
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

3-12-1999

Enhancements to the Scalable Coherent Interface Enhancements to the Scalable Coherent Interface

Cache Protocol Cache Protocol

Robert J. Safranek
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Safranek, Robert J., "Enhancements to the Scalable Coherent Interface Cache Protocol" (1999).
Dissertations and Theses. Paper 3977.
https://doi.org/10.15760/etd.5858

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F3977&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/3977
https://doi.org/10.15760/etd.5858
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Robert J. Safranek for the Master of Science in

Electrical and Computer Engineering were presented March 12, 1999 and

accepted by the thesis committee and the department.

Representative of the Office of Graduate
Studies

DEPARTMENT APPROVAL:
Rolf Schaumann, Chair
Department of Electrical and Computer
Engineering

...,

ABSTRACT

An abstract of the thesis of Robert J. Safranek for the Master of Science in

Electrical and Computer Engineering presented on March 12, 1999.

Title: Enhancements to the Scalable Coherent Interface Cache Protocol.

As the number of NUMA system's cache coherency protocols based on the

IEEE Std. 1596-1992, Standard for Scalable Coherent Interface (SCI)

Specification increases, it is important to review this complex protocol to

determine if the protocol can be enhanced in any way. This research provides

two realizable extensions to the standard SCI cache protocol. Both of these

extensions lie in the basic confines of the SCI architectures.

The first extension is a simplification to the SCI protocol in the area of

prepending to a sharing list. Depending if the cache line is marked "Fresh" or

"Gone", the flow of events is distinctly different. The guaranteed forward

progress extension is a simplification to the SCI protocol in this area; making

the act of prepending to an existing sharing list independent of whether the

line is in the "Fresh" or "Gone" state. In addition, this extension eliminates the

need for SCI command, as well as distributes the resource requirements of

supplying data of a shared line equally among all nodes of the sharing list.

The second extension addresses the time to purge (or invalidate) an SCI

sharing list. This extension provides a realizable solution that allows the node

being invalidated to acknowledge the request prior to the completion of the

invalidation while maintaining the memory consistency model of the processors

of the system.

The resulting cache protocol was developed and implemented for Sequent

Computer System Inc. NUMA-Q system. The cache protocol was run on

systems ranging from eight to sixty four processors and provided between 7%

and 20% reduction in time to invalidate an SCI sharing list.

,r

ENHANCEMENTS TO THE SCALABLE COHERENT
INTERFACE CACHE PROTOCOL

by

ROBERT J. SAFRANEK

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1999

I

/

Acknowledgements

It is with a great deal of gratitude that I thank Sequent Computer Systems Inc.

for the opportunity to conduct this research. Sequent Computer Systems

allowed me access to state of the art workstations, system platforms, and test

equipment that cost millions of dollars.

I would like to specifically thank several individuals who were key in making

this research a success.

• Jim Wilson, the Director of Hardware Engineering, who allowed access

to the hardware for this project.

• Don Desota, Ruth Forester, Carl Love, and James Donnelly, the

Performance Group, who were the first to volunteer to run my new

cache coherency protocol on their1 OOGbyte database.

• Paul McKenney, who developed the Share List Test software which

was key in measuring the performance differences between the two

cache protocols.

• Thomas Lovett, who pointed out my initial omission of not including

write-back requests with interrupts and read responses in the Reduced

List Invalidation extension as events that must be queued behind

pending invalidates.

l

• Frieda Safranek, who took the time to edit this entire paper.

• Frieda, Stefan and Lee Safranek, my family, who have tolerated living

me through this endeavor.

It should be noted that this research was done with the consent of Sequent

Computer Systems Inc. and is to be considered the intellectual property of

Sequent Computer Systems Inc.

ii

Table of Contents

List of Tables v

List of Figures vi

1. Introduction 1
1.1 Guaranteed Forward Progress 3
1.2 Reduce List Invalidation Time 4
1 .3 Organization of the Document 7

2. Symmetric Multiprocessing Overview 9
2. 1 Concepts of Cache Coherence Protocols for a Bus Based System 11
2.2 Review of NUMA Terminology 13
2.3 High Level Description of the NUMA-Q 16

3. Detailed System Architectural Description 19
3.1 Node Module Description 19
3.2 Interconnect Description 22

4. Guaranteed Forward Progress Extension 26
4.1 Reading of a Home Line 27
4.2 Reading of a Fresh Line 29
4.3 Reading of a Gone Line 30
4.4 Description of the Guaranteed Forward Progress Extension 31
4.5 Reasoning for the Guaranteed Forward Progress Extension 32
4.6 Comparison between the Standard and the New Protocol 36

4.6.1 Communication with the Local Node 36
4.6.2 Communication with the "Old" Head of a SCI Sharing List 37

5. Reduce List Invalidation Time Extension 39
5.1 Comparison of the Two Invalidation Methods 43
5.2 Comparison of the Invalidation Methods of the Standard and New
Protocols 53
5.3 Merging of Reduced List Invalidation with List Invalidation Method 54

6. Testing and Measured Results 55
6. 1 Development Strategy 55

6.1.1 Simulation Environment 57
6.1.2 Development Environment 58

6.2 Debug Environment 59
6.3 Measured Results 60

6.3.1 Logic Analyzer Traces 60
6.3.2 Lock and Invalidate Tests 65

iii

...

~

...

6.3.3 Read Measurements
6.3.4 Database Measurements

74
77

7. Observation Section 86
7. 1 Performance Gains and Drawbacks 86

7 .1. 1 Ideal versus Real Performance Gain for Invalidation Extension 86
7.1.2 Elimination of Additional Ten Clock Penalty 87

7.2 Cache Coherency Validation Techniques 88
7.2.1 Formal Verification 88
7.2.2 Simulation Environment 89
7.2.3 System Level Cache Coherency Tests 89

7 .3 Additional Areas of Research Uncovered with the SCI Protocol 90
7.3.1 Merging the two Invalidate Extensions 91
7.3.2 Reducing Processor Read Latency when Prepending to a Fresh List

94
7 .3.3 Parallelizing the RollouVlnstallation Process 95

8. Summary and Conclusion 97

References 103

Appendix - Glossary of SCI Terminology 108

iv

A

ov·· · .. · · .. · · · · · · ···· .. sopeuaos 6upapJQ a1qea4oeo a1q1ssod -~ ·g a1qeJ.

sa1qe1 10 1sn

List of Figures

Figure 2.1 - Simple SMP Block Diagram ... 9
Figure 3.1 - Simple Node Block Diagram ... 20
Figure 3.2 - High Level Block Diagram of the IQ-Link 21
Figure 3.3 - SCI Memory State Diagram .. 24
Figure 3.4 - SCI Cache State Diagram .. 25
Figure 4.1 - Reading of a Home Line .. 29
Figure 4.2 - SCI Cacheable Read Request Flow ... 33
Figure 4.3 - Guaranteed Forward Progress Cacheable Read Request Flow 35
Figure 5.1 Standard SCI Invalidation Flow of Events 44
Figure 5.1 A - Standard SCI List Invalidation .. 46
Figure 5.2- Reduced List Invalidation Flow of Events 47
Figure 5.3 - Reduced List Invalidation Sequence .. 50
Figure 5.4 - Pending Invalidation Flow of Events ... 51
Figure 6.1 - Example of Protocol Engines Program Language 56
Figure 6.1 - System Debug Environment .. 59
Figure 6.3 Logic Analyzer Trace of a Read Response 62
Figure 6.4 - Trace of Std. Protocol Invalidation Sequence 63
Figure 6.5 - Trace of New Protocol Invalidation Sequence 64
Figure 6.6 - Share List Invalidation Time ... 69
Figure 6.7 - Share List - Atomic Invalidation Time .. 70
Figure 6.8 - Share List - List Invalidation Time .. 71
Figure 6.9 - Share List - List Atomic Invalidation Time 72
Figure 6.10 - Invalidation Time Differences between Standard and New

Cache Protocols .. 73
Figure 6.11 - Percentage change Between the Two Protocols 7 4
Figure 6.12 - Read Response versus List Invalidation Time 76
Figure 6.13 - Four Node Database System ... 80
Figure 6.14 - Number of Database Transactions .. 81
Figure 6.15 - Local Cacheable Accesses .. 82
Figure 6.16 - Remote Cacheable Accesses .. 83
Figure 6.17 - Rd. Requests versus SCI lnval. Requests 84
Figure 7.1- Ideal SCI List Invalidation Method ... 93
Figure 7.2 - Total Remote Cache Read Requests versus Rollout Requests. 95

vi

'

~

/"

1. Introduction

"Given the limitations of bus-based multiprocessors, CC-NUMA is the scalable

architecture of choice for shared-memory machines. The most important

characteristic of the CC-NUMA architecture is that the latency to access data

on a remote node is considerably larger than the latency to access local

memory" [51). In addition to the academic based NUMA systems, several

commercially available systems are based on a NUMA architecture. Examples

of commercial systems based on a CC-NUMA architecture are now available

from companies such as HP (Exemplar)[41], Data General (NUMALiiNE), SGI

(Origin 2000), and Sequent (NUMAQ)[53). A typical design has a number of

nodes, each node consisting of one or more processors, a portion of the

system's 110 and a portion of the system's memory [51).

For these systems to be viable the issue of remote latency must be

addressed. One primary method to address the discrepancy in latency of

remote versus local accesses is minimizing remote accesses. Systems with

buffer allocation algorithms that take into account the locality of the memory

being allocated add greatly to the performance of the system. However,

eventually the issue of remote latency must be addressed. For CC-NUMA

architectures to be viable solutions, effective methods to reduce latency of

remote accesses must be identified.

1

·~

!"

The systems developed by Convex, Data General, and Sequent Computer

Systems Inc. are based on the Scalable Coherent Interface (SCI) cache

coherency protocol. This protocol is an IEEE standard (Std 1596-1992). "The

SCI coherence protocols are based on a distributed directories scheme [21].

The SCI protocol is based on a doubly linked list structure. Each node sharing

a cache line keeps track of its forward and backward neighbor as well as the

state of the cache line relative to its position on the list. An issue with these

systems is the additional latency of reading a remote cache line compared to a

local access. Another issue with this type of protocol is the time to purge a

sharing list of a cache line when the line is being written. Since the sharing list

is distributed, the list must be purged one node at a time. Therefore, the longer

the sharing list, the longer the latency.

Our research provides two extensions to the SCI protocol to decrease the

latency of an SCI based system. The first is a simplification to the protocol in

the area of when and how to supply data for a cacheable read. The second is

in the area of reducing the list invalidation time of a sharing list. Both

extensions are realizable and provide for a processor memory consistency

model. The first of these extensions is referred to as "Guaranteed Forward

Progress" extension. The other is referred to as the "Reduced List Invalidation

Time" extension.

2

---- -,

,..

The goals of this research are to develop, implement, test and report the

results for the guaranteed forward progress and reduce list invalidation time

extensions on a Sequent Computer System Inc. NUMA-a system. The

Sequent system is a symmetric multiprocessing (SMP) system that is a

combination of bus based four processor nodes that are interconnected with a

hierarchical interconnect. This system is a CC-NUMA architecture and is

based on the Scalab!e Coherent Interface (SCI) cache protocol for the

hierarchical interconnect (53]. As stated earlier, the extensions are in the

areas of:

• Guaranteed forward progress for cache read accesses of a remote

line.

• Reduced latency during the list invalidation sequence.

What makes this an achievable research project is the ability of the third level

cache controller of the NUMA-a system to be "programmable". This cache

controller is based on a protocol engine architecture, where the protocol is

represented as a "program" which is downloaded to the cache controllers at

the time of initialization.

The characteristics of the cache protocol of the system are changed with the

changing of the "program". By exploiting the programmability characteristic of

the third level cache controller, these extensions were developed,

implemented and tested on the commercially available NUMA-a system.

1.1 Guaranteed Forward Progress

To simplify the NUMA-a implementation, a cache line was considered "Home"
3

~

..

if it was held in any device local to that particular node (i.e. a processor,

memory, 10 interconnect). Also, the bus of the "home" node is considered the

serialization point for accesses. These considerations give local processors

an unfair advantage to memory, which is resident on this node. The resulting

condition is that remote processors can be denied access to "hot spots" in

memory, like cache base locks. The resulting condition is a system with poor

scaling characteristics. Another issue to consider is the SCI protocol's current

level of complexity. Currently SCI provides two distinct sequences for a

remote node to read a line which is "Fresh" versus "Dirty".

This research provides a simplification to the current SCI protocol. This

simplification is realizable in the SCI two bit memory state diagram and causes

only minor changes to the SCI cache state diagram. This "guaranteed forward

progress" approach is limited to a field of two bits (limiting the maximum

number of local states to four). This is due to the directory structure of the SCI

protocol. The directory structure allocates for each local cache line a byte of

information. Two bits of the byte represent the state of the line at the home

node and the additional six bits for the node ID of the first element in the

sharing list.

1.2 Reduce List Invalidation Time

Another area, which limits multi-node performance, is the time to invalidate a

sharing list for a cache line. Most CC-NUMA machines (FLASH, Alewife,

NUMAchine, Sequent's NUMA-Q specifically) maintain their respective

memory consistency models by not acknowledging any invalidation request

4

r

prior to the actual completion of the invalidate request of the sharing nodes

[47, 4, 50, 53]. In general a processor's cacheable write is allowed to

complete only after all other copies of that particular cache line have been

invalidated. Our extension deviates from this procedure by providing a

mechanism to acknowledge the invalidation early and still maintain the same

memory consistency model.

This extension is applicable to any CC-NUMA cache coherency protocol.

Since the actual implementation was done on an SCI base platform the

description of this extension is done based on the SCI invalidation sequence.

In SCI, only the head of the sharing list can write a cache line. This act of

writing must also include the invalidation of the sharing list. SCI

communication is based on a simple request/response packet format. The

head of the list issues an invalidate request to the node immediately below it

on the sharing list. That node would then invalidate its copy of the line and

respond with its state and pointer information. The head continues to reissue

invalidate requests until it receives the response from the tail of the list (i.e. the

last element on the sharing list).

The list invalidation procedure continues until every node on the sharing list

has invalidated its copy of the cache line. The SCI protocol has overlooked

two issues in the invalidation time. These are:

• The time of node to invalidate a cache line.

• The time to process a SCI request or response packet.

Our extension provides a realizable improvement in performance for reducing

5

the list invalidation time while maintaining a processor consistency model and

staying in the general constructs of the SCI protocol. This extension provides

a higher performance invalidation sequence. This is done based on earlier

acknowledging of invalidates at a remote node and stalling read responses at

the remote node until all posted invalidates are completed.

What makes this a beneficial enhancement to the protocol is that the size of a

typical system keeps growing. This was not an issue for systems comprised

of two to four nodes (an eight to sixteen processor system). The invalidation

time of a sharing list becomes an issue as the size of the system approaches

sixteen nodes (or 64 processors).

Unlike the previous extension, the reduced list invalidation extension is a more

complex solution, due to the fact that the cache controller is acknowledging

the completion of a task early. Another way of stating the requirements of the

cache controller in this role is when any request is acknowledged early, it

becomes the responsibility of that agent to maintain the ordering requirements

of the individual processors to guarantee "correct" operation. The

fundamentals of this solution are as follows:

• Remote node receives an Invalidate Request. It immediately sends

the SCI response acknowledging the request. This response

contains the node's current state and pointer information.

