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ABSTRACT 

In the last three decades, there has been a significant growth in the number of 

undergraduate students taking introductory statistics. As a result, there is a need by 

universities and community colleges to find well-qualified instructors and graduate 

teaching assistants to teach the growing number of statistics courses. Unfortunately, 

research has shown that even teachers of introductory statistics struggle with concepts 

they are employed to teach. The data presented in this research sheds light on the 

statistical knowledge of graduate teaching assistants (GTAs) and community college 

instructors (CCIs) in the realm of probability by analyzing their work on surveys and 

task-based interviews on the p-value. This research could be useful for informing 

professional development programs to better support present and future teachers of 

statistics.  
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1. INTRODUCTION 

Statistical analysis has always been an important component in all areas of 

research that use data. This is especially relevant in our technological world where the 

flow of data has increased because of computing technologies and social media. This 

makes a strong understanding of statistics important and necessary to every citizen if they 

want to make informed decisions in such a world. The last few decades of academia have 

shown a dramatic rise in the number of statistic courses in all educational levels. In 

elementary education, Common Core State Standards (CCSS) by the National Governors 

Association for Best Practices Center (2010) require that mathematics classrooms 

incorporate statistical concepts, such as measures of center (e.g. mean, median and 

mode), variation (e.g. standard deviation, IQR and range), and notions of distribution into 

the mathematics curriculum. Secondary education requires that, in addition to learning 

about analyzing graphs and measures of center and variation, a standard mathematics 

curriculum incorporate lessons on statistical inference and simulations. Traditional four-

year universities and community college also require introductory statistics as mandatory 

coursework for several undergraduate degrees (e.g. Business, Psychology, Economics, 

and Sociology.). As the number of students now transitioning from high-school to 

undergraduate education continues to grow, there has been a surge in the number of 

introductory statistics courses now being offered in four-year universities and community 

colleges (Blair, Kirkman, & Maxwell 2013). It is therefore vital for the statistics 

education community to have appropriate methods to assess the quality of instruction in 

our introductory statistics courses.  
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A topic of interest in the statistics education community in recent few years is 

students’ and teachers’ understanding of statistical inference. Inferential statistics is 

defined as “a branch of statistics that consists of generalizing from samples to 

populations, performing hypothesis testing, determining relationships among variables, 

and making predictions (Bluman 2012, p. 809).” Documents such as Common Core 

School Standards (CCSS) states that secondary school students should (a) “Understand 

statistics as a process for making inferences about population parameters based on a 

random sample from that population; and (b) Decide if a specified model is consistent 

with results from a given data-generating process. (p. 50)” Similar statements are 

reverberated by the American Statistical Association (2007) in their release of Guidelines 

for Assessment and Instruction in Statistics Education (GAISE) for PreK-12 stating that, 

“Instructional programs from pre-kindergarten through grade 12 should enable all 

students to: formulate questions that can be addressed with data; collect, organize, 

and display relevant data to answer them; select and use appropriate statistical 

methods to analyze data; develop and evaluate inferences and predictions that are 

based on data; and understand and apply basic concepts of probability (Franklin, 

Kader, Mewborn, Moreno, Peck, Perry, & Schaefer 2007, p. 5).”  

The GAISE report for undergraduate education also highlights that, “students should 

understand the basic ideas of statistical inference which include the concept of statistical 

significance, significance levels, and p-values (Aliaga et al., 2010, p.12).” Similar ideas 

are also mentioned in the Principles and Standards for School Mathematics released by 

the National Council of Teachers of Mathematics (NCTM) that states,  
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“Students are expected to develop and evaluate inferences and predictions about 

data. These include: (a) use simulations to explore the variability of sample 

statistics from a known population and to construct sampling distributions; (b) 

understand how sample statistics reflect the value of population parameters and 

use sampling distributions as the basis for informal inference; (c) evaluate 

published reports that are based on data by examining the design of the study, the 

appropriateness of the data analysis, and the validity of the conclusions; (d) 

understand how basic statistical techniques are used to monitor process 

characteristics in the workplace (NCTM, 2000).”  

The CCSS, GAISE, and NCTM documents illustrate the overwhelming influence 

of statistical inference in the current statistics curriculum. A concept that is particularly 

important in the study of statistical inference is hypothesis testing. Hypothesis testing is 

defined as “a decision-making process for evaluating claims about a population (Bluman, 

2012 p. 809).” The hypothesis test is formally taught as a component in secondary school 

as part of an advance placement statistics courses and collegiate statistics curricula. 

Hypothesis testing is also a statistical tool used by researchers (e.g., education, 

psychology, science, etc.) to analyze and justify claims about data (Metz, 2010). It is 

therefore fundamental that students and teachers of statistics understand the concepts 

related to hypothesis testing. This is particularly relevant for teachers whose professional 

responsibility is the instruction of this concept. 

Unfortunately, research from the statistics education community has shown that 

both students and teachers struggle understanding hypothesis testing concepts (see 



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  4 

Batanero, 2000; Batanero & Diaz, 2006; Castro Sotos et al, 2007; Falk, 1986; Garfield & 

Ben-Zvi, 2008; Haller & Krauss, 2002; Thompson, Liu & Saldahna, 2007; Vallecillos, 

2002; Vallecillos & Batanero, 1997). Common misconceptions in the research literature 

can be traced to concepts of probability in hypothesis testing. Research has shown that 

even students who can correctly apply formal inference procedures and compute 

probability (e.g. p-value) in the context of hypothesis testing are unable to appropriately 

interpret the meaning behind the procedures (Batanero, 2000). This has led statistics 

education researchers to question both traditional methods of statistical instruction (e.g. 

Cobb, 2007; Haller & Krauss, 2002) and the statistical knowledge of teachers (e.g. 

Thompson, Liu & Saldahna, 2007).  

In the classroom, the development of student knowledge can be highly influenced 

by teachers’ content and pedagogical knowledge (Shulman, 1986). Research suggests it is 

important that statistics education research focus on the knowledge of statistics teachers 

since it has a direct influence on a teacher’s ability to teach (Ball, Hill & Bass, 2005; Hill, 

Sleep, Lewis, Ball & Lester, 2007; Liu & Thompson, 2009; Shulman, 1986). 

Shaughnessy (2007) highlights that while there has been significant growth of statistics 

education literature in the last few decades specifically related to student learning, more 

research should be done analyzing the statistical knowledge of teachers. Ten years later 

this is still an area in need of research.  

Another area lacking significant research in mathematics and statistics education 

is the study of graduate teaching assistants (GTA) and community college instructors 

(CCI). In recent years, many four-year universities and community colleges have shifted 
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the responsibility of teaching introductory statistics to GTAs or adjunct instructors rather 

than full-time faculty members (Blair, Kirkman, & Maxwell 2013). There has also been a 

rise in new pedagogical approaches by the statistics education research community that 

have affected the teaching of statistical inference in the classroom (Erickson, 2006). 

Because of these changes to statistics education curriculum, it is necessary for the 

research community to re-evaluate future and current statistics teachers to determine 

whether they possess the relevant statistical knowledge for teaching.  

This research hopes to help fill in the gap in the statistics education research on 

teachers by focusing on the population of GTAs and CCIs who may be responsible for 

the education of a vast majority of statistics students at the undergraduate level, add to the 

current research on their content knowledge of hypothesis testing and probability. In 

particular, the research questions proposed in this study are: What knowledge do CCIs 

and GTAs have about probability in the context of hypothesis testing? In particular, 

1) How do CCIs and GTAs understand the concept of a p-value?  

2) How do CCIs and GTAs understand the role of conditional probability in the 

context of hypothesis testing? 

3) How do CCIs and GTAs understand formal/informal concepts of probability, 

simulations and sampling distributions when reasoning about tasks related to 

hypothesis testing? 

To help answer these questions this dissertation begins with a rationale for 

studying GTAs and CCIs understanding of hypothesis testing in undergraduate education. 

Second, research from the mathematics and statistics education community on theoretical 
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frameworks concerning teacher knowledge is discussed. Third, relevant literature on 

traditional hypothesis testing presented in introductory statistics courses and research 

found in the statistics education community on teacher and student understanding on 

concepts related to probability in hypothesis testing is examined. Included in this 

discussion are current trends in the statistics education community regarding new 

pedagogical approaches to the learning of hypothesis testing. Fourth, data collection 

methods, the process of data analysis and issues of validity are addressed. Fifth, results of 

the data analysis are presented. Finally, this dissertation concludes with directions for 

future research. 
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2. RATIONALE 

The goal of this research is to analyze the knowledge of CCIs and GTAs 

understanding of probability in hypothesis testing. This section highlights the rationale 

for my study by first focusing on the importance of studying undergraduate statistics 

education. I then discuss the importance of studying hypothesis testing. Finally, I discuss 

my rationale for studying the population of CCIs and GTAs.  

2.1. Why Study Undergraduate Statistics Education? 

In order to handle the flood of data currently being produced today, research in all 

areas of study require trained individuals to have a deep understanding of statistical 

techniques. As early as elementary school, students are introduced to concepts of 

statistics to develop basic analytical skills. For example, teaching students basic concepts 

of measures of center and variation help students see patterns and make sense of data. 

Students’ statistical development is continued in secondary school where they are 

expected to cover additional topics in statistics with a focus on data analysis and 

statistical inference as a component of a mathematics curriculum. Lessons on analyzing 

graphs and modeling data extend student thinking towards making inferences about a 

population based on sample information. 

Undergraduate students are first enrolled in a formal introductory statistics course 

where they not only review material from elementary and secondary education, but are 

introduced to more formal techniques of statistical inference such as hypothesis testing.1 

In undergraduate education, the majority of the student population is expected to have at 

                                                           
1 This is to the exception of students who have taken AP statistic courses in high-school. 
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least one course in introductory statistics. In majors where analyzing data is a necessity 

(e.g. psychology, economics, education, etc.) students are expected to develop a deeper 

understanding of statistical methods as a means to draw valid conclusions from empirical 

data. Having a deeper understanding of statistical methods will also prepare students to 

assess the quality of statistical research as they progress in their future careers.  

With the overwhelming need to develop a society of statistically illiterate 

individuals, universities and community colleges have increased the number of entry-

level statistics courses now being offered. This is illustrated in a survey by the 

Conference Board of Mathematical Sciences (CBMS) which has shown an increased 

enrollment for elementary-level statistics in the fall 2010 by 56% from the levels of fall 

2005 in four-year colleges and 17% in two-year colleges (Blair, Kirkman, & Maxwell, 

2013). Because of the large growth of student enrollment, it becomes more important that 

the research community reflect on the current quality of introductory statistics courses. 

Unfortunately, a large part of the research literature indicates that many adults 

struggle using statistics to make informed decisions about quantitative information (Noll, 

2007). Furthermore, understanding of statistics is a necessary component for equal 

participation in a democratic society where public issues, managing personal finance, and 

making decisions all require some level of statistical competence (Noll, 2007). It should 

therefore be the goal of all statistics teachers to ensure students are knowledgeable of 

statistical methods in order to be informed members of society.  

The need for a statistically literate society has caused a shift in the way 

introductory statistics has generally been taught in colleges (Aliaga et al., 2010). A 
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recommendation by the GAISE report is that undergraduate statistics should emphasize 

the importance of statistical literacy and statistical thinking. Statistical literacy is viewed 

as “understanding the basic language of statistics (e.g. knowing what statistical terms and 

symbols mean and being able to read statistical graphs) and fundamental ideas of 

statistics (Aliaga et al., 2012, p. 14).” Statistical thinking is defined as “the type of 

thinking that statisticians use when approaching or solving statistical problems (Aliaga et 

al., 2012, p. 14).” This includes understanding the need for data, the importance of data 

production, the omnipresence of variability in data, and the quantification and 

explanation of variability (Cobb & Moore, 1997). These two perspectives on statistics 

education and cumulative research in statistics education have led many researchers to 

rethink traditional curriculum. Cobb (2007) suggests transitioning from traditional 

methods of statistics education that relied heavily on theory towards more practical and 

innovative approaches that use new educational resources such as computer simulations. 

Furthermore, the use of simulations is more common to practice of statisticians today. 

With the research community shifting statistics education towards these new pedagogical 

practices, the study of undergraduate statistics education becomes a ripe field of research.  

2.2. Why Study Hypothesis Testing? 

The concept of hypothesis testing is one of many important concepts in the study 

of statistics and is one of great interest to the statistics education research community in 

recent years. A basic understanding of hypothesis testing is required in order to deeply 

understand advanced methods of statistical analysis (e.g. regression analysis and 

ANOVA). The standard approach to learning introductory hypothesis testing is simply a 
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basis for various types of hypothesis tests used by statisticians depending on the type of 

data analysis being performed (e.g. sample means, proportions, standard deviations, etc.). 

For example, a hypothesis test on data for a single proportion will look procedurally 

different than a hypothesis test with multi-categorical data or data for linear regression. 

There are, however, underlying concepts of hypothesis testing whose conceptual meaning 

remains the same regardless of the data being analyzed or hypothesis test being 

performed (e.g. p-value or level of significance). For example, calculus students must 

understand the basic idea of integration before learning other integration techniques. 

Similarly, statistics students need to understand the concept of hypothesis testing before 

learning advanced statistical concepts like categorical or linear regression analysis. This 

is especially important for students majoring in subjects focused on scientific research 

where data analysis is a norm in their future career. As a result, students taking 

introductory statistics are required to learn hypothesis testing as part of the major focus.  

The approach to teaching hypothesis testing has not changed much since its 

introduction into statistics curriculum with most current introductory statistics textbooks 

still taking a traditional and procedural approach (e.g. Bluman, 2012; Brase & Brase, 

2012). Historically, statisticians developed the traditional method of teaching hypothesis 

testing because the ability to perform large-scale simulations was impossible in the early 

20th century due to technological limitations. Thus, many hypothesis test procedures are 

based on theorems from advanced probability (Cobb, 2007). In the last decade, the 

statistics education community began to re-evaluate the teaching of hypothesis testing 

pushing for newer curriculum. Researchers such as Cobb (2007) recommend a re-
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evaluation of our current approach to the teaching of hypothesis testing in undergraduate 

education, claiming that the traditional approach of teaching introductory statistics needs 

to progress to appropriately match the technology of the current world.  

Today many individuals have access to computers and calculators to run 

simulations both at home and in the classroom. Furthermore, the practices of modern 

statistics have shifted to using computer simulations as a way to analyze data, which may 

not be easily predicted using traditional statistical methods.2 This had led statistics 

education researchers to develop new pedagogical approaches to the teaching and 

learning of hypothesis testing that emphasizes the importance of technology and 

simulations (e.g., Chance, del Mas & Garfield, 2004; Chance, B. et al., 2007; delMas, R., 

Garfield, J. & Chance, B., 1999; Erickson, 2006; Garfield & Everson, 2009; Garfield & 

Zvi, 2008; Heid et al., 2005; Weinberg, Wesner & Pfaff, 2011; Zieffler, Garfield, delMas 

& Reading, 2008; Zieffler, Garfield, et al., 2008). These new approaches have started to 

impact curriculum (e.g. GAISE) by emphasizing simulations as a vital component in 

undergraduate statistics education. With these new alternatives to teaching statistics 

slowly being incorporated into the current standards, it is vital as a research community 

to reassess the knowledge of statistics teachers (current and future) to determine whether 

they possess the knowledge, experience, and training to transition with the new 

curriculum. 

                                                           
2 Examples include Monte Carlo or bootstrapping methods. 
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2.3. Why Study GTAs and CCIs? 

Researchers argue there are many factors that can influence a student’s 

educational development, but many education researchers agree that one of the most 

crucial factors is the teacher (see Ball, Hill & Bass 2005; Hill, Sleep, Lewis, Ball & 

Lester, 2007; Liu & Thompson, 2009; Shulman, 1986). As the number of statistics 

courses in universities and community colleges continues to grow, universities and 

community colleges must find instructors to teach these courses. While many advanced 

mathematics and statistics courses are taught by full-time faculty, many universities and 

community colleges have steadily relied on part-time faculty and/or graduate students to 

cover a large number of introductory statistics courses needed by a vast number of the 

student population. The Conference Board of Mathematical Science (2010) indicates that 

the number of part-time faculty in mathematics and statistics at community colleges has 

increased by 29% from 2005 to 2010. As a result, teachers in introductory statistics (and 

other entry-level mathematics courses) could potentially have various levels of statistical 

knowledge and background.  

In the last few decades, there has been a large body of research targeting the 

classroom practices of K-12 teachers, but little has been done to study the teaching 

practice of collegiate instructors (Speer, Smith, & Horvath, 2010). Speer et al. (2010) 

highlight the lack of empirical research on the practices of instructors of mathematics at 

the collegiate level saying that,  

“Some mathematicians have written about their teaching others have analyzed 

aspects of their teaching and their students’ learning in innovative collegiate 
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courses, and a diverse body of other scholarship mentions collegiate mathematics 

teaching, very little research has focused directly on teaching practice – what 

teachers do and think daily, in class and out, as they perform their teaching work 

(p. 99).”  

Unlike pre-college teachers, college teachers should possess robust levels of content 

knowledge but also likely spend significantly less time with students. In most cases, a 

collegiate teacher spends approximately 3 hours of class time per week for 10-15 weeks 

with students in a single academic term. This limitation on classroom hours makes lesson 

planning challenging for many instructors, which could lead to difficulties in managing 

content, and experimenting with new learning activities. In addition, many college 

teachers also do not have background in education or learning and have no set 

curriculum. Furthermore, collegiate teachers are typically less constrained in their 

classroom planning and decision-making. According to Speer et al, (2010) “collegiate 

teachers make judgments and decisions, before, during, and after teaching, based on their 

sense of the content, what their students do and do not understand, and what is possible in 

the time remaining in their courses (p. 101).”  

 The fact that the current undergraduate faculties possess potential gaps in 

education practices, subject matter knowledge, lack of a set curriculum, and a need for 

more accountability introductory classes shows a greater need for professional 

development for these individuals in terms of effective teaching practices. A lack of 

empirical research on collegiate instructors and the potential impact teachers have on 

student learning makes the study of introductory statistics teachers a ripe population for 
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research. Unfortunately, little is known about the population of collegiate teachers and 

their understanding of statistics. This research hopes to fill the gap in the statistics 

education literature on the knowledge of statistics teachers in hypothesis testing by 

focusing on two populations who could potentially teach (or are currently teaching) 

introductory statistics: graduate teaching assistants and community college instructors. 

2.3.1. Graduate teaching assistants. The jobs of a GTA can vary greatly in the 

university community. Presently, GTAs are expected to fill the role of student, grader, 

tutor, research assistant, and instructor in college institutions. In a large-scale study 

conducted by Diamond & Gray (1987), they analyzed the demographics and efficacies of 

GTAs from multiple colleges across the nation. The study suggests that GTAs played a 

significant role in student education but only a select few universities offer minimal 

support to GTAs in regard to training and professional development. The result is GTAs 

who might be asked to work as instructors with very few possessing appropriate teaching 

experience, knowledge, and/or training. The study has also indicated that some GTAs are 

potentially placed to teach courses that are outside of their realm of expertise. As a result, 

GTAs who might possess a strong mathematics background may be asked to teach a 

statistics course even though they might have minimal statistical knowledge or 

background in statistics. Luft et. al. (2004) highlight that even though GTAs play an 

important role in the instruction of undergraduate students, some are often poorly 

prepared for teaching.  

When responsibilities of GTAs take on instructional roles in the collegiate 

community, the expectation by many students is that GTAs have a robust knowledge of 
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mathematics and statistics similar to full-time faculty. This is most relevant when GTAs 

take on the roles that have direct contact with students (e.g. tutors and instructors). A 

study by Golde & Dore (2001) has shown that approximately half of all GTAs are placed 

in classrooms with little or no instruction in teaching. This had led members of the 

mathematics and statistics education community to realize the important role GTAs play 

in the collegiate community and the serious need to better understand the mathematical 

and statistical knowledge of this population (Speer, Gutmann, & Murphy, 2010). An 

example of an empirical study that has addressed GTAs knowledge of statistical 

inference was conducted by Noll (2007) who focused on GTAs understanding of 

confidence intervals and variability. In her research, Noll discovered that some GTAs 

struggle understanding the role of sampling distribution in the creation of confidence 

intervals. She also found that GTAs had difficulty attending to multiple attributes of a 

distribution, instead GTAs overly focused on either measures of center or measures of 

variability. Noll’s research is one of the few that analyzes the statistical knowledge of 

GTAs, but a large body of research focuses on the training (or lack thereof) of GTAs. An 

example is DeChenne (2010) who investigated the teaching effectiveness of GTAs and 

the types of professional development that supported their success as teachers finding that 

factors such as teaching experience, teaching self-efficacy, GTA training and a 

departmental teaching climate affect the behavioral outcome of teaching effectiveness. 

Finally, it is important to consider the future careers of most GTAs. Many GTAs 

who graduate have the potential to become future community colleges instructors and 

tenure-track faculty members. In some cases, a GTA position may be the first teaching 
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experience for many future faculty members. Researchers (e.g. Speer, Gutman, & 

Murphy, 2010; Luft et al., 2004) have discussed the significance of early experiences in 

solidifying beliefs, developing practices and setting patterns of social learning for new 

teachers. Speer, Gutman, & Murphy (2010) highlight that “the time spent as a TA is the 

time which young mathematicians will develop teaching practices they likely will carry 

with them into their careers as faculty members. (p. 76).” Thus, a GTA’s professional 

development could provide rich opportunities to shape their instructional practice. This 

also becomes a time when GTAs become interested in education and the importance of 

teaching. Once hired as faculty, they also end up having several roles in their institutions 

making it harder to focus just on their teaching. It is therefore important that the research 

community pays special attention to these future educators and analyzes how their 

knowledge of teaching their subjects develops in the early stages of their instructional 

career.  

2.3.2. Community college instructors. Studies have shown a dramatic rise in 

community college enrollment in the last few years (Blair, Kirkman, & Maxwell, 2013). 

In the Fall of 2005, almost 44% of all undergraduates in the United States were in 

community colleges (Lutzer, Rodi, Kirkman, & Maxwell, 2007) with the trend seemingly 

continuing to increase. This is not surprising considering the cost to enroll in community 

college classrooms and much diverse population (including non-traditional students) 

makes it appealing to students. In many cases, students typically take community college 

courses as a stepping-stone to future courses in four-year universities. In fact, between 

the Fall of 1995 to 2010, there has been roughly a 41% growth in the mathematics and 
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statistics enrollment in community colleges. It is therefore common that many students 

take credits in introductory statistics at community colleges, which they then transfer to 

four-year universities.  

The educational background of CCIs varies widely from bachelors to doctorate 

instructors with several of the community college faculty consisting of part-time 

instructors. Similar to GTAs, CCIs (part-time/full-time) are sometimes asked to teach an 

introductory statistics course even though the CCIs might possess minimal background in 

statistics. While many community colleges require and support professional development 

for its full-time faculty, little is known for part-time faculty. This is troubling considering 

that full-time and part-time faculty members teach similar courses in community 

colleges. Furthermore, the expectation of faculty responsibilities is quite different in 

community colleges compared to four-year universities. In four-year universities, faculty 

members have a shared responsibility between their role as instructors and researchers. 

The general environment of community colleges leans more towards instruction of the 

students with a focus towards developmental mathematics courses (Mesa, Wladis, & 

Watkins, 2014). As a result, most community college faculty’s instructional coursework 

is the teaching of courses ranging from intermediate algebra to calculus. Faculty 

members in four-year universities typically teach a broader range of courses ranging from 

intermediate algebra to high-level mathematics and statistics courses. The differences in 

the expected instructional coursework of the faculty suggest potential differences in the 

mathematical and statistical knowledge of faculties in the different academic settings 

(Mesa, Wladis, & Watkins, 2014).   
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Unfortunately, there is little research regarding community college teachers’ 

knowledge of statistical inference or community college teachers’ mathematical 

knowledge in general (Mesa, Sitomer, Strom, & Yonatta, 2012). At present, how 

community college mathematics classes should be taught are made by instructors, 

administrators, and policy makers in the absence of research-based evidence (Mesa, 

Wladis, & Watkins, 2014). According to Mesa, Wladis, & Watkins (2014), “mathematics 

education researchers need to concentrate more extensively on issues of mathematical 

learning in the community college context and collaborate with the practitioners who 

have expertise in the teaching and learning of mathematics in this setting (p. 185).” 

Conducting research on the statistical knowledge of community college teachers can help 

administrators make decisions that better support their faculty’s professional 

development needs. 

2.3.3. Summary. Because of the similar instructional roles CCIs share with 

GTAs in regards to instructional coursework, it is vital that the statistics education 

community focus on the types of knowledge of these educators. Since there is minimal 

research but a greater need by the educational community to further study the work of 

GTAs and CCIs, this study is important because it takes a first step at filling in the gap in 

the statistics education literature regarding these two populations. This research may aid 

policymakers and administrators to make research based decisions to better support 

present and upcoming statistics instructors. Furthermore, individuals who coordinate and 

develop professional development programs for these two populations will gain better 
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understanding of the kinds of concepts to be covered in courses to prepare current and 

future statistics instructors.
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3. LITERATURE REVIEW 

The overarching goal of this research is to study the statistical knowledge of 

GTAs and CCIs by investigating their understanding of probability in the context of 

hypothesis testing. In order to do so, it is necessary to discuss prior research regarding the 

knowledge of statistics teachers to set a foundation for analyzing the statistical 

knowledge of GTAs and CCIs. In particular, I discuss current theoretical frameworks on 

the knowledge of statistics teachers. I then discuss research literature regarding the 

traditional approach of hypothesis testing in statistics classrooms, misconceptions held by 

students and teachers due to the traditional approach, and current shifts in pedagogical 

practices related to hypothesis testing suggested by the statistics education community.  

