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Abstract 

In response to increased greenhouse gases and global temperatures, changes to the 

hydrologic cycle are projected to occur and new precipitation characteristics are expected 

to emerge. The study of these characteristics is facilitated by common indices to measure 

precipitation and temperature developed by the Expert Team on Climate Change 

Detection and Indices (ETCCDI). These indices can be used to describe the likely 

consequences of climate change such as increased daily precipitation intensity (SDII) and 

heavier rainfall events (R95p).  This study calculates a subset of these indices from 

observed and modelled precipitation data in Portland, Oregon. Five rainfall gages from a 

high resolution rain gage network and projections from three downscaled global climate 

models including CanESM2, CESM1, CNRM-CM5 are used to calculate precipitation 

indices. Mann-Kendall’s tau is used to detect monotonic trends in indices. The 

observational record is compared with models for the historic period (1977-2005) and 

these past trends are compared with projected future trends (2006-2100). The influence of 

study unit on trend detection is analyzed by computing trends at the annual and monthly 

scale. Study unit is show to be important for trend detection. When the annual study unit 

is used, projected future trends towards increased precipitation intensity and event 

volumes are not observed in the historic data. However, when analyzed with a monthly 

study unit, trends towards increased precipitation intensity and event volumes are 

observed in the historic data. These trends are shown to be important for Portland area 

flooding, as precipitation indices are shown to significantly correlate with 40 maximum 

peak flow events that occurred during the period of study.  
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Chapter 1. Introduction 

1.1 Precipitation and climate change 

As a consequence of rising levels of greenhouse gases, changes to the global 

hydrologic cycle are anticipated to occur. Change to patterns of precipitation are 

confidently expected in part because a warmer atmosphere can hold additional water 

vapor, as described by the Clausius-Clapeyron model of gas behavior under conditions of 

temperature increase (Huntington, 2006). The effects of temperature rise on precipitation 

will vary but include the possibilities for altered routes of water vapor transport in 

atmospheric circulation, and different seasonal precipitation patterns (Held and Soden, 

2006; Wentz et al., 2007; Trenberth, 2011). Although the physical basis for precipitation 

change is well-established, the delivery of a consistent, statistically confident message 

about global precipitation trends is hampered by spatial and temporal variability of trends 

(IPCC, 2013).  

As mentioned above, global shifts in precipitation regime are expected to already 

be occurring because global temperature rise is certain (IPCC, 2013). An increase in 

atmospheric water vapor has been observed globally, and some models suggest changes 

in tropical and sub-tropical rainfall cannot be explained without a global greenhouse gas 

signal (Hense et al., 1988; Zhang et al., 2007). Many other precipitation trends have been 

detected around the world, but with varying periods of study and measurement 

techniques, these studies could be anecdotal or site-specific rather than connected by the 
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underlying warming trend (Groisman et al. 1999; Osborn et al., 2000; Groisman et al., 

2005; Krishnamurthy et al.,  2009; Soulis et al., 2016). 

It is important to consider regional changes in precipitation in order to identify 

emerging change to the hydrologic cycle. Although mean precipitation increased in mid-

latitude land areas since 1951, trends at other latitudes are less confident (IPCC, 2013). 

From 1950-2008 regions in the Middle East and Northern Africa experienced increased 

aridity (Dai, 2011). This is evidence of the need for regional studies and the inadequacy 

of using a single metric for the entire globe. Recalling Köppen-Geiger’s climate 

classification of 30 distinct temperature and precipitation regimes, an understanding of 

different changes in different places is necessary (Peel et al., 2007). Analysis of change in 

areas of different latitudes provides some insight into how different climates may 

experience new precipitation signals (IPCC, 2013). Studies that go further to consider 

how the five Köppen climate types (arid, tropical, temperate, continental, cold) may 

shrink and expand also enhances regional projections (Rubel and Kottek, 2010). 

Recalling that new precipitation regimes may have severe consequences for society and 

environment through pathways of increased flood or drought, the importance of 

understanding regional response to changing precipitation regimes is high (McMichael et 

al., 2006).  

Regional studies conducted with methodology that is standardized and replicable 

can contribute to the synthesis of global results. In recognition that many studies of 

precipitation existed but did not lend themselves to comparison because of unique 

methodologies, the development of common metrics for measuring change to 
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precipitation was needed (Moberg et al., 2006). Recognition of this fact led to the 

creation of a number of common indices by different scientific communities such as 

those created on behalf of the World Meteorological Organization (WMO) by the Expert 

Team on Climate Change Detection and Indices (ETCCDI) group as well as those created 

by the European and North Atlantic daily to multi-decadal climate variability 

(EMULATE) groups (Zhang et al., 2011). The formulas for creating these indices are 

published online and tools to automate their calculation such as RClimDex are available.  

This study will use standardized ETCCDI indices to investigate precipitation 

trends in Portland, OR for the past and future. An observational record from 1977 - 2016 

is used, along with past and future projections from global climate models CanESM2, 

CESM1-CAM5, and CNRM-CM5 that were statistically downscaled by Pierce et al. to 

represent the Portland, OR climate (2014). In addition, the role of temporal scale and 

period of study in the ETCCDI methodology are explored. This study aims to address 

how selection of temporal parameters can enhance our understanding of regional climate 

trends.  

This study also explores the adequacy of ETCCDI to reflect surface hydrology. 

Precipitation regime change poses increased risks of natural hazards. This study will 

evaluate how well ETCCDI precipitation indices characteristics can reflect maximum 

streamflow discharge events. ETCCDI indices are built for the use of daily data, and the 

use of such low resolution data may be inadequate to reflect discharge (Hershfield, 1963). 

Other studies have examined how precipitation indices can correlate to discharge, and 
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this study will expand this work by using standard ETCCDI indices rather than custom 

measurements (Pielke and Downton, 2000).  

1.2 Research Questions 

The first purpose of this work is to use standard indices of precipitation to 

facilitate comparison between Portland’s past and future climate. Key precipitation 

indices are calculated for the Portland climate, and compared with historic (1977-2005) 

and future (2006-2100) projections from three regionally downscaled global climate 

models. The specific ETCCDI indicators that Giorgi et al. (2014) hypothesized would 

change in response to climate change will be compared for the different datasets. This 

technique will provide insight into whether the expected climate change signals are 

observed in Portland.     

A second question investigates the role of temporal unit of study and data 

resolution in precipitation and temperature trend detection. Select ETCCDI indices are 

calculated for the Portland 1977-2016 observational record at the monthly and annual 

scale to determine whether a finer unit of analysis can improve trend detection. Further, 

although ETCCDI methodology uses daily data, select indices are also calculated at the 

hourly scale to determine whether higher resolution data can improve trend detection.  

Finally, the role of ETCCDI indices for applied hydrologic applications is 

explored by examining how well precipitation indices compare with peak streamflow 

discharge events in a flood-prone creek.  
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This research will address the following research questions: 

1. Do ETCCDI climate measurements for precipitation in Portland, OR, fit

future or historic climate model projections?

2. How does changing the study unit from annual to monthly and the data

resolution from daily to hourly influence trend detection?

