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Mohammad #,ha 

It has been conservatively estimated that 75 percent 

of all scientific applications involve some form of matrix 

computations. In general, matrix computations are very 

expensive in term of processing time. For real time 

operation required by such applications as robotics, signal 

processing and computer graphics animation, the processing 

power of serial computers is simply inadequate. 
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In this thesis, we propose a new systolic architecture 

which is based on the Faddeev's algorithm. Because 

Faddeev's algorithm is inherently general purpose, our 

architecture is able to perform a wide class of matrix 

computations. And since the architecture is systolic based, 

it brings massive parallelism to all of its computations. 

As a result, many matrix operations including addition, 

multiplication, inversion, LU-decomposition, transpose, and 

solutions to linear systems of equations can now be 

performed extremely fast. In addition, our design 

introduces several concepts which are new to systolic 

architectures: 

- It can be re-configured during run time to 

perform different functions with the uses of 

various control signals propagating 

throughout the arrays. 

It allows for maximum overlaps of processing 

between consecutive computations, thereby 

increasing system throughput. 

There have been other architectures proposed for this 

problem. However, a thorough analysis performed in this 

thesis reveals that they suffer from serious drawbacks, 

design inefficiencies or even errors. Thus, they are 

impractical for actual implementation. On the other hand, 

the new architecture is free from all of these weaknesses 
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while offering many important advantages, some of which are 
~ 

listed as follo~f 

It is truly problem size independent, i.e. 

matrices which are arbitrarily large can be 

easily decomposed to be processed by a fixed 

size array. 

- It can solve sparse matrix problems 

efficiently without requiring system re-

configuration. 

- It provides the same level of performance as 

the known architectures using a smaller 

number of cells and arrays. 

- It is fully expansible, i.e. linear 

performance improvement can be achieved by 

simple addition of identical component 

arrays. 

- Because of its simplicity, it can be 

implemented inexpensively and with very 

little effort. 

We also describe in this thesis several extensions to 

Faddeev's algorithm which are ideally suited for problem 

size independent systolic architectures such as ours. These 

extensions~classified as horizontal, vertical, and two-

dimensional~not only increase a system throughput from two 

to four fold but also enhance the inherent programmability 

of Faddeev's algorithm. This allows our architecture to 



perform very complex matrix calculations. 

4 

An example of 

this enhanced programmability for complex matrix calculation 

is presented as well. 
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CHAPTER I 

INTRODUCTION 

As a general class of problems, matrix computations 

are found to be very useful, if not essential, within a 

broad spectrum of scientific applications. However, they 

are generally expensive in terms of storage space and 

processing time. To be sure, numerous algorithms with 

substantially reduced storage requirement have been devised 

for specific matrix computations. Yet, it is with the 

recent abundance of low cost memory that storage demands of 

matrix computations in general cease to be an important 

issue. On the other hand, the need for greater throughput 

rate has become more acute as applications grew in power and 

complexity. Indeed, for real time operation required in 

such applications as robotics, signal processing and 

computer animation, the computing power of serial computers 

proved to be woefully inadequate. Before long, it was 

evident that the only way to meet the ever growing 

computational requirements of many applications is to build 

faster systems. 
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WAYS AND OBSTACLES IN SPEEDING UP DIGITAL SYSTEMS 

Essentially, there are two ways to build faster 

systems. One is to use fast components, the other is to use 

concurrency. 1 Since the technological trend clearly 

indicates that we are reaching the maximum components speed 

potential, any major gain in computational speed must come 

from the concurrent use of many processing elements. 1
•

2
•

3
•

4 

As it is, the architecture of conventional computers suffers 

from two inherent difficulties: 

(1) Long communication paths such as buses between 

CPU and its memory substantially slow down the 

transmission of information. Also, the system 

I/O bandwidth provides an absolute upper bound 

limit on the data rate, which acts as a 

bottleneck in limiting the system speed. 4
•

5
•

6
•

7 

{2) The single CPU sequentially fetches and executes 

instructions thereby does not fully exploit its 

hardware resources at all times, providing 

little or no concurrency for speeding up 

processing. 5
•

6
•

7 

Indeed, the above problems are widely acknowledged for 

quite some time. Nevertheless, they remain to be formidable 

obstacles which must be surmounted before a substantial 

speed increase is obtained. Several schemes were proposed 

to address one or both of them while maintaining the same 



degree of generality offered by the von 

architecture. Most widely known among them are: 

- pipelining, 

- memory-caching, 

3 

Neumann 

- replicating CPU's processing units (such as 

adders, multipliers, ALUs), 

- and multiprocessor systems. 4
•

7 

Pipelining, as a form of parallelism, involves the 

application of assembly line techniques to improve the 

performance of an arithmetic or control unit. 7
• 

8
•

9 

Theoretically, maximum utilization of available components 

can be achieved if the pipeline is kept full at all time. 

However, in actual operation this ideal condition is 

impossible to maintain and speed gains occur only in burst 

between pipeline flushes. Al though widely implemented on 

many high-speed systems today, pipelining does not fully 

exploit the parallelism inherent in many applications and 

only constitutes a minor architectural fine tuning of the 

basic von Neumann structure. 7 • 10 

Memory caching is used to reduce the cost of memory 

and alleviate the communication bottleneck at the expense of 

additional system complexities. A memory cache is a small 

but high-speed memory system that tries to capitalize on 

temporal locality, the theory of which basically states: if 

a particular instruction or piece of data is read from 

memory, then the probability of it being used again 



increases. 

instructions 

Thus, after the 

or data brought in 

4 

cache is filled with 

from slower memory, the 

number of subsequent reads by the CPU which can be performed 

at full speed to the cache increases before access to slower 

memory is required. The effectiveness of a cache memory is 

known as the "hit ratio." Given a certain number of 

instructions (or data) that must be fetched, the hit ratio 

is the number that can be accessed from the cache versus how 

many that must be accessed from slower memory. Generally, 

the cache employs the highest-performance 

technology~bipolar; 4 however with the performance of CMOS 

technology steadily bridging the gap and its cost declining, 

the trade-off seems less attractive. Furthermore, while 

caches seem to work well with single processor computers, 

they are difficult to incorporate into multiprocessor 

systems because of the cache coherence problem. Cache 

coherence relates to the integrity of data between various 

caches within a system. Suppose a two processor system is 

tightly coupled through a main memory but each processor has 

its own data cache. A different routine is running on each 

processor and the two tasks communicate through the shared 

memory. If, however, a shared address is present in both 

caches and the individual processors read and write that 

address, then each processor would not have the same piece 

of data in its respective cache. This results in neither 

processor seeing the changes caused by the other. 7 
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Of course there are schemes to remove this problem, 

but they invariably add further complexity to the system. 

Thus, while partially improving the performance of the von 

Neumann architecture, pipelining and caching create other 

problems of their own. 

At the other end, we have systems with replicated 

processing units or multiple processors which incorporate a 

very high degree of parallelism while striving to retain the 

same level of generality available in von Neumann 

architecture; however, run-time considerations such as tasks 

synchronization and memory contention incur rather severe 

system overhead. 7
• 11 • 12 Thus, full utilization of available 

hardware can never be realized. 8 • 12 

Simply stated, the price for generality in highly 

parallel structures is decreased speed, decreased efficiency 

of hardware utilization, and increased software 

requirements. 1 2 During the last decade, there have been 

many highly parallel general-purpose architectures proposed 

or implemented. In general, they required many man-years 

of efforts to design and, because of their complexity, were 

very costly to build. 

Tailored to meet specific application requirements or 

to off-load computations especially taxing to general

purpose computers, 1 special-purpose systems provide a very 

high degree of parallelism with minimum system overhead and 

complexity. They are generally the fastest and most 



efficient in hardware utilization. 12 

6 

However, because of 

their limited applicability, their cost must be low enough 

to justify their selection over a general-purpose approach. 

THE SYSTOLIC ARCHITECTURE CONCEPT 

Because special-purpose systems are seldom produced in 

large quantities, their design cost is a lot higher 

comparing to the parts cost. 1 •
6 This is particularly true 

when special-purpose designs are implemented with VLSI 

technology. Even though VLSI offers a number of major 

benefits~low cost per component, high density, reliability 

and ease of fabrication, 2
•

5
•

6 effective use of the 

technology to achieve massive parallelism requires careful 

consideration. 

Briefly, a highly parallel VLSI structure should 

adhere to the following principles: 1
•

3
•

10
• 

11
•

12
•

13
•

14 

(1) Simplicity and regularity: the design should 

consist of only a few simple types of modules 

which are replicated many times, thus reducing 

design complexity. A simple and regular 

structure is therefore highly cost-effective. 

In addition, such a structure can be easily 

expanded by increasing the number of basic 

modules. This, in turn, leads to linear speed 

improvements. 



( 2) Concurrency: The degree of concurrency in a 

system is largely determined by the underlying 

algorithm. Massive parallelism can be achieved 

if the algorithm is designed to support a high 

degree of pipelining and multiprocessing. 

(3) Communication: Control and communication become 

significant in a parallel computing structure, 

especially with VLSI where routing costs 

dominate the power, time and area required to 

implement 

underlying 

a computation. The design's 

algorithm should therefore employ 

only simple, regular control and communication. 

In a processor array, communications should 

occur only between neighboring processors. 

(4) I/O consideration: Since a special-purpose 

device is typically attached to a host, its 

computational rate should not exceed the host's 

available I/O bandwidth. Therefore, if multiple 

computations are performed per I/O access, 

orders of magnitude improvements on system 

throughput are possible. 

7 

To meet these requirements, Kung and Leiserson in 1977 

introduced the concept of systolic architecture. Originally 

proposed for VLSI implementation of some matrix 

operations, 15 a systolic system consists of an array of 

processing elements (PE's) called cells, each capable of 
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performing some simple operations. These cells communicate 

only to their nearest neighbors, and communication with the 

outside world-i. e. the host-occurs only at the boundary 

cells. 1
•

5
•

6
•

15 Data flow from the host through the array in 

a rhythmic fashion, and computations are synchronized by a 

global clock signal. Each data item once brought out from 

memory is used effectively at each cell while being moved 

from cell to cell along the array. 

Conceptually, computational tasks can be classified 

into two categories-compute-bound computations and I/O

bound computations. In a computation, if the total number 

of operations is larger then the total number of input and 

output elements, then the computation is compute-bound, 

otherwise it is I/O-bound. While speeding up an I/O-bound 

computation must rely on an increase in memory bandwidth, 

the systolic architecture allows a speed-up of a compute

bound computation without increasing the memory bandwidth 

requirement. 1 

Since cells in a systolic array are of only a few 

simple types, cost-effectiveness and ease of VLSI 

implementation are among the many advantages that systolic 

architecture offers. Others include simple and regular 

control and data flow, elimination of global broadcasting 

and modular expansibility. 1 
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SYSTOLIC ARCHITECTURE DESIGN CRITERIA 

Today, the systolic approach is increasingly being 

considered for computational intensive problems and there 

exist many systolic designs for a wide class of compute

bound applications. In several of his papers, 1
•

6 Kung 

suggested a number of systolic design criteria which are 

briefly outlined below. 

(1) The design makes multiple use of each input data 

item. This property allows systolic systems to 

achieve high throughputs with modest I/O 

bandwidths for outside communication. 

(2) The design uses extensive concurrency. The 

underlying algorithm should use as many of the 

available cells as possible at any given time 

during a computation. Even higher concurrency 

is possible if another level of pipelining is 

introduced to operations within the cells 

themselves. 

(3) There are only a few types of simple cells. A 

large number of cells are required if a systolic 

design is to achieve any great performance 

gains. The cells must therefore be simple and 

of only a few types to curtail design and 

implementation costs. However, one should 

remember that there is always a trade-off 

between cell simplicity and flexibility. An 



exact estimate can only be arrived at on a case 

by case basis. 

( 4) Data and control flows are simple and regular. 

Pure systolic systems totally avoid long

distance or irregular data communication wiring. 

This is the principal reason why a systolic 

array is adjustable to various performance 

goals. The only global communicat.ion (besides 

power and ground) is the system clock. 

ORGANIZATION OF THIS THESIS 

10 

Even though the systolic architecture offers many 

advantages, it is not without some drawbacks. One possible 

problem is that if a systolic array is too large, its global 

clock signal could be skewed to the point where two cells at 

its opposite ends could not be synchronized properly. 1 
• 

11 

Another issue is the degree of utility a systolic device can 

support. Proposed as a special-purpose architecture, one 

nonetheless wants a systolic array to be able to perform 

more than one type of computation. These are issues which 

cannot be resolved satisfactorily unless both architectural 

and algorithmic considerations are reviewed carefully. 

The rest of this thesis is divided into four chapters. 

In Chapter II, a brief introduction to Faddeev's algorithm 

is presented; because the main focus of this thesis is in 

its architectural mapping, a more thorough treatment of the 
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algorithm is referred to the original book listed in the 

REFERENCES section. Since matrix triangularization is an 

essential component of Faddeev's algorithm, descriptions of 

two systolic arrays for this matrix operation are also 

included. 

Chapter III contains detailed examinations of two 

systolic implementations of Faddeev's algorithm. Analysis 

of the designs performance and correctness of operation is 

presented. Also, their advantages and weaknesses are 

discussed in this chapter. 

In Chapter IV, a new systolic array implementation of 

Faddeev's algorithm is proposed. Again, a detailed 

description and a performance analysis of the design are 

offered. Necessary comparisons to the previous arrays 

concerning modularity, expansibility, versatility and ease 

of implementation will show it to be vastly superior. 

In Chapter V, three different extensions to Faddeev's 

algorithm are developed. It will be shown that these 

techniques are ideally suited to the new systolic array. 

This leads to a four fold increase in the array throughput 

when matrix operations are to be solved continuously. 

Lastly, concluding remarks are offered at the end of this 

chapter. 

Relevant materials that do not fall within the main 

focus of this thesis but are nonetheless important are 

included in the three appendices A, B and c. For the reader 
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who wish to verify how Faddeev's algorithm solves various 

matrix computations, Appendix A contains examples which 

illustrate different variants of the algorithm. If he 

wishes to further investigate the operation of all 

architectures put forth in this thesis, Appendix B contains 

sequences of snapshots which show these arrays solving the 

examples of Appendix A. Finally, Appendix C contains the 

Pascal source listing of SAGS, a Systolic Arrays Graphical 

simulator which produces those snapshots, and sample script 

files. 



CHAPTER II 

FADDEEV'S ALGORITHM AND MATRIX TRIANGULARIZATION 

SYSTOLIC ARRAYS 

One aspect of systolic arrays that is the focus of 

several recent research efforts is their lack of generality, 

i.e. an array designed for one algorithm generally cannot 

run another. An approach aimed at removing this drawback 

taken by Kung is the use of a programmable systolic 

chip. 16
•

17 While this allows different sequences of 

operations to be performed within the cells of a systolic 

array, it is only a partial solution to the problem since 

the interconnections between neighboring cells are still 

unalterable. To remove this inflexibility, Snyder proposed 

a programmable switch lattice structure that gives an array 

processor re-configurable interconnections between its 

PEs; 1 3 however, the added complexity of such a network is 

beyond the current integration technology for large array 

sizes. 

Another less drastic approach is to find algorithms 

and their array implementations which are general-purpose 

within a class of problems. This approach generally results 

in simpler processor and/or simpler interconnections, thus 

more array cells can be put into a single chip. 
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Consequently, the clock skew problem of large array sizes 

will be effectively reduced since the number of chips 

required would be smaller. 

FADDEEV'S ALGORITHM 

One general purpose algorithm, useful for a wide class 

of matrix operations and especially suited for systolic 

implementation, is the Faddeev's algorithm18 illustrated by 

the simple case of computing the value of ex + D, given 

AX= B, where A, B, c, and Dare known matrices of order n, 

and X is an unknown matrix. 

The problem can be formulated as 

a a . . . a b b . . . b 
1 1 1 2 ln 1 1 1 2 ln 

a a . . . a b b . . . b 
2 1 2 2 2n 2 1 22 2n . . . . . . . . . . . . 

a a . . . a b b . . . b 
n 1 n2 nn n 1 n2 nn 

( 2. 1) 
-c -c . . . -c d d . . . d 

1 1 1 2 ln 1 1 1 2 ln 

-c -c . . . -c d d . . . d 
2 1 2 2 2n 2 1 22 2n . . . . . . . . . . . . . . 

-c -c . . . -c I d d . . . d 
n 1 n2 nn n 1 n2 nn 

or, in abbreviated form 

* D 
(2.2) 
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If by some means a suitable linear combination of the 

rows of A and B is found and added to the rows of -c and D 

as follow 

A B 

-C+WA D+WB 

where W specifies the appropriate linear combination such 

that only zeroes appear in the lower left hand quadrant, 

then the lower right hand quadrant will become matrix 

E = ex + D. This is because annihilating -c requires 

W = CA- 1 so that D + WB = D + CA- 1 B, and since AX= B, 

D + WB = D + ex. The elegance and simplicity of the 

algorithm is apparent when one notes that to carry it out, 

it is only necessary to annul the lower left hand quadrant 

by applying a suitable matrix triangularization procedure to 
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the left side of (2.2) while extending the operation to its 

right side. We will then have from ( 2 .1) 

a' k > a ck> . . . . a ck> b' k) b' k) . . . b' k) 
1 1 1 2 ln 1 1 1 2 ln 

0 a ck> . . . . a ck> b' k) b' k) . . . b' k) 

22 2n 2 1 2 2 2n 

0 0 
( k ) a ck> b' k) b' k) b' k) a . . . . . 
3 3 3n 3 1 3 2 3n 

. . . . . . . . . . . . . . . . . 
0 0 . . . 0 a' k > b' k) b' k) . . . b' k) 

nn n 1 n2 nn 

-
0 0 . . . . . 0 e e . . . e 

1 1 1 2 ln 

0 0 . . . . . 0 e e . . . e 
2 1 22 2n 

. . . . . . . • . . . . . . 
0 0 . . . . . 0 I e e . . . e 

n 1 n2 nn 

or, in short 

A' k) I B' k) 

0 I E 

where A' k > is an upper triangular matrix and B' k > is B 

modified k times by the procedure. Often used in solving 

linear systems, Gaussian elimination is one of the better 

known triangularization methods available to perform the 

Faddeev's algorithm. Since the usual backsubstitution is 

not needed here, considerable savings in computation and 

storage are obtained. 

With Faddeev's algorithm, a variety of matrix 

operations can be performed by selective entries in the four 

quadrants. For example, when D = O, C = I where I is the 
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identity matrix, and B is a column vector, E becomes X, the 

solution to the linear system AX = B. Some other matrix 

operations possible with Faddeev's algorithm are shown in 

Figure 1 below. The reader is referred to Appendix A for a 

detailed treatment of Gaussian elimination and the solutions 

to a sample linear systems using Faddeev's algorithm. 

* => CA- 1 B+D * => A- 1 B 
D 0 

* => CB * => A-1 

0 0 

* => CB+D 
D 

Figure 1. Some matrix operations possible 
with Faddeev's Algorithm. 

SYSTOLIC ARRAYS FOR MATRIX TRIANGULARIZATION 

Since the underlying procedure to carry out Faddeev's 

algorithm is matrix triangularization, any systolic 

implementation of the algorithm should be based on a 

structure which can perform triangularization efficiently. 

Developed by Gentleman and Kung as a common platform for two 

different triangularization methods, the triangular 

systolic array of Figure 2 can execute both Gaussian 

elimination with neighbor pivoting or orthogonal 

triangularization. 19
•

20 The array consists of two types of 

cells: the boundary cells (represented by circles) and the 
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Fiqure 2. Triangular systolic array for matrix 
triangularization. 

18 

internal cells (represented by squares). These cells are 

locally interconnected into a triangular mesh. Each cell 

stores a microprogram, enabling it to interact with its 

neighbors in such a way that a triangularization procedure 

can be carried out. Changing the microprograms of the cells 

will allow the array to execute different procedures. 

In the following discussion, the term data row refers 

to a row of entries of matrix X, whereas the term array row 

means a row of cells of the array. The triangularization of 

matrix X by the array is as follow. Initially, all cells 

contain only zeroes. As each data row i enters the array 

via the top boundary, its entries are stored in the cells on 

the it h array row. Before the data row i reaches its 
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respective array row however, its entries are modified by 

cells of previous array rows such that the first i - 1 

entries are discarded~i.e. became zeroes. The modification 

of an incoming data row is initiated by a boundary cell. 

This cell generates modification factors, values resulting 

from computations performed on an incoming entry and the 

cell's own stored value. The modification factors are then 

sent rightward to meet other entries of the same data row in 

the internal cells. There, they are used to modify the 

entries which are subsequently outputed to the next array 

row. While cells of any given array row are updating a data 

row, they may also update their own currently stored values. 

Note that because of the critical timing required for 

the rightward data stream to reach internal cells at proper 

moments, the input data flow is fed into the array in a 

skewed order. After completion, modified x values left in 

cells constitute elements of a triangularized matrix and can 

then be readily read out, one from each cell. 

Gaussian Elimination With Neighbor Pivoting 

When Gaussian elimination procedure is performed using 

finite-precision arithmetic, as would be the case for 

electronic computing devices, a diagonal element that is 

small compared to the entries below it in the same column 

can lead to substantial roundoff error. Traditionally, 

pivoting strategies such as partial or total pivoting have 

been used to improve its numerical stability. 21 Because of 
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the global communication that may result from pivot 

selection, they are not quite suitable for systolic 

implementation. Thus, to maintain the same degree of 

stability for the triangularization process described above, 

Gentleman and Kung suggest the use of another pivoting 

strategy, called neighbor pivoting. This technique 

introduces a zero to a row by subtracting a multiple of an 

adjacent row from it, interchanging the rows when necessary 

to prevent the multiple from exceeding unity. 19 In 

Appendix A, examples of Faddeev's algorithm using Gaussian 

elimination with neighbor pivoting is shown. 

The triangular array of Figure 2 can perform Gaussian 

elimination with neighbor pivoting using the cells shown in 

Figure 3. As its microcode reveals, the boundary cell 

generates two modification factors: a multiplier M t , as 
OU 

well as a Boolean variable V t , which signals a row 
OU 

interchange when having value one. This occurs at every 

array cycle, the maximum length of time necessary for a cell 

to execute its microprogram once. 

Orthogonal Triangularization 

The orthogonal triangularization procedure involves 

the execution of a series of plane rotations (also known as 

Givens rotations) on the target matrix. They are applied 

initially to the first row and the second row, the first row 

and the third, the first row and the fourth, and so on to 

the last row. At this point, all rows except the first will 



BDUNDARY CELL 1 

If IX.., I ~ IX I then 

x,. 
l 
~~Mout 
~~ Vout 

begin 

Vout ~ I 

Mout ~ If X10 ;': 0 then -XIX'" 

x ~ x .. 
encl 

else 0 

else 

INTERNAL CELL 1 

x., 

l 
M., ~ rFvil ~ Mout = M,n 
v., ~~~ vout = v .. 

l 
Xout 

vout ~ 0 

Mout ~ -X., IX 

If V.n then 

begin 

Xout ~ X + M., ,. X., 

x ~ x,. 
end 

else 

Xout ~ X1n + M10 "' X 

Fiaure 3. Microcode specifications of boundary 
cell and internal cell for Gaussian elimination 
with neighbor pivoting. 
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have zero entries on their first column. Next, the above 

process is repeated starting with the second row, then again 

with the third row, and so on until zeroes are introduced to 

all columns such that the resultant matrix becomes upper 

triangular, after which the triangularization procedure is 

completed. In Appendix A, the reader will find a more 

detailed description of Givens rotations along with examples 

of Faddeev's algorithm illustrating their uses. 

The systolic array of Figure 2 can perform orthogonal 

triangularization using the cells specified in Figure 4. 

While this method yields better numerical accuracy than that 

of the previous section, 22 notice the added complexity 
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necessary for boundary cells because of the square roots. 

Since all cells in the systolic array must operate at the 

same throughput rate, the boundary cells could form a 

bottleneck on the overall system performance. 20 

BOUNDARY CELL • 

X1n 

1 
~~ Cout 
~~ Sout 

11-ITERl•JAL CELL I 

x,n 

1 
C"' ----+ rr=)(il ~ C out a C In 

s," ~~~ sout & sin 

1 
Xout 

If X., = 0 then 

beg;n 

else 

Cout ~ I 

Sout ~ 0 

end 

begin 

Cout f--- X 1/x2 + xz In 

sout ~ x,n /~~ 
x f--- /x2 + x2 In 

end 

xout f--- -s,n x + cln x,,, 
x f--- con x + son x,0 

Figure 4. Microcode specifications of boundary 
cell and internal cell for orthogonal 
triangularization. 



CHAPTER III 

SYSTOLIC IMPLEMENTATIONS OF FADDEEV'S ALGORITHM 

In this chapter, we will look at two systolic 

implementations of Faddeev's algorithm, originated from 

different authors. Their basic arrays are remarkably 

similar in most aspects such as interconnection topology, 

cells layout, I/O requirements and general algorithm 

mapping. This is not surprising since both are based on the 

same triangular array we've just examined in the previous 

chapter. However, they differ in the triangularization 

methods used to implement Faddeev's algorithm, which lead to 

dissimilar cells' control codes and numbers of pin-out. We 

can attribute this to the respective authors' design choices 

concerning the trade-offs between algorithm's stability and 

array's throughput rate. 

NASH'S IMPLEMENTATION 

To improve its numerical stability, Nash et. al. 23
•

24 

suggested a modification to Faddeev's algorithm by replacing 

the Gaussian elimination procedure used to triangularize the 

coefficient matrix A of (2.2) with orthogonal 

triangularization. 
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For clarity, it is useful to divide their algorithm 

into a two-phase procedure. In the first phase, A is 

triangularized by a series of Givens rotations 

(simultaneously applied to B): in the second phase, the 

diagonal elements of the resulting triangular matrix are 

used as pivoting elements in the Gaussian elimination 

procedure on c and D, where columns of C will be zeroed out 

and D will become the result. Note that for the Gaussian 

elimination procedure to work properly, it is necessary that 

these pivoting elements be non-zero, hence the requirement 

that A be full rank, i.e. at least one of its square 

submatrices of order n has a non-zero determinant. 

Nash's systolic implementation, shown in Figure 5, 

consists of a triangular array and its right extension, a 

square array. The triangular array, based on Kung's design 

in Figure 2 for orthogonal triangularization, performs 

Givens rotations on A (first phase) and ordinary Gaussian 

elimination on c (second phase). For higher efficiency in 

performing Givens rotations, cells' microcodes of Figure 4 

are slightly modified into those of Figure 6. Furthermore, 

the added processing of ordinary Gaussian elimination 

requires the extra codes of Figure 7. The square array 

simply extends the corresponding processings to B and D and 

thus consists only of square cells. 

The input data flow involves feeding A and B through 

the system from the top with cells executing the 
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Figure 5. Nash's systolic implementation of 
modified Faddeev's algorithm. Note the use of 
delay cells to skew the data flows. 
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microprograms of Figure 6 on each incoming row. This 

corresponds to the first phase of the modified algorithm. 

Notice that the required skewing of the data flow is 

performed by a triangular array of delay cells (represented 

by rectangles) above the system. The second phase is 

accomplished by a similar flow of c and D, only this time 

the cells execute the microprograms of Figure 7 on the data 
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elements and the resulting matrix will appear row by row 

coming out from the bottom of the square array. These 

output rows are straightened back to normal by another 

triangular array of delay cells below the square array. 

With a matching I/O bandwidth, the system will compute 

CA- 1 B + D in 5n - 1 steps and solve a 1 inear system of n 

equations in 4n steps. 

BOUNDARY CELL ' 

Xin 

l 
fB:.. ---? c out 
~---? sout 

INTERNAL CELL 

x,n 

If x., = 0 then 

begin 

Cout = 1 

Socrt = 0 

r = 0 

end 

els" b"gln ~ 
t = "'re + x:;, 

- r/t 
Cou1 - /t 
Sout = X1n 

r = t 

.,nd 

l 
c,n --79---? cout: c,n 
s,n ---?~---? soui; -s,n 

Xout = -s,n r + c,n x., 
r = c,n r + s,n x., 

l 
xout 

DELAY CELL : 

x,n 

l 
[CJ X,n = Xocrt 

l 
xout 

Figure 6. Microcode specifications of boundary 
cell and internal cell used in Nash's array 
during the first phase, i.e. Givens rotations. 
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The input data flow can be contiguous, i.e. matrices A 

and B and then c and D can enter the array without any 

interruption in between. Data flows of separate problems to 

be solved by the array can also be fed continuously into the 

array. For this to be possible, additional control 

capabilities are necessary to switch the cells from one set 

of codes to another at the proper time. Slight modification 

of the microprograms will also be required. 

Although Nash's modified Faddeev's algorithm is 

mathematically sound, its systolic implementation, 

unfortunately, contains some serious deficiencies. For 

instance, it is possible for the array to produce erroneous 

results, as illustrated by the following example. Suppose 
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we have a linear system AX = B of order n = 3 where X is an 

unknown matrix, and one or more entries in column 1 of 

matrix A are zeroes, in this case, a 21 : 

A= [ 
1 2 3 ] 
0 4 7 
2 1 3 

B = [ n (3 .1) 

Since the determinant of A, ~(A) = 9 is non-zero, A is 

therefore full rank, thus guaranteeing that a solution to 

the system exists and that it is unique with x
1 

= 1. 33, 

x
2 

= -0.67 and x
3 

= 1.67. However, when A is fed into the 

array of Figure 5, because a
21 

= o, during the second step 

the boundary cell of row 1 column 1 will clear its r 

register, previously storing a 11 = 1. This effectively 

transforms A into another matrix, say E, whose entries are 

identical to A's except for e
11

, which is zero, and all 

further processings will be on the resulting linear system 

E = [ 
0 2 3 ] 
0 4 7 
2 1 3 

B = [ n (3.2) 

In this case, since ~ (E) = 4 is non-zero, E is also 

full rank and therefore the procedure is completed 

successfully, but with x 1 = 3, x
2 

= 4 and x
3 

= -1 which is 

the solution to (3.2) instead of (3.1). 
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The cause of the above error can be traced to a bug in 

the microprogram of the boundary cell. As Figure 6 reveals, 

this microprogram has the line of code 

r = 0 

which always clears the content of register r whenever 

xi n = 0. In fact, if at any time during processing the 

boundary cell of a row i receives a zero-valued xin from an 

internal cell of row i - 1, erroneous result will appear at 

the end of processing. Thus, to correct the problem, this 

line should be removed. 

For the purpose of verification, the reader is 

referred to Appendix A where correct solutions to examples 

( 3. 1) and ( 3. 2) are arrived at manually using Faddeev' s 

algorithm with Givens rotations. Furthermore, he is 

encouraged to examine the series of snapshots included in 

Appendix B which shows the graphics simulation of Nash's 

array computing (3 .1). These pictures illustrate clearly 

the sequence of events leading up to the erroneous results. 

Implementation errors aside, a drawback of Givens 

transform is the square root needed to compute the values of 

sine and cosine for each rotation. Execution time of this 

operation can easily be ten times that of a multiplication 

or division. Since timing is critical for proper 

synchronization of data flow in a systolic array, it is 

necessary to slow down the entire array correspondingly. 

Thus the circular cells represent a bottleneck in the 
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system. Of course a hardware implementation of the square 

root is possible, however, we have to bear in mind the cost 

of added cell's complexity. 

