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This study uses differential pass transistor methodology for implementing and 

evaluating Boolean functions. The main goal is investigation of CMOS and nMOS 

approaches in pass transistor logic design. Pass-transistor logic is most effective in the 

implementation of Boolean functions when the vectors are in the same format. It has 

been demonstrated that nMOS pass transistor logic driven by a control signal voltage 

above the V dd level offers a significant improvement in speed. nMOS pass transistors 
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also offer less area consumption in comparison to the CMOS approach. 

The philosophy developed here has been used in the design of a program for the 

layout generation of pass transistor networks. This program has been applied to the 

design of a 4-to-1 multiplexer and an adder (sum and carry). The layout of the circuit 

sub-cell have been done using the program Magic, based on 3µ CMOS p-well technol­

ogy. 
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CHAPTER I 

INTRODUCTION 

Differential pass transistor logic is used for implementing and evaluating Boolean 

functions. The nMOS approach is taken in the design of pass transistor logic, because 

studies show that it is the most effective in terms of area consumption for implementing 

Boolean functions for a large number of vectors of the same format. Moreover, pass 

transistor realizations using minimum size results in area savings and high operating 

speed when compared with gate logic realization [1]. It has been demonstrated that 

nMOS pass transistor logic with the gate driven by bootstrap, using a voltage above Vdd 

level, offers significant improvement in speed. The SPICE2G.6, level 2 model is used for 

simulation of pass transistor logic. The TSPICE level 2 model is used for simulation of 

the bootstrap circuit [2]. The C language in combination with the CFL program is used 

to generate the layout of the circuit. The C-code reads MAGIC files from a library and 

generates the layout of the circuit. This program, BFG, also requires for the input vectors 

to the generator to be of the same format. The Boolean function can have up to fifteen 

control variables with one pass variable. A vector larger than five control variables will 

be broken into two or more sub-circuits. The generated circuits have been simulated 

using the Fastsim logic simulation [3]. 

Static restored logic corresponds' to an output voltage which is strong enough to 

drive other stages in a cascaded circuit. In other words, the output is at either a strong 

high or low voltage level. Here, an example of a non-restored logic is considered in Fig­

ure 1-la, which shows a half adder where the information bits are A,A,B and B. The out­

put of the half adder is either 0 volts or V dd-V1 volts. The output of Figure 1-1 b is the 
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sum of the two half adder and the carry bit. Since the voltage that is driving H and H are 

V dd-Vt volts, the output voltage of the sum can either be 0 volts or Vdd-2Vt volts. At this 

stage, V dd-2Vt is not a strong enough 

A-1 

B-1 

A-1 

B-1 

(a) 

f-A 

f-B 

f-A 

t-B 

H-1 f-H 

c-1 
AEF>B=H 

=~ dd -Vt H-1 

c-1 

(b) 

Figure 1-1. Non restoring nMOS adder 
(a) non restoring nMOS half-adder. 
(b) non restoring nMOS full-adder. 

f-c 
H@ C=S 

f-H = rOdd -2V t 

r-c 

output to drive a next stage in a cascaded situation. However in the CMOS circuits 

shown in Figure 1-2a and b, where the pull up is a pMOS transistor and the pull down is 

an nMOS transistor, a strong logic high can be passed from V dd through the p-device to 

the output node, and a strong logic low can be achieved through then-device at the out­

put node (the characteristic of the p-device and n-device are considered in more detail in 

Chapter m. The output of the half adder shown in Figure 1-2a, is either 0 volts or V dd· In 

this case, the output is at strong logic low or high and can be used in cascaded circuits. 

Dynamic design, shows in Figure 1-3a and b, the output node needs to be 

precharged and then evaluated, In Figure 1-3a, the output is precharged during the 

precharge cycle to V dd-Vt volts. During the precharge cycle all the switches, A,A,B and 

B are closed as shown in Figure 1-4. During the evaluation cycle depending on the infor-

- -
mation bits, A,A,B and B, the output node can either discharge to 0 volts or stay at 

V dd-Vt volts. In this case the output is restored to strong logic low or high and can be 
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Figure 1-2. Restoring CMOS adder 
(a) restoring CMOS half-adder. 
(b) restoring CMOS full-adder. 

used in a cascaded circuit. 
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Figure 1-3. Restoring dynamic nMOS adder 
(a) restoring dynamic nMOS half-adder. 
(b) restoring dynamic nMOS full-adder. 

r -V = 
0
dd t 

3 

An element of a differential pass transistor consists of two n-channel transistors, 

controlled by the same signal, which passes the input and its complement to the output. If 

the pass transistor is of nMOS type the control signal that closes the gate is high, and if it 

is of pMOS type, then the control signal that closes the gate is low. The CMOS transmis-
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B =>< x 
enl 

en2 

s J \ .valid I 
Figure 1-4. Timing diagram for restoring dynamic adder. 

sion gate consists of nMOS and pMOS transistors. 

Pass transistor logic elements are bidirectional, since which terminals acts as the 

drain and source depends on their voltage levels. A pass transistor is, in fact, a switch, 

much like the earlier contact relay [ 4, 5]. The pass element can take any value of the set 

{O, l,xi,Xi,z} where xi is an input variable and z is the high impedance state [l]. The high 

impedance results when all of the switches are off. To avoid a high impedance output, a 0 

must be passed whenever a 0 is required at the output. This implies that in the Karnaugh 

map all 0 entries as well as 1 entries must be grouped together[!, 6]. The signals that 

drive the gates of the MOS transistor are called control signals. The input signals that are 

fed into the pass transistors and are passed to the output are called pass signals. 

In this study the networks are realized with only nMOS transistors. A general 

form of a pass transistor network is shown in Figure 1-5a and b. Each row is composed of 

several pass transistor which are connected serially and each transistor row is called a 

product term, Pi. The input, Vi, is passed to the output, F, when all the switches in one 

row are enabled. The gate of each product term is controlled by the control signal, Ci. A 
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wired OR at the output node connects the rows. An example of the sum generator for the 

full adder is shown in Figure 1-5b, where the pass function is F=AB(C)+AB (C)+AB(C). 

control 

Wired - -
'OR' A A B B 

V1 Pl 
1 

V2 P2 c 
F C_I 

V3 
::::r:::: I ::::r:::: LF 

P3 c - -
-c 

V4 P4 

(a) 
(b) 

Figure 1-5. Pass transistor network 
(a) representation of a pass transistor network. 

(b) example of a sum gene'rator for a full adder. 

Thus the output of the pass transistor network can be expressed as 

F=P1(Vi)+P2(V2}+ · · ·+Pn(Vn) [1, 7]. 

Example 1: A three variable Kamaugh map is shown in Figure 1-6a. Cells 0 and 

1 constitute the pass implicant of AB with a pass variable of 0, which can be denoted as 

AB(O). Cells 2 and 3 constitute the pass implicant with a pass variable of AB (C). 

Respectively cells 4 and 5 form a pass implicant of AB(C), and cells 6 and 7 form a pass 

implicant of AB (1). The whole function can be expressed as 

F=AB(O)+AB(C)+AB(C)+AB (1). This function is the carry generator of a full adder, 

which is shown in Figure 1-6b [l, 7, 8]. 

Since the Kamaugh map is most effective for a networks up to five or six vari-

ables, an algorithm for networks larger than six variables has been developed by D. 

Radhakrishnan by modifying the conventional Quine-McCluskey approach. In the 

Quine-McCluskey methode where tabular method is used to drive a minimal sum when 

all prime implicants of a given function F are known. In this method, two vectors that 
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Figure 1-6. Conventional CMOS pass-transistor 
(a) Kamaugh map, illustration of difference field. 
(b) example of a carry generator for a full adder. 
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B B" 

F 

are combining must differ only in one bit and the F is given in its minterm expansion [ 4, 

5]. 

The format for the data structure of Radhakrishnan approach is in the form of 

base[difference]variable. The base field is an integer field, and it is the smallest value 

minterm between the grouping of minterms. Two pass implicants can be combined only 

if their bases vary by one bit. The difference field is also an integer field, consisting of 

one or more entries separated by commas. It represents the difference between the two 

fields that are combining together. The difference field between the two terms whose 

decimal equivalents are 2 and 3, the difference in this case is (1). On the other hand for 

2(1) and 6(1) the difference is (1, 4). The order of the entries in a difference field makes 

no difference, thus (1, 4) and (4, 1) are equivalent. The pass field is an alphanumeric 

field which can have any value from the set ( 0, l ,xi, and.xi}. The pass implicants are: 

1. if Fi=O and Fj=O then i [2k]O ; 

2. if Fi=l and Fj=l then i [2k] 1 ; 

3. if Fi=O and Fj=l then i [2k]xk ; 

4. if Fi=l and Fj=O then i [2k]xi ; 

In the example shown in TABLE I, the prime implicants that cover all eight terms 



7 

TABLE I 

MINIMIZATION EXAMPLE, FROM REFERENCE 5 

TRUTH TABLE OUTPUT BASE(DIFFERENCE)PASS 

(BINARY) (DEC) Listl List2 

X2 Xl XO x F - -
0 0 0 0 0 .............. 0(1)0 

1
0(1, 2)Xl 

/()(_2)Xl / 
0(4)0 I 

I 
1(2)Xl I 0 0 1 1 0 

I/ 
1(4)X2 

0 1 0 2 2(1)1 

2(4)X2 

1 0 0 4 o/ 4(1)XO 4(1, 2)XO 

4(2)0 

0 1 1 3 1 I 3(4)1 

1 0 1 5 1 5(2)1 

1 1 0 6 0 6(1)XO 

1 1 1 7 1 

of the three variable function are 0(1, 2)xl and 4(1, 2)x0, which Radhakrishnan indicates 

can be represented as x2(x 1) and x2(x0), respectively [l, 6]. Thus, the pass function for 

the network is F =x 2(x 1)+x2(x 0), which can be implemented with nMOS transistors. 

