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Abstract 

Tracking seed dispersal using traditional, direct measurement approaches is 

difficult and generally underestimates dispersal distances. Variation in chloroplast 

haplotypes (cpDNA) offers a way to trace past seed dispersal and to make inferences 

about factors contributing to present patterns of dispersal.  Although cpDNA generally 

has low levels of intraspecific variation, this can be overcome by assaying the whole 

chloroplast genome.  Whole-genome sequencing is more expensive, but resources can be 

conserved by pooling samples. Unfortunately, haplotype associations among SNPs are 

lost in pooled samples and treating SNP frequencies as independent estimates of variation 

provides biased estimates of genetic distance.  I have developed an application, CallHap, 

that uses a least-squares algorithm to evaluate the fit between observed and predicted 

SNP frequencies from pooled samples based on network topology, thus enabling pooling 

for chloroplast sequencing for large-scale studies of chloroplast genomic variation.  This 

method was tested using artificially-constructed test networks and pools, and pooled 

samples of Lasthenia californica (California goldfields) from Whetstone Prairie, in 

Southern Oregon, USA.  In test networks, CallHap reliably recovered network topologies 

and haplotype frequencies.  Overall, the CallHap pipeline allows for the efficient use of 

resources for estimation of genetic distance for studies using non-recombining, whole-

genome haplotypes, such as intra-specific variation in chloroplast, mitochondrial, 

bacterial, or viral DNA.   
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Introduction 

Gene flow includes a number of processes that cause changes in allele 

frequencies, including movement of gametes (gametophytes) or individuals across the 

physical landscape (Slatkin, 1987).  In the case of plants, movement by gametes is 

restricted to dispersal of pollen (the male gametophyte) from the location of the paternal 

individual to the maternal individual, and dispersal of individuals is reduced to movement 

of seeds.  All other life stages of plants are sessile, or have limited mobility through 

vegetative growth.  The distribution of genetic variation within and among plant 

populations from gene flow can thus be reduced to seed and pollen dispersal.  Of these, 

only seed dispersal has the potential to establish new populations through colonization of 

vacant sites (Howe and Smallwood, 1982; Nathan and Muller-Landau, 2000).   

The movement of seeds to a new site from the location of the maternal parent can 

occur through a variety of vectors.  Some plants have seeds designed to float on the wind 

(anemochory), while others have seeds which attach themselves to the outside of an 

animal (ectozoochory), have fleshy fruits meant to be eaten by animals (endozoochory), 

or just fall off the maternal plant under the influence of gravity (barochory) (Howe and 

Smallwood, 1982).  Traditionally, seed dispersal has been measured by direct observation 

using a variety of seed trap designs (Gorchov et al., 1993; Kollmann and Goetze, 1998; 

Godoy and Jordano, 2001), by testing for the presence of seeds in the feces of local 

herbivorous species (Mouissie et al., 2005), or by observing the movement patterns of 

dispersal vectors (Kays et al., 2011).  Unfortunately, these approaches can be difficult to 
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implement and tend to overestimate short-distance seed dispersal while missing long-

distance dispersal events (Willson, 1993).   

Long-distance seed dispersal is particularly difficult to measure through direct 

observation approaches, and may be disproportionately important for gene flow and 

establishing new populations (Cain et al., 2000; Trakhtenbrot et al., 2005).  Although 

measuring seed dispersal is often difficult, genetic markers can be used to track patterns 

and intensity of historical dispersal. Nuclear genetic markers, including most single 

nucleotide polymorphisms (SNPs) and microsatellites, offer one potential solution, but 

variation in these markers within and among populations is affected by both pollen and 

seed dispersal.  In contrast, chloroplast DNA (cpDNA) is inherited maternally in most 

angiosperms (Corriveau and Coleman, 1988), which means variation in these markers is 

only affected only by the process of seed dispersal.   

Using cpDNA variation (SNPs) to measure genetic distance presents a few 

challenges.  First, chloroplast genomes are non-recombining and effectively haploid 

(Palmer, 1987), so SNPs common to the same haplotype are inherited together.  This 

feature allows for the reconstruction of network phylogenies that illustrate the 

relationships among haplotypes, but means that, no matter how many cpDNA SNPs are 

found, the whole chloroplast can only be treated as a single locus.  I found that treating 

cpDNA SNPs as independent markers will tend to underestimate levels of differentiation 

and genetic distances among populations, especially when haplotypes share SNPs (Fig. 

1). In the past, cpDNA markers have not been considered very useful due to the slow 

evolutionary rate of chloroplast genomes, which results in low intra-specific variation 
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(Palmer, 1987).  Modern sequencing methods alleviate this problem by allowing the 

detection of larger numbers of SNPs across the entire chloroplast genome (Stull et al., 

2013).  Combinations of SNPs represent chloroplast haplotypes, and are a valuable tool 

for examining genetic diversity and seed dispersal in angiosperms.   

Fig. 1. SNP frequency contribution from multiple haplotypes where a SNP is shared between haplotypes. 

In this case, each population contains the same three haplotypes, with one being found at a constant 

frequency in all three populations, while the other two, which share a SNP, are found at varying 

frequencies in the three populations, such that the overall frequency of that SNP is constant.  A network 

phylogeny showing the three haplotypes and their relatedness to each other is shown below the figure.   

When using chloroplast haplotypes for population genetics and phylogeographic 

studies, cpDNA from many individuals must be sequenced to generate adequate sample 

sizes for the estimation of genetic parameters.  Although sequencing costs have decreased 

in recent years, sequencing enough samples for a large-scale population genetics study 
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still requires significant resource investment (Sboner et al., 2011).  Pooling multiple 

individuals for sequencing has become common as a solution to this problem (Sham et 

al., 2002; Schlötterer et al., 2014).  Unfortunately, pooling cpDNA samples results in the 

loss of information about the SNP associations that represent each haplotype because 

DNA sequencing only recovers SNP frequencies (Fig. 1).  While there are a number of 

haplotype reconstruction programs available, these are either aimed exclusively at diploid 

genomes or at resolving (nuclear) haplotypes over smaller genomic regions (i.e. phasing; 

Pe’er and Beckmann, 2003; Kirkpatrick et al., 2007; Gasbarra et al., 2011; Kofler et al., 

2011).  These methods assume some level of recombination, and ultimately are not 

appropriate for the recovery of haplotypes from the non-recombining chloroplast 

genome.  To solve this problem, I have developed a new bioinformatics pipeline aimed at 

reducing the cost of population-level surveys of chloroplast diversity by reconstructing 

chloroplast haplotypes from pooled samples using a sample of sequenced individual 

chloroplast haplotypes.   

Here, I describe sampling and bioinformatics protocols for the examination of 

haplotype-based population genetics, including the variant filtering and haplotype 

recovery programs of CallHap.  I then test the CallHap haplotype recovery program using 

a series of artificial networks and pools.  Finally, I provide an example of CallHap 

processing using a set of Lasthenia californica Lindley (Asteraceae) samples collected 

from Whetstone Prairie, near Medford, OR.  
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Bioinformatics Pipeline 

Sample collection and sequencing  

The CallHap pipeline (Appendix A) begins after sampling tissue from some 

number of individuals (e.g., 20) from each of several populations and extracting DNA 

from each sampled individual.  Equimolar amounts of DNA from each individual are 

used to make pooled sequencing libraries (PLs). A representative subset of individuals 

sampled across populations is used to make a collection of single sample libraries (SSLs), 

which are used to construct a skeleton network phylogeny.  Both single and pooled 

libraries are filtered to concentrate cpDNA using a RNA capture array (Appendix B; Stull 

et al., 2013), and sequenced using next-generation platforms.   

Sequence data processing 

Sequences are processed using cutadapt v1.9.1 (Martin, 2011) for adapter 

trimming and sickle v1.33 (Joshi and Fass, 2011) for quality trimming.  BWA v0.7.5a (Li 

and Durbin, 2009) is used to align trimmed sequences to a single reference genome.  

Sequences were sorted using Samtools v0.1.17, read groups were added using Picard 

Tools v.1.141 (http://broadinstitute.github.io/picard), and indel realignment was carried 

out using Genome Analysis Toolkit v3.5 (GATK; McKenna et al., 2010).  Initial variant 

calls are made using FreeBayes v1.0.2 (Garrison and Marth, 2012) or other similar 

programs. 
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Variant Filtering 

Variant filtering is carried out using the first of the two major CallHap programs, 

CallHap_VCF_Filt.py (Program flowchart in Appendix C).  This script filters raw 

variants to ensure that they can be used by the main haplotype caller by removing (a) 

non-SNP variants, due to the difficulty in calling insertion or deletion type variants 

(indels) as being in one of two states, (b) variants with low depth or quality, (c) variants 

that do not have a defined identity across all SSLs and pooled libraries, since the 

haplotype caller application cannot handle missing values in the matrix of haplotype 

identities, (e)  SNPs in close proximity to indels, due to difficulties in creating correct 

alignments in these regions.  Filters that have a limit (depth filter, indel proximity, and 

quality filters) are can be modified to meet the demands of a particular study.  The variant 

filter outputs a file containing genotype data for SSLs, a separate file containing SNP 

frequency data for PLs, and a NEXUS file for network phylogeny creation.   

Recovery of haplotypes from pooled samples 

The CallHap Haplotype Caller (CallHap_HapCallr.py, Appendix D) works by 

iterating through the available SNPs in a pseudo-random order, with SNPs present in SSL 

(known) haplotypes being processed first.  Processing a large number of these random 

orders increases certainty in haplotype calls.  Within each order, an initial estimate of 

haplotype frequencies is generated using a least squared algorithm (Appendix E) to solve 

the equation 𝐴 𝑥 = 𝑏, where A is the binary matrix of SNP identities in various 

haplotypes, x is the unknown vector of haplotype frequencies, and b is the observed 

vector of SNP frequencies.  An overall average Residuals Sums of Squares (RSS) value 
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is computed by averaging RSS values based on each PL.  In addition, the total RSS value 

for each SNP is computed.   

Next, the algorithm creates new haplotypes based on each SNP for which there 

exists a non-zero residual in the initial solution (See Appendix F).  If the current SNP is 

present in the known haplotypes, new haplotype creation only considers creating new 

haplotypes based on the haplotypes at either end of the network phylogeny branch along 

which this SNP occurs.  Otherwise, the algorithm considers every possible new haplotype 

(Fig. 2).  Average RSS values are computed for each possible haplotype attachment 

point, and the proposed new haplotype matrix and average RSS values are saved for later 

filtering.  This procedure is repeated for each possible solution for all SNPs.  Once all 

possible solutions have been processed for each SNP, the haplotypes matrices are filtered 

to only keep those that produced the lowest average RSS value (Fig. 2).   

Fig. 2. Haplotype creation and selection of best position in a simple haplotype system.  N, in each case, 

represents the position of the newly-created haplotype.  Graphs show predicted vs. observed SNP 

frequencies.   
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Once all SNPs have been processed, the haplotypes matrices are filtered to 

remove unused haplotypes. Haplotypes matrices are then filtered to keep only those with 

the lowest Akaike information criterion (AIC; Li et al., 2002).  The columns of these 

matrices (the haplotypes) are taken as binary numbers with 1 representing the reference 

and 0 the alternate allele, converted into decimal numbers representing the haplotypes, 

and saved along with the average RSS values produced by the matrices. 

After completing all pseudo-random orders, output files are generated showing 

the raw haplotypes produced in each proposed solution, the percentage of random 

orderings for which a particular haplotype was produced, the number of times each 

unique topology was generated and the average RSS value for each, haplotype 

frequencies in each pool and the RSS value for that pool, VCF files showing predicted 

SNP frequencies in each pool and RSS for each SNP, a CSV file comparing observed vs. 

predicted SNP frequencies, and a NEXUS file for network phylogeny creation using 

PopART (http://popart.otago.ac.nz) or similar.  Optionally, a genpop file that can be 

imported into adegenet (Jombart, 2008) and a STRUCTURE-formatted file (Pritchard et 

al., 2000; Raj et al., 2014) can also be generated.  Haplotype frequencies are presented as 

number of individuals with that haplotype, and haplotypes are presented as multiple 

alleles at a single locus (the chloroplast).  

After CallHap generates outputs users can examine the resulting topologies and 

select a final topology based on (1) the average RSS value of the solution, (2) the 

frequency with which a given topology occurred, and (3) based on the commonality of 
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the root haplotype for any mobile new haplotypes not resolved by the first two criteria 

(Templeton et al., 1992).  
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Artificial networks 

Test network phylogenies were created to represent different types of network 

topologies (Fig. 3).  Seven artificial pools containing twenty individuals each were 

created based on each network, with each pool containing three random haplotypes at 

frequencies approximating the Poisson distribution.  Each set of artificial pools was run 

through the haplotype caller, using 100 random orders, and 2 iterations per order, with 

different combinations of “known” haplotypes to see if (a) the correct network topology 

was recovered by the best solution, and (b), if the correct haplotype frequencies were 

recovered by the best solution.   

Fig. 3: Test Network Phylogenies. These phylogenies were designed to test the ability of CallHap to 

recover different topological patterns when starting with different haplotypes; (A) a long branch with every 

haplotype defined (B) two long branches with all haplotypes defined (C) a long branch with some 

haplotypes defined, and (D) a cluster with one haplotype further out.   
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Testing with Lasthenia californica 

Leaf tissue was collected from 400 individuals across 20 populations of Lasthenia 

californica located within a 16-hectare area of Whetstone Prairie, near Medford, OR, 

USA (P. Thompson et. al, unpublished. data).  Tissues were dried using silica beads as a 

desiccant, and DNA was extracted using a Qiagen Plant DNeasy 96 kit (Qiagen, 

Germantown, MD USA).  After DNA extraction, DNA concentration was quantified on a 

Qubit 3.0 fluorimeter (Thermo Fisher Scientific, Waltham, MA USA), and pooled by 

population in an equimolar fashion.  Library preparation was carried out using a 

NEBNext Ultra DNA Library Prep Kit (E7370) with NEBNext Multiplex Oligos (E7600; 

New England Biolabs, Ipswich, MA, USA).  Single sample libraries were constructed for 

at least one individual from each population.   

SSLs and PLs were captured using a MYbaits-3 custom cpDNA capture array 

from MYcroarray (MYcroarray, Ann Arbor, MI, USA; Appendix B).  DNA was 

sequenced on an Illumina HiSeq 2500 Sequencer (Illumina, San Diego, California, USA) 

using 5 lanes, with 100bp paired-end reads generated for all but six samples, which had 

100bp single end reads (Massively Parallel Sequencing Shared Resource Facility, Oregon 

Health and Science University).  The contents of each lane are summarized in Table 1.  

Sequence alignment was performed both to the published Lasthenia burkei chloroplast 

genome (Walker et al., 2014) and to an in-house partial de novo reference for L. 

californica (KY965816).  SNP calling and variant filtering were performed on both 

alignments using the pipeline described above with a minimum read depth of 600 and a 

minimum variant quality of 20.  Haplotype calling was performed using information from 
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de novo alignments.  For the full dataset, haplotype calling was run a second time with 

any new haplotypes that were consistently added placed in the input haplotypes to help 

resolve mobile haplotypes.  

Table 1: Summary of sequencing lane contents, showing number of Lasthenia californica SSLs and PLs 

used in analysis on each lane, number of other libraries on each lane, percentage L. californica returns from 

each lane, and type (single end or paired end) of each run 

 Lane 

L. californica 

# SSLs1 

L. californica 

# PLs1 

Other 

Libraries2 

% Returns  

L. californica1 Run Type 

1 5 0 1 99.02% se 

2 13 4 7 61.39% pe 

3 20 0 28 17.53% pe 

4 7 16 31 12.42% pe 

5 2 0 52 2.14% pe 
1 Number only reflects libraries used in analysis 
2 These libraries were made using species other than L. californica, or were L. californica libraries unused 

in this analysis.  
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Results 

Test Networks 

Correct haplotype networks were recovered as single lowest RSS value solutions 

in all starting conditions for three out of four test networks.  For the fourth, the correct 

haplotype network was recovered as the more common of two possible solutions with the 

lowest RSS value (Fig. 4).   

Fig. 4. Resulting phylogeny from one starting condition from Test Network D.  (A) Green haplotypes were 

known at the beginning, blue haplotypes were present in all solutions at the lowest RSS value, and orange 

haplotypes had ambiguous positions between different solutions.  Branch thicknesses are scaled by how 

many times a solution with the branch occurred, and percentages give exact percent of time a branch 

occurred.   Hash marks indicate number of SNPs along a branch.  (B) Regression plot for these solutions. 
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Lasthenia californica testing 

Sequencing – Sixty-seven libraries (47 SSLs and 20 PLs) were sequenced, 

producing a total of 753,355,673 raw reads.  Of these, 88% of raw reads mapped to the L. 

burkei genome, while 85% of raw reads mapped to the L. californica de novo genome 

(Table 2). 

Table 2: Summary of sequencing data for Whetstone Prairie L. californica libraries. 

