the 2xm
strips required if they are not compatible, large saving in
storage space can be gained on the host side. On the other
hand, the 1length of the FIFO buffer B, should be
((x + 1)m - L)(2m - L)w - Lw since the intermediate results
after the first iteration have many more strips. Because
the length of each strip is still 2mw, the capacity of the
buffers Bq should remain unchanged.

To get an idea of how much the system throughput can
be improved when horizontal extension is applied, suppose
that we have a system of L = 4 subarrays, with each array of
size w = 32. On this system, we wish to perform x = 50
operations with matrices of order n = 128. If these
operations are not compatible, solving them one at a time
without processing overlaps will take a total of 110,350
steps. With processing overlaps, this number is reduced to
102,559. However, if the operations are horizontally
compatible, they can be processed by the system in 52,383
steps. The improvement in throughput is

102,559
—— = 1.96,
52,383
nearly by a factor of two. Of course, this number can vary
depending on x. As x gets larger, the improvement factor

gets closer to two.

93

VERTICAL EXTENSION TO FADDEEV’S ALGORITHM

Even when a dgroup of matrix problems are not
horizontally compatible, they may exhibit another type of
compatibility which can also be exploited to give an
equivalent speedup in system throughput. To expand on this,
let’s suppose that we have y = 3 matrix operations to
perform, namely CB, B + D and EB + D where B, C, D and E are

of order n. Like before, we can express these problems as

I B I B I B (5.5)
= CB = B+D = EB+D
-C 0 -I D -E D
(1) (2) (3)

Because the left side of problems (1), (2) and (3) of
(5.5) are not the same, they are not horizontally
compatible. However, it can be observed that they all have
the identity matrix I in their top left quadrant and matrix
B in their top right quadrant. To put it differently, these
problems all have identical top half. When this is the

case, we say that the problems are vertically compatible.

94
To avoid repeating the same calculations on the
identical top sides of vertically compatible problems, we

extend Faddeev’s vertically such that (5.5) becomes

I B
-C 0 (1)
e (5.6)
-1 D (2)
-E D (3)

When y vertically compatible problems are grouped
together as in (5.6), the common top side needs to be
processed only once. This means that after the top left
quadrant is triangularized and the top right quadrant is
modified with the generated multipliers, they can be used
repeatedly to annul the left side of succeeding stages and
transform their right side into solutions.

In the case of (5.6), solving it involves only the
annulment -C, -I and -E. This is because the identity
matrix I in the top left quadrant is, by its nature, already
triangularized; as a consequence, matrix B in the top row
will remain unmodified. Annulling -C, -I and -E while

extending the operations to the right will give

I B

0] CB (1)
0] B+D (2)
0] EB+D (3)

95
which shows the solutions to (1), (2) and (3) in the right
quadrants. '

As with horizontal extension, systems using our array
design can handle vertical extension to Faddeev’s algorithm

without any modification. Shown in Figure 35, the input

Results
(after modification

one data strip

/]
I
I
[
I
I
I
I
|
I

—

- - Eliminated aofter
second iteration

0 : |
IO L imoﬁﬁfﬁ"//' <L >
H 0 R

1

[____ Eliminated after
first iteration

Figure 35. Parallel decomposition of y = 3
vertically compatible problems. Again n = 4,
w =2 and m = 2.

96
data flow of y vertically compatible problems consists of 2m
strips, where each strip is (y + 1)m blocks 1long. The
L-subarrays system of Figure 32 will process this data flow
in k iterations. When m is an exact multiple of L, k = m/L

and the process will be completed in

m/L
(L + 1)w - 1 + [Zm - (k - l)L] [(y + 1)m - (k - l)L]W
k=1
(5.7)
cycles. When m is not an exact multiple of L, k = Tm/D and
the throughput is computed as
rUI/ﬂ
(mmodL + 1)w - 1 + Z [2m - (k - l)L] [(y + 1)m - (k - l)L]W
k=1
(5.8)

In throughput equations (5.7) and (5.8), the first
product term within the summation represents the number of
input strips for each iteration. The length of each strip,
on the other hand, is indicated by the second product term.
Even so, note that (5.7) and (5.8) are identical to (5.3)
and (5.4), respectively, save for the variables x and y.

After the k"® iteration, the set of y solutions
emerges in m output strips. As shown in Figure 35, an
output strip consists of y segments, each of width w and
length mw. Each segment i =1, 2,..., y is part of the
solution to the i®*" problem. Because a solution is divided

into m segments with each segment part of an output strip,

97
the solutions will not be completely out until the 1last
strip has emerged. Thus, the number of steps needed for the
first solution to come out is computed by subtracting
(y - 1)mw from (5.7) or (5.8). Each following solutions
takes another mw steps.

Again, storage space needed on the host side is
greatly reduced since the input data flow of y vertically
compatible problems is only 2(y + 1)m*w long, as opposed to
4ym’w were they not compatible. However, the length of the
FIFO buffer Bq should be ((y + 1)m - 1)w to accommodate
longer strips of modification factors. In addition, the
length of B, should be (2m - L)((x + 1)m - L)w = Lw to

adequately hold intermediate results with longer strips.
TWO-DIMENSIONAL EXTENSION TO FADDEEV’S ALGORITHM

While using either one of the previously described
extensions yields substantial reduction in computing time,
still greater improvement in throughput is possible when
both techniques are combined into a two-dimensional
extension to Faddeev’s algorithm. To illustrate, consider
the matrix operations AB, AE + F, B+ D and E + G. As
before, A, B, D, E, F and G are all matrices of order n.

Formulating the operations as follow:

28

I B I E
AB = AE+F
-A 0 -A F
(2)

(5.9)

(3) (4)

reveals that (1) and (2) are horizontally compatible, as
with (3) and (4). Furthermore, (5.9) also shows that (1)
and (3) are vertically compatible, as with (2) and (4).

Thus, using horizontal extension, (5.9) becomes

I|B|E
—A|0|F
(1) (2) (5.10)
I|B|E
—I|D|G

Since both constructs of (5.10) have identical top
halves, vertical extension can also be used to further

obtain

-A 0] F (1) and (2) (5.11)

-I D G (3) and (&)

This results in a two-dimensional extension to

Faddeev’s algorithm. Annulling -A and -I in (5.11) and

99
extending the operations to its right prompt the solutions

to (1), (2), (3) and (4) to appear as

I B E
0 AB AE+F (1) and (2)
0 B+D E+G (3) and (4)

As (5.11) reveals, the two-dimensional extension to
Faddeev’s algorithm allows a compatible matrix problem to
share three of its quadrants with others, instead of two.
This translates into the elimination of a larger number of
calculations per problem.

The input data flow of (5.11]) for the L-subarrays
system is shown in Figure 36. When the number of problens
is x across by y long, the input data flow is decomposed
into (x + 1)m parallel strips, each (y + 1l)mw in length. 1If
m is an exact multiple of L, the total number of steps for
the L-subarrays system of Figure 32 to process this data

flow is

m/ L
(L+1)w-1+Z[(x+l)m—(k-l)L]
k=1

[(y + 1)m - (k - l)L]w (5.12)

Results D o
(after modification> T

942 933 92

fa fuo £

- Eliminated ofter
second iteraoation

s

,-:?/ Eliminated after
“=—= first iteration

Figure 36. Parallel decomposition of x by y
compatible problems. x = 2 1is the number of
horizontally compatible problems, and y = 2 is
the number of vertically compatible problems.
As before, n = 4, w = 2 and m = 2.

100

101
If m is not an exact multiple of L, then the number of

steps needed is computed as

rID/ﬂ
(mmodL + 1)w - 1 + z [(x + 1)m - (k - 1)L]
k=1
[(y + 1)m - (k - 1)L]w (5.13)

Subtracting [(x - 1)(ym + L) + (y - 1)]mw from (5.12)
or [(x = 1)(ym +m__,;) + (y = 1)]mw from (5.13) will, in
both cases, give the number of steps elapsed before the
solution to the first problem is completely out. The
interval between solutions to problems on the same column is
mw steps. Between problems on the same row, this interval

is computed as (ym + L)mw when m__.; =0, or (ym + m Y mw

mod L
when m .. # O.

Because of the increases in number of strips and in
their length, the capacity of buffers B, and B_ should be
expanded as previously indicated.

To see how much of an improvement over single
dimension extensions this technique is capable of, let us
again assume that we have a system of L = 4 subarrays, with
each array of size w = 32. With this system, 10000
operations are to be performed on a number of matrices of
order n = 128. Solving the problems one at a time without
processing overlaps will take a total of 22,070,000 steps.

Maximizing processing overlaps will reduce this number to

20,480,159, If single dimension extensions can be used, the

102
problems can be solved in 10,241,183 steps. The improvement

in throughput is

20,480,159

]
N
o

10,241,183

However, if compatibilities between these problems are
exploited such that the two-dimensional extension can be
used with x = 100 and y = 100, the total throughput will be

5,223,071 steps. The improvement factor is thus

20,480,159

= 3.92,
5,223,071

almost doubling the speedup figure achieved with single
dimension extension. As was noted before, the improvement
factor grows closer to four as x and y get larger.

Another advantage of the two-dimensional extension is
that it further enhances the inherent programmability of
Faddeev’s algorithm. For example, should it be necessary to

compute U, where

U= (AE + F)(E + G)"! (B + D) + AB, (5.12)

(5.11) can be rearrange to become

I E B

-T || D (5.13)

103
solving (5.13), that is annulling -I and -A while

extending the operations to the right will give

I E B

0 E+G B+D (5.14)

0 AE+F AB

Observe that within the box of (5.14), the necessary
components of (5.12) are already correctly positioned such
that repeating the Faddeev’s procedure on them will produce

the final result

I E B
0 (E+G) ‘*’ (B+D) ‘*° (5.15)
0 0 U

In short, to compute U from (5.13), one only needs to
triangularize the augmented matrix formed from I, E, -I and
G, then annul the augmented matrix formed from -A and F
while extending both operations to the rightmost column of
(5.13). Using the L-subarrays system, U is computed from
the input data flow of (5.13) in 2k iterations. The first k
iterations are needed to compute the matrices in the box of
(5.14). This intermediate results is immediately fed back
into the system for another k iterations, after which U is

outputed.

104

CONCLUDING REMARKS

By now, it is clearly obvious that the symbiosis of
Faddeev’s algorithm and the new systolic array system
described in Chapter IV has given rise to a very powerful
and versatile tool. The algorithm itself ©provides a
considerable generality of operation which should allow the
system to have a 1large range of application in the
scientific and industrial fields. 1In feturn, the system has
brought massive parallelism to the multitude of matrix
operations capable by the algorithm. Furthermore, the
system’s enormous potential for parallelism can now be fully
exploited to yield very high throughput with the Faddeev’s
algorithm extensions described in Chapter V.

As compared to other designs from Chapter III, this
system does not suffer any of their drawbacks while
providing many practical advantages, some of which can be
summarized as follow:

- Either in single or multiple arrays form,

the system is totally independent of problem
size and will solve sparse matrix problems
efficiently without any reconfiguration.

- The system provides identical performance

using a smaller number of cells or arrays.
Indeed, given an equal number of arrays, its
performance will be superior. When taken

into account the fact that its design is

105
ideally suited for the extensions made to
Faddeev’s algorithm, its throughput
potential far outdistances any other system
previously considered.

- From a user point of view, operating the

system 1is exceedingly simple: the input
data flow is fed only to the top array and
system controls consist of a few signals to
each array top left cell.

- The design of the system is truly modular,
with simple and regular interconnections
between cells and between modules. Hence it
is very amenable to expansion: adding extra
blocks of shift registers will allow it to
handle correspondingly larger ©problens,
while increasing the number of arrays will
yield higher throughput.

- Since all modules are square blocks w x w in
size, it 1is topologically more economical
and efficient in terms of PC board area.

In conclusion, the system’s most important advantage
is that while its design is simple enough for implementation
to be an easy task, it is abundantly powerful and versatile
to make that task worthwhile. Therefore, it 1is this
author’s opinion that the system should be built as soon as

possible.

10.

11.

REFERENCES

H. T. Kung, "Why Systolic Architectures?" IEEE Computer
Magazine, Vol. 15, No. 1, January 1982, pp. 37-46.

Dan I. Moldovan, "On the Design of Algorithms for VLSI
Systolic Arrays," Proc. of the IEEE, Vol. 71, No. 1,
January 1983, pp. 113-120.

Kai Hwang and Fayé A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill, New York, 1984, pp.
768-774.

Charles L. Seitz and Juri Matisoo, "Engineering Limits
on Computer Performance," Physics Today, Vol. 37,
No. 5, May 1984, pp. 38-45.

C. A. Mead and L. A. Conway, Introduction to VIST
Systems, Addison-Wesley, Reading, MA, 1980, pp.263-292.

H. T. Kung, "Notes on VLSI Computation," in Parallel
Processing Systems, ed. by David J. Evans, Cambridge
University Press, Cambridge, MA, 1982, pp.339-356.

Ronald Collett, "CPU Architecture, Part I: Problems And
Limitations of Von Neumann Computers," Digital Design,
Vol. 14, No. 11, November 1984, pp. 90-95.

Wolfgang Handler, "Innovative Computer
Architecture—How to Increase Parallelism but Not
Complexity," in Parallel Processing Systems, ed. by
David J. Evans, Cambridge University Press, Cambridge,
MA, 1982, pp.23-32.

R. W. Hockney and C. R. Jesshope, Parallel Computers,
Adam Hilger, Ltd., Bristol, 1981, pp. 1-51.

P. M. Dew, "VLSI Architectures for Problems in
Numerical Computation," in Supercomputers and Parallel
Computation, ed. by D. J. Paddon, Oxford University
Press, New York, 1984, pp. 2-21.

S. Y. Kung, "VLSI Array Processors," IEEE ASSP
Magazine, Vol. 2, No. 3, July 1985, pp. 4-22.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

107

Leonard S. Haynes et al., "A Survey of Highly Parallel
Computing," IEEE Computer Magazine, Vol. 15, No. 1,
January 1982, pp. 9-24.

Lawrence Snyder, "Introduction to the Configurable,

Highly Parallel Computer," IEEE Computer Magazine,
Vol. 15, No. 1, January 1982, pp. 47-56.

Douglas G. Fairbairn, "VLSI: A New Frontier for Systems

Designers," IEEE Computer Magazine, Vol. 15, No. 1,
January 1982, pp. 87-96.

H. T. Kung and C. E. Leiserson, "Systolic Arrays (for
VLSsI)," Sparse Matrix Proc. 1978, Society for
Industrial and Applied Mathematics, 1979, pp. 256-282.

A. L. Fisher et al., "Design of the PSC: A Programmable
Systolic Chip," in Proc. of the Third cCaltech
Conference on Very lLarge Scale Integration, ed. by R.
Bryant, Computer Science Press, Rockville, MD, March
1983, pp. 287-302.

A. L. Fisher et al., "The Architecture of a
Programmable Systolic Chip," Journal of VISI and
Computer Systems, Vol. 1, No. 2, Computer Science
Press, Rockville, MD, 1984, pp. 153-169.

D. K. Faddeev and V. N. Faddeeva, Computational Methods
of Linear Algebra, W. H. Freeman and Company, 1963, pp.
150-158.

W. W. Gentleman and H. T. Kung, "Matrix
Triangularization by Systolic Arrays," Proc. SPIE—The

International Society of Optical Engineering, vol. 298,
1981, pp. 19-26.

H. T. Kung, "Systolic Array for Orthogonal
Triangularization," Proc. SPIE, San Diego, CA, 1981,
pp. 19-26.

Richard L. Burden et al, Numerical Analysis, PWS
Publishers, Boston, MA, 1981, pp. 289-294.

W. M. Gentleman, "Error Analysis of QR Decompositions
by Givens Transformations," Linear Algebra and 1Its
Application, American Elsevier Publishing Company, New
York, 1975, pp. 189-197.

J. Greg Nash, "A Systolic/Cellular Computer
Architecture for Linear Algebraic Operations," Proc.
1985 IEEE _International Conference on Robotics and
Automation, March 1985, pp. 779-784.

24.

25.

108

J. G. Nash and S. Hansen, "Modified Faddeev Algorithm
for Matrix Manipulation," Proc. SPIE, Vol. 495, August
1984, pp. 39-46.

Henry Y. H. Chuang and Guo He, "A Versatile Systolic
Array For Matrix Computations," The International
Symposium on Computer Architecture, 1985, pp. 315-322.

APPENDIX A

EXAMPLES OF FADDEEV’S ALGORITHM

In the following, we will solve sample matrix problems
using Faddeev’s algorithm and its variants. The unmodified
Faddeev’s procedure, involving only ordinary Gaussian
elimination, is illustrated with the first example. Its
variant form using Gaussian elimination with neighbor
pivoting is illustrated in the next two examples. Taken
from chapter III, examples (3.1) and (3.2) are solved using
the Faddeev'’s procedure combined with Givens rotations.

All calculations in the examples are carried out using
nine decimal places precision; however, because this thesis’
line formatting allows only a finite number of characters,

results are shown rounded off to two decimal places.

Using Ordinary Gaussian Elimination

Suppose we want to compute CA !B + D, where A, B, C

and D are matrices of order n = 3 and
[2 -1 3 1 2 4
A= |-1 02 B = 31 -3
L. 4 -4 5 17 9
-1 2 3 0 4 -6
C = 0 7 -4 D= }-21 O
. 1 -5 O 7 3 2

110
With Faddeev’s algorithm, this problem can be

expressed as

2 -1 1 4
-1 0 2 -3
A| B 4 -4 9
= (A.1)
-C D -2 -3 0 -6
-7 4 -2
-1 5 0 7

where, by means of matrix triangularization, all entries
below the diagonal elements of A are zeroed out such that A
is triangularized and C is annulled. After completion, the
results should appear in the place of D.

Matrix triangularization procedures are often used,
among other things, to solve linear systems. In solving a
linear system, three operations are permitted on its rows:

1) Entries of row R; can be multiplied by any non-

zero constant A and the resulting row used in

place of R;. This operation will be denoted

(AR;) = (R;)

2) Entries of row Rj can be multiplied by any
constant A, added to row R;, and the resulting

row used in place of R;. This operation will be

denoted (R; + ARJ) 2 (R;).

3) Rows R; and R; can be transposed in order. This
operation will be denoted (R;) « (Rj)'

When used within Faddeev’s algorithm, the third

operation has a restriction which states that i and j cannot

111
be larger than the order n of the matrices, i.e. transposing
the order of the two said rows 1is not allowed if either one
or both rows belong to the 1lower half of (A.1).
Furthermore, although the entries in the affected rows are

expected to change after any of these three operations, for

ease of notation we will again denote the entry in the it'?

h

row and the j*® column of matrix X (X here represents A, B,

C or D of (A.1l)) by x With this in mind, we can apply

ij-
Gaussian elimination procedure to (A.1l) by sequentially, for

i=1, 2,..., n-1, perform the operation
(Rj - (aji/aii)Ri) -+ (Rj) on the upper half of (A.1) with
j = i+1, i+2,..., n, and the operation

(R = (=cg.pn i/2;;)R;) = (Rg) on the lower half of (A.1)

with k = n+l, n+2,..., 2n, provided that a;; = 0. When
a;; = 0, a search is made for the first non-zero element aji
where j = i+l, i+2,..., n and the operation (R;) =« (Rj) is

performed so that the procedure can continue.

112
Thus, by performing the operations (R, + .5R,) = (R,),

(R, = 2R;) =~ (R;), (R -5R.) ~ (R,), and

3 4

(Rgy + -5R;) » (R,) on (A.1l), row R, is effectively used to

zero out all entries below a, , to give:

-1 3 12 4
0O -.5 3.5 3.5 2 -1
-2 -1 -13 1
0 -1.5 -4.5 -.5 3 -8
-7 4 -2
0O 4.5 1.5 7.5 4

In this system, R, is used to eliminate entries below

a by the operations (R, = 4R,) = (R,), (R

22 - 3R,) = (R,),

4

(R, = 14R,) =~ (R,) and (R, + 9R,) =~ (R;). The resulting

5

system is then

-1 3 1 4

0 -.5 3.5 3.5 2 -1
0 -15 -15 -5 5

0 -15 -11 -3 -5

0 =45 -51 -27 14

0 33 39 22 -5

113

Finally, with the operations (R, = R;) = (R,),

(R, = 3R,) ~» (Ry) and (R, = 2.2R,) -~ (R;), we obtain the

system

2 -1 3 1 2 4
0 -.5 3.5 3.5 2 -1
0] 0 -15 -15 =5 5
4 2 -10

-6 =12 -1

6 11 6

which shows the result CA"!B + D in its lower right hand

quadrant.

Using Gaussian Elimination With Neighbor Pivoting
We have indicated earlier that obtaining a zero for a

diagonal element a during the Gaussian elimination

ii
procedure necessitated a row interchange of the form

(R;) « (Rj)

0. Actually, it is often desirable to perform row

where i < j < n was the smallest integer with
ajl-
interchanges (or pivoting) involving the diagonal elements
even when they are not =zero. This is because when the
calculations are performed using finite-digit arithmetic, as
would be the case for calculators or computer-generated
solutions, a diagonal element that is small compared to the
entries below it in the same column can lead to substantial
roundoff error.

Referred to as neighbor pivoting, the two adjacent

rows R; and Rj where i < j < n are interchanged whenever

114

|a < Iajil, immediately before an operation of the form

iﬂ
(Rj - (aji/aii)Ri) -+ (Rj) can be performed on them. To
illustrate this, let us consider the problem of computing

CA"!B + D with matrices of order n = 3

-1 5 -3 -2 =7 6
A= 34 1] B = [1 31]

L 6 7 =2 5 9 4

[1 -2 4 21 -5
C = 3 4 -1 D= 2 4 6

-5 3 2 -3 2 9

Like before, the problem is expressed as

-1 5 -3 -2 -7
1 1 3
AIB 6 7 -2 5 9
= (A.2)
-C | D -1 2 -4 2 1 -5
-3 -4 1
5 -3 =2 -3
Since (A.2) shows that J|a,,| < |a,,|, pivoting is
therefore required between rows R, and R,. Thus, performing

the operation (R,) < (R,) gives us

3 1 1 3 1
-1 =3 -2 -7 6

6 7 =2 5 9 4
-1 2 -4 -5
-3 -4 1

5 -3 =2 -3

115

where, after the operation (R, + .33R,) » (R,), we have

3 4 1 1 3 1

0 6.33 -2.67 -1.67 -6 6.33

6 7 -2 5 9 4
-1 2 -4 -5
-3 -4 1

5 -3 -2 -3

Note that how neighbor pivoting has just been carried
out by the two previous steps. Once again, the above system
shows that pivoting is required between R, and R, since

Therefore the operation (R,) ~ (R,) will

31|'

la,]

subsequently give

6 7 -2 5 9 4

0 6.33 ~-2.67 -1.67 -6 6.33

3 4 1l 1 3 1
-1 2 -4 2 1 -5
-3 -4 1l

5 -3 =2 -3

116

which, after the operations (R, = .5R,;) -~ (R,),
(R, + .17R,) = (R,), (R, + .5R,) - (R,) and
(R, = .83R;) -~ (R;), becomes

6 7 -2 5 9 4

0 6.33 -2.67 -1.67 -6 6.33

0 «5 2 -1.5 -1.5 -1

0 3.17 -4.33 2.83 2.5 =-4.33

0 -.5 0 4.5 8.5 8

0O -8.83 -.33 -7.17 -5.5 b5.67

The procedure 1is carried out further with the

elimination of entries below a,, by applying the operations

(R, - .08R,) =~ (R,), (R, — .5R,) = (R,), (R, + .08R,) - (R,)

and (R, + 1.39R,) -~ (R,). We thus have

6 7 -2 5 9 4
0 6.33 -2.67 =1.67 -6 6.33
0 2.21 -1.37 -1.03 -1.5

-3 3.67 5.5 -7.5

0o -.21 4.37 8.03 8.5

0 -4.05 -9.49 ~-13.87 14.5

117

After the elimination of the entries below a,, with

the operations (R, + 1.36R,) =+ (R,), (R, + .09R,) - (R,) and
(R, + 1.83R,) - (R,), the solution to CA"'B + D appears in

the lower right hand quadrant of

6 7 -2 5 9 4
0 6.33 -2.67 =-1.67 -6 6.33
o 2.21 -1.37 -1.03 -1.5

1.81 4.11 -9.54
4.24 7.93 8.36
-12 -15.75 11.75

The following is another example of Faddeev’s
algorithm with neighbor pivoting. Given matrices A, B, C

and D of order n = 4, with

[2 -1 30 -8 3 0 3
4 -2 70 =20 516
A= |-3-415 B = -2 -9 7 8
| 6 -6 8 0 4 7 4 2
(1 -1 2 -1 1 3 -5 7
2 -2 3 -3 0 -4 17
C = 1 11 O D = 2 1 30|,
. 1 -1 4 3 1 -3 -109

we want to compute CA !B + D.

follow

118

Formulating the problem as

-1 3 0 -8 3 03
-2 7 0| -20 16

-3 -4 1 5 -2 -9 78

A | B 6 -6 8 0 4 7 4 2

= (A.3)

-C | D -1 1-2 1 1 3 -57
-2 2 -3 3 0 -4 17

-1 -1-1 0 2 1 30

-1 1 -4 -3 1-3-109

reveals that, because |a,,| < |a,,|, pivoting

2

the system

R, is necessary. Thus, the operation (R,)

-2 7 O =20 5 1 6

-1 3 O -8 3 03

-3 -4 1 5 -2 -9 7 8
6 -6 8 0 4 7 4 2
-1 -2 1 1 3 -57
-2 2 -3 3 0 -4 17
-1 ~-1-1 O 2 1 30
-1 1 -4 -3 i1 -3 -12°9

of rows R, and

(R,) produces

119

(R,)

in eliminating

which, after we perform the operations (R, .5R.)
and (R, + .75R;) - (R,), becomes
4 -2 7 O -20 5 1l 6
0 0 -.5 0 2 .5 =.5 0
0 -5.5 6.25 5 -17 -5.25 7.75 12.5
6 -6 8 O 4 7 4 2
-1 -2 1 1 3 -5 7
-2 -3 3 0 =4 1 7
-1 -1 -1 0 2 1 0
-1 1 -4 -3 1l -3 -1 9
Before we can proceed any further
entries in the first column, because |a,,| < la,,|,
to perform the operation (R,) (R,):
6 -6 8 O 4 7 4 2
0 0O -.5 0 2 .5 =.5 0
0 -5.5 6.25 5 -17 -5.25 7.75 12.5
4 -2 7 O =20 5 1 6
-1 -2 1 1l 3 =5 7
-2 -3 3 0 -4 1 7
-1 -1 -1 O 2 1 0
-1 1 -4 -3 1 -3 -1 9

we have

120
Now, all remaining entries in the first column can be

eliminated with (&, .67R,) ~ (R,), (R

, + -17R)) - (R,),

(Rg + +33R;) = (R,), (R, + .17R) = (R,) and
(Rg, + .17R,) = (Ry), to give

6 -6 8 O 4 7 4 2

0 0 -.5 0 2 .5 -.5 0

0 -5.5 6.25 5 -17 -5.25 7.75 12.5

0 2 1.67 O -22.67 .33 -1.67 4.67

0 0O =-.67 1 1.67 4.17 -4.33 7.33

0 o ~-.33 3 1.33 -1.67 2.33 7.67

0 =2 .33 O 2.67 2.17 3.67 .33

0 0 -2.67 -3 1.67 -1.83 -.33 9.33

Prior to 2zero out entries in the second column,

because a,, = 0, the operation (R,) = (R,) is used to obtain
6 -6 8 O 4 7 4 2
0 -5.5 6.25 5 -17 -5.25 7.75 12.5
0 0 -.5 0 2 .5 -.5 0
0 2 1.67 O -22.67 .33 -1.67 4.67
0 0O -.67 1 1.67 4.17 -4.33 7.33
0 0O -.33 3 1.33 -1.67 2.33 7.67
0 -2 .33 0 2.67 2.17 3.67 .33
0 0 -2.67 -3 1.67 -1.83 -=.33 9.33