Another drawback of this implementation is the large 

pin counts for individual cells because of the need to 

transmit simultaneously the sine and cosine values to 

neighboring PEs. Not counting clock and control signals, 

the boundary cell will require one input and two output data 

buses and the 'internal cell will require three input and 

three output data buses. For n-bit operands, 3n and 6n I/O 

pins are needed for the boundary cell and the internal cell, 

respectively. This translates to a large chip area for each 

cell. Bus sharing or multiplexing schemes to reduce I/O 

lines are possible, but they would increase the processing 

time and consequently, reduce the throughput rate. 

CHUANG AND HE'S IMPLEMENTATION 

Another systolic 

algorithm, proposed by 

implementation 

Chuang and He, 25 

of Faddeev' s 

significantly 

improves upon the previous array. As shown in Figure 8, 

many similarities exist between the two arrays' design. To 

compute CA- 1 B + D from (2.2), both systems use a triangular 

array for the triangularization of A and the annulment of C, 

and a square array for extending the corresponding 

processing to B and D. The input data flow to both systems 

are similarly organized and skewed, and pipelined through 
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each system in a similar fashion. For the processing of the 

lower half of the input data flow (i.e. matrices c and D), 

both employ ordinary Gaussian elimination. 

Second Phnse 
(without pivoting) 
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(with pivoting) 
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Figure 8. Chuang and He's systolic 
implementation of Faddeev's algorithm. The 
triangularization method used here is Gaussian 
elimination with neighbor pivoting. 
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However, Chuang and He's system processes the upper 

half of the input data flow (i.e. matrices A and B) using 

Gaussian elimination with neighbor pivoting instead of the 

Givens transform. 19 Hence, while numerical accuracy is 

somewhat inferior, this implementation is less expensive in 

terms of processing time and hardware complexities. Because 

the square root operation is not used, the array avoids the 

bottleneck problem created by the boundary cells of the 

Nash's array. And since the rightward data flow essentially 

consists of only one operand, Mou t 1 the pin counts of 

boundary cell and internal cell are correspondingly reduced 

to 3n and 4n, respectively. 

Since it is obvious that different phases of 

processing are required for the upper half and the lower 

half of the data flow, two separate sets of microprograms 

for boundary cells and internal cells are needed, as shown 

in Figure 9 and 10. The first set, the pivoting functions, 

performs Gaussian elimination with neighbor pivoting on A 

and B, while the second set, the non-pivoting functions, 

performs regular Gaussian elimination on C and D and is 

essentially the same as the functions of Nash cells in 

Figure 7. 

As the data flow is pipelined through the array, each 

boundary cell stores an input data element and sends a 

multiplier M
0 

u t rightwards to modify the input data that 

enter the internal cells of the same row. Along with each 
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of cells 
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M t it generates a one-bit boolean value V t to signal 
0 u 0 u 

whether pivoting is needed. Each internal cell stores a 

data value arriving from the top and passes downward all the 

following data after modification. M t and V t remain 
OU OU 

unchanged as they travel rightwards through the array. For 

an input column of length and width 2n data elements, the 

output will be a matrix of order n emerging from the bottom 

of square array. It can be seen that when the system 

matches the I/O bandwidth, Sn - 1 steps are required to 

obtain CA- 1 B + D and 4n steps are needed to solve a linear 

system of n equations. 
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Like in the Nash's implementation, the input data flow 

of this array can be continuous if additional control 

capabilities are used to individually switch each cell from 

pivoting to non-pivoting mode as required. As published, no 

technique was mentioned by the authors of both 

implementations to perform this switching; however, we can 

think of at least two different techniques to do this. One 

is to have the host or a dedicated controller generate the 

controls necessary for each individual cell, thus requiring 

a complex cell addressing scheme. Another is to tag control 

bits to input data elements which will then carry the 

control information with them throughout the array. This 

method assumes that the host, while generating the input 

data, will add the necessary control information to it. Its 
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down side is that it will force an enlargement of the I/O 

bandwidth between the host and the array. In the next 

chapter, it will be shown that a combination of the above 

mentioned techniques will be used in our design. Thus, 

while having the advantages of both, it will avoid some of 

their inefficiencies. 

Input Decomposition 

Often, problems in real-world applications are larger 

in size than the available I/O bandwidth between the host 

and the array. When this is the case, increasing the 

array's size or speed does not bring about an increase in 

throughput since the limiting factor is the I/O bandwidth 

itself. One solution is to decompose the problems into 

smaller sub-problems, which can then be stored in the host 

and later processed in the array one at a time. In general, 

the tasks of decomposition and post-processing are complex 

and time consuming: passing intermediate results back and 

forth between the host and the array reduces the throughput 

that the I/O bandwidth can support. Furthermore, the array 

throughput also suffers because of the pipeline flush 

brought about by the interrupted data flow. 

To avoid these problems, Chuang and He 

structuring the array as a feedback array system. 

propose 

The idea 

is that the system simulates the operation of an arbitrarily 

large array by using the small arrays over and over, with 

the output of the small arrays fed back to be processed with 
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other input data at the proper times. To match the input 

data flow with the I/O bandwidth, it is necessary that the 

data flow be decomposed. For an I/O width of w, it is 

suggested that the data flow be cut into strips of width w 

parallel to the direction of the data flow, or bands of 

width w vertical to the data flow. These strips or bands 

are further cut into blocks of length w. A problem of size 

2n x 2n where n is m times w will yield 2m x 2m blocks. 

Depending on the order in which these blocks are fed into 

the array, we have parallel, vertical or 

decomposition as shown in Figure 11. 
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Figure 11. Three ways to decompose the input 
data flow. (a) Parallel decomposition. (b) 
Vertical decomposition. (c) Hybrid 
decomposition. 
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In this figure, the series of vertical numbers 

represent the order of the steps in which the strips or 

bands are fed into an array. Note that in the parallel 

decomposition (Figure lla), the end of the first strip 

overlaps with the beginning of the second strip, i.e. the 

last data item of the first strip enters the array at the 

same time (step number 9) as the first data item of the 

second strip. The bands 

(Figure llb) are similarly 

of the vertical decomposition 

overlapped, as with the band 

segments and the strips of the hybrid decomposition 

(Figure llc). All this overlapping ensures that the input 

data flow to the array is continuous. 

Feedback Systems for Parallel Decomposition 

Suppose we want to compute CA- 1 B + D for matrices of 

size n using the full size array of Figure 12. Again the 

available I/O bandwidth is w wide. We can decompose the 

2n x 2n input data flow into 2m strips, each w wide as in 

Figure lla, numbered from V
1 

to V2 m. For m = 4, the full 

size array of Figure 12 can be thought as consisting of 26 

subarrays, with each subarray of type T or S and of size w. 

Under the given I/O constraint, feeding the strips one after 

another continuously into this array will not work since the 

rightward data stream generated by a T subarray from one 

strip will not meet the following strips at a proper time. 
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Fiaure 12. Systolic system with 26 subarrays of 
types T and S, each of width w. The available 
I/O bandwidth is also w. 

On the other hand, the feedback array system of 

Figure 13 will process the same data flow correctly under 

the same I/O constraint. This feedback array system 

simulates the large array of Figure 12 by using its 

component arrays over and over again as follows. Initially, 

as V
1 

is fed into the T array, it generates a horizontal 

data stream which is then stored into the memory buffer Bl. 

The content of this buffer is recycled into arrays S
2

, S
3

, 

S
4 

and S
5 

for the processing of strips V
2 

, V
3 

, V
4 

and V
5 

respectively as they arrive. When the intermediate result 

from strip V
2 

comes out of S
2 

, it too goes into the T array 

to produce another stream of horizontal data which is then 

stored into buffer B2. Again, the content of B2 is fed back 

into arrays S2 , S3 and S4 to process the intermediate 

results of V3 , V4 , and V
5 

coming out of S
3

, S
4 

and S
5 
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respectively, and so on. To properly synchronize the 

horizontal data streams, the buffers Bl, B2, B3 and B4 must 

be of length 2n, 2n - w, 2n - 2w and 2n - 3w respectively. 

Note that each successive buffer is shorter by w. This is 

because as a data strip Vi goes through a square array S, it 

is shortened by a w x w block of data, which remains inside 

S. Hence, the T array processing this shortened data strip 



40 

will generate a correspondingly shortened horizontal stream 

of modification factors. 

This feedback array system achieves maximum throughput 

using much less component arrays than the larger array in 

Figure 12. The number of steps for it to compute CA- 1 8 + D 

is 

( ( 2m) ( 2mw) + w - 1) + mw = (3. 3) 

(4m + 1)n + w - 1 = O(mn) 

where O(k) denotes order of k. 

Since this system requires m s arrays and m buffers, 

it is not quite independent of problem size. Because the s 

arrays are identical, eliminating all but one reduces the 

number of component arrays needed and, at the same time, 

yields a design that is problem size independent. Figure 14 

illustrates a one-T one-S feedback array system. The 

feedback scheme is now two-dimensional, with horizontal and 

vertical data streams. The input data flow is similarly fed 

into the system as in the previous system. However, because 

only one S array is available, each data strip V r where 

r = 2, 3, ••. , 2m will be processed by the same S array r - 1 

times. While intermediate results of strip V
2 

will go 

directly into the T array, an additional buffer B is needed 
s 

to store the intermediate results generated from strips V
3

, 

V4 , ••• , and V2 m. The feedback of these intermediate results 

to the S array is inserted in between adjacent strips thus 
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preventing data strips from V
3 

onward to be fed continuously 

into the system. 

The throughput of this system is of course lower. The 

number of steps necessary to complete CA- 1 B +Dis now 

m 

2mw + L (2m - k) (2m - k + l)w + 2w - 1 = 
k= 1 

7 5 
-(m 2n) + -(n) + 2w - 1 = O(m 2n) 
3 3 

V2 ) V3 ) V4 ) V5 ) V6 ) V7 ) V8 

vl 

S2 
E 4 ) E3 ) E2 ) El 

Buffer for 
lnterriecilo. te results 

r== I 1 ~I Bs: C2n - w) x w I 

MeMory Buffers 

J ,_________.., ,___ ___ __,... Bl1 w x <2n) 

B2: w x (2n - w) 

B31 w x <2n - 2w) 

.___ __ B4: w x <2n - 3w) 

Figure 14. Two-dimensional feedback system with 
one s and one T subarrays. This system is 
problem size independent. 

(3.4) 
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Feedback Systems for Vertical Decomposition 

In Figure 15 below, Chuang and He illustrated how an 

array wider than available I/O bandwidth can solve a 

matching large problem when the input data flow is 

decomposed vertically like in Figure llb. Again suppose the 

I/O bus is w wide and the array is 2n = 2mw wide. 

Essentially the same system as that of Figure 12, this array 

system has in addition a 2m-way demultiplexer on the input 

side and an m-way multiplexer on the output side. The input 

data flow, consisting of 2m bands of 2m blocks each, is fed 

Host 

Figure 15. Array system for vertical 
decomposition of input data flow. With I/O 
bandwidth w, full utilization of available cells 
is not possible. 
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into the array one band after another continuously. The 

demultiplexer feeds the blocks of each band to the subarrays 

on the first row of the system one at a time from left to 

right. Since all the blocks are skewed, each overlapped 

with its left and right neighbors and the whole band is 

contiguous as it enters the system. 

For this array, the total number of steps to complete 

the process is 

(c2m) (2mw) + w - 1) + mw = 

(4m + l)n + w - 1 = O(mn) 

which is identical to equation ( 3. 3) of Figure 13. While 

the array of Figure 15 has many more subarrays, its 

processing speed is not higher because maximum usage of all 

cells is not realized due to the I/O bottleneck. 

Furthermore, this array is not problem size independent. 

Al though inefficient in terms of usage of available 

hardware, the array of Figure 15 serves as an example of how 

a vertically decomposed data flow should be processed. A 

more flexible system, shown in Figure 16, is problem size 

independent and delivers the same throughput using a smaller 

number of subarrays. In this system, the 2m-way 

demultiplexer of Figure 15 is reduced into a 2-way 

demultiplexer which is repeated at the input side of every 

row of subarrays. As the bands of the input data flow enter 

the first row of the system continuously, the first block of 

each band is routed into the T array while the rest are fed 
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Figure 16. Problem size independent array 
system for vertical and hybrid decomposition of 
input data flow. Available I/O bandwidth is w. 
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into the s array on the same row. The rightward data stream 

generated by the T array is fed into the s array and 

recycled until all blocks of the same band are processed. 

Because these blocks form a contiguous data stream, no 

buffer is needed to store the M
0 

u t and V t 
OU 

values for 

recycling. On the other hand, X values stored in the s 

array cells need to be saved as shifting into the 

neighboring block begins since they will be used later in 

the processing of the next band of data. To simplify 

control and reduce memory access, they will be stored into 
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the recycling shift registers implemented next to each cell 

as illustrated in Figure 17. 
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Figure 17. Recycling shift registers for the 
temporary storage of the X values. Implemented 
next to each cell, each buffer is p in length. 

outputs from the bottom of an S array, the x out 

values, will be processed in the same way by the T and S 

arrays on the next row. When the problem is larger than the 

system, i.e. 2n > 4w of Figure 16, the outputs of the last 

row's S array will be stored in buffer B to be recycled 
s 

back into the system for further processing. 

Feedback System for Hybrid Decomposition 

Due to the finite capacity p of the recycling shift 

registers of Figure 17, the size of problems that can be 

solved by the feedback system of Figure 16 is limited. A 
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way to circumvent this limitation is to use the hybrid 

decomposition of Figure llc. The input data flow in this 

case is divided into parallel strips of width pw. These 

strips are in turn divided into band segments of width w and 

length pw vertical to the direction of the data flow. 

Segment by segment, the strips enter the system of Figure 16 

one after another continuously as in parallel decomposition. 

Blocks of each segment are processed as in vertical 

decomposition and fill the recycling shift registers of the 

cells with new X values, to be used later with the next 

segment. The rightward stream of modification factors, 

generated by segments of the first strip, is saved to be re

used on corresponding segments of the following strips, 

hence the need for the memory buff er Bt . 

Sparsity in Matrices 

Another important merit of Chuang and He's feedback 

array system is that, as they pointed out, it can skip 

blocks of zeroes in the input data flow, and thus greatly 

reduce the processing time. 

linear system 

As an example, consider the 

AX = B (3.5) 



where A is a lower blocked band matrix of order n, i.e., 

~l 

A= ~1 

~2 

Ap2 
~+l, 2 

~- p+ 1 , m- p+ 1 

~-p+2,m-p+2 

~.m-p+1 ~m 
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and B = [ B1 , B
2 

, • I B ]T 
ID I n = mw, and each Aij or Bi 

with i = 1, 2, ... , m, 1 s j s i, is a w x w submatrix, 

or block. 

The data flow is decomposed parallely into w wide 

strips of w x w blocks as shown in Figure 18. The blank 

blocks are the zero submatrices and the -li,j blocks are the 

v1 v
2 

V
3 

V4 vs V
6 

B (01~ ~. 1 ) 
A11 B1 

A21 A22 B2 

A31 A32 A33 B3 

A42 A43 AH B4 

As3 As4 Ass BS 

A64 A6s A66 B6 
-1 

-1 

-1 

-1 

-1 

-1 

Fiaure 18. Parallel decomposition of a sparse 
matrix problem with m = 6. Note that matrix B 
in this case is the strip Vm+i· 
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diagonal submatrices of the -I matrix. Without loss of 

generality, B is assumed to be an n x w matrix. In this 

example, the bandwidth p of A is three blocks wide. 

To understand how sparse matrices can be exploited to 

yield better throughput, let us analyze what happens when 

the system from Figure 12 process the data flow of 

Figure 18. on its first row, as the 2m blocks of V
1 

are 

processed by the T array, 2m blocks of M t values are 
OU 

generated horizontally to modify data strips on the right. 

Since only p + 1 blocks of V
1 

are non-zero, only p + 1 

blocks of M t values are non-zero. This is because when 
OU 

incoming X. = o, the boundary cells invariably generate in 

M = O. out 
Furthermore, because the internal cells always 

generate XO u t = xi n when Min = 0 I as the data strip vm+ 1 

(containing B matrix) goes through array sm+i on the first 

row, only its corresponding p + 1 blocks are modified, with 

the first zero block below Bm becoming the result X
1

• On 

the other hand, strips V
2 

to Vm emerge from the S arrays of 

that row unmodified but minus their first blocks. This is 

because as they pass through these arrays, all zero entries 

of their leading blocks are retained in the cells' X 

registers, and thus X t = Xi • 
OU n 

The above process is repeated on succeeding rows of 

arrays until all results are computed. Since the S arrays 

of column i (i = 2, ... , m) are not needed to process strip 

Vi, they can be removed from the system and the strip's 
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leading blocks of zeroes can be skipped. Because they do 

not contribute to the modification of data strips on the 

right, the zero blocks above and below the diagonal band of 

-I can also be skipped. 

The architecture that most efficiently process sparse 

matrix problems is shown in Figure 19. This system receives 

the data flow of Figure 18 from the host, where all the zero 

blocks are eliminated except those of the strip Vm+ 
1

• As 

seen from Figure 19, the system uses only one s and one T 

arrays. The single T array is fed with A's non-zero blocks, 

one strip after another continuously. Its horizontal data 

flow, consisting of modification factors M t and V t' is 
0 u 0 u 

0 
A 22 

-1 
B3 

M+l,l 

A 31 
B2 

A 21 
B1 , , , , B <ll B m 

2 3 

A 11 

~ .. ~ s 
~ 

\,/ 

~1 '\,/ I 

'<! 
'-It 

X2 
I 

X1 

Figure 19. Systolic system for the processing 
of sparse matrix problems. Note that this 
design requires an I/O bandwidth of 2w. 
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fed directly into the s array to modify Vm+l. Vm+l iterates 

through the s array p + 1 blocks at a time, each iteration 

is concurrent with a strip of A. During each iteration, the 

leading non-zero block remains in the S array where it is 

used to modify the next p - 1 non-zero blocks, and transform 

the last block (originally a zero block) into a block of 

results. The demultiplexer below the array S routes the 

modified p - 1 non-zero blocks to buffer B and outputs the s 

block of results to the host. As they emerge from B , the s 

modified p - 1 non-zero blocks are then combined with a new 

non-zero block and another zero block from Vm+ 1 to form 

input data for the next iteration. 

For instance, the first iteration sees the T array 

process blocks A11 , A21 , ~ 1 and -lm+l,l of strip V1 at the 

same time the S array process blocks B
1

, B
2

, B
3 

and the 

first zero block of strip Vm+l. This produces: 

- block B
1 

which remains in the s array, 

- blocks B~ 1 > and B; 1 > which are temporarily stored in 

buff er B , 
s 

- and the block of results X
1 

which is outputed. 

During the second iteration, the T array will process 

blocks ~ 2 , ~ 2 , A4 2 and -lm+ 2 • 2 of strip V2 , while the S 

array process blocks B' 1 > 2 , B' 1 > 3 , B4 and the second zero 

block of Vm+l. The entire sequence of processing is 

illustrated by Figure 20. 
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Thus, the total number of steps it would take the 

system to compute AX = B is 

(m(p + 1) 
p-1 

- l k + 3)w - 1 = ( 3. 7) 
k= 1 

1 
n (p + 1) - -(p - l)pw + 3w - 1 

2 
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Note that this throughput rate requires that the 

system process the data strips of A concurrently with the 

data strip of B. Consequently, the total I/O bandwidth 

needed must be 2w wide instead of w. Furthermore, if B has 

more than one strip, the system of Figure 19 must be 

modified. The reader should be aware that the formula (3.7) 

was derived by the author of this thesis after it was found 

that the one given in the original paper was erroneous. 

ASSESSMENT SUMMARY 

As we have examined both systolic implementations of 

Faddeev's algorithm, several points should be noted. First, 

the feedback system of Figure 13 as shown can not process 

problems in which (2.1) is larger than 2n x 2n, where 

n = mw; however, by adding another feedback path from the 

output of its component array S
2 

to the input of the top 

demultiplexer and using external memory for all Bi buffers, 

the system can be made independent of problem size. 

With cells specification of Figures 6 and 7, system 

configurations of Figures 13, 14 and 16 can perform 

Faddeev's algorithm using orthogonal triangularization. 

This means that Nash's implementation of Faddeev's algorithm 

can be configured to have feedback paths which will allow it 

to solve problems larger than the available bandwidth. 

Since the configurations of Figures 13, 14 and 16 

extensively multiplex data flows to and from their component 
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arrays, added control and hardware complexities are 

unavoidable. Furthermore, because the data flows must be 

skewed and overlapped, all multiplexers (and demultiplexers) 

used will need the ability to switch paths sequentially for 

each column of entries. This will require additional 

control for each multiplexer (or demultiplexer) which, in 

turn, adds to the complexity of the systems. 

Lastly, 

vertical or 

al though the feedback array systems for the 

the hybrid decompositions represent an 

interesting approach to solve the size independent problems, 

they require overly complex structures and controls while 

offering no real benefits or throughput improvement over 

their counterpart for parallel decomposition. These systems 

are thus impractical for actual implementation. 



CHAPTER IV 

A NEW SYSTOLIC ARRAY ARCHITECTURE 

In this chapter, we will introduce a new systolic 

implementation of Faddeev' s algorithm which, in its basic 

form, reduces the I/O bandwidth requirement by half and the 

number of cells needed by more than one third. Furthermore, 

it will eliminate some of the drawbacks that exist in both 

of the previously described arrays. 

ARCHITECTURAL DESCRIPTION 

Our design consist of a square 

cells are orthogonally connected 

Figure 21. Data bus interconnections 

array in which the 

as illustrated in 

between cells are 

indicated by arrows. Functionally, there are two types of 

cells. The first type consists of all the diagonal cells 

(denoted by circles) of the array, and the second type of 

all the non-diagonal cells (denoted by squares). 

Depending on the actual processing phase, the array 

functions in one of the two modes: the T (triangular) mode 

or the s (square) mode. Together, these two modes implement 

Faddeev's algorithm to compute CA- 1 B + D from (2.2). 
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systolic implementation of 
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When the array is in T mode, cells of rows i where 

i = 1, 2, .. , wand columns j where j ~ i, form a triangular 

sub-array which, based on Gentlemen and Kung's array of 

Figure 2, performs Gaussian elimination with neighbor 

pivoting on A, and ordinary Gaussian elimination on c. 

During this mode of operation, the circular and square cells 

essentially carry out the same functions specified by 

Figure 3 boundary and internal cells, respectively. 

When in s mode, the entire array is used to process B 

and D. In this mode, every cell of the array acts similarly 

to the internal cell of Figure 3, i.e. circular cells 

functionally become square cells. In order to switch the 

array from one mode to another, it is only necessary to 

change the program of the diagonal cells. This is 

accomplished with cells microprograms listed in Figure 22. 

By alternating between the two operational modes T and 

s, our array essentially simulates the system of Chuang and 

He (the one-T and one-S system in Figure 8) to solve (2.2) 

with a smaller number of cells and half the bandwidth 

requirement. Naturally, the input data flow will have to be 

slightly modified because of the differences in array's 

topology .. 

PEs' Description 

The circular and square cells, as shown in Figure 22, 

have identical I/O and control bandwidth: two n-bits data 

input ports, two n-bits data output ports, four one-bit 
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"~ 
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C3• 

x. 

c1..., 
x ... 
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x t- 0.0 J 

If C3 in = 1 then 
begin 

H_. 

C3,... 

Xout f- X•M .... •XnJ 
Xf-X 1nl 
end 

else x out f-X ... •Mn•X; 

Cl out f- Cl In i 

C2 out f- C2 In i 

C3 out f- C3 1n; 

C4 out f- C4 In i 

,.,,, ,:,~ l <-- fl.I. -,.~ J ,_......, J 

Fiaure 22. Microprogram specifications of 
circular and square cells for the array's 
mode operation. 

the 
dual 
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control input ports and four one-bit control output ports, 

for a total bandwidth of 4n+8. In fact, this number is 

comparable to the actual pin count that Chuang and He's 

internal cell (in Figure 9) would need, since their cell 

does require extra control capabilities to work properly. 
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Although the choice of processors for our cells will 

be implementation dependent, the following observations 

nevertheless can be of support. 

Physically, one type of processor can be used to 

implement both circular and square cells because of the same 

I/O and control bandwidth requirement and similar general 

functionalities. 

Such a processor would have to be on a single chip for 

the array's chip count to be kept at a minimum. Another 

advantage is that functional blocks of the processor can 

work together without the time and pin-out penalty of off

chip communication. 

Internally, the architecture of the processor should 

allow for a significant amount of parallelism, i.e CPU 

functions should be partitioned into units that can operate 

concurrently. To supply data efficiently to these uni ts, 

multiple internal data buses are essential. Additionally, a 

horizontal microinstruction set is mandatory to support such 

a structure; this in turn will dramatically shorten 

microprograms and will enhance performance. 

A large internal storage for microprograms and a 

microsequencer with good branching facility must be provided 

by the processor for adequate cell programmability. Also, 

provision must be made for the transmission of pipelined 

systolic control signals, which are crucial for run time 

operation of .the array. 
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And finally, the processor should have fast, on-chip 

arithmetic and logical capabilities, with a rich set of 

register files for flexibility of operation. 

Because of these atypical requirements, conventional 

microprocessors which are available commercially are not 

quite suitable as PEs in a systolic array. For now, 

dedicated systolic chips are scarce and the few that are 

being offered on the market lack some of the above features. 

However, this situation is expected to change soon as the 

use of systolic architecture will become more widespread. 

Control Signals Interconnections 

As shown in Figure 21, the circular cell relies on 

three external control signals Cl, C2, and C4 for internal 

computation and itself generates signal C3, all of which it 

broadcasts locally to its neighbors for correct operation of 

the entire array. The square cell uses only C3 and C4, and 

passes all control signals it receives to neighboring cells 

unchanged. Cl, C2, C3, and C4 are all one-bit boolean 

values whose functions and interconnection patterns are 

described below. 

Cl controls the behavior of diagonal cells and 

consequently selects the operation mode of the array. When 

Cl is true, the diagonal cells execute the portion of their 

code that enables them to function like Kung's boundary 

cells, thus changing the array into T mode. Otherwise, with 
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Cl false, diagonal cells function like square cells, and the 

array is in s mode. 

Because of the strict timing required, mode switching 

should occur as entries of the first row of B reach each 

cell, i.e. the switching sweeps across the array in skewed 

waves as the transition between c and B flows through the 

cells. This can be accomplished without the need to address 

separate control signals to each individual diagonal cell. 

In fact, Cl needs to be fed only to the top left diagonal 

cell of the array and, with cell interconnections of 

Figure 23, will be pipelined through the array to reach 

every diagonal cell. 

Cl 

t 
Cells used In 

!-bit T Mode c-r= =-===============;iv 
,~o~o o 01: 

', J, 

o,o~o o 
' J, o o,o~o 

' J, 

DD Q,,o~ 
~---,:::::7--------·,~ 
Cells used in 

S Mode 

Figure 23. Dual mode array shown only with the 
interconnection pattern for control signal Cl. 
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As the data flow changes from matrix A to matrix c, T 

mode processing in the array gradually switches from 

Gaussian elimination with pivoting to non-pivoting. This 

event is started with C2, whose value is true for pivoting 

allowed and false for pivoting not allowed. Again, C2 is 

fed only to the top left diagonal cell and propagated 

through the array via the connection patterns shown in 

Figure 24. 

C2 

t 1-l:J;t 

o~ooo 
J, 

oo~oo 
J, 

ooo~o 
J, 

00009 
Figure 24. Dual mode array shown only with the 
interconnection pattern for control signal C2. 

Generated internally by diagonal cells when they are 

in T mode, C3 is the functional equivalent of M t of the 
OU 

boundary cell from Figure 3. It is thus used to direct 

square cells on the same row to pivot incoming data when 

true, or not to pivot when false. Figure 25 shows C3 

connections in the array. 
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CT 

""' ! -70-70-70-70-7 i 
CT 

D 

~ -70-70-70-70-7 ~ 
~ ~ 

~ -70-70-70-70-7 
Figure 25. Dual mode array shown only with the 
interconnection pattern for control signal C3. 
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When switching between the T and S modes of operation, 

it is essential that the X registers in each and every cell 

of the array are cleared to zero before the new data 

elements arrive. If C4 is true, a cell will clear its X 

register prior to receiving X. from its northern neighbor. 
in 

The X register remains unchanged if C4 is false. C4 is 

distributed throughout the array by the interconnections 

illustrated in Figure 26. 

Control Interface With Host 

We have shown how external control signals are 

distributed throughout the array with only simple and 

regular interconnections. The need for complex individual 

cell addressing scheme is thus effectively eliminated while 

accurate timing at cell level is maintained. 

Typically, systolic arrays are attached to a general 

purpose host running UNIX, an operating system favored by 
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C4 t I-bit 

QrQfcjQ 
DODD 

..!- .,!, ..!- J, 

DD OD 
..!- .,!, .,!, J, 

DD DO 
..!- .,!, .,!, .,!, 

Figure 26. Array showing only the 
interconnection pattern of control signal C4. 

the scientific and engineering community. This is because 

UNIX provides a programing support environment that is 

crucial to the development of systolic application software. 

However, the real time response of such host is inadequate 

for the critical control timing of systolic arrays. This is 

due to the software overhead associated with various 

peripherals supported by the operating system. Thus, the 

computational power of a systolic array cannot be fully 

exploited unless effective interface with the host exists. 

In our case, a cost effective approach would be to 

generate and buffer all necessary control signals along with 

data prior to the initialization of a process; if buffer 

storage is sufficiently large, multiple problems can be 

solved by the array in burst before refill is necessary. 

For a small number of arrays, this approach is efficient and 
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rather simple to implement. However, it becomes less 

desirable as the number of arrays increases. 

A more efficient solution requires the use of a 

dedicated controller for array management. Advances in VLSI 

technology today have made the cost of fast and powerful 

conventional microprocessors very affordable. Acting as an 

intelligent interface between a slow host and fast arrays, 

such a device requires minimum supervision from the host 

while is able to control a large number of attached arrays. 

In any case, the sequence of control signals needed by 

the new array to solve (2.2) is simple and straightforward. 

The task of programing the host or the controller to 

generate it is trivial. In the next section, such a 

sequence will be specified with the corresponding input data 

flow. 

DATA FLOW DESCRIPTION 

Again suppose that A, B, C and D of (2.2) are n x n 

matrices and the available bandwidth is w = n • The input 

data flow, of width n and length 4n, will be continuous and 

consists of matrices A, c, B and D, in that order, skewed as 

shown in Figure 21. Note that the control signals necessary 

for each step are displayed alongside the data flow. 

Processing will be as follow. Initially, A enters the 

array followed by C; because C4 is true (for the duration of 

one cycle), all cells will clear their X register of values 
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left from any previous problem. With Cl and C2 both true, 

cells of the upper triangle begin performing Gaussian 

elimination (with neighbor pivoting) to triangularize A as 

its data elements are upon them. As Cl reaches each 

diagonal cell, the array gradually switches to T mode. 

When entry c
11 

of matrix C arrives at the top left 

cell, C2 becomes false which disables neighbor pivoting in 

the diagonal cells. Thus, only the ordinary Gaussian 

elimination is performed to annul c. Throughout this 

period, Cl remains true, hence the array remains in T mode. 

Next, as B reaches the array, C4 goes true again for 

the duration of one cycle (step) , long enough for the top 

left cell to store this value; the signal is then propagated 

to all cells and clears their X registers. At the same 

time, Cl becomes false and remains so until the last row of 

D is in the array. As Cl reaches each diagonal cell, it 

turns it into a square cell and thus gradually changes the 

array to S mode as the data elements of B are pipelined 

through the array. The results, shown in Figure 21, fully 

emerge from the bottom of the array after 6n - 1 steps for 

CA- 1 B + D and Sn steps for the solution to a linear system. 

