Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
11-27-1989

An Approach to Pattern Recognition of Multifont
Printed Alphabet Using Conceptual Graph Theory
and Neural Networks

Ihab A. Harb
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation

Harb, lhab A., "An Approach to Pattern Recognition of Multifont Printed Alphabet Using Conceptual Graph
Theory and Neural Networks" (1989). Dissertations and Theses. Paper 3923.
https://doi.org/10.15760/etd.5807

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3923&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3923&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3923
https://doi.org/10.15760/etd.5807
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Ihab A. Harb for the Master of Science in
Electrical and Computer Engineering presented November 27, 1989.

Title: An Approach to Pattern Recognition of Multifont Printed Alphabet Using
Conceptual Graph Theory and Neural Networks

APPROVED BY MEMBERS OF THE THESJ]S COMMITTEE:

Etesami

This thesis describes an approach for accomplishing a pattern recognition task
using conceptual graph theory and neural networks (NNs). The set of patterns to be
recognized are the capital letters of six different fonts of the English alphabet, plus two
shifted and six rotated versions of each. The letters are represented to the neural network
on a 16x16 input grid (256 "sensor lines"). A standard classification encoding for such
patterns is to use a 26-bit vector (26 lines at the NN’s output), one bit corresponding to
each letter. Experiments with such an encoding yielded results with poor generalization
capability. A new encoding scheme was developed, based on the conceptual graph for-

malism. This entailed designing a set of concepts and a set of associated relations

2
app-opriate to the upper case letters of the English alphabet. From these, the following

were developed: a conceptual graph representation for each letter, a connection matrix
for each, and finally, a C-vector and an R-vector representation for each. The latter were
used as the output encoding (21 bits) of the NN pattern recognizer. A feed-forward neural
network with 256 inputs, 21 outputs, and 2 hidden layers was trained using the back-
propagation-of-error algorithm. Results were significantly better than with the more stan-
dard encoding. Generalization on fonts improved from 74% to 96%, generalization on
rotations improved from 83% to 94%, and finally, generalization on shifts improved from
2% to 93%.

AN APPROACH TO PATTERN RECOGNITION OF MULTIFONT
PRINTED ALPHABET USING CONCEPTUAL GRAPH
THEORY AND NEURAL NETWORKS

by
IHAB A. HARB

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1989

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Thab A. Harb presented

!corgc ! Lendaris, Chairman
3

an

arwm_
AiPiiVEi‘

November 27, 1989.

1

Rolf Schaumann, Chairman, Department of Electrical Engineering

C. William Savery, Vice Provost fof Graduate Studies and Research

ACKNOWLEDGEMENTS

This research project could not have been made possible without the tremendous

amount of help of Dr. George G. Lendaris. In particular, his careful assistance in the
- development of thoughts and experiments has made the production of this thesis run
much more smoothly than I have ever hoped; I owe him my deepest respect and a partic-
“ular debt of gratitude. I appreciate as well the contribution of Dr. Faris Badi’i on data
preprocessing methods for pattern recognition applications. Again, I wish to thank my
friends Mohammad Assaf and Shihab Hanayneh for the enthusiasm they showed, and

the comments they gave.

Finally, I would like to thank my family for their support, understanding, and
encouragement throughout my years of study, helping give in the process a very special

meaning to the creation of this thesis.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTScoiiniimtiieniminicimsameessisssssesssssisssssessessasssssssssssssos iii

LIST OF TABLESociiioeentnicnticsnieneeresestesssssssssesssssessesssssansassessessassaessesssssons vii

LIST OF FIGURESoouiiieiiintitininnieiissesiesstastessesssssssesstssesssssssssssessassssssassess viii
‘CHAPTER

I INTRODUCTION ..ccomiiiirintiniiiesnnsensisissssissmsassssssssssssssassosssssssssasssssssesses 1

Pattern RECOGNILIONcoviiuiiiiiiuiiiriniiiniintcenniienseneessnttssnee s ssetesecssnsesessane 1

DefiNItioN ..ciivviiiiiiieiiniinicntrcn et e s sasenas 1

Available APPrOaChESccccocceveircrneririniernetitinrnecsteieeentssenesseeesncenes 2

A NewW APPIOACh ..ottt sree s sese e sraesseses 4

Conceptual Graph OVEIVIEWccccieviiccecreirerneescssenseeereessasssassessesnns 4

The Connection MAtTiXccoccieereneentinrensresenecsssscesseseesessssssanssasssenns 4

The Vector FOIMieuiiiiiniiiiininiccecieensetseseneensecneseseeessassnanessene 6

Neural Networks and Generalizationcecceeceeeeceenennsencnenraessesaenss 7

The New APPIOach ...ttt sesseesennes 8

I CONCEPTUAL GRAPH REPRESENTATION

OF INPUT PATTERN SETooiiiierriieninrententeneseencssesnsasessaessassessassans 10

Knowledge System Developmentcceeeneriicnnneniiciennerecceenaesseeesnens 10

Line Segment Representationccocceceeeeieneanenneensnecseeennnncseesennns 10

Concept Types and Definitionsccueeeeevecrineeeeseiniereeeseeserennersenneas 11

Relation Types and Definitionscccccceveveirenarecienieeneennesscessnesnnnns 12

Conceptual Graph Encoding of the Lettersccccceevveeneeenieernncannnnes 15

COITIUMIEIIL ..oveeieeereneeeeeneninnreeetseseeeeeasassesssnsnssssssessnsssssnsssssssssscssssssesnsnsnnnssessssens 18

I NEURAL NETWORKSoeiirreninintiiiniesessesssssesanssnsansssssessssssassessesss 19
HiStOrical PEISPECHVE ...uuveeiieicciienivernsntiesatisrsisstiesescssasntsssaassssssessssassrsssnsses 19
Neural Network Fundamentalsccccniinesiesinieenssstasssssossssassaes 22

The Computing EIEMENtcccocciiiiiiiniiniiinienncseesecreesssssetesssesssssnanes 22
The Bias EIEMENLcc.cccvieiertirctininiiinisnnnsininseseiseessessnessssstosssssasssaases 24
Geometric INEIPIEtAtONccceecireriertrreraseeessersrronsonesssessereseassssssssssssnases 24
Neural Network Learning Machinecciiivcinniinenienecnnneecsenssascsseesesens 25
The Delta RUIEoovviiiniiniiiiciniecncmntineiessinsetssasaancsansssssesscesasssssessnees 26
Mathematical Basis: Gradient DeSCentcccueerverenneencnererrseeesensssnsenns 27
The Leaming RAte: T ...cccceerceerisceeecceresienesniessnsesssanesssssssssaessssssassasssnssasss 30
The Back-Propagation-of-Error Methodviiiiiiovnncninninnieececcrennnnns 31
INTOAUCHON ...eeeieeieinrecniieruierenerneescnesseresassanensessseessansssesssaensssessaessassnassssses 31
Feed-Forward, Multilayer NN ArchiteCturecccccevrveesneseeesecesnssnces 32
The Training ProCEAUTEccccievenirinsimreecieniestreeessecasesasssassnssasosaass 33
The Momentum TEIMcocvcerieisienieereirieeereteseessasssesssssssseasasassasassassss 35
IV EXPERIMENTS AND RESULTScocoiitiiniimnenenseeresnsseessessessessessrssssnsene 36
Preparation of Training and Generalization Data Setscccccveeveiesreesreans 37
Partiioning of Alphabet Data Setsccccceveevrirnrieneesinenceereessaensasesnes 37
Transformations of the INput Data Setsc.cceeveereerveernirnrerecsreseessesnens 38
Generalization Experiments Using the Base
NN CONfIGUTALONcceveeerraeccrecreessnesssnsssnessasessresssessseesssessasessnssses 38
Selection of the (First) Neural Network Configurationcceeceeveenene 38
Generalization Experiments Using an NN Configuration
Incorporating the Conceptual Graph Approachcccceeeeneene 41
Selection of an NN Configuration for the New Approachc....e.... 41
V DISCUSSION OF RESULTS AND FUTURE WORKuuuiererereenerrenees 60

Discussion of Results

FULUTE WOTK ..uertiieeeeeieecieccnneessssssssasesssssssstessessassssenssneseereesssssnsssessssessnnn 63

SELECTED BIBLIOGRAPHYcooiiiiiiiiiiintreeennnetntiteseesseassessnese e e sssesaesssenses 66
- APPENDICES
A ENGLISH ALPHABET FONTS USED FOR THE
EXPERIMENTS REPORTED IN THIS THESIScccccovenirvenerreenene 68
B EXAMPLES OF TRANSFORMED ALPHABET DATA SETccoceveeveennee. 75
C CONCEPTUAL GRAPHS OF INPUT PATTERN SETcccccovevveeenerreenanne 81

D CONNECTION MATRICES AND VECTOR FORMS OF
INPUT DATA SET .ttt seeeeses e sss e esssssssassassasssssanns 89

LIST OF TABLES

TABLE PAGE

I A 2x4 Connection Matrix for the Conceptual Graph of Figure 4
IO C- & R-Vectors as Derived From Table Icocciiinininninnnnnccennceneensenne

III Percent Correct Classification on Training and Generalization for
Experiment NN-1 oottt isees e sssesesssssssssssssesans

IV Errors on Generalization Test for Experiment NN-1ccuioiiiiiiiiciiiencineenee

V Percent Correct Classification on Training and Generalization for
EXperiment NIN-2 ...ccoiiiiiiiinniianirninsecenstnsneesecesescasessassssesssasssansssees

VI Errors on Training Test for Experiment NN-2ccccovvivierineenenenneneencesseens
VI Errors on Generalization Test for Experiment NN-2ccoovovieviieeiieeenneens

VIII Percent Correct Classification on Training and Generalization for
EXperiment NIN=-3 ... iiirireeieeisreeseeeseessssssnessesesessassssesssasesssssesnsranns

IX Errors on Generalization Test for Experiment NN-3cccoiieivieniinenieeeenen

X Percent Correct Classification on Training and Generalization for
Experiment NIN-A ...c.ooiiioiiiteneeniceseesessseseessssessessessssessessessasssssnes

XI Errors on Generalization Test for Experiment NN-A

.....................................

XTI Percent Correct Classification on Training and Generalization for
Experiment NN-Booiiiiicertttrntaesetesesttesneecnrennasssaesesssessssasanes

XTI Errors on Generalization Test for Experiment NN-B

.....................................

XIV Percent Correct Classification on Training and Generalization for
Experiment NIN-Ccooiiiiiiiiiiiciinninreenrteseessssssessessesssnessasessessseessssnns

.....................................

XV Errors on Generalization Test for Experiment NN-C

XVI Comparison Of RESULLSccierruiieeiriiiniiieieeertreeeesrrecerteeessseessteesessasasseeesesseonses

FIGURE

1. Pattern Recognition Approach via Neural Networkscccoviviiinninnnnne.
2. A Simple Decision Function for the Separation of Classes Wy and W5,
3. A Syntactic Description of Patterns: (a) Primitives; (b) Coded

ChIOMOSOIMIES ...eecoeierrueieeriinsaiensiiasasinsssesssessassssssssasssssassssssesssssssssassaes
4. A Generic Conceptual Graph Representationceccoieiniensiicnennennene
5. A Tandem Combination of two Neural Networkscccccceeviineirinieiinceens
6. (a) An Example of a Serif-Free Touch Relation, (b) A Touch Relation

AllOWING SeTifs ...ccceiiiriiiiiniiiiiiiitiin ettt st
7. An Example of the Abut Relationcccceveininninniinniennnnninnccenieinsenenenes
8. An Example of the Intersection Relationcccccecerneerccinierneeneeniceenceeanns
9. Conceptual Graphs Representing the Letters A, M, S, T, and

U RESPECHVELY .ovviririitiiiiiiiiiicce ettt sesesssas e sasesansennsees
10. A Model for the Neuron: A Basic Element in Neural

NEIWOTKS ..ttt ce e stts s s nessesessseas s ssassssaaesnsanses
11. Error Term 3,; is Created via Comparing Element Output with Desired

(Target) 6utput ..
12. Error Minimization Follows the Steepest Descent on a Surface in

WEIZhE SPACE ..ceiviriiitietiictc ettt ettt s sree s asenes
13. The Back-Propagation Network: Architecture and Flow of

INfOrMAtION ...eieeeeiciiiiiiit ettt rretrser e e eesaeesesanesssessssensssaananssaenns
14. Training Dynamics of Experiment NN-1, While Learning the Training

Set Consisting of Font Set I-A Plus the +45°, £22.5°, + 11.25°

Rotations, and the £3-Pixel (Left and Right) Shifts

15. Training Dynamics of Experiment NN-2, While Learning the +45°, and

LIST OF FIGURES

the £22.5° Rotations Of SELI-A ..oeeeeiieiieiieeeereresnsensesescsssescsesessessnnsnsnes

vee

e

16.

17.

18.

19.

20

21

22

Training Dynamics of Experiment NN-3, While Learning the +3-Pixel
(Left and Right) Shifts of Font Set I-A ...

..

Training Dynamics of Experiment NN-A, While Leamning the Training

Set Consisting of Font Set I-A Plus the +45°, $22.5° +11.25°
Rotations, and the £3-Pixel (Left and Right) Shifts

Training Dynamics of Experiment NN-B, while Learning the 45°, and
the £22.5° Rotations of Set I-A

..

Training Dynamics of Experiment NN-C, While Learning the +3-Pixel
(Left and Right) Shifts of Font Set I-A ...

..

. Classification Performances for Experiments NN-1 and NN-A, with

Respect to the Various Valuesof T

..

