
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

12-5-1988

A CMOS Circuit Generator Using Differential Pass A CMOS Circuit Generator Using Differential Pass

Transistors for Implementing Boolean Functions Transistors for Implementing Boolean Functions

Rabe'eh Mahooti
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mahooti, Rabe'eh, "A CMOS Circuit Generator Using Differential Pass Transistors for Implementing
Boolean Functions" (1988). Dissertations and Theses. Paper 3805.
https://doi.org/10.15760/etd.5689

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3805
https://doi.org/10.15760/etd.5689
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE TIIBSIS OF RABE'EH MAHOOTI for the Master of

Science in Electrical Engineering presented December 5, 1988.

Title: A CMOS Circuit Generator Using Differential Pass Transistors

for Implementing Boolean Functions.

APPROVED BY THE MEMBERS OF THE THESIS COMMITIEE:

w. Robert Daasch. Chair

L. W. Casperson

R. P. Aggarwal

Bradi~rd"rJYilii~--

This study uses differential pass transistor methodology for implementing and

evaluating Boolean functions. The main goal is investigation of CMOS and nMOS

approaches in pass transistor logic design. Pass-transistor logic is most effective in the

implementation of Boolean functions when the vectors are in the same format. It has

been demonstrated that nMOS pass transistor logic driven by a control signal voltage

above the V dd level offers a significant improvement in speed. nMOS pass transistors

2

also offer less area consumption in comparison to the CMOS approach.

The philosophy developed here has been used in the design of a program for the

layout generation of pass transistor networks. This program has been applied to the

design of a 4-to-1 multiplexer and an adder (sum and carry). The layout of the circuit

sub-cell have been done using the program Magic, based on 3µ CMOS p-well technol­

ogy.

A CMOS CIRCUIT GENERA TOR USING DIFFERENTIAL PASS

TRANSISTORS FOR IMPLEMENTING BOOLEAN FUNCTIONS

by

RABE'EH MAHOOTI

A thesis submitted in partial fulfillment of the

requirement for the degree of

MASTER OF SCIENCE
m

ELECTRICAL ENGINEERING

Portland State University

1988

TO Tiffi OFFICE OF GRADUATE STUDIES:

The member of the Committee approve the thesis of Rabe 'Eh Mahooti

presented December 5, 1988.

w. Robert Daasch, Chair

L. W. Casperson

R~i)~-Aggarwal

APPROVED:

'hair, Departtnent of Electrical Engineering

Bernard Ross, Vice Provost for Graduate Studies

ACKNOWLEDGEMENT

I wish to give special thanks to my parents, Mahrokh and Hassan, who have been

helping, supporting, and encouraging me. I would also like to thank my adviser, Dr.

Robert Daasch, who provided guidance in the process of this research work. Special

thanks must also be given to Dr. Lee Casperson and Grigory Kogan for their tremendous

support.

I wish to thank graduate students, faculty, and staff of electrical engineering

department, specially Janaka Jayawardena and Shirley Clark, for their help and the con­

venience in using utility equipment.

For providing me with emotional support especially during the last few days of

my thesis writing I want to thank my brother, Hamed, and special friends, Ela and Mehdi.

I

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENT.. Ill

LIST OF TABLES... VI

LIST OF FIGURES... Vll

GIAPTER

I INTRODUCTION.. 1

II STUDY AND COMPARISON OF MOS PASS TRANSISTOR

LOGIC.. 10

MOS Pass Transistors... 11

nMOS Pass Transistor... 11

pMOS Pass Transistor... 13

CMOS Pass Transistor... 14

Implementing the nMOS Differential Pass Transistor...................... 15

III ANALYSIS OF MOS PASS TRANSISTOR LOGIC AND

BOOTSTRAP CIRCUIT.. 18

Precharging the Fabric... 18

Precharging Through an n-Device.. 18

Precharging Through an p-Device.. 20

v

Bootstrapping the Gate of the Pass Transistor.............................. 24

Simulation of Switching Rows... 28

IV GENERATING CIRCUIT FOR BOOLEAN FUNCTION USING

MAGIC FILES.. 33

V CONCLUSION... 37

REFERENCES... 38

APPENDIX

A TABLES OF COMPARISONS... 40

B FIGURES OF COMPARISONS... 54

C PROGRAM CODE FOR LAYOUT GENERATION OF

BOOLEAN FUNCTIONS... 75

D EXAMPLES OF THE LAYOUT CIRCUITS................................ 94

LIST OF TABLES

TABLE

I Minimization Example, from Reference 5

II Precharging Through the Fabric Using nMOS Transistors (W=5.5µ)

III Precharging Through the Fabric Using pMOS Transistors (W= 5.5µ)

IV Precharging Through the Fabric Using Bootstrap Circuit

PAGE

7

19

22

at the Gate of Pass Device.. 25

V Bootstrapping Gates C and C (MOS Capacitor Being Eight Times

Larger Than the Load).. 26

VI Charge Sharing Effect When Switching from One Row to Another

(Total of 32 Rows).. 31

LIST OF FIGURES

FIGURE PAGE

1-l(a). Non restoring nMOS half-adder... 2

1-l(b).Non restoring nMOS full-adder... 2

l-2(a). Restoring CMOS half-adder... 3

1-2(b).Restoring CMOS full-adder.. 3

1-3(a). Restoring dynamic nMOS half-adder... 3

l-3(b).Restoring dynamic nMOS full-adder... 3

1-4. Timing diagram for restoring dynamic adder.................................. 4

1-5(a). Representation of a pass transistor network.................................... 5

1-5(b).Example of a sum generator for a full-adder................................... 5

1-6(a). Karnaugh map, illustration of difference field................................. 6

1-6(b).Example of a carry generator for a full-adder.................................. 6

2-1 (a). Representation of a conventional CMOS pass element....................... 12

2-l(b).Conventional CMOS pass transistor 4-to-1 multiplexer circuit.. 12

2-2. Physical structure of an nMOS transistor...................................... 13

2-3. Physical structure of a pMOS transistor.. 13

2-4. An element of the nMOS differential pass transistor.......................... 15

2-5(a). Representation of an MOS pass transistor..................................... 16

2-5(b).4-to-1 multiplexer circuit of differential pass transistor logic................ 16

2-6(a). Static differential buffer circuit diagram.. 17

2-6(b). Clocked differential buffer circuit diagram..................................... 17

Vlll

3-1. Precharging the fabric through a row of serially connected

nMOS tansistors.. 20

3-2. Timing diagram for precharging a row of serially connected

nMOS transistors... 21

3-3. Bootstrap circuit used at the gate of the pass transistors.................... 23

3-4. Timing diagram of the bootstrap circuit....................................... 24

3-5. Model for latch up condition... 27

3-6. Resistive model for latch up.. 28

3-7. 32 rows of pass transistor logic for charge sharing simulation............ 29

3-8. Timing diagram for charge sharing simulation.............................. 30

3-9(a). Switching from one row to another without precharging.................. 32

3-9(b). Switching from one row to another with precharging...................... 32

CHAPTER I

INTRODUCTION

Differential pass transistor logic is used for implementing and evaluating Boolean

functions. The nMOS approach is taken in the design of pass transistor logic, because

studies show that it is the most effective in terms of area consumption for implementing

Boolean functions for a large number of vectors of the same format. Moreover, pass

transistor realizations using minimum size results in area savings and high operating

speed when compared with gate logic realization [1]. It has been demonstrated that

nMOS pass transistor logic with the gate driven by bootstrap, using a voltage above Vdd

level, offers significant improvement in speed. The SPICE2G.6, level 2 model is used for

simulation of pass transistor logic. The TSPICE level 2 model is used for simulation of

the bootstrap circuit [2]. The C language in combination with the CFL program is used

to generate the layout of the circuit. The C-code reads MAGIC files from a library and

generates the layout of the circuit. This program, BFG, also requires for the input vectors

to the generator to be of the same format. The Boolean function can have up to fifteen

control variables with one pass variable. A vector larger than five control variables will

be broken into two or more sub-circuits. The generated circuits have been simulated

using the Fastsim logic simulation [3].

Static restored logic corresponds' to an output voltage which is strong enough to

drive other stages in a cascaded circuit. In other words, the output is at either a strong

high or low voltage level. Here, an example of a non-restored logic is considered in Fig­

ure 1-la, which shows a half adder where the information bits are A,A,B and B. The out­

put of the half adder is either 0 volts or V dd-V1 volts. The output of Figure 1-1 b is the

2

sum of the two half adder and the carry bit. Since the voltage that is driving H and H are

V dd-Vt volts, the output voltage of the sum can either be 0 volts or Vdd-2Vt volts. At this

stage, V dd-2Vt is not a strong enough

A-1

B-1

A-1

B-1

(a)

f-A

f-B

f-A

t-B

H-1 f-H

c-1
AEF>B=H

=~ dd -Vt H-1

c-1

(b)

Figure 1-1. Non restoring nMOS adder
(a) non restoring nMOS half-adder.
(b) non restoring nMOS full-adder.

f-c
H@ C=S

f-H = rOdd -2V t

r-c

output to drive a next stage in a cascaded situation. However in the CMOS circuits

shown in Figure 1-2a and b, where the pull up is a pMOS transistor and the pull down is

an nMOS transistor, a strong logic high can be passed from V dd through the p-device to

the output node, and a strong logic low can be achieved through then-device at the out­

put node (the characteristic of the p-device and n-device are considered in more detail in

Chapter m. The output of the half adder shown in Figure 1-2a, is either 0 volts or V dd· In

this case, the output is at strong logic low or high and can be used in cascaded circuits.

Dynamic design, shows in Figure 1-3a and b, the output node needs to be

precharged and then evaluated, In Figure 1-3a, the output is precharged during the

precharge cycle to V dd-Vt volts. During the precharge cycle all the switches, A,A,B and

B are closed as shown in Figure 1-4. During the evaluation cycle depending on the infor-

- -
mation bits, A,A,B and B, the output node can either discharge to 0 volts or stay at

V dd-Vt volts. In this case the output is restored to strong logic low or high and can be

~2 s~A ~t '.Jp-"
s----q p.-s c.q p-c

AEt>B=H H@ C=S

=~ dd
-

=rodd A~[Jr A "-i r-"
- -

B~s ?~B c~ ~c

(a) (b)

Figure 1-2. Restoring CMOS adder
(a) restoring CMOS half-adder.
(b) restoring CMOS full-adder.

used in a cascaded circuit.

pchg ~~

A~[

B~[

(a)

pchg ~

A@B=H H@ C=S

J~A =~dd -v, 1Y ~H

J~B c~ ~c

(b)

Figure 1-3. Restoring dynamic nMOS adder
(a) restoring dynamic nMOS half-adder.
(b) restoring dynamic nMOS full-adder.

r -V =
0
dd t

3

An element of a differential pass transistor consists of two n-channel transistors,

controlled by the same signal, which passes the input and its complement to the output. If

the pass transistor is of nMOS type the control signal that closes the gate is high, and if it

is of pMOS type, then the control signal that closes the gate is low. The CMOS transmis-

4

pchg _J

A =>< x
B =>< x
enl

en2

s J \ .valid I
Figure 1-4. Timing diagram for restoring dynamic adder.

sion gate consists of nMOS and pMOS transistors.

Pass transistor logic elements are bidirectional, since which terminals acts as the

drain and source depends on their voltage levels. A pass transistor is, in fact, a switch,

much like the earlier contact relay [4, 5]. The pass element can take any value of the set

{O, l,xi,Xi,z} where xi is an input variable and z is the high impedance state [l]. The high

impedance results when all of the switches are off. To avoid a high impedance output, a 0

must be passed whenever a 0 is required at the output. This implies that in the Karnaugh

map all 0 entries as well as 1 entries must be grouped together[!, 6]. The signals that

drive the gates of the MOS transistor are called control signals. The input signals that are

fed into the pass transistors and are passed to the output are called pass signals.