Location 

# 

Individual 

# SSL/PL Type 

Raw 

Reads 

% mapped  

(L. burkei) 

% mapped  

(de novo) 

1 5 SSL PE 2,204,954 86.26% 89.11% 

1 - PL PE 2,838,092 88.45% 80.80% 

2 20 SSL PE 3,542,874 87.12% 88.29% 

2 - PL PE 1,894,746 87.77% 81.50% 

3 17 SSL PE 11,294,164 86.17% 86.89% 

3 - PL PE 2,046,704 86.31% 80.49% 

4 5 SSL SE 48,910,678 90.81% 88.66% 

4 - PL PE 2,101,514 88.19% 92.17% 

5 8 SSL SE 34,911,454 89.85% 86.48% 

5 - PL PE 1,517,502 85.58% 91.55% 

6 2 SSL SE 44,544,597 90.29% 88.93% 

6 - PL PE 4,198,354 88.44% 91.93% 

7 5 SSL PE 7,489,900 86.49% 87.94% 

7 - PL PE 3,589,012 87.38% 80.09% 

8 2 SSL PE 2,722,540 89.00% 79.70% 

8 8 SSL SE 86,867,128 91.01% 89.43% 

8 9 SSL PE 2,348,132 87.79% 92.58% 

8 12 SSL PE 1,636,222 88.94% 88.24% 

8 17 SSL PE 1,748,016 89.70% 89.38% 

8 18 SSL PE 1,398,104 89.73% 90.14% 

8 - PL PE 10,422,822 86.47% 90.17% 

9 6 SSL SE 30,468,788 90.13% 81.60% 

9 - PL PE 7,839,014 87.23% 91.86% 

10 8 SSL PE 49,460,308 87.26% 86.26% 

10 - PL PE 1,836,746 85.75% 80.79% 

11 19 SSL PE 6,102,332 89.95% 87.85% 

11 - PL PE 2,141,130 87.33% 90.48% 

12 4 SSL PE 2,684,862 90.09% 88.83% 

12 - PL PE 1,819,176 88.29% 90.58% 

13 19 SSL PE 20,000,548 83.59% 87.93% 
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Location 

# 

Individual 

# SSL/PL Type 

Raw 

Reads 

% mapped 

(L. burkei) 

% mapped 

(de novo) 

13 - PL PE 1,426,644 87.34% 73.74% 

14 16 SSL PE 30,605,932 84.92% 90.35% 

14 - PL PE 5,877,608 89.81% 77.81% 

15 1 SSL PE 3,262,234 89.21% 89.69% 

15 2 SSL PE 2,704,746 85.61% 86.14% 

15 4 SSL PE 6,493,262 85.65% 86.12% 

15 5 SSL PE 4,483,434 89.56% 90.09% 

15 6 SSL PE 7,358,804 89.29% 89.82% 

15 6 SSL PE 5,371,566 88.69% 89.17% 

15 7 SSL PE 5,588,912 88.00% 88.35% 

15 8 SSL PE 1,331,344 88.81% 89.31% 

15 9 SSL PE 2,146,432 87.41% 87.94% 

15 9 SSL PE 6,855,194 88.15% 88.57% 

15 10 SSL PE 15,648,756 89.90% 81.29% 

15 10 SSL PE 8,371,854 87.96% 88.32% 

15 11 SSL PE 3,635,032 89.75% 90.17% 

15 12 SSL PE 3,030,866 89.05% 89.57% 

15 13 SSL PE 2,932,830 89.33% 89.79% 

15 15 SSL PE 2,565,608 90.12% 90.56% 

15 16 SSL PE 7,809,292 88.34% 88.99% 

15 16 SSL PE 6,677,584 88.97% 89.67% 

15 17 SSL PE 2,207,558 88.91% 89.38% 

15 18 SSL PE 7,953,306 89.29% 90.09% 

15 18 SSL PE 1,585,198 89.78% 90.29% 

15 19 SSL PE 3,384,392 90.23% 90.68% 

15 20 SSL PE 6,599,688 90.22% 90.67% 

15 - PL PE 6,700,776 87.11% 81.86% 

16 19 SSL PE 15,407,184 86.15% 80.04% 

16 - PL PE 1,545,786 86.87% 87.50% 

17 12 SSL PE 29,139,552 84.92% 75.71% 

17 - PL PE 6,241,342 88.75% 89.31% 

18 2 SSL PE 40,660,014 86.32% 77.87% 

18 - PL PE 5,805,872 89.23% 89.82% 

19 3 SSL PE 33,083,718 86.01% 77.69% 

19 - PL PE 6,008,330 88.95% 89.47% 

20 12 SSL PE 30,786,938 86.17% 78.63% 

20 - PL PE 13,827,464 86.09% 77.99% 
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De novo vs. non-de novo alignment – For L. californica aligned to L. burkei, 

initial variant calling revealed 3154 variants, many of which represented differences 

between L. californica and L. burkei.  After variant filtering, 34 SNPs in 16 unique 

haplotypes were identified across sampled populations of L. californica.  Comparatively, 

for L. californica alignment to in house de novo, 978 initial variants were recovered, 

which simplified to 39 SNPs in 19 unique haplotypes after filtering.  Of these, 26 

appeared to be identical to SNPs from the L. burkei alignment  

Initial haplotype calling for the complete L. californica data recovered two 

solutions at a minimum RSS value of 0.003002, with seven new haplotypes common to 

all the top three solutions and three unfixed haplotypes. Rerunning with the common 

haplotypes added to the SSL haplotypes returned a solution with a RSS value of 

0.003002, a solution with a RSS value of 0.003077, and a solution with a RSS value of 

0.003165; these topologies are summarized in Fig. 5, and RSS values are summarized in 

Table 3.  Although the best RSS value solution wasn’t the most common solution, the 

difference in the RSS values was small enough that the solutions are essentially 

equivalent.  Additionally, there were only minor differences in haplotype frequency 

between the best RSS value solution and the second best RSS value solution.  Since the 

RSS values for the best two solutions were so similar, the more common topology was 

selected as the best topology.   

Average phylogenetic distance was calculated between haplotypes in each pair of 

populations (Between) or between haplotypes within a single population (Within) using 

the formula: 
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Average % difference
a,b

= ∑ ∑ di,j*p
i,a

j

*p
j,b

i

 

Where i and j are haplotypes, a and b are populations, pi,a is the frequency of haplotype i 

in population a, and di,j is the number of SNPs different between haplotypes i and j.  This 

showed that haplotypes within a population were more similar to each other than 

haplotypes in different populations (2-sample t-test, df=25, t = 6.49, p<<0.01; Fig. 6).     
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Fig. 5. Haplotypes solution for L. californica de novo alignment.  (A) Consolidated network phylogeny for 

CallHap solutions with the lowest RSS value (0.003002).  Black indicates starting haplotypes, blue 

indicates new haplotypes fixed in the best solutions from the initial haplotype calling run, and green 

indicates new haplotypes found in the second haplotype calling run.  For the second run, node size is scaled 

to indicate the number of output solutions a new haplotype occurred in. Hash marks indicate number of 

SNPs along a branch.  (B) Regression plot for lowest-RSS value CallHap solutions. 
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Table 3: RSS values and residual statistics (A) on a per-SNP basis, and (B) on a per-population basis.  A 

squared residual value of 0.0025 is equivalent to one individual’s worth of error.   
 

SNP # RSS 

Average squared 

residual 

Standard Deviation 

of squared residuals 

 

Population 

RSS 

Value 

0 0.000176 0.000009 0.000032  1 0.004688 

1 0.002585 0.000129 0.000429  2 0.000322 

2 0.000040 0.000002 0.000006  3 0.005565 

3 0.000128 0.000006 0.000026  4 0.001729 

4 0.000071 0.000004 0.000012  5 0.005304 

5 0.000459 0.000023 0.000058  6 0.002121 

6 0.001599 0.000080 0.000154  7 0.000042 

7 0.004566 0.000228 0.000262  8 0.003693 

8 0.001141 0.000057 0.000142  9 0.000446 

9 0.006557 0.000328 0.000486  10 0.005215 

10 0.004619 0.000231 0.000390  11 0.004026 

11 0.000200 0.000010 0.000043  12 0.006501 

12 0.000147 0.000007 0.000032  13 0.003062 

13 0.002009 0.000100 0.000294  14 0.004435 

14 0.001082 0.000054 0.000141  15 0.000325 

15 0.000552 0.000028 0.000107  16 0.002084 

16 0.001887 0.000094 0.000249  17 0.000382 

17 0.002112 0.000106 0.000239  18 0.006086 

18 0.000791 0.000040 0.000099  19 0.001960 

19 0.002005 0.000100 0.000198  20 0.003560 

20 0.000606 0.000030 0.000134    

21 0.000714 0.000036 0.000119    

22 0.003955 0.000198 0.000366    

23 0.000143 0.000007 0.000028    

24 0.000416 0.000021 0.000090    

25 0.004510 0.000226 0.000283    

26 0.000026 0.000001 0.000002    

27 0.010800 0.000540 0.001008    

28 0.000448 0.000022 0.000085    

29 0.000131 0.000007 0.000008    

30 0.001441 0.000072 0.000318    

31 0.000947 0.000047 0.000145    

32 0.000180 0.000009 0.000036    

33 0.000173 0.000009 0.000024    

34 0.000744 0.000037 0.000156    

35 0.000354 0.000018 0.000011    

36 0.000064 0.000003 0.000008    

37 0.003147 0.000157 0.000276    

38 0.000020 0.000001 0.000001    

A B 
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Fig. 6. Average % difference between haplotypes within populations vs. between populations.  
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Discussion 

 I have developed a pipeline, CallHap, for efficient examination of cpDNA 

variation, and tested it using a variety of test networks and a real data set of Lasthenia 

californica samples from Whetstone Prairie.  Here, I present (A): an examination of test 

network results, (B): considerations for the design of experiments using CallHap, and 

(C): appropriate protocols for analysis of CallHap outputs.  In addition, I provide an 

explanation for the magnitude of RSS values calculated by CallHap.   

Test Networks Results 

Examination of the test network pools shows consistent recovery of haplotype 

networks from a starting point of two or more haplotypes in the absence of any 

sequencing error.  The presence of two possible solutions in the fourth test network 

reveals one potential problem that could arise during haplotype construction; if the 

frequencies for a new haplotype (based on SNPs not present in any of the SSLs) are less 

than the frequencies for multiple other haplotypes across all PLs, it is possible the new 

haplotype may be placed ambiguously between multiple locations on the network.  When 

the false haplotype position was not one of the known haplotypes, the correct solution 

was the more common solution. One solution to this issue would be to add new 

haplotypes that were found consistently between the solutions with the best RSS values 

to the starting haplotypes array and rerunning the program. By using the expanded array 

of haplotypes as a starting point, differences between solutions with the same RSS value 

may be resolved.  Another method involves taking the source DNA samples and creating 
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extra PLs by reshuffling the samples in ways that don’t reflect the geographic areas the 

samples were collected in (discussed in more detail later).   

Testing also revealed that, with minimal sampling of SSLs, convergence to a best 

solution was proportional to the centrality of the starting haplotype.  As an example, for 

one of the test pools, all 100 orders converged to the lowest RSS value when the starting 

haplotype was the most central haplotype, as opposed to 13/100 and 3/100 for starting 

haplotypes one and two SNPs different from the most central haplotype, respectively.  

Also, the presence of long branches in the correct topology reduced the frequency with 

which that topology came up.  In cases where CallHap is finding a large number of 

topologies, rerunning CallHap with a larger number of random orderings, potentially in 

combination with augmenting the known haplotypes with any haplotypes found 

universally, may help.  In addition, starting with more than one SSL per population will 

increase the likelihood that the most central haplotype will be included in the SSL 

haplotypes.  

It is apparent from examining the inferred haplotype frequencies for L. californica 

that RSS values for individual populations differ substantially.  There can be many 

reasons for this; in some cases, high RSS values may be due to a low-quality SNP that 

was not filtered out correctly.  For this reason, even after automated SNP filtering, any 

remaining SNPs should be visualized using IGV (Thorvaldsdóttir et al., 2013) or other 

similar programs to ensure quality.  Potential issues include SNPs that occur at 

approximately the same frequency across populations while the other SNPs in the pool 
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change frequencies (especially if the major SNP present in the pool changes frequency).  

In these cases, the inconsistent SNPs are most likely artificial and should be removed.   

Another potential cause of high RSS values is a large number of SNPs present at a 

frequency of more than 1/n, where n is the number of individuals in a pool.  For example, 

if a pool contains only three SNPs at such frequencies, an RSS of 0.05 could indicate a 

problem; for a 20-individual pool, a RSS value of 0.0025 is equivalent to one individual-

worth of error, so a RSS value of 0.05 under these conditions would indicate an average 

error of +/- 6.7 individuals for each haplotype present in that pool.  If the same RSS value 

were to occur in a pool where 20 SNPs were present at these frequencies, it would be less 

of a problem because it would indicate an average error in haplotype frequencies of +/- 1 

individual.   In the L. californica data, the average RSS value was 0.003077, and was less 

than one individual’s worth of error per haplotype present in all of the pools. 

Experimental design considerations for CallHap Analyses 

When designing an experiment to feed into the CallHap pipeline, consideration 

must be given to (1): the spatial scale of sampling, (2): the number of populations 

sampled, and (3): the size of pooled libraries.  In addition, the choice of reference genome 

for sequence alignment and variant discovery, and the minimum read depth used, is 

important and needs to be contemplated.   

Spatial Scale of Sampling  – Experimental designs which produce data for the 

CallHap pipeline will differ primarily on the geographic scale of sampling.  For this 

purpose, small-scale sampling indicates that populations are sampled at distances smaller 

than the hypothesized average dispersal distance of the target species, and large-scale 
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sampling indicates that populations are sampled at distances greater than the 

hypothesized average dispersal distance of the target species.  At small scales, dispersal is 

great enough that each haplotype may be found in any location so populations are 

differentiated primarily by differences in the frequencies of shared haplotypes, meaning 

that experiments should be designed with one SSL and one PL per population.  In this 

type of experiment there is a lowered likelihood of difficulties in recovering the correct 

network topology and frequencies.   

At large scales, populations in close proximity to each other may represent a 

unique cluster of related haplotypes, and different sets of haplotypes may occur in 

separate regions.  As shown in the test networks, when only one SSL is available for each 

cluster, it becomes difficult to place new haplotypes within that cluster.  Additionally, if a 

haplotype is only present in a single population, it is difficult to accurately place the 

haplotype within the network phylogeny.  At large scales, it would be advisable to create 

artificial pools by pooling DNA from individuals from multiple populations located 

across the entire range.  Notably, these pools should not include the samples used for 

SSLs, as those haplotypes are already known, and should contain samples at differing 

concentrations; the purpose of these pools is to help resolve the identity of any new 

haplotypes inferred by CallHap.  Sequencing more than one SSL per population should 

also be considered in these cases.  Sequencing multiple populations per region will also 

help resolve topologies and haplotype frequencies when the distance between populations 

within each region occurs at a small scale, and sampled regions occur at a large scale.   
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One final complication is that the true scale of a project may not become evident 

until after starting data analysis.  For example, when the L. californica experiment was 

designed, the hypothesized dispersal range was greater than the distance between 

populations.  However, after sequencing, it turned out that seed dispersal in L. californica 

much more limited than anticipated.  In retrospect, creating artificial pools to help resolve 

the network topology would have been beneficial.   

Pooling and Pooled library size  – Many pool-seq protocols pool samples before 

DNA extraction (Kofler et al., 2012; Martins et al., 2014; Bélanger et al., 2016), but this 

may generate higher errors in SNP frequencies because equal amounts of tissue may not 

contain equal amounts of genomic DNA.  In contrast, data for use in CallHap comes from 

libraries where DNA is extracted before being pooled to ensure equimolar proportions of 

DNA from each individual.  While populations of any size could be analyzed, sequencing 

error, pipet volume, and DNA concentration limit the number of individuals that can be 

safely placed in a single PL and still give accurate resolution of haplotype frequencies.  In 

addition, as the number of individuals in a PL increases, the frequency that represents a 

single individual starts to approach the level of error in the sequencing process.  On the 

other hand, if too few individuals per population are used, some haplotypes present in the 

population may be missed.  For example, if 10 individuals per population were used, any 

haplotype present at a frequency below 10% would likely go undetected.   In the L. 

californica study, a sample size of 20 individuals per population was used; it provided 

reasonable accuracy in SNP frequency estimates while still capturing a good amount of 

the haplotype diversity present.   More individuals per population could be used by 
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sequencing multiple pools per population, processing them as separate populations, and 

then combining the frequencies after running them through CallHap and before 

continuing with later population genetics or phylogeographic analysis.   

Choosing a Reference Genome – CallHap assumes that SNPs detected by variant 

calling arise from closely related haplotypes.  Because of this, the CallHap pipeline 

requires that all libraries be aligned to a single reference genome.  Since the genome used 

will have a large influence on the number and quality of SNPs generated, genome 

selection is an important aspect of any study using CallHap.  

In choosing a reference genome to use for CallHap analysis, preference should be 

given to conspecific references.  If no such reference exists, one library of shotgun 

sequencing should be run; this library can be used to create a de novo reference genome 

to which the other samples can be aligned.  While a de novo can be created using 

captured cpDNA, the incomplete nature of the capture makes it more difficult to carry out 

the de novo assembly.  If creating a de novo reference is infeasible, it may be possible to 

obtain limited results using a non-conspecific reference; in this case, the more closely-

related the reference chloroplast genome is to the study species, the better.  Limitations of 

interspecific references include the addition of artificial SNPs introduced due to 

alignment ambiguities that may be caused by fixed differences between the chloroplast 

genomes of the two species.    

Minimum Read Depth Selection  – Another important parameter is the minimum 

read depth required to consider a genomic position for analysis.  I found that this value 

changes depending on the peculiarities of different species and sequencing runs; for L. 
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californica, the optimum read depth was around 600, while for Ranunculus occidentalis 

Nutt. (Ranunculaceae), the optimum minimum depth was found to be 300-400.  To 

determine the optimum minimum depth, I ran the VCF filter multiple times with different 

depths, and counted the number of initial unique haplotypes each time.  I then selected 

the optimum depth as the point where the number of haplotypes started to drop off (Fig. 

7) or 300, whichever was higher.  In general, minimum depth should be no less than 15 *

the number of individuals in a pool (Sims et al., 2014). 

Fig. 7: Depth analysis for L. californica.   The number of unique SSL haplotypes starts to drop off at around 

600 depth.   
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Analysis of CallHap Outputs 

Methods used for analysis of haplotype frequency data from CallHap will vary 

depending on the goals of the study.  Population genetics studies utilizing nuclear genetic 

markers in diploid organisms typically use Wright’s FST (Wright, 1949) or a similar 

analogue (GST, G’ST, DST, etc.; Whitlock, 2011).  However, FST is based on comparisons 

of observed and expected heterozygosity at different scales, and consequently is 

inappropriate for use with haplotype data.  Instead, genetic distance measures that allow 

for variable ploidies and number of alleles per locus and are not reliant on measures of 

homo- or heterozygosity—such as Nei’s Genetic Distance (Nei’s D; Nei, 1973), Edwards 

chord distance (Cavalli-Sforza and Edwards, 1967; Edwards, 1971; Hartl et al., 1997), or 

Φ-statistics (Meirmans, 2006)—and haplotype genetic diversity measures (e.g. unbiased 

haplotype diversity; Gardner et al., 2015) should be used.   

Methods such as Nei’s D rely on calculations of the probability that the same 

combination of alleles will be found in two different populations, and consequently are 

more appropriate for small-scale studies.  When no haplotypes are shared between two 

populations, Nei’s D gives an infinite distance between those populations; such a pattern 

indicates that dispersal rates among the populations sampled are very low, and that the 

accumulation of local mutations is the primary factor contributing to the genetic structure 

of populations. Limited dispersal relative to the scale of sampling will lead to haplotypes 

within populations being more similar to each other than haplotypes in different 

populations, as can be seen in the L. californica data.  In these cases, phylogeographic 

methods, the Edwards chord distance, or Φ-statistics will be more appropriate.   
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In phylogeographic studies or population genetics studies that are found to be 

more appropriate for phylogeographic analysis, methods such as Nested Clade Analysis 

(Templeton, 1998, 2009) or Approximate Bayesian Computation (Csilléry et al., 2010) 

should be used.  These methods explain modern observations with predictions of 

population history events by comparing observed data to different modeled population 

histories.    