3.1. Frameworks for Mathematical and Statistical Knowledge for Teaching  

There has been a long history in mathematics education research focused on 

investigating the knowledge of mathematics teachers. A foundational piece on 

mathematical knowledge for teaching was by Shulman (1986) who theorized that 

teachers of mathematics required various forms of knowledge. For example, simply 

knowing how to add numbers and teaching someone how to add numbers require 

different forms of teacher knowledge. Teachers must account for the knowledge of the 

student and what factors or methods would be appropriate to support a student’s learning 

of a mathematical concept. This led Shulman to introduce three important categories of 

teacher knowledge. The first is subject matter knowledge for teaching. This includes 

knowing both the underlying theory of a mathematical concept and the procedures and 

meaning behind the concept. For example, knowing how to compute an arithmetic mean 
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and understanding the mean as a mathematical ‘balance point’ are two different forms of 

subject matter knowledge. The second category of knowledge defined by Shulman is 

pedagogical knowledge. This knowledge encompasses knowledge of student 

understanding regarding a mathematical concept and instructional methods that support 

students learning. For example, teachers should be aware of the prior knowledge and 

potential misconceptions students might have in regard to a p-value. Knowing various 

ways students misinterpret the definition of the p-value or how to introduce a task on p-

values that is accessible to an introductory statistics classroom are types of knowledge 

align with effective teaching practices. Teachers should be aware of the limitations 

students might have learning a mathematical/statistical concept and know ways of 

presenting material that best fits a student’s prior knowledge. The third knowledge is 

curricula knowledge of teachers, which encompass knowledge of materials and tools for 

teaching. For example, knowing how simulations might be a useful tool in developing 

students’ understanding of sampling distributions, probability and inference. 

The work of Shulman (1986) was highly influential in the mathematics and 

statistics education community. Prior to his work, there was little research regarding the 

concepts of pedagogical knowledge and subject matter knowledge. Shulman’s (1986) 

research on mathematical knowledge for teaching was further expanded in the work of 

Hill, Ball, and Schilling (2008) whose framework for teacher knowledge has been widely 

accepted in the mathematics education community (Figure 1). The framework of Hill et 

al. (2008) categorizes teachers’ knowledge into two main types: subject matter 

knowledge and pedagogical content knowledge.  
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Figure 1. “Domain map for mathematical knowledge for teaching (Hill et al, 2008, p. 377).” 

Subject matter knowledge consists of three underlying categories. Common 

content knowledge is mathematical knowledge teachers are responsible for developing in 

students. An example of this could be a teacher instructing students in the procedures 

related to hypothesis testing. This might include teaching students how to compute a p-

value, correctly identifying the null/alternative hypothesis, and how to conclude a 

hypothesis test procedure. Specialized content knowledge is the mathematical knowledge 

used in teaching, but not necessarily taught to students. An example of this in hypothesis 

testing is knowledge of advanced probability theory associated with theoretical sampling 

distributions, which includes knowing the relationship between calculus, probability, and 

statistics. This type of knowledge is beyond the scope of many introductory statistics 

students since calculus is not a typical pre-requisite for many introductory statistic 

courses. However, knowing the relationship between calculus and probability in 
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hypothesis testing are concepts statistics teachers should have learned in advanced 

statistics courses. Knowledge at the mathematical horizon is a teacher understanding the 

broader set of mathematical concepts with which a particular idea will connect. Students 

tend to learn in the moment since they are unaware what material is coming up in future 

lessons. Teachers, unlike students, should know the bigger picture and the importance of 

specific concepts. For example, a teacher should know that an understanding of 

simulations and sampling distributions will play a bigger role in developing students’ 

understanding of statistical inference techniques.   

Under the category of pedagogical content knowledge are also three sub-

categories. Knowledge of content and students is the amalgamated knowledge that 

teachers possess about how students learn content. This includes knowledge of the 

developmental stages students go through to understand a concept and the kinds of 

misconceptions and conceptual hurdles student might encounter. Such knowledge 

requires both experience and knowledge of research on student learning that directly 

relates to the mathematical or statistical content being taught. An example of this might 

include knowing that theoretical sampling distributions might be an area that is beyond 

the scope of many students whose backgrounds are limited to only college algebra. 

Knowledge of content and teaching is knowledge focusing on the design of instruction. 

This includes knowing how to choose examples and representations to best guide student 

discussions toward mathematical ideas. An example of this include structuring task that 

uses the design simulations to develop an understanding of empirical sampling 

distributions to further develop their understanding of inferential ideas. Knowledge of 
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curriculum is an understanding on how to sequence and structure the development of a 

mathematical topic. For example, teachers have to be aware that students need to develop 

a deep understanding of probability and sampling distributions prior to teaching statistical 

inference (Hill et al, 2008).  

One of the key issues some statistics education researchers (e.g. Groth, 2007; 

Burgess, 2006) have with the framework of Hill and colleagues (2008) is that it does not 

account for the differences between mathematics and statistics. Statisticians have argued 

that there are key differences between the field of statistics and mathematics. Rossman, 

Chance, and Medina (2006) outline 5 components they see as fundamental differences 

between mathematics and statistics: (1) the crucial role of context, (2) issues of 

measurement, (3) importance of data collection (4) variability of data and (5) importance 

of communication. The work of statisticians is steeped in context taken from the real 

world. An understanding of the context can lead a statistician to make decisions on the 

type of analysis and conclusions to solve a statistical problem. Data collection is also 

important because sampling from a population is difficult and requires statisticians to 

continually focus on issues of precision and accuracy of data collection (Gould & Ryan, 

2013). The omnipresence of variability in data also allows the possibility of invalid 

conclusions. These differences were acknowledged by the statistics education research 

community who suggested a re-evaluation of statistical knowledge for teaching (e.g. 

Cobb & Moore, 1997; Groth, 2007; Rossman, Chance & Medina, 2006; Shaughnessy, 

2007). As a result, several researchers have taken steps towards developing potential 

frameworks for statistical knowledge for teaching (SKT) that have either adapted or 
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extended frameworks originally focused on mathematical knowledge for teaching (e.g. 

Burgess, 2006 & 2008; Gonzalez, 2012; Groth, 2007; Noll, 2007; Sorto, 2006). 

One such framework, introduced by Groth (2007), advocates for a modification of 

the Hill et al. (2008) framework to encompass notions of SKT. An influential piece in 

Groth’s (2007) perspective of SKT was the framework for statistical problems presented 

in the GAISE report. In his framework, Groth describes the interaction between 

mathematical and nonmathematical ideas that occur when teaching statistics. The 

nonmathematical work encompasses understanding variation in data and making 

inferences based on the probabilistic behavior of data. Furthermore, statistical analysis 

also includes methods of generating appropriate research questions and developing 

proper data collection methods in order to create valid conclusions. Once statisticians 

have data, they can then apply appropriate statistical methods for analysis. Groth (2007) 

believes that a robust understanding of statistics requires an understanding of the 

mathematical and nonmathematical side of a statistical process. For teachers, this 

involves knowing how to set up appropriate statistical activities that not only encompass 

the importance of theoretical statistics involving mathematical theory (e.g. probability 

theory), but also non-mathematical methods (e.g. sampling techniques).  

Groth’s hypothetical framework for SKT (Figure 2) highlights the 

interrelationship between common content and specialized content knowledge that 

involve statistical concepts that are both mathematical and non-mathematical. Groth 

advocates that common and specialized content knowledge in SKT is still a growing area 

of research for the statistics education community. This has led others in the statistics 
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education community to focus more deeply on other aspects of SKT (e.g. Burgess, 2008; 

Gonzalez, 2012; Noll, 2007). 

 

Figure 2. “Hypothesized structure of statistical knowledge for teaching (Groth, 2007, p. 429).” 

Gonzalez (2012) work on SKT was also built on the work of Hill et al. (2008) and 

encompassing the notion of statistical literacy. In his work, Gonzalez expands on Hill et 

al.’s framework and describes how it might be applied to the concept of statistical literacy 

by focusing on four potential predictors of SKT: “(1) A model of SKT should be closely 

tied to a model of MKT; (2) Some knowledge components in the MKT model used must 

be redefined to meet the requirements for teaching statistics; (3) In order to conceptualize 

SKT, teachers’ beliefs about statistics, teaching and learning must be considered; and (4) 

Tasks designed to elicit teachers’ conceptions of variability would be helpful to provide 

indicators to measure SKT (Gonzalez, 2012, p. 4-5).” Through these indicators, 

researchers can help identify how teachers come to understand certain categories of SKT. 
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Using his expanded framework, Gonzalez (2012) then investigated how to analyze 

teachers’ identification of concepts of variability. Figure 3 illustrates an example of an 

assessment tool designed by Gonzalez that expands the framework of Ball et al (2008) 

that builds on the connection of statistical literacy to assess topics of variability.  

 

 Figure 3. “Set of proposed indicators to assess SKT (Gonzalez, 2012, p. 5).”  

A final example of a theoretical framework for SKT is introduced by Noll (2007) 

whose model for SKT also encompasses ideas of statistical literacy, statistical thinking, 

and statistical reasoning combined with Hill et al.’s (2008) categories of common content 

knowledge (CCK), specialized content knowledge (SCK), and knowledge of content and 

students (KCS) (Figure 4). In Noll’s framework, she does not view common content 

knowledge and specialized content knowledge as mutually exclusive of knowledge of 

content and students. Instead, she emphasizes the important interaction between CCK and 

SCK. In particular, Noll emphasizes CCK as knowledge of a much wider spectrum 

whereas SCK is a specific category of CCK. For example, the knowledge needed to teach 
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hypothesis testing is very broad. For teachers, knowing the procedures to perform 

hypothesis testing is something that is taught to statistic students and is a form of CCK. 

Furthermore, knowing the relationship between the hypothesis testing methods and 

advanced probability is a form of SCK which is typically not taught to students.  

Noll (2007) also emphasizes the relationship of CCK and SCK with KCS, 

highlighting that having a robust understanding (CCK and SCK) of a statistical concept 

can be useful in understanding student misconceptions and developing alternative 

pedagogical approaches to support student development. Using her framework, Noll 

(2006) investigated GTAs’ statistical knowledge for teaching on the concepts of 

confidence intervals and variability. Through task-based interviews using hypothetical 

student work, she was able to assess GTAs’ content knowledge (CCK and SCK) and their 

knowledge of content and students (KCS). 
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Figure 4. “Model for Statistical Knowledge for Teaching (Noll, 2007, p. 70).” 

3.2. Research on Hypothesis Testing in the Classroom 

Since the goal of this research is to analyze the statistical knowledge of CCIs and 

GTAs, it is appropriate to discuss the statistic education community’s view of a robust 

understanding of hypothesis testing and probability appropriate for statistics teachers. 

Furthermore, it is also important to highlight the types of misconceptions that have arisen 

for both students and teachers in regard to probability in hypothesis testing and the 

current approaches by the research community to remedy these issues.  
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This section begins with background literature on hypothesis testing and the 

current pedagogical approach for teaching hypothesis testing in traditional statistics 

classroom. I then present research on student and teacher misconceptions discussed in the 

statistics education literature, current issues with the traditional approach to hypothesis 

testing, and potential causes for those misconceptions as highlighted by the statistics 

education literature. Finally, I discuss the current shifts in the pedagogical approaches 

discussed by the statistics education community regarding the instruction of hypothesis 

testing. 

3.2.1. Traditional hypothesis testing. Theoretical hypothesis testing started in 

the early 1900s when statisticians Fisher, Pearson, and Gosset developed what they 

termed significance testing. Significance testing uses probability theory and formal logic 

to test claims by computing the likelihood of observed sample data. Significance is 

measured through the likelihood of observed sample data. The more unusual the sample, 

the more significant are the results of the test. Significance testing uses conditional 

reasoning from formal logic (i.e. modus tollens) by making a hypothesized assumption 

about a population, analyzing the probability of an observed sample in light of the 

assumption and then generating a conclusion (Cordani, 2010).  

To analyze the probability of observed data Fisher used theories related to random 

sampling, probability distributions, and theoretical sampling distributions. A theoretical 

sampling distribution results from randomly sampling all possible samples of a fixed 

sample size from a population and then generating the statistic of interest from each 

sample to create a distribution of sample statistics. In significance testing the probability 
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of an observed sample statistic is found using statistical knowledge of an implicit 

theoretical sampling distribution generated by assuming an initial assumption about the 

population (i.e. null hypothesis) and then applying theories of probability distributions 

(e.g. normal distributions, Chi-squared, etc.). By using an observed sample statistic (i.e. 

test statistic) and probability theory, Fisher would compute the theoretical probability of 

getting a sample as extreme as the observed sample data assuming the null hypothesis 

and random sampling techniques. This probability is defined as the p-value. By using the 

p-value statisticians can decide whether the results of an observed sample can lead one to 

reject (of fail to reject) the null hypothesis. If the p-value is small, then there is strong 

evidence that the null hypothesis is invalid because the sample data illustrates the chances 

that something as extreme as the observed sample statistic is highly unusual given the 

null assumption. If the p-value is large, then there is weak evidence against the null 

hypothesis because the chance of getting a sample as extreme as the observed sample 

statistic is likely to happen. Since the p-value plays such a central role in the decision-

making process of significance testing, practitioners of statistics should know how it is 

generated and what it represents.  

To illustrate Fisher’s process, consider the following example. Suppose a statistics 

student wanted to test whether the proportion of males in a college population was still 

0.5 using an observed sample of 100 students that exhibited 70 males (Table 1). 

Table 1. Significance Testing Procedure for a College Proportion. 

Steps Explanation 

1. State a null 

hypothesis 

Student states a null hypothesis about the population.  

 

Example. 

H0: The proportion of male is 50%. 
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2. Compute the 

test statistic 

Student uses the sample data to compute a test statistic using a formula specific for 

the hypothesis test. 

 

Example. 

Given a sample of 100 students with a proportion of 60% the test statistic for 

proportion can be computed using the formula to transform a sample proportion to 

standardized z-score: 𝑧 =
0.7−0.5

√
(0.5)(0.5)

100

= 4  

3. Compute the 

P-value of the 

sample test 

statistic 

Students use a probability distribution table or calculator to compute the probability 

of getting a statistic as extreme as the sample test statistic. 

 

Example. 

P-value = P(z  > 4) ≈ 0. 

4. Conclude the 

results of the 

hypothesis test. 

Student uses the information in step 3 to make a decision about the null 

assumption. This conclusion is either to reject or fail to reject the null hypothesis 

based on the following criteria. 

Reject the null hypothesis if: P-value is small. 

Fail to reject the null hypothesis if: P-value is large. 

 

Example. 

P-value = 0 < 0.5. 

Thus we reject the null hypothesis. 

5. Interpret the 

conclusion. 

Student uses the result of step 4 to interpret the results of the hypothesis test. 

 

Example. 

Because we rejected the null hypothesis with a 5% level of significance, there is 

enough information to claim that the population is not equally distributed. 

 

The central idea behind Fisher’s approach is the importance of analyzing evidence based 

on probability of observed data (Rossman, 2008). The more unusual an observed sample 

is the more significant the evidence is against the null. An issue with Fisher’s approach is 

that rejecting the null hypothesis did not mean one could accept an alternative hypothesis 

because the original work of Fisher made no claim of an alternative hypothesis (Clauser, 

2008). Furthermore, Fisher did not select a fixed value to determine what would be 

considered an unusual p-value. As a result, choosing a value to quantify unusualness for 

the p-value is arbitrarily based on a statistician’s choice.3 This approach differed from the 

work of other statisticians of the era. 

                                                           
3 Historically, the choice of 5% was also chosen arbitrarily by statisticians (Clauser, 2008). 
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Statisticians Jerzy Neyman and Egon Pearson (son of Karl Pearson) coined the 

concept of hypothesis testing which popularized the use of null and alternative 

hypothesis. Neyman-Pearson used much of Fisher’s original work on significance testing 

(i.e. theoretical sampling distribution, probability and assuming a null hypothesis) with 

the exception that their method of hypothesis testing focused on minimizing errors in a 

testing process (Rossman, 2008). Significance testing uses two competing hypotheses (a 

null and alternative) to determine whether one should reject or fail to reject the null 

hypothesis. The Newman-Pearson’s hypothesis test would then conclude with evidence 

for either the null or alternative hypothesis as the result of the test. In order to do this, a 

statistician would use theoretical sampling distributions and probability theory similar to 

Fisher’s approach. Unlike Fisher’s approach of analyzing a p-value, Neyman-Pearson’s 

method focuses on minimizing the probability of committing errors in the hypothesis 

testing procedure. The errors are false negatives and/or false positives and are shown in 

Table 2 (Rossman, 2008). To illustrate, suppose the null assumption is true. Neyman-

Pearson’s method analyzes how to minimize the chances of incorrectly rejecting the null 

hypothesis. Rejecting the null hypothesis when it is true is defined as Type-I error. The 

term level of significance (α) is reserved for the probability of this error. Another 

potential error when concluding a hypothesis test is failing to reject the null hypothesis 

when it is false (i.e. the alternative hypothesis is true). This error is a Type-II error 

symbolically denoted as β.  
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Table 2. Table for Type-I/II Errors in Hypothesis Testing 

 Validity of the Null Hypothesis 

Conclusion Null Hypothesis is true Null Hypothesis is False 

 

Reject the Null Hypothesis 

 

Incorrect Decision 

(Type-I Error) 

 

Correct Decision 

 

Fail to Reject the Null 

Hypothesis 

 

Correct Decision 

 

Incorrect Decision 

(Type-II Error) 

 

The chance of not committing a Type-II error is defined as the power of the test, 

and is computed as 1-β. A common practice in introductory statistics is to focus on 

methods related to Type-I error but giving little emphasis on Type-II error. In classwork, 

the probability of committing a Type-I error can be expressed graphically through a 

sampling distribution and is termed the critical region. The value that marks the location 

of the critical region on the sampling distribution is termed the critical value (see Figure 

5).  

 

Figure 5. Theoretical sampling distribution with critical value and critical region. 

The method of Neyman-Pearson is traditionally called the Critical Region Approach of 

hypothesis testing in introductory statistics classrooms to coincide with the procedure.4 

To illustrate the difference between Fisher’s and Neyman-Pearson’s method, Table 3 

illustrates the same statistical problem as Table 1 using the Critical Region Approach. 

                                                           
4 Introductory statistics textbooks also refer to this as the traditional method of hypothesis testing. 
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Table 3. Critical Region Hypothesis Test for a Population Proportion 

Steps Explanation 

1. State null and 

alternative 

hypotheses 

Student states a null hypothesis and alternative hypothesis about the population. 

  

Example. 

H0: The proportion of male is 50%. 

HA: The proportion of male is greater than 50%. 

2. Compute the 

test statistic 

Student uses the sample data to compute a test statistic using a formula specific for 

the hypothesis test. 

 

Example. 

Given a sample of 100 students with a proportion of 60% the test statistic for 

proportion can be computed using the formula to transform a sample proportion to 

standardized z-score: 𝑧 =
0.7−0.5

√
(0.5)(0.5)

100

= 4  

3. Compute the 

Critical Value 

Using a set level of significance, the critical value is found by looking at a table of 

different critical values based on the probability distribution of the test statistic. 

 

Example. 

Critical Value for 5% level of significance is 1.645 found on the standard normal 

distribution table.  

4. Determine the 

likelihood of the 

sample test 

statistic. 

Student checks whether the test statistic falls within the critical region set by the 

critical value computed in step 3. 

 

Example. 

z = 4 > 1.645 = critical value. 

5. Conclude the 

results of the 

hypothesis test. 

Student uses the information in step 4 to make a decision about the null 

assumption. This conclusion is either to reject or fail to reject the null hypothesis 

based on the following criteria. 

Reject the null hypothesis if: Test statistic falls in the critical region set by the 

critical value. 

Fail to reject the null hypothesis if: Test statistic does not fall in the critical region 

set by the critical value. 

 

Example. 

z = 4 > 1.645 = critical value. 

Thus we reject the null hypothesis. 

6. Interpret the 

conclusion. 

Student uses the result of step 5 to interpret the results of the hypothesis test. 

 

Example. 

Because we rejected the null hypothesis with a 5% level of significance, there is 

enough information to claim that there are more males in the college population. 

 

One of the key benefits of this approach over Fisher’s is that the process results in 

a conclusion whether a statistician rejects or fails to reject the null hypothesis. If a 

statistician rejects the null hypothesis then he/she has evidence for the alternative 
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hypothesis, and vice-versa. The process of Neyman-Pearson mainly focuses on the 

concept of ‘errors’ by implicitly analyzing the position of an observed sample data in a 

theoretical sampling distribution. The method as presented in Table 3 does not however 

show how to deal with Type-II error. In fact, detailed work regarding the computation 

and minimization of Type-II error is generally left for advanced statistics courses. 

It is still common for statistics courses to teach the Neyman-Person method in 

modern statistics courses as the Critical Region approach.5 The same cannot be said for 

Fisher whose method was updated around the 1940s to a hybrid method combining both 

approaches. The hybrid method is identified by statisticians as null hypothesis 

significance testing (NHST). NHST combines the ideas of error analysis and p-value and 

has been the standard approach to hypothesis testing instruction in statistical classrooms 

(Clauser, 2008; Stigler, 1999). 

Prior to learning methods of hypothesis testing, most introductory statistics 

curriculum begins with chapters on descriptive statistics (e.g. mean, standard deviation, 

proportion, etc.) and probability distributions (e.g. binomial distribution, normal 

distribution, etc.) progressing to a chapter on (theoretical and empirical) sampling 

distributions. A culmination of these ideas leads to chapters on statistical inference (e.g., 

Bluman, 2012; Brase & Brase, 2012). A synopsis of traditional introductory statistics 

textbooks (e.g., Bluman, 2012; Brase & Brase, 2012) covers Critical Region and the 

NHST as standard curriculum. The process of NHST is broken into six steps: (1) state the 

null and alternative hypothesis, (2) compute the test statistic of an observed sample, (3) 

compute the p-value, (4) compare the p-value with the level of significance (5) conclude 

                                                           
5 For an example, see Bluman (2012). 
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the results of the hypothesis test, and (6) interpret the results. Table 4 illustrates an 

example of NHST that tests for a greater proportion of males in a college population 

given that an observed sample of 100 students exhibited 70 males. 

Table 4. Null Hypothesis Significance Test for a Population Proportion. 

Steps Explanation 

1. State null and 

alternative 

hypotheses 

Student states a null hypothesis and alternative hypothesis about the population.  

 

Example. 

H0: The proportion of male is 50%. 

HA: The proportion of male is greater than 50%. 

2. Compute the 

test statistic 

Student uses the sample data to compute a test statistic using a formula specific for 

the hypothesis test. 

 

Example. 

Given a sample of 100 students with a proportion of 60% the test statistic for 

proportion can be computed using the formula to transform a sample proportion to 

standardized z-score: 𝑧 =
0.7−0.5

√
(0.5)(0.5)

100

= 4  

3. Compute the P-

value 

Students use a probability distribution table or calculator to compute the probability 

of the given test statistic. 

 

Example. 

P-value = P(z  > 4) ≈ 0. 

4. Determine the 

likelihood of the 

sample test 

statistic. 

Student checks whether the P-value computed is lower than the level of significance. 

Alternatively, one can check whether the test statistic falls within the critical region 

set by the critical value computed in step 3. 

 

Example. 

P-value ≈ 0 < 0.05 = level of significance. 

5. Conclude the 

results of the 

hypothesis test. 

Student uses the information in step 4 to make a decision about the null assumption. 

This conclusion is either to reject or fail to reject the null hypothesis based on the 

following criteria. 

Reject the null hypothesis if: P-value < level of significance 

Fail to reject the null hypothesis if: P-value > level of significance 

 

Example. 

P-value = 0 < 0.5 = significance level. 

Thus we reject the null hypothesis. 

6. Interpret the 

conclusion. 

Student uses the result of step 5 to interpret the results of the hypothesis test. 

 

Example. 

Because we rejected the null hypothesis with a 5% level of significance there is 

enough information to claim that there are more males in the college population. 
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Students are instructed to use a NHST or Critical Region approach on various 

hypothesis test problems (e.g. multiple populations, means, standard deviations, etc.). 

Traditionally, lesson time is spent on learning how to compute a test statistic, p-value and 

critical value and determining which hypothesis test procedure to use based on the 

statistical problem (e.g. Bluman, 2012; Brase & Brase 2012). Knowledge of the 

underlying theoretical sampling distributions and the related probability distribution is 

briefly discussed, but deeper understanding of the underlying concepts of hypothesis 

testing is typically reserved for upper division statistics courses. Student achievement is 

then measured through assessments that evaluate correct computation and procedural 

fluency. For example, students must correctly identify the null/alternative hypothesis, 

compute the correct p-value, find the critical value and determine whether to reject/fail to 

reject the null hypothesis. Unfortunately, research reveals that traditional instruction and 

assessment of NHST has led to misconceptions for both students and teachers (Batanero, 

2000; Batanero & Diaz, 2006; Castro Sotos et al, 2007 & 2009; Falk, 1986; Garfield & 

Ben-Zvi, 2008; Haller & Krauss, 2002; Liu, 2005; Thompson, Liu & Saldahna, 2007; 

Vallecillos, 2002; Vallecillos & Batanero, 1997).  

