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AN ABSTRACT OF THE THESIS OF Shiliang Wang for the Master of Science in 

Electrical and Computer Engineering presented February 28, 1989. 

Title: Application of Hough Transformation to Detect Ovulatory Patterns in Cervical 

Mucus Images 

APPROVED BY MEMBERS OF THE THESIS COMMITTEE: 

Marek A. 

Rajinder P. Aggarwal "--

Bradford F ~- ram 

A microcomputer system called ovulocomputer is proposed. The system is used 

to predict and detect ovulation of women. It will use image processing and analysis, pat­

tern recognition theory, spectrophotometry, ionometry and conductometry to measure 

various physical and chemical properties of cervical mucus that are related to blood hor-

mone levels. 

The functions and characteristics of cervical mucus are introduced in this thesis. 

Among them, the identification of cervical mucus images, named the ferning test, and 

related features, are well described. 



2 

A new idea, called ferning test automation, which has been neither proposed nor 

developed before, is presented and explained in detail in this thesis. 

Some necessary image processing procedures for the cervical mucus images 

taken by microscope are proposed and the some of the preprocessing results are 

presented in Appendix C. The results indicate that the proposed preprocessing is feasible. 

The application of Hough Transformation are developed and applied to the fern­

ing test automation. The algorithm using modified Hough Transformation to extract fern­

ing features and the results of this algorithm applied in some simulative images are 

presented. The results have demonstrated the feasiblity of this method. The ferning 

features extracted by this algorithm are introduced and explained in detail. The applica­

tion program of the Hough Transformation is presented in Appendix A. 

The feature spaces are created based on the extracted ferning features. The classi­

cal statistical pattern recognition theory (Gaussian Classifier) is applied in these ferning 

feature spaces. The Gaussian Classifier can make the decisions for the ferning test auto­

mation system. Both the training set data processing and classifier procedure are intro­

duced. A program of Gaussian Classifier is also presented in Appendix B. The program 

contains two routines: training set data processing and classification. The training set data 

processing is used to "teach" the machine with the "experienced information" and the 

classifier procedure uses this "experienced information" to perform the classifying func­

tions. The examples of the application of this program demonstrates the results of the 

ferning pattern recognition. 
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CHAYfERI 

INTRODUCTION 

So far, thousands of scientists have been making every effort to look for a better 

and more economical method for prediction of human ovulation. The prediction of ovu­

lation has a significant meaning either in clinic or in medical research, in infertility treat­

ment or in the everyday life natural method of family planning ([l], chapter 1). In recent 

years one can observe a great progress in the medical developments supporting natural 

methods of family planning: determining the ovulation moment, research on the proper­

ties of the cervical mucus and the conditions of sperm propagation in the female genital 

tract. 

1.1. GENERAL PROBLEMS OF OVULOMETRY 

Certain hormonal changes occur during the normal menstrual cycle of a woman 

[2],[3]. Figure 1 illustrates how four types of hormones, FSH, LH, Progesterone, and 

Estrogen change during a normal woman's menstrual cycle. These hormonal changes 

are reflected by changes of many parameters of blood and other body fluids. Recent 

ovulometry methods is using these symptoms as methods to learn about those hormonal 

changes. They include: 

Assessment of the sex steroid levels in blood and urine, histological and histo­

chemical examination of endometrial biopsy and laparoscopic examination of the 

ovaries for follicular growth [ 4]. For instance, ovulation can be determined by 

using daily serum LH, FSH, oestradiol ( E 2 ) radioimmunoassay. These methods 

are specific and accurate but require highly specialized techniques which are 
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costly and not universally available. 

Test the effects of the ovarian sex steroids on target organs and tissues such as 

vaginal epithelium and uterine cervix. Although they are good indices of ovarian 

functions, their accuracy and reliability have not been sufficiently established and 

there are conflicting reports on their validity [5], [6]. 

Calendar (rhythm) and measurement of basic body temperature (BBT) has been 

used to detect normal ovulatory cycles ([1], chapter 7). These are the classic and 

simpliest methods. But they have been found to be unreliable and grossly restric­

tive. Also, they tend to be disturbed by environmental and emotional factors [7]. 

Tests of some other body fluids, like saliva, urine and lymph, reflecting changes 

of hormones in the blood. These methods can be reliable and accurate but also 

costly and not available in a clinic . 
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Figure I .Hormone changes during a normal menstrual cycle. 
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Figure 2.Cervical mucus changes corresponding to hormone changes. 
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The methods mentioned above have their own advantages and various shortcom­

ings, such as cost, difficulty to make measurements and interpret results, inaccuracy, 

emotional factors and laboriousness. The recognition of the importance of the cervical 

mucus as a marker of fertility is a finding of remarkable significance. A great discovery 
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has been achieved by Dr. John Billings [8]. The basis of the method, so called "Billings 

Method", is awareness of the mucus. This mucus can indicate whether a woman is fertile 

or infertile by its sensation and appearance. Figure 2 illustrates an obvious relationship 

between the secretion of hormones and cervical mucus (some terminologies in Figure 2 

will be explained in Chapter II ). 

The cervical mucus is produced by the cervix, which is the part of the uterus that 

joins with the vagina. The mucus is under the control of the reproductive hormones. It is 

suggested that a series of combinational determinations of cervical mucus characteristics 

can be used to detect normal ovulatory cycles of patients treated in clinics not having 

facilities for measurement of hormone secretions. It can be proposed to use a combina­

tion of the cervical mucus features with pattern recognition theory and statistic theory to 

make an accurate final decision of the prediction of the ovulatory moment. 

1.2 THE EXISTING AND PROPOSED OVULATION DETECTING DEVICES 

In this section, some ovulation detecting devices which have been developed in 

the past will be introduced. Because of either high cost or inaccuracy, most of these dev­

ices have not been successful in the market or in the practical clinical application. 

Blood Test Device 

Blood test is in current use. The method is called Radioimmunoassay, which has 

been described in the above section. 

Urinary Exam Kit 

A urinary chemical examination kit has appeared in the market, which contains a 

sequence of procedures for home use. One kit can be used only for one month. It is quite 

expensive. 
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Saliva Device 

In this test, a woman chews a small piece of paraffin in order to stimulate saliva 

production. She then puts in her month a filter-paper test strip saturated with material 

which gives a visual color change from white to blue in the presence of alkaline phospha­

tase. This device has been able to predict ovulation within a period of one to seven days, 

which still makes it too inaccurate for widespread use. 

Figure 3.An Ovutimer device. 

Ovutimer device 

This instrument called the viscometer, or "Ovutimer", is based on the consistency 

of the cervical mucus. It was introduced in April, 1976, by three Boston medical 

researchers and has been used by gynecologists as an office test. 

A disposable probe is applied daily against the cervical os and a small sample of 

mucus is obtained. The probe is then inserted into the ring with the indicator ann 

-1 
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elevated (Figure 3). Before ovulation, when there is little mucus, the indicator arm will 

not move from the 3 position. However, during the fertile period - when the mucus is 

thin and not viscous - the arm will fall to the 0 or 1 position. That drop of the indicator 

arm may take place over four, five, or six days in succession, beginning with the first day 

of the fertile period. At the end of the fertile period, when the mucus becomes thick, the 

reading rises to between 2.5 and 4. 

The Ovulometer 

The Ovulometer is a simple battery-run device that measures changes in the elec­

trostatic current or voltage naturally present in the body. A woman using the Ovulometer 

gets an instant reading on a pocketsize meter by touching two electrodes to the index 

finger of each hand. According to Dr. Howard Lutz, one of its developers, the charge 

reads positive in all men throughout the month. Women, however, usually give a nega­

tive reading, but become positive 3 to 6 days prior to ovulation. Conversion back to 

negative occurs 24 to 48 hours after ovulation. 

Thermical Device 

Another recent development that improved the temperature method is a special 

heat-sensitive transmitter that has been developed by National Aeronautics and Space 

Administration. This device can measure the intravaginal temperature prior to and after 

ovulation. 

Rhythm Based Devices 

There is a device called Ritmograph using calendar rhythm only, and a better ver­

sion of this type was developed by Sherman Brothers of Cambridge Research 

(Bridgeport, Connecticut) which takes into consideration information from earlier cycles. 
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Chemical Kits 

Some of the works of WHO lead to tests which can only confirm the ovulation, 

not predict it. The same type of research is done by Burger, Billings, and Wade. In Eng­

land and in Ireland they use a test for glucose changes similiar to old Estridex test. 

The works of Task Force on Methods for the Determination of the Fertile Period 

of the WHO Special Programme of Research Development and Training in Human 

Reproduction include developing assay kits and devices for predicting and detecting the 

time of ovulation (Speier, 1977). They are, or will be, based on mucus, saliva or urine. 

Other devices 

Leonard Ravitz created ovutron which measures female electromagnetic field (or 

L-Field) which occurs before or after ovulation. 

The clinical evaluation of biopotential meter was undertaken in 197 6 and showed 

no significant or consistent pattern of change of polarity or potential which could be 

correlated with cervical mucus symptoms or the bbt shift associated with ovulation. 

1.3 OUR CONCEPT OF OVULOMETRY 

As discussed in the previous section, to achieve the prediction of ovulation with 

the method of combinational cervical mucus features, an ovulometry system is proposed. 

This ovulometry system measures biochemical and rheologic parameters of cervical 

mucus. These parameters are analysed by using statistical and pattern recognitional 

theories. The final decision is based on this analysis. This is our concept of ovulometry. 

Our final goal is to develop a microprocessor-based device for the measurement 

of various parameters related to the prediction and detection of ovulation. In this system 

the recent developments of endocrinology will be applied. Also, the decision is under­

taken not with static rules for a single type of parameters, but with use of advanced 
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analysis of many parameters. This system will be a useful diagnostic instrument for 

endocrinologists and gynecologists. 

The device would be also useful in sterility treatment. (Some 20% of married 

women have serious fertilization problems and this index is constantly increasing). It 

will be helpful in the supervision of the hormonal control of the first phase of pregnancy, 

and it can serve as an additional diagnostic tool in some gynecological diseases (e.g. 

cancer). Also, it can be a handy early pregnancy indicator which helps the woman to 

take special care of her health (e.g. avoiding pharmacotherapy, X-rays, etc). 

This is an integrated collection of computer-based, measurement and decision-

making systems. The specific measurements it aims are as follows: 

Mucus drying pattern also called crystallography or ferning test, which needs 

image processing and texture analysis 

pH and ions concentration, usually sodium, potassium, calcium and chloride 

Hormones (FSH, LH, Progesterone, Estrogens) in mucus 

Water comprised in cervical mucus by weight of gel 

Spinnbarkeit or stretchiness test for mucus viscosity (also called stringiness test) 

Quantity of the cervical mucus discharged 

Glucose concentration 

The concentration of nondislyzable solids (NDS) to viscoelosticity 

Other mucus parameters 

Also, some very specific and accurate subjective symptoms can be observed by a 

woman in ovulatory phase, which can be effective input for our system. Those symptoms 

are subjective, as for instance, somewhere around the time of ovulation a pain in the area 

of one or both ovaries is felt by many women. The technically called "mittelschmerz" 

meaning pain in the middle. Another symptom is the inter-menstrual bleeding. Basal 
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temperature test also can be a basic input for our ovulometry system. 

Measurements of all parameters except the feming test are pretty straight-forward 

and have been well described in some literatures. Only feming test automation leaves 

much to be desired. It is the main topic of this thesis and will be described in the follow­

ing chapters. 

The system uses several different independent rule-based algorithms to make the 

decision. The most important one is based on classical statistical pattern recognition 

theory in the feature space. The space is created for all measured parameters. Creation of 

the discriminant function is adaptive and takes into account changing patterns of the 

woman's cycle. The final decision is made from partial decisions on the safest basis. 

1.4. FERNING TEST AUTOMATION 

An idea which has never been proposed before is created and well presented in 

this thesis. This idea is ferning test automation using the techniques of image process­

ing and pattern recognition theories. The automation of ferning test is the main topic of 

this thesis and will be described in detail in the following chapters. 

To my knowledge, the ferning test has never been automatized by other people. 

In my research, the Hough Transformation [9] was used to detect lines in the images of 

dry cervical mucus slides under microscope. Before the implementation of Hough 

Transformation, the routine procedures of video digitization and image processing should 

be done. These precedures will be discussed in the following chapters. 

The pattern features of cervical mucus are extracted from a 512 x 512 pixel digi­

tal binary image. These features are the measures of such quantitative concepts as various 

lengths of lines and the relationship or direction between different lengths of lines. The 

concept of "length" is expressed here as the number from each array's accumulators in 

the algorithm of Hough Transformation. The algorithm of Hough Transformation will 
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also be described in the following chapters. 

A feature space, which is a set of measured feature vector values, is created. The 

extracted feature parameters are listed in the feature space. By examination of the pattern 

distribution in the feature space, the classifications of the ferning patterns are achieved. 

In this automatic ferning test, a quantitative analysis was set up while the qualita­

tive or subjective ones which have usually been used in diagnosis were abandoned. 



CHAPTER II 

CERVICAL MUCUS METHOD 

Studies of the cervical mucus, particularly in relation to infertility research, have 

confirmed that the mucus must have special characteristics if sperm are to reach and fer­

tilize an ovum [20]. 

This special characteristics give the fertile mucus its lubricativeness, and its 

stringy, raw egg-white appearance. 

Ovulation occurs only one day in each menstrual cycle [8]. If more than one 

ovum cell is released, ovulation will still occur within this 24-hour span time. Under the 

influence of increasing levels of estrogen, certain cells in the cervix secrete the mucus 

which passes through the vaginal tract and is discharged at the vaginal opening. Through 

the studies of cervical mucus, some important functions and characteristics have been 

found [8], [10]. 

2.1. FUNCTIONS AND CHARACTERISTICS OF CERVICAL MUCUS 

The secretion of the cervical mucus has its important biological purposes: 

Sperm need special mucus to survive in a woman's body. Sperm without the spe­

cial mucus die within a few hours. The acidic environment of the vagina is very hostile to 

sperm. Special cells in the vagina destroy sperm. With the special mucus of fertility, 

sperm may live three to five days. Because this mucus is alkaline, it provides a favour­

able environment in which sperm can live. It also nurtures the sperm [1], [8], [10]. 

The presence of cervical mucus provides a natural medium in which the sperm 
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can swim up the genital tract, through the cervical canal and into the uterus on the way to 

the fallopian tubes. 

The cervical mucus has some important biochemical and rheologic characteris-

tics. 

The main constituent of cervical mucus is water, which comprises 85% to 98% by 

weight of the gel and demonstrates, in common with many of the other components of 

the mucus, a well defined variation in concentration related to the time of the menstrual 

cycle. The water content (hydration) variation is elicited by the level of the ovarian 

steroid hormones and it reflects the changes of the hormonal level. When the level of oes­

trogens is highest in the ovulatory phase, the mucus contains 95% to 98% water, while 

under progesterone dominance, in the follicular phase and during pregnancy, the level of 

hydration decreases from 92% to 85% [11]. 

The mucus contains a number of proteins, carbohydrates and electrolytes, many 

of which are common to serum. The levels of electrolytes in mucus have been measured 

and the most notable variations during the normal menstrual cycle are seen in the sodium 

and chloride levels. In most determinations the concentration of mucus sodium has been 

found to be maximal at mid-cycle when it approximates the sodium concentration in 

serum [12], [20]. In contrast, during the proliferative and follicular phases the level fall 

to 47% to 63% of that of the serum. If the level of sodium is expressed as a function of 

the dry weight of mucus, a peak still occurs just before ovulation and is followed by a 

rapid fall directly after ovulation [12], [13]. 

The concentration of chloride-ions is also maximized at mid-cycle while the level 

of potassium showed an inverse relationship, decreasing toward the mid-cycle. As a 

result, the ratio of chloride concentration to the sum of sodium and potassium concentra­

tion showed a smooth increase up to mid-cycle followed by a decline during the luteal 

phase of the cycle. This forms the basis of the cervical mucus chloride test, which is also 
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called the "ion test" [12], [13]. 

It was also found that an increasing concentration of glucose parallels the rising 

estrogen level in the preovulation phase. The detection of glucose by a glucose oxidase 

peroxidase test has been used to detect the preovulatory fertile phase [14]. 