Applications 

The CallHap pipeline has the potential to creating a range of new opportunities 

for studies of cpDNA population structure, and allows for accurate and economical 

estimates of seed-mediated gene flow by allowing for the use of pooled population 

sequencing data for cpDNA and other haploid genetic material.  Data for use in the 

CallHap pipeline comes from population-level sampling of haploid genomes, including 

plant chloroplast genomes (as presented in this paper), mitochondrial genomes, and 

prokaryotic bacterial genomes.  Because CallHap assumes all generated haplotypes are 

closely related and requires that all libraries examined be aligned to a single reference 

genome; this protocol should not be used for microbiome and microbial community 

studies. Outputs generated by CallHap can be analyzed using a variety of methods, 

including Nei’s genetic distance, Edwards chord distance, Φ-statistics, and a variety of 

phylogeographic analysis methods including Nested Clade Analysis and Approximate 

Bayesian Computation.   

CallHap is available at https://github.com/cruzan-lab/CallHap.
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Appendix A: CallHap Bioinformatics Pipeline Overview 



40 Appendix B: Capture Array Creation 

A MYbaits-3 custom cpDNA capture array from MYcroarray (MYcroarray, Ann Arbor, 

MI, USA) was created to help isolate cpDNA.  During capture array creation, 120mer 

baits were constructed with a ~2x flexible tiling density.   Any baits with 10 or less 

mismatches between them were collapsed into a single bait.   In total, the capture array 

contained 55,409 baits.   

Species Source 

Achillea millefolium Partial De Novo 

Achyrachaena mollis Partial De Novo 

Arabis alpa NCBI: NC_023367.1 

Brachypodium distachyon NCBI: NC_011032.1 

Camassia quamash Partial De Novo 

Chrysanthemum indicum NCBI: NC_020320.1 

Cryptantha torreyana NCBI: KP096524.1 

Danthonia californica NCBI: NC_025232.1 

Danthonia californica Partial De Novo 

Eriophyllum lanatum Partial De Novo 

Eustrephus latifolius NCBI: NC_025305.1 

Festuca arundinacea NCBI: NC_011713_2 

Festuca roemeri Partial De Novo 

Fragaria vesca NCBI: NC_015206.1 

Lactusa sativa NCBI: NC_007578.1 

Lasthenia burkei NCBI: KM360047.1 

Lomatium utriculatum Partial De Novo 

Lupinus albus NCBI: NC_026681.1 

Lupinus bicolor Partial De Novo 

Nama carnosum Private communication with Gregory Stull 

Nicotina undulata NCBI: NC_016068.1 

Petroselinium crispum NCBI: HM596073.1 

Quercus aliena NCBI: KP301144.1 

Ranunculus austro-oreganus Partial De Novo 

Ranunculus macranthus NCBI: NC_008796.1 

Ranunculus occidentalis Partial De Novo 

Salvia miltiorrhiza NCBI: NC_020431.1 

Hibiscus syriacus NCBI: NC_026909.1 

Oenothera biennis NCBI: NC_010361.1 

Lonicera japonica NCBI: NC_026839.1 

Lilium superbum NCBI: NC_026787.1 

Primula poissonii NCBI: NC_024543.1 

Liquidambar formosana NCBI: NC_023092.1 
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Appendix C: Variant Filtering with VCF_Filt.py 



42 



43 

Appendix D: Overall haplotype and frequency estimation program (HapCallr.py) 
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Appendix E: CallHap Least Squares Algorithm 
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Appendix F: CallHap Haplotype Creation Algorithm 
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Appendix G: CallHap Manual 

CallHap: A Pipeline for Analysis of Pooled Whole-genome 

Haplotypes 
Last edited: 04/28/2017 By: Jessica Persinger 

Licensing information 

With the exception of the Genome Analysis Toolkit, all programs are freely available 

under either the Gnu Public License or the MIT License.  The Genome Analysis Toolkit 

is free for non-commercial use; other use should contact the Broad Institute at 

softwarelicensing@broadinstitute.org.  Python and bash scripts for the CallHap pipeline 

are available at https://github.com/cruzan-lab/CallHap. 

Introduction 

CallHap is a pipeline designed for the analysis of pooled haplotype data.  It depends on 

the presence of two types of sequencing libraries; either single sample libraries (SSLs) or 

pooled libraries (Pool).  Ideally, a Pool should contain equimolar genetic material from 

20 individuals, and one of those individuals should be prepared separately as a SSL.  This 

pipeline picks up following sequencing on an Illumina HiSeq or similar high-throughput 

sequencer.   

Requirements 

• A LINUX/UNIX/MacOS system with the following programs installed:

▪ Cutadapt (http://cutadapt.readthedocs.io/en/stable/index.html)

▪ Sickle (http://bioinformatics.ucdavis.edu/research-computing/software/)

▪ BWA (http://bio-bwa.sourceforge.net/)

▪ Samtools (http://samtools.sourceforge.net/)

▪ PicardTools (https://broadinstitute.github.io/picard/)

▪ GATK (https://software.broadinstitute.org/gatk/)

▪ Freebayes (https://github.com/ekg/freebayes)

▪ Python 2.7x (https://www.python.org/) with NumPy

(http://www.numpy.org/)

▪ Java Development Kit

https://github.com/cruzan-lab/CallHap
http://cutadapt.readthedocs.io/en/stable/index.html
http://bioinformatics.ucdavis.edu/research-computing/software/
http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/
https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/
https://github.com/ekg/freebayes
https://www.python.org/
http://www.numpy.org/
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Quick Start 
Setup: 

program-config.sh: 

Edit program-config.sh so that each of the variables is set to the absolute path of the 

program in question. 

Reference Preparation: 

Obtain a reference genome (in FASTA format) for your species of interest (or closely 

related other species), and prepare it for use by using the following commands: 

$ bwa index {reference}.fasta 

$ samtools faidx {reference}.fasta 

$ java -jar /path/to/picardtools/picard.jar \ 

CreateSequenceDictionary \ 

R={reference}.fasta \ 

O={reference}.dict 

Preprocessing: 

Note that there are two basic processing pipelines provided; one with automated 

trimming (CallHap_Preproc_0.01.23.sh) and one without automated trimming 

(CallHap_Preproc_NoTrimming_0.01.23.sh).  It is strongly suggested that at least a few 

(2-5) samples per flow cell be run manually (one step at a time), at least through 

trimming for quality control and to see if those samples need any additional trimming 

beyond the basic trimming steps (adapter and quality trimming).  If you are doing 

trimming separately, be sure to use the locations of the trimmed files in the preconfig 

instead of the locations of the raw files.   

Create a preconfig file in Excel with the following columns: 

• Read1File

• Read2File

• RGLB

• RGSM

• RGPU

• Mode

• Reference

Each row should represent one sequencing library (SSL or Pooled).  

• Read1File and Read2File should give the absolute path to the locations of the raw

data for the Read 1 and Read 2 files (in the case of single end data, give the file

location under Read1File, and put a period (.) for Read2File).

• RGLB should be some identifier for the library (e.g. library number).

• RGSM should be a sample name, preferably indicating the species of the library,

the location the sample came from, and whether the sample is a SSL or Pool

(Example: SpenamLocS#SSL, SpenamLocS#Pool).
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• RGPU should indicate the barcoding used for this library during library prep

(Example: ATTACTCG-TATAGCCT).

• Mode should be one of se (single-end) or pe (paired-end).

• Reference should indicate the reference genome you would like this library

aligned to.

If all samples are of the same species, the reference genomes for all libraries should be 

the same. 

Save the preconfig file as a .csv.  Convert it to a config file using: 

$ python /path/to/CallHap/CallHap_ConfigCreator.py \ 

--input preconfig.csv \ 

--adapt1 {SequencingAdapter} \ 

--adapt2 {SequencingAdapter} \ 

--sequencer {Sequencer used to produce data} \ 

--minBaseQual 30 \ 

--minReadQual 30 \ 

--runID {Identifier for this run} 

This will output a .sh file with the run ID as the name (for example, of you put --runID 

{runID}, the file would be called runID.sh) 

Then use the following command to run the rest of the pre-processing (replacing the 

script name if you did trimming separately): 

$ bash /path/to/CallHap/CallHap_Preproc_0.01.23.sh \ 

program-config.sh {runID}.sh 

SNP Calling: 

Set up an input list of files using: 

$ ls -1 /path/to/files/*SSL*.rg.ra.bam > {RunID}.txt 

$ ls -1 /path/to/files/*Pool*.rg.ra.bam >> {RunID}.txt 

Call FreeBayes using: 

$ /path/to/freebayes/freebayes -L {RunID}.txt \ 

-p 1 -f /path/to/reference/{reference}.fasta \

-v {RunID}_SNPs.vcf --use-best-n-alleles 2 \

--min-repeat-entropy 1 --no-partial-observations \

--min-alternate-fraction {0.05}

--min-alternate-

fraction 

Should be set to 1/poolsize or lower. 
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This step may take a while, and while running, may look like it isn’t doing anything 

SNP Filtering: 

SNP filtering is accomplished by use of a custom python script, which can be run with 

the command: 

$ python /path/to/CallHap/CallHap_VCF_Filt.py \ 

-i {RunID}_SNPs.vcf -o {RunID}_d{600}q{20}_Haps.vcf \

-O {RunID}_d{600}q{20}_Pools.vcf -n <number of SSLs> \

-N <number of Pools> -d {600} -q {20} -p {20}

You may need to trim off one or more columns from the VCF file if one sample was not 

called at a majority of positions; if a single sample is not called at a particular position, 

the variant at that position will be discarded.  To determine if a column needs to be 

removed, look at your VCF file in Excel, and see if there are any columns that are periods 

(“.”) for the majority of rows.  Removing the column can also be done in Excel, but you 

need to be careful because Excel likes to add quotes when it saves files with commas in 

the cells, as do most spreadsheet editors I’ve found.   

Haplotype Calling: 

Before running this step, check how many cores are available on the system you’re using 

with htop.  Make sure you don’t overload the system you’re working on; don’t set -t to 

higher than the number of available cores, and don’t take up all the cores on the machine.  

Haplotype calling can be run using: 

$ python /path/to/CallHap/CallHap_HapCallr.py \ 

--inputHaps {RunID}_d250q20_Haps.vcf \ 

--inputFreqs {RunID}_d250q20_Pools.vcf \ 

-o {RunID} -p 20 -t 5 -l 2 --numRandom 100 \

--numTopRSS 3 --genpop --structure

This program generates four to six output file per solution output (within the minimum 

number of RSS values): 

• A NEXUS file (RunID_solNum_haps.nex) for network phylogeny creation; PopART

(http://popart.otago.ac.nz/index.shtml) works fairly well.  I’ve been using the TCS

algorithm.

• A VCF file (RunID_solNum_PredFreqs.vcf) containing the estimated SNP

frequencies based on the estimated haplotype frequencies, and the per-SNP average

residuals in the INFO field

• A CSV file (RunID_solNum_freqs.csv) containing the per-pool haplotype

frequencies and RSS values for each pool.

• A CSV file (RunID_solNum_Regression.csv) containing paired observed and

predicted SNP frequencies from the Least Squared algorithm.

http://popart.otago.ac.nz/index.shtml
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• (Optional): A Structure formatted file (RunID_solNum_iterNum.str) containing the

expanded haplotype frequencies

• (Optional): A Genpop file containing the haplotype frequencies for use in Adigenet.

In addition, outputs are generated describing the original haplotypes network 

(RunID_Initial.nex), the unique haplotypes network (RunID_Unique.nex), raw topologies 

observed from each random order (RunID_RAW.csv), the frequency of each unique 

topology generated (RunID_topologies.csv), the frequency of occurrence for each 

haplotype found in any random order (RunID_summary.csv).   

In terms of population-genetics analysis, haplotypes should be treated as independent 

alleles at a single locus.   
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Detailed Instructions 
Adapter/Quality trimming: 

Adapter and quality trimming should be performed before any other step in the pipeline.  

This ensures better read alignment and higher quality of the final data.  The automated 

pipeline uses cutadapt for adapter trimming and sickle for quality trimming; however, 

you can use other trimming programs if so desired.   

Cutadapt is available at http://cutadapt.readthedocs.io/en/stable/index.html under the MIT 

License and can be run using: 

$ /path/to/cutadapt -a {inAdapter1} -A {inAdapter2} \ 

-o {output_read_1}_at.fastq.gz \

-p {output_read_2}_at.fastq.gz \

{input_read_1}.fastq.gz {input_read_2}.fastq.gz

for paired-end reads or 

$ /path/to/cutadapt -a {inAdapter1} \ 

-o {output_read_1}_at.fastq.gz {input_read_1}.fastq.gz

for single-end reads.  

If you aren’t certain what adapter sequence you have, running FastQC (freely available at 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ under GPLv3) may help 

determine what adapters are present.  Otherwise, consult your library preparation 

protocol. 

While cutadapt can also do quality trimming (using the -q option), or remove a fixed 

number of bases (using the -u option), the default pipeline uses a second program, 

(sickle) for quality trimming.  Sickle is available at 

http://bioinformatics.ucdavis.edu/research-computing/software/ under the MIT License 

and can be run with 

$ /path/to/sickle pe -f {output_read_1}_at.fastq.gz \ 

-r {output_read_2}_at.fastq.gz -o \

{output_read_1}ut_at_qt.fastq.gz –p \

{output_read_2}_at_qt.fastq.gz -t sanger –s \

{SampleName}_extras.fastq.gz -q {minBaseQuality} -g

for paired-end reads or 

$ /path/to/sickle se -f {output_read_1}_at.fastq.gz \ 

-o {output_read_1}_at_qt.fastq.gz -t sanger \

-q {minBaseQuality} -g

http://cutadapt.readthedocs.io/en/stable/index.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://bioinformatics.ucdavis.edu/research-computing/software/
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for single-end reads.  

For more details on these programs, consult their respective manuals. 

Following trimming, it is recommended that at least 2-5 samples per flow cell be quality-

checked using FastQC.  For this pipeline, check that there are almost no remaining 

adapters of any type in the AdapterContent page of the report and that you are satisfied 

with the quality scores in the Per base sequence quality section and the base percentages 

in the Per base sequence content section.   

Note that FastQC will generate output files in the same directory as the input files.  

Read alignment: 

The automated pipeline uses BWA-mem to align reads with default options.  BWA can 

be obtained from http://bio-bwa.sourceforge.net/ under GPLv3, and can be run using: 

$ /path/to/bwa mem -M {reference}.fasta \ 

{output_read_1}_at_qt.fastq.gz \ 

{output_read_2}_at_qt.fastq.gz > \ 

{SampleName}.sam 

for paired-end reads or 

$ /path/to/bwa mem -M {reference}.fasta \ 

{output_read_1}_at_qt.fastq.gz > {SampleName}.sam 

for single-end reads. 

After alignment, the file is converted to a bam file: 

$ /path/to/samtools view -Sbu -F 4 {SampleName}.sam | \ 

/path/to/samtools sort – {SampleName}.sort 

Index the bam file: 

$ /path/to/samtools index {SampleName}.sort.bam 

At this time, any unaligned reads are also removed.   

Samtools can be obtained from http://www.htslib.org/.  

Readgroup Creation: 

PicardTools is used to add readgroups to the files.  These are a requirement for local 

realignment with GATK, and for SNP calling with FreeBayes.  For later analysis, it is 

useful if each sample have a different sample name (RGSM) and readgroup ID (RGID), 

http://bio-bwa.sourceforge.net/
http://www.htslib.org/
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since Freebayes (our SNP caller) uses the readgroup ID to differentiate samples.  I used 

the library number as the readgroup ID.   

PicardTools is available at https://broadinstitute.github.io/picard/, and can be run using 
$ java -jar /path/to/picard AddOrReplaceReadGroups \ 

INPUT={SampleName}.sort.bam \ 

OUTPUT={SampleName}.sort.rg.bam \ 

RGID={ReadGroupID} \ 

RGLB={ReadGroupLibrary} \ 

RBPL={ReadGroupSequencingPlatform} \ 

RGPU={ReadGroupRunBarcode} \ 

RGSM={ReadGroupSampleName} \ 

CREATE_INDEX=true 

RGLB, RBPL, RGPU, and RGSM are required for this tool to run. 

RGID needs to be different for each library.   

Local Realignment: 

Local realignment is carried out using the Genome Analysis Toolkit (GATK, available at 

https://software.broadinstitute.org/gatk/).  The first step in this process is to locate targets 

for local realignment using:  

$ java -jar /path/to/GATK -T RealignerTargetCreator \ 

-R {reference}.fasta \

-I {SampleName}.sort.rg.bam \

-o {SampleName}.sort.rg.intervals

Following this, local realignment can be run using: 

$ java -jar /path/to/GATK -T IndelRealigner \ 

-R {reference}.fasta \

-I {SampleName}.sort.rg.bam \

-targetIntervals {SampleName}.sort.rg.intervals \

-o {SampleName}.sort.rg.ra.bam \

-dt NONE \

--maxReadsForRealignment 200000

SNP Calling: 

Set up an input list of files using: 

$ ls -1 /path/to/files/*SSL*.rg.ra.bam > {RunID}.txt 

$ ls -1 /path/to/files/*Pool*.rg.ra.bam >> {RunID}.txt 

https://broadinstitute.github.io/picard/
https://software.broadinstitute.org/gatk/
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Or whatever identifier you used to differentiate PLs and SSLs.  The important thing is 

that this file list all SSLs, followed by all PLs. 

Call FreeBayes using: 

$ /path/to/freebayes/freebayes -L {RunID}.txt \ 

-p 1 -f /path/to/reference/{reference}.fasta \

-v {RunID}_SNPs.vcf --use-best-n-alleles 2 \

--min-repeat-entropy 1 --no-partial-observations \

--min-alternate-fraction 0.05

--min-alternate-

fraction 

Should be set to 1/poolsize or lower.  

This step may take a while, and while running, may look like it isn’t doing anything.  

FreeBayes can be found at https://github.com/ekg/freebayes.   