3.2.2. Research on students’ and teachers’ understanding of NHST. 

Developing a deep conceptual understanding of hypothesis testing is non-trivial for many 

students and teachers. Statistics education researchers have uncovered a variety of 

misconceptions regarding students’ (e.g. Batanero, 2000; Batanero & Diaz, 2006; Castro 

Sotos et al, 2007; Castro Sotos et al, 2009; Falk, 1986; Garfield & Ben-Zvi, 2008; Haller 

& Krauss, 2002; Vallecillos & Batanero, 1997) and teachers’ (e.g. Haller & Krauss, 
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2002; Heid, et al., 2005; Thompson, Liu, & Saldahna, 2007) understanding of NHST. For 

example, research by Vallecillos and Batanero (1997) revealed that students struggle 

identifying the null and alternative hypothesis when confronted with statistical problems 

where the null/alternative hypotheses are not clearly delineated. Another example is 

research regarding students’ understanding of statistical power outlined by Nickerson 

(2000) who asserts that students tend to think Type-I and Type-II errors as the same 

and/or at times confuse the relationship between them. For example, students would 

interpret the probability of not committing a Type-I error as the probability of committing 

a Type-II.  

Empirical research on teachers’ understanding of hypothesis testing is seen in the 

work of Thompson, et al. (2007) who investigated eight secondary school teachers in a 

professional development seminar on statistical inference. The results of their research 

uncovered that even if teachers understood the logic of hypothesis testing, teachers had a 

tendency to misinterpret its use. For example, when teachers in the study were asked 

questions related to hypothesis tests, seven of the teachers applied methods that presumed 

they had access to the population. Thompson et al. noted that even if the teachers 

understood the logic of hypothesis testing, some fail to demonstrate understanding of its 

functionality.  

The examples above illustrate just a few of the misconceptions found in the 

research literature on students’ and teachers’ understanding of hypothesis testing. Since 

the goal of this paper is to primarily focus on understanding of probability in the context 

of hypothesis testing, two important misconceptions are highlighted as areas in the 
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research students and teachers struggle with when understanding hypothesis testing: (1) 

misunderstanding the role of conditional probability in hypothesis testing concepts (e.g. 

p-value and level of significance) and (2) misconceptions regarding the role of sampling 

distributions in hypothesis testing.  

3.2.2.1. The role of conditional probability in hypothesis testing. One of the 

common misconceptions for students and teachers is the inherent role of conditional 

probability in hypothesis testing (Garfield & Ben-Zvi, 2008). For example, simply 

interpreting the p-value as ‘the probability of rejecting the null hypothesis’ or ‘the 

probability the null hypothesis is true’ are cases where the p-value is not viewed as a 

conditional probability. Even if a student or teacher is able to recognize p-value and level 

of significance as conditional probabilities, some struggle identifying the assumption and 

conclusions of the conditional statement (Batanero, 2000).  

The fact that Students and teachers struggling to understand the role of 

conditional probability in hypothesis testing is not surprising considering that research 

has shown that understanding theoretical conditional probability is quite difficult 

(Shaughnessy, 2007; Watson & Moritz, 2002). Unfortunately, the treatment of hypothesis 

testing in several introductory statistics textbooks uses methods based primarily on 

theoretical sampling distributions (e.g. Normal Distribution, Chi-Squared Distribution, 

Student-t Distribution, etc.) and conditional probability. Furthermore, the actual theory 

and reasoning behind the computation of the probability in many of these methods 

requires knowledge of calculus and advanced probability courses. This is generally not 

required for introductory statistics courses. As a result, almost all probability theory 
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related to hypothesis testing is implicit in methods presented in introductory statistics 

textbooks. To illustrate, traditional introductory statistics textbooks approach the 

computation of probability in hypothesis testing by transforming the observed sample to a 

statistic (e.g. z-score or t-score) utilizing the null assumption (e.g. Table 4). After 

transforming the observed sample to a statistic, the traditional approach is to symbolically 

represent the p-value as a standard probability statement. That is, choosing to represent 

the p-value symbolically as 𝑃(𝑑𝑎𝑡𝑎) rather than 𝑃(𝑑𝑎𝑡𝑎 | ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠). The 

computation of probability is then done using either technology or statistical tables (e.g. 

standard normal distribution table). As a result, the role of conditional probability is 

implicit in the method which could potentially be misinterpreted by the student or teacher 

(Shaughnessy & Chance, 2005). Thus, it is no surprise that students and teachers struggle 

recognizing the p-value (or level of significance) as a conditional probability since it is 

not symbolically represented as one in standard curriculum. 

There have been several empirical studies focused on students’ misconception of 

the level of significance. For example, a common misconception regarding the level of 

significance is students swapping the assumption and conclusion of the conditional in the 

interpretation, that is, the level of significance is the probability that the null hypothesis is 

true once the decision to reject it has been taken (Batanero, 2000; Batanero & Diaz, 2006; 

Castro Sotos et al, 2009, Vallecillos, 2002). Examples of this can be found in work by 

Vallecillos (2002) who studied college students understanding of hypothesis testing. In 

her work, she surveyed 436 students and found that 53% were incorrectly interpreting the 

level of significance, stating that “A level of significance of 5% means that, on average, 5 
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out of every 100 times we reject the null hypothesis, we shall be wrong.” Under the same 

study Vallecillos (2002) did follow-up interviews with seven individuals considered 

excellent statistics students. She found that majority of the students incorrectly 

interpreted the level of significance as ‘the probability of the null hypothesis being true 

given that it has been rejected.’ A similar phenomenon was seen in Castro Sotos et al. 

(2007) who believe the misconception of the level of significance could be linked to 

students having a deeper misconception inherited by probability (i.e. conditional 

probability). In their research, Castro Sotos et al. outline two other misconceptions they 

claim may be due to the conditional nature of a level of significance: (1) level of 

significance as the probability that one of the hypotheses is true; and (2) the level of 

significance is the probability of making a mistake.  

The misconception of the conditional nature of probabilities in hypothesis testing 

can also be found in students’ interpretation of the p-value. Batanero (2000) observed that 

students who are able to calculate a correct p-value and correctly conclude whether to 

reject or fail to reject the null hypothesis based on their calculated p-value struggled 

interpreting the p-value. A survey of college statistics courses by Hauler and Krauss 

(2002) found that out of 44 students, 30 believe that the p-value is the probability that 

you made a wrong decision given that you reject the null hypothesis. Garfield and Ben-

Zvi (2008) have also identified several student misinterpretations of p-value in the 

research literature which include: (1) “The p-value is the probability that the null 

hypothesis is true; (2) The p-value is the probability that the null hypothesis is false; (3) 

A small p-value means the results have significance (statistical and practical significance 
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are not distinguished); (4) p-value indicates the size of an effect (e.g., strong evidence 

means big effects); (5) Large p-value means the null hypothesis is true, or provides 

evidence to support the null hypothesis; (6) If the p-value is small enough, the null 

hypothesis must be false” (p. 270). 

Unfortunately, the misconceptions regarding the p-value are not confined to 

statistics students. Statistics education researchers have discovered teachers struggling 

with hypothesis testing (Haller & Krauss, 2002; Heid, et al., 2005; Thompson, Liu & 

Saldahna, 2007). Some researchers (e.g. Brewer, 1985; Gliner, Leech & Morgan, 2002; 

Haller & Krauss, 2002) even claim that textbooks may have caused some of the 

misconceptions, which are then exemplified by teachers who use such textbooks in their 

work. In an example presented by Haller and Kraus (2002), they illustrate one such book 

entitled Introduction to Statistics for Psychology and Education by Nunally (1975). In 

their example, they outline the following interpretations put forth by the author on the 

interpretation of NHST on the concept of p-value:  

1. “the improbability of observed results being due to error” 

2. “the probability that an observed difference is real”  

3. “if the probability is low, the null hypothesis is improbable”  

4. “the statistical confidence ... with odds of 95 out of 100 that the observed 

difference will hold up in investigations” 

5.  “the degree to which experimental results are taken ‘seriously’ 

6.  “the danger of accepting a statistical result as real when it is actually due only 

to error”  



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  44 

7.  “the degree of faith that can be placed in the reality of the finding” 

8. “sample mean actually differs from the population mean” (Nunally, p. 194-

197). 

Hauler and Krauss highlight that the author (Nunally) concludes these statements all 

define ways of describing the p-value even though they are all inherently wrong. In the 

same study, Haller and Krauss (2002) investigated statistics teachers’ knowledge of the 

p-value. In their study, they investigated 30 university instructors, 39 scientific 

psychologists, and 44 psychology students to not only study the subjects’ understanding 

of p-value, but also to compare whether misconceptions are shared amongst them. In 

their study, they provided the subjects with a survey shown in Figure 6. 
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Figure 6. “Questionnaire on the interpretations of a p-value (Haller & Krauss, 2002, p. 5).” 

 

In their work, they indicate that the correct response for all of these statements should all 

be false. A breakdown of subjects who made at least one mistake consisted of 80% 

statistics instructors, 100% of students and 89.7% of scientists. The greatest frequency of 

mistake across all three groups was found to be statement 5, which shares a similar 

definition to a Type-I error; illustrating that students, teachers, and researchers sometimes 

struggle differentiating between level of significance and p-value. 

3.2.2.2. The role of sampling distributions in hypothesis testing. One of the most 

discussed topics in statistics education is students’ and teachers’ understanding of 
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sampling distributions and its role in statistical inference. Kahneman and Tversky (1982) 

conjectured that individuals tend to take a singular rather than a distributional 

perspective when making judgements about the probability of a single outcome. A 

singular perspective is one in which a person focuses on the causal system that produced 

the particular outcome and bases probability strictly on the propensities of the outcome. 

A distributional perspective relates the outcome to a sampling schema and views an 

individual outcome as a single instance of a set of similar cases where probability can be 

as estimated relative frequencies (Kahneman & Tversky, 1982; Saldahna & Thompson, 

2002). Empirical evidence of this can be found in the work of Konold et al. (1993) who 

found that individuals tend to think that they can predict with certainty the outcome of an 

individual trial of an experiment. Konold et al. describe this as an outcome approach, 

where an individual tends to base predictions of uncertain outcomes on causal 

explanations instead of information gathered from repeating an experiment.  

Even if students have grasped the concept of repeating a sampling process, 

misconceptions still arise regarding their understanding of a sampling distribution. 

Empirical research conducted by Saldahna and Thompson (2002) created an instructional 

sequence designed to support students’ understanding of sampling distributions by 

connecting ideas of repeated selection, variability, and distribution in a course for 

secondary school students. In their research, they discovered that students had two 

different views of samples. The first is an additive conception of sampling where students 

view a sample as a subset of a population and multiple samples as multiple subsets. The 

second is a multiplicative conception of sampling where students viewed sample as “a 
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quasi-proportional mini-version of the sampled population, where the “quasi-

proportional” image comes from anticipating a bounded variety of outcomes, were one to 

repeat the sampling process (Saldahna & Thompson, 2002, p. 6).” The researchers claim 

that having a multiplicative conception of sampling supports a deep understanding of 

statistical inference and is common among statisticians. In particular, it helps students 

explain why an outcome has a particular probability because it familiarizes them towards 

relating individual outcomes to a distribution of a class of similar outcomes. 

The research regarding sampling distributions have led many researchers to 

believe that misconceptions in statistical inference arise because students and teachers 

lack the knowledge of sampling distribution and its role in statistical inference (e.g., Heid 

et al, 2005; Makar & Confrey, 2004 & 2005; Saldahna & Thompson, 2002; Thompson et 

al., 2007). Almost all statistical textbooks (e.g. Bluman, 2012; Brase & Brase, 2012) 

dedicate a few sections to (theoretical and empirical) sampling distributions, but focus on 

statistical inference methods that rely strictly on theoretical sampling distributions. 

Traditional approaches of hypothesis testing use theoretical sampling distributions even 

though research has shown that understanding a theoretical sampling distribution is 

difficult for students and teachers (e.g., Chance, delMas & Garfield, 2004; Lipson, 2002; 

Saldahna & Thompson, 2002; Thompson et al, 2004). Chance et al. (2004) writes that 

understanding sampling distributions is challenging because it requires an integration of 

several statistical concepts (e.g. random sampling, statistic, parameter, variability, 

probability distribution, etc.). Furthermore, Chance et al. states that those students who 

fail to develop a deep understanding of sampling distributions often develop mechanical 
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knowledge of statistical inference. This is troubling considering that sample distributions 

play a major role in conceptually understanding the relationship between statistical 

inference and probability.  

Empirical evidence of teachers struggling to understand the role sampling 

distributions play in statistical inference can be seen in the work of Makar and Confrey 

(2005). In their work, they studied secondary teachers at the end of a professional 

development sequence by giving tasks that had them compare two sampling distributions 

of data to make inferences about two populations. During the professional development, 

the teachers often used sampling distributions to investigate statistical concepts, but the 

interviews discovered that teachers still relied on descriptive statistics to compare 

distributions rather than inferential techniques. Some teachers who considered using a 

sampling distribution for the comparison tasks struggled to understand how it would be 

useful. This phenomenon was also observed in the work of Heid et al. (2005) who 

investigated eighteen prospective secondary teachers enrolled in a course designed to 

broaden understanding of statistical concepts. In their research, they discovered that 

participants could accurately describe and construct a sampling distribution but were 

inconsistent when trying to articulate distinctions between the distribution of a sample 

and a sampling distribution. As a result, the teachers in the study made deterministic 

statements rather than probabilistic inferences when reasoning through problems related 

to hypothesis testing. 

One of the biggest issues surrounding probability in hypothesis testing is students 

and teachers not recognizing that samples should be viewed as part of a stochastic 
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process.6 The goal of statistical inference is to analyze the probability of an observed 

sample as one potential sample in a set of possible samples drawn from a population. Liu 

and Thompson’s (2004) research on probability and statistical inference with secondary 

school educations in a professional development program highlight that teachers’ 

understanding of probability covers a large spectrum. They discovered that teachers in 

their study viewed probability in four ways: 

1. “thinking that probability is a (subjective) judgment based on personal 

experiences; 

2. thinking that probability is about predicting the state of a specific completed 

(or to-be- completed) event about which one does not know the actual result; 

3. thinking that probability is about selecting one outcome from a set of possible 

outcomes;  

4. thinking that probability is about imagining a collective of results all 

generated by a single-process that yields results that are more dense in some 

regions of possible values than in other regions, i.e., a stochastic conception of 

probability” (Liu & Thompson, 2004, p. 4). 

According to Liu & Thompson, the representation of a probability question directly 

influences how teachers interpret a probability problem. In their work, they found that 

when a probability statement states a collection of people, teachers had a tendency to 

interpret probability as a group characteristic. When a probability question is stated as a 

single event, teachers were less likely to have images of a collection of similar events, 

                                                           
6 A stochastic process is a collection of random variables indexed by a variable parameter (which is usually 
time). 
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illustrating that some teachers do not always view probability as a stochastic process. 

This is problematic considering that probability in hypothesis testing is conceptually 

based on a random sampling process and sampling distributions. 

3.2.3. New pedagogical approaches to hypothesis testing. The previous 

sections highlight several misconceptions held by students and teachers regarding the 

traditional approach of hypothesis testing. Many of these misconceptions involve 

concepts of probability and/or a lack of understanding the role sampling distributions and 

random sampling play in hypothesis testing. This has led researchers to develop 

pedagogical approaches to hypothesis testing that emphasize the importance of 

simulations and sampling distributions in the understanding of hypothesis testing.  

One of the key ideas highlighted by the statistics education literature is the 

importance of sampling distribution and simulations as a basis for understanding 

hypothesis testing (e.g., Chance, delMas & Garfield, 2004; Lipson, 2002; Saldahna & 

Thompson, 2002; Thompson et al, 2004). Teachers should be able to distinguish between 

a theoretical and empirical sampling distribution and know their roles in hypothesis 

testing. In traditional statistics textbooks, the theoretical sampling distribution plays a 

large role in the computation of probability in hypothesis testing. Teachers of statistics 

should understand that although the hypothesis test requires the use of well-known 

probability distributions (e.g. normal distribution) that is a direct result of an implicit 

sampling distribution. To determine the likelihood of an observed sample statistic 

requires teachers and students to understand that probability is a result of a stochastic 

process. The statistics education community has recommended pedagogical approaches 
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that emphasize empirical sampling distributions and simulations to improve the 

instruction of hypothesis testing (e.g., Chance, del Mas & Garfield, 2004; Chance, B. et 

al., 2007; Cordani, 2010; delMas, R., Garfield, J. & Chance, B., 1999; Diaz, 2010; 

Erickson, 2006; Garfield & Everson, 2009; Garfield & Zvi, 2008; Heid, 2005; Zieffler, 

Garfield, delMas & Reading, 2008; Zieffler, Garfield, et al., 2008).  

In place of a traditional pedagogical approach of hypothesis testing, the statistics 

education community has focused on three interrelated strategies. First is emphasizing the 

importance of sampling distributions in the learning of hypothesis testing (Batanero, 

2000; Lipson, 2003; Liu & Thompson, 2005; Heid, 2005; Makar & Confrey, 2005) 

arguing that sampling distributions form the basis for understanding the relationship 

between sample statistics and probability in a hypothesis testing argument. The second 

pedagogical strategy recommended by educators (e.g., Chance, del Mas & Garfield, 

2004; Chance, B. et al., 2007; delMas, R., Garfield, J. & Chance, B., 1999; Dolor, 2013; 

Dolor & Noll, 2015; Erickson, 2006; Garfield & Everson, 2009; Garfield & Zvi, 2008; 

Heid, 2005; Weinberg, Wesner & Pfaff, 2011; Zieffler, Garfield, delMas & Reading, 

2008; Zieffler, Garfield, et al., 2008) is that simulations can be an important pedagogical 

tool in teaching hypothesis testing because they provide a visual and/or physical 

experience of the sampling process to generate empirical sampling distributions. Unlike 

theoretical sampling distributions, empirical sampling distributions can be generated 

through computer simulations. Chance et al. (2004) recommends that simulations can 

build foundational ideas of sampling distributions by allowing students to explore how 

samples and sampling distributions behave with respect to a population. The strategies of 
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focusing on empirical sampling distributions and simulations lead towards the third 

strategy which is the teaching of hypothesis testing that stresses less on memorizing 

procedural ideas and more towards instructional approaches that focus on building 

students’ informal inferential reasoning (Zieffler et al, 2008).  

The definition of informal inferential reasoning (IRR) is based on the work of 

Zieffler et al. (2008) that they describe “as a way in which students use their informal 

statistical knowledge to make arguments to support inferences about unknown 

populations based on observed samples (p. 44).”  Instead of starting with formal concepts 

(e.g. z-test or t-test), statistics educators (e.g., Anderson-Cook & Dorai-Raj, 2003; 

Chance et al., 2004; Chance & Rossman, 2006; Erickson, 2006; Garfield & Everson, 

2009; Garfield et al., 2012; Lawton, 2009; Makar & Rubin, 2009; Pfannkuch, 2010; 

Pfannkuch, Forbes, Harraway, Budgett & Wild, 2013; Schneiter, 2008; Zieffler et al., 

2008) have implemented new approaches where students begin with experiencing the 

sampling process by generating multiple samples (physically or electronically) to 

generate empirical sampling distributions as a pedagogical tool that is concrete for the 

student. Figure 7 illustrates the role of sampling distributions in a hypothesis testing 

process that student could build using computer simulations. Teachers could then 

generate lessons that connect ideas of probability in statistical inference using an 

empirical sampling distribution.  
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Figure 7. “Model of Hypothesis Testing with Empirical Sampling Distributions (Dolor & Noll, 2015, p. 

64).” 

 

Instead of relying on theoretical sampling distributions, students can use 

empirical sampling distributions to compute probability by observing and/or counting the 

number of statistics that fall within a given region (i.e. relative frequency) that can lead to 

concepts like the p-value and level of significance without using formal terminology. 

According to Zieffler et al, (2008) the reason students often find difficulty with formal 

statistical inference is because “they lack both experience with stochastic events that form 

the underpinnings of statistical inference and the experience of reasoning about these 

events” (p. 45).  

With the statistics education community encouraging more simulation-based 

approaches for the teaching statistics, new curriculums have emerged acknowledging 

these new pedagogical approaches. Examples of this can be seen in the work of Weinberg 

et al. (2011) whose work highlights activities that build ideas of statistical inference 

through sampling activities that gradually introduces students to the mechanics of 
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hypothesis testing. Erickson (2006) suggests an approach where students can build formal 

concepts in hypothesis testing using simulation through five steps: 

1) “Collect Data from the situation of interest – data that seem to reflect some 

phenomenon. 

2) Design a measure of that phenomenon that you can calculate from the data. 

Ideally, this measure is a larger number if the phenomenon is strong and 

present, and small-even zero-when the phenomenon is absent. The value of 

this measure, using real data, is the test statistic. 

3) Simulate the condition of the null hypothesis, and collect those data using 

repeated trials? 

4) Compute the measure from simulated data, and repeat to build up a sampling 

distribution for the measure in question. 

5) Compare the test statistic to the sampling distribution. The empirical p-value 

is the fraction of cases in the sampling distribution that are at least as extreme 

as the test statistic (Erickson, 2006, p. 3).” 

According to Erickson (2006), this process supports students’ development of concepts 

like the test statistic because it gives them the freedom to construct their own measures 

that make sense to them. Because the measure is by their own construction, simulations 

and sampling distribution could potentially become more accessible to students, which 

could lead to a deeper understanding of concepts such as a p-value. Substantial work can 

be seen from the research of Garfield, delMas, & Zieffler (2010 & 2012) who designed a 

new curriculum entitled Change Agents for Teaching and Learning Statistics 
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(CATALST) curriculum. In their curriculum, they introduce a simulation based approach 

to statistical inference where students must model statistical problems with respect to a 

specific context, repeatedly simulate data, and then use the resulting distribution to draw 

statistical inferences. By immersing students into the process of simulations, the class 

builds ideas on informal statistical reasoning that lead towards methods of formal 

statistical inference. The Comprehensive Assessment of Outcomes in Statistics (CAOS) 

test was used to assess learning outcomes for this course (delMas, Garfield, Oooms, & 

Chance, 2007). 

There has been some empirical research regarding using simulation-based 

approaches in the statistics education community (Dolor & Noll, 2015; Erickson, 2006; 

Weinberg et al., 2010; Garfield, delMas, & Zieffler, 2012). For example, the work of 

Dolor and Noll (2015) implemented a curriculum similar to the model proposed by 

Erickson (2006) in a professional development course for secondary school statistics 

teachers. In their research, they developed activities using the methodology of guided 

reinvention to support teachers’ reconstruction of formal concepts of hypothesis testing. 

Using the model of a goodness-of-fit hypothesis test as a basis for learning activities, the 

researchers had teachers generate their own measure to analyze the unusualness of 

samples generated from a population of four-color beans. A result of their research 

discovered that teachers who were able to generate their own measure were able to 

fluently discuss concepts related to sampling distributions in a hypothesis-testing context.  

Currently, there is a need in the statistics education community to study the 

impact of a simulation-based approach of hypothesis on student learning. With the 
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statistics education community slowly transitioning to these new ideas, it is important for 

the research community to study the impact these pedagogical approaches on students’ 

statistical understanding. It is also important to know whether statistics teachers possess 

the knowledge to teach using these new approaches. 
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4. THEORETICAL FRAMEWORK 

The goal of this work is to study CCIs’ and GTAs’ knowledge of probability in 

the context of hypothesis testing. To accomplish this, it is important to discuss a 

theoretical model for analyzing the SKT that can be used to assess CCIs and GTAs. This 

section begins with a description of a theoretical framework that I use to analyze 

teachers’ understanding. I then discuss the concept of a p-value by focusing on categories 

of understanding emphasized by the statistics education literature. During this process, I 

also discuss how the categories of understanding for a p-value relate to SKT. 

4.1. A Theoretical Framework for Assessing SKT for p-value. 

The literature review in the previous section on the various frameworks for 

statistics teachers’ knowledge showed the overwhelming importance of statistical 

literacy, statistical thinking, and the framework of Hill et al. (2008) on the statistics 

education community’s view of a statistics teacher. Noll’s (2007) and Gonzalez’s (2012) 

frameworks are of particular relevance to this research in regards to the importance of 

assessing statistics teachers’ knowledge of probability related to hypothesis testing. This 

research hopes to expand the theoretical framework described by Noll (Figure 4) that 

highlights the strong connection between content knowledge (i.e. CCK and SCK) and its 

impact on pedagogical knowledge (i.e. KCS). Gonzalez’s (2012) framework also 

highlight important indicators regarding the categories of CCK, SCK, and KCS that could 

be useful in determining a teacher’s understanding of a statistical concept. I conjecture 

that by merging the frameworks of Noll and Gonzalez researchers can generate 

assessment tools to analyze teachers’ knowledge of hypothesis testing concepts. Table 5 
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illustrates my proposed theoretical framework for assessing the categories of CCK, SCK, 

and KCS highlighted by Noll’s framework merged with the indicators discussed by 

Gonzalez (2012) focusing on probability in hypothesis testing particularly related to the 

p-value.  

Table 5. Theoretical Framework for Analyzing Categories of SKT for the P-value. 

Category Indicators 

Common Content Knowledge  1. Is the teacher able to appropriately give a correct 

answer to questions related to p-value? 

 

2. Does the teacher consistently identify and interpret 

concepts of a p-value in a statistical task?  

 

Specialized Content Knowledge  1. Does the teacher have the ability to determine standard 

and non-standard approaches to arguments, methods, and 

solutions for statistical questions regarding a p-value? 

 

2. Does the teacher have the ability to provide evidence to 

analyze correct and incorrect solutions given by students 

and provide justifiable explanations and reasoning for 

responses that are clear and accurate? 

 

Knowledge of Content and Student 1. Is the teacher able to anticipate students’ common 

responses and misconceptions for a statistical task related 

to the p-value? 

 

2. Does the teacher show evidence of knowing the most 

likely reason for students’ responses and misconceptions 

in regarding tasks related to p-value?  

