
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1988

Implementing ray tracing algorithm in parallel Implementing ray tracing algorithm in parallel

environment environment

Tjah Jadi
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Jadi, Tjah, "Implementing ray tracing algorithm in parallel environment" (1988). Dissertations and Theses.
Paper 3935.
https://doi.org/10.15760/etd.5818

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3935&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3935
https://doi.org/10.15760/etd.5818
mailto:pdxscholar@pdx.edu

,,.,,

AN ABSTRACT OF THE THESIS OF Tjah Jadi for the Master of Science in Electrical

and Computer Engineering presented May 23, 1989.

Title: Implementing Ray Tracing Algorithm In Parallel Environment

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

Faris Badi'i, Chairman
J • •)

//i .. Jack c. Riley

'
Mich a el A. Driscoll

l.Cn

Ray tracing is a very popular rendering algorithm in the field of computer graph-

ics because it can generate highly-realistic images from three-dimensional models.

Unfortunately, the computational cost is very expensive. To speed up the rendering pro­

cess we present both static and dynamic scheduling (balancing) strategies for a multipro-

cessor system. Hence, the load balancing among the processors is the most important

problem in parallel processing. The implementation of the algorithm is based on a

modified octree structure.

IMPLEMENTING RAY TRACING ALGORITHM

IN

PARALLEL ENVIRONMENT

by

TJAHJADI

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University

1989

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Tjah Jadi presented May 23,

1989.

Faris Badi'i, Chairman

Jack Riley

l. Crai

APPROVED:

Rolf Schaumann, Chairman, Department of Electrical Engineering

ACKNOWLEDGEMENT

I would like to give special thanks to my advisor, Dr. Faris Badi'i, for giving me

the opportunity to develop this Ray Tracing algorithm. He also provided guidance in the

management of the research work and assisted with concluding my thesis.

In addition, I wish to thank a number of faculty and staff members and graduate

students in the Electrical and Computer Engineering Department for their help and time.

In particular, Ms. Shirley Clark, Mr. Jack C. Riley and Mr. Janaka Jayawardena are

warmly appreciated for their help with my research and with the preparation of this

thesis.

Portland, Oregon

T. Jadi

TABLE OF CONTENTS

PAGE

ACKNOWLEDGMENTS .. 111

LIST OF TABLES ·· Vl

LIST OF FIGURES .. Vll

CHAPTER

I INTRODUCTION TO RAY TRACING ... 1

II DETERMINING THE RAY EQUATION ... 12

2.1 Determining Valid Ray-Surface Intersections 13

2.1.1 The Ray-Polygon Intersection Test 13

2.1.2 The Ray-Box Intersection Test 16

2.1.3 The Ray-Sphere Intersection Test 17

III A SIMPLE IILUMINA TION MODEL .. 19

3.1 Local Illumination .. 20

3.1.1 Ambient Light.. 20

3.1.2 Diffuse Light .. 20

3.1.3 Specular Light.. 21

3.2 Global Illumination ... 22

3.2.1 Adding Reflection Effects .. 22

3.2.2 Adding Transparent Effects ... 22

v

IV Tiffi PREVIOUS WORK ... 23

V AN OVERVIEW OF Tiffi ALGORITHM ... 30

5.1 Reading the Input File ... 35

5.2 Setting Up the Preprocessing Stage .. 37

5.2.1 Stage I .. 37

5.2.2 Stage II ... 39

5.3 Details of the Algorithm ... 45

5.4 Implementing the Algorithm in Parallel Processing 48

5.4.1 Balance Architecture ... 48

5.5 Calculating the Image Intensity 52

5.6 Writing the Output .. 55

VI RESULTS ... 57

VII CONCLUSION AND FUTURE WORK ... 66

7 .1 Conclusion 66

7 .2 Future Work 67

REFERENCES ... 69

APPENDIX... 75

LIST OF TABLES

TABLEPAGE

I The Number of Ray-Voxel and Ray-Surface Intersection Tests Which

Must Be Performed 45

II Timings of Images Generation Without a Floating Point Chip

for Both Sun Workstation and Balance 8000 60

III Processing Time of images Generated with and Without a Floating

Point Chip 61

IV The Generating Time for Images with Different

Degrees of Complexity ... 61

V The Generating Time for Images with Various Numbers of Surfaces

(with fpc) ... 62

VI The Generating Time for Images with Different Image Resolution 62

VII The Generating Time for Images with Different Numbers of Sampling

Pixels Per Ray ... 63

VIII The Generating Time for Images Produced in Static and Dynamic

Scheduling with Different Value of H (4 Pixels Per Ray) 63

IX Timings of Images Performance for Static and Dynamic Scheduling 65

LIST OF FIGURES

FIGUREPAGE

1. Typical Camera Models: (a) Parallel and (b) Perspective Views.................. 3

2. Ray Tracing Surface Reflections and Refractions .. 4

3. Geometry of Reflection and Refraction Effects 7

4. A Hierarchy of the Intersection Tree 8

5. Testing for Points Inside a Polygon .. 15

6. Finding a Valid Intersection Point Which Lies Within a Box 17

7. Finding an Intersection Point on a Sphere 18 .
8. The Pseudo-Code for Generating Computer Synthesized Images 34

9. A Typical Input Data File ... 36

10. Determining An Active-Region on the Image Plane 38

11. The Hierarchy of an Octree .. 40

12. The Pseudo-Code for Constructing the Hierarchy of

a Modified Octree 41

13. A 2-D Environment is Divided and Constructed by Using the

Octree Method 44

14. A 2-D Space is subdivided and Built by Using the Modified Octree

Algorithm 44

15. The Balance 8000 Architecture .. 49

16. Geometrical Sliding of the Active Region on the Image Plane 50

Vlll

17. Determining Diffuse, Shadow and Specular Effects 53

18. The Subroutine for Calculating the Whitted's Model for

a Light Source 55

19. An Image with 62 Spheres, 1 Polygon, 2 Lights and 4 Sample Pixels

Per Ray.. 57

20. An Image with 15 Boxes, 1 Polygon, 10 Lights and 1 Sample Pixel

Per Ray.. 58

21. An Image with 5 Boxes, 1 Polygon, 3 Lights and 4 Sample Pixels

Per Ray.. 58

22. An Image with 8 Spheres, 2 Polygons, 6 Lights and 1 Sample Pixel

Per Ray.. 59

23. An Image with 48 Spheres, 1 Polygon, 6 Lights and 1 Sample Pixel

Per Ray.. 59

24. The Curves Show the Range Performance of the System 64

25. The Performance of Parallelism. ... 65

26. A Typical Rasterfile Format ... 75

CHAPTER I

INTRODUCTION TO RAY TRACING

This chapter describes the principles of ray tracing. The ray equations and the

light illumination models are discussed in detail in the second and third chapter respec­

tively. The fourth chapter provides a short overview of the previous work that has been
~

(J

done in the field of ray tracing. The fifth chapter consists,details of ray tracing algorithm
'

which has been implemented on Sequent's "Balance 8000" computer system. The last

two chapters discuss results from synthesized image experiments, conclusions, and

suggestions for future work that might be done.

Generating a highly-realistic visual image is one of the primary goals of computer

graphics. A lot of effort has been spent in developing techniques that can be used to gen­

erate high-quality three-dimensional images. Such pictures have broad applications in the

areas of art works, complex molecular models in biochemistry and physics, Computer

Aided Design in engineering, project design in architecture, graphics presentations in

advertising and visual effects in the animated film industry.

In computer graphics, ray-tracing algorithm is one of the most popular technique.5

to generate highly realistic three-dimensional synthesized images. Other methods, such

as Z-buffer, list priority, area subdivision, and scan line hidden-surface algorithms either

could not generate quality images as produced by a ray-tracing algorithm or they failed

to create realistic effects, particularly in the area of shadows, reflections, and refraction

effects. The basic elements that contribute toward realistic images are : three­

dimensional view, shading, hidden surface removal, shadows, specular effects, reflection,

refraction, and color texture.

2

The details of the above realism effects are explained below :

1. Three-dimensional view: Display the images in perspective or parallel view.

2. Shading : Determine the appearance of visible surf aces under an illumination

of light, which causes different shades of intensity at different points on the surf ace.

3. Hidden surface removal : The portions of the object that are hidden and are not

visible to an observer's eye are not shown.

4. Shadows : The shadows cast by the objects under an illuminated environment.

In other words, shadow rays are traced from the visible surf ace in the direction of light

sources in order to determine which surface could not be seen from the light sources.

5. Reflection, refraction, specular effects, and color texture : All of these effects

play an important role in rendering a realistic image of objects with such surface charac­

teristics.

The ray tracing algorithm can handle all of the above realistic features in a single

algorithm. It is a simple way of rendering very high quality realistic images on a raster

display device. This realism is further enhanced by the technique of distributed ray­

tracing described by Cook and Torrance [1]. The ray tracing technique is also very

powerful and easily extendable method available in computer graphics today. It can be

used to simulate primitive objects like polygons, spheres, cylinders, cones, etc. and

almost any type of geometrically defined surfaces, such as quadratic surfaces, polyhedral

volumes, bi-polynomial parametric surfaces, cubic splines, etc .. It can also add a variety

of new effects to the final picture.

Ray tracing algorithm implements a camera model to simulate the model of a

physical environment. It is obvious that camera model is an appropriate approach to gen­

erate computer synthesized images on a two-dimensional raster display device. The cam­

era model uses a viewpoint as its focal point and the two-dimensional image plane (pix­

els array or screen) represents the camera's film. This camera model is divided into two

3

distinct views as described below.

•Parallel view : The viewpoint is located at an infinite distance from the screen.

• Perspective view : The focal point is located in an finite distance from the

screen.

In this camera model, a viewpoint located on one side of the screen "sees" a

modeling scene on the other, as described in Figure 1.

a focal

point

scene

screen

Figure 1. Typical camera models : (a) parallel and (b) perspective views.

Ray tracing is a brute force technique. The basic fundamentals of a ray tracing are

described as follows. The ray tracing techniques are modeled by casting a ray from a

viewpoint to a pixel on the image plane. It traces the light ray's path backward from the

viewpoint through points on the image plane, further into the scene to identify the surf ace

visibility and until to the light source. Some rays are reflected and refracted. They may

encounter more than one surface of the scene before reaching the light source thus alter-

4

ing the surface visibility. The light ray paths from a viewpoint, through a pixel ("n"

number of pixels per ray), into the scene and unto the light source, is shown in Figure 2.

light source

L Q, ... -... - - - - - - - - - - - - - <- - - -
shadow feeler ', '' ,, ''

\ \ '
\ \ ''

---- 11 ' ... ~11 ',

I I '
...

... ""'" ... I I ',
I I '

h.~ ',,
line of sight

view
point
(eye)

I I ""
I '

1

1

' R~1
I\ ',, 1 I I '

I I '

• I I ',, R3 •• I \ 1 , <./ I ""'RO .. ·~ Tl ',, /

image plane
(screen) scene

Figure 2. Ray tracing surface reflections and refractions.

As shown in Figure 2, rays are cast from the viewpoint into every pixel of the

image plane and traced as they are reflected and/or refracted by the objects. When a ray

strikes an object, it may generate new, secondary, rays due to the current surface attribu­

tions. If the the secondary rays are included, these rays must further trace into the scene.

Therefore, the hierarchy of an intersection tree becomes very useful for capturing all the

intensity contributions of each ray to simulate the realism effects on the images. As each

ray encounters an object along it's path, a new tree node must be created. In this case, the

branch nodes in the tree represent the intersection of the ray with objects. The leaves

represent either light sources or rays leaving the surface.

However, in reality, an observer sees an object when light rays propagating from

the light sources strike the objects in the scene. After the rays interact with the model of a

5

physical environment, some of them travel through the viewing plane and finally reach

the observer's eye. As a matter of fact, an infinite number of rays from the light sources

to the observer's eye can be traced. Only those rays that travel through the pixels on the

picture plane and reach the viewpoint generate an image. Hence, most of the light rays

will never reach the viewer's eye. Consequently, the process of following all of the rays

from the light source could become computationally very inefficient.

When the viewpoint is located at an infinite distance from the screen (image

plane), the computation of a ray tracing algorithm becomes very simple, because all the

incoming primary rays are aligned with the z axis of world coordinate axis. This arrange­

ment will simplify the primary ray-surf ace computing intersections.

To produce a synthesized image for a simple opaque surface criterion, each light

ray's path must be traced to determine which objects in the scene, are intersected by the

ray. Thus, every object in the environment must be examined for every ray. If a ray inter­

sects an object in the scene, the intensity at that particular point on the surface is calcu­

lated by using the attributes of the object. Its intensity value will be taken as the current

sample pixel's intensity. However, if a ray had multiple intersections with multiple

objects in the scene, the intersection points are sorted in depth order with respect to

minimum distance from the current point under consideration. The visible surf ace is the

closest distance from the ray's origin. For example, the nearest intersection point from

the viewpoint (ray's origin) will represent the visible surface for that current sample

pixel. However, if there is no intersection, the current sample pixel intensity value will

equal to the background intensity. The intensity value of the current sample pixel under

consideration will be stored in a file, namely an image file. This procedure is repeated for

each pixel on the picture plane. Once the intensity of all the pixels has been calculated,

the results of the synthesized picture can be displayed on the screen in such a way that

they can be perceived correctly. This technique can also be used to generate wire frame

6

line drawing pictures for solid objects in a modeling environment.

