
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Spring 6-2-2017

An Efficient Pipeline for Assaying Whole-Genome An Efficient Pipeline for Assaying Whole-Genome

Plastid Variation for Population Genetics and Plastid Variation for Population Genetics and

Phylogeography Phylogeography

Brendan F. Kohrn
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Biology Commons, and the Plant Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Kohrn, Brendan F., "An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for Population
Genetics and Phylogeography" (2017). Dissertations and Theses. Paper 4007.
https://doi.org/10.15760/etd.5891

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/102?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4007
https://doi.org/10.15760/etd.5891
mailto:pdxscholar@pdx.edu

An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for

Population Genetics and Phylogeography

by

Brendan F. Kohrn

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Biology

Thesis Committee:

Mitch Cruzan, Chair

Sarah Eppley

Rahul Raghavan

Portland State University

2017

© 2017 Brendan F. Kohrn

 i

Abstract

Tracking seed dispersal using traditional, direct measurement approaches is

difficult and generally underestimates dispersal distances. Variation in chloroplast

haplotypes (cpDNA) offers a way to trace past seed dispersal and to make inferences

about factors contributing to present patterns of dispersal. Although cpDNA generally

has low levels of intraspecific variation, this can be overcome by assaying the whole

chloroplast genome. Whole-genome sequencing is more expensive, but resources can be

conserved by pooling samples. Unfortunately, haplotype associations among SNPs are

lost in pooled samples and treating SNP frequencies as independent estimates of variation

provides biased estimates of genetic distance. I have developed an application, CallHap,

that uses a least-squares algorithm to evaluate the fit between observed and predicted

SNP frequencies from pooled samples based on network topology, thus enabling pooling

for chloroplast sequencing for large-scale studies of chloroplast genomic variation. This

method was tested using artificially-constructed test networks and pools, and pooled

samples of Lasthenia californica (California goldfields) from Whetstone Prairie, in

Southern Oregon, USA. In test networks, CallHap reliably recovered network topologies

and haplotype frequencies. Overall, the CallHap pipeline allows for the efficient use of

resources for estimation of genetic distance for studies using non-recombining, whole-

genome haplotypes, such as intra-specific variation in chloroplast, mitochondrial,

bacterial, or viral DNA.

 ii

Dedication

This thesis is dedicated to my grandfather, Dr. Lawrence Loeb, and to my parents,

Corinne and David Kohrn, for helping me through the long educational trajectory that led

me to where I am now, and for their continued support as I move into the future.

 iii

Acknowledgments

I would like to acknowledge Mitch Cruzan, for helping talk me through different ideas

for the pipeline and keeping me focused through the long hours of debugging,

Pam Thompson, Monica Grasty, Tina Arredondo, Jaime Schwoch, and Elizabeth

Hendrickson, for helping me work through issues with the program and suggesting

features, Jessica Persinger for her help with de novo assemblies, my parents and

grandparents, for helping support me through my thesis research, and PSU Academic and

Research Computing, for making sure the servers kept running while I was developing

this pipeline.

This thesis was completed with funding from a NSF Macrosystems Biology grant (award

number 1340746)

 iv

Table of Contents

Abstract .. i

Dedication ... ii

Acknowledgments.. iii

List of Tables .. v

List of Figures .. vi

Introduction ... 1

Bioinformatics Pipeline .. 5

Results ... 13

Discussion ... 21

Applications .. 29

References ... 30

Appendix A: CallHap Bioinformatics Pipeline Overview .. 39

Appendix B: Capture Array Creation ... 40

Appendix C: Variant Filtering with VCF_Filt.py ... 41

Appendix D: Overall haplotype and frequency estimation program (HapCallr.py) 43

Appendix E: CallHap Least Squares Algorithm ... 45

Appendix F: CallHap Haplotype Creation Algorithm .. 46

Appendix G: CallHap Manual .. 47

Appendix H: CallHap Programs ... 61

 v

List of Tables

Table 1: Summary of sequencing lane contents ... 12
Table 2: Summary of sequencing data for Whetstone Prairie L. californica libraries. 14
Table 3: RSS values and residual statistics (A) on a per-SNP basis, and (B) on a per-

population basis. ... 19

 vi

List of Figures

Fig. 1. SNP frequency contribution from multiple haplotypes where a SNP is shared

between haplotypes. .. 3
Fig. 2. Haplotype creation and selection of best position in a simple haplotype system. ... 7

Fig. 3: Test Network Phylogenies. .. 10
Fig. 4. Resulting phylogeny from one starting condition from Test Network D. 13
Fig. 5. Haplotypes solution for L. californica de novo alignment. 18
Fig. 6. Average % difference between haplotypes within populations vs. between

populations. ... 20

Fig. 7: Depth analysis for L. californica. .. 27

 1

Introduction

Gene flow includes a number of processes that cause changes in allele

frequencies, including movement of gametes (gametophytes) or individuals across the

physical landscape (Slatkin, 1987). In the case of plants, movement by gametes is

restricted to dispersal of pollen (the male gametophyte) from the location of the paternal

individual to the maternal individual, and dispersal of individuals is reduced to movement

of seeds. All other life stages of plants are sessile, or have limited mobility through

vegetative growth. The distribution of genetic variation within and among plant

populations from gene flow can thus be reduced to seed and pollen dispersal. Of these,

only seed dispersal has the potential to establish new populations through colonization of

vacant sites (Howe and Smallwood, 1982; Nathan and Muller-Landau, 2000).

The movement of seeds to a new site from the location of the maternal parent can

occur through a variety of vectors. Some plants have seeds designed to float on the wind

(anemochory), while others have seeds which attach themselves to the outside of an

animal (ectozoochory), have fleshy fruits meant to be eaten by animals (endozoochory),

or just fall off the maternal plant under the influence of gravity (barochory) (Howe and

Smallwood, 1982). Traditionally, seed dispersal has been measured by direct observation

using a variety of seed trap designs (Gorchov et al., 1993; Kollmann and Goetze, 1998;

Godoy and Jordano, 2001), by testing for the presence of seeds in the feces of local

herbivorous species (Mouissie et al., 2005), or by observing the movement patterns of

dispersal vectors (Kays et al., 2011). Unfortunately, these approaches can be difficult to

 2

implement and tend to overestimate short-distance seed dispersal while missing long-

distance dispersal events (Willson, 1993).

Long-distance seed dispersal is particularly difficult to measure through direct

observation approaches, and may be disproportionately important for gene flow and

establishing new populations (Cain et al., 2000; Trakhtenbrot et al., 2005). Although

measuring seed dispersal is often difficult, genetic markers can be used to track patterns

and intensity of historical dispersal. Nuclear genetic markers, including most single

nucleotide polymorphisms (SNPs) and microsatellites, offer one potential solution, but

variation in these markers within and among populations is affected by both pollen and

seed dispersal. In contrast, chloroplast DNA (cpDNA) is inherited maternally in most

angiosperms (Corriveau and Coleman, 1988), which means variation in these markers is

only affected only by the process of seed dispersal.

Using cpDNA variation (SNPs) to measure genetic distance presents a few

challenges. First, chloroplast genomes are non-recombining and effectively haploid

(Palmer, 1987), so SNPs common to the same haplotype are inherited together. This

feature allows for the reconstruction of network phylogenies that illustrate the

relationships among haplotypes, but means that, no matter how many cpDNA SNPs are

found, the whole chloroplast can only be treated as a single locus. I found that treating

cpDNA SNPs as independent markers will tend to underestimate levels of differentiation

and genetic distances among populations, especially when haplotypes share SNPs (Fig.

1). In the past, cpDNA markers have not been considered very useful due to the slow

evolutionary rate of chloroplast genomes, which results in low intra-specific variation

3

(Palmer, 1987). Modern sequencing methods alleviate this problem by allowing the

detection of larger numbers of SNPs across the entire chloroplast genome (Stull et al.,

2013). Combinations of SNPs represent chloroplast haplotypes, and are a valuable tool

for examining genetic diversity and seed dispersal in angiosperms.

Fig. 1. SNP frequency contribution from multiple haplotypes where a SNP is shared between haplotypes.

In this case, each population contains the same three haplotypes, with one being found at a constant

frequency in all three populations, while the other two, which share a SNP, are found at varying

frequencies in the three populations, such that the overall frequency of that SNP is constant. A network

phylogeny showing the three haplotypes and their relatedness to each other is shown below the figure.

When using chloroplast haplotypes for population genetics and phylogeographic

studies, cpDNA from many individuals must be sequenced to generate adequate sample

sizes for the estimation of genetic parameters. Although sequencing costs have decreased

in recent years, sequencing enough samples for a large-scale population genetics study

0

0.2

0.4

0.6

0.8

1

1.2

Pop1 Pop2 Pop3

S
N

P
 F

re
q

u
en

cy

Population

Nei's D by Haps = 1.65179

Nei's D by SNPs = 0.20612Nei's D by Haps = 0.64825

Nei's D by SNPs = 0.01369
Nei's D by Haps = 0.786822

Nei's D by SNPs = 0.269498

A B C …

4

still requires significant resource investment (Sboner et al., 2011). Pooling multiple

individuals for sequencing has become common as a solution to this problem (Sham et

al., 2002; Schlötterer et al., 2014). Unfortunately, pooling cpDNA samples results in the

loss of information about the SNP associations that represent each haplotype because

DNA sequencing only recovers SNP frequencies (Fig. 1). While there are a number of

haplotype reconstruction programs available, these are either aimed exclusively at diploid

genomes or at resolving (nuclear) haplotypes over smaller genomic regions (i.e. phasing;

Pe’er and Beckmann, 2003; Kirkpatrick et al., 2007; Gasbarra et al., 2011; Kofler et al.,

2011). These methods assume some level of recombination, and ultimately are not

appropriate for the recovery of haplotypes from the non-recombining chloroplast

genome. To solve this problem, I have developed a new bioinformatics pipeline aimed at

reducing the cost of population-level surveys of chloroplast diversity by reconstructing

chloroplast haplotypes from pooled samples using a sample of sequenced individual

chloroplast haplotypes.

Here, I describe sampling and bioinformatics protocols for the examination of

haplotype-based population genetics, including the variant filtering and haplotype

recovery programs of CallHap. I then test the CallHap haplotype recovery program using

a series of artificial networks and pools. Finally, I provide an example of CallHap

processing using a set of Lasthenia californica Lindley (Asteraceae) samples collected

from Whetstone Prairie, near Medford, OR.

5

Bioinformatics Pipeline

Sample collection and sequencing

The CallHap pipeline (Appendix A) begins after sampling tissue from some

number of individuals (e.g., 20) from each of several populations and extracting DNA

from each sampled individual. Equimolar amounts of DNA from each individual are

used to make pooled sequencing libraries (PLs). A representative subset of individuals

sampled across populations is used to make a collection of single sample libraries (SSLs),

which are used to construct a skeleton network phylogeny. Both single and pooled

libraries are filtered to concentrate cpDNA using a RNA capture array (Appendix B; Stull

et al., 2013), and sequenced using next-generation platforms.

Sequence data processing

Sequences are processed using cutadapt v1.9.1 (Martin, 2011) for adapter

trimming and sickle v1.33 (Joshi and Fass, 2011) for quality trimming. BWA v0.7.5a (Li

and Durbin, 2009) is used to align trimmed sequences to a single reference genome.

Sequences were sorted using Samtools v0.1.17, read groups were added using Picard

Tools v.1.141 (http://broadinstitute.github.io/picard), and indel realignment was carried

out using Genome Analysis Toolkit v3.5 (GATK; McKenna et al., 2010). Initial variant

calls are made using FreeBayes v1.0.2 (Garrison and Marth, 2012) or other similar

programs.

 6

Variant Filtering

Variant filtering is carried out using the first of the two major CallHap programs,

CallHap_VCF_Filt.py (Program flowchart in Appendix C). This script filters raw

variants to ensure that they can be used by the main haplotype caller by removing (a)

non-SNP variants, due to the difficulty in calling insertion or deletion type variants

(indels) as being in one of two states, (b) variants with low depth or quality, (c) variants

that do not have a defined identity across all SSLs and pooled libraries, since the

haplotype caller application cannot handle missing values in the matrix of haplotype

identities, (e) SNPs in close proximity to indels, due to difficulties in creating correct

alignments in these regions. Filters that have a limit (depth filter, indel proximity, and

quality filters) are can be modified to meet the demands of a particular study. The variant

filter outputs a file containing genotype data for SSLs, a separate file containing SNP

frequency data for PLs, and a NEXUS file for network phylogeny creation.

Recovery of haplotypes from pooled samples

The CallHap Haplotype Caller (CallHap_HapCallr.py, Appendix D) works by

iterating through the available SNPs in a pseudo-random order, with SNPs present in SSL

(known) haplotypes being processed first. Processing a large number of these random

orders increases certainty in haplotype calls. Within each order, an initial estimate of

haplotype frequencies is generated using a least squared algorithm (Appendix E) to solve

the equation 𝐴 𝑥 = 𝑏, where A is the binary matrix of SNP identities in various

haplotypes, x is the unknown vector of haplotype frequencies, and b is the observed

vector of SNP frequencies. An overall average Residuals Sums of Squares (RSS) value

7

is computed by averaging RSS values based on each PL. In addition, the total RSS value

for each SNP is computed.

Next, the algorithm creates new haplotypes based on each SNP for which there

exists a non-zero residual in the initial solution (See Appendix F). If the current SNP is

present in the known haplotypes, new haplotype creation only considers creating new

haplotypes based on the haplotypes at either end of the network phylogeny branch along

which this SNP occurs. Otherwise, the algorithm considers every possible new haplotype

(Fig. 2). Average RSS values are computed for each possible haplotype attachment

point, and the proposed new haplotype matrix and average RSS values are saved for later

filtering. This procedure is repeated for each possible solution for all SNPs. Once all

possible solutions have been processed for each SNP, the haplotypes matrices are filtered

to only keep those that produced the lowest average RSS value (Fig. 2).

Fig. 2. Haplotype creation and selection of best position in a simple haplotype system. N, in each case,

represents the position of the newly-created haplotype. Graphs show predicted vs. observed SNP

frequencies.

8

Once all SNPs have been processed, the haplotypes matrices are filtered to

remove unused haplotypes. Haplotypes matrices are then filtered to keep only those with

the lowest Akaike information criterion (AIC; Li et al., 2002). The columns of these

matrices (the haplotypes) are taken as binary numbers with 1 representing the reference

and 0 the alternate allele, converted into decimal numbers representing the haplotypes,

and saved along with the average RSS values produced by the matrices.

After completing all pseudo-random orders, output files are generated showing

the raw haplotypes produced in each proposed solution, the percentage of random

orderings for which a particular haplotype was produced, the number of times each

unique topology was generated and the average RSS value for each, haplotype

frequencies in each pool and the RSS value for that pool, VCF files showing predicted

SNP frequencies in each pool and RSS for each SNP, a CSV file comparing observed vs.

predicted SNP frequencies, and a NEXUS file for network phylogeny creation using

PopART (http://popart.otago.ac.nz) or similar. Optionally, a genpop file that can be

imported into adegenet (Jombart, 2008) and a STRUCTURE-formatted file (Pritchard et

al., 2000; Raj et al., 2014) can also be generated. Haplotype frequencies are presented as

number of individuals with that haplotype, and haplotypes are presented as multiple

alleles at a single locus (the chloroplast).

After CallHap generates outputs users can examine the resulting topologies and

select a final topology based on (1) the average RSS value of the solution, (2) the

frequency with which a given topology occurred, and (3) based on the commonality of

9

the root haplotype for any mobile new haplotypes not resolved by the first two criteria

(Templeton et al., 1992).

10

Artificial networks

Test network phylogenies were created to represent different types of network

topologies (Fig. 3). Seven artificial pools containing twenty individuals each were

created based on each network, with each pool containing three random haplotypes at

frequencies approximating the Poisson distribution. Each set of artificial pools was run

through the haplotype caller, using 100 random orders, and 2 iterations per order, with

different combinations of “known” haplotypes to see if (a) the correct network topology

was recovered by the best solution, and (b), if the correct haplotype frequencies were

recovered by the best solution.

Fig. 3: Test Network Phylogenies. These phylogenies were designed to test the ability of CallHap to

recover different topological patterns when starting with different haplotypes; (A) a long branch with every

haplotype defined (B) two long branches with all haplotypes defined (C) a long branch with some

haplotypes defined, and (D) a cluster with one haplotype further out.

11

Testing with Lasthenia californica

Leaf tissue was collected from 400 individuals across 20 populations of Lasthenia

californica located within a 16-hectare area of Whetstone Prairie, near Medford, OR,

USA (P. Thompson et. al, unpublished. data). Tissues were dried using silica beads as a

desiccant, and DNA was extracted using a Qiagen Plant DNeasy 96 kit (Qiagen,

Germantown, MD USA). After DNA extraction, DNA concentration was quantified on a

Qubit 3.0 fluorimeter (Thermo Fisher Scientific, Waltham, MA USA), and pooled by

population in an equimolar fashion. Library preparation was carried out using a

NEBNext Ultra DNA Library Prep Kit (E7370) with NEBNext Multiplex Oligos (E7600;

New England Biolabs, Ipswich, MA, USA). Single sample libraries were constructed for

at least one individual from each population.

SSLs and PLs were captured using a MYbaits-3 custom cpDNA capture array

from MYcroarray (MYcroarray, Ann Arbor, MI, USA; Appendix B). DNA was

sequenced on an Illumina HiSeq 2500 Sequencer (Illumina, San Diego, California, USA)

using 5 lanes, with 100bp paired-end reads generated for all but six samples, which had

100bp single end reads (Massively Parallel Sequencing Shared Resource Facility, Oregon

Health and Science University). The contents of each lane are summarized in Table 1.

Sequence alignment was performed both to the published Lasthenia burkei chloroplast

genome (Walker et al., 2014) and to an in-house partial de novo reference for L.

californica (KY965816). SNP calling and variant filtering were performed on both

alignments using the pipeline described above with a minimum read depth of 600 and a

minimum variant quality of 20. Haplotype calling was performed using information from

12

de novo alignments. For the full dataset, haplotype calling was run a second time with

any new haplotypes that were consistently added placed in the input haplotypes to help

resolve mobile haplotypes.

Table 1: Summary of sequencing lane contents, showing number of Lasthenia californica SSLs and PLs

used in analysis on each lane, number of other libraries on each lane, percentage L. californica returns from

each lane, and type (single end or paired end) of each run

 Lane

L. californica

SSLs1

L. californica

PLs1

Other

Libraries2

% Returns

L. californica1 Run Type

1 5 0 1 99.02% se

2 13 4 7 61.39% pe

3 20 0 28 17.53% pe

4 7 16 31 12.42% pe

5 2 0 52 2.14% pe
1 Number only reflects libraries used in analysis
2 These libraries were made using species other than L. californica, or were L. californica libraries unused

in this analysis.

13

Results

Test Networks

Correct haplotype networks were recovered as single lowest RSS value solutions

in all starting conditions for three out of four test networks. For the fourth, the correct

haplotype network was recovered as the more common of two possible solutions with the

lowest RSS value (Fig. 4).

Fig. 4. Resulting phylogeny from one starting condition from Test Network D. (A) Green haplotypes were

known at the beginning, blue haplotypes were present in all solutions at the lowest RSS value, and orange

haplotypes had ambiguous positions between different solutions. Branch thicknesses are scaled by how

many times a solution with the branch occurred, and percentages give exact percent of time a branch

occurred. Hash marks indicate number of SNPs along a branch. (B) Regression plot for these solutions.