SNP Filtering: 

Before running SNP filtering, it may be necessary to trim off one or more columns from 

the VCF file if one sample was not called at a majority of positions; if a single sample is 

not called at a particular position, the variant at that position will be discarded, so a single 

sample uncalled (or at low depth) at a majority of positions can result in no data making 

it through the filtering step.  To determine if a column needs to be removed, look at your 

VCF file in Excel, and see if there are any columns that are periods (“.”) for the majority 

of rows.  Removing the column can also be done in Excel, but you need to be careful 

because Excel likes to add quotes when it saves files with commas in the cells, as do most 

spreadsheet editors I’ve found.   

If desired, sample depth can be assessed using the GATK DepthOfCoverage tool (see 

https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_

tools_walkers_coverage_DepthOfCoverage.php for instructions).  This tool takes a 

similar amount of time to SNP calling.  

SNP filtering is accomplished by use of a custom python script, which can be run with 

the command: 

$ python /path/to/CallHap/CallHap_VCF_Filt.py \ 

-i {RunID}_SNPs.vcf -o {RunID}_d600q20_Haps.vcf \

-O {RunID}_d600q20_Pools.vcf -n <number of SSLs> \

-N <number of Pools> -d 600 -q 20 -p 20

-i The input VCF file from FreeBayes 

-o The output haplotypes file, containing haplotypes found in the 

SSLs 

https://github.com/ekg/freebayes
https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_tools_walkers_coverage_DepthOfCoverage.php
https://software.broadinstitute.org/gatk/documentation/tooldocs/org_broadinstitute_gatk_tools_walkers_coverage_DepthOfCoverage.php
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-O The output Pool SNP frequencies file, containing frequency of 

the more common allele in each pool 
-n The number of SSLs in the input file 

-N The number of Pools in the input file 

-d, --minDepth This option sets the minimum read depth that must be present 

at a position in ALL libraries in order for that position to be 

considered as a variant.  It should be set based on the number 

of individuals in a PL.  For haploid sequence, a depth of 15 per 

individual in the pool is recommended (Sims et al., 2014), so 

that for a pool of 20 individuals, a depth of 300 is required at a 

site to be able to call variants. 
-q, --minQual Controls the minimum PHRED-scaled variant quality needed 

to use a variant.  Mostly useful for filtering out super-low 

quality variants, but can be set higher as necessary.  -p is the 

number of individuals in each pool.   
--minCallPrev Controls the maximum allowable error in SSLs for a variant to 

be called.  It can range from 1 (all reads in each SSL need to 

have the same identity) to 0.5 (Up to half the reads in a SSL 

can have a different identity).  At a setting of 1, some real 

SNPs could be removed based on unavoidable errors in the 

SSLs, while at a setting of 0.5, confidence in the identity call 

for SSLs, and thus in the identity of haplotypes, will be 

significantly decreased.  I set this parameter at a default of 0.9, 

to allow for some sequencing error in the SSLs while still 

maintaining a high accuracy of SSL identity calls. 
--minSnpPrev Coupled with poolSize, this option controls how much of a PL 

must be the alternate identity for a SNP to be at that position 

when there is no variation in the SSLs.  The value is a positive 

floating-point decimal, which gets multiplied by 1/poolSize to 

yield the proportion of reads that must be of a different identity 

in a PL to yield a variant.  At a value of zero, all positions 

would be called as variants if there was any variation in a PL.  

I set this at a default value of 0.75 in order to allow for some 

error in low-frequency haplotypes, while removing the 

majority of low-frequency sequencing errors from 

consideration.   
--indelDist How far away from indels a variant should be for use.  

IndelDist takes an integer value greater than 0; at a value of 0, 

distance from an indel will not be considered as a filter.  I set 

this at a relatively conservative value of 100 (the length of my 

raw sequencing reads) as being the maximum distance at 

which the presence of an indel could have any effect on variant 

discovery. 
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It is recommended to run this program with different sets of parameters to determine 

what the optimum parameters will be for a particular run. 

Haplotype Calling: 

Before running this step, check how many cores are available on the system you’re using 

with htop.  Make sure you don’t overload the system you’re working on; don’t set -t to 

higher than the number of available cores, and don’t take up all the cores on the machine.  

Haplotype calling can be run using: 

$ python /path/to/CallHap/CallHap_HapCallr.py \ 

--inputHaps {RunID}_d250q20_Haps.vcf \ 

--inputFreqs {RunID}_d250q20_Pools.vcf \ 

-o {RunID} -p 20 -t 5 -l 2 --numRandom 100 –numTopRSS 3

--inputHaps The haplotypes file from SNP filtering 

--inputFreqs The Pools file from SNP filtering 

-o A unique output prefix for this run of haplotype caller 

-p The number of individuals in each pool 

-t The number of threads to use during processing 

-l The number of times to iterate across the SNPs within each order 

-r How high a residual should be able to exist after adding a SNP, 

and is used to defer processing of a SNP where the residual 

doesn’t reduce enough to another iteration. 
--dropFinal A flag which pairs with -r to remove SNPs with a high residual 

entirely at the end if they don’t reduce the residual enough.  May 

not work with current random ordering algorithm; don’t use for 

now. 
--genpop A flag that instructs CallHap to generate genpop output 

--structure A flag that instructs CallHap to generate structure formated 

output 
--numRandom Controls how many psudo-random orderings of SNPs to use, and 

should be a value greater than zero.  I set this value at 100 as a 

compromise between run time and increased chance of finding 

the correct solution; in practice, this value should be set based on 

the number of starting haplotypes relative to the number of SNPs 

present.  If the number of starting haplotypes is close to the 

number of SNPs, this value can be low; the maximum number of 

haplotypes in the network is one more than the number of SNPs.  

However, if the number of SNPs is greater than the number of 
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haplotypes, more attempts may be needed to help resolve the best 

network topology. 
--numTopRSS This option just influences how many RSS values down are 

processed for the final output solutions, and should be an integer 

greater than zero.  I set it at a value of 3 so I could examine the 

higher RSS value solutions. 

This program generates four to six output file per solution output (within the minimum 

number of RSS values): 

• A NEXUS file (RunID_solNum_haps.nex) for network phylogeny creation; PopART

(http://popart.otago.ac.nz/index.shtml) works fairly well.  I’ve been using the TCS

algorithm.

• A VCF file (RunID_solNum_PredFreqs.vcf) containing the estimated SNP

frequencies based on the estimated haplotype frequencies, and the per-SNP average

residuals in the INFO field

• A CSV file (RunID_solNum_freqs.csv) containing the per-pool haplotype

frequencies and RSS values for each pool.

• A CSV file (RunID_solNum_Regression.csv) containing paired observed and

predicted SNP frequencies from the Least Squared algorithm.

• (Optional): A Structure formatted file (RunID_solNum_iterNum.str) containing the

expanded haplotype frequencies

• (Optional): A Genpop file containing the haplotype frequencies for use in Adigenet.

In addition, outputs are generated describing the original haplotypes network 

(RunID_Initial.nex), the unique haplotypes network (RunID_Unique.nex), raw topologies 

observed from each random order (RunID_RAW.csv), the frequency of each unique 

topology generated (RunID_topologies.csv), the frequency of occurrence for each 

haplotype found in any random order (RunID_summary.csv).   

In terms of population-genetics analysis, haplotypes should be treated as independent 

alleles at a single locus.   

http://popart.otago.ac.nz/index.shtml
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Common Errors: 

Problem Solution 

Quick-start pipeline produces empty files Check that input files defined in the 

preconfig exist 

Multiple best-RSS solutions If one occurs more frequently than the 

other, use that one.   

If both occur equally, check to see if the 

network phylogenies for each solution 

look the same, and if the generated 

haplotype frequencies look the same.  If 

the generated haplotype frequencies are 

identical, it doesn’t matter which 

haplotype is actually present.   

If generated haplotype frequencies differ, 

create non-biologically relevant pools 

containing the same DNA samples, but 

shuffled in new ways (perhaps by using 

individual 1 from each population as one 

pool, individual 2 from each population as 

a second, and so on).   
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Appendix H: CallHap Programs 

File structure 

CallHap_VCF_Filt.py 

CallHap_HapCallr.py 

Modules 

Modules/CallHap_LeastSquares.py 

Modules/General.py 

Modules/IO.py 

Modules/VCF_parser.py 

Modules/parallel.py 
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CallHap_VCF_Filt.py 

#!/usr/bin/env python 

# CallHap_VCF_Filt.py 

# By Brendan F. Kohrn 

# 3/20/2017 

#  

# This is the VCF filter used by the CallHap pipeline. 

import numpy as np 

from argparse import ArgumentParser 

import time 

from Modules.VCF_parser import * 

from Modules.IO import * 

parser = ArgumentParser() 

parser.add_argument( 

"-i","--inVCF",  

action="store",  

dest="inFile",  

help="The input VCF file to be filtered.  All SSLs should be grouped \ 

together in the first columns of the VCF, and all pools grouped \ 

together afterwards, as in 'SSL1, SSL2, SSL3, ..., SSLN, Pool1, \ 

Pool2, Pool3, ..., PoolM'.  ",  

required=True 

) 

parser.add_argument( 

"-o", "--outHaps",  

action="store",  

dest="outHaps",  

help="A name for the output haplotypes VCF file." , 

required=True 

) 

parser.add_argument( 

"-O", "--outPools",  

action="store",  

dest="outPools",  

help="A name for the output pools VCF file.  ", 

required=True 

) 

parser.add_argument( 

"-n", "--numSamps",  

action="store",  

dest="numSamps",  

type=int,  

help="The number of SSLs in your input VCF file", 

required=True 

) 

parser.add_argument( 

"-N", "--numPools",  

action="store",  

dest="numPools",  

type=int,  

help="The number of pools in your input VCF file", 

required=True 

) 

parser.add_argument( 

"-d", "--minDepth", 

action="store",  

dest="minDepth",  
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type=int,  

help="The minimum depth to process a line, and the minimum average depth \ 

to process a column.  ", 

default = 500 

) 

parser.add_argument( 

"--minCallPrev",  

action="store",  

dest="minCallPrev",  

type=float,  

help="The percentage of reads that must be of a given identity in a SSL \ 

to have that position be good.  ", 

default=0.9 

) 

parser.add_argument( 

"--minSnpPrev",  

action="store",  

dest="minSnpPrev",  

type=float,  

   help="The percent of a single individuals worth of reads that must be of a\ 

given idetity to call a position as polymorphic based on pool \ 

samples", 

default = 0.75 

) 

parser.add_argument( 

"-p", "--poolSize",  

action="store",  

dest="poolSize",  

type=int,  

help="the number of individuals in each pooled library.  ", 

required=True 

) 

parser.add_argument( 

"-q", "--minQual",  

action="store",  

dest="minQual",  

type=int,  

help="The minimum quality a given variant call must have to be processed.", 

default=100 

) 

parser.add_argument( 

"--reportInterval",  

action="store",  

dest="rptInt",  

type=int,  

help="Report progress at this number of lines", 

default=1000 

) 

parser.add_argument( 

"--dropLowDepth",  

action="store_true",  

dest="dropLow",  

help="Automatically drop any samples with an average depth under the \ 

minimum depth.  " 

) 

parser.add_argument( 

"--indelDist",  

action="store",  

dest="indelDist", 

default=100,  
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help="How far away from indels to make SNPs.  Defaults to 100" 

) 

o = parser.parse_args()

print("Running CallHap VCF filter on %s at %s" % (time.strftime("%d/%m/%Y"), 

time.strftime("%H:%M:%S"))) 

pyCommand = "python CallHap_VCF_Filt.py --inVCF %s --outHaps %s " % (

o.inFile, o.outHaps 

) 

pyCommand += "--outPools %s --numSamps %s --numPools %s --minDepth %s " % (

o.outPools, o.numSamps, o.numPools, o.minDepth 

) 

pyCommand += "--minCallPrev %s --minSnpPrev %s --poolSize %s --minQual %s" % (

o.minCallPrev, o.minSnpPrev, o.poolSize, o.minQual 

) 

print("Command = %s" % pyCommand) 

print("\nOpening files...") 

# Open input VCF file 

inVCF = vcfReader(o.inFile) 

# Open output files 

outHaps = open(o.outHaps, 'wb') 

outPools = open(o.outPools, 'wb') 

# Write command into header lines of both output files 

outHaps.write("##Command=\"%s\"" % pyCommand) 

outPools.write("##Command=\"%s\"" % pyCommand) 

# Check average depth of each column in input 

print("Checking depth of input columns...") 

depths = [0. for x in xrange(o.numSamps + o.numPools)] 

lines = 0 

goodDepth = [True for x in xrange(o.numSamps + o.numPools)] 

lineChekcer = [] 

goodVarCtr = 0 

# Determine which columns have (on average) a good enough depth to pass the 

# depth filter 

for line in inVCF.lines: 

lineDPs = line.getData("DP","a") 

for iter1 in xrange(o.numSamps + o.numPools): 

if np.isnan(float(lineDPs[iter1])) == True: 

depths[iter1] += 0. 

else: 

depths[iter1] += float(lineDPs[iter1]) 

lines += 1 

for iter1 in xrange(o.numSamps + o.numPools): 

if depths[iter1]/lines >= o.minDepth: 

goodDepth[iter1] = True 

else: 

goodDepth[iter1] = False 

vcfNames = inVCF.getNames() 

# Print warnings about inadequate depth 

if False in goodDepth: 

badColumns = [x for x in range(len(goodDepth)) if goodDepth[x] == False] 

for badIter in badColumns: 

print("\tWarning: Sample %s is has too low of a depth (%s)" % 

(vcfNames[badIter], depths[badIter]/lines)) 

# If requested, automatically drop these columns 

if o.dropLow: 

print("; skipping\n") 
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else: 

print("\n") 

else: 

print("\tAll columns have greater than minimum average depth.  ") 

# If dropping low depth columns has not been requested, reset goodDepth checker 

if not o.dropLow: 

goodDepth = [True for x in xrange(o.numSamps + o.numPools)] 

# Write column labels to both output files 

outHaps.write( 

"\n#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s" % ( 

"\t".join( 

[vcfNames[x] for x in  xrange(0,o.numSamps) 

if goodDepth[x] == True] 

)) 

) 

outPools.write( 

"\n#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s" % ( 

"\t".join([vcfNames[x] for x in  xrange(o.numSamps, 

o.numSamps+o.numPools)

if goodDepth[x] == True ]) 

) 

) 

print("\nStarting analysis of lines...") 

lineCounter = 0 

indelLocs = [] 

outHapsLines = [] 

outPoolsLines = [] 

outLinesPoss = [] 

for line in inVCF.lines: 

# Print periodic progress reports 

if lineCounter % o.rptInt == 0 and lineCounter > 0: 

print("%s lines processed..." % lineCounter) 

print(line.getData("pos")) 

badReasons = [x[1] for x in lineChekcer] 

print("\nReport:") 

print("%s lines processed" % lineCounter) 

print("%s lines passing initial filters" %  

[x[0] for x in lineChekcer].count(True)) 

print("\t%s good varients" % goodVarCtr) 

print("%s lines failing initial filters" %  

[x[0] for x in lineChekcer].count(False)) 

print("\t%s incomplete coverage" %  

badReasons.count("incomplete coverage")) 

print("\t%s low depth" % badReasons.count("low depth")) 

print("\t%s too many differences between ref and one alt" % 

badReasons.count("too many differences between ref and one alt")) 

print("\t%s different differences between two alts and the ref" %  

badReasons.count("Different differences between two alts and the 

ref")) 

print("\t%s unequal ref and alt lengths" % 

badReasons.count("unequal ref and alt lengths")) 

print("\t%s alt longer than 1 with ref length of 1" % 

badReasons.count("alt longer than 1 with ref length of 1")) 

print("\t%s Low quality variant call" %  

badReasons.count("low quality SNP call")) 

lineCounter += 1 

# Retrieve basic information about this line 
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pos = line.getData("pos") 

lineRefCounts = line.getData("RO","a") 

lineDPs = line.getData("DP","a") 

useLine = True 

# Check that there is depth in all samples for this line 

if np.nan in lineDPs: 

lineChekcer.append((False, "incomplete coverage", pos)) 

useLine = False 

# Check that this line passes the quality filter 

elif float(line.getData("qual")) < o.minQual: 

lineChekcer.append((False, "low quality SNP call", pos)) 

useLine = False 

# Check that all used columns in this line have adequate depth 

elif False in [ 

True if int(lineDPs[x]) >= o.minDepth or goodDepth[x] == False 

else False for x in xrange(len(lineDPs)) 

]: 

lineChekcer.append((False, "low depth", pos)) 

   useLine = False 

# Check that the length of the reference is 1 

elif len(line.getData("ref")) > 1: 

# If the length of the reference is greater than 1, check that the 

# length of the alt matches the length of the reference 

# And that all alt alleles are the same length 

if ( 

max([len(x) for x in line.getData("alt")]) == len(line.getData("ref")) 

and len(set([len(y) for y in line.getData("alt")])) <= 1 

): 

altValues = line.getData("alt") 

refValue = line.getData("ref") 

newAlt = [] 

diffIdxs = [] 

# If ref and alt alleles are the same length, check that there is 

# only one difference between them 

for altValue in altValues: 

numDiffs = 0 

diffIdx = [] 

for diffCounter in xrange(len(altValue)): 

if refValue[diffCounter] != altValue[diffCounter]: 

numDiffs += 1 

diffIdx.append(diffCounter) 

# If there is more than one difference between ref and alt 

# alleles, discard the line 

if numDiffs > 1: 

if useLine == True: 

lineChekcer.append( 

(False, 

"too many differences between ref and one alt", 

pos) 

) 

useLine = False 

else: 

# Calculate which base pairs are different between this alt 

# and the reference 

diffIdxs.append(diffIdx[0]) 

newAlt.append(altValue[diffIdx[0]]) 

  # Check that all alts have the same base pair different from the 

# reference 

if len(set(diffIdxs)) == 1: 
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# If they do, change the ref and alt alleles, and the position 

# accordingly 

  line.setElmt("pos", line.getData("pos") + diffIdx[0]) 

line.setElmt("ref", refValue[diffIdxs[0]]) 

line.setElmt("alt", newAlt) 

# Otherwise, discard the line 

else: 

useLine = False 

lineChekcer.append( 

(False,  

"Different differences between two alts and the ref", 

pos) 

) 

# Keep track of this location as the location of an indel 

indelLocs.append(int(line.getData("pos"))) 

else: 

# If ref and alt are different lengths, discard the line 

useLine = False 

lineChekcer.append((False, "unequal ref and alt lengths", pos)) 

indelLocs.append(int(line.getData("pos"))) 

# Check that the length of the alt allele is 1 

elif max([len(x) for x in line.getData("alt")]) > 1: 