1. None 2. Early 

3. Fertile 4. Spinn. 

Figure 4. The spinnbarkeit characteristic of the cervical mucus. 

For rheologic characteristics of cervical mucus, a great deal of research has been 

done by Dr. Wolf and his colleagues [13]. Quantitative viscoelasticity measurements 

were made on individual human cervical mucus samples by microrheometry. Increase in 

mean value for mucus ferning, spinnbarkeit (also called stretchiness or stringiness, see 

Figure 4) and daily amount of the mucus discharged were associated with the ovulatory 

phase of the menstrual cycle. A nadir in mucus nondialyzable solids (NDS) concentration 

and in viscoelasticity was seen at or near mid-cycle. When the contribution of NDS to 

viscoelasticity was minimized by data normalization or by sample reconstitution, a 

significant increase in viscoelasticity was associated with the ovulatory phase of the 

cycle. 
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Diagnosis from the cervical mucus can be an accurate method to predict ovulation 

[2], [15], [16]. Most of the tests are related to the biochemical and physical properties of 

the cervical mucus as parameters. The following parameters were measured by various 

authors, from which our system can make advantage: 

the days total amount of mucus 

sperm penetrability 

electrical impedance 

water content 

thixotropy 

moisture 

viscosity 

elasticity 

refractometric factors 

osmotic pressure 

other chemical properties 

These parameters change in different phases of the menstrual cycle. The details of 

how to measure these parameters were introduced in some related literatures. Most of 

the above measurements can be found in Dr. Wolf's and Moghissi's literatures [13]. 

However, in this thesis one important and specific parameter, i.e. the features of the 

mucus image under microscope, which are related to the ferning test will be discussed 

and introduced in the next two sections. 

2.2. MUCUS TYPES AND FERNING TEST 

Professor Eric Odeblad and his group [17] have investigated the biological and 

physical properties of the cervical mucus. They have demonstrated that three different 

------i 
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types of mucus are produced by specialised parts of the cervix during the menstrual 

cycle. This mucus production is under the control of hormones, in particular, estrogen 

and progesterone (see Figure 5) 

The different types of mucus either impede or encourage the movement of sperm 

through the reproductive system. The relative amount of each type is crucial in determin­

ing a woman's state of fertility. 

The mucus during the early infertile days is composed largely of protein fibres 

which form an impenetrable barrier to sperm cells. This barrier mucus is characteristi­

cally opaque and sticky, and it has been termed the G-type mucus. 

The next type of mucus to appear is characterized by bead or "loaf' of mucus, 

giving it a thick, clumpy texture. If stretched between the fingers, this bead-like structure 

is evident. This type of mucus has been named the L-type. When spread on a glass slide 

and examined microscopically, this loaf mucus shows a flower-like arrangement of 

perpendicularly-branched crystals. It is a woman's awareness of this L-type mucus that 

signals a change from the basic infertile pattern. At first, this L-type mucus mixes with 

the barrier mucus (G-type), then it eventually replaces it completely. The L-type mucus 

has a number of very important functions: it neutralises the acidic vagina environment, so 

that sperm can survive. (Normally the vagina is inhospitable to sperm survival, and it is 

only in the presence of this protective mucus that sperm retain their ability to fertilze an 

ovum.) The L-type mucus also plays a part in trapping defective sperm cells. Another 

important function is to provide a structural support for the third type of mucus, known 

as S-type fertile mucus. 

When the mucus can be stretched, a property of the S-type mucus, the L-type 

mucus is seen as bead or "loaf' at intervals along it (see Figure 5). 

This S-type mucus indicates a high level of fertility and has a lubricative quality, 

resembling raw egg-white. Due to its lubricative nature, it quickly appears at the entrance 
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S-type mucus 

L-type mucus 
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L·mucus 
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Stringy S-type mucus on a glass slide 
showing loafs of L·type mucus 

These illustrations show the distinctive structure of the three types 
of mucus produced by the cervix. 

The S·type mucus forms channels for easy sperm transport. The 
L·type mucus allows partial penetrability and collection of defective 
sperm cells. The G·type mucus forms an impenetrable barrier. 

At ovulation, 5 mucus predominates. After ovulation, the 
proportion of impenetrable G mucus increases rapidly. <after 
Odeblad! 

Figure 5. Three types of cervical mucus. 
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to the vagina, where it produces a sensation of wetness. If stretched it forms strings or 

loops. Women with normal fertility become aware of the onset of the L-type and S-type 

mucus on average six days before ovulation, with a range of three to ten days [7], [18], 

[19]. Some other women may observe or feel the presence of fertile-type mucus for only 

one half day, and only in some cycles. 

The presence of this combination of the L-type and S-type mucus produces a 

characteristic ferning pattern when smeared on a glass slide. This fem-like visual image 

conception is the basis of the ferning test. On microscopic examination, the ferning pat-

tern is seen to be due to the presence of channels within the S-type mucus. The nature of 

these channels and their function are to assist the rapid transport of sperm to the fallopian 
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tube. It has been found that as fertility increases during the fertile phase of the cycle, so 

too does the level of the ferning pattern stage seen under microscope. When the S-type 

mucus reaches its peak, the feming pattern can be seen fully on the glass slide under 

microscope. 

It has been found that the fertile S-type mucus usually begins to be replaced by 

the barrier G-type mucus (meanwhile, ferning pattern begins to reduce) just prior to the 

ovulation. However, some full ferning patterns persist for a day after ovulation, making 

possible the fertilization of an ovum for its entire lifespan, which is about twelve hours 

[8]. 

2.3. FERNING IMAGE CHARACTERISTICS AND ST AGES 

As discussed above, the cervical mucus is composed of three types of mucus. The 

ratio among them varies during a woman's cycle. This variation is represented in the 

microscopic image as variant ferning patterns. When the G-type mucus is dominating, 

the mucus image is completely lacking in the ferning. When the L-type mucus begins to 

mix with the G-type mucus, some linear ferning with flower-like side branches attached 

to those linears can be seen in only a few spots of the microscopical image. Gradually, 

the L-type mucus replaces the G-type mucus and the S-type mucus begins to increase, 

good ferning with side branches in part of the image becomes visible. As soon as the s­

type mucus reaches its peak, full ferning appears on the whole image. 

One of the most important and specific features in cervical mucus image is the 

line-like feature, which represents the ferning or non-ferning characteristic. Figure 6(a) 

shows a full-ferning cervical mucus and Figure 6(b) shows a early ferning, while Figure 

6(c) shows a non-ferning one. Ferning patterns are composed of rough lines with dif­

ferent length and different direction. The structure is of some main branches which are 

more straight and longer, and of some side branches which are shorter and not as straight 
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as the main branches. It is obvious that the more lines an image has, the higher level (or 

stage) of the ferning feature this cervical mucus image possesses. 

The ferning characteritic stages can be introduced as following: 

None ferning: Amorphous mucus. 

Linear ferning: Fine linear ferning seen in a few spots. No side branching. 

Partial ferning: Good ferning with side branches in part of the slide. Amorphous 

mucus in other parts. 

Complete ferning: Full ferning of the whole preparation. 

However, these definitions of mucus stages are quite subjective and qualitative. 

For a better recognition of these characteristic patterns, a objective and quantitative 

analysis is needed in our ferning test automation. 

A mucus slide under microscope can be divided into several view-fields. If the 

total number of main branches and the total number of side branches from all view-fields 

can be counted separately, the ferning stage can be determined approximately. For a digi­

tized image, counting these line-like branches is accomplished by counting those pixels 

which compose these lines ( so-called colinear pixels ) in a binary picture. Furthermore, 

the relationship between these lines can be also a significant feature to distinguish these 

ferning patterns (see Chapter III and Chapter IV). In this way, some numerical criteria 

for classification can be used to decide which stage a ferning image belongs to. Of couse, 

these criteria of classification must be confirmed by a substantial number of experiments. 

The classifications of ferning stages discussed above can only be achieved by 

analysis of large amount of pre-obtained data collected from well-experienced doctors or 

technicians. 

There are two methods to approach the classification of ferning stages. One is by 

examination of the feature space and the distribution of ferning features. By recognizing 
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the region in which the one image features fall, the classification of feming can be 

achieved. Another method is using a logic routine to distinguish the input patterns. These 

two methods will be presented and discussed in Chapter IV and Chapter V. The practical 

approach can be achieved only by collecting a large amount of data from those experi­

enced doctors and technicians. Only after the necessary data have been obtained and 

analyzed, would these two methods be practically applied. This precedure will also be 

discussed in Chapter V. 

Obviously, the classification of feming patterns can never be achieved without 

close cooperation with some hospitals and clinics. A great deal of work must be done in 

association with experienced doctors and medical technicians before the final criteria of 

classification can be set-up. 

In the next chapter, the Hough transformation will be introduced. By means of 

Hough Transformation, those variant lines which compose the fem-like images can be 

detected. Feming patterns will be recognized by analysis of the parameters of those lines. 



CHAPTER ill 

FERNING TEST AUTOMATION SYSTEM AND 

THE HOUGH TRANSFORMATION 

3.1 FERNING TEST PREPARATION 

3.1.1 Materials and Methods for Obtaining Cervical Mucus 

Samples of cervical mucus were obtained from selected patients attending the 

gynecological clinic at Oregon Health Sciences University. The specimen of mucus was 

taken with a glass pipette from the lower portion of the endocervical canal, after gently 

cleaning the portio and external os with a cotton ball. Specimens tinged with blood were 

discarded. The gathered mucus was smeared on a glass slide for drying. The drying pro­

cedure was very simple, just put those slides in the air for about 30 minutes in the usual 

indoor temperature (sometime it takes less than 30 minutes, depending on the indoor con­

dition). It should be noted that the drying slide must be kept from the dusty and contam­

inated circumstances. These slides were stored at 4° C for later observation. The obser­

vations were made using an Olympus IMT-2 lOOx - 200x microscope. There are some 

other methods to obtain cervical mucus [24], such as by direct aspiration of cervical con­

tents into a 1-ml disposable syringe fitted with a disposable polypropylene cone tip. The 

tip is introduced into the cervical canal while negative pressure is maintained in the 

syringe. Another method is especially used as evaluation of features of other than the 

feming test [25]. This is, by inserting a chemically inert, sterile, soft polyurethane sponge 

in the lower portion of the endocervical canal and gently pressing against the cervical os. 

After obtaining the cervical mucus, the sponge can be weighed and washed to gather 
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other information, such as electrolytes and water. 

A mucus slide placed under the microscope is divided into several view-fields. 

Each view-field is processed by the digitizing system separately. 

3.1.2 Proposed Equipment for Digital Image Processing 

In this section we will discribe a digitizer system called PCVISIONplus which 

will be used in our future work. 

The digitizing equipment consists of the television scanning microscope system, a 

PCVISIONplus Frame Graber system, an external monitor display and an IBM Personal 

Computer (PC AT). The PCVISIONplus Frame Grabber is a video digitizer and frame 

memory capable of digitizing standard RS-170/330 (or CCIR) video input and storing the 

digitized image signals in a special on-board frame memory. The image can be simul­

taneously displayed on a video monitor. The PCVISIONplus Frame Grabber is a board 

placed into one of the IBM PC-AT slots (also IBM PC-XT or 100% hardware compati­

bles). It is driven by appropriate software, allows to perform complex digital image pro­

cessing functions, such as: image averaging; image subtraction; convolutions; and edge­

enhancing algorithms. But more importantly, it will allow to perform the feming test 

automation. 

3.1.3 How Digital Image Processing Works in PCVISIONplus 

The fundamental components of an image processing system are shown in Figure 

7. The image originates at a video source, normally a standard RS-170/330 or CCIR 

camera. The analog signal produced by the camera is then transformed to a digital format 

through a process called digitization. The digitization process involves taking samples of 

the analog signal at discrete time intervals and converting each individual sample, or 

pixel, to a digital value. The digital data is then stored in the frame memory. This 

memory stores one pixel in each of its memory locations. The frame memory is 
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Figure 7. Components of a Digital Image Processing System. 

accessible by the CPU in the personal computer. 
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It is also possible to view the image stored in the frame memory. Display logic 

transforms the pixels stored in the frame memory back into an analog format so that the 

image can be viewed on a monitor. 

The heart of this PCVISIONplus is the Frame Grabber. It is a single board that 

plugs directly into an expansion slot in the IBM Personal Computer. It digitizes the 

incoming video signal to eight bits of accuracy at a rate of 30 frames (60 fields, 30 odd 

and 30 even) per second, and stores the resulting pixels in frame memory. Each pixel in 

the frame memory is one of 256 possible intensities or grey levels. Two 512x512 images 

or one 640x512 image can be stored. Display logic on the Frame Grabber converts the 
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pixels in the frame memory back to an analog RS-170 format for display on a video mon­

itor. Three output channels are provided for pseudocolor display. The input digitization 

path and each output channel contains eight Look-Up Tables. The Look-Up Tables can 

be used to change the grey-level of each pixel individually. These 32 tables each contain 

256 entries. They are provided for performing transformation of the 256 intensity levels. 

Simple point transformations can be performed without any calculation or processing 

delay. For instance, we can program eight different thresholds in the Look-Up Tables of 

input digitization path to perform eight different thresholding. This is referred to as real­

time processing. 

3.2 THE FERNING PATTERN RECOGNITION METHOD AND ALGORITHM 

In Chapter II, we have introducted the ferning characteristics and stages. As was 

mentioned, ferning patterns are composed of rough lines with different length and dif­

ferent direction. The method and algorithm we propose to detect these lines is that of 

Hough Transformation. Our ferning pattern recognition system is proposed in Figure 8. 

In the following sections this system will be explain in details. 

3.2.1 The Preprocessing of Ferning Image 

Images first have to be preprocessed to distinguish between possible line points 

and a background. Preprocessing techniques which are usually applied in other image 

processing applications are: edge dectection, gradient methods or contour detection. But 

for the ferning image in our system, the preprocessing is to distinguish those different 

grey level pixels from the pixels which represent the fem-like lines. This means that 

before application of Hough Transformation, an image with various grey levels must be 

transferred into a binary image with only two grey levels: 0 and 1. Therefore, a zero-one 

threshold operator, and how to decide this threshold automatically, will be introduced in 

the following sections, which will also be included in the future work. 
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Figure 8. A block diagram of the Hough Transfollilation and detection system. 

After an image picture has been digitized into a set of computer signals and is 

ready for terminal screen display, assume it is transformed into a nxn pixel matrix 

specified by f(x,y), x,y=0,1,2,. ... , in which each value of f(x,y) is integer and nonnegative 

and has been obtained by quantatizing a video signal into one of several grey levels (in 

PCVISIONplus System there are 28=256 grey levels). This picture function f(x,y) may 

be transformed into another nxn function t(x,y) via the operator T[], i.e. t(x,y)=T[f(x,y)] 

where the described operator is applied to all pairs (x,y). 



Zero-one threshold operator: 

t (x,y) = Tff (x,y)] 

t(x,y) = 0, 

t(x,y) = 1, 

for f (x,y) < h 

for f (x,y) 'C.h 
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where his a grey level threshold. Among 256 grey levels, hmax=255 represents the grey 

level of the brightest pixels and h min = 0 that of the darkest ones. Since in a ferning 

image the fem-like branches are of black pixels, the value of h used may be chosen as 15 

(the grey levels from 0 to 15 represent dark dots which are difficult to be distinguished by 

human visual capability). In the practical cases, the value of threshold h can be altered 

according to the contrast quality of the image. For a high contrast image, the value of h 

can be chosen lower than 15, and, vice versa. 

For a completely automatic system, the automated decision of a threshold must be 

taken into account ([21], Chapter 7). Suppose it is known a priori that an image contains 

two principal brightness ( this is the case of the ferning image ). The histogram of such a 

picture may be considered as an estimate of the brightnesses probability density function, 

p(x), where x is the value of grey levels. This overall density function would be the sum 

or mixture of two unimodal densities, one for the light and one for the dark in the image. 

If the form of the densities is known or assumed ( in our case it is assumed to be the nor-

mal distribution ), then it is possible to determine an optimal threshold for segmenting 

the image into two brightness regions. 