In this study the networks are realized with only nMOS transistors. A general

form of a pass transistor network is shown in Figure 1-5a and b. Each row is composed of

several pass transistor which are connected serially and each transistor row is called a

product term, Pi. The input, Vi, is passed to the output, F, when all the switches in one

row are enabled. The gate of each product term is controlled by the control signal, Ci. A

5

wired OR at the output node connects the rows. An example of the sum generator for the

full adder is shown in Figure 1-5b, where the pass function is F=AB(C)+AB (C)+AB(C).

control

Wired - -
'OR' A A B B

V1 Pl
1

V2 P2 c
F C_I

V3
::::r:::: I ::::r:::: LF

P3 c - -
-c

V4 P4

(a)
(b)

Figure 1-5. Pass transistor network
(a) representation of a pass transistor network.

(b) example of a sum gene'rator for a full adder.

Thus the output of the pass transistor network can be expressed as

F=P1(Vi)+P2(V2}+ · · ·+Pn(Vn) [1, 7].

Example 1: A three variable Kamaugh map is shown in Figure 1-6a. Cells 0 and

1 constitute the pass implicant of AB with a pass variable of 0, which can be denoted as

AB(O). Cells 2 and 3 constitute the pass implicant with a pass variable of AB (C).

Respectively cells 4 and 5 form a pass implicant of AB(C), and cells 6 and 7 form a pass

implicant of AB (1). The whole function can be expressed as

F=AB(O)+AB(C)+AB(C)+AB (1). This function is the carry generator of a full adder,

which is shown in Figure 1-6b [l, 7, 8].

Since the Kamaugh map is most effective for a networks up to five or six vari-

ables, an algorithm for networks larger than six variables has been developed by D.

Radhakrishnan by modifying the conventional Quine-McCluskey approach. In the

Quine-McCluskey methode where tabular method is used to drive a minimal sum when

all prime implicants of a given function F are known. In this method, two vectors that

AB
...

I 0
0

0
1

A A

0 1 0
2 6 4 ~=l=i

1 1 1 c
3 7 5 1

(a) (b)

Figure 1-6. Conventional CMOS pass-transistor
(a) Kamaugh map, illustration of difference field.
(b) example of a carry generator for a full adder.

6

B B"

F

are combining must differ only in one bit and the F is given in its minterm expansion [4,

5].

The format for the data structure of Radhakrishnan approach is in the form of

base[difference]variable. The base field is an integer field, and it is the smallest value

minterm between the grouping of minterms. Two pass implicants can be combined only

if their bases vary by one bit. The difference field is also an integer field, consisting of

one or more entries separated by commas. It represents the difference between the two

fields that are combining together. The difference field between the two terms whose

decimal equivalents are 2 and 3, the difference in this case is (1). On the other hand for

2(1) and 6(1) the difference is (1, 4). The order of the entries in a difference field makes

no difference, thus (1, 4) and (4, 1) are equivalent. The pass field is an alphanumeric

field which can have any value from the set (0, l ,xi, and.xi}. The pass implicants are:

1. if Fi=O and Fj=O then i [2k]O ;

2. if Fi=l and Fj=l then i [2k] 1 ;

3. if Fi=O and Fj=l then i [2k]xk ;

4. if Fi=l and Fj=O then i [2k]xi ;

In the example shown in TABLE I, the prime implicants that cover all eight terms

7

TABLE I

MINIMIZATION EXAMPLE, FROM REFERENCE 5

TRUTH TABLE OUTPUT BASE(DIFFERENCE)PASS

(BINARY) (DEC) Listl List2

X2 Xl XO x F - -
0 0 0 0 0 0(1)0

1
0(1, 2)Xl

/()(_2)Xl /
0(4)0 I

I
1(2)Xl I 0 0 1 1 0

I/
1(4)X2

0 1 0 2 2(1)1

2(4)X2

1 0 0 4 o/ 4(1)XO 4(1, 2)XO

4(2)0

0 1 1 3 1 I 3(4)1

1 0 1 5 1 5(2)1

1 1 0 6 0 6(1)XO

1 1 1 7 1

of the three variable function are 0(1, 2)xl and 4(1, 2)x0, which Radhakrishnan indicates

can be represented as x2(x 1) and x2(x0), respectively [l, 6]. Thus, the pass function for

the network is F =x 2(x 1)+x2(x 0), which can be implemented with nMOS transistors.

Differential pass transistor logic with an nMOS fabric is used in this study. The

pass variable and its complement are passed from the input to the output node. At the

output node a wired OR connects all the OUT+ nodes together and another wired OR

8

connects all the OUT- nodes together. The network then has two differential outputs,

OUT+ and OUT-, which drive a differential buffer, (see Figure 2-3). The output nodes

and the entire fabric are precharged during a precharge cycle. Then, one of the nodes,

depending on the pass variable and the state of the control signals, is discharged to

ground through the buffer, during an evaluation cycle. In differential pass transistor logic

the number of transistors is almost twice as large as in ordinary pass transistor logic, but

the overhead consumption is not as much as in CM OS transmission gates since all the

transistors are n-type and stay in the same well. In this study it is shown that this

approach has area and speed advantages over conventional CMOS pass transistor logic.

Since possible loss of information can occur in the ordinary pass transistor logic

because of problems with noise margin, this study uses differential pass transistor logic.

A differential pass transistor is also faster, since we need a differential voltage level of

vdd
about 2 at the output node instead of full CMOS level voltages. Another advantage

of this type of configuration is that it produces complementary outputs at the output node

(9, 10].

In Chapter Il, a study and comparison of MOS pass transistor logic is done. This

compares the behavior of nMOS, pMOS and CMOS transistor logic. Chapter m, focuses

on differential pass transistor logic in nMOS, the timing behavior of precharge and

evaluation cycles and also shows that using a bootstrap circuit at the gate (the control sig­

nal) of the nMOS pass transistor logic will significantly improve the speed. In this

Chapter simulation for pass transistor logic is presented. The difference in precharge

time, using an n-type precharge device versus a p-type precharge device is shown. The

simulation result shows that when switching from one row to another row (see Figure 3-

7), the output voltage will discharge through the fabric by about V;d volts. This is in a

case of having only five transistors in one row. This voltage drop can get worse as the

9

number of transistors is increased. For this reason, precharging before each evaluation is

necessary, since we can not afford this voltage drop at the output node. The simulation of

the bootstrap circuit is also shown in this Chapter and possi?le problems that might occur

in bootstrapping are discussed.

In Chapter IV, by considering the criteria that are discussed in the above

Chapters, a program for layout generation of differential pass transistor fabric is

developed. For the circuit generation of specific Boolean functions, C-code in combina­

tion with CFL is used. The program reads an input file describing the Boolean function

and generates a layout circuit of the function in the MAGIC form which is called "BFG"

(Boolean Function Generator). The layout circuit is in 3µ p-well CMOS technology.

Finally, Chapter V concludes the work and summarizes our results of the study of dif­

ferential pass transistor logic.

CHAPTERil

STUDY AND COMPARISON

OF MOS PASS TRANSISTOR LOGIC

Pass transistor logic is used for implementation of Boolean functions. There are

three main characteristics of pass transistor logic: non-restored gate (e.g. restoring gate

converts input low level to zero volts output and input high level to full V dd output),

bidirectional devices (since drain and source of a pass device depends on its voltage

potential level), and implement combinational logic with one output.

The operation of an MOS transistor is based on the terminal potentials. There are

two primary types of transistors, enhancement-mode and depletion-mode. Since most

high-density integrated circuits are built with enhancement devices, this study considers

only enhancement devices. In an enhancement-mode, normally off, nMOS transistor,

when the potential of the gate is below threshold voltage, electrons are prevented from

flowing from source to drain of the transistor (i.e. no channel). This is because of the

built-in potential of the p-n diode formed between the n-type source and the p-type sub­

strate. A positive voltage (above threshold) on the gate with respect to the substrate will

increase the number of electrons in the channel and, hence, increase the conductivity of

the channel. Thus to turn on an enhancement-mode transistor, positive charges must be

placed on the gate.

There are two types of enhancement devices, nMOS and pMOS. Operating with

a 5 volts power supply, the threshold voltage, V1, of enhancement-mode device is in the

range of 0.6 to 1.1 volts for nMOS devices. The logic high output voltage of an nMOS

device is V dd-V1• The threshold voltage, V,, of enhancement-mode for pMOS device is in

11

the range of -0.6 to -1.1 volts with reference to source voltage. The logic high output vol­

tage of a pMOS device is at V dd level [11]. For an nMOS device, a high voltage on the

gate will turn the transistor on, whereas for a pMOS a low voltage on the gate will turn

the transistor on.

There are two types of enhancement devices, nMOS and pMOS. These may be

combined to form complementary MOS (CMOS). The CMOS pass transistor, Figure 2-1

consists of an n-channel transistor and a p-channel transistor. The gates of the n-channel

and the p-channel are opposite signals, C and C, but they have common source and drain

connections. The characteristics of n and pare described below.

MOS PASS TRANSISTORS

1. nMOS Pass Transistor

In an n-channel enhancement type transistor, shown in Figure 2-2, the substrate is

doped with p-type silicon. The source and drain, which are diffused into the substrate, are

heavily doped n + regions. Between the source and drain there is a narrow region of p­

type substrate, channel, which is covered by a thin isolating layer of silicon dioxide

(SiO 2) gate oxide. Over this gate oxide there is a polycrystalline silicon (polysilicon),

which is called the gate.

In case of a positive voltage applied between the source and the drain (V ds), with

control signal C being in off state (V8s=O volts) there would be no current flow between

the source and drain of the transistor. If the load capacitance, C1, at the output is

discharged the output voltage, V0 , will stay at the ground level independent of the input

voltage, Vin· When the control signal is on high state (Vgs=5 volts) and Vin=5 volts the

pass transistor begins to conduct and charges the load capacitance toward Vdd-Vtn• where

Vin is the threshold of then-device. When the output voltage, V0 , reaches V dd-V,, then­

device begins to turn off. At this point the channel of the transistor is shut off and the

control

l_
in ~out

T
control

(a)

VO_

v1_.
1

_

v2_

V3~_l_~~~~~~

(b)

c

Figure 2-1. Conventional CMOS pass-transistor
(a) Representation of a conventional CMOS pass element.

(b) conventional CMOS pass transistor 4 to 1 multiplexer circuit.

12

F

load capacitance, Ci will remain at V dd-V in· This implies that the nMOS pass transistor

does not pass the full voltage level. In the case in which the control signal is at high state

and Vin=O volts and the load capacitance is charged, the pass transistor begins to conduct

and discharge the load capacitor to Vss· The n-device can discharge a capacitor to

ground, and thus it is a strong logic low [12].

13

Gate Oxide

Source Gate Drain

,------
.___Ch_ann_e_l_. l r Ek'-ctro_n_s __ _,

Holes
p-substrate

n+ n+

vss

Figure 2-2. Physical structure of an nMOS transistor.

Gate Oxide

Source Gate Drain

p+ p+

Channel

n-substate

vdd

Figure 2-3. Physical structure of a pMOS transistor.

2. pMOS P~ Transistor

In a p-channel enhancement type transistor, shown in Figure 2-3, the substrate is

doped p+. In the pMOS pass transistor, when the control signal (Vgs) is at high voltage,

the gate is turned off. Regardless of the input voltage, the load capacitance remain

14

unchanged. When the control signal (Vgs) is at low voltage, it draws holes into the chan­

nel region below the gate. As the result a channel is created under the gate and a conduc­

tion path is created between the source-to-drain. In nMOS conduction results from move­

ment of electrons. However, in the case of pMOS conduction results from the movement

of holes in the channel. Thus a negative voltage at the gate (w.r.t. source) causes the

current to flow and charge the load capacitor to V dd· However, in the case in which Vin=O

volts and V 0=5 volts , the load capacitor discharges through the p-device until

Vin=V0 -V1p, while the output V0 remains at Vrp, where Vrp is the threshold voltage of the

p-device. Thus the pMOS pass transistor unlike nMOS, does not conduct a strong logic

low [12].

J. CMOS Transmission Gate

The CMOS transmission gate has the advantage of passing both a strong logic

high through its p-device and a strong logic low through its n-device. However p and n­

devices together consumes much area and this is not desirable. Another constraint of the

CMOS transmission gate is that both Vss and V dd rails have to be presented in the circuit,

whereas in the pass transistor logic V dd or Vss are not necessary, since at the output node

we are looking at the differential pair. Thus, although it is clear that CMOS offers certain

advantages, nMOS is still preferable.