# If not, discard the line 

lineChekcer.append( 

(False, "alt longer than 1 with ref length of 1", pos) 

) 

useLine = False 

# Keep track of this location as the location of an indel 

indelLocs.append(int(line.getData("pos"))) 

if useLine == True: 

# If this line has not been discarded yet,  

lineChekcer.append([True, "good line", pos]) 

# Count alternate alleles for the line 

lineAltCounts = [[x] for x in line.getData("AO", "a")] 

sampIDs = [] 

conflicted = False 

monomorphic = False 

# Determine the identity (Ref/Alt) of each sample (SSL) in this line 

for sampIter in xrange(o.numSamps): 

if goodDepth[sampIter] == True: 

sampTest = [int(lineRefCounts[sampIter])] 

sampTest.extend([int(x) for x in lineAltCounts[sampIter]]) 

maxIter = None 

for iter1 in xrange(len(sampTest)): 

if maxIter == None: 

maxIter = iter1 

elif sampTest[iter1] > sampTest[maxIter]: 

maxIter = iter1 

sampIDs.append(maxIter) 

# Test if there are no reads in any of the identities for this 

# sample/line 

if sum(sampTest) == 0: 

if conflicted == False: 

lineChekcer[-1].append( 

"conflicted because sum sampTest = 0 (line 167)" 

) 

conflicted = True 

# Test if the proportion of the most common identity in this 

# sample/line is high enough to reliably call 

elif float(sampTest[maxIter])/sum(sampTest) < o.minCallPrev: 
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if conflicted == False: 

lineChekcer[-1].append( 

"conflicted because of minCallPrev (line 170)" 

) 

conflicted = True 

# If no conflicts exist 

if conflicted == False: 

# Figure out the reference allele 

refAllele = None 

altAllele = None 

for iter1 in [0, 1, 2]: 

if refAllele == None: 

refAllele = iter1 

elif sampIDs.count(iter1) > sampIDs.count(refAllele): 

altAllele = refAllele 

refAllele = iter1 

elif altAllele == None: 

altAllele = iter1 

elif sampIDs.count(iter1) > sampIDs.count(altAllele): 

altAllele = iter1 

# Calculate ref allele frequency in each pool 

poolFreqs = [] 

for iter1 in xrange(o.numPools): 

if goodDepth[o.numSamps + iter1] == True: 

if refAllele == 0: 

poolFreqs.append( 

float(lineRefCounts[o.numSamps + iter1])/ 

int(lineDPs[o.numSamps + iter1]) 

) 

else: 

poolFreqs.append(float( 

lineAltCounts[o.numSamps + iter1][refAllele - 1])/ 

int(lineDPs[o.numSamps + iter1])) 

monomorphicSamps = False 

polymorphicPools = False 

# Check if locus is monomorphic in single samples 

if sampIDs.count(refAllele) == len(sampIDs): 

monomorphicSamps = True 

lineChekcer[-1].append("monomorphicSamps") 

# Check if sample is polymorphic in pools 

if o.numPools > 0: 

if min(poolFreqs) <= 1. - (o.minSnpPrev/o.poolSize): 

polymorphicPools = True 

lineChekcer[-1].append("polymorphicPools") 

# If either SSLs are polymorphic or SSLs are monomorphic and Pools 

# are polymorphic, keep line 

if monomorphicSamps==False or (polymorphicPools == True and  

monomorphicSamps == True): 

goodVarCtr += 1 

lineRef = line.getData( 

"ref" if refAllele == 0 else "alt")[0 if refAllele == 0 

else refAllele - 1] 

lineAlt = line.getData( 

"ref" if altAllele == 0 else "alt")[0 if altAllele == 0 

else altAllele - 1] 

linePos = line.getData("pos") 

lineChrom = line.getData("chrom") 

lineQual = line.getData("qual") 
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outHapsLines.append( 

"\n%s\t%s\t.\t%s\t%s\t%s\t.\t.\tGT\t%s" % (lineChrom, 

linePos, 

lineRef, 

lineAlt, 

lineQual,  

"\t".join(["0" if x == refAllele else "1" 

for x in sampIDs])) 

) 

outPoolsLines.append( 

"\n%s\t%s\t.\t%s\t%s\t%s\t.\t.\tRF\t%s" % (lineChrom, 

linePos, 

lineRef, 

lineAlt, 

lineQual,  

"\t".join([str(x) for x in poolFreqs])) 

) 

outLinesPoss.append(int(line.getData("pos"))) 

# Check all variants located so far for proximity to indels 

finGoodVars = 0 

for outIter in xrange(len(outLinesPoss)): 

currPos = outLinesPoss[outIter] 

useVar = True 

indelIter = 0 

indelPos = 0 

while indelPos <= currPos + o.indelDist and indelIter < len(indelLocs): 

indelPos = indelLocs[indelIter] 

if indelPos > currPos and indelPos - 10 < currPos: 

useVar = False 

elif indelPos < currPos and indelPos + 10 > currPos: 

useVar = False 

elif indelPos == currPos: 

useVar = False 

indelIter += 1 

# Write output files 

if useVar == True: 

outHaps.write(outHapsLines[outIter]) 

outPools.write(outPoolsLines[outIter]) 

finGoodVars += 1 

outHaps.close() 

outPools.close() 

# Create Nexus output 

finOutToNex,finOutNames = toNP_array(o.outHaps,"GT") 

if finOutToNex.shape[0] != 0: 

NexusWriter( 

[vcfNames[x] for x in  xrange(0,o.numSamps) if goodDepth[x] == True], 

finOutToNex, 

finOutToNex.shape[0], 

o.outHaps[:-4],

"",

o.outHaps

)

#output report 

badReasons = [x[1] for x in lineChekcer] 

print("\nFinal report:") 

print("End time = %s %s" %  

(time.strftime("%d/%m/%Y"),time.strftime("%H:%M:%S"))) 

print("%s lines processed" % lineCounter) 
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print("%s lines passing initial filters" % 

[x[0] for x in lineChekcer].count(True)) 

print("\t%s good variants" % goodVarCtr) 

print("\t%s not within %s bp of an indel" % (finGoodVars,o.indelDist)) 

print("%s lines failing initial filters" %  

[x[0] for x in lineChekcer].count(False)) 

print("\t%s incomplete coverage" % badReasons.count("incomplete coverage")) 

print("\t%s low depth" % badReasons.count("low depth")) 

print("\t%s too many differences between ref and one alt" %  

badReasons.count("too many differences between ref and one alt")) 

print("\t%s different differences between two alts and the ref" %  

badReasons.count("Different differences between two alts and the ref")) 

print("\t%s unequal ref and alt lengths" %  

badReasons.count("unequal ref and alt lengths")) 

print("\t%s alt longer than 1 with ref length of 1" % 

badReasons.count("alt longer than 1 with ref length of 1")) 

print("\t%s Low quality variant call" %  

badReasons.count("low quality SNP call")) 
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CallHap_HapCallr.py 

#!/bin/python 

# CallHap_HapCallr V. 1.01.00 

# 

# A program for determining full-genome haplotype frequencies in pooled DNA 

# samples based on SNP calls and limited known haplotypes.  

# Takes as input a pair of VCF files describing haplotype identity and SNP  

# frequency, as generated by CallHap VCF_Filt 

#  

# Import necessary modules 

import numpy as np 

from argparse import ArgumentParser 

import time 

import sys 

import random 

from multiprocessing import Pool 

from Modules.VCF_parser import * 

from Modules.CorrHaps import * 

from Modules.CallHap_LeastSquares import * 

from Modules.General import * 

from Modules.IO import * 

from Modules.parallel import * 

progVersion = "V1.01.00" 

def  MakeHaps(inSnpSets, inPoolSize, inOldHaps, inInitialFreqs, InitialHaps): 

# Module to create new haplotypes using input SNP sets and haplotype set. 

# Figure out what the less common identity for this SNP is in the current 

# haplotype set 

snpIDs = [inOldHaps[x][inSnpSets[0]] for x in xrange(len(inOldHaps))] 

numSnps = len(inOldHaps[0]) 

commonCounter = [snpIDs.count(0), snpIDs.count(1)] 

if commonCounter[0] > commonCounter[1]: 

rareAllele=1 

else: 

rareAllele=0 

# Figure out which haplotypes contain the less common variant

containingHaps = [True if inOldHaps[x][inSnpSets[0]] == rareAllele 

else False for x in xrange(len(inOldHaps))] 

if True in containingHaps: # If this SNP is in a known haplotype 

# Determine which SNPs can be legally changed in each haplotype 

legalSnpsByHap = ValidSnpsFromPhylogeny(inOldHaps) 

# Check which haplotypes the target SNP can be legally changed in 

# These are the ones that could be used to create new source haplotypes 

usableHaps = [True if inSnpSets[0] in legalSnpsByHap[hap] else False  

for hap in xrange(len(inOldHaps))] 

else: # If this SNP is not in a known haplotype 

# All haplotypes can be used to create new source haplotypes. 

usableHaps = [True for x in containingHaps] 

# Initialize lists of possible haplotype sets 

possibleFreqs = [inInitialFreqs[:]] 

possibleHaps = [inOldHaps] 

initialHaps = len(inOldHaps) 

freqSet = 0 

testStop = len(possibleFreqs) 

loopCtr1 = 0 

# while there are still haplotypes to try adding this SNP to 
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while freqSet < testStop: 

loopCtr1 += 1 

baseFreq = [] 

for freq in xrange(len(possibleFreqs[freqSet])): 

if possibleFreqs[freqSet][freq] > 0 and usableHaps[freq] == True: 

baseFreq.append(freq) 

newFreq = 0 

loopCtr2 = 0 

while newFreq < len(baseFreq): 

loopCtr2 += 1 

if loopCtr2 > 1000: 

   raise Exception( 

"Too many iterations at line 342 with baseFreq = %s" % 

len(baseFreq) 

) 

if baseFreq[newFreq] > initialHaps: 

if newFreq == len(baseFreq) - 1: 

# Change the original frequency set and haplotypes set 

possibleFreqs[freqSet].append(1) 

possibleHaps[freqSet].append( 

np.copy(possibleHaps[freqSet][baseFreq[newFreq]]) 

) 

for iter1 in inSnpSets: 

possibleHaps[freqSet][-1][iter1] = 1 - 

possibleHaps[freqSet][-1][iter1] 

else: 

# make a copy of the original frequency set and haplotypes 

# set 

possibleFreqs.append([x for x in possibleFreqs[freqSet]]) 

possibleHaps.append([np.copy(x)  

for x in possibleHaps[freqSet]]) 

# change the copy 

possibleFreqs[-1].append(1) 

possibleHaps[-1].append( 

np.copy(possibleHaps[freqSet][newFreq]) 

) 

for iter1 in inSnpSets: 

possibleHaps[-1][-1][iter1] = 1 - possibleHaps[-1][-

1][iter1] 

else: 

if newFreq == len(baseFreq) - 1: 

# Change the original frequency set and haplotypes set 

possibleFreqs[freqSet].append(1) 

possibleHaps[freqSet].append( 

np.copy(possibleHaps[freqSet][baseFreq[newFreq]]) 

) 

for iter1 in inSnpSets: 

possibleHaps[freqSet][-1][iter1] = 1 - 

possibleHaps[freqSet][-1][iter1] 

if possibleFreqs[freqSet][baseFreq[newFreq]] == 0: 

possibleFreqs[freqSet].pop(baseFreq[newFreq]) 

possibleHaps[freqSet].pop(baseFreq[newFreq]) 

else: 

# make a copy of the original frequency set and haplotypes 

# set 

possibleFreqs.append([x for x in possibleFreqs[freqSet]]) 
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possibleHaps.append([np.copy(x) 

for x in possibleHaps[freqSet]]) 

# change the copy 

possibleFreqs[-1].append(1) 

possibleHaps[-1].append( 

np.copy(possibleHaps[freqSet][baseFreq[newFreq]]) 

) 

for iter1 in inSnpSets: 

possibleHaps[-1][-1][iter1] = 1 - possibleHaps[-1][-

1][iter1] 

if (possibleFreqs[freqSet][baseFreq[newFreq]] == 0 

and baseFreq[newFreq] >= InitialHaps): 

possibleFreqs[freqSet].pop(baseFreq[newFreq]) 

possibleHaps[freqSet].pop(baseFreq[newFreq]) 

newFreq += 1 

freqSet += 1 

return(possibleHaps) 

def CallHapMain(OrderNumber, o): 

print("Starting Random Order %s/%s" % (str(OrderNumber + 1), 

str(o.numRand))) 

# Load haplotypes 

KnownHaps, KnownNames = toNP_array(o.knownHaps, "GT") 

# Invert haplotypes so that ref allele is 1 

KnownHaps = invertArray(KnownHaps) 

# Find unique haplotypes 

inHapArray, UniqueNames = UniqueHaps(KnownHaps, KnownNames) 

# Count number of unique haplotypes 

numHapsInitial = len(UniqueNames) 

# Count number of SNPs 

numSNPs = inHapArray.shape[0] 

# Add "dummy" SNP to ensure haplotype frequencies sum correctly 

inHapArray = ExtendHaps(inHapArray) 

# Store input haplotypes in bestArray 

bestArray = np.copy(inHapArray)

# Load SNPs 

SnpFreqs, poolNames = toNP_array(o.inFreqs, "RF") 

# Add "dummy" SNP to ensure haplotype frequencies sum correctly 

SnpFreqs = ExtendHaps(SnpFreqs) 

# Count number of pools present 

numPools = len(poolNames) 

# Count number of haplotypes again to save initial number of known  

# haplotypes for later 

# May not be needed in random method 

numHapsInitial1 = len(UniqueNames) 

# Set baseNumHapSets to keep track of source haplotype set for each created 

# haplotype set 

baseNumHapSets = 1 

# Convert haplotypes and SNPs arrays to decimal format to prevent rounding 

# errors 

bestArray = npToDecNp(bestArray) 

SnpFreqs = npToDecNp(SnpFreqs) 

# Find base SLSq 

# Save base RSS 

baseSLSq = [] 

# Save base haplotype frequencies 

baseFreqs = [] 

# save base residuals 
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baseResiduals = [[]] 

# Calculate RSS for each pool 

for poolIter in xrange(numPools): 

tmpSol = Find_Freqs(bestArray, SnpFreqs[:,poolIter], o.poolSize) 

baseSLSq.append(tmpSol[1]) 

baseFreqs.append(tmpSol[0]) 

baseResiduals[0].append( 

np.array([[x] for x in list(residuals(tmpSol[0][0],bestArray, 

SnpFreqs[:,poolIter],o.poolSize))]) 

) 

# Calculate total per SNP RSS values for all SNPs; method for deterministic 

# ordering 

baseSnpResids = [sum([baseResiduals[0][pool][xSnp]  

for pool in xrange(numPools)]) for xSnp in xrange(numSNPs)] 

# Find overall SNP frequency in SSLs; method for deterministic ordering 

snpFreqsTotal = np.sum(bestArray, axis=1) < bestArray.shape[1] 

# Create random SNP ordering 

snpCombins3 = [[x] for x in range(numSNPs)] 

random.shuffle(snpCombins3) 

snpCombins3 = [y for y in sorted(snpCombins3, 

key = lambda x: snpFreqsTotal[x[0]], reverse = True)] 

print("SNP Order %s/%s: \n%s" % (str(OrderNumber + 1),  

str(o.numRand), snpCombins3)) 

#Find base average RSS value 

baseRSS = sum(baseSLSq)/len(baseSLSq) 

fullFreqs = [[0 for x in xrange(numHapsInitial)]] 

for testIter in xrange(numHapsInitial): 

for testIter2 in xrange(numPools): 

if baseFreqs[testIter2][0,testIter] > 0: 

fullFreqs[0][testIter] = 1 

# Break up haplotypes array into a list of arrays 

potHapSets = [[np.copy(bestArray[:,x]) for x in xrange(numHapsInitial)]] 

numHaps = [numHapsInitial] 

# AIC and RSS are used somewhat interchangeably as variable names 

# in this program at the moment, and I don't have the time to clean it up 

# right now.  It will be cleaned up in the future 

bestAIC = [baseRSS] 

usedSnps = 0 

# Start adding SNPs 

# In the case of multiple iterations: 

for iteration in xrange(o.numIterations): 

# Legacy line from when I was grouping SNPs based on correlation, 

# or residual, or frequency 

for combin in snpCombins3: 

# Keep track of where in the list of SNPs I am so the user knows 

# something's happening 

usedSnps += 1 

# Test if this SNP combination has any non-zero residuals 

useCombin = False 

for hapSetIter in xrange(baseNumHapSets): 

for population in xrange(numPools): 

if abs(round( 

20*baseResiduals[hapSetIter][population][combin[0]] 

)) > 0: 

useCombin = True 

# If this SNP combination has non-zero residuals: 

if useCombin: 
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newPotHapSets = [] 

potHapSetsAIC = [] 

sourceHapSet = [] 

newFullFreqs = [] 

# Find options for adding this SNP set: 

currentHapSet = 0 

snpRes = [] 

for hapSet in potHapSets: 

newPotHaps = MakeHaps(combin, o.poolSize, copy(hapSet), 

fullFreqs[0], numHapsInitial) 

SLSqs = [] 

Freqs = [] 

testAICList = [] 

maxRSSList = [] 

srcHap = [] 

# Find the average SLSq for each pot hap set 

newPotHaps2 = [] 

intermediate = [] 

for solverIter1 in xrange(len(newPotHaps)): 

intermediate.append( 

easyConcat(newPotHaps[solverIter1]) 

) 

cleanedIntermediate = [x for x in intermediate 

if not x is None]

   func = partial(massFindFreqs, inSnpFreqs=SnpFreqs, 

p=o.poolSize) 

result = [] 

for solverIter in xrange(len(cleanedIntermediate)): 

result.append(func(cleanedIntermediate[solverIter])) 

tmpSols = [x for x in result if not x is None] 

# Determine which solutions (and thus haplotypes) produce 

# an improvement in RSS value 

testAICList = [x for x in xrange(len(tmpSols))  

if tmpSols[x][2] <= bestAIC[currentHapSet]] 

# Keep track of the source haplotye set for these solutions 

srcHap = [currentHapSet for x in xrange(len(testAICList))] 

# Calculate per SNP residuals to test if improvement was  

# enough to keep this SNPs solutions 

newResiduals = [] 

changedResids = [] 

SnpResiduals = [] 

solIter = 0 

for sol in tmpSols: 

newFullFreqs.append( 

[0 for x in xrange(len(sol[1][0][0]))] 