0

0.5

1

0 0.5 1
P

re
d
ic

te
d
 F

re
q
u
en

cy

Observed Frequency

A B

 14

Lasthenia californica testing

Sequencing – Sixty-seven libraries (47 SSLs and 20 PLs) were sequenced,

producing a total of 753,355,673 raw reads. Of these, 88% of raw reads mapped to the L.

burkei genome, while 85% of raw reads mapped to the L. californica de novo genome

(Table 2).

Table 2: Summary of sequencing data for Whetstone Prairie L. californica libraries.

Location

Individual

SSL/PL Type

Raw

Reads

% mapped

(L. burkei)

% mapped

(de novo)

1 5 SSL PE 2,204,954 86.26% 89.11%

1 - PL PE 2,838,092 88.45% 80.80%

2 20 SSL PE 3,542,874 87.12% 88.29%

2 - PL PE 1,894,746 87.77% 81.50%

3 17 SSL PE 11,294,164 86.17% 86.89%

3 - PL PE 2,046,704 86.31% 80.49%

4 5 SSL SE 48,910,678 90.81% 88.66%

4 - PL PE 2,101,514 88.19% 92.17%

5 8 SSL SE 34,911,454 89.85% 86.48%

5 - PL PE 1,517,502 85.58% 91.55%

6 2 SSL SE 44,544,597 90.29% 88.93%

6 - PL PE 4,198,354 88.44% 91.93%

7 5 SSL PE 7,489,900 86.49% 87.94%

7 - PL PE 3,589,012 87.38% 80.09%

8 2 SSL PE 2,722,540 89.00% 79.70%

8 8 SSL SE 86,867,128 91.01% 89.43%

8 9 SSL PE 2,348,132 87.79% 92.58%

8 12 SSL PE 1,636,222 88.94% 88.24%

8 17 SSL PE 1,748,016 89.70% 89.38%

8 18 SSL PE 1,398,104 89.73% 90.14%

8 - PL PE 10,422,822 86.47% 90.17%

9 6 SSL SE 30,468,788 90.13% 81.60%

9 - PL PE 7,839,014 87.23% 91.86%

10 8 SSL PE 49,460,308 87.26% 86.26%

10 - PL PE 1,836,746 85.75% 80.79%

11 19 SSL PE 6,102,332 89.95% 87.85%

11 - PL PE 2,141,130 87.33% 90.48%

12 4 SSL PE 2,684,862 90.09% 88.83%

12 - PL PE 1,819,176 88.29% 90.58%

13 19 SSL PE 20,000,548 83.59% 87.93%

15

Location

Individual

SSL/PL Type

Raw

Reads

% mapped

(L. burkei)

% mapped

(de novo)

13 - PL PE 1,426,644 87.34% 73.74%

14 16 SSL PE 30,605,932 84.92% 90.35%

14 - PL PE 5,877,608 89.81% 77.81%

15 1 SSL PE 3,262,234 89.21% 89.69%

15 2 SSL PE 2,704,746 85.61% 86.14%

15 4 SSL PE 6,493,262 85.65% 86.12%

15 5 SSL PE 4,483,434 89.56% 90.09%

15 6 SSL PE 7,358,804 89.29% 89.82%

15 6 SSL PE 5,371,566 88.69% 89.17%

15 7 SSL PE 5,588,912 88.00% 88.35%

15 8 SSL PE 1,331,344 88.81% 89.31%

15 9 SSL PE 2,146,432 87.41% 87.94%

15 9 SSL PE 6,855,194 88.15% 88.57%

15 10 SSL PE 15,648,756 89.90% 81.29%

15 10 SSL PE 8,371,854 87.96% 88.32%

15 11 SSL PE 3,635,032 89.75% 90.17%

15 12 SSL PE 3,030,866 89.05% 89.57%

15 13 SSL PE 2,932,830 89.33% 89.79%

15 15 SSL PE 2,565,608 90.12% 90.56%

15 16 SSL PE 7,809,292 88.34% 88.99%

15 16 SSL PE 6,677,584 88.97% 89.67%

15 17 SSL PE 2,207,558 88.91% 89.38%

15 18 SSL PE 7,953,306 89.29% 90.09%

15 18 SSL PE 1,585,198 89.78% 90.29%

15 19 SSL PE 3,384,392 90.23% 90.68%

15 20 SSL PE 6,599,688 90.22% 90.67%

15 - PL PE 6,700,776 87.11% 81.86%

16 19 SSL PE 15,407,184 86.15% 80.04%

16 - PL PE 1,545,786 86.87% 87.50%

17 12 SSL PE 29,139,552 84.92% 75.71%

17 - PL PE 6,241,342 88.75% 89.31%

18 2 SSL PE 40,660,014 86.32% 77.87%

18 - PL PE 5,805,872 89.23% 89.82%

19 3 SSL PE 33,083,718 86.01% 77.69%

19 - PL PE 6,008,330 88.95% 89.47%

20 12 SSL PE 30,786,938 86.17% 78.63%

20 - PL PE 13,827,464 86.09% 77.99%

16

De novo vs. non-de novo alignment – For L. californica aligned to L. burkei,

initial variant calling revealed 3154 variants, many of which represented differences

between L. californica and L. burkei. After variant filtering, 34 SNPs in 16 unique

haplotypes were identified across sampled populations of L. californica. Comparatively,

for L. californica alignment to in house de novo, 978 initial variants were recovered,

which simplified to 39 SNPs in 19 unique haplotypes after filtering. Of these, 26

appeared to be identical to SNPs from the L. burkei alignment

Initial haplotype calling for the complete L. californica data recovered two

solutions at a minimum RSS value of 0.003002, with seven new haplotypes common to

all the top three solutions and three unfixed haplotypes. Rerunning with the common

haplotypes added to the SSL haplotypes returned a solution with a RSS value of

0.003002, a solution with a RSS value of 0.003077, and a solution with a RSS value of

0.003165; these topologies are summarized in Fig. 5, and RSS values are summarized in

Table 3. Although the best RSS value solution wasn’t the most common solution, the

difference in the RSS values was small enough that the solutions are essentially

equivalent. Additionally, there were only minor differences in haplotype frequency

between the best RSS value solution and the second best RSS value solution. Since the

RSS values for the best two solutions were so similar, the more common topology was

selected as the best topology.

Average phylogenetic distance was calculated between haplotypes in each pair of

populations (Between) or between haplotypes within a single population (Within) using

the formula:

 17

Average % difference
a,b

= ∑ ∑ di,j*p
i,a

j

*p
j,b

i

Where i and j are haplotypes, a and b are populations, pi,a is the frequency of haplotype i

in population a, and di,j is the number of SNPs different between haplotypes i and j. This

showed that haplotypes within a population were more similar to each other than

haplotypes in different populations (2-sample t-test, df=25, t = 6.49, p<<0.01; Fig. 6).

18

Fig. 5. Haplotypes solution for L. californica de novo alignment. (A) Consolidated network phylogeny for

CallHap solutions with the lowest RSS value (0.003002). Black indicates starting haplotypes, blue

indicates new haplotypes fixed in the best solutions from the initial haplotype calling run, and green

indicates new haplotypes found in the second haplotype calling run. For the second run, node size is scaled

to indicate the number of output solutions a new haplotype occurred in. Hash marks indicate number of

SNPs along a branch. (B) Regression plot for lowest-RSS value CallHap solutions.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

d
ic

te
d
 F

re
q
u
en

ci
es

Observed Frequencies

A

B

 19

Table 3: RSS values and residual statistics (A) on a per-SNP basis, and (B) on a per-population basis. A

squared residual value of 0.0025 is equivalent to one individual’s worth of error.

SNP # RSS

Average squared

residual

Standard Deviation

of squared residuals

Population

RSS

Value

0 0.000176 0.000009 0.000032 1 0.004688

1 0.002585 0.000129 0.000429 2 0.000322

2 0.000040 0.000002 0.000006 3 0.005565

3 0.000128 0.000006 0.000026 4 0.001729

4 0.000071 0.000004 0.000012 5 0.005304

5 0.000459 0.000023 0.000058 6 0.002121

6 0.001599 0.000080 0.000154 7 0.000042

7 0.004566 0.000228 0.000262 8 0.003693

8 0.001141 0.000057 0.000142 9 0.000446

9 0.006557 0.000328 0.000486 10 0.005215

10 0.004619 0.000231 0.000390 11 0.004026

11 0.000200 0.000010 0.000043 12 0.006501

12 0.000147 0.000007 0.000032 13 0.003062

13 0.002009 0.000100 0.000294 14 0.004435

14 0.001082 0.000054 0.000141 15 0.000325

15 0.000552 0.000028 0.000107 16 0.002084

16 0.001887 0.000094 0.000249 17 0.000382

17 0.002112 0.000106 0.000239 18 0.006086

18 0.000791 0.000040 0.000099 19 0.001960

19 0.002005 0.000100 0.000198 20 0.003560

20 0.000606 0.000030 0.000134

21 0.000714 0.000036 0.000119

22 0.003955 0.000198 0.000366

23 0.000143 0.000007 0.000028

24 0.000416 0.000021 0.000090

25 0.004510 0.000226 0.000283

26 0.000026 0.000001 0.000002

27 0.010800 0.000540 0.001008

28 0.000448 0.000022 0.000085

29 0.000131 0.000007 0.000008

30 0.001441 0.000072 0.000318

31 0.000947 0.000047 0.000145

32 0.000180 0.000009 0.000036

33 0.000173 0.000009 0.000024

34 0.000744 0.000037 0.000156

35 0.000354 0.000018 0.000011

36 0.000064 0.000003 0.000008

37 0.003147 0.000157 0.000276

38 0.000020 0.000001 0.000001

A B

20

Fig. 6. Average % difference between haplotypes within populations vs. between populations.

 21

Discussion

 I have developed a pipeline, CallHap, for efficient examination of cpDNA

variation, and tested it using a variety of test networks and a real data set of Lasthenia

californica samples from Whetstone Prairie. Here, I present (A): an examination of test

network results, (B): considerations for the design of experiments using CallHap, and

(C): appropriate protocols for analysis of CallHap outputs. In addition, I provide an

explanation for the magnitude of RSS values calculated by CallHap.

Test Networks Results

Examination of the test network pools shows consistent recovery of haplotype

networks from a starting point of two or more haplotypes in the absence of any

sequencing error. The presence of two possible solutions in the fourth test network

reveals one potential problem that could arise during haplotype construction; if the

frequencies for a new haplotype (based on SNPs not present in any of the SSLs) are less

than the frequencies for multiple other haplotypes across all PLs, it is possible the new

haplotype may be placed ambiguously between multiple locations on the network. When

the false haplotype position was not one of the known haplotypes, the correct solution

was the more common solution. One solution to this issue would be to add new

haplotypes that were found consistently between the solutions with the best RSS values

to the starting haplotypes array and rerunning the program. By using the expanded array

of haplotypes as a starting point, differences between solutions with the same RSS value

may be resolved. Another method involves taking the source DNA samples and creating

22

extra PLs by reshuffling the samples in ways that don’t reflect the geographic areas the

samples were collected in (discussed in more detail later).

Testing also revealed that, with minimal sampling of SSLs, convergence to a best

solution was proportional to the centrality of the starting haplotype. As an example, for

one of the test pools, all 100 orders converged to the lowest RSS value when the starting

haplotype was the most central haplotype, as opposed to 13/100 and 3/100 for starting

haplotypes one and two SNPs different from the most central haplotype, respectively.

Also, the presence of long branches in the correct topology reduced the frequency with

which that topology came up. In cases where CallHap is finding a large number of

topologies, rerunning CallHap with a larger number of random orderings, potentially in

combination with augmenting the known haplotypes with any haplotypes found

universally, may help. In addition, starting with more than one SSL per population will

increase the likelihood that the most central haplotype will be included in the SSL

haplotypes.

It is apparent from examining the inferred haplotype frequencies for L. californica

that RSS values for individual populations differ substantially. There can be many

reasons for this; in some cases, high RSS values may be due to a low-quality SNP that

was not filtered out correctly. For this reason, even after automated SNP filtering, any

remaining SNPs should be visualized using IGV (Thorvaldsdóttir et al., 2013) or other

similar programs to ensure quality. Potential issues include SNPs that occur at

approximately the same frequency across populations while the other SNPs in the pool

 23

change frequencies (especially if the major SNP present in the pool changes frequency).

In these cases, the inconsistent SNPs are most likely artificial and should be removed.

Another potential cause of high RSS values is a large number of SNPs present at a

frequency of more than 1/n, where n is the number of individuals in a pool. For example,

if a pool contains only three SNPs at such frequencies, an RSS of 0.05 could indicate a

problem; for a 20-individual pool, a RSS value of 0.0025 is equivalent to one individual-

worth of error, so a RSS value of 0.05 under these conditions would indicate an average

error of +/- 6.7 individuals for each haplotype present in that pool. If the same RSS value

were to occur in a pool where 20 SNPs were present at these frequencies, it would be less

of a problem because it would indicate an average error in haplotype frequencies of +/- 1

individual. In the L. californica data, the average RSS value was 0.003077, and was less

than one individual’s worth of error per haplotype present in all of the pools.

Experimental design considerations for CallHap Analyses

When designing an experiment to feed into the CallHap pipeline, consideration

must be given to (1): the spatial scale of sampling, (2): the number of populations

sampled, and (3): the size of pooled libraries. In addition, the choice of reference genome

for sequence alignment and variant discovery, and the minimum read depth used, is

important and needs to be contemplated.

Spatial Scale of Sampling – Experimental designs which produce data for the

CallHap pipeline will differ primarily on the geographic scale of sampling. For this

purpose, small-scale sampling indicates that populations are sampled at distances smaller

than the hypothesized average dispersal distance of the target species, and large-scale

24

sampling indicates that populations are sampled at distances greater than the

hypothesized average dispersal distance of the target species. At small scales, dispersal is

great enough that each haplotype may be found in any location so populations are

differentiated primarily by differences in the frequencies of shared haplotypes, meaning

that experiments should be designed with one SSL and one PL per population. In this

type of experiment there is a lowered likelihood of difficulties in recovering the correct

network topology and frequencies.

At large scales, populations in close proximity to each other may represent a

unique cluster of related haplotypes, and different sets of haplotypes may occur in

separate regions. As shown in the test networks, when only one SSL is available for each

cluster, it becomes difficult to place new haplotypes within that cluster. Additionally, if a

haplotype is only present in a single population, it is difficult to accurately place the

haplotype within the network phylogeny. At large scales, it would be advisable to create

artificial pools by pooling DNA from individuals from multiple populations located

across the entire range. Notably, these pools should not include the samples used for

SSLs, as those haplotypes are already known, and should contain samples at differing

concentrations; the purpose of these pools is to help resolve the identity of any new

haplotypes inferred by CallHap. Sequencing more than one SSL per population should

also be considered in these cases. Sequencing multiple populations per region will also

help resolve topologies and haplotype frequencies when the distance between populations

within each region occurs at a small scale, and sampled regions occur at a large scale.

25

One final complication is that the true scale of a project may not become evident

until after starting data analysis. For example, when the L. californica experiment was

designed, the hypothesized dispersal range was greater than the distance between

populations. However, after sequencing, it turned out that seed dispersal in L. californica

much more limited than anticipated. In retrospect, creating artificial pools to help resolve

the network topology would have been beneficial.

Pooling and Pooled library size – Many pool-seq protocols pool samples before

DNA extraction (Kofler et al., 2012; Martins et al., 2014; Bélanger et al., 2016), but this

may generate higher errors in SNP frequencies because equal amounts of tissue may not

contain equal amounts of genomic DNA. In contrast, data for use in CallHap comes from

libraries where DNA is extracted before being pooled to ensure equimolar proportions of

DNA from each individual. While populations of any size could be analyzed, sequencing

error, pipet volume, and DNA concentration limit the number of individuals that can be

safely placed in a single PL and still give accurate resolution of haplotype frequencies. In

addition, as the number of individuals in a PL increases, the frequency that represents a

single individual starts to approach the level of error in the sequencing process. On the

other hand, if too few individuals per population are used, some haplotypes present in the

population may be missed. For example, if 10 individuals per population were used, any

haplotype present at a frequency below 10% would likely go undetected. In the L.

californica study, a sample size of 20 individuals per population was used; it provided

reasonable accuracy in SNP frequency estimates while still capturing a good amount of

the haplotype diversity present. More individuals per population could be used by

 26

sequencing multiple pools per population, processing them as separate populations, and

then combining the frequencies after running them through CallHap and before

continuing with later population genetics or phylogeographic analysis.

Choosing a Reference Genome – CallHap assumes that SNPs detected by variant

calling arise from closely related haplotypes. Because of this, the CallHap pipeline

requires that all libraries be aligned to a single reference genome. Since the genome used

will have a large influence on the number and quality of SNPs generated, genome

selection is an important aspect of any study using CallHap.

In choosing a reference genome to use for CallHap analysis, preference should be

given to conspecific references. If no such reference exists, one library of shotgun

sequencing should be run; this library can be used to create a de novo reference genome

to which the other samples can be aligned. While a de novo can be created using

captured cpDNA, the incomplete nature of the capture makes it more difficult to carry out

the de novo assembly. If creating a de novo reference is infeasible, it may be possible to

obtain limited results using a non-conspecific reference; in this case, the more closely-

related the reference chloroplast genome is to the study species, the better. Limitations of

interspecific references include the addition of artificial SNPs introduced due to

alignment ambiguities that may be caused by fixed differences between the chloroplast

genomes of the two species.

Minimum Read Depth Selection – Another important parameter is the minimum

read depth required to consider a genomic position for analysis. I found that this value

changes depending on the peculiarities of different species and sequencing runs; for L.

27

californica, the optimum read depth was around 600, while for Ranunculus occidentalis

Nutt. (Ranunculaceae), the optimum minimum depth was found to be 300-400. To

determine the optimum minimum depth, I ran the VCF filter multiple times with different

depths, and counted the number of initial unique haplotypes each time. I then selected

the optimum depth as the point where the number of haplotypes started to drop off (Fig.

7) or 300, whichever was higher. In general, minimum depth should be no less than 15 *

the number of individuals in a pool (Sims et al., 2014).

Fig. 7: Depth analysis for L. californica. The number of unique SSL haplotypes starts to drop off at around

600 depth.

0

20

40

60

80

100

120

0

5

10

15

20

25

0 500 1000 1500 2000

#
 S

N
P

s

#
 H

ap
lo

ty
p
es

Depth

Haplotypes # SNPs

28

Analysis of CallHap Outputs

Methods used for analysis of haplotype frequency data from CallHap will vary

depending on the goals of the study. Population genetics studies utilizing nuclear genetic

markers in diploid organisms typically use Wright’s FST (Wright, 1949) or a similar

analogue (GST, G’ST, DST, etc.; Whitlock, 2011). However, FST is based on comparisons

of observed and expected heterozygosity at different scales, and consequently is

inappropriate for use with haplotype data. Instead, genetic distance measures that allow

for variable ploidies and number of alleles per locus and are not reliant on measures of

homo- or heterozygosity—such as Nei’s Genetic Distance (Nei’s D; Nei, 1973), Edwards

chord distance (Cavalli-Sforza and Edwards, 1967; Edwards, 1971; Hartl et al., 1997), or

Φ-statistics (Meirmans, 2006)—and haplotype genetic diversity measures (e.g. unbiased

haplotype diversity; Gardner et al., 2015) should be used.