 

 

To illustrate the merging of the two frameworks (i.e. Noll and Gonzalez), I first 

focus on the category of CCK. Gonzalez (2012) describes a potential indicator for CCK 

occurs when a teacher can consistently identify, correctly compute, and interpret 

statistical concepts. Indicators of CCK for a p-value assess when a teacher can correctly 

and consistently answer questions related to a p-value that he/she would expect 
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introductory statistics students to answer. This includes knowing the definition of a p-

value and how to compute one when presented with related statistical task. Indicators of 

SCK focus on content knowledge that is beyond what is typically taught in introductory 

statistics courses. Indicators of SCK include knowing alternative approaches to 

computing and interpreting a p-value which may include using an empirical sampling 

distribution as a way to compute and describe a p-value. The teacher must also have the 

knowledge to describe the reasoning behind statistical concepts using advanced statistical 

knowledge. This includes knowing the relationship between the p-value and calculus or 

describing why a p-value can be symbolized as a conditional probability. Indicators of 

KCS focus on anticipating and recognizing common student responses and 

misconceptions. This includes identifying common student misinterpretations of the p-

value such and recognizing incorrect student usage of a p-value in a hypothesis-testing 

task.  

It is important to note that categories of knowledge (CCK, SCK, and KCS) tend to 

overlap when analyzing a p-value. For example, recognizing and appropriately 

responding to an incorrect student interpretation of the p-value requires knowledge of 

KCS, SCK, and CCK since this requires knowledge of the correct interpretation and the 

ability to explain why an interpretation is incorrect. I theorize that even though all forms 

of SKT might be active when a teacher tries to recognize an incorrect interpretation, 

particular forms of knowledge can still be assessed using carefully designed tasks. For 

instance, the teacher might be able to correctly recognize a correct interpretation of a p-

value (CCK), but he/she might not be able to explain why using concepts from advanced 
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statistics (SCK). Similarly, the teacher might recognize a common student 

misinterpretation of a p-value (KCS), but might have difficulty explaining why it is a 

misinterpretation (CCK and/or SCK).7 Using my hypothesized framework and carefully 

designed assessment questions, I generate an initial model of CCIs and GTAs 

understanding of probability in hypothesis testing focusing on categories of CCK, SCK, 

and KCS.  

4.2. Categorizing SKT for P-value. 

In order to use the hypothesized framework to assess SKT for CCI and GTAs, it is 

important to discuss an understanding of probability in hypothesis testing. Since one of 

the research goals is to assess teachers’ understanding of p-value, this section outlines 

important ideas on the understanding of the p-value. The work of Shaughnessy and 

Chance (2005) highlight questions commonly raised by statistics students and teachers on 

concepts related to the p-value. These include: (1) computing the p-value through 

sampling distributions (empirical or theoretical); (2) the interpretation of the p-value; (3) 

understanding p-values as tail probabilities and measures of extremes; (4) understanding 

the p-value as a conditional probability under the null hypothesis. I also add to this list 

the understanding of the p-value and its relationship to the level of significance. This 

includes knowing that p-values are compared to the level of significance to determine the 

conclusion of hypothesis testing as commonly taught in statistics textbooks (Bluman, 

2012; Brase & Brase, 2012). Based on the work of Shaughnessy and Chance (2005) and 

research from the statistics education literature, Table 6 characterizes the categories of 

                                                           
7 More detailed examples of CCK, SCK, and KCS will be described in the upcoming section where I 

discuss particular properties of the p-value. 
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the p-value that are the focus of my assessment. In these upcoming sections, I discuss 

how these categories relate to the proposed theoretical model in Table 5.  

Table 6. Categories of Understanding for the P-value. 

1. The definition (interpretation) of the p-value. 

• Understanding the assumptions and conclusions of the conditional probability for 

p-value. 

• Understanding p-values as measures of extremes results. 

 

2. The symbolic representation of a p-value. 

• The standard representation of the p-value using the test statistic formula. 

• The representation of the p-value using the conditional statement. 

 

3. The representation of a p-value in an empirical/theoretical sampling distribution. 

• The computation of the p-value. 

• The graphical representation of the p-value as one/two-tail probabilities. 

 

4. The relationship of p-value with the level of significance. 

• The magnitude of the p-value in relation to the level of significance. 

• Understanding the relationship of the p-value with the level of significance in the 

hypothesis testing process. 

• Understanding the relationship between a result having statistical significance 

versus practical significance. 

 

4.2.1. Category 1 – Definition of a p-value. The first category is the p-value’s 

definition. In order to assess CCK for a p-value, understanding should focus on a 

teacher’s ability to state (or identify) the p-value’s definition. This includes correctly 

identifying and interpreting how the p-value relates to the null assumption and the 

observed sample in a hypothesis test problem. This also includes recognizing the 

relationship between the p-value definition and concepts of conditional probability. 

Furthermore, the teacher must understand that p-values refer to a set (or region) of 

sample statistics (not a single sample statistic) because it is defined as the probability of 

‘extremes.’  
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Assessing a teacher’s SCK for a p-value can be determined by their understanding 

of a p-value’s role in a stochastic process. For example, knowing that p-value measures 

extremes are important when relating p-value to the concept of a continuous random 

variables (e.g. sample means). Conceptually, the probability of a sample statistic for a 

continuous random variable is theoretically 0 because computation of probability is 

viewed as an area under a curve for a probability density function (i.e. integration). This 

is not the case for data whose underlying sampling distribution is a discrete random 

variable (e.g. counts). This is why statisticians focus on notions of extremes rather than 

the probability of a single sample statistic. Notions of extreme sample statistics also 

connect to an understanding of sampling distributions, which I discuss in the section that 

relates a p-value to empirical and theoretical sampling distributions. 

To assess a teacher’s KCS for a p-value definition means analyzing a teacher’s ability 

to identify correct/incorrect student interpretation of the p-value. Common 

misinterpretations highlighted by the statistics education literature include viewing the p-

value as the probability of a single event (i.e. the probability of the observed sample 

statistic), not recognizing the p-value as a conditional probability, and incorrectly 

identifying the assumption and conclusion in the interpretation. Useful tasks for this type 

of assessment may include giving a teacher set of student definitions and interpretations, 

analyzing how the teacher reacts to these statements. 

4.2.2. Category 2 – Symbolic representation of a p-value. The second 

category is the symbolic representation of the p-value. Symbolically, the p-value can be 

represented either with or without a conditional statement. For example, in Table 3 
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(NHST for Population Proportions), the p-value is represented using a z-score and is 

given a symbolic representation of 𝑃(𝑧 ≥ 4). This representation of the p-value is the 

standard approach in introductory statistical textbooks commonly taught to students. This 

approach assumes the student and teacher knows the null assumption is an important 

component for computing the z-score and the overall p-value.8 Since this representation is 

part of standard coursework, assessing CCK for statistics teachers can be determined by 

the teacher’s ability to correctly identify this representation. 

An alternative symbolical representation of the p-value is P(data | hypothesis). 

Reflecting on the example presented in Table 3, a teacher might choose to represent the 

p-value as 𝑃(𝑋 ≥ 0.7 | 𝑝0 = 0.5) where X is a random variable and 𝑝0 is the assumed 

population proportion. This representation explicitly shows the p-value as a conditional 

probability and identifies the role of the null hypothesis and observed sample in the 

conditional statement. This representation closely resembles the interpretation of the p-

value as a conditional probability that assumes the null assumption and uses the sample 

statistics discussed in the statistical problem. The second representation requires a teacher 

to know the inherent role of conditional probability in the p-value’s definition. The 

knowledge of the second representation is a component of SCK because discussion of the 

p-value as a conditional probability is typically discussed in advanced statistics courses. 

Furthermore, introductory statistic teachers uncommonly teach the second symbolic 

representation of the p-value. Therefore, tasks assessing SCK would focus on the ability 

of a teacher to recognize and relate both symbolic representations.  

                                                           
8 This is typical in traditional hypothesis testing because computation of probability is done after the 

observed sample is transformed using a formula (e.g. z-score, t-score, etc.).   
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A common misconception with the second representation of a p-value is the 

inability to recognize the p-value as a conditional probability. Even if a teacher is able to 

represent a p-value as a conditional statement, students and teachers struggle identifying 

the assumption and conclusion of the conditional statement. Knowledge of these 

misconceptions aligns with KCS because they are related to student mistakes found 

throughout the statistics education literature. Other misconceptions common in 

introductory statistics related to the first representations is p-value as an equality symbol 

rather than an inequality (i.e. P(Z = 4) rather than P(Z  ≥ 4)) or the inability to represent 

the p-value as a valid probability statement. Thus, assessment questions on CCK and 

SCK for the symbolic representation of a p-value should focus on the teacher’s ability to 

correctly identify symbolic representations and discuss their relationships, while 

questions on KCS should assess the teacher’s ability to recognize and describe incorrect 

symbolic representations of the p-value in a statistical task used by students. 

4.2.3. Category 3 – Relationship of a p-value with sampling distributions. 

The third category is the relationship between the p-value and theoretical/empirical 

sampling distributions. The typical images of p-values are illustrated as either one-/two-

tailed regions of a sampling distribution, which relate to regions of unusualness or 

extremes. CCK of this involves an understanding of the p-value under a theoretical 

sampling distribution. Figure 8 is an example of a one-tailed p-value region using a 

theoretical sampling distribution whose random variable is normally distributed (typical 

when performing hypothesis tests on means or proportions).9 The p-value can then be 

computed using either statistical tables or with computers/calculators. Construction of 
                                                           
9 Two-tailed p-values are figures where both tail regions in the sampling distribution are shaded.  
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these types of p-value images is standard practice in introductory statistics curriculum 

when conducting hypothesis tests tasks. 

Another approach to computing the p-value region can be done using integration 

assuming the person knows the theoretical probability distribution corresponding to the 

statistic being used for the hypothesis tests problem. For the example, to compute the 

probability in Figure 8 one simply needs to integrate ∫ 𝑓(𝑥)
∞

1
𝑑𝑥 where f(x) is the 

probability distribution function for a standard normal distribution 𝑁(0,1). Computing 

the p-value using integration is typically discussed in upper division statistics courses 

since knowledge of the computation requires background in calculus. Furthermore, 

methods such as these requires knowing that the random variable being used to compute 

the p-value relates to a probability distributions function that has a closed form. This 

differs from introductory statistics students who only require introductory algebra as pre-

requisites for the course. For these reasons, knowing this alternative form of computation 

aligns with SCK of teachers. Evidence of this type knowledge can be identified in a 

teacher by how he/she describes the relationship between calculus and statistics when 

discussing the p-values computation. 
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Figure 8. Image of p-value in a theoretical sampling distribution. 

An empirical sampling distribution requires a teacher to understand that 

probability can be generated by repeatedly simulating statistics under a null assumption. 

For example, suppose one wanted to study the approval rating of the president and a 

survey was conducted from 30 people in the population. Figure 9 shows an example of an 

empirical sampling distribution for 100 samples with a sample size of 30 that was 

simulated from a population assuming a 50% approval rating for the president. The 

statistic being analyzed is a count of the number of “yes” votes in a sample of 30 people.  

 

Figure 9. Empirical sampling distribution with population parameter p = 0.50. 
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Since the assumption was 50% of people approved of the president and a 

simulation was generated from a population with this assumption, it is expected that the 

highest frequency of points would fall around the count of 15 because of random 

variation. If the result of a sample survey was 19 out of 30 people approved of the 

president, then the p-value would be the region (i.e. set of values) consisting of values of 

19 or more (for one-tail tests). The p-value would then be computed by counting the 

number of points that fell within that tailed-region using relative frequencies. In Figure 9, 

the p-value would be 8/100 or 8%. This understanding of a p-value illustrates SCK 

because it is an alternative approach than one presented in standard statistics texts. 

Identifying SCK would mean assessing a teacher ability to recognize and describe the 

relationship between these kinds of approaches and the standard approach in introductory 

statistics texts. 

There is also important prerequisite knowledge for understanding both graphical 

representations of the sampling distributions shown above. The theoretical representation 

requires a deeper understanding of random variables, probability distributions, and 

sampling distributions. For example, teachers might recognize statistics like means and 

proportions have sampling distributions that relate to normal distributions. This is 

knowledge typically learned from prior statistics courses. Prerequisite knowledge for the 

empirical sampling distributions requires a person to know various ways to model data in 

order to simulate statistics for appropriate sampling distributions. This makes the 

empirical sampling distribution an approach more appealing as an instructional approach 

because is more accessible to students who may not have taken courses in statistics and 
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probability in the past. In regard to KCS, teachers must be mindful of correct/incorrect 

student computations using the empirical sampling distributions. For example, a student 

might incorrectly compute a p-value by only considering the number of observations that 

fell on the sample value and not the tail sections. In the example shown in Figure 9, this 

would be the student getting a p-value of 6% because the student only counted the 

observations at the outcome of 19. The teacher must then recognize that the student is not 

considering the important concept of “extremes” that is an important component of the p-

value’s definition. In order to recognize these misconceptions, the teacher must have 

CCK and SCK of the modeling process and KCS of misconceptions and hurdles students 

encounter when students attempt to use simulation-based approaches to hypothesis 

testing. 

4.2.4. Category 4 – Relating a p-value to the level of significance. In this 

category, the goal is to focus on the magnitude of the p-value. A property of the p-value 

is its ability to measure the unusualness of an observed sample under the null assumption. 

Teachers should recognize that large p-values mean the probability that the observed 

sample occurred under the null assumption is large. In contrast, small p-values 

correspond to a sample that rarely occurs under the null assumption. This is illustrated in 

Category 3 where an observed sample gave a p-value of 8%. Statisticians decide whether 

the probability is small enough to warrant rejecting the null hypothesis.10 This introduces 

the connection between statistical significance and hypothesis testing. Statistical 

significance of a hypothesis test occurs when there is strong evidence to reject the null 

hypothesis. A statistician does this in practice by observing small p-values which is 

                                                           
10 In practice, most statisticians use a standard 5% or 1% as a cutoff measure of unusualness. 
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viewed as an observed sample showing strong evidence against the null hypothesis. 

Large p-values on the other hand do not show statistical significance because the 

observed sample is considered to be within an acceptable range of possible sample 

statistics under the null hypothesis.  

A big concept that relates to statistical significance is the level of significance 

which statisticians use as a cutoff measure when analyzing the p-value. Figure 10 

illustrates the relationship between the p-value and level of significance (α) in a 

theoretical sampling distribution for a one-tail hypothesis test. 

 

Figure 10. Relating a p-value with a level of significance in a sampling distribution. 

Drawing the image shown in Figure 10 is common practice in introductory statistics to 

illustrate the relationship between the p-value and level of significance. Teachers should 

know in practice that one ‘rejects the null hypothesis’ when the p-value is less than the 

level of significance and ‘fails to reject the null hypothesis’ when the p-value is greater 

than the level of significance. This effectively links the concepts of level of significance 
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and the p-value with the notion of statistical significance. This is a form of CCK because 

this is knowledge shared between the teacher and student in introductory statistics as part 

of instruction. It is important to note that even if the topics of p-value and level of 

significance are connected procedurally, conceptually it is important for teachers to 

emphasize that a p-value does not have any direct relationship with the concepts of Type-

I error. Delving deeper into the relationship between Type-I error and p-value leans 

further to SCK of a statistics teacher. For example, a teacher might have an understanding 

of statistical power and an understanding that Type-I error does not relate to a p-value. 

This type of knowledge is only emphasized in upper division statistical courses (Aberson 

et al., 2002).  

In regard to KCS, teachers should recognize student misconceptions related to 

images like the one shown in Figure 10. For instance, introductory statistics students have 

a tendency to incorrectly label regions of the level of significance and p-value in their 

representations. Being able to recognize these errors and knowing alternative routes to 

solve these misconceptions relates to KCS. For example, a teacher might use empirical 

sampling distributions instead of theoretical sampling distributions as alternative 

approaches to help a student understand their misconception. Furthermore, teachers 

should be mindful of student misconceptions regarding the magnitude of the p-value and 

statistical significance. In particular, recognizing how the magnitude of the p-value is 

used to interpret the statistical significance of a result of a hypothesis testing problem.  
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5. METHODOLOGY 

 

As highlighted in the previous sections, there is a need to study teachers’ 

understanding of hypothesis testing. Since research has shown that students and teachers 

struggle with understanding probability in statistical inference, it is important that the 

statistics education community focus on studying the knowledge of statistics teachers. 

The overarching goal of this study is to analyze teachers’ knowledge of probability in the 

context of hypothesis testing. In particular, the research questions proposed in this study 

are: What knowledge do CCIs and GTAs have about probability in the context of 

hypothesis testing? In particular, 

1) How do CCIs and GTAs understand the concept of a p-value?  

2) How do CCIs and GTAs understand the role of conditional probability in the 

context of hypothesis testing? 

3) How do CCIs and GTAs understand formal/informal concepts of probability, 

simulations and sampling distributions when reasoning about tasks related to 

hypothesis testing? 

To answer these questions this section outlines the methods used to gather and 

analyze the data on statistics teachers understanding of a p-value. The first section 

focuses on the data collection methods and assessment tools that were used. The second 

section focuses on the analytical process. The final section discusses issues of validity for 

this study. 
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5.1. Data Collection 

To accomplish the research goals for this study, a mixed methods approach was 

applied to gather quantitative and qualitative data consisting of both survey data and 

clinical interviews. I first used a task-based web survey followed by a 60-minute 

interview with a small subset taken from the larger group of survey participants. The 

surveys provided me an opportunity to gain a general understanding of the population of 

GTAs and CCIs understanding and served as an opportunity to find volunteer interview 

participants. Section 5.1.1 outlines the details of the assessment survey and Section 5.1.2 

describes the details of the interview protocol. Section 5.1.3 outlines information 

regarding the timeline and recruitment of the participants in the study. This section also 

includes demographic information for the survey and interview participants. 

5.1.1. Assessment survey. To gather information on the general population of 

GTAs and CCIs, a survey was conducted focusing on participants’ SKT on the concept of 

p-values. The goal of the survey design was to generate tasks related to p-value that 

highlights the information described in Table 6. A list of teachers and institutions were 

contacted with the help of members from American Mathematical Association of Two-

Year Colleges (AMATYC) and CAUSE (Consortium for the Advancement of 

Undergraduate Statistics Education) to distribute the survey to potential candidates. For 

those universities and community colleges selected, the department chairs of the 

mathematics and statistics department were contacted regarding the research plans and 

goals of the study by e-mail. If the department chair agreed, he/she was requested to 

forward the e-mail containing a link to the survey to faculty in their department. Since the 
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survey was voluntary, there is possibility that the number of participants can vary 

dramatically. The survey was administered using the online survey tool Qualtrics. To 

provide incentive to take the survey, participants were given an opportunity to win one of 

four $50 Amazon gift cards raffled to the participants who completed the survey. 

The survey consists of two main components (see Appendix B). The first 

component is a set of four content questions meant to assess the participant’s SKT on the 

concepts of probability and hypothesis testing. The second component is a set of 

demographic questions meant to gather information on the gender, educational 

background, profession and teaching experience of the participants.  

To ensure the survey items were appropriate, research was conducted on potential 

tasks from published sources in the statistics literature that highlighted areas of statistical 

literacy and statistical thinking involving the p-value. Since the goal of this research was 

to investigate teachers’ understanding of p-value and simulation-based models of 

hypothesis testing, I focused primarily on source material that contained previously 

conducted research on these topics. During the synopsis of the research material, 

potential assessment items were chosen and a pilot survey was conducted in the Winter of 

2015 originally containing six tasks. Preliminary findings showed that tasks taken from 

previous research material coincided with their original source material, but after 

discussions with experts in the statistics education field modifications were necessary in 

order to make the questions more applicable to better assess SKT.  

Using the results of the pilot data and recommendations from experts in the 

statistics education community, a revised set of survey questions was generated. A total 
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of five modified content tasks was then created. As a final measure to ensure the quality 

of the survey questions, the current set of survey questions was distributed to a new set of 

experts in the statistics education community for a final review. After feedback from the 

experts, a final set of revisions was conducted prior to distribution of the survey resulting 

in a total of four survey tasks. A table describing the kind of SKT being assessed and the 

origin of each question can be found in Appendix A. In the upcoming sections, I discuss 

each task in detail and the SKT each question is meant to address. 

5.1.1.1 Content Question 1 (The Drug Test Task). The Drug Test Task assesses 

the participant’s understanding of the p-value’s definition (Figure 11) in the context of a 

statistical problem by having them analyze verbal interpretations of the p-value. A verbal 

interpretation of the p-value describes the action of a person to use regular language 

(written or spoken) to interpret a p-value’s meaning in the context of a statistical 

problem. This question is adopted from a CAOS test (delMas et al., 2007) question on the 

p-value’s verbal interpretation. The phrasing of the task and the interpretations of Student 

A, B, and C are identical to the one presented in the CAOS. The interpretations of 

Student D, E, and F was added based on feedback from reviewers.  

The task presents the participant with six potential interpretations of the p-value 

meant to analyze the participant’s CCK of the p-value’s interpretation in a statistical 

context. In introductory statistics, the p-value is taught as the probability of getting a 

statistic as extreme or more extreme as the observed statistic under the null assumption. 

Statistics teachers should know how to integrate the definition of a p-value in the context 

of a statistical task since this is a common question in statistics textbooks. Furthermore, 
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this question also assesses KCS because it can determine the participant’s ability to 

recognize common student misinterpretations of p-value and prompts the participant to 

respond to these misinterpretations. 

Based on the definition of a p-value, the only interpretation considered to be 

potentially valid is provided by Student A. It is important to note that unlike traditional 

interpretations, Student A replaces the words “as extreme or more extreme” with “as 

large or larger.” The reason for this replacement is to highlight that the words “as extreme 

or more extreme” are sometimes difficult for students to conceptualize. Words such as 

large or larger are more colloquial. Using this replacement makes Student A’s 

interpretation more representative of a student who is trying to conceptualize the meaning 

of “as extreme or more extreme.” The other five interpretations are common student 

misconceptions of the p-value that are highlighted in the statistics education literature. 

Unlike Student A’s interpretation, which highlights the importance of the p-value as a 

conditional statement and focus on the observed sample, interpretations made by Student 

B, C, E, and F do not emphasize the element of conditional probability and make no 

mention of the relationship between the observed results and a null assumption. Student 

D’s interpretation is a common misconception discussed in the work of Castro Sotos et 

al. (2009) that highlights a swapping of the assumption and conclusion in the conditional 

statement. Student B, C, D, E and F also make no mention of the extremities of results 

which is an important property of the p-value’s definition. 

A research article reports on a new drug test that is to be used to decrease vision loss. The 

article reports its results and a p-value of 0.04 in the analysis section. Below are six different 

student interpretations of the p-value.  
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Student A: The probability of getting a result as large as or larger than the one in this study if 

the drug is actually not effective is 0.04. 

 

Is this student’s interpretation of a p-value valid?  ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student B: The probability that the drug is not effective is 0.04. 

 

Is this student’s interpretation of a p-value valid? ___Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student C: There is a 4% chance that the researcher made an error. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student D: If you were to repeat the study, there is a 4% chance of getting exactly the same 

result as the one in this study if the drug is actually not effective.  

 

Is this student’s interpretation of a p-value valid? ___Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student E: The probability that the drug is effective is 0.04. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student F: There is a 96% chance the drug is effective. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Figure 11. Drug Test Task 

5.1.1.2. Content Question 2 (The Graduate Student Task). The Graduate Student 

Task (Figure 12) assesses the participant’s understanding of the magnitude (i.e. value) of 

the p-value and how it relates to statistical significance. This question focuses on the 
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participants’ CCK by assessing an understanding of the p-value’s magnitude commonly 

taught in introductory statistics courses. The question is originally from the CAOS test 

(delMas et al., 2007) that assesses whether a participant’s ability to relate a p-value’s 

magnitude with the statistical significance of a result. The task was mainly untouched 

from its original version with the exception of an additional prompt to have the 

participant explain their understanding of p-value and statistical significance.  

The task was designed to assess the participant’s procedural and conceptual 

understanding of the p-value in the hypothesis testing process. Procedurally, a p-value is 

compared to the level of significance to show statistical significance (which is set 

relatively small). Analyzing a procedural understanding of this question would focus on 

the participant’s ability to recognize small p-values (e.g. less than 0.05 or 0.01) would 

result in a rejection of the null hypothesis and consequently showing statistical 

significance of a result. Analyzing a conceptual understanding would focus on a 

participant’s understanding of the p-value as a measure of the likelihood of getting a 

sample as extreme as the observed sample under the null hypothesis. Having a small p-

value means that the observed sample is extremely rare under the null hypothesis, this 

allows a statistician to favor a rejection of the null hypothesis. Having either 

understanding would result in the correct response being (b). Choices (a) and (c) relate to 

common student misconceptions of the p-value. Because (a) and (c) relate to student 

misconceptions, this question also focuses on the participants’ KCS as identified in Table 

5.   
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A graduate student is designing a research study. She is hoping to show that the results of an 

experiment are statistically significant. What type of p-value would she want to obtain? 

 

a. A large p-value. 

b. A small p-value. 

c. The magnitude of a p-value has no impact on statistical significance. 

 

Explain your understanding of the relationship between a p-value and statistical significance. 

 

Figure 12. Graduate Student Task. 