. Classification Performances for Experiments NN-2 and NN-B, with

Respect to the Various Values of T

..

. Classification Performances for Experiments NN-3 and NN-C, with

Respect to the Various Values of T

..

CHAPTER1

INTRODUCTION

The underlying objective of the research reported herein has been to develop an
approach to performing certain pattern recognition tasks using neural networks. This
situation may be characterized as shown in Figure 1, wherein an input pattern is
presented to a "black box" containing a neural network (NN), and the classification of the
input pattern is given by the NN on its output terminals. An important consideration is
how to represent the pattern appropriately for NN processing, and in turn, how the NN is

to represent the classification to the outside world.

INPUT N ENCODED
NEURAL NETWORK
PATTERN ——7/ © ‘ CLASSIFICATION

Figure 1. Pattern recognition approach via neural networks.

PATTERN RECOGNITION

Definition

Pattern recognition (by machine) is typically considered as the categorization of
input patterns into their respective classes via feature extraction, wherein an individual
pattern is characterized by the relations among its constituent features, rather than by the

original measurements via which it was acquired [Wiener, 1986]. The following is a

2
typical definition of the pattern recognition problem: there exists a set of N objects

divided into M nonintersecting subsets, referred to as object classes (for the problem of
this thesis, alphabetic characters); to each object, there corresponds a particular descrip-
tion U; it is required to implement a system which, on the basis of such a description,

indicates the class to which a particular object belongs [Tou, 1984].

Available Approaches

The design of pattern recognition systems typically falls into one of two principal
approaches: (1) decision theoretic and (2) syntactic, or more generally, structural. The
former is based on using decision functions for classifying the patterns. As an example of
this concept, Figure 2 shows the result of plotting the values of measurements (features)
X and Y for exemplars from two pattern classes, W, and W. It is easily noted that for
this case, a line may be drawn that separates the two classes. Such a line is called a deci-

sion boundary, and denoted here by D(X,Y).

o DX,Y)
)\ O [___] ' Exemplar of Class W1
D D O . Exemplar of Class W2
o\ O O Q- Eremmiret
] w1 D O OO
U Ul\o~o
O O
] O o
Origin X

Figure 2. A simple decision function for the separation of classes W, and W,.

3
In general for this approach, a multi-dimensional feature space is defined for the

given problem context, and one or more decision surfaces are derived that define distinct
regions in the space, each corresponding to a different one of the classification categories
for the problem context. The feature values are measured (or, computed from measure-
ments) for a given exemplar, and the classification given to it is determined by which
region in the feature space it falls into. For the present example, the decision surface

D(X.,Y) is linear, but this is not a requirement.

The syntactic approach, on the other hand, is based on the decomposition of pat-
~ terns into primitives, encoding each primitive by a symbol, and then representing the pat-
tern as a string of these symbols. Subsequent processing of the patterns is performed on
the corresponding string of symbols. Figure 3(b) shows the decomposition of two chro-

mosome structures in terms of the primitives defined in Figure 3(a).

AR RVRQ

(abcbabdbabcbabdb) (abcbabeb)

(b)
Figure 3. A syntactic description of patterns: (a) primitives; (b) coded chromosomes.

4
By tracking each chromosome boundary, it is possible to detect and then encode these

primitives; the chromosome on the left in the figure may thus be represented by the string

"abcbabdbabebabdb”, and the one on the right by the string "abcbabeb™.

A NEW APPROACH

Breaking with the tradition of the syntactic approach, which as indicated above,
normally uses sequences of symbols to represent a pattern, this thesis explores a different
structural approach, based on a recently developed knowledge representation formalism
called conceptual graph theory [Sowa, 1984]. The conceptual graph (CG) methodology
suggests itself in the present context because, though not exploited yet, a CG may be
used to represent a pattern in a manner that is amenable to parallel processing [Lendaris,
1988a}, in contrast to the symbol-string representation cited above, which is typically

processed sequentially.

Conceptual Graph Overview

A conceptual graph consists of two kinds of nodes (concept nodes and relation
nodes) and of directed arcs. An arc connects a concept node to a relation node, or a rela-
tion node to a concept node; connections are not allowed between nodes of the same type
[Lendaris, 1988a]. Figure 4 shows the display form of a generic conceptual graph. Here
circles are used to denote conceptual relations, and rectangles to denote concepts. An
alternative linear form, with parentheses around relations, brackets around concept
labels, and arrows to indicate connections is used to represent a conceptual graph (CG)

for easier input and output operations in digital computers.

The Connection Matrix

Once conceptual graph representations are realized over a whole problem context,

if neural networks (NNs) are to be used to process the CGs, attention must be directed

C1

C1 :: Conceptl

C2 :: Concept2

C3 :: Concept3

° C3 C4 :: Conceptd
R1 :: Relationl

R2 :: Relation2

C2

C4

Figure 4. A generic conceptual graph representation.

towards developing a way of coding the CGs so they may be used as input to the neural
networks. A means suggested in [Lendaris, 1988a] is to use a matrix form representation,
called R-C Connection Matrix (R-C CM). The R-C CM is defined to contain one row for
each relation, and one column for each concept in the given conceptual graph. An entry
of 1 is placed in the (row;, column;) slot of the matrix if there exists a connection from
relation node; to concept node; in the conceptual graph. A zero entry is made where there
is no corresponding connection. A -1 is entered to show a connection in the opposite
direction from concept node; to relation node; [Lendaris, 1988a]. Using the conceptual

graph of Figure 4, a 2x4 R-C Connection Matrix is constructed as shown in Table I.

TABLE I
A 2x4 CONNECTION MATRIX FOR THE CONCEPTUAL
GRAPH OF FIGURE 4
Connection Matrix
Conceptl Concept2 Concept3 Conceptd
Relationl -1 1 1 0
Relation2 0 0 -1 1

The Vector Form

In general, there will be a large catalog of concepts associated with a given prob-
lem context, with say numC entries, and similarly, a large catalog of relations, with
numR entries. A template R-C Connection Matrix (R-C CM) consisting of numR rows
and numC columns is used to encode each conceptual graph. Clearly, only a small frac-
tion of the slots in the template R-C CM will be filled in for any specific conceptual
graph. There are a variety of ways to encode such sparse matrices to make storage more
efficient. A method is given in [Lendaris, 1988a] which stores only those rows of the
matrix which contain non-zero entries, and along with this, an R-vector to keep track of
where the rows came from. The R-vector and C-vectors are defined via the R-C CM: the
C-vector has numC slots, and a slot contains a 1 if there are any non-zero entries any-
where in the column of the R-C CM matrix corresponding to the position of the given
slot; the R-vector has numR slots, and a slot contains a 1 if there are any non-zero entries
anywhere in the row of the R-C CM corresponding to the position of the given slot. If
there are no entries in a column (row) of the R-C CM, then the corresponding slot in the
C-vector (R-vector) contains a zero. Table II shows an example of a C-vector and of an

R-vector, as derived from the example of Figure 4.

TABLE I
C- AND R-VECTORS AS DERIVED
FROM TABLE 1
C- and R-vectors
C-vector 1 1 1 1
R-vector 1 1 0 0

In this case, the slots in both vectors will contain 1’s in as many rows and columns as the
number of relations and concepts used in the CG; thus, all rows and columns have at least

one non-zero entry. This will not be true in general.

Neural Networks and Generalization

A neural network (NN) consists of basic computational elements called neurodes
(approximations of the neurons in biological brains) and connections which provide paths
for the outputs of certain neurodes to serve as inputs to other neurodes. The connection
paths have weights associated with them, and these are modified during a process called
"training"” so the NN ends up performing the desired task properly. The training process
begins with a selected architecture (number of neurodes, their general arrangement, and
the connections among them) and a selected "training algorithm." A pattern is presented
to the NN, the NN generates an output classification according to the current setting of its
weights, and if the output classification is wrong, adjustments are made to selected
weights (decided by the training algorithm) in such a way that the NN will likely give a
different output the next time the same input is presented. A different exemplar from the
set of patterns used for training (training set) is presented to the NN, and the the above is
repeated. This process is repeated a large number of times until the NN performs the

desired classification correctly (if this be possible for the selected architecture).

The specific pattern recognition task chosen for the present research was recogni-
tion of upper-case letters of the English alphabet, using a 16x16 pixel, black/white
representation for the input. The starting data set consisted of 10 fonts selected from
those available on the Macintosh computer, originally encoded into a 12x12 grid,
justified to the upper left comer. This data was modified so the letters were each centered
in a 16x16 grid, and additional data were generated to represent various shifts and rota-

tions of each of the letters.

A typical approach in neural network pattern recognition research is to train the
NN on a representative set of data, and then test the NN on a different set of data. If the
NN does well on the new set of data, the NN is said to generalize well; if not, it is said to

generalize poorly. In the present context, there are two types of generalization sought:

8

1) train the NN on some of the fonts, and test it on the remaining fonts -- a general-

ization on fonts;

2) train the NN on fonts with a couple examples of a transformation (e.g., rotation)
for each, and then test the NN on other examples of the transformation (rotation) --

a generalization on the transformation.

3ood generalization is an important quality to strive for in developing any pattern recog-
ition system. The conceptual-graph formalism mentioned in the previous section is
ipplied here specifically to assist in developing a neural network implementation that
sields better generalizations than has been found otherwise.

"

The "straight forward" way of applying a neural network to the given pattern
‘ecognition task would be as shown in Figure 1, with the input consisting of 16x16 = 256
nputs (one for each pixel), and 26 outputs (one for each letter of the English alphabet).
such an experiment was run, and the NN learned all the fonts in the training set, but was

mable to generalize well enough on any of the transformations of the fonts used in the

:xperiment.

The New Approach

An approach for providing better generalization is presented here which consists
of two-stages. This approach depends upon developing a conceptual graph representation
for the patterns of interest (in this case, capital letters of the English alphabet), with the
design requirement that the representation be independent of the rotation, translation, or
size of the pattern (letter) in the scanning window (the CG representation developed is
also independent of some other distortions, but these were not tested in the present exper-
iments). Once such a conceptual graph representation is designed, a NN is trained with
the 16x16 = 256 pixel values as its inputs, and outputs which represent the (previously
described) R-vector and C-vector for the given input pattern (letter). As a separate

development, another NN is trained with the R-vector and C-vector for a given pattern

9

(capital letter of the English alphabet) at the input, and the NN is to provide the correct

answer on one of the output terminals (one for each letter of the English alphabet). After

the two NN are trained to perform the two separate tasks, they can be put in series, with
the output of the first providing input to the second. In this way, the tandem combination

of the two NNs provides a two-stage, composite, NN to solve the desired pattern recogni-

tion problem. See Figure 5.

. . " NN NN
30 21 21 26
=2 A A o e
L] = i [| 26 (Z)
] S
256 Fi ‘ '
' . irst Stage ! Second Stage ;
' ' ;
' " 4
v v Coded Classification
Input Pattern C- and R-vectors

* Numerals denote the number of processing
elements in each layer.

Figure 5. A tandem combination of two neural networks

The remainder of this thesis is organized as follows: Chapter II develops a con-
ceptual graph representation meeting the above design criteria; Chapter III introduces
some of the underlying principles of neural networks, and describes the architecture and
training algorithm selected for the present research; Chapter IV describes the experi-

ments that were run, and gives the results accomplished; and finally, Chapter V gives

some concluding remarks, and suggestions for future research.

CHAPTER II

CONCEPTUAL GRAPH REPRESENTATION
OF INPUT PATTERN SET

As mentioned in Chapter I, one of the tasks before us is (if possible) to develop a
onceptual graph representation of our input pattern set (capital letters of the English
Iphabet) that has the properties of rotation, scale, and translation invariance. This
hapter describes the concepts and relations that were developed to serve as a basis for
uch a representation. A conceptual graph representation for each of the letters was
eveloped, and corresponding to each of these, an R-C Connection Matrix and the
orresponding R-vector and C-vector were developed. A catalog of the matrix and vector

epresentations for each of the 26 letters is given in Appendix D.

KNOWLEDGE SYSTEM DEVELOPMENT

.ine Segment Representation

One of the early steps in typical pattern analysis methods is to break up a pattern
nto its constituent parts; this process is often called "segmentation.” For the case of the
etters of the English alphabet, this process would yield a set of straight line segments to
5epresent the exemplar pattern being processed. One such method is presented in [Badi’i,
.983]. For the purposes of the present thesis research, such a procedure is presumed to
:xist and be available. The concepts and relations defined herein presume that a list of
ine segments (described by their endpoints) is available for the exemplar pattern being

wnalyzed.

11
‘Concept Types and Definitions

Concepts are the product of the human mind. They are implemented in modeling
the real world, selecting abstract features, and ignoring details and complexities inherent
in the real continuous world. Hence, concepts cannot be perfect representations of the
world, given that the world is a medium of continuity, and that concepts are discrete in

nature; they can only be an applicable approximation [Jaensch, 1930].

Given that the exemplar pattern could be provided as a set of straight line seg-
Tents, it was decided to experiment with the following list of concept types as building

slocks for representing the capital letters of the English alphabet:

1) Long line (LL).

2) Short line (SL).

3) Shorter line [or serif] (SE).

4) Curve (CU).
To simplify the definition of these concepts, it is assumed that the scan window is vari-
ibly scaled to fit the pattern of interest during input. Once this window is defined, the
'long," "short," and "shorter" of concept types 1-3 are defined relative to the greatest side

ength of the scan window. One possible way to implement such a variable size scan win-

low is as follows:

e During a first phase, determine the horizontal line that passes through the upper-
most point on the pattern and define this as the top of the scan window. Similarly,
the horizontal line going through the lower-most point on the pattern is used to

define the bottom of the scan window.
e During a second phase, determine the vertical line that passes through the left-
most point on the input pattern and define this as the left edge of the scan window,

with the vertical line passing through the right-most point defining the right edge

12

of the scan window.
The four concept types mentioned above are defined as follows:

Long Line (LL): A "long line" is defined as a line whose length is 80% or more of

the length of the longest side of the scan window.