Methods such as Nei’s D rely on calculations of the probability that the same

combination of alleles will be found in two different populations, and consequently are

more appropriate for small-scale studies. When no haplotypes are shared between two

populations, Nei’s D gives an infinite distance between those populations; such a pattern

indicates that dispersal rates among the populations sampled are very low, and that the

accumulation of local mutations is the primary factor contributing to the genetic structure

of populations. Limited dispersal relative to the scale of sampling will lead to haplotypes

within populations being more similar to each other than haplotypes in different

populations, as can be seen in the L. californica data. In these cases, phylogeographic

methods, the Edwards chord distance, or Φ-statistics will be more appropriate.

29

In phylogeographic studies or population genetics studies that are found to be

more appropriate for phylogeographic analysis, methods such as Nested Clade Analysis

(Templeton, 1998, 2009) or Approximate Bayesian Computation (Csilléry et al., 2010)

should be used. These methods explain modern observations with predictions of

population history events by comparing observed data to different modeled population

histories.

Applications

The CallHap pipeline has the potential to creating a range of new opportunities

for studies of cpDNA population structure, and allows for accurate and economical

estimates of seed-mediated gene flow by allowing for the use of pooled population

sequencing data for cpDNA and other haploid genetic material. Data for use in the

CallHap pipeline comes from population-level sampling of haploid genomes, including

plant chloroplast genomes (as presented in this paper), mitochondrial genomes, and

prokaryotic bacterial genomes. Because CallHap assumes all generated haplotypes are

closely related and requires that all libraries examined be aligned to a single reference

genome; this protocol should not be used for microbiome and microbial community

studies. Outputs generated by CallHap can be analyzed using a variety of methods,

including Nei’s genetic distance, Edwards chord distance, Φ-statistics, and a variety of

phylogeographic analysis methods including Nested Clade Analysis and Approximate

Bayesian Computation.

CallHap is available at https://github.com/cruzan-lab/CallHap.

 30

References

BÉLANGER, S., P. ESTEVES, I. CLERMONT, M. JEAN, and F. BELZILE. 2016. Genotyping-

by-sequencing on pooled samples and its use in measuring segregation bias during

the course of androgenesis in barley. The Plant Genome 9: 0. Available at:

https://dl.sciencesocieties.org/publications/tpg/abstracts/9/1/plantgenome2014.10.00

73 [Accessed March 23, 2017].

CAIN, M.L., B.G. MILLIGAN, and A.E. STRAND. 2000. Long-distance seed dispersal in

plant populations. American Journal of Botany 87: 1217–1227.

CAVALLI-SFORZA, L.L., and A W.F. EDWARDS. 1967. Phylogenetic analysis. Models and

estimation procedures. The American Journal of Human Genetics 19: 233–257.

Available at:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1706274&tool=pmcentr

ez&rendertype=abstract.

CORRIVEAU, J.L., and A.W. COLEMAN. 1988. Rapid Screening Method to Detect

Potential Biparental Inheritance of Plastid DNA and Results for Over 200

Angiosperm Species. American Journal of Botany 75: 1443. Available at:

http://www.researchgate.net/publication/250269704_Rapid_Screening_Method_to_

Detect_Potential_Biparental_Inheritance_of_Plastid_DNA_and_Results_for_Over_

200_Angiosperm_Species [Accessed March 17, 2015].

CSILLÉRY, K., M.G.B. BLUM, O.E. GAGGIOTTI, and O. FRANÇOIS. 2010. Approximate

Bayesian Computation (ABC) in practice. Trends in Ecology and Evolution 25:

410–418.

31

EDWARDS, A.W.F. 1971. Distances between Populations on the Basis of Gene

Frequencies. Biometrics 27: 873–881. Available at:

http://www.jstor.org/stable/2528824 [Accessed March 24, 2017].

GARDNER, E.M., K.M. LARICCHIA, M. MURPHY, D. RAGONE, B.E. SCHEFFLER, S.

SIMPSON, E.W. WILLIAMS, and N.J.C. ZEREGA. 2015. Chloroplast microsatellite

markers for Artocarpus (Moraceae) developed from transcriptome sequences.

Applications in Plant Sciences 3: apps.1500049. Available at:

http://dx.doi.org/10.3732/apps.1500049 [Accessed March 28, 2017].

GARRISON, E., and G. MARTH. 2012. Haplotype-based variant detection from short-read

sequencing. Available at: http://arxiv.org/abs/1207.3907 [Accessed January 25,

2017].

GASBARRA, D., S. KULATHINAL, M. PIRINEN, and M.J. SILLANPÄÄ. 2011. Estimating

haplotype frequencies by combining data from large DNA pools with database

information. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 8: 36–44. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/21071795.

GODOY, J.A., and P. JORDANO. 2001. Seed dispersal by animals: Exact identification of

source trees with endocarp DNA microsatellites. Molecular Ecology 10: 2275–2283.

Available at: http://doi.wiley.com/10.1046/j.0962-1083.2001.01342.x [Accessed

March 22, 2017].

GORCHOV, D.L., F. CORNEJO, C. ASCORRA, and M. JARAMILLO. 1993. The role of seed

dispersal in the natural regeneration of rain forest after strip-cutting in the peruvian

32

amazon. Vegetatio 107: 339–349. Available at:

http://www.jstor.org/stable/20046318 [Accessed March 22, 2017].

HARTL, D.L., A.G. CLARK, and A.G. CLARK. 1997. Principles of population genetics.

Sinauer associates Sunderland.

HOWE, H., and J. SMALLWOOD. 1982. Ecology of seed dispersal.

JOMBART, T. 2008. adegenet: a R package for the multivariate analysis of genetic

markers. Bioinformatics 24: 1403–1405. Available at:

https://academic.oup.com/bioinformatics/article-

lookup/doi/10.1093/bioinformatics/btn129 [Accessed March 16, 2017].

JOSHI, N., and J. FASS. 2011. Sickle: A sliding-window, adaptive, quality-based trimming

tool for FastQ files (Version 1.33) [Software]. Available at

https://github.com/najoshi/sickle.2011.

KAYS, R., P.A. JANSEN, E.M.H. KNECHT, R. VOHWINKEL, and M. WIKELSKI. 2011. The

effect of feeding time on dispersal of Virola seeds by toucans determined from GPS

tracking and accelerometers. Acta Oecologica 37: 625–631. Available at:

http://ac.els-cdn.com/S1146609X1100107X/1-s2.0-S1146609X1100107X-

main.pdf?_tid=46e2ca44-0f43-11e7-86fa-

00000aacb362&acdnat=1490216908_1d364bc5aadf4cdf2c6b851d2924832f

[Accessed March 22, 2017].

KIRKPATRICK, B., C.S. ARMENDARIZ, R.M. KARP, and E. HALPERIN. 2007. HaploPool:

Improving haplotype frequency estimation through DNA pools and phylogenetic

modeling. Bioinformatics 23: 3048–3055.

 33

KOFLER, R., A.J. BETANCOURT, and C. SCHLÖTTERER. 2012. Sequencing of Pooled DNA

Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element

Insertions in Drosophila melanogaster. PLoS Genetics 8: e1002487. Available at:

http://dx.plos.org/10.1371/journal.pgen.1002487.

KOFLER, R., R.V. PANDEY, and C. SCHLÖTTERER. 2011. PoPoolation2: Identifying

differentiation between populations using sequencing of pooled DNA samples

(Pool-Seq). Bioinformatics 27: 3435–3436.

KOLLMANN, J., and D. GOETZE. 1998. Notes on seed traps in terrestrial plant

communities. Flora 193: 31–40. Available at:

https://www.researchgate.net/profile/Johannes_Kollmann/publication/277709183_N

otes_on_seed_traps_in_terrestrial_communities/links/559ab47608ae5d8f3937eaf3.p

df [Accessed March 22, 2017].

LI, B.B., J. MORRIS, and E.B. MARTIN. 2002. Model selection for partial least squares

regression. Chemometrics Intell. Lab. Syst. 64: 79–89. Available at: http://ac.els-

cdn.com/S0169743902000515/1-s2.0-S0169743902000515-

main.pdf?_tid=cee90502-102e-11e7-b17f-

00000aacb361&acdnat=1490318068_848534ed2af579297aa9d6b100601ef8

[Accessed March 23, 2017].

LI, H., and R. DURBIN. 2009. Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics.

MARTIN, M. 2011. Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet.journal 17: 10. Available at:

34

http://journal.embnet.org/index.php/embnetjournal/article/view/200 [Accessed

November 14, 2016].

MARTINS, N.E., V.G. FARIA, V. NOLTE, C. SCHLÖTTERER, L. TEIXEIRA, É. SUCENA, and

S. MAGALHÃES. 2014. Host adaptation to viruses relies on few genes with different

cross-resistance properties. Proceedings of the National Academy of Sciences of the

United States of America 111: 5938–43. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/24711428 [Accessed March 23, 2017].

MCKENNA, A., M. HANNA, E. BANKS, A. SIVACHENKO, K. CIBULSKIS, A. KERNYTSKY, K.

GARIMELLA, ET AL. 2010. The genome analysis toolkit: A MapReduce framework

for analyzing next-generation DNA sequencing data. Genome Research.

MEIRMANS, P.G. 2006. Using the AMOVA framework to estimate a standardized genetic

differentiation measure. Evolution 60: 2399–2402. Available at:

http://dx.doi.org/10.1554/05-631.1 [Accessed March 27, 2017].

MOUISSIE, A.M., C.E.J. VAN DER VEEN, G.F. (CISKA) VEEN, and R. VAN DIGGELEN.

2005. Ecological correlates of seed survival after ingestion by Fallow Deer.

Functional Ecology 19: 284–290. Available at: http://doi.wiley.com/10.1111/j.0269-

8463.2005.00955.x [Accessed May 4, 2015].

NATHAN, R., and H.C. MULLER-LANDAU. 2000. Spatial patterns of seed dispersal, their

determinants and consequences for recruitment. Trends in Ecology and Evolution

15: 278–285. Available at:

http://linkinghub.elsevier.com/retrieve/pii/S0169534700018747 [Accessed March

22, 2017].

35

NEI, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the

National Academy of Sciences of the United States of America 70: 3321–3323.

PALMER, J.D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast

DNA variation. American Naturalist 130: S6–S29. Available at:

http://www.jstor.org/stable/2461917 [Accessed March 22, 2017].

PE’ER, I., and J.S. BECKMANN. 2003. Resolution of haplotypes and haplotype frequencies

from SNP genotypes of pooled samples. Proceedings of the seventh annual

international conference on Computational molecular biology - RECOMB ’03237–

246. Available at: http://dl.acm.org/citation.cfm?id=640075.640107.

PRITCHARD, J.K., M. STEPHENS, and P. DONNELLY. 2000. Inference of population

structure using multilocus genotype data. Genetics 155: 945–959. Available at: http:/

[Accessed March 16, 2017].

RAJ, A., M. STEPHENS, and J.K. PRITCHARD. 2014. FastSTRUCTURE: Variational

inference of population structure in large SNP data sets. Genetics 197: 573–589.

Available at: http://web.stanford.edu/group/pritchardlab/publications/pdfs/Raj14

[Accessed March 16, 2017].

SBONER, A., X. MU, D. GREENBAUM, R.K. AUERBACH, M.B. GERSTEIN, M. METZKER, E.

MARDIS, ET AL. 2011. The real cost of sequencing: higher than you think! Genome

Biology 12: 125. Available at: http://genomebiology.com/2011/12/8/125 [Accessed

March 22, 2017].

SCHLÖTTERER, C., R. TOBLER, R. KOFLER, and V. NOLTE. 2014. Sequencing pools of

individuals — mining genome-wide polymorphism data without big funding. Nature

36

Reviews Genetics 15: 749–763. Available at:

http://www.nature.com/doifinder/10.1038/nrg3803 [Accessed March 23, 2017].

SHAM, P., J.S. BADER, I. CRAIG, M. O’DONOVAN, and M. OWEN. 2002. DNA Pooling: a

tool for large-scale association studies. Nat Rev Genet 3: 862–871. Available at:

http://www.nature.com/nrg/journal/v3/n11/pdf/nrg930.pdf [Accessed March 22,

2017].

SIMS, D., I. SUDBERY, N.E. ILOTT, A. HEGER, and C.P. PONTING. 2014. Sequencing depth

and coverage: key considerations in genomic analyses. Nature reviews. Genetics 15:

121–32. Available at: http://dx.doi.org/10.1038/nrg3642 [Accessed July 11, 2014].

SLATKIN, M. 1987. Gene Flow and the Geographic Structure of Natural Populations.

Science 236: 787–792. Available at:

http://science.sciencemag.org/content/236/4803/787 [Accessed March 22, 2017].

STULL, G.W., M.J. MOORE, V.S. MANDALA, N. A DOUGLAS, H.-R. KATES, X. QI, S.F.

BROCKINGTON, ET AL. 2013. A targeted enrichment strategy for massively parallel

sequencing of Angiosperm plastid genomes. Applications in Plant Sciences 1: 1–7.

Available at: http://www.bioone.org/doi/abs/10.3732/apps.1200497.

TEMPLETON, A.R. 1998. Nested clade analyses of phylogeographic data: Testing

hypotheses about gene flow and population history. Molecular Ecology 7: 381–397.

Available at: http://doi.wiley.com/10.1046/j.1365-294x.1998.00308.x [Accessed

February 7, 2017].

TEMPLETON, A.R. 2009. Statistical hypothesis testing in intraspecific phylogeography:

Nested clade phylogeographical analysis vs. approximate Bayesian computation.

37

Molecular Ecology 18: 319–331.

TEMPLETON, A.R., K.A. CRANDALL, and C.F. SING. 1992. A cladistic analysis of

phenotypic associations with haplotypes inferred from restriction endonuclease

mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–

633. Available at:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1205162/pdf/ge1322619.pdf

[Accessed March 28, 2017].

THORVALDSDÓTTIR, H., J.T. ROBINSON, and J.P. MESIROV. 2013. Integrative Genomics

Viewer (IGV): High-performance genomics data visualization and exploration.

Briefings in Bioinformatics.

TRAKHTENBROT, A., R. NATHAN, G. PERRY, and D.M. RICHARDSON. 2005. The

importance of long-distance dispersal in biodiversity conservation. Diversity and

Distributions 11: 173–181. Available at: http://doi.wiley.com/10.1111/j.1366-

9516.2005.00156.x [Accessed February 7, 2017].

WALKER, J.F., M.J. ZANIS, and N.C. EMERY. 2014. Comparative analysis of complete

chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae,

Asteraceae). American journal of botany 101: 722–9. Available at:

http://www.amjbot.org/content/101/4/722.long [Accessed April 20, 2015].

WHITLOCK, M.C. 2011. G’ST and D do not replace FST. Molecular Ecology 20: 1083–

1091. Available at: http://doi.wiley.com/10.1111/j.1365-294X.2010.04996.x.

WILLSON, M.F. 1993. Dispersal mode, seed shadows, and colonization patterns.

Vegetatio 107–108: 261–280.

38

WRIGHT, S. 1949. The genetical structure of populations. Annals of Eugenics 15: 323–

354. Available at: http://doi.wiley.com/10.1111/j.1469-1809.1949.tb02451.x

[Accessed December 1, 2014].

39

Appendix A: CallHap Bioinformatics Pipeline Overview

40 Appendix B: Capture Array Creation

A MYbaits-3 custom cpDNA capture array from MYcroarray (MYcroarray, Ann Arbor,

MI, USA) was created to help isolate cpDNA. During capture array creation, 120mer

baits were constructed with a ~2x flexible tiling density. Any baits with 10 or less

mismatches between them were collapsed into a single bait. In total, the capture array

contained 55,409 baits.

Species Source

Achillea millefolium Partial De Novo

Achyrachaena mollis Partial De Novo

Arabis alpa NCBI: NC_023367.1

Brachypodium distachyon NCBI: NC_011032.1

Camassia quamash Partial De Novo

Chrysanthemum indicum NCBI: NC_020320.1

Cryptantha torreyana NCBI: KP096524.1

Danthonia californica NCBI: NC_025232.1

Danthonia californica Partial De Novo

Eriophyllum lanatum Partial De Novo

Eustrephus latifolius NCBI: NC_025305.1

Festuca arundinacea NCBI: NC_011713_2

Festuca roemeri Partial De Novo

Fragaria vesca NCBI: NC_015206.1

Lactusa sativa NCBI: NC_007578.1

Lasthenia burkei NCBI: KM360047.1

Lomatium utriculatum Partial De Novo

Lupinus albus NCBI: NC_026681.1

Lupinus bicolor Partial De Novo

Nama carnosum Private communication with Gregory Stull

Nicotina undulata NCBI: NC_016068.1

Petroselinium crispum NCBI: HM596073.1

Quercus aliena NCBI: KP301144.1

Ranunculus austro-oreganus Partial De Novo

Ranunculus macranthus NCBI: NC_008796.1

Ranunculus occidentalis Partial De Novo

Salvia miltiorrhiza NCBI: NC_020431.1

Hibiscus syriacus NCBI: NC_026909.1

Oenothera biennis NCBI: NC_010361.1

Lonicera japonica NCBI: NC_026839.1

Lilium superbum NCBI: NC_026787.1

Primula poissonii NCBI: NC_024543.1

Liquidambar formosana NCBI: NC_023092.1

41

Appendix C: Variant Filtering with VCF_Filt.py

42

43

Appendix D: Overall haplotype and frequency estimation program (HapCallr.py)

44

45

Appendix E: CallHap Least Squares Algorithm

46

Appendix F: CallHap Haplotype Creation Algorithm

47

Appendix G: CallHap Manual

CallHap: A Pipeline for Analysis of Pooled Whole-genome

Haplotypes
Last edited: 04/28/2017 By: Jessica Persinger

Licensing information

With the exception of the Genome Analysis Toolkit, all programs are freely available

under either the Gnu Public License or the MIT License. The Genome Analysis Toolkit

is free for non-commercial use; other use should contact the Broad Institute at

softwarelicensing@broadinstitute.org. Python and bash scripts for the CallHap pipeline

are available at https://github.com/cruzan-lab/CallHap.

Introduction

CallHap is a pipeline designed for the analysis of pooled haplotype data. It depends on

the presence of two types of sequencing libraries; either single sample libraries (SSLs) or

pooled libraries (Pool). Ideally, a Pool should contain equimolar genetic material from

20 individuals, and one of those individuals should be prepared separately as a SSL. This

pipeline picks up following sequencing on an Illumina HiSeq or similar high-throughput

sequencer.

Requirements

• A LINUX/UNIX/MacOS system with the following programs installed:

▪ Cutadapt (http://cutadapt.readthedocs.io/en/stable/index.html)

▪ Sickle (http://bioinformatics.ucdavis.edu/research-computing/software/)

▪ BWA (http://bio-bwa.sourceforge.net/)

▪ Samtools (http://samtools.sourceforge.net/)

▪ PicardTools (https://broadinstitute.github.io/picard/)

▪ GATK (https://software.broadinstitute.org/gatk/)

▪ Freebayes (https://github.com/ekg/freebayes)

▪ Python 2.7x (https://www.python.org/) with NumPy

(http://www.numpy.org/)

▪ Java Development Kit

https://github.com/cruzan-lab/CallHap
http://cutadapt.readthedocs.io/en/stable/index.html
http://bioinformatics.ucdavis.edu/research-computing/software/
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/
https://github.com/ekg/freebayes
https://www.python.org/
http://www.numpy.org/

48

Contents

Quick start

Setup

Preprocessing

SNP Calling

SNP Filtering

SNP Calling

Haplotype Calling

Detailed Instructions

Adapter/Quality Trimming

Read Alignment

Readgroup Creation

Local Realignment

SNP Calling

SNP Filtering

Haplotype Calling

49

Quick Start
Setup:

program-config.sh:

Edit program-config.sh so that each of the variables is set to the absolute path of the

program in question.