Storage and Feedback of Modification Factors 

During the processing of matrices A and c, 

modification factors M
0

ut and pivoting control bits C3 are 

generated by diagonal cells based on incoming values X. 
1n 

They are then sent rightwards to the square cells on the 
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same row to modify adjacent X
1

n values. As it reaches the 

edge of the array, this rightward data stream is stored in 

B , a FIFO queue of size w x w shown in Figure 21. 
q 

This 

queue acts as a delay mechanism that will recirculate its 

contents to the left side of the array for the processing of 

B and D as they arrive at the array. 

To reduce demands on available bandwidth between the 

host and the array, B should not be implemented using host 
q 

conventional memory. Instead, the queue should be a 

dedicated buffer made up entirely of shift registers and run 

at the same clock rate as the array. This represents the 

most efficient way to implement the horizontal feedback 

path. 

SOLVING SIZE INDEPENDENT PROBLEMS 

~nother virtue of the array in Figure 21 is that it 

can readily handle problems of arbitrary size without 

requiring any architectural modification. Furthermore, the 

throughput can be improved proportionally by adding any 

number of arrays to an existing system. This gives the 

array a degree of flexibility that makes it truly useful in 

real life implementation: performance is adjustable 

according to cost constraint while versatility is preserved 

regardless of expansion of any size. 

For problems larger than array size, the input data 

flow shown in Figure 21 will be decomposed into smaller 
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strips which are processed continuously by the array, one 

after another. The intermediate results from each strip 

will then be fed back to the array for further processing. 

This vertical feedback and the horizontal feedback of the 

modification factors constitute two dimensional feedback 

paths for the array. 

Input Decomposition and Vertical Feedback Path 

With matrices of size n where n is m times the 

available bandwidth w, ( 2. 2) can be parallely decomposed 

irito 2m strips, each w in width and 2n in length as in 

Figure lla. Each strip in turn consists of 2m w x w blocks 

which are of the same size as the array. 

For w = 2, n = 4 and m = 2, Figure 27 shows an array 

with its input data flow decomposed parallely into four 

strips numbered from V1 to V4 • These strips are processed 

by the array one after another continuously. The procedure 

begins with the array set to T mode as V
1 

arrives. While V
1 

is being processed, a horizontal data stream consisting of 

values M t and signals C3 is generated and moved rightwards 
OU 

into B . Subsequently, the array is switched to s mode for q 

the computation of the remaining strips, V
2 

to V
4

• In this 

mode, the contents of B is recirculated back to the array q 

as vertical data of each strip arrive, thus ensuring proper 

processing. 



cr 

=> 
l"l 

£ 
0 
s.. 

...... 

V3 
r-1 
y : 

V2 c .. I 
I 

r-1 c., c .. I 
y I I 

I c .. c., I 

V1 c.,. I c., c .. I 
I I 

c .. c .. I c .. o .... I 
I I 

c .. c.., I o.., o,. I 

d .. 
d .. 
d., 
du 
b .. 

V4 
r-1 
y 

d .. 
d,. 
d .. 
d., 
b .. 
b,. 

<.-~-7 

d .. 
d., d,. 
d,. d .. 
ci., d,. 
ci,, b .... 
b,. b,.. 
b,. b.,,. 

"' 
2M'w' 

I 

I 
I 

b., b,. v 
b1:1 

b .. b .. 
b., b., 

L ___ j 

bu 

c., CIZ I a. .. o., L ___ J I 
Ca a. ... I a. .. o,. 

I o., a. ... I 0.12 

o,.. o.,.. L ___ J 
o .. 0.12 

Cla I 
I <.-':!!-;:;;.. cu 

.I .I 
-0 >. 

}625:1 ' ' 

I => 
iii Cl 

Bq s.. .... s.. ..... Cl 
3\1 lK ..... cu 
I I - ..... 

.I .I 0 0 ,_ 
I 
I 

v<D , 
4 I d"' .. 

"' r-1 d: d"' 34 y I 
d~ d"' 

v<n 
I .. 

<2M-D\I c1: I d~ d:!' 3 I 
r-1 d~ cl"' I d; b'.! I 

I 
.. 

I I v '+' I cl~ cl~ I 1:i: b"' ' 
vm 

"' \ 

c:! I d~ c1: I b~ 0 \ 

2 I I ' \ cf, c;! I d::' b: I 0 0 ' 
c~ c~ 

I 
b~ b: I 0 

\ 

I I \ 

c~ c~ I b: 0 L ___ J 
\ 

\ 
I \ 

c: a.:: I 0 0 \ 

I ' 
a.: o.~ I 0 
a.~ 0 L ___ J 

1nterMecl10. te results 

0 0 
0 

Figure 27. First iteration in the processing of 
a problem larger than the array size. Note that 
the strips of intermediate results all have 
leading blocks of zeroes. 

68 



69 

As shown in Figure 27, each input strip V
2

, V
3 

, V
4 

generates an output strip v< i > 
2 I 

v< i' 3 I 
v< i' 

4 
of length 

( 2m - 1) w = 6 that is preceded by a block of zeroes as it 

emerges from the array. In Figure 28, these intermediate 

results are stripped of their zero blocks and then fed back 

to the array where the above procedure is repeated. The 

final results, strips E
1 

and E
2

, come out from the bottom of 

the array, each (2m - 2)w = 4 in length and likewise, is 

preceded by a zero block. 

) 
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Figure 29 shows a mapping of input and output data 

flow of each iteration to array execution steps. Notice 

that input data flow of the second iteration is optimized, 

i.e. zero blocks that exist between output strips of the 

first iteration are eliminated. 

In general, a w x w array will solve a problem which 

is decomposed into 2m strips of length 2mw and width w, in m 

iterations. During the ith iteration, where 

i = 1, 2, ... , m, the array eliminates the strip Vi (in T 

mode) and reduces the length of each of the remaining strips 

by w ( in s mode) . This is because each remaining strip 

leaves behind one w x w block of data in the X registers as 

it is being processed by the array, and subsequently emerges 

with a w x w block of zeroes preceding it. These zero 

blocks can be skipped in the next iteration to shorten 

processing time without incurring any error. Final results 

after the mth iteration consists of m strips, each mw in 

length and w in width. 

The number of steps needed for the array of Figure 27 

to compute CA- 1 B +Dis: 

m 
(2w - 1) + I (2m - k + lfw = 

k=l 

7 3 1 
-(m2 n) + -(mn) + -(n) + 2w - 1 = O(m 2 n) 
3 2 6 
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Controls and Horizontal Feedback Path 

In Figure 29, values of Cl, C2, and C4 necessary for 

the above example are illustrated at each step. C3 is not 

shown since it is dependent on input data and generated on 

the fly by the diagonal cells. For each control signal, a 1 

represents the boolean value true and O represents false; 

when a signal remains unchanged from its previous value, a 

dash (-) entry is entered. The pattern is as follow: for 

each iteration, Cl is true during the first strip and false 

throughout the remaining strips. C2 is true only where 

pivoting is allowed, i.e. the portion of the first strip 

which contains data elements of matrix A, and false anywhere 

else. C4 clears the X registers of the array each time a 

new strip arrives, therefore it is true at the first step of 

each strip and false elsewhere. 

In general, an input strip with N blocks of vertical 

data will generate a corresponding N blocks of horizontal 

modification factors pairs (M t and C3); thus, the storage 
OU 

of the horizontal data stream should be N blocks long so 

that timings for horizontal feedback are accurate. Because 

the array itself acts as a w x w block of storage, for each 

ith iteration, the FIFO queue B should be (2m - i)w long. 
q 

With m = 2 and w = 2, Figures 27 and 28 

corresponding length of B for each iteration. 
q 

show the 

The buffer B should have the addressing capability 
q 

such that its length can vary in uni ts of blocks. This 
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permits the array to solve problems of arbitrary size, as 

long as B maximum length is adequate for the largest of 
q 

them. The control for the addressing can be generated by 

the host or the dedicated controller. 

Multiple Arrays Configurations 

Even though both have throughput time O(m 2 n), the 

system of Figure 13 is slightly faster when compared to the 

array from Figure 27. Given a problem, the former will 

solve it with 

7 3 1 
-(m2n) + -(mn) + -(n) + 2w - 1 
3 2 6 

7 5 
- -(m2 n) - -(n) + 2w + 1 = 

3 3 

3 
-(m - l)n 
2 

steps less than the latter. This stems from its use of two 

subarrays, where some overlaps in processing are possible 

when the S array is working on a strip while the T array 

processes intermediate results from the previous strip. 

Likewise, by using multiple arrays, the system of 

Figure 30 gives better throughput than the single array of 

Figure 27 under the same I/O constraint. This is because 

each subarray effectively replaces one iteration, with 

partial results from one subarray immediately processed by 

the next, thereby maximizing concurrency while eliminating 

the corresponding iteration. Such a system will be called 

L-tuple arrays system (L = 2 in Figure 30), or L-subarrays 
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system. In Figure 31, control and timing sequences of 

Figure 30 subarrays are illustrated. Because the input 

strips v1 1
> of the second array are interspersed by blocks 

of zeroes which cannot be removed, buffer B2 is required to 
q 

have the same length as Blq, instead of being one block 

shorter. 

In general, a problem requiring m iterations on a 

single array will need only k = m / L iterations on a system 

of L-tuple arrays, assuming that m is an exact multiple of 

L. After each ith iteration, the length of partial results 

will be (2m - iL) 2 w. Hence, the system will compute 

CA- 1 B + D of such a problem in 

mtL 2 

(L + l)w - 1 + 2 (2m - (k - 1) L) w = 
k= 1 

7 3 1 
-(kmn) + -(mn) + -(nL) + (L + l}w - 1 = O(kmn) 
3 2 6 

( 4 .1) 

steps. The first part of (4 .1) represents the number of 

steps taken for input data of the last iteration to traverse 

the system, and the summation term gives the number of steps 

to feed input data of all iterations into the system. Final 

results in this case always emerge from the bottom of the 

last array of the system. 
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Thus, when m = L (as with the example used in 

Figure 30), CA- 1 B + D is computed in a single pass with 

total processing time equal to 

(4m + l)n + w - 1 = O(mn) 

which is identical to the performances of the systems from 

Figure 13 and 16. However, note that the system of 

Figure 30 is totally independent of problem's size and the 

number of cells used is smaller since the T arrays are 

eliminated. 

When m is not an exact multiple of L, that is when 

mmodL * O, the number of iterations required to complete the 

problem is k = rm;D, with the kth iteration employing only 

the first mmodL subarrays of the system. The total 

processing time will be 

r mt .V 
2 

(m L + l)w - 1 + I (2m - (k - 1) L) w mod 
k= 1 

Again, the summation term represents the time 

necessary to feed input data of k iterations into the 

system. However, since only the first mm 
0 

d L subarrays of 

the system are used during the kth iteration, final results 

will emerge from the bottom of the mmodLth subarray, instead 

of the last subarray. Therefore, the first term of the 

throughput equation reflects the shorter path through which 

data has to traverse during the kth iteration. Figure 32 
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Figure 32. An L-tuple arrays system with a 
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vertical feedback path has a FIFO queue B for 

' ' r temporary storage of intermediate results. 
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shows a multiple arrays system which provides a common data 

bus that delivers final results from any one of its 

subarrays to the host. 

Intermediate Results Storage 

Until now it was assumed that the intermediate 

results, generated in between iterations by all of the 

systems discussed in this chapter, are handled by the host 

and that the blocks of zeroes can be stripped in the host. 

However, the resulting back and forth of data between host 

and system places heavy demands on valuable I/O resources. 
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A more efficient approach, used in the system of Figure 32, 

is to route this vertical feedback into the FIFO queue B . 
r 

Similar in concept to the use of B for the horizontal 
q 

feedback, this queue acts as a buffer storage in which 

intermediate results emerging from the bottom of the system 

are delayed from being fed back to its top until inputs of 

the previous iteration are fully processed. An added 

benefit is that, during processing, the queue can be used to 

eliminate zero blocks generated by temporarily halting the 

pipeline for some corresponding durations. 

B should be (2m - L) 2 w - Lw long, i.e. long enough to 
r 

accommodate partial results of the first iteration of the 

largest problem likely to be solved by the system, minus the 

combined length of all subarrays. And since each iteration 

produces ever shorter output streams, 1 ike B , 
q 

B should 
r 

also be given the addressing capability which allows its 

length to be altered by an external control. This ensures 

that data enters the array continuously for maximum 

throughput. 

PROCESSING OF SPARSE MATRICES 

Another feature which further enhances the versatility 

of our array is that it can compute problems involving 

sparse matrices efficiently by skipping blocks of zeroes, 

similar to the system from Figure 19. Furthermore, because 

the design functions in both triangle and square mode, only 
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one array is needed for problems of such type. While a 

multi-array system like that in Figure 32 is fully capable 

of processing sparse matrices efficiently, the procedure 

involves only the first array; thus, in Figure 33, it was 

reduced to a single array system for the sake of clarity. 

In the following discussion, the example (3.1) will be used, 

with p = 3 and the input data flow decomposed parallely like 

in Figure 18. Because only one array is needed, the 

continuous stream of input data alternates between non-zero 

blocks of strips V1 , V2 , ••• , vm which are processed by the 

array in T mode, and the corresponding blocks of strip Vm+i' 

processed in S mode. 

Figure 33. 
processing. 

0 
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B1 
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Reduced system for sparse matrix 
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Initially, non-zero blocks ~ 1 , ~ 1 , ••• , AP
1 

and block 

-lm+i,i of strip V1 are fed into the array. They in turn 

generate corresponding blocks of M t and C3 which move 
OU 

rightward into buffer Bl . Of length pw, Bl is long enough 
q q 

to provide the required delay so that its contents can be 

used by the array (in S mode) to modify subsequent blocks 

B1 , B2 , ••• , BP and the first zero block below Bm. 

Thereafter, B1 is left stored in the array, whereas B2 , ••• , 

BP emerge from the array as B~ 1 ' , ••• , B~ 1 ', to be stored in 

queue B . Thus, the capacity of B should be (p - l)w to 
r r 

hold these modified B blocks. The zero block, after 

modification, becomes the first block of result X
1 

and is 

sent to the host. 

From V2 to Vm, the computation proceeds similarly with 

blocks Ai, ... , p+ i- 1 • i and -lm+ i. i of strip Vi generating 

their own Mout and C3 values to modify Bi~~~~ ,p+i- 2 , Bp+ i- 1 

and zero block Bm+i" The modified block Bii- 1
> is then left 

in the array; blocks B~ i - 1 > . , 
l.+l, ... ,p+l.-2 8

p+ i - 1 
become blocks 

B~i> . 
l.+l, ... ,p+l.-1 which are then stored in B 

r 
for the 

succeeding strip Vi+ 1 , and the modified Bm+ i emerges from 

the array to become the result Xi. 

The throughput time of this system is 

(m(p + 1) 
p-1 

- l k)2w + w - 1 = 
k=l 

2n(p + 1) - pw(p - 1) + w - 1 
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which nearly doubles the throughput time of the system from 

Figure 19. This is to be expected since the single array 

from Figure 3 3 system is doing the work of two. However, 

such a comparison would be misleading because it does not 

take into account the fact that, for the two subarrays T and 

S of Figure 19 to work concurrently, the total I/O bandwidth 

of that system would have to be 2w. Or to put it in another 

way, with a total I/O bandwidth of w, these two subarrays 

will each have only a bandwidth of w /2. Consequently, a 

problem will have to be decomposed into twice as many input 

data strips with width that are only half as wide. This 

effectively doubles the throughput time of the system such 

that it is actually comparable to that of Figure 33. 

OVERLAPS IN PROCESSING BETWEEN PROBLEMS 

In the simplest term, a systolic architecture can be 

thought of as a pipeline architecture in which each row of 

cells of subarrays in the system represents a stage in the 

pipeline. A pipeline reaches its peak performance when it 

outputs a usable piece of data for each of its cycles. This 

peak performance is attained only after the pipeline is 

completely filled with data, a process termed pipeline fill. 

To maintain its peak performance, the pipeline must be fed 

continuously. 

Similarly, a systolic system can reach its maximum 

throughput rate only after it is completely filled with 
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data. This maximum throughput rate is defined as the rate 

in which the 

system, with 

solution 

minimum 

sets to problems emerge 

times elapse between 

from the 

any two 

consecutive sets. Note that these elapsed times between 

solution sets may be of different lengths since the sizes of 

the problems themselves can vary. To maintain this maximum 

throughput rate, the input data flow must be continuous, 

i.e. problems to be solved must be fed into the system 

without any empty gap in between them. An empty gap in the 

data flow will result in a corresponding length of time 

during which cells are idle, and solutions to problems will 

be that much farther apart. A gap which exceeds the total 

length of the system will cause the system to completely 

empty itself of data, resulting in what is commonly termed a 

pipeline flush. A pipeline flush is expensive because it 

takes a finite amount of time to refill a system. 

To put in another way, the maximum throughput rate of 

a systolic system is achievable and, more important, 

sustainable only if processing overlaps between problems are 

fully exploited. Say that two matrix problems, PP and PN, 

are to be solved in that order by a system of L subarrays. 

For an I/O bandwidth w, PP is decomposed into mp data 

strips. A processing overlap between PP and PN occurs when 

data of the last iteration of PP and data of the first 

iteration of PN are processed by the system at the same 

time. Maximizing this processing overlap can shave off 



substantial amount of computing time from PN. 
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It can be 

seen that the time saved, in number of steps, is calculated 

as the number of subarrays through which data of the last 

iteration of PP must travel, times the size w of these 

subarrays, plus the skew factor w - 1 of the data flow. 

Thus, when mp is an exact multiple of L, the total number of 

cycles necessary to solve PN is reduced by 

(L + l)w - 1 

When mp is not an exact multiple of L, the last 

iteration of PP involved only mp mod L subarrays of the 

system. Therefore, PN is solved with 

(mp modL + l)w - 1 

less cycles. Lastly, if PP is a sparse matrix as described 

in the previous section, the number of cycles reduced from 

the computation of PN will always be 

2w - 1 

This is because sparse matrices are processed only by 

the first array of the system. 



CHAPTER V 

EXTENSIONS TO FADDEEV'S ALGORITHM AND CONCLUSION 

In the previous chapter, the reader has seen the ease 

with which the new systolic array uses massive parallelism 

to solve many types of matrix problems via Faddeev's 

algorithm. The actual size of the array, and therefore its 

throughput, is shown to be restricted only by the available 

bandwidth between the host and the array. Even this 

restriction is effectively circumvented when a number of 

such arrays are combined into a system to give a desired 

level of performance. Such a multiple arrays system reach 

its maximum throughput rate when its pipeline is completely 

filled with data. By ensuring that the input data flow is 

continous, this maximum throughput rate is maintained at all 

times. It would seem then, algorithmically speaking, that 

nothing further can be done to induce more parallelism into 

matrix computations. 

However, that last observation is simply not true. We 

have found that, by extending Faddeev's algorithm, the 

maximum throughput rate of a system can be nearly 

quadrupled. Furthermore, such a tremendous improvement in 

system throughput requires absolutely no architectural 

modification to the system. 



87 

HORIZONTAL EXTENSION TO FADDEEV'S ALGORITHM 

Before illustrating how we extend Faddeev's algorithm, 

let us introduce the concept of compatibility between matrix 

problems. Suppose we have matrices A, B and D of order n, 

upon which we wish to perform the operations A- 1
, A- 1 B and 

A- 1 + D. From Figure 2, we can solve these matrix problems 

with Faddeev's algorithm by formulating them as 

* = A- 1 ~ = A-1B 

~ _: I : = 
( 5. 1) 

A- 1 +D 
0 

( 1 ) ( 2 ) ( 3 ) 

where I is the identity matrix. These constructs reveals 

that they all have identical left halves, i.e. they consist 

of the same matrix A in their top left quadrant and the same 

matrix -I in their bottom left quadrant. When this is the 

case, we say that the problems are horizontally compatible. 

Obviously, solving x horizontally compatible problems 

involves repeating the calculations for the same left side x 

number of times. In the case of (5.1) where x = 3, solving 

(1), (2) and (3) requires repeating the process of 

triangularizing A and annulling -I three times. If by some 

means the redundant iterations of this process are 

eliminated, nearly half of the calculations necessary to 

solve (2) and (3) of (5.1) can be skipped. This would yield 

a large savings in computing time. 
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To accomplish this, we extend Faddeev's algorithm 

horizontally to the right so that (5.1) is reformulated as 

A I I I B I I (5.2) 
-I 

( 1 ) ( 2 ) ( 3 ) 

Grouping (1), (2) and (3) together as in (5.2) allows 

us to triangularize A and annul -I only once, and reuse the 

multipliers generated from that several times on the right. 

The results will appear as 

Ack> I' k > Bek> I' k > 

0 A- 1 A- 1 B A- 1 +D 

( 1 ) ( 2 ) ( 3 ) 

It is easy to see that the horizontal extension to 

Faddeev's algorithm maps particularly well to a system using 

our systolic array design: it requires absolutely no 

architectural nor algorithmic modification, either at the 

system level, subarray level or cell level. When the 

available I/O bandwidth is w, (5.2) is parallely decomposed 

into (x + l)m input strips, each 2mw in length, as shown in 

Figure 34. 
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As before, the L-subarrays system of Figure 32 will 

process this input data flow in k iterations, where the 

value of k depends on m and L. When m is an exact multiple 

of L, we have k = m/L and the system will compute x 

horizontally compatible problems in 

mtL 

(L + 1) w - 1 + I [ (x + 1) m - (k - 1) LJ [2m - (k - 1) LJ w 

k= 1 

(5.3) 

cycles. In the above equation, the first product term of 

the summation represents the number of input strips for each 

iteration, while the second term indicates the strips 

length. The solution to the first problem will come out 

after 

cmtL>-1 

(L + l)w - 1 + I [ex + l)m - (k - l)L] [2m - (k - l)L]w 

k= 1 

2 + (m + L) w 

cycles, with the second line of the equation indicating that 

only part of the kth iteration is needed. Afterward, 

solutions to subsequent (x - 1) problems are outputed one 

for every (m + L)n cycles. In the special case when m = L, 

we have k = 1 and the system will solve the first problem in 

(4m + l)n + w - 1 

cycles. As to subsequent problems, the system will complete 

one every 2mn cycles. The difference between the two 
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throughput equations of the first problem is due to the fact 

that the input data flow for x horizontally compatible 

problems consist of (x - 1) m more strips than that of a 

single problem. This means that during each iteration, the 

system has that many more strips to process. Thus when 

k > 1, the previous iterations will delay the output of 

results whereas with k = 1, those delays are non-existent. 

When m is not an exact multiple of L, the number of 

iterations required for the system to process (5.2) is 

k = rm;fl, with the kth iteration involving only the first 

mmodL subarrays of the system. The total throughput will be 

rm, H 
(m L + l)w - 1 + \ [(x + l)m - (k - l)L] [2m - (k - l)L]w 

mod L 
k= 1 

(5.4) 

with solution to the first problem coming out after 

LID/~ 

(m L + l)w - 1 + \ [(x + l)m - (k - l)L] [2m - (k - l)L]w 
mod L 

k= 1 

2 + (m + m L) w mod 

cycles. Again, the second line of the above equation 

indicates that only part of the last iteration is needed by 

the system to compute the first problem. Afterward, 

solutions to subsequent x - 1 problems will emerge one for 

every (m + mmodL)n cycles. 

------, 
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Since the input data flow of x horizontally compatible 

problems consists of only (x + l)m strips, versus the 2xm 

strips required if they are not compatible, large saving in 

storage space can be gained on the host side. On the other 

hand, the length of the FIFO buff er B 
r 

should be 

( (x + l)m - L) (2m - L)w - Lw since the intermediate results 

after the first iteration have many more strips. Because 

the length of each strip is still 2mw, the capacity of the 

buffers B should remain unchanged. 
q 

To get an idea of how much the system throughput can 

be improved when horizontal extension is applied, suppose 

that we have a system of L = 4 subarrays, with each array of 

size w = 32. On this system, we wish to perform x = 50 

operations with matrices of order n = 128. If these 

operations are not compatible, solving them one at a time 

without processing overlaps will take a total of 110, 350 

steps. With processing overlaps, this number is reduced to 

102,559. However, if the operations are horizontally 

compatible, they can be processed by the system in 52, 383 

steps. The improvement in throughput is 

102,559 
= 1.96, 

52,383 

nearly by a factor of two. Of course, this number can vary 

depending on x. As x gets larger, the improvement factor 

gets closer to two. 
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VERTICAL EXTENSION TO FADDEEV'S ALGORITHM 

Even when a group of matrix problems are not 

horizontally compatible, they may exhibit another type of 

compatibility which can also be exploited to give an 

equivalent speedup in system throughput. To expand on this, 

let's suppose that we have y = 3 matrix operations to 

perform, namely CB, B + D and EB + D where B, c, D and E are 

of order n. Like before, we can express these problems as 

* = CB 
0 * = B+D 

D * = EB+D 
D 

(5.5) 

( 1 ) ( 2 ) ( 3 ) 

Because the left side of problems (1), (2) and (3) of 

(5.5) are not the same, they are not horizontally 

compatible. However, it can be observed that they all have 

the identity matrix I in their top left quadrant and matrix 

B in their top right quadrant. To put it differently, these 

problems all have identical top half. When this is the 

case, we say that the problems are vertically compatible. 
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To avoid repeating the same calculations on the 

identical top sides of vertically compatible problems, we 

extend Faddeev's vertically such that (5.5) becomes 

-~ ( 1 ) 

(5.6) 

-* ( 2 ) 

-E D ( 3 ) 

When y vertically compatible problems are grouped 

together as in ( 5. 6) , the common top side needs to be 

processed only once. This means that after the top left 

quadrant is triangularized and the top right quadrant is 

modified with the generated multipliers, they can be used 

repeatedly to annul the left side of succeeding stages and 

transform their right side into solutions. 

In the case of ( 5. 6) , solving it involves only the 

annulment -c, - I and - E. This is because the identity 

matrix I in the top left quadrant is, by its nature, already 

triangularized; as a consequence, matrix B in the top row 

will remain unmodified. Annulling -c, -I and -E while 

extending the operations to the right will give 

I I B 

0 CB 

0 B+D 

0 EB+D 

( 1 ) 

( 2 ) 

( 3 ) 
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which shows the solutions to (1), (2) and (3) in the right 

quadrants. 

As with horizontal extension, systems using our array 

design can handle vertical extension to Faddeev's algorithm 

without any modification. Shown in Figure 35, the input 
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data flow of y vertically compatible problems consists of 2m 

strips, where each strip is (y + l)m blocks long. The 

L-subarrays system of Figure 32 will process this data flow 

in k iterations. When m is an exact multiple of L, k = m/L 

and the process will be completed in 

mtL 

(L + l)w - 1 + 2 [2m - (k - l)L][(y + l)m - (k - l)L]w 

k= 1 

(5.7) 

cycles. When m is not an exact multiple of L, k = rm/fl and 

the throughput is computed as 

r mt il 
(m L + 1) w - 1 + \ [2m - (k - 1) L] [ (y + 1) m - (k - 1) L] w 

mod L 
k= 1 

(5.8) 

In throughput equations ( 5. 7) and ( 5. 8) , the first 

product term within the summation represents the number of 

input strips for each iteration. The length of each strip, 

on the other hand, is indicated by the second product term. 

Even so, note that (5.7) and (5.8) are identical to (5.3) 

and (5.4), respectively, save for the variables x and y. 

After the kth iteration, the set of y solutions 

emerges in m output strips. As shown in Figure 35, an 

output strip consists of y segments, each of width w and 

length mw. Each segment i = 1, 2, ... , y is part of the 

solution to the ith problem. Because a solution is divided 

into m segments with each segment part of an output strip, 
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the solutions will not be completely out until the last 

strip has emerged. Thus, the number of steps needed for the 

first solution to come out is computed by subtracting 

(y - l)mw from (5.7) or (5.8). Each following solutions 

takes another mw steps. 

Again, storage space needed on the host side is 

greatly reduced since the input data flow of y vertically 

compatible problems is only 2(y + l)m2 w long, as opposed to 

4ym 2 w were they not compatible. However, the length of the 

FIFO buffer B should be ( (y + l)m - l)w to accommodate 
q 

longer strips of modification factors. In addition, the 

length of B should be (2m - L) ((x + l)m - L)w - Lw to 
r 

adequately hold intermediate results with longer strips. 

TWO-DIMENSIONAL EXTENSION TO FADDEEV'S ALGORITHM 

While using either one of the previously described 

extensions yields substantial reduction in computing time, 

still greater improvement in throughput is possible when 

both techniques are combined into a two-dimensional 

extension to Faddeev's algorithm. To illustrate, consider 

the matrix operations AB, AE + F, B + D and E + G. As 

before, A, B, D, E, F and G are all matrices of order n. 

Formulating the operations as follow: 



98 

*-AB *=AE+F 
(1) (2) (5.9) 

* = Bt-D * = E+G 

(3) (4) 

reveals that ( 1) and ( 2) are horizontally compatible, as 

with (3) and (4). Furthermore, (5.9) also shows that (1) 

and (3) are vertically compatible, as with (2) and (4). 

Thus, using horizontal extension, (5.9) becomes 

I I B I E 

-A 

( 1 ) ( 2 ) (5.10) 

I I B I E 

-I 

( 3 ) ( 4 ) 

Since both constructs of ( 5. 10) have identical top 

halves, vertical extension can also be used to further 

obtain 

I B E 

-A 0 F ( 1 ) and ( 2 ) ( 5 .11) 

-I D G ( 3 ) and ( 4 ) 

This results in a two-dimensional extension to 

Faddeev's algorithm. Annulling -A and -I in (5.11) and 
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extending the operations to its right prompt the solutions 

to (1), (2), (3) and (4) to appear as 

I B E 

0 AB AE+F ( 1 ) a n d ( 2 ) 

0 B+D E+G C 3 ) a n d C 4 ) 

As (5.11) reveals, the two-dimensional extension to 

Faddeev's algorithm allows a compatible matrix problem to 

share three of its quadrants with others, instead of two. 

This translates into the elimination of a larger number of 

calculations per problem. 

The input data flow of (5.11) for the L-subarrays 

system is shown in Figure 36. When the number of problems 

is x across by y long, the input data flow is decomposed 

into (x + l)m parallel strips, each (y + l)mw in length. If 

m is an exact multiple of L, the total number of steps for 

the L-subarrays system of Figure 32 to process this data 

flow is 

mtL 

(L + l)w - 1 + I [ex + l)m - (k - l)LJ 

k= 1 

[(y + l)m - (k - l)L]w (5.12) 
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If m is not an exact multiple of L, then the number of 

steps needed is computed as 

r mt fl 
(m L + l)w - 1 + \ [ex + l)m - (k - l)L] 

mod L 
k- 1 

[(y + l)m - (k - l)L]w (5.13) 

Subtracting [ (x - 1) (ym + L) + (y - 1) ]mw from (5.12) 

or [(x - l)(ym + mmodL) + (y - l)]mw from (5.13) will, in 

both cases, give the number of steps elapsed before the 

solution to the first problem is completely out. The 

interval between solutions to problems on the same column is 

mw steps. Between problems on the same row, this interval 

is computed as (ym + L)mw when mmodL = O, or (ym + mmodL)mw 

when mm 
0 

d L '¢ 0 • 

Because of the increases in number of strips and in 

their length, the capacity of buffers B and B should be q r 

expanded as previously indicated. 

To see how much of an improvement over single 

dimension extensions this technique is capable of, let us 

again assume that we have a system of L = 4 subarrays, with 

each array of size w = 32. With this system, 10000 

operations are to be performed on a number of matrices of 

order n = 128. Solving the problems one at a time without 

processing overlaps will take a total of 22,070,000 steps. 