3. How well do ETDCCI indices correlate with maximum flow events at

Johnson Creek?
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Chapter 2. Literature Review 

2.1 Synthesizing Global Precipitation Trends 

The ETCCDI indices provide standard methods for evaluating change to climate 

extremes around the world (Zhang et al., 2011). A number of workshops to train 

scientists in the use of ETCCDI indices and calculate them for different national datasets 

took place between 1998 and 2004. The Asia-Pacific Network for Global Change 

Research (APN) sponsored a number of workshops in the eastern hemisphere, while the 

US State Department sponsored several in both eastern and western hemispheres 

(Peterson and Manton, 2008). Analysis of national datasets that occurred during these 

workshops was used in the preparation of the Third and Fourth Annual IPCC Reports. 

Reviewing studies that use the ETCCDI discovered their widespread use in Asia and 

Africa, perhaps a result of the APN sponsorship (Table 1).   

The study of extremes is facilitated by the ETCCDI indices that employ 

techniques to examine events occurring at the minimum and maximum of temperature 

and precipitation ranges. Many of the ETCCDI indices were designed specifically to 

study extremes. The indices accomplish this by calculating the frequency that certain 

thresholds are exceeded (Peterson and Manton, 2008).  For example, the TN90p and 

TN10p indices measure how often minimum temperatures exceed or are less than the 90th 

and 10th percentile of temperatures from a thirty-year baseline period. Similar indices 

exist for maximum temperature and precipitation.  
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Reviews of regional studies employing ETCCDI indices demonstrate consistent 

temperature increase and disparate precipitation trends. Globally consistent trends in 

annual minimum temperature (TNn) is notable. However, the lack of a consistent 

monotonic precipitation trend, also identified in the IPCC report, is also apparent (IPCC, 

2013). Although trends were found in ETCCDI precipitation indices like rainfall intensity 

(SDII) and precipitation total (PRCPTOT), trends are not consistently positive or 

negative. There is a distinct lack of clarity on the mechanisms creating spatially 

incoherent trends. Increases to intensity and maximum single day rainfall (SDII, Rx1day) 

are present in many studies, but these trends are rarely consistent across the entire study 

area (Rahimzadeh et al., 2009; Dumitresu et al., 2015).  

Cont-

inent 

Region Köp-

pen 

Clim-

ate 

Years Scale Author Summary 

Asia India Variet

y of 

A, B, 

C, D 

climat

es 

1901-

2004 

Annual Panda et al., 

2016 

Increase: SDII, R95p, 

R99pTOT.  

Decrease: CWD (monsoon 

region). No temperature 

indices used. 

Asia Indonesia Af, 

Am, 

Aw 

1983-

2012 

Season-

al 

Tangang et 

al., 2017 

Increase: TX90p, TN90p, 

SDII (winter/spring), Rx1day 

(winter/spring).  

Decrease summer: SDII 

(summer, southern regions), 

Rx1day (summer, southern 

regions). 

Asia Iran Csa, 

Bsk, 

Bwk, 

Dsa, 

Dsb 

1951-

2003 

Annual Rahimzadeh 

et al., 2009 

Increase: TX90p, TN90p, 

SDII (north region).  

Decrease: PRCPTOT (two-

thirds of country) 
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Cont-

inent 

Region Köp-

pen 

Clim-

ate 

Years Scale Author Summary 

Eur-

ope 

Romania Dfc 

Dfb 

Dfa 

Cfa 

Et 

1961-

2013 

Season-

al 

Dumitrescu 

et al., 2015 

Increase: SU, WSDI, R10mm 

(various sub-regions), R20mm 

(various sub-regions), SDII 

(various sub-regions).  

Decrease: FD, SDII (various 

sub-regions).  

Eur-

ope 

Catalonia, 

Spain 

Cfb 

Csa 

Cfa 

1951-

2003 

Annual/

Season-

al 

Turco and 

Llasat, 2011 

Increase: CDD, PCPTOT 

(summer), RX5day (summer). 

No temperature indices used. 

Afr-

ica 

South 

Africa 

Bwh 

Bwk 

Bsh 

Csa 

Csb 

Cwa 

Cwb 

Cfa 

Cfb 

Cfc 

1962-

2009 

Annual Kruger and 

Sekele, 2013 

Increase: TX90, TXx, TN90p. 

No precipitation indices used. 

Afr-

ica 

Morocco Bwh 

Bsh 

Bwk 

BSk 

Csa 

1970-

2012 

Annual/

Season-

al 

Filahi et al., 

2016 

Increase: TX90p, TN90p, 

SDII (coastal regions).  

Decrease: PRCPTOT.   

Aust-

ralia 

Australia A B C 

D 

1930-

2011 

Month-

ly 

King et al., 

2014 

Increase: Rx5day (single sub-

region). Only Rx5day tested, 

no other indices used.  

South 

Ame-

rica 

Paraná 

River 

Basin, 

Brazil 

Aw 

Cfa 

1986-

2011 

Annual Zandonadi 

et al., 2016 

Increase: R95p, SDII, 

R20mm, R10mm, PRCPTOT. 

No temperature indices used. 

South 

Ame-

rica 

South 

America 

A B C 

D 

1950-

2010 

Annual de los 

Milagros 

Skansi et al., 

2013 

Increase: TNn, TN90p, 

Rx1day, Rx5day, R95p, 

PRCPTOT, SDII. 

(Precipitation trends are 

concentrated in Amazonia and 

southeast regions.) 

North 

Ame-

rica 

Northeast 

US States 

Dfb 

Dfa 

1951-

2010 

Annual Thibeault 

and Seth, 

2014 

Increase: R95p, Rx1day, 

Rx5day, CWD.  

Decrease: TN10p.  

North 

Ame-

rica 

Tlaxcala, 

Mexico 

Cwb 1952-

2003 

Season-

al 

Diaz et al., 

2012 

Increase: FD, SU.  

Decrease: TX10p. No 

precipitation indices used. 

Table 1. Review of global literature using ETCCDI indices. Index acronym definitions in Appendix. 

Köppen climate descriptions from maps produced by Peel et al., 2007.  
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Considering the fact that most studies cover large geographic areas with multiple 

climate types, disparate regional results are not surprising, but methods to address this 

issue are not often used by researchers. Few studies include methods such as field 

significance that could delineate areas of spatially cohesive trends. Spatial cluster 

analysis was employed successfully in a study of temperature indices of South Africa, but 

similar analysis was not noted for any precipitation indices (Kruger and Sekele, 2013). In 

some studies that cover large regions such as South America and India, division of the 

region into climatic sub-regions provides a technique for discussing changes to unique 

precipitation regimes (de los Milagros, 2013; Panda et al., 2016). Many authors offer 

qualitative interpretations that spatially incoherent trends may relate to coastal or 

continental weather dynamics. For example, increasing intensity is observed in coastal 

Morocco and Iran but not central regions (Rahimzadeh, et al., 2009; Filahi et al., 2016). 

In this review, increased intensity and extremity of precipitation seemed to be 

concentrated in coastal and tropical climates. However, without consistent spatial 

analysis of precipitation index results, these observations may not be well supported.    

Even without considering non-stationarity of precipitation regimes, finding ways 

to represent spatial variation of rainfall trends is a scientific challenge. Characterizing the 

intensity of rainfall in different regions with a consistent methodology is a long standing 

geographic problem (Martin-Vide, 2004; Oliver, 1980; Horn and Bryson, 1960).  Recent 

studies have visualized precipitation decline and drought duration (Vicente-Serrano et al., 

2015). Interpolation of rain fields from rain gages remains an active field of research 

(Wang et al., 2014; Xu et al., 2015).  Contributing to the diversity of approaches used to 
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represent the spatial variation of rainfall may be that storm events provide a wealth of 

characteristics for study. Climatological studies tend to focus on rainfall volume, 

intensity and extreme event probability, but many other storm properties exist (Jiang et 

al., 2016). For example, individual storm characteristics such as skewness and kurtosis of 

storm rainfall can be used to identify different regional convective processes (Brommer et 

al., 2013).  Given that precipitation is an abstract phenomenon that can be examined 

through different approaches, it is not surprising that global research on precipitation is 

difficult to synthesize spatially (Karl and Knight, 1998; Frich et al., 2002; Zhang et al., 

2011) .  