Short Line (SL): A "short line" is a line whose length is in the range of 20-80% of

the length of the longest side of the scan window.

Shorter Line (SE): A "shorter line" (or serif) is a line whose length is less than 20%

of the length of the longest side of the scan window.
Curve (CU): A "curve" is a connected sequence of three short lines.

[Note: It was decided here to assume a segmentation algorithm of the type defined in
[Badi’i, 1983], which provides the list of line segments in a sequential format. The

present definition for "curve" depends on such a representation being available.]
The following is a segment of an algorithm to test for "curve":

(a) Given a short line L;, test if the next two connected lines are short. If so, the

three line segments L;, L1y, and L ;) constitute a curve, C;.

(b) After a curve C; is defined, let the last line of the curve, L .2), be the start of a

possible next curve C (;,1), and use (a) to test this possibility.

(c) If the test for C) fails, then move pointer to the line that would have been

L ;3) relative to the starting point in (a).

Relation Types and Definitions

Concepts by themselves are not sufficient to define a pattern -- the relations
among the concepts are also important. The following list of relation types were
developed along with the previous list of concept types for characterizing the capital

letters of the English alphabet:

13
1) Touch (T).

2) Abut (A).
3) Intersect (I).
4) Not Available (N/A).

A Boolean function is defined for each of the above, which takes on a value of 1 if the
relation holds, and a value of O if the relation does not hold. For example,
Touch (L;, L+1y) =1 if, and only if, L; touches L;,;). As a general observation, the

Touch and Intersect relation types are commutative, e.g.,

Touch (L;, L;+1y) =Touch (L 1y, Li), 2.1)
Intersect (L;, L +1)) = Intersect (L 1y, L;). 2.2)

The Abut relation, however is not commutative. That is,

Abut (L;, L(,’+1)) # Abut (L (i+1)> L)). 2.3)

The four relation types listed above are defined as follows:

[Notation: L; (my, ny, mz, nz) is a line with start coordinates (m, n,) and end coordi-

nates (m»,, n,).]
Touch:

1) Given a line segment L; (mﬁi),nﬁi),mg),ng)), there exists another line
Ly (m§*D, nf*D, mf*D, nf*D), such that (1) the end-point (m§, n$) coin-
cides with the starting point (m{*?, n{*D), or (2) the starting point (m{’, n{)
coincides with the end-point (n§*?, n {*1)). Similarly, the Touch relation also
applies when (3) the end-point (m&“, ng)) coincides with the end-point
(m§*D, n§*D)y, or (4) the starting point (m{?, n{?) coincides with the starting point

(m§*Y, n{*V). Figure 6(a) shows possibility (1).

14
2) If one of the lines extends beyond the point of intersection the equivalent

amount of a shorter line (serif), this is still considered a Touch. Figure 6(b) shows

the situation.

D)
(m£ ’ n§) (mf”’, nii+1))
Ly
0 (mg“’, n§+D) Serif ------- >
(@ ®)

Figure 6. (a) A Example of a Serif-Free Touch Relation, (b) A Touch Relation Allowing
Serifs.

Abut:

1) Given a line segment L; (m{’, n{), m§, n§’), there exists another line
L) mf*D, nf+D, m§*, n i*1) such that the end point (m%’, n¥?) lies on the
line L ;1), anywhere between m§*D, ni*Dy and (MY, n *1)) In this case the
line L; is said to Abut line L1y, with (m$’, n{) at the common point. Figure 7
shows an example of the Abut relation.

2) In this relation, the abutting line (or Agent) does not extend beyond the point
of intersection. The abutted line (or Object), however, extends past that same point
for a length of type "short." The Abut relation is distinguished from a Touch rela-
tion with serifs by means of the length of the extending line: when the line is of
type "short,” the corresponding relation is an Abut; when the line is of type

"shorter," the corresponding relation is a Touch.

15

Abut

<=

Figure 7. An Example of the Abut Relation.

Intersect:
Given a line segment L; (m{’, n{), m¥, n$)), there exists another line
Ly (m§*D, nf+D m i+1) | p§+1)) sharing a common point with L;, but the com-
mon point of the two (intersecting) lines 40es not coincide with either the starting

nor the ending points of either line. An example of this relation is defined in Fig-

ure 8.

Not Available:

This relation is used to denote a line segment that is independent of or not con-
nected to any of the other line segments that comprise a particular input pattern.
One example where this would occur, is the letter , which is represented by a sin-

gle line segment of type "long."

Conceptual Graph Encoding of the Letters

A unique conceptual graph has been developed to represent each of the 26 capital
letters of the English alphabet using the above four concept types and four relation types.
These CGs were created with the intention that they be independent of specific font
characteristics such as serifs or aspect ratios. As desired, these CGs are inherently

independent of rotation and a number of elongation distortions of the underlying letters

16

Intersect

Figure 8. An Example of the Intersection Relation.

they represent. The CGs are also independent of translation and of scale of the letters, but
in the process described so far (non neural net), these attributes are already taken care of
via the dynamic window scaling. A few example of the conceptual graphs using the

Display Form are given in Figure 9.

It was determined that a maximum of 5 Touch relations are involved in the
representation of any of the 26 letters, a maximum of 2 Abut mlaﬁoné, and 1 each of the
remaining two relations. Similarly, the following limits were determined for the concept
types: 4 long lines, 3 short lines and S curves. A template R-C Connection Matrix con-
sisting of 9 rows and 12 columns was designed to allow for any of the possible combina-
tions satisfying the above constraints. Appendix D contains Tables D.1-D.26 which show
the R-C Connection Matrix and the corresponding C-vector and R-vector for each of the
26 letters, encoded via the specific set of concept types and relation types defined in this
chapter. It should be noted that if different concept types and/or relation types had been
defined, the conceptual graphs could look significantly different. Another item to point
out is that since the representations have been defined to be rotation invariant, the CG for

the letter M is identical to the CG for the letter W. Before despairing of this, the reader

T1

LL1 SL1 LL2

LL2 T3 @“ Cl
o)

Cc4
LL1 LL3 LL4 G5
Letter M LETTER S
SL1 SL1 SL2
(a1 - -
LL1 Cl1
LETTERT LETTER U

Figure 9. Conceptual Graphs Representing The Letters A, M, S, T, and U respectively.

18

should note that even a human observer can’t tell the difference between a generic W and
a generic M unless some collateral information is provided concerning which direction is
up. It was decided, therefore, to allow this ambiguity for the experiments undertaken

here.

COMMENT

This chapter so far has alluded to a pattern recognition process wherein a segmen-
tation phase would take place which would yield an ordered list of line segments. Each of
these line segments was then to be characterized as long, short, or shorter, and following
this, the list was to be scanned for the existence of curves. In the process, the four defined
relations were to be associated with pairs of lines and/or curves, as appropriate. From this
information, a conceptual graph (CG) version of the input pattern would be generated.
The rest of the process has not yet been described, but in principle, the next step would
be to compare (in some appropriate way) the CG for the input pattern against a set of
reference CGs and determine which one the input CG most closely resembles. The result
of the latter step would be the desired classification of the input pattern. The above
hypothetical process was used as a background context only for the purpose of guiding
some of the choices made in defining the concept types, the relation types, and the
mechanical processes for determining them. The result is a set of definitions that could in
fact be used in a system of the type presupposed. For the neural network application
underlying the present research, however, far fewer constraints would have sufficed. It
would only have been necessary for a human pattern recognizer to come up with a set of
concept types and relation types that could be manipulated using the human visual field,
internal processing, and deductive/inductive capabilities to demonstrate that the represen-
tation does the job. Such a set of conceptual graph representations could have served the
role required of them in the neural network experiments described and reported in the

remainder of this thesis.

CHAPTER III

NEURAL NETWORKS

As mentioned in Chapter I, a neural network (NN) consists of basic computa-
tional elements and their interconnections. The elements of an NN carry out their com-
putations essentially at the same time (in parallel), and since there are large numbers of
elements with large numbers of connections, the adjectives "massively parallel” and
"connectionist” are typically applied to neural networks. It should be noted, however,
that there are basic distinctions between neural networks and other kinds of current-day
parallel computers. In NNs, the computing element is a simple one, contrasted to the
(Intel)-386, or -486, level processors in machines such as the Connection Machine,
HyperCube, etc. Also, the connections play a fundamental information storage role in
NNs, whereas in other parallel machines, they serve primarily a data communication
and/or control communication role. In neural networks, the connection paths have
weights associated with them, and these are modified during a process called "training”
(as distinct from programming), which is intended to yield a network configuration that

performs the desired task properly.

HISTORICAL PERSPECTIVE

The following historical comments are provided by my thesis advisor, Dr. George

Lendaris:

The basic ideas underlying the field now called neural networks have their roots in
the two works [McCulloch & Pitts, 1943] and [Hebb, 1949]. McCulloch & Pitts

developed a model which approximates the first-order properties of the neuron --

20

the basic computational element in biological brain -- and showed that when
appropriately interconnected, collections of such model elements could perform a
large variety of logical computations. Donald Hebb made an important observa-
tion concerning how the biological brain modifies the connections between neu-
rons, and even today, virtually all training algorithms embody what is now called

the Hebbian principle.

During the early 1950’s, a seminal line of research was begun by Frank Rosenblatt.
Armed with the McCulloch-Pitts model of the neuron, and the observation of Hebb
about how connections are modified in biological brain, Rosenblatt set out to deter-
mine a methodology for "training" networks of McCulloch-Pitts neural elements to
"learn" desired tasks -- in distinction to programming them to perform the task
[Rosenblatt, 1962]. Rosenblatt named the system he developed the Perceptron.
Fundamental to the Perceptron, and to any trainable system, was the algorithm
used for effecting the training. It was proved mathematically that the Perceptron
training algorithm converges to a solution (i.e., the NN is guaranteed to learn the
given task), if a solution exists. A variety of research efforts were carried out dur-
ing the 1960’s in an attempt to extend the emerging methodology. A key item that
constrained progress during that period, however, was the fact that Rosenblatt’s
guarantee of convergence applied only to single-layer, feed-forward networks. It
was demonstrated in [Minskey & Pappert, 1969] that with such a limitation, neural
networks could not be expected to perform most "interesting” tasks. For a variety
of reasons, the Minsky/Pappert book being a substantial one, research in this field
virtually dried up for some 15 years -- a notable exception was Stephen Grossberg,

who continued his work throughout this entire period.

Finally, two theoretical developments emerged in the present decade that cleared

the way for the large resurgence of research in neural networks currently underway

21
all over the world. One of these was the work of John Hopfield, a physicist at Cal

Tech, who developed a training algorithm, complete with proof of convergence,
for a fully interconnected network [Hopfield, 1984]. This was a major break-
through, both for its substance, and, equally important, for the new way of thinking
about the dynamics of such networks (energy landscapes, etc.) The second
development was the work of David Rummelhart and his group at UC San Diego,
who generalized the training rule for one-layer feed-forward networks of the
1960’s to multiple-layer feed-forward networks [Rummelhart, et al, 1987]. (As a
historical note, it should be noted that this generalization was simultaneously
developed by a researcher at Stanford [Parker, 1987]. Last year, it was discovered
that this result was contained in a Ph.D. dissertation at Harvard University, Statis-

tics Department, from the 1970’s [Werbos, 1974]!)

The theoretical developments cited above helped to raise the vision about the pos-
sibilities for new research in neural networks from the level set by the Minsky &
Pappert book, which stifled neural-network research for so long. Further, the
orders-of-magnitude advances that have occurred in computing hardware technol-
ogy since the 1960’s have made possible experiments now that could not have
been undertaken then. In addition, significant advances have been made since the
1960’s in related arenas such as knowledge representation and cognitive psychol-
ogy. The confluence of all these advances have had a dramatic enabling effect, and

much creativity is now being applied to this area of research.

In 1987, a major conference on neural networks was sponsored by the IEEE,
attracting some 1500 attendees from a broad range of disciplines; this was repeated
in 1988. A professional society for researchers in neural networks (The Interna-
tional Neural Network Society) was inaugurated in 1988, and already has over

3,500 members. In 1989, the IEEE and the INNS held joint conferences (approxi-

22
mately 2000 attendees), and it is planned that these will be held twice a year, one

on the east coast and one on the west coast. Research projects in this area have
mainly been small efforts so far (with DARPA funding now entering the scene, this
may change soon), however, the arena in which this work is being pursued has
become very broad. To gain an appreciation for this breadth, the reader may refer
to the Proceedings of these conferences [ICNN-87][ICNN-88][INNS-88] [IJCNN-
89].