However, if the researchers include the realistic features under consideration,

such as shadows, reflections, and refractions, then each pattern of the light ray's path

must be recursively traced to establish at what surface the ray intersects. In this case, a

shadow test for each current intersection points has to be performed. When the ray

encounters a surface, three things may occur, depending on the surface attributions as

follows:

1. An opaque surface : The current sample pixel's intensity is equal to the inten­

sity at that intersection point on surface.

2. A reflective surf ace : The new reflected ray is generated in the direction of

mirroring-reflected (the mirror reflected) model for which the angle of incidence and

reflection are equal. This ray has to be traced further from the current intersection point

through the environment.

3. A transparent surface : The new transmitted ray is generated while passing

through the surface. It traces through the intersected surface of a translucent object. This

ray may also be refracted by the object attributions which is called refracted ray.

In Figure 2, the line of sight Ro is generated by casting a ray through a pixel of

image. When the ray R 0 strikes object 1, it generates a branch node and three new rays

R i, Tl• and LP 1. Ray LP 1 terminates in the light source which is a leaf. Ray R 1 inter­

sects object 2 and creates a branch node and two new rays R 2 and LP 2 . Ray T 1

encounters object 3 and generates another branch node and two new rays R 3 and LP 3 .

After tracing all the rays, a hierarchical tree is constructed with a depth level of four. A

leaf is a terminated node where a ray leaves the scene or reaches the light source, such as

R 5, LP l • etc .. On the other hand, when a branch node is represented, the intersection

between the ray and the object in the scene has to be traced further into the scene.

7

Both reflected and refracted rays are named the secondary light rays. Their effects

will make, fully or partially, a contribution to the pixel's intensity. The primary rays are

created by casting rays from the viewpoint to the points on the image plane. In general,

when a ray strikes a surface of an object it may be spawned into three new rays due to the

surface criterions. This means that each time a ray leaves an object, there are up to three

new rays that have to be traced. They include the diffusion ray, reflection ray, and refrac­

tion ray, as depicted in Figure 3.

I

medium 1 =nl

surface

medium 2 =n2

N

(N+I')

•' ' I '

I ' ' I
18
I

' ' ' ' ' : ~, T
1 kf (N +V') ":.\ Refracted

Light source j

Figure 3. Geometry of reflection and refraction effects. The diffuse reflected ray is not included
because it is scattered equally in all direction.

The calculation of the global illumination model does not end at the first intersec-

tion. Hence, the incoming ray I is reflected from the surf ace in the direction R and

transmitted through the surface in the ·direction T as depicted in Figure 3. At each ray­

surface intersection, the direction of the reflected and the refracted ray can be obtained by

using the geometric optic' s law as follows :

I
V'=~NI

R=V'+2N

(1.0a)

(1.0b)

where:

T =kf (N + V')-N

/if= (Kn2 I V'2 I - IV'+ NI 2)-(112)

Kn = n
2

= the index of refraction
ni

N = the unit normal vector
I = the incident ray unit vector
R =the reflected ray unit vector
T = the refracted ray unit vector

8

(1.0c)

(l.Od)

These three new rays occur due to the surface attributes of the object in the scene.

Unfortunately, diffuse-reflected light generates an infinite number of rays in all direc-

tions. Therefore, the researchers traced rays from reflected and/or refracted light only. By

recursively tracing these reflected and/or refracted rays, researchers could add consider-

able realism effects into the final image. The process, illustrated in Figure 2, is easily

represented by using the tree structure as shown in Figure 4. However, this process is

computationally very expensive.

left = refraction

branch

object 3

object 4

object 5

*
I

v
Tl

' ',

... , ,"'-o'
~./

I

1 object 1
I

: rootnode
,,,#

Rl

object 2
R2

right = reflection

branch

<--- level 1

<--- level 2

<-- level 3

<- - - level 4

Figure 4. A hierarchy of the intersection tree.

9

As a ray is traced through the environment, the tree structure of ray-surface inter­

section is constructed along the way for each pixel on the image plane, because each of

the intersection nodes contributed to the intensities of the root node. Each of the intersec­

tion nodes also added visual realistic effects into a final image. Thereby, after establish­

ing an intersection tree, the final pixel intensity is determined by traversing the tree and

summing the intensity contribution of each node from the bottom up according to the

reflection model, as shown in Figure 4 by the dashed with arrows.

With reference to Figure 4, as intersection nodes are created in the tree, the result­

ing intensity at the current intersection point is calculated. The secondary ray, due to the

attributions of the current surface, are also created. The operation of the intersection tree

first generates the tree node along the left hand "refraction" branch from the root node

until the branch terminates. The branch is then traversed upward, summing the intensity

at each node until the root node is reached. The right hand "reflected" branch from the

root node is then generated and traversed in the direction as shown in Figure 4. In other

words, the downward pointing arrows indicate ray generation, and the upward pointing

arrows indicate intensity generation. The root node intensity is stored into the image file

because it contains the total intensity contributions.

If the above step includes shadow testing, it has been discovered to be very

expensive computationally, particularly for environments that contain complex lighting

schemes.

The ray tracing execution time is linearly increased as a function of variables

named below :

• the number of surf aces in the scene,

• the number of light sources in the environment, and

• the size of a picture resolution.

10

All of these factors control the processing time. For example, the large physical

sized image requires that a larger number of rays have to be traced and more time is

required to generate an elegant image. The researchers also know that added realistic

features, such as testing shadow, reflections, and refractions on the final image are com­

putationally very expensive. This implies the intensity calculation step to be performed

more times, thus, increasing the processing time. In other words, there is a trade off

between highly-realistic images and the time spent to generate a picture synthesis.

Therefore, rendering the scene with moderate complexity takes an enormous amount of

the CPU time.
,,

The prominent drawback of the ray-tracing technique is thatJs extremely slow,
i

because each ray that passes through the picture plane has to be tested against all the

objects in the scene. This process will also find all possible intersections between rays

and objects in the scene, but it is computationally very expensive. This may result in

multiple intersections for multiple objects. If it is the case, then the intersection points

are sorted in depth order with respect to a minimum distance to the current sample point

under consideration. The computations involved in the ray-tracing technique grow

linearly with the numbers of the objects in the scene. Whitted [2] indicated that time

spent in examining the ray-surface intersection in the scene could use as much as ninety

percent of the total computing time for generating an image. The ray tracing algorithm

generally requires an enormous number of floating-point calculations. It is one of the

computer graphics techniques that produces undesirable aliasing or sampling-point

effects on the final image, which is a common problem with raster display algorithm.

The efficiency of the intersection routine has significant impacts on ray-tracing

algorithms, because the most important factors of this method are to determine the visi­

ble surface in the environment. The amount of time needed to examine an object and a

ray intersection depends on the objects' geometrical descriptions. It is very simple to

11

determine the ray-surface intersection of typical objects, such as spheres, cylinders,

cones, and polygons. A sphere has the simplest ray-surface intersection test. The intersec­

tion time for polyhedron objects generally depends on the numbers of the faces that it

contains. Others shapes may require more time to check the ray-surface intersection.

Unfortunately, in general, scenes do not consist of, easy to describe, simple objects, but

instead, they are composed of a mixture of complex objects with complicated descrip­

tion; i.e., polyhedral volumes, quadratic surfaces, and bi-polynomial parametric surfaces.

For this reason, it is often desirable to enclose complex objects' descriptions with simpler

ones, such as rectangular parallelepipeds, spheres, and cylinders. The bounding volume

method was first suggested by Clark [3] and later implemented by Whitted [2]. The com­

mon practice of using the bounding volumes on the basics of the simplicity of the ray­

surface intersection tests, should not be the only consideration. Additional factors that

have to be considered are : projecting the outermost bounding volume's vertices into the

viewing plane to determine a rectangular region whose its rays have high potential to

intersect the objects in the scene, using a cut off contribution threshold intensity to con­

trol the depth of the reflection and/or refraction hierarchical tree structure adaptively, and

implementing a ray tracing algorithm in parallel processing. Therefore, The researchers

must find a way to decrease the time spent in the ray-surface routine and make it more

efficient. Most of the research in this area is concentrated on a better and more economic

method in cutting down the time spent in intersection routine.

CHAPTER II

DETERMINING THE RAY EQUATION

In this algorithm, light rays are represented by straight line equation with a length

parameter. All of the rays start at the viewpoint and pass through pixels on the image

plane. The equation for each ray is described as follows :

Consider that the point of origin, P 0 , of the ray is the viewer's eye. The coordi­

nate of this viewpoint are (X 0 ,Yo,Z0). The next point, Pi, is a pixel on the viewing

plane with coordinates of (X 1 , Y 1 ,Z 1). Casting a light ray from the viewer's eye position

to a point on the image plane generates a light ray's path (line of sight). Therefore, the

current point PcurremCXc,Yc,Zc) lies on the line of sight and its coordinate can be written

as shown in equation (2.0):

P current =PO + (P 1 - Po) X t

or this can be expressed in rectangular components, as described below :

Xc=Xo+(X 1 -Xo)xt

Ye = Yo + (Y 1 - Yo) x t

Zc =Zo + (Zo -Z1) x t

(2.0)

(2.la)

(2.lb)

(2.lc)

where tis parametric of a point on the line (O<=t<:oo), and the slope or direction

of the parametric line is given by dx, dy and dz where :

The above equations become :

Xc=Xo+d.xxt

d.x = (X 1 -Xo)

dy =(Y1 -Yo)

dz= (Z1 -Zo)

(2.2a)

Ye= Yo +dy x t

Zc =Zo +dz x t

13

(2.2b)

(2.2c)

In producing a computer-generated image, the researchers examine the picture

plane per scanline and per pixel from left to right and from top to bottom.

2.1 DETERMINING VALID RAY-SURFACE
INTERSECTIONS

A valid intersection of a ray and a suiface occurs when the following conditions

are satisfied :

1. The intersection point lies on the suif ace.

2. The intersection point lies within the boundaries of the suif ace.

The procedures for checking the validity of the intersection are as follows : Let

P o(X o.Y o.Zo) and P 1(X 1,Y 1,Z 1) be the coordinates of the viewpoint and the current

pixel under consideration on the picture plane respectively.

In this case, the ray-suiface intersection test is divided into the three sections

which are described below.

2.1.1 The Ray-Polygon Intersection Test

Let the equation of the plane and the ray in equation (2.0) be described below :

plane : A x X + B x Y + C x Z + D = 0 (2.3)

where, A, B, C, and Dare constants. The A, B, and Care the components of the

normal vector to the plane.

or

ray: Pcurrent =Po+ (P1 -Po) X t

Xcurrent =Xo + dx X t

Ycurrent = YO + dy X t

Zcurrent = Zo +dz x t

14

The light of sight is the ray directed from the viewpoint through the pixel in the

image plane. The distance along this ray is determined by the parameter t. The value of

the parameter t has to be greater than zero for given ray to intersect the objects in the

scene.

The equation for the light of sight is substituted into the plane equation to find the

value of the parameter t for the intersection of the line of sight and the plane in the scene.

The t-value for the intersection point lies on the surface of the plane is given by :

t = - (A x X o + B x Yo + C x Z o)-(A x dx + B x dy + C x dz) (2.4)

If the value oft in equation (2.4) is positive, it satisfies condition (1) as stated

above. To satisfy the condition (2), the "point-inside-polygon" test can be performed to

see if the current point is contained within the boundaries of the polygon on the plane

surf ace. The procedure will be used in situations where the current point is the intersec­

tion point of the line of sight and the plane surface. The test can be performed by using

the vertex-loop containment algorithm, which is based on the "ray-firing" technique. It is

described as follows :

An infinitely long line is constructed on the plane, starting at the current point and

passing through a test point on the boundary of the surface. The test point is initially

selected to be the center-point of one of the edges of the polygon as shown in Figure 5.

The number of intersections between this test line and all of the sides of the surface being

checked are counted. If this number is found to be even, the point is declared to be out­

side the surface, otherwise it is within the surface therefore on the object.

Consider Figure 5, where ABCDEA represents a typical surface. If S is the

current point and J is the test point, the line SJ can be seen to intersect twice with the

edges of ABCDEA, along DC and EA. The two intersections confirm that Sis outside the

polygon. Similarly, for the current point R and the test point H, the line RH intersects

15

D

Figure 5. Testing for points inside a polygon.

only once with ABCDEA, at DE. Therefore, R is declared to be inside the polygon

ABCDEA.

A difficulty arises when the infinite line of a ray passes through a vertex or coin­

cides with an edges of the polygon. For example line TG passes through vertex A. This

line could be considered to intersect ABCDEA at three places, at G with side CB, at A

with side EA and at A, again, with side AB. Therefore, point T would be declared to be

inside, although it actually lies outside the polygon ABCDEA.

The remedy for this problem is to change the test point which changes the infinite

line of a ray automatically. The center-point of the next edge of the polygon is selected as

the test point and the process is repeated; e.g., instead of G, Fis considered to be the new

test point. The above problem can also be avoided if the line intersection with the vertex

is counted as one crossing instead of two. Therefore, point T could be considered outside

the polygon ABCDEA because line TG has two intersections point at G with side BC and

at A with either side EA or AB. The vertex-loop containment procedure can be made

16

somewhat more efficient by including a "pre-inside" test. The initial test is performed by

checking the current point against all the vertices of the polygon. This assures that the

result of vertex coincidence would be noticed. Therefore, in such a case, there would

always exist a test point for which the infinite line would not pass through any vertex.