The main reasons for using nMOS pass transistor logic instead of CMOS in this

study are to substantially improve speed and reduce area (since all the transistors on the

same substrate). The pass transistor used for implementation of this study is an n-channel

transistor which eliminates the slow p-channel transistor and the extra area that p­

channels consume (sines they have to be build on a different well from the n-channel

transistor). One disadvantage of the n-channel transistor is that it precharges the fabric

slowly and increases precharge time as the number of serial transistors increase.

15

IMPLEMENTING THE nMOS DIFFERENTIAL PASS TRANSISTOR

An element of the nMOS differential pass transistor logic which consists of two

n-channel transistors, controlled by the same signal that passes input and its complement

to the output, is shown in Figure 2-4.

control

in+

in- _ ____.11.._ __
out+

out-

Figure 2-4. An element of the nMOS differential pass transistor.

This differential pass has two outputs, OUT+ and OUT-. Since an n-channel transistor

can pass a strong logic zero, the value of the output can be exactly zero, however, since

n-channel transistor can not pass a strong logic high, the maximum voltage level at the

output node that is passed through the n-channel transistor is V dd-V1• This differential

output signal can be restored to its full logic level by using a differential buffer at the out-

put (see Figure 5-6)[6, 13, 14].

A common application of this type of logic configuration is a multiplexer in

which a pass variable V; is passed to the output depending on the state of the control sig-

nal C;. A differential pass-transistor multiplexer network is illustrated as in Figure 4-5.
·,.

Buffers are placed at the input of the pass network, to provide a set of a complemented

inputs. At the output node, when the control variables enable the switches of the product

term C; in one row, the product term of the adjacent rows are disabled resulting in a

high-impedance state [6]. "Two wired OR at the output node, OUT+ and OUT-, sums all

of these possible products". Thus, the input variable V; and its complement are passed to

the output, OUT+ and OUT-, when the product term C; of that row is on.

c

J_
IN+ n OUT+

IN-
LJ

OUT-

T
c

(a)

ck CO co Cl Cl prechg

VO ----..-----'

Vt ____ _,

V2----..-----'

V3 ----..------'

(b)

Figure 2-5. Differential pass-transistor logic
(a) Representation of an nMOS pass transistor.

+

(b) 4-to-1 multiplexer circuit of differential pass transistor logic.

vdd

F

F

16

The network has a set of differential outputs OUT+ and OUT-. This differential

signal is restored to normal logic level by passing the signal through differential buffers

as shown in Figure 2-5(a) and (b), respectively. One type of differential amplifier that

can be used for our purpose is static differential buffer that is shown in Figure 2-6(a).

17

This buffer is a cascode voltage switch logic (CVSL) inverter [15]. Another type of dif­

ferential amplifier is clocked buff er which is shown in Figure 2-6(b), a RAM sense

amplifier [6].

_F

OUT+-----1 f-- OUT-

elk -9

OUT+-t

(a)

P-clk

F

~OUT-

elk -t

(b)

Figure 2-6. DP'IL decoders
(a) Static differential buffer circuit diagram.

(b) Oocked differential buffer circuit diagram.

CHAPTER III

ANALYSIS OF MOS PASS TRANSISTOR LOGIC

AND BOOTSTRAP CIRCUIT

The SPICE2G.6, level 2 model is used for simulating the pass transistor logic.

The TSPICE, level 2 model is used for simulating the bootstrap circuit.

PRECHARGING THE FABRIC

It is known that nMOS transistor works faster discharging the capacitor than for

precharging it. The reason for this is that the number of electrons in the channel of the

nMOS device increases as the source voltage goes to ground (in other words resistivity of

the device decreases as the source voltage goes to ground). An opposite situation occurs

when the nMOS device precharges a capacitor. The precharge slows down as the voltage

rises and stops when Vgs reaches to V dd-V, level.

1. P_recharging Through an n-Device

In the nMOS design it is a common practice to precharge all the dynamic nodes

and then selectively discharge according to the input data. Precharging through the fabric

of serially connected nMOS transistors, the current will penetrate through the fabric, and

the time required to precharge the fabric to the desired voltage level will increase as the

number of serially connected transistor increases. For instance in simulation one illus­

trated in TABLE Il, the fabric is precharged through five serially connected transistors

with an nMOS precharge device of the size W =5.5µ. It takes 27ns to precharge to 3 volts,

see TABLE IT.

TABLE II

PRECHARGING THROUGH THE FABRIC USING
nMOS TRANSISTOR (W=5.5µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.440 0.000 0.000 0.000 0.000 0.000

3 2.742 0.000 0.000 0.000 0.000 3.488

6 2.294 0.3586 0.2569 0.000 0.000 3.563

9 1.214 1.214 1.214 0.000 0.000 3.594

12 1.124 1.129 1.161 1.191 1.199 3.616

15 1.250 1.254 1.281 1.337 1.445 3.434

18 2.198 2.209 2.276 2.405 2.613 2.953

21 2.678 2.685 2.730 2.817 2.957 3.186

24 2.920 2.925 2.959 3.024 3.128 3.300

27 3.063 3.068 3.094 3.146 3.229 3.367

30 3.159 3.162 3.184 3.227 3.296 3.412

33 3.227 3.230 3.249 3.285 3.345 3.445

36 3.278 3.280 3.297 3.329 3.381 3.469

39 3.317 3.319 3.334 3.362 3.409 3.488

42 3.349 3.351 3.364 3.389 3.431 3.503

50 3.408 3.410 3.420 3.440 3.473 3.531

19

For this experiment, the precharge device was chosen to be an nMOS device with

the size W =5.5µ transistor. The experiment is set up in the following manner. The

precharge transistor is on at Ons and the precharge of the fabric is enabled. The transistor

M 1 is turned off during the precharge cycle. Initially all transistors are off. In 44ns all

20

c4 c3 c2 cl co prechg

vdd vdd

vss T
npa

Figure 3-1. Precharging the fabric through a row of serially connected nMOS transistors.

transistors will be on, as they are turned on in succession, as illustrated in Figure 3-1 and

2. Thus nMOS transistor that are used for precharge device to precharge the fabric of

serially connected n-type transistors are slow. Precharging the fabric through a p-type

device can improve the precharge time, as shown in the next section.

2. Precharging Through a p-Device

In this simulation a p-device is used to precharge through the fabric, in the same

way as in the last experiment (also see Figure 3-1 and 2). A p-device transistor turns on

when the gate is at zero volts (w.r.t. source). The source of a p-device is connected to a 5

volts supply voltage. Thus, the gate source voltage is constant (Vgs=5v). The drain source

current of the device is

where

and

vds
lds=K(V8s-1V,1-2)V ds

WP
K=µpCox.(L)eff

p

(3.1)

(3.2)

pa

npa

--r----------prechg L -

cO-cl

c2-c3

c4

pO-pl

p2-p3

p4

0 3 6 9 50

TIME (ns)

Figure 3-2. Timing diagram for precharging a row of serially connected nMOS transistors.

µ = mobility of holes

C0 x =gate oxide capacitance

W p = channel width of p-device

LP = channel length of p-device

21

The current Ids will flow from source to drain of the p-device until the output is at

5 volts. Thus, the output voltage can be charged to a full voltage level through a p­

device. The SPICE simulation using p-device shows much improvement in speed (flt)

for precharging the fabric. Using the p-device transistor for precharging the fabric, we

have reduced the precharge time flt to 24ns through the same number of transistors,

shown in TABLE III.

TABLE Ill

PRECHARGING THROUGH THE FABRIC USING
pMOS TRANSISTOR (W=5.5µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.452 0.000 0.000 0.000 0.000 0.000

3 2.742 0.000 0.000 0.000 0.000 5.003

6 2.340 0.3598 0.2606 0.000 0.000 5.000

9 1.219 1.218 1.219 0.000 0.000 5.000

12 1.127 1.132 1.164 1.195 1.202 5.000

15 1.256 1.260 1.287 1.346 1.457 4.878

18 2.319 2.333 2.415 2.577 2.854 4.798

21 2.826 2.834 2.886 2.987 3.162 4.927

24 3.050 3.056 3.094 3.167 3.294 4.962

27 3.177 3.182 3.211 3.268 3.369 4.977

30 3.259 3.262 3.286 3.333 3.417 4.985

33 3.315 3.318 3.338 3.379 3.450 4.989

36 3.357 3.359 3.377 3.412 3.475 4.992

39 3.389 3.391 3.407 3.438 3.494 4.994

42 3.415 3.416 3.430 3.458 3.508 4.995

50 3.462 3.463 3.474 3.496 3.536 4.997

22

Even though we have seen some improvement by precharging the fabric through

a p-device, it is possible to improve the speed of the precharge cycle even further. One

way to improve the speed of precharging is to tum the pass transistor up very high,

23

higher than 5 volts. This elevation of voltage can be achieved by using a bootstraped

device at the gate of the pass transistor. However a bootstrap circuit introduced into the

circuit design must be handled carefully.

----i___r- ----i___r-

1
pcharge

~
Cin Cin

Ml

C M3
__ .c

vdd

clk2

Figure 3-3. Bootstrap circuit used at the gate of the pass transistors.

24

pcharg _J I I

clk2 I I

clkl L
(vdd -v t + V) (vdd + v t)

(Vdd-Vt) ~

CandC

0 15 30 45 60 120

TIME (ns)

Figure 3-4. Timming diagram of Bootstrap circuit

BOOTSTRAPPING THE GATE OF THE PASS TRANSISTOR

The bootstrap circuit in Figure 3-3 and 4. is used to boot the control signal and its

complement. Using this type of configuration, the precharge time is reduced to 18ns

through same number of transistors, see TABLE IV. During evaluation cycle, when the

input signal Cin has a valid logic value, and elk 1 is high, the boot node, C, will get

charged to V dd-Vt volts through the M 1 transistor, and node C will discharge to 0 volts

through M 2 transistor and the inverter to ground. This is desirable since the C and C are

complements of each other during evaluation.

During a precharge cycle, in charging nodes C and the C, pcharge signal will

- -
enable and charge nodes C and C to V dd-V1• In order to charge node C and C above 5

volts, clk2 will turn off about 15ns later and charge node C and C to (V dd-V,) +V, see

TABLE V. The voltage of V depends on the size of the MOS capacitor. The size of the

MOS capacitance has been determined by

where

TABLE IV

PRECHARGING THROUGH THE FABRIC USING
BOOTSTRAP CIRCUIT AT THE GATE OF

PASS DEVICE

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.364 0.000 0.000 0.000 0.000 0.000

2 2.738 0.000 0.000 0.000 0.000 4.991

4 2.746 0.000 0.000 0.000 0.000 5.000

6 1.710 0.4811 0.3524 0.000 0.000 5.000

8 1.463 1.447 1.428 0.000 0.000 5.000

10 1.407 1.403 1.377 0.4933 0.3579 5.000

12 1.362 1.368 1.398 1.429 1.435 5.000

14 1.418 1.419 1.421 1.426 1.433 5.000

16 2.002 2.020 2.136 2.380 2.838 4.333

18 3.036 3.051 3.142 3.322 3.626 4.749

20 3.496 3.506 3.570 3.696 3.910 4.884

30 4.123 4.126 4.151 4.199 4.283 4.983

cap==f.X Eo = 4x8.85x10-14/ I cm
1ox 488A

4x8.85x10-
18

/ /µ 4x8.85 xl0-16/ /µ2=0.7/ ;µ2
.0488µ 4.88

Eo = permutivity of vacuum.

E = dielectric constant of silicon dioxide.

t0 x = thickness of oxide which in our model is 488A.