NEURAL NETWORK FUNDAMENTALS

The Computing Element

The basic makeup of the computing element used by neural network researchers
follows from the one originally proposed in {McCulloch & Pitts, 1944]. These models
go by a variety of names, including, "neurons” (the computer context being presumed),
"neurodes” (makes the computer context more explicit), "threshold elements,” "process-
ing elements," etc. It will usually be convenient here to simply use the name ’elements.’
The basic functions of these elements is described here with the aid of Figure 10. The
element has a set of input signals, and a single output signal; each incoming signal is
presumed to be the output of another element, so a similar notation is used for both.
Each signal coming into an element is multiplied by a variable weight (w;;) before enter-
ing the element. If the weight is positive, the input is said to be "excitatory," and if nega-
tive, is said to be "inhibitory." After the weighted signal enters the element, in the first
half of the element, each of the weighted signals is summed to generate a total input

(nety;) as follows:

netpj = Z Wi; Opj 3.1
i

23

Activation
wi1 /- Function
Op 1
4
o e T [M
(output) o,
/ :
Wi
OP" l
Threshold
Connection Summer Unit
Weights Unit

netp; = Z Wji Opj
[
0pj = fj (netyj) "
op; = Current output state of j* element,
for a pattemn p.
wj; = Weight of the connection joining the i**
element to the j* element.
net,; = Weighted sum of input to the j* element.
f () = Activation function (in this case, a step function at T).

Figure 10. A model for the neuron: A basic element in neural networks.

The second half of the element passes the net,; signal through a transfer function
which yields the element’s output signal, op; . For the example shown in Figure 10, the
transfer function is a simple threshold operation. This yields a value of 0,; =0 for

nety; < T, and a value ofopj =M for net,;j 2T

Virtually all elements used in NN research have the same left half (i.e., a sum-
mer); however, there are a number of variations on the transfer function used for the right
half. In particular, the one used for the present research is the one known as the sigmoid

function. Mathematically, this is represented as follows:

1
1+ exp (nety; +T)
i

0jj = 3.2)

24
The Bias Element

In biological brain, the summed value of the inputs to an element typically must
exceed some threshold value before the element generates an output [Hebb, 1949]. The
notion of threshold was described earlier in the Computing Element sub-section. Also
mentioned there was the mathematical equivalence of putting the negative of the thres-
hold on the left side of the equation. In the network of Figure 13, a "bias"” element is
shown providing an input to all elements except those in the input layer. The bias ele-
ment has a fixed output value of 1, but a modifiable weight on each path to the elements
it feeds. The signal reaching each element plays the role of the negative of the threshold
on the left side of the equation mentioned above. Using this construct, the transfer func-
tion of each element is made to be centered about a zero value instead of the threshold
value. This method has the advantage that the threshold itself can be adjusted for each of

the elements during training.

Geometric Interpretation

There is a useful geometric interpretation to the operation of generating the sum
of the weighted input signals. To describe this, let us define a vector
Op (0p1, 0p25--..., 0p;) tO Tepresent the ensemble of input signals; also, define a vector
W; (wj1, wja,....... , Wj;) to represent the corresponding ensemble of weights. It is easily

seen that the dot product O,-W; carries out the same calculations as those in equation 3.1

above.

In analytic geometry, the dot product of two vectors is used to determine the pro-
jection of one vector onto the other. This projection becomes larger as the two vectors
come closer into alignment, and is greatest when the two vectors are pointing in the same
direction. From this perspective, it may be said that the element will "fire” only for those
input signals O, (0p1, 0p2,.-..-.s Op;) Whose projection on the weight vector

Wj (Wils Wjdseeenn. » wj;) has length larger than some (threshold) value T.

25
NEURAL NETWORK LEARNING MACHINE

To quote Herbert A. Simon, learning is defined as any change in a system that
allows it to perform better the second time on repetition of the same task: this change
should be more or less irreversible, in that the learning does not go away rapidly

[Simon,1975].

In general, the process of learning in neural networks could entail the
modification of any or all of the components comprising the NN that could have an effect
on the response of the NN to inputs from its environment. Candidates for modification,
therefore, would include the overall layout and connection pattern of the elements (archi-
tecture), the transfer function associated with each of the elements, and all of the connec-
tion weights. In research reported to date, the algorithm used for training is usually
dependent upon the architecture, which once selected, is not change during iraining. The
researcher must, however, take care in selecting the architecture to suit the problem con-
text. Similarly, though a variety of transfer functions are being explored by different
researchers, once a transfer function has been selected for a given experiment, it is not
typically changed during the training process. This only leaves, then, the weights for
modification during training. The main thrust of NN research has been to develop stra-
tegies (referred to as learning rules or training algorithms) for modifying the NN’s con-
nection weights in a meaningful way, i.e., so the NN will progress closer and closer to a
“correct” solution (if one exists for this particular architecture and transfer function selec-
tion).

In the neural network context, learning is categorized as supervised or unsuper-
vised. Supervised means that a role of “teacher” is built into the process, where the
teacher observes (or provides) the input to the pupil, knows the correct response, moni-
tors the output provided by the pupil, and-takes corrective action accordingly. In most

research as reported, corrective action is taken only if the pupil gives a wrong response (a

26

"punish" action); if the pupil gives the correct response, nothing is done (i.e., no "reward”
action). The training algorithms that derived from the Perceptron during the 1960’s
incorporated what was called the Delta Rule [Widrow, 1962). This name referred to the
correction increment (or, "delta") to be applied to a given connection weight. Rum-
melhart, et al [Rummelhart, 1985] adopted the name Generalized Delta Rule, when they
modified the Delta Rule algorithm for applications in multi-layered feed-forward nets.
The Generalized Delta Rule and its associated architecture were used for the present
research. In the unsupervised case, an explicit teacher role is not present. Corrective
information is deemed to be provided by the environment, and in this case, only a general
right/wrong type of feedback is given, rather than feedback based on knowing exactly

what output should have been given.

The Delta Rule

As mentioned above, the Delta Rule is of the supervised learning category. This
is described in some detail here, as it (and its generalized version) form the basis of the
experiments carried out for this thesis.

During the training process, an input is received by the pupil, and the pupil com-
putes an output according to the settings of all its parameters. The teacher knows the
desired (target) output for the given input, and compares the pupil’s actual output with
the desired output, as shown in Figure 11. The comparison generates an error quantity

(notation) defined as:

Opj = tpj — 0pj, (3.3)

where 1,; is the target output value for input pattern p, and o,; is the output given by ele-
ment j for input pattern p. The amount to correct the weights on the input lines to this

element are given by the following rule:

27

Ap wji =M (1pj = 0p;) 0pi =M 8p; 0p, (3.4)

where A,wj; is the change to be made to the weight on the line going from the i th ele-
ment to the j* element, M is the learning rate to be discussed later, 1,; and op; are as
defined above, and op; is the value of the component of the input pattern presented to

element; .

Pl

P2

Figure 11. Error term 0p; 1> uicana —oo -

Mathematical Basis: Gradient Descent

Though the original Delta Rule was crafted based on the intuition provided by the
Hebb principle (see historical comments, above), it was later demonstrated [Widrow,
1962] to be mathematically equivalent to a steepest descent procedure on a surface
representing the squared value of the error given in Equation 3.3. Thus, training using

the Delta Rule was shown to yield a solution which minimizes the squared error over the

28
training samples. When modified properly, it yields the equivalent of the well known

LMS (Least Mean Squared) procedure. With hindsight, then, the Delta Rule could have

been mathematically derived.

For such a derivation, one must craft a mathematical expression to serve as the
"error function" or "criterion function (CF)" which is to be minimized. To serve the
needs of the hindsight provided above, the CF is defined in terms of the square of the

error defined in Equation 3.2 as follows:

1
E, 2 Z Ipj ""pj)z . (3.5)
j

To effect the gradient descent procedure, the magnitude and direction of the gradient
vector at the operating point must be calculated. The only variable in Equation 3.5 is op;

Taking the partial derivative of E, with respect to the op; yields

3E,

——=—(1,; —0,;) =0,;. (3.6)
30, pi ~ %pj Pi

This equation is not yet useful, because the only parameters available for change in the
NN are the connection weights. In the networks considered by Widrow and Hoff, the
transfer function used for the neural element was a straight line, i.e., linear. For this case,
the output is simply the value of netyj, ie.,

Opj = Z Wi Op,'. (37)

i

This expression can be differentiated with respect to wj;, yielding

aopj

-a—;}; = Op,'. (3.8)

29
Putting equations (3.6) and (3.8) together, results in the following chain rule:

9E, _ OE, 00y
aw_,',‘ B aopj awj,'

= 8j 0opi- 3.9

The above is equivalent to having defined an error surface in a "weight space,”
and to having derived the information needed to make incremental changes in the
weights proportional to their contribution to the direction and magnitude of the gradient

vector. The right hand side of this is the same as the Delta Rule.

Consider an example with two weights going into one output element. In this
case, our "weight space” consists of two dimensions, one for each weight. We add a
third dimension, and label it E, . Assume that we are able to calculate the value of E,
for every possible set of values of (w1 w2) . Since E, is a simple quadratic, the surface

‘will be a quadratic with a unique minimum, as shown in Figure 12.

The minimum point represents the best value for the weights that can be achieved
-- for the case where the NN can perform the desired function perfectly, this value will be
zero. The network will start with some arbitrary values for (w,, wy), and thus will
begin at some arbitrary point on the surface. [It is important to note that though the
shape is assumed known for the purposes of this discussion, the teacher role does not
have this (global) information during the training process. The only information the
teacher has is the (local) gradient information.] Using the Delta Rule, the teacher is

using the gradient information to guide the pupil, step by step, to the bottom of the sur-

face.

All of the discussion surrounding Figure 12 generalizes to multiple weights for
the single-layer, feed-forward case. One then talks about an m-dimensional weight

space, where the CF defines a hyper surface, and the gradient is taken on this hyper sur-

face.

30

Aggregate Mean Squared Error
in Function of the Weight Vector

Delta Vector

t
[}
)
1
L}
i
L}
]
1
L}
t
1
)
1
[}
i
1
1}

)
L}
|
}
1
1
1
[}
L}
1
T
!

1
Current Weight
Ideal Weight Vector

Vector

Figure 12. Error minimization follows the steepest descent on a surface in weight space.

The Learning Rate: i

A term was included in Equation 3.3 called the learning rate, 1} . After calculat-
ing the gradient at the current operating point, the teacher must decide the size of the
step along the path, and in which direction. The value of the multiplier 1} is used to make
this choice. It is desired to go "downhill," therefore a minus sign is made an integral part
of the Delta Rule, and thus the value of 1 must always be positive. From empirical stu-
dies, it has been found that a value for 1 in the interval (0,1) works best. Technically, the
mathematics of the derivation requires a (very) small value for 1; practically, however,
using such small steps requires too many of these steps to reach the destination. On the
other hand, if the step size is too big, oscillations could occur. To visualize this, refer
back to Figure 12. Assume that the NN is currently very close to the minimum value of

the CF surface. If the weights are changed too much (via a large value of the multiplier

31

1), the NN could end up on the other side of the minimum point; the next change would

‘take the NN back to the other side of the minimum point; etc.
THE BACK-PROPAGATION-OF-ERROR METHOD

Introduction

As mentioned earlier, the single-layer, feed-forward NNs for which there existed
a training algorithm with provable convergence properties (available from the 1960°s),
could not perform certain important classes of functions. It was shown in [Minskey &
Pappert, 1969] that for these classes of functions, feed-forward networks with more than
one layer are required. The difficulty encountered by a teacher of a multi-layer net is the
'so-called "credit assignment" problem, i.e., which weight(s) are to blame when the NN
makes an error? The approach taken by Rummelhart, et all [see historical comments
above], followed the constructive method used to give Equation 3.9, namely, the use of
the chain rule for derivatives. The back-propagation-of-errors algorithm [cf. Training
Procedure, pg. 33] is essentially an implementation of the chain rule, in a manner
appropriate to the architecture of the NN being trained. The back-propagation-of-errors
algorithm (often called, simply, Backprop) applies only to NNs with two or more
modifiable layers of weights, with only feed-forward connections allowed. Because
derivatives are required (backward, through the elements), the transfer function in the
elements have to be differentiable. The threshold function used in the Perceptron does
not qualify, as the derivative at the step does not exist. The linear function used for the
earlier proof would be too constraining; a nonlinear transfer function was called for.
Rummelhart, et al, decided on the sigmoid function (also called "squashing function” in

the literature). The description of this was given earlier in Equation 3.2.

32
Feed-Forward, Multilayer NN Architecture

The architecture required for application of the Backprop algorithm is as shown
in Figure 13. The input layer is simply a buffer, and serves to distribute the input signal
from the NN’s environment to the elements in the next layer. Each path from an element
i in the input layer to an element j in the next layer contains a modifiable weight wj;. The
outputs of the elements in the second layer may only be fed "forward" to elements of the
next layer [in contrast to being fed back around to the input of another element in its own
layer, especially to itself]. This process continues for as many layers as are included in
the architecture. The first layer has direct contact with the world "outside" the NN, as it
receives the input from its environment. Similarly, the last layer has direct contact with
the outside world, as this layer provides the outputs that go to the environment. All the
in between layers have no direct contact with the outside world, so are said to be "hid-
den" from the environment. All such layers are called hidden layers. There are no con-
straints imposed by the Backprop algorithm on the number of elements in each layer, nor
on the number of layers in the NN. The number of elements in the input and output
layers is determined by the interface from-to the environment, i.e., the "dimensions” of
the input vector and of the output vector. The number of hidden layers, and the number
of elements in each layer, are determined by the researcher, and this has typically been
based on experience and intuition. Research (as yet unpublished) is going on which

should provide theoretically based assistance for these choices.

The only variables that are changed during training are the ensemble of
modifiable weights on the various paths connecting the elements of one layer to the next.
The information associated with the problem being learned is thus contained in these
weights. There is no particular weight that contains a particular piece of information
from the environment, rather, the information is distributed among all the weights of the

NN. The NN is therefore said to have a distributed representation of the information

33

Bias Element

mc v a O

Input Layer
Layer

1) The Bias element is fully connected to
both hidden layers, and output layer.

2) Before any training can occur, all the
connection weights must be randomized.