The current point under consideration is a valid intersection point if it satisfies

both conditions (1) and (2).

The surface normal, which is needed for intensity, reflection and refraction calcu­

lations, is equal to a cross product of two vectors on the plane. For example in Figure 5,

the vector N can be written as follows :

N=AB xAF.
In this case, N has direction out of the paper.

2.1.2. The Ray-Box Intersection Test

The ray-box intersection test can be accomplished by using the ray-polygon test

previously discussed. A given ray can pierce any of the six sides of the rectangular box.

Therefore, in finding a valid ray-box intersection, a given ray has to be tested against six

of the box's faces and found the closest intersected point to the ray's origin, as depicted

in Figure 6. These procedures can be divided into four steps as described below.

1. Determine the intersection of the ray with the plane of the box side.

2. Check the current intersection point in step 1 to see if it lies within the box

side.

3. Repeat both step 1 and 2 for every side of the box.

4. Find the nearest distance, smallest value of t, of the results of step 3 from the

ray's origin.

Consider Fig 6, where ABCDA represents a two-dimensional box. A given ray R

could be considered to intersect at four places, at E with line AB, at F with line BC, at G

17

A D H - -- - - _,_ - - - - - - plane 4

B I r / 1_C ____ ~l~e 3

I

0 1 plane 1 1 plane 2

Figure 6. Finding a valid intersection point which lies within the a box.

with line CD, and at H with line AD. However, both intersection F and G are the only

points which lie on the ABCDA box. However, point F is the valid intersection point of

the ray Rand the ABCDA box because it has the closest distance from the ray's origin 0.

The above processes could be computationally very expensive.

2.1.3. The Ray-Sphere Intersection Test

Let the equation of a sphere be described as follows :

sphere: (X -Xc)2 + (Y-Yc)2 + (Z-Zc/ =R 2 (2.5)

where Xc,Yc,andZc are the coordinates of the center of the sphere and R is the radius of

the sphere.

The parametric line in equation (2.0) is substituted into equation (2.5) and solved

for the value of the parametric t. With reference to Figure 7, the t-value can be written as

described belows :

IF (b - disc) is less than zero THEN

t = b +disc (2.6a)

ELSE

t = b - disc (2.6b)

where:

V(x, y, z) = Center(x, y, z) -Po(Xo,Yo,Zo)

b =a dot product of a vector Vanda vector of the ray's direction

P 0 and D are the origin and direction of the ray.

b=V·D
disc = b x b - (V · V) + R 2

18

(2.7)

(2.8)

There is a valid intersection point, if the value of both disc and parameter t are

greater than zero. The surface normal vector is equal the vector from the sphere center to

the intersected point, CT , as described in Figure 7.

It
"

(
', c D ············ ____ ',

•• - - I _______..- .. ------------ ----->,\ R p ()'----------_-_ v ------ '\
I<---------

····· ······

Figure 7. Finding an intersection point on a sphere.

CHAPTER ill

A SIMPLE ILLUMINATION MODEL

In computer graphics, the illumination model requires the ability to model the

physical behavior of the light ray particularly within the visible spectrum. Hence, the

researchers should simulate the way light would propagate from the light source to the

modeling environment which passes through pixels on the image plane, and finally

reaches the observer's eye. This lighting model can be implemented by using the

mathematical models of the physical laws governing the use of electromagnetic radia­

tion. Once the physical behavior of the light ray has been established, the researchers can

simulate the three-dimensional modeling environment.

When an incoming light ray strikes an object, part of its energy will be absorbed

by the surface of the object being hit. The rest will be reflected and/or transmitted, thus

making the object visible. The amount of the light absorbed, reflected, and/or transmitted

depends on the surface characteristics. For example, some objects have shining surfaces,

some have dull, or matte surfaces, some have opaque surfaces and others are made of

transparent material. See Figure 3.

The illumination model is used to determine the intensity at the intersection point

between a ray and an object in the scene. The intensity value is either displayed on the

viewing plane or contributed to another intersection point on the ray-surface intersection

tree structure, as described in Figure 4. It is divided into two parts :

•Local and

•Global illumination.

20

3.1 LOCAL Il..LUMINATION

Light reflection as a result of direct illumination from the light source is called

"local illumination".

The local illumination models treat reflection as consisting of three components :

ambient, diffuse and specular intensity. The details of their characteristics are described

below.

3.1.1 Ambient light

The ambient component represents light that produces a constant illumination on

all surf aces, regardless of their orientation.

3.1.2 Diffuse light

Diffuse reflected light can be considered as an incident light that is radiated from

the surface where the ray strikes. This light is evenly scattered in all directions and its

intensity value depends on the surface normal and geometry of the light source. Hence,

the position of the observer's eye does not affect the amount of reflected intensity seen

by the observer. The equation for the contribution of a diffuse light is written as follows :

Diffuse _Intensity = N · L
or

Diffuse_Intensity = INI x IL I cos (a.)

For multiple light sources the Eq(3.0a) can be written as Eq(3.0c).

i=j ::-t ~
Diffuse_Intensity = L (N · Lj)

i=l

(3.0a)

(3.0b)

(3.0c)

21

3.1.3 Specular light

The highlighting of the shining objects is due to specular reflection of light. The

intensity of the reflected value is focused along the reflected vector. Therefore, the posi­

tion of observer determines where the highlighted area appears to be. In other words, the

value of specular light's intensity depends on the coordinate of the viewer's eye. Specu­

lar reflectance is directional and its intensity value depends on both the reflected light

vector and the viewing direction of the current point under consideration. The equation

used for finding the specular light contribution is given below.

Specular _Intensity = (L · Rl

or

Specular _Intensity = (IL I x IR I cos CP) l

For multiple light sources the equation (3. la) becomes :

i=j ~ ~
Specular _Intensity= L (R · Ljl

i=l

(3. la)

(3.lb)

(3.lc)

The Whitted illuminated model for local illumination can be written as follows :

i=j ::-7 ~ i=j ~ ~
lz =la+ L (N ·Lj)+ L (R ·Ljl (3.2)

i=l i=l

where:

• a is the angle between the surf ace normal and the line of light.
• P is the angle between ~e line of light and the reflected ray.
• INI is the magnitude of Ji
• ILi is the magnitude of 4
• IRI is the magnitude of R
• lz is the local intensity contribution at the current point.
• n is the specular shining factor.
• j is the number of the lights source.
•la is the effect contribution of the ambient intensity.

22

3.2 GLOBAL ILLUMINATION

The effect of indirect illumination from other portions of the surfaces in the

environment is referred to as "global illumination". In practice, the indirect effects come

from the secondary rays that are reflected and/or refracted due to the properties of inter­

sected surfaces. These visual effects, such as specular mirroring and transparency contri­

bute to the realism computer generated-images.

In fact, a ray of light leaving the surface of an object is the sum of local and glo-

bal intensity contributions. Each adds a new component to the intensity of the point being

shaded. This can be described as follows :

3.2.1 Adding reflection effects

I =Iz + kr X Ir

3.2.2 Adding transparent effects

I= (1.0 - kr) x Ii+ k, x I,

where:

• kr is the reflective of the surface being hit. Its value is between 0.0 and 1.0.
•kr = 0.0 means the surface is opaque and
• kr = 1.0 means the surface is mirror.
• k, is the transparency of the current surface, which is range from 0.0 to 1.0.
• k, = 0.0 means the surface is opaque.
• k, = 1.0 means the surface is completely transparent.
•I is the total intensity at the current point under consideration.
• Iz is the local intensity contribution at the current point.
•Ir is the intensity of the object hit by the reflected ray.
•I, is the intensity of the surface struck by the transmitted ray.

(3.3)

(3.4)

The following is a short overview of some previous works that have been done.

CHAPTER IV

THE PREVIOUS WORK

The technique of ray tracing was first suggested by Appel [4], and later was

implemented by MAGI (Mathematics Application Group, Inc) [5] to solve the hidden

surface removal problems. MAGI used a term "Geometric Ray Tracing" which is com­

monly referred to as ray tracing algorithm. They mentioned the use of a camera modeled

to simulate the photographies process in reverse order. They also observed that the com­

putation time is largely functions of the size of the image resolution, the number of the

light sources in the scene, and complexity of the geometric model to be rendered. The

Lambert's cosine law is used for calculating the pixel intensities on the picture plane.

Phong [6] proposed a reflection model that could be used to solve many of the

shading problems and this technique has significantly improved the realistic effects of

image synthesis. This model includes the specular term which provides the realistic

highlights from the direct light source reflections. It also supports a multiple light

sources.

In an attempt to overcome the global illumination effects, Whitted [2] extended

the global illumination as mentioned by the Appel. He proposed an improved model for

calculating the intensity of a single ray. His model is based on both the Lambert's Cosine

Law and Phong's reflected model for shading. This improved model takes into account

the intensity contributions due to the ambient light, the reflected rays, and the refracted

rays. The intensity effects of global illumination must be stored in the branches of a ray­

surface intersection tree. After establishing the ray-surface intersection tree, the shader

then traverses the intensities contributions of the branches on the tree from the bottom up

24

to determine the total intensity on each pixel of the image. Consideration of all of these

factors allows the shader to accurately simulate true shadows, reflections, and refractions

on a graphical image synthesis.

The geometries of the bicubic patches, polyhedral volume, quadratic surfaces and

bipolynomial parametrics surface are usually complex and varied geometrically defined

surfaces. For this reason, it is often desirable to enclose the complex object in the scene

with a simpler one which is called bounding volume. Whitted used spheres as a bounding

volume for the object in the scene. If a ray does not intersect the bounding volume of an

item in the scene, then the object can be discarded from further consideration for that

given ray. However, if a ray intersects the bounding volume, then that given ray has to

be tested against an item residing within the bounding volume. Whitted also introduced

an antialiasing technique which defined a given pixel as a square region whose corners

are represented by four sample pixels. The intensities at the four corners of a pixel are

found out; if their intensity values are not nearly equal to each other, then the four sample

pixels of a region is subdivided into four subsquares. This process recursively divides the

sample region until an adequate amount of information about the details within the sam­

ple region is obtained. The intensity contribution of each subregion is weighted by its

area, and the results summed to obtain the pixel intensity. On the other hand, if the inten­

sity values of the four sample pixels are nearly equal and no item lies in the region

between them, then the average of the four values is a good approximation of the inten­

sity within the region under inspection. Whitted also stated that the most time-consuming

step in this algorithm is that of finding the ray-surface intersections which could take up

to ninety five percent of the total computation time.

Whitted and Rubin [7] introduced the hierarchical representation for three­

dimensional objects which have improved both time and space efficiency. These

representations typically consist of the trees whose branches represent bounding volumes

25

and whose terminal nodes represent primitive object elements. This homogeneity struc­

ture allows the visible surface rendering to be performed simply and efficiently. The

advantage of this hierarchical representation is to cut down the visibility calculations.

This is done by searching through the tree structure which corresponds to the terminal

level bounding volumes and the current pixel. The bounding volumes chosen for this

method are rectangular parallelepipeds oriented to minimize their size. During the picture

generation, each ray is transformed to align with the axes of the rectangular paral­

lelepiped, so that the intersection test reduces to simple comparison against the boundary

of the bounding volume. As a result, memory requirements are minimized by expanding

or fetching the lower level of the hierarchical tree only when it required.

Hanhara [8] has outlined a method that uses a symbolic algebraic system to

derive the equation for the intersection between the ray and algebraic surfaces automati­

cally. An exact polynomial root finding algorithm can be used to solve the previous equa­

tion discussed above. Many interesting surface can be represented by low degree of poly­

nomial functions in three-dimensional coordinates.

Hall and Greenberg [9] introduced the concept of adaptive tree-depth control,

which primarily cut down the ray-tracing computation time. Traditionally, ray intersec­

tion trees for all sample point are constructed to an arbitrary depth to ensure that all

relevant reflections and refractions are captured in the final computer generated images.

However, the upper bound of the contribution of any nodes in the intersection tree to the

final intensity of the sample point can be determined according to the diffusive, specular,

reflective, and transmissive properties of the intersected surface. Thus, by establishing a

cut-off contribution threshold, the tree depth can be adaptively controlled during the ray

tracing process. Statistics show that this algorithm will significantly reduce the rendering

process without effecting the image, even for highly reflective environments.

26

Kajiya [10] presented a new improved intersection algorithm for ray tracing of

three types of procedurally defined objects. They are fractal surfaces, prims, and surfaces

of resolution. The fractal surface algorithm performs recursive subdivision adaptively. In

this algorithm, Kajiya used the probabilistic "extents" of the fractal surface to eliminate

unnecessary intersections tests. The fractal surfaces can be treated as bounding volumes

prior to the fractal surface definition. If a ray intersects the bounding volume, it must be

examined more closely. It means that the ray has to be tested against all of the subsur­

faces inside the bounding volume. If the subsurfaces do not intersect for a given ray, they

are discarded from further consideration. In this way, the ray has to be investigated

against only a handful of polygons instead of the large collection of polygons making up

the entire fractal surface. However, if there is no intersection between a given ray and the

bounding volume, the bounding volume is pruned from further consideration. This pro­

cedure will decrease the processing time. A prim is an object generated by translating a

plane curve along the vector for a given distance. For both, prim and surface of resolu­

tion, the three-dimensional ray-surface intersection problem is transformed into a two­

dimensional problem which is solved by the strip tree method.