5.1.1.3. Content Question 3 (The Car Task). The Car Task highlights a symbolic 

understanding of the p-value (Figure 13). This is an original question inspired from the 

work of Shaughnessy and Chance (2005) and Castro Sotos et al. (2009). Symbolic 

representation describes the action of a person to use mathematical and/or statistical 

symbols to represent a p-value’s meaning in the context of a statistical problem. The 

original pilot task consisted of a set of seven different symbolic representations of a p-

value. Based on expert feedback, a decision was made to alter the list of choices to a 

smaller set and to give the participant more opportunity to explain their reasoning. After 

reviewing the pilot data, four interpretations were found to be the only ones chosen by 

participants. After feedback from experts, a decision was made to use six symbolic 

representations with the addition of prompting the participant for reasons for identifying a 

representation as invalid to allow a deeper understanding of the participants SKT. 

Furthermore, seeing how the teacher responds to the prompts allowed me the opportunity 

to assess the participants KCS since each prompt assesses how a teacher responds to 

student work. 

The overall question evaluates the participant’s ability to recognize the p-value as 

a conditional probability and/or a probability using a z-score transformation. Student A 
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takes a standard approach of transforming the raw data into a z-score that is common 

practice in the procedural computation of the p-value. The only exception to the 

representation is the use of a lowercase z, which implies a particular value after a 

transformation is done. Theoretically, an uppercase Z would be more appropriate to 

represent the use of a random variable. The use of a lowercase z is to emphasize a 

student-like approach to the transformation of a z-score. This is type of notation is more 

realistic to a student who is first learning to symbolize statistical concepts. Disregarding 

the exception of the lowercase z, Student A’s representation is considered correct because 

it aligns with traditional statistical methods when doing a one-sample proportion test. 

Participants who consider this representation valid suggests a participant’s ability to 

recognize a potentially correct representation of a p-value (i.e. CCK) and knowledge of a 

student’s ability to give a potentially correct representation (i.e. KCS). The other correct 

response is Student E because it emphasizes the probability of getting a sample as 

extreme ore more extreme than the observed sample of 𝑝̂ = 0.6 assuming the population 

proportion is 0.50. This representation has a potential issue which is the use of 𝑝̂ in place 

of a symbol for a random variable (e.g. X) that is more theoretically sound. This was done 

to illustrate a representation that more closely aligns with the statistical knowledge of 

introductory students. The symbol 𝑝̂ is commonly used in introductory statistics course so 

it is more realistic that a student would use this symbol in place of a symbol for a random 

variable. With the exception of the usage of 𝑝̂, Student E’s representation is a way of 

symbolically representing p-value as a conditional probability that is uncommonly 

discussed in introductory statistics. For these reasons, recognizing E as a potentially 
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correct response highlights a SCK because it highlights a deeper understanding of a p-

value that extends beyond an introductory statistics course. It also highlights KCS 

because it requires a teacher to assess the important features of the p-value that the 

student is trying to express symbolically.  

The other symbolic representations reveal misconceptions of the p-value found in 

the research literature and were transformed into symbolic form. Student B’s 

representations lacks a conditional form and incorrectly finds the probability of the 

observed sample. Student C does use a conditional probability, but incorrectly defines the 

events in the conditional probability. Rather than finding the probability of extreme 

values under the null assumption, the student’s representation finds the probability of the 

null hypothesis assuming the observed sample data. Student D also uses a conditional 

probability statement, but also incorrectly defines the probability. As written, the student 

is defining the probability of the null assumption assuming the observed sample data, 

which is also incorrect. Student F is also an incorrect representation because it does not 

indicate the student is thinking of the p-value as a conditional probability although the 

student does make the correct use of the inequality notation to represent extreme values 

from the observed sample. 

Research was conducted to determine whether people preferred hybrid over traditional gasoline 

powered vehicles. The article reports that their random sample showed that 60% of people 

preferred hybrids. The researchers gave a test statistic of z = 1.414 and a p-value of 0.08 using a 

right-tailed hypothesis test for proportions. Below are six different symbolic representations of 

the p-value given by introductory students when asked about this problem.  

 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐀: 𝑷(𝒛 ≥  𝟏. 𝟒𝟏𝟒)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid? If you think this question is invalid, 

explain why you think it is invalid. 
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𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐁: 𝑷(𝒑̂  =  𝟎. 𝟔)  =  𝟎. 𝟎𝟖 

 

Is this student’s symbolic representation of a p-value valid? If you think this question is invalid, 

explain why you think it is invalid. 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐂: 𝑷(𝑹𝒆𝒋𝒆𝒄𝒕 𝒕𝒉𝒆 𝒏𝒖𝒍𝒍 𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒔 | 𝒑̂ = 𝟎. 𝟔)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid? If you think this question is invalid, 

explain why you think it is invalid. 

 
𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐃:  𝑷(𝒑 = 𝟎. 𝟓 | 𝒑̂ = 𝟎. 𝟔) = 𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value correct?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐄: 𝑷(𝒑̂ ≥  𝟎. 𝟔 | 𝒑 = 𝟎. 𝟓)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid? If you think this question is invalid, 

explain why you think it is invalid. 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐅: 𝑷(𝒑̂ ≥  𝟎. 𝟔)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid? If you think this question is invalid, 

explain why you think it is invalid. 

Figure 13. Car Task. 

5.1.1.4. Content Question 4 (Helper-Hinderer Task). The final survey question is 

a modification of a problem that highlights a simulation-based approach of a one-tailed 

hypothesis test for a one-sample proportion (Figure 14). This question was inspired by 

the work of researchers (e.g. Chance et al, 2004 & 2007; delMas, et al, 1999; Erickson, 

2006; Zieffler et al, 2008a & 2008b) from the CATALST curriculum that emphasize the 

importance of simulation and sampling distributions to understand concepts of statistical 

inference. The task is designed to assess the participant’s understanding of a simulation-

based approach to hypothesis testing. Furthermore, the task assesses the participant’s 

understanding of the relationship between empirical sampling distributions and p-value. 
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The original question in the pilot research had the participant explain whether they 

agree/disagree with a student’s approach of computing a p-value and level of significance 

using the empirical sampling distribution. The participant was then prompted to explain 

the different portions of the student work. A review of the pilot data revealed little about 

the participant’s understanding of the simulation or how they thought about the model 

assumption. Based on reviews of the pilot data and expert feedback, the question was 

modified to allow a greater assessment of the participant’s understanding of the modeling 

process and how they would use the model and compute a p-value to make a statistical 

decision.  

A sociology study was conducted to determine whether babies are able to recognize the 

difference between good and bad. In one experiment, 30 six-month old babies were randomly 

selected. Each baby was shown two possible puppets to play with, a ‘good’ puppet that helped 

and a ‘bad’ puppet that hindered.  21 out of 30 babies showed a strong preference for the helper 

puppet over the hinderer. In order to determine if this result provides strong statistical evidence 

that babies really do have a preference for the ‘good’ or helper puppet, James, a statistics student, 

conducted the following test procedure: 

• James gets a coin and flips the coin 30 times. 

o If the coin lands on the “heads”, he records the baby as preferring the helper 

puppet. 

o If the coin lands on the “tails”, he records the baby as preferring the hinderer 

puppet. 

• James then used a computer simulation to repeat the previous step 1000 times. 

• James then plots the distribution for the number of times a baby chooses the helper 

puppet from each of the 1000 samples of size 30. This is shown in the graph below. 
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i.) James’ procedure is based on which assumption? 

a. A baby is more likely to choose the helper puppet. 

b. A baby is equally likely to choose either the helper or hinderer puppet. 

c. A baby is more likely to choose the hinderer puppet. 

 

Explain the reason for your choice. 

ii.) Suppose James wanted to conduct a right-tailed hypothesis test using the simulated data.  

• What would you estimate for the p-value?  

• Explain how you found the p-value and interpret it in the context of James’ research. 

 

iii.) Based on your estimated p-value, what do you think should be James’ conclusion?   

a. There is statistically significant evidence that babies are more likely to choose helper puppets. 

b. There is statistically significant evidence that babies are more likely to choose hinderer 

puppets. 

c. There is statistically significant evidence that babies are equally likely to choose helper or 

hinderer puppets. 

 

Explain the reason for your choice. 

 
Figure 14. Helper-Hinderer Task. 

In this question, I present the work of a student, James, who uses a simulation-

based approach to perform a one-tailed hypothesis test for a single proportion on data 

conducted about a baby’s preferences to helper and hinderer puppets. James begins by 

creating an empirical sampling distribution through a sequence of coin flips. A sample 

consists of 30 coin flips, which is repeated 1000 times. By using the model of a coin flip 

to represent a baby’s choice of the puppet, James is assuming that a baby has no 

preference for a helper or hinderer puppet. The purpose of the empirical sampling 

distributions created by James can be used to determine the likelihood of the sample 

result compared to what would be expected to happen by chance based on James’ 

assumption that there was no preference.  



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  84 

In order to assess a participant’s understanding of the simulation-based approach, 

sub-questions were asked about James’ approach. The first question assesses whether the 

participant is able to recognize the null assumption. As mentioned above, the correct 

response is (c) because of James’ use of the coin to simulate a baby’s response. This 

question also assesses whether a person can correctly identify the null hypothesis in a 

simulation-based approach to hypothesis testing. Choice (a) and (b) illustrate potential 

alternative hypothesis for the simulation-based model. 

The second question assesses the participant’s ability to compute a p-value using 

the empirical sampling distribution. Because the observed sample yielded 21 out of 30 

babies preferring the helper puppet and since the definition of the p-value is a measure of 

extremes, a correctly computed p-value would result in a value of 2.24% by adding the 

relative frequency for the outcomes of 21, 22, and 23 (see Figure 15).  

 

Figure 15. Empirical sampling distribution with a correct p-value region marked. 

I hypothesize that a common misconception regarding this problem would be participants 

only computing a p-value of 14/1000. This is due to the participant neglecting the 

property that p-value includes all extremes. As a result, they would only look at the 

relative frequency for the outcome of 21 (see Figure 16). There might also be participants 
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who are unable to compute the p-value because they fail understand how to relate the 

empirical sampling distributions to a p-value resorting to more theoretical methods such 

as using a binomial distribution or a standard one proportion test as typically done in the 

introductory statistics book.  

 

Figure 16. Empirical sampling distribution with only the observed value marked. 

The third question will assess the participant’s understanding of the overall 

process to generate a conclusion about James’ reasoning. I hypothesize that individual’s 

knowledgeable of this process should recognize this question as the final steps of a 

hypothesis test where a statistician must either reject/fail to reject the null hypothesis and 

claim statistical significance of the results. Since the previous question has the participant 

compute the p-value, I hypothesize that a correct conception would lead the participant to 

emphasize how the p-value is relatively small, showing there is evidence to suggest 

James’ reasoning is correct. This is assuming one uses a 5% level of significance. 

Alternatively, if a participant chooses a 1% level of significance, then the comparison of 

the level of significance to the p-value would refute James’ reasoning. An individual who 

does not possess a correct conception would struggle discussing these types reasoning 

and may just focus on sample results.  
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This task touches on all three categories of SKT. This task assesses a participant’s 

SCK of a p-value because this is not a typical approach to hypothesis testing for 

traditional introductory statistics classes, but is one statistics educators have used to 

understand the concept of a p-value. Therefore, this task can be useful to determine if a 

teacher is knowledgeable about simulation-based approaches and to assess whether the 

teacher knows how it can be a useful strategy to support student development (i.e. KCS). 

As more of the introductory statistics curriculum moves towards a simulation-based 

approach to hypothesis testing, this form of knowledge may eventually shift to one that is 

common in more statistics classrooms making this task useful in accessing CCK.  

5.1.2. Interview. Following the survey, participants were given the opportunity 

to participate in clinical interviews. The goal of the interviews was to further explore 

teachers’ SKT based on their responses to the survey and clarify any explanations. The 

interview responses were used to triangulate participant responses with their survey to 

determine if there were any inconsistencies. Participants were compensated with a $25 

Amazon gift card for their interview time.  

To gather interview participants, each survey participant was prompted at the end 

of the survey asking whether they would potentially like to be interview participants. 

Those participants who agreed were then categorized based on their profession (CCI or 

GTA). Participants were then chosen from the two categories based on their responses to 

the survey questions. The primary goal was to gather individuals with various levels of 

statistical knowledge on the p-value. In order to do this, an initial review of their survey 

data was conducted to see what kind of responses were provided by the participants. The 
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responses for each question was carefully evaluated by myself and a secondary researcher 

to determine whether a participant’s understanding of a p-value was distinct from other 

participants. The analysis included assessing whether the participant’s response was 

correct/incorrect and if explanations showed different levels of understanding of the p-

value. After an initial selection was generated, several participants were contacted 

electronically to determine if they were available for follow-up interviews. A final count 

of seven interviews were conducted (3 CCIs and 4 GTAs). The interviews were 

conducted on-site or through video conference calls using Skype. Each video was 

recorded and transcribed for analysis. 

5.1.2.1. Follow-up survey questions. The goal of the interview was to gather 

additional qualitative data to generate a snapshot of a participant’s understanding. Each 

survey task had a standard list of follow-up interview questions meant to further 

investigate a participant’s survey response. A list of the follow-up interview questions 

can be found in APPENDIX C. In addition, certain interview questions have been 

designed to cater to specific student response from the survey. The Helper-Hinderer Task 

have questions where the student will be asked to compute a probability for the p-value. 

Since participants might have several approaches to the problem, alternative solutions 

introduced as ‘hypothetical’ student responses will be shown to challenge the 

participant’s understanding. To help the participant explain their reasoning, tools such as 

a calculator, coins, computer simulations, etc. will also be provided during the interview.  

5.1.3. Survey and interview participants. To gather the participants for the 

survey and interview necessary to complete the study 50 institutions (30 universities and 
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20 community colleges) were contacted via their department chair to pass along the 

survey tool to their respective faculty. In addition, support from CAUSE (Consortium for 

the Advancement of Undergraduate Statistics Education) helped in the distribution of the 

survey to a larger population through a newsletter.11  

55 participants from various teaching and educational backgrounds completed the 

survey. The demographic data of the participants was divided into two main categories: 

Graduate Students and Instructors. A total of 30 graduate students and 25 instructors took 

part in the survey. The category of graduate students included those individuals who 

classified themselves as either a graduate teaching assistant (GTA), a graduate research 

(GRA) assistant or both. The category of instructors included those participants who 

classified themselves as community college instructors (CCI), four-year university 

instructors (FYI) or both. The choice to separate the participants into these two categories 

was to highlight that unlike instructors, a graduate student’s primary role is a student 

while an instructor’s primary role is a teacher. Furthermore, graduate students potentially 

switch between roles of graduate teaching assistants and graduate research assistants at 

their institutions. Instructors have the potential to be employed at multiple institutions. 

For example, adjunct instructors might teach at a community college and a four-year 

university.  

Table 7 shows the demographic information of the graduate students. A total of 

22 male graduate students and 8 female graduate students participated in the survey. The 

data also shows that from the 30 graduate students, 22 participants classified themselves 

                                                           
11 Since exact information is not provided by CAUSE regarding their information database, it is unknown 

how many institutions were contacted. 
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as graduate teaching assistants, 5 participants classified themselves as graduate research 

assistants and 3 participants classified themselves as both a graduate teaching and 

research assistant. Regarding academic levels, 21 of the 30 graduate students classified 

themselves as doctoral candidates, 6 graduate students were masters degree candidates 

and 3 graduate students classified themselves as having a masters degree but did not 

mention if they were either masters or doctoral candidates. Regarding academic focus, 17 

of the 30 of the graduate students classified themselves as focusing on a degree in 

statistics, 5 focused on mathematical sciences, 1 mathematics education, and 4 

specialized in a major besides mathematics and statistics. There were also a set of 

graduate students with multiple majors: 4 of the graduate students majored in 

mathematics and statistics, 1 graduate student was a triple major in mathematics, 

mathematics education, and statistics education and 1 graduate student majored in 

mathematics, statistics and an outside major. Finally, regarding teaching responsibilities 

almost 26 of the 30 graduate students were currently teaching classes at four-year 

universities and 4 graduate students had no teaching responsibilities at the time of the 

survey.      

Table 7. Demographics for the Graduate Student Participants. 

Demographic Information Frequency 

Total Graduate Students 30 

Gender  

• Male 22 

• Female 8 

Academic Position  

• Graduate Teaching Assistant (GTA) 22 
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• Graduate Research Assistant (GRA) 5 

• Graduate Teaching and Research Assistant 3 

Academic Level  

• Current Masters Student 6 

• Master’s Degree 3 

• Current Doctoral Student 21 

Academic Degree  

• Mathematical Science 5 

• Mathematics Education 1 

• Statistics 17 

• Statistics Education 0 

• Mathematical Science and Statistics 4 

• Mathematical Science, Mathematics Education, Statistics Education 1 

• Mathematical Science, Statistics, Other 1 

• Other 1 

Teaching Responsibilities  

• Four-Year University 26 

• Community College  0 

• None 4 

 

Table 8 shows the demographic information of those participants categorized as 

faculty instructors at their institutions. A total of 14 male and 11 female instructors 

completed the survey. Furthermore, 15 were community college instructors, 9 were four-

year instructors, and 1 instructor who taught both at community college and a four-year 

university. In regards to academic level, 16 instructors had a masters degree, 8 had a 

doctoral degree, and 1 was a current doctoral candidate. The instructors also had a variety 

of academic backgrounds: 6 of the instructors had a degree in mathematical sciences, 6 
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had a degree in statistics, 1 had a degree in mathematics education. There was also a set 

of instructors with a double major. One instructor had a degree in mathematics and 

statistics, three instructors had a degree in mathematical science and mathematics 

education, one instructor had a degree in statistics and statistics education, one instructor 

had a degree in mathematics and an outside major.  

Table 8. Demographics for the Instructors. 

Demographic Information Frequency 

Total Instructors  25 

Gender  

• Male 14 

• Female 11 

Academic Position  

• Community College Instructors (CCI) 15 

• Four-Year Instructors (FYI) 9 

• Community College and Four-Year Instructors 1 

Academic Level  

• Master’s Degree 16 

• Doctoral Degree 8 

• Current Doctoral Student 1 

Academic Degree  

• Mathematical Science 6 

• Mathematics Education 1 

• Statistics 6 

• Statistics Education 0 

• Mathematical Science and Statistics 1 

• Mathematical Science and Mathematics Education 3 

• Statistics and Statistics Education 1 

• Mathematical Science and Other 1 
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• Mathematical Science, Mathematics Education, and Statistics Education  1 

• Other 5 

Teaching Responsibilities  

• Community College Instructor 15 

• Four-Year University Instructor 9 

• Community College and Four-Year University 1 

 

After conducting an initial analysis on the survey data, seven candidates 

participated in follow-up interviews to help further assess their understanding of the p-

value. As specified in the methodology, these seven candidates were chosen based on 

their willingness to participate, teaching background (Graduate Students and Instructors) 

and the survey responses provided by the participant. While these seven participants did 

share some similarities in their understanding of the p-value from a preliminary analysis 

of their survey, they also provided a variety of survey responses that demonstrated 

various ways teachers might understand concepts related to the p-value. A summary of 

the interview participants’ demographics is presented in Table 9.   

Table 9. Demographics of the Interview Participants. 

Name Demographics 

Tod Graduate Teaching Assistant 

Current Doctoral Student in Mathematics Science 

Angie Graduate Teaching Assistant 

Current Doctoral Student in Statistics 

Sean Graduate Teaching Assistant  

Current Doctoral Student in Statistics 

Carol Graduate Teaching Assistant 

Current Masters Student in Mathematics and Mathematics Education 

Jane Community College Instructor and Four-Year University Instructor 

Masters Degree in Mathematics Education 

Phil Community College Instructor 

Masters Degree in Mathematical Science, Statistics Education, and Mathematics 
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Education 

James Community College Instructor 

Masters Degree in Mathematical Science 

 

5.2. Analysis 

In this section, I describe the analysis that was conducted. First, I will describe the 

methods used to analyze the survey data outlining the methods used to organize and 

categorize the types of themes that occurred during the study. Second, I will then discuss 

the methods used to analyze the themes found in the interview data. 

5.2.1. Survey analysis. The initial plan for the survey analysis was to gain 

quantitative and qualitative results on the SKT of the population of GTAs and CCIs. Each 

assessment question will be summarized individually and a running count of the 

individual responses was accumulated to generate a summary of the overall data.  

Since the survey tasks also included tasks that prompted qualitative responses, a 

deeper analysis of a participant’s understanding can be determined through their written 

work. To analyze the qualitative data from the surveys, the qualitative research method of 

thematic analysis was used to identify types of understanding that might be missed from 

the multiple-choice portion of the survey tasks. Thematic analysis is a widely used 

research tool for analyzing qualitative data such as written statements or interview data 

(Creswell, 2007; Guest, Macqueen, & Namey 2012). The defining features of thematic 

analysis include: (1) identifying key themes in text which are translated into codes which 

are then aggregated into a coding scheme, (2) use techniques in addition to theme 

identification and data reduction technique and (3) can be used to build a theoretical 

model or find solutions to real-world problems. Furthermore, Guest, Macqueen, and 
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Namey (2011) highlight that the strengths of thematic analysis include: (1) well suited for 

large data sets, (2) good for team research, (3) can be used to study topics other than 

individual experiences, and (4) addition of quantitative techniques adds analytic breath.  

Using thematic analysis, the qualitative response for each survey question was 

used to determine the CCK, SCK, and KCS of the participant. Regardless if the 

participant chooses an incorrect response in the multiple-choice portion, their qualitative 

response was still analyzed for content to determine emerging themes in the data. To 

illustrate, sample responses from pilot data for the Graduate Student Task include: 

• “The p-value would be the likelihood that the particular sample would be 

collected given a null hypothesis it true. A small probability would indicate 

statistically significant results, or more specifically, that the sample collected 

is not consistent with the null hypothesis and thus the null hypothesis should 

be rejected.” 

• “A small P value suggests that the sample provides enough evidence that one 

can reject the null hypothesis for the entire population.” 

The first response illustrates a participant’s understanding of the p-value as a 

conditional probability. Evidence for this is indicated by the participant’s explicitness in 

describing the null assumption and its relation to the observed sample. The first response 

also indicates understanding of the relationship between the magnitude of the p-value, the 

sample data, and the null hypothesis. This is illustrated by their response of statistical 

significance connecting to notions of unusual sample data and consistency with the null 
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hypothesis. This links to important ideas of the relationship between the likelihood of the 

observed sample and how that provides evidence against a null hypothesis.  

The second response indicates a form of procedural knowledge of the p-value. In 

their response, I hypothesize that the participant is aware of the process of rejecting the 

null hypothesis for a small p-value based on the observed sample. The second response 

does not indicate whether the participant’s sees the p-value as a conditional probability or 

how he/she views the concepts of likelihood as the first response. It only focuses on how 

the p-value connects to the decision-making process of hypothesis testing. 

Based on these two sample responses, an initial analysis would show that both 

responses would be categorized differently for the type of knowledge illustrated from 

both participants. This categorization helps in distinguishing types of SCK that exists 

amongst participants. The first response would be coded to a category related to SCK. 

Evidence in the first response is illustrated in their discussion of the conditional nature of 

the p-value and recognizing the importance of the null hypothesis in describing the p-

value. The creation of the coding scheme is also compared with responses from interview 

responses. A more detailed illustration of the coding scheme process is described in the 

interview analysis.  

5.2.2. Interview analysis. Thematic analysis also played a significant role in 

analyzing the interview responses. Using thematic analysis, potential themes were found 

within the data. These themes were used to generate a model of statistical knowledge of 

teachers of various aspects of the p-value. The process of generating these themes were 

the result of four phases of analysis using the survey and interview data: (1) post-survey 
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and post-interview analysis, (2) transcription analysis, (3) coding scheme, (4) chronicling 

emerging themes. 

5.2.2.1. Post-survey and post-interview analysis. After surveys were conducted 

and analyzed, participants who were willing to participate in an interview had their 

survey data pre-screened prior to the interview. An initial summary of each interviewee’s 

survey was generated to create an initial image of the SKT of the interviewee using the 

framework of Table 5 as a guide. After the interview, a post interview summary was 

generated to highlight key ideas discussed during the interview. The pre-interview and 

post-interview summaries were then compared amongst the interviewees to highlight any 

discrepancies in the participant’s understanding. 

5.2.2.2. Transcription analysis. After post-interview analysis was completed, 

each interview was transcribed verbatim to highlight important ideas and statements 

regarding the participant’s knowledge of the p-value. The interview transcription was 

also used to determine areas of miscommunication and potential areas of scrutiny in the 

data that might be caused by the interviewer or interview protocol. After transcription, a 

summary was then generated on a subject’s understanding. The transcription summary 

was then compared to summaries from the initial phases to generate a model of the 

individual’s understanding.   

5.2.2.3. Coding scheme. In order to generate a sufficient coding scheme for the 

qualitative data, a Test-Retest Method was used. An initial coding scheme was generated 

in the first pass of the then went through a cyclic process until a reasonable measure of 

accuracy was achieved. The coding scheme focused on categorizing emerging themes in 
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the data on ideas related to CCK, SCK, and CKS. After an initial coding scheme was 

been generated, survey responses, videos, and transcripts were re-analyzed to find 

sources of evidence that either confirm or refute the initial categories. After evidence was 

collected, one additional researcher was trained the use of the coding scheme. After 

training, the researcher was given all the data, which was then blindly coded using the 

pre-generated coding scheme. Codes were then compared between researchers to 

determine if refinement was needed. Whenever there was inconsistency between coders, 

discussions were done regarding the inconsistency between the codes. Based on the 

discussion, the coding scheme was modified to help generate consistency between 

coders. New sets of segments were then recoded with this process continuing until the 

percentage agreement of at least 80%.  