Figure 13. The Back-Propagation network: Architecture and flow of information.

associated with the task it is performing, e.g., pattern recognition, associative memory

recall, etc.

The Training Procedure

The Backprop training procedure is implemented in a cycle consisting of a for-
ward pass and a backward pass. In the forward pass, the input is fed through the network

and the output vector calculated. Once the output vector is available, it is compared with

34

the desired (target) output vector, and an error value is computed. In the backward pass,

the error at each output element is "propagated” backward through the various layers,

using the equivalent of the chain rule for derivatives method to compute the changes for

each weight wj;. This process is implemented in four steps:

1y

2)

3

4)

A pattern vector i is presented at the input buffer, and the computed activities are

propagated through to the output layer, where an output value is computed:

0pj = f (mety)). (3.10)

For each element in the output layer, the local error is computed as defined in

Equation 3.11, as well as the corresponding change in weight using Equation 3.12.

8pj = (8pj — 0pj) fj (nety)) (3.11)

A, wii =1 8p; 0pis (3.12)

where fj'(netpj) is the derivative of the element’s transfer function (also called

activation function).

For each succeeding layer (i.e., the hidden layers) -- recall, a specific target value
for the output of the hidden layer elements is not known a priori - - the local error is
given by Equation 3.13 [Rummelhart, et al.,, 1985, pg. 324], and the delta weight

equation remains the same.
8y =1 (nety)) zk; 8pk Wij- (3.13)

Finally, all the connection weights are updated by adding the delta weight values to
the corresponding previous weight values, and another cycle begins. It should be
mentioned that the training process must begin with randomizing all the weight

values in the NN. If this were not done, say if the weights were all set to +1, the

35
delta for each weight would be the same, and the weights would each remain ident-

ical. This would not be very interesting.

The Momentum Term

The Back-Prop method, like all other gradient descent algorithms, follows a
downward path on the weight surface defined by the gradient. A problem arises related to
complex surface shapes (of the Criterion Function in the weight space) such as those typ-
ical for multi-layer NNs. If the surface has a long gentle slope, then one would like to
take large steps to improve efficiency of the search; if there is a steep slope, the steps
must be smaller, to avoid missing important landscape features and/or to avoid getting
into oscillations. To assist in this process, researchers have developed a way of incor-
porating the equivalent of a little memory in the delta rule, so that if the slope is gentle,
bigger steps are taken, and if steep, smaller steps are taken. The term added has been
given the name "momentum term,” because is has the equivalent effect of momentum for
an object with mass moving along a terrain. The equation for Generalized Delta Rule

including a momentum term is given as

Awji(n +1)=n8y; 0y + A Awji(n). (3.14)

We note that The momentum term consists simply of the previous weight change,
multiplied by another coefficient. The latter coefficient must be selected by the

researcher, based on empirically derived experience.

CHAPTER IV

EXPERIMENTS AND RESULTS

As mentioned in Chapter I, the pattern recognition task explored in this thesis was
based on a set of 10 fonts of upper case letters of the English alphabet selected from
those available on the Macintosh computer. The original data was provided to us on a
12x12 upper-left-corner justified grid representation of the individual letters. In order to
provide more space in which to carry out the rotations and translations desired for the
experiments, the grid was enlarged to 16x16, and the letters were moved to the center of

this new grid. This 16x16 data set is shown in Appendix A.

In Chapter II1, it was noted that a feed-forward, multi-layer neural network with
the back-propagation-of-errors training algorithm was selected for the experimental work
discussed here. The elements of such NNs have values on their output lines ranging from
0.0 to 1.0, but generally not reaching either limit due to the sigmoid transfer function. It
is incumbent on the researcher to assign what the values on the lines on the output ele-
ments of the NN are to mean. In the present context, each line corresponds to a letter of
the alphabet, so the value on a line is here assigned the meaning of "confidence that the
present input pattern is the letter represented by the line." A given output line is said to
cast a vote for its letter when the confidence is higher than some specified threshold value

T. The kinds of answers the NN could give then are as follows:

i. none of the lines have values larger than the threshold, therefore no letter is

voted for;

ii. exactly one line has a value larger than the threshold, and thus, exactly one letter

is voted for;

37

iii. many lines have a value larger than the threshold, thus the NN is said to vote
for more than one letter.
n case ii, if the vote is for the correct letter, all is well; if the vote is for the wrong letter,
he NN is said to have an error of committing to the wrong letter (misclassification). In
>ase i, the NN is said to commit to nothing (no vote). All the experiments yielded NNs
that avoided the case iii situation. Later in this chapter, experimental results are given for
various values of T, to show what sensitivity, if any, there is on the choice of the thres-

hold.

Also mentioned in Chapter III was the fact that during the training process, the
patterns from the training set are presented to the NN many times, until the desired map-
ping is learned. A count is kept of the number of presentations, and is used to label pro-

gress of the NN’s learning performance.
PREPARATION OF TRAINING AND GENERALIZING DATA SETS

Partitioning of Alphabet Data Set

The 10 fonts in the original data set were studied and partitioned into subsets
according to perceived similarities/dissimilarities of their general form. This partitioning
is shown in Appendix A. Six of the fonts were grouped together based on their structural
members being 1 pixel (picture element) wide, and the shapes of the letters being gen-
erally the same. This grouping is called Font Set I. Variations in this set arise from dif-
ferent sizes of the letters, and/or presence/absence of serifs on the letters. Four of the
fonts in Set I were selected to be the Training Set, and called Font Set I-A. The remain-
ing two comprise the font Generalize Set, and called Font Set I-B. Set I-B contains one

of the three larger sized fonts among the six, and one of the smaller sized fonts.

The remaining 4 fonts comprise Font Set II, also divided into two subsets. Font

Set II-A contains two fonts that are noticeably smaller than the fonts in Set I (particularly

38
in the horizontal direction). Font Set II-B contains the two fonts that are significantly dif-

ferent from those in Set I, in particular, the structural members out of which the letters
are constructed are all 2 pixels wide (vs. 1 pixel wide for the other fonts), and in addition,

the shapes of the last font are also observed to be substantially different.

The experiments reported in this chapter are based on Font Set L.

Transformations of the Input Data Sets

Since a key issue in the performance of a pattern recognition device is how well it
generalizes to patterns not seen during training, a number of transformed versions of the
basic fonts were created. One set of generalization experiments are based on training
with Set I-A and then testing on Set I-B; this tests for generalization on fonts. Beyond
this, it was desired to test for generalization on translations and on rotations of the letters.
To accomplish this, 8 transformed versions of the base fonts were generated. Two are for
translation: +3 pixel (right) shift, and -3 pixel (left) shift. Six are for rotation: +45°
+22.5° , and +£11.25°. Examples of these transformations are shown in Appendix B.
Generalization tests included 1) training on #45° and £22.5° and then testing for general-
ization with the +11.25° rotation and the original font (corresponding to a 0° rotation);
and 2) training on the two shifted fonts, and then testing with the original font
(corresponding to a 0-pixel shift).

GENERALIZATION EXPERIMENTS USING
THE BASE NN CONFIGURATION

Selection of (First) Neural Network Configuration

The task to be learned by the NN is determined by the representation used for the
inputs and the representation used for the outputs (cf. Figure 1). By altering these
representations, the task is made easier or harder for the NN to learn. As mentioned

above, a particular issue is that the NN be able to generalize well.

39

The starting (or, base) choice made for the present experiments was to let the NN
have 256 input lines, each one receiving a 0/1 input from one of the 16x16 grid points
used to represent the letters. The output of the NN was designed to consist of 26 lines,
one for each of the letters of the English alphabet. Accordingly, the basic NN
configuration consisted of 256 processing elements (PEs) at the input layer, 26 PEs at the
output layer, and two arbitrarily chosen hidden layers: the first hidden layer having 30
PEs, the second having 20 PEs. This (base) configuration is used in all the following

experiments.

The experiments described next are organized into three groupings:

1) generalization on fonts [experiment NN-1]
2) generalization on rotations [experiment NN-2]

3) generalization on shifts [experiment NN-3].

Generalization on Fonts [Experiment NN-1]. As mentioned earlier, Font Set I

was divided into the subsets I-A and I-B for this experimental objective. The training set
for this part of the experiment consisted of Font Set I-A plus all of its 8 transformed ver-
sions (936 patterns), and the generalize set consisted of Font Set I-B plus all of its 8
transformed versions (468 patterns). This experiment required about 70,000 presenta-
tions to reach 100% accuracy on the training set. For all the experiments reported here,
performance of NNs on the training set was typically monitored at intervals of 10,000
presentations, and when the NN reached its peak performance, the training was stopped.
The training dynamics for experiment NN-1 are shown in Figure 14 [to maintain the flow
of the text, all the figures and tables for this discussion are accumulated at the end of the
chapter]. The percent correct classification of experiment NN-1 on the training set and
on the generalizing set are tabulated in Table III for 4 different values of the threshold, T.
The best performance normally shows up with T=0.6, so this value is used for all the

40
comparisons; the errors for NN-1’s generalization test are listed in Table IV. The 74.5%

correct generalization performance may at first seem rather good, but from a real-world

applications point of view, it is not acceptable -- something in the high 90’s is required.

Generalization on Rotations [Experiment NN-2]. The training set for this experi-

ment consisted of the +45° and £22.5° rotations of Font Set I-A (416 patterns), and the
generalize set consisted of the £11.25° and 0° rotations of this font set (312 patterns). As
for all experiments, an untrained version of the base neural network configuration, NN-2,
was used for this experiment. The experiment was terminated after about 176,000
presentations of input patterns, with snap-shots of its performance taken every 10,000
presentations. In this case, the peak performance on the training set was at the 98.8%
level, i.e., there were still errors on some of the patterns in the training set after the train-
ing was deemed complete; these errors are listed in Table VI. The training dynamics for
this experiment are shown in Figure 15, and the percent correct classification on the
training and generalization sets for various values of T are tabulated in Table V. The
errors for the (T=.6) generalization test are listed in Table VII. The 83.2% correct gen-
eralization performance is better than in the case of experiment NN-1, but still not good

enough from the point of view of real-world applications.

Generalization on Shifts [Experiment NN-3]. The training set for this experi-

ment consisted of the +3 (right) and -3 (left) pixel shifts of Font Set I-A (208 patterns),
and the generalize set consisted of the base (unshifted) Font Set I-A (104 patterns).
Another untrained version of the base neural network configuration was used for this
experiment. In the present case, some 20,000 presentations were needed to learn the
task perfectly, so performance snap-shots were taken every 5,000 presentations. The
training dynamics for this part of the experiment are shown in Figure 16, and the percent

correct classification of on the train and generalize sets for various values of T are tabu-

41
lated in Table VIII. The errors for the (T=.6) generalization test are listed in Table IX.

The generalization performance is seen to be extremely poor, with only approximately
2% correct classifications. Requiring that the input pattern be accurately located to

within 2-3 pixels will typically not be acceptable in real-world applications.

GENERALIZATION EXPERIMENTS USING AN NN CONFIGURATION
INCORPORATING THE CONCEPTUAL GRAPH APPROACH

Selection of an NN Configuration for the New Approach

A new NN system structure was developed in an attempt to improve the poor
generalization accomplished with a "standard" representation/encoding method. The new
approach provides a different input/output representation, based on the conceptual graph
ideas described in Chapter II. Referring back to Figure 5 (page 9), this new structure
divides the task into two stages. In the first stage, the C- and R-vector representations
derived in Chapter II are employed as the output, in place of the 26-bit output vector used
in the original structure (used in experiments NN-1, NN-2, and NN-3). This first stage is
trained to give on its output lines the C- and R-vector representations corresponding to
the letter presented on its input lines. The structure of this first stage is the same as in the
original structure, except that there are a different number of output elements
(corresponding to the dimensions of the C- and R-vectors -- in this case, 21). The second
stage of the NN system uses the C- and R-vector representation of a letter at its input

lines, and has 26 output lines, one for each letter of the alphabet.

The basic idea for the two-stage NN system is to develop the second stage once
and for all to translate the C- and R-vector representation into a 26-bit representation
(one bit for each letter). Having done this, the experimental objective shifts to training
the first stage to yield the C- and R-vector representation for the 16x16 pixel pattern on
its 256 input lines. When this is accomplished, the two stages are connected, and the

desired overall input/output mapping is achieved.

42
The experiments to be described next relate to training the first stage to give the

C- and R-vector representations corresponding to the pattern given at its inputs. These
experiments are organized into the same three groupings as in the previous section on

experiments.

Generalization on Fonts [Experiment NN-A]. The training set for this part of the

experiment consisted of Font Set I-A plus all of its 8 transformed versions (936 patterns),
and the generalize set consisted of Font Set I-B plus all of its 8 transformed versions (468
patterns) [same as in experiment NN-1]. The first stage of the new neural network sys-
tem in experiment NN-A, was trained for about 400,000 presentations, with snap-shots of
its performance taken every 10,000 presentations. The training dynamics for this part of
the experiment are shown in Figure 17, and the percent correct classification on the train
and generalize sets for 4 values of T are tabulated in Table X. NOTE THE SIGNIFI-
CANT IMPROVEMENT (21.7%) in the results from those yielded in experiment NN-1
(cf. Table II). The performance here in the high 90 percent category makes this a good
beginning toward satisfying real-world requirements. A listing of the generalization test

errors for this experiment are given in Table XI.