Weghort, Hooper and Greenberg [11] brought out an important point concerning

an object residing within a bounding volume. The bounding volume should be chosen in

such a way that the volume occupied by the object inside the bounding volume should be

maximum with respect to the bounding volume itself. If the bounding volumes are

selected wisely, this method can substantially reduce the cost of the intersection testing.

Certain objects like spheres, cylinders, and rectangular parallelepipeds do not require

bounding volumes because each type of these objects can be served as its own bounding

volume. For complex objects a set of points which surround the object is determined.

These points define the vertices of some polyhedron which completely encloses the

object. The spheres, cylinders, and rectangular parallelepipeds are the candidate shapes

which are proposed. A bounding volume for each of the three candidate shapes passing

27

through the set of points is proposed. The purpose of a selection, among these three can­

didates shapes, is to maximize the ratio of the volume of the object to the volume of the

bounding volume. An interactive program is provided to override any automatic bound­

ing selection. Weghort, Hooper, and Greenberg also constructed a hierarchical environ­

ment by grouping objects which are in close proximity with each other. Higher level

clusters are created by grouping clusters and/or objects together. When a ray intersects

the outermost bounding volume which is the root node of the hierarchical tree, first the

root node is tested and the hierarchical tree is recursively descends only along those

branches for which intersection occurred. The authors also caution that the advantage of

the hierarchical approach is lost if, by chance, objects which are not close to each other

are placed in a single cluster. In addition to the above, an "item buffer" is constructed. A

typical entry in the item buffer corresponds to a particular pixel in the image plane and

contains the information about the closest object for a ray starting at the viewpoint and

passing through a particular pixel. This information is generated by using the Z-buffer

algorithm which is modified to meet the need of producing an item buffer. The process of

finding the first intersection of a ray with objects is essentially that of finding a visible

plane which is closest to the origin of the ray; the item buffer contains exactly the same

information. Therefore, for the first intersect, the information in the item buff er is used.

The motivation behind this is that :

1. The average depth of the ray intersection tree is not much more than one, and

2. the computation expense of the Z-buffer algorithm is more than compensated

for by the advantage gained by decreasing the time spent in finding the first intersection.

Van Wijk [12a] described an algorithm for finding intersection between a ray and

objects defined by sweeping planar cubic splines. He considered three types of objects,

they are generalized by :

• translational sweeping,

•conic sweeping, and

•rotational sweeping.

28

The primary function of the algorithm is to reduce the three-dimensional intersec­

tion problem into a two-dimensional problem. He proposed another method for the ray

tracing objects defined by sweeping a sphere [12b]. This technique is applicable to the

class of objects generated by sweeping a sphere of varying radius along a three­

dimensional trajectory.

Glassner [13] presented an algorithm based on the octree technique to improve

the efficiency of dealing with visible-surfaces in the ray-tracing processes. In this imple­

mentation, the three-dimensional environment is subdivided into a hierarchical tree of

compartments. In other words, each node of the octree structure represents a smaller

compartment which is called a "voxel". The nodes in the tree are created dynamically,

i.e. a new node can be created when the researchers need it. The subdivision of the outer­

most bounding volume is performed recursively until each voxel contains less than a

minimum number of objects as previously defined. Each ray passing through the viewing

plane has to be tested against the outermost bounding volume or the root node. If a ray

does pierce the root node, it has to be examined more closely. The ray-voxel intersection

tests are reduced to simple comparisons against the limits of the boundary boxes. The ray

has to be traced along the intersected voxel in the octree structure. It also has to be

checked for intersection only with those objects which belong to the current voxel and

not with the entire cluster of objects in the scene. If there is no valid intersection with any

of the objects contained within this voxel, the ray is traced further into the next voxel and

the process is repeated. Glassner used a combination of hash table and linked list to

represent the relationship between nodes in the hierarchical octree. Therefore, finding the

29

node involves generating a name through a numerical manipulation of the intersected

point's coordinates (x, y, z). This method is better because only a portion of the whole­

scene information is examined.

These developments show that : most of the research is concentrated on speeding

up the ray tracing process by reducing the time required for finding the ray-surface inter­

sections. In this case, some of the traditional difficulties have already been overcome,

while breakthroughs are yet to come. Despite the impressive images and decreasing the

magnitude of CPU time spent during the rendering process, there are still many improve­

ments that have to be made. The next chapter discusses the details of implementing the

modified ray-tracing algorithm on a parallel processing system.

CHAPTERV

AN OVERVIEW OF THE ALGORITHM

The ray tracing algorithm was introduced by Glassner[GLAS84], is fairly fast and

can be applied to any defined three-dimensional surfaces. It can also be used to simulate

illuminated environments with any number of light sources and generate shaded images

with multiple shadows and light reflections effects on the final image.

The algorithm developed here is based on the algorithm proposed by Glassner,

with some modifications wherever necessary to speed up the rendering process and the

way a ray would propagate through the environment. The modified algorithm can minim­

ize ray-cell intersection tests because its tree structure consists of fewer empty cells. The

major differences in our implementation involve the way in which the data structures is

stored. For example, Glassner manipulates a combination of hash table and linked list

structures to find a particular node in the tree. On the other hand, the researchers use a

modified octree structure to store data structure in the tree.

Normally, when the researchers generate graphical images, they are interested

only in the surface of the objects in the scene. In this algorithm, the assumptions

researchers made are :

effects.

•the inside of the transparent objects is empty,

•the light source is a white light, and
I

• the light source is represented by a point of light, thus, there are no penumbra

31

The basic fundamental concept of space-tracing or octree technique is to simplify

the way ray-tracing should be performed against a known space, rather than the arbitrary

objects in the space environment. This method makes hidden surface elimination more

efficient because each ray is examined in known space. As a matter of fact, a ray of light

does not know about the objects in its path until it is struck. The ray travels in the three­

dimensional space in attempts for intersection with the objects in the environment.

Therefore, each light ray's path has to be examined against all of the objects in the scene.

The process of finding possible ray-surface intersections require an enormous amount of

CPU time. On the other hand, the space-tracing tests a piercing ray on a known space

against all of the surfaces residing within this current voxel only, rather than the whole

scene. When a ray enters an area of space known to contain objects, most likely a ray­

surface test will be performed. In this process, the researchers could eliminate unneces­

sary ray-surface calculations.

An hierarchical octree structure is normally used in generating solid modeling

pictures. This tree helps to construct the shapes of the objects that are difficult to model

with primitive surfaces; in the content, each subcell of the tree is either occupied by the

surface, or it is empty. Fortunately, a very good scheme for dividing an environment

space according to the objects in the scene and building up an hierarchical octree struc­

ture is available. An octree structure can dynamically divide the scene into smaller cubes

until each cube is either filled with an object or empty. This technique is described very

extensively in articles presented by Doctor and Torborg [14], Meager [15], Tanimoto and

Jackins [16], and Gargantini [17].

At the preprocessing stage, the octree technique encloses the whole-scene within

a bounding volume which is referred to as the "outermost bounding volume". This outer­

most bounding volume is also called the root node of the hierarchy of tree. In this algo­

rithm, the researchers use rectangular parallelepipeds as bounding volumes and its coor-

32

dinates align with the world coordinate axis. This arrangement will simplify the way

rays would travel from one compartment to another. After determining the limits of the

outermost bounding volume, all its vertices are projected unto the viewing plane. From

the projection points in the picture plane, a rectangular region is determined that for a

given ray is likely to intersect the objects in the space environment This region is called

an "active-region".

After determining the active-region, the outermost bounding volume is subdi­

vided into a hierarchical octree of voxels. Each node in the tree attaches a maximum of

eight smaller compartments which are called subnodes. The researchers also keep the list

of the objects residing within each of the compartments. The process of constructing an

octree is dynamic. If any node does not satisfy the octree stopping conditions, then it

must divide the node into eight subnodes recursively until all subnodes meet the stopping

conditions. The modified octree structure is used to represent the relationship between

the nodes in the tree. The octree stopping conditions are as follows :

1. It reaches empty cells.

2. It reaches the octree maximum level.

3. Each voxel contains less than maximum number of objects as previously

defined.

After establishing the octree structure, conventional ray tracing techniques are

applied. The image is processed per scanline and per pixel from left to right and from top

to bottom and checked for each pixel's position on the picture plane. If the pixel's coor­

dinate is outside the active-region, then the background intensity will be taken as the

intensity of the pixel the ray passes through. Otherwise, the researchers find the intersec­

tion point between the ray and the most bounding volume and they examine the current

bounding box more closely. The piercing ray in the cell must be tested against all the

objects within the current cell under investigation. If the ray intersects the object inside

33

the current cell, the ray-swface intersection point calculates. The intensity, reflected ray,

and/or refracted ray at the current ray-surface point are calculated by using the attributes

of the intersected object. If both reflections and refractions effects on the synthesized

images are included, the reflected and/or refracted rays are traced further into the neigh­

boring voxels. However, if there are no ray-surface intersections within the current voxel,

the light ray's path has to trace further into a next neighboring cell. The above process is

continued until the ray passes through the outermost bounding volume or its intensity

satisfies the threshold stopping criterions. The above procedures are repeated for every

pixel on the viewing plane.

In the space-tracing technique, one minute time spent in the preprocessing stage

could be worth several hours of the rendering process because it performed a presorting

the objects in the scene into a spatial (tree) structure. This tree configuration reduces the

number of ray-swface intersection tests have to be performed. Therefore, it is reasonable

to perform preprocessing step in order to reduce ray-environment intersection costs, pro­

viding that the information obtained during preprocessing can be applied to a majority of

these intersection computations.

The algorithm produces an image intensity file. This file is made up of the values

of red, green, and blue components of the colour intensity for every pixel in the picture

plane. It also contains the coordinate of every pixel with the specified colour intensity. A

display program reads the intensity of the image file and displays the computer-generated

image on the screen of Sun workstation 3/110. These can be broken up into two steps, as

follows:

1. Converting the image-file intensity into a "rasterfile" format which is available

in Sun workstation.

2. Using Sun's system commands such as screenload and show to display the

image file onto the screen.

34

These steps allow the ray-tracing program to run in the background mode with

some other processes without interference from the standard I/O. This process will not

slow down the rendering process. The modified ray-tracing algorithm is implemented in

the "C" language on Sequent's "Balance 8000" computer system. At present, the Balance

8000 system is running with eight processors and no a floating point accelerator chip. A

concise pseudo-code for generating computer images synthesis is presented in Figure 8.

Input the data;
Set up the preprocessing stage;
Set the number of processes used, N;
Divide the screen into M smaller packets;
FOR every packet distribute among the processors DO
BEGIN

FOR every Process with a packet DO
BEGIN

FOR every ray (pixel) DO
BEGIN

IF (pixel is located inside the active region) THEN
BEGIN

Intensity = O;
Determine ray equation (generate a ray)
Determine and check each encountered cell along the ray's path
WIBLE ray has not reached the outermost bounding volume DO
BEGIN

IF the current cell is not empty TIIEN
BEGIN

IF (the ray intersects objects) THEN
BEGIN

Determine the reflected ray
FOR every light source DO
BEGIN

Procedure Intensity (Intensity) in Figure 18.
END
IF the object is transparent TIIEN

new ray = determine the refracted ray
IF the object is reflector THEN

new ray = reflected ray
Intensity = Intensity + global contribution

END
ELSE IF no intersection THEN

Intensity = Background Intensity
END

Figure 8. The pseudo-code for generating computer synthesized images.
(Continued on next page.)

Trace the ray's path further into the scene
Determine and check neighboring cells along the ray's path

END
END
ELSE THEN

intensity = Background Intensity
Write the intensity into two by two array, which represents the image
plane

END
END

END
Write the array intensities into an output file.

Figure 8. The pseudo-code for generating computer synthesized images.
(Continued from previous page.)

35

Producing an synthesized image could be considered as multi step processes. The

major steps of the ray tracing algorithm are listed below.

1. Reads the input file.

2. Sets up the preprocessing stage.

3. Details the algorithm.

4. Implements the algorithm in parallel processing.

5. Calculates the image intensities.

6. Writes the output intensity of the colour elements (red, green and blue) into

image file and converts it into a rasterfile format.

Detailed description of the above steps are described in the following subsections.

5.1 READING THE INPUT FILE

In this step, the researchers model the physical environment so it can be easily

simulated through the ray-tracing technique. The system provides an user with the input

file controls, such as it should be easy to specify the viewing (lighting) parameter and to

process the object's description. The format of an input data file is described below.

36

• The coordinate of viewpoint;

•The size of image resolution (W x H);

•The color elements of the background intensity (red, green, and blue);

•The coordinates and brightness of the light sources;

• The characteristic properties of the objects in terms of ambient, diffuse, specu-

lar, shining, reflected, and refracted coefficient;

•The description of objects in terms coordinates and boundaries.

The user can interactively generate an image file according to his/her needs. It is

very convenient to be able to change the input file easily. Files containing above input

descriptions should be produced once and used for many different images. Figure 9

describes a typical input file which contains all the necessary data. It is presented as fol-

lows:

vVxVyVz
resolution H W
b ROB
1 LxLyLz brightness
f amoient(R,G,B) diffuse(R,G,B) specular(R,G,B) shining reflect refract
s Center(x,y,z) Radius
c Base: Center(x,y,z) Radius Top: Center(x,y,z) Radius
box Center(x,y,z) Side(Sx,Sy,Sz)
p n (number of vertices)
Vo(Xo,Yo,Zo)
V 1(X1,Y 1.Z2)

.
Vn(Xn,Yn,Zn)
where:
v = viewpoint
resolution = image resolution
b = background color intensity
1 = light source
f = the object's attributions
s = sphere
c = cone or cylinder
box = box
p = polygon

Figure 9. A typical input data file.