Applying (R, + .36R,) (R,) and (R, - .36R,)
to the above system, we are left with
6 -6 8 0 4 7 4 2
0 -5.5 6.25 -17 -5.25 7.75 12.5
0 0 -.5 2 .5 -.5 o
0 0O 3.94 1.82 -28.85 -1.58 1.15 9.21
0 0 -.67 1 1.67 4.17 -4.33 7.33
0 0o -.33 3 1.33 -1.67 2.33 7.67
0 0 -1.94 1.82 8.85 4.08 .85 =-4.21
0 0 -2.67 -3 1.67 -1.83 -.33 9.33
which requires pivoting of rows R, and R, . Therefore,
(R;) » (R,), we have
6 -6 8 0 4 7 4 2
0 -5.5 6.25 -17 ~5.25 7.75 12.5
0 0O 3.94 1.82 -28.85 -1.58 1.15 9.21
0 0] -.5 0 2 .5 -.5 0
0 0O -.67 1.67 4.17 -4.33 7.33
0 0o -.33 1.33 -1.67 2.33 7.67
0 0 -1.94 1.82 8.85 4.08 .85 ~-4.21
0 0 -2.67 -3 1.67 -1.83 -.33 9.33

121

after

where we can proceed to eliminate all entries below a

the operations (R

4

+ .13R;)

* (R4)I

(R5 +

-17R,)

122
33 with

d (Rs)l

and

i (Rs)l

and

(R, + .08R,) (Rg) (R, + .49R;) - (R,)

(R, + -68R,) (Rg) . The resulting system will be
6 -6 8 o 4 7 4 2
0 -5.5 6.25 5 -17 -5.25 7.75 12.5
0 0 3.94 1.82 -28.85 -1.58 1.15 9.21
0 0 0 .23 -1.66 .3 -.35 1.17
0 0 0 1.31 -3.22 3.9 -4.14 8.89
0 o 0 3.15 -1.11 -<1.8 2.45 8.45
0 0 0 -.92 -5.35 3.3 1.42 .32
0 0 0 -1.77 -17.86 -2.9 .45 15.57

Finally, annulling the 1lower 1left hand quadrant
completely with the operations (R, - 5.67R,)
(R, - 13.67R,) =~ (R,), (R, + 4R,) =~ (R,)

(Rgy + 7.67R,) =+ (R,) will give us the solution in the lower

right hand quadrant of

6 -6 8 0] 4 7 4 2
0 -5.5 6.25 =17 -5.25 7.75 12.5
0] 0 3.94 1.82 -28.85 -1.58 1.15 9.21
0] 0 o .23 -1.66 .3 =.35 1.17
0] 0 0] 0] 6.2 2.2 =-2.13 2.27
0] 0 0] 0] 21.6 -5.9 7.27 -7.53
0 0 0 0] ~12 4.5 0 5
0 0 0 0 -30.6 -.6 =-2.27 24.53

123
Using Givens Rotations
A Givens transformation rotating the two row vectors

R; and Rj

oO. . .0 875 A5 jy1 c ¢+ Bjp e+ o o a5
aji aj,i+1 e o . ajk e o o ajn

of a given matrix A of order n replaces them with two new

vectors

t] ’ ’
ii ai'i+1 . . . aik . . . ain
? ’ ’
aj'i+1 . . - ajk . . . ajn

such that, with k = i+l1, i+2,..., n, their entries are

a. = «o

ii ij
aj = cosaijaik + sinaijajk (A.E.1)
ajk = —sinaijaik + cosaijajk
where
— 2 2
;5 = J aj; t aj;
o aij
coso; . =
1]
“ij
a ::
sina. . = J 2
1J a. .
1]
coszaij + sinzaij = 1.

The transformation obviously leaves unchanged zeroes
appearing in corresponding entries of both vectors. Thus a
matrix of order n can be triangularized by applying a

succession of Givens rotations to its rows R; and R;,,, R;

124
and R; ,,..., R; and R;j,, for i =1, 2,..., n-1 such that
zeroes are introduced into every columns below the diagonal
elements.

When combined with Faddeev’s algorithm, Givens
rotations are used on the rows above the horizontal line to
triangularize A and ordinary Gaussian elimination is used on
rows below the horizontal line to annul €. The procedure
involved can be illustrated much easier with an example.

Let us find the solutions of the linear system (3.1)
of chapter III. This system has three unknowns, X, ., X, and

x,, and its equations are represented here in matrix form as

3
123 5
A = 0 47 B = 9
213 7

The solutions’ column vector X can then be expressed
as X =A'B or, by expanding it to become X = IA"!B + 0

where I is the identity matrix and 0 is a zero vector

FHENH

-

il
[oNeN
or o
P OO

ol

i
[eNeNel

125

allows us to formulate the problem as

AIB 3| 7
= (A.4)
—I|0 -1 0 O
0O-1 0
0O 0 -1
Since a,, = 0 in (A.4), we can skip row R, and, by

directly rotating rows R, and R, using the equations of

(A.E.1) with

— 2 2 — —

o . a? |+ al | = 1+4=2.21
1,1

cosa, , = = = .45
a1,3 2.24

ina 2. 2 89

s1ln = = = .

1,3 a 2.24 '

subsequently get the following system

2.24 1.79 4.02 8.5
0 4 7 9
0 -1.34 -1.34 -1.34
-1 . 0
-1
0 -1

126
Gaussian elimination is now used to continue the
procedure below the horizontal 1line. Performing the

operation (R, + .45R;) -+ (R,), we have

2.24 1.79 4.02 8.5
0] 4 7 9

0 -1.34 -1.34 -1.34

0] .8 1.8 3.8

=1 0] 0]

0 -1 0

Once again, we rotate rows R, and R, with

@ 4 =J aj , +ai , =J 16 + 1.8 = 4.22
4
cosa, , = 2.2 - = ,95
®, 4 4.22
. a; , -1.34
51n012'3 = = = -,32
az,a 4,22
to obtain
2.24 1.79 4.02 8.5
0 4.22 7.06 8.96
0 0 0.95 1.59
0 .8 1.8 3.8
-1 0
0 -1 0

127

which we can further modify by applying the operations

(R, = -19R,) -~ (R,) and (R, + .24R,) =~ (R;), giving us
2.24 1.79 4.02 8.5
0 4.22 7.06 8.96
0 0 0.95 1.59
0 .46 2.1
0 1.67 2.12
0 0 -1 0

Since A is now fully triangularized, performing the

operations (R, - .48R,) - (R,), (R, - 1.75R,) = (R;) and

4 5

(Rg + 1.05R;) = (Ry) to completely annul the lower left hand
quadrant of the above system yields X = A"'B in the lower

right hand quadrant of

2.24 1.79 4.02 8.5
0 4.22 7.06 8.96

0] 0 0.95 1.59
1.33

-0.67

0] 1.67

For the purpose of comparison, we will also present
here the solutions to example (3.2) of chapter III. Later
on in appendix B, this example will be used for the graphics
simulation of Nash’s array to show that it produces

erroneous results as mentioned in chapter III.

128
Example (3.2) gives us a 1linear system which is

expressed in matrix form as

02 3 5
213 7

Solving this linear system with Faddeev’s algorithm

requires us to formulate it as

A|B 1 3
= (A.5)
-I I o -1 0 O
0-1 O
0 0 -1
Because a = 0 and a = 0, we can make things a

1,1 2,1

lot easier by interchanging rows R, and R, of (A.5) with the

operation (R,) < (R,), to give

3
7

2
-1 0 O
0-1 0
0O 0 -1

129

Performing the operation (R, + .5R,) = (R,) reduces

4

all entries below a, , to zeroes, and the above system
becomes
7
7 9
0 5
0 .5 1.5 3.5
0 -1 0 0
0 -1 0

Rotating rows R, and R, with

— 2 2 - —
@, 5 = J a, , + ay , = J 16 + 4 = 4.47
4,2
cosa, , = = = .89
az's 4.47
] a; , 2
sina, , = = = .45
’ a 4.47

will completely triangularize A to give

2 1 3 7
0 4.47 7.6 10.29
0 0 -.45 .45
0 .5 1.5 3.5
-1 0]

0] -1 0]

in which all entries in the second column of the lower left

hand quadrant can be eliminated with the operations

130

(R, = .11R,) » (R,) and (R, + .22R,) (R;). This produces
the system
1 3 7
0 4.47 7.6 10.29
0 -.45 .45
0 .65 2.35
o 1.7 2.3
-1 0
Finally, the procedure is completed with the
operations (R, + 1.45R,) - (R), (R, + 3.8R,) » (R;) and

(Rg = 2.24R;) -~ (R,), to yield

1l 3 7

0 4.47 7.6 10.29
0 -.45 .45

-1

which shows the solutions to the linear system in its lower

right hand quadrant.

APPENDIX B

REAL TIME GRAPHICAL SIMULATION

OF SYSTOLIC ARRAYS

Simulation techniques play an important role in the
verification of a design’s correctness of operation and
debugging. Because serial computers are by nature
sequential machines, their software simulators are often
little more than conventional language interpreters.

For systolic arrays, this is simply inadequate. To
verify whether a given algorithm is correctly mapped into a
corresponding array architecture, a system designer must be
able to observe, at all times, the movement of every piece
of data as they traverse through the array, as well as the
results from operations performed on each of them by any of
the cells. Furthermore, for debugging purposes, he must be
able to look into the registers of every cell at any one
time, and see the values of all control signals present in
that cell. 1In short, he must have the most detailed view of
the entire system, which may consists of many arrays and
many cells, at all times.

To meet the above requirements, a new breed of
simulator—a systolic arrays simulator—was developed and

built to aid a hardware or software designer in the task of

132
designing and debugging systolic systems. For reasons which
will become clear later, it was deemed essential that this
simulator should be graphics based, hence its name Systolic
Arrays Graphical Simulator, or SAGS in short.

From the very beginning, SAGS was designed to simulate
systolic systems of any configurations. These
configurations are specified to SAGS by way of script files.
A script file contains vital informations about a system
such as its number of arrays, their types and sizes, the way
they are linked together and the microprograms each cell
will use. A script file also specifies when and where input
data and control signals should be fed into—and output data
taken from—a system. SAGS allows for systems with multiple
input, control and output data streams. Each input or
control stream is stored into ASCII files prior to being
accessed by SAGS. Similarly, outputs of SAGS are written
into ASCII files.

During run time simulation, SAGS executes all steps of
a problem one after another without pause, showing results
of each step on the screen. This is called multi-step mode
of execution; it can be stopped and restarted at any time.
Alternatively, SAGS can single-step through the problem,
allowing a more detailed inspection of the results.
Switching between these two modes can be accomplished easily

at any time.

133

Visually, SAGS allows all arrays of a system to be
seen on a monitor screen, as long as each array has a
reasonable number of cells. Because the real estate of a
monitor screen is 1limited, arrays can be overlapped such
that one in the background can be brought into the
foreground for observation at any time. In addition,
individual arrays can be interactively positioned anywhere
on the screen to closely match the system schematic. SAGS
allows an array to have two different views: a real view,
with the array and its cells appearing smaller and therefore
containing less information, and a full view, where the
cells show all thelir registers content. The view of an
array can be specified in the script file, or changed during
run time. All visual changes made to a system configuration
during run time can be recorded back to the script file for
reuse. A status bar on top of the screen displays
additional informations such as the current step number, the
total execution time and the array being selected.

In this author’s experience, SAGS has been quite
useful in verifying and debugging the designs presented in
this thesis. 1Indeed, it is while using SAGS to simulate
Nash’s implementation of Faddeev’s algorithm that the bug in
its boundary cell microprogram was discovered and
identified. For the reader’s convenience, SAGS source code

is listed in Appendix C.

134

In the following, three series of snapshots illustrate
the simulations of three different systolic designs. Each
snapshot is a screen output of SAGS for one execution step.
All problems used in these simulations are examples taken
from Appendix A.

The first series of snapshots B.1l shows the simulation
of Nash’s system (from Figure 5) as it solves example (A.4).
It can be seen that this implementation of Faddeev’s
algorithm produces erroneous results.

The second series of snapshots B.2 shows the
simulation of Chuang and He’s system (from Figure 8) using
example (A.2).

In the last series B.3, the L-tuple arrays system of
Figure 30 is simulated, with L = 2. This system is shown

here solving example (A.3).

135

WRERy BCMH

j 1IE EuhPEEC - " L0000 secs } -

Status Bar Delay Cells for

i ! J — Input Data Flow
| 0.59{ G0, ~TToy 000 Skewing
| 9 o I o d
—t S — ;
' i i § {
| 0.00f 0.60{ 0.001 | ¢.00§ 0.60] 0.00]
g 4 o o i et oo o
L A 4 L X J r
H RS T !
T~ on 000 oooil 0008 o 0of o ol
3 o ,% o f o [
1 ¥ 1
Triangular /@ o oo” o‘ooi'l 0.00 o.oo; Square Array in
Array in Real Mode YRR EEREN Real Mode
— —
Bi Lo eos 0.00 o.nn;
i
Tag Bits R P
— 4
| \ {
j 0.00§ 0.00] 9.00f
¢ & o o 4 Delay Cells
\ -
[BN
AT IR
[} o i
i
i i
| 0.00) i
[
| SE—

Snapshot B.1.1. Simulation of Nash’s systolic
array solving example (A.4).

g 0 7

:
ajg———1.00 1 0.00
1 ¢ | 0 |
J J
i] r |
812 ——~z.00] 0.000 { 0.00f 0 00i
| 1 |
!] 1] ! .
a1 NLME o.00f 0.0l | o.oo: 0.06] 0.00! Tag Bits
r ! i i
\ A LRI I 94
006 G 0.00 0] §.80 0| [6.60 6y 6.00 B§ 0.50 0] -
¢ ————-1.00 § 0.00 000 {}o00 { 000 ¢ 000
/‘rc.ce ; eo0 oo | " ¢.50 g 9.90 : g.o0 !
s {606 § 0.00 0.00 || 6.60 § 0.00 4§ 6.00
; .00 o} 0.00 c} ; 0.0¢ o: .00 c; 0.90 0
X | 1.00 0.00 § | 6.00 § 0.00 § 0.00
out ; noe 1 oaoe : { 0.60 = 0.00 : 0.0 I—— Square Array
1086 § 600)] 096 § 000 § 000 in Full Mode
/ g0 0 F.noo n: RS o;
! 1
. 1.00 0.9 0.0
Triangular s las oo §an |
N . . .00 o |
Array in Full Mode s o Yase Yoo !
— (RIS 8.66 Lu.vb g e sy
HERCHER IR
[I [
—r———
1 a and s aal
AR ERY
LR
e
e
[
—

Snapshot B.1.2

136

e e e S
[e e [= P P
- P P
z2gzzgles ezle e o
- € O Cc O € D> O > Ah- e o > o 4 ﬂu =3 < < °
»U.Oﬂvoﬂvo.ﬂ‘u.ﬁuoou.\. ©O o O Ol O o DfC o o
@ o olo o ¢ 2fle ® 0 o [p——— —
STy T e T Y e T e v v . v T e 2207 s oo v T) W g o < W
> S -1 « < ﬂ < o o °
o<l o @] o e o @ £ 8 88188 & 3]s g8 8
D0 o O € 2 o D e D O o " . . . v
AU. o Fm o <> .U» -2 ° ﬂu QD 9 o < L 2K - - I -) c o o o < o o <
o < @ o o ol o o ofa 2 © o < o < <
2 g 8 g S ——y | o O
e © o B | e - R o © o © o =3 <
] <> <
e - vy (-3 - -) o 9o < D S o o o =4
=3 3 0 O O € D G D A3 =1 <> = =4 o. @ e oo °°nn° ﬂuo o.AU o
-3 26 sl s &3S s S & 3 e Pljo 6 o afe = o o]e 4 0 @ o °
o ©®|le e o oo @ ¢ 9e ~- o o o @ o © o © IO § S S,
SRS | SNSRI S I IS S [
e T T T S [~ T TT T T
b4 2 S o < < s
S o o " © ~ 28 s5zigze3ls2z8
~ - s 2o oalo e cole o oo » 8 2 ele 3 & 38 3 &3
S e & Slér S & e B & B =4 @ v o oo - o ala ~ o o
= - < = o LS 23 - O <
3 S <@ < e S elbhe- e
ol Colhmmneeh cm———te e P ©
- .]
A ST - EENIEEER CEEE
P = s e ol o e S ? < 1 :
Py g EEEES LR o @l e oo w e o
) e =lle = o oo = <« = AR § SO N
— N T e Y T e e e ed
™~ Py
2 @ <>
N sggs ©0 2 g2
2883 . G e e o
—-o -
— e
— ——— =
™~ ° =]
© m) (SRR
— ow
8g 8w o
— ~
= + —~ 0o g
o O O N ? O
h “Werd o0
—~ —~00 0 0
/)] N~ @
M ©® A A

Snapshot B.1.4

EofIE0 ¥t 8 Lo A S VIRE AT Ib o v sk AOAROR. ¢ vece: i KEBRY a2 LTRVUY)i 5]

Snapshot B.1.5

i o.ooi [-)oi
[[
S [
I I
I g.00l 3.00 0.00] 0.00
§ 0 [)]
-t.oof goeel 700l ! os.ael e.eef .00
5]]) [} 0
[200 6§ 2.06 6 3.00 0] | 0.00 6§ 0.00 0§ 0.00 4]
| 0.00 1.00 0.00 1.00 0.00 e.00 |
: 1.00 0.00 1.00 0.9 0.0% 600
{ 0.00 .00 0.00 0.00 0.00 0.00
G0 0 660 0 .09 0.96 0§ ¥.00
1.00 1.00 1.00 1.00 0.00
0.00 0.00 0.00 0.00 0.60
0.00 0.00 0.00 0.00 0.00
$.66 ¢ §.60 G.06 05 0.8%
1.00 1.00 1.00 1.00
0.0¢ 0.00 0.00 ¢.00
0.00 0.00 0.00 0.00
0.604 0.00f 0.00
[[] [}
0.00§ 0.060
[] °
0.00
[]

Snapshot B.1l.6

0.00 0.00
b]
-1.00] o.00 0.00 0.00
i 1 0 0
0,008 0.00f 3.00 2.00] 0.00} 0.00
1 1 0 0 0
2,00 8] 1.00 0§ 3.00 0 $.00 0) 0.00 0 0.00
-0.50 0.00 1.00 ©.00 1.00 0.00
1.0 1.00 0.00 1.00 0.0 0.60
0.00 «2.00 7.00 0.00 0.60 0.00
%.00 0F 0.00 0 0.00 0f 0.00 0 0.00
0.00 1.00 1.00 1.00 1.00
1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.60 0.00
0.0 0 .60 64 0.00 0§ 0.00
1.00 1.6 1.00 1.00
¢.00 0.00 0.00 0.0¢
0.00 0.00 0.0¢ 0.00
9.00F 0.00{ 0.00
L} 0 °
0.004 0.00
[} ¢
0.00

137

138

| i F I et ok Je: T EARPRRD oo b BO000E—pece - ™) : 2. L ohkbay. Smp v JURTTTS Fobo)

iy 0ol 0.00
i [
f
o.00| o0.00 | o.00f 0.00
1 1 [} '}
f
a.008 - 0ot aanll 2 008 o 00} 000
i 1 1 [[[
2.00 5§ 1.00 1§ 3.00 0 5.00 0f 0.00 0f 0.00 0
0.00 1-0.50 0.00 1.00 0.00 1.00
1.0 1.00 1.00 0.00 1.00 0.00
0.00 0.50 -3.00 s.00 0.00 0.00
.52 0 7.00 @ 0.00 O 0.00 0y 9.00 0
0.9 0.00 1.00 1.00 1.00
-6.4§ 1.00 0.¢0 0.060 0.00
0.00 0.00 0.00 0.00 6.00
6.0 0 000 03 0.60 Oy 0.60 O
1.00 1.00 1.00 1.00
.00 0.00 0.0¢ 0.¢0
0.00 0.00 0.00 .00
0.003 0.00} 0.0
0 0
0.00p V.00
0 (]
0.00
(]

Snapshot B.1.7

BT A R |
e R e e e
9.00 0.00
1 H
0.00{ -1.00 0.00{ 0.00
1 i 1)
0.008 0.00] 0.0¢ 0.00F 0.00] o.00
{ 1 1 i] (]
2.00 1§ 1.00 1} 3.00 1 7.90 0§ 0.00 6f 0.00 0
©.00 0.00 ~4.50 0.00 1.00 9.00
{.00 1.00 1.00 1.00 $.00 1.00
0.00 -1.00 1.50 -5.00 0.00 0.00
V¥ i) 7.60 0 .00 og 0.00 0F 0.00 ¢
0.1¢ 0.4 0.00 $.00 1.6
-0.%5 ~0.%5 1.00 8.00 8.00
0.00 0.%5 0.%0 0.00 .00
0.60 ¢ .00 05 0.6 of 8,60 0
1.00 1.00 1.00 1.00
0.00 0.00 6.00 .00
8.00 0.00 0.00 .00
0.00F 0.00{ 0.00
° 0 0
0.00§ 0.00
[°
J
0.00
[

Snapshot B.1.8

5Lt e oo T L TR AP G = - D 000000 gags, }.. - RREAY: & roe PRI T Jrsit]
v 1

9 on! 0.90
! 1
0.00] o0.00 0.00] 0.00
i t i i
|
o.oelll e.nonl -1.000) aeol 000l 0.00
11 1 1 1
} 2.60 1] 1.00 1] 3.00 1] | 7.00 1] 0.00 0f 0.00 0
} 0.00 0.0 0.00 -0.50 0.00 1.00
{ 1.9 1.00 1.00 1.00 1.00 0.00
| 0.00 0.00 0.00 3.50 0.00 0.00
Y. 1y 7.80 8 10.25 ¢ 0.0 Jg 0.00 O
-0.22 0.14 0.99 0.00 1.00
-3.3% -3.55 -0.%8 1.6 0.00
9.00 0.65 -0.45 0.00 0.00
9.5 ¢ .60 6.6 0g 0.00 0
0.00 1.00 1.00 1.00
1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
§.007 0.00§ 9.00
(] 0 ¢
9.00§ 9.00
[0
0.00
[
Snapshot B.1.9
PR T PR ve T B ST T IT T K A A L DR T T
9.00 0.00
1 1
0.00] 0.00 ¢.00{ ©0.00
i 1 1 i
0.001 @.acl 0.00 e.col @.001 0.00
i i i i i 1
2.00 3§ 1.00 4] 3.60 1] 7.00 1] 0.00 1] 0.00 ¢
0.00 0.00 0.00 0.00 1-0.50 .00
1.00 1.00 1.00 1.00 1.00 1.60
0.00 0.60 {-1.00 0.00 0.00 0.00
.87 1§ 2.60 1 10.23 13 0.00 0 0.00 O
000 | -0.22 0.11 0.49 0.00
-0.45 -0.%5 -0.45 -0.%5 1.0
0.00 1.70 2.35 0.00 0.00
[; 31 -0.35 0g 000 05 0.00 ¢
1.5 0.00 1.00 1.00
1.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00
9.005 0,00} 0.00
°] [)
0.00p 0.00
0 [
0.00
[)

Snapshot B.1.10

139

140

:
J
{
1
|
J
B !
0.00f o0.00 o.oo“ 0.0¢] o.00f 0.00!
i
1yt R 1 t |
T200 1§ 100 1] 300 1] 700 1] 000 ¥ .05 1]
0.00 9.00 0.00 ‘ 0.00 0.09 -0.59 f
}Loo 1.00 1.00 g 1.00 1.00 1.00 }
{ 6.0 0.60 0.00 | { 0.00 .00 0.00 |
K wec:; $029 17 0.00 10 608 ¢!
. . 28 . XY
| 6.00 0.00 {{-0.22 0.34 .89 §
Paows foone : FRTINE ORI N 'l
L9000 §-1.00 | 2.30 .00 9.00 |
X3 1; 045 1T 000 0 000 o;
380 | 145 g 0.0 1L
1.00 gl 1.00 = 1.90 0.00 g
0.5 "L;Aoc HERS 0.00 |
—
| c,eei a0l .00
] 6§ @ o
—r—
Dg pa? 000 .
| Beay 200
i o § o
r—-ﬂ_
¢ R
| 0.00]
Poo
P |

Snapshot B.1.11

772,66 1] 100 17 3.00 4] [706 1y 6.60 1) 6.66 1] -
i 0.00 0.00 0.00 || 0.00 000] 0.00 |
)

i 1.00 1.00 1.00 i: 1.0 1.00 : 1.90 :
| 0.0 0.00 0.60 1} 0.00 6.00 § 0.60 |
HEXERY X t {:c: 1008 :g 000 1
i 0.00 0.00 {000 j-o.2z | 011 |
f-n.-.s -qes) 0.8 Ve :-o." ;
i
0.0 0.0d ;Q.uo j v § 0.0 |
Uone ¢! toawe (8 oo ¢F g0 of
poE T ' i
jtiav] 380§ 18 g G0
I 00 1! ¢on § g.00 # 100
g M [
LR Q.ou j b.or g oc.oe 1
'
x]. HR | ¢
! i ¢
(erroneous) reeepe—t——
! oo ogo!
HERIHER
R
—r———
' 13 ’-‘
NI
[
s

Snapshot B.1.12

i .00t i 0.001
et o
J —
1 | ! t
t 0.00f 0.00! | o.00y 0.90(
fe o tatst
{ [i i {
i o.00f o.00l o.00t! 0.008 o.00] o.00]
R et
T265 1] 165 1) 3.8 1] [7.00 1y .60 1] 0.00 1
j 0.00 & 0.00 J§ 0.00 4 | 0.00 0.00 0.00 |
} KON R ; 1.00 : 100 Laee 1osee ;
{000 § 0.00 | 6.00 0.00 0.00 060 |
; v.87 1T7.sc 1] [19.29 11 000 1 ¢.00 ﬂl
j 0.00 § 0.00 0.00 0.00 §-0.22 |
Looar g DL EA I ERY ;
z 0.00 : 8.00 | 1 0.60 0.00 9.06 |
{ X {-Ms- tFaoe 17 o0 1%
900 | -2 3.40 1.4
: 1.00 g 1.00 1.00 1.00 !
L6.05 {000 4 0.60 ¢ B.60 |
I]
| |
+.001 0.00} 0.00
i |
X, —T
2 P 1]
(erroneous) |
| 300y 0.00
|1 0
¥
: c.as}
1 o)

Snapshot B.1.14

| |
j 0.00 0.001 0.00] 0.00)
¢ o ! K
| |
| o.00f 0.00] o.00i | o.00f 0.00] 0.00
LO € [J ! 0 1 1
266 3] $.00 3] 3.00 1] [700 4] 0.00 1] 0.00 1]
8.00 J 0.00 0.00 0.00 0.00 0.00 |
1.00 g 1.90 1.00 1.00 1.00 1.60 :
0.00 ‘ .00 0.00 0.00 0.00 0.00
{ Y7 1) 760 f) 11029 17 .00 1) 6.00 §
] 0.00 0.00 @.00 G.00 6.00
;-0.15 -0.9¢% -0.%5 -0.3% -0.8%
| 0.00 .00 0.0 .00 0.00
o .ac ﬂ, R EEE
0.00 || u.00 f-2.28 1.9 |
f 100 11 100 ¥ 100 ¥ 100 !
[N e D
P YR g BB g 000 i 6.50)
f] |
-t.00f 00ol 090
Xg — T 0%
RN EEEE
(erroneous) _r‘-""""—’. i—
R XL
[S T 1
p———
tlLLt
NS
[S
—

141

142

! |
{ 0.00§ 0.00§
[o
J
] i
j 0.00 0.00‘ 0.00 0.00
R 0 } ° 0 _7Delay Cells
xin‘\L ! 4
o.00l o.co o.oo‘ e.00d o0.00f 0.00
¢ e ¢ it 0 o
Tag Bit
T — 3 s
X \‘-/zm ¢.90 o.sc} e.col 0.00 °‘3>
Tag Bit _,.——lﬂj ¢ W ° °
0.00! | o.00 0.00] 0.00 S A .
: |—— rray in
T A_rray 1n ° ° 0 ° Real Mc).,)de
Real Mode
.00} ; 0.00F o0.60] o.00
) 0 0 o
¢.00§ o.00f 0.00
0 0)
Delay Cells
0.00F 0.00
o oo
0.00
¢

Snapshot B.2.1. Simulation of Chuang and He’s
systolic array solving example (A.2).