Reference Preparation:

Obtain a reference genome (in FASTA format) for your species of interest (or closely

related other species), and prepare it for use by using the following commands:

$ bwa index {reference}.fasta

$ samtools faidx {reference}.fasta

$ java -jar /path/to/picardtools/picard.jar \

CreateSequenceDictionary \

R={reference}.fasta \

O={reference}.dict

Preprocessing:

Note that there are two basic processing pipelines provided; one with automated

trimming (CallHap_Preproc_0.01.23.sh) and one without automated trimming

(CallHap_Preproc_NoTrimming_0.01.23.sh). It is strongly suggested that at least a few

(2-5) samples per flow cell be run manually (one step at a time), at least through

trimming for quality control and to see if those samples need any additional trimming

beyond the basic trimming steps (adapter and quality trimming). If you are doing

trimming separately, be sure to use the locations of the trimmed files in the preconfig

instead of the locations of the raw files.

Create a preconfig file in Excel with the following columns:

• Read1File

• Read2File

• RGLB

• RGSM

• RGPU

• Mode

• Reference

Each row should represent one sequencing library (SSL or Pooled).

• Read1File and Read2File should give the absolute path to the locations of the raw

data for the Read 1 and Read 2 files (in the case of single end data, give the file

location under Read1File, and put a period (.) for Read2File).

• RGLB should be some identifier for the library (e.g. library number).

• RGSM should be a sample name, preferably indicating the species of the library,

the location the sample came from, and whether the sample is a SSL or Pool

(Example: SpenamLocS#SSL, SpenamLocS#Pool).

50

• RGPU should indicate the barcoding used for this library during library prep

(Example: ATTACTCG-TATAGCCT).

• Mode should be one of se (single-end) or pe (paired-end).

• Reference should indicate the reference genome you would like this library

aligned to.

If all samples are of the same species, the reference genomes for all libraries should be

the same.

Save the preconfig file as a .csv. Convert it to a config file using:

$ python /path/to/CallHap/CallHap_ConfigCreator.py \

--input preconfig.csv \

--adapt1 {SequencingAdapter} \

--adapt2 {SequencingAdapter} \

--sequencer {Sequencer used to produce data} \

--minBaseQual 30 \

--minReadQual 30 \

--runID {Identifier for this run}

This will output a .sh file with the run ID as the name (for example, of you put --runID

{runID}, the file would be called runID.sh)

Then use the following command to run the rest of the pre-processing (replacing the

script name if you did trimming separately):

$ bash /path/to/CallHap/CallHap_Preproc_0.01.23.sh \

program-config.sh {runID}.sh

SNP Calling:

Set up an input list of files using:

$ ls -1 /path/to/files/*SSL*.rg.ra.bam > {RunID}.txt

$ ls -1 /path/to/files/*Pool*.rg.ra.bam >> {RunID}.txt

Call FreeBayes using:

$ /path/to/freebayes/freebayes -L {RunID}.txt \

-p 1 -f /path/to/reference/{reference}.fasta \

-v {RunID}_SNPs.vcf --use-best-n-alleles 2 \

--min-repeat-entropy 1 --no-partial-observations \

--min-alternate-fraction {0.05}

--min-alternate-

fraction

Should be set to 1/poolsize or lower.

51

This step may take a while, and while running, may look like it isn’t doing anything

SNP Filtering:

SNP filtering is accomplished by use of a custom python script, which can be run with

the command:

$ python /path/to/CallHap/CallHap_VCF_Filt.py \

-i {RunID}_SNPs.vcf -o {RunID}_d{600}q{20}_Haps.vcf \

-O {RunID}_d{600}q{20}_Pools.vcf -n <number of SSLs> \

-N <number of Pools> -d {600} -q {20} -p {20}

You may need to trim off one or more columns from the VCF file if one sample was not

called at a majority of positions; if a single sample is not called at a particular position,

the variant at that position will be discarded. To determine if a column needs to be

removed, look at your VCF file in Excel, and see if there are any columns that are periods

(“.”) for the majority of rows. Removing the column can also be done in Excel, but you

need to be careful because Excel likes to add quotes when it saves files with commas in

the cells, as do most spreadsheet editors I’ve found.

Haplotype Calling:

Before running this step, check how many cores are available on the system you’re using

with htop. Make sure you don’t overload the system you’re working on; don’t set -t to

higher than the number of available cores, and don’t take up all the cores on the machine.

Haplotype calling can be run using:

$ python /path/to/CallHap/CallHap_HapCallr.py \

--inputHaps {RunID}_d250q20_Haps.vcf \

--inputFreqs {RunID}_d250q20_Pools.vcf \

-o {RunID} -p 20 -t 5 -l 2 --numRandom 100 \

--numTopRSS 3 --genpop --structure

This program generates four to six output file per solution output (within the minimum

number of RSS values):

• A NEXUS file (RunID_solNum_haps.nex) for network phylogeny creation; PopART

(http://popart.otago.ac.nz/index.shtml) works fairly well. I’ve been using the TCS

algorithm.

• A VCF file (RunID_solNum_PredFreqs.vcf) containing the estimated SNP

frequencies based on the estimated haplotype frequencies, and the per-SNP average

residuals in the INFO field

• A CSV file (RunID_solNum_freqs.csv) containing the per-pool haplotype

frequencies and RSS values for each pool.

• A CSV file (RunID_solNum_Regression.csv) containing paired observed and

predicted SNP frequencies from the Least Squared algorithm.

http://popart.otago.ac.nz/index.shtml

52

• (Optional): A Structure formatted file (RunID_solNum_iterNum.str) containing the

expanded haplotype frequencies

• (Optional): A Genpop file containing the haplotype frequencies for use in Adigenet.

In addition, outputs are generated describing the original haplotypes network

(RunID_Initial.nex), the unique haplotypes network (RunID_Unique.nex), raw topologies

observed from each random order (RunID_RAW.csv), the frequency of each unique

topology generated (RunID_topologies.csv), the frequency of occurrence for each

haplotype found in any random order (RunID_summary.csv).

In terms of population-genetics analysis, haplotypes should be treated as independent

alleles at a single locus.

53

Detailed Instructions
Adapter/Quality trimming:

Adapter and quality trimming should be performed before any other step in the pipeline.

This ensures better read alignment and higher quality of the final data. The automated

pipeline uses cutadapt for adapter trimming and sickle for quality trimming; however,

you can use other trimming programs if so desired.

Cutadapt is available at http://cutadapt.readthedocs.io/en/stable/index.html under the MIT

License and can be run using:

$ /path/to/cutadapt -a {inAdapter1} -A {inAdapter2} \

-o {output_read_1}_at.fastq.gz \

-p {output_read_2}_at.fastq.gz \

{input_read_1}.fastq.gz {input_read_2}.fastq.gz

for paired-end reads or

$ /path/to/cutadapt -a {inAdapter1} \

-o {output_read_1}_at.fastq.gz {input_read_1}.fastq.gz

for single-end reads.

If you aren’t certain what adapter sequence you have, running FastQC (freely available at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ under GPLv3) may help

determine what adapters are present. Otherwise, consult your library preparation

protocol.

While cutadapt can also do quality trimming (using the -q option), or remove a fixed

number of bases (using the -u option), the default pipeline uses a second program,

(sickle) for quality trimming. Sickle is available at

http://bioinformatics.ucdavis.edu/research-computing/software/ under the MIT License

and can be run with

$ /path/to/sickle pe -f {output_read_1}_at.fastq.gz \

-r {output_read_2}_at.fastq.gz -o \

{output_read_1}ut_at_qt.fastq.gz –p \

{output_read_2}_at_qt.fastq.gz -t sanger –s \

{SampleName}_extras.fastq.gz -q {minBaseQuality} -g

for paired-end reads or

$ /path/to/sickle se -f {output_read_1}_at.fastq.gz \

-o {output_read_1}_at_qt.fastq.gz -t sanger \

-q {minBaseQuality} -g

http://cutadapt.readthedocs.io/en/stable/index.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bioinformatics.ucdavis.edu/research-computing/software/

54

for single-end reads.

For more details on these programs, consult their respective manuals.

Following trimming, it is recommended that at least 2-5 samples per flow cell be quality-

checked using FastQC. For this pipeline, check that there are almost no remaining

adapters of any type in the AdapterContent page of the report and that you are satisfied

with the quality scores in the Per base sequence quality section and the base percentages

in the Per base sequence content section.

Note that FastQC will generate output files in the same directory as the input files.

Read alignment:

The automated pipeline uses BWA-mem to align reads with default options. BWA can

be obtained from http://bio-bwa.sourceforge.net/ under GPLv3, and can be run using:

$ /path/to/bwa mem -M {reference}.fasta \

{output_read_1}_at_qt.fastq.gz \

{output_read_2}_at_qt.fastq.gz > \

{SampleName}.sam

for paired-end reads or

$ /path/to/bwa mem -M {reference}.fasta \

{output_read_1}_at_qt.fastq.gz > {SampleName}.sam

for single-end reads.

After alignment, the file is converted to a bam file:

$ /path/to/samtools view -Sbu -F 4 {SampleName}.sam | \

/path/to/samtools sort – {SampleName}.sort

Index the bam file:

$ /path/to/samtools index {SampleName}.sort.bam

At this time, any unaligned reads are also removed.

Samtools can be obtained from http://www.htslib.org/.

Readgroup Creation:

PicardTools is used to add readgroups to the files. These are a requirement for local

realignment with GATK, and for SNP calling with FreeBayes. For later analysis, it is

useful if each sample have a different sample name (RGSM) and readgroup ID (RGID),

http://bio-bwa.sourceforge.net/
http://www.htslib.org/

55

since Freebayes (our SNP caller) uses the readgroup ID to differentiate samples. I used

the library number as the readgroup ID.

PicardTools is available at https://broadinstitute.github.io/picard/, and can be run using
$ java -jar /path/to/picard AddOrReplaceReadGroups \

INPUT={SampleName}.sort.bam \

OUTPUT={SampleName}.sort.rg.bam \

RGID={ReadGroupID} \

RGLB={ReadGroupLibrary} \

RBPL={ReadGroupSequencingPlatform} \

RGPU={ReadGroupRunBarcode} \

RGSM={ReadGroupSampleName} \

CREATE_INDEX=true

RGLB, RBPL, RGPU, and RGSM are required for this tool to run.

RGID needs to be different for each library.

Local Realignment:

Local realignment is carried out using the Genome Analysis Toolkit (GATK, available at

https://software.broadinstitute.org/gatk/). The first step in this process is to locate targets

for local realignment using:

$ java -jar /path/to/GATK -T RealignerTargetCreator \

-R {reference}.fasta \

-I {SampleName}.sort.rg.bam \

-o {SampleName}.sort.rg.intervals

Following this, local realignment can be run using:

$ java -jar /path/to/GATK -T IndelRealigner \

-R {reference}.fasta \

-I {SampleName}.sort.rg.bam \

-targetIntervals {SampleName}.sort.rg.intervals \

-o {SampleName}.sort.rg.ra.bam \

-dt NONE \

--maxReadsForRealignment 200000

SNP Calling:

Set up an input list of files using:

$ ls -1 /path/to/files/*SSL*.rg.ra.bam > {RunID}.txt

$ ls -1 /path/to/files/*Pool*.rg.ra.bam >> {RunID}.txt

https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/

56

Or whatever identifier you used to differentiate PLs and SSLs. The important thing is

that this file list all SSLs, followed by all PLs.

Call FreeBayes using:

$ /path/to/freebayes/freebayes -L {RunID}.txt \

-p 1 -f /path/to/reference/{reference}.fasta \

-v {RunID}_SNPs.vcf --use-best-n-alleles 2 \

--min-repeat-entropy 1 --no-partial-observations \

--min-alternate-fraction 0.05

--min-alternate-

fraction

Should be set to 1/poolsize or lower.

This step may take a while, and while running, may look like it isn’t doing anything.

FreeBayes can be found at https://github.com/ekg/freebayes.

SNP Filtering:

Before running SNP filtering, it may be necessary to trim off one or more columns from

the VCF file if one sample was not called at a majority of positions; if a single sample is

not called at a particular position, the variant at that position will be discarded, so a single

sample uncalled (or at low depth) at a majority of positions can result in no data making

it through the filtering step. To determine if a column needs to be removed, look at your

VCF file in Excel, and see if there are any columns that are periods (“.”) for the majority

of rows. Removing the column can also be done in Excel, but you need to be careful

because Excel likes to add quotes when it saves files with commas in the cells, as do most

spreadsheet editors I’ve found.

If desired, sample depth can be assessed using the GATK DepthOfCoverage tool (see

https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_

tools_walkers_coverage_DepthOfCoverage.php for instructions). This tool takes a

similar amount of time to SNP calling.

SNP filtering is accomplished by use of a custom python script, which can be run with

the command:

$ python /path/to/CallHap/CallHap_VCF_Filt.py \

-i {RunID}_SNPs.vcf -o {RunID}_d600q20_Haps.vcf \

-O {RunID}_d600q20_Pools.vcf -n <number of SSLs> \

-N <number of Pools> -d 600 -q 20 -p 20

-i The input VCF file from FreeBayes

-o The output haplotypes file, containing haplotypes found in the

SSLs

https://github.com/ekg/freebayes
https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_tools_walkers_coverage_DepthOfCoverage.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_tools_walkers_coverage_DepthOfCoverage.php

57

-O The output Pool SNP frequencies file, containing frequency of

the more common allele in each pool
-n The number of SSLs in the input file

-N The number of Pools in the input file

-d, --minDepth This option sets the minimum read depth that must be present

at a position in ALL libraries in order for that position to be

considered as a variant. It should be set based on the number

of individuals in a PL. For haploid sequence, a depth of 15 per

individual in the pool is recommended (Sims et al., 2014), so

that for a pool of 20 individuals, a depth of 300 is required at a

site to be able to call variants.
-q, --minQual Controls the minimum PHRED-scaled variant quality needed

to use a variant. Mostly useful for filtering out super-low

quality variants, but can be set higher as necessary. -p is the

number of individuals in each pool.
--minCallPrev Controls the maximum allowable error in SSLs for a variant to

be called. It can range from 1 (all reads in each SSL need to

have the same identity) to 0.5 (Up to half the reads in a SSL

can have a different identity). At a setting of 1, some real

SNPs could be removed based on unavoidable errors in the

SSLs, while at a setting of 0.5, confidence in the identity call

for SSLs, and thus in the identity of haplotypes, will be

significantly decreased. I set this parameter at a default of 0.9,

to allow for some sequencing error in the SSLs while still

maintaining a high accuracy of SSL identity calls.
--minSnpPrev Coupled with poolSize, this option controls how much of a PL

must be the alternate identity for a SNP to be at that position

when there is no variation in the SSLs. The value is a positive

floating-point decimal, which gets multiplied by 1/poolSize to

yield the proportion of reads that must be of a different identity

in a PL to yield a variant. At a value of zero, all positions

would be called as variants if there was any variation in a PL.

I set this at a default value of 0.75 in order to allow for some

error in low-frequency haplotypes, while removing the

majority of low-frequency sequencing errors from

consideration.
--indelDist How far away from indels a variant should be for use.

IndelDist takes an integer value greater than 0; at a value of 0,

distance from an indel will not be considered as a filter. I set

this at a relatively conservative value of 100 (the length of my

raw sequencing reads) as being the maximum distance at

which the presence of an indel could have any effect on variant

discovery.

58

It is recommended to run this program with different sets of parameters to determine

what the optimum parameters will be for a particular run.

Haplotype Calling:

Before running this step, check how many cores are available on the system you’re using

with htop. Make sure you don’t overload the system you’re working on; don’t set -t to

higher than the number of available cores, and don’t take up all the cores on the machine.

Haplotype calling can be run using:

$ python /path/to/CallHap/CallHap_HapCallr.py \

--inputHaps {RunID}_d250q20_Haps.vcf \

--inputFreqs {RunID}_d250q20_Pools.vcf \

-o {RunID} -p 20 -t 5 -l 2 --numRandom 100 –numTopRSS 3

--inputHaps The haplotypes file from SNP filtering

--inputFreqs The Pools file from SNP filtering

-o A unique output prefix for this run of haplotype caller

-p The number of individuals in each pool

-t The number of threads to use during processing

-l The number of times to iterate across the SNPs within each order

-r How high a residual should be able to exist after adding a SNP,

and is used to defer processing of a SNP where the residual

doesn’t reduce enough to another iteration.
--dropFinal A flag which pairs with -r to remove SNPs with a high residual

entirely at the end if they don’t reduce the residual enough. May

not work with current random ordering algorithm; don’t use for

now.
--genpop A flag that instructs CallHap to generate genpop output

--structure A flag that instructs CallHap to generate structure formated

output
--numRandom Controls how many psudo-random orderings of SNPs to use, and

should be a value greater than zero. I set this value at 100 as a

compromise between run time and increased chance of finding

the correct solution; in practice, this value should be set based on

the number of starting haplotypes relative to the number of SNPs

present. If the number of starting haplotypes is close to the

number of SNPs, this value can be low; the maximum number of

haplotypes in the network is one more than the number of SNPs.

However, if the number of SNPs is greater than the number of

59

haplotypes, more attempts may be needed to help resolve the best

network topology.
--numTopRSS This option just influences how many RSS values down are

processed for the final output solutions, and should be an integer

greater than zero. I set it at a value of 3 so I could examine the

higher RSS value solutions.

This program generates four to six output file per solution output (within the minimum

number of RSS values):

• A NEXUS file (RunID_solNum_haps.nex) for network phylogeny creation; PopART

(http://popart.otago.ac.nz/index.shtml) works fairly well. I’ve been using the TCS

algorithm.

• A VCF file (RunID_solNum_PredFreqs.vcf) containing the estimated SNP

frequencies based on the estimated haplotype frequencies, and the per-SNP average

residuals in the INFO field

• A CSV file (RunID_solNum_freqs.csv) containing the per-pool haplotype

frequencies and RSS values for each pool.

• A CSV file (RunID_solNum_Regression.csv) containing paired observed and

predicted SNP frequencies from the Least Squared algorithm.

• (Optional): A Structure formatted file (RunID_solNum_iterNum.str) containing the

expanded haplotype frequencies

• (Optional): A Genpop file containing the haplotype frequencies for use in Adigenet.

In addition, outputs are generated describing the original haplotypes network

(RunID_Initial.nex), the unique haplotypes network (RunID_Unique.nex), raw topologies

observed from each random order (RunID_RAW.csv), the frequency of each unique

topology generated (RunID_topologies.csv), the frequency of occurrence for each

haplotype found in any random order (RunID_summary.csv).

In terms of population-genetics analysis, haplotypes should be treated as independent

alleles at a single locus.

http://popart.otago.ac.nz/index.shtml

60

Common Errors:

Problem Solution

Quick-start pipeline produces empty files Check that input files defined in the

preconfig exist

Multiple best-RSS solutions If one occurs more frequently than the

other, use that one.

If both occur equally, check to see if the

network phylogenies for each solution

look the same, and if the generated

haplotype frequencies look the same. If

the generated haplotype frequencies are

identical, it doesn’t matter which

haplotype is actually present.

If generated haplotype frequencies differ,

create non-biologically relevant pools

containing the same DNA samples, but

shuffled in new ways (perhaps by using

individual 1 from each population as one

pool, individual 2 from each population as

a second, and so on).