37

The resolution size determines the size of the rendering images file which is made

up of the width (W) and height (H) of the viewing plane (note, a default picture's size is

equal to 512 by 512). The multiplication of the Wand His equal to the total number of

rays that have to be traced. Therefore, the larger the image's resolution the more rays

must be traced; it requires more time to produce a computer-generated image.

Since the rendering process is functions of the image resolution, the number of

objects in the scene, and the degree complexities of the image, any changing of these

variables will effect the processing time. For example, a smaller image file will require

lesser time or a higher degree images complexity will require longer processing time to

generate a synthesized image.

5.2 SETTING UP THE PREPROCESSING STAGE

The main priority of this stage is to cut down the computation costs during the

rendering process. This stage can be broken into two distinct stages.

5.2.1 Stage I

At first, the researchers determined the scene's outermost bounding volume,

which is called the octree root node. As its vertices were projected into the picture plane,

a rectangular region on the image plane was determined. This region is called an

"active-region" because a given ray that passes through this region has a high potential to

intersect the objects in the scene; therefore, the ray must be inspected more closely. How­

ever, if a given ray passes a pixel located outside an active region, the ray should be dis­

carded from further consideration or it should set the pixel intensity equal to the back­

ground intensity. This operation will speed up the first-level rays through the viewing

plane. Figure 10, describes procedures of determining the active region on the image

plane.

YI/
-----..

x

(ActiveX_min,

Active Y _min)

(ScreenX_min,

Screen Y _min)

b4 b3

./j

j_.:bl j./ I b2 .. ·:·=-:-····
.. ·· .-::

/: :
: t".... :° :: I ::

:"I :-..: I~.; .
· I · ."' I, ••

: I : : ' •. •·
:" I .: .: b 1 ~;: /

~
(ScreenX_max,

ScreenY_max) : I:· ;° ;. - ;"
fl' ...-~ ~: ;° _.;: I _."-

. • : ;: I :
. . _.;: r·
. :: /1:. -z: ,\

............ -::: (ActiveX_max,

Active Y _max) / ... -~:::/ _.::('.>

,%~:,<'>
6~ ..

the screen

eye

Figure 10. Determining an active-region on the image plane.

38

Consider Figure 10, as the vertices of the outermost bounding volume

(fl • f 2, f 3, f 4, b 1 , b 2, b 3 , b 4) are projected into the image plane, the projecting points

lf'1.f'2, f'3, f'4, b'1, b'z, b'3, b'4) are obtained. From these projecting points, the

researchers sort and find the active region boundary in terms of ActiveX_min,

ActiveX_max, ActiveY_min, and ActiveY_max as depicted in Figure 10. For a given ray

39

that passes through the active region is likely to intersect the objects in the scene. In other

words, the physical size of the active region will play an important role in determining

the rendering process.

5 .2.2 Stage II

The primary goals in this stage are to build a data base system that will allow the

arbitrary ray-environment intersections to be calculated as quickly as possible. This data

base is known as a hierarchical octree structure; it contains the information necessary to

speed up the rendering operations.

The data base adaptively divides the environment space into a hierarchical struc­

ture of smaller compartments, with its axes aligned with the cartesian axes of the world

coordinate system. The coordinate axes arrangement will simplify the way an arbitrary

light ray would travel from one compartment to another. The subdivisions are based on

the objects in the scene, which means that a subspace with high objects complexity can

be recursively subdivided into smaller and smaller subspaces until it reaches the octree

stopping criteria. As a space is divided into eight octants, an octant number is assigned

to each node, as shown in Figure 1 la.

The researchers also determine which cells the objects in the scene belong to.

This operation can be implemented by keeping a list of all objects whose surfaces inter­

sect or reside within a cell. Each compartment (voxel) must contain sufficient informa­

tion to fully describe the node description. This information includes the voxel's boun­

dary and ID number, object's normal vector (if it is possible), objects' attributions, the

ray's origin, the ray's direction, and reflected ray. A voxel (cell) can be represented as a

node in the tree. The octree consists of leaf nodes and non-leaf nodes, each of them

described as follows :

40

root node

6 7

6 6 ·o ·o b
3 4 5 6 7

(a) (b)

root node

(c)

Figure 11. The hierarchy of an octree.

1. The leaf node : it consists of an object or no object.

2. The non-leaf node: it is also called the branch node which contains leaf nodes

and/or branch nodes.

The hierarchy of an octree is organized in such a way that a node in the tree has a

maximum of eight child nodes directly attached to it. A pseudo-code for constructing a

modified hierarchical tree depicted in Figure 1 lc, is presented in Figure 12.

PROCEDURE Octree (node); {node is a branch in the tree}
BEGIN

IF objects > maximum object in the cell THEN
BEGIN

Set_flag_type
Create_subcells (node, type);
Increment tree level;
Create_octree (node);

END
ELSE IF objects = 2 THEN
BEGIN

IF two objects are overlap THEN
Set_flag_type

ELSE THEN
Sorting (node, type);

END
ELSE IF objects > 2 THEN

Sorting (node, type);
ELSE IF no object THEN

error no object in the scene
END

(a)

PROCEDURE Sorting (node, type)
BEGIN

END

Set_ flag_ type
Create_subcells (node, type);
Determine_mid_point (node, type);
Sort_theobjects (node, type);
Links_number_subcells (node, type);
Determine_ cell_ bounding_ volume (node, type);

(b)

PROCEDURE Create_octree (node) {node is a branch in the tree}
BEGIN

IF tree level <= maximum tree level THEN
BEGIN

Determine_mid_point (node, 8); ;Determine the mid axes of the cell
Sort_theobjects (node); ;Determine which cell the objects belong to
FOR cell number < 8 DO
BEGIN

Links_number_subcells (node, type); ;Link and number the cell
Determine_cell_bounding_volume (node, type);

Figure 12. The pseudo-code for constructing the hierarchy of a modified octree.
(Continued on next page.)

41

IF object > maximum object in the cell THEN
BEGIN

Set_flag_type ;type of cell
IF cluster (node) THEN ;check if the objects can be clustered

Sorting (node, type); ;into a cell which has volume less
;than half of the current cell

IF tree level = maximum tree level THEN
Sorting (node, type);

ELSE THEN
BEGIN
Create_subcells (node, type);
Increment tree level
Create_octree (node)

END
END
ELSE IF objects = 2 THEN
BEGIN
IF cluster (node) THEN

Sorting (node, type);
IF two objects are overlap THEN
Set_flag_type

ELSE THEN
Sorting (node, type);

END
ELSE IF objects > 2 THEN

BEGIN
Set_flag_type

IF cluster (node) THEN
Sorting (node, type);

IF tree level = maximum tree level THEN
Sorting (node, type);

ELSETHEN
BEGIN
Create_subcells (node, type);
Increment tree level
Create_octree (node)
END

END
IF cell number = 7 THEN ;If a cell contains only one object it

combine_subcells (node); ;can be merged with three other
END ;empty cells into a bigger cell.

END
END

(c)

Figure 12. The pseudo-code for constructing the hierarchy of a modified octree.
(Continued from previous page.)

42

43

As a matter of fact, the hierarchy of an octree has a uniform tree structure as

shown in Figure 11 b. This structure ensures that a ray has a predictable path and manner.

It also allows faster access to nodes in the tree, unless the propagation overhead of rays

from one compartment to another is very high. The advantages of the uniformity is the

ability to examine the subspaces in an arbitrary order and to access nodes in the tree more

efficiently. However, the drawback of dividing an object space into equidimensional cells

is that a high number of empty cells are generated. Therefore, when the hierarchy of an

octree structure becomes very deep, the propagation of a ray from one cell to another

becomes very slow because it performs the ray-cell intersection tests excessively. The

overhead associated with this process is very high due to ascending and descending of

the tree which requires traversing between subspaces. Thus, every addition of a level to

the tree may cause a linear increase in the access time.

Hence, the researchers need a technique that improves the octree algorithm. A

modified octree structure with fewer empty spaces would speed up the propagation of a

ray from one cell to another. Therefore, the empty cells should be eliminated and the uni­

formity of the tree should be maintained. This is done by merging three empty cells with

a cell whose volume is either full or empty in to a bigger cell. The modified algorithm

has a semi-uniform tree structure. The modified tree keeps the geometrical relationship of

each subspace, eliminates the undesired empty nodes, and connects the face of neighbor­

ing subspaces (cells) at the same level directly to one another. It also uses a cluster

bounding volume within the cell as depicted in Figure llc. This modified structure

ensures that a ray can quickly travel through the space environment as it encounters cells

along its propagation path. In this case, it encounters fewer cells. The modified tree also

allocates fewer memory spaces than the octree structure. The octree and modified octree

structure can be illustrated in Figure 13 and Figure 14.

44

root node
1 0
I o·t 0 :o - ----~-----

lffi.11~0
-----,--

O• o:o I qo - - - - -
0 EFFFFE FE EFFF F FFF I

2
E= empty

R2 /R3
F =full

(a) (b)

Figure 13. A 2-D environment is divided and constructed by using the octree method.

root node

oT---f-i f
- /\

F F F F F
-

F 01 H' "C F F

F =full
2 I R3

(a) (b)

Figure 14. A 2-D space is subdivided and built by using the modified octree algorithm.

With reference to Figure 13b and Figure 14b, these observations show that the

modified octree structure has fewer tree nodes than the octree structure. In this case, the

modified octree and octree structure have 16 and 21 nodes respectively. Consider Figure

13a and Figure 14a, the performance of ray-voxel and ray-surface intersection tests for

both the modified octree and octree algorithms are tabulated in Table I.

45

TABLE I

THE NUMBER OF RAY-VOXEL AND RAY-SURFACE INTERSECTION TESTS
WHICH MUST BE PERFORMED

Ray

R1
R2
R3

5
6

2
4

3
5

1
4

The results in Table I indicates that the ray propagates easily through a hierarchy

of a modified octree than through the octree structure. In other words, the modified algo-

rithm performs fewer ray-surface intersection tests. Therefore, the modified octree algo­

rithm is better and more efficient than the octree method. In general, a ray-cell intersec­

tion test may need at most three infinite planes to be examined. These planes are part of

the bounding cell. Therefore, performing a ray-cell test in a three-dimensional space is

computationally expensive. However, if the propagation of a ray through the space com­

partment were substantially slower than the ray-surface intersection test, then this tech-

nique does not significantly improve upon the conventional method.

5.3 DETAILS OF THE ALGORITHM

Once the preprocessing stage has been completed, the hierarchical octree struc­

ture can be applied to quickly determine the ray-surface and/or ray-environment intersec­

tions. The intersection points found in this manner will be exactly the same as if they

have been computed using the conventional ray-tracing technique. Using this structure,

the researchers only examine the scene along the ray's path which represents a small por­

tion of the environment. Now, a traditional ray-tracing algorithm can be applied to gen­

erate a graphical image. The rays are generated, in order, from left to right, top to bottom

by two nested loops. The two nested loops are described as follows :

46

1. The outer loop is from 0 to H, where His the number of vertical pixels of the

image plane.

2. The inner loop is from 0 to W, where Wis the number of horizontal pixels of

the image plane.

As researchers go through the picture plane per scanline and per pixel, they check

the pixel's position. If its coordinate is outside the active region, the ray casting step is

completed. This means that the pixel intensity is equal to the background intensity and

that researchers start generating another new ray. However, if the pixel's position is

inside the active region, its ray has to be examined further into the scene. The above pro­

cedures are repeated until all of the image pixels are calculated. The above procedure can

be slightly improved by scanning the active region per line and per pixel rather than the

entire image plane. In this case, it is not necessary to examine the pixel's position

whether it is outside or inside the region. However, before applying the image scan pro­

cedure, researchers initialize pixels on the image plane with the background intensity.

This initialization can be parallelized in multiprocessor system. The process of ray­

environment intersection is performed as follows :

1. Determines the ray's origin on the root node.

2. As the researchers traverse the hierarchy of an octree, they determine which

cell has to be searched so it searches through the appropriate link of the nodes in the tree.

This is done by comparing the (x, y, z) values of the ray's origin with each of the sub­

nodes' boundarier or the decision of selecting a subcell depends on the relationship

between the coordinate of the ray's origin and the boundary of the current cell. In this

case, only the appropriate nodes encountered along the ray's path are searched. Eventu­

ally, a leaf node will be reached.

3. Check node's flag type described as follows:

47

•If the cluster's flag is true, it performs ray-cluster intersection test. If there is an

intersection between a ray and the cluster within the current cell, it goes to step 2. Other­

wise, it goes to step 6.

•If the further flag is true (the current node has more than one subnodes), it goes

to step 2.

•If no object is true, it goes to step 6.

• If the object flag is true or if tree level is equal to maximum plus one, it goes to

step 4.

4. Find possible intersection between a ray and objects within the current node.

For each intersection of objects, find the intersection point between the ray and inter­

sected surface. make sure that the point is within that voxel. if a ray does not intersect

objects in the current cell, it goes to step 6.