Maximizing processing overlaps will reduce this number to 

20,480,159. If single dimension extensions can be used, the 
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problems can be solved in 10,241,183 steps. The improvement 

in throughput is 

20,480,159 
= 2.0 

10,241,183 

However, if compatibilities between these problems are 

exploited such that the two-dimensional extension can be 

used with x = 100 and y = 100, the total throughput will be 

5,223,071 steps. The improvement factor is thus 

20,480,159 
= 3.92, 

5,223,071 

almost doubling the speedup figure achieved with single 

dimension extension. As was noted before, the improvement 

factor grows closer to four as x and y get larger. 

Another advantage of the two-dimensional extension is 

that it further enhances the inherent programmability of 

Faddeev's algorithm. For example, should it be necessary to 

compute U, where 

U = (AE + F) (E + G)- 1 (B + D) +AB, (5.12) 

(5.11) can be rearrange to become 

I E B 

-I G D (5.13) 

-A F 0 
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Solving (5.13), that is annulling -I and -A while 

extending the operations to the right will give 

I E B 

0 E+G B+D (5.14) 

0 AE+F AB 

Observe that within the box of (5.14), the necessary 

components of (5.12) are already correctly positioned such 

that repeating the Faddeev's procedure on them will produce 

the final result 

I E B 

0 (E+G) ck> (B+D) ck> (5.15) 

0 0 u 

In short, to compute U from (5.13), one only needs to 

triangularize the augmented matrix formed from I, E, -I and 

G, then annul the augmented matrix formed from -A and F 

while extending both operations to the rightmost column of 

(5.13). Using the L-subarrays system, U is computed from 

the input data flow of (5.13) in 2k iterations. The first k 

iterations are needed to compute the matrices in the box of 

( 5 .14) . This intermediate results is immediately fed back 

into the system for another k iterations, after which U is 

outputed. 
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CONCLUDING REMARKS 

By now, it is clearly obvious that the symbiosis of 

Faddeev's algorithm and the new systolic array system 

described in Chapter IV has given rise to a very powerful 

and versatile tool. The algorithm itself provides a 

considerable generality of operation which should allow the 

system to have a large range of application in the 

scientific and industrial fields. In return, the system has 

brought massive parallelism to the multitude of matrix 

operations capable by the algorithm. Furthermore, the 

system's enormous potential for parallelism can now be fully 

exploited to yield very high throughput with the Faddeev's 

algorithm extensions described in Chapter V. 

As compared to other designs from Chapter III, this 

system does not suffer any of their drawbacks while 

providing many practical advantages, some of which can be 

summarized as follow: 

- Either in single or multiple arrays form, 

the system is totally independent of problem 

size and will solve sparse matrix problems 

efficiently without any reconfiguration. 

- The system provides identical performance 

using a smaller number of cells or arrays. 

Indeed, given an equal number of arrays, its 

performance will be superior. When taken 

into account the fact that its design is 



ideally suited for the extensions made to 

Faddeev's algorithm, its throughput 

potential far outdistances any other system 

previously considered. 

- From a 

system 

user point of 

is exceedingly 

view, operating the 

simple: the input 

data flow is fed only to the top array and 

system controls consist of a few signals to 

each array top left cell. 

- The design of the system is truly modular, 

with simple and regular interconnections 

between cells and between modules. Hence it 

is very amenable to expansion: adding extra 

blocks of shift registers will allow it to 

handle correspondingly larger problems, 

while increasing the number of arrays will 

yield higher throughput. 

- Since all modules are square blocks w x w in 

size, it is topologically more economical 

and efficient in terms of PC board area. 
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In conclusion, the system's most important advantage 

is that while its design is simple enough for implementation 

to be an easy task, it is abundantly powerful and versatile 

to make that task worthwhile. Therefore, it is this 

author's opinion that the system should be built as soon as 

possible. 

-----i 



REFERENCES 

1. H. T. Kung, "Why Systolic Architectures?" IEEE Computer 
Magazine, Vol. 15, No. 1, January 1982, pp. 37-46. 

2. Dan I. Moldovan, "On the Design of Algorithms for VLSI 
Systolic Arrays," Proc. of the IEEE, Vol. 71, No. 1, 
January 1983, pp. 113-120. 

3. Kai Hwang and Fay~ A. Briggs, Computer Architecture and 
Parallel Processing, McGraw-Hill, New York, 1984, pp. 
768-774. 

4. Charles L. Seitz and Juri Matisoo, "Engineering Limits 
on Computer Performance," Physics Today, Vol. 37, 
No. 5, May 1984, pp. 38-45. 

5. c. A. Mead and L. A. Conway, Introduction to VLSI 
Systems, Addison-Wesley, Reading, MA, 1980, pp.263-292. 

6. H. T. Kung, "Notes on VLSI Computation," in Parallel 
Processing Systems, ed. by David J. Evans, Cambridge 
University Press, Cambridge, MA, 1982, pp.339-356. 

7. Ronald Collett, "CPU Architecture, Part I: Problems And 
Limitations of Von Neumann Computers," Digital Design, 
Vol. 14, No. 11, November 1984, pp. 90-95. 

8. Wolfgang Handler, "Innovative Computer 
Architecture~How to Increase Parallelism but Not 
Complexity," in Parallel Processing Systems, ed. by 
David J. Evans, Cambridge University Press, Cambridge, 
MA, 1982, pp.23-32. 

9. R. W. Hockney and c. R. Jesshope, Parallel Computers, 
Adam Hilger, Ltd., Bristol, 1981, pp. 1-51. 

10. P. M. Dew, "VLSI Architectures for Problems in 
Numerical Computation," in Supercomputers and Parallel 
Computation, ed. by D. J. Paddon, Oxford University 
Press, New York, 1984, pp. 2-21. 

11. s. Y. Kung, "VLSI Array Processors, " IEEE ASSP 
Magazine, Vol. 2, No. 3, July 1985, pp. 4-22. 



107 

12. Leonard s. Haynes et al., "A Survey of Highly Parallel 
Computing," IEEE Computer Magazine, Vol. 15, No. 1, 
January 1982, pp. 9-24. 

13. Lawrence Snyder, "Introduction to the Configurable, 
Highly Parallel Computer," IEEE Comouter Magazine, 
Vol. 15, No. 1, January 1982, pp. 47-56. 

14. Douglas G. Fairbairn, "VLSI: A New Frontier for Systems 
Designers," IEEE Computer Magazine, Vol. 15, No. 1, 
January 1982, pp. 87-96. 

15. H. T. Kung and c. E. Leiserson, "Systolic Arrays (for 
VLSI) , " Sparse Matrix Proc. 197 8, Society for 
Industrial and Applied Mathematics, 1979, pp. 256-282. 

16. A. L. Fisher et al., "Design of the PSC: A Programmable 
Systolic Chip," in Proc. of the Third Cal tech 
Conference on Very Large Scale Integration, ed. by R. 
Bryant, Computer Science Press, Rockville, MD, March 
1983, pp. 287-302. 

17. A. L. Fisher et al .c, "The Architecture of a 
Programmable Systolic Chip," Journal of VLSI and 
Comouter Systems, Vol. 1, No. 2, Computer Science 
Press, Rockville, MD, 1984, pp. 153-169. 

18. D. K. Faddeev and V. N. Faddeeva, Computational Methods 
of Linear Algebra, W. H. Freeman and Company, 1963, pp. 
150-158. 

19. W. W. Gentleman and H. T. Kung, "Matrix 

20. 

Triangularization by Systolic Arrays," Proc. SPIE-The 
International Society of Optical Engineering, vol. 298, 
1981, pp. 19-26. 

H. T. Kung, "Systolic Array for 
Triangularization," Proc. SPIE, San Diego, 
pp. 19-26. 

Orthogonal 
CA, 1981, 

21. Richard L. Burden et al, Numerical Analysis, PWS 
Publishers, Boston, MA, 1981, pp. 289-294. 

2 2 . W. M. Gentleman, "Error Analysis of QR Decompositions 
by Givens Transformations," Linear Algebra and Its 
Application, American Elsevier Publishing Company, New 
York, 1975, pp. 189-197. 

23. J. Greg Nash, "A Systolic/Cellular Computer 
Architecture for Linear Algebraic Operations," Proc. 
1985 IEEE International Conference on Robotics and 
Automation, March 1985, pp. 779-784. 



108 

24. J. G. Nash and s. Hansen, "Modified Faddeev Algorithm 
for Matrix Manipulation," Proc. SPIE, Vol. 495, August 
1984, pp. 39-46. 

25. Henry Y. H. Chuang and Guo He, "A Versatile Systolic 
Array For Matrix Computations," The International 
Symposium on Computer Architecture, 1985, pp. 315-322. 

/ 



APPENDIX A 

EXAMPLES OF FADDEEV'S ALGORITHM 

In the following, we will solve sample matrix problems 

using Faddeev's algorithm and its variants. The unmodified 

Faddeev's procedure, involving only ordinary Gaussian 

elimination, is illustrated with the first example. Its 

variant form using Gaussian elimination with neighbor 

pivoting is illustrated in the next two examples. Taken 

from chapter III, examples (3.1) and (3.2) are solved using 

the Faddeev's procedure combined with Givens rotations. 

All calculations in the examples are carried out using 

nine decimal places precision; however, because this thesis' 

line formatting allows only a finite number of characters, 

results are shown rounded off to two decimal places. 

Using Ordinary Gaussian Elimination 

Suppose we want to compute CA- 1 B + D, where A, B, c 

and D are matrices of order n = 3 and 

[ 
2 -1 3 ] 

A = -1 0 2 
4 -4 5 

B = [ 
1 2 4 ] 
3 1 -3 
1 7 9 

[
-1 2 3 ] [ 0 4 - 6 ] 

C = O 7 -4 D = -2 1 O 
1 -5 0 7 3 2 
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With Faddeev's algorithm, 

expressed as 

this problem can be 

2 -1 3 

-1 0 2 

1 2 4 

3 1 -3 

* 
4 -4 5 1 7 9 

= 1 -2 -3 0 4 -6 

0 -7 4 -2 1 0 

-1 5 0 7 3 2 

(A.1) 

where, by means of matrix triangularization, all entries 

below the diagonal elements of A are zeroed out such that A 

is triangularized and c is annulled. After completion, the 

results should appear in the place of D. 

Matrix triangularization procedures are often used, 

among other things, to solve linear systems. In solving a 

linear system, three operations are permitted on its rows: 

1) Entries of row Ri can be multiplied by any non

zero constant "II.. and the resulting row used in 

place of R i. 

("11..R i) ' (R i) 

This operation will be denoted 

2) Entries of row Rj can be multiplied by any 

constant "II.., added to row Ri, and the resulting 

row used in place of Ri. This operation will be 

denoted (Ri + "11..Rj)' (Ri). 

3) Rows Ri and Rj can be transposed in order. This 

operation will be denoted (Ri) ~ (Rj). 

When used within Faddeev's algorithm, the third 

operation has a restriction which states that i and j cannot 
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be larger than the order n of the matrices, i.e. transposing 

the order of the two said rows is not allowed if either one 

or both rows belong to the lower half of (A.1). 

Furthermore, although the entries in the affected rows are 

expected to change after any of these three operations, for 

ease of notation we will again denote the entry in the ith 

row and the jth column of matrix X (X here represents A, B, 

C or D of (A.1)) by xij" With this in mind, we can apply 

Gaussian elimination procedure to (A.1) by sequentially, for 

i = 1, 2, •.. , n-1, perform the operation 

(Rj - (aji/aii)Ri) -+ (Rj) on the upper half of (A.1) with 

j = i+l, i+2, ••• , n, and the operation 

(Rk - (-ck-n,i/aii)Ri) -+ (Rk) on the lower half of (A.1) 

with k = n+l, n+2, ... , 2n, provided that aii * O. When 

8 ii - O, a search is made for the first non-zero element aji 

where j = i+l, i+2, ••• , n and the operation (Ri) .... (Rj) is 

performed so that the procedure can continue. 
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Thus, by performing the operations (R2 + .5R
1

) ~ (R2 ), 

(R3 - 2R
1 

) ~ (R 3 ) , ( R 
4 

- • 5R 
1 

) ~ ( R 
4 

) , and 

(R
6 

+ • 5R
1

) ~ (R
6

) on (A.1), row R
1 

is effectively used to 

zero out all entries below a
11 

to give: 

2 -1 3 1 2 4 

0 -.5 3.5 3.5 2 -1 

0 -2 -1 -1 3 1 

0 -1.5 -4.5 -.5 3 -8 

0 -7 4 -2 1 0 

0 4.5 1.5 7.5 4 4 

In this system, Rz is used to eliminate entries below 

8 22 by the operations (R3 - 4R2 ) ~ (R3 ) ' (R4 

(Rs - 14R2 ) ~ (Rs ) and (R6 + 9R2 ) ~ (R6 ) • 

system is then 

2 -1 3 

0 -.5 3.5 

0 0 -15 

0 0 -15 

0 0 -45 

0 0 33 

1 2 4 

3.5 2 -1 

-15 -5 5 

-11 -3 -5 

-51 -27 14 

39 22 -5 

- 3R2 ) ~ (R4 ) ' 

The resulting 
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Finally, with the operations (R4 - R3 ) .... (R4 ) ' 

(R
5 

- 3R3 ) .... (R
5

) and (R
6 

- 2. 2R3 ) .... (R
6 

) , we obtain the 

system 

2 -1 3 1 2 4 

0 -.5 3.5 3.5 2 -1 

0 0 -15 -15 -5 5 

0 0 0 4 2 -10 

0 0 0 -6 -12 -1 

0 0 0 6 11 6 

which shows the result CA- 1 B + D in its lower right hand 

quadrant. 

Using Gaussian Elimination With Neighbor Pivoting 

We have indicated earlier that obtaining a zero for a 

diagonal element aii during the Gaussian elimination 

procedure necessitated a row interchange of the form 

(R i) ++ (R j) where i < j < n was the smallest integer with 

8 ji '¢ O. Actually, it is often desirable to perform row 

interchanges (or pivoting) involving the diagonal elements 

even when they are not zero. This is because when the 

calculations are performed using finite-digit arithmetic, as 

would be the case for calculators or computer-generated 

solutions, a diagonal element that is small compared to the 

entries below it in the same column can lead to substantial 

roundoff error. 

Referred to as neighbor pivoting, the two adjacent 

rows R i and R j where i < j < n are interchanged whenever 
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I a iii < I a j ii , immediately before an operation of the form 

(Rj - (aji/aii)Ri) ~ (Rj) can be performed on them. To 

illustrate this, let us consider the problem of computing 

CA- 1 B + D with matrices of order n = 3 

[-1 5 -3 ] [-2 -7 6 ] 
A= 3 4 1 B = 1 3 1 

6 7 -2 5 9 4 

[ 1 -2 4 ] [ 2 1 -5 ] c = 3 4 -1 D = 2 4 6 
-5 3 2 -3 2 9 

Like before, the problem is expressed as 

-1 5 -3 -2 -7 6 

3 4 1 1 3 1 

*6 
7 -2 5 9 4 

= -1 2 -4 2 1 -5 
(A. 2) 

-3 -4 1 2 4 6 

5 -3 -2 -3 2 9 

Since (A. 2) shows that I 8 11 I < I 8 2 1 I pivoting is 

therefore required between rows R
1 

and R
2 

• Thus, performing 

the operation (Rl) ++ (R2 ) gives us 

3 4 1 1 3 1 

-1 5 -3 -2 -7 6 

6 7 -2 5 9 4 

-1 2 -4 2 1 -5 

-3 -4 1 2 4 6 

5 -3 -2 -3 2 9 



where, after the operation (R
2 

+ .33R 1 ) ~ (R 2 ), we have 

3 4 1 

0 6.33 -2.67 

6 7 -2 

-1 

-3 

5 

2 

-4 

-3 

-4 

1 

-2 

1 3 1 

-1.67 -6 6.33 

5 9 4 

2 1 

2 4 

-3 2 

-5 

6 

9 
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Note that how neighbor pivoting has just been carried 

out by the two previous steps. Once again, the above system 

shows that pivoting is required between R
1 

and R
3 

since 

I a
11 

I < I a
3 1 

I . Therefore the operation (R
1

) ++ (R
3

) will 

subsequently give 

6 7 -2 

0 6.33 -2.67 

3 

-1 

-3 

5 

4 

2 

-4 

-3 

1 

-4 

1 

-2 

5 9 4 

-1.67 -6 6.33 

1 3 

2 1 

2 4 

-3 2 

1 

-5 

6 

9 
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which, after the operations (R
3 

- • 5R
1 

) -+ (R
3 

) , 

( R 
4 

+ . 17R
1 

) -+ ( R 4 ) , (Rs + • SR 
1 

) -+ (Rs ) 

(R
6 

- • 83R
1 

) .... (R
6 

) , becomes 

6 7 -2 

0 6.33 -2.67 

0 .5 2 

0 3.17 -4.33 

0 -.5 0 

0 -8.83 -.33 

9 4 5 

-1.67 -6 6.33 

-1.5 -1.5 -1 

2.83 2.5 -4.33 

4.5 8.5 8 

-7.17 -5.5 5.67 

and 

The procedure is carried out further with the 

elimination of entries below a
22 

by applying the operations 

(R
3 

- • 08R
2

) -+ (R
3 

) , (R
4 

- • 5R
2 

) -+ (R
4 

) , (Rs + . 08R
2

) -+ (Rs ) 

and (R
6 

+ 1.39R2 ) -+ (R 6 ). We thus have 

6 7 -2 

0 6.33 -2.67 

0 

0 

0 

0 

0 2.21 

0 -3 

0 -.21 

0 -4.05 

5 

-1. 67 

9 4 

-6 6.33 

-1.37 -1.03 -1.5 

3.67 5.5 -7.5 

4.37 8.03 8.5 

-9.49 -13.87 14.5 
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After the elimination of the entries below a
3 3 

with 

the operations (R
4 

+ 1. 36R
3

) .... (R
4
), (R

5 
+ . 09R

3
) .... (R

5
) and 

(R
6 

+ 1. 83R
3 

) .... (R
6

) , the solution to CA- 1 B + D appears in 

the lower right hand quadrant of 

6 7 -2 5 9 4 

0 6.33 -2.67 -1.67 -6 6.33 

0 0 2.21 -1. 37 -1. 03 -1.5 

0 0 0 1.81 4.11 -9.54 

0 0 0 4.24 7.93 8.36 

0 0 0 -12 -15.75 11.75 

The following is another example of Faddeev's 

algorithm with neighbor pivoting. Given matrices A, B, c 

and D of order n = 4, with 

[ 2 -1 3 0 ] [ -8 3 0 3 l 4 -2 7 0 -20 5 1 6 
A= -3 -4 1 5 B = -2 -9 7 8 

6 -6 8 0 4 7 4 2 

[ 1 -1 2 -1 ] [ 1 3 -5 7 ] 2 -2 3 -3 0 -4 1 7 
c = 1 1 1 0 D = 2 1 3 0 I 

1 -1 4 3 1 -3 -1 9 
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we want to compute CA- 1 B + D. Formulating the problem as 

follow 

2 -1 3 0 -8 3 0 3 

4 -2 7 0 -20 5 1 6 

-3 -4 1 5 -2 -9 7 8 * 6-6 8 
0 4 7 4 2 

= -1 1 -2 
(A. 3) 

1 1 3 -5 7 

-2 2 -3 3 0 -4 1 7 

-1 -1 -1 0 2 1 3 0 

-1 1 -4 -3 1 -3 -1 9 

reveals that, because la 11 I < I az 1 I ' pivoting of rows R
1 

and 

Rz is necessary. Thus, the operation (Rl ) ++ (Rz ) produces 

the system 

4 -2 7 0 -20 5 1 6 

2 -1 3 0 -8 3 0 3 

-3 -4 1 5 -2 -9 7 8 

6 -6 8 0 4 7 4 2 

-1 1 -2 1 1 3 -5 7 

-2 2 -3 3 0 -4 1 7 

-1 -1 -1 0 2 1 3 0 

-1 1 -4 -3 1 -3 -1 9 
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which, after we perform the operations (R2 - . 5R
1 

) -+ (R2 ) 

and (R
3 

+ . 75R
1

) -+ (R
3
), becomes 

4 -2 7 0 -20 5 1 6 

0 0 -.5 0 2 .5 -.5 0 

0 -5.5 6.25 5 -17 -5.25 7.75 12.5 

6 -6 8 0 4 7 4 2 

-1 1 -2 1 1 3 -5 7 

-2 2 -3 3 0 -4 1 7 

-1 -1 -1 0 2 1 3 0 

-1 1 -4 -3 1 -3 -1 9 

Before we can proceed any further in eliminating 

entries in the first column, because I ai 1 I < I a 4 1 I ' we have 

to perform the operation (R
1

) ++ (R4 ) : 

6 -6 8 0 4 7 4 2 

0 0 -.5 0 2 .5 -.5 0 

0 -5.5 6.25 5 -17 -5.25 7.75 12.5 

4 -2 7 0 -20 5 1 6 

-1 1 -2 1 1 3 -5 7 

-2 2 -3 3 0 -4 1 7 

-1 -1 -1 0 2 1 3 0 

-1 1 -4 -3 1 -3 -1 9 
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Now, all remaining entries in the first column can be 

eliminated with (R4 - .67R
1

) -+ (R4 ) ' (Rs + .17R
1

) -+ (Rs ) ' 

(Rs + .33R
1

) -+ (Rs ) ' (R7 + .17R
1

) -+ (R7 ) and 

(Rs + .17R
1

) -+ (R
8

), to give 

6 -6 8 0 4 7 4 2 

0 0 -.5 0 2 .5 -.5 0 

0 -5.5 6.25 5 -17 -5.25 7.75 12.5 

0 2 1. 67 0 -22.67 .33 -1.67 4.67 

0 0 -.67 1 1. 67 4.17 -4.33 7.33 

0 0 -.33 3 1. 33 -1. 67 2.33 7.67 

0 -2 .33 0 2.67 2.17 3.67 .33 

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33 

Prior to zero out entries in the second column, 

because a 22 = o, the operation (R 2 ) ++ (R3 ) is used to obtain 

6 -6 8 0 4 7 4 2 

0 -5.5 6.25 5 -17 -5.25 7.75 12.5 

0 0 -.5 0 2 .5 -.5 0 

0 2 1. 67 0 -22.67 .33 -1.67 4.67 

0 0 -.67 1 1. 67 4.17 -4.33 7.33 

0 0 -.33 3 1.33 -1.67 2.33 7.67 

0 -2 .33 0 2.67 2.17 3.67 .33 

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33 
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Applying (R4 + . 36R
2 

) -+ (R4 ) and (R7 - • 36R
2

) -+ (R7 ) 

to the above system, we are left with 

6 -6 8 0 4 7 4 2 

0 -5.5 6.25 5 -17 -5.25 7.75 12.5 

0 0 -.5 0 2 .5 -.5 0 

0 0 3.94 1.82 -28. 85 -1. 58 1.15 9.21 

0 0 -.67 1 1. 67 4.17 -4.33 7.33 

0 0 -.33 3 1. 33 -1. 67 2.33 7.67 

0 0 -1.94 1.82 8.85 4.08 .85 -4.21 

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33 

which requires pivoting of rows R 3 and R4 • Therefore, after 

(R3 ) ++ (R 4 ), we have 

6 -6 8 0 4 7 4 2 

0 -5.5 6.25 5 -17 -5.25 7.75 12.5 

0 0 3.94 1.82 -28. 85 -1. 58 1.15 9.21 

0 0 -.5 0 2 .5 -.5 0 

0 0 -.67 1 1.67 4.17 -4.33 7.33 

0 0 -.33 3 1.33 -1.67 2.33 7.67 

0 0 -1.94 1.82 8.85 4.08 .85 -4.21 

0 0 -2.67 -3 1. 67 -1. 83 -.33 9.33 
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where we can proceed to eliminate all entries below a
33 

with 

the operations (R4 + .13R
3

) -+ (R 4 ), (Rs + .17R
3

) -+ (Rs), 

(R
6 

+ • 08R
3 

) -+ (R
6 

) , (R
7 

+ • 49R
3 

) -+ (R
7 

) and 

(Ra + .68R3 ) -+(Ra>· The resulting system will be 

6 -6 8 

0 -5.5 6.25 

0 

5 

1.82 

.23 

0 

0 

0 

0 

0 

0 

0 3.94 

0 0 

0 

0 

0 

0 

0 1.31 

0 3.15 

0 -.92 

0 -1. 77 

4 7 4 2 

-17 -5.25 7.75 12.5 

-28.85 -1.58 1.15 9.21 

-1.66 .3 -.35 1.17 

-3.22 3.9 -4.14 8.89 

-1.11 -1.8 2.45 8.45 

-5.35 

-17.86 

3.3 

-2.9 

1.42 .32 

.45 15.57 

Finally, annulling the lower left hand quadrant 

completely with the operations (Rs - 5.67R4 ) -+(Rs), 

(R6 - 13. 67R4 ) .... (R6) I (R
7 

+ 4R
4 

) -+ (R
7 

) and 

(Ra + 7.67R 4 ) -+(Ra) will give us the solution in the lower 

right hand quadrant of 

6 -6 8 

0 -5.5 6.25 

0 

5 

0 

0 

0 

0 

0 

0 

0 3.94 1.82 

0 0 • 23 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

4 7 4 2 

-17 -5.25 7.75 12.5 

-28. 85 -1. 58 1.15 

-.35 

9.21 

1.17 -1.66 .3 

6.2 

21. 6 

-12 

-30.6 

2.2 -2.13 2.27 

-5.9 7.27 -7.53 

4.5 0 5 

-.6 -2.27 24.53 
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Using Givens Rotations 

A Givens transformation rotating the two row vectors 

Ri and Rj 

0 • • • 0 8 ii 
0 • • • 0 aji 

8 i,i+1 
8 j,i+1 

• 
8 ik • • • 8 in 

• ajk • • • ajn 

of a given matrix A of order n replaces them with two new 

vectors 

0 . . . 0 a :u a i, i+ i . . . a.fk . . . a.fn 

0 . . . 0 0 a j, i+ i . . . aJk . . . a Jn 

such that, with k = i+l, i +2 I • • • I n, their entries are 

8 Li = 0 ij 

a'.k = cosa . . a .k + sin<X .. a .k 
i 1) i 1) J (A.E.1) 

aJk = -sin<Xijaik + cos<Xijajk 

where 

<Xij = ~ 2 
8 ii 

2 + aji 

8 ii 
cos <X ij = 

<Xij 

sin<Xij 
a j i 

= --
<Xij 

2 
cos <X ij + . 2 sin <Xij = 1. 

The transformation obviously leaves unchanged zeroes 

appearing in corresponding entries of both vectors. Thus a 

matrix of order n can be triangularized by applying a 

succession of Givens rotations to its rows Ri and Ri+i' Ri 
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and Ri+ 2 , ••• , Ri and Ri+n for i = 1, 2, .•• , n-1 such that 

zeroes are introduced into every columns below the diagonal 

elements. 

When combined with Faddeev's algorithm, Givens 

rotations are used on the rows above the horizontal line to 

triangularize A and ordinary Gaussian elimination is used on 

rows below the horizontal line to annul c. The procedure 

involved can be illustrated much easier with an example. 

Let us find the solutions of the linear system (3.1) 

of chapter III. This system has three unknowns, x
1

, x
2 

and 

x
3

, and its equations are represented here in matrix form as 

A= [ 
1 2 3 ] 
0 4 7 
2 1 3 

B = [ n 
The solutions' column vector X can then be expressed 

as X = A- 1 B or, by expanding it to become X = IA- 1 B + o 
-where I is the identity matrix and O is a zero vector 

I = [ 
1 0 0 ] 
0 1 0 
0 0 1 

0 = [ n 

! 
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allows us to formulate the problem as 

1 2 3 5 

0 4 7 9 

*2 1 3 7 

= -1 
(A. 4) 

0 0 0 

0 -1 0 0 

0 0 -1 0 

Since a
2 1 

= O in (A. 4), we can skip row R
2 

and, by 

directly rotating rows R
1 

and R
3 

using the equations of 

(A.E.1) with 

a1, 3 = ~ 2 
al, 1 

2 + a3, 1 = ~ 1 + 4 = 2.24 

al , 1 1 
cosa1 , 3 

=--=--= .45 
a1, 3 2.24 

a3, 1 2 
sina1 , 3 

=--=--= .89, 
a1 , 3 2.24 

subsequently get the following system 

2.24 1.79 4.02 I 8.5 

0 4 7 9 

0 -1. 34 -1. 34 

-1 

0 

0 

0 

-1 

0 

0 

0 

-1 

-1. 34 

0 

0 

0 



Gaussian elimination is now used to continue 

procedure below the horizontal line. Performing 

operation (R4 + • 45R
1

) .... (R 4 ) , we have 

2.24 1.79 4.02 8.5 

0 4 7 9 

0 -1.34 -1.34 -1.34 

0 .8 1.8 3.8 

0 -1 0 0 

0 0 -1 0 

Once again, we rotate rows R
2 

and R3 
with 

()2 ' 3 = J 2 
a 2 , 2 

2 + a3,2 = J 16 + 1.8 = 4.22 

cosa2 , 3 = 

sina2 ,3 = 

to obtain 

a 2 ,2 --
()2 ' 3 

4 
= -- = .95 

4.22 

-1. 34 a 3 , 2 
---- = = -.32 

()2 ' 3 4.22 

2.24 1.79 4.02 

0 4.22 7.06 

0 

0 

0 

0 

0 0.95 

• 8 1. 8 

-1 0 

0 -1 

8.5 

8.96 

1.59 

3.8 

0 

0 
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the 

the 
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which we can further modify by applying the operations 

(R4 - .19R
2

) -+ (R 4 ) and (R
5 

+ . 24R
2

) -+ (R 5 ), giving us 

2.24 1.79 4.02 8.5 

0 4.22 7.06 8.96 

0 0 0.95 1.59 

0 0 .46 2.1 

0 0 1.67 2.12 

0 0 -1 0 

Since A is now fully triangularized, performing the 

operations (R4 - .48R 3 ) ... (R4 ) I (Rs - 1. 75R
3

) -+ (Rs ) and 

(Rs + 1. 05R
3

) -+ (Rs ) to completely annul the lower left hand 

quadrant of the above system yields X = A- 1 B in the lower 

right hand quadrant of 

2.24 1.79 4.02 

0 4.22 7.06 

0 

0 

0 

0 

0 0.95 

0 

0 

0 

0 

0 

0 

8.5 

8.96 

1.59 

1. 33 

-0.67 

1. 67 

For the purpose of comparison, we will also present 

here the solutions to example (3.2) of chapter III. Later 

on in appendix B, this example will be used for the graphics 

simulation of Nash's array to show that it produces 

erroneous results as mentioned in chapter III. 
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Example (3.2) gives us a linear system which is 

expressed in matrix form as 

A=[nn B=[n. 
Solving this linear system with Faddeev's algorithm 

requires us to formulate it as 

0 2 3 5 

0 4 7 9 

*2 1 3 7 

= -1 
(A. 5) 

0 0 0 

0 -1 0 0 

0 0 -1 0 

Because 8 1, 1 = 0 and 8
2. 1 = o, we can make things a 

lot easier by interchanging rows R 1 and R 3 of (A. 5) with the 

operation (R1 ) ++ (R3 ) ' to give 

2 1 3 7 

0 4 7 9 

0 2 3 5 

-1 0 0 0 

0 -1 0 0 

0 0 -1 0 
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Performing the operation (R 4 + .5R 1 ) ~ (R 4 ) reduces 

all entries below a 1 , i to zeroes, and the above system 

becomes 

2 1 3 7 

0 4 7 9 

0 2 3 5 

0 .5 1.5 3.5 

0 -1 0 0 

0 0 -1 0 

Rotating rows R
2 

and R
3 

with 

lX2 • 3 = J 2 
8

2,2 
2 

+ 8 3 2 = J 16 + 4 = 4.47 

8
2,2 

4 
COSlX 2 ' 3 

=---=---= .89 
lX2 • 3 4.47 

8
3,2 

2 
sina2 • 3 

=---=---= .45 
lX2 • 3 4.47 

will completely triangularize A to give 

2 1 3 7 

0 4.47 7.6 10.29 

0 0 -.45 .45 

0 .5 1.5 3.5 

0 -1 0 0 

0 0 -1 0 

in which all entries in the second column of the lower left 

hand quadrant can be eliminated with the operations 
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(R 4 - .11R
2 

) -+ (R4 ) and (R
5 

+ . 22R
2 

) -+ (R
5 

) • This produces 

the system 

2 1 3 7 

0 4.47 7.6 10.29 

0 0 -.45 .45 

0 0 .65 2.35 

0 0 1.7 2.3 

0 0 -1 0 

Finally, the procedure is completed with the 

operations (R4 + 1. 45R 3 ) -+ (R4 ) ' (R5 + 3.8R3 ) -+ (R5 ) and 

(Rs - 2.24R
3

) -+ (Rs), to yield 

2 1 3 7 

0 4.47 7.6 10.29 

0 0 -.45 .45 

0 0 0 3 

0 0 0 4 

0 0 0 -1 

which shows the solutions to the linear system in its lower 

right hand quadrant. 