61

Appendix H: CallHap Programs

File structure

CallHap_VCF_Filt.py

CallHap_HapCallr.py

Modules

Modules/CallHap_LeastSquares.py

Modules/General.py

Modules/IO.py

Modules/VCF_parser.py

Modules/parallel.py

62

CallHap_VCF_Filt.py

#!/usr/bin/env python

CallHap_VCF_Filt.py

By Brendan F. Kohrn

3/20/2017

This is the VCF filter used by the CallHap pipeline.

import numpy as np

from argparse import ArgumentParser

import time

from Modules.VCF_parser import *

from Modules.IO import *

parser = ArgumentParser()

parser.add_argument(

"-i","--inVCF",

action="store",

dest="inFile",

help="The input VCF file to be filtered. All SSLs should be grouped \

together in the first columns of the VCF, and all pools grouped \

together afterwards, as in 'SSL1, SSL2, SSL3, ..., SSLN, Pool1, \

Pool2, Pool3, ..., PoolM'. ",

required=True

)

parser.add_argument(

"-o", "--outHaps",

action="store",

dest="outHaps",

help="A name for the output haplotypes VCF file." ,

required=True

)

parser.add_argument(

"-O", "--outPools",

action="store",

dest="outPools",

help="A name for the output pools VCF file. ",

required=True

)

parser.add_argument(

"-n", "--numSamps",

action="store",

dest="numSamps",

type=int,

help="The number of SSLs in your input VCF file",

required=True

)

parser.add_argument(

"-N", "--numPools",

action="store",

dest="numPools",

type=int,

help="The number of pools in your input VCF file",

required=True

)

parser.add_argument(

"-d", "--minDepth",

action="store",

dest="minDepth",

63

type=int,

help="The minimum depth to process a line, and the minimum average depth \

to process a column. ",

default = 500

)

parser.add_argument(

"--minCallPrev",

action="store",

dest="minCallPrev",

type=float,

help="The percentage of reads that must be of a given identity in a SSL \

to have that position be good. ",

default=0.9

)

parser.add_argument(

"--minSnpPrev",

action="store",

dest="minSnpPrev",

type=float,

 help="The percent of a single individuals worth of reads that must be of a\

given idetity to call a position as polymorphic based on pool \

samples",

default = 0.75

)

parser.add_argument(

"-p", "--poolSize",

action="store",

dest="poolSize",

type=int,

help="the number of individuals in each pooled library. ",

required=True

)

parser.add_argument(

"-q", "--minQual",

action="store",

dest="minQual",

type=int,

help="The minimum quality a given variant call must have to be processed.",

default=100

)

parser.add_argument(

"--reportInterval",

action="store",

dest="rptInt",

type=int,

help="Report progress at this number of lines",

default=1000

)

parser.add_argument(

"--dropLowDepth",

action="store_true",

dest="dropLow",

help="Automatically drop any samples with an average depth under the \

minimum depth. "

)

parser.add_argument(

"--indelDist",

action="store",

dest="indelDist",

default=100,

64

help="How far away from indels to make SNPs. Defaults to 100"

)

o = parser.parse_args()

print("Running CallHap VCF filter on %s at %s" % (time.strftime("%d/%m/%Y"),

time.strftime("%H:%M:%S")))

pyCommand = "python CallHap_VCF_Filt.py --inVCF %s --outHaps %s " % (

o.inFile, o.outHaps

)

pyCommand += "--outPools %s --numSamps %s --numPools %s --minDepth %s " % (

o.outPools, o.numSamps, o.numPools, o.minDepth

)

pyCommand += "--minCallPrev %s --minSnpPrev %s --poolSize %s --minQual %s" % (

o.minCallPrev, o.minSnpPrev, o.poolSize, o.minQual

)

print("Command = %s" % pyCommand)

print("\nOpening files...")

Open input VCF file

inVCF = vcfReader(o.inFile)

Open output files

outHaps = open(o.outHaps, 'wb')

outPools = open(o.outPools, 'wb')

Write command into header lines of both output files

outHaps.write("##Command=\"%s\"" % pyCommand)

outPools.write("##Command=\"%s\"" % pyCommand)

Check average depth of each column in input

print("Checking depth of input columns...")

depths = [0. for x in xrange(o.numSamps + o.numPools)]

lines = 0

goodDepth = [True for x in xrange(o.numSamps + o.numPools)]

lineChekcer = []

goodVarCtr = 0

Determine which columns have (on average) a good enough depth to pass the

depth filter

for line in inVCF.lines:

lineDPs = line.getData("DP","a")

for iter1 in xrange(o.numSamps + o.numPools):

if np.isnan(float(lineDPs[iter1])) == True:

depths[iter1] += 0.

else:

depths[iter1] += float(lineDPs[iter1])

lines += 1

for iter1 in xrange(o.numSamps + o.numPools):

if depths[iter1]/lines >= o.minDepth:

goodDepth[iter1] = True

else:

goodDepth[iter1] = False

vcfNames = inVCF.getNames()

Print warnings about inadequate depth

if False in goodDepth:

badColumns = [x for x in range(len(goodDepth)) if goodDepth[x] == False]

for badIter in badColumns:

print("\tWarning: Sample %s is has too low of a depth (%s)" %

(vcfNames[badIter], depths[badIter]/lines))

If requested, automatically drop these columns

if o.dropLow:

print("; skipping\n")

65

else:

print("\n")

else:

print("\tAll columns have greater than minimum average depth. ")

If dropping low depth columns has not been requested, reset goodDepth checker

if not o.dropLow:

goodDepth = [True for x in xrange(o.numSamps + o.numPools)]

Write column labels to both output files

outHaps.write(

"\n#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s" % (

"\t".join(

[vcfNames[x] for x in xrange(0,o.numSamps)

if goodDepth[x] == True]

))

)

outPools.write(

"\n#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s" % (

"\t".join([vcfNames[x] for x in xrange(o.numSamps,

o.numSamps+o.numPools)

if goodDepth[x] == True])

)

)

print("\nStarting analysis of lines...")

lineCounter = 0

indelLocs = []

outHapsLines = []

outPoolsLines = []

outLinesPoss = []

for line in inVCF.lines:

Print periodic progress reports

if lineCounter % o.rptInt == 0 and lineCounter > 0:

print("%s lines processed..." % lineCounter)

print(line.getData("pos"))

badReasons = [x[1] for x in lineChekcer]

print("\nReport:")

print("%s lines processed" % lineCounter)

print("%s lines passing initial filters" %

[x[0] for x in lineChekcer].count(True))

print("\t%s good varients" % goodVarCtr)

print("%s lines failing initial filters" %

[x[0] for x in lineChekcer].count(False))

print("\t%s incomplete coverage" %

badReasons.count("incomplete coverage"))

print("\t%s low depth" % badReasons.count("low depth"))

print("\t%s too many differences between ref and one alt" %

badReasons.count("too many differences between ref and one alt"))

print("\t%s different differences between two alts and the ref" %

badReasons.count("Different differences between two alts and the

ref"))

print("\t%s unequal ref and alt lengths" %

badReasons.count("unequal ref and alt lengths"))

print("\t%s alt longer than 1 with ref length of 1" %

badReasons.count("alt longer than 1 with ref length of 1"))

print("\t%s Low quality variant call" %

badReasons.count("low quality SNP call"))

lineCounter += 1

Retrieve basic information about this line

66

pos = line.getData("pos")

lineRefCounts = line.getData("RO","a")

lineDPs = line.getData("DP","a")

useLine = True

Check that there is depth in all samples for this line

if np.nan in lineDPs:

lineChekcer.append((False, "incomplete coverage", pos))

useLine = False

Check that this line passes the quality filter

elif float(line.getData("qual")) < o.minQual:

lineChekcer.append((False, "low quality SNP call", pos))

useLine = False

Check that all used columns in this line have adequate depth

elif False in [

True if int(lineDPs[x]) >= o.minDepth or goodDepth[x] == False

else False for x in xrange(len(lineDPs))

]:

lineChekcer.append((False, "low depth", pos))

 useLine = False

Check that the length of the reference is 1

elif len(line.getData("ref")) > 1:

If the length of the reference is greater than 1, check that the

length of the alt matches the length of the reference

And that all alt alleles are the same length

if (

max([len(x) for x in line.getData("alt")]) == len(line.getData("ref"))

and len(set([len(y) for y in line.getData("alt")])) <= 1

):

altValues = line.getData("alt")

refValue = line.getData("ref")

newAlt = []

diffIdxs = []

If ref and alt alleles are the same length, check that there is

only one difference between them

for altValue in altValues:

numDiffs = 0

diffIdx = []

for diffCounter in xrange(len(altValue)):

if refValue[diffCounter] != altValue[diffCounter]:

numDiffs += 1

diffIdx.append(diffCounter)

If there is more than one difference between ref and alt

alleles, discard the line

if numDiffs > 1:

if useLine == True:

lineChekcer.append(

(False,

"too many differences between ref and one alt",

pos)

)

useLine = False

else:

Calculate which base pairs are different between this alt

and the reference

diffIdxs.append(diffIdx[0])

newAlt.append(altValue[diffIdx[0]])

 # Check that all alts have the same base pair different from the

reference

if len(set(diffIdxs)) == 1:

67

If they do, change the ref and alt alleles, and the position

accordingly

 line.setElmt("pos", line.getData("pos") + diffIdx[0])

line.setElmt("ref", refValue[diffIdxs[0]])

line.setElmt("alt", newAlt)

Otherwise, discard the line

else:

useLine = False

lineChekcer.append(

(False,

"Different differences between two alts and the ref",

pos)

)

Keep track of this location as the location of an indel

indelLocs.append(int(line.getData("pos")))

else:

If ref and alt are different lengths, discard the line

useLine = False

lineChekcer.append((False, "unequal ref and alt lengths", pos))

indelLocs.append(int(line.getData("pos")))

Check that the length of the alt allele is 1

elif max([len(x) for x in line.getData("alt")]) > 1:

If not, discard the line

lineChekcer.append(

(False, "alt longer than 1 with ref length of 1", pos)

)

useLine = False

Keep track of this location as the location of an indel

indelLocs.append(int(line.getData("pos")))

if useLine == True:

If this line has not been discarded yet,

lineChekcer.append([True, "good line", pos])

Count alternate alleles for the line

lineAltCounts = [[x] for x in line.getData("AO", "a")]

sampIDs = []

conflicted = False

monomorphic = False

Determine the identity (Ref/Alt) of each sample (SSL) in this line

for sampIter in xrange(o.numSamps):

if goodDepth[sampIter] == True:

sampTest = [int(lineRefCounts[sampIter])]

sampTest.extend([int(x) for x in lineAltCounts[sampIter]])

maxIter = None

for iter1 in xrange(len(sampTest)):

if maxIter == None:

maxIter = iter1

elif sampTest[iter1] > sampTest[maxIter]:

maxIter = iter1

sampIDs.append(maxIter)

Test if there are no reads in any of the identities for this

sample/line

if sum(sampTest) == 0:

if conflicted == False:

lineChekcer[-1].append(

"conflicted because sum sampTest = 0 (line 167)"

)

conflicted = True

Test if the proportion of the most common identity in this

sample/line is high enough to reliably call

elif float(sampTest[maxIter])/sum(sampTest) < o.minCallPrev:

68

if conflicted == False:

lineChekcer[-1].append(

"conflicted because of minCallPrev (line 170)"

)

conflicted = True

If no conflicts exist

if conflicted == False:

Figure out the reference allele

refAllele = None

altAllele = None

for iter1 in [0, 1, 2]:

if refAllele == None:

refAllele = iter1

elif sampIDs.count(iter1) > sampIDs.count(refAllele):

altAllele = refAllele

refAllele = iter1

elif altAllele == None:

altAllele = iter1

elif sampIDs.count(iter1) > sampIDs.count(altAllele):

altAllele = iter1

Calculate ref allele frequency in each pool

poolFreqs = []

for iter1 in xrange(o.numPools):

if goodDepth[o.numSamps + iter1] == True:

if refAllele == 0:

poolFreqs.append(

float(lineRefCounts[o.numSamps + iter1])/

int(lineDPs[o.numSamps + iter1])

)

else:

poolFreqs.append(float(

lineAltCounts[o.numSamps + iter1][refAllele - 1])/

int(lineDPs[o.numSamps + iter1]))

monomorphicSamps = False

polymorphicPools = False

Check if locus is monomorphic in single samples

if sampIDs.count(refAllele) == len(sampIDs):

monomorphicSamps = True

lineChekcer[-1].append("monomorphicSamps")

Check if sample is polymorphic in pools

if o.numPools > 0:

if min(poolFreqs) <= 1. - (o.minSnpPrev/o.poolSize):

polymorphicPools = True

lineChekcer[-1].append("polymorphicPools")

If either SSLs are polymorphic or SSLs are monomorphic and Pools

are polymorphic, keep line

if monomorphicSamps==False or (polymorphicPools == True and

monomorphicSamps == True):

goodVarCtr += 1

lineRef = line.getData(

"ref" if refAllele == 0 else "alt")[0 if refAllele == 0

else refAllele - 1]

lineAlt = line.getData(

"ref" if altAllele == 0 else "alt")[0 if altAllele == 0

else altAllele - 1]

linePos = line.getData("pos")

lineChrom = line.getData("chrom")

lineQual = line.getData("qual")

69

outHapsLines.append(

"\n%s\t%s\t.\t%s\t%s\t%s\t.\t.\tGT\t%s" % (lineChrom,

linePos,

lineRef,

lineAlt,

lineQual,

"\t".join(["0" if x == refAllele else "1"

for x in sampIDs]))

)

outPoolsLines.append(

"\n%s\t%s\t.\t%s\t%s\t%s\t.\t.\tRF\t%s" % (lineChrom,

linePos,

lineRef,

lineAlt,

lineQual,

"\t".join([str(x) for x in poolFreqs]))

)

outLinesPoss.append(int(line.getData("pos")))

Check all variants located so far for proximity to indels

finGoodVars = 0

for outIter in xrange(len(outLinesPoss)):

currPos = outLinesPoss[outIter]

useVar = True

indelIter = 0

indelPos = 0

while indelPos <= currPos + o.indelDist and indelIter < len(indelLocs):

indelPos = indelLocs[indelIter]

if indelPos > currPos and indelPos - 10 < currPos:

useVar = False

elif indelPos < currPos and indelPos + 10 > currPos:

useVar = False

elif indelPos == currPos:

useVar = False

indelIter += 1

Write output files

if useVar == True:

outHaps.write(outHapsLines[outIter])

outPools.write(outPoolsLines[outIter])

finGoodVars += 1

outHaps.close()

outPools.close()

Create Nexus output

finOutToNex,finOutNames = toNP_array(o.outHaps,"GT")

if finOutToNex.shape[0] != 0:

NexusWriter(

[vcfNames[x] for x in xrange(0,o.numSamps) if goodDepth[x] == True],

finOutToNex,

finOutToNex.shape[0],

o.outHaps[:-4],

"",

o.outHaps

)

#output report

badReasons = [x[1] for x in lineChekcer]

print("\nFinal report:")

print("End time = %s %s" %

(time.strftime("%d/%m/%Y"),time.strftime("%H:%M:%S")))

print("%s lines processed" % lineCounter)

70

print("%s lines passing initial filters" %

[x[0] for x in lineChekcer].count(True))

print("\t%s good variants" % goodVarCtr)

print("\t%s not within %s bp of an indel" % (finGoodVars,o.indelDist))

print("%s lines failing initial filters" %

[x[0] for x in lineChekcer].count(False))

print("\t%s incomplete coverage" % badReasons.count("incomplete coverage"))

print("\t%s low depth" % badReasons.count("low depth"))

print("\t%s too many differences between ref and one alt" %

badReasons.count("too many differences between ref and one alt"))

print("\t%s different differences between two alts and the ref" %

badReasons.count("Different differences between two alts and the ref"))

print("\t%s unequal ref and alt lengths" %

badReasons.count("unequal ref and alt lengths"))

print("\t%s alt longer than 1 with ref length of 1" %

badReasons.count("alt longer than 1 with ref length of 1"))

print("\t%s Low quality variant call" %

badReasons.count("low quality SNP call"))

71

CallHap_HapCallr.py

#!/bin/python

CallHap_HapCallr V. 1.01.00

A program for determining full-genome haplotype frequencies in pooled DNA

samples based on SNP calls and limited known haplotypes.

Takes as input a pair of VCF files describing haplotype identity and SNP

frequency, as generated by CallHap VCF_Filt

Import necessary modules

import numpy as np

from argparse import ArgumentParser

import time

import sys

import random

from multiprocessing import Pool

from Modules.VCF_parser import *

from Modules.CorrHaps import *

from Modules.CallHap_LeastSquares import *

from Modules.General import *

from Modules.IO import *

from Modules.parallel import *

progVersion = "V1.01.00"

def MakeHaps(inSnpSets, inPoolSize, inOldHaps, inInitialFreqs, InitialHaps):

Module to create new haplotypes using input SNP sets and haplotype set.