5. If step 4 has a multiple intersections, a list of intersected items is generated and

sorted in order of increasing t-values. The next step is to determine the closest intersec­

tion point from the ray's origin. This point is a valid intersection point of that ray. When

the intersection point is found, the secondary ray is calculated by using the intersected

surface's attributions and the shading algorithm is applied to calculate the intensity at

that point. The secondary ray is traced further into the scene until it reaches the stopping

criteria.

6. Determine the next neighboring cell and find the intersection point between the

ray where it leaves the current cell and the cell's boundary. The intersection point

becomes the ray's origin of the next voxel. If the ray has reached the outermost bounding

volume, it is terminated. Otherwise, researchers proceed with step 1.

If each compartment contains a small number of objects, researchers can process

that compartment quickly. If they are lucky, only a small number of objects in the current

voxel must be checked. However, if the researchers are unlucky, the ray may hit nothing

48

but the outermost bounding volume. Researchers would still be better off because of

fewer ray-objects tests performed.

5.4 IMPLEMENTING THE ALGORITHM IN
PARALLEL PROCESSING

5.4.1 Balance Architecture

In computer generated-images, the processes of calculating the pixels' intensity

are independent from one another and they can be simulated in the same manner. There­

fore, the image's intensity can easily be calculated in parallel processing. The recent

development in VLSI technology makes it possible to achieve large-scale multiprocessor

system. The main issue in parallel processing is to keep the workloads balanced among

processors in the system and to minimize the intercommunication between processors

and the common memory via the common bus or between one processor and another.

This is one of the ways to utilize the power of multiprocessor system. If one of the pro~

cessors is heavily loaded, it affects the overall system performance drastically because

the busiest processors will dominate the total amount of the processing time. For exam­

ple, if the workloads are not evenly distributed among processors, some of the busiest

processors are still running while other are idle. In this case, only a fraction of the power

of a multiprocessor system is used.

The researchers used the Balance 8000 to implement the ray-tracing algorithm,

because it meets our criteria to speed up the rendering process. In the Balance multipro­

cessing architecture, a number of independent processors are connected to the high-speed

common bus as shown in Figure 15.

The above arrangement is called a tightly coupled architecture because there is a

global bus or a global shared memory. This multiprocessor may not contain a large

number of processors. The data partitioning technique is suitable to ray-tracing algorithm

[j CJ

shared

address
memory

processor

EJ 8
--__,.,

EJ
Figure 15. The Balance 8000 architecture.

the common
bus

49

because it performs the same operation repeatedly on the large collection of data. The

advantages of this method are :

•Easily balance the workload among processors, and

•Adapt programs automatically to the number of processors in the system.

In parallel processing, there are three types of methods for scheduling tasks

among processors. They are described as follows :

1. The prescheduling : before the program is compiled, the user determines the

workload division.

2. The static scheduling : the processes schedule the workloads at run time, but

they are divided in some predetermined way.

3. The dynamic scheduling : the process schedules its own tasks at run time by

checking a task queue array index.

In this algorithm, the researchers implemented both the static scheduling and

dynamic scheduling methods. Dynamic scheduling method keeps all the processes

50

running as long as there is task to be done. It always distributes tasks to idle processors

and balances the workloads among processors. Although it is more effective than static

scheduling to a certain degree, this method at run time is quite expensive and tends to

increase overhead. The overhead is due to checking the shared queuing array index :

before it schedules another task, it always checks the shared memory queuing array index

to find if there is an idle processor. Dynamic scheduling is more appropriate for similar

computation in which each workload takes much different amount of time to be exe­

cuted. However, if each workload takes approximately the same amount of the process-

ing time, then the static scheduling is cheaper and more effective than dynamic schedul-

ing. The processes automatically balance the system because each processor runs at the

same rate.

Since a graphical image can be generated in parallel processing, the two­

dimensional active-region on the image plane can be sliced into smaller rectangular

regions of pixels. These smaller regions are distributed among processors, as depicted in

Figure 16. In this case, there is intercommunication only between the processors and the

global memory (no intercommunication between processors).

1 L - - f!:O_c~S§ _!#_1_ - - - - - - - - - f
2 Process# 2

- - - - - - - - - - - - - - - - - - - -•--- H

n

n+l
n+2

Process#N --------------------Process# 1 --------------------Process# 2

~-------------------

r--------------------M 1 Process # N

(a)

t

1 Process# 1
2 r--p~~~;~ #-2- ----------

n
n+l
n+2

M

Process#N
1st available Proc
2nd available Proc

(b)

Figure 16. Geometrical slicing of the active region on the image plane. The packets
distribute in (a) static or (b) dynamic scheduling.

51

This rectangular region is called packet. The parallelism used on the screen

enables the calculation of the global intensity of each pixel. The intensity of pixels are

calculated by the processors simultaneously. During the ray-tracing operation, the

researchers distribute the packets among the processors running in the system. Each pro­

cessor duplicates necessary information for speeding up the computation into the local

memory. In this case, each processor has its own parts on the screen and merely creates

the distributed portions of the image. By adjusting the H parameter of the packet, the

researchers can balance the workloads among the processors. The H parameter controls

the time required for each packet to accomplish its task. For example, as the value of H

parameter increases, the system becomes unbalanced because each packet has a different

processing time. For example, some processors may have a shorter processing time than

others which dominated the overall rendering time. Before the researchers execute the

loop subprogram into a parallel processing, they have to determine how many parallel

processors will be used.

Consider Figure 16, the implementation of scheduling tasks on parallel processing

is divided into two parts as described below.

• Static scheduling : The portions of an image are distributed to a fix processor.

For example, packets 1, (n+ 1), etc. are assigned to processor number 1 and packets

number 2, (n+2), etc. are distributed to the processor number 2, etc.

• Dynamic scheduling : The portions of an image are distributed to available pro­

cessors. In other word, the first "n" packets are assigned to "n" available processors and

the next packet will be assigned to the next available processor. For example, if proces­

sor number 2 finishes its task earlier than other processors, then packet number (n+ 1) will

be assigned to processor number 2.

In parallel processing systems, the maximum attainable speedup is equal to the

number of the processors are running. However, in practice, this full speed rarely can be

-- 1

52

achieved because of many factors that effecting the processing system. They are :

• The bottleneck : after it has reached a certain number of processors used, the

speed of performance begins to decline. This is associated with the intercommunication

bottleneck between processors and the shared memory. In this case, it is impractical to

build large systems of this configuration because only so many processors can share a

common bus before the bus becomes saturated.

•The unbalance processing environment : the workloads do not evenly distribute

among the processors.

5.5 CALCULATING THE IMAGE INTENSITY

In this step, the intensity contribution of a particular light source is determined.

Three conditions have to be satisfied before the intensity contribution can be calculated.

These conditions are :

1. The diffusion contribution is determined by the dot product of two unit vectors.

They are:

•The intersected surface normal vector, and

•The line of a light source (This line joins the current intersected point and the

light source under consideration).

The value of a dot product has to be positive.

2. No shadow effect. It means there are no other surfaces that block the current

intersected point from the light source.

3. The specular highlight contribution is computed by the dot product of two unit

vectors as follows :

•The reflected ray's vector, and

53

• The line of a light source.

Its value has to be greater than zero. Testing the first condition in Figure 17 is

explained in the following discussion :

V2

L2 Rl
0 "'- N'

' object ' ' ' ' ' '

R2

~ L3

Figure 17. Determining diffuse, shadow and specular effects.

consider Figure 17, let V 1 and V 2 be the viewpoints, L 1.L 2, and L 3 be the light
~ ~

sources and R 1 and R 2 be the reflected ray's vector from the V 1 and V 2 , respectively.

Let us also consider Pc is the current intersected point on the opaque surface S whose

surf ace unit normal vector is N.

In reference to Figure 17, it is obvious that light source L 3 does not contribute to

the intensity at Pc because it is located behind the object itself. The researchers can

~ ~ .
observe that the vectors PL 1 and PL 2 form acute angles with respect to the normal vec-

tor N, whereas the vector PL3 forms an obtuse angle. Therefore, the dot product of two

unit vectors described as follows :

•N · PL1 is equal positive,

•N · PL2 is equal positive, and

•N · PL3 is equal negative.

From the above discussion, researchers can conclude that light sources L 1 and L2

contribute diffuse intensity to the current point Pc. On the other hand, the light source L 3

54

contributes zero intensity to the point Pe·

Thus, the test involves the construction of a dot product of the line of light source

and the current surface normal. The researchers check the sign of the result of the dot

product. The following description details the manner in which the second condition is

checked. Let the current point be Pe(Xe,Ye,Ze) and the current location of light source

Le(Lx,Ly,Lz). The equation of the line between these two points can be written as:

Xz =Xe+ (Lx-Xe) X t

Yz = Ye + (Ly - Ye) x t

Zz =Ze + (Lz -Ze) X t

(5.la)

(5.lb)

(5.lc)

The above equations represent the line segment between the current point and the

light source under evaluation.

Every surface other than the current surface is checked for intersection with this

segment of equation(5.l). If the shadow ray's path (line of light) intersects a surface such

that the parametric t lies between 0 and 1, there is zero intensity contribution due to the

particular light. The shadow ray is traced from the current intersected point on the sur­

face in the direction of light sources, in order to determine which surface could not be

seen from the light sources. In this shadow test, the researchers need to identify only the

first ray-surface intersection.

The evaluation of the third condition is discussed as follows :

From the observation of the Figure 17, the vectors PL1 and PL2 form acute and

obtuse angles respectively with respect to ~. Thus, the dot product of two unit vectors is

described below :

•~ · PL1 is equal negative,

R~ ~.al ..
• 1 • PL2 is equ pos1t1ve.

~ ~
On the other hand, the vectors PL 1 and PL 2 form obtuse and acute angles with

55

respect to ~. The dot product of two unit vector becomes as follows :

~ ~ . al .. •R2 · PL1 1s equ posmve,

~ ~ . al .
•R2 · PL2 is equ negauve.

If the value of a dot product is positive, there is specular contribution toward the

current point intensity Pc. Otherwise, there is zero specular contribution to point Pc.

Before the actual calculation of the intensity contribution is performed using the

Whitted's illuminated model, which is described in equation (3.1) and (3.2), it is neces­

sary to check all three conditions. It is described in Figure 18.

Lets consider the dot product of the diffuse and the specular highlight contribu-

tion be a "diffuse" and a "specular", respectively. The researchers also use an "Icp" to

represent the intensity at the current point.

Procedure Intensity (lcp)
BEGIN
IF (diffuse is positive) THEN

BEGIN
IF (no shadow) THEN

BEGIN
set Icp = diffuse_intensity
IF (specular is greater than zero) THEN

BEGIN
calculate the specular intensity by using the equation (3.2)
add Icp = Icp + specular highlight intensity

END
END

END
END

Figure 18. The subroutine for calculating the Whitted's model for a light source.

5.6 WRITING THE OUTPUT

After the intensity contribution of all the light sources is added to the final color

intensity, it is stored in the image output file. In computer graphics display, each pixel

56

corresponds to a spot on the image. The value of a pixel's intensity is made up of the

values of red, green, and blue components of the color. Each of the color components has

a value between 0 and 255 depending on the attributes of the intersected surf ace. The

above process is repeated for every pixel in the image plane. Once the researchers have

generated the image file, they change the format of the image file to a rasterfile format by

converting each pixel's intensity into an integer number between 0 and 255. Its value

depends on the combination values of red, green, and blue components of color. The

"rasterfile" file is used as input data for the Sun's system commands such as screenload

and show to display the shaded image on the screen.

CHAPTER VI

RESULTS

This chapter presents some of the examples of the shaded images that are gen­

erated using the modified algorithm previously discussed. These computer synthesized­

images are shown below.

Figure 19. An image with 62 spheres, 1 polygon, 2 lights and 4 sample pixels per ray.

58

Figure 20. An image with 15 boxes, 1 polygon, 10 lights and 1 sample pixel per ray.

Figure 21. An image with 5 boxes, 1 polygon, 3 lights and 4 sample pixels per ray.

59

Figure 22. An image with 8 spheres, 2 polygons, 6 lights and 1 sample pixel per ray.

Figure 23. An image with 48 spheres, 1 polygon, 6 lights and 1 sample pixel per ray.

60

Evidence has demonstrated that the performance of the space-tracing algorithm

has outperformed the conventional ray-tracing technique in cutting down the computa­

tion time. Results have also shown that the algorithm is extremely fast and effective in

achieving the goal of speeding up the rendering process. Obviously, presorting objects

into a spatial structure is required so that it can easily and directly be accessed by the

path of a propagating ray. Rays are intersected with only a small number of objects

regardless of the environmental complexities. The presorting steps are necessary to

achieve before applying the conventional ray-tracing because these results are performed

only once during the preprocessing stage and are eliminated in some calculations of the

ray per loop. The sorting performed during preprocessing also ensures that the closest

intersection point along the path of the ray is found first, except for the special case when

the ray has multiple intersections with objects in the same spatial box. For this special

case, some sorting must still be performed.

The remainder of this chapter presents some of the results of the images synthesis

that are generated on Sun workstation and Sequent's Balance 8000. The time required

for producing the computer generated-images is measured in minutes approximately and

tabulated on the tables described below.

TABLE IT

TIMINGS OF IMAGES GENERATION WITHOUT A FLOATING POINT CIIlP
FOR BOTH SUN WORKSTATION AND BALANCE 8000

Figure I Surfaces

1
2 I 16

Lights

1
8

Shadows

190874
170282

Reflections Piocessm
Balance
135.11
105.69

1..,..,.
140.45

Table II describes the timing of image generation produced on a Sun workstation

3/110 and Sequent's Balance 8000 running with a single processor and without a :floating

61

point chip. This table shows that image generation on Balance 8000 is slightly faster than

the Sun workstation.