25

(3.3)

26

The two transistors in diode configuration, M 3 and M 4 , are necessary in order to

prevent the voltage level of C and C to rise above V dd+V, (see TABLE V), since the

breakdown of gate oxide for this technology is low (about 8 volts). The surplus voltage

of C and C is discharged through the diode to the source V dd·

TABLEV

BOOTSTRAPPING GA TES C and C
(MOS CAPACITOR BEING EIGHT TIMES LARGER THAN THE LOAD)

TIME PCHARGE CLK2 CLKl c c
(ns) (volt) (volt) (volt) (volt) (volt)

0 5 5 0 3.6692 3.6692

5 5 5 0 3.6692 3.6692

10 5 5 0 3.6692 3.6692

15 5 5 0 3.6692 3.6692

20 5 0 0 4.6767 4.7242

25 5 0 0 5.8008 5.9015

30 5 0 0 6.4392 6.5696

35 5 0 0 6.7187 6.8362

40 5 0 0 6.8205 6.9016

45 5 0 0 6.8533 6.9043

50 5 0 0 6.8590 6.8903

The transistors M 1 and M 2 are used to isolate the booted node, C, from the

pMOS transistor of the inverter. This is to prevent the discharge of the boot node to V dd•

through the drain-substrate of the p-n junction, shown in Figure 3-5.

The main problem with the bootstrapping circuit in CMOS is latch up. When

drain of pMOS transistor is biased above substrate voltage level, injection of holes into

-- 'I

27

Vin

Poly Gate Gate Oxide

··---Yss

n-type substrate
Yss -

'dd

Figure 3-5. Model for latch up condition.

n-type substrate results. Injected holes get picked up by the closest p-well and elevate

the voltage level of p-well. This in turn biases the p-n junction (of source-drain) of

nMOS transistor. As the result, electrons are injected into the p-well. The amount of

current leakage depends on many factors, such as, geometries of the injecting and col­

lecting nodes, the distance between them, the location of other neighboring nodes, and

the location of the closest substrate contacts.

The latch up models are shown in Figures 3-5 and 6. Conditions for bulk CMOS

latch up are:

1. Base-emitter CMOS junctions of pnp and npn transistors are forward biased;

2. Beta product (~npn~pnp > 1) are sufficient to allow regeneration;

vdd

Rs

c
~ 1----i 1---'1

n-substrate ___...
i ~ ... ___ _

vss

p-source

-- transient
current

Rw C is p-well
capacitance

Figure 3-6. Resistance model for latch up.

3. The power supply V dd increases or decreases abruptly. If we increase V dd•

i=-c dv [11, 16]
dt

28

(3.4)

current i will flow to the base of the transistor which causes it to latch up; and

4. Resistivity of substrate Rs and p-well Rw is high.

For a low-resistive p-well, the voltage drop across p-well will be smaller, so the

injection of electrons will be correspondingly lower, and the possibility of latch-up is

reduced. A similar condition holds for resistivity of n-substrate.

SIMULATION OF SWITCHING ROWS

In this section we will discuss the charge sharing problem of the pass transistor

logic. As explained in the beginning of this chapter, voltage level of the output depends

29

on discharge (or precharge) through several serially connected pass devices. It also

depends on charge sharing with the internal nodes of the discharge (or precharge) path.

When switching from one row to another row of the pass transistor, we want to know

how fast the output, OUT+, discharge and charges,~, shown in Figure 3-7.

ct C2 C3 C32

T
T

T
T I OUT+

T _OUT-

T

T

Figure 3-7. 32 rows of pass transistor logic for charge sharing simulation.

Since at the output nodes (OUT+ and OUT-) of the fabric, we are looking at the

differential voltage, we need to know the initial state of the output nodes. In addition if

we don't precharge the fabric the noise margin is essentially unknown. Thus output

nodes, OUT+ and OUT-, have to be brought to a known initial state by precharging the

30

output, OUT+ and OUT-, nodes to 4 volts. All transistors are n-channel and they are

chosen to be at their minimum size (W =4.0µ,L =3.0µ). A voltage source is placed at the

nodes p 1 and p 32 of the pass transistor. At the initial condition, the control signal, C 1, at

the gate of the M 1 transistor is on, and control signal of all other transistor are off. Ini­

tially the output OUT+ is at 4.0 volts and OUT- is at ground level, 0 volts. At lOns, M 1

goes from an on state to an off state, and M 32 goes from an off state to an on state, see

Figure 3-8. At this point the output voltage remains at its initial voltage level as expected,

since there is no

Cl, C32

C2-C31

OUT-

OUT+

Ons lOns 20ns 30ns

Figure 3-8. Timing diagram for charge sharing simulation.

other path to discharge the output voltage. At 20ns transistors M 2 through M 32 are

turned on and the output voltage of OUT+ suddenly drops from 4 volts to 2.4 volts and

lOns later its voltage reaches to 3.0 volts, shown in TABLE VI, see Figure 3-9. The prob­

lem with pass transistor logic is that when the transistors are turned on, the charge at the

output node will be distributed through the fabric, and therefore lose or delay the charge

at the output nodes, OUT+ and OUT-. Thus pass transistors have the potential of a

charge sharing problem as the charge moves through the pass transistors into the fabric.

Since we are looking at the differential comparison at the output node, we can not accept

31

an unknown source of noise at the output node. However this problem is eliminated by

precharging the fabric to a known voltage level.

TABLE VI

CHARGE SHARING EFFECT WHEN
SWITCHING FROM ONE ROW TO ANOTHER

(TOTAL OF 32 ROWS)

TIME OUT- OUT+
(ns) (volt) (volt)

0 4.144 4.156

10 2.922e-02 4.152

20 -2.027e-06 4.149

21 1.533 2.410

22 8.814e-01 2.486

23 4.971e-01 2.592

24 2.779e-01 2.681

25 1.491e-01 2.757

26 7.755e-02 2.824

27 3.946e-02 2.881

28 l.974e-02 2.932

29 1.022e-02 2.976

30 5.175e-03 3.015

I

J~:~
Rowl_out Row2_out

(a)

L _!L
Rowl_out Row2_out

(b)

Figure 3-9. Charge sharing effect when switching fonn one row to another row.
(a) switching from one row to another without precharging.

(b) switching from one row to another with precharging.

32

CHAPTER IV

GENERATING CIRCUIT

FOR BOOLEAN FUNCTION USING MAGIC FILES

CFL is a C-based program which is intended to facilitate the construction of VLSI

circuit layouts. For generating circuit layout, set of data type called SYMBOL, a set of

primitive operands of this type, should exist in a library of the form of Magic file.

SYMBOLS are small set of geometric primitives which may combined to make

objects and saved as a new SYMBOL. There is also a set of operators which calls and

generates new SYMBOL by combining existing SYMBOLS. Routing facilities are pro­

vided by CFL to generate variety of planar and non-planar wiring patterns which can be

used to connect functional blocks.

CFL operator take the descriptions of the border of the symbols, and does not

require information of the symbol itself. The information in the border descriptions

includes the bounding box, its border and lists of coordinates of the points where each of

kind of material in the symbol makes contact with the bounding box.

I have developed a C-base program called BFG which generates circuit layouts

for Boolean functions. This program, that uses CFL operator can generate up to 215 min­

terms. A large circuit will be broken into smaller sub-circuit so that the time required for

precharging the fabric (interior nodes of the product terms) will be minimized. One can

use a set of variables { 0, 1,x,:X), where x can take any logical value and xis complement

of x. For specifying x in the "input" file the program will generate x for the circuit. The

product terms can take any value of {O, 1, -), where'-' is a don't care. Passing a value

with up to four control signals will generate one block. For number of control signal

34

between six and ten then the circuit will be broken into two sub-blocks each with five or

less control signals. A control signal between eleven and fifteen will be broken into three

sub-blocks. The output of the first block will be fed into the input of the second block

and output of the second sub-block will be fed into the input of the third sub-block.

The BFG program, bfg.c, reads from an input file called "input", see Appendix C.

The first line of input file must contains '.c' and an integer value to indicate the total

number of control line in the circuit. The program will break this control signal into

smaller number of controls (based on the simulation result) and will generate the sub­

blocks if the control signal is larger than five. The second line must contain a '. p' card

and an integer value to indicate the total number of pass-variables for the first sub-block.

After the second line the vectors for control and pass should be indicated with a blank

space between them. Next line after the last vector line is another '.p' card followed by

an integer value indicating number of passes for the second block which is again fol­

lowed by a set of vectors for the block. Similar procedure follows for the third sub-block.

All the passes, controls and output nodes are labeled for easier access.

Example 1: An example of the format of the input file for the BFG program .

. c 8 /*Total number of controls.*/

.p 4 /* Total number of pass-variable for the first

sub-block. */

01-1 0 /*Control-variables for one row and its pass-variable.*/

1-10 1

1100 x

--11 xn

.p 3 /* Total number of pass-variable for the second

1011 f

0110 fn

-010 fn

sub-block. */

35

The CFL macros that are used for generating the block are the following:

rr(sl, s2) - align right to right

rrdx(sl, s2, dx) - align right to right, x offset

11 - align left to left

bb - align bottom to bottom

bbdx(sl, s2, dx) - align bottom to bottom, x offset

bbdxy(sl, s2, dx, dy) - align bottom to bottom, x offset

my(s) - mirror in y

cp(sl, pl) - center to point

ps(name, s) - put symbol in the symbol table

36

CHAPTERV

CONCLUSION

Differential pass transistor logic is used for the implementation of Boolean func­

tions. The most effective approach in design of Boolean functions generator has been

found using nMOS pass transistor logic with the control signal bootstraped above Vdd

level. Detailed analysis of nMOS circuits, using SPICE circuit simulator and Fastsim

logic simulator, is done. SPICE simulation, using level 2 model, shows that we can

achieve the most reasonable time for precharging through the fabric (~) by breaking

the number of serially connected pass transistor logic into maximum of five in a row. The

study shows, by using bootstrap circuit at the gate of these pass transistor logic we can

obtain a faster precharge cycle. The bootstrap circuit used in the circuit was simulated on

TSPICE level 2 model simulation. The faster precharge was achieved at the boot node.

The study shows, by using a transistor in a diode configuration at the boot node, one can

raise the voltage at the boot node to a maximum of V dd+ V, level which is less than the

break down voltage in this technology. By using a bootstrap circuit at the gate of the

control signal, the precharge time is reduced to 18ns.

The circuit implementation of Boolean functions is accomplished. The C-code in

combination with the CFL program is used to generate the layout of the circuit. The C­

code will read from the library 'mag', MAGIC files, and generate the layout of the circuit

for the Boolean functions. The generated circuit is tested using Fastsim logic simulator.

REFERENCES

[01] Damu Radhakrishnan, Sterling R. Whitaker and Gary K. Maki, "Formal Design

Procedures for Pass Transistor Switching Circuits" IEEE Journal of solid-state

circuits, VOL. SC-20, No.2, april 1985.

[02] Jim Kimball, "TSPICE", EE CAX Group, Tektronix, Inc., 1987.

[03] Steve Sullivan, Tim Sauerwein, "Fastsim, A Digital Circuit Simulator with

Mixed-Mode Capabilities", Tektronix, Inc., September 1988.

[04] Alan B. Marcovitz and James H. Pugsley, "An Introduction of Switching System

Design", John-Wiley Publishing Company, 1971.

[05] Saburo Muroga, "Logic Design and Switching Theory", John-Wiley Publishing

Company, 1974.

[06] John H. Pasternak, Alex S. Shubat, C. Andret and T. Salame, "CMOS Differential

Pass-Transistor Logic Design", IEEE Journal of solid-state circuits, Vol.sc-22,

no.2, April 1987.

[07] Noel M. Morris, "Digital Electronic Circuits and Systems", Macmillan Press LTD

Publishing Company, 197 4.

[08] David Green, "Modern Logic Design", Addison-Wesley Publishing Company,

1986.

[09] E. A. Parr, "The Logic Designer's Guidebook", R. R. Donnelley and Sons Pub­

lishing Company, 1984.

[10] Marco Annaratone, "Digital CMOS Circuit Design", Kluwer Academic Publish­

ing Company, 1985.

39

[11] Lance A. Glasser and Daniel W. Dobberpuhl, "The Design and Analysis of VLSI

circuit", Addison-Wesley Publishing Company, 1985.

[12] Neil West and Kamran Eshraghian, "Principles of CMOS VLSI Design A system

perspective", Addison-Wesley Publishing Company, 1985.

[13] Thomas E. Dillinger, "VLSI Engineering", Prentice Hall Piblishing Company,

1988.