Differential pass transistor logic with an nMOS fabric is used in this study. The 

pass variable and its complement are passed from the input to the output node. At the 

output node a wired OR connects all the OUT+ nodes together and another wired OR 
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connects all the OUT- nodes together. The network then has two differential outputs, 

OUT+ and OUT-, which drive a differential buffer, (see Figure 2-3). The output nodes 

and the entire fabric are precharged during a precharge cycle. Then, one of the nodes, 

depending on the pass variable and the state of the control signals, is discharged to 

ground through the buffer, during an evaluation cycle. In differential pass transistor logic 

the number of transistors is almost twice as large as in ordinary pass transistor logic, but 

the overhead consumption is not as much as in CM OS transmission gates since all the 

transistors are n-type and stay in the same well. In this study it is shown that this 

approach has area and speed advantages over conventional CMOS pass transistor logic. 

Since possible loss of information can occur in the ordinary pass transistor logic 

because of problems with noise margin, this study uses differential pass transistor logic. 

A differential pass transistor is also faster, since we need a differential voltage level of 

vdd 
about 2 at the output node instead of full CMOS level voltages. Another advantage 

of this type of configuration is that it produces complementary outputs at the output node 

(9, 10]. 

In Chapter Il, a study and comparison of MOS pass transistor logic is done. This 

compares the behavior of nMOS, pMOS and CMOS transistor logic. Chapter m, focuses 

on differential pass transistor logic in nMOS, the timing behavior of precharge and 

evaluation cycles and also shows that using a bootstrap circuit at the gate (the control sig­

nal) of the nMOS pass transistor logic will significantly improve the speed. In this 

Chapter simulation for pass transistor logic is presented. The difference in precharge 

time, using an n-type precharge device versus a p-type precharge device is shown. The 

simulation result shows that when switching from one row to another row (see Figure 3-

7), the output voltage will discharge through the fabric by about V;d volts. This is in a 

case of having only five transistors in one row. This voltage drop can get worse as the 
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number of transistors is increased. For this reason, precharging before each evaluation is 

necessary, since we can not afford this voltage drop at the output node. The simulation of 

the bootstrap circuit is also shown in this Chapter and possi?le problems that might occur 

in bootstrapping are discussed. 

In Chapter IV, by considering the criteria that are discussed in the above 

Chapters, a program for layout generation of differential pass transistor fabric is 

developed. For the circuit generation of specific Boolean functions, C-code in combina­

tion with CFL is used. The program reads an input file describing the Boolean function 

and generates a layout circuit of the function in the MAGIC form which is called "BFG" 

(Boolean Function Generator). The layout circuit is in 3µ p-well CMOS technology. 

Finally, Chapter V concludes the work and summarizes our results of the study of dif­

ferential pass transistor logic. 



CHAPTERil 

STUDY AND COMPARISON 

OF MOS PASS TRANSISTOR LOGIC 

Pass transistor logic is used for implementation of Boolean functions. There are 

three main characteristics of pass transistor logic: non-restored gate (e.g. restoring gate 

converts input low level to zero volts output and input high level to full V dd output), 

bidirectional devices (since drain and source of a pass device depends on its voltage 

potential level), and implement combinational logic with one output. 

The operation of an MOS transistor is based on the terminal potentials. There are 

two primary types of transistors, enhancement-mode and depletion-mode. Since most 

high-density integrated circuits are built with enhancement devices, this study considers 

only enhancement devices. In an enhancement-mode, normally off, nMOS transistor, 

when the potential of the gate is below threshold voltage, electrons are prevented from 

flowing from source to drain of the transistor (i.e. no channel). This is because of the 

built-in potential of the p-n diode formed between the n-type source and the p-type sub­

strate. A positive voltage (above threshold) on the gate with respect to the substrate will 

increase the number of electrons in the channel and, hence, increase the conductivity of 

the channel. Thus to turn on an enhancement-mode transistor, positive charges must be 

placed on the gate. 

There are two types of enhancement devices, nMOS and pMOS. Operating with 

a 5 volts power supply, the threshold voltage, V1, of enhancement-mode device is in the 

range of 0.6 to 1.1 volts for nMOS devices. The logic high output voltage of an nMOS 

device is V dd-V1• The threshold voltage, V,, of enhancement-mode for pMOS device is in 
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the range of -0.6 to -1.1 volts with reference to source voltage. The logic high output vol­

tage of a pMOS device is at V dd level [11]. For an nMOS device, a high voltage on the 

gate will turn the transistor on, whereas for a pMOS a low voltage on the gate will turn 

the transistor on. 

There are two types of enhancement devices, nMOS and pMOS. These may be 

combined to form complementary MOS (CMOS). The CMOS pass transistor, Figure 2-1 

consists of an n-channel transistor and a p-channel transistor. The gates of the n-channel 

and the p-channel are opposite signals, C and C, but they have common source and drain 

connections. The characteristics of n and pare described below. 

MOS PASS TRANSISTORS 

1. nMOS Pass Transistor 

In an n-channel enhancement type transistor, shown in Figure 2-2, the substrate is 

doped with p-type silicon. The source and drain, which are diffused into the substrate, are 

heavily doped n + regions. Between the source and drain there is a narrow region of p­

type substrate, channel, which is covered by a thin isolating layer of silicon dioxide 

(SiO 2) gate oxide. Over this gate oxide there is a polycrystalline silicon (polysilicon), 

which is called the gate. 

In case of a positive voltage applied between the source and the drain (V ds), with 

control signal C being in off state (V8s=O volts) there would be no current flow between 

the source and drain of the transistor. If the load capacitance, C1, at the output is 

discharged the output voltage, V0 , will stay at the ground level independent of the input 

voltage, Vin· When the control signal is on high state (Vgs=5 volts) and Vin=5 volts the 

pass transistor begins to conduct and charges the load capacitance toward Vdd-Vtn• where 

Vin is the threshold of then-device. When the output voltage, V0 , reaches V dd-V,, then­

device begins to turn off. At this point the channel of the transistor is shut off and the 
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Figure 2-1. Conventional CMOS pass-transistor 
(a) Representation of a conventional CMOS pass element. 

(b) conventional CMOS pass transistor 4 to 1 multiplexer circuit. 

12 

F 

load capacitance, Ci will remain at V dd-V in· This implies that the nMOS pass transistor 

does not pass the full voltage level. In the case in which the control signal is at high state 

and Vin=O volts and the load capacitance is charged, the pass transistor begins to conduct 

and discharge the load capacitor to Vss· The n-device can discharge a capacitor to 

ground, and thus it is a strong logic low [12]. 
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Gate Oxide 

Source Gate Drain 

,------
.___Ch_ann_e_l_. l r Ek'-ctro_n_s __ _, 

Holes 
p-substrate 

n+ n+ 

vss 

Figure 2-2. Physical structure of an nMOS transistor. 

Gate Oxide 

Source Gate Drain 

p+ p+ 

Channel 

n-substate 

vdd 

Figure 2-3. Physical structure of a pMOS transistor. 

2. pMOS P~ Transistor 

In a p-channel enhancement type transistor, shown in Figure 2-3, the substrate is 

doped p+. In the pMOS pass transistor, when the control signal (Vgs) is at high voltage, 

the gate is turned off. Regardless of the input voltage, the load capacitance remain 
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unchanged. When the control signal (Vgs) is at low voltage, it draws holes into the chan­

nel region below the gate. As the result a channel is created under the gate and a conduc­

tion path is created between the source-to-drain. In nMOS conduction results from move­

ment of electrons. However, in the case of pMOS conduction results from the movement 

of holes in the channel. Thus a negative voltage at the gate (w.r.t. source) causes the 

current to flow and charge the load capacitor to V dd· However, in the case in which Vin=O 

volts and V 0=5 volts , the load capacitor discharges through the p-device until 

Vin=V0 -V1p, while the output V0 remains at Vrp, where Vrp is the threshold voltage of the 

p-device. Thus the pMOS pass transistor unlike nMOS, does not conduct a strong logic 

low [12]. 

J. CMOS Transmission Gate 

The CMOS transmission gate has the advantage of passing both a strong logic 

high through its p-device and a strong logic low through its n-device. However p and n­

devices together consumes much area and this is not desirable. Another constraint of the 

CMOS transmission gate is that both Vss and V dd rails have to be presented in the circuit, 

whereas in the pass transistor logic V dd or Vss are not necessary, since at the output node 

we are looking at the differential pair. Thus, although it is clear that CMOS offers certain 

advantages, nMOS is still preferable. 