• Invalidating Cache Controller sets a bit in an array of bits. These

bits signal that an Invalidate was acknowledged early.

• Remote node issues the invalidate request to its local bus. Upon

6

~

completion of the request the bit in the array is cleared.

• Remote node upon receiving either a cacheable read response,

interrupt, non-cacheable write or read, defers posting them to the

bus until all the currently posted pending invalidate bits have been

cleared.

These deferred actions are required to prevent the following cacheable errors

from occurring:

• Cacheable read passing a write.

• Write passing a write.

Note in a processor consistency model, all processors do not have to observe

all the writes in the system as the writes occurred. Also, a processor has no

ordering requirement of observing writes from different processors. However,

the processors can only have access to the data in the order the data was

written by the given processor.

It should be mentioned that an obvious extension to purging a sharing list is

developing an extension to forward requests and eliminate the intermediate

responses. A detailed description of an Invalidate request forwarding

extension is described in our paper "Fast Invalidate Extension for the

Scalable Coherent lnterface"[52]. It should be noted that this extension does

not preclude the merging of the two invalidate extensions. These extensions

are completely compatible.

1.3 Organization of the Document

The rest of the thesis is organized as follows:

7

• Section 2 - Symmetric Multiprocessing Overview

• Section 3 - Detail Architectural Description of the system used to

develop these extensions.

• Section 4 - Guaranteed Forward Progress Extension

• Section 5 - Reduce List Invalidation Time Extension

• Section 6 - Testing and Measured Results

• Section 7 - Research Observations

• Section 8 - Summary and Conclusion

• Glossary of Terms

• References

• Appendix

8

,,,

I

2. Symmetric Multiprocessing Overview

Systems that utilize a single global address space and multiple processors are

referred to as Shared-Memory Multiprocessor systems (or SMP). The basic

structure of an SMP system is provided in figure 2.1.

Processor/Memory Interconnection I
• • • • ••

I
I

, , , '

Memory Processor with •••• Processor with
Cache Cache

--

Figure 2.1 - Simple SMP Block Diagram

These systems, to deal with the issue of the "memory bottleneck" problem,

typically utilize some type of caching structure for the processors. The cache

contains those lines that a particular processor (or group of processors) is

accessing. At any given time and for a particular cache line, zero to "n" of the

caches can have the line in some cacheable state (or not). As with the

caches, the memory subsystem for a particular line could have a valid copy (or

not). The common interconnect for an SMP system was the system bus. The

bus was the cache coherence mechanism of the system [26). As the

9

~ processor increased in frequency operation so did the bus speed. As the

speed increased the physical length of the system bus decreased. Today

"commodity" bus based systems typically can only support four processors,

memory and 1/0 bridge connections [19,20]. A very common bus based

cache protocol found in bus based systems is a four state protocol referred to

as "MESI" [19]. The general concepts of a bus based MESI system are

provided in the following subsection. A single bus based topology has the

added benefit in that all processors are equidistant to the memory. These

systems are referred to as having a UMA (Uniformed Memory Access)

architecture. This simply implies that no processor has an unfair advantage in

accessing any location in memory. The system characteristics of this type of

architecture are as follows:

• All processors observe all accesses in the order issued (and

completed).

• All processors are the same distance (number of clocks) from

the memory of the system.

To build larger SMP systems, different interconnect networks have been used,

such as rings, mesh, etc. SMP Systems which are not based on a single bus

topology are referred to as NUMA (Non-Uniformed Memory Access). Systems

based on this architecture have the following characteristics:

• All processors do not observe all accesses in the order

issued (and completed).

• Processors do not have the same access time to a given

memory location.

IO

~

...

.i

NUMA based systems are becoming an accepted architecture in today's SMP

systems. Several systems based on a NUMA architecture are:

• DASH/FLASH from Stanford [46,47] .

• Alewife from MIT [37].

• NUMAchine from the University of Toronto [50].

• · Origin 2000 from SGI.

• S3MP from Sun.

• Exemplar from Convex (now HP) [41].

• NUMA-Q from Sequent Computer System Inc. [28).

2.1 Concepts of Cache Coherence Protocols for a Bus Based System

There are many types of cache coherence protocols. A very common type of

protocol is based on a simple four-state protocol. The states are commonly

referred to as Modified, Exclusive, Shared, and Invalid, hence the name

"MESI" protocol. It should be noted that there are many variations of this

protocol. An example of a MESI protocol is provided in figure 2.2.

Common definitions of the MESI states are as follows:

• Modified - The cache holds a modified version of the line (i.e. an agent

has written a portion or all of the line). In this state, the cache holding

the modified line has the ONLY VALID copy of the data.

• Exclusive - The cache holds a valid copy of the line and it is the only

copy of the line. Memory in this case also maintains a valid copy of the

line.

• Shared - The cache holds one of the valid copies of the line. Due to

cache evictions, 0, 1 or more caches can hold a valid copy of the line.

11

~

_.,

··\

"·

Memory in this case also maintains a valid copy of the line.

• Invalid - This particular cache entry does not contain valid copy of

data.

Figure 2.2 - An Example of an MESI Cache Protocol

The primary reason for caching is to remove the memory "bottleneck" issues.

This is accomplished by constructing the cache memory out of "faster"

memory devices. By definition the size of the cache is significantly smaller

than the total size of the memory subsystem(s). When the cache is full, before

new line requests can be installed into the cache, some lines currently held in

the cache must be evicted (or rolled back into the memory subsystem). To

this end, the cache protocol must also handle the eviction scenarios without

the loss of data. The following are the required actions for each possible

MESI states:

• Modified - Valid data must be written back prior to installing a different

12

"" ~

...
.,.,

.....

I
I

/

!

line in this location in the cache. Also during the eviction process, any

copies of the cache line in caches (or processors) below this level must

be purged.

• Exclusive - Mark the line invalid and insure any caches or processors

below this level invalidate their copy of the line.

• Shared - Mark the line invalid and insure any caches or processors

below this level invalidate their copy of the line.

• Invalid - This location is currently available to install a new entry into

the cache.

2.2 Review of NUMA Terminology

The following is a list of commonly used terms in describing systems that are

based on a Non-Uniformed Memory Access architecture.

NUMA -(Non Uniformed Memory Access) refers to systems where the

memory accesses happen non-uniformly due to the fact that memory is

dispersed throughout the system. The access time is determined by its

relative location compared to the accessing processor. A NUMA based

system can be cache coherent, message based or both.

CC-NUMA - (Cache-Coherent NUMA) Cache coherence computer

architecture for a large scale distributed shared-memory system based on a

directory-based protocol. The directory scheme can either be a centrally

located (as in the Stanford Flash architecture [11]) or distributed (as in a SCI

based architecture [2]).

13

""'

..

'I\

List - The mechanism to track which nodes of a system have a particular

cache line. A List exists for every cache line that at any given time is being

J. shared by a processor.

• Dirty List - A List of nodes that share a line in which the memory (or

home) node does not hold a valid copy.

• Fresh List - A List of nodes that share a line in which the memory (or

home) node contains a valid copy.

• Head of the List - The first remote node on a list is considered the

"Head" of the list. In SCI all nodes prepend to the list at the "Head"

position. Also the only node which can purge a sharing list is the head

of the list.

For SCI, the list is a very dynamic structure. New nodes can be prepending to

the list as old nodes are getting off the list.

Node or Quad - For the NUMA-Q system a node (or quad) is a four

processor bus based SMP module and the basic building block of the NUMA­

Q system. It is based on the Intel Pentium Pro or XEON processor. The term

quad is a Sequent Computer System Inc. term. Most other papers and

systems refer to the processor/memory building block as a node. [22]

SCI - (Scalable Coherent Interface) is a IEEE Specification (1596-1992) that

defines a directory based cache protocol that also defines the physical

interface, packet formats, as well as coherence protocol. SCI is based on a
14

"
'

.,,

~

...

...

..,
'

distributed directory based scheme. This scheme is based on a doubly linked

list where (for each cache line) each node contains the state of the cache line,

a backward and forward pointer. [2] SCI is not only a cache coherent protocol

but also defines a physical and data layer. SCI defines a 1 Gbyte/sec interface

based on a point to point interconnect. The physical interface is based on a

Low Voltage Differential Signaling (LVDS). The interface is eighteen bits wide

(sixteen data, with two bits signaling). SCI packets contain header information

(destination ID, source ID, transaction number, and command), data, and

CRC. The basic SCI protocol is based on a simple request/response

transaction concept.

SCI uses a split transaction protocol. Therefore, when a node sends a

request, it will wait for the packet to traverse the network to the target node.

The target node will handle the request and send a response to the requesting

node. When the requesting node receives the response it will take the proper

actions and the transaction is complete [34] .

"To avoid deadlock, the SCI protocol is based on certain fundamental

premises.

• SCI Requests have absolutely no circular dependencies. In

particular, no SCI request is dependent on the completion of a

dependent request for its completion.

• SCI requests cannot be issued without first guaranteeing space for

the response in the requesting node.

• Every device on the SCI ring must contain a bypass FIFO large

15

. .I

...

\.

,,.

.. _

enough to store the largest packet the device is capable of

transmitting.

• Packets in the output queue are sent when the bypass FIFO is

empty and the node's flow-control mechanism permits it. Another

packet (or packets) may arrive on the input link while an output

packet is being sent. If the packet is not addressed to this node, the

bypass FIFO holds these incoming packets for delayed transmission

until the output queue packet has been sent, the output queue is

empty or the bypass filter is in danger of overflowing.

• When a send packet is emitted, the packet is saved in the output

queue until a confirming echo packet is received. There are two

types of echo packets (accepted and rejected). If the echo packet

was rejected, the original request packet is reissued. If the

responder has space to save the request packet, it issues the "echo

accepted" packet. At this time the requester passes the

responsibility of the packet to the responder.

• To avoid deadlock there are distinct input request and response

queues (the same is true for the output side). Forward progress is

ensured because at least one entry is always available for holding

input request, input response, output request, and output response

packets." [2], [52]

2.3 High Level Description of the NUMA-Q

As stated earlier, the "NUMA-Q" is a Cache Coherent Non-Uniform Memory

Access (CC-NUMA) multiprocessor architecture of Sequent Computer

Systems Inc.. It's basic building blocks are:

16

,.,.,.,

'

• Off-the-shelf 4 processor SMP module.

• Directory Based Cache Protocol.

• Programmable hierarchical cache controller.

Architecturally, NUMA-Q uses Intel standard four-processor chipset to build a

bus based SMP system and uses this as it's basic building block to build

larger systems. In addition to the processors, memory, and 1/0 busses in the

SMP module, all nodes have a system interconnect with a third level remote

cache. The system interconnect is a hierarchical connection which allows the

SMP module to be a sub-component of a larger SMP system. At the SMP

module level the processors maintain cache coherency based on MESI

protocol. Between SMP modules, SCI (a distributed directory based cache

protocol) is used to maintain cache coherency. The SCI standard defines a

cache protocol based on a distributed doubly linked list. The "list" for any

particular cache line is the list of all nodes that contain a valid copy of the line.

The node that actually possesses the physical memory for a particular

address is referred to as the "Home" node. The home node maintains a

pointer to the "Head" of the sharing list and a state of the cache line. The

Head of the list maintains two pointers and the state of the line. The backward

pointer points up the list "back" towards the home and the forward pointer

points down the list toward the tail of the list. The state of the line reflects

whether the line is "Fresh" or "Dirty'' and the position in the sharing list (i.e. a

node could be a "Only", "Head", "Mid", or ''Tail"). It should be noted that a

sharing list has only one "Head" and one "Tail", but can have an arbitrary

number of "Mid's" [2].

17

·-'' ..

The node's remote cache controller is based around the concept of a

programmable multi-threaded protocol engine. This protocol engine contains

global and thread specific registers and maintains cache coherence by

executing a set of RAM based instructions. To experiment with a new system

level cache protocol, all that has to be done is to change the RAM based

instructions. A specialized table driven assembler has been developed to aid

in developing new cache protocols. The instruction set for the protocol engine

resembles in structure and complexity the instruction set of an 8051. The

realization of the new cache extension relies primarily on the protocol engine's

ability to execute a series of instructions that will emulate the checks and

procedures of the extensions.

18

3. Detailed System Architectural Description

The project will use the "NUMA-Q" system to develop a new hybrid of the SCI

cache coherency protocol. The basic architecture of the NUMA-Q uses as its

fundamental building block a "4x Pentium Pro Processor Module", which is

referred to as a node. These modules are then interconnected via a

hierarchical interconnect based on the SCI physical layer.

3.1 Node Module Description

The node's design is based on the Intel P6 system architecture description.

The node design integrates CPU's (Up to 4 Pentium Pro Processors), APIC

Bus (a distributed interrupt interface), memory subsystem, and two 1/0

bridges. The node's basic internal interconnect is a multiprocessor bus. This

bus is a transaction oriented bus design that has the processors (with their

L 1/L2 caches), memory, and 1/0 Bridges directly connected to it. Refer to the

figure 3.1 for a simple block diagram of the node. Also connected to this bus

is the subsystem that supports the hierarchical interconnect. This subsystem

is referred to as the "IQ-Link". Note the basic building block (or subsystem) is

a complete "four processor" SMP system.

19

• • •
Processor

Wth L1 and
L2~he

IVemory
Subsystem

VO Bus
Bridge

APIC

cache Coherent System Bus

Figure 3.1 - Simple Node Block Diagram

SCI
In

SCI
Qrt

The system bus, as stated earlier, is based on a transaction oriented protocol.

The bus provides enough information to implement a MESI cache coherency

protocol. The IQ-Link monitors accesses on the cache coherent bus of the

node. If an access is to a cache line that is naturally resident to this node, a

look-up is issued to the node's memory tags. If the type of access can be

supplied locally (i.e. the line is currently resident on this node) then the access

is allowed to proceed. However, if this is not the case, then the interface

would intervene via the standard MESI mechanisms. It would then issue the

appropriate requests to retrieve the line and/or invalidate other copies of the

line. The access for that particular address would then be allowed to continue

(this assumes that all system cache coherency requirements have been

fulfilled). In the standard MESI protocol the subsystem acts as a cache agent

20

for the requester.

Cacheable accesses that do not fall in this node's memory region, instead of

being looked-up in the memory tags, are looked up in the remote cache tags

(or L3 tags). If the request missed in the cache or the state of the line does

not support the type of access, then the IQ-Link would build the appropriate

requests to get the line at its node in the correct state to fulfill the bus request.

A simple block diagram of the IQ-Link is contained in the following figure.

SCI
Logic

L3 Cache
RAM

SCI Cache
&

P6 Bus
Cntlr

Cache Tags MemTags

APIC
Bus

Figure 3.2 - High Level Block Diagram of the IQ-Link

P6
Bus

As stated earlier, the IQ-Link ASIC that provides the translation between the

21

MESI and SCI protocols is based on a programmable protocol engine. The

protocol engine converts between the two protocols via the instructions

downloaded into its instruction RAM. This feature of the design provides for

the ability to change the cache protocol of the hierarchical interconnect. The

basic instruction set of the protocol engine consists of register to register

moves (with mask and rotate), move immediate values, compare, logical

operators (AND, OR, Negate, XOR), addition, and subtraction.