Figure out what the less common identity for this SNP is in the current

haplotype set

snpIDs = [inOldHaps[x][inSnpSets[0]] for x in xrange(len(inOldHaps))]

numSnps = len(inOldHaps[0])

commonCounter = [snpIDs.count(0), snpIDs.count(1)]

if commonCounter[0] > commonCounter[1]:

rareAllele=1

else:

rareAllele=0

Figure out which haplotypes contain the less common variant

containingHaps = [True if inOldHaps[x][inSnpSets[0]] == rareAllele

else False for x in xrange(len(inOldHaps))]

if True in containingHaps: # If this SNP is in a known haplotype

Determine which SNPs can be legally changed in each haplotype

legalSnpsByHap = ValidSnpsFromPhylogeny(inOldHaps)

Check which haplotypes the target SNP can be legally changed in

These are the ones that could be used to create new source haplotypes

usableHaps = [True if inSnpSets[0] in legalSnpsByHap[hap] else False

for hap in xrange(len(inOldHaps))]

else: # If this SNP is not in a known haplotype

All haplotypes can be used to create new source haplotypes.

usableHaps = [True for x in containingHaps]

Initialize lists of possible haplotype sets

possibleFreqs = [inInitialFreqs[:]]

possibleHaps = [inOldHaps]

initialHaps = len(inOldHaps)

freqSet = 0

testStop = len(possibleFreqs)

loopCtr1 = 0

while there are still haplotypes to try adding this SNP to

72

while freqSet < testStop:

loopCtr1 += 1

baseFreq = []

for freq in xrange(len(possibleFreqs[freqSet])):

if possibleFreqs[freqSet][freq] > 0 and usableHaps[freq] == True:

baseFreq.append(freq)

newFreq = 0

loopCtr2 = 0

while newFreq < len(baseFreq):

loopCtr2 += 1

if loopCtr2 > 1000:

 raise Exception(

"Too many iterations at line 342 with baseFreq = %s" %

len(baseFreq)

)

if baseFreq[newFreq] > initialHaps:

if newFreq == len(baseFreq) - 1:

Change the original frequency set and haplotypes set

possibleFreqs[freqSet].append(1)

possibleHaps[freqSet].append(

np.copy(possibleHaps[freqSet][baseFreq[newFreq]])

)

for iter1 in inSnpSets:

possibleHaps[freqSet][-1][iter1] = 1 -

possibleHaps[freqSet][-1][iter1]

else:

make a copy of the original frequency set and haplotypes

set

possibleFreqs.append([x for x in possibleFreqs[freqSet]])

possibleHaps.append([np.copy(x)

for x in possibleHaps[freqSet]])

change the copy

possibleFreqs[-1].append(1)

possibleHaps[-1].append(

np.copy(possibleHaps[freqSet][newFreq])

)

for iter1 in inSnpSets:

possibleHaps[-1][-1][iter1] = 1 - possibleHaps[-1][-

1][iter1]

else:

if newFreq == len(baseFreq) - 1:

Change the original frequency set and haplotypes set

possibleFreqs[freqSet].append(1)

possibleHaps[freqSet].append(

np.copy(possibleHaps[freqSet][baseFreq[newFreq]])

)

for iter1 in inSnpSets:

possibleHaps[freqSet][-1][iter1] = 1 -

possibleHaps[freqSet][-1][iter1]

if possibleFreqs[freqSet][baseFreq[newFreq]] == 0:

possibleFreqs[freqSet].pop(baseFreq[newFreq])

possibleHaps[freqSet].pop(baseFreq[newFreq])

else:

make a copy of the original frequency set and haplotypes

set

possibleFreqs.append([x for x in possibleFreqs[freqSet]])

73

possibleHaps.append([np.copy(x)

for x in possibleHaps[freqSet]])

change the copy

possibleFreqs[-1].append(1)

possibleHaps[-1].append(

np.copy(possibleHaps[freqSet][baseFreq[newFreq]])

)

for iter1 in inSnpSets:

possibleHaps[-1][-1][iter1] = 1 - possibleHaps[-1][-

1][iter1]

if (possibleFreqs[freqSet][baseFreq[newFreq]] == 0

and baseFreq[newFreq] >= InitialHaps):

possibleFreqs[freqSet].pop(baseFreq[newFreq])

possibleHaps[freqSet].pop(baseFreq[newFreq])

newFreq += 1

freqSet += 1

return(possibleHaps)

def CallHapMain(OrderNumber, o):

print("Starting Random Order %s/%s" % (str(OrderNumber + 1),

str(o.numRand)))

Load haplotypes

KnownHaps, KnownNames = toNP_array(o.knownHaps, "GT")

Invert haplotypes so that ref allele is 1

KnownHaps = invertArray(KnownHaps)

Find unique haplotypes

inHapArray, UniqueNames = UniqueHaps(KnownHaps, KnownNames)

Count number of unique haplotypes

numHapsInitial = len(UniqueNames)

Count number of SNPs

numSNPs = inHapArray.shape[0]

Add "dummy" SNP to ensure haplotype frequencies sum correctly

inHapArray = ExtendHaps(inHapArray)

Store input haplotypes in bestArray

bestArray = np.copy(inHapArray)

Load SNPs

SnpFreqs, poolNames = toNP_array(o.inFreqs, "RF")

Add "dummy" SNP to ensure haplotype frequencies sum correctly

SnpFreqs = ExtendHaps(SnpFreqs)

Count number of pools present

numPools = len(poolNames)

Count number of haplotypes again to save initial number of known

haplotypes for later

May not be needed in random method

numHapsInitial1 = len(UniqueNames)

Set baseNumHapSets to keep track of source haplotype set for each created

haplotype set

baseNumHapSets = 1

Convert haplotypes and SNPs arrays to decimal format to prevent rounding

errors

bestArray = npToDecNp(bestArray)

SnpFreqs = npToDecNp(SnpFreqs)

Find base SLSq

Save base RSS

baseSLSq = []

Save base haplotype frequencies

baseFreqs = []

save base residuals

74

baseResiduals = [[]]

Calculate RSS for each pool

for poolIter in xrange(numPools):

tmpSol = Find_Freqs(bestArray, SnpFreqs[:,poolIter], o.poolSize)

baseSLSq.append(tmpSol[1])

baseFreqs.append(tmpSol[0])

baseResiduals[0].append(

np.array([[x] for x in list(residuals(tmpSol[0][0],bestArray,

SnpFreqs[:,poolIter],o.poolSize))])

)

Calculate total per SNP RSS values for all SNPs; method for deterministic

ordering

baseSnpResids = [sum([baseResiduals[0][pool][xSnp]

for pool in xrange(numPools)]) for xSnp in xrange(numSNPs)]

Find overall SNP frequency in SSLs; method for deterministic ordering

snpFreqsTotal = np.sum(bestArray, axis=1) < bestArray.shape[1]

Create random SNP ordering

snpCombins3 = [[x] for x in range(numSNPs)]

random.shuffle(snpCombins3)

snpCombins3 = [y for y in sorted(snpCombins3,

key = lambda x: snpFreqsTotal[x[0]], reverse = True)]

print("SNP Order %s/%s: \n%s" % (str(OrderNumber + 1),

str(o.numRand), snpCombins3))

#Find base average RSS value

baseRSS = sum(baseSLSq)/len(baseSLSq)

fullFreqs = [[0 for x in xrange(numHapsInitial)]]

for testIter in xrange(numHapsInitial):

for testIter2 in xrange(numPools):

if baseFreqs[testIter2][0,testIter] > 0:

fullFreqs[0][testIter] = 1

Break up haplotypes array into a list of arrays

potHapSets = [[np.copy(bestArray[:,x]) for x in xrange(numHapsInitial)]]

numHaps = [numHapsInitial]

AIC and RSS are used somewhat interchangeably as variable names

in this program at the moment, and I don't have the time to clean it up

right now. It will be cleaned up in the future

bestAIC = [baseRSS]

usedSnps = 0

Start adding SNPs

In the case of multiple iterations:

for iteration in xrange(o.numIterations):

Legacy line from when I was grouping SNPs based on correlation,

or residual, or frequency

for combin in snpCombins3:

Keep track of where in the list of SNPs I am so the user knows

something's happening

usedSnps += 1

Test if this SNP combination has any non-zero residuals

useCombin = False

for hapSetIter in xrange(baseNumHapSets):

for population in xrange(numPools):

if abs(round(

20*baseResiduals[hapSetIter][population][combin[0]]

)) > 0:

useCombin = True

If this SNP combination has non-zero residuals:

if useCombin:

75

newPotHapSets = []

potHapSetsAIC = []

sourceHapSet = []

newFullFreqs = []

Find options for adding this SNP set:

currentHapSet = 0

snpRes = []

for hapSet in potHapSets:

newPotHaps = MakeHaps(combin, o.poolSize, copy(hapSet),

fullFreqs[0], numHapsInitial)

SLSqs = []

Freqs = []

testAICList = []

maxRSSList = []

srcHap = []

Find the average SLSq for each pot hap set

newPotHaps2 = []

intermediate = []

for solverIter1 in xrange(len(newPotHaps)):

intermediate.append(

easyConcat(newPotHaps[solverIter1])

)

cleanedIntermediate = [x for x in intermediate

if not x is None]

 func = partial(massFindFreqs, inSnpFreqs=SnpFreqs,

p=o.poolSize)

result = []

for solverIter in xrange(len(cleanedIntermediate)):

result.append(func(cleanedIntermediate[solverIter]))

tmpSols = [x for x in result if not x is None]

Determine which solutions (and thus haplotypes) produce

an improvement in RSS value

testAICList = [x for x in xrange(len(tmpSols))

if tmpSols[x][2] <= bestAIC[currentHapSet]]

Keep track of the source haplotye set for these solutions

srcHap = [currentHapSet for x in xrange(len(testAICList))]

Calculate per SNP residuals to test if improvement was

enough to keep this SNPs solutions

newResiduals = []

changedResids = []

SnpResiduals = []

solIter = 0

for sol in tmpSols:

newFullFreqs.append(

[0 for x in xrange(len(sol[1][0][0]))]

)

for testIter in xrange(len(newFullFreqs[-1])):

for testIter2 in xrange(numPools):

if sol[1][testIter2][0,testIter] > 0:

newFullFreqs[-1][testIter] = 1

newResiduals.append(

np.array([[x]

for x in list(residuals(sol[1][testIter2][0],

np.concatenate([np.transpose(y[np.newaxis])

for y in newPotHaps[solIter]], axis=1),

SnpFreqs[:,testIter2],o.poolSize))])

)

Calculate per SNP RSS values

SnpResiduals.append(

76

[sum([newResiduals[poolIter][x]**2

for poolIter in xrange(numPools)])/numPools

for x in xrange(numSNPs)]

)

solIter += 1

snpRes1 = [SnpResiduals[x][combin[0]]

for x in xrange(len(tmpSols))]

if len(testAICList) > 0:

Filter to only the best solutions out of all proposed

solutions based on this haplotype set

Sort solutions better than starting RSS by RSS value,

from lowest to highest

testIndex = sorted(testAICList,

key=lambda x: tmpSols[x][2])

If no best solution for this SNP exists, the best

solution for this

if len(potHapSetsAIC) == 0:

testFreq = tmpSols[testIndex[0]][2]

If the best RSS from this solution is worse than the

best RSS so far proposed, use the best RSS so far

proposed

elif tmpSols[testIndex[0]][2] >= min(potHapSetsAIC):

testFreq = min(potHapSetsAIC)

Otherwise, use the best RSS value from this SNP

else:

testFreq = tmpSols[testIndex[0]][2]

If this RSS value represents an improvement, sort and

save solutions

if testFreq < bestAIC[currentHapSet]:

iter1 = 0

minAICIndex = []

continueLoop = True

Save all solutions (and thus potential haplotype

sets) that represent an improvement in RSS value

while (iter1 < len(testIndex) and

tmpSols[testIndex[iter1]][2] <= testFreq):

newPotHapSets.append(

copy(newPotHaps[testIndex[iter1]])

)

potHapSetsAIC.append(

tmpSols[testIndex[iter1]][2]

)

sourceHapSet.append(currentHapSet)

snpRes.append(snpRes1[testIndex[iter1]])

iter1 += 1

else:

minAICIndex = []

Next haplotype set

currentHapSet += 1

Check if the ending residual values for a SNP are too high

continueCheck = [False if snpRes[x] >= o.highResidual else True

for x in xrange(len(snpRes))]

Sort potential haplotype sets by RSS value

bestAICIdx = sorted(range(len(newPotHapSets)),

key=lambda x: potHapSetsAIC[x])

Filter solutions based on RSS values, keeping only the lowest

RSS values

if len(bestAICIdx) > 0 and True in continueCheck:

bestFreq = potHapSetsAIC[bestAICIdx[0]]

potHapSets = []

77

bestAIC = []

iter1 = 0

minCtr = 0

newSourceHap = []

potHapSetsMaxRSS = []

while iter1 < len(bestAICIdx):

if (potHapSetsAIC[bestAICIdx[iter1]] == bestFreq and

snpRes[bestAICIdx[iter1]] < o.highResidual):

minCtr += 1

potHapSets.append(

copy(newPotHapSets[bestAICIdx[iter1]])

)

bestAIC.append(potHapSetsAIC[bestAICIdx[iter1]])

newSourceHap.append(

sourceHapSet[bestAICIdx[iter1]]

)

iter1 += 1

fullFreqs = newFullFreqs[:]

sourceHapSet = newSourceHap[:]

bestRSS = bestFreq

numHaps = [len(x) for x in potHapSets]

Filter any solutions that made it through all SNPs. to only those

with the lowest AIC (this time, really is AIC value)

SLSqs = []

Freqs = []

finFullFreqs = []

SolutionHapSets = []

SolutionAICs = []

Remove unused haplotypes from each potential final hap set

intermediate = []

for solverIter1 in xrange(len(potHapSets)):

intermediate.append(easyConcat(potHapSets[solverIter1]))

cleanedIntermediate = [x for x in intermediate if not x is None]

func = partial(massFindFreqs, inSnpFreqs=SnpFreqs, p=o.poolSize)

result = []

for solverIter in xrange(len(cleanedIntermediate)):

result.append(func(cleanedIntermediate[solverIter]))

tmpSols = [x for x in result if not x is None]

for sol in tmpSols:

finFullFreqs.append([0 for x in xrange(len(sol[1][0][0]))])

for testIter in xrange(len(finFullFreqs[-1])):

for testIter2 in xrange(numPools):

if sol[1][testIter2][0,testIter] > 0:

finFullFreqs[-1][testIter] = 1

Calculate AIC values for each solution

SolutionAICs = [AIC_from_RSS(tmpSols[x][2],

sum(finFullFreqs[x]), numSNPs)

for x in xrange(len(tmpSols))]

Create solution haplotype sets with only haplotypes present in

initial haplotypes or with frequency in pools

Known haplotypes should be a subset of haplotypes with frequency in

the final solution, but this is just in case they aren't

SolutionHapSets = [[np.copy(potHapSets[x][y])

for y in xrange(len(finFullFreqs[x]))

if finFullFreqs[x][y] > 0 or y < numHapsInitial]

for x in xrange(len(tmpSols))]

If SNPs are being removed permenantly after the final iteration:

if o.dropFinal == True and iteration == o.numIterations - 1:

Figure out which SNPs to remove for each proposed solution

 78

 newResiduals = []

 snpsToRemove = []

 solIter = 0

 for sol in tmpSols:

 for testIter in xrange(len(newFullFreqs)):

 for testIter2 in xrange(numPools):

 newResiduals.append(

 np.array([[x] for x in list(

 residuals(sol[1][testIter2][0],

 np.concatenate([np.transpose(y[np.newaxis])

 for y in potHapSets[solIter]], axis=1),

 SnpFreqs[:,testIter2],o.poolSize)

)])

)

 SnpResiduals = [sum([newResiduals[poolIter][x]**2

 for poolIter in xrange(numPools)])

 for x in xrange(numSNPs)]

 snpsToRemove.append([])

 for snpRemovalIter in xrange(numSNPs):

 if SnpResiduals[snpRemovalIter] >= o.highResidual:

 snpsToRemove[-1].append(snpRemovalIter)

 solIter += 1

 else:

 snpsToRemove = [[] for x in xrange(len(tmpSols))]

 # Figure out which solution(s) has (have) the lowest AIC

 AIC_test_idx = sorted(range(len(SolutionAICs)),

 key = lambda x: SolutionAICs[x])

 finIndex = 0

 testFreq = SolutionAICs[AIC_test_idx[0]]

 iter1 = 0

 minAICIndex = []

 continueLoop = True

 # Figure out how many solutions to output

 while iter1 < len(AIC_test_idx) and continueLoop:

 if SolutionAICs[AIC_test_idx[iter1]] == testFreq:

 finIndex += 1

 else:

 continueLoop = False

 iter1 += 1

 # Start resetting base haplotype residuals

 baseResiduals = []

 # Output solutions

 newPotHapSets = []

 bestAIC = []

 if iteration == o.numIterations - 1:

 outputList = []

 for outputIdx in xrange(finIndex):

 if iteration == o.numIterations - 1:

 outputList.append([])

 # Create final haplotypes array

 finSolution = np.concatenate(

 [SolutionHapSets[

 AIC_test_idx[outputIdx]][x][np.newaxis].transpose()

 for x in xrange(len(

79

SolutionHapSets[AIC_test_idx[outputIdx]]

))]

, axis=1

)

Remove any SNPs that need removing

finSolution = np.delete(finSolution, snpsToRemove[outputIdx], 0)

Find (or make) haplotype names

myHapNames = []

newHapNumber = 1

for haplotypeIter in xrange(finSolution.shape[1]):

if haplotypeIter >= len(UniqueNames):

For new haplotypes, build a new haplotype name, keeping

track of iteration and new haplotype number

myHapNames.append(

"NewHap_%s.%s" % (str(iteration).zfill(2),

str(newHapNumber).zfill(2)))

newHapNumber += 1

else:

For known haplotypes, use the original haplotype name

myHapNames.append(UniqueNames[haplotypeIter])

Redo uniqueness of haplotypes in case removing a SNP merged two

haplotypes

finSolution, finNames = UniqueHaps(finSolution, myHapNames)

remove SNPs from SNP frequencies

finSNPs = np.delete(SnpFreqs,snpsToRemove[outputIdx],0)

Create decimal haplotype identifiers

myDecHaps = []

for haplotypeIter in xrange(finSolution.shape[1]):

myDecHaps.append(int("1"+"".join([str(int(x))

for x in finSolution[:, haplotypeIter]]),2))

if iteration == o.numIterations - 1:

outputList[-1].append(myDecHaps)

SLSqs = []

Freqs = []

predSnpFreqs = []

newResiduals = []

for poolIter in xrange(numPools):

tmpSol = Find_Freqs(finSolution, finSNPs[:,poolIter],

o.poolSize)

SLSqs.append(tmpSol[1])

Freqs.append(tmpSol[0])

Calculate residuals for this pool

newResiduals.append(

np.array([[x] for x in list(residuals(tmpSol[0][0],

finSolution,

finSNPs[:,poolIter],

o.poolSize))])

)

Calculate predicted SNP frequencies

predSnpFreqs = np.sum(finSolution * tmpSol[0][0],

axis = 1)/o.poolSize

if iteration == o.numIterations - 1:

outputList[-1].append(average(SLSqs))

baseResiduals.append(newResiduals[:])

Calculate per SNP RSS values for VCF output

 SnpResiduals = [float(sum([newResiduals[poolIter][x]**2

for poolIter in xrange(numPools)])[0])

80

for x in xrange(numSNPs-len(snpsToRemove[outputIdx]))]

bestAIC.append(sum(SLSqs)/len(SLSqs))

Save this haplotype set for the next iteration

newPotHapSets.append([np.copy(finSolution[:,x])

for x in xrange(finSolution.shape[1])])

Setup for next iteration

usedSnps = 0

numHapsInitial = len(myHapNames) # may need some fixing

UniqueNames = myHapNames[:] # may need some fixing

numHaps = [numHapsInitial for x in xrange(len(newPotHapSets))]

outPrefix = "%s_Iteration%s" % (o.outPrefix, iteration + 2)

potHapSets = newPotHapSets[:]

fullFreqs = [[1 for x in xrange(len(potHapSets[y]))]

for y in xrange(len(potHapSets))]

Go on to the next iteration

if iteration == o.numIterations - 1:

print("Finished Random Order %s/%s" % (str(OrderNumber + 1),

str(o.numRand)))

return(outputList)

if __name__ == "__main__":

Load options

parser = ArgumentParser()

parser.add_argument(

'-i','--inputHaps',

action="store",

dest="knownHaps",

help = "A VCF-formatted file containing the known haplotypes encoded \

in the GT field. GT must be present in the FORMAT field, and \

ploidy must be 1. ",

required=True

)

parser.add_argument(

'-p', '--poolsize',

action="store",

type=int,

dest="poolSize",

help="The number of individuals in each pool. ",

required=True

)

parser.add_argument(

'-f','--inputFreqs',

action="store",

dest="inFreqs",

help="A VCF-formatted file containing the input pool frequencies \

encoded in the RF field. RF must be present in the FORMAT \

field. ",

required=True

)

parser.add_argument(

'-o','--outPrefix',

action="store",

dest="outPrefix",

required=True,

help="A prefix for output file names. "

)

parser.add_argument(

"-v", "--version",

action="store_true",

dest="v",

81

help="Displays the version number and exits."

)

parser.add_argument(

'-t', '--processes',

type=int,

action="store",

dest="numProcesses",

default=None,

help="The number of processes to use. Should not be more than the \

number of cores on your CPU. Defaults to using the number of \

cores on your CPU. "

)

parser.add_argument(

'-l','--numIterations',

type=int,

action="store",

dest="numIterations",

default=1,

help="Number of iterations to run within each random ordering."