APPENDIX B 

REAL TIME GRAPHICAL SIMULATION 

OF SYSTOLIC ARRAYS 

Simulation techniques play an important role in the 

verification of a design's correctness of operation and 

debugging. Because serial computers are by nature 

sequential machines, their software simulators are often 

little more than conventional language interpreters. 

For systolic arrays, this is simply inadequate. To 

verify whether a given algorithm is correctly mapped into a 

corresponding array architecture, a system designer must be 

able to observe, at all times, the movement of every piece 

of data as they traverse through the array, as well as the 

results from operations performed on each of them by any of 

the cells. Furthermore, for debugging purposes, he must be 

able to look into the registers of every cell at any one 

time, and see the values of all control signals present in 

that cell. In short, he must have the most detailed view of 

the entire system, which may consists of many arrays and 

many cells, at all times. 

To meet the above requirements, a new breed of 

simulator-a systolic arrays simulator-was developed and 

built to aid a hardware or software designer in the task of 
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designing and debugging systolic systems. For reasons which 

will become clear later, it was deemed essential that this 

simulator should be graphics based, hence its name Systolic 

Arrays Graphical Simulator, or SAGS in short. 

From the very beginning, SAGS was designed to simulate 

systolic systems of any configurations. These 

configurations are specified to SAGS by way of script files. 

A script file contains vital informations about a system 

such as its number of arrays, their types and sizes, the way 

they are linked together and the microprograms each cell 

will use. A script file also specifies when and where input 

data and control signals should be fed into~and output data 

taken from~a system. SAGS allows for systems with multiple 

input, control and output data streams. Each input or 

control stream is stored into ASCII files prior to being 

accessed by SAGS. Similarly, outputs of SAGS are written 

into ASCII files. 

During run time simulation, SAGS executes all steps of 

a problem one after another without pause, showing results 

of each step on the screen. This is called multi-step mode 

of execution; it can be stopped and restarted at any time. 

Alternatively, SAGS can single-step through the problem, 

allowing a more detailed inspection of the results. 

Switching between these two modes can be accomplished easily 

at any time. 
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Visually, SAGS allows all arrays of a system to be 

seen on a monitor screen, as long as each array has a 

reasonable number of cells. Because the real estate of a 

monitor screen is limited, arrays can be overlapped such 

that one in the background can be brought into the 

foreground for observation at any time. In addition, 

individual arrays can be interactively positioned anywhere 

on the screen to closely match the system schematic. SAGS 

allows an array to have two different views: a real view, 

with the array and its cells appearing smaller and therefore 

containing less information, and a full view, where the 

cells show all their registers content. The view of an 

array can be specified in the script file, or changed during 

run time. All visual changes made to a system configuration 

during run time can be recorded back to the script file for 

reuse. A status bar on top of the screen displays 

additional informations such as the current step number, the 

total execution time and the array being selected. 

In this author's experience, SAGS has been quite 

useful in verifying and debugging the designs presented in 

this thesis. Indeed, it is while using SAGS to simulate 

Nash's implementation of Faddeev's algorithm that the bug in 

its boundary cell microprogram was discovered and 

identified. For the reader's convenience, SAGS source code 

is listed in Appendix c. 
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In the following, three series of snapshots illustrate 

the simulations of three different systolic designs. Each 

snapshot is a screen output of SAGS for one execution step. 

All problems used in these simulations are examples taken 

from Appendix A. 

The first series of snapshots B.1 shows the simulation 

of Nash's system (from Figure 5) as it solves example (A.4). 

It can be seen that this implementation of Faddeev's 

algorithm produces erroneous results. 

The second series of snapshots B.2 shows the 

simulation of Chuang and He's system (from Figure 8) using 

example (A.2). 

In the last series B.3, the L-tuple arrays system of 

Figure 30 is simulated, with L = 2. 

here solving example (A.3). 

This system is shown 
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APPENDIX C 

SAGS PROGRAM LISTING 

SAGS was developed on an IBM Personal Computer, 

running the MS/DOS operating system. It was written in 

Turbo Pascal, a dialect of the Pascal programing language as 

described by Wirth and Jensen in Pascal User Manual and 

Report. The source code of SAGS is listed in this appendix 

along with a sample script file. This script file 

represents the simulation that produces the third series of 

snapshots in Appendix B. Input and control files are also 

included. The source code of SAGS and many sample script 

files are also available in ASCII format on floppy disks. 

To produce an executable copy of SAGS, two software 
n 

packages are needed: a copy of the DOS-based Turbo Pascal 

compiler (version 3. O) and a copy of the Turbo Graphix 

ToolboxT" (version 1. 07), both available commercially from 

Borland International, Inc. Also, since SAGS is graphics 

based, a video card with bit-mapped graphics capabilities is 

needed to run the program. The included source code is 

written for the EGA standard; however, simple changes can be 

made to the program so that it will run on other PC graphics 

standards. Entry points for these modifications are fully 

documented in the source code to ease that task. 
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Because computer graphics and simulations are 

floating-point intensive applications, the use of a numeric 

coprocessor is highly recommended. For SAGS to take 

advantage of the numeric coprocessor, it must be compiled 

using a version of the compiler that support 8087 floating 

point math. 

-------i 
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( ******* 
* * * SAGS is a Systolic Array Graphical Simulator program for a recon- * 
* figurable set of arrays of processors. 1he Max nuniber of arrays is 15. * 
* This is because of the limitation of Turbo Graphix, not of SAGS. * 
* This module is the main module. * 
* * 
****************************************************************************) 

program SAGS; 

( $1 c: \bin\ tbl \ tbgraphx\ typedef. sys} 
( $1 c: \bin\ tbl \ tbgraphx\graphix. sys} 
( $1 c: \bin\ tbl \ tbgraphx\kernel. sys} 
($1 c:\bin\tbl\tbgraphx\windows.sys} 
($1 typedef.pas} 
($1 initglbl.pas} 
($1 initcell.pas} 
($1 initsqre.pas} 
($1 initrngl.pas} 
($1 initrng2.pas} 
($1 initrng3.pas} 
($1 initrng4.pas} 
( $1 wri text. pas} 
($1 drwsqre.pas} 
($1 drwtrngl.pas} 
($1 drwtrng2.pas} 
($1 drwtrng3.pas} 
($1 drwtrng4.pas} 
($1 drwstat.pas} 
($1 drwsystm.pas} 
($1 xcolor.pas} 
($1 dpmode.pas} 
($1 swchwind.pas} 
($1 writscrp.pas} 
($1 promptus.pas} 
($1 seeknxtw.pas} 
($1 statemnt.pas} 
($1 getsystm.pas} 
($1 sidetrav.pas} 
($1 lnkioflw.pas} 
($1 getioflw.pas} 
($1 lnkdtflw.pas} 
($1 getdtflw.pas} 
($1 readscrp.pas} 
($1 pecodes.pas} 
($1 updatear.pas} 
($1 snglstep.pas} 
($1 multstep.pas} 

(include the graphics system code} 

(include others of SAGS modules} 



begin 

PromptUser; 
if not Read.Script then 

begin 
close(ScriptFile); 
writeln('!! SAGS aborted!!'); 
exit; 

end 
else close(ScriptFile); 

InitGraphic; 
SetAspect(l); 
DefineWorld(FirstWorld, 

0,0,WrldCoordXY, 
WrldCoordXY); 

DefineWorld(StatusWorld, 
0,0,StatWorldX, 
StatWorldY) ; 

Foreground:=DefltColor; 
SetForegroundColor(Foreground); 
SetBreakOff; 
SetMessageOff; 
DrawSystem(CurrntPtr); 

repeat 
read(Kbd,Ch); 
if (Ch=#27) and 

keypressed then 
read(Kbd,Ch); 

with CurrntPtrA do 
case Ch of 

#13 : MultiStepsExec; 

#27 
#32 : SingleStepExec 

(IOPtr); 
#59 : ChangeColor(-1); 
#60: ChangeColor(l); 
#61 : HardCopy(False,l); 
#62 : WriteScriptFile; 
#72 : begin 

MoveVer(-2,TRUE); 
StoreWindow(Number); 
HiY:=Y1RefGlb; 
end; 

#75 : begin 
MoveHor(-1,TRUE); 
StoreWindow(Number); 
HiX:=XlRefGlb; 
end; 

{gets script file name} 
{reads in the script file and build} 
{system's internal structures} 

{init. the graphix system and screen} 
{sets aspect ratio for true circle} 
{defines the shared world} 

{defines the shared world} 

{establishes system default} 
{drawing color} 
{don't error when window edge hit} 

{read the keystroke} 
{one more char ?} 

{RETURN ? multi steps execution} 
{until a key (any key) is pressed} 
{ESC ? waits for end of current loop} 
{SPACE ? single step execution} 
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{Fl? changes to last drawing color .. } 
{F2? changes to next drawing color .. } 
{F3 ? prints the screen image} 
{F4 ? writes updated script file} 
{up arrow ?} 
{then moves current window and .. } 
{stores it with new position} 

{left arrow ?} 



#77 : begin 
MoveHor(l,TRUE); 
StoreWindow(Nurnber); 
HiX:=XlRefGlb; 
end; 

#80 : begin 
MoveVer(2,TRUE); 
StoreWindow(Nurnber); 
HiY:-=YlRefGlb; 
end; 

#73 : SwitchWindow 
(CurrntPtr,O); 

#81 : SwitchWindow 
(CurrntPtr,l); 

#82 : ChangeDisplayMode 
(CurrntPtr); 

else begin 
sound(500); 
delay(300); 
nosound; 

end; 
end; 

until Ch=#27; 
SetForegroundColor(O); 

LeaveGraphic; 
while IOPtr<>NIL do 

with IOPtr" do 
begin 

end. 

case IO of 
INPUT: if Active then 

Close(FileVar); 
OUTPUT: begin 

Flush(FileVar); 
Close(FileVar); 
end; 

end; 
IOPtr:=NextIO; 
end; 

{right arrow ?} 

{down arrow ? } 

{PgUp ?} 

{PgDn ?} 

{Ins ?} 

{for any other keys .. } 
{screams at 1000 Hertz} 
{for 3 tenths of a second} 
{then shuts up} 

{ESC char exits program} 
{sets foreground color to black} 
{before exits} 
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{gracefully shuts down graphix system} 
{and the IO system by .. } 

{closing any active input file,} 

{and flush internal disk buffers .. } 
{of any output files and closes them} 
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( * 
* * * This is the header file of SAGS. It contains all global definitions and * 
* declarations of constants, types and variables. All of SAGS data struc- * 
* tures are explained here. Be sure to include this file at compile time. * 
* * *AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***) 

const 

TimeUnit = 0.000001; 
Defl tColor = 13; 

TextSize = 8; 
FirstWorld = l; 

StatusWorld = 2; 
MaxArraySize = 5; 
MaxSequence = 5; 
MaxFileName = 64; 

MaxStr = 10; 
MaxWord = 12; 
MaxLine = 45; 

MaxError = 16; 
MaxBox = 4; 

MaxRegs = 4; 
MaxCodes = 12; 

MaxTxtCoord = 5; 
MaxBus = 2; 

CharSizeX = 4; 
CharSizeY = 6; 

Digits = 6; 
Deciml = 2; 

Gap= l; 
WrldCoord.XY = 1000.0; 

StatWorldX = 79.0; 
StatWorldY = 12.0; 

MaxRadRatio = 0.023; 

StringList : array 
[1. .MaxStr] 
of string[MaxWord] 
(I ARRAYSIZE'' 

I SYSTEMSPECS I ' 

'INFILES', 
I OUTFILES I ' 

'SETUP', 
'Pecodes', 
'Northlnput', 
'Eastlnput', 
'Southlnput' , 
'Westlnput'); 

{execution time for each step} 
{default drawing color value} 
{max no. of char displayed in PE} 
(world shared by all windows} 
(world used by status box} 
(max no. of PEs/array side allowable} 
(max no. of procedures in a script} 
(max no. of filenames} 
{max no. types of script statements} 
(max length of statement} 
(max length of error message} 
{max no. error message} 
(max no. boxes in status window} 
(max no. registers of one type in PE} 
(max no. of PE executable codes} 
(max no. displayable text lines in PE} 
(max no. of pair I/O bus on each side} 
(character size in pixel} 
(character size in pixel} 
(no. of digits of value displayed} 
(no. of decimal places} 
(size of gap between PEs in PIXEL.s} 
(default world coord.} 
(world coords. for status window} 

(l.15*2/100 ratio of twice the radius) 
(of the largest circle that will fit} 
{inside a lOOxlOO PIXEL.s window} 

(list of valid script statements} 



Error List 

type 

array (list of all possible error messages} 
[ 1. . MaxError] 
of string[MaxLine] 
( ' ! Bad statement ! ! ' , 

' ! Array size too large ! ! ' , 
' ! Delimiter 11

• 
11 not found ! ! ', 

' ! Bad delimiter or delimiter not 
' ! IO file name too long ! ! ' , 
' ! Non-existing array ! ! ' , 
' ! Bad statement in context ! ! ' , 
' ! Statement out of sequence!!', 

found I I' .. , 

' ! Arrays are allowed to have only 4 sides !!', 
' ! Bad type of array ! ! ' , 
' ! Array number should be within 1 to 16 ! ! ' , 
' ! Triangular arrays only have 3 sides ! ! ' , 
' ! Input file not found!!', 
' ! Invalid bus specification ! ! ' , 
' ! Unknown display mode ! ! ' , 
' ! Unknown PE code ! ! ' ) ; 

(pointer to reals} 
(pointer to link info between arrays} 
(pointer to IO buffers} 
{pointer to array processors} 
{file name storage} 

{storage for text for screen output} 
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RealPtrtype = Areal; 
LinkPtrType = ALinkType; 

IOPtrtype = AIOtype; 
ArrayPtrtype = ASysArraytype; 

FileName = string 
[MaxFileNarne]; 

Textype = string 
[TextSize]; 

SrcDstType = array 
[l.. 2] 

{pair indicating sides of src. & dest.} 
{arrays for dataflow info} 

of integer; 
Pointype = record 

X,Y 
end; 

Pointstype = record 
X,Y 

end; 
DisplayMode = (F\J.11,Arrays,Buffer); 

PEtextype = record 

Mode 
Lines, 
PEsize, 
WDSizeX, 
WDSizeY 

{pair of coord. for a point} 
: real; 

{All of PE's texts coords.} 
array 
[ 1 .. MaxTxtCoord] 
of real; 

{mode of display of an array} 
{stores default coord. for each PE's} 
{text in an array, essentially acts} 
{as a template for a particular} 
{display mode} 
: DisplayMode; 

integer; 



PEsizeXY, 
GapXY, 
TrueRad, 
Radius 
TextCoord 

end; 
PEtype = record 

X_Reg 
Out_Regs, 
Last Out 

In_Regs 

Regs_Txt 

Cl24, 
C3 
TAG, 
Code 

end; 
StatusBox = record 

Xhi,Yhi, 
Xlo,Ylo, 
Xdgt,Xtxt, 
Ytxt 
Txt,Dgt 

end; 

: real; 
{storage for all PEs' text coord.} 
{of an array} 

array 
[l .. MaxArraySize, 
1. .MaxArraySize] 
of Pointstype; 

{internal PE representation, with} 
{all necessary registers} 

real; 

array 
[ 1. . MaxRegs , 
1. .MaxBus] 
of real; 

{pointers to X_out registers in} 
{neighboring PE cells} 

array 
[ 1 .. MaxRegs , 
1. .MaxBus] 
of RealPtrtype; 

{Regs_Txt[l] is for TAG} 
{Regs_Txt[2] is for X,} 
{ ........ [3] ........ Vout} 
{ ........ [ 4] ........ Mout} 
{ ........ [SJ ........ Xout} 

array 
[ 1. . MaxTxtCoord] 
of Textype; 

{control codes registers} 
: integer; 
{for display purpose only} 
{holds PE's execution code number} 
: byte; 

{coord. of box and texts within box} 

real; 
string [ 15] ; 
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LinkType = record 

Sides, 

ArNums 
ArPtrs 

LnkStart, 
LnkStop 
NxtLink 

end; 
IOflag = (INPUT,OUTPUI'); 
IOtype = record 

Name 
ArNlllll, 
Side, 
Bus, 
!OS tart 

Filevar 
ArPtr 
NextIO 
Active 

case 
IO 
of 
INPUT 

OUTPUT 

end; 
TypeOfArray = (Square, 

Trianglel, 

Triangle2, 

Triangle3, 

Triangle4, 

Status); 

{storage for dataflow info to} 
{other arrays} 
{from which side of src. array to} 
{which side of dest. array} 

SrcDstType; 
array 
[1.. 2] 
of ArrayPtrType; 

integer; 
LinkPtrType; 

{IO link to and from host, that is} 
{to and from external data files} 
: FileNarne; 
{links with which array} 
{to which of its side} 
{and which bus} 
{step to start feeding data} 

integer; 
text; 
ArrayPtrtype; 
IOPtrtype; 

{is it still feeding data or not} 
boolean; 

IO flag 

(InR.egs 

) ; 
(OutRegs 

) ; 

array 
[l .. MaxArraySize] 
of real 

array 
[l .. MaxArraySize] 
of RealPtrtype 

{square array of PE's} 
{upper triangular array of PEs with} 
{diagonal line from top left corner} 
{to lower right corner} 
{lower triangular array of PEs with} 
{diagonal line from top left corner} 
{to lower right corner} 
{upper triangular array of PEs with} 
{diagonal line from top right corner} 
{to lower left corner} 
{lower triangular array of PEs with} 
{diagonal line from top right corner} 
{to lower left corner} 
{storage for each box in status band} 
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SysArrayType = record 
Number, 
HiX,HiY 
Last,Next 
StatTxt 

var 

case ArrayType 
of 

end; 

Status 

Trianglel, 
Triangle2, 
Triangle3, 
Triangle4, 
Square 

ErrorType = set of 1. .MaxError; 

Foreground , 
ArraySize : integer; 

Zero : real; 
ZeroPtr : RealPtrtype; 

PEtxtArray : array 
[DisplayMode] 
of PEtextype; 

ScriptName : FileName; 
ScriptFile : text; 

IOPtr : IOPtrtype; 
LinkPtr : LinkPtrType; 

FixedPtr 
CurrntPtr 

StatPtr : ArrayPtrtype; 
ErrorSet : ErrorType; 

Ch : char; 

{storage for systolic array's data} 
{including all PEs within it} 

integer; 
ArrayPtrType; 
Textype; 
TypeOfArray 

( LoX 
LoY : integer; 

Boxes : array 
[1. .Max.Box] 
of StatusBox; 

Steps : integer; 
Ti.mes : real 

) ; 

( DPmode : DisplayMode; 

) ; 

PE : array 
[l .. MaxArraySize, 
l .. MaxArraySize] 
of PEtype 

{current drawing color} 
{size of bandwidth of dataflow} 
{value for PE's grounded input} 

{stores all display mode's templates} 

{always points to top of linked list} 
{always points to top of linked list} 
{always points to top of linked list} 
{always points to the current array} 
{always points to status window} 
{stores error type values} 
{keyboard input storage} 
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( * 
* * 
* This procedure initializes all global variables needed for drawing * 
* an array. Depending on the specified array size, it will find a * 
* suitable window size and world coordinates for the array. It also * 
* computes an array of coordinates for PEs' text. * 
* This procedure is very machine-dependent, i.e. graphics card specific, * 
* and is used only once after the script file is read in. * 

* * 
*'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAlrl<AAAAAA********) 

procedure InitGlbStorage; 

var I 
Xcnt 
Ycnt : integer; 

Templ , 
Temp2 , 
Temp3 , 
Temp4 : real; 

begin 

with PEtxtArray[Full] do 
begin 
Mode : = Full; 
Lines := MaxTxtCoord; 
PEsize := CharSizeY*(Lines-1)+22; 
WDSizeY:=(PEsize+Gap) 

*ArraySize 
+Gap; 

WDSizeX:=round(WDSizeY 
/(8*AspectFactor)); 

GapXY:=Gap*WrldCoordXY 
/(ArraySize*PEsize 
+(ArraySize+l)*Gap); 

PEsizeXY:=(WrldCoordXY 
-GapXY*(ArraySize+l)) 
/ArraySize; 

TrueRad:=PEsizeXY/2; 
Radius:=MaxR.adRatio*PEsize/2; 
Templ:=PEsizeXY+GapXY; 
Temp2:=PEsizeXY-GapXY; 
Temp3:-Temp2/4; 
Temp4:=Temp3/2; 
for Xcnt:=l to ArraySize do 
for Ycnt:=l to ArraySize do 
with TextCoord[Xcnt,Ycnt] do 

begin 
for 1:=2 to Lines 

do begin 
X[I]:=Templ*Ycnt-Temp2; 

{value 22 is for EGA; 2 is for CGA} 
{computes window dimensions for} 
(a particular array size} 

(compute value of gap in w.c.) 

(compute value of PE size in w.c.) 

(compute round PE's radius in w.c.) 

(compute text coord. for array of PEs) 



Y[I]:-Templ*Xcnt 
-PEsizeXY 
-Temp4 
+Temp3*(1-l); 

end; 
X[l] :-Templ*Ycnt 

-l.S*Temp4; 
Y[l] :=Y[2]; 

end; 
end; 

with PEtxtArray[Arrays] do 
begin 
Mode :=Arrays; 
Lines := 2; 
PEsize := CharSizeX*Digits+lO; 
WDSizeX:=trunc(((PEsize+Gap) 

*ArraySize+l)/8+1); 
WDSizeY:=trunc(WDSizeX*8 

*AspectFactor 
+1); 

GapXY:=l.3*WrldCoordXY 
/(ArraySize*PEsize 
+(ArraySize+l)*Gap); 

PEsizeXY:=(WrldCoordXY 
-GapXY*ArraySize) 
/ArraySize; 

TrueRad:=PEsizeXY/2; 
Radius:=MaxRadR.atio*PEsize/4.1; 
Templ:=PEsizeXY+GapXY; 
Temp2:=PEsizeXY-GapXY; 
Temp3:=PEsizeXY/5; 
for Xcnt:=l to ArraySize do 
for Ycnt:=l to ArraySize do 
with TextCoord[Xcnt,Ycnt] do 

begin 
X[2]:=Templ*Ycnt-Temp2; 
Y[2]:=Templ*Xcnt 

-PEsizeXY 
+Temp3*2; 

X[l]:=X[2]+Temp3*2; 
Y[l]:=Y[2]+Temp3*1.8; 

end; 
end; 

with PEtxtArray[Buffer] do 
begin 
Mode := Buffer; 
Lines := 2; 
PEsize := CharSizeX*Digits+lO; 
WDSizeX:=trunc(((PEsize+Gap) 

*ArraySize+l)/8+1); 

{text coord. for TAG bit} 

{computes window dimensions for} 
{arrays displays} 

{compute value of gap in w.c.} 

{compute value of PE size in w.c.} 

{compute round PE's radius in w.c.} 
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{compute text coord. for array of PEs} 

{text coord. for TAG bit} 

{computes window dimensions for} 
{arrays displays} 



WDSizeY:=trunc(WDSizeX*8 
*AspectFactor 
+1); 

GapXY:-l.3*WrldCoordXY 
/(ArraySize*PEsize 
+(ArraySize+l)*Gap); 

PEsizeXY:=(WrldCoordXY 
-GapXY*ArraySize) 
/ArraySize; 

TrueRad:=PEsizeXY/2; 
Radius:=MaxR.adRatio*PEsize/3.87; 
Templ:=PEsizeXY+GapXY; 
Temp2:=PEsizeXY-GapXY; 
Temp3:-PEsizeXY/5; 
for Xcnt:=l to ArraySize do 
for Ycnt:=l to ArraySize do 
with TextCoord[Xcnt,Ycnt] do 

begin 
X[2]:=Templ*Ycnt-Temp2; 
Y[2]:=Templ*Xcnt 

-PEsizeXY 
+Temp3*2; 

X[l]:=X[2]+Temp3*2; 
Y[l]:=Y[2]+Temp3*1.8; 

end; 
end; 

New(StatPtr); 
with StatPtr" do 

begin 
ArrayType:=Status; 
Number:=Max.WindowsGlb; 
HiX:=2;HiY:=O; 
LoX:=77;LoY:=l2; 
StatTxt:='STATIJS'; 
Steps:=O; 
Ti.mes :=O. 0; 
for Xcnt:=l to 4 do 

with Boxes[Xcnt] do 
begin 
Yhi:=2.0; 
Ylo:=lO.O; 
Ytxt:=S.0; 
end; 

Boxes[l].Xhi:-4.0; 
Boxes[l].Xlo:=20.0; 
Boxes[l].Xtxt:=6.0; 
Boxes[l].Xdgt:=lS.O; 
Boxes[l] .Txt:='STEP # : '; 
Boxes[2].Xhi:=23.0; 
Boxes[2].Xlo:=52.0; 
Boxes[2].Xtxt:=25.0; 
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{compute value of gap in w.c.} 

{compute value of PE size in w.c.} 

{compute round PE's radius in w.c.} 

{compute text coord. for array of PEs} 

{text coord. for TAG bit} 

{STATIJS panel window ntunber is 16} 
{for IBM CGA : HiX=O, HiY=O} 
{for IBM CGA : LoX=79, LoY=l2} 



Boxes[2].Xdgt:-38.0; 
Boxes[2].Txt:='TIME EIAPSED 
Boxes[4].Xtxt:=47; 
Boxes[4].Txt:-'secs'; 
Boxes[3].Xhi:-55.0; 
Boxes[3].Xlo:-75.0; 
Boxes[3].Xtxt:=57.0; 
Boxes[3].Xdgt:-67.0; 
Boxes[3].Txt:='ARRAY # :'; 

end; 
Zero := 0.0; 
ZeroPtr:-Addr(Zero); 

end; 

. , 
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, 

{get address of ground value} 
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( ~*** 

* * * This procedure initializes all registers and texts storages of a cell to * 
* zero. 