3.2 Interconnect Description

The interconnect between nodes is based on the SCI physical interface

definition. The SCI physical interface is based on a high bandwidth

(1 GByte/sec) point to point connections. With this definition simple rings or

more complex networks can be constructed. The physical interconnect is

based on a two byte wide connection based on an L VOS voltage swings. In

addition to the physical definition, SCI provides a distributed directory-based

cache coherence protocol.

The protocol uses transaction oriented request and response mechanisms

founded on a well defined packet format. The specification has the following

characteristics:

1. Defines a cache line size of 64 bytes.

2. Defines the physical point to point connection (the connection is 2

bytes wide, uses Low Voltage differential Signaling).

3. Defines Non-Coherent Memory Transfers.

22

4. Defines Coherent Memory Transfers.

The protocol is based on a simple head to tail pointer algorithm where an

agent (Node in this case) attaches to the head of the list when accessing a

cache line. Only the "Head of the List" has the permission to modify the line.

If the "Head" intends to modify a line, it first must invalidate the line at each

node on the list.

The SCI base protocol is represented in the following two figures. Figure 3.3

represents the SCI memory protocol. Memory state diagram consists of four

states:

Home - The only copy of the line exits on the Node that the physical

memory is resident (i.e. there is no sharing list).

Fresh - The home Node does have a valid copy of the line, but there is a

sharing list (i.e. there are copies of the line on other Nodes).

Gone - The home Node does not have a valid copy of the line. The

home Node provides a pointer to the Head of the List, which does (or

will) have a valid copy of the line.

Wash - The line is in the process of being updated to the Fresh State.

Figure 3.4 shows the SCI base cache protocol. It should be noted that this

figure is only the base protocol. It does not contain the locking options or pair­

wise sharing options of the SCI protocol.

23

weJ6e1a eieis AJowew 10s -e·& eJn61:1

8 / 9UOE) Ol lS!l

N

V
I

.,, cc

c ; w

:i:i
.

C
J)

Q

&>

0 :r

CD
 !a
 a CD

 c o;·

cc
 ; 3

4. Guaranteed Forward Progress Extension

Currently in the NUMA-Q system, accesses to memory are not fair. This is

due to several issues:

• The bus interface chip does not allow invalidates for local lines to be

converted to read invalidates. For this reason local invalidate requests

can continually prevent remote nodes from prepending to the sharing

list. The result is the local processors have an advantage in accessing

local lines. This is not the case for invalidates to remote lines. It should

be pointed out that this particular attribute is specific to the NUMA-Q

system.

• SCI requires the "home" node to respond with data if it contains a valid

copy of the line [2]. Combined with the first issue this creates the

possibility that a remote node access to a particular line can be

delayed.

• SCI limits the memory states of a line to a 2-bit field [2]. This 2-bit field

limits all implementation to a maximum state machine of four states.

• An SCI network is a completely unordered network topology.

Due to these restrictions, the current protocol for the NUMA-Q system does

not allow for the same cache controller to issue multiple requests down to a

bus for a local line. This is due predominately to the first and fourth issues

previously stated. There are several things that should be noted. This

restriction causes several issues:

26

Requests for "hot" lines can be "NOOP'ed" at the local node. NACK'ing

requests to prepend to a sharing list produces an environment that could

potentially prevent a processor from ever gaining access to a cache line.

Processing NOOP responses and reissuing the initial requests to the local

node increases processor latency. SCI and the cache controller bandwidth

are consumed generating and processing these NOOP responses.

For accesses to remote lines the hierarchical cache controller is the final

arbiter on how the requests for a given cache line are serviced. In a remote

node, the hierarchical cache controller can turn an invalidate request into a

read-invalidate request. Once a node prepends to an SCI sharing list, the

requests are serviced in the order that the nodes had prepended to the list.

The basic premise of the guaranteed forward progress extension is to exploit

the natural serialization process of the SCI sharing list.

4.1 Reading of a Home Line

When a remote node issues a read request for a line in the "home" state, there

is currently no sharing list for that particular line. The flow of events for a

remote line to read a line with a memory state of "Home" is as follows:

27

• Cacheable read requests that are made by a processor (or 1/0

device) of the remote node cannot be serviced by the third level

cache.

• The bus Interface chip issues a cache read request to its

hierarchical cache controller.

• Hierarchical cache controller issues an SCI "Cache_Read" Request

to the home node's cache controller.

• After the local state of the line is checked, the "Home" node's cache

controller issues Local read Request down the bus.

• Read request is serviced by either memory or a local processor of

the "Home" node.

• Read Response, at the local cache controller, causes an SCI

response packet to be issued to the requester. Also at this time, the

local memory state and pointer are updated to reflect the change in

state and the new "head".

• Remote node receives the response, issues the data response to

the bus and updates its state and pointer information in its remote

cache.

This flow of events is represented in figure 4.1. Figure 4.1 shows the request

as it is issued on the remote node, the SCI packet built and sent, the steps

taken on the local node, and finally the response being sent back through the

remote cache controller to its bus.

28

Remote Interface

c..b..iJl

Provide Read
Response

~, ~?~;/.'

Remote Cache
Controller

2

SCI
PKT

SCI
PKT

Local Cache
Controller

Figure 4.1 - Reading of a Home Line

4.2 Reading of a Fresh Line

Local Bus Interface

c..b..iJl

4

In reading a line with a memory state of "Fresh", everything is the same as a

line that is home until the last step of the process. The remote node checks

the state and sees that the line is "Fresh". Prior to issuing the response to the

29

bus, the remote node must notify the "old" head to change its state and update

its list pointer information.

This means that if a list already exists for a cache line, at minimum two SCI

requests must be generated and surfaced prior to the response being issued

on the bus of the remote node. The first is to the "home" node. It will return

the data, state, and pointer to the "Old" head. (Also at this time, the local state

and pointers are updated to reflect the completion of this request.) The

second request (which is issued after the response from the home node) is

issued to the "Old" head. The request issued is a Pend_ Valid command. This

command notifies the "old" head to update its backward pointer and transition

its state to reflect its new position in the sharing list.

4.3 Reading of a Gone Line

A memory state of "Gone" implies that a sharing list for this line does exist.

Also, the home node does not currently maintain a valid copy of the cache

line. In reading a line which is marked "Gone" at the home node, everything is

the same as a line that is home until the last step of the process, except that

no request is issued to the local bus. Pointer information is updated and a

"data less" response packet is issued back to the requesting node.

30

This means that if a gone list already exists for a cache line, at minimum two

SCI requests must be generated and serviced prior to the response being

issued on the bus of the requesting node. The first SCI request is to the

"home" node. It will return the data, state, and pointer to the "Old" head. (Also

at this time, the local state and pointers are updated to reflect the completion

of this request.) The second request (which is issued after the response from

the home node) is issued to the "Old" head. The request issued is a

Copy_ Valid command. This command notifies the "old" head to update its

backward pointer and transition its state to reflect its new position in the

sharing list and also provide a valid copy of cache line.

4.4 Description of the Guaranteed Forward Progress Extension

In reading the previous subsections (4.2 and 4.3), note the similarities of

servicing a read request of a fresh and gone cache line. In both cases:

• Two SCI requests are issued. One to the home node and the other

to the "old" head.

• A read request is issued to a processor bus (either at the home

node or the "old" head.

Our extension is just a simplification of the SCI protocol. This extension first

eliminates the need of the local node to issue read requests down to the bus

for a line that is in the state of "Fresh". This step has three advantages:

31

• It distributes the bus consumption of shared lines across all the

sharing nodes, this is in comparison with the standard protocol

which requires the local node to provide all the resources to supply

a copy of the cache line to the requesting node.

• It eliminates the possibility of a read request being superceded by

an invalidate request coming up from the bus (i.e. reduces the

number of SCI NOOP response packets). Note for remote

accesses, the cache controller of the node is the serialization point.

• It simplifies the SCI protocol by making the flow for reading a "fresh"

and "gone" line the same.

In addition to these advantages, this extension eliminates the need of the SCI

Pend_ Valid Command.

4.5 Reasoning for the Guaranteed Forward Progress Extension

Figure 4.2 represents the current flow of events with the "standard" SCI cache

protocol. Note there are issues with the flow of events through the remote

read process. The first is that the local node can "NACK" a request. Since a

remote request can be "NACK'ed" on actively contested cache lines, some

nodes can be denied access to this line. The resulting situation from this is

either live-lock (in the worst case scenario) or some node's processors exhibit

a lower processor utilization compared with other nodes in the system.

32

Remola Node l11ue1 Read Request

Local Node Recaive Read Request
If {state == Home} issue Bus Read
else if {state == Fresh} issue Bus Read (possible NACK responst)
else if {stale ==gone) update pointers and return dataless reson e
else NACK Request

Remote Node Receives Rt1ponse
If {state ==Home} issue read response to bus and done
else if {state== Fresh} issue Pend_ Valid Command
else if {state== gone} issue Copy_Valid Command
else NACK Request

Re-Issue Orig. Request if
NACK'ed

Remote Node 12 ReceivH Pend_ Valid
If {slate== Fresh} issue postive response

Remola Nodt 12 Receives Copy_ Valid
If {state== Dirty} issue read response

else NACK Request else NACK Request

If {state== home)

Remote Node Receives Response
Re-Issue Request if

NACK'ed If {state !=NACK} issue read response to bus and done ...__------------t else ii {state== Fresh} issue Pend_ Valid Command
else issue Copy_ Valid Command

Remote Node louts Re1d Response to the Bus

Re-Issue Request if
NACK'ed

Figure 4.2 - SCI Cacheable Read Request Flow

In contrast, compare figures 4.3 and 4.2. Figure 4.3 represents the guaranteed

forward progress extension. In the guaranteed forward progress approach the

possibility of the "local" node to NACK the response is removed. This is done

by eliminating the NACK'ing scenario. The scenario that is avoided is as

follows:

• Local Cache Line is held in the state of "Fresh".

33

• A Request to prepend to this list (the Cache_Read Command) is

received and processed just to a request from the local bus to

invalidate the list.

Since the bus will never issue a request to invalidate a line that is held

exclusively, and this is the only instance where a read request is issued to the

bus, the result is that the NACK condition is removed. The resulting scenario

is that read requests are allowed to fairly serialize as the sharing list grows.

Also, each node as it becomes the "old head" consumes a small piece of its

local bandwidth to supply the cache line to the "new" head allowing for the

load of supplying data to be shared equally among all the nodes on the

sharing list. This is in comparison with the standard SCI approach where the

"Home" node must commit the resources to supply the cache line to all the

requestors of a shared "Fresh" list.

34

Remote Node l11ues Read Request

+
Local Node Receive Read Request

If {state== Home} issue Bus Read
else update pointers and return dataless resonse

+
Remote Node Receives Response

If {state== Home} issue read response to bus and done
else Copy_Vaiid Command

I Issuing Copy_ Valid for any Sharing List ,,
Remote Node #2 Receives Copy_Valid

If {state== Dirty} issue read response --else NACK Request

If {state== Home}
Re-Issue Request if

, ' NACK'ed

Remote Node Receives Response
If {state != NACK} issue read response to bus and done
else issue Copy_Valid Command

--, '
Remote Node Issues Read Response to the Bus I

Figure 4.3 - Guaranteed Forward Progress Cacheable Read Request

Flow

Another simplification in figure 4.2 is the elimination of the SCI Pend_ Valid

command, simplifying the number of SCI states and commands to check. The

obvious drawback concerning this extension is quantifying the performance

gain. There was no measured performance difference between the two

35

protocols for a system under a "reasonable" load. The read latency between

the two protocols was the same. Again the primary benefits of the guarantee

forward progress extension are the following:

• The elimination of the possibility of receiving a "NACK" from the

Local node in the prepending to the sharing list. Note, once on a

sharing list, the list's order of nodes predetermines how the cache

line is manipulated. Also the act of successfully "prepending" to the

list guarantees that the requesting processor has access to the

cache line.

• The simplification of the SCI protocol, by making the "prepending" to

a pre-existing sharing list the same whether the list is a Dirty or

Fresh.

4.6 Comparison between the Standard and the New Protocol

The standard and new protocols differ in two areas when supplying read data

of a cache line. These are at the processing of the initial request at the local

node and in how the requesting node communicates with the "old" head of a

SCI sharing list.

4.6.1 Communication with the Local Node

The flow of events for the standard and new cache protocol are identical until

36

the SCI read request is received at the local node. Per the standard SCI

protocol if the local node has a valid copy of a cache line it must provide a

copy of line. Due to this requirement in the case of a "Fresh" list, if a

processor on the local node issues an invalidate request for this line, the read

request will be NACK'ed prior to the requestor being prepended to the sharing

list. In NACK'ing the request the potential now exists that the condition to fulfill

the read request might never exist creating the potential dead-lock scenario.

With the new protocol requests to the local bus are issued only if the line is in

the "home" state. By definition the local node's bus would never issue a

request to invalidate other nodes on an SCI sharing list because the line is

currently not shared, thus avoiding the possibility of a read request of a line in

the "Fresh" state colliding with a local bus invalidate request.

4.6.2 Communication with the "Old" Head of a SCI Sharing List

In both the standard and new protocols the new head of the list must notify the

"Old" head of a sharing list that it must change its backward pointer and cache

state to reflect its new position in the sharing list. For the standard protocol

two different SCI commands are used to communicate with the "old" head.

These commands are

• Pend_ Valid Command for prepending to a "Fresh" list. The

response for this command is a data-less response.

• Copy_ Valid Command for prepending to a "Dirty list. The response

37

for this command commands a valid copy of the cache line.

In the case of the new protocol, the need for the Pend_ Valid Command

has been completely eliminated. With the new protocol only the

Copy_ Valid command is used to prepend to a pre-existing sharing list.

38

5. Reduce List Invalidation Time Extension

The "Reduce List Invalidation Time" extension's primary goal is to reduce the

time to invalidate a sharing list while residing in the basic constructs of the SCI

invalidation scheme. The enhancement in the invalidation sequence is to

attempt to parallelize the bus invalidation sequence with the "SCI

acknowledgment". The "SCI acknowledgement" can be the issuing of the

response back to the initiator or it could be the forwarding of the invalidation

request to the next node on the sharing list.

Any time a cache controller acknowledges an "event" early, the cache

controller must assume the responsibility of maintaining the ordering of events

on this particular node. The cache controller, in order to maintain a processor

consistency model, must prevent the following situations from occurring:

• A processor's remote read request to complete prior to the completion of

the currently posted invalidates on this node. This is commonly referred to

as the "read passing a write" scenario.

• A processor's writes to be observed by any other processor in the system

out of the order issued. This issue is referred to as "a write passing a

write". With processors using MESI based bus interface, writes are

observed by read completion to the same address. Writes typically

happen in the L 1 or L2 cache of the processor.

It should be noted that the order of writes from any single processor must be

observed by all other processors of the system in the order issued to maintain

a processor consistency model. Also the ordering of writes to the same cache

line by multiple processors is done in the order that the requests to prepend to

39

the SCI sharing list were processed at the home node. This implies that the

second, third, etc. writes to the same cache line by different processors

require those writes to become a read-modify-write sequence. The

serialization point of the home node ensures that the system obeys the

processor consistency model. Note that in the processor consistency model,

the order of writes from multiple processors to different cache lines does not

have to be maintained throughout the system. The following table provides

all combinations of a distant processor reading two unique cache lines that are

in the process of being written. In this example, the order of writes is "A"

completes followed by "B".

Line "A" Line "B" Comment

Old Data Old Data Distant Processor reads old values of both lines.