5.2.2.4. Chronicling emerging themes. After coding the data, a final reflection 

was conducted with the purpose of chronicling emerging themes through a case study of 

each of the interview participants. An overall analysis was then conducted to determine 

areas of potential implausibility that might result from the process of collecting the 

survey and interview data. For example, there is a possibility that a participant might 

misinterpret survey/interview questions. In order to check for such inconsistencies, 

results across the different subjects were analyzed to determine if the misinterpretation 

was seen across subjects or specifically to one participant. Deeper analysis was then 

conducted to determine if the misinterpretation of a question was due to the task design 

or knowledge of the participant.  
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5.3. Validity 

 

A main concern with this study is to warrant the validity of the data collection and 

analysis. To ensure valid results, the overall design of the study contained layers of 

validity checks. As discussed in the previous questions, a survey tool was first generated 

using questions based on published sources in the statistics literature that have been peer-

reviewed by experts in the statistics education community. Four of the survey items were 

taken directly from assessment items previously published while two original questions 

were developed from research in the statistics education community. Furthermore, the 

current survey was the result of modification after a pilot study was previously conducted 

in winter 2015 and suggestions from experts in the statistics education community. To 

further increase the validity of the survey questions, the current set of survey questions 

was distributed to experts in the statistics education community for a final review and 

modifications prior to distribution to the target population. This will help in generating a 

strong representation of the teacher population of GTAs and CCIs. The interview 

questions help to triangulate the data with the survey responses. Having multiple sources 

of data ensures that any coding schemes generated will have multiple sources of evidence 

to clarify any misleading information and validate any claims.  

The final step to ensure validity is to focus on the analysis of the data process. 

There were several stages of analysis involving quantitative and qualitative analysis. 

Multiple stages of qualitative analysis ensure that any results have been properly 

documented and analyzed. Having an additional researcher will also support the validity 

of any generated coding scheme. 
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6. RESULTS 

 

The goal of this research is to study teachers’ understanding of the p-value. To do 

this, survey and interview data was collected from graduate students and instructors to 

assess their understanding of p-value through a series of survey and interview questions 

designed around concepts related to the p-value. These concepts include an understanding 

of a verbal interpretation of p-value, the meaning of the p-value’s magnitude, a symbolic 

representation of p-value, and a p-value’s role in a simulation approach to hypothesis 

testing.  

After analyzing the survey and interview responses, three major themes emerged 

from the data that will be the focus of this chapter. The first major theme focused on how 

participants understood the magnitude of the p-value. This theme emerged from the 

participants’ responses to the Graduate Student Task where they discussed the 

relationship between a p-value’s magnitude and a statistically significant result. The 

second theme focused on participants’ understanding of the role sampling distributions 

and simulations play in their understanding of the p-value. The Helper-Hinder Task was 

an important component in analyzing a participant’s understanding of simulations and 

empirical sampling distributions because it allowed me to assess their ability to correctly 

compute a p-value using an empirical sampling distributions. The third and final theme 

emerged from analyzing how teachers viewed the role of conditional reasoning in their 

understanding of the p-value. Portions of the survey and interview questions gave 

participants opportunities to discuss the relationship and usage of the p-value as a 
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conditional probability. Here I present the results of the Drug Task and Car Task that 

helped elicit two ways of describing the p-value: verbally and symbolically.  

6.1. Teachers’ Understanding of the p-value’s Magnitude.  

A major component of a robust understanding of a p-value means knowing how a 

p-value’s magnitude relates to statistical significance. A procedural understanding of the 

p-value magnitude includes knowing how to generate conclusions to a hypothesis test by 

comparing the p-value with the level of significance. A conceptual understanding of the 

p-value’s magnitude includes knowing that it is a probability that measures the likelihood 

of an observed sample occurring under the null hypothesis. Viewing the p-value as a 

measure of likelihood is useful when describing the evidential strength of a researcher’s 

conclusion because it relates the notions of unusualness or rarity of the observed sample 

under the null hypothesis. Being able to coordinate the relationship between these two 

ideas is part of a robust understanding of a p-value’s magnitude. 

The procedural understanding of the p-value is prominently taught in introductory 

statistics courses when covering hypothesis testing, so I expected almost all participants 

to recognize the need for small p-values to claim the results of an experiment are 

statistically significant. It was harder to predict what type of thinking would emerge as 

participants discussed the p-value’s magnitude and its relationship to statistical 

significance. The data reveals a mix of participants who shared different understandings 

on the magnitude of the p-value.  

Participants’ understanding of the p-value’s magnitude was prevalent in their 

discussion of the Graduate Student Task that was designed to assess how participants’ 
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view the relationship between statistical significance and the magnitude of the p-value 

(i.e. Figure 17). If you recall, the Graduate Student Task presents asks a participant to 

choose what magnitude p-value is needed if a graduate student wants to show the results 

of an experiment are statistically significant. 

A graduate student is designing a research study. She is hoping to show that the results of an 

experiment are statistically significant. What type of p-value would she want to obtain? 

a. A large p-value. 

 

b. A small p-value.   

 

c. The magnitude of a p-value has no impact on statistical significance. 

 

Explain your understanding of the relationship between a p-value and statistical significance in 

the context of this problem. 

Figure 17. Graduate Student Task 

An overview of the survey and interview data from the Graduate Student Task 

revealed four primary ways the participants understood the relationship between the p-

value’s magnitude and statistical significance. The first was some participants had a 

conceptual understanding of the p-value’s magnitude where they viewed the p-value as a 

measure of likelihood of an observed sample under a null assumption. The second was 

some participants held a procedural understanding of the p-value’s magnitude where they 

focused primarily on the comparison of the p-value with a fixed level of significance. The 

third was some participants emphasized the importance of choosing an appropriate level 

of significance based on practical significance and statistical power and how it might 

relate to a p-value’s magnitude. The fourth is a misconception of the p-value where 

participants described the p-value as the probability or likelihood the null hypothesis is 
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true. Furthermore, some participants showed an ability to overlap these different ways of 

thinking. 

To summarize the results of the Graduate Student Task, this section is broken into 

two parts. The first section is a summary of the survey responses from the 55 participants. 

Here I present a general view on how participants understood the relationship between a 

p-value’s magnitude and a statistically significant result. The second section summarizes 

the interview responses given by the seven participants as they discussed the relationship 

between statistical significance and p-value. The final section will summarize the survey 

and interview data to describe the important connections between the data to help paint a 

picture of teachers’ understanding of a p-value’s magnitude. 

6.1.1. Survey results of the Graduate Student Task. As previously 

mentioned, the Graduate Student Task is a two-part task consisting of a multiple-choice 

and a short answer portion. The results of the survey responses for this task are broken 

into two sections. The first section summarizes the multiple-choice portion of the task 

where participants were asked what magnitude of a p-value is desired to have a 

statistically significant result of an experiment. The second section of the survey results is 

a summary of the participants’ short answer portions where they described the 

relationship between statistical significance and p-value. It is in the results of the short 

answer portion where I present the various categories of thinking on a p-value’s 

magnitude that emerged from the participant responses. 

6.1.1.1. Quantitative results of the Graduate Student Task. In the Graduate 

Student Task, participants were asked to select one of three choices for the magnitude of 
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the p-value needed for a graduate student to conclude the results of an experiment are 

statistically significant. The three choices were: small p-value, large p-value, and 

statistical significance does not relate to the p-value (the correct response being a small 

p-value). Table 10 lists the three possible choices and the number of participants that 

chose each response broken down by demographic information.  

Table 10. Results for the Multiple-Choice Portion of Graduate Student Task. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

Large p-value 0 0 0 0 0 0 0 

Small p-value 21 5 3 14 9 1 53 

Statistical Significance does not relate 

to p-value 

1 0 0 1 0 0 2 

Total 22 5 3 15 9 1 55 

 

The results in Table 10 show that majority of participants (53 out of a total of 55) 

correctly identified that a small p-value is necessary. Only two participants incorrectly 

choose that statistical significance is not related to a p-value. This suggests a strong 

majority of the participants possess the CCK that small p-values are desired when trying 

to show significant results. The two participants who selected the incorrect choice of 

‘statistical significance is not related to p-value’ both had backgrounds in mathematical 

science and experience teaching elementary statistics courses in their respective 

institutions.  

The results of the multiple-choice portion of the task might suggest that the 

background of the participants did not seem to play a major factor in a participant’s 

ability to make the correct choice considering that the 53 participants who did select the 
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correct response originated from various professional or educational backgrounds. It is 

worth noting that the two participants whose educational background was in 

mathematical sciences were the only individuals who gave an incorrect response might 

suggests that there could be a potential gap for those teachers without a formal 

educational background in statistics. Furthermore, these two participants also identified 

themselves as having taught elementary statistics courses in the past but still gave an 

incorrect response, suggesting that even some practicing teachers of statistics could 

potentially lack knowledge on the magnitude of the p-value.  

6.1.1.2. Qualitative results for the Graduate Student Task. The results in the 

previous section indicate that most participants could correctly identify that small p-

values are needed to have statistically significant results. While majority of the 

participants selected the correct response to the multiple-choice portion, there were 

differences in the qualitative response when participants were asked to discuss the 

relationship between the p-value and statistical significance. This section is a summary of 

qualitative responses and the identifiable categories based on the analysis of the various 

explanations given by the participants. 

Category SSHP (Statistical Significance and High P-Value) was a result of the 

two participants who chose the incorrect response in the multiple-choice section (i.e. 

statistical significance does not relate to p-value). Their explanations followed a similar 

theme where they describe that choosing the level of significance governs whether the 

results of an experiment are statistically significant regardless of the p-values magnitude. 

This can be seen from the responses given by the two participants in Table 11. 
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Table 11. Examples of SSHP. 

Participant 

Information 

Explanation 

GTA Masters 

Candidate in 

Mathematical 

Science 

We choose a completely arbitrary "significance level" (generally a 

"small" number, i.e. 0.05) and then we say a statistical experiment is 

"statistically significant" if our computed p-value is less than our 

significance level.   If we chose a stupid significance level (say 0.99), 

then a "large" p-value like p=0.9 is statistically significant.   

 

CCI Masters 

Degree in 

Mathematical 

Science 

 

It would depend on the level of significance chosen for this problem. 

 

 

These two excerpts illustrate a procedural understanding of the relationship 

between the level of significance and the p-value. This is very explicit in the first excerpt 

given by the GTA who uses the example of a significance level of 0.99 to describe how a 

research can have statistically significant results with a p-value as large as 0.9. This is 

true in theory since the procedure for showing a statistically significant result is based on 

checking whether the p-value is smaller than the level of significance. However, the 

choice of a significance level is not done arbitrarily. Statisticians are genuinely cautious 

with choosing a high level of significance because choosing appropriate significance 

levels is engrained in theories of statistical power and practical significance. Furthermore, 

choosing a large significance level does not make sense conceptually. The p-value 

measures the likelihood of an observed sample under a null hypothesis (i.e. the smaller 

the p-value, the greater the evidence to refute the null hypothesis). Setting a large level of 

significance allows samples that are not unusual to be acceptable evidence to refute the 

null hypothesis. Because of these responses, Category SSHP was designated to 

encompass those who gave incorrect responses in the multiple-choice portion based 
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purely on the idea that the statistical significance of a result is defined by the choice of 

the level of significance regardless if the level of significance is large or small. 

The qualitative responses of the 53 participants who correctly made the choice of 

the “small p-value” were also analyzed for common themes. Four additional categories 

were identified as notable differences in understanding amongst the 53 participants based 

on their survey responses.  

Category SSLP (Statistical Significance and Low P-value) describes those 

participants whose responses focused on the comparison of the p-values with the level of 

significance, but emphasize using small values for the level of significance. This is 

illustrated in the following excerpts shown in Table 12. 

Table 12. Examples of SSLP. 

Participant 

Information 

Explanation 

FYI in 

Statistics 

Assuming she has a small level of significance (alpha) a statistically significant 

result would mean a smaller p-value than the alpha.  

 

GTA. 

Masters 

Degree in 

Mathematical 

Science 

The smaller the p-value, the higher the statistical significance. Typically, you set 

a cutoff value for significance before obtaining results. For example, alpha = 

0.05. If the p-value is less than 0.05, you say that it is significant at the 5% level, 

even if the p-value you obtained is much smaller. 

 

 

These responses highlight a procedural understanding of the relationship between the p-

value and the level of significance that originates from knowing the hypothesis testing 

procedure. It is important to note that these excerpts share a very similar way of thinking 

as those in SSHP since they both describe a comparison of the level of significance to the 

p-value. Unlike the participants in SSHP who made incorrect choice in the multiple-
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choice portion, the emphasis on using a small level of significance is crucial. Using a 

small level of significance such as 1% or 5% is common practice in introductory statistics 

courses. This is explicit in the second excerpt where the participant describes “typically” 

using a 5% level of significance. Unfortunately, those participants who fell in this 

category gave no further evidence why the level of significance must be small beyond 

simply stating a small level of significance. There were participants who did give a 

reason for choosing a small level of significance. These participants made connections to 

concepts of likelihood, statistical power, and practical significance. These participants 

will be described in future categories.    

Category SSL (Statistical Significance and Likelihood) describes participants who 

chose a small p-value and gave a qualitative response describing how the p-value is a 

measure of the likelihood of an observed sample under a null hypothesis. This is shown in 

the following excerpts from the survey shown in Table 13. 

Table 13. Examples of SSL. 

Participant 

Information 

Explanation 

GTA in Stat The smaller the p-value, the less likely you are to have randomly observed the 

data under the null hypothesis.  Thus, with a small p-value, the null hypothesis 

becomes unlikely, and is rejected. We call data significant if it leads us to reject 

the null hypothesis, in favor of the alternative. 

GRA in 

Math Ed. 

The smaller the p-value, the less likely that the null hypothesis is true. A smaller 

p-value indicates that with the given null hypothesis, it is very unlikely that the 

null was true to get the result. The smaller the p-value, the stronger the evidence 

that the null isn't true. 

GTA in 

M.S. 

P-value measures the probability of obtaining the test statistic in the extreme 

direction suggested by the alternative hypotheses under the null. Therefore, a 

small P-value indicates that given the null the chance of getting the test statistic 

getting extreme values suggested by alternative is highly unlikely. 
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Notice that in all the given excerpts, we see a consistent way of thinking that focuses on 

how the p-value is an indicator to see how much an observed sample agrees with a null 

hypothesis. The main theme in these excerpts is the concept of likelihood. Unlike the 

previous categories where the participants only mention a comparison with the level of 

significance, these excerpts describe the p-value as a measure of evidence against the null 

hypothesis by viewing it as the likelihood of the observed sample. This type of 

understanding shifts from a standard procedural comparison as those in Category SSHP 

and SSLP, to a conceptual understanding of the relationship between the p-value, the null 

hypothesis, and the observed results of an experiment. This type of understanding helps 

highlight a flaw in participants’ reasoning who fell in Category SSHP because it gives a 

practical reason why we do not choose a large level of significance. Setting a large level 

of significance (e.g. 99%) is contradictory to the concept of using the sample data as 

evidence to reach a statistically significant conclusion because it allows almost all 

samples to force a rejection of the null hypothesis. It is also important to note the type of 

thinking expressed by participants in this category coincide with the original concept of 

the p-value intended by Fisher when he originally designed hypothesis testing to show 

experimental results were statistically significant; whose design of hypothesis testing 

never relied on comparison of a level of significance but an understanding of the p-

value’s meaning.  

Category SSD (Statistical Significance relates to Decision) described those 

participants who chose a small p-value in the multiple-choice portion, but discussed how 

the p-value is describing the probability of making the decision to reject the null 
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hypothesis. A sample of two explanations provided by participants is illustrated in Table 

14. 

Table 14. Examples of SSD. 

Participant 

Information 

Explanation 

GTA 

doctoral 

candidate in 

Mathematical 

Science 

The smaller the P-value the more likely the Null Hypothesis is rejected. 

GTA 

doctoral 

candidate in 

Mathematics 

Education 

The smaller the p-value, the less likely that the null hypothesis is true. A smaller 

p-value indicates that with the given null hypothesis, it is very unlikely that the 

null was true to get the result.  The smaller the p-value, the stronger the evidence 

that the null isn't true. 

 

In both excerpts, participants highlight how the p-value is a way to measure the 

probability of making a decision about the null/alternative hypothesis. In the first excerpt, 

the participant notes that the smaller the p-value, the more likely the null hypothesis is 

rejected. I hypothesize that the participant’s thinking focuses on the relationship between 

rejecting the null hypothesis when the p-value is small that comes because of the 

procedure of hypothesis testing. While rejecting the null hypothesis is common for small 

p-values, the p-value does not measure the probability of making a decision of rejecting 

the null hypothesis. It is simply a consequence of the decision-making process of 

hypothesis testing. The second participant’s explanations mention that the smaller the p-

value, the less likely that the null hypothesis is true. This excerpt similarly connects the 

p-value as a probability of the null hypothesis. This is once again not true since the p-

value only measures the behavior of a sample under the null hypothesis and not the 
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probability of the null hypothesis. It is important to note that the p-value only gives us 

evidence against the null hypothesis under random chance, which is sometimes mistaken 

as the likelihood the null hypothesis.     

Category SSPPS (Statistical Significance and Power and/or Practical 

Significance) was the final category that described those participants who chose a small 

p-value in the multiple-choice portion, but discussed how the magnitude of the p-value 

and level of significance is related to theories of statistical power and/or practical 

significance. A sample of two explanations provided by participants is illustrated in Table 

15. 

Table 15. Examples of SSPPS. 

Participant 

Information 

Explanation 

CC with 

Masters in 

Mathematical 

Science 

Statistical significance depends on comparing a P-value to a chosen significance 

level. When the P-value is less than the significance level, results are deemed 

"statistically significance". The practical significance of research results is 

another thing entirely. The trick is choosing that significance level---not a simple 

task. 

 

FYI with 

Doctorate in 

Other Field 

Even though the results might not be of practical significance (i.e., the effect size 

is small), a p-value lower than the researcher's chosen alpha-level would provide 

evidence of statistical significance. 

 

While participants in Category SSL and 4 describe the p-value as measures of likelihood 

and evidence against the null assumption, the participants in these excerpts discuss 

notions of “practical significance” and/or relate to notions of statistical power when 

discussing connections between p-values and a level of significance. Choosing an 

appropriate level of significance is an important idea done by statisticians when 
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performing statistical experiments. This understanding extends beyond a typical 

procedural view of simply comparing the p-value with an arbitrary level of significance, 

but a deep theoretical understanding for why it is inappropriate to choose a big level of 

significance. This way of thinking also provides a reason why the arguments made by 

participants in Category SSHP are considered incomplete because choosing a big level of 

significance is counterintuitive to the ideas of looking for results that would provide 

evidence against a null assumption. It also gives a theoretical reason for the thinking 

displayed in Category SSLP where participants simply mentioned choosing a small level 

of significance. Furthermore, Category SSPPS provides a deeper theoretical reason for 

the responses expressed in SSL whose explanations for wanting a small p-value relied on 

a surface level description of the likelihood of a p-value. Category SSPPS responses is 

more robust way of thinking procedurally and conceptually about the relationship of p-

values and level of significance using theoretical ideas steeped in the theories of 

statistical power. This level of understanding tends to be under emphasized in many 

introductory statistics classes, but is one valued as important to actual statisticians.  

In addition to the categories, there were participants who fell into more than two 

categories. For example, there were participants whose explanations illustrated a 

combination of Categories SSLP and SSL. These participants chose the correct answer to 

the multiple-choice portion of the Graduate Student Task, explained how the procedure 

of the p-value being compared with the level of significance, and then mentioned the p-

value as a measure of likelihood of the observed sample under the null assumption. A 

sample of one such excerpt of this type includes the one shown in Table 16. 
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Table 16. Examples of Hybrid Thinking of the Magnitude of the P-value. 

Participant 

Information 

Explanation 

GTA and 

Master’s 

Candidate in 

Statistics 

"Statistically significant" means that the p-value is less than the level of 

significance, which is set at the beginning.  Also, the definition of p-value is the 

probability of getting a statistic as extreme as or more extreme than what we 

observed, if the null is true.  If we assume the null is true (or assume a statement 

of status quo or no difference) and then we get results that are very different from 

what the null claims, then this would be good evidence that the null is not true.  In 

other words, if we calculate a statistic that is unlikely if the null actually is true, 

then we know that the probability of getting a statistic at least as extreme as what 

we got is very low.  Thus, the p-value is low, and we would reject the claim, or 

the null hypothesis. 

 

 

In this excerpt, we see the participant mention both a comparison of the level of 

significance with the p-value in the first sentence, but also the conceptual relationship of 

the p-value as a measure of an observed sample’s likelihood under the null hypothesis. 

This shows a hybrid understanding of the p-value that connects the procedure of 

comparing the p-value with the level of significance with a conceptual understanding for 

choosing a small level of significance. I view this as an integration of a procedural and 

conceptual understanding of a p-value’s magnitude. Statisticians choose a small level of 

significance in the first place is because researchers want to set a small cutoff value for 

samples they consider to be unusual enough under the null assumption. If a p-value falls 

below this cutoff value of unusualness, then there is a clear indication that an observed 

sample is behaving very differently from a null assumption and results in significant 

results. 
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Table 17. Results of Categories for the Magnitude of the P-value. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

Category SSHP –  

Statistical Significance Relates to 

High P-Value 

1 0 0 1 0 0 2 

Category SSLP – 

Statistical Significance Relates to 

Low P-Value 

5 0 0 3 6 0 16 

Category SSD –  

Statistical Significance relates to 

Decision 

4 1 0 0 1 0 6 

Category SSL –  

Statistical Significance relates to 

Likelihood 

5 0 1 7 1 1 15 

Category SSPPS –  

Statistical Significance relates to 

Power and/or Practical 

Significance 

0 0 0 0 0 0 0 

Hybrid Category of  

SSL & SSD 

1 1 0 1 0 0 3 

Hybrid Category of 

SSLP & SSL 

1 0 1 0 0 0 2 

Hybrid Category of 

SSL & SSPPS 

0 1 0 0 0 0 1 

Hybrid Category of 

SSLP & SSPPS 

0 1 0 1 1 0 3 

Responses that could  

not be categorized 

5 1 1 2 0 0 9 

Total 22 5 3 15 9 1 55 
 

After going through the coding process of Test-Retest, the qualitative results for 

this showed an inter-reliability rate of approximately 81% based on the discussed 

categories. Table 17 displays the results of the coding process for the total count of the 

categorizations describing how the participants viewed the relationship between a p-

value’s magnitude and statistical significance. The table also highlights whether 

participants either fell in a single category of combinations of categories. The results of 

the categorization showed a diverse understanding amongst the participants. Even though 
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53 out of the 55 participants all agreed on the correct magnitude of a p-value needed to 

claim a statistically significant conclusion, the results in Table 17 show that not all 

participants think of the p-value’s magnitude in the same manner.  

A total of 39 participants’ explanations only incorporated a single way of 

explaining a small p-value. The primary explanations utilized either using SSLP or SSL 

as a common theme in the relationship between a p-value and statistical significance. 

Seven of the four-year university instructors fell into SSLP, which is the more procedural 

view of p-value. This contrasts with the seven community college instructors who fell in 

SSL which is a more conceptual view of the p-value. The graduate students were about 

equally spread amongst the categories of (SSLP, SSD, and SSL). Furthermore, none of 

the participants noted simply discussing statistical power (SSPPS) in their explanations. 

When they did mention ideas related to SSPPS, it was in relation to other concepts such 

as level of significance (SSLP or SSL). 

A total of nine participants’ explanations incorporated hybrid ways of relating p-

value to statistical significance. Three of the participants discussed concepts related to 

SSL, but whose explanations began suggesting the misconception that the p-value can 

measure the probability of the null/alternative hypothesis (SSD). Two participants made 

connections between choosing a small level of significance (SSLP) and how it relates to 

likelihood (SSL). This is surprising considering that being able to coordinate procedural 

understanding and conceptual understanding of the p-values magnitude is a crucial idea 

in understanding a p-value. When relating to concepts of statistical power and/or practical 

significance (SSPPS), one participant made a connection to likelihood (SLP). Three 
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participants chose to relate their understanding of choosing a small level of significance 

(SSLP) to the importance of statistical power and/or practical significance (SSPPS). This 

is not surprising considering that discussion of statistical power and practical significance 

is deeply connected to notions of choosing an appropriate level of significance and the 

practicality of a statistical claim. Therefore, it makes sense that none of the participants 

would simply discuss statistical power or practical significance without some relationship 

to the procedure of choosing a level of significance or reflecting on the context of making 

a statistical claim. 

Finally, nine of the participants gave either no explanation or responses that did 

not reveal useful information regarding understanding of the p-value’s magnitude. The 

largest majority that fell in this category was graduate teaching assistants. Unfortunately, 

it is still difficult to make larger claims about the GTAs (or CCIS) overall understanding 

of the magnitude of the p-value. When some GTAs were given an opportunity to further 

articulate their explanation during the interviews, two GTAs provided even deeper 

understandings of the p-value than otherwise categorized in the survey responses data 

while others only articulated an understanding that even further provided evidence that 

they only thought of the p-value at a procedural level (SSLP). This indicates potential 

room for improvement in the demographic of graduate teaching assistants in developing 

the ideas of magnitude of a p-value and statistical significance. 

6.1.2. Interview Results of the Graduate Student Task.  The variety of 

qualitative responses provided by the seven interviewees on the relationship between 

statistical significance and the p-value was one of several reasons for choosing them. 
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Table 18 is a summary of the seven interviews, their survey responses, and the categories 

of understanding discussed in the previous section. An initial look at the categorization 

showed that amongst the seven participants, some shared overlapping categories. Sean’s 

and Phil’s survey responses were coded as SSLP, which related to how statistical 

significance was a result of comparing a p-value with a fixed level of significance. 