Suppose that an image contains two values combined with additive Gaussian 

brightness noise. The mixture probability density function is given by 

p (x) = p 1P 1 (x) + P2P2(X), 

which, for the Gaussian case, is 

P1 (x-µ1) 2 P2 (x-µ2)2 

p (x) = ffe exp [- 2 ] + _ p;;;- exp [ 2 ] 
1t cr 1 2cr 1 """1t cr2 2cr 2 

where µ 1 and µ2 are the mean values of the two brightness levels, cr1 and cr2 are the stan-
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dard deviations about the mean, and P 1 and P 2 are the a priori probabilities of the two 

levels. If the variances are equal, a2 = ay =a~. a single threshold his sufficient: 

h=µ1+µ2+ a2 /n(P2) 
2 µ1-µ2 P1 

Above is a brief conclusion of the optimal threshold approach [21]. This approach 

has been developed and utilized in applications by Chow and Kaneko [22]. 

In our future work, to obtain accurate results, another preprocessing called thin­

ning may be recommended. The thinning processing is used as the preprocessing tech­

nique to extract the skeleton of the structure in the character and fingerprint recognition 

[23]. Thinning algorithms in our system will be used to extract the skeleton of the struc-

ture and preserve the connectivity of the skeleton. 

Two thinning algorithms, fast parallel thinning algorithm [24] and 2D thinning 

algorithm preserving 8-point and 4-point neighbor connectivities [25], can be used. The 

reason for which the thinning preprocessing is recommended in this thesis is that the line 

segments in a feming image always have a certain width and also the feming branches 

are of zigzag edges. After the thinning preprocessing, an image with neat line segments 

will be obtained. For more details about thinning processing, the reader can look to 

references [21], [24], [26], [27]. 

3.2.2 A Review of Hough Transformation 

The detection of straight line-segments in images is a problem that often occurs in 

image analysis. This detection of collinear points is possible, among others, with the 

Hough Transformation [9], described by Rosenfeld [28]. Consider a point (xi, Yi) and the 

general equation of a straight line in slope-intercept form: 

Yi= axi + b (3.1) 

There is an infinite number of lines that pass through (xi, Yi), but they all satisfy the 

equation (3.1) for varying values of a and b. However, if we write this equation as 
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Figure 9. The Hough Transformation with slope-intercept parameters. 
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b =-Xia +Yi 

and consider the a-b parameter plane called slope-intercept space, then we have the equa-

tion of a single line for a fixed pair (xi, Yi). Furthermore, a second point (Xj, Yj) will also 

have a line in parameter space associated with it, and this line will intersect the line 

associated with (xi> Yi) at (a', b'), where a' is the slope and b' the intercept of the line 

containing both (Xi, Yi) and (Xj, Yj) in the x-y plane. In fact, all points contained on this 

line will have lines in parameter space that intersect at (a', b'). These concepts are illus­

trated in Figure 9. Points in the image are transformed in this method into lines in a 

slope-intercept space. Lines in the slope-intercept space corresponding to collinear points 

will cross each other in one point. This point defines the slope and intercept of the line 

through the collinear points. Quantizing the slope-intercept space into cells and counting 

the number of lines crossing each cell, reduces searching for collinear points in the image 

to looking for the cells in the slope-intercept space, which are locally maximum. 

However, a problem with using the equation y = ax + b to represent a line is that 

both the slope and the intercept approach infinity as the line approaches the vertical posi-

ti on. 

The method was improved by Duda and Hart [9] by using an angle-radius 

parametrization (also called normal parametrization ), avoiding therefore the problem 

of the unboundedness of slope and intercept. With this improvement, collinear points in 

the image show up now as peaks in the angle-radius space. 

An experimental program accomplishing this transform using angle-radius 

parametrization as well as implementation of T[] operator preprocessing, peak search in 

parameter space and parallel-line feature extraction will be discribed in Chapter 4. 

Duda and Hart used the normal parametrization of a line in an image given by 

P1 = xicos81 + Yisin81 (3.2) 

where p1 is the distance of the line to the origin, 01 is the angle between the normal and 

I 
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Figure 10. (a) Parameters of the line xcos0+ysin0=p. 
(b) curves corresponding to three points on the line. 

the x-axis and (Xi.Yi) are points on the line (see Figure lO(a)). 
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For a given point (xi .Yi) , this point can be mapped onto p-0 plane as a sinusoidal 

curve. Also, if we restrict 0 to interval (0,7t) , then the normal parameters for a line are 
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unique. With this restriction, every line in x-y plane corresponds to a unique point in the 

0-p plane. Furthermore, the parameters of all lines going through a point (xi.Yi) in the 

image constitute a sinusoidal curve in the ( p,0) space, given by 

p = Xicos0 + Yisin0 x>0~0 (3.3) 

(see Figure lO(b)) 

The sinusoidal curves corresponding to collinear points of a line with parameters 

(p1 ,01) will cross each other in the point (p1 ,0i) in the p-0 space, as for these points 

(xi.Yi) equation (3.3) holds. So line parameters can be obtained from the crossing-point 

of sinusoidal curves in the parameter space. An example is illustrated in Figure 10 show­

ing the three collinear points in x-y plane mapped into p-0 plane as three curves with a 

common intersection (0i,pi). 

Thus the problem of detecting collinear points can be converted to the problem of 

finding concurrent curves. 

We can summarize some interesting properties of the point-to-curve transform as 

follows: 

Property 1. A point in the picture plane corresponds to a sinusoidal curve in the 

parameter plane. 

Property 2. A point in the parameter plane corresponds to straight line in the 

picture plane. 

Property 3. Points lying on the same straight line in the picture plane correspond 

to curves through a common point in the parameter plane. 

Property 4. Points lying on the same curve in the parameter plane correspond to 

lines through the same point in the picture plane. 

On an image, the points which compose the feming lines are called f ea tu re 

points. As the images are processed by computer both the image and the ( p, 0 ) space 

I 
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are quantized. On the image, feature points will be undertaken in the transform, which 

are checked to be collinear. The feature points (e.g. the points composing the feming 

branch) are found in the preprocessing stage. 

The Hough Transformation of feature point (xi.Yi) is performed by computing p 

from equation (3.3) for all n values of 0k into which 0 is quantized (Qs;0<1t) . The values 

of p are then quantized in m intervals of width ~p . In this way a quantized sinusoidal 

curve is obtained (in which, strictly speaking, 0 is sampled and p is quantized) and along 

the quantized curve each cell is incremented with an equal amount, for instance one. This 

procedure is repeated for all feature points. Collinear feature points in the image show up 

as peaks in the p-0 space. 

Exactly colinear subset of feature points can be found, at least in principle, by 

finding coincident points of intersection in the parameter plane. Unfortunately, this 

approach is essentially exhaustive (we will explain it later), and the required computation 

grows linearly with the number of feature points. When it is, however, not necessary to 

determine the line exactly, i.e. when a certain quantizational errors are allowed, the com­

putational burden can be reduced considerably. 

Following Hough's basic proposal, we specify the acceptable error in 0 and p and 

quantize the 0-p plane into a grid. This quantization can be confined to the region 

1t>0~0. R >p~-R. where R is the size of the quantized 0-p plane, since the points out­

side this rectangle correspond to lines in the picture plane that do not exist in the view 

field. The quantized region is treated as a two-dimensional array of accumulators. For 

each point (Xi.Yi) in the picture plane, the corresponding curve given by (3.3) is entered 

to the array by incrementing the count in each cell along the curve. Thus, a given cell in 

the two-dimensional accumulator eventually records the total number of curve passing 

through it. After all feature points have been treated, the array is inspected to find cells 

having high counts(they are called peaks). If the count in a given cell (Si.Pi) is k, then 
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precisely k feature points lie ( within quantization error ) along the line whose normal 

parameter are (0i>Pi). 

In the application of Hough Transformation, one problem must be handled with 

care: the quantization of the parameter space, which may either influence the discretiza­

tion errors ( scatter of the peaks ) or the burden of computation ( oversampling ). 

T.M.van Veen and F.C.A.Groen have analyzed the discretization errors of the Hough 

Transformation [30]. According to their theory, neither oversampling nor undersampling 

occurs when 

Lip :::: tsin ( ~ Li0) 

where t is the length of a line segment in picture space, Lip and Li0 are the quantized 

intervals of p and 0 separately. In the experimental program in the next chapter this equa­

tion will be used to decide the quantization of p. 

Let us investigate how the computation required by the accumulator method 

varies with the number of the feature points. To be more specific about the quantization, 

suppose that we restrict our attention to na values of 0 uniformly spaced in the interval 

[0, 7t ). Suppose further that the p axis in the interval [-R, R] is quantized into n P cells. 

For each feature point ( Xi.Yi ), we use (3.3) to compute the na different values of p 

corresponding to the n 0 possible values of the independent variable 0 . Since there are N 

feature points, we need to carry out this computation Nxna times. When these computa­

tions are complete, the naxnp cells of the two-dimensional accumulator are inspected to 

find high counts. The total number of computations Ne is then: 

Ne =Nxna + naxnp 

Clearly, the computation required grows linearly with the number of feature points. 

Since in some cases the ferning lines can be some kinds of curves, they can also 

be detected by using Hough's basic theory with different parametrization. In principle, 

the transform method extends to arbitrary curves but the curve type which should be 
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expressed by certain equat!on could be difficult to determine, especially when limited 

computation is desired. It is very important to have a small number of parameters since 

the accumulator implementation requires quantization of the entire parameter space and 

the computation grows exponentially with the number of parameters. 

Table I describes four kinds of curves together with their parameters. 

TABLE I 

CURVES AND PARAMETERS 

analystic form parameters equations 

line p,8 xcose+ysin8=p 

circle a,b,r (x-a )2+(y-b )2=r2 

parabola a,b,c (y-b )2=4c (x-a) 

ellipse a,b,m,n 
(y-b)2 (x-a)2 

1 + m2 n2 

In dealing with those pictures with random noise and lines composed of non-

adjacent black points, two noise removal-techniques were recommended by M. Cohen 

and G.T. Toussaint [31). The first method is applicable when the distribution of the noise 

is known and the other one can be used when it is not. Also, O'Gorman and Clowes [32] 

have proposed a gradient weighted Hough Transformation which reduces the number of 

feature points in a window not belonging to the line of interest. The noise-removal tech­

niques mentioned above may be applied in our practical feming pattern recognition sys­

tem in the future. 

In the last few years, Hough Transformation has been applied in many fields. D. 
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H. Ballard has generalized the Hough Transformation to detect arbitrary shapes [33]. Ian­

nino and Shapiro have presented a review of detection of circular and parabolic segments 

[34]. G. C. Stockman et al have presented how to build hardware implementation 

inferred from software techniques [35]. Teresa M. Silberberg has described the Hough 

Transformation on the Geometric Arithmetic Parallel Processor [36]. F. Matthew et al 

have designed a monolithic Hough Transformation processor based on restructurable 

VLSI [37]. Hungwen Li et al have developed a fast algorithm for Hough Transformation 

with k-tree data structure which can be applied to design respective hardware and VLSI 

chip [38]. 

All the achievements mentioned above will be applied in our ovulocomputer sys­

tem to build up necessary hardware and chips with the most appropriate algorithm and 

design techniques, if the practical results of the Hough Transformation itself proves 

sufficient comparison to experienced doctors when recognizing ferning patterns. 

Now let us see how the different ferning patterns can be recognized after the 

Hough Transformation has been applied and those lines composing ferning branches 

have been detected. Two methods are used to extract ferning features. They are described 

as following: 

Examining Figure 6(a),(b) and (c) in chapter 2, it is easy to see that images with 

ferning patterns have different numbers and different lengths of lines. By using Hough 

Transformation with certain count array, those lines can be detected separately. For 

instance, we may set three criteria n1,n2, and n3, Here n 1,n 2 and n 3 represent the cri­

teria of the length of the ferning main branches, the length of the full ferning side 

branches and the length of the partial ferning side branches, respectively. If we obtain in 

a picture N accumulator peaks which are bigger than n 1 , M accumulator peaks which are 

bigger than n 2, and P accumulator peaks which are bigger than n 3 , we can determine 

that the picture with bigger M+N has a more ferning stage than that with a smaller M+N. 
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If a picture has a small M and a rather big P but is almost lacking in N , we may deter­

mine that it is in a partial ferning stage. A picture whose M, N, Pare almost zero indi­

cates that it is a non-ferning picture. The details of how to use these ferning features to 

classify ferning categories will be discussed in Chapter VI. 

Also, a comparison of Figure 6(a), (b) and (c) in Chapter II indicates that an 

image with a full ferning pattern has many more side branches which are parallel to each 

other than those with a partial or linear ferning patterns. Perhaps, parallel lines are one of 

the most significant characteristics of the full ferning image. In a picture space these 

parallel lines can be expressed as in the equation (3.3), with the same 8 but different p's. 

After all feature points are transferred into the parameter space and the accumulator 

arrays are inspected to find out the cells with peaks. The cells found with peaks are 

located, that represent these detected lines. Among these cells, if the coordinates of any 

of them in the e axis are of the same quantized value of e ' then the coresponding lines 

are parallel to each other. In another words, the peaks with the same 8 in the parameter 

space define the parallel lines (or approximately) in the picture space. The experimental 

program from the next chapter will demonstrate how these two features are extracted by 

using the methods described above. 



CHAPTER IV 

AN EXPERIMENT AL PROGRAM OF THE HOUGH 

TRANSFORMATION AND FERNING FEATURE EXTRACTION 

An experimental program in C language is presented in this chapter. The pro­

gram will be explained by using one test image of four-line and three artificial mucus 

images. Among them, the four-line image is just a testing image to examine the routine 

and the subroutines of this program and the other three images, which are similar to real 

feming images under microscope, are for the demonstration of the feming feature extrac­

tion. 

4.1 DISSECTION OF THE PROGRAM 

The program has one main() routine and several subroutines. They are explained 

as follows: 

In the main() routine there are some definitions of variables and some fundamen­

tal procedures. 

A monochrome image is a two-dimensional light-intensity (grey level) function 

which is defined as a two-dimensional array pix[IMY][IMX]. Since the size of the 

artificial image is 80x80, so the size of the array is defined as IMY =80, IMX=80. 

Define by £\0 the quantizing interval of dimension 0: £\0=3°, so the total number 

of samples within 7t >0 ~ 0 is 180/3 = 60. Since the estimated minimum length of 

a line in those picture is of 10 pixels, so the maximum length of this 10-pixel line 

is ..J102+ 102 = 10.../2 (actually even with the same pixels, the length of a line can 

be varying). Using the discretization error analysis theory [30] discussed in 
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Chapter 3, according to the equation: 

~ = tsin ( ~ AS) 

we have 

Ap = 10.../2 sin ( ~ x3°) :::: 0.4 

For the convenience of computation, we define ~p = 0.5. 

The p-8 space is defined as 2-dimensional accumulator array 

ac[PMTR_Q][PMTR_P], here PMTR_P is the size of the array in p axis (or the 

number of elements in p axis) of p-0 space and PMTR_Q is the size of the array 

in e axis. Therefore, 

PMI'R P = ~IMXl+IMY2 
x2+ 1 :::: 453 

- Ap 
PMI'R_Q = 180/3 = 60 

Since the accumulator ac[]O is a matrix, it needs positive addresses (coordinates). 

Therefore, each Pi value has to be recalculated to a new coordinate, p{. Pi and p/ 

are given by the relation, 

' Pi =Pi+ zero 

(PMTR P -1) 
zero = + 1 = 227 

2 

Each feature point in the picture space has to be computed PMTR_ Q times and 

each time the cos() and sin() mathematical functions have to be called once from 

the <math.h> library of the C compiler. Therefore, instead of calculating this tedi­

ous procedure, a table containing all necessary values of sin() and cos() was put in 

the main() routine. Each time the calculation is executed, the transform routine 

needs only to find the sin() and cos() values from the table. This method trem&-

dously reduces the time for calculation. 
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Prompting a question to require for the input the name of the image file to be pro­

cessed. 

Initiating all the elements in the accumulator array ac[][] to zero value. 

Call hough() subroutine. 