CVIRETELRFSED-Boc OV RQDGDIY. pedsn 3 -

5.00] 6.00 260§ 0.00
[)) ° [
Tag Bits -1.60§ 0.00{ 0.00{ | 0.00] 0.00] 0.00
~o ° ° 0 ° o Tag Bits
X
T—F o el oor eF con ot Naca ol 000 o 000 o7
v —_— .00 0.60 0.00 .00 .00
out] S Array in
M _ lae 0.00 0.00 0.00 0.00 .00 —F M
MOUt 0.00 4 0.00 0.00 0.00 0.00 0.00 Full Mode
“out 0.00 o 0.00 of | 0.00 of 0.00 0f 0.00 ¢
: 1.00 0.00 0.60 .00 0.00
.00 .00 0.0 0.00 .00
T Array / 000 | 0.0 0.0 Yoo J oo X
in Full Mode 0.00 of { 0.00 of 0.00 0f 0.05 0 v
1.00 oe0 3 oo oot MOLlt
0.00 0.00 0.00 o0.00—" out
| —
.00 0.00 0.08 0.00 xout
o.00} o.00f ¢.00
[] ¢ [}
0.00F ¢ .00
]]
¢.00l
1

Snapshot B.2.2

FARIAL: B2 ey ’ﬂj:fx’fm,

ol TS S = Lo L TINE_ KRB 0= 0. Q00005 —c peLE=]
i 1 Ul}; } " u(-;
foe ioe i
i 1
¥.06{ -3.60) } v.00) .00
[0o | {0 0
3.00] s.00 o.0of [0.00§ 0.00f 0.00
) [)] } ° l [)
[Ts00 o0 coo 30 aon ol [ceo o1 000 o 000 o:
{100 1.00 0.00 0.00 6.00 0.00 |
i 9.00 0.00 9.00 0.00 0.00 0.00 :
! 0.00 0.50 0.00 0.60 0.60 0.90 |
2.00 e§ .00 3| § 000 0} 0.00 o 0.00
1.60 1.60 6.60 0.69 2.60
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.90
0.00 of | 0.00 1§ 0.00 o} 0.00
1.8 100 ¢.00 0.00
0.00 0.00 0.00 0.00
0.00 .00 .00 .00
0008 0.00f 0.00
¢ [)]
o.00f 0.00
)]
0.00
)
Snapshot B.2.3
f=ite oo 3] 50
-2.00 0.00
0)
7.00f .08 0.00{ 0.00
)) °)
§.00{ .90§ -3.00{ | 0.00f 0.0¢{ 0.00
1) 0))))
3.00 00 500 17 000 1) [0.00 0¥ 000 0F 0,00
1.00 1.00 1.00 0.00 .00 0.00
0.3) 0.00 0.00 0.00 0.00 0.00
-0.33 0.00 0.00 0.60 6.00 .00
0.00 of 0.00 111 0.00 1} 0.00 o .00
1.00 1.60 1.00 .60 .69
.00 .00 0.00 0.00 ».00
0.0¢ 0.09 9.00 .00 9.00
0.00 of | 0.00 0.00 1] 0.00
1.00 1.00 1.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00} 0.00 o.00
° 0 ¢
0.00] 0.0
) 0
0.00
0

Snapshot B.2.4

143

[iVt o mnr o o e aofs TnE ELABSED o G AN ~gece o L _AFPSE R L FVATUE S IR

Snapshot B.2.5

| 800 jos.00)
1 ‘l 10 !
~ — -
2.00f -2.90 ‘-nw 0.00
1] 0 0
-1.00f 7.00f 4.00{ {-2.00f ©.0¢{ 0.00
' [] 0 9 0
€.00 A1 v.00 1R 300 ¢ o001 000 0f 000 0
.90 1.00 .00 .00 0.0 @0
-0.50 0.3 0.00 0.00 0.00 0.00
0.50 6.33 0.08 0.00 0.00 0.00
0.00 0f 0.00 1 0.00 1§ 0.00 1§ 0.00 0
1.60 1.00 1.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 © 0.00 1§ v.00 2] 000 1
1.¢0 1.00 1.8 1.0¢
0.00 0.00 0.00 0.00
8.0 0.00 o.00 0.00
o.00f o.00] 0.00
¢ ¢ ¢
0.001 0,00
0 []
0.00
]

i.00 1,900,
1 [
-$.00] -1.00 3.00f 6.0
H 1 ¢ 0
=3.00§ 2.00] -2.00 1.00§ -7.6¢{ 0.00
1 1 [[[} 0
€00 13 7,00 313 1.00 1 -2.00 13 0.00 1Y 0.00 ¢
0.00 1.00 1.00 1.00 i.o0 0.00
0.1? -0.50 0.33 0.00 0.00 ¢.00
-0.17 0.50 -2.67 0.00 0.00 0.00
€33 41 2.00 000 1§ 000 t] 0.00
1.00 1.00 1.03 1.00 1.00
0.00 0.60 0.00 0.00 0.00
0.0¢ 0.¢0 0.¢0 0.00 0.00
$.00 0 0.00 1§ 000 £} 0.00 1§
1.00 1.00 1.00 1.00
$.00 0.00 .00 0.00
9.00 8.0 ¢.00 8.00
0.00F ¢.00} 0.00
[] 0]
0.00} 0.00
(] 0
0.00
0

Snapshot B.2.6

144

145

EHTH e 3 oy o o TR {02 4§ e e T 11T S T YT TR SRS M1 112 et 43! A8C02 SR

RTH i o]
[[

4 —

. i |

3.00{ 1.0y 3.00] 1.0

1 1| [} o |

|
5.00§ -¥.00] -+.00 | 5.00§ 3.0¢] €.00
1 1 t 1] e 0 o !

— —
eor T 70000200 111 vo0 11700 1] 000 ol
i 9.00 0.00 1.90 1.00 1.00 1.00
I o.50 0.17 }-0.50 0.33 ©.00 .00
l -9.50 3.07 2.00 1.7 0.00 0.00
€33 el 262 ¢ ¢.00 1 Q.00 0.60 1
) 1.00 1.00 1.00 1.00
-0.08 0.00 0.00 0.00 0.00
{ 0.08 0.00 0.00 0.00 0.90
| 0.00 ¢ 0.00 14 o0.00 1] o.00 1
} 1.09 1.0¢ 1.00 1.00
s.00 0.00 0.00 0.00
9.0¢ 0.00 9.00 4,00
o0.00f o0.00] o0.00
° [} [}
0.00% 0,060
[} 0
0.00
[]
Snapshot B.2.7
T~ :
.90 -5.06
1 1
8.00{ -2.00 1.00] §.60
1 1 1 []
0.00f -3.00{ 1.00{ | 2.00f 3.000 1.00
1 1 1 1 [) [)

€00 12 2.00 43 -2 00 @ 300 LT £.00 ¢

.00 1.00 1.0

-
o
3
-

-0.43 .50 0.1 -0.50 0.33 0.00
6.33 -0.50 -$.33 -1.5¢ -6.00 8.00
€33 131-2.67 0 -1.62 11 0,00 1§ 0.00 1
8.%0 0.00 1.62 1.60 1.00
~0.50 -$.08 0.00 0.00 9.00
0.50 2.2 0.0¢ 0.¢0 $.00
0.00 0 0.00 1§ 0.00 1) 0.00 ¢
1.00 4.9 1.20 1.00
0.00 0.00 0.00 0.00
e.00 0.0¢ 0.00 0.80
0.008 0,00} 0.00
b] °
0.00f ©.00
[} [}
0.00
0

Snapshot B.2.8

146

BSR4 | e 298 ST R 1O (1 SRFSON LT TTT e JR AL TR e $ 1) DO IS0

0.02] €.00
o ,
0.00] .60 v.00] -5.00
t 1 i 1 1
+
0.003 0.00) -2.00] | 2.00f 1.00f v.00
1 1 1 1 1 ¢
Tooe o 700 o0-2.00 o} [coo oF a00 1} 100y
boso o0 0.00 6.0 1.00 1.60
I 000 l-0.03 .50 0.7 f-0.50 0.33
[0.60 j-8.83 5.00 283 §-1.50 .33
633 10-2.67 0f |-1.67 0¥ -6.00 11 0.00 1
0.60 6.00 2.8 1.00 1.60
0.0 | -0.50 -0.08 0.00 0.00
0.08 1-3.00 -1.37 9.00 0.00
1.21 0| | o0.00 3§ 0.00 1] 0.00 1
1.00 1.09 1.00 1.00
0.00 0.00 0.90 0.00
0.0 0.00 a.00 n.00
0.00] o.00} 0.00
¢ ¢ 0
0.00d 0.00
I 0
0.00
0

Snapshot B.2.9

.00 §.00
H 1
0.00] 0.00 2.00{ §.00
1 1 1 1
0.00] 0.00f 0.60| | -3.00K %.00] -5.00
1 1 H 1 1 1
f£.00 12 7.00 02 -2.00 ¢ 00 070 o060 0% B0 g
0.0 ¢.00 9.00 0.00 0.80 1.00
0.00 4.0 -0.43 0.50 0.17 ~0.50
0.00 0.00 -0.33 8,50 2.50 -1.00
€33 1§-267 0 ~1.67 00 -600 00 €33 1
0.00 0.00 0.00 0.00 1.00
1.38 .08 -0.50 ~0.0¢ 0.00
-1.29 -£.24 2.67 -1.03 0.90
.28 1 -1.37 1§ 0.00 1] 0.00 1
0.¢0 1.00 1.00 1.00
1.3¢ 0.00 0.00 0.00
-1.36 0.00 0.00 0.00
0.00F ¢.00] 0.00
[[0
0.00} ¢.00
[0
0.00
[

Snapshot B.2.10

147

b i)y] "W;zﬂmm—r_nﬁAm“ - 000010 = 0408] =ik ARRAV-g—¢:cc PIATNE £ 2 i
i 690} | 9o
i ;I PO
; . i
0.90] 0.90 9.008 9.00
1 1 1 1
0.00§ 0.00f 0.00[| 0.00f 2.00{ ¢.00
1 1 1 1 1 1
c.00 17 7.00 0F-2.00 @ £.00 0} 200 0 vee 0
0.00 0.00 0.00 0.00 0.00 0.00
6.00 0.00 0.00 -0.43 0.50 0.17
0.60 0.00 6.60 TRy $.50 -4.33
¢33 tf-2.67 00]-1.67 08 -5.00 0l 633 ¢
! 0.00 0.00 0.00 0.00 0.00
0.00 1.39 0.08 -0.50 -0.08
0.00 .08 $.37 5.50 -1.50
tes o) [-1.37 ofl-1.03 2] 0.00 1
9.00 0.00 1.00 1.00
0.10 1.36 0.00 0.00
-8.10 1.8 0.00 0.00
0.008 o.00} 0.00
[0 0
0.00k e.00
]
0.00
0

Snapshot B.2.11

0.00f 0.00 0.00f 0.00
1 1 1 1
0.80§ 0.00{ 0.00 0.00f 0.00) $.00
1 1 1 1 1 1
€.00 13 7.00 08 -2.00 0 $.00 0] .00 OF 2,00 0
0.00 0.00 9.00 9.00 0.00 0.00
0.00 ¢.00 .90 0.00 -0.43 0.50
0.00 0.00 0.00 0.60 -5.50 $.08
€33 112,67 ¢ “1.62 01 -6.00 07 €.33 ¢
0.00 0.00 0.60 0.66 0.00
0.00 6.00 £.39 0.08 -9.50
£.00 0.00 -3.%8 $.03 -7.50
2.31 ¢ -2.37 01-1.03 0}-1.50 2
0.00 6.00 0.00 1.00
1.43 0.10 1.3¢ 0.00
-1.93 1. ' 0.00
Xll —_—ti.8t] 0.00] 0.00
1 0 [
0.00§ o¢.00
(] 9
0.00
[}

Snapshot B.2.12

148

BT o 3 [77 yeromeon e SO ot T8 Y.L YRS P10 Y 1O T Ty P S S LWy L1 s e
' - o 0. R
oo [
{ .60 o.oo{ : .60 o.oo{
ia 0 ! 11 1|
| .
6.06) 0.00] 0.00] | ©.06§ 0.00 0.00|
1] IR Pt 1
X B EED og s.00 ob 900 0
.00 0.00 0.00 0.90 .00
0.00 0.00 0.00 0.00 0o.00 [-0.03
0.60 0.00 0.00 0.00 0.00 5.67
633 18-267 o] |-1.62 ol 600 0f 6.33 ¢
0.00 0.60 0.06 0.00 0.00
0.00 0.00 0.00 1.39 0.08
0.00 0.00 0.00 [13.47 1.50
2.20 1] [-3.37 o] -1.03 0] -150 ¢
0.00 0.09 0.00 0.00
0.00 1.0 0.10 1.3¢
0.80 L1200 7.0 losse
X ———dv 20l s 1] 0.00
21 /’
i []
x /
12 1.61] 0.00
1 []
0.00
[]
Snapshot B.2.13
SRR T T I TR W LRI PR XXl [elpmy o - CveIes)
0.00 0.00
[°
0.60] .00 0.66{ 0.00
0 [)
0.00f 0.00f 0.00{ | 0.00] 0.00] 0.00
[] 0 i 1
5,00 11 7,00 0f-2.00 0} { 500 oF 200 of v.00 0
0.00 0.00 0.00 0.0 0.00 0.60
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.60 0.60 9.00
€33 1)-2.62 0| {-1.62 0V -6.00 0] 632 ¢
0.60 9.00 0.00 0.60 0.00
0.00 .00 0.00 0.00 1.39
0.0¢ 0.00 0.00 0.00 ;1%.50
129 1) {-1.37 o}-1.03 0] -5.50 ¢
2,60 0.0 c.00 0.00
0.00 0.00 1.93 0.10
.00 c.00 Lys s .36
X
| _— "13
X3l ____ﬂ,m: -9.5¥1
1 1 1
Xg0 "
s.2e0 4.1t
t 1
18
1

Snapshot B.2.14

ES o 1 2T e s DM owy
|
V.00 0.90 0.00 0.00:
o [) 0 [)
0.00] 0.00f 0.00| | 0.00f 0.00] 0.00
] ! 0 0 [}] 0
co0 08 700 abz00 o) Fson ol aion of vioe e
0.00 0.00 9.60 ; .60 2.00 0.00
0.00 0.90 000 |4 0.00 0.00 0.00
0.00 0.00 o.ch 0.00 .00 0.00
€33 1h-267 0 -1.67 0% -6.00 ¢ €.33 9
0.00 0.60 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 .00 0.0¢ 0.00 0.09
2.21 8| 1-1.22 of-1.03 od-1.50 o
.60 0.09 0.0¢ 0.20
¢.00 0.00 0.00 103
0.00 0.00 o000 lygs
0.00k15.25} e3¢
1 1 1
L12.00] 7.93
| |
vy
1

Snapshot B.2.15

Snapshot B.2.16

[) [)
0.00f 0.00 600 0.90
[) [) [)
0.00f 0.00f 6.00f | 0.00] 0.06] 0.00
[] [) [[) [))
6.00 ¢F 700 of-200 0] ! 500 0F 200 0F v.00 ¢
0.00 9.00 0.00 0.60 0.00 0.60
.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 .00 0.00 0.00
633 of-2.67 0} [-1.67 00 -c.00 of 6.33 0
0.00 0.00 0.00 0.00 0.00
000 0.00 0.00 0.00 [XT)
9.00 0.00 0.60 0.00 9.00
225 1} [-2.37 o) -1.03 of-1.50 ¢
0.00 0.09 0.00 .00
0.00 0.00 0.00 0.00
0.0 0.60 0.80 0.80
0.00f e.00} 11.75
v) T~
0.00k15 .75
t §
L12.00
t

33

149

Ci, C2, C3, C4

2 Arrays im
Real Mode

Snapshot B.3.1.
system solving example (A.3),

4, w =

that n =

| 990 Delay Cell
{0
Buffer Blgq
3.60] ©.50
+—0 0 M

0.00 ooo: 0.99] 0.00§ .00 0.00f 0.00 oﬂ/ our
o) o floe 0 0 0 ‘_/CZ, 3, C4
0.00{ 0.0 | 0.00f 0.00f 0.00[0.00§ 0.00] 0.00
[] o 0 0 [] 0 [0
000y o.00l | 0.00] o0.00f o.00l 0.000 0.00] 0.00
0 0 0 [}) [} ¢ 0
0.00f 0. 9.00f 0.00§ 0.00] 0.00§ ©.00] 0.00
0 0 0 [)) 0 ¢ 0
0.00] 2.0 \— Buffer B2q
L Delay Cell
0.00
0

Simulation of an L-tuple arrays

with L =
2 and therefore m

2. Note

2.

C1, C2, C3, C4

X

2.8

C1, C2, C3, C4 \;—o.oo

C1, C2, C3, C4

__’_,_{_Mo o.00l o.0el o.vel o.00] .00
out §.00 0 [¢ 0
X =
out 'ow 0.001 o.00} o0.008 o0.00] 9.00
e e 1ot ol
j 0.00
. { 0.00
2 Arrays in
Full Mode 20 01 0.00 0
0.00 0.00
0.00 0.00 0.00| 0.00f 0.00] 0.00¢ 0.00{ 0.00
0.00 .00 0 [0 [[) [
0.00 05 0.00 0
0.00 0.00 s.00] o.col c.0ol o.008 0.00] 0.0
])] b} [] ? [}
R e.00
) 0.00 § 0.00
|
| 0.00f 0.00
()
H
|' 0.00
P oo
HERGE

Snapshot B.3.2

150

151

DR o 77 N Pt s MBS i £ 11T £ 1T § o TSy zoom W 5ot (T TTOW ERMRw &7\ 1w TR
RN LH
' A]
to4.00f -1.00]
Fag | et
1 1
200 ¥ 000 ¢
15.00 0.00
0.00 io.oo 0.00 o.cel o.vol o.00l o.00)] 0.00
0.00 y 3.0 0 [] [] 0] 0
000 ol oon 0
v § oo 0.00] o.00l 0.00] o.00f 0.00] 0.00
¢ 0 0 0 ¢]
000 § o000 |
0.8 } 000 j
0.00 9] 0.00 0
000 1 o.00
0.08 0.00 0.00] 0.66¢ ©.00] 0.004 0.00f 0.00
0.00 § 0.00 o) 0 0 0
0.06 G} 9.00 0 . .
000 | 0.00 e.00] o.col o.00] 0.0¢! 000} 0.00
]))] I)
9.08) 009
0.00 | 0.00
0.00{ 0.06
)]
9.60
0

Snapshot B.3.3

-%.00
0

-3.00] -2.00

12l o
¥.00 ﬂ, +1.00 1§
1%.00 7.00
-0.50 0.00 o.00] o.00] o.00] o0.008 o.00] .00
0.00 0.00 0 0 [} [] [} 0
o.00 0f 000 0
0.60 0.0 oﬂ,oo 0.00 oo,oo oo.oo oo.oo oo.oo
0.00 0.00
9.00 0.00
0.00 Gy 0.00 @
0.00 0.00
0.00 0.00 0.00] o0.005 0.60] 0.00f 0.00] 0.00
.00 0.00 0] 0 0] 0
0.00 04 0.00 0
0.00 0.00 oo.oo 0.0 0.00 oo.oo 0.00 oo.oo

0 [}

t.00 0.00 i
0.00 0.00
| 0.00f 0.00
0 0
0.00
o

Snapshot B.3.4

IR T T e 3 7y 1 vy NS

Y
0.7 o.00l o008 000l 000l a0l 900
0.00 4 .00 ot e joe §ooe
to0 o8 o000 1 |
ser 1on v.00 .00 0.00f 000 0.00] s.00]
'BEREREEERER
0.0¢ Q.00
6.00 § 0.00
0.60 0] 0.90 &
0.08 | 0.00
0.00 3 0.00 v.00] o.05} 0.90] o.00y 0.06] 0.00
0.00 § 0.00 o o fojogoyge
0.00 05 0.00 0 N
00e | 0.0 o.00| c.o08 000l v.0el o0l 000
o | o 3o o s oo
0.0 ! o000
0.00 | 0.00
0.00] ©.00
e {0
.00
)

Snapshot B.3.6

1.00
9

-1.00] -6.00

. [
6.00 14 -2.00 12
1%.00 .00
-0.67 0.75 -0.50] o0.001 o.eo] e.cof 0.c0] 0.00
0.00 § -5.50 § 0 0] ¢
voe of g.00 1o
.00 500 o000} o.0ol o.00] o.00 0.00} 0.00

7 0 0 0 ¢ ¢
0.00 0.00
9.00 5.60
0.00 0] 0.00 0
0.00 6.00
0.00 0.00 0.00] 0.005 0.00] 0.00f 0.00{ 0.90
.00 0.00 0 0]] 0]
9.00 0g 0.0 0
0.00 0.00 ¢.60f 0.007 0.20] 0.007 c.oc] 0.00
] 0 0 [} v ¥

0.00 0.00
0.00 | 0.00
0.00] 0.00
° 0
0.0
0

152

co¢ 8} -5.00 11

.00 600 | ¥

e.7 Rooer 0.7¢] -0 cal o a0l a0nd 000l .00

0.0 2.60 ¥ § 4 7] 0 2

o o1.5ce 13 : . 000
. 0.00] o.00l o0.00f o0.00k 0.00] 0.

8.6y 600 HEEERERERK

0.00 0.00 g

2.20 0.00 |

0.00 0y 0.6 9

0.00 0.00 T

.58 $.00 b asol a.0sd 0.00] a.00) 606} 0.00

0.00 0.00] 0 0 0))

0-80 0y 0.0 84§ o ool 0.008 0.00 0.00f 0.00] 0.00

900 9.00) 0 0 0) 0

0.0¢ e.00

0.00 0.00

0.00] 0.00

) ¢

0.6

1]

—
-1.00
-1.00| 2.00
t [
BEXE
0.00
0.7 -0.62) 0.758 -0 ol o.00l 000l 000
.00 ¢] § 7 0 [}
L E NI
o o.00f 0.00] o.00! o0.00f 0.00] 9.00
§] ?
.00 .36 : 0 !
0.00 0.00
9.00 Gg 0.00 0
0.00 0.00
3.6 0.90 0.60{ 9.00; 0.36] C.003 3.0¢| 0.%%
0.00 0.00 ° 0 0 o [})
6.0 Gy 0.00 0
i 0.00 6.00 o.¢0] .00 o.00f o.09f 0.00] 9.00
[) 0 0))
9.0¢ .00
0.00 9.00
0.00 0.00

..,,_.._.
°
°

0.00}
L

Snapshot B.3.8

153

con sV goo

$.00 0.00

017 0.1 0.17f -0 20 0.7zl -0 5ol 0.00] 0.00
0.0 0.0 ° 1 ' $ 7 0
0.00 8y =80 0.36 0.00f o.00k 0.00f .00

360 a.008 o . . .