The main reasons for using nMOS pass transistor logic instead of CMOS in this 

study are to substantially improve speed and reduce area (since all the transistors on the 

same substrate). The pass transistor used for implementation of this study is an n-channel 

transistor which eliminates the slow p-channel transistor and the extra area that p­

channels consume (sines they have to be build on a different well from the n-channel 

transistor). One disadvantage of the n-channel transistor is that it precharges the fabric 

slowly and increases precharge time as the number of serial transistors increase. 
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IMPLEMENTING THE nMOS DIFFERENTIAL PASS TRANSISTOR 

An element of the nMOS differential pass transistor logic which consists of two 

n-channel transistors, controlled by the same signal that passes input and its complement 

to the output, is shown in Figure 2-4. 

control 

in+ 

in- _ ____.11.._ __ 
out+ 

out-

Figure 2-4. An element of the nMOS differential pass transistor. 

This differential pass has two outputs, OUT+ and OUT-. Since an n-channel transistor 

can pass a strong logic zero, the value of the output can be exactly zero, however, since 

n-channel transistor can not pass a strong logic high, the maximum voltage level at the 

output node that is passed through the n-channel transistor is V dd-V1• This differential 

output signal can be restored to its full logic level by using a differential buffer at the out-

put (see Figure 5-6)[6, 13, 14]. 

A common application of this type of logic configuration is a multiplexer in 

which a pass variable V; is passed to the output depending on the state of the control sig-

nal C;. A differential pass-transistor multiplexer network is illustrated as in Figure 4-5. 
·,. 

Buffers are placed at the input of the pass network, to provide a set of a complemented 

inputs. At the output node, when the control variables enable the switches of the product 

term C; in one row, the product term of the adjacent rows are disabled resulting in a 

high-impedance state [6]. "Two wired OR at the output node, OUT+ and OUT-, sums all 

of these possible products". Thus, the input variable V; and its complement are passed to 

the output, OUT+ and OUT-, when the product term C; of that row is on. 
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Figure 2-5. Differential pass-transistor logic 
(a) Representation of an nMOS pass transistor. 

+ 

(b) 4-to-1 multiplexer circuit of differential pass transistor logic. 
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The network has a set of differential outputs OUT+ and OUT-. This differential 

signal is restored to normal logic level by passing the signal through differential buffers 

as shown in Figure 2-5(a) and (b), respectively. One type of differential amplifier that 

can be used for our purpose is static differential buffer that is shown in Figure 2-6(a). 
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This buffer is a cascode voltage switch logic (CVSL) inverter [15]. Another type of dif­

ferential amplifier is clocked buff er which is shown in Figure 2-6(b ), a RAM sense 

amplifier [6]. 

_F 

OUT+-----1 f-- OUT-

elk -9 

OUT+-t 

(a) 

P-clk 

F 

~OUT-

elk -t 

(b) 

Figure 2-6. DP'IL decoders 
(a) Static differential buffer circuit diagram. 

(b) Oocked differential buffer circuit diagram. 



CHAPTER III 

ANALYSIS OF MOS PASS TRANSISTOR LOGIC 

AND BOOTSTRAP CIRCUIT 

The SPICE2G.6, level 2 model is used for simulating the pass transistor logic. 

The TSPICE, level 2 model is used for simulating the bootstrap circuit. 

PRECHARGING THE FABRIC 

It is known that nMOS transistor works faster discharging the capacitor than for 

precharging it. The reason for this is that the number of electrons in the channel of the 

nMOS device increases as the source voltage goes to ground (in other words resistivity of 

the device decreases as the source voltage goes to ground). An opposite situation occurs 

when the nMOS device precharges a capacitor. The precharge slows down as the voltage 

rises and stops when Vgs reaches to V dd-V, level. 

1. P_recharging Through an n-Device 

In the nMOS design it is a common practice to precharge all the dynamic nodes 

and then selectively discharge according to the input data. Precharging through the fabric 

of serially connected nMOS transistors, the current will penetrate through the fabric, and 

the time required to precharge the fabric to the desired voltage level will increase as the 

number of serially connected transistor increases. For instance in simulation one illus­

trated in TABLE Il, the fabric is precharged through five serially connected transistors 

with an nMOS precharge device of the size W =5.5µ. It takes 27ns to precharge to 3 volts, 

see TABLE IT. 



TABLE II 

PRECHARGING THROUGH THE FABRIC USING 
nMOS TRANSISTOR (W=5.5µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.440 0.000 0.000 0.000 0.000 0.000 

3 2.742 0.000 0.000 0.000 0.000 3.488 

6 2.294 0.3586 0.2569 0.000 0.000 3.563 

9 1.214 1.214 1.214 0.000 0.000 3.594 

12 1.124 1.129 1.161 1.191 1.199 3.616 

15 1.250 1.254 1.281 1.337 1.445 3.434 

18 2.198 2.209 2.276 2.405 2.613 2.953 

21 2.678 2.685 2.730 2.817 2.957 3.186 

24 2.920 2.925 2.959 3.024 3.128 3.300 

27 3.063 3.068 3.094 3.146 3.229 3.367 

30 3.159 3.162 3.184 3.227 3.296 3.412 

33 3.227 3.230 3.249 3.285 3.345 3.445 

36 3.278 3.280 3.297 3.329 3.381 3.469 

39 3.317 3.319 3.334 3.362 3.409 3.488 

42 3.349 3.351 3.364 3.389 3.431 3.503 

50 3.408 3.410 3.420 3.440 3.473 3.531 
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For this experiment, the precharge device was chosen to be an nMOS device with 

the size W =5.5µ transistor. The experiment is set up in the following manner. The 

precharge transistor is on at Ons and the precharge of the fabric is enabled. The transistor 

M 1 is turned off during the precharge cycle. Initially all transistors are off. In 44ns all 
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c4 c3 c2 cl co prechg 

vdd vdd 

vss T 
npa 

Figure 3-1. Precharging the fabric through a row of serially connected nMOS transistors. 

transistors will be on, as they are turned on in succession, as illustrated in Figure 3-1 and 

2. Thus nMOS transistor that are used for precharge device to precharge the fabric of 

serially connected n-type transistors are slow. Precharging the fabric through a p-type 

device can improve the precharge time, as shown in the next section. 

2. Precharging Through a p-Device 

In this simulation a p-device is used to precharge through the fabric, in the same 

way as in the last experiment (also see Figure 3-1 and 2). A p-device transistor turns on 

when the gate is at zero volts (w.r.t. source). The source of a p-device is connected to a 5 

volts supply voltage. Thus, the gate source voltage is constant (Vgs=5v ). The drain source 

current of the device is 

where 

and 

vds 
lds=K(V8s-1V,1-2 )V ds 

WP 
K=µpCox.(L)eff 

p 

(3.1) 

(3.2) 



pa 

npa 

--r----------prechg L - - - - - - - - - - - - - - - - - - - - - - - -

cO-cl 

c2-c3 

c4 

pO-pl 

p2-p3 

p4 

0 3 6 9 50 

TIME (ns) 

Figure 3-2. Timing diagram for precharging a row of serially connected nMOS transistors. 

µ = mobility of holes 

C0 x =gate oxide capacitance 

W p = channel width of p-device 

LP = channel length of p-device 
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The current Ids will flow from source to drain of the p-device until the output is at 

5 volts. Thus, the output voltage can be charged to a full voltage level through a p­

device. The SPICE simulation using p-device shows much improvement in speed (flt) 

for precharging the fabric. Using the p-device transistor for precharging the fabric, we 

have reduced the precharge time flt to 24ns through the same number of transistors, 



shown in TABLE III. 

TABLE Ill 

PRECHARGING THROUGH THE FABRIC USING 
pMOS TRANSISTOR (W=5.5µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.452 0.000 0.000 0.000 0.000 0.000 

3 2.742 0.000 0.000 0.000 0.000 5.003 

6 2.340 0.3598 0.2606 0.000 0.000 5.000 

9 1.219 1.218 1.219 0.000 0.000 5.000 

12 1.127 1.132 1.164 1.195 1.202 5.000 

15 1.256 1.260 1.287 1.346 1.457 4.878 

18 2.319 2.333 2.415 2.577 2.854 4.798 

21 2.826 2.834 2.886 2.987 3.162 4.927 

24 3.050 3.056 3.094 3.167 3.294 4.962 

27 3.177 3.182 3.211 3.268 3.369 4.977 

30 3.259 3.262 3.286 3.333 3.417 4.985 

33 3.315 3.318 3.338 3.379 3.450 4.989 

36 3.357 3.359 3.377 3.412 3.475 4.992 

39 3.389 3.391 3.407 3.438 3.494 4.994 

42 3.415 3.416 3.430 3.458 3.508 4.995 

50 3.462 3.463 3.474 3.496 3.536 4.997 
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Even though we have seen some improvement by precharging the fabric through 

a p-device, it is possible to improve the speed of the precharge cycle even further. One 

way to improve the speed of precharging is to tum the pass transistor up very high, 
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higher than 5 volts. This elevation of voltage can be achieved by using a bootstraped 

device at the gate of the pass transistor. However a bootstrap circuit introduced into the 

circuit design must be handled carefully. 