Call the preprocess() subroutine to perform the image preprocessing (refer to 

Section 3.2.1). 

The hough() routine which is called by main() routine performs most of the 

interactive tasks, such as, input the threshold for search of peaks, input the file name to 

store the data which are the results of transformed and the results of processed features, 

etc. It implements the following procedures: 

Call pmtr_spe() subroutine to perform the computation of the Hough Transfor­

mation. 

Call peak() subroutine function to scan the accumulators in parameter space, 

looking for those peaks which satisfy the input threshold. 

Call remap() subroutine. Since this is an experimental simulative program, it is 

necessary to examine how the detected lines diverse from the actual ones in the 

original image. The remap() subroutine reconstructs the detected lines into an 

image again so that this image can be compared with the original one. The 

main() routines described above are illustrated in Figure 11. 

The hough() and pmtr_spe() subroutines are presented in Figure 12. 

A complete Hough algorithm is implemented in pmtr_spe(), peak(), and 

remap() routines. 

In hough() routine, during the scanning of the picture area, each time when a 

feature point is found, the pmtr _ spe() is called once. 

After all the feature points in the picture area are transformed into the parameter 
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space, the accumulator array ac[] [] records all the intersections of the curves. The 

analysis of the accumulator array is performed by peak() subroutine using the algorithm 

presented in Figure 13. 

The subroutine peak() inspects all the cells in the accumulator array using the 

threshold to obtain the peaks. The location of each peak (coordinates of Pi,ei ) defines 

the lines in the picture area. The peak() also calls two subroutines longest() and paral­

lel(). The longest() subroutine is used simply to find the maximum peak, which is the 

longest line in the picture area. The parallel() is a very important subroutine for the 
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y=x=O 

x,y - the coordinates of 
the image function. 

+· x=x+l, 

....--------n_o_(_ y<IMY & x<IMX? > y=y+l 

..................................... < .. ~~ ~}/"""""")"""""""~~ ..................... 1....... . ..... .. 
i yes 

X=x, Y=y 

i=O, a=O 

.. + 
p=(x*cos[a]+y*sin[a])/STEP _P 

b=p+-zero, 
ac[b] [i ]=ac[b] [i ]+ 1, 
i=i+l, 

a=a+l, 

+ 
L..__ ___ y_es __ < a<PMTR_Q ? )-n_o ______ __. 

require threshold input 

call peakO 

call remap() 

require the name of file to store 
output data 

store all data in the named file 

stop 

pmtr_speO 

subroutine 

Figure 12. Flow diagram ofhoughO and Pmtr_spe() subroutines. 
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extraction of the feming features. It has been discussed in Section 3.2.2 in Chapter 3 that 

all the peaks in the parameter space with the same 0 coordinate define a set of parallel 

lines in picture space. The purpose of subroutine parallel() is to search for those peaks 

that have the same 0 coordinate. Its procedure is as follow: 

Subsequent cells in the accumulator array were analyzed in a loop. 

Two one-dimensional arrays p[] and q[] were used as pointers to store the 

Pi and 0i of each peak found. Here, the values stored in p[] and q[] were 

transferred parameters referred to the picture space, i.e. they have been 

transferred from coordinate of p-0 space into the actual values of line parameters 

in picture space. 

The total number of the peaks was assigned to the variable k. 

Print out every peak value (here "peak value" is used for the value of the accumu­

lator found to be a peak) and its converted p and 0 values according to picture 

space. 

Call longest() subroutine. 

Call parallel()subroutine. 

The longest() and parallel() subroutines are dissected in the following: (see Fig­

ure 14 and Figure 15) 

After all peaks which exceed the THRESHOLD have been obtained in the first 

loop of peak() routine, the coordinates of every peak are assigned to the two one­

dimensional arrays, p[] and q[]. These values are passed to the subroutine longest(). The 

value of the first peak is assigned to a variable max while the coordinates of this peak are 

assigned to the variables mp and mq. Each time through the loop the value of each peak 

is compared with the prior ones and the bigger one is assigned to max while its coordi­

nates are assigned to mp and mq, i.e. max, mp and mq is updated in each time of the 

loop. At the end of the loop, the variable max eventually obtains the largest value among 
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i =j = 0 

! -

<&!<PMI'R_P . 1 ' 

i=i=l 

j=j+l J<PMTR_Q? 
) no 

I i yes < ac[i]fj]>THRESHOLD? 

. 
no 

;;: > i yes 

p=(i-zero)*STEP _P 

q=j*STEP_Q 

k=k+l 

call maxiurn() 

i 
call parallel() 

i 
return to 

hough() routine 

+ 

Figure 13. Flow diagram of peak() subroutine. 

the peaks, which indicates the longest line in the picture space (in our simulated images, 

it referrs to the main branch of the ferning) 

The parallel() subroutine detects the parallel lines in an image. It searches for 

those peaks with the same 0 coordinate in the accumulator array: 



max=ac[p[O]/STEP _P+zero] [ q[O]/STEP _ Q] 

mp=p[O], mq=q[O] 

i=l 

·i 
~ < i < k? lyes ),_no -------. 

l:z: ma:i«ac[p[i]/STEP _P+zero ][ q[i ]/SIEP _ Q] ? 

i yes 

max=ac[p[i]/STEP _P+zero][q[i]/STEP _Q] 

mp=p[i], mq=q[i] 

I 

print information 

about max peak 

+ 
go to parallel() 

routine 

+ 
Figure 14. Flow diagram of longest() subroutine. 

The variable K is assigned the number of sets of parallel lines. 

> 
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One-dimensional array Q[] is used to store the 0 value of each set of parallel 

lines. The size of Q[] equals to the number of the sets of parallel lines, K. 

One dimensional array pl[] is assigned the number of parallel lines in each set, 

corresponding to each 0 in which each set of parallel lines exists. Obviously, the 

size of pl[] equals to the size of Q[] array. 



i=i+l I 

1 no 

no 

K=i=O 

Q[]=fiag[]=O 

pl[]=l 

·! < i<(k-1)? 
') no 

lyes 

< ftag[i]=O ? ~ i yes 

j=i+l ~ 
i 

< j < k? -=:; 
i yes 

< q[i] = q[j] =vno 

~yes 
pl[K]=pl[K]+ 1 

ftag[j]=l I 

= I j=j+1 

I 
~ p[K]>=PARALLEL_NO? ) i 

Q[K]=q[i] 
.___ ___ I K=K+l 

! yes print infonnation of 

all sets of parallel 
lines 

+ 
return to 

hough() routine 

t 

Figure 15. Flow diagram of parallel() subroutine. 
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img[][]=O 

i=O, x=O 

I 
/ I i=i+l I I i<k? 

-! 
1 < x<IMX > 

i 
y=(int)(p[i]-x*cos0i)/sin0i 

' 

< y>l & y<79 ?> 

t 
I img[y][x]=l I 

! 
I x=x+l I 

return to 

houghO routine 

Figure 16. Aow diagram of remapO subroutine. 

flag[] array is used as a label for those peaks of which the e values are found to be 

the same as the previous ones. 

PARALLEL_NO variable is another threshold. Since in an image there are 

always certain number of parallel lines detected, sometimes we are only 

interested in those sets of which the number of parallel lines are larger than this 
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threshold. 

Figure 14 and Figure 15 illustrate how the subroutines longest() and parallel() 

proceed. 

The last subroutine that hough() calls is called remap(). The remap() simply 

uses the values of 0 and p of detected peaks as parameters to reconstruct an image. It per-

forms the reverse transformation using the equation 

P1-XiCOS61 

Yi= sin01 

In our 80x80 -pixel binary image, Xi = 1,2, ...... ,80, for each pair of 0 and p values the 

computation has to be carried out 80 times to obtain Yi values. ( during the computation, 

the Yi values are usually the double type variables, they have to be rounded into the type 

of integer). After each time of calculation, a pair of Xi and Yi is obtained and the 

corresponding pixel is set to one. The pixels which are not corresponding to any coordi­

nates of the calculated Xi and Yi are set to zero. These zero-pixels compose the back-

ground of the reconstructed binary image. 

The array img[][] is assigned as reconstructed binary image function, just like the 

original image function pix[]O. Figure 16 presents the algorithm of the remap() subrou-

tine. 

4.2 THE SIMULATIVE RESULTS AND 

THE EVALUATION OF THE PROGRAM 

4.2.1. An Example of a Four-line Image Processing 

A four-line image is shown in Figure 17. By visual inspection, we can realize that 

these lines are composed of 64, 62, 62 and 18 feature points with p values of -2.0, 0.5, 

28.5 and 57.5 and 0 values of 135°, 135°, 135° and 45°, separately. Since the total 

number of pixels in the image is 80x80=6400 and only 64+62+62+18=206 of them are 
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Figure 17. The four-line binary image. 

feature points, it means that 3.2% pixels in this image are feature points. When this pro­

gram is run on SUN machine in EE Department, the time taken for the Hough Transfor­

mation and accumulator adding was about 3.45 seconds, the search for the peaks and 
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feature extraction was about 0.3 seconds, and the storage of all the data and results into a 

file named Dat was 3.5 seconds. This Dat file can be opened for the examination of· 

results. The same program was compiled using Optimizing CS.1 compiler on PC-AT (10 

MHZ, 0 Waiting) and the time taken for execution of all routines was 18.10 seconds, 1 

second and 14 seconds, respectively. 

A portion of the accumulators of parameter space (i.e. the part of ac[][] matrix) is 

shown as following. 

~ 
0000000000000000000000000000000000000101001100126223112201102 
0000000000000000000000000000000000011010110000104421132320120 
0000000000000000000000000000000000000101000016473222223112102 
000000000002357081000000000000002023602311111000000000000000 
000000000000000000000000000000000000100011036074221222221101 
000000000000000000000000000000000000010100258174322122100010 
000000000000000000000000000000000001101003437073321021111100 
0000000000000000000000000000000000000100322376252000112000000 
0000000000000000000000000000000000110002112712000011011100110 
0000000000000000000000000000000000001022256613001100021011000 
1100000000000000000000000000000000101324435614110000211000010 
0011110000000000000000000000000001122232335915000011121111100 
1100001111100000000000000000111110122222355610001100212000010 
001100000001111111111111111100001222222333487110001210100100 
100011110000000000000000000001111022323234667000010120011000 
011100001111000000000000111110011311032244467001100211000100 
200011000000111111111111000001211123312424587110001120111000 
011000111000000000000000001111021231223334573000110110000000 
200110000111100000000011110110201202232243580011000211101100 
011001100000011111111100001112021022223334461100002110010000 
200100011100000000000000121010202332122224560000112301000100 
010011000011111000001112101112021102322343580011002100111000 
301100110000000111110110011110202231223234471100011110000000 
021110001110000000111001210112021223232344530000102201111000 
311012200001111222111121001110202101112424540111002110000000 
021110022111111000001100121102021232233233541000011101001000 
311112000111000000110012101120202222222244430001102100110000 
021100221100112222111110011002021111323333400110002010000000 
311120001111110000001100210110211223122224611000032101111000 
020102200011000001110112002112023121222444500001111000000000 
312110021111222221111110020110211212223233401110022011000000 
020112001100000000011002201111022222232323510000132100110000 
312000210011100001101120021111211121312334500011011010000000 
031121012111122221110100201111022313033233311100030001110000 
302101200110000000011012011111221031322245300000120100000000 
022110021001110011111110010111012202223323300011021010000000 
311112001211112211101101202001322232222334111100020001110000 
022110210010000000110121020121012121222334000000320100000000 
311111011101111012111100201101321303133233000011311011100000 
022101201111111210001002011110001031312225111100210100000000 
310120020011000000110120011112332323223343000001300010000000 
023202002111111222111101201110001111232233000110201001100000 
310110200100111000011011020112332222122235111000310100000000 
012211021011100000101110201011001232212332000001301011100000 
322111201111122222110102011112332001332332001110210000000000 
011210020110000000011120011111012323222342110001100110000000 
422202002101100001111100201112322131133220000004001001000000 



011030200111122221101012020101011202212230001114010100000000 
422201021010000000010110202122322232222341110003100010000000 
011121101111110001111102010101011111322230000014001001000000 
432220110101112221101010011123321213222320111104010100000000 
442120201110110011110102021012322202322230000011000000000000 
001202020111112211001020201121022232222231111100010110000000 
441120002101000000111201020112311121223310000040101000000000 
002221200111111212111011002121022213112200000171010100000000 
431113021010111010010110200212311221133311111070000010000000 
012120201101100000111102021121022123322300000011101000000000 
422213020111122222101010201202311311221300000110010100000000 
022121001010000000010110021031022021223311111000100010000000 
422211201111100001111102001211301232022200000001001000000000 
022222020101122221101020210212032201222200001110010100000000 
421111302111000000011102011121312133323311110000101000000000 
0231230101101000012101102022120213212222000001801000100000000 
411220111011122221001110022121312001333111111110010000000000 
032202301101000000111102001212021322022000000000101000000000 
412232120111110001111010211221312121212000000011000100000000 
043210201010112221010111013123021113333111111100010000000000 
401213111101000000101101200110312321222000001000101000000000 
043221110111111012111020032113022112133000007011010000000000 
401231312010111210010102002220322112212111118100100000000000 
042312130211100000111110221213011121222000003001001000000000 
402021211001111222101111022110321213333100000110010000000000 
041313111111011000011101210222012221220011111000101000000000 
403120130110100001110020023111321133110000020001000000000000 
041233302011122221101102111122011101231111030110010000000000 
403312030101000000011110221221321121220000151000100000000000 
031120312111100001211010112112013233331000030001000000000000 
413334112010122221010102312221321201010111141110010000000000 
021001131111000000101110131112011233320000030000100000000000 
423333312101110001111112111211311121231100300001010000000000 
021221122110112221011101223221012212210011311110000000000000 
322122321111000000110021110112321122320000200000100000000000 
023323103011210011101102222221011221001110200011000000000000 
320120231200012211011111212012212213300001411100100000000000 
014324212211100000111012010221012121211002200001000000000000 
240211222111111012100102333213322222200111200010000000000000 
003231331301011210011121101120021112110003311100100000000000 
341113112211100000111123221212212321201102000001000000000000 
003231242210121222110111222120021123200012000110000000000000 
221214201211001000001030011213312211210012111000000000000000 
003220214121100001211113322110021133101122000001000000000000 
332222341220122221011121111122312101100022101110000000000000 
002213112221000000110123122200022331011012010000000000000000 
321230133231110001101311211122311123000132000001000000000000 
001124321210112221011221112211022201110112111110000000000000 
333311212321000000111123331112311233001110000000000000000000 
000132343232210001100311112111022121100330000010000000000000 
321112101213012221012131112222321211010111111100000000000000 
012221134231100000113212220021012122002220000000000000000000 
321224321223110012101221112112311230111121000010000000000000 
012220212433012210012223321221023202002110111100000000000000 
321113343123100000113211111101311120101220000000000000000000 
022322011231221012122222021233022230011111000000000000000000 
311121222323201210021122311200311201012200111100000000000000 
022102333234300001233211102123021130111210000000000000000000 
301231201221322221022232221210322211022101100100000000000000 
032122244233300000133211112023011100111200011000000000000000 
301221011324300001321321021220322220121110000000000000000000 
031222212222432221222122212213012201112101111000000000000000 
302113233233230000333211121120322120200200000000000000000000 
031130211223550001421221311213011301021011000000000000000000 
302114123333342222232112013120322011212000111000000000000000 
031211211123340003323210130212011302121100000000000000000000 
302222211232550006432123312221322001112011000000000000000000 
032112343323255223221211112012021120211100110000000000000000 
301221211123338003322222321211311202021010000000000000000000 
022114021222457076321112012122022021202001000000000000000000 
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311220333222358283323211121211312311120100110000000000000000 
021212211222248174211233312222022011110010000000000000000000 
321022344332337073232111121112311211111001100000000000000000 
0122211011232466263333320222220013012120100000000000000000000 
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By using visual inspection for the accumulators, we can easily find out four peaks 

which are bigger than the threshold of 15. (in Table 2 they are circled) These four peaks 

are located at 0=135°, p=-2.0; 0=135°, p=0.5; 0=135°, p=28.5; 0=45°. This means that 

these peaks represent exactly the four lines from the parameter space. Now let us see 

how the peak() routine of our experimental simulative program works. When a thres­

hold of 15 was used, four peaks were found. The printed out of the program to the Dat 

file follows (for simplicity, the ac[][] table was omitted): 

Total number of peaks bigger than 15 is 4, 

so 4 line(s) have been detected: 

Q= 135, p= -2.0, peak= 64 

Q= 135, p= 0.5, peak= 62 

Q= 135, p= 28.5, peak= 18 

Q= 45, p= 57 .5, peak= 62 

Maximum peak: Q = 135 , p = -2.0, peak= 64. 