The rendering time of images on a Sun workstation with and without a floating

point chip are listed in Table III. From this table, it is obvious that the ray tracing algo­

rithm requires enormous floating point computations. Executing the program with a float-

ing point chip (fpc) will cut down the processing time by a factor of two.

TABLE Ill

PROCESSING TIME OF IMAGES GENERA TED WITH AND WITHOUT
A FLOATING POINT CHIP

Figure I Surfaces Lights Shadows

I
2 I 16

1
3

12
0

The following tables describe the timings of the images with a variety of render-

ing process parameters. They are : degree of complexities (the number of light sources,

the number of reflected rays, etc.), the size of an image resolution, and the number of sur-

faces.

TABLE IV

THE GENERA TING TIME FOR IMAGES WITH DIFFERENT
DEGREES OF COMPLEXITY

The time of rendering process can be seen to rise as the number of light sources,

number of the objects, and the size of image resolution increase. However, the space­

tracing is very suitable for complex images, thus, its rendering process slightly increases

TABLEV

THE GENERA TING TIME FOR IMAGES WITH VARIO US NUMBERS
OF SURF ACES (WITH FPC)

hadows Re ecttons Processm time
1 1 4 . 5

16 2 81568 135368 24.95
6 3 12480 115154 16.63
10 2 28162 177220 20.56
49 2 48360 206583 48.68

TABLE VI

THE GENERA TING TIME FOR IMAGES WITH DIFFERENT
IMAGE RESOLUTION

48476

resolution
512x512
640x640

Processiri[-time
4..,.
52.55

62

from one image to another. The factors which control the time taken for processing are :

• the number of surfaces,

• the number of light sources,

•the degree of complexity of the image, and

•the size of the image resolution.

As the number of surfaces increase, the ray has to be checked for possible inter-

section with more objects, hence the processing time increases. Since space-tracing

works well with large numbers of objects, the rendering process will increase slightly.

As a matter of fact, the researchers could speed up the rendering process by a fac­

tor of n, if they sample the image with "n" number of pixels per ray instead of one pixel

per ray. This speed improvement can be seen in Table VII. However, the image quality

as produced by this technique is poor, when compared with the other method (i.e one

pixel per ray). The image generated by this method consists of distortion effects, such as

63

jaggies at the edge of surfaces. It is obvious that the image quality becomes worse as the

number of pixels per sample increase.

TABLE VII

THE GENERA TING TIM:E FOR IMAGES WITH DIFFERENT NUMBERS
OF SAMPLING PIXELS PER RAY

4

1xeis1ra
1
4

Processml! time
54.61
13.55

The load of the system could be controlled by adjusting the H parameter of pack­

ets. The results of Figure 2 and Figure 4 are tabulated in Table VIII.

TABLEVID

THE GENERA TING TIME FOR IMAGES PRODUCED IN STA TIC AND DYNAMIC
SCHEDULING WITH DIFFERENT VALUES OF H

H

2
4
8
16
32
64
128
256

(4 PIXELS PER RAY)

.
3.95
4.02
4.20
4.40
6.67
10.25
14.45

The workloads are evenly distributed among processors when the H-value is very

small because there is a small delay time between one task (packet) and another. In other

words, each packet requires approximately the same amount of processing time. The per­

formance of balancing system as tabulated in Table VIII can be depicted in Figure 24.

Rendering time

(minutes)

12.89

6.67

3.59

88.63 ...

. . ~7.,4.J .. •/• ·_:_. >

.::?..~:.&~
Figure 3

2 4 8 16 32 64 128 256 512

The H offset parameter

Figure 24. The curves show the range performance of the system.

64

Figure 24 shows us that balancing workloads among processors is one of the most

important steps in utilizing the multiprocessing power.

The performance of a single processor, static scheduling and dynamic scheduling

is listed in Table IX. The results indicate that dynamic scheduling method is more

efficient than static scheduling. Dynamic scheduling improves the rendering process by a

factor of "(N-1)" (number of processors) but for static scheduling the speed-up is slightly

less.

Finally, the researchers could produce a computer generated-image within a few

minutes. In fact, the researchers could improve further the rendering process by increas­

ing the number of processors before the intercommunication bottleneck becomes a

TABLE IX

TIMINGS OF IMAGES PERFORMANCE FOR STA TIC AND DYNAMIC
SCHEDULING

(4 PIXELS PER RAY, H = 2, AND THE NUMBER OF PROCESSORS, P = 7)

Fig Light Shadow Reflect Process time Factor
p=l stat dyna stat dyna

1 10 61042 Sl306 42.41 6.76 6.27 6.27 6.76
2 8 37148 32306 26.75 3.90 3.87 6.86 6.91
3 10 9514 28727 23.85 3.93 3.42 6.07 6.97
4 6 22616 44238 26.04 4.07 3.95 6.40 6.59
5 6 41285 51504 54.77 8.17 7.89 6.70 6.94

65

problem. The speed performance also depends on the intercommunication between the

global bus and processors, or between processors themself. It means that after it reaches

the maximum performance, it begins to decrease due to the intercommunication

bottleneck between the global bus and processors, as depicted in Figure 25.

Speed

Optimal
Speed

1 2 4 7

--- The ideal speed

........._ The actual speed

x

The number of processors

Figure 25. The perfonnance of parallelism. Where xis the optimal number of processors.

Unfortunately, at the present time, Sequent's Balance 8000 is running with eight

processors and without floating point accelerator chips. The researchers could not

improve the rendering performance linearly by increasing the number of processors

because of Amdahl's law.

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

A simple ray-tracing algorithm has been developed and implemented. The algo­

rithm works for any geometric surface and multiple light sources. The concept of space­

tracing and a bounding volume are applied in this algorithm which speeds up the render­

ing process. An octree structure and rectangular parallelepipeds are chosen in represent­

ing the environment.

Recent developments in hardware, such as cheap memory, faster computer, and

multiprocessor systems have made the ray-tracing algorithm more an available, viable,

and desirable choice for a wide variety of image generation applications. In the near

future, the attributions of hardware and software indicate that the algorithm holds out

promise for practice. Although implementation of the algorithm is in its simplest form, it

illustrates the excellence of the technique. New development methods are necessary to

render highly sophisticated images in a reasonable amount of time on currently available

microcomputers. Once the algorithm becomes reasonably fast (within a few minutes), it

can be interfaced with the present graphic packages to produce animation effects.

The researchers have proposed a parallel processing system for images synthesis

using the ray-tracing technique. The parallelism is based on the image (screen) division.

The researchers divide the active-region on the image plane into smaller packets and dis­

tribute these packets among the processors. This scheme allows the calculation of pixels

within the active-region simultaneously in the parallel environment. However, if the

67

computation of propagating rays on a particular packet (processor) through the environ­

ment were substantially more intensive than other packets, then this screen division

method does not significantly improve upon the single processor because most of the

rendering process will be dominated by that particular processor. The tightly coupled

architecture (Sequent's Balance Computer System) is suitable for implementing the algo­

rithm discussed above in a multiprocessing system because the process can be performed

by the same operations repeatedly on large collections of data. This can be done by creat­

ing multiple, identical processes and assigning a portion of the data to each process. An

Almost linear speed-up can be obtained on a Balance multiprocessor system, if the tasks

evenly among the processors are distributed. This linearity is a function of distribution

of the workloads among the processors and the number of processors are used. In other

words, the system should run with as much balance as possible so that researchers can

utilize the full power of the multiprocessing system with an exception that there is no

intercommunication bottleneck. This is almost true for "Balance 8000" with eight proces­

sors because it has a high speed common bus.

7.2 FUTURE WORK

So far, the ray tracing algorithm has not been implemented at Portland State

University. Therefore, a simple, straight forward ray tracing algorithm has been imple­

mented. Undoubtedly, there is no "optimal" space-tracing method for all applications.

There are still many openings in research areas that have to be developed. The following

research areas seem to be particularly promising :

1. The algorithm can be used to incorporate a wide range of primitive geometric

types and should be easily extensible to new types.

2. The algorithm can be improved in the areas of primary and secondary ray inter­

section. They involve the intersection of rays with objects along the rays' paths.

68

3. The algorithm can be developed to make it more suitable for implementing on

advanced special hardware. This special hardware purpose could have the following

characteristics :

a. The computational time should be fairly predictable and relatively con­

stant over a wide variety of scene complexities.

b. Its operations should be relatively easy to implement in hardware.

4. The basic operation of tracing a ray in an environment is fundamental to many

applications outside of image generation. Therefore, this technique can be developed for

applications in other fields. For example, in geometric modeling, it provides a technique

for performing various analyses on objects defined through constructive solid geometry

operation. It can also be used for penetration analyses, interference checking, etc. Some

of these applications can directly benefit from this method, while some will require their

integration into other algorithms.

5. The algorithm can also be developed to make it more suitable for implement­

ing on advanced architecture. The algorithm can be tailored to a particular parallel archi­

tecture so that it can optimize the processing system and deliver good results.

REFERENCES

[1] Cook, Robert L. and Torrance, Kenneth E., "A Reflection Model for Computer
Graphics", Computer Graphics 15, 3 (August 1981), 307-316.

[2] Whitted, Turner., "An Improved Illumination Model for Shaded Display", Comm.
ACM 23, 6 (June 1980), 343-349.

[3] Clark, J.H., "Hierarchical Geometric Models for Visible Surface Algorithms ",
Comm. ACM 19, 10 (October 1976), 547-554.

[4] Appel, Arthur., "Some Techniques for Shading Machine Rendering of Solids",
AFIPS Spring Joint Computer Conference, 1968, 37-45.

[5] Goldstein, R.A. and Nagel, R., "3-D Visual Simulation", Simulation, Vol. 16,
January 1971, 25-31.

[6] Bui-Tuong Phong., "Illumination for Computer Generated Pictures", Comm.
ACM 18, 6 (June 1975), 311-317.

[7] Rubin, Steven M. and Whitted, Turner., "A 3-Dimensional Representation for
Fast Rendering of Complex Scenes", Computer Graphics 1980, 110-116.

[8] Hanrahan, Pat., "Ray Tracing Algebraic Surfaces", Computer Graphics, July
1983, 83-90.

[9a] Hall, Roy A. and Greenberg, Donald P., "A Testbed for Realistic Image Syn­
thesis", IEEE CG&A, November 1983, 10-20.

[9b] Hall, Roy A., "A Methodology for Realistic Image Synthesis", Masters Thesis,
Cornell University, 1983.

[10] Kajiya, James T., "New Procedures for Ray Tracing Procedurally Defined
Objects", ACM Trans. Graphics 2, 3 (July 1983), 161-181.

[11] Weghorst, H., Hooper, G. and Greenberg, D. P., "Improved Computational
Methods for Ray Tracing", ACM Trans. Graphics 3, 1(January1984), 52-69.

[12a] Van Wijk, Jarke J., "Ray Tracing Objects Defined By Sweeping Planar Cubic
Splines", ACM Trans. Graphics 3, 3 (July 1984), 223-237.

[12b] Van Wijk, Jarke J., "Ray Tracing Objects Defined By Sweeping A Sphere",
EUROGRAPHICS 1984, 73-82.

[13] Glassner, A. S., "Space Subdivision for Fast Ray Tracing", IEEE CG&A, October
1984, 15-22.

[14] Doctor, L. and Torborg, J., "Display Techniques for Octree-Encoded Objects ",
IEEE CG&A, (July 1981), 29-38.

70

[15] Meager, D., "Geometric Modelling Using Octtree Encoding", Computer Graphics
and Image Processing, Vol 19, 2 (1982), 129-147.

[16] Tanimoto, S. L. and Jackins, C. L., "Octtrees and Their Use In Representing
Three-Dimensional Objects", Computer Graphics and Image Processing, Vol 14,
3 (1980), 249-270.

[17] Gargantini, D., "Linear Octtrees for Fast Processing of Three-Dimensional
Objects", Computer Graphics and Image Processing, Vol 20, 4 (1982), 265-274.

[18] Osterhaug, A., "Guide To Parallel Programming On Sequent Computer Systems,"
2nd ed., Prentice Hall, New Jersey, 1989.

[19] Foley, J. D. and Van Dam, Andries., "Fundamental of Interactive Computer
Graphics," Addison-Wesley, 1982.

[20] Sutherland, I. E., Sproull, R. F. and Schumacker, R. A., " A Characteristic of Ten
Hidden Surface Algorithms," ACM Computing Survey 6, 1 (May 1974), 1-55.

[21] Sproull, R. and Newman, R., "Principles of Interactive Computer Graphics," 2nd
ed., McGraw-Hill, New York, 1979.

[22] Gouraud, H., "Continuous Shading of Curved Surface," IEEE Transactions on
Computers 20, 6 (June 1971), 623-628.

[23] Lane, J.M. and Carpenter, L. C., "A Generalized Scan Line Algorithm for Com­
puter Display of Parametrically Defined Surface," Computer and Image Process­
ing, 11, 1979, 290-297.

[24] Amanatides, John., "Ray Tracing With Cones", Proc. SIGGRAPH 1984, July
1984, 129-136.