) 

for testIter in xrange(len(newFullFreqs[-1])): 

for testIter2 in xrange(numPools): 

if sol[1][testIter2][0,testIter] > 0: 

newFullFreqs[-1][testIter] = 1 

newResiduals.append( 

np.array([[x] 

for x in list(residuals(sol[1][testIter2][0], 

np.concatenate([np.transpose(y[np.newaxis])  

for y in newPotHaps[solIter]], axis=1),  

SnpFreqs[:,testIter2],o.poolSize))]) 

) 

# Calculate per SNP RSS values 

SnpResiduals.append( 
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[sum([newResiduals[poolIter][x]**2  

for poolIter in xrange(numPools)])/numPools 

for x in xrange(numSNPs)] 

) 

solIter += 1 

snpRes1 = [SnpResiduals[x][combin[0]] 

for x in xrange(len(tmpSols))] 

if len(testAICList) > 0: 

# Filter to only the best solutions out of all proposed 

# solutions based on this haplotype set 

# Sort solutions better than starting RSS by RSS value, 

# from lowest to highest 

testIndex = sorted(testAICList,  

key=lambda x: tmpSols[x][2]) 

# If no best solution for this SNP exists, the best 

# solution for this  

if len(potHapSetsAIC) == 0: 

testFreq = tmpSols[testIndex[0]][2] 

# If the best RSS from this solution is worse than the 

# best RSS so far proposed, use the best RSS so far  

# proposed 

elif tmpSols[testIndex[0]][2] >= min(potHapSetsAIC): 

testFreq = min(potHapSetsAIC) 

# Otherwise, use the best RSS value from this SNP 

else: 

testFreq = tmpSols[testIndex[0]][2] 

# If this RSS value represents an improvement, sort and 

# save solutions 

if testFreq < bestAIC[currentHapSet]: 

iter1 = 0 

minAICIndex = [] 

continueLoop = True 

# Save all solutions (and thus potential haplotype 

# sets) that represent an improvement in RSS value 

while (iter1 < len(testIndex) and  

tmpSols[testIndex[iter1]][2] <= testFreq): 

newPotHapSets.append( 

copy(newPotHaps[testIndex[iter1]]) 

) 

potHapSetsAIC.append( 

tmpSols[testIndex[iter1]][2] 

) 

sourceHapSet.append(currentHapSet) 

snpRes.append(snpRes1[testIndex[iter1]]) 

iter1 += 1 

else: 

minAICIndex = [] 

# Next haplotype set 

currentHapSet += 1 

# Check if the ending residual values for a SNP are too high 

continueCheck = [False if snpRes[x] >= o.highResidual else True 

for x in xrange(len(snpRes))] 

# Sort potential haplotype sets by RSS value 

bestAICIdx = sorted(range(len(newPotHapSets)), 

key=lambda x: potHapSetsAIC[x]) 

# Filter solutions based on RSS values, keeping only the lowest 

# RSS values 

if len(bestAICIdx) > 0 and True in continueCheck: 

bestFreq = potHapSetsAIC[bestAICIdx[0]] 

potHapSets = [] 
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bestAIC = [] 

iter1 = 0 

minCtr = 0 

newSourceHap = [] 

potHapSetsMaxRSS = [] 

while  iter1 < len(bestAICIdx): 

if (potHapSetsAIC[bestAICIdx[iter1]] == bestFreq and 

snpRes[bestAICIdx[iter1]] < o.highResidual): 

minCtr += 1 

potHapSets.append( 

copy(newPotHapSets[bestAICIdx[iter1]]) 

) 

bestAIC.append(potHapSetsAIC[bestAICIdx[iter1]]) 

newSourceHap.append( 

sourceHapSet[bestAICIdx[iter1]] 

) 

iter1 += 1 

fullFreqs = newFullFreqs[:] 

sourceHapSet = newSourceHap[:] 

bestRSS = bestFreq 

numHaps = [len(x) for x in potHapSets] 

# Filter any solutions that made it through all SNPs. to only those 

# with the lowest AIC (this time, really is AIC value)  

SLSqs = [] 

Freqs = [] 

finFullFreqs = [] 

SolutionHapSets = [] 

SolutionAICs = [] 

# Remove unused haplotypes from each potential final hap set 

intermediate = [] 

for solverIter1 in xrange(len(potHapSets)): 

intermediate.append(easyConcat(potHapSets[solverIter1])) 

cleanedIntermediate = [x for x in intermediate if not x is None]

func = partial(massFindFreqs, inSnpFreqs=SnpFreqs, p=o.poolSize) 

result = [] 

for solverIter in xrange(len(cleanedIntermediate)): 

result.append(func(cleanedIntermediate[solverIter])) 

tmpSols = [x for x in result if not x is None]

for sol in tmpSols: 

finFullFreqs.append([0 for x in xrange(len(sol[1][0][0]))]) 

for testIter in xrange(len(finFullFreqs[-1])): 

for testIter2 in xrange(numPools): 

if sol[1][testIter2][0,testIter] > 0: 

finFullFreqs[-1][testIter] = 1 

# Calculate AIC values for each solution 

SolutionAICs = [AIC_from_RSS(tmpSols[x][2],  

sum(finFullFreqs[x]), numSNPs) 

for x in xrange(len(tmpSols))] 

# Create solution haplotype sets with only haplotypes present in  

# initial haplotypes or with frequency in pools 

# Known haplotypes should be a subset of haplotypes with frequency in 

# the final solution, but this is just in case they aren't 

SolutionHapSets = [[np.copy(potHapSets[x][y])  

for y in xrange(len(finFullFreqs[x]))  

if finFullFreqs[x][y] > 0 or y < numHapsInitial ] 

for x in xrange(len(tmpSols))] 

# If SNPs are being removed permenantly after the final iteration: 

if o.dropFinal == True and iteration == o.numIterations - 1: 

# Figure out which SNPs to remove for each proposed solution 
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            newResiduals = [] 

            snpsToRemove = [] 

            solIter = 0 

            for sol in tmpSols: 

                for testIter in xrange(len(newFullFreqs)): 

                    for testIter2 in xrange(numPools): 

                        newResiduals.append( 

                            np.array([[x] for x in list( 

                                residuals(sol[1][testIter2][0], 

                                   np.concatenate([np.transpose(y[np.newaxis]) 

                                       for y in potHapSets[solIter]], axis=1),  

                                   SnpFreqs[:,testIter2],o.poolSize) 

                                )]) 

                            ) 

                SnpResiduals = [sum([newResiduals[poolIter][x]**2  

                                for poolIter in xrange(numPools)])  

                                for x in xrange(numSNPs)] 

                snpsToRemove.append([]) 

                for snpRemovalIter in xrange(numSNPs): 

                    if SnpResiduals[snpRemovalIter] >= o.highResidual: 

                        snpsToRemove[-1].append(snpRemovalIter) 

                solIter += 1 

        else: 

            snpsToRemove = [[] for x in xrange(len(tmpSols))] 

             

         

     

         

        # Figure out which solution(s) has (have) the lowest AIC 

        AIC_test_idx = sorted(range(len(SolutionAICs)),  

                              key = lambda x: SolutionAICs[x]) 

        finIndex = 0 

        testFreq = SolutionAICs[AIC_test_idx[0]] 

        iter1 = 0 

        minAICIndex = [] 

        continueLoop = True 

        # Figure out how many solutions to output 

        while  iter1 < len(AIC_test_idx) and continueLoop: 

            if SolutionAICs[AIC_test_idx[iter1]] == testFreq: 

                finIndex += 1 

            else: 

                continueLoop = False 

            iter1 += 1 

         

        # Start resetting base haplotype residuals 

        baseResiduals = []         

         

        # Output solutions 

        newPotHapSets = [] 

        bestAIC = [] 

        if iteration == o.numIterations - 1: 

            outputList = [] 

        for outputIdx in xrange(finIndex): 

            if iteration == o.numIterations - 1: 

                outputList.append([]) 

            # Create final haplotypes array 

            finSolution = np.concatenate( 

                [SolutionHapSets[ 

                    AIC_test_idx[outputIdx]][x][np.newaxis].transpose()  

                    for x in xrange(len( 
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SolutionHapSets[AIC_test_idx[outputIdx]] 

))] 

, axis=1 

) 

# Remove any SNPs that need removing 

finSolution = np.delete(finSolution, snpsToRemove[outputIdx], 0) 

# Find (or make) haplotype names 

myHapNames = [] 

newHapNumber = 1 

for haplotypeIter in xrange(finSolution.shape[1]): 

if haplotypeIter >= len(UniqueNames): 

# For new haplotypes, build a new haplotype name, keeping 

# track of iteration and new haplotype number 

myHapNames.append( 

"NewHap_%s.%s" % (str(iteration).zfill(2), 

str(newHapNumber).zfill(2))) 

newHapNumber += 1 

else: 

# For known haplotypes, use the original haplotype name 

myHapNames.append(UniqueNames[haplotypeIter]) 

# Redo uniqueness of haplotypes in case removing a SNP merged two 

# haplotypes 

finSolution, finNames = UniqueHaps(finSolution, myHapNames) 

# remove SNPs from SNP frequencies 

finSNPs = np.delete(SnpFreqs,snpsToRemove[outputIdx],0) 

# Create decimal haplotype identifiers 

myDecHaps = [] 

for haplotypeIter in xrange(finSolution.shape[1]): 

myDecHaps.append(int("1"+"".join([str(int(x)) 

for x in finSolution[:, haplotypeIter]]),2)) 

if iteration == o.numIterations - 1: 

outputList[-1].append(myDecHaps) 

SLSqs = [] 

Freqs = [] 

predSnpFreqs = [] 

newResiduals = [] 

for poolIter in xrange(numPools): 

tmpSol = Find_Freqs(finSolution, finSNPs[:,poolIter], 

o.poolSize)

SLSqs.append(tmpSol[1]) 

Freqs.append(tmpSol[0]) 

# Calculate residuals for this pool 

newResiduals.append( 

np.array([[x] for x in list(residuals(tmpSol[0][0], 

finSolution,  

finSNPs[:,poolIter], 

o.poolSize))])

) 

# Calculate predicted SNP frequencies

predSnpFreqs = np.sum(finSolution * tmpSol[0][0], 

axis = 1)/o.poolSize 

if iteration == o.numIterations - 1: 

outputList[-1].append(average(SLSqs)) 

baseResiduals.append(newResiduals[:]) 

# Calculate per SNP RSS values for VCF output 

   SnpResiduals = [float(sum([newResiduals[poolIter][x]**2 

for poolIter in xrange(numPools)])[0]) 
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for x in xrange(numSNPs-len(snpsToRemove[outputIdx]))] 

bestAIC.append(sum(SLSqs)/len(SLSqs)) 

# Save this haplotype set for the next iteration 

newPotHapSets.append([np.copy(finSolution[:,x])  

for x in xrange(finSolution.shape[1])]) 

# Setup for next iteration 

usedSnps = 0 

numHapsInitial = len(myHapNames) # may need some fixing 

UniqueNames = myHapNames[:] # may need some fixing 

numHaps = [numHapsInitial for x in xrange(len(newPotHapSets))] 

outPrefix = "%s_Iteration%s" % (o.outPrefix, iteration + 2) 

potHapSets = newPotHapSets[:] 

fullFreqs = [[1 for x in xrange(len(potHapSets[y]))]  

for y in xrange(len(potHapSets))] 

# Go on to the next iteration 

if iteration == o.numIterations - 1: 

print("Finished Random Order %s/%s" % (str(OrderNumber + 1), 

str(o.numRand))) 

return(outputList) 

if __name__ == "__main__": 

# Load options 

parser = ArgumentParser() 

parser.add_argument( 

'-i','--inputHaps',  

action="store",  

dest="knownHaps",  

help = "A VCF-formatted file containing the known haplotypes encoded \ 

in the GT field.  GT must be present in the FORMAT field, and \ 

ploidy must be 1.  ", 

required=True 

) 

parser.add_argument( 

'-p', '--poolsize',  

action="store",  

type=int,  

dest="poolSize",  

help="The number of individuals in each pool.  ", 

required=True 

) 

parser.add_argument( 

'-f','--inputFreqs',  

action="store",  

dest="inFreqs",  

help="A VCF-formatted file containing the input pool frequencies \ 

encoded in the RF field.  RF must be present in the FORMAT \ 

field.  ", 

required=True 

) 

parser.add_argument( 

'-o','--outPrefix',  

action="store",  

dest="outPrefix",  

required=True,  

help="A prefix for output file names.  " 

) 

parser.add_argument( 

"-v", "--version",  

action="store_true", 

dest="v",  
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help="Displays the version number and exits." 

) 

parser.add_argument( 

'-t', '--processes', 

type=int,  

action="store",  

dest="numProcesses", 

default=None,  

help="The number of processes to use.  Should not be more than the \ 

number of cores on your CPU.  Defaults to using the number of \ 

cores on your CPU.  " 

) 

parser.add_argument( 

'-l','--numIterations',  

type=int,  

action="store",  

dest="numIterations",  

default=1,  

help="Number of iterations to run within each random ordering." 

) 

parser.add_argument( 

'-r','--highResidual',  

type=float,  

action="store",  

dest="highResidual",  

default=100,  

help="Cutoff value for delaying processing of a SNP until after all \ 

other SNPs have been processed" 

) 

parser.add_argument( 

'--dropFinal',  

action="store_true",  

dest="dropFinal",  

help="If after delaying processing on a SNP, the solution isn't \ 

improved by keeping it, drop the SNP.  If absent, the SNP will \ 

be processed as normal at the end.  " 

) 

parser.add_argument( 

'--genpop',  

action="store_true",  

dest="genpopOutput",  

help="Output a genpop file of the resulting haplotype frequencies.  " 

) 

parser.add_argument( 

'--structure',  

action="store_true",  

dest="strOutput",  

help="Output a Structure formatted file of the resulting haplotype \ 

frequencies.  " 

) 

parser.add_argument( 

'--numRandom',  

type=int,  

action="store",  

dest="numRand",  

help="The number of random orders to use for haplotype creation.  \ 

More orders will yield more accurate results, but will also \ 

take longer.  " 

) 

parser.add_argument( 
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'--numTopRSS',  

type=int,  

action="store",  

dest="topNum",  

default=3,  

help="The number of top RSS values you want to output files for.  \ 

Increasing the size of this number may lead to a large number of \ 

outputs.  " 

) 

o = parser.parse_args()

# version output 

if o.v: 

print(progVersion) 

exit() 

# Print initialization text 

print("Running CallHap on %s at %s:" % (time.strftime("%d/%m/%Y"), 

time.strftime("%H:%M:%S"))) 

CommandStr = "Command = python CallHap_HapCallr.py" 

CommandStr += "--inputHaps %s " % o.knownHaps 

CommandStr += "--inputFreqs %s " % o.inFreqs 

CommandStr += "--poolSize %s " % o.poolSize 

CommandStr += "--outPrefix %s " % o.outPrefix 

CommandStr += "--processes %s " % o.numProcesses 

CommandStr += "--numIterations %s " % o.numIterations 

CommandStr += "--highResidual %s " % o.highResidual 

if o.dropFinal: 

CommandStr += "--dropFinal " 

if o.genpopOutput: 

CommandStr += "--genpop " 

if o.strOutput: 

CommandStr += "--structure "  

CommandStr += "--numRandom %s " % o.numRand 

CommandStr += "--numTopRSS %s" % o.topNum 

print(CommandStr) 

# Set initial output prefix 

outPrefix = "%s" % (o.outPrefix) 

pool = Pool(processes=o.numProcesses, maxtasksperchild=500) 

func = partial(CallHapMain, o=o) 

funcIterable = range(o.numRand) 

result = pool.map(func, funcIterable) 

cleaned = [x for x in result if not x is None] 

# not optimal but safe 

pool.close() 

pool.join() 

## Get initial haplotypes / SNP frequencies 

# Load haplotypes 

KnownHaps, KnownNames = toNP_array(o.knownHaps, "GT") 

# Invert haplotypes so that ref allele is 1 

KnownHaps = invertArray(KnownHaps) 

# Find unique haplotypes 

inHapArray, UniqueNames = UniqueHaps(KnownHaps, KnownNames) 

# Count number of unique haplotypes 

numHapsInitial = len(UniqueNames) 

# Count number of SNPs 

numSNPs = inHapArray.shape[0] 
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# Add "dummy" SNP to ensure haplotype frequencies sum correctly 

# Write out starting nexus files for comparison to endpoints 

NexusWriter(KnownNames, KnownHaps, numSNPs, o.outPrefix,  

"INITIAL", o.knownHaps) 

NexusWriter(UniqueNames, inHapArray, numSNPs, o.outPrefix, 

"Unique1", o.knownHaps)

# Load SNPs 

finSNPs, poolNames = toNP_array(o.inFreqs, "RF") 

# Add "dummy" SNP to ensure haplotype frequencies sum correctly 

finSNPs = ExtendHaps(finSNPs) 

# Count number of pools present 

numPools = len(poolNames) 

# Convert haplotypes and snps arrays to decimal format to prevent rounding 

# errors 

finSNPs = npToDecNp(finSNPs) 

# Output for random orders (this will get updated as I figure out sorting  

# and haplotype selection) 

# Output haplotypes for each random order, along with RSS values for those 

# haplotypes 

rawOutput = open("%s_RAW.csv" % outPrefix, 'wb') 

rawOutput.write("Ordering,Solution,RSS, Haplotypes") 

for randIter in xrange(len(cleaned)): 

for solIter in xrange(len(cleaned[randIter])): 

rawOutput.write( 

"\n%s,%s,%s,%s" % ( 

str(randIter),  

str(solIter),  

str(cleaned[randIter][solIter][1]),  

",".join([str(x) for x in cleaned[randIter][solIter][0]]) 

) 

) 

rawOutput.close() 

# Output frequencies for each haplotype across all orders 

# This part will probably stay and be used in sorting haplotypes eventually 

print("Creating summary outputs") 

summaryOutput = open("%s_summary.csv" % outPrefix, 'wb') 

summaryOutput.write("Haplotype,Frequency") 

haplotypeCounter = {} 

for randIter in xrange(len(cleaned)): 

tmpCounter = {} 

for solIter in xrange(len(cleaned[randIter])): 

for hapIter in  cleaned[randIter][solIter][0]: 

if hapIter in tmpCounter.keys(): 

tmpCounter[hapIter] += 1. 

else: 

tmpCounter[hapIter] = 1. 