[14] A. S. Shubat, J. A.Pretorius, C. A. T. Salama, "Differential Pass Transistor Logic

in CMOS Technology", Electronic letters, Vol.22, no.6, March 1986.

[15] L. G. Heller and J. W. Davis, "Cascode Voltage Switch Logic," in ISSCC Dig.

Tech. Papers, pp.16-17, 1984.

SNOSUIVdWO:J ~O S3'UIV.L

VXICIN3ddV

PRECHARGING THROUGH THE FABRIC USING
nMOS TRANSISTOR (W=5.5µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.440 0.000 0.000 0.000 0.000 0.000

3 2.742 0.000 0.000 0.000 0.000 3.488

6 2.294 0.3586 0.2569 0.000 0.000 3.563

9 1.214 1.214 1.214 0.000 0.()()() 3.594

12 1.124 1.129 1.161 1.191 1.199 3.616

15 1.250 1.254 1.281 1.337 1.445 3.434

18 2.198 2.209 2.276 2.405 2.613 2.953

21 2.678 2.685 2.730 2.817 2.957 3.186

24 2.920 2.925 2.959 3.024 3.128 3.300

27 3.063 3.068 3.094 3.146 3.229 3.367

30 3.159 3.162 3.184 3.227 3.296 3.412

33 3.227 3.230 3.249 3.285 3.345 3.445

36 3.278 3.280 3.297 3.329 3.381 3.469

39 3.317 3.319 3.334 3.362 3.409 3.488

42 3.349 3.351 3.364 3.389 3.431 3.503

50 3.408 3.410 3.420 3.440 3.473 3.531

41

PRECHARGING THROUGH THE FABRIC USING
nMOS TRANSISTOR (W=l 1µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.439 0.000 0.000 0.000 0.000 0.8681

6 2.268 0.3618 0.2135 0.000 0.000 3.603

9 1.217 1.217 1.217 0.000 0.000 3.634

12 1.124 1.129 1.161 1.191 1.199 3.657

15 1.252 1.256 1.283 1.340 1.449 3.497

18 2.251 2.263 2.338 2.483 2.722 3.152

21 2.746 2.754 2.802 2.895 3.048 3.326

24 2.981 2.986 3.021 3.090 3.202 3.407

27 3.117 3.121 3.149 3.202 3.291 3.455

30 3.206 3.209 3.232 3.276 3.349 3.486

33 3.268 3.271 3.290 3.328 3.390 3.508

36 3.314 3.317 3.333 3.366 3.421 3.525

39 3.350 3.352 3.367 3.396 3.444 3.537

40 3.360 3.362 3.376 3.404 3.451 3.541

50 3.432 3.433 3.443 3.464 3.499 3.571

42

PRECHARGING THROUGH THE FABRIC USING
nMOS TRANSISTOR (W=22µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.442 0.000 0.000 0.000 0.000 1.188

3 2.743 0.000 0.000 0.000 0.000 3.581

6 2.420 0.3706 0.2635 0.000 0.000 3.635

9 1.228 1.228 1.228 0.000 0.000 3.667

12 1.126 1.133 1.166 1.196 1.196 3.691

15 1.262 1.266 1.294 1.353 1.465 3.557

18 2.294 2.307 2.384 2.537 2.791 3.296

21 2.787 2.795 2.844 2.940 3.100 3.420

24 3.014 3.020 3.055 3.125 3.241 3.478

27 3.144 3.148 3.176 3.231 3.322 3.511

30 3.228 3.232 3.255 3.300 3.375 3.533

33 3.288 3.291 3.310 3.348 3.412 3.548

36 3.331 3.334 3.351 3.384 3.440 3.560

39 3.365 3.367 3.382 3.412 3.462 3.575

42 3.393 3.394 3.407 3.434 3.480 3.589

50 3.443 3.445 3.455 3.476 3.512 3.623

43

PRECHARGING THROUGH THE FABRIC USING
pMOS TRANSISTOR (W=5.5µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.452 0.000 0.000 0.000 0.000 0.000

3 2.742 0.000 0.000 0.000 0.000 5.003

6 2.340 0.3598 0.2606 0.000 0.000 5.000

9 1.219 1.218 1.219 0.000 0.000 5.000

12 1.127 1.132 1.164 1.195 1.202 5.000

15 1.256 1.260 1.287 1.346 1.457 4.878

18 2.319 2.333 2.415 2.577 2.854 4.798

21 2.826 2.834 2.886 2.987 3.162 4.927

24 3.050 3.056 3.094 3.167 3.294 4.962

27 3.177 3.182 3.211 3.268 3.369 4.977

30 3.259 3.262 3.286 3.333 3.417 4.985

33 3.315 3.318 3.338 3.379 3.450 4.989

36 3.357 3.359 3.377 3.412 3.475 4.992

39 3.389 3.391 3.407 3.438 3.494 4.994

42 3.415 3.416 3.430 3.458 3.508 4.995

50 3.462 3.463 3.474 3.496 3.536 4.997

44

PRECHARGING THROUGH THE FABRIC USING
pMOS TRANSISTOR (W=l 1µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.452 0.000 0.000 0.000 0.000 0.000

3 2.743 0.000 0.000 0.000 0.000 0.000

6 2.161 0.3587 0.2452 0.6907 0.000 5.000

9 1.191 1.191 1.191 0.000 0.000 5.000

12 1.111 1.116 1.148 1.181 1.176 5.000

15 1.238 1.242 1.269 1.328 1.439 4.927

18 2.313 2.327 2.410 2.573 2.852 4.900

21 2.822 2.830 2.882 2.984 3.160 4.963

24 3.049 3.055 3.093 3.166 3.293 4.981

27 3.177 3.182 3.211 3.268 3.369 4.988

30 3.259 3.263 3.286 3.334 3.417 4.992

33 3.316 3.319 3.339 3.379 3.450 4.995

36 3.357 3.360 3.377 3.412 3.475 4.996

39 3.389 3.391 3.407 3.438 3.494 4.997

40 3.398 3.400 3.415 3.445 3.499 4.997

50 3.462 3.463 3.474 3.496 3.536 4.998

45

PRECHARGING THROUGH THE FABRIC USING
pMOS TRANSISTOR (W=22µ)

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.452 0.000 0.000 0.000 0.000 0.000

3 2.742 0.000 0.000 0.000 0.000 5.000

6 2.341 0.3551 0.2403 0.000 0.000 5.000

9 1.201 1.202 1.202 0.000 0.000 5.000

12 1.122 1.126 1.161 1.193 1.194 5.000

15 1.252 1.256 1.283 1.341 1.452 4.960

18 2.321 2.334 2.417 2.579 2.857 4.949

21 2.828 2.836 2.888 2.989 3.164 4.981

24 3.052 3.058 3.095 3.168 3.295 4.990

27 3.178 3.183 3.212 3.269 3.369 4.994

30 3.259 3.263 3.287 3.334 3.417 4.996

33 3.316 3.319 3.339 3.379 3.450 4.997

36 3.357 3.360 3.377 3.413 3.475 4.998

39 3.389 3.391 3.407 3.438 3.494 4.998

42 3.415 3.417 3.430 3.458 3.509 4.999

50 3.462 3.463 3.474 3.496 3.536 4.999

46

PRECHARGING THROUGH THE FABRIC USING
BOOTSTRAP CIRCUIT AT THE GATE OF

PASS DEVICE

TIME PO Pl P2 P3 P4 P5
(ns) (volt) (volt) (volt) (volt) (volt) (volt)

0 2.364 0.000 0.000 0.000 0.000 0.000

2 2.738 0.000 0.000 0.000 0.000 4.991

4 2.746 0.000 0.000 0.000 0.000 5.000

6 1.710 0.4811 0.3524 0.000 0.000 5.000

8 1.463 1.447 1.428 0.000 0.000 5.000

10 1.407 1.403 1.377 0.4933 0.3579 5.000

12 1.362 1.368 1.398 1.429 1.435 5.000

14 1.418 1.419 1.421 1.426 1.433 5.000

16 2.002 2.020 2.136 2.380 2.838 4.333

18 3.036 3.051 3.142 3.322 3.626 4.749

20 3.496 3.506 3.570 3.696 3.910 4.884

30 4.123 4.126 4.151 4.199 4.283 4.983

47

CHARGE SHARING EFFECT:
SWITCHING FROM ONE ROW TO ANOTHER

(TOT AL OF 16 ROWS)

TIME OUT- OUT+
(ns) (volt) (volt)

0 4.291 4.312

10 2.718e-02 4.322

20 -3.707e-06 4.319

21 1.187 2.515

22 3.728e-01 2.665

23 l.077e-01 2.816

24 2.289e-02 2.931

25 5.105e-03 3.017

26 8.047e-04 3.087

27 5.914e-05 3.143

28 9.508e-05 3.189

29 -5.279e-05 3.226

30 7.742e-05 3.259

48

CHARGE SHARING EFFECT:
SWITCHING FROM ONE ROW TO ANOTHER

(TOT AL OF 32 ROWS)

TIME OUT- OUT+
(ns) (volt) (volt)

0 4.144 4.156

10 2.922e-02 4.152

20 -2.027e-06 4.149

21 1.533 2.410

22 8.814e-01 2.486

23 4.971e-01 2.592

24 2.779e-01 2.681

25 l.491e-01 2.757

26 7.755e-02 2.824

27 3.946e-02 2.881

28 l.974e-02 2.932

29 l.022e-02 2.976

30 5.175e-03 3.015

49

50

BOOTSTRAPPING GATES C and C
(MOS CAPACITOR BEING SAME SIZE AS THE LOAD)

Time PCHARGE CLK2 CLKl c c
(ns) (volt) (volt) (volt) (volt) (volt)

0 5 5 0 3.6692 3.6692

5 5 5 0 3.6692 3.6692

10 5 5 0 3.6692 3.6692

15 5 5 0 3.6692 3.6692

20 5 0 0 5.1374 5.4634

25 5 0 0 5.2714 5.7175

30 5 0 0 5.3109 5.7683

35 5 0 0 5.3204 5.7805

40 5 0 0 5.3226 5.7833

45 5 0 0 5.3231 5.7839

50 5 0 0 5.3232 5.7841

51

BOOTSTRAPPING GATES C and C
(MOS CAPACITOR BEING TWICE LARGER THAN THE LOAD)

TIME PCHARGE CLK2 CLKl c c
(ns) (volt) (volt) (volt) (volt) (volt)

0 5 5 0 3.6692 3.6692

5 5 5 0 3.6692 3.6692

10 5 5 0 3.6692 3.6692

15 5 5 0 3.6692 3.6692

20 5 0 0 5.4608 5.7065

25 5 0 0 5.9481 6.2610

30 5 0 0 6.1701 6.5132

35 5 0 0 6.2979 6.6394

40 5 0 0 6.3654 6.6680

45 5 0 0 6.4017 6.6583

50 5 0 0 6.4149 6.6403

52

BOOTSTRAPPING GATES C and C
(MOS CAPACITOR BEING FOUR TIMES LARGER THAN THE LOAD)

TIME PCHARGE CLK2 CLKl c c
(ns) (volt) (volt) (volt) (volt) (volt)

0 5 5 0 3.6692 3.6692

5 5 5 0 3.6692 3.6692

10 5 5 0 3.6692 3.6692

15 5 5 0 3.6692 3.6692

20 5 0 0 5.2180 5.3478

25 5 0 0 6.2009 6.4135

30 5 0 0 6.5021 6.7208

35 5 0 0 6.6656 6.8219

40 5 0 0 6.7400 6.8308

45 5 0 0 6.7615 6.8108

50 5 0 0 6.7590 6.7855

53

BOOTSTRAPPING GATES C and C
(MOS CAPACITOR BEING EIGHT TIMES LARGER THAN THE LOAD)

TIME PCHARGE CLK2 CLKl c c
(ns) (volt) (volt) (volt) (volt) (volt)

0 5 5 0 3.6692 3.6692

5 5 5 0 3.6692 3.6692

10 5 5 0 3.6692 3.6692

15 5 5 0 3.6692 3.6692

20 5 0 0 4.6767 4.7242

25 5 0 0 5.8008 5.9015

30 5 0 0 6.4392 6.5696

35 5 0 0 6.7187 6.8362

40 5 0 0 6.8205 6.9016

45 5 0 0 6.8533 6.9043

50 5 0 0 6.8590 6.8903

SNOSHIVdWO:J .iO S3llfi!>I.i

8XIGN3ddV

·~
~

G ·~ "O •":>lo G ;g G

- f.,1) (.1) (.I_,
.::: .::: .:::,,,
& & &

~ III iI• III ill III ([I

+ + + + + +
·".iio ~ ~ G ·~ &
& o& &

iI•
+
.'S;.