New Data Old Data Distant Processor observed write of A but not B's.

New Data New Data Distant Processor observed write of A then B's.

Old Data New Data Distant Processor observed the write of B before A's.
Table 5.1- Possible Cacheable Ordering Scenarios

Of the four possible scenarios reflected by table 5.1, the first three are

acceptable scenarios to happen and have the system maintain a processor

consistency model. For this extension to maintain a processor consistency

model the cache controller, when it acknowledges the invalidate request,

"early" it must prevent the last entry of table 5.1 from occurring.

The scenario that must be prevented in table 5.1 is the following:

Processor 1 is writing some "datum" held in Line "A" and then

40

writes the "completion signal" that is in line "B". Other

processors of the system are spinning reading line "B" waiting for

the "completion signal. The act of writing B is the signal to all

other processors that the "data" is valid. If the write of B passes

the write of A for any reason then the system no longer

maintains a processor consistency model.

It should be noted that the other processors in the system observe the write by

reading the cache line. If a processor reads line "B" and the line is not in the

L 1/L2 cache, a bus access is issued to install the line. It is the act of reading

the updated line, which conveys the occurrence of the write. It was stated

earlier that a "distant" processor observes the order of writes by the

completion of the reads issued. It is the read responses from the node that

convey the occurrence of the write. Therefore, the read responses provide

the mechanism for other processors in the system to observe the ordering of

writes from any particular processor. In addition to read responses, writes can

be conveyed by two other mechanisms.

• The first mechanism is the "interrupt". The "interrupt" mechanism is

a very commonly used "completion" signal, which can notify all other

processors in a system that the "datum" is valid.

• The second mechanism is the "write-back". Suppose the write of

"B" required no invalidate because the processor held the exclusive

copy of line B. Also suppose, just after the completion of the write

of "B", a capacity miss occurred and line "B" was selected to be

evicted from the processor's cache. The processor would then just

write-back "B" to memory. Note the memory might not be located

41

local to the writing processor.

The fast invalidation methodology is based on a posting methodology for all

invalidates at a remote node. When a remote node receives a invalidate

request from the SCI network, it would immediately issue the SCI response.

Every time an invalidate request is acknowledged early {i.e. issuing of the

completion response or forwarding the invalidate request), a bit mask is set

identifying that an invalidate is currently in progress. When an invalidate

request completes, the pending invalidate bit is cleared. When a read

response is received from the SCI network, the currently pending invalidate

register is read and copied to a unique register, specifically for this read

response. The currently set bits of the private copy represent the writes from

other processors that must be completed to prevent the cases:

• Read Passing a Write Scenario

• Write Passing a Write Scenario

As invalidates complete, the pending invalidate bits are cleared. When all

posted invalidate bits are cleared for a particular read response, it is issued to

the bus fulfilling the read request. Note there is a "unique" pending invalidate

register for all read responses. The bit vector of the pending invalidates is

captured when the read response is received. When all bits have been retired

the read completes. This methodology provides a new extension to the SCI

protocol to aid in decreasing the time to invalidate a sharing list. The

decrease is realized by the parallelization of the invalidation of the local copy

of the cache line and the flight time of the SCI response packet.

42

This very same mechanism is used also for write-backs and interrupts. Again

these accesses must be delayed also because they can potentially contain the

"Completion Signal" as Line "B" does in table 5.1. The scenario that is being

prevented in the case of the Write-back is as follows:

The processor, immediately following the write of B, experiences a

capacity miss and line "B" is selected to be evicted. Since the line is

modified, it must be written back to into memory location. If the home

of the memory location is on not on the same node as the processor,

the write-back is issued over the SCI network. If "B" gets installed in its

home node and a local processor of that node reads the local copy of B

prior to the completion of the invalidation of its copy of line "A" then "a

write passed a write". Therefore, to prevent this situation from

occurring, a write-back must be delayed until the completion of all

currently active posted invalidate requests are completed.

5.1 Comparison of the Two Invalidation Methods

Portrayed in figure 5.1 are the steps taken with the standard SCI protocol to

purge a sharing list. In the figure the length of the sharing list is two.

43

Local Bus Interface

~
Local Cache

Controller

2

SCI
PKT

SCI
PKT

Remote Cache
Controller

3

Remote Bus
Interface Chip

4

Figure 5.1 Standard SCI Invalidation Flow of Events

In figure 5.1 the bubbles represent the steps of the invalidation sequence.

The steps are as follows:

1 . Bus interface issues to the cache controller an invalidate request.

2. Cache Controller looks up the line, a SCI Invalidate Request Packet

is built and is targeted to the node stored as the "Forward Pointer".

44

3. Remote Cache Controller receives Invalidate Request, checks the

state of the line and in most cases issues invalidate to the bus.

4. Remote Bus Controller issues request on node's system bus and

when complete acknowledges invalidate request.

5. Remote Cache Controller updates state to invalid and issues SCI

response.

6. Local Cache Controller processes response, detects that the SCI list

is completely purged, updates its state and issues acknowledge to

its bus controller.

7. Local Bus Controller acknowledges the invalidate request of the bus

and the transaction is complete.

If the remote node is not the last element of the SCI sharing list, then the

status sent back to the invalidating node would have reflected this fact. In that

case steps two through six would be repeated for each node on the sharing

list. Only when the ''Tail" issues a response to the invalidating node is the

sharing list completely purged. An example of the standard SCI invalidation

methodology of a list with two additional elements is portrayed in figure 5-1 a.

45

State of the Sharing List Prior to the Combined Invalidation Sequence
~

Head of List - - Mid of List - -
(node n) (node y)

- -- Tail of List
(node z)

Initial State
Sha ring list of three
nodes with Node N
as the head of the
list.

State of the Sharing List During the Invalidation Sequence

Head of List
(node n)

Head of List
(node n)

Head of List
(node n)

.-

Step 1 -
Step 4

--,..
~ Mid of List

(node y)

Invalid
(node y)

Step 1

Step 4

Invalid
(node y)

. -
~

Step 2

Tail of List
(node z)

Tail of List
(node z)

Tail of List
(node z)

Steps to Invalidate Y
1 Issue SCI Inv Req.
2 Issue Inv Bus on Y
3. Rev . Rsp from Bus
4 Issue SCI Asp .

Steps to Invalidate Z
1. Issue SCI Inv. Req .
2. Issue Inv. Bus on Y
3. Rev . Rsp from Bus
4 Issue SC I Rsp

Step 3

State of the Sharing List After the Invalidation Sequence

Only_Dirty
(node n)

Invalid
(node y)

Invalid
(node z)

Figure 5.1 A - Standard SCI List Invalidation

Fina l Sta te
Node N ho ld li ne In
exclusive state and
issues an ack. to
the bus completing
transaction .

46

Figure 5.2 represents the steps the Reduce List Invalidation extension

employs to invalidate a sharing list. Again like in 5.1, this example has only

one additional node of the sharing list.

Local Bus Interface

~

'1, ,,·:".·

Local Cache
Controller

2

SCI
PKT

Remote Cache
Controller

Remote Bus
Interface Chjp

4

Figure 5.2- Reduced List Invalidation Flow of Events

The steps taken for the Reduced List Invalidation extension is very similar to

the standard SCI methodology. The steps for this extension to invalidate a

sharing list are as follows:

1 . Bus interface issues to the cache controller a invalidate request.

2. Cache Controller looks up the line, an SCI Invalidate Request Packet is

built and is targeted to the node stored as the "Forward Pointer".

47

3. Remote Cache Controller receives Invalidate Request, checks the state

of the line and in most cases issues an invalidate request to the bus. In

parallel it issues the SCI response packet signaling that the invalidate

request is complete. Also the "pending invalidate" bit is set, signaling

an invalidate request has been acknowledged "early''.

4. Remote Bus Controller issues request on node's system bus and when

complete acknowledges invalidate request.

5. Remote Cache Controller updates state to invalid and issues SCI

response and clears the "pending invalidate" bit corresponding to this

request. All resources for this request are released for a new SCI

command.

6. In parallel with the invalidation on the remote node, the Local Cache

Controller processes the SCI response, sees the SCI list is completely

purged, updates its state and issues acknowledge to its bus controller.

7. Local Bus Controller acknowledges the invalidate request of the bus

and the transaction is complete and then releases all resources for this

request for a new request from the system bus.

The fundamental difference is parallelization of the SCI response and the

actual invalidation on the remote node. Again, if the sharing list consisted of

additional nodes, steps two through six would repeat for each node on the

sharing list.

48

With the Reduce List Invalidation extension, the completion of the remote

node's invalidation and the invalidating node's acknowledging the completion

of the purging of the list are now completely asynchronous. The breaking of

the connection between these steps is represented by separate branches of

steps 4 & 5 and steps 6 & 7 in figure 5.2. The time saved at each node

through the invalidation time is additive. The longer the sharing list, the

greater the reduction of time for invalidating the list. An example of the

reduced list invalidation methodology of a list with two additional elements is

portrayed in figure 5-3.

49

Stat ~e Sharing List Prior to the Combined Invalidation Sequence

Head of
(node

Head of
(node

Head of
(node

Head of
(node

Only_D1
(node

List
n)

Mid of List
(node y)

Tail of List
(node z)

I nltlal State
Sharing list of three
nodes with Node N
as the head of the
list.

State of the Sharing List During the Invalidation Sequence

List
n)

List
n)

List
n)

Step 1

Step 2

Step 3

Mid of List
(node y)

Invalid
(node y)

Step 1

Step 2

Invalid
(node y)

Step 4

Step 3

Tail of List
(node z)

Tail of List
(node z)

Tail of List
(node z)

Steps to Inval idate Y
1 Issue SCI Inv Req.
2 Issue SC I Asp
3. Issue Inv. Bus on Y
4. Rev Rsp from Bus

Steps to Invalidate Z
1 Issue SCI Inv Req
2. Issue SCI Rsp .
3. Issue Inv Bus on Y
4. Rev . Rsp trom Bus

Step 4

State of the Sharing List After the Invalidation Sequence

rty
n)

Invalid
(node y)

Invalid
(node z)

Fina I State
Node N hold line in
exclusive state and
issues an ack. to
the bus completing
transaction .

Figure 5.3 - Reduced List Invalidation Sequence

50

The penalty for acknowledging the invalidate request early is, of course,

complexity. With the early acknowledgement comes the responsibility to

maintain ordering to ensure the correct memory consistency model. To

maintain ordering the "Pending Invalidation" logic is employed. This logic

provides the ability to "queue" events on the completion of previously posted

events that are currently in progress. Figure 5.4 is a representation of this

queuing process.

Local Node Receive Read Response or Interrupt Request or
Writeback Request

Snapshot Currently Active Invalidate and Queue on the completion
of the posted Invalidates.

Pending Invalidates Complete
Clear Corresponding Pending Invalidate Bit of any Queue List

Pending Invalidate List == O
Dequeue Task and take appropriat action

•
Issue Read

Response to the
Bus

OR

*
Issue Wrlle­

Back Request to
the Bus

OR

•
Issue Interrupt

to Processor(s)

-

Figure 5.4 Pending Invalidation Flow of Events

I

·---1

51

The programmable protocol engine of the cache controller executes a

specified group of instructions for a particular "event". In the case of read

responses, write-backs, and interrupts the specified instructions are to capture

a copy of the currently "pending invalidates" and queue on the completion of

these tasks. The protocol engine is completely free to work on other requests

or responses in the interim. When the "Pending Invalidate List" is equal to O

and the protocol engine is "Idle", this particular thread is de-queued and

continues to sequence through the protocol engine's program to complete the

specified routine. This specified routine issues the appropriate response or

request to complete that specific transaction.

Via the "Pending Invalidate" and queuing logic the cache controller is able to

guarantee the ordering requirements for a processor consistency model. The

processor consistency model is guaranteed by preventing any processor local

to a specific node:

• To have its cacheable read response passing a previously posted

invalidate.

• To be able to view the writes (via reads) of another processor out of

the order the writes were issued.

52

5.2 Comparison of the Invalidation Methods of the Standard and New

Protocols

The flow of events between the two invalidation methodologies is represented

in the comparison of figures 5.1 and 5.2. The primary difference is the

overlapping of steps 4 and 5 with steps 6 and 7 in figure 5.2. It is this overlap

which provides the performance increase by parallelizing the sending of the

SCI response packet with the node's invalidation sequence.

However, acknowledging the completion of the invalidate early forces the

cache controller to maintain ordering of events observed by this node. This is

to ensure that a processor on this node does not observe writes from a distant

processor in an order different from the order were issued. If the cache

controller does not maintain the ordering of events, then the processor

consistency model will be violated. The scenarios that must be prevented are

the classical

• Read passing a write scenario.

• Write passing a write scenario.

To prevent these scenarios the Pending Invalidate bits and queuing logic of

the protocol engines are used. Processor consistency is maintained by

delaying all read responses, write-back and interrupt requests behind all

currently posted invalidate requests. Queuing read responses behind posted

invalidates ensures that a read would never pass a write. Also queuing write-

53

backs and interrupts behind the posted invalidates ensures that a write would

never pass another write. The mechanism used to clear the pending

invalidate bits is the acknowledge response from bus signaling that all copies

of the cache line have been invalidated. As the acknowledge responses are

received the corresponding pending invalidate bits are cleared. When all

previously set pending invalidate bits are cleared the event is de-queued and

issued to the bus.

5.3 Merging of Reduced List Invalidation with List Invalidation Method

The next logical step in decreasing the invalidation time is to develop a

method of forwarding the invalidation request down the list and thus

eliminating the intermediate SCI response packets. Work was previously

done in this area. This work is referred to as the "Fast Invalidate Extension for

SCI" [52]. Logically, a complete protocol was developed based on this

forwarding concept. However, due to hardware limitations of the SCI physical

interface chip, this extension is not currently realizable. It should be noted that

the two invalidation methods are not mutually exclusive. If changes could be

made to the SCI physical layer definition, the optimum invalidation

methodology would be the merging of these two extensions. This concept is

addressed in further detail in section 7.

54

6. Testing and Measured Results

A primary goal of this research is to develop a "realizable" cache coherency

protocol that could be demonstrated on the NUMA-Q system of Sequent

Computer System Inc. To that end, the developmental and debug strategies

of this company where followed. In general, the development of the cache

coherence protocol's basic structure (or the simplest cases) was exercised in

a simulation environment. The complete protocol (all end cases, roll out

strategy, hardware imposed limitations and race conditions) was debugged in

a system environment. The system environment was initially based on a "two

node" configuration (8 processors). After the "two node" configuration was

stable, the system environment grew to three nodes and finally four nodes.

6.1 Development Strategy

The exploitation of the programmability of the cache controller is the key to the

development phase of this research project. The cache controller's RAM

based protocol engine thread based architecture executes the instructions

stored for a particular event. An example of the instructions of the protocol

engine is shown in the following figure.

55

·**
' ; * Entry Point: DP Response for LRL
;**
LRLRsp:

CMPI R_M_JX RspHdrOh, Resp64, 0, 7, DPSendReq,NOOP ;
MOVA R_M_JE RspHdrl,RspHdrl,16,15,LRLDone ; Extract MernID
MOVA R_M HdrO, HdrO, 0, 15 ; Save TransID
OR R_M RspHdrl, B_AllJResul t, HdrO, 16, 31
MOVI DPPostReq, PostVec ; post send req.
MOVA RspHdrl, LclDirPtr ; Update MemID
MOVI JMP Oxf ff ff ff f, RspHdrO, IDLE ; Set RspHdrO for debug.