Temporal scale is another important feature in the study of precipitation, and 

current ETCCDI methodology does not dictate multiple scales of analysis. The 

RClimDex software widely employed by researchers to calculate ETCCDI indices 

assumes the period of study is annual in most cases, although monthly calculations are 

available for some indices (Zhang and Yang, 2004). Many researchers have opted to 

conduct research on an annual or seasonal basis, and a few have used monthly (Table 1). 

Further, ETCCDI indices are based on the use of daily precipitation and temperature data. 

Considering that modern precipitation research can now look at real-time rain rates 

through innovations in remote sensing and computation, the use of the daily scale may be 

limiting (Munoz et al., 2015; Sanò et al., 2015).  Further, the use of daily records 

obscures the fact that precipitation is a phenomenon occurring at a sub-daily scale 

(Trenberth, 1998). One reason for the use of daily data is that the ETCCDI indices are 

designed to emphasize global collaboration, and high resolution records are not available 
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in many regions (Peterson and Manton, 2008). Further, ETCCDI indices are not only 

used for historic analysis but also for future projections made by global climate models. 

Making projections at the daily scale is a vast improvement upon earlier climate models 

that were limited to changes occurring at the decadal scale (Houghton et al., 1990). 

Although the resolution of climate models steadily increases, the ability of these models 

to deliver precipitation projections that resemble realistic precipitation at the hourly scale 

remain novel (Xu et al., 2005; Seneviratne et al. 2006; Prein et al., 2016). However, the 

reliance on daily data provides a potential obstacle to detection of trends (Cooley and 

Chang, 2017). It is possible that the use annual time scales and daily data may contribute 

to the incoherent precipitation trends observed.   

2.2 Pacific Northwest Climate 

The atmospheric dynamics that lead to precipitation in the Pacific Northwest are 

expected to be altered by climate change (Chou et al., 2012). The results of this include 

an intensification of convergence zones like the North Pacific storm track that transport 

water vapor to the Pacific Northwest (Houghton et al., 1990; Salathé, 2006). Atmospheric 

rivers that are responsible for many of the flood events in the region are also anticipated 

to increase (Dettinger, 2011). Regional climate models indicate increased magnitude of 

single day rainfall events in the 21st century (Salathé et al., 2014). Elevation increase of 

snow lines may contribute to increased precipitation if a greater portion of moisture falls 

as rain rather than snow (Tohver et al., 2014). Annual precipitation has increased in the 

region over the twentieth century although whether this is attributable to climate change 

is debatable (Mote, 2003a; Dore, 2005). The seasonal distribution of the increased 
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precipitation from climate change is expected to occur in winter, but most observed 

significant increasing trends are in spring (Abatzoglou et al., 2014).  

Climate models indicate different modes of precipitation change for northern and 

southern areas of North America, and since the Pacific Northwest lies between these 

areas the nature of changes is uncertain. Global climate models predict annual mean 

precipitation changes of -10% to 20% by the 2080s in the Pacific Northwest (Mote, 

2003a; Salathé, 2006; Mote and Salathé, 2010). The seasonal distribution of precipitation 

is likely to skew towards winter months with summers becoming drier. Rates of regional 

annual mean temperature warming are anticipated at .1˚C to .6˚C per decade in the future. 

Changes in atmospheric temperature drive how much water vapor can be held in the air 

without precipitation. As atmospheric temperatures rise, the amount of water vapor that 

can be held without precipitation increases at a rate of 7% per degree Celsius 

(Huntington, 2006). For this reason, summers are likely to become drier. Increased water 

vapor transport in winter, may cause more intense rain events (Berg et al., 2009). 

Temperature variation and its associated effect on evaporation and moisture transport will 

play a large role in future Northwest climate.  

Although a number of studies have been performed regarding long-term climate 

change in the Northwest, hydrologic studies of observational records have tended to 

focus on streamflow, snowpack, and modes of climate variability. Declining trends in 

snowpack and changes to streamflow timing associated with higher temperatures have 

been observed (Lundquist and Cayan, 2002; Mote, 2003b; Luce and Holden, 2009). Early 

spring streamflow has increased while late fall streamflow has declined with changes in 
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the timing of snowmelt and increased evapotranspiration in summer (Chang et al., 2012). 

El Nino and the Pacific Decadal Oscillation have been shown to have an important 

influence over temperature but only moderate influences on precipitation (Redmond and 

Koch, 1991; Praskievicz and Chang, 2009).  

A number of recent studies of precipitation have been conducted in British 

Columbia. Predictions of increased winter rainfall and decreased summer rainfall have 

not yet been born out in studies of observational records (Burn and Taleghani, 2013). 

Instead, increased frequency of heavy precipitation events in summer have been observed 

while winter has mixed signals. Some indication of increased intensity in spring has also 

been observed (Jakob et al., 2003). The nature and direction of trends is different across 

sub-regions, suggesting that different convective processes are creating diverse 

precipitation response. Looking at the spatial extent of extreme precipitation in the 

Pacific Northwest, heterogeneous topography was found to be a key limiting factor on the 

spatial extent of extreme rainfall (Parker and Abatzoglou, 2016). For this reason, closely 

related areas with different topography may have different responses to climate change, 

suggesting the need for a spatially explicit analysis.   
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Chapter 3. Methods 

3.1 Study Area 

The City of Portland is selected as the area of study because of an interest in 

exploring changes to rainfall in temperate convergence zones, and the availability of a 

high resolution rainfall gage network in the city. The city is located 129 km east of the 

Pacific Ocean in the lower Pacific Northwest, near the 45th parallel in the Northern 

Hemisphere (Figure 1). The Köppen-Geiger climate map describes it as a “Csb” climate; 

temperate with warm, dry summers (Peel et al., 2007). Moisture is transported to the area 

through the North Pacific storm track (Dart and Johnson, 1981). Regional precipitation 

distribution is highly variable and driven by complex topography and orographic lift 

(Salathé, 2003).  Portland is located in a low lying area between the Coastal and Cascade 

mountain ranges and therefore receives relatively lower precipitation, around 930 mm of 

rain annually (based on years 1981-2010) (Chang et al, 2007). 

Figure 1. Pacific Northwest regional map. Study area designated with star. 
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3.2 Data 

The data types and sources used are provided in Table 2. We used 5-minute 

precipitation records from five rain gage stations in the City of Portland Hydrological 

Data Retrieval and Alarm (HYDRA) network with data from 1977-2016. Records begin 

January 1, 1977 and end December 31, 2016. Data coverage is 95% complete. Figure 2 

describes the location of these five rain gages. Data were transformed from inches to mm. 

Using Pandas package from Rv3.1.1 the data are summarized at the daily and hourly 

scale (0:00 – 23:59) PST resolution (R Core Team, 2014).  Inspection of data quality was 

performed visually by graphing time series data and looking for outliers.  