.00 0.00

0.0y rdedtelr>lolo
s.00 k o.00
soo 0.08

v.00 0 0.00 O

0.00 0.00

2.00 0.00 0.60f 0.005 0.65] 0.00§ 0.00§ 9.00
0.00 0.00 [[[) ¢ [¢
o-oo o °-°° o L1 6 T n Hh B AA) a Qh
0.00 0.00 8.88] ©.005 8.80) D.OY S0y .80

[} '] 1]] (] [

©.00 0.60

0.00 0.00

0.00f 0.00

0 °

0.00

°

Snapshot B.3.10

0.00
o
3.00f 1.00
110
s.00 -0 ¢
$.00 § 0.00
ear oy 033} o170 -e.67] o.758-0.50] 0.00
9.0 J-2.00 0 BARERE
o.00 of-s.50 8
0.00 0.00 0.00] 0.368 0.00] 0.00F @.00] 0.00
HENENEEERE
0.99 0.00
0.00 § 0.00
0.00 0 0.00 0
0.00 0.00
0.00) 0.00 0.00{ 0.50§ 0.69f ¢.00¢ 0.00] 0.00
0.00 0.00] 0] 0 [}
0.05 07 0.00 0
000 I o008 0.00f 0.00) o0.00f 0.00] 0.00} 0.00
BERERERERK
0.00 0.00
0.00 0.08
0.00f ©0.00
° L
.00
[}

154

155

|

1.00 2} -5.00 s]
7.00 0.00 |
000 ez Lhoa] easl o] -aerd o7s] 050
0.00 0.9 l [0 [] [4 L) 1
6.00 0F-550 2!
o 60 050 It o.00) o0.00 2.36] o.008 0.00] 0.00
. RN EREN KRR
¢.00 -0.,3¢
.00 0.60 }
8.00 0f v.00 @
8.00 0.00
0.00 0.00 0.00 0.00§ 0.50} 0.00} 0.08{ ©.6¢
0.00 0.00] (] [[[] [}
0.0 G§ 0.60 §
oo D ooo 1eoal scel coe) o.co) a.0el 0.00

’ : []) 9 9 [[
0.0¢ 2.0
0.00 0.00
0.00f .00

[} [}
0.00

[}

5.00

L
1.00] o0.00
0 L}

2.00 65 0.00 7

£.00 7.00

-0.50 0.00 €.17] 0.471 0.33} 0.17% -0.671 0.7%

-0.50 0.00 0 ¢ o] 13 4

0.00 72-5.50 ¢ ‘

7.00 9.00 ~0.36] ©.00% #.00F 0.35F 0.00] 0.00
0 L 0 % ¢ §

6.08 .00

8.00 0.00

9.00 03 0.0 O

.00 0.00

0.60 0.00 0.00] 0.00¢4 0.0} 0.005 0.00; 0.60

9.00 0.00] [} 0 [} ° 0

0.00 09 0.00 O

0.0 0.00 0.0¢; 0.00¢ 0.00; 0.C0f 0.00; 0.0t
[} [0 L [0

2.00 c.%0

0,00 0.00

8.00} 0.00

° °

0.900

0

Snapshot B.3.12

HERTIHEX

4,00 ¢.00 f

io.rs -850 e.0e] e.7] erf o o) 0w

| sas .00 70 o |0 PR

Foso e oo 2 '

§.00 2.90 = 0.00] -0.36% 0.00! ¢.00] 0.351 0.00
o | o s | o '

8.90 000 |

0.00 0.00 |

0.60 0] 0.00 0

0.00 0.00

0.00 0.00 0.00] 0.00] 0.00] 0.00] 0.00] 0.00

0.00 0.00 0 0 0 0 [} 0

0.00 07y 0.00 0 . .

0.80 0.00 o.co] o.00! o.00] e¢.c0f o.co} e.o0
¢ |0 0o {0 Ve

9.0¢ 0.99

0.00 § 0.00

0.00{ 0.00

[0

0.00

[]

Snapshot B.3.13

T e T R v S P

Snapshot B.3.14

1.00
¢

-2.00§ 0.00

¢ 4
$.90 63 0.90 %
§.00 ¥.00
-0.67 0.75 =0.501 0.001 0.17} 0.471 p.331 0.17
1.67 5.00 ¢ ? 0 0
£25 63 A.00 ¢
5.0 .00 0.00] ©.00f -0.36} 0.00F ¢.00f 0.3¢

? 0 0 ¢ t
Q.00 0.00
-0.50 0.00
000 o 0.00 0
0.00 0.00
0.00 0.00 0.00f 0.00¢ 0.00j 0.00f 0.00{ 0.00
0.90 0.00 [4 o [4 [} [}
$.60 03 S.00 ¢
0.00 0.00 0.90] 0.00] 0.00{ 0.00% 0.00} 0.00
[0) [] (]

9.00 0.00
0.00 0.00
0.00f 9.00
0 [
0.00
¢

156

9T-€°€ 3oysdeus

o

o
e © o

Y
a e
a

2 s © 9o 0o o o
=Y
<

090°0 J00°0 33070 JOO'6 §00°0 (000

©
o
o
o
°
o
4

>

00°¢ fe0Te 210070 00°0 U00°0 10070

o
-3

o
-
o
=1

14

R]
‘0
000 §5¢°0- foo 0 Joo o Joo'o foee 004 oe'e
& 005 §0 SI9
[} 0 ¢ ’ * 9 00°1 €670~
400 o qooo foste- Jsco eae- oy €0
00°0 0ao |
8 03°0 30 00'% f
o | o]
00°¢ oot |
2
00°0

0

000

o | o

000 fooo
i

0o 1 000

T 0o L oo

ol ol o] o

X 0" 0

oo'0 Jooro Jooco |osco jooro foo'o 00 3 00°
o 000 Ne ooe

of ot of ol ofo %o § 000
a0'e foe'a Joors looe leoro looe ove bosoe

{00‘0 00°0 €0~ J00'0 §OO'O j00'O

~
=1
<
n~
-
- @
N
&
<
<
¥
€
i
"2
.
©

LST

| 200 of 0.020 ¢
t 0.00
8.22 0.17] -0.627 @.751 -0.508 000t 0,47
3.0 0 3] § 7 0
£.25 0% 500 0
0.0 0.00 0.3} o0.00% 0.00] 0.00% 0.00] -0.36
] § 3 ? 0)
0.00 0.00
{-0.33 1.00
39 3y 12 1
8.00 §.00
$.47 0.13 0.06) 0.00; 0.00; 0.60y 0.00{ 0.00
0.00 0.23 7 L] ° ° 0 [J
8.00 0 0.00 & an an f AN L0 L1 L1
0.00 7.00 | 0.00; £.007 2.607 £.00y 007 £.00
L]]]]]
°.0¢ 9.00
9.00 | 0.00
¢.00f ©.00
13 ¢
0.9
[

Snapshot B.3.17

T —— e ——

Snapshot B.3.18

3.00

-8.00{ -3.00

1 L1
$.00 07 0.00 €
0.00 0.00
0.47 ¢.17 0.33) 0.171-0.€2| 0.757 -0.50] e.00
-2.8? 9.00 0 § 4 ?
€25 0F 500 0
.00 0.00 0.00] 0.3¢] ¢.00[o0.00] 0.00] ¢.00

1] t ¢ 3 ? 0
-0.36 0.00
-1.9 3.00
3.9% 3y 1.2 @
£.00 0.00
$.68 0.17 6.13f 0.003 0.00f 0.055 0.C0] 0.00
0.00 1.31 L3 ? (] 0] °
0.00 04 ©.23 1%
0.00 .00 0.00f 0.00] o0.00f 0.00 0.00] ©0.00
? 0 0]]]

0.00 0.00
0.00 0.00
0.00{ ¢.00
12 15
0.00
13

158

159

F20.00f 3.00
e)

i

-3.00 7= 0.00 0

it

j 700 § 0.60

go,oo 1oy 0.37] 0.32% 0.7} 067l 075 050
[0.00 | -3.00 o | o o} & vl

Tegs of 00 0
j 900y .00
tooo #-0.3¢
e ll -1.82

0.00) e.208 0.36] 0.001 0.00f 0.00

1 3.9% 0y 482 8
$.00 9.00

0.33 0.63 0.47] 0.135 £.00] 0.005 6.00{ 9.00
0.00 3.18 0 [7 0 (] 0
606 Gy 0.23 &

0.00 0.00 ¢.007 0.008 0.001 0.00; 0.00] 0.90

¢ ? 0] 0 9

s.00 -5.§?

6.00 0.90

0.60f .00

¢ 1"
i 0.00

| 12

el

Snapshot B.3.19

-9.00
0
-2.00] 5.00
))
l[:e,co ¢l 3.00 7
] .00 7.00
-0.50 0.0 097} o.17) 033 07l -0.67] 075
2.00 0.00 0 ° °) § [
e.00 71 s.00 0
760 o.46 -0.3¢] o.00f o.00] 0.3¢] 0.00] e.00
0 0 0o | ¢ $ $
0.00 0.00
5.60 3 -3.00
3% 4y 1.2 §
%.00 0.00
0.6% 0.%3 0.08) 0.177 0.13] 0.003 0.00f 0.00
0.00 -0.92 0 [[7 [[]
.06 oi 0.23 ¢
000§ 0.00 -5.67) 0.00f 0.00] 0.008 0.00] 0.00
L) 3 7) 0 ¢
000 L1367
0.0y 0.00
0.00[0.00
' '
0.00
9

Snapshot B.3.20

160

S AREAY 0. STATNS .- ;.]

-#.67

200 el a7

. 7.00 0.00) -0.3¢] o.00] 0.00] 0.3¢| 9.00
e]| o [v s

6.00 0.00

0.05 0.90

3.9% 4] 142 4

’.00 0.00

0.03 0.65 0.%3] 0.08f 0.17] 0.13] 0.08] 0.00

0.00 §-1.77 0o | o o | ¢ 7 40

0.00 0] 0.23 8 s .

o.00 0.00 L1362} -5.671 0.00] ¢.0¢) 0.00f 0.00
v | e § |7 0 o

060 1w

0.00 0.60

0.00] 0.00

[} 2

.00

]

3.00
0
1.00] 2.00;
[J 0
$.00 §; S.00 ¢
€.00 .00
-0.57 .75 -0.5¢] 0.001 0.171 0.17% 0.231 0.17
22,87 -5.2§] ? ¢ 0 [[
L1700 g8 050 &
.00 5.00 0.00] ©.00% -0.3¢] 0.00 0.00f] 0.3¢
7 0 ¢ ¢ 0 %
0.00 0.00
2.00 0.00
3.9% 85 1.82 8
$.00 0.00
6.00 6.00 0.68] 0.%3F 0.08] 0.125 0.43] 0.00
0.00 0.00 0 [0 [¢ ?
9.00 0y 0.23 §
0.00 0.00 1.00}-13.677 -S.67] 0.00F 0.00] ©.00
0 (]] s 7 L3
0.00 7.87
0.09 0.90
0.00¢ ¢.00
L] L}
0.00
9
—_—

Snapshot B.3.22

!
i
{
]
{
Lezop wbeot 20 ¢
(7o 2 0.00| o.00
v .00 o‘.oo o}.oo oe.oo oo.zs) o.o
'I 0.36 0.00
gae.e Io.so l
1' 2.00 7] L2 3
I 7.00 0.00
8.6 .58 $. .85y $.33] 0.68y 8.17f 0.13
0.00 0.00 0 [3]
660 0y 0.23 8y | Len oo
000 1§ 0.00 2.67) t.oops3.er] s.67] 0.000 0.90
0 0 [0 ‘ b
0.00 2.00
0.00 0.00
0.50f 0.00
' *
9.00
s

Snapshot B.3.23.

Snapshot B.3.24

1.00
9
2.00] -9.00
o} oo
t.00 0% 700 0
.00 | 0.00
e ¥y -0.67] o.75)-e.50] o0l 017} 002
133§ 5.97] s | 0
Lip.oo ol 525 o
PPV B 0.00f o.008 0.0} 0.00l-0.36] 0.00
s s 710100
000 o3¢
162 §-1.52
F28.65 ¢y 0.50 7
s.00 § 7.00
5.3y 0.00 $.09] 9.003 0.65] 0.933 0.05) 0.7
-1.66) 0.00 U o j o}
9.0 7y 6.3 %
200 | 0.00 .08 2.671 1.00-12.677 -5.67} 0.00
0 v o | s
v.ee 5 oo.ce
0.00 § 0.00
0.00f 0.00
t s
0.06
]

l61

B 7 Y P A T T X157 P T I A e 1711528 022

i i
I -2 ool
| 1

Snapshot B.3.25

!: 1
——
I 1.00] 1.00]
[8 !
i
(X oi 700 ¢
0.00 § 0.00
017 g 0.3 0.17] -¢.678 0 75| -0.50] e.00] 0.17
z.87 -1.87 ¢ §) § ;
L1706 o¥.c2¢
. { 0.36} o.00l 0.00] o0.000 0.00f -0.2¢
| 0.0 v.00
i L] 3 ? [9
! 0.00 0.00
| 2
[433 .47
P25 0y 158 8
0.00 6.00
0.17 0.13 0.00{ 0.005 ©.00] 0.635 0.%3} 0.08
-3.22 0.30 ? [0 1] [} [}
“i.86 6 000 7 ael & anl 5 oy askes exl ¢
.00 .00 ﬁ:w S.007 2627 t.00%-13.671 -C.€2
[[[[0
0.00 0.00
0.00 0.00
0.00] 0.00
1 s
9,09
3

Snapshot B.3.26

3.00
¢

0.008 -3.00

1 L}
t00 28 .00 9
0.00 0.00
0.17 .17 0.331 0.47% -0.67} 0.758 -0.507 0.00
147 .47 ¢ 4] ¢ 7
17.00 0% €26 0
0.60 0.00 0.00F 0.36% 0.00f 0.000 0.00{ 0.00

0] € € 7 ¢
-0.35 0.00
8.38 -1.67
F23.45 9 -1.5¢ 0
0.00 9.00
3.08 6.7 0.43] 0.007 0.00p 0.00y O.68) 9.%9
-1.14 3.9 3 7 [(] [J 0
-1.66 0y 0.3¢ ¢ ,
0.00 .00 €.00] 0.00F 0.00] 7.67% %.001-13.€7
? [} [L} L]

-5.67 0.60
€.20 0.00
0.001 0.00
0 ?
v.00
1

162

163

g
I t
b o1.00f 3.00!
laf ol
I S
2.80 77 7.00 0
7.00 0.00
0.00 0.17 0.17} 0.33% o.17} -0.62) 0.75} -0.50
3.90 -1.93] [} 0 ¢ ' %
Lezan al-t2g o
.00 2.00 0.00f o.00l 0.36] 0.00] o0.00] 0.00
0 M € |7
0.00 -0.36
1.67 +.08
ri8.95 0 -1.58 0
0.00 0.00
5.4 0.08 6.37] 5.13§ $.38] 0.00§ 90.00] 0.65
-5.35 -1.80 [3 7 0 0 °
(168 6§ 636 0 - o
o
0.00 0.00 9.00f ¢.00d ¢.00; 0.00% 7.67} %v.00
4 ? [] '] [)
L13 €7 5.67
21.60 b3 (]
X .20 0.00
1] [
9.00
0

Snapshot B.3.27

$.00
[}
7.00} ¢.00
) [
100 €1 2.00 7
.00 7.00
-0.50 0.00 o.178 o.178 0.22 ol -0.67) orx
-9.50 0.00 [0 0 []
X EX) 000l .00
700 0.00 -0.36] o.008 o.00f 0.3¢} o. .
[} [[} L] $ §
0.00 0.00
2.00 §-1.83
F23.35 0§ -1.5% 0
0.00 0.00
0.63 0.%9 0.08] 9.17 ¢.13] 0.005 0.00] 0.00
1746 3.30) [) ¢ ? 0 [
-1.66 G3 0.30 0
5 67
0.00 0.0 s.67) 0.008 0.00] 0.00] 0.00] 7.6
1 [} 5 H 0 2 [}
v.¢ 11.67
F42.00 § -5.90
X in 0} 2.2
21 b2t -39
] I X12
§.20
[

Snapshot B.3.28.

[
toa
]
in.oo ¢.00
Lo ¢
180 %7 §.00 €
.00 .00
a7 -0.50 e.00 0.17F o 17| 0.33 0.7 0.7
.75 9,60 ?] [] 0 3
EXII KN /
.00 2.08 o0.00] -0.36} ¢.00] ¢.00f 0.35] o.00!
° 0 0 0 L}
0.00 0.00
0.00 0.00
28,45 0y -1.58 ©
0.00 0.00
0.00 0.68 0.%3] 0.08§ 0.17§ 0.135 0.00; 0.00
0.00 -2.90 0 [[) 3 7 0
-1.66 0§ 030 & . . .
. - sol 0
00 0.00 13.677 -S.673 0.0¢] €.00% 0.00% ©.0¢
0 0 ¢ ? 0 0
7.8 .00
F30.60 .50
F12.00f -5.30
° 0
21,80
[}

7.00
0
-5.00{ 2.00
L] e
.00 6 6.9¢ ¢
.00 3,00
-0.67 0.75 -0.50] o0.00] e.17] 0.2} 0.33] 017
-1.67 i2.50 ¢ 0 [} [
778 &3 000 &
5.00 5.00 0.00f o.00l -0.36] 0.0l o.00] 0.36
7 0 0 0 ¢ L]
0.00 0.00
-0.59 9.00
F28.85 0f -1.59 0
0.00 0.00
0.00 0.00 0.68] o0.%3§ 0.08) 0.47] 5.13] .00
0.00 0.00 0 [} 0 0 3 ?
1.6 Gg 836 0 \
0.00 0.00 1.00}-13.§2§ -S.€7 0‘.00 0.00 0..09
[] [} 0 & 7 [}
0.00 7.67
0.00 -0.60
£30.60{ ¥.50] X
X4 —T o | 0 TT——4%32
F12.00
0

Snapshot B.3.30

164

Snapshot B.3.31

e o Bt e e e

778 sz en €
500 00 0.00] o.001 o0.00] -0.35% o0.00{ 0.00
’ : 1 ? ¢ 0 °
0.36 0.00
115 0.60
0.50 7§ -1.5% 9
7.00 0.00
5.00 5.90 o.00] o.6sy 0.38) S.85y 0.17) 0.13
0.00 0.00) 0 [) ° 0 3
-1.66 0y 0.36 0
0.00 0.00 7.67] v.00%12.67] 5.677 0.00] o0.00
’ : 0 0] 0 6 7
.00 9.08
0.00 0.00
Y4z
0.00] -0.6
[) [)
F30.50
9

0.00
)
3.00f 7.00
a [
5.00 9% 2.09 ¢
.00 0.00
0.33 0.17 -0.67] 0.758 -e.s¢f o.col o0.97! 0.17
2.33 7.32 ¢] ? 0
7.5 oR12.50 %
0.00 v.60 9.00f o.00l o.00! 0.00) -0.36] o0.00
§ 3 ’ 0) [
.00 0.36
-4.33 5.24
1.15 §§ 0.00 7
6.00 7.00
0.13 .30 8.08] o0.007 6.65{ 0.3y 6.08] e.17
-0.3§ 0.00 0) 0 [°
8.66 7y 0.30 0 . ,
3 R .
7.00 0.00 0.001 7.671 4.00}-13.€77 -5.67] 0.00
)) 0 ? 0 ¢
0.69 0.00
0.00 | 0.00
|
0.00] 0.00
° °
0.00
°

Snapshot B.3.32

165

166

.00
¢

i

{-1.00] 0.00

ENK
.00 ¢] 2.00 0
0.00 0.00
0.17 0.12 0.17] -0.s7l a.75] ~g.s0l 0.00) 0.17
3.57 7.7 (] 3] ¢ 7 [
775 eyazse 8 0.36] 0.00f o.co] o.00f 0.00} -0.36
.00 0.60 : : : : bl A
0.0 [} 3 6 H [) 0
0.90 0.00
$.3 7.33

.‘
w
<
IS
=
-

5.
€.00
0.17 0.13 0.00] 0.00§ 0.00F 0.65F 0.%5F 0.03
-4, 1% 1.17 7 0 0 0 (]
.0-35 ¢ o.oo 7 1 an £y & fad.e3 €7 ol
.00 7.00 £.000 0.00% 7.677 %.005-13.67] -5.€7
[] ? []
0.90 0.00
0.00 0.00
0.00{ 0.00
1 [
0.00
[

0.00
)
0.006] 9.00
°)
i s.00 ¢V 2.00 0
i e.00 0.00
I o2 0.1 0.2 o2l -oer] 025l -0.50] 000
-0.33 .33 0 3 ¥ 3 7
775 abizs0 0
0.00 0.00 o.00f 0.36] 0.00] o.00] 0.00f 0.00
' § | € 7 {0
-0.36 0.00
0.35 7.67
115 0] 9.21 0
0.00 0.00
5.0% 0.7 0.13] 0.007 0.00] 0.00] 0.65] 0.33
.43 $.9% (1 ? [] []] 0
-6.35 0F 1.17 €
0.00 ¢.00 0.00] o.008 o.00] 7.62} v.00)-13.67
7) 0 o 0 0
567 0.00
-2.143 0.00
1
0.00f ¢.00
L] ?
0.00
i

Snapshot B.3.34

0.00] 0.00
[[
.00 7§ 2.0 0
7.00 0.00
0.00 0.47 0.17] 0.33] o0.t7] -0.67} 0.75] -0.50
¥.00 $.33 0 0 0 3 ¥ 4
7.75 0tiz.em 0
oo o.00f 0.000 0.35] o.008 0.00] e.00
R .00
! 0 [* 4 1 ?
! 0.00 -0.36
'L-a.ss -+.24
145 04 9.24 0
0.00 0.00
0.%3 0.08 0.17§ 0.13§ 0.00{ 0.00§ 0.00] 0.8
1.42 (X1 [¢ 7 [[] 0
635 0f 117 0 A . ool o+ en R
0.0 0.00 ¢.00f o.c0% o.e0] c.o0p 7.€7] .00
s)] 0 ®
13,67 5.6
7.7 2.27
| -2.13f 0.00
X13_,/ e 3

0.00
0
0.00} 0.00
°
0.00 6§ 0.00 7
€.00 7.900
-0.5¢ 0.00 0.17F 0.47% 0.221 0.17F -0.67] @.75
0.00 0.00 0 0 0 £ L]
t.00 7882.50 0
7.00 0.0 -0.36] 0.008 0.00] 0.3¢} 0.00] ¢.00
0 0 0 t ¢ 11
0.00 8.00
7.7 3.33
i.45 0f 9.21 0
0.00 0.00
0.8% 0.9 0.08) 0.17F 0.13] 0.00§ 0.00) ©.00
095§ 0 o { o p s |7 pofo
-6.35 0 1.47 &
5.6
0.00 0.00 $.67] 0.00] 0.00] 0.00F 0.00f 7.€7
L (] . ? [[]
t.00 12.€7
0.00 -7.83
X934 7.07) 1y
o | o T——0_ X14
-2.43
K
L

Snapshot B.3.36

167

168

S e L e O A Y T 3 T 7 (o 1 U e 8 Ot 0

I 000l
P
i
| 0.00] 0.00
L
[oo 1" 0.0 s,’
| .00 |} 6.00 |7 I
o ;-o) : ool et ezl el ol ez
} 0.00 g 0.0 ? [[o 0§ 6
Taae el non 2
[» 00 0.00| -0.36] #.00] 0.00l 0.36] 0.00
j .00 N 0 0 0 [} t 6
9.00 0.00
v.00 0.00
1,15 0f 5.21 0
0.00 0.00
2.00 0.68 o.%9) o.08f 0.17] 0.137 0.00] 0.00
795 f15.57 ° 0 ° ‘ 7 | o
-0.35 0§ 1.07 0
o e M e o] o.0of o.00d 00l 600
o ’ 0 ¢ ?] []
7.67 .00
-2.27 5.00
0.00] -7.53
)
7.47
)

0.00f 0.00

0.00 §] 0.00 %
£.00 t.00

—)

.67 §oors -0.50] 0.00] o.57] 0.00f 0.33f 0.1
0.00 § 0.00 cf2Foto ol
000 68 0.00 €
§.00 6.00 07.00 0.008 -0.36} o.000 o0.00] ¢0.3¢
0.00 0.00 0 ° ¢ 0 A
0.00 1§ 0.00
115 of 9.21 o
.00 0.00
0.00 { 0.00 o.6sf o.as) 0.02] 0.7 0.13] 0.00
%.00 0.00 (] [[] [[7
035 0] 1.17 ¢
000 | 000 v.00]-13.628 -5 .67] 0.00! 0.00] 6.00
000 | re M A B U
2.78 2%.53
{-2.27] 5.00

X43/ (] []
0.00
[

Snapshot B.3.38

0
i
1 o.c0f e.00
|
1o 0
[oo o" 9.00 €
| 0.60 €.00
a1 Poper 0.78 -0.501 o.e0l 0471 0,471 033
0.00 0.00 l s ?]]
a.00 «¥ 000 ¢
‘.00 .00 e.00] o.00] ¢.00] -0.36) o0.00{ .00
3 ? 0 ¢ [0
0.36 0.00
0.00 0.60
0.00 7§ 3.21 9
2.00 0.00
0.90 0.38 0.00] 0.655 9.¥3] 0.03¢ 0.17] .13
1.15 0.00 0 0 [] [} [¢
-0.35 0y 4.07 0
0.00 0.0 7.67] v.00l13.67] -5.67] 0.00] 0.00
[} 0 [} [] § 7
.00 0.00
.00 0.00
7.75(2%.53
[} o T~ Xz4
-2.27
[}

Snapshot B.3.39

169

APPENDIX C

SAGS PROGRAM LISTING

SAGS was developed on an IBM Personal Computer,
running the MS/DOS operating system. It was written in
Turbo Pascal, a dialect of the Pascal programing language as

described by Wirth and Jensen in Pascal User Manual and

Report. The source code of SAGS is listed in this appendix
along with a sample script file. This script file
represents the simulation that produces the third series of
snapshots in Appendix B. Input and control files are also
included. The source code of SAGS and many sample script
files are also available in ASCII format on floppy disks.

To produce an executable copy of SAGS, two software
packages are needed: a copy of the DOS-based Turbo Pascal
compiler (version 3.0) and a copy of the Turbo Graphix
Toolbox (version 1.07), both available commercially from
Borland International, Inc. Also, since SAGS is graphics
based, a video card with bit-mapped graphics capabilities is
needed to run the program. The included source code is
written for the EGA standard; however, simple changes can be
made to the program so that it will run on other PC graphics
standards. Entry points for these modifications are fully

documented in the source code to ease that task.

171

Because computer graphics and simulations are
floating-point intensive applications, the use of a numeric
coprocessor 1is highly recommended. For SAGS to take
advantage of the numeric coprocessor, it must be compiled
using a version of the compiler that support 8087 floating

point math.

172

(FrrrinnbnnhnhnbnhrbrhRb RPN RRRRRRRRR RN

ko % % ¥ %

SAGS is a Systolic Array Graphical Simulator program for a recon-

figurable set of arrays of processors. The Max number of arrays is 15.

This is because of the limitation of Turbo Graphix, not of SAGS.

This module is the main module.