* 

procedure InitializeCell 
(var Cell : PEtype); 

var I,J : integer; 

begin 

with Cell do 
begin 
X_Reg:==O.O; 

end; 

for I:=l to MaxRegs do 
for J:=l to MaxBus do 

begin 
Out_Regs[I,J] :=0.0; 
Last Out[I,J]:==O.O; 
end; 

Cl24:==0; 
C3:==0; 
TAG:==O; 
Regs_Txt[l] :='0'; 
for 1:=2 to MaxTxtCoord do 

Regs_Txt[I]:=' 0.00'; 
end; 

{with this cell, Thou shall} 
{initialize all of its registers} 
{on all buses to zero .. } 

{ .. and all of its texts storage to} 
{strings ' 0.00' or '0'} 

* 
* 
) 
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( * 
* * * This procedure initializes a newly allocated square array specified in * 
* the script. It is called by the procedure : * 
* - GetSystemSpecs. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'ldrlrl<;AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAA**-k) 

procedure InitializeSquare 
(Ptr : ArrayPtrType); 

var I,X,Y : integer; 

begin 

with Ptr" do 

end; 

for X:=l to ArraySize do 
for Y:=l to ArraySize do 

begin 
InitializeCell(PE[X,Y]); 

with PE[X,Y] do 
for I : = 1 to Max.Bus do 

begin 

end; 

if X=l then 
In_Regs[l,I]:=ZeroPtr 

else In_Regs[l,I] := 
Addr(PE[X-1,Y]. 
Last_Out[3, I]); 

if Y=ArraySize then 
In_Regs[2,I]:=ZeroPtr 

else In_Regs[2,I] := 
Addr(PE[X,Y+l]. 
Last_Out[ 4, I]); 

if X=ArraySize then 
In_Regs[3,I]:=ZeroPtr 

else In Regs[3,I]:= 
Addr(PE[X+l,Y]. 
Last_Out[l, I]); 

if Y=l then 
In_Regs[4,I]:=ZeroPtr 

else In_Regs[4,I]:= 
Addr(PE[X, Y-1]. 
Last_Out[2,I]); 

end; 

{for each PEs in square array} 

{ .. init. all of its registers on all} 
{buses and all of its texts storages} 

{with all buses, link PEs together} 
{as follow .. } 
{if PE is on north border of array .. } 
{its north input is grounded for now} 
{else its north input is from its} 
{north neighbor} 

{and so on for the east border .. } 

{except this time we have the south) 
{border and .. } 

{the west border to take care of.} 
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( *'>.'-k 

* * * This procedure initializes a newly allocated type 1 triangle array * 
* specified by the script. It is called by the procedure : * 
* - GetSystemSpecs. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***************) 

procedure InitializeTrianglel 
(Ptr : ArrayPtrType); 

var I,X,Y : integer; 

begin 

with Ptr" do 

end; 

for X:=l to ArraySize do 
for Y:=X to ArraySize do 

begin 
InitializeCell(PE[X,Y]); 

with PE[X,Y] do 
for I :=l to MaxBus do 

begin 
if X=l then 

In_Regs[l,I]:=ZeroPtr 
else In_Regs[l,I] := 

Addr(PE[X-1,Y]. 
Last_Out[3, I]); 

if Y=ArraySize then 
In_Regs[2,I]:=ZeroPtr 

else In_Regs[2,I] := 
Addr(PE[X,Y+l]. 
Last_Out[4, I]); 

if X=Y then 
begin 
In_Regs[3,I]:=ZeroPtr; 
In_Regs[4,I] :=ZeroPtr; 
end 

else begin 
In_Regs[3,I]:= 

Addr(PE[X+l,Y]. 
Last_Out[l,I]); 

In_Regs [ 4, I]:= 
Addr(PE[X,Y-1]. 
Last_Out[2 ,I]); 

end; 
end; 

end; 

{for each PE in triangle array .. } 

{ .. init. all of its registers on all} 
{buses and all of its texts storages} 

{then for all existing buses .. } 

{if PE is on north border of array .. } 
{its north input is grounded for now} 
{else its north input is from its} 
{north neighbor} 

{east border is grounded if PE's on} 
{east boundary, .. } 
{else it's connected to the east} 
{neighbor} 

{south and west inputs are grounded} 
{if PE's on the diagonal boundary .. } 

{else they are connected to the south} 
{and west neighbors} 
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(***'~~******-lrkti~******'~~***'~~******'~~******'~~***tt 

* * * This procedure initializes a newly allocated type 2 triangle array * 
* specified by the script. It is called by the procedure : * 
* - GetSystemSpecs. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"********) 

procedure InitializeTriangle2 
(Ptr : ArrayPtrType); 

var I,X,Y : integer; 

begin 

with Ptr" do 

end; 

for X:-1 to ArraySize do 
for Y:=l to X do 

begin 
InitializeCell(PE[X,Y]); 

with PE[X,Y] do 
for I:=l to MaxBus do 

begin 

end; 

if X:=Y then 
begin 
In_Regs[l,I]:=ZeroPtr; 
In_Regs[2,I] :=ZeroPtr; 
end 

else begin 
In_Regs[l, I]:= 

Addr(PE[X-1,Y]. 
Last_Out[3,I]); 

In_Regs[2,I]:= 
Addr(PE[X, Y+ l] . 
Last_Out[4,I]); 

end; 
if X=ArraySize then 

In_Regs[3,I]:=ZeroPtr 
else In_Regs[3,I] := 

Addr(PE[X+l,Y]. 
Last_Out[l,I]); 

if Y=l then 
In_Regs[4,I]:=ZeroPtr 

else In_Regs[4,I]:= 
Addr(PE[X,Y-1]. 
Last_Out[2,I]); 

end; 

{for each PE in triangle array .. } 

{ .. init. all of its registers on all} 
(buses and all of its texts storages} 

{then, for all existing buses .. } 

{if PE's on the diagonal boundary} 
{then its north and east inputs} 
{are grotlllded for now .. } 

{else they are connected to PE's} 
{north and east neighbors} 

{south input is grounded if PE's} 
{at the bottom of array .. } 
(else it's connected to PE's south} 
{neighbor} 

{west input is grounded if PE's} 
{at the west boundary .. } 
{else it's connected to the west cell} 
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( *"k* 

* * * This procedure initializes a newly allocated type 3 triangle array * 
* specified by the script. It is called by the procedure : * 
* - GetSystemSpecs. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~) 

procedure InitializeTriangle3 
(Ptr : ArrayPtrType); 

var I,J,X,Y : integer; 

begin 

with Ptr" do 

end; 

for X:=l to ArraySize do 
begin 
I:=ArraySize+l-X; 
for Y:=l to I do 

begin 
InitializeCell(PE[X,Y]); 
with PE[X,Y] do 
for J:=l to MaxBus do 

begin 
if X=l then 

In_Regs[l,J] :=ZeroPtr 
else In_Regs[l,J] := 

Addr(PE[X-1,Y]. 
l.ast_Out[3 ,J]); 

if Y=I then 
begin 
In_Regs[2,J]:=ZeroPtr; 
In_Regs[3,J]:=ZeroPtr; 
end 

else begin 
In_Regs[2 ,J] := 
Addr(PE[X,Y+l]. 
last Out[4,J]); 
In_Regs[3,J] := 
Addr(PE[X+l, Y]. 
l.ast_Out[l,J]); 
end; 

if Y=l then 
In_Regs[4,J] :=ZeroPtr 

else In_Regs[4,J]:= 
Addr(PE[X,Y-1]. 
l.ast_Out[2,J]); 

end; 
end; 

end; 

{for each PE in this triangular array} 

{ .. init. all of its registers on all} 
{buses and all of its texts storages} 
{then, for all existing buses .. } 

{if PE's on the north border} 
{then ground its north input .. } 
{else connect the north input} 
{to the northern neighbor} 

{if PE's on the diagonal boundary} 

{then its east input and .. } 
{its south input is grounded for now} 

{else .. } 
{its east input is from its} 
{east neighbor and .. } 

{its south input is from its south} 
{neighbor} 

{west input is grounded if PE's on} 
{the west boundary .. } 
{else connect it to the west} 
{neighboring PE} 
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( *************** 
* * * This procedure initializes a newly allocated type 4 triangle array * 
* specified by the script. It is called by the procedure : * 
* - GetSystemSpecs. * 
* * 
*k'k'k"l~****'Hd.~**'fnri~****'~****'Hd.~**'~t'*'***''k'k"l~****'Hd.~**''k'k"I~*******) 

procedure InitializeTriangle4 
(Ptr : ArrayPtrType); 

var I,J,X,Y : integer; 

begin 

with Ptr" do 

end; 

for X:=l to ArraySize do 
begin 
I:=ArraySize+l-X; 
for Y:=I to ArraySize do 

begin 
InitializeCell(PE[X,Y]); 
with PE[X,Y] do 
for J:-1 to MaxBus do 

begin 
if Y=I then 

begin 
In_Regs[l,J]:=ZeroPtr; 
In_Regs[4,J]:=ZeroPtr; 
end 

else begin 
In_Regs [l,J] := 
Addr(PE[X-1, Y]. 
last_Out[3 ,J]); 
In_Regs[4,J] := 
Addr(PE[X,Y-1]. 
last_Out[2 ,J]); 
end; 

if Y=ArraySize then 
In_Regs[2,J]:=ZeroPtr 

else In_Regs[2,J]:= 
Addr(PE[X,Y+l]. 
last_Out[4,J]); 

if X=ArraySize then 
In_Regs[3,J]:=ZeroPtr 

else In_Regs[3,J]:= 
Addr(PE[X+l,Y]. 
last_Out[l,J]); 

end; 
end; 

end; 

{for each PE in this triangular array} 

{ .. init. all of its registers on all} 
{buses and all of its texts storages} 
{then, for all existing buses .. } 

{if PE's on the diagonal boundary} 

{then its north input and} 
{its west input is grounded for now} 

{else .. } 
{its north input is from its .. } 
{north neighbor and .. } 

{its west input is from its west .. } 
{neighbor} 

{if PE's on the east border then} 
{ground its east input .. } 
{else connect it to the eastern} 
{neighboring PE. } 

{if PE's on the south border then} 
{ground its south input .. } 
{else connect it to the southern} 
{neighboring PE} 
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(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA******l<AAAAAAAAAAAAAAAAAAAAAAAAAA************* 

* * * This procedure writes text inside each PE of an array according to * 
* values of the PE's registers. It's smart enough to know the display mode * 
* of the array and write texts accordingly. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"******) 

procedure WritePEtxt 
(X,Y : integer; 
Ptr : ArrayPtrtype); 

var I integer; 

begin 

with Ptr" do 

end; 

with PEtxtArray[DPmode} do 
for I:=l to Lines do 

DrawTextW 
(TextCoord[X,Y] .X[I], 
TextCoord[X,Y] .Y[I], 
l,PE[X,Y].Regs_Txt[I]); 

{depending on array's display mode .. } 
{writes all displayable registers} 
{values} 
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(**-k-.lc*iri~******-lrlrlrlrk********'~******-lc*iri~******"lrlrlrl~******'~******tt 

* * 
* This procedure define a window, give it a world coordinate system, * 
* and then depending on array's display mode, will draw a square systolic * 
* array inside the window. This window will overlap on top of all * 
* previously defined windows. * 

* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk*AAAAAAA~) 

procedure DrwSquare 
(WorldNum : integer; 

var 

Ptr : ArrayPtrtype); 

X,Y 
TempXY 

integer; 
real; 

begin 

with Ptr"' do 

end; 

with PEtxtArray[DPmode] do 
begin 
DefineWindow(Ntunber, 

HiX,HiY, 
HiX+WDSizeX, 
HiY+WDSizeY) ; 

SelectWorld(WorldNum); 
SelectWindow(Ntunber); 
SetBackground(O); 

TempXY:=PEsizeXY+GapXY; 
for X:=l to ArraySize do 
for Y:=l to ArraySize do 

end; 

begin 
if (Y=X) and 

(DPmode=Arrays) 
then DrawCircle 

(TempXY*Y-TrueRad, 

else 

TempXY*X-TrueRad, 
Radius) 

DrawSquare 
(TempXY*Y-PEsizeXY, 
TempXY*X-PEsizeXY, 
TempXY*Y,TempXY*X, 
false); 

WritePEtxt(X,Y,Ptr); 
end; 

{define window where drawing} 
{will take place} 

{select world for array window} 
{select the window} 
{give it a (black) background .. } 
{else it won't overlap others} 

{if PE's boundary type then draw} 

{it as a circle. Else .. } 

{ .. draw PE as a square} 
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(******'~~'***'*********"'"**"''***'*********"'"'**''***'*********'***"'Hrlril-**>l'**I<******* 

* * 
* This procedure define a window, give it a world coordinate system, * 
* and then depending on array's display mode, will draw a type 1 triangu- * 
* lar systolic array inside the window. This window will overlap on top of * 
* all previously defined windows. * 

* * 
**"'~~'rlr:*~r**.~*k'l~**''rlr:*~r**.~*k'l~**''rlrir'**"rk*:~~~**'~**"'~**A~·**) 

procedure DrwTrianglel 
(WorldNurn : integer; 

var 

Ptr : ArrayPtrtype); 

X,Y 
TernpXY 

integer; 
real; 

begin 

with Ptr" do 

end; 

with PEtxtArray[DPrnode] do 
begin 
DefineWindow(Number, 

HiX,HiY, 
HiX+WDSizeX, 
HiY+WDSizeY); 

SelectWorld(WorldNurn); 
SelectWindow(Number); 
SetBackground(O); 

TernpXY:=PEsizeXY+GapXY; 
for X:=l to ArraySize do 
for Y:=X to ArraySize do 

end; 

begin 
if (Y=X) and 

(DPrnode=Arrays) 
then DrawCircle 

(TernpXY*Y-TrueRad, 

else 

TernpXY*X-TrueRad, 
Radius) 

DrawSquare 
(TernpXY*Y-PEsizeXY, 
TernpXY*X-PEsizeXY, 
TernpXY*Y,TernpXY*X, 
false); 

WritePEtxt(X,Y,Ptr); 
end; 

{define window where drawing} 
{will take place} 

{select world for array window} 
{select the window} 
{give it a (black) background .. } 
{else it won't overlap others} 

{if PE's boundary type and display} 

{mode is Arrays then draw it as a} 
{circle.} 

{ .. Else draw PE as a square} 
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(***-Hrlrl~'*"*'****"'lrlrlrlr-Jrlrlr.******'~~***-tt-k>~******"-lrlrlrir-Jrlrlr.******'~~***tt 

* * 
* This procedure define a window, give it a world coordinate system, * 
* and then depending on array's display mode, will draw a type 2 triangu- * 
* lar systolic array inside the window. This window will overlap on top of * 
* all previously defined windows. * 

* * 
kAAkAkkkkAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAAAAAAAAAAAk***AAAAAAAAAAA~) 

procedure DrwTriangle2 
(WorldNun : integer; 

var 

Ptr : ArrayPtrtype); 

X,Y 
TempXY 

integer; 
real; 

begin 

with Ptr" do 

end; 

with PEtxtArray[DPmode] do 
begin 
DefineWindow(Ntnnber, 

HiX,HiY, 
HiX+WDSizeX, 
HiY+WDSizeY); 

SelectWorld(WorldNum); 
SelectWindow(Ntnnber); 
SetBackground(O); 

TempXY:=PEsizeXY+GapXY; 
for X:=l to ArraySize do 
for Y:=l to X do 

end; 

begin 
if (Y=X) and 

(DPmode=Arrays) 
then DrawCircle 

(TempXY*Y-TrueRad, 

else 

TempXY*X-TrueRad, 
Radius) 

DrawSquare 
(TempXY*Y-PEsizeXY, 
TempXY*X-PEsizeXY, 
TempXY*Y,TempXY*X, 
false); 

WritePEtxt(X,Y,Ptr); 
end; 

{define window where drawing} 
{will take place} 

{select world for array window} 
{select the window} 
{give it a (black) backgrotnld .. } 
{else it won't overlap others} 

{if PE's boundary type and display} 

{mode is Arrays then draw it as a} 
{circle.} 

{ .. Else draw PE as a square} 
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(***'~rk"k****'~rk-k***lri'"*****'**ld~***"~rk"k****''"**'I'******"'"***'******"'"****** 

* * 
* 1his procedure define a window, give it a world coordinate system, * 
* and then depending on array's display mode, will draw a type 3 triangu- * 
* lar systolic array inside the window. 1his window will overlap on top of * 
* all previously defined windows. * 

* * 
********************************************************************~) 

procedure DrwTriangle3 
(WorldNum : integer; 

var 

Ptr: ArrayPtrtype); 

I,X,Y 
TempXY 

integer; 
real; 

begin 

with Ptr" do 

end; 

with PEtxtArray[DPmode] do 
begin 
Define'Window(Number, 

HiX,HiY, 
HiX+WDSizeX, 
HiY+WDSizeY); 

Select'World(WorldNum); 
Select'Window(Number); 
SetBackground(O); 

TempXY:=PEsizeXY+GapXY; 
for X:=l to ArraySize do 

begin 
I:=ArraySize-X+l; 
for Y:=l to I do 

begin 
if (Y=I) and 

(DPmode=Arrays) 
then DrawCircle 

(TempXY*Y-TrueRad, 

else 

TempXY*X-TrueRad, 
Radius) 

DrawSquare 
(TempXY*Y-PEsizeXY, 
TempXY*X-PEsizeXY, 
TempXY*Y,TempXY*X, 
false); 

WritePEtxt(X,Y,Ptr); 
end; 

end; 
end; 

{define window where drawing} 
{will take place} 

{select world for array window} 
{select the window} 
{give it a (black) background .. } 
{else it won't overlap others} 

{if PE's boundary type and display} 

{mode is Arrays then draw it as} 
{a circle.} 

{ .. Else draw PE as a square} 
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( * 
* * * This procedure define a window, give it a world coordinate system, * 
* and then depending on array's display mode, will draw a type 4 triangu- * 
* lar systolic array inside the window. This window will overlap on top of * 
* all previously defined windows. * 

* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~) 

procedure DrwTriangle4 
(WorldNum : integer; 

var 

Ptr: ArrayPtrtype); 

I,X,Y 
TempXY 

integer; 
real; 

begin 

with Ptr" do 

end; 

with PEt:xtArray[DPmode] do 
begin 
DefineWindow(Number, 

HiX,HiY, 
HiX+WDSizeX, 
HiY+WDSizeY); 

SelectWorld(WorldNum); 
SelectWindow(Number); 
SetBackground(O); 

TempXY:=PEsizeXY+GapXY; 
for X:=l to ArraySize do 

begin 
I:=ArraySize-X+l; 
for Y:=I to ArraySize do 

begin 
if (Y=I) and 

(DPmode=Arrays) 
then DrawCircle 

(TempXY*Y-TrueRad, 

else 

TempXY*X-TrueRad, 
Radius) 

DrawSquare 
(TempXY*Y-PEsizeXY, 
TempXY*X-PEsizeXY, 
TempXY*Y,TempXY*X, 
false); 

WritePEt:xt(X,Y,Ptr); 
end; 

end; 
end; 

{define window where drawing} 
{will take place} 

{select world for array window} 
{select the window} 
{give it a (black) background .. } 
{else it won't overlap others} 

{if PE's boundary type and display} 

{mode is Arrays then draw it as} 
{a circle.} 

{ .. Else draw PE as a square} 
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('*"*'**************************************************************************: 
* * This procedure will draw the status window at the default location and * 
* writes initial text within its boxes. It is used only once. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk*) 

procedure DrwStatusWindow 
(WorldNtun : integer; 

Ptr : ArrayPtrtype); 

var I integer; 

begin 

with Ptr" do 

end; 

begin 
Define'Window(Ntnnber, 

Hi.X,HiY, 
!.DX,LDY); 

SelectWorld(WorldNum); 
SelectWindow(Ntnnber); 
SetBackground(O); 

DrawBorder; 
for I:-1 to 3 do 

with Boxes[!] do 
begin 
DrawSquare (Xhi, Yhi, 

Xlo,Ylo, 
false); 

DrawTextW(Xtxt,Ytxt, 
l,Txt); 

end; 
DrawTextW(Boxes[4].Xtxt, 

Boxes [ 4] . Ytxt, 
l,Boxes[4].Txt); 

Str(Steps:4,Boxes[l].Dgt); 
Str(Times:9:6,Boxes[2].Dgt); 
Boxes[3].Dgt:==CurrntPtr".StatTxt; 
for I:-1 to 3 do 

end; 

with Boxes[!] do 
DrawTextW(Xdgt, 

Ytxt,l, 
Dgt); 

{define window where drawing} 
{will take place} 

{select world for array window} 
{select the window} 
{clears window of all possible} 
{background garbage} 



197 

(AAAAAAAAAAAAAAAAAAAAAAAAAAA**AAAAAAAAAAAAAAAAAAAAAAA************~ 

* * * This procedure draws up the configuration of arrays read in from script * 
* file. It also stores all configured windows in the window stack for * 
* later updating. Depending on the type of the array, it will call these * 
* procedures : * 
* - DrwSquare () , * 
* - DrwTrianglel (), * 
* - DrwTriangle2 (), * 
* - DrwTriangle3 (), * 
* - DrwTriangle4 () * 
* to properly draw the array itself. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***********) 

procedure DrawSystem 
(Ptr: ArrayPtrType); 

var TempPtr : ArrayPtrType; 

begin 

SelectScreen(2); 
case PtrA.ArrayType of 

Square: 
DrwSquare(FirstWorld,Ptr); 

Trianglel: 
DrwTrianglel(FirstWorld,Ptr); 

Triangle2: 
DrwTriangle2(FirstWorld,Ptr); 

Triangle3: 
DrwTriangle3(FirstWorld,Ptr); 

Triangle4: 
DrwTriangle4(FirstWorld,Ptr); 

end; 
StoreWindow(PtrA.Number); 
ClearScreen; 
TempPtr:=PtrA.Next; 
while TempPtr<>Ptr do 

begin 
if TempPtr<>StatPtr then 

with TempPtrA do 
begin 

case ArrayType of 
Square: 
DrwSquare(FirstWorld, 

TempPtr); 
Triangle!: 
DrwTrianglel(FirstWorld, 

TempPtr); 

(points to current array} 

(moving array pointer} 

(at RAM screen .. } 
{draw the current array, depending} 
{on which type it is} 

(and stores it in window stack} 
(then clears RAM.} 
(starts with a non-current array} 
{and as with all non-current array .. } 

(except the status window} 

(draws them and .. } 



Triangle2: 
DrwTriangle2(FirstWorld, 

TempPtr); 
Triangle3: 
DrwTriangle3(FirstWorld, 

TempPtr); 
Triangle4: 
DrwTriangle4(FirstWorld, 

TempPtr); 
end; 
StoreWindow(Number); 

end; 
TempPtr:=TempPtrA.Next; 
end; 

DrwStatusWindow(StatusWorld, 
StatPtr); 

StoreWindow(StatPtrA.Number); 
CopyScreen; 
SelectScreen(l); 
RestoreWindow(PtrA.Number,0,0); 

SelectWindow(PtrA.Number); 
InvertWindow; 

end; 
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{stores their image into window stack} 

{then draw status window} 

{don't forget to stores it} 
{and copy'm all to displayed screen. } 
{now selects displayed screen .. } 
{restores current window to its} 
{current position,} 
{selects it} 
{then shows that it's current.} 
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( *** 
* * * This procedure changes the displays' color, backward or forward. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****) 

procedure ChangeColor 
(Direction: integer); 

begin 

Foregrotmd:= 
(Foregrotmd+Direction) 

mod 16; 
if Foregrotmd=O then 

if Direction<O then 
Foreground:=l5 

else if Direction>O then 
Foregrotmd:=l; 

SetForegrotmdColor 
(Foregrotmd); 

end; 

(negative for previous color,} 
(positive for next.} 

(computes next or previous color} 

(remember to skips color black} 

{set it} 
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(***tt-k-.~~~******~~~*********'~~*********'k**i~~******frk** 

* * * This procedure redraws the current array in the next display mode. This * 
* will allow a user to look at all registers of PEs in the array at the * 
* same time for easy debuging. Depending on the type of array it will call * 
* these procedures : * 
* - DrwSquare () , * 
* - DrwTrianglel () , * 
* - DrwTriangle2 () , * 
* - DrwTriangle3 (), * 
* - DrwTriangle4 () * 
* to properly draw the array itself. * 
* * 
***'~rlr*****'~***'k"kkJ~***~~***":lrlrlrl.r*lrk**-ln'<"klrl.******"'~******"'~"**) 

procedure ChangeDisplayMode 
(Ptr : ArrayPtrType); 

var TempPtr : ArrayPtrType; 

begin 

if Ptr=StatPtr then 
begin 
sound(SOO); 
delay(300); 
nosmmd; 
end 

else with Ptr" do 
begin 
case DPrnode of 

Full : DPrnode:=Arrays; 
Arrays : DPrnode:=Buffer; 
Buffer : DPrnode:=F\.tll; 
end; 

ClearWindowStack(Number); 
SelectScreen(2); 
ClearScreen; 
case ArrayType of 

Square: 
DrwSquare(FirstWorld,Ptr); 

Triangle!: 
DrwTrianglel(FirstWorld,Ptr); 

Triangle2: 
DrwTriangle2(FirstWorld,Ptr); 

Triangle3: 
DrwTriangle3(FirstWorld,Ptr); 

Triangle4: 
DrwTriangle4(FirstWorld,Ptr); 

end; 
StoreWindow(Ntnnber); 
ClearScreen; 

{points to current array} 

{moving array pointer} 

{if this is the status panel then .. } 

{screams at 1000 Hertz} 
{for 3 tenths of a second} 
{then shuts up} 

{erase old window from window stack} 
{select RAM screen .. } 
{wipes it clean and .. } 
{draw the current array, depending} 
{on which type it is} 

{and stores it in window stack} 
{then clears RAM.} 



end; 

TempPtr:-Next; 
while TempPtr<>Ptr do 

begin 
if TempPtr<>StatPtr then 

Restore'Window 
(TempPtrA.Number,0,0); 

TempPtr:-TempPtrA.Next; 
end; 

Restore'Window 
(StatPtrA.Number,0,0); 
CopyScreen; 
SelectScreen(l); 
Restore'Window(Number,0,0); 

Invert'Window; 
end; 

{starts with a non-current array) 
{and as with all non-current array .. ) 

{except the status window} 
{restores all windows to their) 
{current position,) 

{then restore status window to its) 
{current position) 
{and copy RAM to displayed screen.) 
{now selects displayed screen .. ) 
{restores current window to its) 
{current position,) 
{then shows that it's current.) 
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(**************AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*A*AAAAAAAA~ 

* * * This procedure makes either the previous or the next window current for * 
* any operation, for example moving a window. The current window can * 
* overlaps other windows without destroying them. * 
* * 
AAAAAAA**********AAAAAAAAAAAAAAAAAAAAAAAAA***A*A*AAAAAAAAAA*AA"******AAAAAAAk) 

procedure SwitchWindow 

var 

(var Ptr : ArrayPtrType; 
I : integer) ; 

TempPtr 
TempStr 

Temp No 

ArrayPtrType; 
Textype; 
integer; 

begin 

TempStr:=PtrA.StatTxt; 
TempNo:-PtrA.Number; 
if I=O then Ptr:=PtrA.Last 
else Ptr:=PtrA.Next; 
TempPtr:=PtrA.Next; 
InvertWindow; 
StoreWindow(TempNo); 
SelectScreen(2); 
ClearScreen; 
with StatPtrA,Boxes[3] do 

begin 
RestoreWindow(Number,0,0); 
SelectWorld(StatusWorld); 
SelectWindow(Number); 
SetColorBlack; 
DrawTextW(Xdgt,Ytxt,l,TempStr); 
SetColorWhite; 
DrawTextW(Xdgt,Ytxt,l, 

PtrA.StatTxt); 
StoreWindow(Number); 
end; 

ClearScreen; 
while TempPtr<>Ptr do 

with TempPtrA do 
begin 
if NumBer<>MaxWindowsGlb then 

RestoreWindow(Number,0,0); 
TempPtr:-Next; 
end; 

if Ptr<>StatPtr then 
RestoreWindow 
(MaxWindowsGlb,0,0); 

CopyScreen; 
SelectScreen(l); 

{points to current array} 
{0 for previous, 1 for next} 

{remember text and number of} 
{current window} 
{if backward, makes previous window} 
{current, else next window.} 

{Shows window isn't current anymore} 
{and stores it in window stack} 
{now, selects the RAM screen .. } 
{clears it, then .. } 
{updates the AJ]J{AY # box of the} 
{status window by .. } 

{erasing the old status text} 

(and write in status text of} 
(current window} 

(and as with all non-current windows .. } 

(except the status window} 
(brings them back to RAM screen at} 
(their current position.} 

(now draw status window if it's} 
(not the current one.} 

(copy to displayed screen .. } 
(then selects displayed screen,} 



RestoreWindow(PtrA.Number,0,0); 

SelectWindow(PtrA.Number); 
InvertWindow; 

end; 

(restores current window to} 
(its current position,} 
(selects it} 
{and shows that it's current} 

203 



204 

( ***** 
* * * '!his procedure writes back out the (possibly updated) script file to * 
* disk. Since its logic is fairly straightforward, no connnents within its * 
* body will be needed. So, there will be none. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***) 

procedure WriteScriptFile; 

var SysPtr 
IOPntr 

LnkPtrl 
LnkPtr2 

Intl,Int2 , 

ArrayPtrtype; 
IOPtrtype; 

LinkPtrType; 

X,Y : integer; 

begin 

assign(ScriptFile,ScriptName); 
rewrite(ScriptFile); 
writeln(ScriptFile,'ARRAYSIZE :'); 
writeln(ScriptFile,ArraySize,' .'); 
writeln(ScriptFile,'SYSTEMSPECS :'); 
SysPtr:-FixedPtr; 
while SysPtr<>StatPtr do 
with SysPtr" do 

begin 
Intl:=integer(ArrayType); 
Int2:=integer(DPmode); 
writeln(ScriptFile,Number,' ' 

Intl, ' ' , lnt2 , ' ' , 
HiX,' ',HiY,' , '); 

write(ScriptFile,'Pecodes :'); 
for X:=l to ArraySize do 

begin 
for Y:=l to ArraySize do 

write(ScriptFile, 
' ',PE[X,Y].Code:2); 

if X<ArraySize then 
begin 
writeln(ScriptFile); 
write(ScriptFile, 

end; 
end; 

I I); 

if Next<>StatPtr then 
writeln(ScriptFile,' ; ') 

else writeln(ScriptFile,' .'); 
SysPtr:-Next; 
end; 

IOPntr:=IOPtr; 



writeln(ScriptFile,'INFILES :'); 
while IOPntr". IO= INPUT do 
with IOPntr" do 

begin 
write(ScriptFile,Name,' ', 

ArNum,' ',Side,' ', 
Bus,' ',IOStart); 

if NextIO".IO=INPlJf then 
writeln(ScriptFile,' ,') 

else writeln(ScriptFile,' .'); 
IOPntr:=NextIO; 
end; 

writeln(ScriptFile, 'OUfFILES : '); 
while IOPntr<>NIL do 
with IOPntr" do 

begin 
write(ScriptFile,Name,' ', 

ArNum,' ',Side,' ', 
Bus,' ',IOStart); 

if NextIO<>NIL then 
writeln(ScriptFile,' ,') 

else writeln(ScriptFile,' .'); 
IOPntr:=NextIO; 
end; 

LnkPtrl:=LinkPtr; 
LnkPtr2:=LinkPtr; 
writeln(ScriptFile,'SETUP :'); 
while LnkPtrl<>NIL do 
with LnkPtrl" do 

begin 
writeln(ScriptFile,ArNums[l]); 
while (LnkPtr2<>NIL) and 

(LnkPtr2".ArNums[l]= 
ArNums [ 1]) do 

begin 
case LnkPtr2".Sides[l] of 

1: write(ScriptFile, 
'Northinput: '); 

2: write(ScriptFile, 
'Eastinput : '); 

3: write(ScriptFile, 
'Southinput: '); 

4: write(ScriptFile, 
'Westinput : '); 

end; 
write(ScriptFile, 

LnkPtr2".ArNums[2],' I 

LnkPtr2".Sides[2] ,' ', 
LnkPtr2".I.nkStart,' ', 
LnkPtr2".I.nkStop,' '); 

if LnkPtr2".NxtLink=NIL then 
writeln(ScriptFile,' .') 
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end; 

else if LnkPtr2A.NxtLinkA. 
ArNtm1S[l]<>ArNums[l] 
then 
writeln(ScriptFile,';') 

else writeln(ScriptFile,' ,'); 
lnkPtr2:-lnkPtr2A.NxtLink; 
end; 

lnkPtrl:=lnkPtr2; 
end; 
close(ScriptFile); 
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(AAAAAAAAAAAAAAAAAAAAAAA************************************************* 

* * * This procedure gets script file name specified by user on the conunand * 
* line or failing that it will prompt user for it. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA****kAAAAAA**********) 

procedure PromptUser; 

var OK : boolean; 

begin 

ClrScr; 
if ParamCount=O then 

begin 
writeln('** Script filename?'); 
write('>'); 
readln(ScriptName); 
end 

else ScriptName:=ParamStr(l); 
repeat 

assign(ScriptFile,ScriptName); 
{$!-} 
reset(ScriptFile); 
{$!+} 
OK:=(IOresult=O); 
if not OK then 

begin 

{clears out display} 
{if no parameter on command line} 

{prompts user and reads in script} 
{file name} 

{IO loop check here} 

{check IO result for error} 

writeln(' !! File not found!!'); {let user knows if error} 
writeln('** Script filename?'); {prompts user again} 
write ( ' > ' ) ; 
readln(ScriptName); 
end; 

until OK; 

end; 

{until no more IO error} 
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( ******************* 
* * * This function returns the first (non-space) char of the next word on * 
* the current line. If EOln is encounter, it will return a '@' character. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAA) 

function SeekNxtWord 
(var FileVar : text ) 

char 

var TempChr char; 

begin 

if SeekEoln(FileVar) then 
SeekNxtWord:='@' 

else begin 
read(FileVar,TempChr); 
SeekNxtWord:=TempChr; 

end; 

end; 

{skips all spaces and tabs to first} 
{non-blank char. Return@ if char} 
{is EOln .. } 
{else return it} 
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( *********************** 
* * * This function reads statements out of the script file and returns * 
* their type to the calling block. It will set an appropriate error value * 
* and returns a zero if there are any syntax error in the statements. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***AAAAAA~) 

f1.ll1ction StatementType 
integer 

var I : integer; 
TempStr : string[Max.Word] ; 

begin 
I:=O; 
while SeekEoLn(ScriptFile) do 

readln(ScriptFile); 
repeat 

I:=I+l; 
read(ScriptFile,TempStr[I]); 

until Eoln(ScriptFile) or 
(!=Max.Word) or 
(TempStr[I]=' ') or 
(TempStr[I]=' :'); 

if (TempStr[I]=' ') and 
not SeekEoln(ScriptFile) then 
read(ScriptFile,TempStr[I]); 

if TempStr[I]=' :' then 
begin 
TempStr[O]:=Chr(I-1); 
I:=l; 
while (I<=MaxStr) and 