·~
.. ~
(...(1

~
~
~
iI•

I
G
CCI

·~
=' ~
3:: (") ((1

0 :r '~
Vl ~

~~

Ci Cl,9. iI•
I

$l:l
= G

='
(1Q

-~ r:I> :r G r:I>
... a ~ c:: r"I}
.-O'Q -~
~ :r ~

g. .. ~ II ([I
Vl 0 I
Vi ~ G

1= i:::::r -~ '-"
I ::i. •":.it

""O
(")

c:: .. _,~,
~

r:I> 1:r.1
-=

.. -.;..

-J
...

...

\"
;;:---··· ... \.

-

i \ t
-

-...
I. .. \ .. \., ' ...

'1
-\ ·· .. -

\
\

-
\

-

\ \
-

--

-- (1Q Co
•I• I
·~ --~ - .. -:.;.
.:::
<..n
·~ -- &
II•

I
~

-~ - .-:;.;.

(.11
.:::
0 -- &
ill

I
.. -.:,;.
-~

''
.

3
6

9
0

e
+

 0
1

P5

r
"""

I
0

.
eH

,0

0
.3

4
7

0
e+

0
1

P
4

_,,.
._,,

_,..
,..,-

-
,.

,_
,.-

-..
--

/'

-
• 3

1
2

0
e-

''7

.
/

0
.

3
4

4
0

eH
H

P
3 0
.

eH
,0

,,. ..
 --_

,,..

--

__ ./
, .. -

--.

J'

0
•

e
+

 '' 0
 Q

 •
9

~) '
' ~'

 e
 -

'rn
 'L

 1
 :3

''
0

e
-

en
 ''-

2
7

'N
e
 -

i'7
 i

L
 3

 6
 ''

 i.1
e

-
''
 7

0
• 4

 5
 ''° 8

 -
'n

 ''-
S

4
c~ 0

 8
-

y:r

P
re

ch
ar

gi
ng

 th
ro

ug
h

th
e

fa
br

ic
 u

si
ng

nM

O
S

tr
an

si
st

or
 (

W
=

5.
5µ

)
-

P
ar

t2

V
I °'

0.
34

40
e+

01

P
2

0.

e+
00

_
_

_
_

,_
_

_
,,

,.
./

-

/
/

0.
34

30
e+

01

--
P

l
~
-

/-
-

,
,
,
.
~

0
.

e+
00

,,

_,,.
 .. ·.,,

0
.

8
4

3
0

eH
H

PO

.

'"·

\
_.

/ __

_ --
-

·, \
.
,
.
.
.
-
-
~

'L

eH
,0

I
I

I
I

I
I

I
I

I
I

1

0
.

e
t

0
0

 0
.

9
0

0
0

e-
0

8
 0

.
18

00
i:

i-
'n

 0
.

2
7

,,
0

e-
•'7

 0
.

3
6

,,
0

e-
0

7
 0

.
4

5
,,

0
0

-0
7

 0
.

5
4

0
0

e-
0

7

P
re

ch
ar

gi
ng

 th
ro

ug
h

th
e

fa
br

ic
 u

si
ng

nM

O
S

tr
an

si
st

or
 (

W
=

ll
µ

)
-

P
ar

tl

V
I

-...
.J

0
. 3

7C
:0

eH
H

P5

0
.

e+
00

0.
35

00
e+

01

P
4

-
• 3

8
4

\J
e-

07

0
.

34
8\

1e
+

 0
1

P3

0
.

e+
0"

}

r l
'""'"

"
,..

..,
..,

.-- _,
_

_..,
,....

,.-
... -·

·
,,.··

--

--
·'

_
/

--
__

,...
..

~
-

_.-

,,...

,,
__

_.,
,

.,
 ...

 ..
r

.. --'
·

0
.

e+
0

0
 0

.
90

00
e-

\J
:3

 0
.

1
8

0
0

e
-'

n
 ~)

.
2

:7
0

0
e-

0
7

 "
'-

3
6

,)
0

e-
0

7
 0

.
4

5
,)

0
0

-0
7

 0
.
54
,~
00
-1
17

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
nM

O
S

tr
an

si
st

or
 (

W
=

l l
µ)

 -
P

ar
t2

V
t

0
0

6~

·~ ·-.:i

.. -r.. Q .. -.:.;.

O.' ~
+:
&
([l •I• + +
.. ~ .. -:..
-

.. ~

'\ l ~~----··./ "\.

(
"
.,

\,

\ II

II\

.,,
-

\,

(
\\

" •, I

\ I

~

(1) ;g .. ~
(1.)

~ . .i::
. .;:: ··.n
,:::;;. ,:::;;a
•I• •I•
+ +
.... ~ ~:.;.

-
,......

,-\
'· ., •.,

I'

I

'--

~.
··
" '• II

II

'1

II

\
-

-

0.
37

50
e+

01

PS

0
.

&
+

 0
0

0
.

3
5

1
0

e·
H

H

P
4

-
~
~
:
9
7
0
e
-

,,7

0
.3

4
8

0
e+

0
1

P
3

0
.

e
·H

}i
()

....,
._,_

..

.,..
,...

.--
/
;

j
_ .. _

 .. __
_ .,,.

...,.
...r·

'

,.,
,..

,..
--

r·
"

,
/

--
~~
.,
,.

,,·
.;

'

--

-
-

-

I

0
.

e
t0

0
0

.9
0

0
0

e
-0

8
0

.1
8

0
0

e
-0

7
0

.2
7

0
0

e
-0

7
0

.3
6

0
0

e
-0

7
0

.4
5

0
0

e
-0

7
0

.5
4

0
0

e
-0

7

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
nM

O
S

 t
ra

ns
is

to
r

(W
=

22
µ)

-
P

ar
t2

--
--

--
-

--
~
-
-
-
-
·
-
-
·
-

~

19

&

(1)

1:T'J
&
•"I.ii
(t1

I

&

([I

+
G
~

-

-

-

-

-

-

-

-

-

-

-

-

~
&

'-'·' ..i::
CT'.I
~
([I
+
&
....

~

'"
.,.,..... l

jl

I
" \.,

\
\ I

'1

\
I

& .,, & &
;:g

&

-'-'-' w ~ ..i::
CT'.I -..:i
& ~

([I ([I III ([I

+ + + +
0 .-s;. ·~ &
& ,,_ .-:;.;.

...

\ .

1.

....

...

\
°' '"\

" '·

...

....

,.

......

...

-

...

-

0.
50

40
e+

01

PS

I
-

• 1
 :3

:::
00

-'
~~

0
.

35
40

0·
+

.H

P
4

.... -
--

~_
__

.,
..

--
-

,-

__ _
,,./

''-
e
t
''0

,/

_,,.

.

0
.

3
5

0
0

e
t'

H

.
~
 _
,
.
,
.
.
.
~
-
-
-
-

P3

-
_ _

,,
_

-
.,

/r
·

''
,

€
tH

)0

/
_,.

'

,,
.

e
t

0
0

 0
.

9
0

0
0

0
-

'"rn
 0

.
18

·)
0o

:.-
,)

7
 '
~.
 2

7,
h)

t<
-0

7
~)

'
3E

;,
h)

8-
''7

 ,,
 .
45

,~
Je

i-
'n

 ,,
. 5

4
0

,)
e-

L)
7

-
~
-
-
-

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
pM

O
S

 t
ra

ns
is

to
r

(W
 =

5.
5µ

)
-

P
ar

t2

°' N

0
.3

4
7

0
0

+
0

1

P
2

0
.

e
H

}I
(}

_
,
,
.
.
~

. .,,.
-..r

,
,
,
~
_
,
,
-
,
.
·

_
.,

/'

0
.3

4
E

0
e+

0
1

 .,.,
.,-

--
P

l

'L

e+
 0

0

,,, . .
__

__

__ ,,.
. .. ··

,,

,_

,,
..

--
r
-·

. ./

0
.3

4
6

0
0

+
0

1

PO

-
\\

__ _

_,.
.,..

,--

--
\
/

,.

..
./

··
·

0
.

e+
 0

0

0
.

e+
 0

0
0

. 9
0

0
0

0
-0

8
 0

.
1

8
0

0
e-

0
7

 0
.
~
7
0
0
e
-
0
7
 0

. 3
6

0
0

e-
0

7
 0

.
4

5
0

0
e-

0
7

 0
. 5

4
0

0
e-

0
7

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
pM

O
S

 t
ra

ns
is

to
r

(W
 =

11
µ)

 -
P

ar
ll

°' V
.l

& .,, & •-st
~

& .,, &
Vl (.I.) (,.1) ro VI (.11

i:.ri i:.n U::• .&
G .i:: (.£) ~
& ~ 0 &

& ril flt '1t flt 1J:1 fll
+ + + •

I +
& G G ·~ & &
& &

-
n.:•

- -·--._
Ill
+
G
&
&

(.D
&
&
&
Ill

I
&
00
Q

......

"Cl ~
co
G

3:n &

o:r
flt

tn ~
I

G
q a;s. ~

~~
o'S;.

~.Er r•.)
~a -.:i
g c= ~

-.(JQ .. ~
~:r

iit
I

II 9-·~

-\ \
,.._

.,,

\
•,

.. \I ...
\ ~-~

I '\ .,

\
I

--

..

--

-o -.:i ..
-...... Q i:::: ~
'7'[(1~1

.,,n (7,1

~ ~
&
~

N 5· iit
(1Q I

-
,_

G
-.:i

·~

~
i:.n
.. ~ -- .. ~
rit

I
G
-.:i ..
&

U1
.i::
•'Sio -- &
ril

I

&
-.:i

0
.3

4
7

0
a+

0
1

P
2

0.

e
+
0
~

0.
34

E
:0

e+
01

P
l

0
.

e-
+,

)0

0
.

34
E:

iJe
-t

01

PO

''
.

e-
+
"'

'

-· I

-
-
-
-
~

__ .
/'

,,..
-·

,,,
.--

-_
__

__
__

,.,
,-/

- __ _
__

..,.
.,-

_.,
_,

,..
r

.
r
~
~
~
-
-

,,,.
_ - ·,

 \

_ _,,
..

_
,.

.-
-

I
_,

..,
.r

\
/.

·
\
,
/
-
-
-

.r

--·

I

I
I

I

.
1 -

-

I I

I
I

I
1

I
..,

0
.

e-
+0

0
0

.
9

0
0

0
e-

0
:3

 '"
L

1
8

,)
0

e-
0

7
 'L

 2
:7

,)
0

e-
''7

 0
.

3
6

0
,)

a-
,)

7
 0

.
4

5
0

0
e-

0
7

 0
.

5
4

,)
0

0
-0

7

P
re

ch
ar

gi
ng

 th
ro

ug
h

th
e

fa
br

ic
 u

si
ng

pM

O
S

 t
ra

ns
is

to
r

(W
=

22
µ)

 -
P

ar
tl

°' Vl

0
. 5

0
7

0
e

+
0

1
.
r I

P5

1/
-

• 2
~3

9r
;.

)9
-
'~

~

'~
.

35
40

e+
 'H

I
.

.
I

P
4

I
____ .,

..-

-·

/

1
~

•.
•

e-+
~'i

J r
-

_,-----
~-

·r

.,,
~
·

.
.

~ ..
..

..
 •5

•)
0

ti
t
''1

P3

0
.

e
t
'~0

.. --

-~·
,.·

r
-
-
-
-
-

~-,.
..

_ _.
,,

--
--

--
--

--
-·

~-
~

.
I

I
I

I
I

0
.

8+
 ''!J

 0
.

9
'N

0
8

-
0:

3
0

.
1:

30
08

-0
7

0
.