% % % K * %

T s T e S e s T s s st s s)

program SAGS;

($1
($1
(81
($I
($1
(81
($1
($1
($I
($I
($I
($I
($I
($1
($I
(81
(81
($1
($1
(81
($I
($I
($I
(81
($I
($I
($1
($I
(81
($1
($I
($1
($1
($1
($I
($1
($I
($I

c:\bin\tbl\tbgraphx\typedef.sys)
c:\bin\tbl\tbgraphx\graphix.sys}
c:\bin\tbl\tbgraphx\kernel.sys)

c:\bin\tbl\tbgraphx\windows.sys)

typedef.pas})
initglbl.pas)
initcell.pas)
initsqre.pas}
initrngl.pas)
initrng?2.pas)
initrng3.pas)
initrng4.pas)
writext.pas)
drwsqre.pas}
drwtrngl.pas)
drwtrng?.pas)
drwtrng3.pas)
drwtrngs . pas)
drwstat.pas}
drwsystm.pas}
xcolor.pas)

dpmode.pas)

swchwind.pas)
writscrp.pas)
promptus.pas}
seeknxtw.pas)
statemnt.pas}
getsystm.pas}
sidetrav.pas)
lnkioflw.pas)
getioflw,.pas)
1nkdtflw.pas)
getdtflw.pas)
readscrp.pas}
pecodes.pas)
updatear.pas}
snglstep.pas)
multstep.pas)

{include the graphics system code}

{include others of SAGS modules}

173
begin

PromptUser; {gets script file name)
if not ReadScript then {reads in the script file and build)
begin {system’s internal structures)
close(ScriptFile);
writeln(’!! SAGS aborted !!');
exit;
end
else close(ScriptFile);

InitGraphic; {init. the graphix system and screen)
SetAspect(l); {sets aspect ratio for true circle)
DefineWorld(FirstWorld, {defines the shared world)
0,0,WrldCoordXyY,
WrldCoordXY) ;
DefineWorld(StatusWorld, {defines the shared world}
0,0,StatWorldX,
StatWorldY);
Foreground:=DefltColor; {establishes system default)
SetForegroundColor (Foreground) ; {drawing color})
SetBreakOff; {don't error when window edge hit)
SetMessageOff;
DrawSystem(CurrntPtr) ;
repeat
read(Kbd,Ch); {read the keystroke)
if (Ch=#27) and {one more char 7}
keypressed then
read(Kbd,Ch) ;

with CurrntPtr” do
case Ch of

#13 : MultiStepsExec; {RETURN ? multi steps execution)
{until a key (any key) is pressed)
#27 . ; {ESC ? waits for end of current loop)
#32 . SingleStepExec {SPACE ? single step execution)
(10Ptr);
#59 : ChangeColor(-1); {F1 ? changes to last drawing color..}
#60 : ChangeColor(l); {F2 ? changes to next drawing color..)
#61 : HardCopy(False,l); {F3 ? prints the screen image)
#62 : WriteScriptFile; {F4 ? writes updated script file)
#72 . begin {up arrow ?)
MoveVer(-2,TRUE) ; {then moves current window and..}
StoreWindow(Number) ; {stores it with new position)}
HiY:=Y1RefGlb;
end;
#75 . begin {left arrow ?}
MoveHor(-1,TRUE) ;
StoreWindow(Number) ;
HiX:=X1RefGlb;

end;

#77 : begin
MoveHor(1,TRUE) ;
StoreWindow(Number) ;
HiX:=X1RefGlb;
end;

#80 : begin
MoveVer(2,TRUE) ;
StoreWindow(Number) ;
HiY:=Y1RefGlb;
end;

#73 : SwitchWindow

(CurmntPtr,0);

#81 : SwitchWindow

(CurrntPtr,1);
#82 : ChangeDisplayMode
(CurrntPtr);
else begin
sound(500) ;
delay(300);
nosound;
end;
end;
until Ch=#27;
SetForegroundColor(0) ;

leaveGraphic;
while IOPtr<>NIL do
with IOPtr" do
begin
case I0 of
INPUT: if Active then

Close(FileVar);
OUTPUT: begin
Flush(FileVar);
Close(FileVar);
end;
end;
IOPtr :=NextIO;
end;

end.

174

{right arrow ?)

{down arrow 7?7}

{Pglp ?)
{Pghn ?)
{Ins ?}

{for any other keys..)
{screams at 1000 Hertz)
{for 3 tenths of a second}
{then shuts up)

{ESC char exits program)

{sets foreground color to black}
{before exits}

{gracefully shuts down graphix system)
{and the IO system by..)

{closing any active input file,)

{and flush internal disk buffers..)
{of any output files and closes them)

175

(FodciciciiciricioinicnninninipRRRR e aasHsnsnnnnrrskek ek
* *
* This is the header file of SAGS. It contains all global definitions and *
* declarations of constants, types and variables. All of SAGS data struc- *
* tures are explained here. Be sure to include this file at compile time. *
* *

const

TimeUnit
DefltColor
TextSize
FirstWorld
StatusWorld
MaxArraySize
MaxSequence
MaxFileName
MaxStr
MaxWord
MaxLine
MaxError
MaxBox
MaxRegs
MaxCodes
MaxTxtCoord
MaxBus
CharSizeX
CharSizeY
Digits
Deciml

Gap
WrldCoordXy
StatWorldX
StatWorldyY

MaxRadRatio =

Stringlist :

0.000001;

array

[1. .MaxStr]

of string[MaxWord]
('ARRAYSIZE',
' SYSTEMSPECS ',
"INFILES’,
'OUTFILES' ,
'SETUP' ,
'Pecodes’,
'NorthInput’,
'EastInput’,
'SouthInput’,
'WestInput'’);

{execution time for each step)
{default drawing color value)

{max no. of char displayed in PE)
{world shared by all windows)

{world used by status box)

{max no. of PEs/array side allowable)
{max no. of procedures in a script)
{max no. of filenames}

{max no. types of script statements)
{max length of statement)

{max length of error message)

{max no. error message}

{max no. boxes in status window}

{max no. registers of one type in PE)
{max no. of PE executable codes}

{max no. displayable text lines in PE}
{max no. of pair I/O bus on each side}

{character size in pixel)
{character size in pixel)

{no. of digits of value displayed)
{no. of decimal places)

{size of gap between PEs in PIXELs)
{default world coord.}

{world coords. for status window)

{1.15%2/100 ratio of twice the radius)
{of the largest circle that will fit)
{inside a 100x100 PIXELs window}

{list of wvalid script statements)

Errorlist :

type

RealPtrtype
LinkPtrType
IOPtrtype
ArrayPtrtype

FileName =

Textype

SrcDstType

Pointype

Pointstype

DisplayMode
PEtextype

= ('11

array
[1..MaxError]

of string[MaxLine]
Bad statement !!',

{list of all possible error messages)

‘1! Array size too large !!',
‘1! Delimiter "." not found !!',

'1! Bad delimiter or delimiter not found !!’,

‘11 10 file name too long !!’,

‘1! Non-existing array !!’,

‘11 Bad statement in context 1!’
‘11 Statement out of sequence !!’,

‘1! Arrays are allowed to have only 4 sides !!’,

‘1! Bad type of array !!’,

‘11 Array number should be within 1 to 16 !!’,
‘11 Triangular arrays only have 3 sides !!’',

‘11 Input file not found !!’,

‘11 Invalid bus specification !!’,
'1! Unknown display mode !!’,

*1! Unknown PE code !!’);

“real;
“LinkType;
“IO0type;
"SysArraytype;
string
[MaxFileName] ;
string
[TextSize];
array
[1..2]
of integer;
record

XY
end;
record

XY

end;

(Full ,Arrays,Buffer);

record

Mode
Lines,
PEsize,
WDSizeX,
WDSizeY

{pointer to reals)

{pointer to link info between arrays)
{pointer to IO buffers}

{pointer to array processors)

{file name storage)

{storage for text for screen output)

176

{pair indicating sides of src. & dest.)

{arrays for dataflow info)

{pair of coord. for a point}

: real;

{All of PE's texts coords.)

: array

[1..MaxTxtCoord]

of real;

{mode of display of an array)

{stores default coord. for each PE's)
{text in an array, essentially acts)
{as a template for a particular)

{display mode)
: DisplayMode;

: integer;

PEsizeXY,
GapXY,
TrueRad,
Radius
TextCoord

end;
PEtype = record

X Reg
Out Regs,
Last Out

In Regs

Regs Txt

Cl24,
c3
TAG,
Code

end;
StatusBox = record
Xhi,Yhi,
Xlo,Ylo,
Xdgt,Xtxt,
Yext
Txt,Dgt
end;

: real;
{storage for all PEs’ text coord.)
{of an array)
: array
[1..MaxArraySize,
1. .MaxArraySize]
of Pointstype;

{internal PE representation, with)
{all necessary registers)
. real;

: array

[1..MaxRegs,

1. .MaxBus]

of real;
{pointers to X out registers in)}
{neighboring PE cells)
: array

[1..MaxRegs,

1. .MaxBus]

of RealPtrtype;
{Regs Txt[1l] is for TAG)
{Regs_Txt[2] is for X,)

{........ [3]........ Vout)
{coeenn. [4]........ Mout}
{........ [5]........ Xout)
: array

[1..MaxTxtCoord]

of Textype;
{control codes registers)
: integer;

{for display purpose only)
{holds PE's execution code number}
: byte;

{coord. of box and texts within box)

: real;
: string(15];

177

LinkType = record

Sides,

ArNums
ArPtrs

LnkStart,
LnkStop
NxtLink
end;
I0flag = (INPUT,OUTPUT);
IOtype = record

Name
ArNum,
Side,
Bus,
I0Start

Filevar
ArPtr
NextIO
Active

case
I0

of
INPUT

OUTPUT

end;

TypeOfArray = (Square,

Trianglel,

Triangle2,

Triangle3,

Triangle4,

Status);

{storage for dataflow info to)
{other arrays)
{from which side of src. array to)
{which side of dest. array)
¢ SrcDstType;
: array

[1..2]

of ArrayPtrType;

: integer;
: LinkPtrType;

{IO link to and from host, that is}
{to and from external data files}
: FileName;

{links with which array)

{to which of its side)

{and which bus}

{step to start feeding data)

: integer;

. text;

: ArrayPtrtype;

: I0Ptrtype;

{is it still feeding data or not)
: boolean;

: I0flag

: (InRegs : array
[1. .MaxArraySize]
of real

);

: (OutRegs : array
[1..MaxArraySize)
of RealPtrtype

)

{square array of PE's)

{upper triangular array of PEs with)
{diagonal line from top left corner)
{to lower right corner)

{lower triangular array of PEs with)
{diagonal line from top left corner)
{to lower right corner)

{upper triangular array of PEs with)
{diagonal line from top right corner)
{to lower left cormer)

{lower triangular array of PEs with)
{diagonal line from top right corner)
{to lower left corner)

{storage for each box in status band)

178

SysArrayType =

ErrorType =
var

Foreground ,
ArraySize :
Zero :
ZeroPtr :
PEtxtArray :

ScriptName :
ScriptFile :
IOPtr :
LinkPtr :
FixedPtr ,
CurrntPtr ,
StatPtr
ErrorSet :
Ch :

record

Number,
HiX,HiY
Last,Next
StatTxt
case ArrayType
of

Status

Trianglel,
Triangle2,
Triangle3,
Triangle4,
Square

end;
set of 1. .MaxError;

integer;
real;
RealPtrtype;
array
[DisplayMode]
of PEtextype;
FileName;
text;
IOPtrtype;
LinkPtrType;

: ArrayPtrtype;

ErrorType;

char;

{storage for systolic array’s data)
{including all PEs within it)

: integer;
: ArrayPtrType;
. Textype;
: TypeOfArray
¢ 1oX ,
LoY : integer;
Boxes : array
[1..MaxBox]
of StatusBox;
Steps : integer;
Times : real
)i
: (DPmode : DisplayMode;
PE : array
[1l..MaxArraySize,
1. .MaxArraySize]
of PEtype
);

{current drawing color)
{size of bandwidth of dataflow)
{value for PE's grounded input)

{stores all display mode's templates)

{always points
{always points
{always points
{always points
{always points

to
to
to
to
to

of linked list)
of linked list)
top of linked list)
the current array)

status window}

top
top

{stores error type values)
{keyboard input storage)

179

180

s
* *
* This procedure initializes all global variables needed for drawing *
* an array. Depending on the specified array size, it will find a *
* suitable window size and world coordinates for the array. It also *
* computes an array of coordinates for PEs’ text. *
* This procedure is very machine-dependent, i.e. graphics card specific, *
* and is used only once after the script file is read in. *
* *

procedure InitGlbStorage;

var 1,
Xent
Yent @ integer;
Templ ,
Temp?2 ,
Temp3 ,
Temp4 : real;

begin

with PEtxtArray([Full] do
begin
Mode := Full;
Lines := MaxTxtCoord;

PEsize := CharSizeY*(Lines-1)+22; (value 22 is for EGA; 2 is for CGA}
WDSizeY:=(PEsize+Gap) {computes window dimensions for)
*ArraySize {a particular array size}
+Gap;
WDSizeX:=round(WDSizeY
/(8*AspectFactor));
GapXY :=Gap*Wr1ldCoordXy {compute value of gap in w.c.)
/(ArraySize*PEsize
+(ArraySize+l)*Gap);
PEsizeXY:=(WrldCoordXy {compute value of PE size in w.c.}
-GapXY* (ArraySize+l))
/ArraySize;
TrueRad:=PEsizeXY/2; {compute round PE's radius in w.c.)

Radius:-MaxRadRatio*PEsize/2;
Templ :=PEsizeXY+GapXY;
Temp?2 :=PEsizeXY-GapXY;
Temp3 :=Temp2/4;
Temp4 :=Temp3/2;
for Xent:=1 to ArraySize do
for Yent:=l to ArraySize do
with TextCoord[Xent,Yent] do {compute text coord. for array of PEs)
begin
for I:=2 to Lines
do begin
X[I]:=Templ*Yent-Temp2;

181

Y[I]:=Templ*Xcnt
-PEsizeXY
-Temp4
+Temp3*(1-1);
end;
X[1] :=Templ*Ycnt {text coord. for TAG bit}
-1.5%Temp4;
Y[1]:=Y{2];
end;
end;

with PEtxtArray{Arrays] do
begin
Mode := Arrays;
Lines := 2;
PEsize := CharSizeX*Digits+10;
WDSizeX:=trunc (((PEsize+Gap) {computes window dimensions for)
*ArraySize+l)/8+1); {arrays displays)
WDSizeY:=trunc(WDSizeX*8
*AspectFactor
+1);
GapXY:=1.3*WrldCoordXy {compute value of gap in w.c.)
/(ArraySize*PEsize
+(ArraySize+l)*Gap);
PEsizeXY:=(WrldCoordXyY {compute value of PE size in w.c.)
-GapXY*ArraySize)
/ArraySize;
TrueRad:=PEsizeXY/2; {compute round PE’'s radius in w.c.)
Radius:=MaxRadRatio*PEsize/4.1;
Templ :=PEsizeXY+GapXY;
Temp?2 :=PEsizeXY-GapXY;
Temp3 :=PEsizeXY/5;
for Xcnt:=1 to ArraySize do
for Yent:=1 to ArraySize do
with TextCoord[Xcnt,Yent] do {compute text coord. for array of PEs)
begin
X[2] :=Templ*Ycnt-Temp?2;
Y[2] :=Templ*Xcnt
-PEsizeXY
+Temp3*2;
X[1]:=X[2]4Temp3*2; {text coord. for TAG bit)
Y[1]:=Y[2]4+Temp3*1.8;
end;
end;

with PEtxtArray[Buffer] do
begin
Mode := Buffer;
Lines := 2;
PEsize := CharSizeX*Digits+lO0;
WDSizeX:=trunc(((PEsize+Gap) {computes window dimensions for)
*ArraySize+l)/8+1); {arrays displays)

WDSizeY:=trunc (WDSizeX*8
*AspectFactor
+1);

GapXY:=1. 3*WrldCoordXy

/(ArraySize*PEsize
+(ArraySize+l)*Gap);

PEsizeXY:=(WrldCoordXyY

-GapXY*ArraySize)
/ArraySize;

TrueRad:=PEsizeXY/2;

Radius:=MaxRadRatio*PEsize/3.87;

Templ :=PEsizeXY+GapXY;

Temp2 :=PEsizeXY-GapXY;

Temp3:=PEsizeXY/5;

for Xcent:=1 to ArraySize do

for Yent:=1 to ArraySize do

with TextCoord[Xcnt,Yent] do
begin
X[2] :=Templ*Ycnt-Temp?2;
Y{2]:=Templ*Xcnt
-PEsizeXY
+Temp3#*2;
X[1]:=X{2]+Temp3+*2;
Y[1]:=Y[2]+Temp3*1.8;
end;
end;

New(StatPtr);
with StatPtr” do
begin
ArrayType:=Status;
Number :=MaxWindowsGlb;
HiX:=2;HiY:=0;
LoX:=77;LoY:=12;
StatTxt:='STATUS’;
Steps:=0;
Times:=0.0;
for Xent:=1 to 4 do
with Boxes[Xcent] do
begin
Yhi:=2.0;
Ylo:=10.0;
Ytxt:=5.0;
end;
Boxes[1].Xhi:=4.0;
Boxes[1].X10:=20.0;
Boxes[1].Xtxt:=6.0;
Boxes{[1].Xdgt:=15.0;
Boxes[1].Txt:='STEP # :';
Boxes[2].Xhi:=23.0;
Boxes[2].X10:=52.0;
Boxes[2] .Xtxt:=25.0;

182

{compute value of gap in w.c.)}

{compute value of PE size in w.c.}

{compute round PE's radius in w.c.}

{compute text coord. for array of PEs)

{text coord. for TAG bit}

{STATUS panel window number is 16}
{for IBM CGA : HiX=0, HiY=0}
{for IBM CGA : LoX=79, LoY=12)

183

Boxes[2].Xdgt:=38.0;
Boxes[2].Txt:='TIME ELAPSED :’;
Boxes[4] . Xtxt:=47;
Boxes[4].Txt:='secs’;
Boxes[3].Xhi:=55.0;
Boxes[3].X1lo0:=75.0;
Boxes[3].Xtxt:=57.0;
Boxes[3].Xdgt:=67.0;
Boxes[3].Txt:='ARRAY # :';
end;
Zero := 0.0;
ZeroPtr :=Addr (Zero) ; {get address of ground value)

end;

184

T T e e e e e e e e T T e

* *
* This procedure initializes all registers and texts storages of a cell to *
* zero. *
* *

hmmwmwmmw*mmmm)

procedure InitializeCell
(var Cell : PEtype);

var I,J : integer;
begin
with Cell do {with this cell, Thou shall}
begin {initialize all of its registers)
X Reg:=0.0; {on all buses to zero..)

for I:=1 to MaxRegs do
for J:=1 to MaxBus do
begin
Out_Regs[1,J]:=0.0;
Last Out[I,J]:=0.0;
end;
Cl24:=0;
C3:=0;
TAG:=0;
Regs Txt[l]:='0"; {..and all of its texts storage to)
for I:=2 to MaxTxtCoord do {strings ' 0.00’ or '0')
Regs Txt[I]:=' 0.00';
end;

end;

185

(Hmmmmmwmmmmmm*

* % F % ¥

This procedure initializes a newly allocated square array specified in
the script. It is called by the procedure :

- GetSystemSpecs.

% % % % o

kbR RN RRRRRRR R RN RS E R R RRRRRRRRR R R RRRRRRRRY)

procedure InitializeSquare

var

(Ptr : ArrayPtrType);

I,X,Y : integer;

begin

with Ptr" do

end;

for X:=1 to ArraySize do
for Y:=1 to ArraySize do
begin

InitializeCell(PE[X,Y]);

with PE[X,Y] do

for I:=1 to MaxBus do

begin
if X=1 then
In Regs[1l,I]:=ZeroPtr
else In Regs[1l,I]:=
Addr (PE[X-1,Y].
Last Out[3,1]);
if Y=ArraySize then
In Regs[2,1]:=ZeroPtr
else In Regs[2,I]:=
Addr (PE[X,Y+1].
Last Out[4,1]);
if X=ArraySize then
In Regs[3,I]:=ZeroPtr
else In Regs[3,I]:=
Addr (PE[X+1,Y].
Last Out[1,I]);
if Y=1 then
In Regs[4,1]:=ZeroPtr
else In Regs[4,1]:=
Addr (PE[X,Y-1].
Last Out[2,1]);
end;

{for each PEs in square array)

{..init. all of its registers on all}
{buses and all of its texts storages)

{with all buses, link PEs together)
{as follow..}

{if PE is on north border of array..)
{its north input is grounded for now)
{else its north input is from its)
{north neighbor}

{and so on for the east border..}

{except this time we have the south)
{border and..}

{the west border to take care of.)

186

(i e e ey ey e e ey e T s ey e e

- GetSystemSpecs.

* % o % %

This procedure initializes a newly allocated type 1 triangle array
specified by the script. It is called by the procedure :

*

% % % o

mmmmmmmmmmum*ﬂmm)

procedure InitializeTrianglel
(Ptr : ArrayPtrType);

var I,X,Y : integer;
begin

with Ptr” do
for X:=1 to ArraySize do
for Y:=X to ArraySize do
begin
InitializeCell(PE(X,Y]);

with PE[X,Y] do
for I:=1 to MaxBus do
begin
if X=1 then
In Regs([1l,I]:=ZeroPtr
else In Regs[1,I]:=
Addr(PE[X-1,Y].
Last Out(3,I]);
if Y=ArraySize then
In Regs([2,I]:=ZeroPtr
else In Regs[2,I]:=
Addr(PE[X,Y+1].
Last Out[4,1]);
if X=Y then
begin
In Regs(3,1I]:=ZeroPtr;
In Regs[4,1] :=ZeroPtr;
end
else begin
In Regs[3,I]:=
Addr (PE[X+1,Y].
Last Out[1,I]);
In Regs[4,I]:=
Addr(PE[X,Y-1].
Last Out[2,I]);
end;
end;
end;

end;

{for each PE in triangle array..)

{..init. all of its registers on all)
{buses and all of its texts storages)

{then for all existing buses..)

{if PE is on north border of array..)
{its north input is grounded for now)
{else its north input is from its)
{north neighbor)

{east border is grounded if PE's on)
{east boundary,..)

{else it's connected to the east)
{neighbor)

{south and west inputs are grounded)
{if PE’'s on the diagonal boundary..)

{else they are connected to the south)
{and west neighbors)

)
[o0)
~

This procedure initializes a newly allocated type 2 triangle array
specified by the script. It is called by the procedure :
- GetSystemSpecs.

* % % F %
* ok % k%

procedure InitializeTriangle?2
(Ptr : ArrayPtrType);

var I,X,Y : integer;

begin

with Ptr” do
for X:=1 to ArraySize do
for Y:=1 to X do
begin
InitializeCell(PE[X,Y]);

{for each PE in triangle array..)

{..init. all of its registers on all)
{buses and all of its texts storages)
with PE[X,Y] do

for I:=1 to MaxBus do

end;

begin
if X=Y then
begin
In Regs[1,I]:=ZeroPtr;
In Regs[2,I]:=ZeroPtr;
end
else begin
In Regs[1,I]:=
Addr(PE[X-1,Y].
Last Out[3,I]);
In Regs[2,I]:=
Addr(PE[X,Y+1].
Last Out[4,1]);
end;
if X=ArraySize then
In Regs[3,I]:=ZeroPtr
else In Regs[3,I]:=
Addr (PE[X+1,Y].
Last Out[1,I]);
if Y=1 then
In Regs[4,1]:=ZeroPtr
else In Regs[4,1]:=
Addr (PE[X,Y-1].
Last Out[2,I]);
end;

{then, for all existing buses..)

{if PE's on the diagonal boundary)
{then its north and east inputs)
{are grounded for now..)

{else they are connected to PE’s}
{north and east neighbors}

{south input is grounded if PE's)
{at the bottom of array..)}

{else it's connected to PE's south)
{neighbor)

{west input is grounded if PE's)
{at the west boundary..)
{else it's comnected to the west cell)

188

T g e T e e T s s e e e

% % % % %

- GetSystemSpecs.

This procedure initializes a newly allocated type 3 triangle array
specified by the script. It is called by the procedure :

* 4 % %k *

ki dsokkinkbkkinkn oo RN R RN

procedure InitializeTriangle3
(Ptr : ArrayPtrType);

var I,J,X,Y : integer;
begin

with Ptr® do
for X:=1 to ArraySize do
begin
I:=ArraySize+1-X;
for Y:=1 to I do
begin
InitializeCell(PE[X,Y]);
with PE[X,Y] do
for J:=1 to MaxBus do
begin
if X=1 then
In Regs[1,J] :=ZeroPtr
else In Regs[1,J]:=
Addr(PE[X-1,Y].
Last Out[3,J]);
if Y=I then
begin
In Regs([2,J]:=ZeroPtr;
In Regs[3,J]:=ZeroPtr;
end
else begin
In Regs[2,J]:=
Addr (PE[X,Y+1].
Last Out[4,J]);
In Regs(3,J]:=
Addr (PE[X+1,Y].
Last Out[1,J]);
end;
if Y=1 then
In Regs({4,J] :=ZeroPtr
else In Regs[4,J]:=
Addr (PE[X,Y-1].
Last Out[2,J]);
end;
end;
end;
end;

{for each PE in this triangular array)

{..init. all of its registers on all}
{buses and all of its texts storages)
{then, for all existing buses..)

{1f PE's on the north border}
{then ground its north input..)
{else connect the north input)
{to the northern neighbor)

{if PE's on the diagonal boundary)

{then its east input and..)
{its south input is grounded for now)

{else. .}
{its east input is from its)
{east neighbor and..)

{its south input is from its south)
{neighbor)

{west input is grounded if PE’s on)
{the west boundary..)

{else comnect it to the west}
{neighboring PE)}

189

(Wmmmmmwmwwmw*

- GetSystemSpecs.

% % % ¥ o

This procedure initializes a newly allocated type 4 triangle array
specified by the script. It is called by the procedure :

* % % ¥ %

Tk ik ok RN RSN R RRRRR RN RS RN

procedure InitializeTriangle4
(Ptr : ArrayPtrType);

var I,J,X,Y : integer;

begin
with Ptr” do
for X:=1 to ArraySize do
begin

I:=ArraySize+1-X;
for Y:=I to ArraySize do
begin
InitializeCell(PE([X,Y]);
with PE[X,Y] do
for J:=1 to MaxBus do
begin
if Y=I then
begin
In Regs[1l,J]:=ZeroPtr;
In Regs([4,J]:=ZeroPtr;
end
else begin
In Regs[1,J]:=
Addr (PE[X-1,Y].
Last Out[3,J]);
In Regs[4,J]:=

Addr(PE[X,Y-1].
Last Out[2,J]);
end;

if Y=ArraySize then
In Regs[2,J]):=ZeroPtr
else In Regs[2,J]:=
Addr (PE[X,Y+1].
Last Out[4,J1);
if X=ArraySize then
In Regs[3,J]:=ZeroPtr
else In Regs[3,J]:=
Addr (PE[X+1,Y].
Last Out[1,J]);
end;
end;
end;
end;

{for each PE in this triangular array)

{..init. all of its registers on all)
{buses and all of its texts storages)
{then, for all existing buses..)

{if PE's on the diagonal boundary)

{then its north input and)
{its west input is grounded for now)

{else. .}
{its north input is from its..)
{north neighbor and..)

{its west input is from its west..)}
{neighbor)

{if PE’s on the east border then)
{ground its east input..)

{else comnect it to the eastern)
{neighboring PE.}

{if PE’'s on the south border then}
{ground its south input..)

{else commect it to the southern)
{neighboring PE)}

190

* *
* This procedure writes text inside each PE of an array according to *
* values of the PE’'s registers., It's smart enough to know the display mode *
* of the array and write texts accordingly. *
* *

procedure WritePEtxt
(X,Y : integer;
Ptr : ArrayPtrtype);

var I : integer;
begin
with Ptr” do
with PEtxtArray[DPmode] do {depending on array’s display mode..)
for I:=1 to Lines do {writes all displayable registers)
DrawTextW {values)

(TextCoord[X,Y] .X[I],
TextCoord[X,Y].Y[I],
1,PE[X,Y].Regs_Txt[I]);

end;

=
Vo]
=

% % ¥ % X %

This procedure define a window, give it a world coordinate system,
and then depending on array’s display mode, will draw a square systolic
array inside the window. This window will overlap on top of all

previously defined windows.