Figure 6.1 - Example of Protocol Engines Program Language

This code segment is executed when a response packet has been received by

the local cache controller for a sharing list which is being converted from

"Dirty"·to "Fresh". The first instruction is a "Compare Immediate Instruction

with a rotate and mask extension". It is comparing the Response Header Oto

see if this response contains 64 bytes (the size of a cache line). Also, this

instruction has a jump operand appended to it. All instructions can jump on a

previously set "jump condition codes". The "JX" prefix is for an extended jump

condition flag, in particular the "NOOP" bit. If the NOOP bit was set, the

protocol engine would have immediately "jumped' to the "DPSendReq" label.

The following instructions are examples of Move Instructions from the "A-Side"

of the ALU with "rotate/mask operands.

56

The code was developed, and with the use a table based assembler,

compiled. The binary files created can be either brought into a simulation

environment or downloaded into the cache controller during initialization.

6.1.1 Simulation Environment

The initial testing of the two cache extensions was done in a chip standalone

simulation environment. This environment entails the RTL of the cache

controller (written in Verilog) and the standalone jig that emulates the bus

interface as well as the interface to the SCI. This environment had the ability

to generate requests or responses from the bus or SCI interface and exactly

predict the behavior of an individual cache controller for a specific case.

This environment initially tested and isolated implementation cases for the

Guaranteed Forward Progress and Reduce List Invalidation extensions. The

environment simulated the cache controller's ability to issue a read request to

the bus for a "Fresh" list, as well as test the queuing of responses on pending

invalidates. It was never the intention to modify the complete set of tests in

the standalone environment to provide comprehensive testing of the new

coherency protocol. The comprehensive testing would be done in the

development environment.

57

6.1.2 Development Environment

Once the extensions passed the initial simulation tests and a multi-node

system was available, the research migrated to a development environment.

The development environment consisted of a multi-node system capable of

running either standalone diagnostic tests or operating system diagnostic

tests. Using actual hardware, the time to uncover a design flaw in the new

protocol was greatly accelerated. Initially, a ''two node" system (an eight

processor system) was used. Once that system was stable, the development

process migrated to a "four node" system (sixteen processor system).

The basic steps for both system configurations were to first run diagnostics on

the system, boot the system, and then run more stringent tests under the

operating system control. These basic tests run in a simple system

environment and were intended to proof and debug hardware. These tests

were never intended to provide a cache coherency validation suite of tests and

were not a very good debug mechanism.

Once the diagnostic tests passed, the system was then booted. The system

boot process is where most implementation problems were uncovered. A

large portion of the cache coherency protocol is tested during the boot

process. A major problem with debugging a cache coherency protocol

58

through the boot process is recovering the system after a crash due to a

coherency bug.

6.2 Debug Environment

The basic environment used to debug a cache protocol extension is provided

in figure 6.2. In addition to the "four node" system, a four channel logic

analyzer monitored each cache controller's connection to its node system bus,

as well as the program counters of the protocol engines.

Node 3

4 Channel Logic
Analyzer

Node 0

Node 2

SCI Network

Figure 6.1 - System Debug Environment

Node 1

The debug environment, even with the correlated traces of the channels from

the logic analyzer, provided only a limited view of what is actually happening

59

on each node of the system. The SCI interconnect, system bus, 1/0 busses,

and memory of each node was not instrumented.

6.3 Measured Results

The performance metrics used to measure protocol extensions took four

forms. At the lowest level, logic analyzer traces were taken as the first low

level metric. Following this, some initial "Read" measurements were taken on

a system under moderate load. Invalidation tests were made next. The final

test was to see how the extensions performed under a "real" load. The final

metric is based on a system running a database benchmark.

6.3.1 Logic Analyzer Traces

Logic analyzer traces were used initially to debug implementation bugs of the

cache coherency protocol extensions. The traces were also collected as an

initial metric to see if the extensions were performing as they were intended to

perform. An explanation of the trace is as follows:

• Node Column indicates which Node the data is coming from.

The entries could be from QO - 03 in a "four node" system.

• CMD Column Indicates the Command (or Response) which will

be ultimately issued on the node's system bus. This interface,

like the node's system bus, is based on a split transaction

architecture.

60

• ID Column identifies which request or response is being issued.

The interface supports up to 32 outstanding requests in each

direction.

• Debug Port of the Cache Controller - This port indicates the

Thread # and program counter for the Dual protocol engines of

the cache controller.

• Timestamp Column provides the elapsed time since the previous

sample. It should be noted that the nodes base frequency is

90MHz (or a 11.11 nsec duty cycle) and the resolution of the

logic analyzer is 0.5nsec.

The first trace provided is of QO issuing a read response for a previously

issued request. This trace portrays the "ten clock" penalty of the cache

controller due to a hardware design flaw of the device. The second is a trace

of a sharing list invalidation sequence.

6.3.1.1 Logic Analyzer Read Trace

The following figure contains a logic analyzer trace of the read response

timing. This trace shows the unloaded latency addition to every read (or in this

case "ACK") for queuing on the posted invalidation.

61

NODE CMD ID DEBUG Times tamp
QO IDLE lF F001F192 11.000 ns - Start overhead
QO IDLE lF F001F193 11.000 ns
QO IDLE lF F001F001 11.000 ns
QO IDLE lF FOOlFOOl 11. 000 ns
QO IDLE lF F001F001 11. 000 ns
QO IDLE lF F001F001 11.000 ns
QO IDLE lF 7001FOOA 11. 000 ns
QO IDLE lF 7001F3AC 11. 000 ns
QO IDLE lF 7001F3AD 11. 000 ns
QO IDLE lF 7001F3AE 11.500 ns - End Overhead
QO IDLE lF 7001F194 11.000 ns - Code Seq. for either
QO IDLE lF 7001F195 11. 000 ns
QO IDLE lF 7001F196 11.000 ns
QO IDLE lF 7001F197 11. 500 ns
QO IDLE lF 7001F198 11.000 ns
QO IDLE lF 7001F199 11.000 ns - Code Seq. for either
QO S_NULL lF 7001F001 55.500 ns
QO S_ACK OF 7001F001 11. 000 ns

Figure 6.3 Logic Analyzer Trace of a Read Response

The NUMA-Q system cache controller is a dual engine implementation. This is

to say that each cache controller contains two complete protocol engines.

There is a protocol engine for "even" cache lines and one for "odd". A design

mistake was identified with the dual protocol in the area of the Queuing Logic.

In the current implementation, a protocol engine can only check to see if it has

anything posted (not if either engine has anything posted). This oversight

forces the queuing of all cacheable read responses. In most cases, there

aren't any invalidates posted and therefore, the "ten clock" overhead of

queuing and de-queuing is incurred for no reason. This "ten clock" penalty is

an implementation issue and not an architecture issue. However this penalty

is contained in all the data collected.

62

6.3. 1.2 Logic Analyzer Invalidate Trace

The following figure was trace collected from a "four node" system. This trace

is of the Standard SCI protocol. The local node issues a request to invalidate

a line. The sharing list consists of three other nodes (1, 2, and 3).

Node CMD ID DEBUG Times tamp

QO O_LIL 05 F001F001 11.000 ns - Local Node issues an Inv.
QO O_NULL 14 F001F001 11.000 ns
Q1 S_NULL 1F 70017001 969.000 ns
Q1 S_CIL 07 70017001 11.000 ns - 1st Node issues request
Q1 O_NULL 1F 70017001 389.000 ns
Q1 O_ACK 07 70017001 11.000 ns - 1st Node issues SCI Resp.
Q2 S_NULL 1F 70017001 1. 569, 500 us
Q2 S_CIL 07 70017001 11.000 ns - 2nd Node issues request
Q2 O_ACK 07 70017001 277.500 ns- 2nd Node issues SCI Resp.
Q3 S_NULL 1F 70017001 1.273,500 us
Q3 S_CIL 07 70017001 10.500 ns - 3rd Node issues request
Q3 O_ACK 07 70017001 278.000 ns- 3rd Node issues SCI Resp.
QO S_NULL 1F F001F001 754.500 ns
QO S_ACK 05 F001F001 11.000 ns - Local Node issues Response

Figure 6.4 - Trace of Std. Protocol Invalidation Sequence

The first Invalidate request is targeted to 01. When 01 receives the

acknowledgement from the bus, it then issues the response back 00. This

scenario is repeated for 02 and 03. When 00 receives the last SCI

response, it then issues the acknowledgement to the local bus. The elapsed

time of this transaction is the sum of the Timestamps, 5586 nanoseconds.

The next trace is of a similar scenario, but instead of the Standard SCI

Protocol the new protocol was used. As in the previous trace, the list being
63

invalidated requires issuing 3 SCI Invalidate requests. A difference between

the previous trace is the order of the sharing list. Instead of an order {QO, Q1,

Q2, Q3}, the order for this trace is {QO, Q3, Q2, 01 }.

Node CMD ID DEBUG Time stamp

QO O_LIL 04 7001F001 11.000 ns
Q3 S_NULL lF F0017360 760.500 ns
Q3 S_CIL 07 F0017001 11.000 ns
.Q3 O_ACK 07 F0017001 278.000 ns
Q3 O_ACK 17 F0017001 11.000 ns
Q2 S_NULL lF F0017360 784.500 ns
Q2 S_CIL 07 F0017001 10.500 ns
Q2 O_ACK 07 F0017001 278.000 ns
Ql S_NULL lF 70017358 826.000 ns
Ql S_CIL 07 70017001 11.000 ns
Ql O_ACK 07 70017001 278.000 ns
QO S_NULL lF 7001F001 174.000 ns
QO S_ACK 04 7001F001 11.500 ns

Figure 6.5 - Trace of New Protocol Invalidation Sequence

The time to invalidate this list is 3444 nanoseconds. The reason for the

reduction in time is due to the overlapping of the SCI response and issuing the

request down to the local bus on each remote node.

The difference in time to invalidate three other nodes of a sharing list from the

logic analyzer traces is 1142 nanoseconds, a decrease in list invalidation time

of twenty percent. It should be noted that these measurements were taken

64

during the boot cycle of the system. The system load during this time is very

low.

6.3.2 Lock and Invalidate Tests

The following tests were developed to measure the worst case scenario to

invalidate an SCI sharing list. There are four specific versions of the test and

the versions are referred to as "Share List", "Share List - Atomic", "Share List

- List" and "Share List - List Atomic". The tests were initially developed by

Paul McKenney of Sequent to measure different attributes of cache based

locks in a CC-NUMA environment. The basic premise of the tests is to have a

processor of a node write to update a list structure and have each "reading"

processor read the updated structure. This structure consists of 64 elements.

Each element is contained in a cache line. The Element consists of a pointer

to the next cache line and a count. The list structure resides in a contiguous

address range. The pool of processors for the test consists of processor 1

writing the "List", processors 2 to "n-1" reading the list, and processor (n)

controlling the activity. The actual steps of the test are described below. The

description is based on a pool of 60 processors. The test has two parallel

threads of activity. The first is the activity performed by the "control"

processor. The flow of this activity is as follows:

• Control processor writes control cache line.

• All other processors read the control cache line.

65

• Selected processor writes the cache line when it is done.

• All Processors read the control cache line.

• Control processor writes control cache line.

• All other processors read the control cache line.

• Next selected processor writes the cache line when it is done.

• Process continues for all the processors in the list.

Again the control of the test is contained in a single cache, while the other

thread of activity involves the manipulation of the 64 cache line structure. The

other thread's flow of events is as follows:

• Processor 1 writes the structure when instructed.

• Processor "n" reads the structure (when instructed).

• Processor n+ 1 reads the structure (when instructed).

• Process continues for all the reading processors in the list.

• Processor 1 writes the structure when instructed (invalidating all

the sharing lists of the cache lines in the process of updating the

individual elements).

• Processor "n" reads the updated structure (when instructed).

• Processor n+ 1 reads the updated structure (when instructed).

• Process continues for all the reading processors in the list.

The environment created by the "Share List" tests gives the user the ability to

grow a sharing list in a guaranteed order and length as well as invalidate the

list on command. Using the "Share List" tests, a user can measure Read

66

Latency numbers of cache lines under contention, as well as list invalidation

times.

Differences in the four versions of the "Share List" tests are based on how the

elements are updated and how the list of elements of the structure is

traversed. The differences between the tests are as follows:

• Share List: The writing processor uses a simple increment

instruction to update the count and does not use the chained link

structure of the List to traverse it. Since a simple increment

instruction is used, the processor is allowed to issue multiple

write instructions.

• Share List - Atomic: The writing processor uses a lock

increment instruction to update the count and does not use the

chained link structure of the List to traverse it. The lock

increment prevents the processor from issuing multiple writes at

any given instant.

• Share List - List: The writing processor uses a simple

increment instruction to update the count, but uses the chained

link list embedded in the element to traverse the list. Since a

simple increment instruction is used, the processor is allowed to

issue multiple write instructions. But in this test the writing

processor must also read the pointer embedded in the line.

67

• Share List - List Atomic: The writing processor uses a "locked"

increment instruction to update the count and uses the chained

link list embedded in the element to traverse the list. The locked

increment instruction prevents the processor from issuing

multiple writes at any given instant, as well as forcing the writing

processor to read the pointer embedded in the line.

6.3.2.1 Share List Performance Measurements from a Four Node System

The following measurements were taken on a "four node" system, each with a

bus frequency of 90MHz. Each node contained four 360MHz Intel XEON

processors. The tests were set up to have four reading processors, 1 writing

processor, and the control processor. It should be noted that the four reading

processors are physically located on different nodes. The following four bar

graphs compare the results of the Share List tests. These comparisons are of

the Standard SCI protocol to the new protocol with both the extensions

enabled.

68

4

3.5

3
Ill

-g 2.5
0
u
Cl) 2 Ill
0 ...
-~ 1.5

CStd. P'rofocol ·..c."
:l .-!:. :"".:! '11 ./. . ;,;.'.J!-

Protocol with Exten'sions
- d , . ~ . -

:E
1

0.5 I '

0

1 2 3 4

Processors

Figure 6.6 - Share List Invalidation Time

In figure 6.6, the time to invalidate the first processor is only gated by the bus

invalidation time of the local node, since the writer and the first reader are

resident on the same node. The other processors (processor 2 - 4) are

located on remote nodes and require the SCI Sharing List to be invalidated.

6.3.2.2 Share List-Atomic Performance Measurements from a Four Node

System

In general for the "simple" Share List case, where there are four processors

and three remote nodes, the new protocol extension provides a list invalidation

time reduction of 432nsec. It should be noted that the invalidation time

theoretically continues to decrease the longer the sharing list for the Share List

Test. This fact is represented in figure 6.3.

69

Figure 6.7- Share List - Atomic Invalidation Time

Figure 6. 7 represents the results of the Share List -Atomic test. Unlike the

simple "Share List" case the writing processor is using a "locked increment"

instruction. This eliminates the chance of any parallelization to happen due to

the posting of multiple writes by the writing processor. As expected, the

invalidation time increases due to the serialization of the writes. This also

amplifies the differences between the two cache protocols. In the "four

readers" case, the invalidation time difference grew to over 480nsec. As in the

previous case, the differences between the two invalidation methods grow with

the length of the sharing list. Refer to the graph of figure 6.6 to view the

representation of this fact.