This is the longest line in the picture space. 

When Q = 135 , 3 lines are in parallel. 

The percentage of the parallel lines is: 75%. 

Four lines have been detected in the picture (the peak values indicate the number 

of collinear feature points). The longest() routine also printed out the maximum value of 

the peak which indicates the information about the longest line in the picture. The paral­

lel() subroutine correctly outputs that three lines were parallel with each other in the pic­

ture space, with the same parameter 0=135°. The percentage of parallel lines is an 
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important feature only in the case of the extraction of ferning images but it has no mean­

ing in this example. We will explain this feature in the ferning-like image simulation. 

The above information is coincident with the visual inspection in the accumula­

tors. Also, the parameters and feature points obtained by the program were coincident 

with our visual inspection in the picture space. 

The remap() subroutine is just a procedure for reverse transformation and recon­

struction of the lines back into picture space. This remap() uses only the values of 

p and 0 of each detected peak, it does not consider the value of the peaks itself. So the 

reconstructed lines are obtained from the reverse transformation using only parameters 

0s and ps. The computation uses every Xi to obtain the corresponding Yi· The recon­

structed lines are, therefore, across the whole picture region, rather than, as in the original 

picture, just the line segments inside one picture's region. Figure 18 illustrates the 

reverse transformation image from the parameter space with the threshold of 15. 

Let us investigate how the threshold effects the detection of lines. In our program, 

when the threshold of 13 was applied, the following was output Dat file: 

Total number of peaks bigger than 13 is 7, 

so 7 line(s) have been detected: 

Q= 138, p= -3.5, peak= 15 

Q= 135, p= -2.0, peak= 64 

Q= 135, p= 0.5, peak= 62 

Q= 132, p= 2.0, peak= 14 

Q= 132, p= 2.5, peak= 15 

Q= 135, p= 28.5, peak= 18 
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Figure 18. The reconstructed image with threshold of 15. 

Q= 45, p= 57 .5, peak= 62 

Maximum peak: Q = 135 , p = -2.0 peak= 64. 
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Figure 19. The reconstructed image with threshold of 13. 

This is the longest line in the picture space. 

When Q = 135 , 3 lines are in parallel. 
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When Q = 132 , 2 lines are in parallel. 

The percentage of the parallel lines is: 71.4%. 

This time 7 peaks were obtained. To reconstruct an image by using these p and 9 

parameters, the remap() routine was called. The respective results are shown in Figure 

19. The difference between Figure 19 and Figure 18 is obvious, but not tremendous. The 

difference occurs near the two lines (9=135°, p=-2.0; 9=135°, p=0.5) which were long 

and close. This is because a quantization error usually happens when two long lines are 

close enough. This problem has been discussed in the literature [30]. If we decrease the 

value of the threshold to be much smaller, the difference between the reconstructed 

image and the original one will increase significantly. In this example, the points in the 

picture space were mapped to the parameter space and then they were mapped back to 

the picture space again. This two-way calculation obviously increased the errors. In the 

practical case of the mucus picture with 256x256 or 512x512 pixels, the ferning lines 

usually are not so close in respect to their length, there would be no such problem. 

The selection of threshold should be considered carefully. In our future process­

ing and detection of real ferning images, the threshold will be decided on the base of a lot 

of practical tests. 

4.2.2 The Simulative Application of Ferning-like Images 

The Hough Transformation and f erning feature extraction were applied to three 

artificial ferning-like images (see Figure 20 - Figure 22). They are full-ferning, partial­

ferning and linear-ferning, respectively (refer to the introduction of ferning characteris­

tics in Chapter II). 

Full-ferning image simulation 

By visual inspection, there are 18 lines in the full-ferning image shown in Figure 
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20 and the longest line is the main ferning branch, with 9 side-branches in one side of the 

main branch and 8 side-branches in the other side. All these side-branches, in either side, 

are parallel with each other. As it was pointed out in Chapter III, the two most dis­

tinguished characteristics of a full-ferning image are: 

(1) full-image has much more lines, 

(2) most of the lines (side-branches) are parallel with each other. 

In the image from Figure 20, the total number of feature points is 583, so 

583/6400=9.1 % pixels are feature points. The time taken in a SUN machine to carry out 
' 

the Hough Transformation and the accumulator addition was about 9.2 seconds, for peak 

search and printing out, the time was about 0.7 seconds, and for storage of the data was 

about 3.5 seconds. The same program was run in PC-AT using Optimizing C5.1 compiler 

and the time taken was 47.15 seconds, 1 second and 14 seconds, respectively. Look at the 

time taken in Section 4.2.1, one can see that the time taken to run this program on PC-AT 

is 5 times of that of the SUN machine. 

The result of this processing and feature extraction can be found in the Dat file: 

Total number of peaks bigger than 15 is 19, 

so 19 line(s) have been detected: 

Q= 135, p= -25.5, peak= 22 

Q= 135, p= -11.5, peak= 32 

Q= 135, p= -8.5, peak= 33 

Q= 135, p= -3.0, peak= 38 

Q= 135, p= 5.5, peak= 38 

Q= 138, p= 12.0, peak= 18 



Figure 20. A full-feming simulative image. 

Q= 90, p= 15.0, peak= 43 

Q= 135, p= 15.5, peak= 29 

Q= 135, p= 16.5, peak= 28 
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Q= 90, p= 20.0,. peak= 33 

Q= 132, p= 20.0, peak= 18 

Q= 90, p= 28.0, peak= 41 

Q= 135, p= 30.5, peak= 19 

Q= 90, p= 36.0, peak= 46 

Q= 90, p= 40.0, peak= 35 

Q= 90, p= 46.0, peak= 39 

Q= 90, p= 50.0, peak= 32 

Q= 90, p= 56.0, peak= 30 

Q= 45, p= 56.5, peak= 67 

Maximum peak: Q = 45 , p = 56.5, peak= 67, 

This is the longest line in the picture space. 

When Q = 135 , 8 lines are in parallel. 

When Q = 90 , 8 lines are in parallel. 

The percentage of the parallel lines is: 84.2%. 
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The program detected nearly all the lines just as a visual inspection would, and 

the parallel() subroutine gave out the important information about the parallel-line 

characteristics. Usually, when the percentage of the number of lines which are parallel 

with each other becomes close to a certain prespecified value, the full-feming stage can 

be confirmed. This criteria will be finally set up after sufficient number of practical appli­

cations have been tested and necessary experiences have been obtained. 

There are some inevitable errors in the above: 
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(1) one line was missing, which was one of the side-branches with 11 feature 

points. It was the shortest line in this image and it was below the threshold. 

(2) Two false lines were detected, which were ( 0=138°, p=l2.0) and ( 

0=132° ,p=20.0). Since the quantization interval ~0=3°, when some line just happened 

with 0=135°, those false lines had the parameter of 135°±3°. So obviously, this was a 

quantization error. In the practical cases, this kind of errors may happen. But compared 

with the total number of correctly detected lines, it should not effect the final 

classification decision. 

Partial-feming image simulation 

The definition of partial-feming characteritic is: good feming with side branches 

in part of the image, amorphous mucus in other parts. It is obvious that the most dis­

tinguished difference between the full-feming characteristic and partial-feming charac­

teristic is that the total number of lines in the full-feming image is much larger than that 

of the partial-feming image (a slide can be divided into several view-fields, i.e. several 

images, the total number of lines is the sum of the numbers of lines from all images from 

a slide). 

A partial-feming image is similar to that shown in Figure 21. 

The program was applied to a similar artificial partial-feming image. Since the 

number of feature points in this image was less than that of the full-feming (Figure 20), 

the time taken for the processing of the partial-feming image was smaller than that for 

the full-feming. The result of this processing was in the Dat file as follows: 

Total number of peaks bigger than 15 is 6, 

so 6 line(s) have been detected: 

Q= 135, p= -1.5, peak= 42 



Q= 90, p= 12.0, peak= 24 

Q= 90, p= 21.0, peak= 19 

Q= 45, p= 31.0, peak= 18 

Q= 90, p= 33.0, peak= 29 

Q= 45, p= 48.0, peak= 17 

Maximum peak: Q = 135 , p = -1.5, peak= 42. 

This is the longest line in the picture space. 

When Q = 90 , 3 lines are in parallel 

When Q = 45 , 2 lines are in parallel 

The percentage of the parallel lines is: 83.3%. 

60 

One line was missing because the number of feature points of this line was 

smaller than the threshold. From the data shown above, three features of this image can 

be confirmed: 

(1) The percentage of the parallel lines is like in the full-feming case. 

(2) The number of the detected lines is smaller than that of the full-feming case. 

(3) The average lengths of all these lines are smaller than those of the full-feming case. 

These three features will be used in the next chapter to recognize the feming pat-

terns. 

Linear-feming image simulation 

The linear-feming image is similar to that shown in Figure 22. 

The most significant characteristic for an linear-feming image is that there are 

fine linear fernings seen in few spots, but there is almost no side branching. From this 
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Figure 21. A partial-feming simulative image. 

point of view, one can easily understand that in a linear-feming image there are some 

lines being detected, but among these detected lines, few are parallel with each other. 

When the image from Figure 22 was applied to this program, the processing procedure 
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Figure 22. A simulative linear-ferning image. 

was the same as for the last two images. The results of the parallel characteristic from the 

parallel() subroutine are, however, very different. The processing result in the Dat file is 

as follows: 



Total number of peaks bigger than 15 is 5, 

so 5 line(s) have been detected. 

Q= 153, p= -7.5, peak= 18 

Q= 135, p= 8.0, peak= 32 

Q= 0, p= 28.0, peak= 21 

Q= 45, p= 56.0, peak= 38 

Q= 90, p= 74.0, peak= 32 

Maximum peak: Q = 45 , p = 56.0, peak = 38 

This is the longest line in the picture space. 

No lines bigger than the threshold are in parallel! 
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Comparing the detected lines with the image from Figure 22, it is obvious that all 

straight lines have been detected and none of them are parallel. It can come to the con­

clusions that: 

( 1) the total number of all detected lines from all images in a slide is less than that of a 

full-ferning slide but approximately at the same level of that of a partial-ferning image. 

(2) almost no lines are parallel (the percentage of the number of parallel lines is very 

small). 

4.3 CONCLUSION 

In this chapter we have provided the experimental simulation results obtained 

using the routines to several images. It paves the way to approach the automation of the 

ferning test. It seems that some feature extractions worked successfully on the artificial 

binary images. But the actual application is left to be worked out. In this experimental 
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program, some feming features can be obtained by analyzing the results of the detection 

(since the program detects only some of the features, it would be worthwhile to propose a 

few others). We can conclude in the following: 

The number of the straight lines. As shown above, different length of lines can be 

detected by using different thresholds. Those different number of different length 

of lines can be an important feature for different ferning stages. 

The percentage of the parallel lines among all detected lines. This is a significant 

feature for full-ferning stage. 

The average length of all maximum lines from all images (view-fields) in a slide. 

This feature represents the average length of main branches in a ferning slide. 

The rate of total number of maximum lines to total number of side-branch lines. 

This is only a proposed feature that will be tested in our future application. 

In the next chapter, the feature space, as well as some important concepts of pat­

tern recognition will be introduced. The main ideas in our ferning pattern recognition are 

the partition of the feature space and the distribution of the ferning feature in the feature 

space. The classification will be achieved by using the pattern recognition theory in the 

n-dimensional feature space. 



CHAPTERV 

PATTERN RECOGNITION PROBLEM WITH SPECIAL 

APPLICATION TO CERVICAL MUCUS PATTERNS 

In this Chapter, two methods of classification will be proposed: 

(G) An automated decision logic will be presented in Section 5.1, which can be 

used to classify the extracted ferning features of the cervical mucus into relevant 

categories. 

(2) A brief description of approaches to morphological pattern recognition and 

classification will be presented, and with the extracted ferning features obtained in the 

previous chapter, a method for cervical mucus classification using statistical distribu­

tion on n-dimensional space will be described in Section 6.2. 

It must be emphasized that the second method is much more important and 

universal than the first one. The reason that the logic method is proposed here is that the 

number of the ferning features is small, so they may be easily classified by this simple 

method. Since our final goal is to construct an ovulometry system for prediction of the 

ovulation moment, a large amount of biochemical and rheologic parameters of cervical 

mucus, together with the ferning features, will be analyzed and classified. The situation 

can be, therefore, very sophisticated and complex. It is impossible to solve this problem 

using the logic method, so the classification using the statistical pattern recognition 

theories will become the most accurate method. This method, described in the Section 

5.2, will be used not only in the ferning pattern classification but in the decision-making 

of the whole ovulometry system. 



66 

In Chapter II, we have introduced four kinds of feming stages which represent the 

features of the cervical mucus appearing in four periods of time. These four kinds of 

feming stages will be referred as four "classes" or "categories". The terms "class" and 

"category" are terminologies used in the pattern recognition classifications, as in this 

chapter. 

Fl 

F2 

F3 

F4 

F5 

F6 

TABLE II 

FEATURE DESCRIPTION 

Feature Description 

Total lines Number of all lines above threshold Tl 

Long lines Number of all lines above threshold T2 

Short lines Number of all short lines= Fl - F2 

Parallel lines Number of all parallel lines 

Percentage of 

long lines Percentage of long lines = F2 I FI 

Percentage of 

parallel lines Percentage of parallel lines = F4 I FI 

In the Chapter IV, The algorithm for the extraction of feming features has been 

presented. Table II provides a brief description of each of these features used in this 

chapter. Tl and T2 in the Table II are two thresholds which were used in searching of the 

accumulators of the Hough Transformation to detect the collinear pixels (refer to Chapter 

IV). 
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TABLE III 

DESCRIPTION OF CRITERIA FOR CLASSIFICATION 

Criteria Description 

tl Criterion for number of total lines, used with Fl 

t2 Criterion for number of total lines (t2>tl), used with Fl 

t3 Criterion for number of long lines, used with F2 

t4 Criterion for number of long lines (t3>t4), used with F2 

t5 Criterion for percentage of long lines, used with F5 

t6 Criterion for percentage of parallel lines, used with F6 

5.1 APPROACH TO AUTOMATED LOGIC CLASSIFICATION 

Figure 23 indicates the automated classification logic used. Six criteria, tl - t6, are 

used in the decision flow-logic. These criteria function as six decision points to classify 

which class one ferning image belongs to. Table III describes the six criteria. Here it is 

necessary to point out that two pairs, tl and t2, t3 and t4 serve as the criteria of the 

number of total lines and the number of long lines, respectively, but the values in each 

pair are not the same. As pointed out in Chapter IV, the total number of lines in a full­

feming image was larger than that of either partial-ferning or linear-feming, and so was 

in the case with the number of long lines. This pair of criteria is used to distinguish the 

full-feming category from the others. Here, the conditions: 

t 1 < t2 and t4 < t3 



Fl >tl 

I 
yes 

Noisy image or 

undecided. 

(go back to the 

preprocessing stage) 

~no 
Fl> t2 

yes 
-

F2>t3 

t yes 

F6 >t6 

--t yes 

Full-ferning 

category 

No-feming 

category 

yes 

F2>t4 

yes 

F6>t6 

yes 

Partial-ferning 

process next 

image? 

no 

c;) 

category 

Linear-feming 

category 

no 

Figure 23. Aow diagram of logic classification. 

68 

F5 >t5 
no 

yes 



69 

must be satisfied. 

Notice in the flow diagram shown in Figure 23 that if a pattern is an undecided or 

noisy image, the precessing has to go back to the preprocessing procedure to have more 

averaging precedures to remove the noise. 