Data Type Detail Source Status Dates 

Rainfall Hourly & 

Daily 

City of Portland Observed 1977-2016 

Surface 

Temperature 

Daily Min & 

Max 

NOAA Observed 1977-2016 

Atmosphere 

Temperature 

(700mB) 

Daily NOAA Observed 1977-2016 

Stream 

Discharge 

Daily USGS Observed 1977-2016 

Rainfall Daily CMIP5 

models:CanESM2, 

CESM1-CAM5, 

CNRM-CM5 

Models 1977-2005; 

2006-2100 

Table 2. Data types and sources 
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Figure 2. Study area detail map 

From the CMIP5 multi-model ensemble three global climate models were selected 

including CanESM2, CESM1-CAM5, CNRM-CM5 (Taylor et al., 2012). Table 3 shows 

the models and institutions responsible for model development.  Models selection was 

based on superior performance projecting accurate spatial and historic precipitation 

conditions in the Pacific Northwest during the 20th century (Rupp et al., 2013). For each 

model, downscaled precipitation projections were obtained from the CMIP5 Climate and 

Hydrology Projections using the LOCA (Localized Constructed Analogs) archive at 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections (Pierce et al., 2014). LOCA 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections
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downscaling improves global climate model 1˚ x 1˚ horizontal latitude-longitude grid 

resolution to 1/16˚ x 1/16˚ horizontal latitude-longitude grid resolution (Pierce et al., 

2014). A single Portland, OR grid point at 45.523 N, -122.677 W was selected and 

historic projections for 1977-2005 and future projections for 2006-2100 were obtained. 

The Representative Concentration Pathway (RCP) 8.5 high emissions scenario is selected 

because it represents the upper bounds of greenhouse gas concentration and emission. 

This scenario represents a future with a global population of 12 billion in 2100, where 

minimal gains in the deployment of energy efficiencies occur (Riahi et al., 2011).  

Model Name Institute ID Modeling Center 

CanESM2 CCCMA Canadian Centre for Climate Modelling and 

Analysis 

CESM1-CAM5 NSF-DOE-NCAR Community Earth System Model Contributors 

CNRM-CM5 CNRM-CERFACS Centre National de Recherches 

Météorologiques / Centre Européen de 

Recherche et Formation Avancée en Calcul 

Scientifique 

Table 3. Global climate models used and creator 

Daily streamflow data from USGS for Johnson Creek Sycamore Station #14211500 

from 1977-2016 was used (http://waterdata.usgs.gov/nwis/sw). The station was chosen 

because it has a long-term discharge record, and high flows are indicative of creek flood 

events (Chang et al., 2010; Ahilan et al., 2016). Although this station is not located within 

the City of Portland, precipitation from the HYDRA network were used to approximate 

rainfall that contributes to discharge at Sycamore station. 

Temperature records were acquired from National Climatic Data Center (NCDC) 

Station 356751 located at Portland International Airport (PDX). Daily maximum and 

minimum surface temperature are acquired for 1977-2016.  Data is 100% complete.    

http://waterdata.usgs.gov/nwis/sw
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Atmospheric soundings from National Ocean and Atmospheric Administration 

(NOAA) for temperature at 700mb were acquired from the Salem, OR National Weather 

Service (NWS) station KLME, USM00072694. A daily record of multiple sub-daily 

soundings was acquired for 1977-2016.  In order to create a daily record from the sub-

daily soundings, records made at 12:00 PST were used (94% of population). When 

soundings were not available at 12h, soundings from earlier in the morning were used 

where possible (5%). The distribution of sounding recording time is shown in Table 4.  

Distribution of sounding recording time on 24 h clock 

Before 12:00 (<12:00) 5.69% 

12:00 93.9% 

After 12:00 (>12:00) .004% 

Missing (NA) .34% 

Table 4. Recording time of atmospheric soundings 

3.3 Methods for Question 1: Comparisons with downscaled climate models 

Select ETCCDI precipitation indices that can measure heavy and extreme rainfall 

were chosen for use in this study based on the expectation that they can measure changes 

to the hydrologic cycle in response to climate change (Giorgi et al., 2011; Giorgi et al., 

2014). These indices include the following: simple daily intensity (SDII), maximum 

consecutive dry days (CDD), maximum consecutive wet days (CWD), and total 

precipitation above the 95th percentile base period distribution (R95p). Table 5 present 

the equations for these as defined by ETCCDI.  Giorgi et al. (2014) predicted that in 

response to climate change consecutive wet days would decrease as rainfall became more 
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intense. Indices SDII, R95p, and CDD are expected to increase. Figure 3 describes the 

hypothesis about future state of these variables at the global scale. 

Indicator Definition Equation 

CDD Maximum length of dry spell, maximum number of 

consecutive days with RR < 1mm: Let RRij be the daily 

precipitation amount on day i in period j. Count the largest 

number of consecutive days where: 

𝑅𝑅𝑖𝑗 < 1𝑚𝑚  

Equation 1 

CWD Maximum length of wet spell, maximum number of 

consecutive days with RR ≥ 1mm: Let RRij be the daily 

precipitation amount on day i in period j. Count the largest 

number of consecutive days where: 

𝑅𝑅𝑖𝑗 ≥ 1𝑚𝑚 

Equation 2 

R95p Annual total PRCP when RR > 95p. Let RRwj be the daily 

precipitation amount on a wet day w (RR ≥ 1.0mm) in 

period i and let RRwn95 be the 95th percentile of precipitation 

on wet days in the 1961-1990 period. If W represents the 

number of wet days in the period, then: 

𝑅95𝑝𝑗 = ∑ 𝑅𝑅𝑤𝑗  𝑤ℎ𝑒𝑟𝑒 𝑅𝑅𝑤𝑗 > 𝑅𝑅𝑤𝑛95𝑊
𝑤=1   

Equation 3 

SDII Simple precipitation intensity index: Let RRwj be the daily 

precipitation amount on wet days, w (RR ≥ 1mm) in 

period j. If W represents number of wet days in j, then: 

𝑆𝐷𝐼𝐼𝑗 =
∑ 𝑅𝑅𝑤𝑗

𝑊
𝑤=1

𝑊

Equation 4 

Table 5. Definition of ETCCDI indices used for Research Question 1 (Karl et al., 1999; Peterson et al., 

2001) 

The indices presented in Table 5 were generated for each of the five Portland, OR 

rainfall stations spanning 1977-2005. The observed time series is shortened in this section 

to facilitate comparison with model simulation dates. The indices were generated from 

projections from the three LOCA downscaled global climate models (CanESM2, 

CESM1-CAM5, CNRM-CM5) historic (1977-2005) and future (2006-2100) periods for 

emissions scenarios RCP 8.5.  
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Figure 3. Expected change to ETCCDI indices for 2006-2100 (Giorgi et al. 2014). 

The RClimDex software created by ETCCDI was used to generate the selected 

indices (Zhang and Yang, 2004). The RClimDex software is designed to run parallel to 

the statistical software R. Input climate variables to the RClimDex software include daily 

precipitation, maximum temperature, and minimum temperature.  The software uses 

these inputs to generate a unique index value for every year of the study.  