% % % % % %

procedure DrwSquare

var

(WorldNum : integer;
Ptr : ArrayPtrtype);

X,Y : integer;
TempXY : real;

begin

with Ptr” do

end;

with PEtxtArray[DPmode] do
begin
DefineWindow(Number,
HiX, HiY,
HiX+WDSizeX,

HiY+WDSizeY);

SelectWorld (WorldNum) ;
SelectWindow(Number) ;
SetBackground(0) ;

TempXY:=PEsizeXY+GapXY;
for X:=1 to ArraySize do
for Y:=1 to ArraySize do
begin
if (Y=X) and
(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,
TempXY#*X-TrueRad,

Radius)
else
DrawSquare
(TempXY*Y-PEsizeXY,
TempXY#*X-PEsizeXY,
TempXY*Y, TempXY*X,
false);
WritePEtxt(X,Y,Ptr);
end;
end;

{define window where drawing)
{will take place}

{select world for array window)
{select the window)

{give it a (black) background..)
{else it won't overlap others)

{i1f PE's boundary type then draw)

{it as a circle. Else..}

{..draw PE as a square)

192

(*mmmmmmwmﬁmmw*kmmmmmww

B ook ¥ % ¥ %

*

This procedure define a window, give it a world coordinate system, *
and then depending on array’s display mode, will draw a type 1 triangu- *
lar systolic array inside the window. This window will overlap on top of *
all previously defined windows.

*
*

TR RRR R RN R RS R R RS RN RN

procedure DrwTrianglel

var

begin

(WorldNum : integer;

Ptr : ArrayPtrtype);

X,Y : integer;
TempXY : real;

with Ptr” do

end;

with PEtxtArray{DPmode] do

begin
DefineWindow(Number,
HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY);
SelectWorld(WorldNum) ;
SelectWindow(Number) ;
SetBackground (0);

TempXY :=PEsizeXY+GapXY;
for X:=1 to ArraySize do
for Y:=X to ArraySize do
begin
if (Y=X) and
(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,
TempXY#X-TrueRad,

Radius)
else
DrawSquare
(TempXY*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y, TempXY#X,
false);
WritePEtxt(X,Y,Ptr);
end;
end;

{define window where drawing)
{will take place}

{select world for array window)
{select the window)

{give it a (black) background..)
{else it won't overlap others)

{if PE's boundary type and display)

{mode is Arrays then draw it as a)
{circle.)

{.. Else draw PE as a square)

193

(mmmmm*m*ﬂﬁ*m**mmmm

* % % % % o

*

This procedure define a window, give it a world coordinate system, *
and then depending on array’s display mode, will draw a type 2 triangu- *
lar systolic array inside the window. This window will overlap on top of *
all previously defined windows.

*
*

Feeiciekokedokickiokniciodencioicadeioicioloioioicioieloiaioialoiiainickickainkainininininininininninninn bRk)

procedure DrwIriangle2

var

begin

(WorldNum : integer;

Ptr : ArrayPtrtype);

X,Y : integer;
TempXY : real;

with Ptr” do

end;

with PEtxtArray[DPmode] do

begin
DefineWindow(Number,
HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY) ;
SelectWorld (WorldNum) ;
SelectWindow(Number) ;
SetBackground(0) ;

TempXY:=PEsizeXY+GapXY,
for X:=1 to ArraySize do
for Y:=1 to X do
begin
if (Y=X) and
(DPmode=Arrays)
then DrawCircle

(TempXY*Y-TrueRad,
TempXY*X-TrueRad,

Radius)
else
DrawSquare
(TempXY+*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y , TempXY*X,
false);
WritePEtxt(X,Y,Ptr);
end;
end;

{define window where drawing)
{will take place)

{select world for array window)
{select the window)

{give it a (black) background..)}
{else it won't overlap others)

{if PE's boundary type and display)

{mode is Arrays then draw it as a)
{circle.)

{.. Else draw PE as a square}

194

(bl iniocinbickbrbanbnbrnnnnhnhohnbbbnbrbRbrhhbhbbbnhabensse

* *
* This procedure define a window, give it a world coordinate system, *
* and then depending on array's display mode, will draw a type 3 triangu- *
* lar systolic array inside the window. This window will overlap on top of *
* all previously defined windows. *
* *

Ak I Iicioidiicikiciiicioiciicioioioioieininniononokocicoioicioioicioiokek)
procedure DrwTriangle3
(WorldNum : integer;

Ptr : ArrayPtrtype);

var I,X,Y : integer;
TempXY : real;

begin

with Ptr” do
with PEtxtArray[DPmode] do

begin
DefineWindow(Number, {define window where drawing}
HiX,HiY, {will take place)
HiX+WDSizeX,
HiY+WDSizeY) ;
SelectWorld(WorldNum) ; {select world for array window)
SelectWindow(Number) ; {select the window)
SetBackground(0); {give it a (black) background..)

{else it won't overlap others)
TempXY :=PEsizeXY+GapXY;
for X:=1 to ArraySize do
begin
I:=ArraySize-X+1;
for Yi=1 to I do

begin
if (¥=I) and {if PE’'s boundary type and display)
(DPmode=Arrays)
then DrawCircle {mode is Arrays then draw it as)
(TempXY*Y-TrueRad, {a circle.}
TempXY*X-TrueRad,
Radius)
else
DrawSquare {.. Else draw PE as a square)

(TempXY*Y-PEsizeXY,

TempXY*X-PEsizeXY,
TempXY*Y , TempXY*X,
false);

WritePEtxt(X,Y,Ptr);

end;

end;
end;
end;

195

(FrrRRRRRRRRRRRRRRRR RN R RN R AR R R R RN RN RRRRRRRRRRRR AR R RN R RRRRRRRRR R

all previously defined windows.

% % % % % ¥

*

This procedure define a window, give it a world coordinate system, *
and then depending on array'’s display mode, will draw a type 4 triangu- *
lar systolic array inside the window. This window will overlap on top of *

*
*

Fedcoioioirinklckdckiciaininiainainnlaininicioiaioiainicoinioiniaiainicinicicioioicicloicieiniciainininininiadalnclnicioioinkoiaiaieinininlndnk)

procedure DrwIriangleé
(WorldNum : integer;
Ptr : ArrayPtrtype);

var I,X,Y : integer;
TempXY : real;

begin

with Ptr” do
with PEtxtArray[DPmode] do

begin

DefineWindow(Number,
HiX,HiY,
HiX+WDSizeX,
HiY+WDSizeY);

SelectWorld(WorldNum) ;

SelectWindow(Number) ;

SetBackground(0);

TempXY:=PEsizeXY+GapXY;
for X:=1 to ArraySize do
begin
I:=ArraySize-X+1;
for Y:=I to ArraySize do
begin
if (Y=I) and
(DPmode=Arrays)
then DrawCircle
(TempXY*Y-TrueRad,
TempXY#*X-TrueRad,
Radius)
else
DrawSquare
(TempXY*Y-PEsizeXY,
TempXY*X-PEsizeXY,
TempXY*Y, TempXY#X,
false);
WritePEtxt(X,Y,Ptr);
end;
end;
end;
end;

{define window where drawing)
{will take place)

{select world for array window)
{select the window)

{give it a (black) background..)
{else it won't overlap others)

{if PE’'s boundary type and display)

{mode is Arrays then draw it as)
{a circle.)

{.. Else draw PE as a square)

196

(Fkckdcieicicickniokinioickoickioioioiokoioloieloieioioioiododiakidianiininkrinnnnbnnb i bbbk niaelnbdnkek

* *
* This procedure will draw the status window at the default location and *
* writes initial text within its boxes. It is used only once. *
* *

B L T L L T L L T T T L T e e s e LT e)

procedure DrwStatusWindow
(WorldNum : integer;
Ptr : ArrayPtrtype);

var I : integer;
begin
with Ptr” do
begin
DefineWindow(Number, {define window where drawing)
HiX,HiY, {will take place}
LoX,1oY);
SelectWorld(WorldNum) ; {select world for array window)
SelectWindow(Number) ; {select the window)
SetBackground(0) ; {clears window of all possible}
{background garbage)
DrawBorder;

for I:=1 to 3 do
with Boxes{I] do
begin
DrawSquare (Xhi,Yhi,
Xlo,Ylo,
false);
DrawTextW(Xtxt,Ytxt,
1,Txt);
end;
DrawTextW(Boxes [4] .Xtxt,
Boxes[4].Ytxt,
1,Boxes[4].Txt);
Str(Steps:4,Boxes[1].Dgt);
Str(Times:9:6,Boxes[2].Dgt);
Boxes[3].Dgt:=CurrntPtr”.StatTxt;
for I:=1 to 3 do
with Boxes[I] do
DrawTextW(Xdgt,
Ytxt, 1,
Dgt);
end;

end;

=
o)
~

This procedure draws up the configuration of arrays read in from script
file. It also stores all configured windows in the window stack for
later updating. Depending on the type of the array, it will call these
procedures :

- DrwSquare (),

DrwTrianglel (),

- DrwTriangle2 (),

- DxrwTriangle3 (),

- DrwTriangle4 ()

to properly draw the array itself.

% % % o % ¥ N X * ¥ % *F
'
%ok N % ok N 3 % X % & *

procedure DrawSystem
(Ptr : ArrayPtrType); {points to current array)

var TempPtr : ArrayPtrType; {moving array pointer)
begin

SelectScreen(2); {at RAM screen..}
case Ptr”.ArrayType of {draw the current array, depending)
Square: {on which type it is}
DrwSquare(FirstWorld, Ptr);
Trianglel:
DrwIrianglel(FirstWorld, Ptr);
Triangle?:
DrwIriangle2(FirstWorld,Ptr) ;
Triangle3:
DrwIriangle3(FirstWorld,Ptr);
Triangle4:
DrwTIriangle4 (FirstWorld, Ptr);
end;
StoreWindow(Ptr”" .Number) ; {and stores it in window stack)
ClearScreen; {then clears RAM.)}
TempPtr:=Ptr” .Next; {starts with a non-current array)
while TempPtr<>Ptr do {and as with all non-current array..)
begin
if TempPtr<>StatPtr then {except the status window)
with TempPtr” do
begin
case ArrayType of
Square:
DrwSquare (FirstWorld, {draws them and..)}
TempPtr);
Trianglel:
DrwIrianglel(FirstWorld,
TempPtr) ;

198

Triangle2:
DrwTriangle2(FirstWorld,
TempPtr) ;
Triangle3:
DrwTriangle3 (FirstWorld,
TempPtr) ;
Triangle4:
DrwTriangle4 (FirstWorld,
TempPtr) ;
end;
StoreWindow(Number) ; {stores their image into window stack)
end;
TempPtr :=TempPtr" Next;
end;
DrwStatusWindow(StatusWorld, {then draw status window}
StatPtr);
StoreWindow(StatPtr” .Number); {don't forget to stores it)
CopyScreen,; {and copy'm all to displayed screen.)
SelectScreen(l); {now selects displayed screen..)
RestoreWindow(Ptr" .Number,0,0); {restores current window to its}
{current position,)
SelectWindow(Ptr”" .Number) ; {selects it)
InvertWindow; {then shows that it's current.)

end;

199

(Fhrrkdkiniciccickoickricicick ik ink bR RN RN R RN

* *
* This procedure changes the displays’ color, backward or forward. *
* *

Fokdinkiokriekrkrciickaiadiacinicinioiniddoiaioiainiciocioinioickoiciniciciokciokniokn ik icininiainininininiainininin ik ionnkie)

procedure ChangeColor
(Direction : integer);

begin

Foreground:=
(Foreground+Direction)
mod 16;
if Foreground=0 then
if Direction<O then
Foreground:=15
else if Direction>0 then
Foreground:=1;
SetForegroundColor
(Foreground) ;

end;

{negative for previous color,)
{positive for next.)

{computes next or previous color)

{remember to skips color black)

{set it)

[\¥]
o
(o]

This procedure redraws the current array in the next display mode. This
will allow a user to look at all registers of PEs in the array at the
same time for easy debuging. Depending on the type of array it will call
these procedures :

- DrwSquare (),

- DrwTrianglel (),

- DrwTriangle2 (),

- DrwTIriangle3 (),

- DrwIriangle4 ()
to properly draw the array itself.

% % % % % ¥ & % % % ¥ %

% % o ok Ok 3 ok % Ok ¥ % %

procedure ChangeDisplayMode

(Ptr : ArrayPtrType); {points to current array)
var TempPtr : ArrayPtrType; {moving array pointer)
begin

if Ptr=StatPtr then {if this is the status panel then..)
begin
sound(500) ; {screams at 1000 Hertz}
delay(300); {for 3 tenths of a second)
nosound; {then shuts up)
end
else with Ptr" do
begin

case DPmode of
Full : DPmode:-Arrays;
Arrays : DPmode:=Buffer;
Buffer : DPmode:=Full;
end;
ClearWindowStack (Number) ; {erase old window from window stack)
SelectScreen(2); {select RAM screen..}
ClearScreen; {wipes it clean and..)
case ArrayType of {draw the current array, depending)
Square: {on which type it is)
DrwSquare(FirstWorld,Ptr);
Trianglel:
DrwTrianglel(FirstWorld, Ptr);
Triangle2:
DrwTriangle2(FirstWorld, Ptr);
Triangle3:
DrwTriangle3(FirstWorld, Ptr);
Triangle4:
DrwIriangle4 (FirstWorld, Ptr);
end;
StoreWindow (Number) ; {and stores it in window stack)
ClearScreen; {then clears RAM.)

TempPtr :=Next;
while TempPtr<>Ptr do
begin
if TempPtr<>StatPtr then
RestoreWindow
(TempPtr” .Number,0,0);
TempPtr :=TempPtr” .Next;
end;
RestoreWindow
(StatPtr” .Number,0,0);
CopyScreen;
SelectScreen(l);
RestoreWindow (Number,0,0);

InvertWindow;
end;

201

{starts with a non-current array)
{and as with all non-current array..)

{except the status window}
{restores all windows to their}
{current position,)

{then restore status window to its}
{current position}

{and copy RAM to displayed screen.)
{now selects displayed screen..)
{restores current window to its}
{current position,)

{then shows that it’s current.)

[\¥]
o
[\S]

I

This procedure makes either the previous or the next window current for
any operation, for example moving a window. The current window can
overlaps other windows without destroying them.

* % F % O

procedure SwitchWindow
(var Ptr : ArrayPtrType;
I : integer);

var TempPtr : ArrayPtrType;

TempStr : Textype;
TempNo : integer;

begin

TempStr:=Ptr”.StatTxt;
TempNo:=Ptr” .Number;
if 1=0 then Ptr:=Ptr”".Last
else Ptr:=Ptr”.Next;
TempPtr:=Ptr” .Next;
InvertWindow;
StoreWindow(TempNo) ;
SelectScreen(2);
ClearScreen;
with StatPtr”,Boxes[3] do
begin
RestoreWindow(Number,0,0) ;
SelectWorld(StatusWorld);
SelectWindow(Number) ;
SetColorBlack;
DrawTextW(Xdgt,Ytxt,1,TempStr);
SetColorWhite;
DrawTextW(Xdgt,Ytxt,1,
Ptr”.StatTxt);
StoreWindow(Number) ;
end;
ClearScreen;
while TempPtr<>Ptr do
with TempPtr" do
begin
if NumBer<>MaxWindowsGlb then
RestoreWindow(Number,0,0);
TempPtr :=Next;
end;
if Ptr<StatPtr then
RestoreWindow
(MaxWindowsGlb,0,0);
CopyScreen;
SelectScreen(l);

{points to current array)
{0 for previous, 1 for next)

{remember text and number of}
{current window)

{if backward, makes previous window)

{current, else next window.}

{Shows window isn'’t current anymore)

{and stores it in window stack)
{now, selects the RAM screen..)}
{clears it, then..}
{updates the ARRAY # box of the)
{status window by..)

{erasing the old status text)

{and write in status text of}
{current window)

{and as with all non-current windows..)

{except the status window)

{brings them back to RAM screen at)

{their current position.)

{now draw status window if it’s}
{not the current one.)}

{copy to displayed screen..)
{then selects displayed screen,)

203

RestoreWindow(Ptr” .Number,0,0); {restores current window to)
{its current position,)

SelectWindow(Ptr”" .Number) ; {selects it}

InvertWindow; {and shows that it'’s current}

end;

204
R T T T T ey
This procedure writes back out the (possibly updated) script file to

disk. Since its logic is fairly straightforward, no comments within its
body will be needed. So, there will be none.

* % % % %
* % % % %

etk)
procedure WriteScriptFile;

var SysPtr : ArrayPtrtype;
IOPntr : IOPtrtype;
LnkPtrl ,
LnkPtr2 : LinkPtrType;
Intl,Int2 ,
X,Y : integer;

begin

assign(ScriptFile,ScriptName);
rewrite(ScriptFile);
writeln(ScriptFile, 'ARRAYSIZE :');
writeln(ScriptFile,ArraySize,’ .');
writeln(ScriptFile, 'SYSTEMSPECS :');
SysPtr:=FixedPtr;
while SysPtr<StatPtr do
with SysPtr” do
begin
Intl:=integer(ArrayType);
Int2:=integer (DPmode) ;
writeln(ScriptFile,Number,’ ',

Intl,’ ',Int2,’ ',

HiX,’' ' HiY,’ ,');
write(ScriptFile, 'Pecodes :');
for X:=1 to ArraySize do

begin
for Y:=1 to ArraySize do
write(ScriptFile,
" ' PE[X,Y].Code:2);
if X<ArraySize then
begin
writeln(ScriptFile);
write(ScriptFile,
')
end;
end;
if Next<StatPtr then
writeln(ScriptFile,’ ;')
else writeln(ScriptFile,’ .');
SysPtr:=Next;
end;
IO0Pntr:=I0Ptr;

writeln(ScriptFile, 'INFILES :');
while IOPntr”.IO=INPUT do
with IOPntr” do
begin
write(ScriptFile,Name,’ ',
ArNum,’ ’,Side,’ ',
Bus,' ',IOStart);
if NextIO".IO=INPUT then
writeln(ScriptFile,’ ,’)
else writeln(ScriptFile,’ .');
I0Pntr:=NextlO;
end;
writeln(ScriptFile, 'OUTFILES :');
while IOPntr<>NIL do
with IOPntr” do
begin
write(ScriptFile,Name,’ ',
ArNum,’ ',Side,’ ',
Bus,' ',I0Start);
if NextIO<NIL then
writeln(ScriptFile,’ ,')
else writeln(ScriptFile,’ .');
I0Pntr:=NextIO;
end;
LnkPtrl :=LinkPtr;
LnkPtr2:=LinkPtr;
writeln(ScriptFile, ‘SETUP :');
while LnkPtrl<>NIL do
with LnkPtrl” do
begin
writeln(ScriptFile,ArNums([1]);
while (ILnkPtr2<>NIL) and
(LnkPtr2" .ArNums[1]=
ArNums[1l]) do
begin
case LnkPtr2".Sides[1] of
1: write(ScriptFile,
'NorthInput : ');
2: write(ScriptFile,
‘EastInput : ');
3: write(ScriptFile,
'SouthInput : ');
4: write(ScriptFile,
'WestInput : ');
end;
write(ScriptFile,
LnkPtr2” . ArNums[2],’ ',
LnkPtr2”.Sides[2],’ ’,
LnkPtr2”.LnkStart,’ ',
LnkPtr2”.InkStop, ' ‘);
if LnkPtr2” NxtLink=NIL then
writeln(ScriptFile,’.")

205

206

else if LnkPtr2” . NxtLink".
ArNums [1]<>ArNums[1]
then
writeln(ScriptFile,’;’)
else writeln(ScriptFile,’,’);
LnkPtr2 :=InkPtr2" .NxtLink:
end;
LnkPtrl:=ILnkPtr2;
end;
close(ScriptFile);

end;

207

(B T g e e e e e e e e e R R e e

* *
* This procedure gets script file name specified by user on the command *
* line or failing that it will prompt user for it. *
* *

Fokdrkkdeirlcdoicieicilnidiclninkninkoko ok inninninr i nn bR R R R R RSN

procedure PromptUser;

var OK : boolean;
begin
ClrScr;
if ParamCount=0 then
begin

writeln(’'** Script filename ?');
write(! > ');
readln(ScriptName) ;
end
else ScriptName:=ParamStr(l);
repeat
assign(ScriptFile,ScriptName);
($1-)
reset(ScriptFile);
($1+)
OK:=(I0result=0);
if not OK then
begin
writeln(’!! File not found !!');
writeln('** Script filename ?');
write(' > ');
readln(ScriptName);
end;
until OK;

end;

{clears out display)
{if no parameter on command line}

{prompts user and reads in script}
(file name}

{I0 loop check here)

{check IO result for error)

{let user knows if error}

{prompts user again}

{until no more IO error}

208

(B T e e e e e ey e e e e

*

* This function returns the first (non-space) char of the next word on
* the current line. If EOLn is encounter, it will return a ‘@’ character.

* % ¥ %

*

s L e)
function SeekNxtWord
(var FileVar : text)
: char ;

var TempChr : char;

begin
if SeekEoLn(FileVar) then {skips all spaces and tabs to first)
SeekNxtWord:='@’ {non-blarnk char. Return @ if char)
{is EOLn..)
else begin {else return it)
read(FileVar, TempChr) ;
SeekNxtWord:=TempChr;
end;

end;

209

G e L e T e e e e e

This function reads statements out of the script file and returns
their type to the calling block. It will set an appropriate error value
and returns a zero if there are any syntax error in the statements.

* % ok F %

* % ¥ * %

R T T e L L T T e D s e T e T e s T T)]

function StatementType
: integer ;

var I : integer;
TempStr : string[MaxWord];

begin
1:=0;
while SeekEoLn(ScriptFile) do {skips all spaces, tabs}
readln(ScriptFile); {and blank lines)
repeat {then reads in the statement}
I:=I+1;

read(ScriptFile,TempStr[I});
until Eoln(ScriptFile) or
(I=MaxWord) or
(TempStr[I]=' ') or
(TempStr[I]=':"');
if (TempStr[I]=' ') and
not SeekEoln(ScriptFile) then
read(ScriptFile,TempStr[I1]);

{then finds the delimiter.}

if TempStr[I]=':' then {if found, see what type of}
begin {statement it is)
TempStr[0] :=Chr(I-1);
I:=1;

while (I<=MaxStr) and
(TempStr<>Stringlist[I1])

do I:=I+1;
if I<MaxStr then {and return its type)
begin

StatementType:=I;
if SeekEoln(ScriptFile) then
readln(ScriptFile);
end
else
begin StatementType:=0;
ErrorSet:=[1]; end;
end
else
begin
StatementType:=0;
ErrorSet:=[1];
end;

end;

{else, sets error-type value)

{screams here too}

* This procedure build and initializes an array specified in the script
* file. It does minimal syntax error checking on the script.

* It is called by :
- procedure ReadScript().

procedure GetSystemSpecs

(var Ptr : ArrayPtrType);
var ArType ,
Mode ,
X,Y : integer;
TempChr : char;

begin

with Per” do
begin
read(ScriptFile ,Number,
ArType ,Mode ,HiX,HiY);

if not (Number in
[1..MaxWindowsGlb-1]) then
begin
ErrorSet:=[10];
exit
end;

ArrayType :=TypeOfArray(ArType) ;

if not (ArrayType in
[Square,Trianglel,Triangle2,
Triangle3,Triangle4]) then
begin
ErrorSet:={[11};
exit;
end;

DPmode :=DisplayMode (Mode) ;

if not (DPmode in
[Full,Arrays,Buffer]) then

begin
ErrorSet:=[15];
exit;
end;
TempChr :=SeekNxtWord
(ScriptFile);
If not (TempChr=',') then
begin
ErrorSet:=[4];
exit;
end

else readln(ScriptFile);

{retrieve values for the array)

{error if array number is >= 16)

{stores the type of array or..)
{error when type is unknown)

{stores the array's display mode..)
{or error when type is unknown)

{look for delimiter)

{and if not found, gives error)

end;

if StatementType=6 then
for X:=1 to ArraySize do
for Y:=1 to ArraySize do

begin

read(ScriptFile,
PE[X,Y].Code);
if not (PE[X,Y].Code in

begin

[0. .MaxCodes]) then

ErrorSet:=[16];

exit;
end

end
else begin

ErrorSet:=[8];

exit;
end;

case ArrayType of

Square:

Trianglel:
Triangle2:
Triangle3:

Triangle4:

end;

InitializeSquare
(Ptr);
InitializeTrianglel
(Ptr);
InitializeTriangle?2
(Ptr);
InitializeTriangle3
(Ptr);
InitializeTriangle4
(Ptr);

Str (Number:4,StatTxt);

new(Next) ;

Next”.Last:=Ptr;

Ptr:=Next;
end;

{Next, look for array’s PEs codes}
{layout and read it in)

{error if something is wrong)

{error if something is wrong)

{depending on type of array, call}
{propper procedure to initialize}
{its PEs}

{convert the array number to its)
{string equivalent for status panel)
{then get storage space for next)
{array)

211

212

i T T T s e s T s e e]

* *
* This procedure sets the start and stop index values to traverse the side *
* of an array depending on the array type and which side of the array. *
* *

dkkokrkekicklckclckdckieiciaiainkkininioinkininioininickinikickeiriiioick ik inianiaiioidninininblinbnhinhiny)

procedure SideTraversal

(Side : integer;
ArType : TypeOfArray;
var X1,X2 ,
Y1,Y2 : integer);
begin
case Side of {depending on which side and type)
{of array is involved, prepares)
{the start and stop index values)
{to traverse the side of array)
1: case ArType of {North side}
Square,
Trianglel,
Triangle3: begin
X1:=1;X2:=1;
Yl:=1;
Y2:=ArraySize+l;
end;
Triangle2: begin
X1l:=1;
X2:=ArraySize+l;
Yl:=1;
Y2:=ArraySize+l;
end;

Triangle4: begin
X1:=ArraySize;

X2:=0;
Yl:=1;
Y2:=ArraySize+l;
end;

end;

2: case ArType of {East side)

Square,

Trianglel,

Triangle4: begin
Xl:=1;
X2:=ArraySize+l;
Yl:=ArraySize;
Y2:=ArraySize;
end;

Triangle2: begin
X1:=1;

X2:=ArraySize+l;

Yl:=1;
Y2:=ArraySize+l;
end;

Triangle3: begin
X1:=ArraySize;
X2:=0;
Yl:=1;
Y2:=ArraySize+l,
end;

end;

: case ArType of

Square,

Triangle2,

Triangle4: begin
Xl:=ArraySize;
X2:=ArraySize;

Yl:=1;
Y2:=ArraySize+l;
end;
Trianglel: begin

X1:=1;
X2:=ArraySize+l;
Yl:=1;
Y2:=ArraySize+l;
end;

Triangle3: begin
X1:=ArraySize;
X2:=0;
Yl:=1;
Y2:=ArraySize+l;
end;

end;

: case ArType of

Square,

Triangle?2,

Triangle3: begin
X1:=1;
X2:=ArraySize+l;
Y1:=1;¥2:=1;
end;

Trianglel: begin
X1l:=1;
X2:=ArraySize+l;
Yl:=1;
Y2:=ArraySize+l;
end;

Triangle4: begin
X1l:=ArraySize;
X2:=0;
Yl:=1;
Y2:=ArraySize+l;
end;

{South side}

{West side)

213

214

end;
end;

end;

N
o
)

(Fdioiciciciciciiciciaick icininnknininirnrinnhirRrRRRRR Rk
* *
* This procedure, given the info contains in a IOType record, will link *
* a buffer of an IC file to a side of an array at the proper time. If the *
* 10 file is of type INPUT, all In Regs of PEs’ on the proper side of the *
* array will contain the addresses of the buffer’s individual registers. *
* If the IO file is of type OUTPUT, the reverse is true. *
* This procedure is called by : *
* - procedure MultiStepsExec(). *
* - procedure SingleStepExec(). *
* *

procedure LinkIOFlow
(Ptr : IOPtxType;
Step : integer);

var I,
X1,X2,X3 ,
Y1,Y2,Y3 : integer;

begin

while Ptr<NIL do
with Ptr” do

begin
if IOStart=Step then {if it’s time to link IO to array..)
begin
Active:=TRUE; {marks that IO charmmel is now active.)
SideTraversal(Side, {depending on which side and type)
ArPtr” .ArrayType, {of array is involved, prepares the}
X1,X2,Y1,¥2); {start and stop index values)
X3:=X1; Y3:=Y1l; I:=1;
repeat {actual linking is done here while)
with ArPtr” do case I0 of ({traversing the side of array)
INPUT:
PE[X3,Y3]. {PE’'s input registers gets addresses)
In Regs[Side,Bus]:= {of I0 chamel’s input buffers)
Addr (InRegs[I]);
OUTPUT : {I0 chamnel output buffer gets)
OutRegs[I]:= {addresses of PE’s output registers)

Addr (PE[X3,Y3].
Last Out[Side,Bus]);
end;
if X1<X2 then X3:=X3+1
else if X1>X2 then X3:=X3-1;
if Y1<¥2 then Y3:=Y3+1;
I:=I+1;
until (X3=X2) and (Y3=Y2);
end;
Ptr:=NextIO;
end;
end;

N
o
[e))

It is called by :

- procedure ReadScript().
Also, it called :

- procedure LinkIOFlow().