Generalization on Rotations [Experiment NN-B]. The training set for this

experiment consisted of the +45° and +22.5° rotations of Font Set I-A (416 patterns), and
the generalize set consisted of the £11.25° and 0° rotations of this font set (312 patterns)
[same as in experiment NN-2]. An untrained version of the first stage NN was used for
this experiment. In this experiment, the Neural network was trained with 240,000
presentations, with snap-shots of its performance taken every 10,000 presentations. The
training dynamics for this part of the experiment are shown in Figure 18, and the percent
correct classification on the train and generalize sets for various values of T are tabulated
in Table XII. The errors for the (T=.6) generalization test are listed in Table XIII. Again,

there is a significant improvement (this time 10.4%) in the results from those yielded by

43
experiment NN-2 (cf. Table V).

Generalization on Shifts [Experiment NN-C]. The training set for this experi-

ment consisted of the +3 (right) and -3 (left) pixel shifts of Font Set I-A (208 patterns),
and the generalize set consisted of the base (unshifted) Font Set I-A (104 patterns) [same
as in experiment NN-3]. Another untrained version of the first stage NN was used for
this experiment. In this experiment, the NN was trained with 170,000 presentations, with
snap-shots of its performance taken every 10,000 presentations. The training dynamics
for this part of the experiment are shown in Figure 19, and the percent correct
classification on the train and generalize sets for various values of T are tabulated in
Table XIV. The errors for the (T=.6) generalization test are listed in Table XV. This
time, the improvement in the results are DRAMATIC: from 1.9% correct generalization
to 93.3% correct generalization. An implementation that relieves the requirement for

tight position control of the input pattern is significant.

TABLE 1II

PERCENT CORRECT CLASSIFICATION ON TRAINING
AND GENERALIZATION FOR EXPERIMENT NN-1

Threshold Training Results Generalization Results
0.4 82.1% 25.4%
0.5 82.1% 27.1%
0.6 100% 74.5%
0.7 79.3% 0%
0.8 79.3% 0%
0.9 77.8% 0%

Note: The training set consists of font set I-A plus the £45°, £22.5°, +11.25° rotations,
and the +3-pixel (left and right)shifts (936 patterns). The generalization set consists of
font set I-B plus the same 8 transformations (468 patterns).

% Correct Ab
100 —
75 —
50 —+
25 —r
70 | | | |
100 200 300 400

Iterations (x1000)
Figure 14. Training dynamics for experiment NN-1 (T = 0.6), while leaming the training set
consisting of font set I-A plus the £45°, £22.5°, £11.25° rotations, and the +3-pixel (left and
right) shifts.

TABLE IV

ERRORS ON GENERALIZATION TEST
FOR EXPERIMENT NN-1

Errors (74.5% correct, T = 0.6)

Letter Error Type Font Transformation
A ? Helvetica +45°
E (B) # Helvetica +45°
F (E) # Helvetica +45°
G (M) # Helvetica +45°
K ? Helvetica +45°
O ? Helvetca +45°
Q ? Helvetica +45°
R (E) # Helvetica +45°
\Y ? Helvetica +45°
X ? Helvetica +45°
Y (F) # Helvetica +45°
B ? New York +45°
C ? New York +45°
D (G) # New York +45°
G ? New York +45°
H ? New York +45°
K ? New York +45°
N ? New York +45°
O ©) # New York +45°
P (R) # New York +45°
Q ? New York +45°
R ? New York +45°
U (Y) # New York +45°
X ? New York +45°
Y ? New York +45°
A (W) # Helvetica +22.5°
B (H) # Helvetica ' +225°
D (O) # Helvetica +22.5°
E ? Helvetica +22.5°
O ? Helvetica +225°
P ? Helvetica +225°
Q ? Helvetica +22.5°
R (S) # Helvenca +225°
W (N) # Helvetica +22.5°
Y ? Helvetica +225°
B ? New York +225°

TABLE IV

ERRORS ON GENERALIZATION TEST
FOR EXPERIMENT NN-1
(Continued)

Errors (74.5% correct, T =0.6)

New York +225°
New York +225°
? New York +225°%
New York +22.5°
-7 New York +225°
- ? New York + %%g:
New York + 22.
New York + %?’
? New York +225°
-7 Helvetica +11.25°
Helvetica +11.25°
Helvetica + ﬁ%S ©
? Helvetica +11.25°
Helvetica +11.25°
Helvetca +11.25°
7 New York +11.25°
New York +11.25°
J ? New York +11.25°
O ? New York +11.25°
P ? New York +11.25°
S (R) # New York +11.25°
\' ? New York +11.25°
\\ ? New York + 11.25°
A ? Helvetica -11.25°
P ? Helvetica -11.25°
Q (O) # Helvetica - 11.25°
S ? Helvetica -11.25°
U ? Helvetica -11.25°
W (N) # Helvetica - 1}225?’
C (O) # New York -11.25°
D ? New York - 11.25°
J 7 New York -11.25°
O ? New York - 11.25°
P (R) # New York -11.25°
Q ? New York -11.25°
S ? New York -11.25°
vV (©) # New York - 11.25°

47

TABLE IV
ERRORS ON GENERALIZATION TEST
FOR EXPERIMENT NN-1
(Continued)
Errors (74.5% correct, T = 0.6)
X ? New York -11.25°
A 7 Helvetica -225°
H (R) # Helvetica -22.5°
P ? Helvetica -22.5°
Q ? Helvetica -22.5°
R ? Helvetica -22.5°
'Y 7 Helvetica -22.5°
C ? New York -225°
G (Q) # New York -22.5°
J ? New York -22.5°
Q ? New York -22.5°
X ? New York -22.5°
Y 7 New York -22.5°
B ? Helvetica -45°
H (M) # Helvetica -45°
P ? Helvetica -45°
O ? Helvetica -45°
R ? Helvetica -45°
\\Y ? Helvetica -45°
G (O) # New York -45°
(0] ? New York -45°
P ? New York -45°
R ? New York -45°7
U ? New York -45°
R ? Helvetica center
U ? Helvetica center
\%Y ? Helvetica center
C ? New York center
G ? New York center
M (H) # New York center
U ? New York center
X ? New York center
C ? Helvetica left
D (O) # Helvenca ieft
G Q) # Helvetica left
Q ? Helvetica left
C ? New York left

TABLE IV

ERRORS ON GENERALIZATION TEST

FOR EXPERIMENT NN-1

48

(Continued)
Errors (74.5% correct, T =0.6)
F ? New York left
H (X) # New York left
J ? New York left
N ? ‘New York left
U (O # New York left
Y (N) # New York left
A ? Helvetica nght
G ? Helvetica right
M ? Helvetica Tight
W 7 Helvetica nght
C ? New York right
G ? ‘New York night
J ? New York night
M ? New York right
X ? New York night

Note: The generalization set consists of set I-B plus the $45°, £22.5°, +1 1.25° rotations,
and the *3-pixel (left and right) shifts. A ? denotes no vote, and a # denotes
misclassification. Letters in parenthesis denote the network’s misclassification of the

letter in question.

49
TABLE V

PERCENT CORRECT CLASSIFICATION ON TRAINING
AND GENERALIZATION FOR EXPERIMENT NN-2

Threshold Training Results Generalization Results
0.4 87% 47.1%
0.5 89.1% 82.5%
0.6 98.1% 83.2%
0.7 97.9% 80.1%
0.8 97.9% 18.7%
0.9 97.9% 74.9%

Note: The training set consists of the +45°, +22.5° rotations of font set I-A (416 pat-
terns). The generalization set consists of the +11.25° rotation, and the 0° rotation of
fonts set I-A (312 patterns).

% Correct ﬂ\
100 —
]
]
]
|
75 —¢+ :
1
t
1
I
]
1
]
]
50 —+ '
]
]
I
25 — .
1
\
1
]
o] 1
1 175 | | |
100 200 300 400

Iterations (x1000)

Figure 15. Training dynamics for experiment NN-2 (T = 0.6), while learning the +45°, and the
122.5° rotations of font set I-A.

TABLE VI

ERRORS ON TRAINING TEST FOR EXPERIMENT NN-2

50

Errors (98.1% correct, T = 0.6)
Letter Error Type Font Transformation
G # Palatino +45°
N ? Geneva +45°
N ? Palatino +45°
P ? Avant Garde +45°
U ? Geneva +45°
X ? Times +45°
Z 7 Avant Garde +45°
Z ? Palatino +45°

Note: The training set consists of the £45°, and the +22.5° rotations of font set I-A (416
patterns). A ? denotes no vote, and a # denotes misclassification: letter G in font Palatino
(+45°) was misclassified as letter Q.

TABLE VII

ERRORS ON GENERALIZATION TEST FOR EXPERIMENT NN-2

51

Errors (83.2% correct, T =0.6)
Letter Error Type Font “Transtormation
B 7 Avant Garde -11.25°
- C # Avant Garde center
D 7 Avant Garde -11.25°
D 7 Geneva -11.25°
F # Geneva -11.25°
- F 7 Palatino -11.25°
F 7 “Times -11.25°
G N Palatino +11.25°
G ? Palatino -11.28°
H 7 Times -11.25°
J 7 Palatino -11.25°
J 7 Times -11.25°
K ? Avant Garde +11.25°
K ? Palatino +11.25°
K ? Times -11.25°
L 7 Avant Garde +11.25°
L -7 ~Times -11.25°
M ? Avant Garde -11.25°
M 7 Geneva -45°
N ? “Times -11.25°
O ? Avant Garde +11.25°
O 7 Avant Garde -11.25°
O ? Geneva -11.25°
P 7 Geneva +11.25°
P 7 ~Times -11.25°
Q # Palatino +11.25°
Q ? ‘Geneva -11.25°
R ? Geneva +11.25°
R - ? “Geneva -11.25°
S ? Geneva -11.25°
S -7 Times -11.25°
T ? Geneva +11.25°
T -7 Times -11.25°
T 7 Geneva -11.25°
U # ~Geneva +11.25°
U -7 Palatino -11.25°
U ? Times -11.25°
\" ? Times -11.25°
X ? Times -11.25°
X ? Palatino -11.25°

Note: The generalization set consists of set I-A (0° rotation) plus the +11.25° rotations.
A ? denotes no vote, and a # denotes misclassification: letter C in font Avant Garde
(center) was misclassified as letter O; letter F in font Geneva (-11.25°) misclassified as
letter C; letter Q in font Palatino (+11.25°) misclassified as letter G; letter U in font
Geneva (+11.25°) misclassified as letter C.

52
TABLE VII

PERCENT CORRECT CLASSIFICATION ON TRAINING
AND GENERALIZATION FOR EXPERIMENT NN-3

Threshold Training Results Generalization Resuits
0.4 88% 52%
0.5 100% 65.6%
0.6 100% 1.9%
0.7 100% 0%
0.8 100% 0%
0.9 97.1% 0%

Note: The training set consists of the =3-pixel (left and right) shifts of font set I-A
(208 patterns). The generalization set consists of font set I-A in the original format (0-
pixel shift) (104 patterns).

% Correct A

100 —

h
]
|
T

20 | | l
100 200 300 400

Iterations (x1000)

Figure 16. Training dynamics for experiment NN-3 (T = 0.6), while leamning the 13-pixel (left
and right) shifts of font set I-A.

53
TABLE IX

ERRORS ON GENERALIZATION TEST FOR EXPERIMENT NN-3

Errors (1.9% correct, T = 0.6)
Letter Error Type Font Transformation
B (J) # Geneva center
B (I) # Times center
C (2) # Avant Garde center
C @ # Geneva center
C (B) # Palatino center
D () # Geneva center
E (I) # (eneva center
E (I) # Palatino center
G (R) # Palatino center
G (Q) # Times center
K (R) # Avant Garde center
K (I) # Geneva center
K (M) # ‘Times center
M (A) # Avant Garde center
M (O) # Geneva center
M J) # Palatino center
N) # Avant Garde center
N (A) # Geneva center
O @) # Geneva center
[0) # Palatino center
P (1) # Geneva center
P (K) # ‘Times center
R (V) # Avant Garde center
R () # Palatino center
U (D) # Geneva center
V (A) # Avant Garde center
V (T) # Geneva center
W (V) # Avant Garde center
W (I) # Geneva center
X (I) # Palatino center
Y (B) # Avant Garde center
Y (J) # Palatino center
Z (A) # Geneva center
Z (H) # Palatino center

Note: The generalization set consists of set I-A in the original format (0-pixel shift). A ?
denotes no vote, and a # denotes misclassification: letters in parentheses denote the
network’s misclassification of the letter in question. The network responded with a no
vote for all other letters, except for the two it classified correctly (F and I).

TABLE X

PERCENT CORRECT CLASSIFICATION ON TRAINING
AND GENERALIZATION FOR EXPERIMENT NN-A

54

Threshold Training Results ‘Generalization Results
0.4 100% 80.5%
0.5 100% 85.3%
0.6 100% 96.2%
0.7 100% 93.1%
0.8 98.8% 89.7%
0.9 97.3% 85.3%

Note: The training set consists of font set I-A plus the £45°, £22.5°, £11.25° rotations,
and the *3-pixel (left and right) shifts (936 patterns). The generalization set consists of

font set I-B plus the same 8 transformations (468 patterns).

% Correct

100 —

15 —

50 —¢

25 —

! T T
100 200 300 400

Iterations (x1000)
Figure 17. Training dynamics for experiment NN-A (T = 0.6), while learning the training set
consisting of font set I-A plus the +45°, £22.5°, £11.25° rotations, and the £3-pixel (left and
right) shifts.