In order to detect change to each index over time, trend detection is required and 

the Mann-Kendall rank-based correlation test was selected for this purpose. The Mann-

Kendall test generates a tau and p-value to measure if there is a significant monotonic 

increase or decrease in a variable over time (Mann, 1941). The tau value ranges between 

(-1,1), and negative values indicate decreasing trends and positive values increasing 

trends. The significance level selected for this test was 10% (.1) and 5% (.05). The null 

hypothesis where p-value >.1 indicates no significant monotonic trend exists. This test is 

SDII (Daily Intensity)
CDD (Consecutive Dry 

Days)
R95p (Volume above 

95% distribution)

CWD 
(Consecutive 

Wet Days)
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appropriate for time series data that are not normally distributed and was the preferred 

test of other researchers employing ETCCDI methods (Dumitrescu et al., 2015; Filahi et 

al., 2016). The test was performed using Rv3.1.1 package “Kendall” (Mcleod, 2005).  

In order to satisfy the assumption of the Mann-Kendall test that data be 

independent, the indices were tested for autocorrelation. Test of autocorrelation were 

completed using the partial autocorrelation function in R. Where autocorrelation was 

present, tau values were bootstrapped using the R package “boot” which includes 

bootstrapping functions for autocorrelated time series data (Davison and Hinkley, 1997; 

Canty and Ripley, 2012). This test provides a mean tau value as generated by 500 

instances of the Mann-Kendall function.  

3.4 Methods for Question 2: Comparing annual and monthly trends 

Comparing indices across different temporal scales can help understand the 

limitations or benefits of the annual scale of analysis. By investigating the monthly scale 

we have a higher resolution picture of what is happening to precipitation and temperature. 

A number of precipitation indices are examined at the annual and monthly scale. Indices 

selected are shown in Table 6, including total precipitation (PRCPTOT), simple daily and 

hourly intensity (SDII), maximum 1day event (Rx1day), maximum 5 day event 

(Rx5day), maximum temperature (TXx), and minimum temperature (TNn).  The index of 

maximum 5 day precipitation (Rx5day) is theorized to be the most useful for flood risk 

(Frich et al. 2002). 
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Indicator Definition Equation 

PRCPTOT Annual total precipitation in wet days: 

Let RRij be the daily precipitation amount on 

day i in period j. If I represents the number of 

days in j, then 

𝑃𝑅𝐶𝑃𝑇𝑂𝑇 =  ∑ 𝑅𝑅𝑖𝑗

𝐼

𝑖=1

 

Equation 5 

Rx1day Monthly maximum 1-day precipitation: 

Let RRij be the daily precipitation amount on 

day i in period j. The maximum 1-day value for 

period j are: 

𝑅𝑥1𝑑𝑎𝑦𝑗 = 𝑚𝑎𝑥 (𝑅𝑅𝑖𝑗) 

Equation 6 

Rx5day Monthly maximum consecutive 5-day 

precipitation: Let RRkj be the precipitation 

amount for the 5-day interval ending k, period j. 

Then maximum 5-day values for period j are: 

𝑅𝑥5𝑑𝑎𝑦𝑗 = 𝑚𝑎𝑥 (𝑅𝑅𝑘𝑗) 

Equation 7 

SDII Simple precipitation intensity index: 

Let RRwj be the daily precipitation amount on 

wet days, w (RR ≥ 1mm) in period j. 

If W represents number of wet days in j, then: 

𝑆𝐷𝐼𝐼𝑗 =
∑ 𝑅𝑅𝑤𝑗

𝑊
𝑤=1

𝑊

Equation 4 

SDII 

(Hourly) 

Hourly simple precipitation intensity index: 

Let RRwj be the daily precipitation amount on 

wet days, w (RR ≥ 1mm) in period j. 

If H represents number of wet hours in j, 

𝑆𝐷𝐼𝐼𝑗 =
∑ 𝑅𝑅𝑤𝑗

𝑊
𝑤=1

𝐻

Equation  8 
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Indicator Definition Equation 

TXx Monthly maximum value of daily maximum 

temperature: Let TXx be the daily maximum 

temperatures in month k, period j. The 

maximum daily maximum temperature each 

month is then: 

𝑇𝑋𝑥𝑘𝑗 = max (𝑇𝑋𝑥𝑘𝑗)

Equation 9 

TNn Monthly minimum value of daily minimum 

temperature: Let TNn be the daily minimum 

temperatures in month k, period j. The 

minimum daily minimum temperature each 

month is then: 

𝑇𝑁𝑛𝑘𝑗 = min (𝑇𝑁𝑛𝑘𝑗)

Equation 10 

Table 6. Definition of ETCCDI indices used for Research Question 2. (Karl et al., 1999; Peterson et al., 

2001) 

RClimDex is used to extract indices of interest at the monthly scale where 

available. The indices calculated at the monthly scale by RClimDex include PRCPTOT, 

Rx1day, Rx5day, TXx, and TNn. The process of running RClimDex is described in the 

methodology of Question 1.  

It was of interest to include SDII in the monthly analysis as another variable 

important for flooding. This variable is not available at the monthly scale by RClimDex 

and required manual calculation in Rv3.1.1 (R Core Team, 2014). The ETCCDI formula 

for SDII uses daily rainfall totals, and the equation is given in Equation 4. Since we are 

interested in trend detection at the monthly scale, it was also of interest to take advantage 

of the high resolution data and also calculate SDII using hourly rainfall total as shown in 

Equation 8. Two calculations of SDII were therefore performed, SDII at the daily scale 

and SDII at the hourly scale using the following calculations:  



24 

To compute SDII at the daily scale, let RRwj be the daily precipitation amount on 

wet days, w (RR ≥ 1mm) in period j. If W represents number of wet days in j, 

𝑆𝐷𝐼𝐼𝑗 =
∑ 𝑅𝑅𝑤𝑗

𝑊
𝑤=1

𝑊
  ....................................................................................................................................................... Equation 4 

To compute SDII at the hourly scale, let RRwj be the daily precipitation amount on 

wet days, w (RR ≥ 1mm) in period j. If H represents number of wet hours in j, 

𝑆𝐷𝐼𝐼𝑗 =
∑ 𝑅𝑅𝑤𝑗

𝑊
𝑤=1

𝐻
  ....................................................................................................................................................... Equation 8 

The number of trends detected at the annual scale is compared with those detected 

at the monthly scale. All trends are analyzed with the Mann-Kendall and bootstrapping 

approach described in Question 1 methods. The null hypothesis of trend tests is that no 

monotonic trends exist. 

In order to consider possible mechanisms leading to observed trends in climate 

indices, monthly atmospheric soundings for temperature at 700 mb are used and 

examined overtime. Surface temperatures are unlikely to correspond well with 

precipitation, and for this reason atmospheric temperatures as 700 mb were selected. 

Although there is not a diurnal cycle at 700mb, maximum and minimum monthly values 

are used for this research in place of means, so that actual variability is maintained and 

ETCCDI indices methods for TNn and TXx ETCCDI can be used. Trends in these 

variables are also calculated with Mann-Kendall.  

3.5 Methods for Question 3: ETCCDI Indices and Peak Streamflow 

To better understand the relationship between Portland precipitation and 

discharge that contributes to flooding, the monthly ETCCDI climate indices are 
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correlated with stream discharge records at Johnson Creek, Sycamore Station #14211500. 

Analysis is conducted on the 40 largest discharge events in Johnson Creek.  

Maximum peak flow events used in the analysis are selected by sorting all daily 

Sycamore Station discharge records for 1977-2016 and finding the 40 largest flow events. 

Where multiple maximum events occur in a single month, the largest value from the 

month was used and other lower maximums in that month were removed from the list. 

This ensured that only one peak discharge record could exist for a given month, and helps 

to ensure that events are independent. This resulted in 40 maximum events with unique 

year-month combinations.  