----i___r- ----i___r-

1 
pcharge 

~ 
Cin Cin 

Ml 

C M3 
__ .c 

vdd 

clk2 

Figure 3-3. Bootstrap circuit used at the gate of the pass transistors. 
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pcharg _J I I 

clk2 I I 

clkl L 
( vdd -v t + V) ( vdd + v t ) 

(Vdd-Vt) ~ 

CandC 

0 15 30 45 60 120 

TIME (ns) 

Figure 3-4. Timming diagram of Bootstrap circuit 

BOOTSTRAPPING THE GATE OF THE PASS TRANSISTOR 

The bootstrap circuit in Figure 3-3 and 4. is used to boot the control signal and its 

complement. Using this type of configuration, the precharge time is reduced to 18ns 

through same number of transistors, see TABLE IV. During evaluation cycle, when the 

input signal Cin has a valid logic value, and elk 1 is high, the boot node, C, will get 

charged to V dd-Vt volts through the M 1 transistor, and node C will discharge to 0 volts 

through M 2 transistor and the inverter to ground. This is desirable since the C and C are 

complements of each other during evaluation. 

During a precharge cycle, in charging nodes C and the C, pcharge signal will 

- -
enable and charge nodes C and C to V dd-V1• In order to charge node C and C above 5 

volts, clk2 will turn off about 15ns later and charge node C and C to (V dd-V,) +V, see 

TABLE V. The voltage of V depends on the size of the MOS capacitor. The size of the 

MOS capacitance has been determined by 



where 

TABLE IV 

PRECHARGING THROUGH THE FABRIC USING 
BOOTSTRAP CIRCUIT AT THE GATE OF 

PASS DEVICE 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.364 0.000 0.000 0.000 0.000 0.000 

2 2.738 0.000 0.000 0.000 0.000 4.991 

4 2.746 0.000 0.000 0.000 0.000 5.000 

6 1.710 0.4811 0.3524 0.000 0.000 5.000 

8 1.463 1.447 1.428 0.000 0.000 5.000 

10 1.407 1.403 1.377 0.4933 0.3579 5.000 

12 1.362 1.368 1.398 1.429 1.435 5.000 

14 1.418 1.419 1.421 1.426 1.433 5.000 

16 2.002 2.020 2.136 2.380 2.838 4.333 

18 3.036 3.051 3.142 3.322 3.626 4.749 

20 3.496 3.506 3.570 3.696 3.910 4.884 

30 4.123 4.126 4.151 4.199 4.283 4.983 

cap==f.X Eo = 4x8.85x10-14/ I cm 
1ox 488A 

4x8.85x10-
18

/ /µ 4x8.85 xl0-16/ /µ2=0.7/ ;µ2 
.0488µ 4.88 

Eo = permutivity of vacuum. 

E = dielectric constant of silicon dioxide. 

t0 x = thickness of oxide which in our model is 488A. 
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(3.3) 
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The two transistors in diode configuration, M 3 and M 4 , are necessary in order to 

prevent the voltage level of C and C to rise above V dd+V, (see TABLE V), since the 

breakdown of gate oxide for this technology is low (about 8 volts). The surplus voltage 

of C and C is discharged through the diode to the source V dd· 

TABLEV 

BOOTSTRAPPING GA TES C and C 
(MOS CAPACITOR BEING EIGHT TIMES LARGER THAN THE LOAD) 

TIME PCHARGE CLK2 CLKl c c 
(ns) (volt) (volt) (volt) (volt) (volt) 

0 5 5 0 3.6692 3.6692 

5 5 5 0 3.6692 3.6692 

10 5 5 0 3.6692 3.6692 

15 5 5 0 3.6692 3.6692 

20 5 0 0 4.6767 4.7242 

25 5 0 0 5.8008 5.9015 

30 5 0 0 6.4392 6.5696 

35 5 0 0 6.7187 6.8362 

40 5 0 0 6.8205 6.9016 

45 5 0 0 6.8533 6.9043 

50 5 0 0 6.8590 6.8903 

The transistors M 1 and M 2 are used to isolate the booted node, C, from the 

pMOS transistor of the inverter. This is to prevent the discharge of the boot node to V dd• 

through the drain-substrate of the p-n junction, shown in Figure 3-5. 

The main problem with the bootstrapping circuit in CMOS is latch up. When 

drain of pMOS transistor is biased above substrate voltage level, injection of holes into 

-- 'I 
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Vin 

Poly Gate Gate Oxide 

··---Yss 

n-type substrate 
Yss -

'dd 

Figure 3-5. Model for latch up condition. 

n-type substrate results. Injected holes get picked up by the closest p-well and elevate 

the voltage level of p-well. This in turn biases the p-n junction (of source-drain) of 

nMOS transistor. As the result, electrons are injected into the p-well. The amount of 

current leakage depends on many factors, such as, geometries of the injecting and col­

lecting nodes, the distance between them, the location of other neighboring nodes, and 

the location of the closest substrate contacts. 

The latch up models are shown in Figures 3-5 and 6. Conditions for bulk CMOS 

latch up are: 

1. Base-emitter CMOS junctions of pnp and npn transistors are forward biased; 

2. Beta product ( ~npn~pnp > 1 ) are sufficient to allow regeneration; 
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Rs 

c 
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i ~ ... ___ _ 

vss 
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-- transient 
current 
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capacitance 

Figure 3-6. Resistance model for latch up. 

3. The power supply V dd increases or decreases abruptly. If we increase V dd• 

i=-c dv [11, 16] 
dt 
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(3.4) 

current i will flow to the base of the transistor which causes it to latch up; and 

4. Resistivity of substrate Rs and p-well Rw is high. 

For a low-resistive p-well, the voltage drop across p-well will be smaller, so the 

injection of electrons will be correspondingly lower, and the possibility of latch-up is 

reduced. A similar condition holds for resistivity of n-substrate. 

SIMULATION OF SWITCHING ROWS 

In this section we will discuss the charge sharing problem of the pass transistor 

logic. As explained in the beginning of this chapter, voltage level of the output depends 
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on discharge (or precharge) through several serially connected pass devices. It also 

depends on charge sharing with the internal nodes of the discharge (or precharge) path. 

When switching from one row to another row of the pass transistor, we want to know 

how fast the output, OUT+, discharge and charges,~, shown in Figure 3-7. 

ct C2 C3 C32 

T 
T 

T 
T I OUT+ 

T _OUT-

T 

T 

Figure 3-7. 32 rows of pass transistor logic for charge sharing simulation. 

Since at the output nodes (OUT+ and OUT-) of the fabric, we are looking at the 

differential voltage, we need to know the initial state of the output nodes. In addition if 

we don't precharge the fabric the noise margin is essentially unknown. Thus output 

nodes, OUT+ and OUT-, have to be brought to a known initial state by precharging the 
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output, OUT+ and OUT-, nodes to 4 volts. All transistors are n-channel and they are 

chosen to be at their minimum size (W =4.0µ,L =3.0µ). A voltage source is placed at the 

nodes p 1 and p 32 of the pass transistor. At the initial condition, the control signal, C 1, at 

the gate of the M 1 transistor is on, and control signal of all other transistor are off. Ini­

tially the output OUT+ is at 4.0 volts and OUT- is at ground level, 0 volts. At lOns, M 1 

goes from an on state to an off state, and M 32 goes from an off state to an on state, see 

Figure 3-8. At this point the output voltage remains at its initial voltage level as expected, 

since there is no 

Cl, C32 

C2-C31 

OUT-

OUT+ 

Ons lOns 20ns 30ns 

Figure 3-8. Timing diagram for charge sharing simulation. 

other path to discharge the output voltage. At 20ns transistors M 2 through M 32 are 

turned on and the output voltage of OUT+ suddenly drops from 4 volts to 2.4 volts and 

lOns later its voltage reaches to 3.0 volts, shown in TABLE VI, see Figure 3-9. The prob­

lem with pass transistor logic is that when the transistors are turned on, the charge at the 

output node will be distributed through the fabric, and therefore lose or delay the charge 

at the output nodes, OUT+ and OUT-. Thus pass transistors have the potential of a 

charge sharing problem as the charge moves through the pass transistors into the fabric. 

Since we are looking at the differential comparison at the output node, we can not accept 
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an unknown source of noise at the output node. However this problem is eliminated by 

precharging the fabric to a known voltage level. 

TABLE VI 

CHARGE SHARING EFFECT WHEN 
SWITCHING FROM ONE ROW TO ANOTHER 

(TOTAL OF 32 ROWS) 

TIME OUT- OUT+ 
(ns) (volt) (volt) 

0 4.144 4.156 

10 2.922e-02 4.152 

20 -2.027e-06 4.149 

21 1.533 2.410 

22 8.814e-01 2.486 

23 4.971e-01 2.592 

24 2.779e-01 2.681 

25 1.491e-01 2.757 

26 7.755e-02 2.824 

27 3.946e-02 2.881 

28 l.974e-02 2.932 

29 1.022e-02 2.976 

30 5.175e-03 3.015 
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Figure 3-9. Charge sharing effect when switching fonn one row to another row. 
(a) switching from one row to another without precharging. 