(TempStr<>StringList[I]) 
do I:=I+l; 

if I<=MaxStr then 
begin 
StatementType:=I; 
if SeekEoln(ScriptFile) then 

readln(ScriptFile); 
end 

{skips all spaces, tabs} 
{and blank lines} 
{then reads in the statement} 

{then finds the delimiter.} 

{if found, see what type of} 
{statement it is} 

{and return its type} 

else {else, sets error-type value} 
begin StatementType:=O; 
ErrorSet:=[l]; end; 

end 
else {screams here too} 

begin 
StatementType:=O; 
ErrorSet:=[l]; 
end; 

end; 
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( *******k*k-k-kk** 

* * * This procedure build and initializes an array specified in the script * 
* file. It does minimal syntax error checking on the script. * 
* It is called by : * 
* - procedure ReadScript(). * 
* * 

procedure GetSystemSpecs 
(var Ptr: ArrayPtrType); 

var ArType , 

begin 

Mode 
X,Y 

TempChr 
integer; 
char; 

with Ptr" do 
begin 
read(ScriptFile,Number, 

ArType , Mode, HiX, Hi Y) ; 
if not (Number in 

[1. .MaxWindowsGlb-1]) then 
begin 
ErrorSet:=[lO]; 
exit 
end; 

ArrayType:-TypeOfArray(ArType); 
if not (ArrayType in 

[Square,Trianglel,Triangle2, 
Triangle3,Triangle4]) then 

begin 
ErrorSet:=[ll]; 
exit; 
end; 

DPmode:=DisplayMode(Mode); 
if not (DPmode in 

[Fu.11,Arrays,Buffer]) then 
begin 
ErrorSet: = [ 15] ; 
exit; 
end; 

TempChr:=SeekNxtWord 
(ScriptFile); 

If not (TempChr=' , ') then 
begin 
ErrorSet:=[4]; 
exit; 
end 

else readln(ScriptFile); 

(retrieve values for the array} 

(error if array number is >= 16} 

(stores the type of array or .. } 
(error when type is unknown} 

(stores the array's display mode .. } 
(or error when type is unknown} 

(look for delimiter} 

(and if not found, gives error} 

**) 



end; 

if StatementType=6 then 
for X:-1 to ArraySize do 

for Y:=l to ArraySize do 
begin 
read(ScriptFile, 

PE[X,Y] .Code); 
if not (PE[X,Y].Code in 

[ 0 .. MaxCodes] ) then 
begin 
ErrorSet:=[l6]; 
exit; 
end 

end 
else begin 

ErrorSet:=[8]; 
exit; 
end; 

case ArrayType of 
Square: InitializeSquare 

(Ptr); 
Trianglel: InitializeTrianglel 

(Ptr); 
Triangle2: InitializeTriangle2 

(Ptr); 
Triangle3: InitializeTriangle3 

(Ptr); 
Triangle4: InitializeTriangle4 

(Ptr); 
end; 

Str(Number:4,StatTxt); 

new(Next); 
NextA.Last:=Ptr; 
Ptr:=Next; 
end; 

(Next, look for array's PEs codes} 
(layout and read it in} 

(error if something is wrong} 

(error if something is wrong} 

(depending on type of array, call} 
(propper procedure to initialize} 
(its PEs} 

(convert the array number to its} 
(string equivalent for status panel} 
(then get storage space for next} 
(array} 
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( *** 
* * * This procedure sets the start and stop index values to traverse the side * 
* of an array depending on the array type and which side of the array. * 
* * 

procedure SideTraversal 
( Side : integer; 

ArType : TypeOfArray; 
var Xl,X2 , 

Yl,Y2 : integer); 

begin 

case Side of 

1: case ArType of 
Square, 
Trianglel, 
Triangle3: begin 

Xl:=l;X2:=1; 
Yl:=l; 
Y2:=ArraySize+l; 
end; 

Triangle2: begin 
Xl:=l; 
X2:=ArraySize+l; 
Yl:=l; 
Y2:=ArraySize+l; 
end; 

Triangle4: begin 
Xl:=ArraySize; 
X2:=0; 

end; 

Yl:=l; 
Y2:=ArraySize+l; 
end; 

2: case ArType of 
Square, 
Trianglel, 
Triangle4: begin 

Xl:=l; 
X2:-=ArraySize+l; 
Yl:=ArraySize; 
Y2:=ArraySize; 
end; 

Triangle2: begin 
Xl:=l; 
X2:=ArraySize+l; 

(depending on which side and type} 
(of array is involved, prepares} 
(the start and stop index values} 
(to traverse the side of array} 
(North side} 

(East side} 



Yl:=l; 
Y2:=ArraySize+l; 
end; 

Triangle3: begin 

end; 

Xl: =ArraySize; 
X2:=0; 
Yl:=l; 
Y2:-ArraySize+l; 
end; 

3: case ArType of 
Square, 
Triangle2, 
Triangle4: begin 

Xl:=ArraySize; 
X2:=ArraySize; 
Yl:=l; 
Y2:=ArraySize+l; 
end; 

Trianglel: begin 
Xl:=l; 
X2:=ArraySize+l; 
Yl:=l; 
Y2:=ArraySize+l; 
end; 

Triangle3: begin 
Xl:=ArraySize; 
X2:=0; 

end; 

Yl:=l; 
Y2:=ArraySize+l; 
end; 

4: case ArType of 
Square, 
Triangle2, 
Triangle3: begin 

Xl:=l; 
X2:=ArraySize+l; 
Yl:=l;Y2:=1; 
end; 

Trianglel: begin 
Xl:=l; 
X2:=ArraySize+l; 
Yl:=l; 
Y2:=ArraySize+l; 
end; 

Triangle4: begin 
Xl: =ArraySize; 
X2:=0; 
Yl:=l; 
Y2:=ArraySize+l; 
end; 
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{South side} 

{West side} 



:pua 
:pua 

:pua 
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( ********************* 
* * * This procedure, given the info contains in a IOType record, will link * 
* a buffer of an IO file to a side of an array at the proper time. If the * 
* IO file is of type INPUT, all In_Regs of PEs' on the proper side of the * 
* array will contain the addresses of the buffer's individual registers. * 
* If the IO file is of type OUTPUT, the reverse is true. * 
* This procedure is called by : * 
* - procedure MultiStepsExec(). * 
* - procedure SingleStepExec(). * 
* * 
***'~'******'~'******"~'*"**'Hriri'"******'~'******'H-H+*****'H-k-A'*"*****'H-k-A**) 

procedure LinkIOFlow 

var 

( Ptr : IOPtrType; 
Step : integer); 

I 
Xl,X2,X3 , 
Yl,Y2,Y3 : integer; 

begin 
while Ptr<>NIL do 

with Ptr" do 
begin 

end; 

if IOStart=Step then 
begin 
Active:=TRUE; 
SideTraversal(Side, 

ArPtr".ArrayType, 
Xl , X2 , Y1, Y2) ; 

X3:=Xl; Y3:=Yl; I:=l; 
repeat 

with ArPtr" do case IO of 
INPUT: 

PE[X3,Y3]. 
In_Regs[Side,Bus]:= 
Addr(InR.egs[I]); 

OUTPUT: 
OutRegs[I] := 
Addr(PE[X3, Y3] . 
Last_Out[Side,Bus]); 

end; 
if Xl<X2 then X3:=X3+1 
else if Xl>X2 then X3:=X3-l; 
if Yl<Y2 then Y3:=Y3+1; 
I:=I+l; 

\.U1til (X3=X2) and (Y3=Y2); 
end; 

Ptr:=NextIO; 
end; 

{if it's time to link IO to array .. } 

{marks that IO channel is now active.} 
{depending on which side and type} 
{of array is involved, prepares the} 
{start and stop index values} 

{actual linking is done here while} 
{traversing the side of array} 

{PE's input registers gets addresses} 
{of IO channel's input buffers} 

{IO channel output buffer gets} 
{addresses of PE's output registers} 



( 
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* * * This procedure build and initializes the IO system of the configuration * 
* from the script file. It does lots of error checking on the script. * 
* It is called by : * 
* - procedure ReadScript(). * 
* Also, it called : * 
* - procedure LinkIOFlow(). * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****************) 

procedure GetIOSpecs 

var 

(var Ptr : IOPtrtype; 
Flag: IOflag); 

Can 
I 

TempChr 

boolean; 
integer; 
char; 

begin 

repeat with PtrA do 
begin 
IO:=Flag; 
Active:=FAL.5E; 
ArPtr:=CurrntPtr; 
Can:=SeekEoln(ScriptFile); 
I:==O; 
repeat 

I:=I+l; 
read(ScriptFile,Name[I]); 

until (Name[I]=' ') or 
(I=MaxFileName); 

If Name[I]<>' ' then 
ErrorSet:=[S]; 

Name[O]:=char(I-1); 
assign(FileVar,Name); 
case Flag of 

INPUT: begin 
{$I-}reset(FileVar); 
{$1+} 
if not (IOresult=O) 

then ErrorSet:= 
ErrorSet+ [ 13] ; 

end; 
OUTPUT: rewrite(FileVar); 
end; 

Can:=SeekEoln(ScriptFile); 
read(ScriptFile,ArNum,Side, 

Bus,IOStart); 
if not (ArNum in 

[l .. MaxWindowsGlb-1]) 

{garbage can for expediency} 

{does this 'til " 11 or error is met .. } 

{set IO type} 
(IO channel is not active yet} 
{gets the address of systems arrays} 
{get all blanks in between data} 

(retrieves IO filename to storage} 

(if bad name, sets error alarm} 

(sets the length of the name string} 
(IO file preprocessing starts here} 

{if input file, open for reading .. } 

(then checks IO result for error} 
(and set error if there are any.} 

{if output file, open for writing.} 

{get all blanks in between data} 
{then get all remaining data.} 

(valid array number ?} 



then ErrorSet:=[ll] 
else 

while (ArPtr".Number<>ArNum) 
and (ArPtr" .Next<>CurrntPtr) 
do ArPtr:=ArPtr".Next; 

if ArPtr".Number<>ArNum then 
ErrorSet:=ErrorSet+[6]; 

if not (Side in [l. .MaxR.egs]) 
then ErrorSet:-ErrorSet+[9]; 

if not (Bus in [ 1 .. MaxBus] ) 
then ErrorSet:-ErrorSet+[l4]; 

case Flag of 
INPUT: 
for I:-1 to MaxArraySize do 

InRegs [I] :=(). 0; 
OUTPUT: 
for I:=l to MaxArraySize do 

OutR.egs[I]:=ZeroPtr; 
end; 

TempChr:=SeekNxtWord(ScriptFile); 
If not (TempChr in[',','.']) 

then ErrorSet:=ErrorSet+[4] 
else readln(ScriptFile); 
if (TempChr=' , ') or (Flag=INPUT) 

then begin 
new(NextIO); 
Ptr:=NextIO; 
end 

else NextIO:=NIL; 
end; 

until (ErrorSet<>[]) or 
(TempChr='. '); 

end; 

{search for the specified array .. } 

{does array exist ?} 

{valid side ?} 

{valid bus ? } 

{init. all IO buffer's registers} 

{where is delimiter ?} 

{gets storage space for next} 
{IO unit and points to it} 
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(******"'~~'**"'*********"'/d("k"inhl-il~******->hhh~~*********'h\"*ihhhi~******* 

* * 
* This procedure, given the info contains in a list of LinkType records, * 
* will link a side of a source array to a side of an destination array, * 
* or it will cut off the link by pointing input registers to value zero * 
* The link is achieved by having all In_Regs of PEs' on the proper side of * 
* the destination array store addresses of Out_Regs of all PE's on the * 
* proper side of the source array. * 
* This procedure is called by : * 
* - procedure MultiStepsExec(). * 
* - procedure SingleStepExec(). * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~) 

procedure LinkDataFlow 
(Link : LinkPtrType; 
Step : integer); 

var Xl,X2,X3 ' 
Yl,Y2,Y3 

I 
SrcDstType; 
integer; 

begin 

while Link<>NIL do 
with Link" do 

begin 
if lnkStart=Step then 

begin 
for I:=l to 2 do 

begin 
SideTraversal(Sides[I], 

ArPtrs[I]".ArrayType, 
Xl[I] ,X2[I], 
Yl[I] ,Y2[I]); 

X3[I] :=Xl[I]; 
Y3[I] :=Yl[I]; 
end; 

repeat 
for I:=l to MaxBus do 

ArPtrs[l]". 
PE [X3 [ l] , Y3 [ l]] . 
In_Regs[Sides[l],I]:= 
Addr(ArPtrs[2]". 

PE[X3[2],Y3[2]]. 
l.ast_Out[Sides[2] ,I]); 

for I:=l to 2 do 
begin 
if X1 [I ]<X2 [I] then 

X3 [I] : =X3 [I]+ 1 
else if Xl[I]>X2[I] then 

X3 [I ] : =X3 [ I ] -1 ; 

{start at begining of Link list} 
{and until the end of list .. } 
{do all things below.} 
{if the moment of truth arrives} 
{then .. } 
{ .. for both source and destination,} 
{depending on which side and type} 
{of array is involved, prepares} 
{the start and stop index values} 
{to traverse the side of array} 

{repeats doing the following .. } 
{for all buses, points Input registers} 
{of destination array to the Output} 
{registers of the source array} 

{increments side traversal index} 
{values for both source and} 
{destination array} 



end; 

if Yl[I]<Y2[I] then 
Y3 [I] : =Y3 [I]+ 1 ; 

end; 
until (X3 [ 1] =X2 [ 1]) and 

(Y3[l]=Y2[1]) ; 
end 

else if (LnkStart<Step) and 
(LnkStop=Step) then 

begin 
SideTraversal(Sides[l], 

ArPtrs[l]A.ArrayType, 
Xl[l] ,X2[1], 
Yl[l],Y2[1]); 

X3[1] :=Xl[l]; 
Y3[1] :=Yl[l]; 
repeat 

for I :=l to MaxBus do 
ArPtrs[l]A. 
PE[X3[1],Y3[1]]. 
In_Regs[Sides[l],I]:= 
ZeroPtr; 

if Xl[l]<X2[1] then 
X3 [l] :=X3[1]+1 

else if Xl[l]>X2[1] then 
X3 [ 1 ] : =X3 [ 1] -1 ; 

if Yl[l]<Y2[1] then 
Y3[1] :=Y3[1]+1; 

until (X3[l]=X2[1]) and 
(Y3[l]=Y2[1]); 

end; 
Link:=NxtLink; 
end; 

{until array's side is fully} 
{traversed} 

{when it's time to cut the link} 

{for the destination array, prepares} 
{the start and stop index values} 
{to traverse its side} 

{repeats doing the following .. } 
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{for all buses, points Input registers} 
{of destination array to the} 
{value zero} 

{increments side traversal index} 
{values for destination array} 

{until array's side is fully} 
{traversed} 
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( *** 
* * 
* This procedure gets info of the data flow from array to array, including* 
* feedback paths, according to a script file. It does some error checking * 
* on the script file and on the way user specified cormective path between * 
* arrays. 
* The procedure is called by 
* - procedure ReadScript(). 
* It calls : 
* - procedure LinkDataFlow(). 

* 
* 
* 
* 
* 

* * 
**AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk*lri<AAAAAAAA°************) 

procedure GetDataFlow 
(var Link : LinkPtrType; 

var 

Ptr : ArrayPtrType); 

TempChr : char; 
New Link 
TmpLink : LinkPtrType; 

begin 

new(Link); 
TmpLink:=Link; 
NewLink:=Link; 
repeat 

with TmpLink"' do 
begin 
ArPtrs[l] :=Ptr; 
ArPtrs[2] :=Ptr; 
read(ScriptFile,ArNums[l]); 
while (ArPtrs[l]"'.Number<> 

ArNums[l]) and 
(ArPtrs[l]"'.Next<>Ptr) 
do ArPtrs[l]:=ArPtrs[l]"'.Next; 

if (ArPtrs[l]"'.Number<> 
ArNums [ 1]) or 
(ArNums[l]--Max.WindowsGlb) 

then begin 
ErrorSet:=ErrorSet+[6]; 
exit; 
end; 

end; 
repeat 

with NewLink"' do 
begin 
Sides[l]:=StatementType-6; 
if not (Sides[l] in 

[1. .MaxRegs]) then 
ErrorSet:=ErrorSet+[7]; 

(does all this until '.' encountered} 

(initializes pointers} 

(gets the destination array .. } 
(is it valid ?} 

(if not, sets error and says goodbye} 

(then does all this until ';' is met} 

(gets input side of destination array} 
(array. If it's not valid, sets error} 



read(ScriptFile,ArNums[2], 
Sides[2),Lnk.Start, 
I.nkStop); 

while (ArPtrs[2]".Number<> 
ArNums[2]) and (ArPtrs[2]" 
.Next<>Ptr) do 
ArPtrs[2]:=ArPtrs[2]".Next; 

if (ArPtrs[2]".Number<> 
ArNwns [ 2]) or 
(ArNums[2]=MaxWindowsGlb) 

then begin 
ErrorSet:-ErrorSet+[6]; 
exit; 
end; 

if not (Sides[2] 
in [l. .MaxR.egs]) then 
ErrorSet:=ErrorSet+[9]; 

if ErrorSet<>[] then exit; 
end; 

TernpChr:=SeekNxtWord 
(ScriptFile); 

If not (TernpChr in 
[ ' , ' , ' ; ' , ' . ' ] ) then 

begin 
ErrorSet:-[ 4]; 
exit; 
end 

else if (TempChr=' ,')then 
begin 
new(NewLink".NxtLink); 
NewLink:=NewLink".NxtLink; 
NewLink".ArPtrs[l]:= 

TmpLink".ArPtrs[l]; 
New Link" . ArNwns [ 1] : = 

TmpLink".ArNums[l]; 
NewLink".ArPtrs[2]:=Ptr; 
end 

else if (TempChr=';') then 
begin 
new(NewLink".NxtLink); 
TmpLink:=NewLink".NxtLink; 
NewLink:=TmpLink; 
end 

else NewLink".NxtLink:=NIL; 
readln(ScriptFile); 

until (TempChr in[';','.']); 

until (TempChr='. ') or 
Eof(ScriptFile); 

end; 

{Now, gets source array, its output} 
{side and start and stop values} 

{validates source array here .. } 

{and the output side here} 

{leaves if any errors} 

{then seeks out delimiter. If none} 
{found, sets error} 

{create new link storages and .. } 
{and points to it} 

{stops getting input direction for} 
{destination array} 
{stops reading dataflow set up infos} 
{entirely} 
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(***tt-k-.~~*********"-l<**ihhhl'*********'~'<*lrl'************'lc*k-Jhhl">l~******H-** 

* * * This function sets up the SAGS internals according to a script file * 
* specified by the user. It will generate error messages and returns * 
* a FALSE boolean value if any error or inconsistency is encountered in * 
* the file. Graphics errors such as drawing a window out of screen range * 
* will not be handle by this function. * 
* * 
**"'"***k".~~~~**"rk*'**"rk*'**"'****"'****"'****"''****"'"'****'lrlrlc**'lrlrl<'**'~~**"'****) 

function ReadScript 
: boolean 

var 
ActionType , 

Sequencer 
TempChr 
TempPtr 

TempIOPtr 

integer; 
char; 
ArrayPtrType; 
IOPtrtype; 

begin 

ErrorSet:=[]; 
Sequencer:-1; 
while (ErrorSet=[]) 

and (Sequencer<=MaxSequence) 
do begin 
ActionType:=StatementType; 
if ActionType=Sequencer then 

begin 
case ActionType of 
1: begin 

read(ScriptFile,ArraySize); 
if ArraySize>MaxArraySize 

then ErrorSet:= 
ErrorSet+ [ 2] ; 

if SeekNxtWord 
(ScriptFile)<>'.' 
then ErrorSet:= 

ErrorSet+[3] 
else readln(ScriptFile); 
end; 

2: begin 
InitGlbStorage; 
new(FixedPtr); 
FixedPtrA.Last:=StatPtr; 
StatPtrA.Next:=FixedPtr; 
CurrntPtr:=FixedPtr; 
TempPtr:=FixedPtr; 
repeat 

GetSystemSpecs(TempPtr); 

{clears error register and init.) 
{sequence counter) 
{continues the system setup sequence) 
{until error occurs) 

{gets the step ntunber and if it's) 
(in sequence then proceeds) 

(reads in array size of system) 

(if array size too large, sets error) 

{look for the delimiter and) 

{ if not found, error) 

{creates arrays system here) 
{init. all global graphics values) 



TempGhr:-SeekNxtWord 
(ScriptFile); 

If not 
(TempGhr in[';','.']) 
then ErrorSet:= 

ErrorSet+[4] 
else readln(ScriptFile); 

tmtil (ErrorSet<>[]) or 
(TempGhr='. '); 

if ErrorSet=[] then 
begin 

TempPtr:=TempPtrA.Last; 
Dispose(TempPtrA.Next); 
TempPtrA.Next:=StatPtr; 
StatPtrA.Last:=TempPtr; 

end; 
end; 

3: begin 
new(IOPtr); 
TempIOPtr:=IOPtr; 
GetIOSpecs(TempIOPtr, 

INPlJf); 
end; 

4: GetIOSpecs(TempIOPtr, 
OUTPUT); 

5: GetDataFlow(LinkPtr, 
CurrntPtr); 

end; 
Sequencer:=Sequencer+l; 

end 
else ErrorSet:=ErrorSet+[8]; 
end; 

if ErrorSet<>[] then 
begin 
for Sequencer:=l to Max.Error do 

begin 
if Sequencer in ErrorSet 

then writeln 
(ErrorList[Sequencer]); 

ErrorSet:= 
ErrorSet-[Sequencer]; 

end; 
ReadScript:=FAIBE; 
end 

else ReadScript:-TRUE; 

end; 

{look for delimiter) 

{and if not fotmd, gives error) 

{if no error,) 
{then create a circular) 
{doubly linked list which included) 
{the status window.) 

{creates IO system here) 
{starts IO linked list) 

{then reads in IO specs .. ) 

{and reads in some more then .. ) 

{get description of the flow of data) 

{setup sequence ends here.) 
{looks through error list actunUlated} 
(thus far and displays appropriate} 
(error message} 

(if no error, signal calling block} 
{to continue) 
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(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"***1<AAAAAAAAAAAAAAAAAAAAk***AAAAAAA"******** 

* * * 'lllis procedure represents the execution code of a shift down register * 
* array. 'lllis array moves data in the North to South direction. * 
* _ R is X _Reg * 
* _ Xin is ln_Regs[l,l]A * 
* _ TAGin is ln_Regs[l,2]A * 
* _ Xout is Out_Regs [ 3, l] * 
* TAGout is Out_Regs[3,2] * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~) 

procedure N2Scode 
(var PE : PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[3,l]:-In_Regs[l,l]A; 
Out_Regs[3,2]:=In_Regs[l,2]A; 
X_Reg:=Out_Regs[3,l]; 
TAG:=Trunc(Out_Regs[3,2]); 
end; 

{put value in here for display} 
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( *** 
* * * This procedure represents the execution code of a shift left register * 
* array. This array moves data in the East to West direction. * 
* _ R is X_Reg * 
* _ Xin is In_Regs [2, l]" * 
* _ TAGin is ln_Regs(2,2)A * 
* _ Xout is Out_Regs [ 4, l] * 
* _ TAGout is Out_Regs[4,2] * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**1<AAAAAAA~) 

procedure E2Wcode 
(var PE: PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[4,l]:=In_Regs[2,l]A; 
Out Regs[4,2]:=In Regs[2,2]A; - -
X Reg:=Out Regs[4,2]; 

- -
TAG:=Trunc(Out_Regs[4,1]); 
end; 

{put values in these registers for} 
{display} 
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( *** 
* * * 1his procedure represents the execution code of a shift up register * 
* array. 1his array moves data in the South to North direction. * 
* _ R is X _Reg * 
* _ Xin is In_Regs[3,l]A * 
* - TAGin is In_Regs[3,2]A * 
* _ Xout is Out_Regs[l, l] * 
* TAGout is Out_Regs[l,2] * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*******) 

procedure S2Ncode 
(var PE : PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[l,l]:=In_Regs[3,l]A; 
Out_Regs[l,2]:-In_Regs[3,2]A; 
X_Reg:=Out_Regs[l,l]; 
TAG:=Trunc(Out_Regs[l,2]); 
end; 

{put values in these registers for} 
{display} 
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( ***** 
* * * This procedure represents the execution code of a shift up register * 
* array. This array moves data in the West to East direction. * 
* _ R is X _Reg * 
* _ Xin is In_Regs[4,l]" * 
* - TAGin is In_Regs[4,2]A * 
* _ Xout is Out_Regs[2, l] * 
* _ TAGout is Out_Regs[2,2] * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**********) 

procedure W2Ecode 
(var PE: PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[2,l]:=In_Regs[4,l]A; 
Out_Regs[2,2]:=In_Regs[4,2]A; 
X_Reg:=Out_Regs[2,2]; 
TAG:=Trunc(Out_Regs[2,l]); 
end; 

{put values in these registers for} 
{display} 
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(***"'frlrlnl">hhl~***'~'"**"*'******'~r-k*****~l">hhl~***'~'"**"*'******'~r-k*****~ 

* * * lhis procedure represents the execution code of HE's systolic array * 
* for botmdary cell. * 
* X is X_Reg * 

Xin ic In_Regs[l,l]" * --
TAG in ic In_Regs[l,2]A * --
Vout is ic Out_Regs[2,l] * 
Mout ic Out_Regs[2,2] * --
-Mout is ic Out_Regs[3,l] * 

* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkkAAAAAAAAAA*******"kAAAAAAAAAA*******) 

procedure HEcodel 
(var PE: PEtype); 

begin 

with PE do 
begin 

end; 

Out_Regs[4,2] :=In_Regs[l,l]A; 
TAG:=Trunc(In_Regs[l,2]A); 
if (TAG=O) and 

(abs(Out_Regs[4,2])>= 
abs(X_Reg)) then 

begin 
Out_Regs[2,l]:=l.O; 
if Out_Regs[4,2]<>0.0 then 

Out_Regs[2,2] := 
-X_Reg/Out_Regs[4,2] 

else Out_Regs[2,2]:=0.0; 
X_Reg:=Out_Regs[4,2]; 
end 

else begin 
Out_Regs[2,l]:=O.O; 
Out_Regs [2 ,2] := 

-In_Regs[l,l]A/X_Reg; 
end; 

Out_Regs[3,l]:=-Out_Regs[2,2]; 
end; 

{get Xin and .. } 
(pivoting TAG bit values} 
(if pivoting is allowed and Xin is} 
(greater in magnitude than X, then .. } 

(tell the East neighboring cell to} 
(pivot and send it a modifying value} 

(else, no pivoting .. } 
{with modifying value} 

{moves Mout} 
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( *** 

* * * 'lllis procedure represents the execution code of HE's systolic array * 
* for internal cell. * 
* * 
* 
* 
* 
* 
* 
* 
* 

X is X_Reg 
Xin is 
Vin is 
Min is 
Xout is 
Vout is 
Mout is 

In_Regs [l, l]" 
In_Regs[4,l]" 
In_Regs[4,2]" 
Out_Regs[3,l] 
Out_Regs[2,l] 
Out_Regs[2,2] 

* 
* 
* 
* 
* 
* 
* 
* :AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**********) 

procedure HEcode2 
(var PE: PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[2,l]:-In_Regs[4,l]"; 
Out_Regs[2,2] :=In_Regs[4,2]"; 
TAG:=Trunc(Out_Regs[2,l]); {get TAG bit for display} 
if TAG=l then 

begin 
Out_Regs[3,l] :=X_Reg 

+Out Regs[2,2] 
*In Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out_Regs[3,l]:=In_Regs[l,l]" 
+Out_Regs[2,2] 
*X Reg; 

Out_Regs[3,2]:=In_Reg~[l,2]"; {pass on pivoting allowed bit} 
end; 
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( *** 
* * * '!his procedure represents the execution code of NASH's systolic array * 
* for botmdary cell. * 
* 
* 
* 
* 
* 

R is 
TAG is 
Xin is 
Cout or Xout is 

* X_Reg * In_Regs[l,2]A * In_Regs[l,l]A * Out_Regs[2,l] * 

* ·~) :AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Sout is Out_Regs[2,2] * 
* 

procedure NASHcodel 
(var PE : PEtype); 

var T : real; 

begin 

with PE do 

end; 

begin 
TAG:=Trtmc(In_Regs[l,2]A); 
if TAG=O then 

if In_Regs[l,l]A = 0.0 then 
begin 
Out_Regs[2,l]:=l.O; 
Out_Regs[2,2]:=0.0; 
X_Reg:=O.O; 

end 
else begin 

T:= sqrt(sqr(X_Reg) 
+sqr(In_Regs[l,l]A)); 

Out_Regs[2,l]:=X_Reg/T; 
Out_Regs[2,2] := 

In_Regs[l,l]A/T; 
X_Reg:=T; 
end 

else Out_Regs[2,l]:= 
In_Regs[l,l]A/X_Reg; 

end; 

{'!his line will give us incorrect} 
{result. Delete it will cure all of} 
{Nash's ailments.} 
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(**AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****'AAAAAAAAAAAAAAAAAAAA********'********* 

* * * 'lbis procedure represents the execution code of NASH's systolic array * 
* for internal cell. * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