Climate indices for the months when these maximum events occurred will be 

combined with peak discharge event records to create a single precipitation-discharge 

record. This record consists of multiple variables (discharge, SDII, SDII_hourly, Rx1day, 

Rx5day, PRCPTOT).  

Kendall’s rank based correlation test will then be used to detect the strength of the 

correlations between the ETCCDI indices and peak streamflow discharge (Bracken et al., 

2008). The Kendall test is used rather than the Mann-Kendall because Mann-Kendall is 

only appropriate for continuous time series data. The Kendall test will measure the 

strength of correlation between variables on a scale of (-1,1) with 1 representing perfect 

correlation. Data are tested for temporal correlation using R’s partial autocorrelation 

function, and autocorrelated data will use addressed with bootstrapping.   
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Chapter 4. Results 

4.1 Results for Question 1: Comparisons with downscaled global climate models 

No significant trends in Portland station records for 1977-2005 were found in 

precipitation indicators including consecutive dry days (CDD), consecutive wet days 

(CWD), heavy precipitation (R95p), or daily intensity (SDII). As shown in Figure 4 (a), 

there are no significant trends in any of the stations with mixed signals of increasing or 

decreasing signals across stations.  

Consistent with the Portland observational record, few significant trends were 

detected in the selected precipitation indices using historic projections for 1977-2005 

from three LOCA downscaled global climate models. Results from trend analysis of 

projections from CanESM2, CESM1- CAM5, and CPMR-CM5 are shown in Figure 4. 

Only one significantly increasing trend in daily intensity (SDII) was detected amongst 

models in CPMR-CM5 (tau=.30, p-value= .03). The CESM1-CAM5 model has all non-

significant increasing trends in the select indices. The models CanESM2 and CPMR-

CM5 are comparable to analysis of observed data showing non-significant mixed 

increasing and decreasing trends in the precipitation indices.  

Trends from global climate models of projected precipitation under the RCP 8.5 

high emissions concentrations for 2006-2100 are consistent with predictions that future 

rainfall will be more intense as shown in Figure 5. Index trends from the CanESM2 and 

CNRM-CM5 models show significant increased heavy events (R95p) and daily intensity 

(SDII) (Giorgi et al., 2014).  The CESM1-CAM5 model has positive trends in both these 
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variables but they are not statistically significant. The index R95p is just beyond the .1 

significance threshold in the CESM1-CAM5 model (tau=.11, p-value=.13).  

Figure 4. Index trends from observations and climate models for 1977-2005 including CDD, CWD, R95p, 

SDII. Graphs show consecutive dry days (CDD), consecutive wet days (CWD), rainfall above 95th 

percentile (R95p) and simple daily intensity (SDII).  
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Figure 5.  Annual index trends from climate models for 2006-2100 including CDD, CWD, R95p, SDII. 

Indices represent consecutive dry days (CDD), consecutive wet days (CWD), rainfall above 95th percentile 

(R95p) and simple daily intensity (SDII). 

The expected increase in consecutive dry days (CDD) was significantly observed 

only in the CNRM-CM5 model for years 2006-2100 (tau = .19, p-value=.01). Trends are 

positive but not-significant in other models CESM1-CAM5 and CanESM2 (Giorgi et al., 

2014).  

Similar results are found for the consecutive wet days (CWD) indicator. A 

significant increase in consecutive wet days for years 2006-2100 was detected by the 

CanESM2 model (tau=.15, p-value=.04). Trends are positive but non-significant in other 

models CESM1-CAM5 and CNRM-CM5.  

Only one significant trend in daily intensity is found using historic projections and 

observations from 1977-2005. Historic projections and observations show non-significant 
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mixed direction trends. Multiple trends showing increased precipitation intensity are 

found using future projections for 2006-2100. As shown in Table 7, trends from these 

projections are uniformly positive but not uniformly significant. 

 
Table 7. Comparison of annual index trends for 1977-2005 and 2006-2100.  * indicates significant at .1, +/- 

indicates mixed direction trends. 

4.2 Results for Question 2: Comparing annual and monthly trends 

Analysis of annual indices PRCPTOT, Rx1day, Rx5day, and SDII indicate 

consistent increasing trends observed in only PRCPTOT, but no other precipitation 

indices (Figure 6). Temperature minimum index TNn is increasing and barely non-

significant (tau=.18, p-value=.12).  Temperature maximum index TXx is non-

significantly decreasing (tau=-.12, p-value = .28).  

 

 CanESM2 

1977-

2005 

CESM1-

CAM5 

1977-

2005 

CNRM-

CM5 

1977-

2005 

Observed 

Portland, 

OR 1977-

2005  

CanESM2 

R8.5 

2006- 

2100  

CESM1-

CAM5 

R8.5 

2006- 

2100 

CNRM-

CM5 

R8.5 

2006- 

2100 

CDD  + + - 
 

+/- + + +* 

CWD  - + + +/- +* + + 

R95Tot - + + +/- +* + +* 

SDII - + +* +/- +* + +* 
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Figure 6. Annual index trends for Portland, OR observations for 1977-2016 including PRCPTOT, Rx1day, 

Rx5day, SDII, TNn, TXx. Indices represent total rain (PRCPTOT), single day rain (Rx1day), 5 day rain 

(Rx5day), daily intensity (SDII), temperature minimum (TNn), and temperature maximum (TXx).  

When examining precipitation indices on the monthly scale, a different picture 

emerges and there are many more significant trends identified than on the annual scale 

analysis. Rx1day is increasing and significant in January and March at the 5% 

significance level. Rx5day is increasing and significant in January, February, March and 

June at the 10% significance level. PRCPTOT is significant in March, October, and 

November at 5% significance (Figure 7).  
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Figure 7. Monthly index trends for Portland, OR observations for 1977-2016 including Rx1day, Rx5day, 

PRCPTOT. Indices represent single day rain (Rx1day), 5 day rain (Rx5day), total rainfall (PRCPTOT).  

Temperature variables also show departure from annual results (Figure 8). The 

index TNn is significantly increasing in summer months at 5%, while TXx is significant 

in none. A stepped pattern in the steepness of temperature increase is apparent in the 

temperature minimums where June, July, August, September, and October are all 

significant.  

 
Figure 8. Monthly index trends for Portland, OR observations for 1977-2016 including TNn, TXx. Indices 

represent temperature minimum (TNn) and temperature maximum (TXx). Legend same as Figure 7. 

Comparison of monthly SDII at the daily and hourly scale indicate that the hourly 

scale analysis detected many more trends than annual scale analysis. Monthly SDII at the 

daily scale is significant in January, March and November (Figure 9). Monthly SDII at 

the hourly scale is significant at 5% in January, March, April, October and November 
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(Figure 10). 

 

Figure 9. Monthly index trends for Portland, OR observations for 1977-2016 including daily scale rain 

intensity (SDII). Legend same as Figure 7. 

 
Figure 10. Monthly index trends for Portland, OR observations for 1977-2016 including hourly scale rain 

intensity (SDII-Hourly). Legend same as Figure 7. 

Results from autocorrelation testing showed that autocorrelation decreased when 

period of study was changed from annual to monthly. At the annual scale, autocorrelation 

in annual PCRPTOT and SDII values was detected. Since only PRCPTOT was 

significant, bootstrapping was used to check the range of potential tau values for stations 



33 

 

autocorrelated data. Results indicated that tau values could range between positive and 

negative, and that the increasing PRCPTOT tau values observed are be subject to the 

possibility of false positive detection (Kulkarni and von Storch, 1995). Autocorrelation 

tests at the monthly scale showed that the strength of autocorrelation is minimal in 

PRCPTOT and removed entirely for SDII.    