It must be pointed out that the logic classification is a simple and easy­

implementable, but inaccurate method, because it lacks of a theoretical basis. The statist­

ical pattern recognition classification is more preferable, which will be proposed in the 

next section. 

input 
... 

ttems pa 

S.2. APPROACH TO STATISTIC PATTERN RECOGNITION 

OF MORPHOLOGICAL CLASSIFICATION 

category 

models 

feature 

digital .. extractor classifier 
processing 

xn 

Figure 24. A morphological pattern recognition system. 

I On 

The many different mathematical techniques used to solve pattern recognition 

problems may be grouped into two general approaches, namely, the statistical approach 
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and the syntactic approach [39]. In the statistical approach, a set of characteristic meas­

urements, called features , are extracted from the patterns; the recognition of each pat­

tern assignment to a pattern class is usually made by partitioning of the feature space 

[ 40]. More than half of the developments in the pattern recognition research during the 

past decade deal with the statistical approach. Morphological analysis and 

classification is one of the researches in statistical approach [39]. 

Morphological approach for cervical mucus pattern recognition can be considered 

as consisting of two subproblems. The first subproblem is what measurements should be 

taken from the input patterns, we refer to it as feature extraction. This subproblem has 

been presented in Chapter IV, the measured features of a mucus image are of the line-like 

features, such as the length of the lines, the number of the lines and the percentage of the 

parallel lines etc., which are intuitively related to the visual image and can be considered 

as some parameters of the input patterns. 

The second subproblem in morphological pattern recognition is the problem of 

classification ( or making a decision on the class assignment for the input patterns ) based 

on the measurements taken from the selected features. Here, the machine or routine 

which performs the function of classification is called a classifier. A block diagram of 

this pattern recognition approach is shown in Figure 24. 

5.2.1 The Classification in Feature Space with Distribution of Ferning Features 

As it was mentioned above, statistical pattern recognition methods will be mainly 

applied in our approach. Therefore, they are discussed in this section. More details can 

be found in the referenced literature [39],[41]. 

Given is a set X of pattern vectors X ( they will be also called patterns ) of real 

coordinates. 



X1 

X2 
X =I : I X EX, Xi E <I> i=l,2, .... ,n 

Xn 
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Each pattern represents a point in space <I> • The space will be called feature 

space or pattern space. Additionally, certain regions roj, called classes will be dis­

tinguished in the feature space. Recognition ( classification ) of the given pattern X con­

sists in determination to which class it belongs ( in other words, to which class belongs 

the point described by the coordinates of vector X ). This is achieved by computing and 

estimating the conditional probability of p(jlX). Here p(jlX) is defined as: the probability 

of the pattern class j under the condition of vector X has occurred. This conditional pro-

bability p(jlX) can be computed using Bayes' Theorem [42]. This theorem has been 

developed into Gaussian classifier with multivariate and normal distribution classifier 

which will be discussed in detail in the next section. By comparison of p(jlX)'s value in 

each class, one can confirm with no difficulty to which space class belongs the given pat-

tern vector. 

Consider that x 1.x2, ...... ,Xn are random variables where Xi is the measurement of 

i-th feature. Let us assume that for each pattern class roj, j=l,2, ...... ,m, the multivariate 

(n-dimensional) probability density (or distribution) function of the vector X, p (XI roj) 

and the probability of occurence of roj are known. Here, p (XI roj is the probability that, 

given the set of measurement X, the pattern belongs to class roj. One can think of it as 

simply the probability of class membership. On the basis of a priori information 

p (XI roj) and p (roj), the function of a classifier is to perform the classification task for 

minimizing the probability of misrecognition. 

Consider that Fl - F6 are six-dimensional space vectors and any subset of them 

also can be an n-dimensional space vector, where n is the number of features taken from 

any of Fl - F6. As may be expected from Chapter IV, those feming features are relevant 

I 
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Figure 25. The distribution of four classes of mucus on F2-F4 two-dimensional space. 
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Figure 26. The distribution of four classes of mucus on Fl-F2 two-dimensional space. 
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Figure 27. The distribution of four classes of mucus on Fl-F6 two-dimensional space. 
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features for the classification of the cervical mucus categories. Their combined effect (or 

the distribution) can be, therefore, also an excellent classifier. Let us assume that one has 

a training set of samples from which a set of features has been extracted ( it is also called 

the training feature vector ). Hypothetically, the training set of feature vectors distri­

butes in the feature spaces as illustrated in Figure 25 - Figure 27. In these figures, the 

training sets distribution of four mucus classes are non-feming, linear-feming, partial-

feming and full-feming denoted by the signs#,@, *, &, respectively. The distributions 

of these feming classes shown in Figure 25 - Figure 27 are just assumptions illustrating 

how the features can partition the feature space. For the convenience of illustration, only 

a two-dimensional space is created and only three independent pairs of features are 

selected. In the practical and sophisticated situation, more dimensional space will be 

used. This will depend on how accurate the classification results are expected. The prac­

tical distribution will be obtained after analyzing a large amount of data in the future. 
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5.2.2 Computer Classification with Statistical Pattern Recognition Theory 

Before the application of computer classification, a large amount of data must be 

obtained from all necessary experiments. These data are what we refer to as training 

sets. The probability distribution of all vectors in the feature spaces must be calculated 

from the training sets. Only by using this data base, can the automatic computer 

classification be accomplished. 

A multivariate statistic approach to the classification of patterns is proposed in 

this thesis. The pattern vectors are assumed to be normally distributed, and the probabil­

ity of class membership for an unknown pattern vector X is estimated by a multivariate 

Gaussian classifier of the form: 

p U) I Qj 1-112exp{- ...!_[(X-Mj)'Qj1(X-Mj)]J 

PUIX)= 
2 

ip(i)IQil-112exp{- ~ [(X-MdQi1(X-Mi)lJ 
i=l 

(5.1) 

for each class j = 1, .... ,n. Where X, M, Q are matrices and the sizes of them are depen-

dent on the dimension of the feature space. In the real life, neither the number of dimen­

sions of the feature space nor the number of pattern classes are too large. For each class 

the equation (5.1) needs to be computed only once. The time taken for calculation of 

equation (5.1) will not be a real problem. This is one of the advantages of the Gaussian 

classifier. The meaning of p(j), Qj, Mj and X will be explained later in this section. 

The details of theoretical basis of the above formula can be found in some statis-

tics books related to the Gaussian distribution and classification [42], [43]. This 

classification model is considered to be a reasonable approximation because the distribu­

tions of this kind of variables appear to be approximately Gaussian [43]. The computa­

tion implies knowledge of the mean vector Mj, the covariance matrix Qj. and the a 

priori probability p(j) for each class. Mj and Qj will be computed from the training set 

for the class analysis [42], [39]. The a priori probabilities will be taken as the proportion 
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of each class in the training set. Of course, the probability pG), Mj and Qj can only be 

obtained after thousands of patients are surveyed and necessary amount of training sets 

are analyzed. In a practical situation these could be chosen according to the experience of 

a particular laboratory, and could be further adjusted if the costs of the various types of 

errors are unequal [43]. 

Now let us investigate how the covariance matrix Q j and the mean vector of Mj 

in equation (5.1) can be computed from the training sets. For the convenience of the 

explanation, the subscript j of both Mj and Qj are omitted in the following. In general 

cases, the mean vector M can be expressed as: 

µ1 1E(x1) 
µ2 E(x2) 

M=I · = 

µnl IE(Xn) 
L 

where each µi value (or E (xi)) approximately equals the average value of each feature 

type from the training set. For instance, if there are r patterns (cervical mucus images) in 

the training set, one can obtain r parameter values in each type of feature. The E (xi) can 

be approximately estimated as: 

... 

" 1 r -
E (xi):: E(xi) = - r,xij =xi 

r j=l 

where E(xj} is the estimated value of E (xi). The covariance matrix is 

[

q 11 q 12 ••. q lnl 
Q = ~~~ ~~: : : : ~~ 

Qnl Qn2 · · · Qnn 

where each Qij in the matrix can be obtained from the equation: 

Qij = Cov (xi, Xj) = E {[xi-E (Xi)][xj-E (xj)]} i, j = 1,2, ... ,n (5.2) 

It is supposed here that all these Qij exist. 

Since each training set is independent from each other, and if each extracted 

feature is also independent (it will be in our case), the covariance between any other 
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different features is zero, which means that when i *" j, equation (5.2) can be 

Qij = Cov (x;, Xj) = E {[x;-E (x;)][xi-E (xj)]) = 0 when i *" j 
In this case all off diagonal elements in the covariance matrix will be zero and 

each diagonal element will be the corresponding variance. So the covariance matrix 

can be rewritten as 

[

Qll 0 . . . 0 I 
Q= .?.~~:::.?. 

0 0 · · · Qnn 

where each Q;; of the diagonal elements can be computed by 

Q;; = Var(x;) = E{[x; -E(x;)]2} =Of i = 1,2, ... ,n 
A 

In the practical cases, o; is used as an estimated value of o; which comes from the equa-

ti on 

A2 1 r A 2 
Of == Oj = L [Xij - E(.x;)] 

(r-l)j=l 

As having been mentioned above, the pattern vectors are assumed to be nor-

mally distributed. An example of computation of equation (5.1) in a two-dimensional 

normal distribution is the following. 

The probability function of a two-dimensional normal distribution can be writ-

ten as follows: 

p (X1,X2) = 
1 -1 (x1-µi)z (x1-µi)(xz-µz) <x2-µz)z 
---exp{ z [ z -2p + 2 lJ 

27to1 o2...rr=pr 2(1-p ) o 1 01 Oz Oz 

where o 1, Oz; µ 1, µz and p are variance (standard deviation), mean value and correla-

tion coefficient, of the variables x 1 and x z, respectively. It should be noted that p is a 

conventional notation for correlation coefficient and it has not thing to do with the same 

notation used in the Hough Transformation (where pis sued as the normal distance from 

the origin to a line). In a normal distribution, the value of variance can be also estimated 

from the training set: 
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~?- - 1 r v, - ~ (r-1) ~(Xjj -X·)2 
J==l I 

And the matrix forms of X and M are 

X = [~~· M= [~ 
According to equation (5.2), the covariance matrix Q can be computed as: 

Q = [q 11q121 = [ cry pcr1 cr2l 
Q21Q22J pcr1 cr2 cr~ J 

Therefore, its determinant is 

IQ I = crtcr~(l-p2 ) 
and 

_1 1 [ cr~ -pcr1 cr2l 
Q = !QT -pcr1 cr2 crr J 

After computation, the product of the matrices (X -M)' Q-1 (X -M) is 

1 1 (x 1-µ1 )2 (.x 1-µ1)(x2-µ2) (x 2-µ2)2 
(X-M)'Q- (X-M) = 2 [ 2 -2p + 2 ] (5.3) 

2(1-p ) cr1 cr1 cr2 cr2 
So for a two-dimensional classification, the equation (5.1) will be easy to compute by 

using the formula from (5.3). 

As having been pointed out that in most of the cases the variables are independent 

each other. For the practical cases, just substitute the p in the above equations with zero. 

The feature space shown in Figure 25 - Figure 27 and the example discussed 

above are only two-dimensional. A three-dimensional program of Gaussian Classifier 

will be presented in the next section which performs both the training set data processing 

and classificatio decision-making. For a more precise and sophisticated classification, 

more dimensional space may be required in our future work. 



78 

5.3 A PROGRAM OF GAUSSIAN CLASSIFIER APPLICATION 

A program of Gaussian Classifier in Fl, F2, F4 three-dimensional space is 

presented in the section. The program is writen in C language. The program will be 

explained by using a training set of patterns with three parameters for each ferning class 

as the basic input data to calculate the M and Q matrices. Then any features from a 

mucus image are used as the pattern of an unknown class to compute the probability of 

each class to which this pattern belongs. The program will print out the probability 

values of the class to which this pattern belongs. 

The reason that three features, Fl, F2 and F3, are chosen is that they are mutually 

independent. Actually, one can choose any kind of features from Fl - F6. By choosing, 

however, the independent features, the calculation can be simplified. Because only the 

diagonal elements in the Q matrix need to be computed and the off-diagonal elements 

can be set to zero when the chosen features are independent of each other. This has been 

explained in the last section. 

5.3.1 The Main Routines of the Program 

The program contains two main parts: the training set data processing and the 

Gaussian Classifier procedure. They are explained in the following: 

Training set data processing 

As mentioned in the last two sections, the principle of the classifier is based on 

the large amount of training data which teaches the classifier to classify each input pat­

tern to the correct class. In the training set data processing, the program requires the user 

to input the total number of full-ferning training sets, the total number of partial-ferning 

training sets, the total number of linear-ferning training sets and the total number of non­

ferning sets, respectively. Then the program requires the user to input three kinds of 
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Figure 28. The flow diagram of the program of Gaussian Classifier. 
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parameters for each class: the total number of detected lines, the total number of detected 

long lines and the total number of detected parallel lines. These information now 

becomes the "experience information" stored in the matrices Mand Q calculated by the 
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program. Both M and Q are 3x4 matrices. After the subroutine mean_ var() calculates 

the M and Q matrices, it creates two files under the same directory of the program named 

mean and variance into which the M and Q matrices are stored. The advantage of this 

procedure is to simplify the processing. Once the entire training set data have been input 

to this program, the results of the calculation are written into these two files and they 

remain unchanged, unless the user obtains more training sets and wants to recalculate the 

M and Q matrices again. The M and Q matrices are the only important "experience infor­

mation" which then used by the Gaussian Classifier to perform the recognition. 

Gaussian Classifier procedure 

The gauss() subroutine performs the main task of pattern recognition. It prompts 

the user to input the parameters of a given pattern. These parameters are the total number 

of detected lines, the total number of long lines and the total number of parallel lines, 

respectively. These three parameters are assigned to the matrix X[]. Then the routine 

opens the two files mean and variance which contain the "experience information", M 

and Q matrices, to read the data from them. The computation of the equation (5.1) is 

done by the subroutines inverse() and mtx _ optn(). The inverse() subroutine computes 

the determinant of the matrix Q and the mtx _ optn() subroutine computes the formula 

p(i)IQd-112exp{- ~ [(X-Mi)1Qi1(X-Mj)]J 

and calculates the sum of them for i = 1, 2, .... , n. After this sum is computed, the routine 

can easily calculate the results of equation (5.1) by just substituting each element with 

different j's in the equation (5.1). 

After each p(jlX) is computed, the gauss() subroutine prints out the value of each 

p(jlX), j = 1, .... , 4 which indicates the probability of this input pattern belonging to the 

class of full-ferning, partial-ferning, linear-ferning and non-ferning, respectively. By 

inspection of the values of each probability, one can easily tell which class this pattern 
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belongs to. 

5.3.2 An Example of the Application in the Program of Gaussian Classifier 

In this section, an example of the application of the program will be presented. 

An experimental training set was applied to the routine of Training Set Data Processing 

to obtain the "experience information", in the form of matrices M and Q. Two patterns of 

unknown class are then input to the Gaussian Classifier routine to test the program. 

After the program execution, the Training Set Data processing routine was 

chosen and the following data were input: 

From full-ferning training set: 

The total number of full-ferning training sets = 3. 

The total number of lines (Fl)= 138, 103, 82. 

The total number of long lines (F2) = 10, 7, 6. 

The total number of parallel lines (F4) = 121, 74, 69. 

From partial-ferning training set: 

The total number of partial-ferning training sets= 3. 

The total number of lines (Fl)= 34, 56, 71. 

The total number of long lines (F2) = 5, 7, 4. 

The total number of parallel lines (F4) = 28, 41, 49. 

From linear-ferning training set: 

The total number of linear-ferning training sets = 3. 

The total number of lines (Fl)= 15, 11, 19. 

The total number of long lines (F2) = 3, 1, 4. 



The total number of parallel lines = 6, 2, 7. 

From the non-feming training set: 

The total number of non-feming training sets = 3. 

The total number of lines (Fl) = 4, 6, 0. 

The total number of long lines (F2) = 0, 1, 0. 