Y

g = e e e e v = am - = . = e e hm e e o e vm . am e e mm e e e — =

TABLE XI

55

ERRORS ON GENERALIZATION TEST FOR EXPERIMENT NN-A

Errors (96.2% correct, T = 0.6)

Letter Error Type Font Transformation
B 7 Helvetica center
B 7 Helvetica night
G ? New York center
G ? New York -11.25°
1 ? Helvetica +45°
1 i Helvetica -45°
J # New York +45°
J v Helvetica -11.25°
N ? Helvetica center
N ? New York -45°
P ? New York left
R ? New York -22.5%
S ? Helvetica center
S 7 New York -11.25°
S ? New York -22.5°
V ? Helvetca -11.25°
Z ? Helvetica -11.25°
Z ? New York -45°

Note: The generalization set consists of set I-B plus the +45°, £22.5°, +11.25° rotations,
and the £3-pixel (left and right) shifts. A ? denotes no vote, and a # denotes
misclassification: letter J in font New York (+45°) was misclassified as letter 1.

56
TABLE XII

PERCENT CORRECT CLASSIFICATION ON TRAINING
AND GENERALIZATION FOR EXPERIMENT NN-B

Threshold Training Results Generalization Results
0.4 100% 77.1%
0.5 100% 87%
0.6 100% 93.6%
0.7 96.1% 84.2%
0.8 83.4% 78.1%
0.9 75.1% 69.9%

Note: The training set consists of the £45° and +22.5° rotation of set I-A (416 pat-
terns). The generalization set consists of font set I-A plus the +11.25° rotations (312 pat-
terns).

% Correct
100 —
1
]
:
:
75 — !
:
]
|
50 —+ '
]
!
1
:
25 - X
1
]
i
! L] i i -
R 1 240 1 I
100 200 300 400

Iterations (x1000)

Figure 18. Training dynamics for experiment NN-B (T = 0.6), while leaming the +45° and
122.5° rotations of font set I-A.

TABLE XIII

ERRORS ON GENERALIZATION TEST FOR EXPERIMENT NN-B

57

Errors (93.6% correct, T = 0.6)

Letter Error Type Font Transformation
B 7 Avant Garde center
B ? Times +11.25°
B ? Avant Garde -11.25°
C ? Times center
C ? Times -11.25°
G 7 Times center
J ? Palatino center
J # Palatino +11.25°
J ? Palatino -11.25°
K ? Geneva center
K 7 Palatino +11.25°
K ? Palatino -11.25°
N ? Geneva center
Q # Geneva center
Q ? Avant Garde +11.25°
Q ? Times -11.25°
S ? Avant Garde center
S i Palatino center
X i Times -11.25°
Z ? Palatino -11.25°

Note: The generalization set consists of set I-A plus the +11.25° rotations. A ? denotes
no vote, a # denotes misclassification: letter J in font Palatino (+11.25°) was misclassified
as I; letter Q in font Geneva (center) was misclassified as G.

58
TABLE XIV

PERCENT CORRECT CLASSIFICATION ON TRAINING
AND GENERALIZATION FOR EXPERIMENT NN-C

Threshold Training Results Generalization Results
0.4 100% 73%
0.5 100% 82%
0.6 100% 93.3%
0.7 87.8% 83.9%
0.8 80.1% 12.1%
0.9 73.3% 63.8%

Note: The training set consists of the *3-pixel (left and right) shifts of set I-A (208 pat-
terns). The generalization set consists of font set I-A in the original format (0-pixel shift)
(104 patterns).

% Correct
100 —r
]
]
]
1
1
]
]
1
75 — '
(
1
]
]
1
]
t
—]
50 !
1
]
1
1
t
]
]
25 — !
]
1
]
]
[}
1
]
N 1 N P
j 170 | 1 I
100 200 300 400

Iterations (x1000)

Figure 19. Training dynamics for experiment NN-C (T = 0.6), while leaming the +3-pixel (left
and right) shifts of font set I-A.

TABLE XV

ERRORS ON GENERALIZATION TEST FOR EXPERIMENT NN-C

59

"Errors (93.3% correct, T =0.6)
Letter Error Type Font Transformation
C ? Times center
G k3 Times center
K ki Palatino center
M 7 Geneva center
Q # Times center
\'Y ? Times center
Z 7 Palatino center

Note: The generalization set consists of set I-A in the original form (0-pixel shift). A ?
denotes no vote, and a # denotes a misclassification: letter Q in font Times (center) was

misclassified as O.

CHAPTER V
DISCUSSION OF RESULTS AND FUTURE WORK

DISCUSSION OF RESULTS

The experiments reported in the previous chapter demonstrate that the more com-
plex encoding schema developed here for the NN’s output -- based on the conceptual
graph formalism (as suggested in [Lendaris, 1988a]) -- provides a significant improve-
ment in the NN’s capability to generalize well as compared to the case where the more
straightforward output encoding consisting of 26 bits, one for each letter of the alphabet,
is used. The improvements for the three different generalization experiments were as fol-
lows: from 75% to 96% correct generalization on fonts; from 83% to 94% correct gen-
eralization on rotations; and from 2% to 93% correct generalization on shifts. Perfor-
mance in the 90+% category brings such NNs to a level that has possibilities (after more
refinements) for real-world applications. Of course, such applications will no doubt
require recognition of more than just the upper case letters of the English alphabet -- for
example, the lower case letters, numerals, and other commonly used symbols, as a
minimum. This will require augmenting the concept and relation lists introduced in
Chapter II to allow proper description of these expanded pattern sets. More about this

later. The present experiments lay the ground work for such future developments.

In addition to the above (main) conclusion about improved generalization results
via the new output encoding developed here, there are two other observations that appear
of interest. For ease in discussing these observations, certain of the data from the experi-

ments of Chapter IV are tabulated in Table XVI.

61

TABLE XVI
COMPARISON OF RESULTS
Number of Training Iterations Increase Factor
Generalize on: to Peak Performance in: .
" || Basic Encoding | Conceptual Graph Train Generalization
Method Encoding Method | Iterations Results
Fonts 70,000 400,000 5.7 75% — 96%
Rotations 175,000 240,000 1.4 83% — 94%
Shifts 20,000 170,000 8.5 2% — 93%

Comparing columns 1 and 2, it is noted that the NN took significantly longer to
learn the more complex output encoding. The reward for the extra effort, however, was
improved generalization performance. Intuitively, one can surmise that more weight
combinations (paths) in the NN are called into play to effect an output encoding with
more than one element set equal to 1, as compared to the case where only one output ele-
ment is set to 1. It is reasonable to further surmise that this extra amount of co-
involvement of multiple paths would take more effort to learn -- hence, the larger number
of training iterations. Regarding the improved generalization performance, the require-
ment for the NN to satisfy the additional constraints implied by the "extra co- involve-
ment of multiple paths” results in a configuration of weights that somehow better cap-
tures the "structure" of the input patterns, and thus yields better generalization perfor-

mance.

A further observation to be made here relates to the results given in Chapter IV
regarding the classification performance of the NN, depending on the value chosen for
the threshold T. For the purposes of this chapter, the data are presented in graphical form
-- see Figures 20, 21 and 22. Note that in ‘a.Il cases except one, the best results occurred at

T = 0.6 (this is the value used for all cited results). From an implementation point of

62
view, a significant aspect to note is the dramatic drop in generalization performance as T

is increased above 0.6 for experiments NN-1 and NN-3 as compared with experiments
NN-A and NN-C. If the value given by an output element is thought of as a "vote" for a
particular answer, then higher values of T could mean higher confidence votes. When the
elements are successful in achieving correct performance during training on the more
complex output encoding, they end up being able to cast higher confidence votes for pat-

terns not seen during training. The resulting reduced sensitivity on the specific value for

T can be important from an implementation point of view.

% Correct

100

90 -1

80 -

70 @

50— roi

40| /1 Y NN-1

20 -4 !

10 | ‘

N N) e oo _
0\ 1 B f T T
04 05 06 07 08 0.9

Threshold (T)

Figure 20. Classification performances for experiments NN-1 and NN-A, with respect to
the various values of T.

63

% Correct

100—

90 —

80

70—

404

30—

20—

10 4

— . .) .
o \— 3 l ! ! !
04 05 06 07 08 09
Threshold (T)

Figure 21. Classification performances for experiments NN-2 and NN-B, with respect to the
various values of T.

FUTURE WORK

The upper case letters of the English alphabet served as a good starting point for
the development of representation codes based on conceptual graphs, because a rather
small set of concept types ("building blocks") are sufficient for constructing these letters.
The representation codes developed in the present research were demonstrated to yield

significantly better generalization than a more standard 26-bit (1 bit for each letter)

% Correct

100
90
80—
70—
60—
50—
\
! :
' :
40— |
\ :
Vo
30— Vo
v
v
Vo
20— Vol
Y NN-3
LI
10 4 Vi
)
e
U l ;T Te- & ----o----- 9
0 ——rp i l i i —
04 0.5 0.6 0.7 0.8 0.9
various values of T.

Threshold (T)
Figure 22. Classification performances for experiments NN-3 and NN-C, with respect to the

encoding. The new encoding process entailed development of a list of concept types and

relation types, and it only took 4 concept types and 4 relation types to construct the 26
upper case letters of the English alphabet.

An appropriate next step from the present research will be to consider the lower

case letters of the English alphabet (in the same fonts used for the present research).

Even cursory inspection of the lower case letters suggests that the present set of concept

65
and relation types will not suffice to describe these patterns. Thus, an important issue to

be dealt with in the next step, is that of augmenting the concept type list with appropriate
new "building blocks" to allow construction of the new patterns. It may turn out that
some new relation types will also have to be invented to go along with the new concept
types. After this is accomplished, there will be a need to further increase the set of
representable patterns to include the usual special symbols used in standard text --
perhaps the full printable ASCII set. If neural nets can be created to successfully classify
the full ASCII set of characters for a large number of fonts similar to those used in the
present experiments, with good generalization (in the 98+% region) on fonts, rotations,
shifts, and possibly other distortions, then it could be considered a good candidate for

real world applications.

There are fonts whose letter forms are significantly different from those in the 6
font sets used for the present research. Some of the differences include double-width
component lines, different aspect (height/width) ratios, and modifications in basic struc-
tural form of some letters. The reader is invited to peruse Font Sets II-A & II-B in
Appendix A for visual examples of such differences. As a demonstration of difficulties
that are to be expected, the neural net trained in experiment NN-A was presented with the
two fonts in Font Set II-A, and in each case the neural net only got about 20% correct
classification. Even more difficulty was experienced with Font Set II-B: in this case, the

neural net only got about 7% correct classification.

A preliminary effort was taken to develop a different representation code to
account for the double-width lines of the letters in Font Set II-B. The resulting code con-
sisted of 26 bits (rather than the 21 bits previously used), but the neural network did not
even successfully complete the learning phase using this code. Further work on this
aspect is beyond the scope of the present research project, but is an important direction

for future research.

SELECTED BIBLIOGRAPHY

Books and Articles

Badi’i, F. & B. Peikari 1983. "Approximation of Multipath Planar Shapes in Pattern
Analysis," International Journal of Computer and Information Sciences, Vol. 12,
No. 2, pp. 99-110.

Hebb, D. O. 1949, The Organization of Behavior; a Neuropsycological Theory, Wiley,
New York.

Hopfield, J. J. 1982. "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities," Proceedings National Academy of Sciences USA, vol.
79, no. 8, pp. 2554-2558, National Academy of Sciences, Washington, D. C,,
April.

Jaensch, E. R. 1930. Eidetic Imagery, Keagan Paul, Trench, Trubner & Co., London.

Lendaris, G. G. 1988a. "Representing Conceptual Graphs for Parallel Processing,"
Proceedings AAAI Third Annual Workshop on Conceptual Graphs, AAAI-88,
Maryan Kaufman, Los Altos, CA., August.

Lendaris, G. G. 1988b. "Neural Networks, Potential Assistants to Knowledge
Engineers,” Heuristics, Journal of the International Association of Knowledge
Engineers, vol. 1, no. 2, December.

Minskey, M. & S. Pappert 1969. Perceptrons: An Introduction to Computational
Geometry, MIT Press, Cambndge, MA.

McCulloch, W. S. & W. A. Pitts 1943. "Logical Calculus of the ideas Immanent in Ner-
vous Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133.

Parker D. B. 1985. "Leamning Logic,” Technical Report TR-47, Center for Computational
Research in Economics and Management Science, MIT, Cambridge, MA., April.

Rosenblatt, F. 1962. Principles of Neurodynamics, Spartan Books, Washington D.C.

Rumelhart, D. E,, J. L. McClelland & the PDP Research Group 1986. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1, The MIT
Press, Cambridge, MA.

Simon H. A. 1975. Models of Discovery, Boston Studies in the Philosophy of Science,
v. 54, p. 319, Reidel Publishing Co., Dordrecht, Holland.

Sowa, John F. 1984. Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, Reading, Massachusetts.

67

Tou, J. T., & R. C. Gonzalez 1974. Pattern Recognition Principles,
Addison-Wesley, Reading, Massachusetts.

Werbos, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral sciences, (Ph. D. Thesis), Cambnidge, Mass.: Harvard University
Committee on Applied Mathematics, November.

Widrow, B. 1962. "Generalization and Information Storage in Networks of Adaline Neu-
rons," Self Organizing Systems-1962, M. C. Yovits, et al, eds, Spartan Books,
Washington D.C., pp. 435-461.

Wiener, N. 1948. Cybernetics, Wiley, New York.

Proceedings
[For several hundred recent articles on neural network research and applications, consult
the following Proceedings.]

Proceedings of IEEE International Conference on Neural Networks 1987 (ICNN-87),
IEEE, New York.

Proceedings of IEEE International Conference on Neural Networks 1988 (ICNN-88),
IEEE, New York.