Exploration of 700 mb atmosphere temperature resulted in a significant trend in 

minimum temperatures is March at 5%, while monthly maximum temperature shows a 

significant trend in July at 10% (Figure 11).  

 
Figure 11.  Monthly index trends for atmospheric soundings at 700mb for 1977-2016 including TXx, TNn. 

Indices represent maximum temperature (TXx) and minimum temperature (TNn). Legend same as Figure 

7. 

4.3 Results for Question 3: ETCCDI Indices and Peak Streamflow 

All ETCCDI Indices were shown to be statistically significantly correlated with 

maximum discharge events at most stations (Figure 12). Of the standard ETCCDI 

indices, Rx5day performs best with a significant correlation of .49 at Station 6.  SDII 

hourly scale outperforms SDII daily scale at all stations. Station 58 is notable for its lack 

of significant correlation. It is notable that Station 58, located on the far west side of 

Portland, OR, is the furthest from the Sycamore stream gage station.   
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Figure 12. Kendall rank coefficients for correlation of monthly indices and peak flow at Johnson Creek 

during 40 maximum flow events occurring from 1977-2016. Indices include total rainfall (PRCPTOT), 

daily intensity (SDII), hourly intensity (SDII-hourly), single day rainfall (Rx1day), 5 day rainfall (Rx5day). 
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Chapter 5. Discussion  

The purpose of this study was to use widely adopted precipitation indices to 

characterize trends in precipitation in Portland, OR. Comparing trends in indices from 

1977-2005 rain station records with three downscaled climate models resulted in 

consistently non-significant mixed direction trends. Climate model projections under 

maximum emissions scenario RCP 8.5 for 2006-2100 resulted in significant increasing 

trends in precipitation intensity from two of three models. Analysis of a different suite of 

precipitation indices for 1977-2016 at annual and monthly periods indicated that trends 

are largely apparent only at the sub-annual scale of analysis. Increased intensity and wet 

spell volume are identified in fall, winter and spring, consistent with long-term climate 

projections from models. Correlation between precipitation indices and streamflow 

indicated that measurements of consecutive wet day rainfall is the best predictor of peak 

flow. Increases in heavy and extreme rainfall indices indicate the potential for increased 

flood risk in local Portland streams. 

Comparison of observed and modelled rainfall in Portland, OR for 1977-2005 

show both observed and projected rainfall lack significant trends. Non-significant 

increasing and decreasing trends are found in annual indices representing consecutive dry 

days (CDD), wet days (CWD), rainfall occurring as heavy precipitation (R95p) and daily 

intensity (SDII).  The observations from the five Portland, OR stations are consistent with 

historic projections from models CanESM2, CESM1-CAM5, CNRM-CM5 in the sense 

that overall few trends in the select indices are observed.  
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Global analysis of ensemble climate projections characterizes future rainfall as 

more intense, coming in shorter duration heavy events amidst more enduring dry periods 

(Giorgi et al., 2014). This research considers the RCP 8.5 maximum emissions scenario 

where the influence of increased greenhouse gases on climate is greatest. Results from 

climate model precipitation projections for 2006-2100 indicate that the conditions of 

increased intensity are a possibility for the Portland, OR area but enduring dry periods 

less certain. An increase in the volume of annual rainfall coming from heavy events 

(R95p) is consistent across two climate models including CanESM2 and CNRM-CM5; 

the increasing trend in R95p is almost significant in CESM1-CAM5 (tau=.11,p-

value=.13). Significant increase in daily rainfall intensity (SDII) is also observed in the 

CanESM2 and CNRM-CM5 model projections. However, the CESM1-CAM5 model 

does not show increased SDII observed in the other models. The disagreement between 

models points to uncertainty in changes that may be experienced by the Portland, OR 

area.  

Some models indicate that central Pacific sea temperature rise and eastward shift 

of North Pacific storm track precipitation may contribute longer wet spells to the US west 

coast (Karin and Zwiers, 2000). A strong signal of increased annual total precipitation 

was apparent in the Portland rain gage network from 1977-2016. This is consistent with 

increased regional precipitation observed over 21st century (Mote and Salathé, 2010). The 

cause of this increase is not apparent. Changes to the North Pacific storm track that bring 

more rain are expected for later in the century (Yin, 2005).   
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Sub-annual analysis of monthly precipitation characteristics of the Portland 1977-

2016 record reveals greater change to the hydrologic cycle including intense 

precipitation, heavier events and greater monthly rainfall. The rate of rainfall during 

storm events is expected to increase considerably with climate change, proportional to 

increases in water vapor in a warmer atmosphere (Trenberth et al., 2003). However, 

ensemble climate models projects little change to Pacific Northwest annual mean 

precipitation during the 21st century (Mote and Salathé, 2010). In order for mean 

precipitation to go unchanged while heavy rainfall increases, increases to heavy rainfall 

would be compensated for by decreased moderate and light rainfall (Karl and Knight, 

1998). In this study, increased precipitation was coupled with increased intensity without 

compensatory decreases as expected. Results from sub-annual analysis do not match 

projections that mean precipitation will remain unchanged while intensity increases.  

Seasonal trends of rainfall intensity and increased volume are partially consistent 

with expectations from global climate model projections that expect increased intensity 

and volume in winter months. Trends in monthly precipitation indices are concentrated in 

fall, winter and spring months. March has the highest concentration of observed 

precipitation change, including increase in intensity, volume, and single day rainfall 

(SDII, PRCPTOT, Rx1day). The physical mechanisms generating this change are 

unclear. Increase to spring storm intensity in British Columbia is observed, but the area 

also experienced increased intensity in summer that are not apparent here (Jakob et al., 

2003; Burn and Taleghani, 2013). Neither surface temperature minimums nor maximums 

significantly changed in March. The increased heavy rainfall in March may be related to 
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the significant increase in temperature observed at 700 mb (Figure 11). The majority of 

precipitable moisture occurs at or below 500 mb, and upper atmospheric temperatures act 

as a control on this moisture content (Ross and Elliot, 1996). Increased temperatures at 

700 mb may equate to decreased limitation on upper atmosphere moisture content, 

resulting in additional precipitable water transported at high altitudes that is available for 

precipitation. Temperature patterns at the surface and upper atmosphere may also 

contribute to the lack of increasing trends in summer months. All summer months 

showed significant increase in temperature minimums. These increased temperatures may 

result in reduced condensation. However, decreases in precipitation that may be expected 

to accompany surface and atmospheric warming are not yet apparent. Overall, seasonal 

analysis of Portland rainfall records indicate the area is experiencing hydrologic change, 

including more rain and more intense rainfall events in all seasons except summer.  

The reliance on daily rainfall totals in the ETCCDI methodology is shown to limit 

trend detection compared with hourly rainfall totals. Daily scale records resulted in fewer 

significant trends than hourly scale records. At the 5% significance level daily records 

were significant in March while hourly records were significant in more months 

including January, March, April, October, and November.  This is consistent with 

expectations that daily scale records suppress intensity trend detection compared with 

hourly scale records (Cooley and Chang, 2017). Compared to temperature, precipitation 

occurs at smaller spatial and temporal scales that are more difficult to measure (Boer et 

al., 2000). For this reason gage spatial density and temporal resolution that is appropriate 

for temperature may not be appropriate for precipitation. The high spatial and temporal 
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resolution of the data available in Portland’s HYDRA network thus is an asset for the 

local area, although these trends cannot necessarily be extrapolated to the greater region. 