R is 
TAG is 
Xin is 
Cin or Y is 
Sin is 
TAGout is 
Xout is 
Cout is 
Sout is 

X_Reg 
In_Regs[l,2]" 
In_Regs [l, l]" 
In_Regs[4,1]" 
In_Regs[4,2]" 
Out_Regs[3,2] 
Out_Regs[3,1] 
Out_Regs[2,l] 
Out_Regs[2,2] 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

~~~~..i-.i-..i-.i-..i-.i-.w-.w-.w-.w--.w--.w--hhl-.!-..hHhHl-.Hl-.HhHhh!hh!hh!-.1--.1-.1--.1-.!--k+-k+-k~·******************) 

procedure NASHcode2 
(var PE: PEtype); 

begin 

with PE do 

end; 

begin 
Out_Regs[3,2]:=In_Regs[l,2]"; 
TAG:=Trunc(Out_Regs[3,2]); 
if TAG=O then 

begin 
Out_Regs[3,l]:= 

-(In_Regs[4,2]" * X_Reg) 
+(In_Regs[4,l]" 

* In_Regs[l,l]"); 
X_Reg:=In_Regs[4,l]" 

end 

* X_Reg + In_Regs[4,2]" 
* In_Regs[l,l]"; 

else Out_Regs[3,l]:=In_Regs[l,l]" 
-In_Regs[4,l]" 
*X_Reg; 

Out_Regs[2,l]:=In_Regs[4,l]"; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
end; 
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( *** 
* * * This procedure represents the execution code of my systolic array * 
* design for diagonal cell. * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

x 
Xin 
Cl24in 
C3in 
Min 
Xout 
Cl24out 
C3out 
Mout 

is 
is 
is 
is 
is 
is 
is 
is 
is 

X_Reg 
In_Regs[l,l]" 
In_Regs[l,2]" 
In_Regs[4,l]" 
In_Regs[4,2]" 
Out_Regs[3, l] 
Out_Regs[3,2] 
Out_Regs[2,l] 
Out_Regs[2,2] 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

'k'k:lrlrih\-***k-lri~*k'k'k:~'****lrlrl'rlrl<**~\*i\*k**'~'****'lrlrl'****~~*k'k'k:lrlrlrk-k*******) 

procedure LEcodel 
(var PE: PEtype); 

begin 

with PE do 
begin 
Cl24 :- Trunc(In_Regs[l,2]"); 
C3 := Trunc(In_Regs[4,l]"); 
if Odd(Cl24) then 

X_Reg :-= 0.0 
if Cl24>7 then 

begin 
if (abs(In Regs[l,l]")>= 

abs (X _Reg) ) and 
(Cl24>11) then 
begin 
if Cl24 in [12,13] then 

Out_Regs[2,l]:=Cl24+2 
else Out_Regs[2,l]:=Cl24; 
if (In_Regs[l,1]"<>0.0) then 

Out_Regs[2,2] := 
-X_Reg/In_Regs[l,l]" 

else Out_Regs[2,2]:=0.0; 
X_Reg:=In_Regs[l,l]"; 
end 

else begin 
if Cl24 in [10,11,14,15] 

then Out_Regs[2,l]:= 
Cl24-2 

else Out_Regs[2,l]:=Cl24; 
Out_Regs[2, 2] := 

-In_Regs[l,l]" 
/X_Reg; 

end; 

{stores Cl, C2, C3, and C4} 

{if C4 is 1 then clear X} 

{if Cl is 1 then Triangle mode} 

{if 3Xin3 r 3X3 and C2 is 1 then} 
{pivoting is needed and allowed} 

{set C3 to 1..} 

{else pivoting is not allowed} 
.{set C3 to O .. } 



end; 

TAG:=Cl24; 
end 

else begin 
If C3 in [2,3,6,7] then 

begin 
Out_Regs[3, l] :=X_Reg 

+In_Regs[4,2]" 
*In_Regs [l, l]"; 

X_Reg:-In_Regs[l,l]"; 
end 

else Out_Regs[3,l]:
In_Regs[l,l]" 

+In_Regs[4,2]" 
*X_Reg; 

Out_Regs [2, l] :-C3; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
TAG:-C3; 
end; 

Out_Regs[3,2] :=Cl24; 
end; 

procedure LEcode2 
(var PE: PEtype); 

begin 

with PE do 
begin 
Cl24 := Trunc(In_Regs[l,2]"); 
C3 := Trunc(In Regs[4,l]"); 
if Odd(Cl24) then 

X_Reg := 0.0 ; 
if Cl24>7 then 

begin 
if (abs(In_Regs[l,l]")>= 

abs(X_Reg)) and 
(Cl24>11) then 
begin 
if Cl24 in [12,13] then 

Out_Regs[2,l]:=Cl24-6 
else Out_Regs[2,l]:=Cl24-8; 
if (In_Regs[l,1]"<>0.0) then 

Out_Regs[2,2] := 
-X_Reg/In_Regs[l,l]" 

else Out_Regs[2,2]:=0.0; 
X_Reg:=In_Regs[l,l]"; 
end 

else begin 

{display that cell is triangle mode} 

{else Cl is in Square mode.} 
{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{pass on C3.} 
{Pass on Min.} 
{display that cell in square mode} 

{In any case, pass on Cl, C2, C4.} 

{stores Cl, C2, C3, and C4} 

{if C4 is 1 then clear X} 

{if Cl is 1 then Triangle mode} 

{if 3Xin3 r 3X3 and C2 is 1 then} 
{pivoting is needed and allowed} 

{set C3 to 1..} 

{else pivoting is not allowed} 
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end; 

if Cl24 in [10,11,14,15] 
then Out_Regs[2,l]:= 

Cl24-10 
else Out_Regs[2,l]:=Cl24-8; 
Out_Regs[2,2] := 

end; 
TAG:=Cl24; 
end 

else begin 

-In_Regs [l, l]" 
/X_Reg; 

If C3 in [2,3,6,7] then 
begin 
Out_Regs[3,l]:=X_Reg 

+In_Regs[4,2]" 
*In_Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out_Regs[3,l]:= 
In_Regs[l,l]" 

+In_Regs[4,2]" 
*X_Reg; 

Out_Regs[2,l] :=C3; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
TAG:=C3; 
end; 

Out_Regs[3,2] :=Cl24; 
end; 

{set C3 to 0 .. } 

{display that cell is triangle mode} 

{else Cl is in Square mode.} 
{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{pass on C3.} 
{Pass on Min.} 
{display that cell in square mode} 

{In any case, pass on Cl, C2, C4.} 
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(**+k**"l-*+>l+****+~'"**-k******'l->hhl'*"****+k**"l-*+>l+****le.l<-*-Hrk-H***'***'l<-*-H'*"*****'~ 

* * * This procedure represents the execution code of my systolic array * 
* design for square cells. * 
* * 
* 
* 
* 
* 
* 
* 
* 
* 
* 

x 
Xin 
C3in 
Min 
Xout 
C3Eout 
C3Sout 
Mout 

is X_Reg 
is In_Regs [l, l]" 
is In_Regs[4,l]" 
is In_Regs[4,2]" 
is Out_Regs[3,l] 
is Out_Regs[3,2] 
is Out_:Regs[2,l] 
is Out_Regs[2,2] 

procedure LEcode3 
(var PE : PEtype); 

begin 

with PE do 
begin 

end; 

C3 := Trunc(In_Regs[4,l]"); 
TAG:=C3; 
if Odd(C3) then 

X_Reg :- 0.0 
If C3 in [2,3,6,7, 

10,11,14,15] then 
begin 
Out_Regs[3,l]:=X_Reg 

+In_Regs[4,2]" 
*In_Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out Regs[3,l]:= 
In_Regs [l, l]" 

+In_Regs[4,2]" 
*X_Reg; 

Out_Regs[3,2]:=C3; 
if C3>7 then 

Out_Regs[2,l]:-=C3-8 
else Out_Regs[2,l]:=C3; 
Out_Regs[2,2]:-In_Regs[4,2]"; 
end; 

{stores Cl, C2, C3, C4.} 
{display control code} 
{if C4 is 1 then clear X} 

{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{pass on Cl, C2, C3, C4.} 

{Pass on Min.} 

* 
* 
* 
* 
* 
* 
* 
* 
* 
) 
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(AAAAAAAAAAAAAAAAAAAAAAAAAAAAA********AAAAAAAAAAAAAAAAAAAAA * ********~* 
* 

* 'lllis procedure represents the execution code of my systolic array * 
* design for square cells. 
* 
* x is X_Reg -
* Xin is In_ Regs [ 1 , 1] " -
* Cl24in is In_ Regs [l, 2]" -
* C3in is In Regs [ 4, 1 ]" -
* Min is In_ Regs [ 4, 2] " -
* Xout is Out_Regs[3,l] -
* Cl24out is Out_Regs[3,2] -
* C3out is Out_Regs[2,l] -
* Mout is Out_Regs[2,2] -
* 

procedure LEcode4 
(var PE: PEtype); 

begin 

with PE do 
begin 

end; 

Cl24 := Trunc(In_Regs[l,2]"); 
C3 := Trunc(In_Regs[4,l]"); 
TAG:=C3; 
if Odd(Cl24) then 

X_Reg := 0.0 ; 
If C3 in [2,3,6,7) then 

begin 
Out_Regs[3,l]:=X_Reg 

+In_Regs[4,2]" 
*In_Regs[l,l]"; 

X_Reg:=In_Regs[l,l]"; 
end 

else Out_Regs[3,1]:= 
In Regs [1, 1]" 

+In-Regs[4,2]" 
*X_Reg; 

Out_Regs[2,l]:=C3; 
Out_Regs[2,2]:=In_Regs[4,2]"; 
Out_Regs[3,2]:=Cl24; 
end; 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

*********************"'-*"k) 

{stores Cl, C2, C3, and C4} 

{display control code} 
{if C4 is 1 then clear X} 

{if C3 is 1 then .. } 

{else if C3 is 0 then .. } 

{Pass on Min.} 
{In any case, pass on Cl, C2, C4.} 
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( *** 
* * * 'Ibis procedure updates the image of an array in its window to reflect * 
* the state of the computation at a particular step. Depending on the * 
* particular type of array, it will only updates allowable PEs. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***-AAAAAAAAAAAAAAAAAAAAA~**) 

procedure UpdateArray 
(Ptr : ArrayPtrType); 

var X,Y,I integer; 

begin 

with Ptr" do 
begin 
RestoreWindow(Number,0,0); 
SelectWindow(Number); 
SetColorBlack; 
with PEtxtArray[DPmode] do 

for X:-1 to ArraySize do 
for Y:-1 to ArraySize do 

with PE[X,Y] do 
if Code<>O then 

for I:~l to Lines do 
DrawTextW 
(TextCoord[X,Y] .X[I], 
TextCoord[X,Y].Y[I], 
l,Regs_Txt[I]); 

{brings out the proper window,} 
{selects it, and .. } 
{erase the old texts .. } 
{depending on array's display mode.} 
{within every PE of the array .. } 

{if the PE has a valid code then .. } 
{erases all displayable registers} 
{values} 



end; 

for X:=l to ArraySize do (Then, with every PE of the array .. } 
for Y:=l to ArraySize do 

with PE[X,Y] do if Code<>O then (if it has a valid code .. } 
begin 
Str(X_Reg:6:2, (updates its text storages of X,} 

Regs_Txt[2]); 
Str(Out_Regs[2,1]:6:2, (of Vout,} 

Regs_Txt[3]); 
Str(Out_Regs[2,2] :6:2, (of Mout,} 

Regs_Txt[4]); 
Str(Out_Regs[3,1]:6:2, (of Xout,} 

Regs_Txt[S]); 
Str(TAG:l, (of TAG} 

Regs_Txt[l]); 
end; 

SetColorWhite; 
with PEtxtArray[DPmode] do 

for X:=l to ArraySize do 
for Y:=l to ArraySize do 

with PE[X,Y] do 
if Code<>O then 

for I:=l to Lines do 
DrawTextW 
(TextCoord[X,Y].X[I], 
TextCoord[X,Y] .Y[I], 
l,Regs_Txt[I]); 

StoreWindow(Number); 
end; 

(At last, write in the new texts .. } 
(depending on array's display mode.} 
(within every PE of the array .. } 

(if the PE has a valid code then .. } 
(rewrites all new registers} 
(values} 

(Now, stores the updated window.} 
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(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'k*AAAAAAAAAAAAAAAA****-AAAAAAAA~* 

* * * This procedure simulates a single step of execution of the systolic * 
* system of arrays. It first links all necessary IO channels for the * 
* current step to the system of arrays, then it feeds data into input * 
* buffers, gets data from arrays into output files, then for each PE, it * 
* executes its microcodes until the entire system of arrays is traversed. * 
* At last it will move the result of each PE's micro-execution into its * 
* suitable output register and updates the graphics image of each array * 
* and the status panel. It really can do that much works in so short a * 
* time span. * 
* This procedure is called by : * 
* - main block. * 
* This procedure calls : 
* - procedure LinkIOFlow(). 
* - procedure LinkDataFlow(). 
* - procedure UpdateArray(). 
* - procedures HEcodel(), HEcode2(). 
* - procedures NASHcodel(), NASHcode2(). 
* - procedures lEcodel(), LEcode2() 
* - procedures N2Scode(), S2Ncode(), E2Wcode(), W2Ecode(). 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

****************************"->h\"":>h\"":'-"*'>'-"*'>l"*'>l"*'>~~~rk"/<rk"/<~~~"k*"k*"k*"k************) 

procedure SingleStepExec 
(IOPntr: IOPtrtype); 

var SysPtr 
I,J,X,Y 

ArrayPtrtype; 
integer; 

begin 

with StatPtr" do 
begin 
Times:=Times+TimeUnit; 
Steps:=Steps+l; 
LinkDataFlow(LinkPtr,Steps); 
LinkIOFlow(IOPntr,Steps); 
while IOPntr<>NIL do 

with IOPntr" do 
begin 
if Active then 

case IO of 
INPUT: 
if EOF(FileVar) then 

begin 
Close(FileVar); 
Active :=FALSE; 
for I:=l to ArraySize 

do InR.egs[I]:=O.O; 
end 

{update status panel's registers} 

{increments time .. } 
{and step counters} 
{establishes all necessary links and} 
{IO channels for this step} 
{starts at begining of IO linked list} 
{for each I/O channel .. } 

{if channel is still active, then} 
{depending on the type of IO channel} 
{for input channel .. } 
{if all data in file are read} 

{then closes input file,} 
{marks input channel as inactive} 
{and grounds input buffers. } 



else begin 
for I:=l to ArraySize 

do read(FileVar, 
InRegs[I]); 

readln(FileVar); 
end; 

OUIPUT: begin 
for I:=l to 

ArraySize do 
write(FileVar, 

OutRegs[I]" 
:12:2); 

writeln(FileVar); 
end; 

end; 
IOPntr:=NextIO; 
end; 

end; 
SysPtr:=FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr" do 
begin 
for X:=l to ArraySize do 
for Y:=l to ArraySize do 

case PE[X,Y].Code of 
0: 
1: N2Scode(PE[X,Y]); 
2: E2Wcode(PE[X,Y]); 
3: S2Ncode(PE[X,Y]); 
4: W2Ecode(PE[X,Y]); 
5: HEcodel(PE[X,Y]); 
6: HEcode2(PE[X,Y]); 
7: NASHcodel(PE[X,Y]); 
8: NASHcode2(PE[X,Y]); 
9: LEcodel(PE[X,Y]); 

10: LEcode2(PE[X,Y)); 
11: LEcode3(PE[X,Y]); 

MaxCodes: LEcode4(PE[X,Y]); 
end; 

SysPtr:-Next; 
end; 

SysPtr:=FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr" do 
begin 
for X:=l to ArraySize do 
for Y:=l to ArraySize do 
with PE[X,Y] do 

if Code<>O then 
for l:=l to MaxRegs do 
for J :=l to MaxBus do 

{else reads in data on line .. } 

{and go to next line} 

{for output channel .. } 
{write data to file} 

{then goes to next IO channel} 
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{start with the 1st array in system .. } 
{as with all arrays except STATUS .. } 

{with every single PE of array .. } 

{depending on its individual code .. } 
{do nothing, or .. } 
{executes the proper PE's microcode} 

{then go to the next array} 

{THEN moves the flow of data} 
{of each array except the STATUS} 
{by updating each PE' s Last_Out} 
{buffers on all sides and bus .. } 

{if its code is not 0} 



Last_Out[I,J] := 
Out_Regs[I,J]; 

SysPtr:==Next; 
end; 

lnvertWindow; 

StoreWindow(CurrntPtrA.Number); 
SelectScreen(2); 
ClearScreen; 
if CurrntPtr<>StatPtr then 

begin 
SelectWorld(FirstWorld); 
UpdateArray(CurrntPtr); 
ClearScreen; 
end; 

with StatPtrA do 
begin 
RestoreWindow(Ntunber,0,0); 
SelectWorld(StatusWorld); 
SelectWindow(Number); 
SetColorBlack; 
for X:-1 to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
Str(Steps:4,Boxes[l].Dgt); 
Str(Times:9:6,Boxes[2].Dgt); 
SetColorWhite; 
for X:=l to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
StoreWindow(Ntunber); 
end; 

ClearScreen; 
SysPtr:=CurrntPtrA.Next; 
SelectWorld(FirstWorld); 
while SysPtr<>CurrntPtr do 

with SysPtrA do begin 
if NumBer<>MaxWindowsGlb 
then UpdateArray(SysPtr); 
SysPtr:-Next; 
end; 

if StatPtr<>CurrntPtr then 
RestoreWindow 
(MaxWindowsGlb,0,0); 

CopyScreen; 
SelectScreen(l); 
RestoreWindow 

(CurrntPtrA.Ntunber,0,0); 
SelectWindow(CurrntPtrA.Nt.Unber); 
lnvertWindow; 

end; 

{then of course, go to next array} 

{updates graphics image of system 
{starts here. First, invert current} 
{window to normal .. } 
{ .. then stores it.} 
{Now, on the RAM screen,} 
(clears it .. } 
(then, if current window is not .. } 
(the status window, updates it and} 

(clears RAM screen again} 

(then with the status panel,} 

(restores it to the RAM screen .. } 
(and starts updating the panel .. } 

(by erasing the old status text} 

(and write in new status. text} 

(and stores the new panel.} 

{then updates all other windows} 
(to the RAM screen .. } 

(except the status panel .. } 

(which, if it's not the current .. } 
(window, restores it last to the .. } 
(RAM screen} 
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(Now, dump contents of RAM screen to} 
(the MAIN screen, and select it .. } 
(and restore the current window to it} 

(then select current window and .. } 
(hilite it. } 
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(AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA****"AAAAAA***** 

* * * This procedure simulates a single step of execution of the systolic * 
* system of arrays. It first links all necessary IO channels for the * 
* current step to the system of arrays, then it feeds data into input * 
* buffers, gets data from arrays into output files, then for each PE, it * 
* executes its microcodes until the entire system of arrays is traversed. * 
* At last it will move the result of each PE's micro-execution into its * 
* suitable output register and updates the graphics image of each array * 
* and the status panel. It will keeps executing until a key is hit on the * 
* keyboard. * 
* This procedure is called by : * 
* - main block. * 
* This procedure calls : 
* - procedure LinkIOFlow(). 
* - procedure LinkDataFlow(). 
* - procedure UpdateArray(). 
* - procedures HEcodel(), HEcode2(). 
* - procedures NASHcodel(), NASHcode2(). 
* - procedures LEcodel(), LEcode2() 
* - procedures N2Scode(), S2Ncode(), E2Wcode(), W2Ecode(). 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 

'****-!~**'l<'IN'***'*"~**'k'lrl'********************) 

procedure MultiStepsExec; 

var SysPtr 
IOPntr 

I,J,X,Y 
Chr 

ArrayPtrtype; 
IOPtrtype; 
integer; 
char; 

begin 

if CurrntPtr<>StatPtr then 
begin 
InvertWindow; 
StoreWindow(CurrntPtrA.Number); 
with StatPtrA do 

begin 
SelectWindow(Number); 
InvertWindow; 
StoreWindow(Number); 
end; 

end 
else StoreWindow(CurrntPtrA. 

SelectScreen(2); 
repeat 

Number); 

with StatPtrA do 
begin 
Times:=Times+TimeUnit; 

(first, if current window is not} 
(the status panel then stores it} 
(as a non-current window and} 
(then make the status panel current} 
(by inverting it.} 

(else stores the status panel as} 
(current} 
(Then select RAM screen} 
(REPEAT all following until a key is} 
(pressed .. } 
(update status panel's registers} 

(increments time .. } 



Steps:-Steps+l; 
LinkDataFlow(LinkPtr,Steps); 
LinkIOFlow(IOPtr,Steps); 
IOPntr:=IOPtr; 
while IOPntr<>NIL do 

with IOPntr" do 
begin 
if Active then 

case IO of 
INPUT: 
if EOF(FileVar) then 

begin 
Close(FileVar); 
Active:-FAl.SE; 
for I:-1 to ArraySize 

do InR.egs[I]:=O.O; 
end 

else begin 
for I:=l to ArraySize 

do read(FileVar, 
InR.egs[I]); 

readln(FileVar); 
end; 

OUTPUT: begin 
for I:=l to 

ArraySize do 
write(FileVar, 

OutRegs[I]" 
:12:2); 

writeln(FileVar); 
end; 

end; 
IOPntr:=NextIO; 
end; 

end; 
SysPtr:=FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr" do 
begin 
for X:-1 to ArraySize do 
for Y:=l to ArraySize do 

case PE[X,Y].Code of 
0: 
1: N2Scode(PE[X,Y]); 
2: E2Wcode(PE[X,Y]); 
3: S2Ncode(PE[X,Y]); 
4: W2Ecode(PE[X,Y]); 
5: HEcodel(PE[X,Y]); 
6: HEcode2(PE[X,Y]); 
7: NASHcodel(PE[X,Y]); 
8: NASHcode2(PE[X,Y]); 
9: l.Ecodel(PE[X,Y]); 

{and step counters} 
{establishes all necessary links and} 
{IO channels for this step} 
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{starts at begining of IO linked list} 
{for each I/O channel .. } 

{if channel is still active, then} 
{depending on the type of IO charm.el} 
{for input charm.el .. } 
{if all data in file are read} 

{then closes input file,} 
{and marks input charm.el as inactive} 
{and grounds input buffers.} 

{else reads in data on line .. } 

{and go to next line} 

{for output channel .. } 
{write data to file .. } 

{and go to next line} 

{then go to next IO channel} 

{start with the 1st array in system .. } 
{as with all arrays except STATUS .. } 

{with every single PE of array .. } 

{depending on its individual code .. } 
{do nothing, or .. } 
{executes the proper PE's microcode} 



10: LEcode2(PE[X,Y]); 
11: LEcode3(PE[X,Y]); 

MaxCodes: LEcode4(PE[X,Y]); 
end; 

SysPtr:==Next; 
end; 

SysPtr:-FixedPtr; 
while SysPtr<>StatPtr do 

with SysPtr"' do 
begin 
for X:-1 to ArraySize do 
for Y:-1 to ArraySize do 
with PE[X,Y] do 

if Code<>O then 
for I:=l to MaxR.egs do 
for J:=l to MaxBus do 

La.st_Out[I,J] := 
Out_Regs [I ,J]; 

SysPtr:==Next; 
end; 

SysPtr:=FixedPtr"'.Next; 
ClearScreen; 
SelectWorld(FirstWorld); 
while SysPtr<>StatPtr do 

begin 
UpdateArray(SysPtr); 
SysPtr:-SysPtr"'.Next; 

, end; 
UpdateArray(FixedPtr); 
with StatPtr"' do 

begin 
RestoreWindow(Number,0,0); 
SelectWorld(StatusWorld); 
SelectWindow(Number); 
for X:=l to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
Str(Steps:4,Boxes[l].Dgt); 
Str(Times:9:6,Boxes[2].Dgt); 
SetColorBlack; 
for X:=l to 2 do with Boxes[X] 

do DrawTextW(Xdgt,Ytxt,l,Dgt); 
StoreWindow(Number); 
SetColorWhite; 
end; 

CopyScreen; 
until keypressed; 
read(Kbd,Chr); 
ClearScreen; 
SysPtr:-CurrntPtr"'.Next; 
while SysPtr<>CurrntPtr do 

begin 
if SysPtr<>StatPtr then 

(then go to the next array} 

(THEN moves the flow of data} 
(of each array except the STATUS} 
(by updating each PE' s La.st_Out} 
(buffers on all sides and bus .. } 

(if its code is not 0} 

(then of course, go to next array} 

(start with the first array .. } 
(clears the RAM screen .. } 
(select the array's world .. } 
(for all windows that are not status} 
(panel or current, updates them to} 
(reflect the new values in each} 
(PE's registers.} 

(Then updates the status panel..} 

(and copy RAM to displayed screen.} 
(end of REPEAT} 
(clears stdin of recent key pressed} 
(Now that multiple step execution .. } 
(is stop, clears the RAM screen to .. } 
(start re-displaying all system in} 
(the same order before execution .. } 
(starting with restoring all non-} 
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RestoreWindow(SysPtrA. 
Number ,0,0); 

SysPtr:-SysPtrA.Next; 
end; 

if StatPtr<>CurrntPtr then 
with StatPtrA do 

begin 
RestoreWindow(Number,0,0); 
SelectWindow(Ntnnber); 
InvertWindow; 
StoreWindow(Number); 
end; 

CopyScreen; 
SelectScreen(l); 
with CurrntPtrA do 

begin 
RestoreWindow(Nunber,0,0); 
SelectWindow(Number); 
end; 

if CurrntPtr<>StatPtr then 
InvertWindow; 

end; 
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{current, non-status windows first .. } 

(then restore status panel .. } 

(then updates displayed screen .. } 
(and at last, select displayed screen} 
(to restore current window} 

(and invert it if it's not already} 
(invert, meaning if the current} 
(window is not the status panel} 
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**************************"'*'"'*'"'*'~~hhlhhl~~~~***************************""kk 

* * * This is the script file for the simulation of Nash's array solving * 
* example (A.4). It allows SAGS to produces the sequence of snapshots B.l * 
* with the data and control files below. * 
* Remove all comments before using them with SAGS. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~~AAAAA~* 

ARRAYSIZE : 
3 . 
SYSTEMS PEGS 
1 1 1 21 129 ' 
Pecodes : 7 8 

0 7 
0 0 

2 0 2 37 129 ' 
Pecodes : 8 8 

8 8 
8 8 

3 4 2 21 29 ' 
Pecodes : 0 0 

0 1 
1 1 

4 4 2 37 29 ' 
Pecodes : 0 0 

0 1 
1 1 

5 3 2 37 229 
Pecodes : 1 1 

1 1 
1 0 

INFILES : 
triang34 3 1 1 1 
trtag3 3 1 2 1 , 
square34 4 1 1 4 
sqtag3 4 1 2 4 . 
OUTFILES 
result 5 3 1 14 
SETUP : 
1 

8 
8 
7 

8 
8 
8 

1 
1 
1 

1 
1 
1 

1 
0 
0 

Northlnput : 3 3 1 1 
2 
Northlnput : 4 3 1 1 
Westlnput : 1 2 1 1 ; 
5 
Northlnput : 2 3 1 1 . 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~AAAAAAAAAAAAAAAAAAAAAAAAAAA~*** 

* * * Infile triang34. * 
* Contains the input data flow to be fed into the triangular array of the * 
* system. * 
* * 1111111111111111111111111111111111111111111111111111111111111111111111111&111* 

1.00 
0.00 
2.00 

-1.00 
0.00 
0.00 

2.00 
4.00 
1.00 
0.00 

-1.00 
0.00 

3.00 
7.00 
3.00 
0.00 
0.00 

-1.00 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK*k-AAAAAAAAAAAAAAk*AAAAAAAAAA'***********k*** 

* * * Infile square34. * 
* Contains the input data flow to be fed into the square array of the * 
* system. * 
* * 
********************k*'k*'hhhh'*''*''*'hHhHnHhH:-b\:-b\:-k'll'**-'**'**'*********************** 

5.00 
9.00 
7.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*******k******* 

* * * Infile trtag3. * 
* Contains the control signals necessary for the triangular array of the * 
* system. * 
* * ********************k*'k*<hh"*>l:*''*''*''*'hhihHhH:-bl:-k'll'**'************************** 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkAAAAAA*'******k* 

* * 
* Infile sqtag3. * 
* Contains the control signals necessary for the square array of the * 
* ~st~. * 
* * 1111111111111111111111111111111111111111111111111111111111llllllllllllllllllll 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 
0.00 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~kAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*********** 

* * * This is the script file for the sinru.lation of Chuang and He's array * 
* solving example (A.2). It allows SAGS to produces the sequence of * 
* snapshots B.2 with the data and control files below. * 
* Remove all couments before using them with SAGS. * 
* * 
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~* 

ARRAYSIZE : 
3 . 
SYSTEMSPECS 
1 1 1 22 121 
Pecodes : 5 6 6 

0 5 6 
0 0 5 

2 0 2 38 121 
Pecodes : 6 6 6 

6 6 6 
6 6 6 

3 4 2 22 21 , 
Pecodes : 0 0 1 

0 1 1 
1 1 1 

4 4 2 38 21 , 
Pecodes : 0 0 1 

0 1 1 
1 1 1 

5 3 2 38 221 
Pecodes : 1 1 1 

1 1 0 
1 0 0 

INFILES : 
triang32 3 1 1 1 
trtag3 3 1 2 1 , 
square32 4 1 1 4 , 
sqtag3 4 1 2 4 . 
OUfFILES 
result 5 3 1 14 . 
SETUP : 
1 
Northlnput : 3 3 1 1 
2 
Northlnput : 4 3 1 1 
Westlnput : 1 2 1 1 ; 
5 
Northlnput : 2 3 1 1 . 
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******~~rlrl'rlri'rlrilnhlnh"*""*""*"********************:-k-A:-k-Arlrlrlri~lnhlnhl.-*1k*.**************** 

* * * Infile triang32. * 
* Contains the input data flow to be fed into the T array of the system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk-k** 

-1.00 
3.00 
6.00 

-1.00 
-3.00 
5.00 

5.00 
4.00 
7.00 
2.00 

-4.00 
-3.00 

-3.00 
1.00 

-2.00 
-4.00 
1.00 

-2.00 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrlrlrloAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*********** 

* * * Infile square32. * 
* Contains the input data flow to be fed into the S array of the system. * 
* * 
******************************~~~~'rlrirk?.rk?.**:-k-A******************'*********** 

-2.00 
1.00 
5.00 
2.00 
2.00 

-3.00 

-7.00 
3.00 
9.00 
1.00 
4.00 
2.00 

6.00 
1.00 
4.00 

-5.00 
6.00 
9.00 

* * * Infile trtag3. * 
* Contains the control signals necessary for the T array of the system. * 
* * 
********~hhl************"*"~************~hhl************"*"~************** 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk-k* 

* * * Infile sqtag3. * 
* Contains the control signals necessary for the S array of the system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA***** 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.00 
0.00 
0.00 
0.00 
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* * 
* This is the script file for the simulation of a double arrays system of * 
* our own design. This system is shown in the sequence of snapshots B.3 * 
* solving example (A.3). It uses the data and control files below. * 
* Re100ve all comments before using them with SAGS. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAk-k-AAAAAAAA*****-k 

ARRAYSIZE : 
2 . 
SYSTEMSPECS 
1 0 1 19 106 ' 
Pecodes : 9 11 

12 10 
2 0 2 30 106 . 
Pecodes : 4 4 

4 4 
3 0 2 40 106 
Pecodes : 4 4 

4 4 
4 0 2 so 106 ' 
Pecodes : 4 4 

4 4 
s 0 1 19 172 ' 
Pecodes : 9 11 

12 10 
6 0 2 30 172 ' 
Pecodes : 4 4 

4 4 
7 0 2 40 172 ' 
Pecodes : 4 4 

4 4 
8 0 2 so 172 ' 
Pecodes : 4 4 

4 4 
9 4 2 19 37 ' 
Pecodes : 0 1 

1 1 
10 3 2 19 242 . 
Pecodes : 1 1 

1 0 
INFILES 
data241 9 1 1 1 ' 
controll.24 9 1 2 1 
control2.24 S 1 2 14 
OlITFILES : 
result 10 3 1 28 . 
SETUP : 
1 
Westlnput : 4 2 1 1 , 
Northlnput : 9 3 1 1 ; 



2 
Westlnput : 1 2 1 1 
3 
Westlnput : 2 2 1 1 
4 
Westlnput : 3 2 1 1 
5 
Westlnput : 8 2 1 1 , 
Northlnput : 1 3 14 14 
6 
Westlnput : 5 2 1 1 
7 
Westlnput : 6 2 1 1 
8 
Westlnput : 7 2 1 1 
10 
Northlnput : 5 3 1 1 . 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlrlrlrlrlr"AAAAAAAAAAAAAAAAAAAAAAAAA************** 

* * * Infile data241. * 
* Contains the input data flow to be fed into the first array of the * 
* system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*****'**AAAAAAAAAAAAAA*'XAAAAAAAAAAAAAAAAAAAAA** 

2.00 
4.00 

-3.00 
6.00 

-1.00 
-2.00 
-1.00 
-1.00 
3.00 
7.00 
1.00 
8.00 

-2.00 
-3.00 
-1.00 
-4.00 
-8.00 

-20.00 
-2.00 
4.00 
1.00 
0.00 
2.00 
1.00 
0.00 
1.00 
7.00 
4.00 

-5.00 
1.00 
3.00 

-1.00 

-1.00 
-2.00 
-4.00 
-6.00 
1.00 
2.00 

-1.00 
1.00 
0.00 
0.00 
5.00 
0.00 
1.00 
3.00 
0.00 

-3.00 
3.00 
5.00 

-9.00 
7.00 
3.00 

-4.00 
1.00 

-3.00 
3.00 
6.00 
8.00 
2.00 
7.00 
7.00 
0.00 
9.00 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA~***** 

* * * Infile controll.24. * 
* Contains the control signals necessary for the first array of the system. * 
* * AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*** 

13 0 
12 0 
12 0 
12 0 

8 0 
8 0 
8 0 
8 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-k*-k-AAAAAAA*********** 

* * * lnfile control2.24. * 
* Contains the control signals necessary for the second array of the * 
* system. * 
* * 
****************************************************************************** 

13 0 
12 0 

8 0 
8 0 
8 0 
8 0 
8 0 
8 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
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