(b) switching from one row to another with precharging. 
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CHAPTER IV 

GENERATING CIRCUIT 

FOR BOOLEAN FUNCTION USING MAGIC FILES 

CFL is a C-based program which is intended to facilitate the construction of VLSI 

circuit layouts. For generating circuit layout, set of data type called SYMBOL, a set of 

primitive operands of this type, should exist in a library of the form of Magic file. 

SYMBOLS are small set of geometric primitives which may combined to make 

objects and saved as a new SYMBOL. There is also a set of operators which calls and 

generates new SYMBOL by combining existing SYMBOLS. Routing facilities are pro­

vided by CFL to generate variety of planar and non-planar wiring patterns which can be 

used to connect functional blocks. 

CFL operator take the descriptions of the border of the symbols, and does not 

require information of the symbol itself. The information in the border descriptions 

includes the bounding box, its border and lists of coordinates of the points where each of 

kind of material in the symbol makes contact with the bounding box. 

I have developed a C-base program called BFG which generates circuit layouts 

for Boolean functions. This program, that uses CFL operator can generate up to 215 min­

terms. A large circuit will be broken into smaller sub-circuit so that the time required for 

precharging the fabric (interior nodes of the product terms) will be minimized. One can 

use a set of variables { 0, 1,x,:X), where x can take any logical value and xis complement 

of x. For specifying x in the "input" file the program will generate x for the circuit. The 

product terms can take any value of {O, 1, -), where'-' is a don't care. Passing a value 

with up to four control signals will generate one block. For number of control signal 
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between six and ten then the circuit will be broken into two sub-blocks each with five or 

less control signals. A control signal between eleven and fifteen will be broken into three 

sub-blocks. The output of the first block will be fed into the input of the second block 

and output of the second sub-block will be fed into the input of the third sub-block. 

The BFG program, bfg.c, reads from an input file called "input", see Appendix C. 

The first line of input file must contains '.c' and an integer value to indicate the total 

number of control line in the circuit. The program will break this control signal into 

smaller number of controls (based on the simulation result) and will generate the sub­

blocks if the control signal is larger than five. The second line must contain a '. p' card 

and an integer value to indicate the total number of pass-variables for the first sub-block. 

After the second line the vectors for control and pass should be indicated with a blank 

space between them. Next line after the last vector line is another '.p' card followed by 

an integer value indicating number of passes for the second block which is again fol­

lowed by a set of vectors for the block. Similar procedure follows for the third sub-block. 

All the passes, controls and output nodes are labeled for easier access. 



Example 1: An example of the format of the input file for the BFG program . 

. c 8 /*Total number of controls.*/ 

.p 4 /* Total number of pass-variable for the first 

sub-block. */ 

01-1 0 /*Control-variables for one row and its pass-variable.*/ 

1-10 1 

1100 x 

--11 xn 

.p 3 /* Total number of pass-variable for the second 

1011 f 

0110 fn 

-010 fn 

sub-block. */ 
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The CFL macros that are used for generating the block are the following: 

rr(sl, s2) - align right to right 

rrdx(sl, s2, dx) - align right to right, x offset 

11 - align left to left 

bb - align bottom to bottom 

bbdx(sl, s2, dx) - align bottom to bottom, x offset 

bbdxy(sl, s2, dx, dy) - align bottom to bottom, x offset 

my(s) - mirror in y 

cp(sl, pl) - center to point 

ps(name, s) - put symbol in the symbol table 
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CHAPTERV 

CONCLUSION 

Differential pass transistor logic is used for the implementation of Boolean func­

tions. The most effective approach in design of Boolean functions generator has been 

found using nMOS pass transistor logic with the control signal bootstraped above Vdd 

level. Detailed analysis of nMOS circuits, using SPICE circuit simulator and Fastsim 

logic simulator, is done. SPICE simulation, using level 2 model, shows that we can 

achieve the most reasonable time for precharging through the fabric ( ~ ) by breaking 

the number of serially connected pass transistor logic into maximum of five in a row. The 

study shows, by using bootstrap circuit at the gate of these pass transistor logic we can 

obtain a faster precharge cycle. The bootstrap circuit used in the circuit was simulated on 

TSPICE level 2 model simulation. The faster precharge was achieved at the boot node. 

The study shows, by using a transistor in a diode configuration at the boot node, one can 

raise the voltage at the boot node to a maximum of V dd+ V, level which is less than the 

break down voltage in this technology. By using a bootstrap circuit at the gate of the 

control signal, the precharge time is reduced to 18ns. 

The circuit implementation of Boolean functions is accomplished. The C-code in 

combination with the CFL program is used to generate the layout of the circuit. The C­

code will read from the library 'mag', MAGIC files, and generate the layout of the circuit 

for the Boolean functions. The generated circuit is tested using Fastsim logic simulator. 
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PRECHARGING THROUGH THE FABRIC USING 
nMOS TRANSISTOR (W=5.5µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.440 0.000 0.000 0.000 0.000 0.000 

3 2.742 0.000 0.000 0.000 0.000 3.488 

6 2.294 0.3586 0.2569 0.000 0.000 3.563 

9 1.214 1.214 1.214 0.000 0.()()() 3.594 

12 1.124 1.129 1.161 1.191 1.199 3.616 

15 1.250 1.254 1.281 1.337 1.445 3.434 

18 2.198 2.209 2.276 2.405 2.613 2.953 

21 2.678 2.685 2.730 2.817 2.957 3.186 

24 2.920 2.925 2.959 3.024 3.128 3.300 

27 3.063 3.068 3.094 3.146 3.229 3.367 

30 3.159 3.162 3.184 3.227 3.296 3.412 

33 3.227 3.230 3.249 3.285 3.345 3.445 

36 3.278 3.280 3.297 3.329 3.381 3.469 

39 3.317 3.319 3.334 3.362 3.409 3.488 

42 3.349 3.351 3.364 3.389 3.431 3.503 

50 3.408 3.410 3.420 3.440 3.473 3.531 
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PRECHARGING THROUGH THE FABRIC USING 
nMOS TRANSISTOR (W=l 1µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.439 0.000 0.000 0.000 0.000 0.8681 

6 2.268 0.3618 0.2135 0.000 0.000 3.603 

9 1.217 1.217 1.217 0.000 0.000 3.634 

12 1.124 1.129 1.161 1.191 1.199 3.657 

15 1.252 1.256 1.283 1.340 1.449 3.497 

18 2.251 2.263 2.338 2.483 2.722 3.152 

21 2.746 2.754 2.802 2.895 3.048 3.326 

24 2.981 2.986 3.021 3.090 3.202 3.407 

27 3.117 3.121 3.149 3.202 3.291 3.455 

30 3.206 3.209 3.232 3.276 3.349 3.486 

33 3.268 3.271 3.290 3.328 3.390 3.508 

36 3.314 3.317 3.333 3.366 3.421 3.525 

39 3.350 3.352 3.367 3.396 3.444 3.537 

40 3.360 3.362 3.376 3.404 3.451 3.541 

50 3.432 3.433 3.443 3.464 3.499 3.571 
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PRECHARGING THROUGH THE FABRIC USING 
nMOS TRANSISTOR (W=22µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.442 0.000 0.000 0.000 0.000 1.188 

3 2.743 0.000 0.000 0.000 0.000 3.581 

6 2.420 0.3706 0.2635 0.000 0.000 3.635 

9 1.228 1.228 1.228 0.000 0.000 3.667 

12 1.126 1.133 1.166 1.196 1.196 3.691 

15 1.262 1.266 1.294 1.353 1.465 3.557 

18 2.294 2.307 2.384 2.537 2.791 3.296 

21 2.787 2.795 2.844 2.940 3.100 3.420 

24 3.014 3.020 3.055 3.125 3.241 3.478 

27 3.144 3.148 3.176 3.231 3.322 3.511 

30 3.228 3.232 3.255 3.300 3.375 3.533 

33 3.288 3.291 3.310 3.348 3.412 3.548 

36 3.331 3.334 3.351 3.384 3.440 3.560 

39 3.365 3.367 3.382 3.412 3.462 3.575 

42 3.393 3.394 3.407 3.434 3.480 3.589 

50 3.443 3.445 3.455 3.476 3.512 3.623 
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PRECHARGING THROUGH THE FABRIC USING 
pMOS TRANSISTOR (W=5.5µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.452 0.000 0.000 0.000 0.000 0.000 