'2:.
7 •

)i
J8

-
07

 0
. •

36
,)

08
-'

H
 'L

 4
5

,N
8

-
0

7
 0

.
5

4
0

0
8

-0
7

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
pM

O
S

 t
ra

ns
is

to
r

(W
=

22
µ)

 -
P

ar
t2

°' °'

~)
.

U
5

4
;)

8
fL

)1

l
,-

--
--

-
P

2
i~

 '
,

8
...

~1
i)

' ..-·
,,

,r
-J

')
.

4
5

3
,)

8
-f

 ,,
 1

.,.,

.-
P

l
.~

 ..
8-

+0
0

/,...
._,.

.,...

i)
 •

 4
 5

 4
 i' 8 ...

 '"
)
1

PO

r--
-

·•.
,'

'·
>

... __

_ .
0

.
Ed

''
'~

0
.

e
..

00
 0

.
4,

hH
,e

-r
,YJ

 I
i)

.
!3

')
0

0
e-

0
7

 0
.

12
1i

N
e-

i)E
;
0

.
1 E

;0
i)

e-
0E

;
i)

.
2'
''
~i
)e
-

~~f
:;

•)
,

24
0,

)e
-O

E
;

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
bo

ot
st

ra
p

ci
rc

ui
t

at
 t

he
 g

at
e

o
f

th
e

pa
ss

 d
ev

ic
e

-
P

ar
t 1

2j

'
I

,)
, 5,~

L)Ce
·HH

~

I ,...--,
-
.1~1

0.-0
2 •

I
PS

l I

'L
 4
55

,~
e-

+
1.n

P

3 ,:, '
1

e-
+

')
'~

/-
-

..
_ _, ..

.....

I

0
,

e
-+

0
0

0
.4

0
0

0
e
-0

7
0

.8
0

0
0

e
-0

7
0

.1
2

0
0

e
-0

6
0

.1
6

0
0

e
-0

6
0

.2
0

0
0

e
-0

6
0

.2
4

0
0

e
-0

6

P
re

ch
ar

gi
ng

 t
hr

ou
gh

 t
he

 f
ab

ri
c

us
in

g
bo

ot
st

ra
p

ci
rc

ui
t

at
 t

he
 g

at
e

o
f

th
e

pa
ss

 d
ev

ic
e

-
P

ar
t2

°" 00

0
.
4
3
3
0
e
+
0
1
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
.

O
U

T
+

0.

e+
 0

0

0
.
4
~
9
0
e
+
0
1

O
U

T
-

\.
--

·

-.
1

1
1

0
0

-0
3

1

'·
--

. ·
-
-
-
-
-
-
-
-
l

0
.

e+
 0

0
0

. E
;0

00
e-

08
 0

.
1

2
0

0
0

-0
7

0
.

1
8

0
0

e-
0

7
 ''

.
C

:4
00

e-
07

 0
. 3

0
0

0
e-

0
7

 0
.

3
6

0
0

e-
0

7

C
ha

rg
e

sh
ar

in
g

ef
fe

ct
:

sw
it

ch
in

g
fr

om
 o

ne
 r

oe
 t

o
an

om
er

(t

ot
al

 o
f

16
 r

ow
s)

°' '°

0
.
4
1
6
0
a
+
0
1
.
.
_
_
~
~
~
~
~
~
~
~
~
~
~
~
~
~

O
U

T
+

0
.

e+
0

0

0
.4

1
4

0
e-

t0
1

O
U

T
-

-.
9

3
2

:0
e-

0
4

0
.

e+
 0

0
0

. 6
0

0
0

e-
08

 0
.

1
2

0
0

e-
07

 0
.

1
8

0
0

e-
07

 0
. C

:4
00

e-
07

 0
. 3

0
0

0
e-

0
7

 0
. 3

6
0

0
e-

0
7

C
ha

rg
e

sh
ar

in
g

ef
fe

ct
:

sw
it

ch
in

g
fr

om
 o

ne
 r

oe
 t

o
an

ot
he

r
(t

ot
al

 o
f

32
 r

ow
s)

-..
.J

0

b
o

o
l.

c
k

t.

86
/"

87
/

8
8

1

4·
:8

6
: 1

2

pc
ha

rg
e

6
- -

v
-

cl
k2

-

-
5

cl
.k

l --
-

c
4

-
;;

-

--
I

r
- - - - -

I}

-
-

- -
c

3
- - - -

2
- - - -

1
- - - -

8
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

8
1

8
n

2

8
n

3

8
n

4

8
n

5

8
n

t
im

e

B
oo

ts
tr

ap
pi

ng
 g

at
e

C
 a

nd
 C

(M

O
S

 c
ap

ac
it

or
 b

ei
ng

 s
am

e
si

z.
e

as
 t

he
 l

oa
d)

-.
J
.

b
o

o
lc

k
t.

pc
ha

rg
e

?
- -

-
-

- -
cl

k2

G
 -

-
- -

cl
.k

l
5

- - -
c

- -
4i

- -
c

- -
3

- - - -
2

- - - -
·1

 - - - -
e

I
I

I
I

e

8
6

/8
7

/
8

8

~
~

f ~

I

I J

I
I

I
I

I
I

I
I

I
I

I
I

18
rt

2

8
n

3

8
n

t
ii.I

ll
e

B
oo

ts
tr

ap
pi

ng
 g

at
e

C
 a

nd
 C

(M

O
S

ca
pa

ci
to

r
be

in
g

tw
ic

e
la

rg
er

 t
ha

n
th

e
lo

ad
)

I

4
8

n

1
4

:·
1

?
:4

8

I
I

I

S
8

n

-..
J

tv

b.
<

Jo
t.

ck
 l-

pc
ha

rg
e

1
- - - -

cl
k2

6

-
-

- -
cl

.k
l

5
- - -

c
- -

4
- -

c
-

-
-

-
3

- - - -
2

- - - -
1

- ' - - -
8

11

11

11

0

M
i/

'EJ
,?

.F
R

&

~

rY

It
I

I /

I!

I
IJ

ll

11

If

I
II

II

II
II

II

IJ

11

11

I

1
0

n

2
&

3

8
n

4

0
n

l.
iu

e

B
oo

ts
tr

ap
pi

ng
 g

at
e

C
 a

nd
 C

(M

O
S

ca
pa

ci
to

r
be

in
g

fo
ur

 t
im

es
 l

ar
ge

r
th

an
 t

he
 l

oa
d)

1l
"1l

· ::
r:G

. ::
.8

3

II
11

11

II

I

50
1-

.

-J

\.>
.)

b
o

o
t.

d
::l

pc
ha

rg
e

8
- - - -

cl
k2

?

- -
-
-

- -
cl

k
l

6
- -

-
-

- -
c

5
-

-
- - -

c
4

- -
i - -

3
- - - -

2
- - - -

1
- - - -

0
.,

II

Ii

8

8
6

/
ft
?

/·g
g

~
 t:

::
::

--

~

;;
I

I
_

/ I

I

\
Ii

i

I)

,,
u

I)

I)

II

I)

II
I)

u

ll

II

1
8

n

2
8

n

3
8

n

4
0

n

l.
im

e

B
oo

ts
tr

ap
pi

ng
 g

at
e

C
 a

nd
 C

(M

O
S

ca
pa

ci
to

r
be

in
g

ei
gh

t
ti

m
es

 l
ar

ge
r

th
an

 t
he

 l
oa

d)

1
4

:
3
6
~

·1
9
 I

u
"

I)

II

se
n

-..
..)

.j::

>.

APPENDIXC

PROGRAM CODE FOR LAYOUT GENERATION OF BOOLEAN FUNCTIONS

#include <stdio.h>
#include "cfl..h" /*$'UW _ VLSI_TOOLS/include */

76

/*==*/
/* Global flags and variable
*I
int control, m, i, pass_ var,
char ch[50], chc[50];
char con[lOO], pvar[lOO];
char prod[1000][100];
char labl[1000][100];
char labelstring[100];

int offset;

FILE *fp *fopen(); ---*/

/*=====:===---

/*==*/
/*Some useful strings in cfl
*/
char *top= "top";
char *bot= "bot";
char *left= "left";
char *right = "right";

/*Some useful strings in MOSIS p-well CMOS
*/
char *m 1 = "metal l ";
char *diff ="diffusion";
char *poly= "polysilicon";
char *m2 = "meta12";
char *cut = "cut";
char *pplus = "pplus";
char *pwell = "pwell ";

SYMBOL *boot, *dcare, *boots, *p2, *pass, *pass2;
SYMBOL *passes, *passes2, *cont, *contclk, *controls;
SYMBOL *lrout, *mop, *rrouttop, *rroutbot, *rrout;
SYMBOL *rf, *rfn, *rrouts, *prechg, *pcharges, *btcnt;
SYMBOL *bfg, *btcntr, *btcntrp, *pbtcnt, *row, *rows;
SYMBOL *btlr, *btlrrr, *btlrrrpc, *btlrrrpc2;

BORDER *bO, *bl, *b2, *b3, *brl;

PT *pO, *pl;

77

/*==*/

78

/*~==========================---------main() ---------==================*/

{

/* set the flags and variables
*I

int base, x, brlno, br2no, br3no, i;
int user_input = 1;

bfg=NULL;
offset= O;

/* Set technology for Magic file
*/

cflsetc ("format", "magic");
cflstart ("stdcmos");

/* Cells that was build for generating the block
*/

pass= gs ("pass");
dcare = gs ("dcare");
pass2 = gs ("pass2");
passes2 = gs ("passes2");
cont = gs ("cont");
contclk = gs ("contclk");
boot = gs ("boot");
lrout = gs ("lrout");
rrtop =gs ("rrtop");
rrout = gs ("rrout");
rf = gs ("rf'');
rfn =gs ("rfn");
rroutbot = gs ("rroutbot");
rrouttop =gs ("rrouttop");
prechg = gs ("prechg");

/*--*
* Opening and reading form the 'input' file:
--/

fp = fopen ("input", "r");

fscanf (fp, "%s%d", ch, &control);
/* Reading number of controls

form the '.c' card in the input file. *I
if (strcmp (ch, ".c") != 0)

{

}

/* Check for '.c' card. *I

printf (" '.c' is missing. O);

else if ((control< 2) II (control> 15))
/*Check for number of control lines.*/

{
printf ("Invalid value for control 0);

/* The range for control lines for one block
is between 2 and 15. */

/*--*
* Control is less than or equal 5, so assemble one block:
--/

else if (control< 6)
{

read_n (control);
/* Read number of pass variable and check. */

read_m (control, pass_ var);
/* Assemble the block. *I

/*---*
* Control is larger than 5, so do the following:
* For number of control lines between 6 and IO the block

*will be broken into two sub-block. For control lines
* between 11 and 15 the block will be broken into three
* sub-blocks. The output of previous sub-gate will go to
* the input of the next stage.
---/

else
{

switch(control)
{

/*
Since control = 6, this control has
been broken up into control = 3, 3.
*I
case 6:

/*

read_n (control);
/*Read number of pass-variable and check.*/

read_m (3, pass_ var);
/* Assemble the first sub-block with three

control lines and given pass-variable. */
printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (3, pass_ var);

break;

/* Assemble the first sub-block with three
control lines and given pass-variable. */

Since control = 7, this control has

79

been broken up into control= 4 and 3.
*I
case 7:

I*

read_n (control);
/* Read number of pass-variable and check. */

read_m (4, pass_ var);
/* Assemble the first sub-block with four

control lines and given pass-variable. */
printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (3, pass_ var);

/* Assemble the first sub-block with three
control lines and given pass-variable. */

break;

Since control = 8, this control has
been broken up into control = 4 and 4.
*I
case 8:

I*

read_n (control);
/*Read number of pass-variable and check.*/

read_m (4, pass_var);
/* Assemble the first sub-block with four

control lines and given pass-variable. */
printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (4, pass_ var);

break;

/* Assemble the first sub-block with four
control lines and given pass-variable. */

Since control= 9, this control has
been broken up into control = 5 and 4.
*I
case 9:

I*

read_n (control);
/* Read number of pass-variable and check. *I

read_m (5, pass_ var);
I* Assemble the first sub-block with five

control lines and given pass-variable. */
printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (4, pass_ var);

break;