70

6.3.2.3 Share List- List Performance Measurements from a Four Node

System

The "Share List - List" test requires the writing processor to actually extract

information from the cache line that is being written . This simple act adds

overhead and negates some of the benefit of the new invalidation scheme.

Figure 6.8 reflects the difference in invalidation time between the two cache

:t<'r ... ·

"'a Protocol with,Extensions
~· ., ·- ·~ •. ' ____.!i._

Figure 6.8 - Share List - List Invalidation Time

The time difference between the two protocols in the Share List - List case is

approximately 340nsec in the three remote node cases (2, 3, and 4

processors).

71

6.3.2.4 Share List- List Atomic Performance Measurements from a Four Node

System

The "Share List - List Atomic" test requires the writing processor to actually

extract information from the cache line that is being written, as well as use a

"locked" increment instruction to perform the update. This simple act adds

overhead and negates some of the benefit of the new invalidation scheme.

This is clearly the worst case scenario of the four sharing list tests. But even

this case shows that the new cache protocol with the invalidation extension is

still higher performant than the standard SCI protocol. As in the previous

three cases, figure 6.9 shows that the new cache protocol provides a

consistently shorter time to invalidate the sharing list.

6 ,....,.-~_,.......__,........,__,._.....,..~-.--.-.......,..~__,..._,,

Ill 4 "C c:
0
(.) I _:1;,.." 1~.\ .. _~·l,-:<.'!:' ;, • ,,j:'l!i&'l.>11· ... ~'il l- ~~ l lil'..'.1:11 • ' 'lit ~-· :'Elml I 1 '-' v\U • . r 1 v1vvv1 ,;~ .. ~-:<: ;1 G> 3 Ill e
.~
::!: 2

1

0
1 2 3 4

Processors

Figure 6.9 - Share List - List Atomic Invalidation Time

72

Figure 6.1 o is a comparison of the two cache protocols for each of the four

Share List tests. This figure shows the differences in time it takes the writing

processor to update a single element of the structure. The measurements

taken are the averages of three runs. Each run performed the specific test

100,000 times. In all four cases (Share List, Share List - Atomic, Share List -

List, and Share List - List Atomic) the "Reduced List Invalidation" methodology

provides for a shorter period of time to pu rge a sharing list in all four versions

of the test.

0.6

0.5

~ 0.4
c
0 u
~ 0.3
0 ~
::!: 0.2

0.1

0
1 2 3 4

Processors

Figure 6.1 O - Invalidation Time Differences between Standard and New
Cache Protocols

Another way to view this data in figure 6.1 O is to look at the percentage

decrease in time between the two cache protocols. Figure 6.11 shows the

percentage change for the four Share List tests. In the case of only

73

invalidating the line (the Share List and Share List - Atomic cases) the time to

purge the sharing list was reduced by approximately thirteen percent. The

worst case latency reduction for the new protocol in the Share List tests was a

seven percent.

14.0%,........ -~
~
- 12.0% . : ... ~;> , ·~

E
ai -·~ :~ :\}5i~ ~~, ;c ~· p•. j(. ·rt ~ ._ ... :'?,~{>

' ' _,_,.,·.-.i,) ·J ..,, . -C Cf; ·· _;,I

~ 1 0. Oo/o ·' ''""'"· ~ '· · ·.. .. · ·;C:.;;1:

E
c..E 8 001 !"' . , .. , , *
- . to " L ·• ::;;::=-- ~ j
Cl) .S 6.0% I .. ,.. ' J '! " , , ,.,,~," ""f

I­
C
.2 4.0% I .. ~· , , .. . --· -·- "'" .. - ..

~
:2 CU 2.0% I .' 8' · · ·• ~-. · ., .. · -~· .. , "'
> c

0.0% +--6ll~..:..-,.-------r-----,..---.---

2 3 4

Processors

~Share List -,list ~
~ \:J _, -i:;-; :f ' ~ .'1

Atomic" · · .,,.,,:.
.~~ c.,,....,, •

Figure 6.11 - Percentage change Between the Two Protocols

6.3.3 Read Measurements

As shown in the previous section, the time to purge a sharing list is reduced by

the new cache protocol. These measurements were made on the same

system, with exactly the same configuration (same OS, memory size, number

of disk drives, same background load, etc.). The only difference between the

runs was the cache protocol. The penalty of the new cache protocol is in the

read latency. The reason read measurements are a concern because of the

74

issue that the Reduce List Invalidation Extension negatively impacts read

responses. Are the gains of the Reduce List Invalidation Extension negated

by the read response penalty? Also, what has to be taken into account for this

generation of cache controller, is that all read responses incur at minimum a

"ten clock" penalty due to a limitation in the hardware. In most cases no

invalidates are posted and the read response is delayed by the queuing - de­

queuing time of the cache controller.

The data provided in the figure 6.12 is based on the average time it took to

completely install a cache line at the remote node. These measurements were

taken using the "Share List - List Atomic" test. In all cases the first remote

read is to a line that is "home". All other remote reads are prepending to a

"Fresh" sharing list. In prepending to a "Fresh" sharing list, the remote access

is burdened with the additional SCI request/response transaction to the "old"

head to notify it that it is no longer head of the list. Figure 6.7 consists of four

latency measurements. These measurements include:

• Read latency for the standard protocol.

• Read latency for the new protocol.

• List invalidation time for the standard protocol.

• List invalidation time for the new protocol.

75

Due to limited access time to a larger system (64 processors or 16 node

system), the invalidation time for sharing lists of four through lists of th irteen

could not be measured.

50

45

40

35
I/)

-g 30
0
(.)

5l 25

.n ' _:-~--$)J:i_ r-

p,~e~,-~,~~ote ,Rd.
·El Std''Remote. Rd.
!f ; . !.' • -"' . • .• ,

e DNew List lnval. ·
.~ 20 :e

15

10

5

0
2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Remote Nodes

~~" ~:: ,:~ - -
. D Std: UstJnval.
" ·r-...vit t t· ~ • ·w ~·

Figure 6.12 - Read Response versus List Invalidation Time

Figure 6.12 portrays a major issue with the SCI protocol. As a sharing list

grows the time to purge the list also grows. In contrast the time to read a

cache line approaches a consistent number. It should be noted that these

measurements were taken in a system under load. During these tests all

76

processors in the system were measured to have a greater then 90%

utilization.

The average time to purge a sharing list with 14 additional nodes for the two

cache coherency protocols is as follows:

• For the Standard Protocol - 44.716 microseconds.

• For the Protocol with Extensions - 35.891 microseconds.

The resulting reduction in latency for the write is a 19.7% decrease. In

comparison to the write time, the average latency for reads for the "Share List

- List Atomic" test in a larger system is as follows:

• For the Standard Protocol - 6.539 microseconds.

• For the Protocol with Extensions - 6. 728 microseconds.

As stated earlier, the increase in read latency is due to two components. The

first is a limitation of the cache controller which adds an additional ten clocks

(-0.111 microseconds) to remote accesses. The second issue is the

overhead due to queuing read responses behind posted invalidates.

6.3.4 Database Measurements

The next step in comparing the two protocols was to measure the system

performance running a real application. The application chosen was that of a

relational database. To generate system load, an OL TP warehouse

77

benchmark was used. The load used was modeled similarly to the host side

of a TPC-C database benchmark.

The database transaction workload used is intended to be a representative

workload of a database application managing the inventory for a company

spread across a number of sites. The workload is intended to be

representative of a database for a "typical" warehouse application. A

description of this type of workload is provided by the TPC-C benchmark.

The following is a description of the actual benchmark. "As an on-line

transaction processing (OL TP) system benchmark, TPC-C simulates an

environment in which a population of terminal operators executes transactions

against a database. Given that its context is centered on an order-entry

environment, the benchmark includes the activities of entering and delivering

orders, recording payments, checking the status of orders, and monitoring the

level of stock at the warehouses. However, it should be stressed that TPC-C

is not designed to specify how best to implement an order-entry system. The

benchmark portrays the activity of a wholesale supplier, but is not limited to

the activity of any particular business segment; rather, it is designed to

represent any industry in which one must manage, sell, or distribute a product

or service" [9].

78

The following is the list describing the system hardware configuration used in

this database test.

• System was configured as a 2, 3 or 4 node system.

• Database was ''tuned" using the "Standard" SCI cache protocol. No

additional tuning was done on the new cache protocol.

• Memory of the system

1 . 2 Node System - 8Gbytes.

2. 3 Node System - 12Gbytes.

3. 4 Node System - 16Gbytes.

• Size of Database is 820 'Warehouses"

1. Database striped across 384 4Gbyte Disks.

2. Approx. Size of Database is 100GBytes.

• System Processors - Intel XEON processor (360MHz).

• System Node Frequency - 90MHz.

The database was tuned for a system using the "Standard" SCI protocol. Data

was collected and the system rebooted running the "Protocol with Extensions.

No additional tuning to achieve an optimal performance number was done to

produce a higher transaction number. This was done specifically to create, as

best as one can, the exact circumstances to measure the differences between

the cache coherency protocol. Three different system configurations were

measured, a two, three and four node configuration. A high-level block

diagram of the "four node" system is provided is in figure 6.13.

79

Figure 6.13 - Four Node Database System

The versions of operating system and database used for these runs were:

• Operating System - DYNIX/ptx(R) V4.4.4

• Database - Oracle's Ver. 8.0.4.1

The database configuration was changed between the system configurations

(2,3, and 4 node configurations) in the attempt to better match with the system

hardware configurations. (Primarily, the number of database engines was

increased as nodes were added to the system.)

The system's database performance is represented in figure 6.14. It should be

noted that tuning a database is a very complex and time-consuming endeavor

80

that was considered outside the scope of this research project. The database

measurements were taken under severe time and resource constraints and

are not representative of the systems real capability. The results can be used

to compare the two protocols.

16000

14000
.!
~ 12000

~ 10000
c
0 8000 ;
(.)
CV 6000 en c
f! 4000
I-

2000

0

2 3 4

Number of Nodes

Figure 6.14 - Number of Database Transactions

The results were somewhat inconclusive in that the number of transactions

per minute between the two different protocols were very similar and that the

"tuning" of the database turned out to be much more complex in the three and

four node systems. In just comparing the number of transactions per minute

one would conclude:

• The penalty incurred in the read response time due to queuing on

invalidates has no effect on the system's overall performance.

81

• The Reduced List Invalidation time does not positively effect the

system's overall performance.

Also in comparing the overall system performance, one should review the

cache accesses of the system. For this system the cacheable accesses can

be broken down into two major categories, local accesses and remote

accesses. For each of these categories one must take into account reads,

invalidates, and "read/invalidates".

Figure 6.15 is a comparison of the local nodes cacheable access patterns for

the three system configurations. As expected, the figure 6-1 O shows that

local read and "read/invalidates" accesses are slightly slower (approx. ten

clocks) and local invalidates are slightly faster (approx. thirty to forty clocks

faster).

350.00

Ill 300.00
~

g 250.00
0
Ill 200.00
:::J
m
E 150.00
C1)

Ui 100.00
>-

"' 50.00

0.00
New Rd. Std Rd. New Std New Std Inv.

Rd/Inv Rd/Inv Inv.

Cacheable Access

b2 Nodes
If ,,;.·~, ... ,,

1!13 Nodes
li~.:;.;'~\t' '

,p4 N;Q9¢s

Figure 6.15 - Local Cacheable Accesses

82

Figure 6.16 is a comparison of the remote nodes cacheable access patterns

for the three system configurations. Again as with the local accesses, the

remote reads and "read/invalidates" were slightly slower (approx. ten to fifteen

clocks) and invalidates were sl ightly faster (approx. thirty to forty clocks in the

3 and 4 node configurations).

500 . 00 ~~~-

450.00 -r--~-------.-----.----~-:------:::---:--1

~ 400.00
CJ
.2 350.00
'; 300.00
~ 250.00
E 200.00

'* 150.00
6'; 100.00

50.00
0.00 I I I · I I I , .. I I F \J I I I I I I I ,,J I I I '-· P j \ f I I l

New Rd. Std Rd. New Std New Std Inv.
Rd/Inv Rd/Inv Inv.

Cacheable Access

'ff2-FJ'odes
~ _{.._';.,~(~

l!J 3 No.des
;t :t.{', ·,;l ~

P4 Notjes

Figure 6.16 - Remote Cacheable Accesses

In analyzing the results presented between the figure 6.14 through 6.16, one

can see that the difference between the two protocols from a database

performance is less then one percent. Also as expected, the read latencies

are slightly higher for the new protocol and the time to invalidate a sharing list

is less. Analyzing the "read/invalidate" case for both the remote and local

accesses, the latency for the new protocol begins to cross over (i.e. the

83

latency is less in the case of the new protocol) . This is due to the fact that for

a "read/invalidate", there is the potential for a sharing list to exist. In that case

the invalidation sequence to purge the sharing list must be performed.

Other key questions that must be analyzed are the following:

• Over a given period of time, what is the ratio of reads being issued

versus invalidates being received?

• What is the duration of the active posted invalidate at a node (i.e.

How long must a read response be delayed for a posted

invalidate?)?

Figure 6.17 shows the contrast between the average time of SCI invalidate

requests and the average time between remote cacheable read requests (this

is the combined remote/local read and "read/invalidate" requests) .

2500.00

~ 2000.00
u
..2
0 1500.00 ' -
(/)
:::s
co
E 1000.00
Cl>

"Ei'aetween scr f~v. R'!q.
« :,'i ;- Ic-- ••''._::: .• -

·asetween RecicfReq. ·
.ti • ~J !<, I lq4ve. Tirr~ of Posteq 1.hv.

....
(/)
>-en 500.00

0.00 ! •·- ,,.,. '= ' ''"' ' ·" -t=-=i t ., , ,, '= I

2 Nodes 3 Nodes 4 Nodes

Number of Nodes in a System

Figure 6.17 - Rd. Requests versus SCI lnval. Requests
84

Figure 6.17 shows that as the number of nodes increase, the average time

between remote reads and SCI invalidate requests decrease (i.e. there are

more of them). Also, the average time of a posted invalidate is fairly constant

across all three configurations and that time is significantly shorter than the

time between cacheable reads (about a factor of ten in the 4 node case).

85

7. Observation Section

This section contains a collection of observations and opinions that were

made during the course of this research project. These observations address

the issues of:

• Should this work be incorporated in future products?

• What are the issues of developing cache protocols?

• Are there any other additional areas where the Std. SCI cache

protocol could be improved to reduce latency?

7 .1 Performance Gains and Drawbacks

7.1.1 Ideal versus Real Performance Gain for Invalidation Extension

An observation that should be pointed out is the difference between the "ideal"

performance gain of the reduced invalidate extension (represented by the

logic analyzer traces in section 6.1.3.2) and the "Share List" test results

(figures 6.2-6.7). The difference between the "ideal" and the "realized" is due

to many causes. Some of these items that affect list invalidation time are bus

utilization, cache controller utilization, memory bandwidth, remote cache tag

bandwidth, and whether the cache line is highly contested. Even taking these

items into account, the purging of a sharing list is consistently faster with the

new protocol.