3 2.742 0.000 0.000 0.000 0.000 5.003 

6 2.340 0.3598 0.2606 0.000 0.000 5.000 

9 1.219 1.218 1.219 0.000 0.000 5.000 

12 1.127 1.132 1.164 1.195 1.202 5.000 

15 1.256 1.260 1.287 1.346 1.457 4.878 

18 2.319 2.333 2.415 2.577 2.854 4.798 

21 2.826 2.834 2.886 2.987 3.162 4.927 

24 3.050 3.056 3.094 3.167 3.294 4.962 

27 3.177 3.182 3.211 3.268 3.369 4.977 

30 3.259 3.262 3.286 3.333 3.417 4.985 

33 3.315 3.318 3.338 3.379 3.450 4.989 

36 3.357 3.359 3.377 3.412 3.475 4.992 

39 3.389 3.391 3.407 3.438 3.494 4.994 

42 3.415 3.416 3.430 3.458 3.508 4.995 

50 3.462 3.463 3.474 3.496 3.536 4.997 
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PRECHARGING THROUGH THE FABRIC USING 
pMOS TRANSISTOR (W=l 1µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.452 0.000 0.000 0.000 0.000 0.000 

3 2.743 0.000 0.000 0.000 0.000 0.000 

6 2.161 0.3587 0.2452 0.6907 0.000 5.000 

9 1.191 1.191 1.191 0.000 0.000 5.000 

12 1.111 1.116 1.148 1.181 1.176 5.000 

15 1.238 1.242 1.269 1.328 1.439 4.927 

18 2.313 2.327 2.410 2.573 2.852 4.900 

21 2.822 2.830 2.882 2.984 3.160 4.963 

24 3.049 3.055 3.093 3.166 3.293 4.981 

27 3.177 3.182 3.211 3.268 3.369 4.988 

30 3.259 3.263 3.286 3.334 3.417 4.992 

33 3.316 3.319 3.339 3.379 3.450 4.995 

36 3.357 3.360 3.377 3.412 3.475 4.996 

39 3.389 3.391 3.407 3.438 3.494 4.997 

40 3.398 3.400 3.415 3.445 3.499 4.997 

50 3.462 3.463 3.474 3.496 3.536 4.998 
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PRECHARGING THROUGH THE FABRIC USING 
pMOS TRANSISTOR (W=22µ) 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.452 0.000 0.000 0.000 0.000 0.000 

3 2.742 0.000 0.000 0.000 0.000 5.000 

6 2.341 0.3551 0.2403 0.000 0.000 5.000 

9 1.201 1.202 1.202 0.000 0.000 5.000 

12 1.122 1.126 1.161 1.193 1.194 5.000 

15 1.252 1.256 1.283 1.341 1.452 4.960 

18 2.321 2.334 2.417 2.579 2.857 4.949 

21 2.828 2.836 2.888 2.989 3.164 4.981 

24 3.052 3.058 3.095 3.168 3.295 4.990 

27 3.178 3.183 3.212 3.269 3.369 4.994 

30 3.259 3.263 3.287 3.334 3.417 4.996 

33 3.316 3.319 3.339 3.379 3.450 4.997 

36 3.357 3.360 3.377 3.413 3.475 4.998 

39 3.389 3.391 3.407 3.438 3.494 4.998 

42 3.415 3.417 3.430 3.458 3.509 4.999 

50 3.462 3.463 3.474 3.496 3.536 4.999 
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PRECHARGING THROUGH THE FABRIC USING 
BOOTSTRAP CIRCUIT AT THE GATE OF 

PASS DEVICE 

TIME PO Pl P2 P3 P4 P5 
(ns) (volt) (volt) (volt) (volt) (volt) (volt) 

0 2.364 0.000 0.000 0.000 0.000 0.000 

2 2.738 0.000 0.000 0.000 0.000 4.991 

4 2.746 0.000 0.000 0.000 0.000 5.000 

6 1.710 0.4811 0.3524 0.000 0.000 5.000 

8 1.463 1.447 1.428 0.000 0.000 5.000 

10 1.407 1.403 1.377 0.4933 0.3579 5.000 

12 1.362 1.368 1.398 1.429 1.435 5.000 

14 1.418 1.419 1.421 1.426 1.433 5.000 

16 2.002 2.020 2.136 2.380 2.838 4.333 

18 3.036 3.051 3.142 3.322 3.626 4.749 

20 3.496 3.506 3.570 3.696 3.910 4.884 

30 4.123 4.126 4.151 4.199 4.283 4.983 
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CHARGE SHARING EFFECT: 
SWITCHING FROM ONE ROW TO ANOTHER 

(TOT AL OF 16 ROWS) 

TIME OUT- OUT+ 
(ns) (volt) (volt) 

0 4.291 4.312 

10 2.718e-02 4.322 

20 -3.707e-06 4.319 

21 1.187 2.515 

22 3.728e-01 2.665 

23 l.077e-01 2.816 

24 2.289e-02 2.931 

25 5.105e-03 3.017 

26 8.047e-04 3.087 

27 5.914e-05 3.143 

28 9.508e-05 3.189 

29 -5.279e-05 3.226 

30 7.742e-05 3.259 
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CHARGE SHARING EFFECT: 
SWITCHING FROM ONE ROW TO ANOTHER 

(TOT AL OF 32 ROWS) 

TIME OUT- OUT+ 
(ns) (volt) (volt) 

0 4.144 4.156 

10 2.922e-02 4.152 

20 -2.027e-06 4.149 

21 1.533 2.410 

22 8.814e-01 2.486 

23 4.971e-01 2.592 

24 2.779e-01 2.681 

25 l.491e-01 2.757 

26 7.755e-02 2.824 

27 3.946e-02 2.881 

28 l.974e-02 2.932 

29 l.022e-02 2.976 

30 5.175e-03 3.015 
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50 

BOOTSTRAPPING GATES C and C 
(MOS CAPACITOR BEING SAME SIZE AS THE LOAD) 

Time PCHARGE CLK2 CLKl c c 
(ns) (volt) (volt) (volt) (volt) (volt) 

0 5 5 0 3.6692 3.6692 

5 5 5 0 3.6692 3.6692 

10 5 5 0 3.6692 3.6692 

15 5 5 0 3.6692 3.6692 

20 5 0 0 5.1374 5.4634 

25 5 0 0 5.2714 5.7175 

30 5 0 0 5.3109 5.7683 

35 5 0 0 5.3204 5.7805 

40 5 0 0 5.3226 5.7833 

45 5 0 0 5.3231 5.7839 

50 5 0 0 5.3232 5.7841 



51 

BOOTSTRAPPING GATES C and C 
(MOS CAPACITOR BEING TWICE LARGER THAN THE LOAD) 

TIME PCHARGE CLK2 CLKl c c 
(ns) (volt) (volt) (volt) (volt) (volt) 

0 5 5 0 3.6692 3.6692 

5 5 5 0 3.6692 3.6692 

10 5 5 0 3.6692 3.6692 

15 5 5 0 3.6692 3.6692 

20 5 0 0 5.4608 5.7065 

25 5 0 0 5.9481 6.2610 

30 5 0 0 6.1701 6.5132 

35 5 0 0 6.2979 6.6394 

40 5 0 0 6.3654 6.6680 

45 5 0 0 6.4017 6.6583 

50 5 0 0 6.4149 6.6403 



52 

BOOTSTRAPPING GATES C and C 
(MOS CAPACITOR BEING FOUR TIMES LARGER THAN THE LOAD) 

TIME PCHARGE CLK2 CLKl c c 
(ns) (volt) (volt) (volt) (volt) (volt) 

0 5 5 0 3.6692 3.6692 

5 5 5 0 3.6692 3.6692 

10 5 5 0 3.6692 3.6692 

15 5 5 0 3.6692 3.6692 

20 5 0 0 5.2180 5.3478 

25 5 0 0 6.2009 6.4135 

30 5 0 0 6.5021 6.7208 

35 5 0 0 6.6656 6.8219 

40 5 0 0 6.7400 6.8308 

45 5 0 0 6.7615 6.8108 

50 5 0 0 6.7590 6.7855 



53 

BOOTSTRAPPING GATES C and C 
(MOS CAPACITOR BEING EIGHT TIMES LARGER THAN THE LOAD) 

TIME PCHARGE CLK2 CLKl c c 
(ns) (volt) (volt) (volt) (volt) (volt) 

0 5 5 0 3.6692 3.6692 

5 5 5 0 3.6692 3.6692 

10 5 5 0 3.6692 3.6692 

15 5 5 0 3.6692 3.6692 

20 5 0 0 4.6767 4.7242 

25 5 0 0 5.8008 5.9015 

30 5 0 0 6.4392 6.5696 

35 5 0 0 6.7187 6.8362 

40 5 0 0 6.8205 6.9016 

45 5 0 0 6.8533 6.9043 

50 5 0 0 6.8590 6.8903 
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APPENDIXC 

PROGRAM CODE FOR LAYOUT GENERATION OF BOOLEAN FUNCTIONS 



#include <stdio.h> 
#include "cfl..h" /*$'UW _ VLSI_TOOLS/include */ 

76 

/*======================================================*/ 
/* Global flags and variable 
*I 
int control, m, i, pass_ var, 
char ch[50], chc[50]; 
char con[lOO], pvar[lOO]; 
char prod[1000][100]; 
char labl[1000][100]; 
char labelstring[ 100]; 

int offset; 