* % O N N ¥ F F

This procedure build and initializes the IO system of the configuration
from the script file. It does lots of error checking on the script.

* % % % k¥ X %

|

procedure GetIOSpecs

(var Ptr : IOPtrtype;
Flag : IOflag);
var Can : boolean;
I : integer;
TempChr : char;
begin
repeat with Ptr” do
begin
I0:=Flag;

Active:=FALSE;
ArPtr:=CurrntPtr;
Can:=SeekEoLn(ScriptFile);
I:=0;
repeat
I:=I+1;
read(ScriptFile,Name[I]);
until (Name[I]=' ') or
(I=MaxFileName) ;
If Name[I}<' ' then
ErrorSet:=[5];
Name[0] :=char(I-1);
assign(FileVar, Name);
case Flag of
INPUT: begin
{S$I-)reset(FileVar);
{$1+)
if not (IOresult=0)
then ErrorSet:=
ErrorSet+[13];
end;
OUTPUT: rewrite(FileVar);
end;
Can:=SeekFEolLn(ScriptFile);
read(ScriptFile,ArNum,Side,
Bus, IOStart);
if not (ArNum in
[1. .MaxWindowsGlb-1])

{garbage can for expediency)

{does this ’'til "." or error is met.
{set IO type}

{IO chamnel is not active yet)

{gets the address of systems arrays)
{get all blanks in between data)

{retrieves I0 filename to storage)

{if bad name, sets error alarm}

{sets the length of the name string}
{IO file preprocessing starts here)

{if input file, open for reading..)
{then checks 10 result for error)
{and set error if there are any.)
{if output file, open for writing.)

{get all blanks in between data)
{then get all remaining data.}

{valid array number ?)

.l

then ErrorSet:=[11]
else
while (ArPtr”.Number<>ArNum)
and (ArPtr”.Next<>CurrntPtr)
do ArPtr:=ArPtr”.Next;
if ArPtr”.Number<>ArNum then
ErrorSet:=ErrorSet+[6];
if not (Side in [1..MaxRegs])
then ErrorSet:=ErrorSet+[9];
if not (Bus in [1l..MaxBus])
then ErrorSet:=ErrorSet+{14];
case Flag of
INPUT:
for I:=1 to MaxArraySize do
InRegs[I):=0.0;
OUTPUT:
for I:=1 to MaxArraySize do
OutRegs[I]:=ZeroPtr;

end;
TempChr :=SeekNxtWord(ScriptFile);
If not (TempChr in {',’,’'."'])

then ErrorSet:=ErrorSet+{4]
else readln(ScriptFile);
if (TempChr=’,’) or (Flag=INPUT)
then begin
new(NextIO) ;
Ptr:=NextIO;
end
else NextIO:=NIL;
end;

until (ErrorSet<>[]) or

(TempChr='.");

{search for the specified array..)

{does array exist ?)
{valid side ?)
{valid bus 7?7}

{init. all IO buffer'’s registers)

(where is delimiter 7}

{gets storage space for next)
{I0 unit and points to it}

217

[8]
=
[o0]

This procedure, given the info contains in a list of LinkType records,
will link a side of a source array to a side of an destination array,
or it will cut off the link by pointing imput registers to value zero
The link is achieved by having all In Regs of PEs’ on the proper side of
the destination array store addresses of Out_Regs of all PE’s on the
proper side of the source array.

This procedure is called by :
- procedure MultiStepsExec().
- procedure SingleStepExec().

% % ¥ % F ¥ X % ¥ %
% ok % b 3k % o % % % ¥

procedure LinkDataFlow
(Link : LinkPtrType;
Step : integer);

var X1,X2,X3 ,
Y1,Y2,Y3 : SrcDstType;
I : integer;
begin
while Link<>NIL do {start at begining of Link list)
with Link" do (and until the end of list..)
begin {do all things below.)
if LnkStart=Step then {if the moment of truth arrives)
begin {then. .}
for I:=1 to 2 do {..for both source and destination,)
begin {depending on which side and type)
SideTraversal(Sides[1], {of array is involved, prepares)
ArPtrs[I])”. ArrayType, {the start and stop index values)
X1[1],X2([1], {to traverse the side of array)
Y1[I],Y2[1]);
X3[I]:=X1[1];
Y3[I]:=Y1[I];
end;
repeat {repeats doing the following..)}
for I:=1 to MaxBus do {for all buses, points Input registers)
ArPtrs[1]”. {of destination array to the Output)

PE[X3[1],Y3[1]].

In Regs[Sides[1],I]:=

Addr(ArPtrs[2]".
PE[X3[2],Y3[2]].

Last _Out[Sides[2],1]);

for I:=1 to 2 do
begin
if X1[I]<X2[I] then
X3[1]:=X3[1I]+1

else if X1[I]>X2[1] then

X3[1]:=X3[I]-1;

{registers of the source array}

(increments side traversal index}
{(values for both source and}
{destination array}

end;

if Y1[I]<Y2[I] then
Y3([1]:=Y3[I]+];
end;
until (X3[1]=X2[1]) and
(Y3[1]=¥2[1]) ;
end
else if (InkStart<Step) and
(LnkStop=Step) then
begin
SideTraversal(Sides[1],
ArPtrs{1]”.ArrayType,
X1[1],Xx2[1],
Y1(1],Y2(1]);
X3[1):=X1{1];
Y3[1]):=Y1[1];
repeat
for I:=1 to MaxBus do
ArPtrs[1]”.
PE[(X3{1],Y3(1]].
In Regs[Sides[1],I]:=
ZeroPtr;
if X1[1]<X2[1] then
X3[1):=X3[1]+1
else if X1[1]>X2[1] then
X3[1):=X3[1]-1;
if Y1[1]<Y2[1] then
Y3[1]:=Y3[1]41;
until (X3[1]=X2[1]) and
(Y3[1]=Y2[1]);
end;
Link:=NxtLink;
end;

219

{until array’s side is fully}
{traversed)

{when it’s time to cut the 1link}

{for the destination array, prepares)
{the start and stop index values)
{to traverse its side)

{repeats doing the following..)

{for all buses, points Input registers)
{of destination array to the)

{value zero}

{increments side traversal index}

{values for destination array)

{until array’s side is fully)
{traversed}

8]
N
o

R R T T T T
* *
* This procedure gets info of the data flow from array to array, including *
* feedback paths, according to a script file. It does some error checking =*
* on the script file and on the way user specified comnective path between *
* arrays. *
* The procedure is called by : *
* - procedure ReadScript(). *
* It calls : *
* - procedure LinkDataFlow(). *
* *

procedure GetDataFlow
(var Link : LinkPtrType;

var

Ptr . ArrayPtrType);

TempChr : char;
NewLink ,
TmpLink : LinkPtrType;

begin

new(Link);
TmpLink:=Link;
NewLink:=Link;
repeat

with TmpLink" do

begin
ArPtrs[l]:=Ptr;
ArPtrs(2] :=Ptr;
read(ScriptFile,ArNums[1]);
while (ArPtrs[1]”.Number<>
ArNums[1]) and
(ArPtrs[1]” .Next<>Ptr)
do ArPtrs([1]:=ArPtrs[1]”.Next;
if (ArPtrs[l]”.Number<
ArNums(1]) or
(ArNums [1]=MaxWindowsG1lb)
then begin
ErrorSet:=ErrorSet+[6]};
exit;
end;
end;

repeat

with NewLink" do
begin
Sides[1]:=StatementType-6;
if not (Sides[l] in
[1..MaxRegs]) then
ErrorSet:=ErrorSet+[7];

{does all this until '.’ encountered)
{initializes pointers)

{gets the destination array..)
{is it wvalid ?)

{if not, sets error and says goodbye)

{then does all this until ’;’ is met)

{gets input side of destination array)
{array. If it's not valid, sets error)

read(ScriptFile ,ArNums[2],
Sides[2],LnkStart,

{Now, gets source array, its output}
{side and start and stop values)

LnkStop) ;
while (ArPtrs[2]”.Number<>
ArNums[2]) and (ArPtrs[2]”
.Next<>Ptr) do
ArPtrs[2] :=ArPtrs[2]" .Next;
if (ArPtrs[2]”.Number<
ArNums[2]) or
(AxNums [2]=MaxWindowsGlb)
then begin
ErrorSet:=ErrorSet+[6];
exit;
end;
if not (Sides{2]
in [1..MaxRegs]) then
ErrorSet:=ErrorSet+{9];
if ErrorSet<>[] then exit;

{validates source array here..}

{and the output side here}

{leaves if any errors)

end;

TempChr :=SeekNxtWord {then seeks out delimiter. If none)
(ScriptFile); {found, sets error)
If not (TempChr in
[I’I’I;l,'.l]) then

begin

ErrorSet:=[4];

exit;

end
else if (TempChr=',') then

begin

new(NewLink” .NxtLink) ;
NewLink;=NewLink” .NxtLink;
NewLink".ArPtrs[1]:=
TmpLink” .ArPtrs[1];
NewLink” .ArNums[1] :=
TmpLink” .ArNums[1];
NewLink” .ArPtrs[2]:=Ptr;
end
else if (TempChr=';') then
begin
new(NewLink” . NxtLink) ;
TmpLink :=NewLink” .NxtLink;
NewLink :=TmpLink;

{create new link storages and..)
{and points to it}

end
else NewLink” .NxtLink:=NIL;
readln(ScriptFile);
until (TempChr in [';’,’.'}]); {stops getting input direction for)

{destination array)
{stops reading dataflow set up infos)
{entirely)

until (TempChr='.') or
Eof(ScriptFile);

end;

N
\V]
\V]

% % % % F *

This function sets up the SAGS internmals according to a script file
specified by the user. It will generate error messages and returns

a FALSE boolean value if any error or inconsistency is encountered in
the file. Graphics errors such as drawing a window out of screen range
will not be handle by this function.

¥ & % % ¥ % X

function ReadScript

: boolean ;
var
ActionType ,

Sequencer : integer;
TempChr : char;
TempPtr : ArrayPtrType;

TempIOPtr : IOPtrtype;

begin

ErrorSet:=[];
Sequencer:=1;
while (ErrorSet=[])
and (Sequencer<=MaxSequence)
do begin
ActionType:=StatementType;
if ActionType=Sequencer then
begin
case ActionType of
1: begin ,
read(ScriptFile,ArraySize);
if ArraySize>MaxArraySize
then ErrorSet:=
ErrorSet+[2];
if SeekNxtWord
(ScriptFile)<>’ .’
then ErrorSet:=
ErrorSet+{3]
else readln(ScriptFile);
end;
2: begin
InitGlbStorage;
new(FixedPtr);
FixedPtr”.last:=StatPtr;
StatPtr”.Next:=FixedPtr:
CurrntPtr:=FixedPtr;
TempPtr:=FixedPtr;
repeat
GetSystemSpecs (TempPtr) ;

{clears error register and init.)
{sequence counter)

{continues the system setup sequence)
{until error occurs)

{gets the step number and if it’'s}
{in sequence then proceeds})

{reads in array size of system)

{if array size too large, sets error)

{look for the delimiter and}

{ if not found, error)

{creates arrays system here)
{init. all global graphics values)

223

TempChr : =SeekNxtWord {look for delimiter)
(ScriptFile);
If not {and if not found, gives error)
(TempChr in [';’,’."])
then ErrorSet:=
ErrorSet+[4]

else readln(ScriptFile);
until (ErrorSet<>[]) or

(TempChr='.");
if ErrorSet=[] then {if no error,}
begin {then create a circular}

TempPtr:=TempPtr”.Last; {doubly linked list which included)
Dispose(TempPtr” .Next); {the status window.)

TempPtr” .Next:=StatPtr;

StatPtr”.Last:=TempPtr;

end;
end;

3: begin {creates IO system here}
new(IOPtr); {starts IO linked list)
TempIOPtr:=IOPtr;

GetIOSpecs(TempIOPtr, {then reads in IO specs..}
INPUT),
end;
4: GetIOSpecs(TempIOPtr, {and reads in some more then..)
OUTPUT) ;
5: GetDataFlow(LinkPtr, {get description of the flow of data)
CurrntPtr) ;
end;
Sequencer :=Sequencer+l;
end
else ErrorSet:=ErrorSet+[8];
end; {setup sequence ends here.)
if ErrorSet<>[] then {looks through error list acumulated)
begin {thus far and displays appropriate}
for Sequencer:=1 to MaxError do {error message)
begin

if Sequencer in ErrorSet
then writeln
(ErrorList{Sequencer]);
ErrorSet:=
ErrorSet- [Sequencer];
end;
ReadScript:=FALSE;
end
else ReadScript:=TRUE; {if no error, signal calling block)
{to continue}
end;

N
[\
o

* % Xk X ok ok % X

This procedure represents the execution code of a shift down register

array. This array moves data in the North to South direction.

_ R is X Reg

_ Xin is In Regs[1,1]"
_ TAGin is In Regs[1,2]"
_ Xout is Out_Regs[3,1]

TAGout is Out_Regs[3,2]

% % % N ¥ kR % ¥ %

procedure N2Scode

(var PE : PEtype);

begin

with PE do

end;

begin

Out Regs[3,1]:=In Regs[1,1]";
Out_Regs{3,2]:=In Regs{1,2]";
X Reg:=Out Regs[3,1];
TAG:=Trunc(Out Regs{3,2]);
end;

{put value in here for display}

[\
[\
[$)]

L aa s T L e e
* *
* This procedure represents the execution code of a shift left register *
* array. This array moves data in the East to West direction. *
* _ R is X Reg *
* Xin is In Regs[2,1]" *
* TAGin is In Regs[2,2]" *
* Xout is Out_Regs[4,1] *
* TAGout is Out_Regs[4,2] *
* *

procedure E2Wcode
(var PE : PEtype);

begin

with PE do
begin
Out Regs{4,1]:=In Regs[2,1]";
Out Regs[4,2]:=In Regs[2,2]";

X Reg:=Out Regs[4,2]; {put values in these registers for)
TAG:=Trunc(Out_Regs[4,1]); {display)
end;

end;

[\S]
[\V]
[e)]

(Fekedcricioiodoiioioioicioioirioioinioickiokoicricioloeickinloicioiaininlioininiicininniaiciokinioninainninnnnnt
* *
* This procedure represents the execution code of a shift up register *
* array. This array moves data in the South to North direction. *
* R is X Reg *
* Xin is In Regs([3,1]" *
* _ TAGin is In Regs[3,2]" *
* Xout is Out_Regs[1,1] *
* TAGout is Out_Regs[1,2] *
* *

procedure S2Ncode
(var PE : PEtype);

begin

with PE do
begin
Out_Regs[1,1]:=In Regs(3,1]";
Out_Regs[1,2]:=In Regs[3,2]";

X Reg:=0ut Regs[1,1]; {put values in these registers for)
TAG :=Trunc(Out_Regs[1,2]); {display)
end;

end;

227

e a T
* *
* This procedure represents the execution code of a shift up register *
* array. This array moves data in the West to East direction. *
* R is X Reg *
* Xin is In Regs[4,1]" *
* TAGIn is In Regs([4,2]" *
* ZXout is Out_Regs[2,1] *
* TAGout is Out Regs(2,2] *
* *

procedure W2Ecode
(var PE : PEtype);

begin

with PE do
begin
Out Regs[2,1]:=In Regs{4,1]";
Out_Regs[2,2]:=In Regs(4,2]";

X Reg:=Out Regs[2,2]; {put values in these registers for}
TAG :=Trunc(Out_Regs(2,1]); {display)
end;

end;

[\V]
[\M]
©

-Mout is Out_Regs({3,1]

*

* This procedure represents the execution code of HE’s systolic array
* for boundary cell.

* X is X Reg

* _ Xin is In Regs[1,1]"

* _ TAGin is In Regs(1,2]"

* _ Vout is Out_Regs[2,1]

* _ Mout is Out_Regs[2,2]

*

*

% % ok b % o % b X X

procedure HEcodel
(var PE : PEtype);

begin
with PE do

begin

Out_Regs[4,2]:=In_Regs[1,1]"; (get Xin and..)}

TAG:=Trunc(In_Regs[1,2]"); {pivoting TAG bit values)

if (TAG=0) and {if pivoting is allowed and Xin is)
(abs(Out_Regs[4,2])>= {greater in magnitude than X, then..)
abs(X Reg)) then
begin
Out Regs[2,1]:=1.0; {tell the East neighboring cell to)}
if Out_Regs[4,2]<>0.0 then {pivot and send it a modifying value)

Out_Regs[2,2]:=

-X Reg/Out Regs{4,2]
else Out Regs[2,2]:=0.0;
X Reg:=0Out_Regs[4,2];

end
else begin
Out Regs{2,1]:=0.0; {else, no pivoting..}
Out_Regs[2,2]:= {with modifying value)
-In Regs[1,1]"/X Reg;
end;
Out_Regs[3,1]:=-Out Regs[2,2]; {moves Mout)
end;

end;

229

e aa e T T
* *
* This procedure represents the execution code of HE’s systolic array *
* for internal cell. *
* *
* X is X Reg *
* _ Xin is In Regs(1,1]" *
* _ Vin is In Regs[4,1]" *
* _ Min is In Regs[4,2]" *
* _ Xout is Out_Regs[3,1] *
* _ Vout is Out_Regs[2,1] *
* _ Mout is Out_Regs[2,2] *
* *

procedure HEcode2

(var PE : PEtype);

begin

with PE do

end;

begin
Out Regs[2,1]:=In Regs[4,1]";
Out_Regs[2,2]:=In Regs[4,2]";
TAG:=Trunc(Out_Regs[2,1]);
if TAG=1 then
begin
Out Regs[3,1]:=X Reg
+0ut_Regs([2,2]
*In Regs[1,1]";
X Reg:=In Regs[1,1]";

end
else Out_Regs[3,1]:=In Regs[1,1]"
+0ut_Regs[2,2]
*X_Reg;

Out_Regs([3,2]:=In Regs[1,2]";
end;

{get TAG bit for display)

{pass on pivoting allowed bit}

N
W
o

G e 2 T e T e
* *
* This procedure represents the execution code of NASH's systolic array *
* for boundary cell. *
* *
* R is X Reg *
* TAG is In Regs(1,2]” *
* _ Xin is In Regs(1,1]" *
* _ Cout or Xout is Out_Regs{2,1] *
* _ Sout is Out Regs[2,2] *
* *

procedure NASHcodel
(var PE : PEtype);

var T : real;
begin
with PE do
begin
TAG:=Trunc(In Regs[1,2]");
if TAG=0 then
if In Regs{1,1]” = 0.0 then
begin
Out_Regs[2,1]:=1.0;
Out _Regs[2,2]:=0.0;
X Reg:=0.0;
end
else begin

T:= sqrt(sqr(X Reg)
+sqr(In Regs[1,1]7));
Out_Regs[2,1]:=X Reg/T;
Out_Regs[2,2]:=
In Regs(1,1]"/T;
X Reg:=T;
end
else Out Regs({2,1]:=
In Regs{1,1]"/X Reg;
end;

end;

{This line will give us
{result. Delete it will
{Nash’s ailments.}

incorrect}
cure all of}

[\8)
w
[=

(FdcickedcdoioieiioioiololeioicicioneninicoicinicanninninrinicnnnrinsnnnkoaaanresRnnannnb ik
* *
* This procedure represents the execution code of NASH's systolic array *
* for internmal cell. *
* *
* R is X Reg *
* TAG is In Regs[1,2]” *
* Xin is In Regs[1,1]” *
* Cinor Y is In Regs(4,1]1” *
* Sin is In Regs[4,2]” *
* TAGout is Out_Regs[3,2] *
* Xout is Out_Regs{3,1] *
* Cout is Out_Regs[2,1] *
* _ Sout is Out_Regs[2,2] *
* *

ﬁ
|

procedure NASHcode2
(var PE : PEtype);

begin

with PE do
begin
Out Regs[3,2]:=In Regs(1,2]";
TAG:=Trunc(Out_Regs[3,2]);
if TAG=0 then
begin
Out Regs[3,1]:=
-(In_Regs[4,2]” * X Reg)
+(In Regs[4,1]"
* In Regs[1,1]7);
X Reg:=In_Regs[4,1]"
* X Reg + In_Regs(4,2]"
* In Regs[1,1]";

end
else Out Regs([3,1]:=In Regs(1,1]"
-In Regs([4,1]"
*X Reg;

Out_Regs[2,1]:=In Regs[4,1]";
Out Regs[2,2]:=In Regs[4,2]";

end;

end;

\S)
w
\S)

X

Xin
Cl24in
C3in
Min
Xout
Cl240ut
C3out
Mout

% % N N N X ¥ ¥ % X ¥ ¥ X *

is
is
is
is
is
is
is
is
is

X Reg

In Regs(1,1]"
In Regs[1,2]"
In Regs[4,1]"
In Regs(4,2]"
Out Regs([3,1]
Out_Regs[3,2]
Out_Regs[2,1]
Out_Regs(2,2]

This procedure represents the execution code of my systolic array
design for diagonal cell.

* ok ok ok % % ok ok % H ¥ *k % *

%

procedure LEcodel

(var PE : PEtype);

begin

with PE do
begin

C124 := Trunc(In Regs[1,2]");
C3 := Trunc(In Regs[4,1]");
if 0dd(Cl24) then

X Reg := 0.0 ;
if C124>7 then

begin

if (abs(In Regs[1,1]")>=
abs(X Reg)) and
(C124>11) then

begin

if €124 in [12,13] then
Out_Regs[2,1]:=C124+2
else Out_Regs([2,1]:=C124;

if (In Regs[1,1]"<>0.0) then

Out Regs[2,2]:=

-X Reg/In Regs[1,1]"
else Out Regs[2,2]:=0.0;
X Reg:=In Regs[1,1]";

end
else begin

if €124 in [10,11,14,15]
then Out_Regs[2,1]:=

Cl24-2
else Out Regs[2,1]:=C124;
Out_Regs(2,2]:=
-In Regs[1,1]"
/X _Reg;

end;

{stores C1, C2, C3, and C4)}

{if C4 is 1 then clear X}

{if C1 is 1 then Triangle mode)
{if 3Xin3 r 3X3 and C2 is 1 then)

{pivoting is needed and allowed)

{set C3 to 1..}

{else pivoting is not allowed}

{set C3 to 0..}

TAG:=Cl124;
end
else begin
If C3 in [2,3,6,7] then
begin
Out_Regs{3,1]:=X Reg
+In Regs{4,2]"
*In Regs{1,1]";
X Reg:=In Regs[1,1]";
end
else Out_Regs[3,1]:=
In Regs[1,1]"
+In Regs[4,2]"
*X Reg;
Out_Regs([2,1]:=C3;
Out Regs[2,2]:=In Regs[4,2]";
TAG:=C3;
end;
Out_Regs[3,2]:=C124;
end;

end;

233
{display that cell is triangle mode)

{else Cl is in Square mode.)}
{if C3 is 1 then..)

{else if C3 is O then..}

{pass on C3.}
{Pass on Min.}
{display that cell in square mode}

{In any case, pass on Cl, C2, C4.)