86

7.1.2 Elimination of Additional Ten Clock Penalty

As stated earlier, an additional read latency timing penalty of ten clocks for all

transactions that are required to check on pending invalidates had to be

incurred due to a flaw in the hardware of the cache controller. A description of

the design flaw is as follows:

The architecture of the cache controller of the NUMA-Q system

is not based on a single protocol engine, but actually two

complete protocol engines. Each protocol engine has its own

directory and remote cache tags. One engine only works on

requests for "even" cache lines, the other on "odd". Since the

system cache line size is 64 bytes, even and odd cache lines are

determined by address bit 6. The protocol engines can check to

see if that particular engine has a previously set "pending

Invalidate" bit(s) before queuing. However, it does not have

visibility into the engine "pending invalidate" bits. The queuing

logic for the protocol engine does take the "pending invalidate"

bits from both protocol engines. The time for a protocol engine

to queue on "nothing" and then de-queue itself is ten clocks.

In looking at the ratio of reads issued by a node and invalidates

issued to a node, it is easy to see that in most cases the read

response is queuing on a list of zero elements.

Since the "reduced list invalidate" extension positively affects

invalidation time, the extension will be incorporated in the product line.

87

The hardware design flaw will be corrected in the next generation of the

product to minimize the read latency penalty incurred due to this

extension. The "ten clock" penalty should be reduced to "one clock" in

the case of an empty queue and the time until the posted invalidates

complete in the nonempty case.

7 .2 Cache Coherency Validation Techniques

A great deal of time in this research project was consumed in the validation

and debugging of the cache coherency protocol. Methods that were

attempted were formal verification, developing tests in a simulation

environment, low level diagnostics for system hardware and operation tests

under an operating system.

7 .2.1 Formal Verification

In developing the extensions to the SCI protocol no formal verification was

done. The new protocol was validated by "inspection" only. No formal proof

was developed to ensure that the extensions were deadlock free and

completely coherent. An attempt was made to use the Symbolic State Model

(SSM) to formally validate the cache coherency protocol [54]. The SSM

methodology was specifically developed to validate complex coherency

protocols that have a centrally located directory. The SSM methodology for

centrally located directory structures does an excellent job in avoiding the

classical validation problem of "state explosion". However, the distributed

88

nature of the SCI list could not be handled via the constructs of the SSM

verification tool. The resulting outcome in attempting to use the SSM tool to

verify the SCI cache protocol was the classical "state explosion" (i.e. the

application core dumps).

7 .2.2 Simulation Environment

The initial validation for this research was done via inspection and initially a

behavioral RTL simulation environment was used to test the new protocol.

This environment was based around the actual "RTL" of the NUMA-Q cache

controller. This was a very accurate environment, and was the method used

to debug the basic attributes of the extensions. This environment identified

fundamental mistakes in the implementation of the cache coherency

extensions. The major drawback to this debug environment was the time to

develop the simulation tests.

7.2.3 System Level Cache Coherency Tests

When the time to develop and run simulation tests became too long, the

debug environment migrated to actual hardware. Initially, a "two node" system

was used as the debug environment, then a three, and finally a "four node"

system. Most of the implementation problems were identified during the

"booting" process of a system. During the boot process, multiple processors

were coming online and contending for cache base locks, capacity misses in

caches were occurring in the third level cache (i.e. write-backs are occurring),

and 1/0 devices were writing into memory and generating interrupts.

89

Most of the actual system level debug time was spent just attempting to boot

the system. Initially, the errors in the cache protocols caused hard failures

and were identified quite easily. These problems were fairly easy to identify

via logic analyzer traces. As problems were identified and corrected the

remaining problems became more and more obscure. As the problems

became more obscure the system failures became more catastrophic during

the boot process. On several occasions the system disk was unrecoverable

and the entire operating system had to be re-installed (using the standard SCI

protocol).

Once the new protocol survived booting a "four node" system, only two other

end cases were uncovered. These end cases were uncovered by running

disk, LAN, memory, and processor tests in parallel.

7 .3 Additional Areas of Research Uncovered with the SCI Protocol

In developing these extensions, several other areas for performance

enhancements were uncovered. Several of these areas are:

• To merge the Reduced List Invalidation extension with some

"request forwarding" technique, thus eliminating the intermediate

SCI response packets.

• Developing other read algorithms to provide a data response prior to

completely prepending to the sharing list.

• In the area of capacity misses, to parallelize the rollout and install

90

operations (or develop an algorithm to do the roll out operation after

the install has completed).

7 .3.1 Merging the two Invalidate Extensions

Work was done in August of 1996 to develop an extension for SCI to forward

the SCI Invalidate down the sharing list. This extension was referred to as the

"Fast Invalidate Extension for SCI" [52]. The basic premise for the "fast

invalidate" extension is to have the sharing list invalidate itself. At the highest

level, all that the ''fast invalidate" extension does differently than the standard

SCI protocol is to forward the invalidation request packet down the sharing list,

thus eliminating the sending and receiving of the intermediate response

packets. In the development of this protocol an "undesirable feature" was

uncovered with the hardware device that provides the physical SCI interface.

The problem had to do with the part's inability to read the status of the send

queues due to a synchronization problem inside the part. If a solution can be

found to this hardware limitation, It is this author's belief that the combination

of these two extensions provides the "minimum" time to invalidate an SCI.

The combination of these two extensions is represented in figure 7.1

The basic flow of events in the "ideal" SCI list invalidation would be to have a

node forward a request to the next node (its "forward pointer"). If the node was

at the "Tail" of the list, it would issue the response packet (signaling the list is

completely purged). In the case of figure 7.1, "Node Y" would immediately

91

forward the request to the next node on the sharing list, issue the invalidate

request to its bus, and set the corresponding "pending invalidate" bit. The

invalidate request on bus "Y" would overlap the SCI request to node "Z".

When node "Z" received the forward request, being the "Tail" of the list, it

would issue the SCI response to node "N", issue the invalidate to its bus, and

set the corresponding "pending invalidate" bit.

Because of the "pending invalidate" bits on their corresponding nodes, the

actual invalidates on "Y" and "Z" can actually happen after the

acknowledgement of the invalidate request on "N" and still have the entire

system remain cache coherent.

92

State of the Sharing List Prior to the Combined Invalidation Sequence

Head of List Mid of List - Tail of List - , - -
(node n) (node y) (node z)

State of the Sharing List During the Invalidation Sequence

Head of List
(node n)

Head of List
(node n)

Head of List
(node n)

-

-

--
-

Invalidate
Request

,

--

_ ...
,

Mid of List -
~

(node y)

Going to -Invalid
(node y)

i
Issue Invalidate

to Bus

Invalid

- Tail of List
(node z)

- Tail of List
(node z) -Issue SCI

Invalidate
Request

- Going to - Invalid
Issue SCI (node z)
Invalidate
Response

(node y) y)

'""' l"'""' Response from Bus

Issue Invalidate
to Bus

Only _Dirty
(node n)

State of the Sharing List After the Invalidation Sequence

Invalid
(node y)

Invalid
(node z)

k

Issue l'nval idate
Response from Bus

Figure 7.1 Ideal SCI List Invalidation Method
93

7 .3.2 Reducing Processor Read Latency when prepending to a Fresh List

A possible performance enhancement in prepending to a "Fresh" List is to

allow the read response to continue prior to the completion of prepending of

the sharing list. It should be noted that this approach would:

• Require developing a completely different memory directory

protocol.

• Require a more complex cache protocol to handle the issues of "roll

out" requests prior to completely prepending to the sharing list and

SCI invalidation requests during this process.

• Be mutually exclusive with the guaranteed forward progress

extension.

The primary benefit of this change (if it was realizable) is actually represented

in figure 6.7. This figure shows the time for the average read response with a

single SCI transaction (approx. 4.5 microseconds with a "two node" system

under load) and with two SCI transactions (approx. 6 microseconds with a

four-node system under load). Remember in the case of a "Fresh" list, the

remote node first issues a read request to the "Home" node followed by a

request to the "old head" of the list to complete the list prepending process.

The response for the cache line request is not issued until the prepend

process is completed.

94

7 .3.3 Parallelizing the Roll out/Installation Process

In reviewing the performance data an observation of the number of capacity

misses for the remote cache were much higher than in the previous

generation of the NUMA-Q system. A capacity miss currently forces the

cache controller to first "roll out" the line currently in the remote cache prior to

going through the installation process. A possible improvement in this area is

to develop a protocol where the installation happens first and then allow for

the "roll out" to happen second.

1600.00 -.-------

1400.00 I iRB1 l
If)

~ 1200.00 I ~'-~i :cl :,., .r---1
0
0 1000.00 I t /i;'.'.''.I I'";. I I

If)

~ 800.00 I I:'

600.00 E

i
Cf)

400.00 -1--1;1m~ ;

200.00 -

0.00 J I 'II ' 1 ' I t l " I I 1 I - i ·· · I 1

2 Nodes 3 Nodes 4 Nodes

Number of Nodes

'"' ;z_ . ~f ·;-: t/3 U• ;:;.~;~: ~" .

O Between Remote Read
Requests

C Between Remote Head
Beqt,iests wtt1i 8oU~9.!JJ

Figure 7.2 -Total Remote Cache Read Requests versus Rollout Requests

Figure 7.2 shows the average time between remote cache read (and

"read/invalidate") requests compared to the remote cache read requests that

initially require a roll out prior to start of the install. In the case of the database

application, every second or third remote read request on average was a

95

96

·isanbaJ Jno

llOJ" aLn JO uo1ia1dwoo 94l Ol JO!Jd pa11eis aq Ol peaJ a4i 6U!OJOJ 'ssiw l\iioedeo

8. Summary and Conclusion

Fundamentally, this research exploits the ability of the NUMA-Q's cacheable

interconnect to be "reprogrammed" resulting in the realization of a completely

new CC-NUMA cache protocol. The resulting protocol has its origins in SCI

but addresses several shortcomings of SCl's basic cache protocol. This

research's primary focus is in the area of protocol extensions to the SCI cache

protocol. Specifically, the standard SCI cache protocol was enhanced in the

areas of:

• Guaranteed Forward Progress.

• Reduced List Invalidation Time.

It is the hope that these enhancements provide better characteristics for linear

behavior as the system grows in the number of processors.

The primary purpose of the Guaranteed Forward Progress extension was to

simplify the SCI protocol in the area of a remote node attaching to a sharing

list. The flow of events with this extension is the same for either prepending to

a "Fresh" or "Dirty" list. In addition to the simplification in SCI, this extension

distributes the bandwidth requirements for providing the cache line equally

among the "old heads". This is in comparison to the standard SCI method that

stipulates that the "home" node commits the resources to provide the cache

line for all requests to prepend to a "Fresh" list.

The Reduced List Invalidation Time extension does add complexity to the

standard SCI protocol, but as the length of the lists grows the benefits of this

approach also grow. In the case of invalidating a list of fourteen nodes the

97

invalidation time at the processor was reduced by almost ten microseconds (a

twenty percent decrease in list invalidation time). The key component of the

Reduce List Invalidation extension is the ability of the protocol engine to queue

an action (like a read response) behind the completion of some specific

currently active events. This ability to queue and de-queue events is

employed for all cache line read responses, interrupt requests, and write-back

requests. With this logic a processor of a node is prevented from:

• Observing Writes from a given processor in the wrong order.

• Having a Read passing a Write.

In preventing these situations from occurring, this extension is able to

decrease the invalidation time of a sharing list while maintaining a processor

consistency model.

Several methods were employed in determining the "worth" of the extensions,

these being:

• An accurate Behavioral - RTL simulation environment. This

environment provided an excellent debug facility, as well as

accurately predicted the "ideal" performance gain (or loss) of the

extensions.

• Multi-Node System with correlated logic analyzer traces. This

environment provided the ability to completely debug the new cache

protocol, as well as provided key insight to refine the extensions

implementations.

• Performance Counters and Software. With performance counters

built into all processors, memory controllers, cache controllers, and

98

operating system, it is technically feasible to monitor all dimensions

of a system's performance while under operation. The major

drawback is, of course, the magnitude of the data collected. The

data must be organized in a manner so that information describing

the system operation can be correctly extracted.

Using these three methods provides an excellent vehicle in determining the

worth of the extensions. However, the time required to use a relational

database to measure system performance was greatly under estimated. The

job of "tuning" a database is a very complex and time-consuming endeavor.

There are many possible reasons why a database scales poorly, other than

the cache protocol of the system. Using a database that is not completely

tuned to the system is not the best application metric in measuring system

performance differences between cache protocols.

A considerable amount of time in of this project was spent in the area of

debugging and validating that the new cache protocol was coherent and

provided the correct consistency model. As stated earlier, some of this

validation work was done via a simulation model of the system, some via

standalone diagnostics of the system, but must was done via the boot process

of the system.

The simulation environment provided the best environment to debug problems

but a multi-node system simulation image is extremely large. The time to

simulate a second of system run time for a four-node system would take

multiple weeks to complete. The simulation environment is a very good tool to

99

validate the basic operations, as well as, some of the obvious end cases.

As stated earlier, the majority of the cache coherency protocol is validated

during the process of booting a multi-node system. However, this mechanism

is extremely poor in identifying or isolating the failing scenario. Also the

negative side effect of corrupting the boot image of the system disk must be

taken into account.

This work points out a need for an additional system diagnostic test in the area

of testing a system's cache coherency. Unlike most diagnostic tests that focus

on an individual unit's ability to perform a list of specific functions, this test

would validate that the entire system performs in a cache coherent fashion.

This test, by definition, would be a multiprocessor and distributed 1/0 test.

This test would have the following characteristics:

• All processors and 1/0 devices reading and writing to local and

remote memories under contention and no contention

circumstances.

• All processors exercising different locking mechanisms.

• Processor and node caches (L 1, L2, and L3) experiencing

communication, as well as capacity misses.

• Interrupts being used during this time.

Ideally this system cache coherency test would be self-checking as the system

is being exercised. This level of system testing would elevate the diagnostic

step of debugging the system cache coherence protocol under the boot

process. This system test would greatly accelerate tfye validation process of

I

100

any NUMA based cache coherency protocol and thus shortening the system

development cycle time.

The cache coherence protocols are a crucial element of CC-NUMA system

architecture and SCI is a common protocol used in these architectures. As

the number of systems that are based on this type of architecture increase,

the value in research in this area also increases.

The major value of the Guaranteed Forward Progress extension is in the area

of simplification. The SCI cache protocol is not a simple protocol. The

standard protocol consists of approximately thirty states. Any reduction in the

number of states and commands (without loss to system performance) is a

beneficial enhancement.

The major value of the Reduced Invalidation Time extension is the ability to

acknowledge an invalidate request early while maintaining the system's

desired memory consistency model. It must be pointed out that this extension

is not limited to the SCI protocol, but is applicable to any cache protocol used

in a NUMA architecture.

Currently this research has spawned two U.S. Patent Applications based this

research invalidation methodology. This research is still being reviewed for

other patentable ideas. These cache coherency protocol extensions are

currently being considered as part of next generation computer systems

developed by Sequent Computer Systems Inc. It should be noted that all new

101

lOl

·ou1 swaisAs Jaindwoo iuanbas

~o AlJadOJd renioa11aiui 94l paJapisuoo aJe 40JeasaJ S!4l U! paiuasaJd S'B0P!

References

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J.
Kubiatowicz, B.-H. Lim, K. Mackenzie, D. Yeung. The MIT Alewife
machine: Architecture and performance. In Proceedings of the 22nd
International Symposium on Computer Architecture, pages 2-13,
June 1995

[2] ANSI/IEEE Std. 1596-1992, Standard for Scalable Coherent
Interface (SCI) Specification, New York, New York, August, 1993.