)

parser.add_argument(

'-r','--highResidual',

type=float,

action="store",

dest="highResidual",

default=100,

help="Cutoff value for delaying processing of a SNP until after all \

other SNPs have been processed"

)

parser.add_argument(

'--dropFinal',

action="store_true",

dest="dropFinal",

help="If after delaying processing on a SNP, the solution isn't \

improved by keeping it, drop the SNP. If absent, the SNP will \

be processed as normal at the end. "

)

parser.add_argument(

'--genpop',

action="store_true",

dest="genpopOutput",

help="Output a genpop file of the resulting haplotype frequencies. "

)

parser.add_argument(

'--structure',

action="store_true",

dest="strOutput",

help="Output a Structure formatted file of the resulting haplotype \

frequencies. "

)

parser.add_argument(

'--numRandom',

type=int,

action="store",

dest="numRand",

help="The number of random orders to use for haplotype creation. \

More orders will yield more accurate results, but will also \

take longer. "

)

parser.add_argument(

82

'--numTopRSS',

type=int,

action="store",

dest="topNum",

default=3,

help="The number of top RSS values you want to output files for. \

Increasing the size of this number may lead to a large number of \

outputs. "

)

o = parser.parse_args()

version output

if o.v:

print(progVersion)

exit()

Print initialization text

print("Running CallHap on %s at %s:" % (time.strftime("%d/%m/%Y"),

time.strftime("%H:%M:%S")))

CommandStr = "Command = python CallHap_HapCallr.py"

CommandStr += "--inputHaps %s " % o.knownHaps

CommandStr += "--inputFreqs %s " % o.inFreqs

CommandStr += "--poolSize %s " % o.poolSize

CommandStr += "--outPrefix %s " % o.outPrefix

CommandStr += "--processes %s " % o.numProcesses

CommandStr += "--numIterations %s " % o.numIterations

CommandStr += "--highResidual %s " % o.highResidual

if o.dropFinal:

CommandStr += "--dropFinal "

if o.genpopOutput:

CommandStr += "--genpop "

if o.strOutput:

CommandStr += "--structure "

CommandStr += "--numRandom %s " % o.numRand

CommandStr += "--numTopRSS %s" % o.topNum

print(CommandStr)

Set initial output prefix

outPrefix = "%s" % (o.outPrefix)

pool = Pool(processes=o.numProcesses, maxtasksperchild=500)

func = partial(CallHapMain, o=o)

funcIterable = range(o.numRand)

result = pool.map(func, funcIterable)

cleaned = [x for x in result if not x is None]

not optimal but safe

pool.close()

pool.join()

Get initial haplotypes / SNP frequencies

Load haplotypes

KnownHaps, KnownNames = toNP_array(o.knownHaps, "GT")

Invert haplotypes so that ref allele is 1

KnownHaps = invertArray(KnownHaps)

Find unique haplotypes

inHapArray, UniqueNames = UniqueHaps(KnownHaps, KnownNames)

Count number of unique haplotypes

numHapsInitial = len(UniqueNames)

Count number of SNPs

numSNPs = inHapArray.shape[0]

83

Add "dummy" SNP to ensure haplotype frequencies sum correctly

Write out starting nexus files for comparison to endpoints

NexusWriter(KnownNames, KnownHaps, numSNPs, o.outPrefix,

"INITIAL", o.knownHaps)

NexusWriter(UniqueNames, inHapArray, numSNPs, o.outPrefix,

"Unique1", o.knownHaps)

Load SNPs

finSNPs, poolNames = toNP_array(o.inFreqs, "RF")

Add "dummy" SNP to ensure haplotype frequencies sum correctly

finSNPs = ExtendHaps(finSNPs)

Count number of pools present

numPools = len(poolNames)

Convert haplotypes and snps arrays to decimal format to prevent rounding

errors

finSNPs = npToDecNp(finSNPs)

Output for random orders (this will get updated as I figure out sorting

and haplotype selection)

Output haplotypes for each random order, along with RSS values for those

haplotypes

rawOutput = open("%s_RAW.csv" % outPrefix, 'wb')

rawOutput.write("Ordering,Solution,RSS, Haplotypes")

for randIter in xrange(len(cleaned)):

for solIter in xrange(len(cleaned[randIter])):

rawOutput.write(

"\n%s,%s,%s,%s" % (

str(randIter),

str(solIter),

str(cleaned[randIter][solIter][1]),

",".join([str(x) for x in cleaned[randIter][solIter][0]])

)

)

rawOutput.close()

Output frequencies for each haplotype across all orders

This part will probably stay and be used in sorting haplotypes eventually

print("Creating summary outputs")

summaryOutput = open("%s_summary.csv" % outPrefix, 'wb')

summaryOutput.write("Haplotype,Frequency")

haplotypeCounter = {}

for randIter in xrange(len(cleaned)):

tmpCounter = {}

for solIter in xrange(len(cleaned[randIter])):

for hapIter in cleaned[randIter][solIter][0]:

if hapIter in tmpCounter.keys():

tmpCounter[hapIter] += 1.

else:

tmpCounter[hapIter] = 1.

for keyIter in tmpCounter.keys():

if keyIter in haplotypeCounter.keys():

haplotypeCounter[keyIter] += tmpCounter[

keyIter]/len(cleaned[randIter])

else:

haplotypeCounter[keyIter] = tmpCounter[

keyIter]/len(cleaned[randIter])

for keyIter in haplotypeCounter.keys():

summaryOutput.write(

"\n%s,%s" % (

84

str(keyIter), str(haplotypeCounter[keyIter] /len(cleaned))

)

)

summaryOutput.close()

Group solutions into unique solutions

print("Find unique topologies")

UniqueTopologies = []

Use sets for sorting to keep different oreders of the same haplotypes

from being called different topologies

UniqueTopoSets = []

UniqueTopoRSSs = []

countTopoOccurances = []

for randIter in xrange(len(cleaned)):

numSols = len(cleaned[randIter])

for solIter in xrange(numSols):

if set(cleaned[randIter][solIter][0]) not in UniqueTopoSets:

UniqueTopologies.append(cleaned[randIter][solIter][0])

UniqueTopoSets.append(set(cleaned[randIter][solIter][0]))

UniqueTopoRSSs.append(cleaned[randIter][solIter][1])

countTopoOccurances.append(1./numSols)

else:

countTopoOccurances[UniqueTopoSets.index(

set(cleaned[randIter][solIter][0])

)] += 1./numSols

topoCountsOutput = open("%s_topologies.csv" % outPrefix, 'wb')

topoCountsOutput.write("RSS,Occurances,Haplotypes")

Output counts for different topologies

for topoIter in xrange(len(UniqueTopologies)):

topoCountsOutput.write(

"\n%s,%s,%s" % (

UniqueTopoRSSs[topoIter],

countTopoOccurances[topoIter],

",".join([str(x) for x in UniqueTopologies[topoIter]])

)

)

topoCountsOutput.close()

Sort unique solutions by RSS value

Sort a list of pointers by RSS values they point to

This is a list of indexes to UniqueTopologies and UniqueTopoRSSs

 print("Sort by RSS")

RssPointers = sorted(range(len(UniqueTopoRSSs)),

key=lambda x: UniqueTopoRSSs[x])

Find the third best RSS value

Keep track of if which RSS value this is

whichBest = 1

bestRSS = UniqueTopoRSSs[RssPointers[0]]

currPointer = 1

while currPointer < len(RssPointers) and whichBest <= o.topNum:

if UniqueTopoRSSs[RssPointers[currPointer]] > bestRSS:

whichBest += 1

bestRSS = UniqueTopoRSSs[RssPointers[currPointer]]

currPointer += 1

Pull out the haplotype sets with one of the top three RSS values

For each haplotype set:

finTopos = []

finDecHaps = []

print("Extract solutions from best RSS values")

 85

 for convPointer in xrange(currPointer):

 # Convert haplotype set to list of numpy arrays

 finTopos.append(

 [DecHapToNPHap(UniqueTopologies[RssPointers[convPointer]][x])

 for x in xrange(len(UniqueTopologies[RssPointers[convPointer]]))]

)

 finDecHaps.append(

 [UniqueTopologies[RssPointers[convPointer]][x]

 for x in xrange(len(UniqueTopologies[RssPointers[convPointer]]))]

)

 ## For each converted haplotype set:

 ## Find best solution for this haplotype set

 ## Output this solution as all requested outputs

 print("Find haplotype frequencies and output files")

 for outTopoPtr in xrange(len(finTopos)):

 # Create final haplotypes array

 finSolution = np.concatenate(

 [finTopos[outTopoPtr][x][np.newaxis].transpose()

 for x in xrange(len(finTopos[outTopoPtr]))], axis=1

)

 # Find (or make) haplotype names

 myHapNames = []

 print("Outputing solution %s/%s" % (str(outTopoPtr + 1),

 str(len(finTopos))))

 print("Finding haplotype names...")

 for haplotypeIter in xrange(finSolution.shape[1]):

 if haplotypeIter >= len(UniqueNames):

 # For new haplotypes, build a new haplotype name, keeping track

 # of iteration and new haplotype number

 myHapNames.append("NewHap_%s" % (

 str(finDecHaps[outTopoPtr][haplotypeIter]))

)

 else:

 # For known haplotypes, use the original haplotype name

 myHapNames.append(UniqueNames[haplotypeIter])

 # If requested, generate a structure formatted file

 if o.strOutput:

 outFile = open("%s_%s.str" % (outPrefix, outTopoPtr), 'wb')

 # Generate the haplotype frequencies file

 outFile2 = open("%s_%s_freqs.csv" % (outPrefix, outTopoPtr), 'wb')

 outFile2.write("Population,")

 # Create decimal haplotype identifiers

 # Finish writing first line of haplotype frequencies file

 outFile2.write(",".join(myHapNames))

 outFile2.write(",RSS")

 # Write decimal names of haplotypes

 outFile2.write(

 "\n,%s" % ",".join([str(x) for x in finDecHaps[outTopoPtr]])

)

 # Create genpop output, if requested

 if o.genpopOutput:

 genpopOut = open("%s_%s.genpop" % (outPrefix, outTopoPtr), 'wb')

 genpopOut.write(

 ",%s" % (",".join(["cp." + str(x)

 for x in finDecHaps[outTopoPtr]]))

)

 SLSqs = []

 Freqs = []

86

predSnpFreqs = []

Create regression output

regressionOutput = open(

"%s_%s_Regression.csv" % (outPrefix, outTopoPtr), 'wb'

)

regressionOutput.write(

"Pool,SNP,Observed Frequency,Predicted Frequency\n"

)

Create predicted frequencies VCF output

output3 = vcfWriter(

"%s_%s_PredFreqs.vcf" % (outPrefix, outTopoPtr),

source="CallHaps_HapCallr_%s" % progVersion)

output3.writeHeader(poolNames)

output3.setFormat("RF")

tmpVCF = vcfReader(o.knownHaps)

output3.importLinesInfo(

tmpVCF.getData("chrom", lineTarget="a"),

tmpVCF.getData("pos", lineTarget="a"),

tmpVCF.getData("ref", lineTarget="a"),

tmpVCF.getData("alt", lineTarget="a"),

tmpVCF.getData("qual", lineTarget="a")

)

newResiduals = []

print("Finding haplotype frequencies...")

for poolIter in xrange(numPools):

tmpSol = Find_Freqs(finSolution, finSNPs[:,poolIter], o.poolSize)

SLSqs.append(tmpSol[1])

Freqs.append(tmpSol[0])

Write haplotype frequencies and RSS values for this pool

outFile2.write(

"\n%s,%s" % (poolNames[poolIter],

",".join([str(x) for x in tmpSol[0][0]]))

)

outFile2.write(",%s" % tmpSol[1])

Write genpop file text for this pool, if requested

if o.genpopOutput:

genpopOut.write(

"\n%s,%s" % (poolNames[poolIter],

",".join([str(x) for x in tmpSol[0][0]]))

)

Write structure file text for this pool, if requested

if o.strOutput:

outputProt(UniqueNames, tmpSol[0], finSolution, o.poolSize,

poolNames, poolIter, outFile)

Calculate residuals for this pool

newResiduals.append(

np.array([[x] for x in list(residuals(tmpSol[0][0],

finSolution,

finSNPs[:,poolIter],

o.poolSize))])

)

Calculate predicted SNP frequencies

predSnpFreqs = np.sum(

finSolution * tmpSol[0][0], axis = 1

)/o.poolSize

#print("##DEBUG")

Write regression file lines for this pool

regOutLines = zip(

[poolNames[poolIter]

87

for x in xrange(len(predSnpFreqs))],

[str(y) for y in xrange(len(predSnpFreqs))],

[str(z) for z in list(finSNPs[:,poolIter])],

[str(w) for w in list(predSnpFreqs)]

)

regressionOutput.write(

"\n".join([",".join(regOutLines[x])

for x in xrange(len(regOutLines))])

)

regressionOutput.write("\n") # add a new line between pools

Add predicted SNP frequencies to VCF output

output3.importSampleValues(list(predSnpFreqs), poolNames[poolIter])

Calculate per SNP RSS values for VCF output

SnpResiduals = [float(sum([newResiduals[poolIter][x]**2

for poolIter in xrange(numPools)])[0])

for x in xrange(numSNPs)]

output3.importInfo("RSS",SnpResiduals)

output3.writeSamples()

Close output files

output3.close()

regressionOutput.close()

outFile2.close()

if o.strOutput:

outFile.close()

if o.genpopOutput:

genpopOut.close()

Write Nexus file for this solution

This allows for network phylogeny construction

NexusWriter(myHapNames, finSolution, numSNPs, outPrefix,

outTopoPtr, o.knownHaps)

88

Modules/CallHap_LeastSquares.py

#!/usr/bin/env python

CallHap CallHap_LeastSquares.py

By Brendan Kohrn

3/20/2017

The main Sum Least Squares method for CallHap_HapCallr

import numpy as np

import decimal as dec

from General import *

def Find_Freqs(A, b, p):

'''Find the frequency of various haplotypes in a pool. A is the haplotypes

matrix, b is the SNP Frequency matrix, and p is pool size'''

Set variables for number of haplotypes and number of SNPs

M = A.shape[0]

N = A.shape[1]

Create an empty numpy array for the current solution

x = npDecZeros(1, N)

Create an empty numpy array to hold the last solution

lastX = npDecZeros(1, N)

Create dummy variables to hold the last and current sum squared residuals

 currentSSR = -1

lastSSR = -1

Run the first test to determine the best starting haplotype

currentSSR, x = InitialTest(A, b, x, currentSSR, M, N, p)

lastSSR = currentSSR

lastX = np.copy(x)

Create finished switch and counter to check for infinite loops

finished = False

Iterations:

while not finished:

invoke the mail loop

currentSSR, x = mainLoop(A, b, x, N, M, currentSSR, p)

If the SSR (Sum Squared Residuals; equivalent to RSS) value increases

on this loop, finish

if currentSSR >= lastSSR:

finished = True

else:

lastSSR = currentSSR

lastX = np.copy(x)

output frequencies are contained in lastX

output SSR contained in lastSSR

return(lastX, lastSSR)

def InitialTest(A, b, xIT, curSSR, M, N, p):

set counter for best sum squared residuals

bestSSR = -1

Check each haplotype

for hapIndex in xrange(N):

Calculate the SSR if this haplotype was the only one in the pool

testSSR = sum([resid**2 for resid in np.subtract(A[:, hapIndex], b)])

Check if this SSR is an improvement

if bestSSR == -1:

bestSSR = [hapIndex, testSSR]

elif testSSR < bestSSR[1]:

89

bestSSR[0] = hapIndex

bestSSR[1] = testSSR

xIT[0, bestSSR[0]] = dec.Decimal(p)

Return SSR value and best haplotype frequency vector

return(bestSSR[1], np.copy(xIT))

def SSR(A, xSSR, b):

'''Calculate the sume of squared residuals for a given solution to Ax=b'''

if type(b) == list:

out = sum([resid**2 for resid in np.subtract(np.sum(A * xSSR, 1), b)])

else:

out = sum([resid**2 for resid in np.subtract(np.sum(A * xSSR, 1),

b.ravel())])

return(out)

def mainLoop(A, b, xML, N, M, currSSR, p):

for each element of x s.t. x[x_1] > 1, subtract 1 from that element

and add one to each other element (x_2) in turn;

bestSSR = [(-1,-1),currSSR]

for x_1 in xrange(N):

if xML[0, x_1] > 1:

for x_2 in xrange(N):

wx = np.copy(xML)

if x_1 != x_2:

wx[0, x_1] -= 1

wx[0, x_2] += 1

testSSR = SSR(A, wx / p, b)

if testSSR < bestSSR[1]:

bestSSR[0] = (x_1, x_2)

bestSSR[1] = testSSR

if bestSSR[0] != (-1,-1):

xML[0,bestSSR[0][0]] -= 1

xML[0,bestSSR[0][1]] += 1

return(bestSSR[1], np.copy(xML))

90

Modules/General.py

#!/usr/bin/env python

CallHap General.py

By Brendan Kohrn

3/20/2017

This script contains general functions for CallHap

import numpy as np

import math

import decimal as dec

def comparePotHaps(potHapSetA, potHapSetB, numInitialHaps):

'''Check if all haplotypes in two haplotype sets are the same'''

If two haplotype sets are different lengths, they are different

if len(potHapSetA) != len(potHapSetB):

return(False)

else:

return(all(np.all(x==y) for x,y in zip(potHapSetA[numInitialHaps:],

potHapSetB[numInitialHaps:])))

def average(inList):

''' Take the average value of a list'''

Make sure the list has length

if len(inList) == 0:

raise("Error in Average: %s" % inList)

return(float(sum(inList))/len(inList))

def npDecZeros(rows, cols=0):

'''Create a numpy array of Decimal(0) values'''

if cols == 0:

outArray = np.zeros(rows,dtype=dec.Decimal)

for rowIter in xrange(rows):

outArray[rowIter] = dec.Decimal(outArray[rowIter])

else:

outArray = np.zeros((rows,cols), dtype=dec.Decimal)

for rowIter in xrange(rows):

for colIter in xrange(cols):

outArray[rowIter,colIter] = dec.Decimal(outArray[rowIter,

colIter])

return(outArray)

def npToDecNp(inArray):

'''Convert a numpy array of floats to a numpy array of Decimal numbers to

avoid rounding errors'''

outArray = np.array(inArray, dtype=dec.Decimal)

for elmnt, value in np.ndenumerate(outArray):

outArray[elmnt] = dec.Decimal(outArray[elmnt])

return(outArray)

def copy(inArr, elmntType = "int"):

'''Copy a list (particularly of numpy arrays).'''

if elmntType == "nparray":

return([np.copy(x) for x in inArr])

else:

return([x for x in inArr])

def AIC_from_RSS(RSS, numHaps, numSNPs):

91

'''Calculate AIC from RSS values'''

AIC = 2 * numHaps + (numSNPs * math.log10(RSS/numSNPs))

 return(AIC)

def AICc_from_RSS(RSS, numHaps, numSNPs):

'''Calculate AICc from RSS values'''

AIC = 2 * numHaps + (numSNPs * math.log10(RSS/numSNPs)) + (2*numHaps *

(numHaps + 1))/(numSNPs - numHaps - 1)

return(AIC)

def invertArray(inArray):

'''Invert an array of 0s and 1s (such as the Haplotypes array) or an array

between 0 and 1 (such as the SNP Freqs array).'''