[25] Ballard, Dana H., "Strip Trees: A Hierarchical Representation of Curves", Comm.
ACM 24, 5 (May 1981), 310-321.

[26] Aono, M. and T. Kunii., "Botanical Tree Image Generation", IEEE CG&A, Vol.
4, 5 (May 1984), 10-34.

[27] Atherton, P., Weiler, K. and Greenberg, D., "Polygon Shadow Generation", Proc.
SIGGRAPH 1978, August 1978, 275-281.

[28] Atherton, Peter., "A Scan-Line Hidden Surface Removal Procedure for Construc­
tive Solid Geometry", Proc. SIGGRAPH 1983, Vol. 17, 3 (July 1983), 73-82.

[29] Barr, Alan H., "Global and Local Deformations of Solid Primitives", Proc. SIG­
GRAPH 1984, July 1984, 21-30.

[30] Blinn, J.F. and Newell, M.E., "Texture and Reflection In Computer Generated
Images", Comm. ACM 19, 10 (1976), 542-547.

[31] Blinn, J.F., "Models of Light Reflection for Computer Synthesized Pictures",
.Proc. SIGGRAPH 1977, Vol. 11, 2 (1977), 192-198.

[32] Blinn, J.F., "Computer Display of Curved Surfaces", Ph.D. Thesis, Univ. of Utah,
Salt Lake City, Utah, 1978.

71

[33] Blinn, J.F., "Simulation of Wrinkled Surfaces", Proc. SIGGRAPH 1978, 286-292.

[34] Blinn, J.F., "A Scan Line Algorithm for Displaying Parametrically Defined Sur­
faces", Proc. SIGGRAPH 1979 (Special Issue), August 1979.

[35] Blinn, J.F., "A Generalization of Algebraic Surface Drawing", ACM Trans.
Graphics 1, 3 (1982), 235-256.

[36] Blinn, J. F. and Newman, R., "Light Reflection Function for Simulation of Clouds
and Dusty Surface," Computer Graphics 16, 3 (July 1982), 21-29.

[37] Bouknight, W.J. and K.C.Kelley., "An Algorithm for Half-Tone Representation
of Three-Dimensional Objects", Proc. AFIPS JSCC, Vol. 36, 1980, 1-10.

[38] Carpenter, Loren., "The A-Buffer, An Anti-Aliased Hidden Surface Method",
Proc. SIGGRAPH 1984, 103-108.

[39] Catmull, Edwin., "Computer Display of Curved Surfaces", Proc. IEEE Conf.
Computer Graphics, Pattern Recognition, and Data Structures, 1975, 11-17.

[40] Catmull, Edwin., "A Hidden-Surface Algorithm With Anti-Aliasing", Proc. SIG­
GRAPH 1978, Vol. 12, 3 (July 1978), 6-10.

[41] Catmull, Edwin. and Alvy, Ray Smith., "3-D Transformations of Images in Scan­
line Order", Computer Graphics 1980, 279-285.

[42] Catmull, Edwin., "An Analytic Visible Surface Algorithm for Independent Pixel
Processing", Proc. SIGGRAPH 1984, July 1984, 109-115.

[43] Clark, James H., "A Fast Algorithm for Rendering Parametric Surfaces", Proc.
SIGGRAPH 1979 (Special Issue), August 1979.

[44] Clark, James H., "Design Surface in 3-D", Comm. ACM 19, 8 (August 1976),
454-460.

[45] Cook, Robert L., "A Reflectance Model for Realistic Image Synthesis", Masters
thesis, Cornell University, 1981.

[46] Cook, R.L., Porter, T. and Carpenter, L., "Distributed Ray Tracing", Computer
Graphics, July 1984, 137-146.

[47] Cook, Robert L., "Shade Trees", Computer Graphics, July 1984, 223-231.

[48] Crow, Franklin C., "Shadow Algorithms for Computer Graphics", Computer
Graphics 11, 2 (July 1977), 242-248.

[49] Crow, Franklin C., "The Aliasing Problem In Computer-Generated Shaded
Images", Comm. ACM20, 11(November1977), 799-805.

[50] Crow, Franklin C., The Use of Grayscale for Improved Raster Display of Vectors
and Characters", Computer Graphics 12, 3 (1978), 1-5.

[51] ·Crow, Franklin C., "A Comparison of Anti-Aliasing Techniques", IEEE CG&A,
January 1981, 40-48.

[52] Crow, Franklin C., "Computational Issues in Rendering Anti-Aliased detail",
Proc. COMPCON Spring 82, 238-244.

72

[53] Crow, Franklin C., "A More Flexible Image Generation Environment", Computer
Graphics 16, 3 (1982), 9-18.

[54] Duff, Tom., "Smoothly Shaded Renderings of Polyhedral Objects on Raster
displays", Computer Graphics 1979, 270-275.

[55] Evans, R., "An Introduction to Color," John Wiley & Sons, New York, 1984.

[56] Fournier, Alain, Don Fussell, and Loren Carpenter., "Computer Rendering of Sto­
chastic Models", Comm. ACM 25, 6 (June 1982), 371-384.

[57] Fuchs, H., Kedem, Z., and Naylor, B., "On Visible Surface Generation By A
Priori Tree Structures", Computer Graphics, July 1980, 124-133.

[58] Fuchs, H., Abram, G.D., and Grant, E.D., "Near Real-Time Shaded Display of
Rigid Objects", Computer Graphics 1983, 65-73.

[59] Fujimoto, Akira. and Kansei, Iwata., "Jag-Free Images on Raster Displays", IEEE
CG&A, December 1983, 26-34.

[60] Gardner, G.Y., "Simulation of Natural Scenes Using Textured Quadratic Sur­
faces", Computer Graphics 18, 3 (July 1984), 11-20.

[61] Goral, C.M., Torrence, K.E and Greenberg, D.P, "Modeling The Interaction of
Light Between Diffuse Surfaces", Computer Graphics 18, 3 (July 1984), 213-222.

[62] Gouraud, Henri., "Computer Display of Curved Surfaces", Ph.D. dissertation,
Univ. of Utah, Salt Lake City, 1971.

[63] Hecht, Eugene and Zajac, Alfred. "Optics", Addison-Wesley Publishing Com­
pany, 1979.

[64] Heckbert, P. and Hanrahan, P., "Beam Tracing Polygonal Objects", Computer
Graphics 1984, 119-128.

[65] Kajiya, James T. and M. Ullner., "Filtering High Quality Text for Displaying on
Raster Scan Devices", Computer Graphics 15, 3 (1981), 7-15.

[66] Kajiya, James T., "Ray Tracing Parametric Patches", Computer Graphics 1982,
245-254.

[67] Kajiya, James T. and Von Herzen, Brian P., " Ray Tracing Volume Densities",
Computer Graphics, July 1984, 165-174.

[68] Kay, Douglas S., "Transparency, Refraction, and Ray Tracing for Computer Syn­
thesized Images", M.S. Thesis, Cornell University, January 1979.

[69] Kay, Douglas S. and Donald Greenberg., "Transparency for Computer Syn­
thesized Images", Computer Graphics 1979, 158-164.

[70] Lane, J.M., Carpenter, L.C., Whitted, T., and Blinn, J.F., "Scan Line Methods for
Displaying Parametrically Defined Surfaces", Comm. ACM 23, 1 (January 1980),
23-34.

[71] Liang, You-Dong and Brian A. Barsky., "An Analysis and Algorithm for Polygon
Clipping", Comm. ACM 26, 11 (November 1983), 868-877.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

73

Meyer, Gary W. and Greenberg, Donald P., "Perceptual Color Spaces for Com­
puter Graphics", Computer Graphics, August 1980, 254-261.

Meyer, Gary W .• "Colorimetry and Computer Graphics", Cornell University, Pro­
gram for Computer Graphics, Report 83-1, April 1983.

Miller, Gene S. and C. Robert Hoffman., "Illumination and Reflection Maps:
Simulated Objects in Simulated and Real Environments", SIGGRAPH 1984
Course Notes: Advanced Computer Graphics Animation.

Newell, J., Newell, R., and Sancha, T., "A Solution To the Hidden Surface Prob­
lem", Proc. ACM Nat'l Conf., 1972, 443-450.

Newell, Martin E. and Carlo H. Sequin., "The Inside Story on Self-Intersecting
Polygons", Lambda, Second Quarter, 1980, 20-24.

Norm, D., Kirkpatrick, D. G., and Walsh, J.P., "Hierarchical Approaches to Hid­
den Surface Intersection Testing," Proceeding of Graphics Interface 1982, May
1982, 49-56.

Porter, Thomas and Duff, Tom., "Compositing Digital Images", Computer Graph­
ics 1984, 253-259.

Potmesil, Michael and Chakravarty, Indranil., "Synthetic Image Generation With
A Lens and Aperture Camera Model", ACM Trans. on Graphics 1, 2 (April
1982), 85-108.

Roth, Scott D., "Ray Casting for Modeling Solids", Computer Graphics and
Image Processing 18, 1982, 109-144.

Samet, H., "The Quadtree and Related Hierarchical Data Structures", ACM Com­
puting Surveys, (June 1984), 187-260.

Sederberg, Thomas W. and Anderson, David C., "Ray Tracing Steiner Patches",
Computer Graphics, July 1984, 159-164.

Smith, Alvy Ray., "Incremental Rendering of Textures in Perspective", SIG­
GRAPH 1980 Course Notes: Computer Animation.

Steinberg, Herbert A., "A smooth Surface Based on Bi-Quadratic Patches", IEEE
CG&A, September 1984, 20-23.

Sutherland, I. E., Sproull, R. F. and Schumacker, R. A., "Sorting and The Hidden
Surface Problem," In Proc, AFIPS 1973 National Computer Cong., Vol 42, 1973.

Sutherland, I.E., "Reentrant Polygon Clipping," Comm. ACM 17, 1, 1974, 32-34.

Verbeck, Channing P. and Donald P. Greenberg., "A Comprehensive Light­
Source Description for Computer Graphics", IEEE CG&A, July 1984, 66-75.

Warnock, John E., "A Hidden Surface Algorithm for Computer Generated Half­
Tone Picture Representation", Tech. report 4-15, Univ. of Utah, Salt Lake City,
June 1969.

Warn, David R., "Lighting Controls for Synthetic Images", Computer Graphics,
July 1983, 13-21.

74

[90] Watkins, G.S., "A Real-Time Visible Surface Algorithm", Ph.D. dissertation and
tech. report UTECH-CSC-70-101, Univ. of Utah, Salt Lake City, June 1970.

[91] Weiler, Kevin, and Atherton, Peter., "Hidden Surface Removal Using Polygon
Area Sorting", Computer Graphics 1977, 214-222.

[92] Weiman, Carl F.R., "Continuous Anti-Aliasing Rotation and Zoom of Raster
Images", Computer Graphics 1980, 286-293.

[93] Whitted, Turner., "Anti-Aliased Line Drawing Using Brush Extrusion", Computer
Graphics 17, 3(July1983), 151-156.

[94] Whitted, Turner and David M. Weimer., "A Software Testbed for The Develop­
ment of 3d Raster Graphics Systems", ACM Trans. Graphics 1, 1(January1982),
43-58.

[95] Williams, Lance., "Casting Curved Shadows on Curved Surfaces", Computer
Graphics 12, 3 (August 1978), 270-274.

[96] Williams, Lance., "Pyramidal Parametrics", Computer Graphics 17, 3 (July
1983), 1-12.

[97] Wyszecki, G. and Stiles, W.S., "Colour Science", 2nd ed. John Wiley and Sons,
1982.

APPENDIX

Rasterfile is a typical Sun's file format for displaying raster images. It is com­

posed of three parts as depicted in Figure 26.

The header file

The colmmap values (red, green, and blue)

The image file intensities

Figure 26. A typical rasterfile fonnat.

The header file is consists of eight integers. A set of colormap is made of the

value of red, green, and blue components of the color. The image file stored a line at a

time in increasing high (y) order. Each line of the image is rounded up to a multiple of 16

bits.

The header file is made of the following structure.

struct rasterfile {

};

int ras_magic;
int ras_ width;
int ras_height;
int ras_depth;
int ras_length;
int ras_type;
int ras_maptype;
int ras_maplength;

The details of header file is explained as follows :

•The ras_magic is an integer (magic) number.

76

•The ras_width and ras_height fields represent the image's width (Xres) and

height (Yres) in pixels.

•The ras_depth field corresponds to the frame buffer (colormap). Its value is

either 1, or 8. If the value is equal to 1, it means that the file will represent white and

black images. Otherwise, it is color images which have a maximum 256 colors at a time.

•The ras_length field indicates the length in bytes of the image data or it is equal

to a product of the ras_ width and the ras_height fields.

•The ras_type indicates the type of image file.

•The ras_maptype and ras_maplength fields represent type and length in bytes of

the colormap values, respectively.

An example of the header file is described as follows :

raster.ras_magic
raster.ras_ width
raster.ras_height
raster.ras_depth
raster.ras_length
raster.ras_type
raster.ras_maptype
raster .ras_maplength

= RAS_MAGIC; /*magic number*/
= Xres; /*width of image* I
= Yres; /*height of image*/
= 8; /*depth of pixel*/
= Xres * Yres; /*length of image*/
= RT_STANDARD; /*type of file*/

= RMT_EQUAL_RGB; /*type of colormap*/
= 3 * 256; /*length of colormap*/

	Implementing ray tracing algorithm in parallel environment
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1509742591.pdf.ObkKF