[3] J. Chapin, S. A. Herrod, M. Rosenblum, and A. Gupta. Memory
system performance of UNIX on CC-NUMA multiprocessors. In.
Proceedings of the Joint International Conference on Measurement
and Modeling of Computer Systems, pages 1-13, May 1995.

[4] D. Chaiken and A. Agarwal. "Software-Extended Coherent Shared
Memory: Performance and Cost. Proceedings of the 21st Annual
Symposium on Computer Architecture, pages 314-324, April 1994.

[5] D. Chaiken J. Kubiatowicz, and A. Agarwal. "LimitLESS Directories:
A Scalable Coherence Scheme". Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 224-234, April 1991.

[6] D. Chaiken. "Cache Coherence Protocols for Large Scale
Multiprocessors". Master's thesis, M.l.T., Dept. of E.E and
Computer Science, Sept. 1990.

[7] S. Frank, H. Burkhardt Ill, and J. Rothnie. The KSR1: Bridging the
gap between shared memory and MPPs. In Proceedings of the
38th IEEE Computer Society International Conference (Spring
Compcon), pages 285 - 294, February 1993.

[8] B. Gallagher and M. Jonikas. SQL Server 6.0: tough to top.
PCWeek, page 83, vol. 12, no. 36, September 11, 1995.

[9] J. Gray, Editor. The Benchmark Handbook for Database and
Transaction Processing Systems, Morgan Kaufmann Publishers,
San Mateo, CA, 1991.

[10] E. Hagersten, A. Landin, and S. Haridi. DOM - A cache-only
memory architecture. IEEE Computer, pages 44-54, vol. 25, no. 9,

103

September 1992.

[11] M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter, J. P. Singh,
R. Simoni, K. Gharachorloo, D. Nakahira, M. Horowitz, A. Gupta, M.
Rosenblum, J. Hennessy. The performance impact of flexibility in
the Stanford FLASH multiprocessor. In Proceedings of the 6th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pages 274-285,
October 1994.

[12] C. Holt, M. Heinrich, J. P. Singh, E. Rothberg, and J. Hennessy.
The performance effects of latency, occupancy and bandwidth in
cache-coherent DSM multiprocessors. Presentation at The Fifth
Workshop on Scalable Shared Memory Multiprocessors, Santa
Margherita Ligure, Italy, June 1995.

[13] J. R. Goodman. Using Cache Memory to Reduce Processor­
Memory Traffic. In Proc. of the 1 Oth Int. Sym. on Computer
Architecture, pages 124-130, (May 1983).

[14] J. R. Goodman. Cache Consistency and Sequential Consistency,
University of Wisconsin-Madison, (March, 1989).

[15] Intel Corporation. Intel ParagonJE Supercomputer Product
Brochure. http://www.ssd.intel.com/paragon.html

[16] Intel Corporation. PG Processor - P6 Bus Analogy: Intel Web
server, (http://www.intel.com).

[17] Intel Corporation. P6 Processor - Supporting Greater than 4 P6s:
Intel Web server, (http://www.intel.com).

[18] Intel Corporation. P6 Processor - Supporting Multiple Processors:
Intel Web server, (http://www.intel.com).

[19] Intel Corporation. P6 Processor - Bus Protocol: Intel Web server,
(http://www.intel.com).

[20] Intel Corporation. PG Processor - PG Bus Summary: Intel Web
server, (http://www.intel.com).

[21] D. James. "The Scalable Coherent Interface: Scaling to High
Performance Systems".

[22] D. James. "Coherent SCI Memory", P1596.2 working-group
104

activity, (March 1994).

[23] D. A. Kranz, D. Chaiken and A. Agarwal. "Multiprocessor Address
Tracing and Performance Analysis". MIT VLSI Memor No. 91-624,
Sept. 1990.

[24] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A.
Gupta, M. Rosenblum, and J. Hennessy. The Stanford FLASH
multiprocessor. In Proceedings of the 21st International Symposium
on Computer Architecture, pages 302-313.

[25] D. Lenoski, J. Lauden, T. Joe, D. Nakahira, L. Stevens, A. Gupta,
and J. Hennessy. The DASH prototype: Logic overhead and
performance. IEEE Transactions of Parallel and Distributed
Systems, pages 41-61, vol. 4, no. 1, January 1993.

[26] T. Lovett and S. Thakkar. The Symmetry multiprocessor system. In
Proceedings of the 1988 International Conference on Parallel
Processing, pages 303-310, August 1988.

[27] Pyramid Technology. ReliantJE 1000,
http://ra.pyramid.com/products/1.1.1.1.html

[28] R. J. Safranek. "Considerations in Implementing a System Based
on SCI", In The Fourth International Workshop on SCI-based High
Performance Low-Cost Computing, pages 12-22, (October 1995).

[29] H. Sandu, B. Gamsa and S. Zhou. "The Shared Regions Approach
to Software Cache Coherence on Multiprocessors", 1993 ACM
SIGPLAN Symposium on Principles and Prantice of Parallel
Programming, May 1993.

[30] A. Saulsbury and A. Nowatzyk. Implementing simple COMA on S3-
MP. Presentation at The Fifth Workshop on Scalable Shared
Memory Multiprocessors, Santa Margherita Ligure, Italy, June 1995.
http://playground.sun.com:80/pub/S3.mp/simple-coma/isca-
95/present. html

[31] P. Stenstrom, T. Joe, and A. Gupta. Comparative performance
evaluation of cache-coherent NUMA and COMA architectures. In
Proceedings of the 19th International Symposium on Computer
Architecture, pages 80-91, May 1992.

[32] Sequent Computer Systems, Inc. Symmetry 5000 Series.
105

http://www.sequent.com:
80/public/mktg/ds/symmetry/s5000.html#topdoc

(33] Transaction Processing Performance Council. TPC Benchmark
Specifications. ftp.dg.com:tpc/benchmark_specificationsfTPC_A,
TPC_B,TPC_C,TPC_D.

[34] Tving, Ivan. "Multiprocessor Interconnections Using SCI",
Technical University of Denmark, (Feb. 2, 1994).

[35] A. W. Wilson, Jr. Hierarchical cache/bus architecture for shared
memory multiprocessors. In Proceedings of the 14th International
Symposium on Computer Architecture, pages 244-253, June 1987.

[36] X. Zang and Y. Yan. "Comparative Modeling and Evaluation of
CC-NUMA and COMA on Hierarchical Ring Architectures", IEEE
Transaction on Parallel and Distriuted Systems.

[37] A. Agarwal, D. Chaiken, G. D'Souza, et al. The MIT Alewife
machine: A large-scale distributed-memory multiprocessor.
Technical Report MIT/LCS Memo TM-454, Laboratory for Computer
Science, Massachusetts Institute of Technology, 1991.

[38] R. Bianchini, M. E. Crovella, L. Kontoothanassis, and T. J.
LeBlanc. Memory contention in scalable cache-coherent
multiprocessors. Technical Report 448, Computer Science
Department, University of Rochester, 1993.

[39] W. J. Bolosky, R. P. Fitzgerald, and M. L. Scott. Simple but
effective techniques for NUMA memory management. In Proc. of
the 12th ACM Symp. on Operating System Principles, pages 19-31,
1989.

[40] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS directories:
A scalable cache coherence scheme. In Proc. of the Fourth lnt'I
Conf. on ASPLOS, pages 224-234, New York, April 1991.

[41] Convex Computer Corporation. Convex Exemplar Systems
Overview, 1994.

[42] K. Farkas, Z. Vranesic, and M. Stumm. Scalable cache consistency
for hierarchically-structured multiprocessors. Journal of
Supercomputing, 1995. in press.

[43] Kendall Square Research. KSR1 Technical Summary, 1992.
106

(44] J. Kuskin, D. Ofelt, M. Heinrich, et al. The Stanford FLASH
multiprocessor. In Proc. of the 21st Annual ISCA, pages 302-313,
Chicago, Illinois, April 1994.

(45] R. P. LaRowe Jr. and C. S. Ellis. Experimental comparison of
memory management policies for NUMA multiprocessors. ACM
Transactions on Computer Systems, 9(4):319-363, Nov. 1991.

[46] D. Lenoski, J. Laudon, K. Gharachorloo, et al. The Stanford DASH
multiprocessor. Computer, 25(3):63-79, March 1992.

(47] D. E. Lenoski. The design and analysis of DASH: A
scalabledirectory-based multiprocessor. Technical Report CSL-TR-
92-507, Stanford University, January 1992.

[48] S. Mori, H. Saito, M. Goshima, et al. A distributed shared memory
multiprocessor: ASURA- memory and cache architectures-. In
Supercomputing '93, pages 740-749, Portland, Oregon, November
1993.

(49] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest and
Typhoon: User-level shared memory. In Proc. of the 21st Annual
ISCA, pages 325-336, Chicago, Illinois, April 1994.

[50] University of Toronto .NUMAchine,
http://www.eecg.toronto.edu/EECG/RESEARCH/ParallelSys/numac
hine.html

(51] SV. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A.
Gupta, and J. Hennessy. Flexible Use of Memory for
Replication/Migration in Cache-Coherent DSM Multiprocessors.

[52] R. J. Safranek. "Fast Invalidate Extension for the Scalable
Coherent Interface" a paper developed for PSU credit for EE-501,
Portland State University, August 1996.

(53] R. J. Safranek. "Considerations in Implementing a System Based
on SCI", The Sixth International Workshop on SCI-based High­
Performance Low-Cost Computing, pages 25-30, Santa Clara
California, September 1996.

[54} Fong Pong. Symbolic State Model A new Approach for the
Verification of Cache Coherence Protocols. Doctoral Thesis of the
University of Southern California, 1995.

107

Appendix - Glossary of SCI Terminology

List - The mechanism to track which nodes of a system have a particular

cache line. Each node contains two pointers for each cache line. One

points toward the tail (forward pointer), the other points toward the head

of the list (backward pointer).

Dirty List - A List of nodes that share a line in which the memory (or

home) node does not hold a valid copy.

Fresh List - A List of nodes that share a line in which the memory (or

home) node contains a valid copy.

SCI Memory States - Every node that contains cacheable memory must

manage the state and pointer of each line. The memory states for SCI

are as follows:

Home - Memory is home and there is no sharing list.

Fresh - Memory contains a valid copy and the line is shared with at

least one other node.

Gone - Memory does not contain a valid copy of the line. To get a valid

copy, a node prepending to the list must get a copy from the head

of the dirty list.

Busy - Memory is in the process of having a line updated to the fresh

state and immediately back to a Gone State.

SCI Memory Commands - To access and/or change the memory state at the

home node, SCI memory commands are used. The following is the

108

subset of commands that are necessary in merging SCI and MESI:

Cache_Fresh - Remote node is requesting a readable copy of a line.

Cache_Dirty - Remote node is requesting an exclusive copy of a line.

Fresh_To_Home - Remote node, which was in Only_Fresh, is rolling

out a line and sending it home.

List_ To_Home - Remote node, which was in Only_Dirty, is rolling out a

line and sending it home.

List_ To_Gone - Remote node, which is Head of a Fresh list, is

requesting the line transition to "Gone". The Home node also

invalidates its copy of the line.

Pass_Head - Remote node, which is Head of a list (either Dirty or

Fresh), is rolling out its copy of the line and assigning another

remote node as the new "Head of the List".

SCI Cache States - Every node that holds or manipulates a cache line must

manage the cache state and its forward and backward pointers. The

following is the common subset of SCI cache states:

Invalid - Line at this place in the Remote Cache is Invalid.

To_lnvalid - Line at this place in the Remote Cache is Invalid, but

currently has a request with no response.

Pending - Remote node has issued a Cache_Fresh or Cache_Dirty to

the Home node.

Queued_Dirty - Remote node has issued a Cache_Dirty for a line that

currently has a sharing list that must be invalidated. This state is

left when the sharing list is completely invalidated.

Queued_Fresh - Remote node issued a Cache_Fresh for a line that

109

currently has a fresh list and, therefore, the node must prepend to

the head of the list.

Queued_Junk - Remote node issued either a Cache_Fresh or

Cache_Dirty for a line that is currently dirty (modified). It must

issue a Copy_ Valid command to the head of the list to get a valid

copy of the line and prepend to the head of the list.

Only_Dirty- Remote node has the only valid copy of the line which has

been modified.

Only_Fresh - Remote node, as well the home node, have a shared

copy of an unmodified line.

OF _Mods_OD - Remote node (which was Only_Fresh) intends to

modify the line and sends a List_ To_Gone command to the home

node so that copy of the line can be invalidated.

OF _Retn_ln - Remote node is either rolling out a line while it was in the

Only_Fresh state or it was in OF _Mods_OD and its

List_To_Gone command was NOOP'ed by the home node.

OD_Retn_ln - A Remote node is rolling out a line that was in an

Only_Dirty state.

OD_Spin_ln - A Remote node is getting off a list and is waiting for the

new head to prepend.

Head_Dirty - Remote node is head of list where the home node does

not have a valid copy of the line.

Head_Fresh - Remote node is head of list where the home node does

have a valid copy of the line.

HD_lnval_OD - Remote node is head of a Dirty List and intends to

110

modify the line again, so it is invalidating the sharing list.

HF _Mods_HD -A Remote node (which was Head_Fresh) intends to

modify the line and sends a List_ To_Gone to the home node so

that copy of the line will be invalidated.

HX_Forw_HX - Remote node that was the head of the list is getting off

the list.

HX_Forw_OX - Remote node that was the head of the list is getting off

a list which is collapsing.

HX_Retn_ln - Remote node that was the head of the list is getting off

the list and is waiting for the new head (which is in a queued

state) to prepend.

Mid (Mid_ Valid, Mid_Copy) - Remote node is in a sharing list below

the head and above the tail of the list.

MV _Forw_MV and MV _Back_ln - Remote node that was in the middle

of the list is getting off the list (either because the node is rolling

out the line, or because the node intends to become head of the

list).

Tail (Tail_ Valid, Tail_Copy) - Remote node is the last node on a

sharing list.

TV _Back_ln - Remote node, which was tail of the list, is getting off the

list (either because the node is rolling out the line, or because the

node intends to become head of the list to modify the line).

SCI Cache Commands - To gain access to a cached line and/or to change

state of a cached line at a node, SCI cache commands are used. The

following is the standard subset of commands for SCI:

111

Pend_ Valid - Remote node command requesting to prepend to a fresh

sharing list.

Copy_ Valid - Remote node command requesting to prepend to a dirty

sharing list and a valid copy of the line.

Valid_lnvalid - Remote node (that is head) requesting other remote

nodes to invalidate their copy of the line.

Prev_ VTail - Remote node (that was tail) notifying the node

immediately preceding that it is the new tail.

Prev_ VMid - Remote node (that was Mid) notifying the node

immediately ahead to update its Back_ID to maintain the linked

list.

Next_ VMid - Remote node (that was MV _Forw_MV) notifying the node

immediately following to update its Forw_ID to maintain the linked

list.

Next_DHead - Remote node (which was Head_Dirty) notifying the

preceding node that it is the new head of the dirty list.

Next_FHead -Remote node (which was Head_Fresh) notifying the

preceding node that it is the new head of the fresh list.

NOOP - An SCI term for what the rest of the computer world refers to as a

NACK.

112

	Enhancements to the Scalable Coherent Interface Cache Protocol
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1510955775.pdf.nXnJ4