OutArray = 1 - inArray

return(OutArray)

def residuals(inSol, inData, inFreqs, poolSize):

 '''Calculate residuals for one particular least-squares solution of Ax=b'''

calculated = np.sum((inSol * inData)/poolSize, 1)

resid = np.subtract(inFreqs, calculated)

return(resid)

def ArrayHaps(origHaps, newHaps):

allHapsToArray = [origHaps]

allHapsToArray.extend(newHaps)

return(np.concatenate(allHapsToArray, axis=1))

def numDiffs(inHap1, inHap2):

if inHap1.shape != inHap2.shape:

raise

else:

in1 = inHap1.ravel()

in2 = inHap2.ravel()

diffCounter = sum([0 if in1[x] == in2[x] else 1

for x in xrange(len(in1))])

return(diffCounter)

def areEqual(inHap1, inHap2):

if inHap1.shape != inHap2.shape:

return(False)

else:

return(np.all(inHap1 == inHap2))

def FindLegalSnpsByNetwork(inHaps, testHapIdx):

closestHaps = []

closestDiffs = []

notClosest = []

numSnps = len(inHaps[0])

distances=[numSnps - np.sum(a==inHaps[testHapIdx]) for a in inHaps]

 # Determine the distance between this haplotype and every other haplotype

in number of SNPs different

Sort by closeness

distIters = sorted(range(len(distances)), key=lambda x: distances[x])

For each haplotype, from closest to furthest away, check if it shares a

difference in the target SNP

with another haplotype in closestHaps

for hapIter in distIters:

if hapIter != testHapIdx:

if closestHaps == []:

If no haplotype is closest yet, this one is the closest

92

closestHaps.append(hapIter)

closestDiffs.append([])

notClosest.append([])

for x in xrange(numSnps):

if inHaps[hapIter][x] == inHaps[testHapIdx][x]:

pass

else:

closestDiffs[-1].append(x)

else:

Otherwise, test to see if this haplotype shares a different

SNP with any closer haplotype

diffBranch = True

for closeHap in xrange(len(closestHaps)):

for difSnp in xrange(len(closestDiffs[closeHap])):

tmpPointer = closestDiffs[closeHap][difSnp]

if (inHaps[hapIter][tmpPointer] ==

inHaps[testHapIdx][tmpPointer]):

notClosest[closeHap].append(difSnp)

else:

diffBranch = False

 if diffBranch:

closestHaps.append(hapIter)

notClosest.append([])

closestDiffs.append([])

for x in xrange(numSnps):

if inHaps[hapIter][x] == inHaps[testHapIdx][x]:

pass

else:

closestDiffs[-1].append(x)

CanChange = []

for hap in xrange(len(closestHaps)):

CanChange.extend(closestDiffs[hap])

return(closestHaps[0],CanChange)

def ValidSnpsFromPhylogeny(inHaps):

countDiffs = [[(a!=b) for a in inHaps] for b in inHaps]

diffSnps = [[[b for b in xrange(len(countDiffs[x][a]))

if countDiffs[x][a][b] == True]

for a in xrange(len(countDiffs[x]))]

for x in xrange(len(countDiffs))]

Find adjacent haplotypes for each haplotype

validSnps = []

nextHaps = []

for hap in xrange(len(inHaps)):

nextHaps.append([])

validSnps.append([])

minDistOrder = sorted(range(len(inHaps)),

key=lambda x: len(diffSnps[hap][x]))

print("DEBUG")

for hap2 in minDistOrder:

if hap != hap2:

if len(nextHaps[-1]) > 0:

isAdj = True

for closeHap in nextHaps[-1]:

if len(np.intersect1d(diffSnps[hap][closeHap],

diffSnps[hap][hap2])) != 0:

isAdj = False

validSnps[-1] = list(np.setdiff1d(validSnps[-1],

diffSnps[closeHap][hap2]))

93

if isAdj == True:

nextHaps[-1].append(hap2)

validSnps[-1].extend(diffSnps[hap][hap2])

else:

nextHaps[-1].append(hap2)

validSnps[-1].extend(diffSnps[hap][hap2])

return(validSnps)

def DecHapToNPHap(decHap):

'''Convert a decimal haplotype back into a numpy array'''

binHap = bin(decHap)[2:]

binHap = np.array([dec.Decimal(x) for x in binHap[1:]])

return(binHap)

94

Modules/IO.py

#!/usr/bin/env python

CallHap IO.py

By Brendan Kohrn

3/20/2017

This script contains functions relating to input processing of matrices

As well as functions relating to some specific output formats.

import numpy as np

from VCF_parser import *

def ExtendHaps(origHaps):

'''Function to add "Dummy" SNP to array; designed to ensure that all

haplotype frequencies sum to 20'''

allHapsToArray = [origHaps]

allHapsToArray.extend([np.array([[1

for x in xrange(int(origHaps.shape[1]))]])])

return(np.concatenate(allHapsToArray, axis=0))

def UniqueHaps(inHaps, inNames):

'''Find unique haplotypes and reduce the haplotypes and their names;

still needs some work to fix merged names'''

remove = [False for n in range(int(inHaps.shape[1]))]

for iterx in range(int(inHaps.shape[1])-1):

for y in range(iterx+1, inHaps.shape[1]):

if not remove[y]:

if np.ma.all(inHaps[:,iterx] == inHaps[:,y]):

remove[y] = True

toRemove = [iterx for iterx in range(len(remove)) if remove[iterx]]

 names = [inNames[iterx] for iterx in range(len(inNames))

if not remove[iterx]]

return(np.delete(inHaps, toRemove, 1), names)

def outputProt(UniqueNames, bestFreqs, bestArray, poolSize,

poolNames, population, outFile):

'''Output STRUCTURE format file text for a given population. Call multiple

times to create complete STRUCTURE file.'''

decHaps = []

hapNames = UniqueNames[:]

newHapNumber = 1

Create haplotype names

for haplotypeIter in xrange(len(bestFreqs[0])):

if haplotypeIter >= len(UniqueNames):

hapNames.append("NewHap_%s" % str(newHapNumber).zfill(2))

newHapNumber += 1

Create decimal haplotypes

decHaps.append(int("1"+"".join([str(int(x))

for x in bestArray[:, haplotypeIter]]),2))

indivHaps = []

Create individuals

for haplotypeIter in xrange(len(bestFreqs[0])):

for indivIter in xrange(int(bestFreqs[0][haplotypeIter])):

indivHaps.append(decHaps[haplotypeIter])

Output individuals

for individual in xrange(poolSize):

outLine = " ".join(["%s_%s" % (poolNames[population],

str(individual).zfill(len(str(poolSize)))), str(population),

95

str(indivHaps[individual])])

outFile.write("%s\n" % outLine)

def NexusWriter(myHapNames, finSolution, numSNPs, outPrefix, outIdx,

knownHaps, snpsToRemove=[]):

'''Output a NEXUS file for a given solution'''

Open a NEXUS output file

 outFile3 = open("%s_%s_haps.nex" % (outPrefix, outIdx), 'wb')

Write header lines

outFile3.write("##NEXUS\n")

outFile3.write("Begin Data;\n")

outFile3.write("\tDimensions ntax=%s nchar=%s;\n" %

(finSolution.shape[1], numSNPs))

 outFile3.write("\tFormat datatype=DNA missing=N gap=-;\n")

outFile3.write("\tMatrix\n")

Open the initial VCF to get the ref and alt states for each SNP

finVCF = vcfReader(knownHaps)

refAlleles = []

altAlleles = []

for line in finVCF.lines:

if line.getData("pos") not in snpsToRemove:

refAlleles.append(line.getData("ref"))

altAlleles.append(line.getData("alt")[0])

Create the output haplotype sequence by concentrating the relevant

#alleles for each SNP, for each haplotype

for hap in xrange(len(myHapNames)):

outFile3.write("%s\t%s\n" % (myHapNames[hap], "".join([refAlleles[x]

if finSolution[x, hap] == 1 else altAlleles[x]

for x in xrange(numSNPs)])))

outFile3.write(";\n")

outFile3.write("End;\n")

outFile3.close()

96

Modules/VCF_parser.py

#!/usr/bin/env python

CallHap IO.py

By Brendan Kohrn

3/21/2017

This is the VCF parser used by all CallHap specific programs

import numpy as np

import time

class vcfFile:

def __init__(self, inFileName, mode, source=""):

if mode == 'r':

return(vcfReader(inFileName))

elif mode == 'w':

return(vcfWriter(inFileName,source))

class vcfWriter:

'''Class to write VCF output based on an imput template.

Call order:

a = vcfWriter(inName, source)

a.writeHeader(sampNames)

a.setFormat(formatStr)

a.importLinesInfo(Chroms, Poss, Refs, Alts, Quals)

for sampleName in sampNames:

a.importSampleValues(inValues, sampleName)

a.writeSamples()

a.close()

'''

def __init__(self, inFileName, source):

'''Initialize the class'''

Open an output file

self.outputFile = open(inFileName, "wb")

Write header lines

self.outputFile.write("##fileformat=VCFv4.2\n")

self.outputFile.write("##fileDate=%s\n" % time.strftime("%Y%m%d"))

self.outputFile.write("##source=%s\n" % source)

def writeHeader(self, sampleNames):

Write column nanes line

self.outputFile.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\t")

self.outputFile.write("FILTER\tINFO\tFORMAT\t")

self.outputFile.write("%s\n" % "\t".join(sampleNames))

Create output columns

self.outputCols = {x:[] for x in sampleNames}

Save sample names

self.sampleNames = sampleNames

Create counter to keep track of how many columns have been filled

self.colsFilled = 0

How many columns need to be filled

self.totalCols = len(sampleNames)

def setFormat(self, formatStr):

Set the format string for outputs.

self.formatStr = formatStr

def importInfo(self, InfoField, InfoValues):

'''Add text to the info field'''

97

Check that there is an info value for each row

if len(InfoValues) != self.numRows:

raise Exception

Check if there is already info data present

if self.infosSet == True:

If info data is present, add to it

for x in xrange(self.numRows):

self.infos[x] += ";%s=%s" % (InfoField, InfoValues)

else:

Create info data

self.infos = ["%s=%s" % (InfoField, InfoValues[x])

for x in xrange(self.numRows)]

self.infosSet = True

def importLinesInfo(self, Chroms, Poss, Refs, Alts, Quals,

IDs = None, Filts = None, Infos = None):

'''Add positional and quality information about the lines'''

testLen = len(Chroms)

Check that all lists of values are the same length

if len(Poss) != testLen:

raise Exception

elif len(Refs) != testLen:

raise Exception

elif len(Alts) != testLen:

raise Exception

elif len(Quals) != testLen:

raise Exception

elif IDs != None:

if len(IDs) != testLen:

raise Exception

elif Filts != None:

if len(Filts) != testLen:

raise Exception

elif Infos != None:

if len(Infos) != testLen:

raise Exception

self.numRows = testLen

self.chroms = Chroms

self.pos = Poss

if IDs == None:

self.ID_Set = False

self.IDs = ['.' for x in xrange(len(Chroms))]

else:

self.ID_Set = True

self.IDs = IDs

self.refs = Refs

self.alts = [x[0] for x in Alts]

self.quals = Quals

if Filts == None:

self.filts = ['.' for x in xrange(len(Chroms))]

else:

self.filts = Filts

if Infos == None:

self.infosSet = False

self.infos = ['.' for x in xrange(len(Chroms))]

else:

self.infos = Infos

def importSampleValues(self, inValues, sampleName):

'''Import cell data for one column of a VCF file'''

 98

 # Old debugging text

 if len(inValues) != self.numRows + 1:

 print(type(inValues))

 print(len(inValues))

 print(inValues)

 print(self.numRows)

 raise Exception

 # Fill the column

 self.outputCols[sampleName] = inValues[:-1]

 self.colsFilled += 1

 def removeRows(self, rowsToRemove):

 '''Remove rows from the VCF output'''

 removalRows = sorted(rowsToRemove, reverse = True)

 for rowIter in removalRows:

 self.chroms.pop(rowIter)

 self.pos.pop(rowIter)

 self.IDs.pop(rowIter)

 self.refs.pop(rowIter)

 self.alts.pop(rowIter)

 self.quals.pop(rowIter)

 self.filts.pop(rowIter)

 self.infos.pop(rowIter)

 self.numRows -= 1

 self.skippedRows = rowsToRemove

 def writeSamples(self):

 '''Write the VCF output to file'''

 # Throw an error if not all columns have been filled

 if self.colsFilled != self.totalCols:

 raise Exception

 else:

 for lineNum in xrange(self.numRows):

 outLine = "%s\t" % self.chroms[lineNum]

 outLine += "%s\t" % self.pos[lineNum]

 outLine += "%s\t" % self.IDs[lineNum]

 outLine += "%s\t" % self.refs[lineNum]

 outLine += "%s\t" % self.alts[lineNum]

 outLine += "%s\t" % self.quals[lineNum]

 outLine += "%s\t" % self.filts[lineNum]

 outLine += "%s\t" % self.infos[lineNum]

 outLine += "%s\t" % self.formatStr

 outLine += "%s\n" % "\t".join(

 [str(self.outputCols[self.sampleNames[x]][lineNum])

 for x in xrange(len(self.sampleNames))]

)

 self.outputFile.write(outLine)

 def close(self):

 '''Close the output file'''

 self.outputFile.close()

class vcfReader:

 '''Method for reading VCF files'''

 def __init__(self, inFileName):

 '''Initialize the reader and read the file'''

 self.headInfo = {}

 self.lines = []

 # Open the file

 inFile = open(inFileName, "rb")

99

for line in inFile:

Check if this is a header line

if line[0:2] == "##":

Parse the header line, in case that information is needed

later

wLine = line.strip("#").split("=", 1)

if "INFO" in wLine[1]:

if "INFO" not in self.headInfo:

self.headInfo["INFO"] = {}

linebins = wLine[1].strip("<>").split(",")

self.headInfo["INFO"][linebins[0].split("=")[1]] = {

x.split("=")[0]: x.split("=")[1] for x in linebins

}

elif "FORMAT" in wLine[1]:

if "FORMAT" not in self.headInfo:

self.headInfo["FORMAT"] = {}

linebins = wLine[1].strip("<>").split(",")

self.headInfo["FORMAT"][linebins[0].split("=")[1]] = {

x.split("=")[0]: x.split("=")[1] for x in linebins

}

else:

self.headInfo[wLine[0]] = wLine[1]

Check if this is the column labels line

elif line[0] == "#":

Save the sample names

self.sampNames = line.strip().split()[9:]

else:

Create a new VCF line with the data in this line

self.lines.append(vcfLine(line))

Close the input file

inFile.close()

def getData(self, target, lineTarget = None, sampTarget = None):

'''Retrieve data about the VCF file from a specific line or information

column'''

if target in ("chrom", "pos", "ID", "ref", "alt",

"qual", "filt","info", "form"):

if lineTarget == 'a':

outList = []

for line in self.lines:

outList.append(line.getData(target))

return(outList)

def getNames(self):

'''Retrieve the column names'''

return(self.sampNames)

def asNumpyArray(self, target):

'''Output the data from this file as a numpy array'''

This method assumes targeting all rows and columns

prearray = [x.toNP(target) for x in self.lines]

return(np.array(prearray))

class vcfLine:

'''Handler class for a single line of a VCF file'''

def __init__(self, inLine):

'''Initialize the class and read in the data'''

linebins = inLine.split()

self.data = {}

100

self.data["chrom"] = linebins[0]

self.data["pos"] = int(linebins[1])

self.data["ID"] = linebins[2]

self.data["ref"] = linebins[3]

self.data["alt"] = linebins[4].split(",")

self.data["qual"] = linebins[5]

self.data["filt"] = linebins[6]

if linebins[7] == ".":

self.data["info"] = {}

else:

self.data["info"] = {a.split("=")[0]: a.split("=")[1]

for a in linebins[7].split(";")}

self.data["form"] = linebins[8].split(":")

Save the data from each column within this row as a VCF cell class

self.data["data"] = [vcfCell(self.data["form"], a)

for a in linebins[9:]]

def getData(self, target, sampTarget = None):

'''Retrieve data from this line'''

if sampTarget == None and target in self.data.keys():

return self.data[target]

elif sampTarget == "a":

return([self.data["data"][x].getData(target)

for x in xrange(len(self.data["data"]))])

elif "info" in sampTarget:

if ":" in sampTarget:

infoTarget = sampTarget.split(":")[1]

if infoTarget in self.data["info"].keys():

return(self.data["info"][infoTarget])

else:

raise

else:

return(self.data["info"])

elif sampTarget < len(self.data["data"]):

return(self.data["data"][sampTarget].getData(target))

else:

raise

def toNP(self, target):

'''Get the data from this row to for numpy array creation'''

return([self.data["data"][x].toNP(target) for x in

xrange(len(self.data["data"]))])

def setElmt(self, target, newValue):

'''Set a specific value in the data from this row'''

if target in self.data.keys():

self.data[target] = newValue

else:

raise

class vcfCell:

'''Class for holding data from a single cell of a VCF file'''

def __init__(self, FormatList, inCellText):

'''Create the cell'''

cellbins = inCellText.split(":")

if cellbins[0] == ".":

self.data = {x: [np.nan] for x in FormatList}

else:

self.data = {}

for formatIter in xrange(len(FormatList)):

101

self.data[FormatList[formatIter]] = [float(x)

for x in cellbins[formatIter].split(",")]

def getData(self, target=None):

'''Retrieve data from the cell'''

if target == None:

return(self.data)

elif target in self.data.keys():

return(self.data[target][0])

else:

raise

 def toNP(self, target):

'''Get data from the cell to create a numpy array'''

return(float(self.data[target][0]))

def toNP_array(inFileName, target):

'''Open a VCF file and create a numpy array of a specific type of data from

that array, along with the sample names'''

tmpVCF = vcfReader(inFileName)

output = tmpVCF.asNumpyArray(target)

out2 = tmpVCF.getNames()

return(output, out2)

102

Modules/parallel.py

#!/usr/bin/env python

CallHap parallel.py

By Brendan Kohrn

3/20/2017

This script includes multiprocessing functionality for CallHap

import numpy as np

from functools import partial

from MakeHaplotypes import *

from CallHap_LeastSquares import *

from General import *

import sys

from multiprocessing import Pool

'''This module contains parallelization methods. Some of these will no longer

 be needed in random order processing'''

def easyConcat(listHaps):

'''One argument command for concatenating a list of arrays into a single

array'''

return(np.concatenate([x[np.newaxis].transpose()

for x in listHaps], axis=1))

def massFindFreqs(inHaps, inSnpFreqs, p):

'''Find frequencies for many pools at the same time'''

mySLSqs = []

myFreqs = []

for poolIter in xrange(inSnpFreqs.shape[1]):

tmpSol = Find_Freqs(inHaps, inSnpFreqs[:, poolIter], p)

mySLSqs.append(tmpSol[1])

myFreqs.append(tmpSol[0])

myAIC = sum(mySLSqs)/len(mySLSqs)

return(mySLSqs, myFreqs, myAIC)

def easy_parallizeLS(sequence, numProcesses, snpsFreqs, poolSize):

'''parallelization method for finding the frequencies for several potential

haplotype sets at the same time.

Not used in random ordering'''

pool = Pool(processes=numProcesses, maxtasksperchild=500)

intermediate = pool.map(easyConcat, sequence)

Concatenate the haplotype sets into a single numpy array

cleanedIntermediate = [x for x in intermediate if not x is None]

pool.close()

pool.join()

pool2 = Pool(processes=numProcesses, maxtasksperchild=500)

#Create function for single argument calling of FindFreqs

func = partial(massFindFreqs, inSnpFreqs=snpsFreqs, p=poolSize)

Find haplotype frequencies for each potential haplotype set

result = pool2.map(func, cleanedIntermediate)

cleaned = [x for x in result if not x is None]

not optimal but safe

pool2.close()

pool2.join()

return(cleaned)

	An Efficient Pipeline for Assaying Whole-Genome Plastid Variation for Population Genetics and Phylogeography
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1512152633.pdf.vyke1