Angie’s and Jane’s survey responses were coded as SSL, how the p-value helps measure 

the unusualness of a sample in relation to a claimed null hypothesis. James’ response was 

coded as Category SSPPS whose response noted the importance of practical significance 

and the difficulty of choosing an appropriate level of significance. Tod’s explanation fell 

into the misconception of the p-value categorized as SSD. Lastly, Carol’s survey 

explanation did not provide useful information. 

Table 18. Responses for the Interview Participants on the Graduate Student Task. 

Participants Responses and Categorization 

Tod The smaller the P-value the more likely the Null Hypothesis is rejected. (SSD) 

Angie Small p-value indicates small probability of given results under the null. This 

indicates a significant different from expectation, and thus a statistically 

significant result with which we can reject the null. (SSL)  

Sean You set up the level of significance beforehand and it your p-value is smaller 

you have shown it true. 

(SSLP) 

Carol The smaller the p-value, the better the statistical significance! (Uncategorized 

Response)  

Jane The p-value is describing the probability of getting results as extreme or more 

extreme as what is found in the study.  If this value is large, it is saying that the 

results are not that extreme under the assumption of the null hypothesis.  The 

smaller the p-value, the more statistically significant the results are because it 

is describing a very small probability of it occurring under the null hypothesis. 

(SSL) 
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Phil "Small" is relative - it's only "small" when compared to the significance level.  

So, if this student wants to "show that the results of an experiment are 

statistically significant", she wants a P value that comes in under alpha 

(assuming that she has controlled for any extraneous variables and set up 

correct hypotheses).   

(SSLP) 

James Statistical significance depends on comparing a P-value to a chosen 

significance level. When the P-value is less than the significance level, results 

are deemed "statistically significance". The practical significance of research 

results is another thing entirely. The trick is choosing that significance level---

not a simple task. 

(SSLP & SSPPS) 

 

After analyzing the interview responses, it became apparent that some of the interviewees 

had a more robust understanding of the relationship between the p-value and statistical 

significance than was initially revealed in their survey data. The categories that resulted 

from the analysis of the survey responses were still useful in analyzing the interviewees 

understanding of the magnitude of the p-value and provided a useful foundation when 

analyzing how the interviewees understood the relationship between the p-values 

magnitude and a statistically significant result.  

Analysis of interviews provided greater evidence for the categorization initially 

generated in the survey regarding ways the participants viewed the p-value’s magnitude 

both procedurally and conceptually. First, I present excerpts from the interview showing 

evidence of participants who only focused on the procedural comparison of the p-value 

with the level of significance (SSLP). Second, I present excerpts from the interview 

showing evidence of participants who primarily focused on the conceptual understanding 

of the p-value as a measure of likelihood (SSL). Finally, I present excerpts from the 
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interview showing evidence of the hybrid thinking where we see participants discussing 

how the procedure of comparing the p-value with the level of significance relates to 

concepts of likelihood, practical significance, and statistical power. 

6.1.2.1. Evidence of procedural understanding of a p-value’s magnitude. Carol 

was a Masters student in mathematical science and mathematics education with less than 

a year of experience in teaching statistics. An initial categorization of her survey response 

did not show a clear evidence how she connected statistical significance with the p-value. 

When given the opportunity to discuss further her response, regarding why she chose a 

small p-value and how it might relate to her thinking of statistical significance, she relied 

heavily on the procedure of comparison with the level of significance as her response. 

For example, in the excerpt below we see how Carol describes her thought process when 

she was asked about the relationship between a small p-value and the results of the 

hypothesis test. 

Interviewer: What does that tell me about my null hypothesis? 

Carol: That you are going to reject it. Right because well it all depends on what 

your level of significance is. I think students have to interpret themselves. 

Because if we are testing the p-value against an alpha of 0.05. And the student 

gets an p-value of like 0.048 and they are super close together and you could 

either reject or not reject it because they are so close together and I think there 

it is up to the student to make like, to make the decision to actually think 

about the procedure and think about the data itself and then make his or her 

decision. 
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Interviewer: So here is one question.  So, let’s say you are doing a hypothesis 

test and you just got the p-value and you didn't even compare with the level of 

significance. Like I said, I got my p-value of 0.01 or 0.001. Can I just claim 

that my null is false? Can I do that just by looking at the p-value without 

actually comparing it with the level of significance? 

Carol: I think so yeah. 

Interviewer: In what way? 

Carol: I think that is because you are conditioned to compare p-value with 0.05 

or 0.01. And anything lower than 0.01 we are going to safely assume that we 

are just going to reject it. 

Interviewer: Do you always have to make that comparison? 

Carol: Yes. 

In Carol’s explanation, I wish to highlight how she discusses components of the 

standard practice of hypothesis testing done in introductory statistics courses; the 

procedure of rejecting the null hypothesis when the p-value is smaller than the level of 

significance. Furthermore, when questioned whether it is necessary to even make the 

comparison of the p-value with the level of significance even with a small p-value she 

responds with the idea of being ‘conditioned’ to compare it with a 0.05 or 0.01 but never 

giving a reason how those 0.05 or 0.01 are chosen or discussing the p-values as a measure 

of likelihood. Her use of the ‘conditioned’ is also indicative of memorizing a procedure 

that has been a pitfall of many introductory statistics students for simply using any 

standard level of significance without thinking about the consequences. This illustrates 
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greater evidence for Category 2 style thinking that was illustrated by many of the 

responses found in the survey. 

6.1.2.2. Evidence of conceptual understanding of a p-value’s magnitude. Jane 

was an instructor in CC and FUI with a Masters in Mathematics Education who at the 

time was also teaching introductory statistics courses. In her initial survey response, 

Jane’s responses put her in Category 3. When Jane was asked during the interview for 

further clarification of her survey response, she seemed to push strongly for the idea on 

how p-value is a measure of likelihood of the observed sample under the null assumption. 

An example of this was seen in the interview excerpt below. 

Interviewer: How do you relate the p-value and statistically significance. So, if a 

student asks you how are they related? 

Jane: So, the p-value can give us this kind of how extreme it (the sample) is 

under the assumption and if it (p-value) is giving a very small value then it 

(the sample) is very extreme which makes it statistically significant. 

Interviewer: Okay. Last one for this one. If a student asked you does the actual 

size of the p-value being an important thing or should I just not care? 

Jane: If you are trying to determine statistical significance then the size is very 

important. 

Interviewer: And from what I am seeing from your picture is that one. 

Jane: It has to be out there (points to the tail of a normal distribution) in order...it 

has to be out from the tail to provide statistical significance. 
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In the exchange above, we see Jane focus solely on the importance of the tail 

sections of a distribution and emphasizes that small p-values lead to statistical significant 

results because it shows how extreme a sample is a null assumption. This thinking does 

not rely on a comparison of the p-value with the level of significance, but the importance 

of the likelihood of the observe sample. Furthermore, Jane’s response to how she would 

respond to a student differs from that of Carol above who focused on the comparison. 

Jane’s responses relied on a visual model of a distribution and the idea of where the 

sample would fall in a distribution. The thinking displayed by Jane in the above excerpt 

gives stronger evidence for the type of thinking displayed by participants in Category 3.  

6.1.2.3. Evidence of hybrid understanding of a p-value’s magnitude. The last 

four individuals the interview (Phil, Angie, Sean, and James) each gave various 

categories of survey responses, but during the interview the importance of choosing an 

appropriate level of significance was eventually brought up by all four of these 

participants. Initially, Phil and Sean both fell into Category 2 in their survey response, 

Angie was in Category 3, and only James was in Category 5. Analysis of these four 

interviewees showed that at the end, all four of them displayed Category 5 thinking.  

Each interviewee could discuss ideas related to the likelihood of the observed 

sample to the null hypothesis, mention comparison of the level of significance with the p-

value, and discuss ideas on how to choose an appropriate level of significance. The 

interviewee, Phil, illustrated an example of this as shown in the following excerpt. 

Phil: P-value kind of tells you how far once side or which one you should lean to. 

Like I should be leaning towards H0 because the p-value is huge. What does 
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that mean? There is a lot of agreement between the data I saw and the null 

hypothesis I think I was going to see. A lot of agreement means I believe in 

the null. That kind of a that kind of a flow charty way. 

Interviewer: So, if a student were to ask you, does the size of the p-value, is that 

an important thing or is it just a number to me? How would you respond to 

that? 

Phil: Well I think the answer to both those questions is yes, it is just a number. 

The way research is done these...again Fisher never intended p-values the way 

they are being used in research. When he proposed them, he literally proposed 

that's the definition and that was it. They are being used unfortunately I just 

did stats for an OSU student about a year ago and she gave me a bunch of 

numbers and she's like can you find statistical significance with this? She 

didn't bother telling me alpha equals 5%, she simply says...this is a person 

who doesn't understand statistics at all, but she knows enough that she will not 

get published unless I can somehow manipulate this data so that less than 5%. 

You're laughing because you get the joke. It's completely ridiculous. I did a 

non-parametric test and I'm like look 20 different associations and I found 2 if 

I do them pairwise that find significance. Here is why I think you shouldn't 

publish this. I feel like I am p-hacking with your data. I am basically throwing 

stuff at a wall and seeing what sticks and two of them manage to 5% or less 

come out. You can't find more? Like do you understand what you are asking 

me to do? You're asking me to find potentially associations just to get you 
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small p-values. I tell these students these stories all the time because she is not 

the first one to have this happen. To ask me to do this. So the small p-value 

is...think about it this way. By the time you've gotten to the crunching of the 

numbers in your research experiment, 99.9999% of the hard work is already 

done. You've collected data that is hopefully pointing at what it is you're 

trying to measure. You have established guidelines and benchmarks that 

hopefully, when you put the line in the sand and alpha equal whatever it is, is 

being meaningful in a practical and statistically significant way. 

In this excerpt, we see Phil discussing an experience he had with a student related to the 

differences between comparing the level of significance and the meaning of the p-value 

as a measure of unusualness. In his explanation, he describes how the student is simply 

focused on the procedural comparison of the p-value with the level of significance and in 

his rebuttal also discusses that this is something you should not be doing in practice 

because it does not agree with the work of Fisher who original meant for the p-value as a 

measure of the unusualness for a observed sample against the null assumption. His ability 

to relate the two types of understanding shows strong evidence of combining SSLP and 

SSL. This way of thinking also influences his pedagogical view because it gives him an 

ability to assess how a student is thinking of the relationship between the p-value and 

statistical significance incorrectly. He remarks that just trying to get a p-value below a 

level of significance is not the only important part of the hypothesis test but thinking 

about what that p-value means is just as vital. He uses the metaphor of putting a line in 
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the sand for choosing a level of significance based on guidelines and benchmarks which 

shows evidence of SSPPS thinking.  

Evidence of Phil being in SSPPS was mainly overshadowed by his focus on the idea 

that p-values helps provide evidence against the null assumption. It was only apparent his 

thinking was in Category 5 when he was asked to discuss what he think is meant by 

statistical significance.  

Phil: Statistically significantly is different from the other one. So the first thing to 

back up a little bit more, your statistically significance...one of the first things 

I have students understand in the first couple of weeks we are doing 

confidence intervals is the difference between statistical significances and 

practical significance. Because that is huge, because you can get statistically 

significant results by increasing your sample size without having real practical 

effect. And we can convince ourselves pretty easily that until we're experts in 

our fields, we won't know what practical significance is and we can discuss 

that all day long with our colleagues. So statistical significance essentially 

means that you know...when something is statistically changed or different. 

We have gotten data that have moved far enough away, quote, unquote, far 

enough away from some null assumption that you flag it as something as 

changed or it hasn't gotten far enough away.    

In the excerpt, we see Phil discussing the difference between statistical and practical 

significance but still focus on the importance of the data showing a difference from a null 

assumption. He also continues to discuss ideas that relate to the difference between 
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statistical significance and practical significance when he makes comments about setting 

appropriate sample sizes.   

As mentioned, similar ways of thinking were expressed by the other interviewees. For 

example, Sean, makes the following statement when discussing the importance of the 

choosing the level of significance. 

Sean: What were the p-values for experiments where you used a larger sample size? 

What were the p-values for a smaller sample size? Because it was like does it 

mean anything? That's where you have the alpha. The alpha almost carries like 

information from previous studies and from the field itself. So it is saying this is 

the statistical significance for this field. You might have a 0.01 for a psychology 

experiment. You might have a 0.01 for an engineering experiment. 

If you might recall, Sean’s background is a doctoral candidate in statistics who also has 

experience doing statistical research. In his discussion, he focuses on two important 

ideas. One is the importance of choosing appropriate samples sizes and the importance of 

prior research when choosing an appropriate level of significance. These are all important 

aspects of the theoretical concept of statistical power that is something not discussed by 

all three other interviewees (i.e. Phil, James, and Angie). Another interviewee, Angie, 

who also fell in this category brought up a similar idea of the importance of choosing an 

appropriate level of significance by discussing two different contexts where choosing an 

arbitrary the level of significance could have severe consequences.  

Angie: And where you put that obviously depends on a lot of things. Umm...how 

important it is you are correct in your assumption that it is for example that the 
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alternative is true. So in medicine for example, we wouldn't want to use a 5% p-

value and say you know we tested this drug we found we found with 5% 

significance that it helps people. That’s not going to quite cut in in the medical 

community, but if you are just doing a study on will this installing a sidewalk here 

do students want a sidewalk installed through this walkway. Something really 

small and you say yes more students want one here than want the garden that is in 

place then 5% would cut it. So, it is really just are the results you see errant 

enough from your assumption that you are willing to conclude the alternative. 

Like Sean, Angie is a doctoral candidate in statistics with a background in statistical 

research. In her explanation, we see an elaboration on the importance of context in 

choosing the level of significance that relate to the severity of a result. In her work, she 

focuses on the differences between concluding the results of a survey on sidewalks versus 

the results of a medical experiment. In her description, she views the results of hypothesis 

testing on medical experiment being a much bigger consequence. This focus on the 

importance of practical significance of the p-value and how it is important to consider 

what the results might mean if we just arbitrarily set a level of significance without much 

thought.  

6.1.3. Summary of the Graduate Student Task. The Graduate Student Task 

provided evidence of ways teachers might understand the role of the p-value in making 

statistically significant claims. The initial survey provided a strong foundation for 

analyzing how we might come to categorize ways teachers view the magnitude of the p-

value and statistical significance. The interviews provided even greater evidence for these 
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categories by showing us how teachers come to understand the procedural and conceptual 

concepts of a p-value’s magnitude. The categories themselves can also be beneficial for 

future researchers because it shows a hierarchical understanding a p-value’s magnitude 

that applies to both teachers and students. SSHP itself shows a base level understanding 

where the focus is simply on comparing a p-value with a level of significance without 

justification for choosing a level of significance. SSLP is the next step because it relies on 

fixed values for level of significance (e.g. 1% or 5%) to help in making that comparison, 

but it still does not give meaning to the p-value. SSL starts to give meaning to the p-value 

as a measure of likelihood but extra understanding is necessary to connect it to SSLP. 

Unfortunately, just understanding SSL and SSLP is very limited because it’s reason for 

choosing a level of significance is simply based on a personal view of unusualness. In 

other words, some researchers might consider 1% to be an acceptable level of 

significance because it is already a small cutoff measure of unusualness, but researchers 

might see it as not unusual enough. SSPPS is where most statisticians and we hope 

teachers would be because it provides the most robust understanding of the relationship 

between p-values and level of significance. The reason is because SSPPS thinking about 

statistical power and practical significance helps researchers considers what might be 

appropriate cutoff measures of unusualness through a set of fixed method and guidelines 

that have a theoretical foundation.  

The interview data does show some promising results because it illustrated that 

even those participants who fell into lower categories in the survey data eventually 

showed SSPPS thinking during the interview. Unfortunately, this was not true for all the 
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interviewees. Of the seven, only four showed evidence of SSPPS. This data shows that 

there is a still a need for professional development in the concept of a p-value’s 

magnitude. 

6.2. Computing p-values with Samplings Distributions. 

A component of a robust understanding for a p-value includes knowing how it 

relates to sampling distributions and simulations. Traditionally, hypothesis testing in 

introductory statistics classes rarely use simulation approaches to hypothesis testing. As 

discussed in the literature, traditional courses rely on methods that shroud deep 

theoretical ideas of statistical inference. The simulation approach to hypothesis testing 

removes some of the theoretical complexity through the creation of (computer) models 

that generate empirical sampling distributions. The computation of the p-value then 

becomes more accessible to students because it can be found using relative frequencies. 

This makes it easier to assess ways an individual might compute a p-value. This 

motivated the investigation of the second theme that analyzes participants’ understanding 

of the relationship between p-values, sampling distributions, and simulations.  

The main purpose of this section is to present results on the participants’ 

understanding of the p-value computation when using a simulation approach to 

hypothesis testing. The primary task used to analyze how participants understand the 

relationship between p-value, simulations, and sampling distribution was the Helper-

Hinderer Task (Figure 18). The task was developed to assess participants’ knowledge by 

presenting a hypothetical student solution to a statistical problem portrayed as a 

simulation approach to a one-proportion hypothesis test. I primarily focus on data 
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resulting from the second question where the participants were prompted to find an 

approximate p-value and to explain their computation. The survey results showed seven 

categorical approaches where participants correctly (and incorrectly) computed the p-

value using a relative frequency or utilized theoretical probability. I also present 

interview data that further elaborates why participants chose to do specific computational 

approaches. The interview contained noteworthy moments where the participants made 

important connections between their understanding of the simulation models and how it 

potentially affects their pedagogical thinking. 

A sociology study was conducted to determine whether babies are able to recognize the 

difference between good and bad. In one experiment, 30 six-month old babies were randomly 

selected. Each baby was shown two possible puppets to play with, a ‘good’ puppet that helped 

and a ‘bad’ puppet that hindered.  21 out of 30 babies showed a strong preference for the helper 

puppet over the hinderer. In order to determine if this result provides strong statistical evidence 

that babies really do have a preference for the ‘good’ or helper puppet, James, a statistics student, 

conducted the following test procedure: 

• James gets a coin and flips the coin 30 times. 

o If the coin lands on the “heads”, he records the baby as preferring the helper 

puppet. 

o If the coin lands on the “tails”, he records the baby as preferring the hinderer 

puppet. 

• James then used a computer simulation to repeat the previous step 1000 times. 

• James then plots the distribution for the number of times a baby chooses the helper 

puppet from each of the 1000 samples of size 30. This is shown in the graph below. 

 

i.) James’ procedure is based on which assumption? 

a. A baby is more likely to choose the helper puppet. 
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b. A baby is equally likely to choose either the helper or hinderer puppet. 

c. A baby is more likely to choose the hinderer puppet. 

 

Explain the reason for your choice. 

 

ii.) Suppose James wanted to conduct a right-tailed hypothesis test using the simulated data.  

• What would you estimate for the p-value?  

• Explain how you found the p-value and interpret it in the context of James’ research. 

iii.) Based on your estimated p-value, what do you think should be James’ conclusion?   

a. There is statistically significant evidence that babies are more likely to choose helper puppets. 

b. There is statistically significant evidence that babies are more likely to choose hinderer 

puppets. 

c. There is statistically significant evidence that babies are equally likely to choose helper or 
hinderer puppets. 

Explain the reason for your choice. 

Figure 18. Helper-Hinder Task 

6.2.1. Survey Results: Computing p-values with sampling distributions. The 

second question of the Helper-Hinderer Task was designed to asses a participant’s ability 

to compute an approximate p-value using an empirical sampling distribution generated 

via a simulation. Participants were directly asked to find an approximate p-value and then 

prompted to explain their computation. The correct p-value was expected to be 0.024. 

Table 19 shows the results of the number participants who correctly computed the p-

value, those who computed an alternative correct p-value, and those who computed an 

incorrect value broken down their demographically. 

Table 19. Results of P-value Computation for Helper-Hinderer Task. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

Correct Computation 15 5 2 11 6 0 39 

Incorrect Computation 6 0 1 4 2 0 13 

Correct Computation using 

alternative methods 

1 0 0 0 1 1 3 

Total 22 5 3 15 9 1 55 
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Table 19 shows that 39 of the 55 participants correctly computed the expected p-

value of 0.024 using the empirical sampling distribution. There were also 16 of the 55 

participants who gave responses other than 0.024.12 Of the 16 participants, three gave a 

computation of a p-value that could be considered correct. These computations included 

those participants who correctly used a binomial distribution, normal approximations, or 

a one proportion hypothesis test. While the computation of the p-value by these 

participants did not use the empirical sampling distribution as instructed in the task, they 

still correctly computed the p-value using standard statistical procedures. As a result, they 

were counted differently than those participants who computed a p-value that were 

clearly incorrect. Those participants who were assessed as giving incorrect p-values used 

approaches that did not correspond to either a correct theoretical or empirical approaches 

to the p-value’s computation.  

 While majority of the participants gave the expected response for the p-value, the 

fact that approximately 29% (16 out of 55) of the participants gave varied responses 

shows a large percentage of participants that did not understand the purpose of the 

empirical sampling distribution provided. These individuals included nine of the graduate 

students and seven of the instructors. These initial results shows a potential gap in the 

knowledge of the participants regarding their understanding of a simulation approach to 

hypothesis testing.  

After reviewing the results of the various computations, the responses provided by the 

participants’ explanations were categorized. Seven categories of computational 

                                                           
12 The responses given by these 16 people will be explained later in this section. 
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approaches were identified from the survey. Two categories were identified for the 39 

participants who gave the correct p-value of 0.024 and five additional categories were 

identified for those participants who gave incorrect computations. These categories will 

be explained in further detail below.  

Category CRF (Computation with Relative Frequency) describes those participants 

who that only described a computation where they counted the number of observations in 

the empirical sampling distributions that occurred for the outcomes of 21 and higher. 

Sample excerpts from the survey include those seen in Table 20. 

Table 20. Examples of CRF. 

Participant 

Information 

Explanation 

FYI Doctorate 

in Statistics 

Counted the number of replicates that were 21 or more and divided by 1000. 

GTA Doctoral 

Candidate in 

Statistics 

By looking at the graph, you can see that 24 of the experiments had at least 21 

babies preferring the helper. 

GTA Doctoral 

Candidate in 

Mathematics 

It is the area passed the expected results. So (14+8+2)/1000. 

 

The excerpts given in Table 20 shows a process done by participants where they first 

noticed the observed sample gave a proportion of 21/30. They proceeded to then count 

the frequency of occurrences for 21 or greater in the empirical sampling distribution 

which amounts to (14+8+2)/1000 = 24/1000 = 0.024. An image of the empirical 

sampling distribution from the Helper-Hinderer Task with the marked p-value region is 

shown in Figure 19 below. The approach described by these participants aligns correctly 

with the expected computation of a p-value by computing the relative frequency from the 
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empirical sampling distribution using the definition of the p-value as “the probability of 

getting results as extreme or more extreme as the observed sample statistic.” 

 

Figure 19. Empirical sampling distribution with the correct p-value region. 

Category CRFANH (Computed with Relative Frequency Assuming Null Hypothesis) 

describes those participants whose explanations encompassed the ideas of a correct 

computation of the p-value using relative frequency with an additional emphasis of the 

null assumption. Unlike those participants in Category CRP who only described how they 

are counting the frequency of occurrences, these participants included in their 

explanations a reference to a null hypothesis. Sample excerpts for this category include 

those seen in Table 21. 

Table 21. Examples of CRFANH. 

Participant 

Information 

Explanation 

GTA 

Doctoral 

Candidate in 

Mathematics 

The plot shows the (approximate) distribution of "number of babies who chose 

helper dolls in a sample of size 30" under the assumption that babies are equally 

likely to choose either the helper or hinderer puppet.  The p-value is then the 

probability of obtaining a result as extreme as the one we did (i.e. 21 or more 

babies out of 30) under that assumption.  The plot shows that 21/30 occurred 14 

times, 22/30 occurred 8 times, and 23/30 occurred 2 times (and presumably 24 

and above did not occur at all!), so the p-value is (14+8+2)/1000, since there were 



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  134 

1000 samples from the distribution. 

FYI 

Doctorate in 

Statistics 

(14+8+2)/1000 (number of times 21 or higher observed divided by total number 

of trials) / Assuming that a baby is equally likely to choose either the helper or the 

hinderer puppet, the probability of 21/30 babies choosing the helper is 0.024. 

 

In both excerpts, we see the participants refer to the null hypothesis of the problem (i.e. a 

baby is equally likely to choose the helper or hinderer puppet). As I alluded to in the 

literature, understanding the role of the null hypothesis in the computation of the p-value 

is problematic for many students because they focus primarily on the computation and 

not on the overall process of hypothesis testing. The fact that these participants 

emphasized the importance of the null hypothesis in their response shows evidence they 

value the connection between the computation of the p-value and the null hypothesis.    

While the majority of the participants correctly computed p-value using the empirical 

sampling distribution, 16 participants gave p-value’s that differed from the expected 

computation of 0.024. Table 22 summaries the different computations of the p-value by 

the 16 participants. 

Table 22. Alternative Computations of the P-value for the Helper-Hinderer Task. 

Incorrect Computations of the p-value Frequency 

p-value = 0.09 1 

p-value = 0.05 2 

p-value = 0.04 1 

p-value = 0.03 1 

p-value = 0.01 2 

p-value = 0.01426 1 

p-value < 0.05 3 

p-value < 0.025 1 

p-value > 0.05 1 

p-value = 1/(2^30)*[30nCr16 + 30nCr17 + ... + 30nCr30] 1 

p-value = find the z (because it’s a proportion) 1 

No Computation Provided 1 
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One participant gave no computation and no explanation on how he/she would compute a 

p-value. This participant was a community college instructor with a mathematical science 

background. Another participant simply stated to find a ‘z’ but did not provide any 

computed value.  This was a graduate teaching assistant in statistics. The 14 other 

participants who did give a description gave various approaches to the computation. Even 

though Table 22 shows a variety of computed p-values the responses for their 

computations provided by these participants showed areas of commonality. A total of 

five categories were identified as ways these participants approached the computation of 

the p-value.  