Abstract of the First Annual INNS Meeting, Boston, 1988, in Neural Networks, Journal
of the International Neural Network Society, vol.1, Supplement 1, Pergamon
Press, New York.

Proceedings of International Joint Conference on Neural Networks 1989 (IICNN-89),
IEEE, New York.

APPENDIX A

ENGLISH ALPHABET FONT DATA USED
FOR THE EXPERIMENTS REPORTED
IN THIS THESIS

There are ten fonts*, organized into set I-A, set I-B, set II-A, and set II-B as
shown (centered on a 16x16 grid). The names used for these fonts on the Macintosh com-

puter are as follows (left to right):
Setl:

1) Geneva

2) Times

3) Avant Garde

4) Palatino

5) Helvetica

6) New York
SetTl:

1) Cartoon

2) Chicago

3) Monaco

4) Ascham

* The original data, with the letters upper-left-corner justified on a 12x12 grid, were provided to
us by Krist D. Roginski, a graduate student at the Oregon Graduate Center; extracted (ca. 1988)
from selected fonts available on the Macintosh Computer.

69

e

Font sets I-A and I-B.

Al

70

|
4

Setl-B

—|¢

Setl-A

Font sets I-A and I-B.

A.l1 (continued)

Font sets I-A and I-B.

A.1 (continued)

72

SetII-B----mne-3)|

<
=
LY
%
2

L esae

A.2: Font sets II-A and II-B.

73

J¢—eneemuc-aSet-A

Font sets II-A and II-B.

A.2 (continued)

74

SetIl-Bormrenem-|

LN ¥
zd B

|—nmnennae-SetI-A

Font sets I1-A and II-B.

A.2 (continued)

APPENDIX B

EXAMPLES OF TRANSFORMED ALPHABET DATA

The original data set, shown in Appendix A (centered on a 16x16 pixel
black/white representation), was modified to represent the various rotations and transla-
tions needed for the research reported in this thesis. B.1 shows the set of rotations*,
demonstrated here using the Geneva font (see Appendix A). B.2 shows the left and right

shifts**, again demonstrated using the Geneva font.

* These rotations were generated using two C modules, which were written by Dagiao Du, a gra-
duate student at Portland State University, who is working on another pattern recognition project.
** The left and right shifts were implemented by the author.

76

B.1: Rotation transformations (left-to
(Geneva Font shown).

-right): +45°, +22.5°, +11.25°, -11.25°, -22.5°, -45°

to-right): +45°, +22.5°, +11.25°,-11.25°,

B.1 (continued): Rotation transformations (left-
37.5°, -45° (Geneva Font shown).

78

B.1 (continued): Rotation transformations (left-to-right): +45°, +22.5°, +11.25°, -1 1.25°,

37.5°, -45° (Geneva Font shown).

l
R
N
]
.
..
.
L
]

B.2: Translation trans
(Geneva Font shown).

formations (left-to-right): -3-pixel shift, +3-pix

el shift

79

80

-pixel shift, +3-pixel shift

): Translation transformations (left-to-right): -3
(Geneva Font shown).

B.2: (continued

APPENDIX C

CONCEPTUAL GRAPHS OF INPUT PATTERN SET

This section depicts the conceptual graph representations, developed as part of the
present research, of the capital letters of the English alphabet, following the approach

presented in Chapter II.

Each of the pages that follow contains four CGs, representing four consecutive
letters of the alphabet. An effort was made to construct these representations in a manner
which visually resembles the structure of the letter in question, but always giving pre-
cedence to the laws and definitions of conceptual graph theory. For cxaﬁple, the first
page contains the CGs of the letters A and B on top (left to right), and those of Letters C

and D on bottom (left to right).

LL1

T1
Al SL1
Letter A

LL2

C.1: Conceptual graphs of Letters A and B.

paemoey

C2

C1

C3

TS 1 C3
11 2
\
T1 ELI
Letter B
T1
C1
LL1
C2
T3)=

2. Conceptual graphs of Letters Cand D.

Pomdiuinerey

82

T4

T3

C1

@4———— SL1

LL1

Letter E

<— SL3

SL2

SL1

LL1

-@-

LETTERF

C.3: Conceptual graphs of Letters E and F.

Cc2

Cc4

C3

LETTER G

LL1

C.4: Conceptual graphs of Letters G and H.

SL2

SL1

83

LL2

84

LL1 SL1

@ 1™

LETTER I LETTER J

C.5: Conceptual graphs of Letters I and J.

SL1 LL1
Al
LL1 T1
Ny
A2
SL2 @——’ SL1
LETTER K LETTERL

6: Conceptual graphs of Letters K and L.

—

LL2 T3 LL2 LL3
\
’I‘z ‘
T1
| 3
LL1 LL3 LL4‘ LL1 T2
LETTER M LETTERN
C.7: Conceptual graphs of Letters M and N.
C1 T2 1 C1
\
T1 T4
C2 C4
| C2
-
T2 T3
C3 LL1
LETTER O LETTER P

8: Conceptual graphs of Letters OandP.

e

85

9: Conceptual graphs of Letters QandR.

——

Ci
C2 C4
T2 T3
C3
LETTER Q

Il

SL1

T1 C1
C2
T2 c3 {13
ca |
Cs T4
LETTER S

f

LL1

C1
T1
2|
A2 j=isL1
LETTER R
SL1
Al
LL1
LETTER T

C.10: Conceptual graphs of Letters S and T.

86

SL1

T1

SL2

Ci

LETTER U

C.11: Conceptual graphs of Letters Uand V.

LL1

T1

LL2

C.12: Conceptual graphs of Letters W and X.

LL3 LL4
T2
T3
LETTER W

LL2

LL1

LL1

LETTER V

LL2

LETTER X

87

SL1

SL1

SL2

LETTER Y

LL1

)

88

@

LETTER Z

C.13: Conceptual graphs of Letters Y and Z.

SL2

APPENDIX D

CONNECTION MATRICES AND VECTOR FORMS
OF INPUT DATA SET

Each of the 26 tables in this appendix shows the Connection Matrix, and the C-

1d R-vectors for one of the letters of the English alphabet. The connection matrices

~Ms), and the C- and R-vectors were constructed using the algorithm presented in

‘hapter 11, and are based on the conceptual graph representations in Appendix C.

90

D.1: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER A

Connection Matrix

C4 | C5

C3

c2

SL3 | C1

SL2

SL1

112 | LL3 | LI4

L1

VYector Form

1

0j0(00

1
1

C-vector

R-vector

Tl

T4

TS5

Al

n

N/A

D.2: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER B

Connection Matrix

C5

C4

cC2)C3

SL3 | C1

SL2

SL1

LL3 | LI4

LL2

LL1

Vector Form

1
1

C-vector

R-vector

T1

T4

TS

Al

n

N/A

91

D3: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER C

Connection Matrix

Cs

C4

C3

c2

-1

SL3 | C1

SL2

SL1

Li4

L2 | LL3

LL1

Vector Form

0

1
1

C-vector

R-vector

Tl

T4

T5

Al

1

N/A

D.4: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER D

Connection Matrix

Cs

C4

C3

C2

SL3 ; C1

SL2

SL1

L2 | LL3 | LI4

LL1

Yector Form

0

1
1

C-vector

R-vector

Tl

T4

TS

Al

Il

N/A

92

CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER E

D.S:

Cormection Matrix

C5

C2 | C3 | C4

SL3 | C1

-1

SL2

SL1

-1

112 | LL3 | LLA

1L

-1

Vector Form

0

1

1
1

C-vector

R-vector

T1

T4

TS

Al

11

N/A

D.6: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER F

Comnection Matrix

Cs

C4

a3

2

SL3 | C1

SL2

SL1
-1

LL2 { LL3 | LL4

LL1

Vector Form

0

0

0{ojolo0

1
1

C-vector

R-vector

T1

T4

TS

Al

Il

N/A

93

CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER G

D.7:

Connection Matrix

Cs

C3 | C4

Cc2

SL3 | C1

SL2

SL1

L14

LL2 | LL3

LL1

Vector Form

1{1]0

1

0

0

1

C-vector

R-vector

Tl

T4

T5

Al

n

N/A

D.8: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER H

Comnection Matrix

CS

C4

c2jc

SL3 | C1

SL2

SL1

112 | LL3 | LI4

LL1

Vector Form

0

1

0

C-vector

R-vector

T1

T4

T5

Al

nn

N/A

94

D.9: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER 1

Connection Matrix

Cs

C4

cz2i1cC3

SL3 | C1

SL2

SL1

L2 | L3 | L14

LL1

Vector Form
1000000000[0]0

001010

0

0]0

C-vector

R-vector

T1

T4

TS

Al

n

N/A

D.10: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER J

Connection Matrix

C5

C21C3 | C4

SL3 | C1

SL2

SL1

L2 | L3 | L4

L1

Vector Form

0

0

0

6j0(01{0

0

1

C-vector

R-vector

T1

T4

TS

Al

It

N/A

95

D.11: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER K

Connection Matrix

C5

C3 | C4

c2

SI3 | C1

SL2

-1

-1

SL1

-1

LL3 | L4

LL2

55

Vector Form

0

0

0{o0fo0 o]o]o

0

0j0]0}0

1
1

C-vector

R-vector

Tl

T4

TS

Al

nn

N/A

D.12: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER L

Connection Matrix

C5

C2|1C3 |4

SI3 | C1

SL2

SL1

-1

12 | LL3 | LL4

LL1

Vector Form

ooooo[o]o

0

1
1

C-vector

R-vector

T1

T4

T5

Al

n

N/A

96

D.13: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER M

Connection Matrix

Cs

C4

c3

c2

SL3 | C1

SL2

SL1

LL3 | LL4

-1

LL2

LL1

Vector Form

oooooo[o]o

1
1

C-vector

R-vector

T1

T4

TS

Al

nn

N/A

D.14: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER N

Comnection Matrix

C5

C2|1C3 |C4

SL3 | C1

SL2

SL1

LL3 | L14

112

-1

LL1

Vector Form

00000001010

1
1

C-vector

R-vector

T1

T4

T5

Al

n

N/A

97

D.15: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER O

Connection Matrix

CS

C4

-1

C2 | C3

SL3 | C1

SL.2

SL1

LL3 | LL4

LLz

LL1

Vector Form

0
1

C-vector

R-vector

Tl

T4

TS

Al

1l

N/A

D.16: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER P

Connection Matrix

C5

C3 | C4

C2

SL3 | C1

SL2

SL1

LL2 | LL3 | LI4

LL1

Vector Form

0jlo]o

1

1
1

C-vector

R-vector

T1

T4

T5

Al

nn

N/A

98

D.17: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER Q

Comnection Matrix

(o]

-1

C2|C3 |C4

SL3 | C1

SL2

SL1

LL3 | L14

LL2

LL1

Vector Form

0

0

0

1

C-vector

R-vector

T1

T4

TS

Al

11

N/A

D.18: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER R

Comnection Matrix

C5

C4

c3

Cc2

SL2 } SL3 | C1

SL1

-1

LL2 | LL3 | L14

LL1

Vector Form

0

1
1

C-vector

R-vector

T1

T4

TS

Al

1l

N/A

99

D.19: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER S

Commnection Matrix

Cs

C3 | C4

C2

SL3 | C1

SL2

SL1

L14

L2 | L13

LL1

Vector Form

0

1

C-vector | O

R-vector

T1

T4

T5

Al

n

N/A

D.20: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER T

Comnection Matrix

C5

C2}1C3)C4

SL3 1 C1

SL2

SL1

-1

LL2 | LL3 | L14

LL1

Vector Form

oooooloLo

0

0
0

1

0

C-vector

R-vector

T1

T4

TS

Al

n

N/A

100

D.21: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER U

Connection Matrix

C4 | C5

C3

Cc2

SL3 | C1

SL2

SL1

K|

LI4

LL3

LL2

LL1

Vector Form

0

1

C-vector

R-vector

T1

T2

T4

TS5

Al

Il

N/A

CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER V

D.22:

Connection Matrix

C5

C4

C3

C2

SL3 | C1

SL2

SL1

LL2 | LL3 | L14

LL1

Vector Form
00000000{0[0

1
1

C-vector

R-vector

T1

T4

T5

Al

I

N/A

101

D.23: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER W

Connection Matrix

C2|C3|C4)C5

SL3 | C1

SL2

SL1

L3 | LI4

-1

LL2

-1

LL1

Vector Form

0

0

cololojo]o olo]o

1

010

1

1
1

1
1

C-vector

R-vector

T1

T4

TS

Al

nn

N/A

D.24: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER X

Connection Matrix

LL2 | LL3 | L14 | SL1

C4 | C5

c2 a3

SL3 | C1

SL2

LL1

Vector Form

1

0

C-vector

R-vector

T1

T4

TS

Al

8

N/A

102

CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER Y

D.2S:

Connection Matrix

Cs

Cc4

C3

C2

SL3 |1 C1

-1

SL2

1

SL1
-1

LI4

LL3

LL2

LL1

Vector Form

0

010

1

C-vector

R-vector

T1

T4

TS

Al

n

N/A

D.26: CONNECTION MATRIX AND C- & R-VECTORS FOR THE LETTER Z

Connection matrix

Cs

C4

C3

c2

SL3 | C1

SL2

SL1

LL3 | L14

L2

LL1

Vector Form

1
1

C-vector

R-vector

T1

T4

T5

Al

1

N/A

	An Approach to Pattern Recognition of Multifont Printed Alphabet Using Conceptual Graph Theory and Neural Networks
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1508972012.pdf.JqNdf