The total number parallel lines (F4) = 0, 2, 0. 
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After the training data were input into the Training Set Data Processing routine, 

the routine calculated the M and Q matrices and wrote M matrix to the mean file and 

wrote Q matrix to the variance file. These files are in the same directory as the program. 

One can open both files to view the content. In the mean file, the values of E (xi) are 

107.666664 

53.666668 

15.000000 

3.333333 

7.666667 

5.333333 

2.666667 

0.333333 

88.000000 

39.333332 

5.000000 

0.666667 

Each row of this matrix is the mean vector of each class (refer to Section 5.2.2) and each 

colum in a row indicates the mean value of each feature, i.e. the total number of lines, the 

total number of long lines and the total number of parallel lines, respectively. Here the 

name "mean value" is actually the estimated mean value. 

In the variance file, the values of CJi are: 



800.333313 

346.333344 

16.000000 

9.333333 

4.333333 

2.333333 

2.333333 

0.333333 

823.000000 

112.333336 

7.000000 

1.333333 
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Each row of this matrix is the variance vector of each class and the elements in each 

row are also the diagonal elements the Q matrix. Each colum indicates the variance 

value of each kind of feature, i.e. the variances of features Fl, F2 and F4, respectively. 

Also these variances are actually the estimated values of the variances. 

The above data stored in the mean and variance files are "experience informa­

tion" which was then used in the later Gaussian Classification. 

Let us suppose now that there is a feming pattern the class of which is unknown. 

The detected features, however, were: Fl = 92, F2 = 8, F4 = 71, and these data were 

input to the Gaussian Classifier routine. The results of the probability were quickly 

printed out on the screen: 

The probability of the full-ferning pattern: p(Olx) = 0.997631 

The probability of the partial-ferning pattern: p(llx) = 0.002369 

The probability of the linear-ferning pattern: p(21x) = 0.000000 

The probability of the non-ferning pattern: p(31x) = 0.000000 

It is obvious that the pattern should belong to the full-ferning class. 

When the second pattern with Fl = 17, F2 = 2, F4 = 6 were input to the routine, 

the results were: 



The probability of the full-ferning pattern: p(Olx) = 0.000000 

The probability of the partial-ferning pattern: p(llx) = 0.000007 

The probability of the linear-ferning pattern: p(21x) = 0.999993 

The probability of the non-feming pattern: p(31x) = 0.000000 
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Since the probability of the linear-feming pattern is 0.999993, the conclusion is 

obvious. 

The above are just two simple examples of ferning patterns. The program will be 

tested under many more practical cases in order to be verified and to obtain further 

decision-making improvement. 

Our future work will be dealing with large amounts of feature parameters. Dr. 

Perkowski has adopted a more mature and accurate theory called parallel pattern recogni­

tion method to the ferning pattern recognition. In his method, the classification is 

achieved by separation of descriminant boundaries in parameter space. The most impor­

tant is the case of separation with use of the hyperplanes and discriminant equations. 

Disposing the discriminant boundaries and equations, as well as the classified pattern's 

coordinates, one can confirm with better accuracy to which space class belongs the given 

pattern vector. The parallel pattern recognition method requires, however, huge computa­

tional resources and, at this time, it is not certain if it can be applied on the IBM PC-AT 

class computers without additional DSP co-processors and memory. The method will be, 

however, pursued in the future, after all kinds of parameters are collected from the cervi­

cal mucus images. 



CHAPTER VI 

CONCLUSION AND FUTURE WORKS 

6.1 CONCLUSION 

(1) In this thesis a microcomputer system called ovulocomputer has been pro­

posed and partially developed. The reasons for development of this ovulocomputer have 

been stated. The medical theories on which our device is based also have been briefly 

presented. And the design concepts of this micro-processor based ovulation 

predictor/detector have been described. The most important parameters used by this dev­

ice are extracted from the cervical mucus which are definitely related to blood hormone 

levels. 

(2) Almost all of the physical and chemical properties of cervical mucus have 

been introducted, among which, the ferning test is emphasized and described in details. 

The ferning test performed by this ovulocomputer is based on the image processing and 

pattern recognition techniques, instead of just by human visual judgement. 

(3) The studies of this thesis demonstrate the feasibility of recognition of ferning 

patterns by Hough transformation with adaptive improvements suitable to our purpose, 

together with the classical statistic pattern recognition theories. The ferning features can 

be extracted using the presented algorithm, which mainly is a method to obtain the line­

properties in cervical mucus images. This algorithm has been applied to several simula­

tive 80x80-pixel images and the results have demonstrated the feasibility of this method 

(obviously, the further verification must been obtained from practical applications). 

( 4) This thesis has presented how to classify the ferning patterns. The feature 
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spaces are created. The Gaussian classifier has been introduced and will be applied in our 

feming pattern recognition system. And the two-dimensional classifier of Gaussian 

theory has been presented in detail. 

6.2 OUR FUTURE WORKS 

Since the main topic in this thesis is the application of adapted Hough algorithm 

which has only been proven only to be a feasible method in the simulative images to 

obtain feming features. A lot of work needs to be done in our future research. 

(1) Many routines will be needed for our image preprocessing, either in spatial­

domain or in frequency-domain. Considering the calculation speed and the methods 

available, the spatial-domain method is preferable. We will focus on two areas of image 

processing: image enhancement and image description. 

Image Enchancement 

The cervical mucus images have their specific characteristics. The pictures 

shown in Figure 6 can be considered as an image corrupted by impulse "noise", which 

makes it difficult to apply Hough Transformation (here the word "noise" does not mean 

the real noise, it is just what the ferning images look like). To solve this problem, the 

processing procedure of image smoothing is recommended. Two routines are proposed: 

one is neighborhood averaging [21], Chapter IV), the other is median filtering ([21], 

Chapter IV). These two procedures can smooth the mucus images to make them suitable 

for the image description. 

Image Description 

As we have mentioned in Chapter III, feming branches are not single-pixel lines. 

To obtain the image of single-pixel line to apply Hough algorithm, the thinning prepro­

cessing is needed (it is also called the skeleton of the region ). The approach which has 
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been developed by Zhang and Suen [24] and has been successfully applied in binary 

images will be used in our image preprocessing. 

(2) We have discussed the optimal thresholding in Chapter III, which can 

automatically decide the threshold operation to convert a multiple grey-level image to a 

binary image. We need to obtain and develop this software to perform the automated 

threshold operation. 

The image preprocessing mentioned above has been basically applied to some 

mucus images and the results are illustrated in Appendix C. 

(3) The most serious problem facing us is the speed of calculations for the Hough 

Transformation. It is obvious that much of the computation can be done in parallel. 

Recently several efforts have been made to speed up the computation of the Hough 

transformation by utilizing parallelism [44],[45], one of which uses the systolic array 

processor for straight line detection. The systolic array processor maximizes the degree 

of parallel processing by using systolic arrays to implement the Hough Transformation 

for digital line detection. This method was developed and improved by H. Chuang and C. 

Li [ 46]. The basic theory of this method will be used with necessary modification in our 

system so that the speed and the required memory can meet the practical case. 

(4) Our ferning pattern recognition system will never be properly and practically 

working until thousands of training sets have been obtained. It means that we have to 

cooperate with hospitals and experienced gynecologists and obstetricians to obtain the 

necessary help and information. Only after thousands of cervical mucus samples with 

relevant information have been obtained, can the practical ferning feature spaces be 

created and our ferning pattern recognition theories be applied. This is an urgent step that 

we will undertake in the future. 

(5) There is much more work to be done in our whole ovulocomputer system than 

just in the ferning test automation. Although some of the parameter measurements of 
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physical and chemical properties are quite straightforward, not all of them are completely 

available and automatized. Not only should we develop the necessary device of those 

physical and chemical parameter extractions, computer 1/0 interlace also must be built 

up. Dr. Perkowski has adopted the more sophisticated pattern recognition algorithm to 

perform the classification in feature spaces for the decision-making. But it may need to 

be developed to be more mature in application and develop into software suitable for our 

system. 

(6) Right now we are not knowledgable about how a ferning slide looks like 

under a high zooming microscope (lOOOx - ). It is possible that the shape parameters can 

be used to recognize the ferning patterns when the cervical mucus slide is observed under 

a high zooming microscope. The method will be studied in the future. 

(7) The integration of the whole ovulocomputer system is an absolutely necessary 

and final goal for us. It means that we must build up and design various kinds of chips for 

the system, including the Hough algorithm chip. Once the specific chips have been 

designed, the analysis and processing speed will meet the requirements and become com­

petitive in the market. This is one of the inevitable steps in the future. 

. I 
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!****************************************************** 

This is a program of application of Hough Transfor 
-mation to detect lines and other features of these 
lines in the cervical mucus images. It extracts the 
features of the lines such as the number of the 
lines and the length and parallel situation of them 

******************************************************! 

#include <stdio.h> 
#include <math.h> 

#define PI 3.14159 
#define IMX 80 
#define IMY 80 

#define STEP_ Q 3 

!* The size of the image *I 
/* The size of the image *I 

/* The quantizing interval in parameter space *I 

#define STEP _p 0.5 
/* The quantizing interval in parameter space *I 

#define PARALLEL_NO 2 
/*The threshold for the number of parallel lines*/ 

unsigned char ac[454][180/STEP _Q]; 
int zero, PMTR_Q, PMTR_P, THRESHOLD; 
unsigned char pix[IMY] [IMX], img[IMY] [IMX]; 
/* pix[][] is the image to be performed the Hough Transform 

img[]O is the reconstructed image */ 

unsigned char q[3000], pl[lOO], Q[lOO]; 
int k, K, max, mq; 
double pet, sqrt(), p[3000], mp, COS[60], SIN[60]; 
!* COSO and SINO are the array to be loaded with the values 

of mathematical functions sin() and cos() */ 

main() 
{ 

char file_name[lO]; 
int i, C, X, y; 
double pmtr_p; 
FILE *fp, *fopen(); 

pmtr_p = sqrt((double)(IMX * IMX + IMY * IMY)); 
/*The longest line(diagnoal) in 80 by 80 image*/ 

PMTR_P = ((int)(pmtr_p I STEP _P + 0.5)) * 2 + 1; 
/* the size of P coordinate *I 
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PMTR_Q = (int)(180 I (double)STEP _Q + 0.5); 
/* the size of Q coordinate *I 

for(y=O; y<PMTR_P; y++) 
for(x=O; x<PMTR_Q; x++) 

ac[y][x] = O; 
zero = (PMTR_P - 1 )/2 + 1; 

/* In the parameter space when p=O *I 

printf("\11 Input the name of the image file to be processed: "); 
scanf("%s", file_name); 
fp = fopen(file_name, "r"); 

/* Open the input file to read the image *I 

x=O; 
y=O; 

/* following input the character 0 and 1 from the image file 
and assigns them to the matrix pix[] D *I 

while((c=getc(fp)) != EOF) 
{ 

} 

if ( c=='O' 11 c == 'l ') 
{ 
if (x <IMX) 

pix[y][x] = c; 

else 
{ 

} 

} 

else 

x=O; 
y++; 
pix[y][x]= c; 

x++; 

/* following loads the values of cos() and sin() function 

} 

so that it speeds the calculation. *I 

for (i=O; i<60; ++i) 
{ 

COS[i] = cos(Pl/60*i); 
SIN[i] = sin(Pl/60*i); 

hough(); 

94 



!****************************************************** 

This subroutine calls some subroutines to perform 
the Hough Transformation and feature extraction. 
It also outputs the results to a file of which users 
are prompted to input the name. 

******************************************************/ 

hough() 
{ 

FILE *fp, *fopen(); 
char file_name[lO]; 
int i, a, b, X, y; 

for (y=O; y<IMY; y++) 
for (x=O; x<IMX; x++) 
{ 

} 

if(pix[y][x] == 'l ') 
pmtr_spe(x,y); 

/* When the point is a feature point, call pmtr_spe() to 
perform the parameter computation *I 

printf(''\nlnput the threshold for parameter space: "); 
scanf("%d" ,&THRESHOLD); 

peak(); 
/* peak() function searches the peaks which are bigger the threshold *I 

remap_image(); 
/* remap_image() function reconstructs the image from parameter space*/ 

printf(''\n nln what file would you like to store the data ? "); 
scanf("%s", file_name); 

if (strcmp(file_name, "stdout") == 0) 
fp = stdout; 

else 
fp = fopen(file_name, "w"); 

/*Open the named file to write the results to this file*/ 

fprintf(fp, "'nThis is the mapped image in parameter space:\n\Il"); 

for(b=O; b<PMTR_P; ++b) 
for(a=O; a<PMTR_Q; ++a) 
{ 

} 

fprintf(fp, "%2d", ac[b][a]); 
if(a == 59) 

fprintf(fp, "\n"); 
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for(i=O; i<k; ++i) 
{ 

} 

if (p[i] >= 0) 

else 

fprintf(fp, "\n Q= %d p= %.lf %d ", 
q[i],p[i],ac[ (int)(p[i]/STEP _P+o.5)+zero] [ q[i]/STEP _ Q]); 

fprintf(fp, "\n Q= %d p= %.lf %d ", 
q[i],p[i],ac[(int)(p[i]/STEP _P-0.5)+zero][q[i]/STEP _Q]); 

fprintf(fp, ''\n'il Total number of peaks bigger than %d is %d ", 
THRESHOLD, k); 

fprintf(fp, "\Il"); 
fprintf(fp, "\n Maximum peak = %d when Q = % d , p = % . lf \n", 

max, mq, mp); 
fprintf(fp, '\n\n\n"); 

if (K == 0) 
fprintf( fp, "\n No lines bigger than thredhold are in parallel !\n "); 

else 
{ 
for(i=O; i<K; ++i) 

fprintf(fp, "\n When Q = % d, % d lines are in parallel", Q[i], pl[i] ); 
} 

fprintf(fp, "\n\n %.2f percent of all lines are in parallel.", pet); 
fprintf(fp, ''\n\n\n"); 
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fprintf(fp, "Following is the image remapped from parameter space:\n\n\n"); 

fprintf(fp, "\n "); 

for(i=O; i<IMY; ++i) 
for(x=O; x<IMX; ++x) 
{ 

} 

fprintf( fp,"%d", img[i][x]); 
if(x == 79) 

fprintf(fp, "\n"); 

fprintf(fp, ''\n\n\n "); 

/****************************************************** 

This subroutine does the main task of Hough Trans 
-formation. It calculates the transform from 
picture space to parameter space. 

******************************************************/ 



pmtr_spe(X, Y) 

intX, Y; 

{ 
int a, b, i, j; 
double p; 

i = O; 

for(a=O; a<PMTR_Q; a++) 
{ 

p = (X * COS[ a] + Y * SIN[ a]) I STEP _P; 
/* p is the normal parameter in the parameter space *I 

if (p < 0) 
b = (int)(p - 0.5) + zero; 

/* shift to accumulator coordinate *I 

else 
b = (int)(p + 0.5) + zero; 

ac[b][i]++; 
i++; 

/* Each time the accumulator ac[][] increases by 1 */ 

} 

/****************************************************** 

This subroutine searches for the peaks which are 
bigger than the desired threshold in the parameter 
space. 

******************************************************/ 

peak() 
{ 

int i, j; 

k=O; 

for(i=O; i<PMTR_P; ++i) 
forG=O; j<PMTR_Q; ++j) 
{ 

if ( ac[i][j] > THRESHOLD ) 
{ 

p[k] = (i - zero)* STEP _P; 
q[k] = j *STEP _Q; 
k++; 

/* Load the coordinates of each peak to p[] and q[] array *I 
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} 
else 

} 

for(i=O; i<k; ++i) 
{ 

if(p[i] >=0 ) 

else 

} 

printf('\n Q=%d, p=%.lf, peak=%d ", q[i], p[i], 
ac[ (int)(p[i]/STEP _P+0.5)+zero ][ q[i]/STEP _ Q]); 

printf("\n Q=%d, p=%. lf, peak=%d ", q[i], p[i], 
ac[(int)(p[i]/STEP _P-0.5)+zero][q[i]/STEP _Q]); 

printf("\n \n Total number of peaks bigger than %d is %d \n\n", 
THRESHOLD,k); 

longest(); 

parallel(); 

/****************************************************** 

This subroutine looks for those peaks with the 
same Q values, which refer to the parallel lines 
in the picture space. 