{ kiR Y)

procedure LEcode2
(var PE : PEtype);

begin

with PE do
begin
C124 := Trunc(In Regs[1,2]");
C3 := Trunc(In Regs(4,1]");
if 0dd(Cl124) then
X Reg := 0.0 ;
if C124>7 then
begin
if (abs(In Regs[1,1]")>=
abs(X Reg)) and
(C124>11) then
begin
if C124 in [12,13] then
Out _Regs[2,1]:=C124-6
else Out Regs([2,1]:=C124-8;
if (In Regs({1,1]"<>0.0) then
Out_Regs[2,2]:=
-X Reg/In Regs[1,1]"
else Out Regs[2,2]:=0.0;
X Reg:=In Regs[1,1]";
end
else begin

{stores Cl, C2, C3, and C4)

{if C4 is 1 then clear X}

{if Cl is 1 then Triangle mode}
{if 3Xin3 r 3X3 and C2 is 1 then}

{pivoting is needed and allowed)

{set C3 to 1..}

{else pivoting is not allowed)

234

if C124 in [10,11,14,15] {set C3 to 0..)
then Out_Regs[2,1]:=
C124-10
else Out_Regs[2,1]:=C124-8;
Out_Regs([2,2]:=
-In Regs[1,1]"

/X _Reg;
end;
TAG:=C124; {display that cell is triangle mode)
end
else begin {else Cl is in Square mode.)}
If C3 in [2,3,6,7] then {if C3 is 1 then..)
begin

Out_Regs[3,1]:=X Reg
+In Regs(4,2]"
*In Regs[1,1]";

X Reg:=In Regs[1,1]";

end
else Out _Regs[3,1]:= {else if C3 is O then..}
In Regs[1,1]"
+In Regs(4,2]"
*X Reg;
Out_Regs([2,1]:=C3; {pass on C3.)
Out_Regs[2,2]:=In Regs[4,2]"; {Pass on Min.)
TAG:=C3; {display that cell in square mode)
end;
Out_Regs([3,2]:=C124; {In any case, pass on Cl, C2, C4.)

end;

end;

V)
W
(&5}

C3Eout is Out_Regs(3,2]
C3Sout is Out_Regs[2,1]
Mout is Out_Regs[2,2]

* *
* This procedure represents the execution code of my systolic array *
* design for square cells. *
* *
* X is X Reg *
* _ Xin is In Regs[1,1]” %*
* C3in is In Regs(4,1]” *
* _ Min is In Regs[4,2]" *
* _ Xout is Out_Regs[3,1] *
* *
* *
* *
* *

procedure LEcode3
(var PE : PEtype);

begin
with PE do

begin

C3 := Trunc(In Regs(4,1]"); {stores Cl, C2, C3, C4.}

TAG:=C3; {display control code)

if 0dd(C3) then {if C4 is 1 then clear X}
X Reg = 0.0 ;

If C3 in [2,3,6,7, {if 3 is 1 then..)
10,11,14,15] then
begin

Out_Regs[3,1]:=X Reg
+In Regs[4,2]”
*In Regs[1,1]";
X Reg:=In Regs[1,1]";
end
else Out Regs([3,1]:= {else if C3 is O then. .}
In Regs[1,1]"
+In Regs[4,2]"
*X Reg;
Out_Regs(3,2]:=C3; {pass on Cl, C2, C3, C4.)
if C3>7 then
Out_Regs[2,1]:=C3-8
else Out _Regs(2,1]:=C3;
Out Regs[2,2]:=In Regs[4,2]"; {Pass on Min.)

end;

end;

236

(Ficiciciciciciiciaicicknkninhnirnip R
* *
* This procedure represents the execution code of my systolic array *
* design for square cells. *
* *
L ¢ is X Reg *
* _ Xin is In Regs[l,1]" *
* Cl24in is In Regs[1,2]" *
* _ C3in is In Regs[4,1]" *
* _ Min is In Regs[4,2]" *
* Xout is Out_Regs[3,1] *
* Cl24out is Out_Regs[3,2] *
* _ GC3out is Out_Regs{2,1] *
* Mout is Out_Regs[2,2] *
* *

§

procedure LEcode4
(var PE : PEtype);

begin
with PE do

begin

Cl24 := Trunc(In Regs[1,2]"); {stores Cl, C2, C3, and C4)

C3 := Trunc(In Regs{4,1]");

TAG:=C3; {display control code)

if 0dd(C124) then (if C4 is 1 then clear X)
X Reg := 0.0 ;

If C3 in [2,3,6,7] then (if €3 is 1 then..}
begin

Out Regs[3,1]:=X Reg
+In Regs[4,2]"
*In Regs[1,1]";
X Reg:=In Regs[1,1]";
end
else Out Regs[3,1]:= {else if C3 is O then..)
In Regs(1,1]"
+In Regs[4,2]"
*X Reg;
Out Regs(2,1]:=C3;
Out Regs[2,2]:=In Regs[4,2]"; {Pass on Min.)
Out_Regs[3,2]:=C124; {In any case, pass on Cl, C2, C4.)
end;

end;

(8]
w
~

s
* *
* This procedure updates the image of an array in its window to reflect *
* the state of the computation at a particular step. Depending on the *
* particular type of array, it will only updates allowable PEs. *
* *

procedure UpdateArray
(Ptr : ArrayPtrType);

var X,Y,I : integer;
begin

with Ptr" do
begin
RestoreWindow (Number,0,0);
SelectWindow(Number) ;
SetColorBlack;
with PEtxtArray[DPmode] do
for X:=1 to ArraySize do
for Y:=1 to ArraySize do
with PE[X,Y] do
if Code<>0 then
for I:=1 to Lines do
DrawTextW
(TextCoord[X,Y] .X[I],
TextCoord|[X,Y].Y[I],
1,Regs Txt[I]);

{brings out the proper window,)
{selects it, and..)

{erase the old texts..)

{depending on array's display mode.)
{within every PE of the array..)

{if the PE has a valid code then..)
{erases all displayable registers)
{values}

for X:=1 to ArraySize do
for Y:=1 to ArraySize do
with PE[X,Y] do if Code<>0 then
begin
Str(X Reg:6:2,
Regs Txt[2]);
Str(Out_Regs([2,1]:6:2,
Regs Txt[3]);
Str(Out_Regs(2,2]:6:2,
Regs Txt[4]);
Str(Out_Regs[3,1]:6:2,
Regs Txt[5]);
Str(TAG:1,
Regs Txt[1]);
end;
SetColorWhite;
with PEtxtArray[DPmode] do
for X:=1 to ArraySize do
for Y:=1 to ArraySize do
with PE[X,Y] do
if Code<>0 then
for I:=1 to Lines do
DrawTextW
(TextCoord([X,Y] .X[I],
TextCoord[X,Y].Y[I],
1,Regs_Txt[I]);
StoreWindow(Number) ;
end;

end;

{Then, with every PE of the array..)
{if it has a valid code..)

{updates its text storages of X,)
{of Vout,}

{of Mout,}

{of Xout,}

{of TAG)

{At last, write in the new texts..)

{depending on array's display mode.)
{within every PE of the array..}

{if the PE has a valid code then..}
{rewrites all new registers)
{values}

{Now, stores the updated window.)}

238

239

This procedure simulates a single step of execution of the systolic
system of arrays. It first links all necessary IO chamnels for the
current step to the system of arrays, then it feeds data into imput
buffers, gets data from arrays into output files, then for each PE, it
executes its microcodes until the entire system of arrays is traversed.
At last it will move the result of each PE’s micro-execution into its
suitable output register and updates the graphics image of each array
and the status panel. It really can do that much works in so short a
time span.

This procedure is called by :
- main block.

This procedure calls :
- procedure LinkIOFlow().
- procedure LinkDataFlow().
- procedure UpdateArray().
- procedures HEcodel(), HEcodeZ().
- procedures NASHcodel(), NASHcode2().
- procedures LEcodel(), LEcode2()
- procedures N2Scode(), S2Ncode(), E2Wcode(), W2Ecode().

ok %k %k % % % ok % % K ok % H ok F % ok % ok
%ok S sk % oF ok ok ok ok ok % % % F ¥ F % *

:
%

procedure SingleStepExec
(I0Pntr : IOPtrtype);

var SysPtr : ArrayPtrtype;
I,J,X,Y : integer;

begin
with StatPtr” do {update status panel'’s registers)
begin
Times :=Times+TimeUnit; {increments time..}
Steps:=Steps+l; {and step counters}
LinkDataFlow(LinkPtr, Steps); {establishes all necessary links and)
LinkIOFlow(IOPntr,Steps); {I0 channels for this step)
while IOPntr<>NIL do {starts at begining of IO linked list)
with IOPntr” do {for each I/0 channel..)
begin
if Active then {if chamnel is still active, then)
case 10 of {depending on the type of IO chammel)
INPUT: {for input chamnel..)}
if EOF(FileVar) then {if all data in file are read)
begin
Close(FileVar); {then closes input file,)
Active:=FALSE; {marks input chamnel as inactive)
for I:=1 to ArraySize {and grounds input buffers.)

do InRegs[I]:=0.0;
end

else begin
for I:=1 to ArraySize
do read(FileVar,

InRegs[I]);
readln(FileVar);
end;

OUTPUT: begin
for I:=1 to
ArraySize do
write(FileVar,
OutRegs[I]”
:12:2);
writeln(FileVar);
end;
end;
IOPntr:=NextlIO;
end;

end;
SysPtr:=FixedPtr;
while SysPtr<>StatPtr do
with SysPtr” do
begin
for X:=1 to ArraySize do
for Y:=1 to ArraySize do
case PE[X,Y].Code of
: N2Scode(PE[X,Y]);
: E2Wcode(PE[X,Y]);
: S2Ncode(PE[X,Y]);
: W2Ecode(PE[X,Y]);
: HEcodel(PE[X,Y]);
: HEcode2(PE[X,Y]);
: NASHcodel(PE[X,Y]);
: NASHcode2(PE[X,Y]);
: LEcodel(PE[X,Y]);
10: LEcode2(PE[X,Y]);
11: LEcode3(PE[X,Y]);
MaxCodes: LEcode4(PE[X,Y]);
end;
SysPtr:=Next;
end;
SysPtr:=FixedPtr;
while SysPtr<>StatPtr do
with SysPtr” do
begin
for X:=1 to ArraySize do
for Y:=1 to ArraySize do
with PE[X,Y] do
if Code<>0 then
for I:=1 to MaxRegs do
for J:=1 to MaxBus do

VoO~NOTOLEWNEHFEO

240

{else reads in data on line..}

{and go to next line)

{for output channel..)
{write data to file}

{then goes to next IO channel)

{start with the lst array in system..)
{as with all arrays except STATUS..)

{with every single PE of array..)

{depending on its individual code..}
{do nothing, or..)
{executes the proper PE’s microcode)

{then go to the next array)

{THEN moves the flow of data}

{of each array except the STATUS)
{by updating each PE's Last Out)
{buffers on all sides and bus..)

(if its code 1is not 0}

Last Out[I,J]:=
Out_Regs[I,J];
SysPtr:=Next;
end;
InvertWindow;

StoreWindow(CurrntPtr” .Number) ;
SelectScreen(2);
ClearScreen;
if CurrntPtr<StatPtr then
begin
SelectWorld(FirstWorld);
UpdateArray(CurrntPtr);
ClearScreen;
end;
with StatPtr” do
begin
RestoreWindow(Number,0,0) ;
SelectWorld(StatusWorld);
SelectWindow(Number) ;
SetColorBlack;
for X:=1 to 2 do with Boxes[X]
do DrawTextW(Xdgt,Ytxt,1,Dgt);
Str(Steps:4,Boxes[1].Dgt);
Str(Times:9:6,Boxes[2].Dgt);
SetColorWhite;
for X:=1 to 2 do with Boxes[X]
do DrawTextW(Xdgt,Ytxt,1,Dgt);
StoreWindow(Number) ;
end;
ClearScreen;
SysPtr:=CurrntPtr”.Next;
SelectWorld(FirstWorld);
while SysPtr<CurrntPtr do
with SysPtr” do begin
if NumBer<>MaxWindowsGlb
then UpdateArray(SysPtr);
SysPtr:=Next;
end;
if StatPtr<CurrntPtr then
RestoreWindow
(MaxWindowsGlb,0,0);
CopyScreen;
SelectScreen(l);
RestoreWindow
(CurrntPtr” .Number,0,0) ;
SelectWindow(CurrntPtr” .Number) ;
InvertWindow;

end;

241

{then of course, go to next array)

{updates graphics image of system
{starts here. First, invert current)
{window to normal..)}

{..then stores it.}

{Now, on the RAM screen,)

{clears it..}

{then, if current window is not..}
{the status window, updates it and}

{clears RAM screen again)

{then with the status panel,)

{restores it to the RAM screen..)
{and starts updating the panel..)

{by erasing the old status text)

{and write in new status text}

{and stores the new panel.)

{then updates all other windows}
{to the RAM screen..}

{except the status panel..)

{which, if it’s not the current..)
{window, restores it last to the..)
{RAM screen}

{Now, dump contents of RAM screen to)
{the MAIN screen, and select it..)
{and restore the current window to it}

{then select current window and..}
{hilite it.}

N
e
N

keyboard.
This procedure is called by :
- main block.
This procedure calls :
- procedure LinkIOFlow().
- procedure LinkDataFlow().
- procedure UpdateArray().
- procedures HEcodel(), HEcode2().

- procedures LEcodel(), LEcode2()

% ok ok F % % % % % % % % % % % % F 3k % % *

This procedure simulates a single step of execution of the systolic
system of arrays. It first links all necessary IO chamnels for the
current step to the system of arrays, then it feeds data into input
buffers, gets data from arrays into output files, then for each PE, it
executes its microcodes until the entire system of arrays is traversed.
At last it will move the result of each PE’s micro-execution into its
suitable output register and updates the graphics image of each array
and the status panel. It will keeps executing until a key is hit on the

- procedures NASHcodel(), NASHcode2().

- procedures N2Scode(), S2Ncode(), E2Wcode(), W2Ecode().

% % % ok H K K % o % K % % % % ok F F * F %

1
i
;

procedure MultiStepsExec;

var SysPtr : ArrayPtrtype;
IOPntr : IOPtrtype;
I1,J,X,Y : integer;
Chr : char;

begin

if CurrntPtr<StatPtr then
begin
InvertWindow;
StoreWindow(CurrntPtr” .Number) ;
with StatPtr” do
begin
SelectWindow(Number) ;
InvertWindow;
StoreWindow(Number) ;
end;
end
else StoreWindow(CurrntPtr”.
Number) ;
SelectScreen(2);
repeat

with StatPtr” do
begin
Times:=Times+TimeUnit;

{first, if current window is not}
{the status panel then stores it}
{as a non-current window and}

{then make the status panel current)
{by inverting it.)

{else stores the status panel as)
{current}

{Then select RAM screen)

{REPEAT all following until a key is)
{pressed..}

{update status panel'’s registers)

{increments time..}

243

Steps:=Steps+l; {and step counters)
LinkDataFlow(LinkPtr, Steps) ; {establishes all necessary links and}
LinkIOFlow(IOPtr,Steps); {I0 chammels for this step})
I0Pntr:=I0Ptr;
while IOPntr<>NIL do {starts at begining of I0 linked list)
with IOPntr” do {for each I/0 channel..)
begin
if Active then {if channel is still active, then)
case I0 of {depending on the type of IO chamnel)
INPUT: {for input chammel..)
if EOF(FileVar) then {if all data in file are read}
begin
Close(FileVar); {then closes input file,)
Active :=FALSE; {and marks input chammel as inactive)

for I:=1 to ArraySize {and grounds input buffers.}
do InRegs([I]:=0.0;
end
else begin
for I:=1 to ArraySize (else reads in data on line..)
do read(FileVar,

InRegs[I]);
readln(FileVar); {and go to next line)
end;
OUTPUT: begin {for output channel..)
for I:=1 to {write data to file..)
ArraySize do
write(FileVar,
OutRegs[I]”
:12:2);
writeln(FileVar); (and go to next line)
end;
end;
IOPntr:=NextIO; {then go to next IO channel)
end;
end;
SysPtr:=FixedPtr; {start with the lst array in system..)
while SysPtr<>StatPtr do {as with all arrays except STATUS..)
with SysPtr” do
begin
for X:=1 to ArraySize do {with every single PE of array..)
for Y:=1 to ArraySize do
case PE[X,Y].Code of {depending on its individual code..)
0: ; {do nothing, or..)
1: N2Scode(PE[X,Y]); {executes the proper PE’'s microcode)
2: E2Wcode(PE[X,Y]);
3: S2Ncode(PE[X,Y]);
4: W2Ecode(PE[X,Y]);
5: HEcodel(PE[X,Y]);
6: HEcode2(PE(X,Y]);
7: NASHcodel(PE[X,Y]):
8: NASHcode2(PE[X,Y]);
9: LEcodel(PE[X,Y]);

10: LEcode2(PE[X,Y]);
11: LEcode3(PE[X,Y]);
MaxCodes: LEcode4(PE[X,Y]);
end;
SysPtr:=Next;
end;
SysPtr:=FixedPtr;
while SysPtr<>StatPtr do
with SysPtr” do
begin
for X:=1 to ArraySize do
for Y:=1 to ArraySize do
with PE[X,Y] do
if Code<>0 then
for I:=1 to MaxRegs do
for J:=1 to MaxBus do
Last Out[I,J]:=
Out_Regs[I,J];
SysPtr:=Next;
end;
SysPtr:=FixedPtr" .Next;
ClearScreen;
SelectWorld(FirstWorld);
vhile SysPtr<>StatPtr do
begin
UpdateArray(SysPtr) ;
SysPtr:=SysPtr” .Next;
» end;
UpdateArray(FixedPtr);
with StatPtr” do
begin
RestoreWindow(Number,0,0);
SelectWorld(StatusWorld);
SelectWindow(Number) ;
for X:=1 to 2 do with Boxes[X]
do DrawTextW(Xdgt,Ytxt,1,Dgt);
Str(Steps:4,Boxes[1].Dgt);
Str(Times:9:6,Boxes[2].Dgt);
SetColorBlack;
for X:=1 to 2 do with Boxes[X]
do DrawTextW(Xdgt,Ytxt,1,Dgt);
StoreWindow (Number) ;
SetColorWhite;
end;
CopyScreen;
until keypressed;
read(Kbd, Chr) ;
ClearScreen;
SysPtr:=CurrntPtr”.Next;
while SysPtr<>CurrntPtr do
begin
if SysPtr<StatPtr then

244

{then go to the next array)

{THEN moves the flow of data}

{of each array except the STATUS)
{by updating each PE’'s Last Out}
{buffers on all sides and bus..}

{if its code is not 0}

{then of course, go to next array)

{start with the first array..)
{clears the RAM screen..)

{select the array's world..)

{for all windows that are not status)
{panel or current, updates them to)
{reflect the new values in each}
(PE's registers.}

{Then updates the status panel..}

{and copy RAM to displayed screen.)
{end of REPEAT)

{clears stdin of recent key pressed)
{Now that multiple step execution..)
{is stop, clears the RAM screen to..)
{start re-displaying all system in)
{the same order before execution..}
{starting with restoring all non-)

RestoreWindow(SysPtr".
Number,0,0);
SysPtr:=SysPtr” .Next;
end;
if StatPtr<CurrntPtr then
with StatPtr” do
begin
RestoreWindow(Number,0,0);
SelectWindow(Number) ;
InvertWindow;
StoreWindow(Number) ;
end;
CopyScreen;
SelectScreen(l);
with CurmtPtr” do
begin
RestoreWindow(Number,0,0) ;
SelectWindow(Number) ;
end;
if CurmtPtr<StatPtr then
InvertWindow;

end;

245

{current, non-status windows first..}

{then restore status panel..)

{then updates displayed screen..)
{and at last, select displayed screen)
{to restore current window)

{and invert it if it's not already)
{invert, meaning if the current)
{window is not the status panel)

246

o e e e e e e e e e e e e e

This is the script file for the simulation of Nash’s array solving
example (A.4). It allows SAGS to produces the sequence of snapshots B.1
with the data and control files below.

Remove all comments before using them with SAGS.

* %k % % % %
* % % % %

Yk dnknnkoieinkaiokiniokaiciickiekininininininininiairiniaiaidciiaiainikninkinioicirin i R R R

ARRAYSIZE :
3.
SYSTEMSPECS :
11121129,
Pecodes : 7 8 8
0O 7 8
0 0 7
2 0237 129 ,
Pecodes : 8 8 8
8 8 8
8 8 8 ;
3422129,
Pecodes : 0 0O 1
011
11 1;
4 4 2 37 29 ,
Pecodes : 0 0 1
011
11 1;
53 2 37 229 ,
Pecodes : 1 1 1
1 10
1 0 0.
INFILES :
triang34 3111 ,
trtag3 3121,
square34 4 11 4
sqtag3 412 4 .
OUTFILES :
result 531 14
SETUP :
1
NorthInput : 3311 ;
2

NorthInput : 4 311,
WestInput : 1211 ;

5

NorthInput : 2 311 .

247

R s oy e e e e e e e e e e e

Infile triang34.
Contains the input data flow to be fed into the triangular array of the
system.

* % % % ok
%* % ¥ ¥ %

dokkekickdokieiokkokrkkickoickickdokdok kok ke kiokickoick ki ickiokodckaiokiokndok kadadokdoickohokc ko lodniloinindokefokeickdokoinkn ok ke

1.00 2.00 3.00
0.00 4.00 7.00
2.00 1.00 3.00
-1.00 0.00 0.00
0.00 -1.00 0.00
0.00 0.00 -1.00

T ey e e ey Ly e s ey e e ey

Infile square34.
Contains the imput data flow to be fed into the square array of the
system.

% % % % %
X X % X X

X
¥
X
X

5.00 0.00 0.00

9.00 0.00 0.00

7.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00
AR d A AR R H A kA h AR A S H e dde A A deddedededededededededededodededoiededdokke
* *
* Infile trtag3. *
* Contains the control signals necessary for the triangular array of the *
* system. *
* *
R g L

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 1.00

1.00 1.00 0.00

1.00 0.00 0.00

248

Er s T e e e e e e e e e s e e e e e e

*

* ¥k kK X X

* Contains the control signals necessary for the square array of the

* Infile sqtag3.
* system.

0.00
0.00
0.00
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
1.00
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00

0.00
0.00
0.00
1.00
1.00
1.00
1.00
1.00
1.00
0.00
0.00
0.00

249

K Ty e e ey e ey e e e e e e e e e i e e e e e

This is the script file for the simulation of Chuang and He's array
solving example (A.2). It allows SAGS to produces the sequence of
snapshots B.2 with the data and control files below.

Remove all comments before using them with SAGS.

* % & X ¥ %
¥ ¥ ¥ % X X%

B ey ey e e e ey e e e e e e s e e p R e e e e e i e

ARRAYSIZE :
3.

SYSTEMSPECS :
11122121,
Pecodes :

o v
v OV O

202 38 12
Pecodes :

AR OOoOWwm

AN O O
N OV O

3422221,
Pecodes :

HoOoOo
=R O
e

4 4 2 38 21 ,
Pecodes :

o
=

532 38 22
Pecodes :

HFEHERERRPRFEOO

N
o

INFILES :
triang32
trtag3 3
square32
sqtag3 4
OUTFILES :

result 531 14 .
SETUP :

1

NorthInput : 3311 ;
2

NorthInput : 4 311,
WestInput : 1 211 ;
5

NorthInput : 2 311 .

H AP W
NHN
o

J N

250

B T B T s e
* *
* Infile triang32.

* Contains the input data flow to be fed into the T array of the system.
*

Fedirkkdrkkkkiokknickokdnicioiaicickdekeickaioinicianiaiciaickoiainiadeiaicicknininiciniaiaiainiaiaiairioininkioininindelniairinininiokekeioke

* F %

-1.00 5.00 -3.00

3.00 4.00 1.00

6.00 7.00 -2.00

-1.00 2.00 -4.00

-3.00 -4.00 1.00

5.00 -3.00 -2.00
B T S R S R
* *
* Infile square32. *
* Contains the input data flow to be fed into the S array of the system. *
* *

bt e e s e e s e e e e e

-2.00 -7.00 6.00
1.00 3.00 1.00
5.00 9.00 4.00
2.00 1.00 -5.00
2.00 4.00 6.00
-3.00 2.00 9.00

*

* Infile trtag3.
* Contains the control signals necessary for the T array of the system.

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 0.00
1.00 0.00 0.00

251

* k % %

* Contains the control signals necessary for the S array of the system.

* Infile sqtag3.
*

*

[eNoNoNoNoNolcNoRoRol ool
OO OO OO OO0OOOO
OO0 HHMHHANOOOO
[oNeoNeoNoNoNoNoNoloNoN ol =]
COOOOOO0OOO0OOO0
OO0 HmrAA-A~O OO
[eNoNeoNoNoNololoNoloNoN]
COO0OO0OO0OO0OOOOO0O
OO0 HHHAHHAHAHOOO

[\e]
&)
[\S]

This is the script file for the simulation of a double arrays system of
our own design. This system is shown in the sequence of snapshots B.3
solving example (A.3). It uses the data and control files below.
Remove all comments before using them with SAGS.

* %k %k %k % %
* % %k % * *

ARRAYSTZE :
2 .
SYSTEMSPECS :
10119 106 ,
Pecodes : 9 11
12 10 ;
2 02 30 106 ,
Pecodes : 4 4
4 4
30240106 ,
Pecodes : 4 4
4 4
4 0 2 50 106 ,
Pecodes : 4 4
4 4
50119172 ,
Pecodes : 9 11
12 10 ;
6 0230172 ,
Pecodes : 4 4
4 4
70240 172 ,
Pecodes : 4 4

8 0250172 ,
Pecodes : 4

94219 37,
Pecodes : O

10 3 2 19 242
Pecodes : 1
1

O -

INFILES :
data24] 911
controll.24 9
control2.24 5
OUTFILES :
result 10 3 1 28 .
SETUP :

1

WestImput : 4 211 ,
NorthImput : 9311 ;

-
(3 O
=
=

253

2

WestInput ;: 1211 ;
3

WestInput : 2 211 ;
4

WestInput : 3211 ;
5

WestInput : 8§ 211,
NorthInput : 1 3 14 14 ;
6

WestInput : 5211 ;
7

WestInput : 6 2 11 ;
8

WestInput : 7211 ;
10

NorthInput : 5311 .

254

Fdkkdkdeknkokdokokekickokiokckoiodoiaininke ik dokekkndndainkniaioinidakinkdokrickdaiadnknioiniakioinininioir il iniriairinie il otk

*

* X ¥ X X

* Infile data24l.

* Contains the input data flow to be fed into the first array of the

* system.

[oNoNoloRoNoNololoNolooNololooNoloRoNoNel (ol =N =N o] [=] [=]
.I...2/461211005013033597341336827709
[[[) ' ’
[ogoNeoRoNoNoNeNojaoNoNoNolololoNoNooNeoNoNoNoNoNoNolo ol oN oo el
QOO QOO0 OOO0OO0OO0O0OOO0OO0OO0O0OO0OO0O0OO0OO0OO0OO0O0O0OO0O0O0OO0OO
1] 1
1

255

sdckekrkoicioicieicknickednicickdcioiairicirinininiricioicikeiciaickeiniaiciaioiaialninininiinkiriaininiciaininlaiaiainiainioiniaiadaieiaiainkdalelalek

* *
* Infile controll.24. *
* Contains the control signals necessary for the first array of the system. *
* *

Fekdokdokekoiokickicloicioickeioicickickdckickickiciciicknkricioicidoinicinickickriokdckoicicieieickricioinkdoiaiciadoiniciaiaiadoke ik ik

13
12
12
12

8

[eNoNoNeNeNeNoNoNoleoNeNoNeNoNololoNoNoNoNoNeNoNo oo NeNo oo o Nl

OO OO0OO0OO0OOHOODOOOOOHOOOOOOOHH ™OMWM®

256

Kz 2 T Ty e e e e e e e e e e

Infile control2.24,
Contains the control signals necessary for the second array of the
system.

* % %k % %
* % % % %

=
N W

QOO OOHOOOOOOO 0000 oo oM™
COO0OOO0COOO0OOOCOOOO0OOOOO0OO0OO

	A new general purpose systolic array for matrix computations
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1504818133.pdf.YuM1t