FILE *fp *fopen(); ---*/ 

/*=====:=============================================---



/*======================================================*/ 
/*Some useful strings in cfl 
*/ 
char *top= "top"; 
char *bot= "bot"; 
char *left= "left"; 
char *right = "right"; 

/*Some useful strings in MOSIS p-well CMOS 
*/ 
char *m 1 = "metal l "; 
char *diff ="diffusion"; 
char *poly= "polysilicon"; 
char *m2 = "meta12"; 
char *cut = "cut"; 
char *pplus = "pplus"; 
char *pwell = "pwell "; 

SYMBOL *boot, *dcare, *boots, *p2, *pass, *pass2; 
SYMBOL *passes, *passes2, *cont, *contclk, *controls; 
SYMBOL *lrout, *mop, *rrouttop, *rroutbot, *rrout; 
SYMBOL *rf, *rfn, *rrouts, *prechg, *pcharges, *btcnt; 
SYMBOL *bfg, *btcntr, *btcntrp, *pbtcnt, *row, *rows; 
SYMBOL *btlr, *btlrrr, *btlrrrpc, *btlrrrpc2; 

BORDER *bO, *bl, *b2, *b3, *brl; 

PT *pO, *pl; 
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/*======================================================*/ 



78 

/*~==========================---------main() ---------==================*/ 

{ 

/* set the flags and variables 
*I 

int base, x, brlno, br2no, br3no, i; 
int user_input = 1; 

bfg=NULL; 
offset= O; 

/* Set technology for Magic file 
*/ 

cflsetc ("format", "magic"); 
cflstart ("stdcmos"); 

/* Cells that was build for generating the block 
*/ 

pass= gs ("pass"); 
dcare = gs ("dcare"); 
pass2 = gs ("pass2"); 
passes2 = gs ("passes2"); 
cont = gs ("cont"); 
contclk = gs ("contclk"); 
boot = gs ("boot"); 
lrout = gs ("lrout"); 
rrtop =gs ("rrtop"); 
rrout = gs ("rrout"); 
rf = gs ("rf''); 
rfn =gs ("rfn"); 
rroutbot = gs ("rroutbot"); 
rrouttop =gs ("rrouttop"); 
prechg = gs ("prechg"); 

/*--------------------------------------------------------* 
* Opening and reading form the 'input' file: 
*--------------------------------------------------------*/ 

fp = fopen ("input", "r"); 

fscanf (fp, "%s%d", ch, &control); 
/* Reading number of controls 

form the '.c' card in the input file. *I 
if (strcmp (ch, ".c") != 0) 

{ 

} 

/* Check for '.c' card. *I 

printf (" '.c' is missing. O); 



else if ((control< 2) II (control> 15)) 
/*Check for number of control lines.*/ 

{ 
printf ("Invalid value for control 0); 

/* The range for control lines for one block 
is between 2 and 15. */ 

/*------------------------------------------------------------------* 
* Control is less than or equal 5, so assemble one block: 
*------------------------------------------------------------------*/ 

else if (control< 6) 
{ 

read_n (control); 
/* Read number of pass variable and check. */ 

read_m (control, pass_ var); 
/* Assemble the block. *I 

/*-----------------------------------------------------------------------* 
* Control is larger than 5, so do the following: 
* For number of control lines between 6 and IO the block 

*will be broken into two sub-block. For control lines 
* between 11 and 15 the block will be broken into three 
* sub-blocks. The output of previous sub-gate will go to 
* the input of the next stage. 
*-----------------------------------------------------------------------*/ 

else 
{ 

switch( control) 
{ 

/* 
Since control = 6, this control has 
been broken up into control = 3, 3. 
*I 
case 6: 

/* 

read_n (control); 
/*Read number of pass-variable and check.*/ 

read_m (3, pass_ var); 
/* Assemble the first sub-block with three 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m (3, pass_ var); 

break; 

/* Assemble the first sub-block with three 
control lines and given pass-variable. */ 

Since control = 7, this control has 
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been broken up into control= 4 and 3. 
*I 
case 7: 

I* 

read_n (control); 
/* Read number of pass-variable and check. */ 

read_m (4, pass_ var); 
/* Assemble the first sub-block with four 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m (3, pass_ var); 

/* Assemble the first sub-block with three 
control lines and given pass-variable. */ 

break; 

Since control = 8, this control has 
been broken up into control = 4 and 4. 
*I 
case 8: 

I* 

read_n (control); 
/*Read number of pass-variable and check.*/ 

read_m (4, pass_var); 
/* Assemble the first sub-block with four 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m ( 4, pass_ var); 

break; 

/* Assemble the first sub-block with four 
control lines and given pass-variable. */ 

Since control= 9, this control has 
been broken up into control = 5 and 4. 
*I 
case 9: 

I* 

read_n (control); 
/* Read number of pass-variable and check. *I 

read_m (5, pass_ var); 
I* Assemble the first sub-block with five 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m ( 4, pass_ var); 

break; 

/*Assemble the first sub-block with four 
control lines and given pass-variable. */ 

Since control = 10, this control has 
been broken up into control = 5 and 5. 
*I 
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case 10: 

/* 

read_n (control); 
/* Read number of pass-variable and check. */ 

read_m (5, pass_ var); 
/* Assemble the first sub-block with five 

control lines and given pass-variable. *I 
printf ("0); 
read_n (control); 

/*Read number of pass-variable and check.*/ 
read_m (5, pass_ var); 

break; 

/* Assemble the first sub-block with five 
control lines and given pass-variable. */ 

Since control = 11, this control has 
been broken up into control= 5, 3 and 3. 
*I 
case 11: 

I* 

read_n (control); 
/*Read number of pass-variable and check.*/ 

read_m (5, pass_ var); 
/* Assemble the first sub-block with five 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. *I 
read_m (3, pass_ var); 

/* Assemble the first sub-block with three 
control lines and given pass-variable. */ 

printf ("0); 
read_n (control); 

/*Read number of pass-variable and check.*/ 
read_m (3, pass_ var); 

break; 

I* Assemble the first sub-block with three 
control lines and given pass-variable. */ 

Since control = 12, this control has 
been broken up into control = 4, 4 and 4. 
*I 
case 12: 

read_n (control); 
/* Read number of pass-variable and check. */ 

read_m ( 4, pass_ var); 
/* Assemble the first sub-block with four 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

I* Read number of pass-variable and check. */ 
read_m (4, pass_ var); 

I* Assemble the first sub-block with four 
control lines and given pass-variable. */ 

printf ("0); 
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/* 

read_n (control); 
/*Read number of pass-variable and check.*/ 

read_m ( 4, pass_ var); 

break; 

/*Assemble the first sub-block with four 
control lines and given pass-variable. */ 

Since control= 13, this control has 
been broken up into control = 5, 4 and 4. 
*I 
case 13: 

I* 

read_n (control); 
/* Read number of pass-variable and check. */ 

read_m (5, pass_ var); 
/* Assemble the first sub-block with five 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/*Read number of pass-variable and check.*/ 
read_m ( 4, pass_ var); 

/* Assemble the first sub-block with four 
control lines and given pass-variable. */ 

printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m ( 4, pass_ var); 

break; 

/*Assemble the first sub-block with four 
control lines and given pass-variable. */ 

Since control= 14, this control has 
been broken up into control = 5, 5 and 4. 
*I 
case 14: 

I* 

read_n (control); 
/*Read number of pass-variable and check.*/ 

read_m (5, pass_ var); 
/*Assemble the first sub-block with five 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m (5, pass_ var); 

/* Assemble the first sub-block with five 
control lines and given pass-variable. */ 

printf ("0); 
read_n (control); 

/* Read number of pass-variable and check. */ 
read_m (4, pass_ var); 

break; 

/* Assemble the first sub-block with four 
control lines and given pass-variable. */ 
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} 
} 

ps ("BFG",bfg); 

cflstop (); 
} 

Since control= 15, this control has 
been broken up into control = 5, 5 and 5. 
*I 
case 15: 

read_n (control); 
/*Read number of pass-variable and check.*/ 

read_m (5, pass_ var); 
/* Assemble the first sub-block with five 

control lines and given pass-variable. */ 
printf ("0); 
read_n (control); 

/*Read number of pass-variable and check.*/ 
read_m (5, pass_ var); 

/* Assemble the first sub-block with five 
control lines and given pass-variable. */ 

printf ("0); 
read_n (control); 

/*Read number of pass-variable and check.*/ 
read_m (5, pass_ var); 

break; 

/*Assemble the first sub-block with five 
control lines and given pass-variable. */ 
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/*======================================================*/ 
read_m (control, pass_ var) 
int control, pass_ var; 
{ 

char c, input; 
int j, const; 

/*---------------------------------------------------------------------* 
*Read product term of all rows (the product term of a row 

* will be connected serially) and pass_ variable terms, and 
* assemble the block: 

*---------------------------------------------------------------------*/ 

boot_ckt (control); 
/*Get the assembleed controls of the block. */ 

for (i = 0; i < pass_ var, ++i) 
{ 

} 

const = fscanf (fp, "%s%s", con, pvar); 
/*Read product and pass_ variable from the 'input' file.*/ 

if (const != 2) 