Analysis of Portland’s gage network from 1977-2016 indicates that when precipitation 

indices are adapted to a higher temporal resolution and tested for monthly periods, a 

greater extent of hydrologic change can be observed.  

Although results from this study suggest that Portland’s hydrologic cycle has 

intensified from 1977-2016, the physical mechanisms causing this change are ultimately 

uncertain. Climate change may be responsible for changes through increased evaporation 

and water vapor transport but examination of the dynamics of transport and condensation 

occurring from 1977-2016 are outside the scope of work. Attribution of events to climate 

change remains an active area of research and relevant methods are not adopted here (van 

der Wiel et al., 2017). This paper uses the basic hallmarks of an intensified hydrologic 

cycle as a hypothesis for the conditions of climate change in Portland, OR, but does not 

attempt to show greenhouse gas forcing is required for the intensification observed.  The 

role of natural climate variability in these changes is unknown. Natural variability is 

thought to be responsible for an increase in mean precipitation observed in the Pacific 

Northwest over the 20th century and may play a role in rainfall intensification (Mote, 

2003a). Further, among the three climate models explored, only two support significant 

intensification of the hydrologic cycle for 2006-2100. Expanding this work to include 

more models and grid points for the Portland, OR area could more conclusively explore 

whether the area will experience an intensified hydrologic cycle. 
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Finally, this study showed that the ETCCDI precipitation indices measuring wet 

spell volume (Rx5day) correlate best with peak flow events in local streamflow. This is 

consistent with similar studies where rainfall metrics that capture multi-day rainfall totals 

outperform metrics that capture single day volume or intensity (Pitlick, 1994; Pielke and 

Downton, 2000). The ETCCDI indices may therefore act as a meaningful proxy of future 

flood risk. The standardized methodologies of the ETCCDI indices have an advantage 

over other precipitation metrics that may be custom developed for individual studies such 

as those used in Pielke and Downton (2000). The maximum correlation between peak 

flow and an ETCCDI index is .49, showing that other variables such as basin area and 

steepness contribute to the relationship between rainfall and peak flow. For individual 

storms, storm intensity can overcome the importance of total volume, but these instances 

are not the majority (Bracken et al., 2008).  

The importance of wet spell volume in predicting peak flow means that future 

trends in this characteristic of precipitation may mean increased flood risk. Results from 

this study indicate wet spell volumes (Rx5day) are increasing in January, February and 

June. As peak flow events are already concentrated in winter months, increased 

precipitation input in January and February may foretell increased exposure to flood risk. 

Trends in future consecutive wet days (CWD) are not consistent between selected 

downscaled global climate models of rainfall for 2006-2100, although the CanESM2 

model showed increased wet spell length (CWD). Another Canadian climate model, the 

Canadian Global Coupled Model (CGCM1) indicates there is a latitudinal gradient of 

change in this variable along western North America where southern areas experience a 
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decrease in wet spell length and northern areas indicate an increase in wet spell length 

(Kharin and Zwiers, 2000). The fact that our study area lies in the middle of the North 

American continent suggests there may be considerable uncertainty in which path this 

variable may take. If current trends in rainfall volume and annual wet spell length 

continue to increase as observed in the Portland rainfall network from 1977-2016, it may 

indicate increased flood risk for the area.  
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Chapter 6. Conclusions 

This study used the ETCCDI precipitation indices and Mann-Kendall trend 

detection to characterize trends in precipitation in Portland, OR. Observed records from 

rain gages in Portland are compared with historic (1977-2005) and future (2006-2100) 

projections from three LOCA downscaled global climate models for the Portland area. 

Annual trends indicate that, although two of three models portray an intensifying 

hydrologic cycle from 2006-2100, these conditions were not detected in the observational 

record. However, when the period of study is changed from annual to monthly, many of 

the hallmarks of an intensified hydrologic cycle are detected in the observational record 

in spring, winter and fall months. Trend detection of increasing precipitation intensity 

became even more robust after data resolution was changed from daily to hourly. The 

increasing trends detected in ETCCDI precipitation indices have important consequences 

for Portland flood risk because the indices are shown to correlate well with peak flow in a 

flood-prone local stream, Johnson’s Creek. The observed trends of prolonged wet spells 

with greater volume are likely indicative of increased flood risk for people in the 

Johnson’s creek flood zone.   
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Appendix. ETCCDI Indicator Definitions 

ID* Indicator name Definitions Units 

FD0 Frost days Annual count when TN(daily minimum)<0ºC Days 

SU25 Summer days Annual count when TX(daily maximum)>25ºC Days 

ID0 Ice days Annual count when TX(daily maximum)<0ºC Days 

TR20 Tropical nights Annual count when TN(daily minimum)>20ºC Days 

GSL 

Growing season 

Length 

Annual (1st Jan to 31st Dec in NH, 1st July to 30th 

June in SH) count between first span of at least 6 days 

with TG>5ºC and first span after July 1 (January 1 in 

SH) of 6 days with TG<5ºC 

Days 

TXx Max Tmax Monthly maximum value of daily maximum temp ºC 

TNx Max Tmin Monthly maximum value of daily minimum temp ºC 

TXn Min  Tmax Monthly minimum value of daily maximum temp ºC 

TNn Min  Tmin Monthly minimum value of daily minimum temp ºC 

TN10p Cool nights Percentage of days when TN<10th percentile Days 

TX10p Cool days Percentage of days when TX<10th percentile Days 

TN90p Warm nights Percentage of days when TN>90th percentile Days 

TX90p Warm days Percentage of days when TX>90th percentile Days 

WSDI 
Warm spell duration 

indicator 

Annual count of days with at least 6 consecutive days 

when TX>90th percentile 
Days 

CSDI 
Cold spell duration 

indicator 

Annual count of days with at least 6 consecutive days 

when TN<10th percentile 
Days 

DTR 
Diurnal temperature 

range 
Monthly mean difference between TX and TN ºC 

Rx1day 
Max 1-day 

precipitation amount 
Monthly maximum 1-day precipitation Mm 

Rx5day 
Max 5-day 

precipitation amount 
Monthly maximum consecutive 5-day precipitation Mm 

SDII 
Simple daily intensity 

index 

Annual total precipitation divided by the number of 

wet days (defined as PRCP>=1.0mm) in the year 

Mm/ 

day 
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ID* Indicator name Definitions Units 

R10 
Number of heavy 

precipitation days 
Annual count of days when PRCP>=10mm Days 

R20 
Number of very heavy 

precipitation days 
Annual count of days when PRCP>=20mm Days 

Rnn 
Number of days above 

nn mm 

Annual count of days when PRCP>=nn mm, nn is 

user defined threshold 
Days 

CDD 
Consecutive dry days Maximum number of consecutive days with 

RR<1mm 
Days 

CWD 
Consecutive wet days Maximum number of consecutive days with 

RR>=1mm 
Days 

R95p Very wet days Annual total PRCP when RR>95th percentile Mm 

R99p Extremely wet days Annual total PRCP when RR>99th percentile Mm 

PRCP-

TOT 

Annual total wet-day 

precipitation 
Annual total PRCP in wet days (RR>=1mm) Mm 

* All indices and definitions from Zhang and Yang, 2004.  
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