for keyIter in tmpCounter.keys(): 

if keyIter in haplotypeCounter.keys(): 

haplotypeCounter[keyIter] += tmpCounter[ 

keyIter]/len(cleaned[randIter]) 

else: 

haplotypeCounter[keyIter] = tmpCounter[ 

keyIter]/len(cleaned[randIter]) 

for keyIter in haplotypeCounter.keys(): 

summaryOutput.write( 

"\n%s,%s" % (
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str(keyIter), str(haplotypeCounter[keyIter] /len(cleaned)) 

) 

) 

summaryOutput.close() 

## Group solutions into unique solutions 

print("Find unique topologies") 

UniqueTopologies = [] 

# Use sets for sorting to keep different oreders of the same haplotypes 

# from being called different topologies 

UniqueTopoSets = [] 

UniqueTopoRSSs = [] 

countTopoOccurances = [] 

for randIter in xrange(len(cleaned)): 

numSols = len(cleaned[randIter]) 

for solIter in xrange(numSols): 

if set(cleaned[randIter][solIter][0]) not in UniqueTopoSets: 

UniqueTopologies.append(cleaned[randIter][solIter][0]) 

UniqueTopoSets.append(set(cleaned[randIter][solIter][0])) 

UniqueTopoRSSs.append(cleaned[randIter][solIter][1]) 

countTopoOccurances.append(1./numSols) 

else: 

countTopoOccurances[UniqueTopoSets.index( 

set(cleaned[randIter][solIter][0]) 

)] += 1./numSols 

topoCountsOutput = open("%s_topologies.csv" % outPrefix, 'wb') 

topoCountsOutput.write("RSS,Occurances,Haplotypes") 

# Output counts for different topologies 

for topoIter in xrange(len(UniqueTopologies)): 

topoCountsOutput.write( 

"\n%s,%s,%s" % ( 

UniqueTopoRSSs[topoIter], 

countTopoOccurances[topoIter], 

",".join([str(x) for x in UniqueTopologies[topoIter]]) 

) 

) 

topoCountsOutput.close() 

## Sort unique solutions by RSS value 

# Sort a list of pointers by RSS values they point to 

# This is a list of indexes to UniqueTopologies and UniqueTopoRSSs 

 print("Sort by RSS") 

RssPointers = sorted(range(len(UniqueTopoRSSs)),  

key=lambda x: UniqueTopoRSSs[x]) 

## Find the third best RSS value 

# Keep track of if which RSS value this is 

whichBest = 1 

bestRSS = UniqueTopoRSSs[RssPointers[0]] 

currPointer = 1 

while currPointer < len(RssPointers) and whichBest <= o.topNum: 

if UniqueTopoRSSs[RssPointers[currPointer]] > bestRSS: 

whichBest += 1 

bestRSS = UniqueTopoRSSs[RssPointers[currPointer]] 

currPointer += 1 

## Pull out the haplotype sets with one of the top three RSS values 

## For each haplotype set: 

finTopos = [] 

finDecHaps = [] 

print("Extract solutions from best RSS values") 
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    for convPointer in xrange(currPointer): 

        # Convert haplotype set to list of numpy arrays 

        finTopos.append( 

            [DecHapToNPHap(UniqueTopologies[RssPointers[convPointer]][x])  

            for x in xrange(len(UniqueTopologies[RssPointers[convPointer]]))] 

            ) 

        finDecHaps.append( 

            [UniqueTopologies[RssPointers[convPointer]][x]  

            for x in xrange(len(UniqueTopologies[RssPointers[convPointer]]))] 

            ) 

     

 

    ## For each converted haplotype set: 

        ## Find best solution for this haplotype set 

        ## Output this solution as all requested outputs 

    print("Find haplotype frequencies and output files") 

    for outTopoPtr in xrange(len(finTopos)): 

        # Create final haplotypes array 

        finSolution = np.concatenate( 

            [finTopos[outTopoPtr][x][np.newaxis].transpose()  

            for x in xrange(len(finTopos[outTopoPtr]))], axis=1 

            ) 

        # Find (or make) haplotype names 

        myHapNames = [] 

        print("Outputing solution %s/%s" % (str(outTopoPtr + 1),  

                                            str(len(finTopos)))) 

        print("Finding haplotype names...") 

        for haplotypeIter in xrange(finSolution.shape[1]): 

            if haplotypeIter >= len(UniqueNames): 

                # For new haplotypes, build a new haplotype name, keeping track 

                # of iteration and new haplotype number 

                myHapNames.append("NewHap_%s" % ( 

                    str(finDecHaps[outTopoPtr][haplotypeIter])) 

                    ) 

            else: 

                # For known haplotypes, use the original haplotype name 

                myHapNames.append(UniqueNames[haplotypeIter]) 

        # If requested, generate a structure formatted file 

        if o.strOutput: 

            outFile = open("%s_%s.str" % (outPrefix, outTopoPtr), 'wb') 

        # Generate the haplotype frequencies file 

        outFile2 = open("%s_%s_freqs.csv" % (outPrefix, outTopoPtr), 'wb') 

        outFile2.write("Population,") 

        # Create decimal haplotype identifiers 

        # Finish writing first line of haplotype frequencies file 

        outFile2.write(",".join(myHapNames)) 

        outFile2.write(",RSS") 

        # Write decimal names of haplotypes 

        outFile2.write( 

            "\n,%s" % ",".join([str(x) for x in finDecHaps[outTopoPtr]]) 

            ) 

        # Create genpop output, if requested 

        if o.genpopOutput: 

            genpopOut = open("%s_%s.genpop" % (outPrefix, outTopoPtr), 'wb') 

            genpopOut.write( 

                ",%s" % (",".join(["cp." + str(x)  

                                   for x in finDecHaps[outTopoPtr]])) 

                ) 

        SLSqs = [] 

        Freqs = [] 
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predSnpFreqs = [] 

# Create regression output 

regressionOutput = open( 

"%s_%s_Regression.csv" % (outPrefix, outTopoPtr), 'wb' 

) 

regressionOutput.write( 

"Pool,SNP,Observed Frequency,Predicted Frequency\n" 

 ) 

# Create predicted frequencies VCF output 

output3 = vcfWriter( 

"%s_%s_PredFreqs.vcf" % (outPrefix, outTopoPtr), 

source="CallHaps_HapCallr_%s" % progVersion) 

output3.writeHeader(poolNames) 

output3.setFormat("RF") 

tmpVCF = vcfReader(o.knownHaps) 

output3.importLinesInfo( 

tmpVCF.getData("chrom", lineTarget="a"), 

tmpVCF.getData("pos", lineTarget="a"), 

tmpVCF.getData("ref", lineTarget="a"), 

tmpVCF.getData("alt", lineTarget="a"), 

tmpVCF.getData("qual", lineTarget="a") 

) 

newResiduals = [] 

print("Finding haplotype frequencies...") 

for poolIter in xrange(numPools): 

tmpSol = Find_Freqs(finSolution, finSNPs[:,poolIter], o.poolSize) 

SLSqs.append(tmpSol[1]) 

Freqs.append(tmpSol[0]) 

# Write haplotype frequencies and RSS values for this pool 

outFile2.write( 

"\n%s,%s" % (poolNames[poolIter], 

",".join([str(x) for x in tmpSol[0][0]])) 

) 

outFile2.write(",%s" % tmpSol[1]) 

# Write genpop file text for this pool, if requested 

if o.genpopOutput: 

genpopOut.write( 

"\n%s,%s" % (poolNames[poolIter], 

",".join([str(x) for x in tmpSol[0][0]])) 

) 

# Write structure file text for this pool, if requested 

if o.strOutput: 

outputProt(UniqueNames, tmpSol[0], finSolution, o.poolSize, 

poolNames, poolIter, outFile) 

# Calculate residuals for this pool 

newResiduals.append( 

np.array([[x] for x in list(residuals(tmpSol[0][0], 

finSolution,  

finSNPs[:,poolIter], 

o.poolSize))])

) 

# Calculate predicted SNP frequencies

predSnpFreqs = np.sum( 

finSolution * tmpSol[0][0], axis = 1 

)/o.poolSize 

#print("##DEBUG") 

# Write regression file lines for this pool 

regOutLines = zip( 

[poolNames[poolIter] 
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for x in xrange(len(predSnpFreqs))], 

[str(y) for y in xrange(len(predSnpFreqs))], 

[str(z) for z in list(finSNPs[:,poolIter])], 

[str(w) for w in list(predSnpFreqs)] 

) 

regressionOutput.write( 

"\n".join([",".join(regOutLines[x]) 

for x in xrange(len(regOutLines))]) 

) 

regressionOutput.write("\n") # add a new line between pools 

# Add predicted SNP frequencies to VCF output 

output3.importSampleValues(list(predSnpFreqs), poolNames[poolIter]) 

# Calculate per SNP RSS values for VCF output 

SnpResiduals = [float(sum([newResiduals[poolIter][x]**2 

for poolIter in xrange(numPools)])[0]) 

for x in xrange(numSNPs)] 

output3.importInfo("RSS",SnpResiduals) 

output3.writeSamples() 

# Close output files 

output3.close() 

regressionOutput.close() 

outFile2.close() 

if o.strOutput: 

outFile.close() 

if o.genpopOutput: 

genpopOut.close() 

# Write Nexus file for this solution 

# This allows for network phylogeny construction 

NexusWriter(myHapNames, finSolution, numSNPs, outPrefix, 

outTopoPtr, o.knownHaps) 
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Modules/CallHap_LeastSquares.py 

#!/usr/bin/env python 

# CallHap CallHap_LeastSquares.py 

# By Brendan Kohrn 

# 3/20/2017 

# 

# The main Sum Least Squares method for CallHap_HapCallr 

import numpy as np 

import decimal as dec 

from General import * 

def Find_Freqs(A, b, p): 

'''Find the frequency of various haplotypes in a pool.  A is the haplotypes 

matrix, b is the SNP Frequency matrix, and p is pool size''' 

# Set variables for number of haplotypes and number of SNPs 

M = A.shape[0] 

N = A.shape[1] 

# Create an empty numpy array for the current solution 

x = npDecZeros(1, N) 

# Create an empty numpy array to hold the last solution 

lastX = npDecZeros(1, N) 

# Create dummy variables to hold the last and current sum squared residuals 

 currentSSR = -1 

lastSSR = -1 

# Run the first test to determine the best starting haplotype 

currentSSR, x = InitialTest(A, b, x, currentSSR, M, N, p) 

lastSSR = currentSSR 

lastX = np.copy(x) 

# Create finished switch and counter to check for infinite loops 

finished = False 

# Iterations: 

while not finished: 

# invoke the mail loop 

currentSSR, x = mainLoop(A, b, x, N, M, currentSSR, p) 

# If the SSR (Sum Squared Residuals; equivalent to RSS) value increases 

# on this loop, finish 

if currentSSR >= lastSSR: 

finished = True 

else: 

lastSSR = currentSSR 

lastX = np.copy(x) 

# output frequencies are contained in lastX 

# output SSR contained in lastSSR 

return(lastX, lastSSR) 

def InitialTest(A, b, xIT, curSSR, M, N, p): 

# set counter for best sum squared residuals 

bestSSR = -1 

# Check each haplotype 

for hapIndex in xrange(N): 

# Calculate the SSR if this haplotype was the only one in the pool 

testSSR = sum([resid**2 for resid in np.subtract(A[:, hapIndex], b)]) 

# Check if this SSR is an improvement 

if bestSSR == -1: 

bestSSR = [hapIndex, testSSR] 

elif testSSR < bestSSR[1]: 
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bestSSR[0] = hapIndex 

bestSSR[1] = testSSR 

xIT[0, bestSSR[0]] = dec.Decimal(p) 

# Return SSR value and best haplotype frequency vector 

return(bestSSR[1], np.copy(xIT)) 

def SSR(A, xSSR, b): 

'''Calculate the sume of squared residuals for a given solution to Ax=b''' 

if type(b) == list: 

out = sum([resid**2 for resid in np.subtract(np.sum(A * xSSR, 1), b)]) 

else: 

out = sum([resid**2 for resid in np.subtract(np.sum(A * xSSR, 1), 

b.ravel())])

return(out) 

def mainLoop(A, b, xML, N, M, currSSR, p): 

# for each element of x s.t. x[x_1] > 1, subtract 1 from that element 

# and add one to each other element (x_2) in turn;  

bestSSR = [(-1,-1),currSSR] 

for x_1 in xrange(N): 

if xML[0, x_1] > 1: 

for x_2 in xrange(N): 

wx = np.copy(xML) 

if x_1 != x_2: 

wx[0, x_1] -= 1 

wx[0, x_2] += 1 

testSSR = SSR(A, wx / p, b) 

if testSSR < bestSSR[1]: 

bestSSR[0] = (x_1, x_2) 

bestSSR[1] = testSSR 

if bestSSR[0] != (-1,-1): 

xML[0,bestSSR[0][0]] -= 1 

xML[0,bestSSR[0][1]] += 1 

return(bestSSR[1], np.copy(xML)) 
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Modules/General.py 

#!/usr/bin/env python 

# CallHap General.py 

# By Brendan Kohrn 

# 3/20/2017 

# 

# This script contains general functions for CallHap 

import numpy as np 

import math 

import decimal as dec 

def comparePotHaps(potHapSetA, potHapSetB, numInitialHaps): 

'''Check if all haplotypes in two haplotype sets are the same''' 

# If two haplotype sets are different lengths, they are different 

if len(potHapSetA) != len(potHapSetB): 

return(False) 

else: 

return(all(np.all(x==y) for x,y in zip(potHapSetA[numInitialHaps:], 

potHapSetB[numInitialHaps:]))) 

def average(inList): 

''' Take the average value of a list''' 

# Make sure the list has length 

if len(inList) == 0: 

raise("Error in Average: %s" % inList) 

return(float(sum(inList))/len(inList)) 

def npDecZeros(rows, cols=0): 

'''Create a numpy array of Decimal(0) values''' 

if cols == 0: 

outArray = np.zeros(rows,dtype=dec.Decimal) 

for rowIter in xrange(rows): 

outArray[rowIter] = dec.Decimal(outArray[rowIter]) 

else: 

outArray = np.zeros((rows,cols), dtype=dec.Decimal) 

for rowIter in xrange(rows): 

for colIter in xrange(cols): 

outArray[rowIter,colIter] = dec.Decimal(outArray[rowIter, 

colIter]) 

return(outArray) 

def npToDecNp(inArray): 

'''Convert a numpy array of floats to a numpy array of Decimal numbers to 

avoid rounding errors''' 

outArray = np.array(inArray, dtype=dec.Decimal) 

for elmnt, value in np.ndenumerate(outArray): 

outArray[elmnt] = dec.Decimal(outArray[elmnt]) 

return(outArray) 

def copy(inArr, elmntType = "int"): 

'''Copy a list (particularly of numpy arrays).''' 

if elmntType == "nparray": 

return([np.copy(x) for x in inArr]) 

else: 

return([x for x in inArr]) 

def AIC_from_RSS(RSS, numHaps, numSNPs): 



91 

'''Calculate AIC from RSS values''' 

AIC = 2 * numHaps + (numSNPs * math.log10(RSS/numSNPs)) 

 return(AIC) 

def AICc_from_RSS(RSS, numHaps, numSNPs): 

'''Calculate AICc from RSS values''' 

AIC = 2 * numHaps + (numSNPs * math.log10(RSS/numSNPs)) + (2*numHaps * 

(numHaps + 1))/(numSNPs - numHaps - 1) 

return(AIC) 

def invertArray(inArray): 

'''Invert an array of 0s and 1s (such as the Haplotypes array) or an array 

between 0 and 1 (such as the SNP Freqs array).''' 

OutArray = 1 - inArray 

return(OutArray) 

def residuals(inSol, inData, inFreqs, poolSize): 

  '''Calculate residuals for one particular least-squares solution of Ax=b''' 

calculated = np.sum((inSol * inData)/poolSize, 1) 

resid = np.subtract(inFreqs, calculated) 

return(resid) 

def ArrayHaps(origHaps, newHaps): 

allHapsToArray = [origHaps] 

allHapsToArray.extend(newHaps) 

return(np.concatenate(allHapsToArray, axis=1)) 

def numDiffs(inHap1, inHap2): 

if inHap1.shape != inHap2.shape: 

raise 

else: 

in1 = inHap1.ravel() 

in2 = inHap2.ravel() 

diffCounter = sum([0 if in1[x] == in2[x] else 1 

for x in xrange(len(in1)) ]) 

return(diffCounter) 

def areEqual(inHap1, inHap2): 

if inHap1.shape != inHap2.shape: 

return(False) 

else: 

return(np.all(inHap1 == inHap2)) 

def FindLegalSnpsByNetwork(inHaps, testHapIdx): 

closestHaps = [] 

closestDiffs = [] 

notClosest = [] 

numSnps = len(inHaps[0]) 

distances=[numSnps - np.sum(a==inHaps[testHapIdx]) for a in inHaps] 

  # Determine the distance between this haplotype and every other haplotype 

# in number of SNPs different 

# Sort by closeness 

distIters = sorted(range(len(distances)), key=lambda x: distances[x]) 

# For each haplotype, from closest to furthest away, check if it shares a 

# difference in the target SNP  

# with another haplotype in closestHaps 

for hapIter in distIters: 

if hapIter != testHapIdx: 

if closestHaps == []: 

# If no haplotype is closest yet, this one is the closest 
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closestHaps.append(hapIter) 

closestDiffs.append([]) 

notClosest.append([]) 

for x in xrange(numSnps): 

if inHaps[hapIter][x] == inHaps[testHapIdx][x]: 

pass 

else: 

closestDiffs[-1].append(x) 

else: 

# Otherwise, test to see if this haplotype shares a different 

# SNP with any closer haplotype 

diffBranch = True 

for closeHap in xrange(len(closestHaps)): 

for difSnp in xrange(len(closestDiffs[closeHap])): 

tmpPointer = closestDiffs[closeHap][difSnp] 

if (inHaps[hapIter][tmpPointer] == 

inHaps[testHapIdx][tmpPointer]): 

notClosest[closeHap].append(difSnp) 

else: 

diffBranch = False 

 if diffBranch: 

closestHaps.append(hapIter) 

notClosest.append([]) 

closestDiffs.append([]) 

for x in xrange(numSnps): 

if inHaps[hapIter][x] == inHaps[testHapIdx][x]: 

pass 

else: 

closestDiffs[-1].append(x) 

CanChange = [] 

for hap in xrange(len(closestHaps)): 