******************************************************/ 

parallel() 
{ 

inti, j, flag[lOO], pl_sum; 
/* flag[ 100] supposes there are no more than 100 parallel lines 

for each Q (angle), is may need to be changed if the parallel 
lines for each Q are more than 100 in the future processing *I 

K=O; 

for(i=O; i<lOO; ++i) 
{ 

Q[i] = flag[i] = O; 
pl[i] = 1; 

/* pl[] stores the number of parallel lines for each Q found*/ 
/* Q[] stores the corresponding line angles*/ 

} 

for(i=O; i<(k-1); ++i) 
{ 
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} 

if(flag[i] == 0) 
{ 

} 
else 

for(j=i+ 1; j<k; ++j) 
{ 

} 

if(q[i] = q[j]) 
{ 

} 
else 

pl[K]++; 
flagfj] = 1; 

if(pl[K] >= PARALLEL_NO) 
{ 

} 

Q[K] = q[i]; 
K++; 

pl_sum = O; 

for (i=O; i<K; ++i) 
pl_sum = pl_sum + pl[i]; 

/* pl_sum is the total number of paralle lines in a image *I 

} 

pet= (double) pl_sum I k * 100; 

if(K == 0) 
printf("\n No lines bigger than thredhold are in parallel !\n "); 

else 
{ 
for(i=O; i<K; ++i) 

printf("\n When Q = % d, % d lines are in parallel", Q[i], pl[i] ); 
} 

printf("\n\n %.2f percent of all lines are in parallel.", pet); 

/****************************************************** 

This subroutine looks for the maximum peak in the 
parameter space, which refers to the longest line 
in the picture space. 

******************************************************/ 

longest() 
{ 

inti, m, n; 
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} 

if(p[O] >=0) · 
max= ac[(int)(p[0]/STEP _P+0.5)+zero][q[0]/STEP _Q]; 

else 
max = ac[(int)(p[O]/STEP _P-0.5)+zero][q[O]/STEP _Q]; 

mp =p[O]; 
mq = q[O]; 

for(i=l; i<k; ++i) 
{ 

} 

if(p[i] >= 0) 
n = (int)(p[i]/STEP _P+0.5)+zero; 

else 
n = (int)(p[i]/STEP _P-0.5)+zero; 

m = q[i]/STEP _Q; 

if( max< ac[n][m]) 
{ 

} 
else 

max= ac[n][m]; 
mp= p[i]; 
mq = q[i]; 

printf('\n Maximum peak= %d when Q = % d, p = % .lf\n", 
max, mq, mp ); 

/****************************************************** 

This subroutine reconstructs the image from the 
information obtained in parameter space. It verifies 
the accuracy of the information obtained from the 
above routines of Hough Transformation. 

*******************************************************/ 

remap_image() 
{ 

inti, x, y; 

for(i=O; i<IMY; ++i) 
for(x=O; x<IMX; ++x) 

img[i][x] = O; 
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/************************************************************ 

This is a Gaussian Classifier program which contains two 
main procedures. One is the training set data processing 
and the other is classifier procedure. 

************************************************************/ 

#include <stdio.h> 
#include <math.h> 

#define DIM 3 
/* 3 dimensional space *I 

#define CLASS 4 
/* Four class feming patterns *I 

#define P 0.25 
/*assume the probability of each pattern is the same*/ 

float Q_inv[DIM][DIM], product; 
float Ml[DIM], M2[DIM], M3[DIM], M4[DIM]; 
/*Ml, M2, M3, M4 are mean vectors of full-ferning, partial-feming, 

linear-feming and non-feming patterns, which are obtained from 
the training sets. M[O], M[l], M[2] elements are the total numbers 
of lines, long lines and parallel lines, respectively. */ 

float Ql[DIM][DIM], Q2[DIM][DIM], Q3[DIM][DIM], Q4[DIM][DIM]; 
/*The covariance matrix Ql, Q2, Q3, which are obtained from 

the training sets *I 

main() 
{ 

float mm[CLASS*3], vv[CLASS*3]; 
/* mm[] and vv[] array are used to load the mean and variance values 

form the files named 'mean' and 'variance', respectively. */ 

int i, j; 
chard; 
FILE *fp, *fopen(); 

printf (''\n*****************************************\n\n"); 
printf ("\nThere are two procedures in this routine:\n"); 
printf ("(!)Training set data processing, and (2)Gaussian Classifier.\n\n"); 
printf ("Type 't' to go to the Training set data processing.\n"); 
printf ("Type 'g' to go to the Gaussian Classifier procedure\n\n" ); 
printf ("*******************************************\n\n"); 
scanf ("%c", &d); 

if (d == 't') 
train(); 

' 
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else if (d == 'g') 
{ 

fp = fopen ("mean", "r"); 
for(i=O; i<(3*CLASS); ++i) 
{ 

fscanf(fp, "%f', &mm[i]); 
} 

/*Input the data from the file named 'mean' */ 

for(i=O; i<(3*CLASS); i++) 
{ 
if(i<3) 

Ml[i] = mm[i]; 
else if(i>=3 && i<6) 

M2[i-3] = mm[i]; 
else if(i >= 6 && i<9) 

M3[i-6] = mm[i]; 
else 

M4[i-9] = mm[i]; 
} 

/*Assign the data to the mean vectors to Ml, M2, M3 and M4 matrices*/ 

for(i=O; i<DIM; ++i) 
for(j=O; j<DIM; ++j) 

Ql[i][j] = Q2[i][j] = Q3[i][j] = Q4[i][j] = 0; 

fp = fopen("variance", "r"); 

for(i=O; i<(3*CLASS); ++i) 
fscanf(fp, "%f', &vv[i]); 

/*Input the data from file named 'variance' */ 

for(i=O; i<(3*CLASS); ++i) 
{ 

} 

if(i<3) 
Ql[i][i] = vv[i]; 

else if(i>=3 && i<6) 
Q2[i-3][i-3] = vv[i]; 

else if(i>=6 && i<9) 
Q3[i-6][i-6] = vv[i]; 

else 
Q4[i-9][i-9] = vv[i]; 

/* Assign the data to Q 1, Q2, Q3 and Q4 matrices *I 

gauss(); 

} 
else 

} 
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question() 
{ 

} 

char answer; 

printf(''\nMore pattern to be recognized ? (y/n)\n"); 
scanf("%s", answer); 
if (!strcmp(answer, "y")) 

gauss(); 
else 

/************************************************************ 

This subtoutine computes the p(jlX) which is the probability 
of the class to which the input pattern belongs. 

************************************************************/ 

gauss() 
{ 

float *Qp[CLASS], *Mp[CLASS]; 
int X[DIM]; 
int ij,k; 
float qq, s[3][3], pj[CLASS], pjx[CLASS], p_ix; 

/* pj[] is the numerator of probability PGIX), 
p_ix is the denominator of probability p(jlX), 
pjx is the probability p(jlX) */ 

FILE *fp, *fopen(); 

printf ("\nlnput the number of total lines (feature Fl): "); 
scanf ("%d",&X[O]); 
printf ("\nlnput the number of long lines (feature F2): "); 
scanf("%d", &X[l]); 
printf ("\nlnput the number of parallel lines (feature F4): "); 
scanf ("%d", &X[2]); 

/* Following passing the basic addresses of the matrix to 
the pointers. *I 

Qp[O] = &Ql[O][O]; 
Qp[l] = &Q2[0][0]; 
Qp[2] = &Q3[0][0]; 
Qp[3] = &Q4[0][0]; 
Mp[O] = &Ml[O]; 
Mp[l] = &M2[0]; 
Mp[2] = &M3[0]; 
Mp[3] = &M4[0]; 

p_ix = 0.0; 

for ( i=O; i<CLASS; ++i) 
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. 
p_j[i] = 0; 

inverse( Qp[i], &qq ); 

mtx_optn( X, Mp[i] ); 

p_ix = P * sqrt( l/qq ) * exp(-0.5 * product) + p_ix; 
/* Compute the denominator of p(jlX) */ 

p_j[i] = P * sqrt(l/qq) * exp(-0.5 *product); 
/*Compute the numerator of p(jlX) */ 

} 

} 

for (i=O; i<CLASS; ++i) 
p_jx[i] = p_j[i] I p_ix; 

printf("\n******************************************\n\n"); 

printf("The probability of full-ferning pattern: 
p(Olx) = %f\n\n", p_jx[O]); 

printf("The probability of partial-ferning pattern: 
p(llx) = %f\n\n", p_jx[l]); 

printf("The probability of linear-ferning pattern: 
p(21x) = %f\n\n", p_jx[2]); 

printf("The probability of non-ferning pattern: 
p(31x) = %f\n\n", p_jx[3]); 

fp = fopen("prob", "w"); 

fprintf(fp, "The probability of full-ferning pattern: 
p(Olx) = %t\n\n", p_jx[O]); 

fprintf(fp, "The probability of partial-ferning pattern: 
p(llx) = %f\n\n", p_jx[l]); 

fprintf(fp, "The probability of linear-ferning pattern: 
p(21x) = %f\n\n", p_jx[2]); 

fprintf(fp, "The probability of non-ferning pattern: 
p(31x) = %f\n\n", p_jx[3]); 

question(); 

!********************************************************** 

This subroutine performs the matrix's multiplication 
operation. 

**********************************************************/ 

mtx_optn( x, m ) 
float m[]; 
int x[]; 
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{ 

} 

inti, j, k; 
float sum, T[DIM], xl[DIM]; 

for (i=O; i<DIM; ++i) 
xl[i] = x[i] - m[i]; 

for(i=O; i<3; ++i) 
{ 

T[i] = 0.0; 

for(j=O; j<3; ++j) 
T[i] = xlLJ] * Q_invU][i] + T[i]; 

product = 0.0; 
for (i=O; i<DIM; ++i) 

product= T[i] * xl[i] +product; 

!********************************************************** 

This subroutine performs the inverse operation of the 
matrix and it also calculates the algebra remainder of 
the matrix. 

**********************************************************/ 

inverse( cov, pp ) 
float cov[DIM][DIM], *pp; 
{ 

inti, j, a, b, m, n; 
float q, p[2][2], A[3][3]; 

/* q is the determinant of the matrix Q *I 

q = cov[O][O] * cov[l][l] * cov[2][2]; 

!*Following calculates the algebra remainder of the matrix cov[][] */ 

for (a=O; a<3; ++a) 
for (b=O; b<3; ++b) 
{ 

m = n =0; 
for (i=O; i<3; ++i) 

for (j=O; j<3; ++j) 
{ 

if (i == a 11 j == b) 

else 
{ 

p[m][n] = cov[i][j]; 
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} 

} 
} 

++n; 
if ( n>l) 
{ 

} 
else 

n=O; 
++m; 

if( (a+b) % 2 ==0) 
A[b][a] = p[O][O]*p[l][l] - p[O][l]*p[l][O]; 

else 
A[b][a] = - p[O][O]*p[l][l] + p[O][l]*p[l][O]; 

} 
for (i=O; i<3; ++i) 

for (j=O; j<3; ++j) 
Q_inv[i][j] = A[i][j] I q; 

*pp =q; 

!************************************************************ 

This subroutine performs the main task of the training set 
data processing. It requires the user to input the features 
of a pattern to be recognized and it calculates the mean 
vector matrix and the variance vector matrix. Then it stores 
them in files named 'mean' and 'variance', respectively. 

************************************************************! 

train() 
{ 

int n, i; 
float ml[DIM], m2[DIM], m3[DIM], m4[DIM]; 

/*ml[], m2[] and m3[] are used to load the mean vectors of 
the number of total lines, long lines and parallel lines, 
respectively. *I 

float vl[DIM], v2[DIM], v3[DIM], v4[DIM]; 
/* vl[],v2[] and v3[] are used to load the variance vectors 

of the number of total lines, long lines and parallel lines, 
respectively. */ 

float mw[3*CLASS], vw[3*CLASS]; 
FILE *fp, *fopen(); 

printf (''\n****** Full-ferning Training Set Processing ******\n"); 
printf (''\nlnput the total number of full-ferning training sets: "); 

mean_var(&ml[O], &ml[l], &ml[2], &vl[O], &vl[l], &v1[2]); 

1 
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} 

printf ("\n****** Partial-ferning Training Set Processing ******\n"); 
printf ("\nlnput the total number of partial-ferning training sets: "); 

mean_var(&m2[0], &m2[1], &m2[2], &v2[0], &v2[1], &v2[2]); 

printf (''\n****** Linear-ferning Training Set Processing ******\n"); 
printf ("\nlnput the total number of linear-ferning training sets: "); 

mean_var(&m3[0], &m3[1], &m3[2], &v3[0], &v3[1], &v3[2]); 

printf ("\n****** Non-ferning Training Set Processing ******\n"); 
printf ("\nlnput the total number of non-ferning training sets: "); 

mean_var(&m4[0], &m4[1], &m4[2], &v4[0], &v4[1], &v4[2]); 

for(i=O; i<DIM; ++i) 
{ 

} 

mw[i] = ml[i]; 
mw[i+3] = m2[i]; 
mw[i+6] = m3[i]; 
mw[i+9] = m4[i]; 
vw[i] = vl[i]; 
vw[i+3] = v2[i]; 
vw[i+6] = v3[i]; 
vw[i+9] = v4[i]; 

fp = fopen("mean", "w"); 
for(i=O; i<l2; ++i) 
{ 

fprintf(fp, "%20f', mw[i]); 
if(i==211 i==5 11i==811i==l1) 

fprintf(fp, "\n"); 

fp = fopen("variance", "w"); 
for(i=O; i<12; ++i) 
{ 

} 

fprintf(fp, "%20f', vw[i]); 
if(i==2 II i==5 11 i==8 11i==l1) 

fprintf(fp, "\n"); 

/********************************************************* 

This subroutine calculates the mean values and 
thw variance of every kind of class from the 
input training set data and returns these values 
to the train() routine. 

*********************************************************! 

' 
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mean_ var(totl, Ing, paralI, v _totl, v _lng, v _parall) 
float *totl, *Ing, *paralI, *v _totl, *v _Ing, *v _parall; 
{ 

int n, i; 
int XI[IOO], X2[IOO], X3[IOO]; 
float sumI, sum2, sum3; 
float v_suml, v_sum2, v_sum3; 

scanf ("%d", &n); 
printf ("The total number of training sets is %d !\n", n); 

for (i=O; i<n; ++i) 
{ 

printf ("\nFromn the NO. %d training image, 
input the following:", i+ 1 ); 

printf ('\nThe total number of lines detected: "); 
scanf ("%d", &Xl[i]); 
printf ("\nThe total number of long lines detected: "); 
scanf ("%d", &X2[i]); 
printf ("\nThe total number of parallel lines detected: "); 
scanf ("%d", &X3[i]); 

for (i=O; i<n; ++i) 
printf ("X1=%d, X2=%d, X3=%d\n", Xl [i], X2[i], X3[i]); 

suml = sum2 = sum3 =O; 
v _suml = v _sum2 = v _sum3 = 0; 

/* The following calculates the mean value of each kind of parameter*/ 

for (i=O; i<n; ++i) 
{ 

} 

suml = Xl[i] + suml; 
sum2 = X2[i] + sum2; 
sum3 = X3[i] + sum3; 

printf ("suml = %f, sum2 = %f, sum3 = %f\n", suml, sum2, sum3); 
*totl = suml I n; 
*lng = sum2 / n; 
*paralI = sum3 I n; 

/* The following calculates the variance of each kind of parameter *I 
for(i=O; i<n; ++i) 
{ 

v_suml = (Xl[i]-*totl)*(Xl[i]-*totl) + v_suml; 
v _sum2 = (X2[i]-*lng)*(X2[i]-*lng) + v _sum2; 
v_sum3 = (X3[i]-*parall)*(X3[i]-*parall) + v_sum3; 

/* The following returns the results to the train() routine. * / 
*v_totl = v_suml I (n-1); 
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Figure 31. The result of thresholding of Figure 30, the image became a binary image. 



911 


	Application of Hough Transformation to Detect Ovulatory Patterns in Cervical Mucus Images
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1511821410.pdf.sMjKi