/*Assemble the first sub-block with four
control lines and given pass-variable. */

Since control = 10, this control has
been broken up into control = 5 and 5.
*I

80

case 10:

/*

read_n (control);
/* Read number of pass-variable and check. */

read_m (5, pass_ var);
/* Assemble the first sub-block with five

control lines and given pass-variable. *I
printf ("0);
read_n (control);

/*Read number of pass-variable and check.*/
read_m (5, pass_ var);

break;

/* Assemble the first sub-block with five
control lines and given pass-variable. */

Since control = 11, this control has
been broken up into control= 5, 3 and 3.
*I
case 11:

I*

read_n (control);
/*Read number of pass-variable and check.*/

read_m (5, pass_ var);
/* Assemble the first sub-block with five

control lines and given pass-variable. */
printf ("0);
read_n (control);

/* Read number of pass-variable and check. *I
read_m (3, pass_ var);

/* Assemble the first sub-block with three
control lines and given pass-variable. */

printf ("0);
read_n (control);

/*Read number of pass-variable and check.*/
read_m (3, pass_ var);

break;

I* Assemble the first sub-block with three
control lines and given pass-variable. */

Since control = 12, this control has
been broken up into control = 4, 4 and 4.
*I
case 12:

read_n (control);
/* Read number of pass-variable and check. */

read_m (4, pass_ var);
/* Assemble the first sub-block with four

control lines and given pass-variable. */
printf ("0);
read_n (control);

I* Read number of pass-variable and check. */
read_m (4, pass_ var);

I* Assemble the first sub-block with four
control lines and given pass-variable. */

printf ("0);

81

/*

read_n (control);
/*Read number of pass-variable and check.*/

read_m (4, pass_ var);

break;

/*Assemble the first sub-block with four
control lines and given pass-variable. */

Since control= 13, this control has
been broken up into control = 5, 4 and 4.
*I
case 13:

I*

read_n (control);
/* Read number of pass-variable and check. */

read_m (5, pass_ var);
/* Assemble the first sub-block with five

control lines and given pass-variable. */
printf ("0);
read_n (control);

/*Read number of pass-variable and check.*/
read_m (4, pass_ var);

/* Assemble the first sub-block with four
control lines and given pass-variable. */

printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (4, pass_ var);

break;

/*Assemble the first sub-block with four
control lines and given pass-variable. */

Since control= 14, this control has
been broken up into control = 5, 5 and 4.
*I
case 14:

I*

read_n (control);
/*Read number of pass-variable and check.*/

read_m (5, pass_ var);
/*Assemble the first sub-block with five

control lines and given pass-variable. */
printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (5, pass_ var);

/* Assemble the first sub-block with five
control lines and given pass-variable. */

printf ("0);
read_n (control);

/* Read number of pass-variable and check. */
read_m (4, pass_ var);

break;

/* Assemble the first sub-block with four
control lines and given pass-variable. */

82

}
}

ps ("BFG",bfg);

cflstop ();
}

Since control= 15, this control has
been broken up into control = 5, 5 and 5.
*I
case 15:

read_n (control);
/*Read number of pass-variable and check.*/

read_m (5, pass_ var);
/* Assemble the first sub-block with five

control lines and given pass-variable. */
printf ("0);
read_n (control);

/*Read number of pass-variable and check.*/
read_m (5, pass_ var);

/* Assemble the first sub-block with five
control lines and given pass-variable. */

printf ("0);
read_n (control);

/*Read number of pass-variable and check.*/
read_m (5, pass_ var);

break;

/*Assemble the first sub-block with five
control lines and given pass-variable. */

83

/*==*/

84

/*==*/
read_m (control, pass_ var)
int control, pass_ var;
{

char c, input;
int j, const;

/*---*
*Read product term of all rows (the product term of a row

* will be connected serially) and pass_ variable terms, and
* assemble the block:

---/

boot_ckt (control);
/*Get the assembleed controls of the block. */

for (i = 0; i < pass_ var, ++i)
{

}

const = fscanf (fp, "%s%s", con, pvar);
/*Read product and pass_ variable from the 'input' file.*/

if (const != 2)

{

else
{

}

/* Checking for product and pass_ variable term. *I

printf ("Missing product or pass_ variable 0);

strcpy (prod[i], con);
/*Copy control into an array. */

strcpy (labl[i], pvar);
/*Copy pass-variable into an array. */

out_array (control, prod[i]);
/* Get the assembled rows of product. *I

if (i==O)
{

rows= row;

}
/*Assign the assembleed row into symbol rows.*/

else
{

rows = rr (rows, row);
/* Assemble rows of product terms. */

}

boots = rrdx (rows, boots, 60);
/* Assemble controls and Product terms. */

rout (pass_ var);
/*Get the assembleed routs.*/

btlrrr = bbdxy (boots, rrouts, -60, 2);
/*Assemble controls, left rout and right routs. */

precharge(pass_ var);
/* Get the assembled precharge. *I

if (bf g == NULL)

else

}

/* If the symbol bf g (Boolean-function generator) is
NULL assemble the first block.*/

btlrrrpc = bbdx (passes, btlrrr, -75);
bfg = bbdx (btlrrrpc, pcharges, -25);

/*Otherwise assemble the second or the third block. */

btlrrrpc2 = bbdx (passes2, btlrrr, -75);
bfg = bbdx (bfg, bbdx (btlrrrpc2, pcharges, -25), -25);

85

/*==*/

86

/*==*/
out_array (control_no, prod)
int control_no;
char *prod;
{

}

inti;

/*---*
* Maximum number for control line for one block is 4, so

* check and built one row of product terms of the block:
---/

row = contclk;
/*Initialize the symbol contclk into the symbol row.*/

for (i = O; i <= control_no; i++)

{

}
p~ntf ("0);
pnntf ("0);

if (prod [i] == '-')
{

printf (" - ");
row= bb (row, dcare);
}
else if (prod [i] == '1 ')
{

printf (" 1 ");
row= bb (row, cont);
}
else if (prod [i] == '0')
{

printf (" 0 ");
row= bb (row, mx (cont));
}

/*==*/

/*================---------~ead_n (control) ---------=============================*/

mt control·
{ '

}

int user_input = I;

/*--*
* Read number of pass_ variable from the input file 'input'
*and check.
--/

while(user_input)
{

fscanf (fp, "%s%d", chc, &pass_ var);
/*Read number of pass_ variable.*/

if (strcmp (chc, ".p") != 0)
/*Check for '.p' card. */

printf (" '.p' is missing. 0);
}
else if (pass_ var<= power (2, control))

}
else
{

}

/*check number of pass_ variable.*/

user_input = O;
/* valid number of pass_ variable found. *I

printf ("Invalid number of pass_ variableO);
printf ("Please enter another value:O);

87

/*==========--===*/

!*==*/
boot_ckt (control)
int control;
{

}

inti;
extern int off set;

/*---*
* Assemble controls of the product term (bootstrap circuit)
* and routs, and label controls.
---/

boots = boot;
/* Assign a control symbol boot into symbol boots. *I

for (i= 1; i < control; ++i)
{

boots = bb (boots, boot);
!* Assemble control lines of the product terms. *I

/*--*
* Labeling all the control lines.
--/

if (bf g == NULL)
{

}

for (i=O; i < control; ++i)
{

}

sprintf (labelstring, "c. %d", i);
boots= cp (mlabel (labelstring, 0, 0, "c", "polysilicon"),

pt (boots, "top", "polysilicon", i+ 1));
/* Label the first control line. *I

else /*Label all the rest of control lines. */
{

}

for (i=O; i < control; ++i)
{

sprintf (labelstring, "c. %d", i +offset);
boots= cp (mlabel (labelstring, 0, 0, "c", "polysilicon"),

pt (boots, "top", "polysilicon", i+l));

off set = off set + control;
/*Set the counter. */

boots = bb (lrout, boots);
!*Assemble controls and top left routs. */

boots = bb (boots, mop);
!*Assemble controls and right top routs. */

!*==*/

88

!*==*/
precharge (pass_ var)

int pass_ var;
{

pcharges = prechg;
/*Assign the symbol prechge (the precharge device

of the fabric) into symbol pcharge. */

/*--------------------------------~-----------------------------------*
* Assemble precharge and product term of all rows
* of pass transistors, and routs between the sub-block
--/

for (i=l; i<pass_var, ++i)
{

pcharges = 11 (pcharges, prechg);
/* Assemble precharge device of the fabric. *I

if (bfg ==NULL)

{

/* For the first block assemble the input buff er
and label them.*/

for (i=l; i <=pass_ var, ++i)
/*Assemble the first input buffer. */

if (i==l)

{

}
else

{

/* Get the first input buffer in case the
input is 0, 1 or x; mirror the input
buffer in y-coordinate in case of input xn. */

if ((strcmp (labl[(i-1)], "0") == 0)

}

II (strcmp (labl[(i-1)], "1 ") == 0)
II (strcmp (labl[(i-1)], "x") = 0))

passes = pass;

else if ((strcmp (labl[(i-1)], "xn") == 0))
{

passes= my (pass);
}

/*Assemble all of the input buffer. */

89

}

else

{

}

if ((strcmp (labl[(i-1)], "0") == 0)

{

II (strcmp (labl[(i-1)], "1") == 0)
II (strcmp (labl[(i-1)], "x") == 0))

passes= rr (pass, passes);
/* Assemble all the input buffers of

block for input 0, 1 and x. *I

else if ((strcmp (labl[(i-1)], "xn") == 0))
{

passes= rr (my (pass), passes);
/* Assemble all the input buffers of

block for input xn (which for
the case of xn the input buffer will
be mirrored imaged in y-coordinate). */

for (i= 1; i <= pass_ var, ++i)

{

}

/*Label input of the input buffer. */

if ((strcmp (labl[(i-1)], "0") == 0)

{

}

II (strcmp (labl[(i-1)], "1 ") == 0)
II (strcmp (labl[(i-1)], "x") == 0))

passes= cp (mlabel (labl[(i-1)], 0, 0, "c",
"metall "),
pt(passes, "left", "metall ", i));

/* Label the input buffer on the input
node, metal 1, with 0, 1 or x
depending on the input. */

else if ((strcmp (labl[(i-1)], "xn") == 0))
{

}

passes= cp (mlabel (labl[(i-1)], 0, 0, "c",
"metall"),
pt(passes, "left", "metal 1 ", i));

/* Label the input buffer on the input
node, metall, with xn. */

I* Assemble the second input buffer of the second block.*/

90

}

}

for (i=O; i<pass_var; ++i)
{

}

if (strcmp (labl[i], "f') == 0)
{

p2 = bb (rf, pass2);

}

/* Assemble output of first block with
the input buffer of the second block. *I

else if (strcmp (labl[i], "fn") = 0)
{

p2 = bb (rfn, pass2);

}
if (i == 0)
{

/* Assemble output of first block with
the input buffer of second of block. */

passes2 = p2;

}
if (i >= 1)
{

/* Assign the input buffer of second block,
symbol p2, into symbol passes 2. */

passes2 = rr (passes2, p2);
/* Assemble the second or third

input buffer of block. *I

91

/*==*/

92

/*======================-------rout (pass_ var) -------=========================*/

int pass_ var;
{

}

/*---*
* This routine assembles the routing on the right
* side of the block.
---/

inti;

rrouts = rroutbot;
/*Initialize the right-bottom-rout cell (rroutbot) to rrouts. */

for (i=2; i<pass_ var; ++i)
/* Assemble the right routs of the block. *I

rrouts = 11 (rrouts, rrout);
}

rrouts = 11 (rrouts, rrouttop);

/*==*/

93

/*==============----------power (base, x) ---------=============================*/

int base, x;
{

}

/*---*
*This routin calculates base to power of a variable.
---/

inti, j = 1;

for (i = 1; i <= x; i++)
{

j *=base;
}
retum(j);

/*===*/

SJJfl:JHI:J JJlOA V'l 3H.L AO S3'1dWVX3

OXION3ddV

~6

96

	A CMOS Circuit Generator Using Differential Pass Transistors for Implementing Boolean Functions
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1505337244.pdf.2pJOd