CanChange.extend(closestDiffs[hap]) 

return(closestHaps[0],CanChange) 

def ValidSnpsFromPhylogeny(inHaps): 

countDiffs = [[(a!=b) for a in inHaps] for b in inHaps] 

diffSnps = [[[b for b in xrange(len(countDiffs[x][a]))  

if countDiffs[x][a][b] == True]  

for a in xrange(len(countDiffs[x]))] 

for x in xrange(len(countDiffs))] 

# Find adjacent haplotypes for each haplotype 

validSnps = [] 

nextHaps = [] 

for hap in xrange(len(inHaps)): 

nextHaps.append([]) 

validSnps.append([]) 

minDistOrder = sorted(range(len(inHaps)), 

key=lambda x: len(diffSnps[hap][x])) 

# print("DEBUG") 

for hap2 in minDistOrder: 

if hap != hap2: 

if len(nextHaps[-1]) > 0: 

isAdj = True 

for closeHap in nextHaps[-1]: 

if len(np.intersect1d(diffSnps[hap][closeHap], 

diffSnps[hap][hap2])) != 0: 

isAdj = False 

validSnps[-1] = list(np.setdiff1d(validSnps[-1], 

diffSnps[closeHap][hap2])) 
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if isAdj == True: 

nextHaps[-1].append(hap2) 

validSnps[-1].extend(diffSnps[hap][hap2]) 

else: 

nextHaps[-1].append(hap2) 

validSnps[-1].extend(diffSnps[hap][hap2]) 

return(validSnps) 

def DecHapToNPHap(decHap): 

'''Convert a decimal haplotype back into a numpy array''' 

binHap = bin(decHap)[2:] 

binHap = np.array([dec.Decimal(x) for x in binHap[1:]]) 

return(binHap) 
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Modules/IO.py 

#!/usr/bin/env python 

# CallHap IO.py 

# By Brendan Kohrn 

# 3/20/2017 

# 

# This script contains functions relating to input processing of matrices 

# As well as functions relating to some specific output formats. 

import numpy as np 

from VCF_parser import * 

def ExtendHaps(origHaps): 

'''Function to add "Dummy" SNP to array; designed to ensure that all 

haplotype frequencies sum to 20''' 

allHapsToArray = [origHaps] 

allHapsToArray.extend([np.array([[1  

for x in xrange(int(origHaps.shape[1]))]])]) 

return(np.concatenate(allHapsToArray, axis=0)) 

def UniqueHaps(inHaps, inNames): 

'''Find unique haplotypes and reduce the haplotypes and their names; 

still needs some work to fix merged names''' 

remove = [False for n in range(int(inHaps.shape[1]))] 

for iterx in range(int(inHaps.shape[1])-1): 

for y in range(iterx+1, inHaps.shape[1]): 

if not remove[y]: 

if np.ma.all(inHaps[:,iterx] == inHaps[:,y]): 

remove[y] = True 

toRemove = [iterx for iterx in range(len(remove)) if remove[iterx]] 

 names = [inNames[iterx] for iterx in range(len(inNames))  

if not remove[iterx]] 

return(np.delete(inHaps, toRemove, 1), names) 

def outputProt(UniqueNames, bestFreqs, bestArray, poolSize, 

poolNames, population, outFile): 

'''Output STRUCTURE format file text for a given population.  Call multiple 

times to create complete STRUCTURE file.''' 

decHaps = [] 

hapNames = UniqueNames[:] 

newHapNumber = 1 

# Create haplotype names 

for haplotypeIter in xrange(len(bestFreqs[0])): 

if haplotypeIter >= len(UniqueNames): 

hapNames.append("NewHap_%s" % str(newHapNumber).zfill(2)) 

newHapNumber += 1 

# Create decimal haplotypes 

decHaps.append(int("1"+"".join([str(int(x)) 

for x in bestArray[:, haplotypeIter]]),2)) 

indivHaps = [] 

# Create individuals 

for haplotypeIter in xrange(len(bestFreqs[0])): 

for indivIter in xrange(int(bestFreqs[0][haplotypeIter])): 

indivHaps.append(decHaps[haplotypeIter]) 

# Output individuals 

for individual in xrange(poolSize): 

outLine = " ".join(["%s_%s" % (poolNames[population], 

str(individual).zfill(len(str(poolSize)))), str(population), 
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str(indivHaps[individual])]) 

outFile.write("%s\n" % outLine) 

def NexusWriter(myHapNames, finSolution, numSNPs, outPrefix, outIdx, 

knownHaps, snpsToRemove=[]): 

'''Output a NEXUS file for a given solution''' 

# Open a NEXUS output file 

 outFile3 = open("%s_%s_haps.nex" % (outPrefix, outIdx), 'wb') 

# Write header lines 

outFile3.write("##NEXUS\n") 

outFile3.write("Begin Data;\n") 

outFile3.write("\tDimensions ntax=%s nchar=%s;\n" %  

(finSolution.shape[1], numSNPs)) 

  outFile3.write("\tFormat datatype=DNA missing=N gap=-;\n") 

outFile3.write("\tMatrix\n") 

# Open the initial VCF to get the ref and alt states for each SNP 

finVCF = vcfReader(knownHaps) 

refAlleles = [] 

altAlleles = [] 

for line in finVCF.lines: 

if line.getData("pos") not in snpsToRemove: 

refAlleles.append(line.getData("ref")) 

altAlleles.append(line.getData("alt")[0]) 

# Create the output haplotype sequence by concentrating the relevant 

#alleles for each SNP, for each haplotype 

for hap in xrange(len(myHapNames)): 

outFile3.write("%s\t%s\n" % (myHapNames[hap], "".join([refAlleles[x] 

if finSolution[x, hap] == 1 else altAlleles[x] 

for x in xrange(numSNPs)]))) 

outFile3.write(";\n") 

outFile3.write("End;\n") 

outFile3.close() 
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Modules/VCF_parser.py 

#!/usr/bin/env python 

# CallHap IO.py 

# By Brendan Kohrn 

# 3/21/2017 

# 

# This is the VCF parser used by all CallHap specific programs 

import numpy as np 

import time 

class vcfFile: 

def __init__(self, inFileName, mode, source=""): 

if mode == 'r': 

return(vcfReader(inFileName)) 

elif mode == 'w': 

return(vcfWriter(inFileName,source)) 

class vcfWriter: 

'''Class to write VCF output based on an imput template.  

Call order: 

a = vcfWriter(inName, source) 

a.writeHeader(sampNames)

a.setFormat(formatStr)

a.importLinesInfo(Chroms, Poss, Refs, Alts, Quals)

for sampleName in sampNames:

a.importSampleValues(inValues, sampleName)

a.writeSamples()

a.close()

'''

def __init__(self, inFileName, source):

'''Initialize the class''' 

# Open an output file 

self.outputFile = open(inFileName, "wb") 

# Write header lines 

self.outputFile.write("##fileformat=VCFv4.2\n") 

self.outputFile.write("##fileDate=%s\n" % time.strftime("%Y%m%d")) 

self.outputFile.write("##source=%s\n" % source) 

def writeHeader(self, sampleNames): 

# Write column nanes line 

self.outputFile.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\t") 

self.outputFile.write("FILTER\tINFO\tFORMAT\t") 

self.outputFile.write("%s\n" % "\t".join(sampleNames)) 

# Create output columns 

self.outputCols = {x:[] for x in sampleNames} 

# Save sample names 

self.sampleNames = sampleNames 

# Create counter to keep track of how many columns have been filled 

self.colsFilled = 0 

# How many columns need to be filled 

self.totalCols = len(sampleNames) 

def setFormat(self, formatStr): 

# Set the format string for outputs. 

self.formatStr = formatStr 

def importInfo(self, InfoField, InfoValues): 

'''Add text to the info field''' 
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# Check that there is an info value for each row 

if len(InfoValues) != self.numRows: 

raise Exception 

# Check if there is already info data present 

if self.infosSet == True: 

# If info data is present, add to it 

for x in xrange(self.numRows): 

self.infos[x] += ";%s=%s" % (InfoField, InfoValues) 

else: 

# Create info data 

self.infos = ["%s=%s" % (InfoField, InfoValues[x]) 

for x in xrange(self.numRows)] 

self.infosSet = True 

def importLinesInfo(self, Chroms, Poss, Refs, Alts, Quals, 

IDs = None, Filts = None, Infos = None): 

'''Add positional and quality information about the lines''' 

testLen = len(Chroms) 

# Check that all lists of values are the same length 

if len(Poss) != testLen: 

raise Exception 

elif len(Refs) != testLen: 

raise Exception 

elif len(Alts) != testLen: 

raise Exception 

elif len(Quals) != testLen: 

raise Exception 

elif IDs != None: 

if len(IDs) != testLen: 

raise Exception 

elif Filts != None: 

if len(Filts) != testLen: 

raise Exception 

elif Infos != None: 

if len(Infos) != testLen: 

raise Exception 

self.numRows = testLen 

self.chroms = Chroms 

self.pos = Poss 

if IDs == None: 

self.ID_Set = False 

self.IDs = ['.' for x in xrange(len(Chroms))] 

else: 

self.ID_Set = True 

self.IDs = IDs 

self.refs = Refs 

self.alts = [x[0] for x in Alts] 

self.quals = Quals 

if Filts == None: 

self.filts = ['.' for x in xrange(len(Chroms))] 

else: 

self.filts = Filts 

if Infos == None: 

self.infosSet = False 

self.infos = ['.' for x in xrange(len(Chroms))] 

else:

self.infos = Infos 

def importSampleValues(self, inValues, sampleName): 

'''Import cell data for one column of a VCF file''' 
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        # Old debugging text 

        if len(inValues) != self.numRows + 1: 

            print(type(inValues)) 

            print(len(inValues)) 

            print(inValues) 

            print(self.numRows) 

            raise Exception 

        # Fill the column 

        self.outputCols[sampleName] = inValues[:-1] 

        self.colsFilled += 1 

         

    def removeRows(self, rowsToRemove): 

        '''Remove rows from the VCF output''' 

        removalRows = sorted(rowsToRemove, reverse = True) 

        for rowIter in removalRows: 

            self.chroms.pop(rowIter) 

            self.pos.pop(rowIter) 

            self.IDs.pop(rowIter) 

            self.refs.pop(rowIter) 

            self.alts.pop(rowIter) 

            self.quals.pop(rowIter) 

            self.filts.pop(rowIter) 

            self.infos.pop(rowIter) 

            self.numRows -= 1 

        self.skippedRows = rowsToRemove 

     

    def writeSamples(self): 

        '''Write the VCF output to file''' 

        # Throw an error if not all columns have been filled 

        if self.colsFilled != self.totalCols: 

            raise Exception 

        else: 

            for lineNum in xrange(self.numRows): 

                outLine = "%s\t" % self.chroms[lineNum] 

                outLine += "%s\t" % self.pos[lineNum] 

                outLine += "%s\t" % self.IDs[lineNum] 

                outLine += "%s\t" % self.refs[lineNum] 

                outLine += "%s\t" % self.alts[lineNum] 

                outLine += "%s\t" % self.quals[lineNum] 

                outLine += "%s\t" % self.filts[lineNum] 

                outLine += "%s\t" % self.infos[lineNum] 

                outLine += "%s\t" % self.formatStr 

                outLine += "%s\n" % "\t".join( 

                    [str(self.outputCols[self.sampleNames[x]][lineNum]) 

                     for x in xrange(len(self.sampleNames))] 

                     ) 

                self.outputFile.write(outLine) 

     

    def close(self): 

        '''Close the output file''' 

        self.outputFile.close() 

 

class vcfReader: 

    '''Method for reading VCF files''' 

    def __init__(self, inFileName): 

        '''Initialize the reader and read the file''' 

        self.headInfo = {} 

        self.lines = [] 

        # Open the file 

        inFile = open(inFileName, "rb") 
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for line in inFile: 

# Check if this is a header line 

if line[0:2] == "##": 

# Parse the header line, in case that information is needed 

# later 

wLine = line.strip("#").split("=", 1) 

if "INFO" in wLine[1]: 

if "INFO" not in self.headInfo: 

self.headInfo["INFO"] = {} 

linebins = wLine[1].strip("<>").split(",") 

self.headInfo["INFO"][linebins[0].split("=")[1]] = {

x.split("=")[0]: x.split("=")[1] for x in linebins 

} 

elif "FORMAT" in wLine[1]: 

if "FORMAT" not in self.headInfo: 

self.headInfo["FORMAT"] = {} 

linebins = wLine[1].strip("<>").split(",") 

self.headInfo["FORMAT"][linebins[0].split("=")[1]] = {

x.split("=")[0]: x.split("=")[1] for x in linebins 

} 

else: 

self.headInfo[wLine[0]] = wLine[1] 

# Check if this is the column labels line 

elif line[0] == "#": 

# Save the sample names 

self.sampNames = line.strip().split()[9:] 

else: 

# Create a new VCF line with the data in this line 

self.lines.append(vcfLine(line)) 

# Close the input file 

inFile.close() 

def getData(self, target, lineTarget = None, sampTarget = None): 

'''Retrieve data about the VCF file from a specific line or information 

column''' 

if target in ("chrom", "pos", "ID", "ref", "alt", 

"qual", "filt","info", "form"): 

if lineTarget == 'a': 

outList = [] 

for line in self.lines: 

outList.append(line.getData(target)) 

return(outList) 

def getNames(self): 

'''Retrieve the column names''' 

return(self.sampNames) 

def asNumpyArray(self, target): 

'''Output the data from this file as a numpy array''' 

# This method assumes targeting all rows and columns 

prearray = [x.toNP(target) for x in self.lines] 

return(np.array(prearray)) 

class vcfLine: 

'''Handler class for a single line of a VCF file''' 

def __init__(self, inLine): 

'''Initialize the class and read in the data''' 

linebins = inLine.split() 

self.data = {} 
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self.data["chrom"] = linebins[0] 

self.data["pos"] = int(linebins[1]) 

self.data["ID"] = linebins[2] 

self.data["ref"] = linebins[3] 

self.data["alt"] = linebins[4].split(",") 

self.data["qual"] = linebins[5] 

self.data["filt"] = linebins[6] 

if linebins[7] == ".": 

self.data["info"] = {} 

else: 

self.data["info"] = {a.split("=")[0]: a.split("=")[1] 

for a in linebins[7].split(";")}  

self.data["form"] = linebins[8].split(":") 

# Save the data from each column within this row as a VCF cell class 

self.data["data"] = [vcfCell(self.data["form"], a)  

for a in linebins[9:]] 

def getData(self, target, sampTarget = None): 

'''Retrieve data from this line''' 

if sampTarget == None and target in self.data.keys(): 

return self.data[target] 

elif sampTarget == "a": 

return([self.data["data"][x].getData(target) 

for x in xrange(len(self.data["data"]))]) 

elif "info" in sampTarget: 

if ":" in sampTarget: 

infoTarget = sampTarget.split(":")[1] 

if infoTarget in self.data["info"].keys(): 

return(self.data["info"][infoTarget]) 

else: 

raise 

else: 

return(self.data["info"]) 

elif sampTarget < len(self.data["data"]): 

return(self.data["data"][sampTarget].getData(target)) 

else: 

raise 

def toNP(self, target): 

'''Get the data from this row to for numpy array creation''' 

return([self.data["data"][x].toNP(target) for x in 

xrange(len(self.data["data"]))]) 

def setElmt(self, target, newValue): 

'''Set a specific value in the data from this row''' 

if target in self.data.keys(): 

self.data[target] = newValue 

else: 

raise 

class vcfCell: 

'''Class for holding data from a single cell of a VCF file''' 

def __init__(self, FormatList, inCellText): 

'''Create the cell''' 

cellbins = inCellText.split(":") 

if cellbins[0] == ".": 

self.data = {x: [np.nan] for x in FormatList} 

else: 

self.data = {} 

for formatIter in xrange(len(FormatList)): 
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self.data[FormatList[formatIter]] = [float(x) 

for x in cellbins[formatIter].split(",")] 

def getData(self, target=None): 

'''Retrieve data from the cell''' 

if target == None: 

return(self.data) 

elif target in self.data.keys(): 

return(self.data[target][0]) 

else: 

raise 

  def toNP(self, target): 

'''Get data from the cell to create a numpy array''' 

return(float(self.data[target][0])) 

def toNP_array(inFileName, target): 

'''Open a VCF file and create a numpy array of a specific type of data from 

that array, along with the sample names''' 

tmpVCF = vcfReader(inFileName) 

output = tmpVCF.asNumpyArray(target) 

out2 = tmpVCF.getNames() 

return(output, out2) 
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Modules/parallel.py 

#!/usr/bin/env python 

# CallHap parallel.py 

# By Brendan Kohrn 

# 3/20/2017 

# 

# This script includes multiprocessing functionality for CallHap 

import numpy as np 

from functools import partial 

from MakeHaplotypes import * 

from CallHap_LeastSquares import * 

from General import * 

import sys 

from multiprocessing import Pool 

'''This module contains parallelization methods.  Some of these will no longer 

   be needed in random order processing''' 

def easyConcat(listHaps): 

'''One argument command for concatenating a list of arrays into a single 

array''' 

return(np.concatenate([x[np.newaxis].transpose() 

for x in listHaps], axis=1)) 

def massFindFreqs(inHaps, inSnpFreqs, p): 

'''Find frequencies for many pools at the same time''' 

mySLSqs = [] 

myFreqs = [] 

for poolIter in xrange(inSnpFreqs.shape[1]): 

tmpSol = Find_Freqs(inHaps, inSnpFreqs[:, poolIter], p) 

mySLSqs.append(tmpSol[1]) 

myFreqs.append(tmpSol[0]) 

myAIC = sum(mySLSqs)/len(mySLSqs) 

return(mySLSqs, myFreqs, myAIC) 

def easy_parallizeLS(sequence, numProcesses, snpsFreqs, poolSize): 

'''parallelization method for finding the frequencies for several potential 

haplotype sets at the same time.  

Not used in random ordering''' 

pool = Pool(processes=numProcesses, maxtasksperchild=500) 

intermediate = pool.map(easyConcat, sequence) 

# Concatenate the haplotype sets into a single numpy array 

cleanedIntermediate = [x for x in intermediate if not x is None] 

pool.close() 

pool.join() 

pool2 = Pool(processes=numProcesses, maxtasksperchild=500) 

#Create function for single argument calling of FindFreqs 

func = partial(massFindFreqs, inSnpFreqs=snpsFreqs, p=poolSize) 

# Find haplotype frequencies for each potential haplotype set 

result = pool2.map(func, cleanedIntermediate) 

cleaned = [x for x in result if not x is None] 

# not optimal but safe 

pool2.close() 

pool2.join() 

return(cleaned) 
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