{ 

else 
{ 

} 

/* Checking for product and pass_ variable term. *I 

printf ("Missing product or pass_ variable 0); 

strcpy (prod[i], con); 
/*Copy control into an array. */ 

strcpy (labl[i], pvar); 
/*Copy pass-variable into an array. */ 

out_array (control, prod[i]); 
/* Get the assembled rows of product. *I 

if (i==O) 
{ 

rows= row; 

} 
/*Assign the assembleed row into symbol rows.*/ 

else 
{ 

rows = rr (rows, row); 
/* Assemble rows of product terms. */ 



} 

boots = rrdx (rows, boots, 60); 
/* Assemble controls and Product terms. */ 

rout (pass_ var); 
/*Get the assembleed routs.*/ 

btlrrr = bbdxy (boots, rrouts, -60, 2); 
/*Assemble controls, left rout and right routs. */ 

precharge(pass_ var); 
/* Get the assembled precharge. *I 

if (bf g == NULL) 

else 

} 

/* If the symbol bf g (Boolean-function generator) is 
NULL assemble the first block.*/ 

btlrrrpc = bbdx (passes, btlrrr, -75); 
bfg = bbdx (btlrrrpc, pcharges, -25); 

/*Otherwise assemble the second or the third block. */ 

btlrrrpc2 = bbdx (passes2, btlrrr, -75); 
bfg = bbdx (bfg, bbdx (btlrrrpc2, pcharges, -25), -25); 
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/*======================================================*/ 
out_array (control_no, prod) 
int control_no; 
char *prod; 
{ 

} 

inti; 

/*---------------------------------------------------------------------* 
* Maximum number for control line for one block is 4, so 

* check and built one row of product terms of the block: 
*---------------------------------------------------------------------*/ 

row = contclk; 
/*Initialize the symbol contclk into the symbol row.*/ 

for (i = O; i <= control_no; i++) 

{ 

} 
p~ntf ("0); 
pnntf ("0); 

if (prod [i] == '-') 
{ 

printf (" - "); 
row= bb (row, dcare); 
} 
else if (prod [i] == '1 ') 
{ 

printf (" 1 "); 
row= bb (row, cont); 
} 
else if (prod [i] == '0') 
{ 

printf (" 0 "); 
row= bb (row, mx (cont)); 
} 

/*======================================================*/ 



/*================---------~ead_n (control) ---------=============================*/ 

mt control· 
{ ' 

} 

int user_input = I; 

/*--------------------------------------------------------------------* 
* Read number of pass_ variable from the input file 'input' 
*and check. 
*--------------------------------------------------------------------*/ 

while( user_input) 
{ 

fscanf (fp, "%s%d", chc, &pass_ var); 
/*Read number of pass_ variable.*/ 

if (strcmp (chc, ".p") != 0) 
/*Check for '.p' card. */ 

printf (" '.p' is missing. 0); 
} 
else if (pass_ var<= power (2, control)) 

} 
else 
{ 

} 

/*check number of pass_ variable.*/ 

user_input = O; 
/* valid number of pass_ variable found. *I 

printf ("Invalid number of pass_ variableO); 
printf ("Please enter another value:O); 
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!*======================================================*/ 
boot_ckt (control) 
int control; 
{ 

} 

inti; 
extern int off set; 

/*-----------------------------------------------------------------------* 
* Assemble controls of the product term (bootstrap circuit) 
* and routs, and label controls. 
*-----------------------------------------------------------------------*/ 

boots = boot; 
/* Assign a control symbol boot into symbol boots. *I 

for (i= 1; i < control; ++i) 
{ 

boots = bb (boots, boot); 
!* Assemble control lines of the product terms. *I 

/*----------------------------------------------------* 
* Labeling all the control lines. 
*----------------------------------------------------*/ 

if (bf g == NULL) 
{ 

} 

for (i=O; i < control; ++i) 
{ 

} 

sprintf (labelstring, "c. %d", i); 
boots= cp (mlabel (labelstring, 0, 0, "c", "polysilicon"), 

pt (boots, "top", "polysilicon", i+ 1)); 
/* Label the first control line. *I 

else /*Label all the rest of control lines. */ 
{ 

} 

for (i=O; i < control; ++i) 
{ 

sprintf (labelstring, "c. %d", i +offset); 
boots= cp (mlabel (labelstring, 0, 0, "c", "polysilicon"), 

pt (boots, "top", "polysilicon", i+l)); 

off set = off set + control; 
/*Set the counter. */ 

boots = bb (lrout, boots); 
!*Assemble controls and top left routs. */ 

boots = bb (boots, mop); 
!*Assemble controls and right top routs. */ 

!*======================================================*/ 
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!*======================================================*/ 
precharge (pass_ var) 

int pass_ var; 
{ 

pcharges = prechg; 
/*Assign the symbol prechge (the precharge device 

of the fabric) into symbol pcharge. */ 

/*--------------------------------~-----------------------------------* 
* Assemble precharge and product term of all rows 
* of pass transistors, and routs between the sub-block 
*--------------------------------------------------------------------*/ 

for (i=l; i<pass_var, ++i) 
{ 

pcharges = 11 (pcharges, prechg); 
/* Assemble precharge device of the fabric. *I 

if (bfg ==NULL) 

{ 

/* For the first block assemble the input buff er 
and label them.*/ 

for (i=l; i <=pass_ var, ++i) 
/*Assemble the first input buffer. */ 

if (i==l) 

{ 

} 
else 

{ 

/* Get the first input buffer in case the 
input is 0, 1 or x; mirror the input 
buffer in y-coordinate in case of input xn. */ 

if ((strcmp (labl[(i-1)], "0") == 0) 

} 

II (strcmp (labl[(i-1)], "1 ") == 0) 
II (strcmp (labl[(i-1)], "x") = 0)) 

passes = pass; 

else if ((strcmp (labl[(i-1)], "xn") == 0)) 
{ 

passes= my (pass); 
} 

/*Assemble all of the input buffer. */ 
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} 

else 

{ 

} 

if ((strcmp (labl[(i-1)], "0") == 0) 

{ 

II (strcmp (labl[(i-1)], "1") == 0) 
II (strcmp (labl[(i-1)], "x") == 0)) 

passes= rr (pass, passes); 
/* Assemble all the input buffers of 

block for input 0, 1 and x. *I 

else if ((strcmp (labl[(i-1)], "xn") == 0)) 
{ 

passes= rr (my (pass), passes); 
/* Assemble all the input buffers of 

block for input xn (which for 
the case of xn the input buffer will 
be mirrored imaged in y-coordinate). */ 

for (i= 1; i <= pass_ var, ++i) 

{ 

} 

/*Label input of the input buffer. */ 

if ((strcmp (labl[(i-1)], "0") == 0) 

{ 

} 

II (strcmp (labl[(i-1)], "1 ") == 0) 
II (strcmp (labl[(i-1)], "x") == 0)) 

passes= cp (mlabel (labl[(i-1)], 0, 0, "c", 
"metall "), 
pt(passes, "left", "metall ", i)); 

/* Label the input buffer on the input 
node, metal 1, with 0, 1 or x 
depending on the input. */ 

else if ((strcmp (labl[(i-1)], "xn") == 0)) 
{ 

} 

passes= cp (mlabel (labl[(i-1)], 0, 0, "c", 
"metall"), 
pt(passes, "left", "metal 1 ", i) ); 

/* Label the input buffer on the input 
node, metall, with xn. */ 

I* Assemble the second input buffer of the second block.*/ 
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} 

} 

for (i=O; i<pass_var; ++i) 
{ 

} 

if (strcmp (labl[i], "f') == 0) 
{ 

p2 = bb (rf, pass2); 

} 

/* Assemble output of first block with 
the input buffer of the second block. *I 

else if (strcmp (labl[i], "fn") = 0) 
{ 

p2 = bb (rfn, pass2); 

} 
if (i == 0) 
{ 

/* Assemble output of first block with 
the input buffer of second of block. */ 

passes2 = p2; 

} 
if (i >= 1) 
{ 

/* Assign the input buffer of second block, 
symbol p2, into symbol passes 2. */ 

passes2 = rr (passes2, p2); 
/* Assemble the second or third 

input buffer of block. *I 
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/*======================-------rout (pass_ var) -------=========================*/ 

int pass_ var; 
{ 

} 

/*-----------------------------------------------------------* 
* This routine assembles the routing on the right 
* side of the block. 
*-----------------------------------------------------------*/ 

inti; 

rrouts = rroutbot; 
/*Initialize the right-bottom-rout cell (rroutbot) to rrouts. */ 

for (i=2; i<pass_ var; ++i) 
/* Assemble the right routs of the block. *I 

rrouts = 11 (rrouts, rrout); 
} 

rrouts = 11 (rrouts, rrouttop ); 

/*======================================================*/ 
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/*==============----------power (base, x) ---------=============================*/ 

int base, x; 
{ 

} 

/*-----------------------------------------------------------* 
*This routin calculates base to power of a variable. 
*-----------------------------------------------------------*/ 

inti, j = 1; 

for ( i = 1; i <= x; i++) 
{ 

j *=base; 
} 
retum(j); 

/*=====================================================*/ 
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