Category CIOS (Computation Ignores Observed Sample) identifies the approach done 

by two participants that gave an incorrect computation of p-value = 0.01. One was a 

graduate teaching assistant in statistics and the other was a four-year university instructor 

who majored in a field outside mathematics and statistics. These participants’ description 

of their computational method showed a misconception regarding the use of the empirical 

sampling distribution in computing the p-value. This is seen in their explanations shown 

in Table 23. 

Table 23. Examples of CIOS. 

Participant 

Information 

Computation and Explanation 

GTA Master’s 

Degree 

Candidate in 

Statistics 

Computation: p-value = 0.01. 

Explanation: It is bootstrapping method. one side test. P(T>21|p=0.5) = 

10/1000=0.01. 

FYI Doctorate 

in Other 

Computation: p-value = 0.01 

Explanation: 10/1000 is the approx. area cut off by 21. 
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In these two excerpts, we see the participants computing a p-value by only considering all 

values greater than 21. An image of the region being computed by the participants is 

shown in Figure 20. This is made explicit in the explanation provided in the first excerpt 

where the participant uses the “>” symbol in his/her conditional statement rather than 

“≥.” The second excerpt is more challenging because the participant only mentions that it 

is the area cut off by 21. I hypothesize that even though the participant did note the value 

of the observed sample statistic (i.e. 21), the participant does not include the frequency of 

the observed sample statistic in their overall count and only considers occurrences more 

extreme than the observed sample statistic because a total of only 10 frequency points 

occur past 21. The methods described by these two participants incorrectly compute the 

p-values because it disregards the observations that occur at 21, which is an important 

component of the p-value’s definition. In other words, this category describes a 

misconception where the computation of the p-value does not include the probability of 

the observed sample outcome. Interestingly, this type of misconception is not problematic 

in the traditional hypothesis testing that primarily use sampling distributions that rely on 

continuous random variables because computing a p-value using the “>” instead of the 

“≥” in the continuous case would yield similar results. This only becomes problematic in 

empirical sampling distributions because relative frequency is used in the computation.  
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Figure 20. Empirical sampling distribution illustrating CIOS. 

Category CUR (Computation using Regions) describes three participants who 

computed a p-value of 0.09. In the participant’s work, the computation of the p-value was 

incorrect because of a misconception regarding their usage of the empirical sampling 

distribution. This is seen in the following excerpt in Table 24. 

Table 24. Examples of CUR. 

Participant 

Information 

Computation and Explanation 

GTA Master’s 

Candidate in 

Other 

Computation: p-value = 0.09 

Explanation: I just took the heights corresponding to 16,17,18,19,20 and added 

them up (which was 408) which I, then, subtracted from 500 (total of the right 

half). / 0.09 is still not a very small p-value, it is not a strong evidence in the 

favor of alternative hypothesis which would be the validity of the claim that the 

babies do in fact differentiate between good and bad. 

CC Doctorate 

in Other 

Computation: p-value = 0.05 

Explanation: 24/500 observations at 21 or above. 

 

In first excerpt, we see the participant is counting all the values to the right of the center 

(i.e. 15) of the empirical sampling distribution which he/she notes is 408 and then 

subtracting that from 500. This would produce a value of 92, if divided by 1000 would 
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yield about 0.09, which is noted in the participant’s explanation. The major flaw is that 

the participant assumes exactly 500 simulated statistics fell to the right of the value 15 in 

the empirical sampling distribution. This is reminiscent of an introductory statistics 

student’s approach to computing probability by subtracting known areas under a curve. I 

hypothesize that he/she chose to subtract those values of 16 up to 20 to imitate an 

introductory statistics student performing the computation: P(X ≥ 21) = 0.5 – P(16 ≤ X ≤ 

20) when finding probability using a normal probability distribution. The reason the 

participant’s mentions the value of 500 is because the participant thought the region to 

the right of the center (15) is equal to 0.5. By subtracting the probability for the outcomes 

of 16 to 20 from 0.5 would leave a set of tail outcomes that fall to the right 20. 

Unfortunately, this approach gives an incorrect result because the empirical sampling 

distribution is not necessarily a symmetrical around the center of 15. It also complicates 

the problem since one can easily compute the probability by counting the frequency of 

outcomes from 21 and higher. In the second excerpt, we see the participant also use a 

denominator of 500 in their computational approach, which also assumes a symmetrical 

empirical sampling distribution. The approach taken by these participants is interesting 

because how they connect methods in introductory statistics (i.e. finding probability 

using statistical tables) to an empirical sampling distribution.  

Category CLS (Computation with the Level of Significance) describes four 

participants whose description of their computation was based on the level of 

significance. Excerpts of these types include the excerpts in Table 25. 
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Table 25. Examples of CLS. 

Participant 

Information 

Computation and Explanation 

GTA Masters 

Candidate in 

Mathematical 

Science 

Computation: p-value > 0.05 

Explanation: The proportion of the toss at a given significant level. 

GTA Masters 

Candidate in 

Mathematical 

Science and 

Mathematics 

Education 

Computation: p-value < 0.05 

Explanation: In order for James' procedure to be statistically significant, he 

needs a small p-value. 

 

CC with Masters 

Degree in Statistics 

Computation: p-value < 0.025 

Explanation: level of significance = .05, split into .025 in each tail. 

 

In each of these responses we notice that each of the participants would mention 

significance level or note a standard level of significance value (e.g. 0.05, 0.01, etc.). 

Each of these participants’ p-value primarily used inequalities to represent the value for 

their p-value. I hypothesize that these responses stem from an understanding of the 

procedure of comparing a p-value with the level of significance. The first two excerpts 

stated the p-value to be related to a level of significance of 0.05. The third excerpt gives a 

p-value < 0.025 that corresponds to a two-sided hypothesis testing where the statistical 

significance of 0.05 is divided by two. I hypothesize that these participants struggled 

finding the utility and purpose of the empirical sampling distribution so they relied on 

their understanding of the hypothesis testing step where you compare the level of 

significance with a p-value. Their inability to compute a correct p-value using the 

empirical sampling distributions shows a gap in their understanding of the relationship 

between p-values and simulations.  
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Category CTP (Computation using Theoretical Probability) describes those 

participants who used theoretical probability to compute the p-value. Excerpts of these 

are shown in Table 26. 

Table 26. Examples of CTP. 

Participant 

Information 

Computation and Explanation 

GTA 

Doctoral 

Candidate in 

Statistics 

and Other 

Computation: p-value = 0.04 

Explanation: Under the null hypothesis, the number of helper puppets chosen is 

distributed binomially with parameters n=30 and p=1/2. Binomial with n=30 can 

be approximated as normal with mean np=15, and variance np(1-p)=30/4=7.5.  He 

can convert the baby data to be approximately standard normal by subtracting 15 

from 21, and then dividing by sqrt(7.5) [a number between 2 and 3], yielding a 

number slightly larger than 2.  So, with 1.96 being the 95% extreme probability 

number, our p value is slightly smaller than 0.05. 

GTA/GRA 

Masters 

Candidate in 

Statistics 

Computation: p-value = 1/(2^30)*[30nCr16 + 30nCr17 + ... + 30nCr30] 

Explanation: We could interpret the p-value as being the probability that James' 

obtained 16 or more heads. The calculation is simply a binomial coefficient. 

 

In these participants’ explanations, we see participants use their understanding of a 

binomial distribution to compute the p-value. In the first excerpt, we see the participant 

use his/her understanding of a normal approximation to a binomial to compute a p-value 

= 0.04. This participant gave a p-value of 0.04 as the previous answer. The second 

participant also notices the problem is a binomial probability problem, but uses a formula 

to compute the probability. While the second participant does not provide an exact p-

value, he/she does give a formula written as: 1/(2^30)*[30nCr16 + 30nCr17 + ... + 

30nCr30]. Both approaches provide an appropriate theoretical probability, but ignore the 

empirical data. We do not know if these participants simply prefer theoretical 
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calculations to be exact in this type of scenario and/or if they do not understand how to 

work with the empirical sampling distributions.  

Category CHTM (Computation using Hypothesis Testing Method) describes three 

participants who used a formal hypothesis test method to compute the probability of the 

p-value. This is seen in the following sample excerpts in Table 27. 

Table 27. Examples of CHTM. 

Participant 

Information 

Computation and Explanation 

FYI with 

Masters 

Degree in 

Other 

Computation: p-value – 0.03 

Explanation: ran a X2 test with df=1.  

 

CC/FYI with 

Masters in 

Mathematics 

Education 

Computation: p-value = 0.01426 

Explanation. With a null hypothesis that the population proportion is .5 and an 

alternative that the proportion is greater than .5, we can find a z-score by 

taking the difference between the sample proportion of .7 and null proportion 

of .5 and dividing by the standard error of sqrt(.5*.5/30) and with the z-score 

got the associated area to the right to represent the p-value.  

 

The first excerpt we see one participant who ignores the empirical sampling distributions 

and chooses to find the p-value using a chi-squared test to generate a p-value = 0.03. The 

second participant also ignores the empirical sampling distribution and performs a 

proportion test to generate a p-value = 0.01426. Both these excerpts represent sufficient 

approaches if one were to conduct a formal hypothesis testing for the original statistical 

problem James is trying to solve, but it disregards the purpose of using the empirical 

sampling distribution generated by James. While participants in this category do use 

theoretical probability models like those in Category CTD, the distinction is the explicit 

usage of the participants to perform a formal hypothesis test.  
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The responses for the computation of the p-value showed a wide variety of 

computations for the p-value. After going through the coding process of Test-Retest, the 

qualitative results for this showed an inter-reliability rate of approximately 91% based on 

the discussed codes. Table 28 shows the final count for the number of participants that 

fell within each category along with their demographic information. 

Table 28. Summary of Categories for the Computation of the P-value. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

Category CRF –  

Computation using Relative 

Frequency 

8 1 0 4 2 0 15 

Category CRFNH –  

Computation using Relative 

Frequency assuming Null Hypothesis 

7 4 2 7 4 0 24 

Category CIOS –  

Computation Ignores Observed 

Sample 

1 0 0 0 1 0 2 

Category CUR –  

Computation using regions 

1 0 0 1 1 0 3 

Category CLS –  

Computation using level of 

significance 

3 0 0 2 0 0 5 

Category CTP –  

Computation using Theoretical 

Probability 

1 0 1 0 0 0 2 

Category CHTM –  

Computation using hypothesis testing 

methods 

1 0 0 0 1 1 3 

No Response 0 0 0 1 

 

0 0 1 

Total 22 5 3 15 9 1 55 

 

While a large percentage of the graduate student participants were mainly in Category 

CRF and CRFANH (a correct computation of the p-value), there were still a small 

number who fell in the categories for incorrect computations. What is interesting from the 

results is those participants who used theoretical probability models to compute the p-

value were mainly instructors even when told to use the simulated data to compute a p-
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value. Furthermore, the only participant who did not provide a response was from a 

community college instructor whose background was mathematical science. At first 

glance, the survey results indicate a potential gap regarding teachers’ understanding of a 

simulation approach to hypothesis testing, specifically in their ability to compute p-values 

using empirical sampling distributions. 

6.2.2. Interview Data: Computing p-values with sampling distributions. 

After reviewing the data from the Helper-Hinderer Task, one of the follow-up interview 

tasks focused on having participants elaborating on their computation of the p-value and 

to discuss their opinion of using an empirical sampling distribution to perform the 

computation. Prior to the interview, the seven interviewees gave different responses to 

the computation of the p-value. A summary of their responses and categorization for their 

responses is shown in Table 29. Only two of the seven (Tod and Phil) gave a correct 

computation of the p-value in their initial survey response. Tod fell into category CRF 

and Phil fell into category CRFANH. The other responses that deviated from the value of 

0.024. James initially did not provide a computation claiming he could not read the 

graph, but he did provide an explanation that showed evidence he could do a correct 

computation. Angie gave an explanation that showed evidence she could do a correct 

computation of the p-value but gave a computation based on theoretical probability (i.e. 

CTP). Carol gave an explanation that hovered around an idea that she was comparing a 

level of significance categorizing her as CLP. Jane explained using a method similar to a 

traditional one-proportion test, which categorized her as a CHTM.  
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Table 29. Categories of Interviewee Responses for the Computation of the P-value. 

Participant Computation and Explanation 

Tod Computation of P-Value: p=0.024 

Explanation: It is the area passed the expected results. So 14+8+2/1000 

(CRF) 

Carol Computation of P-Value: p<.05 

Explanation: In order for James' procedure to be statistically significant, he 

needs a small p-value. (CLP) 

Sean Computation of P-Value: Find the z (because it's a proportion) 

Explanation: Find the area from |z| to infinity (CHTM) 

Angie Computation of P-Value: P(n>=21 | p=.5) from a binomial distribution. 

Explanation: 8 years of statistics education; I didn't find it specifically, but 

we could either use a normal approximation or calculate it explicitly 

depending on the level of the course involved. (Or use the 2.4% the 

simulation provided) (CTP) 

Jane Computation of P-Value: 0.01426 

Explanation: With a null hypothesis that the population proportion is .5 and 

an alternative that the proportion is greater than .5, we can find a z-score by 

taking the difference between the sample proportion of .7 and null 

proportion of .5 and dividing by the standard error of sqrt(.5*.5/30) and 

with the z-score got the associated area to the right to represent the p-value. 

(CHTM) 

Phil Computation of P-Value: 0.024 

Explanation: If I'm to assume that there were no samples in which more 

than 23 of the 30 babies chose the helper doll, then a good estimate would 

be (14 + 8 + 2)/ 1000, or about 2.4%. (CRF) 

James Computation of P-Value: The graph's difficult to read, but considering 

black areas below the 21, 22, and 23 circles, I'd guess less than 5%. 

Explanation: To calculate the P-value, I'd need the counts from James's 

simulation. Otherwise, I'd estimate as above. / The P-value means that when 

James assumed there's no preference and simulated 30 babies making the 

choice 1000 times, he observed the sample proportion (21/30 babies prefer 

helper) in less than 5% of the simulations. (CLS) 
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In this section, I highlight the reasoning of the participants that emerged from the 

interviews. The initial categorization of the survey might suggest that many of the 

interviewees did not know how to use the empirical sampling to find the p-values. 

Results of the interviews uncovered that six of the seven interviewees could compute the 

p-value using the empirical sampling distribution with Carol being the only exception. 

What was interesting was those interviewees whose survey data focused on theoretical 

ideas had a very strong opinion for the use of theoretical approaches to computing the p-

value. The first opinion was a preference to the theoretical model over the simulation 

model when computing a p-value. The second opinion was based on an understanding 

that either a theoretical or empirical approach to hypothesis testing would be appropriate. 

Considering that statistics education community is pushing towards the use of 

modeling and simulation approaches to deepen understanding of hypothesis testing, it 

was vital to investigate a participant’s ability to compute the p-value using an empirical 

sampling distribution and whether they saw value in using simulations. In this section, I 

highlight three primary themes that emerged as the interviewees discussed their opinions 

of computing a p-value using an empirical sampling distribution. The first theme 

highlights what happens when a participant inability to comprehend the simulation model 

hampered their ability to compute an appropriate p-value using the empirical sampling 

distribution. The second theme highlights that even though some participants understood 

how to compute a p-value using an empirical sampling distributions, they believed that 

theoretical methods were more appropriate. The third theme highlights a set of 
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participants who knew how to use the empirical sampling distributions to compute a p-

value and felt that either approach (theoretical or empirical) is equally appropriate. 

6.2.2.1. Struggling with empirical sampling distributions. As mentioned, several 

of the survey participants could compute a p-value correctly using the empirical sampling 

distribution presented in the Helper-Hinderer Task. One particular excerption was Carol 

who gave a computation categorized as CLP. In her initial survey response, she wrote 

that the p-value < 0.05 because, “James needs a small p-value in order to show statistical 

significance.” Analysis of the Carol’s data showed evidence that she knew procedures of 

hypothesis testing, but struggled discussing relationships that tied ideas of sampling 

distributions to p-values. This became apparent when she discussed her understanding of 

the simulation model of hypothesis testing presented in the Helper-Hinderer Task. Below 

is an excerpt from the interview showing an exchange where Carol is asked whether she 

has seen a simulation approach to hypothesis testing prior to the study.   

Carol: I have never seen anybody do this. I mean I can see how they…I never 

seen anybody do this and thought that was kind of clever but I would take that 

data with a grain of salt. 

Interviewer: Why would you say that? 

Carol: Because it's not...it's not what he is actually trying to test. Like he is just 

using this experiment to say something about another experiment. And in my 

head I'm just like why don't you just conduct the original experiment to begin 

with. 
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Interviewer: Okay. What do you think...when you say conduct the original 

experiment, what do you mean by that? 

Carol: Like here they want to see like they see if there is a good baby or bad baby 

or something, a good puppet or bad puppet. So, these have to do with like 

humans and there are so many variables going on with like a baby. Like where 

they grow up in. Like I don't know, a strict Asian family right? Or like a super 

traditional family where they going to think a lot of things are bad. But if you 

were to like take baby who is straight out of Compton and that baby was 

exposed to many things that are bad, like their environmental factors you have 

to put into play where this is just super mechanic. Like this simulation is 

robotic. 

Based on the response given by Carol, I hypothesize that the relationship between 

simulations and empirical sampling distributions was not a part of her overall 

understanding of hypothesis testing. In addition, the context of the problem itself seems 

gives her pause in the experiment’s legitimacy and her trust in the simulation. This is 

expressed in her initial response about James’ simulation being ‘clever but take the data 

with a grain of salt’ shows a reluctance to the modeling of the problem. Her statement 

where she mentions that the method done by James “is not what he is trying to test” 

shows that she does not recognize James’ method as a valid way of conducting 

hypothesis test. This follow-up response shows a further lack of experience with 

empirical sampling distributions and simulation. She instead focuses on describing 

potential biases with the modeling process. Even when asked about the computation of 
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the p-value, she insisted on discussing a procedural approach she learned from prior 

statistical work as show in the excerpt below. 

Interviewer: Alright. Do you think you can actually use this (James’ work) 

information to get the p-value? Like his distribution he has right there? 

Carol: Just by looking at this I think I could. 

Interviewer: How would you? 

Carol: I would just have to find 𝑥̅ the standard deviation. 

Interviewer: Alright. 

Carol: And from there I could calculate the test statistic and the p-value. 

Interviewer: Is that the only way you think it is possible to do that? Not saying 

isn't another way, I'm just wondering in your opinion is that the only way to 

get it. 

 

Carol: In my experience that is the only way to get it unless you throw it into 

your computing system and let that do that. 

 

The type of understanding displayed by Carol shows that she places a lot of value in the 

procedural method of hypothesis testing. Even when asked about the empirical 

distribution, Carol mentions the sample mean and standard deviation which is not 

necessary when using a simulation approach to hypothesis testing. This shows a lack of 

understanding would makes it difficult to determine whether a person’s ability to see the 

pedagogical value of a simulation approach. This was not the case for the two other 

interviewees whose knowledge of the simulation approach was adequate, but whose 

opinion still showed a preference to a theoretical approach.  

6.2.2.2. Preferring theoretical over empirical probability. One such interviewee 

was Jane whose original computation from the survey was through a z-score 
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approximation (i.e. CHTM). In her survey work, she wrote down that the p-value for the 

Helper-Hinderer Task is 0.01426 which she computed using a traditional one-proportion 

hypothesis test. This would be considered a correct procedural way of doing a hypothesis 

test for a single proportion that is traditionally taught in introductory statistics, but 

ignores the empirical sampling distribution produced by the student.  

During the interview, Jane displayed an understanding of sampling distributions that 

was evident when she discussed ideas of repeated sampling and her description of the 

empirical sampling distribution in the Helper-Hinderer Task. Further evidence was in her 

ability to discuss a correct computation of the p-value in the Helper-Hinderer Task when 

she correctly articulated the computation of the p-value of 0.024 using the empirical 

sampling distribution. What is interesting was her pedagogical view of the empirical 

sampling distribution versus using her procedural methods. When asked about the 

validity of using a simulation and computing a p-value using the empirical sampling, her 

response seemed to prioritize the traditional approach as shown in the excerpt below. 

Interviewer: So if this was the question you asked your students and some 

student came up to you and said I learned hypothesis testing by just doing a 

simulation and the student did it this way. Let’s say a student came to class 

and they are expected to know hypothesis testing and one student did it this 

way (formula) and one student did it this way (simulation), would you find it 

valid or both valid? 

Jane: I think in the end I would consider them both valid but I would almost 

enforce the preference for this route (z-score formula) because of accuracy. 
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Interviewer: Okay. Alright. 

Jane: Just because if they keep doing it (simulation), it could lead to errors with 

the hypothesis test. 

Interviewer: So you prefer this one (formula)? 

Jane: Yeah. 

Interviewer: Is it because the error is off by a 1%? 

Jane: Yeah I guess the error is throwing me.  

In the above except we see Jane’s aversion to the simulation model. In her description of 

the simulation model, she discusses potential underlying ‘error’ in the computation 

because the simulation model is approximating the p-value. Jane reasoning is based on 

her comparison with her theoretical approach versus her empirical approach that resulted 

in a difference of 1%. What makes Jane’s argument interesting is that the approach she 

believes to be more accurate is also an approximation method.13 It was not clear whether 

she realized that her method of doing hypothesis testing using proportions relied on an 

approximation of a normal distribution, but it seems that traditional methods prioritize 

her choice in how she would evaluate student work. 

Another interviewee who shared a similar opinion as Jane was Angie. Angie also 

preferred a theoretical approach to hypothesis testing over a simulation model. In her 

original survey response, she wrote a conditional statement and noted using a binomial 

distribution. Angie then gave a follow-up explanation where she mentioned that the p-

value is 2.4% if you use the empirical sampling distribution. She showed an 

understanding of sampling distributions in the overall scheme of hypothesis testing. Just 
                                                           
13 The method used by Jane is based on an approximation method for a binomial distribution. 
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like Jane, Angie mentions in her interview that she would prefer a theoretical approach 

over an empirical approach to hypothesis as illustrated in the excerpt below. 

Angie: Yeah I said there is two approaches here. One you can actually calculate 

specifically from a binomial distribution and say you know it is going to be 

exactly this probability of getting exactly n of 21 or more. Or you could do a 

normal approximation which is what I would teach my students to do and 21 

is a little small for a normal approximation but 21 worked pretty well for a 

normal approximation anyway so I think it would be fine. Umm...and lastly or 

you can use the 2.4 simulation that he found. That would be one other 

approach. So there is a couple different ways. I would probably, personally I 

would teach the normal approximation because we don't get into the binomial 

distribution and I would probably prefer something theoretical over simulation 

as well. 

Interviewer: Why would you say that? 

Angie: I mean simulation works if that is all you can use, but if you have theory 

that's probably more sound than simulation unless you have some reason to 

believe your assumptions are wrong but if you're simulating under the same 

assumptions your theory is just as sound. 

Angie’s explanations once again highlight a preference for theoretical model to compute 

a p-value. In her explanation, Angie expresses the importance of getting a “specific” 

more exact way of computing the p-value through a binomial distribution model. Unlike 

Jane who discusses a normal approximation model and computes it using a z-score, 
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Angie’s background as a doctoral student in statistics seems to play into her 

understanding on alternative approaches to finding a p-value. She expresses being more 

comfortable with a theoretical model and would only use simulations if necessary. The 

thinking displayed by Angie is consistent with statisticians who rely on simulations 

models when the theoretical approaches cannot be appropriately determined. This seems 

to play into her pedagogical choice where she notes preferring to teach using a normal 

approximation rather than a simulation approach.    

6.2.2.3. Favoring simulations. In contrast to the interviewees above, three 

interviewees (Sean, James, and Phil) felt strongly about their opinion on the simulation 

model. One interviewee was Sean who was a doctoral student in statistics. During the 

interview, Sean showed a strong understanding of empirical sampling distributions and 

simulations. Several times during the interview, Sean would mention his experience 

working with simulations and conducting bootstrapping models. When Sean was 

questioned regarding the validity of the simulation model, he seemed comfortable in its 

applicability to answer a statistical question related to hypothesis testing. This is 

illustrated in the following exchange when Sean was asked about the validity of the 

simulation model. 

Sean: When I say mimic is resampling...so there was three things we talked 

about. Resampling from the population. Pull a sample of 50 from the 

population a 1000 times. That's not really bootstrapping. The other thing I've 

done is...the first one was in context to the null. Bootstrapping is taking your 

sample, sampling from it with replacement equally size samples and get 
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statistics from each sample. This seems to be...I forget your question...this 

seems to be pulling from...the idea of almost creating a distribution in kind of 

a very low tech way. A reference distribution under the null in a very low tech 

way. 

Interviewer: Okay, but are you still kind of okay with the fact how he did it? 

Sean: Yeah, he is just basically assuming that his coin...well there is an additional 

assumption that his coin is fair. But as long as his coin is fair, it is a perfectly 

legitimate way of doing it. 

In the excerpt, we see Sean drawn upon his experience with simulations helped him 

articulate how the process done by the student is like the procedure taught in traditional 

statistics courses. He makes a mention of common ideas from introductory statistics 

courses such as creating a probability distribution. When probed further on his 

understanding of the model, Sean continues to describe notions of repeated sampling to 

confirm the validity of the model. When Sean was later asked about how he would 

compute the p-value using the empirical sampling distribution, he quickly just used the 

empirical sampling distribution as a way of doing it as show in the excerpt below. 

Sean: Well 21 out of 30 babies so and then you say okay the number of babies 

that chose the helper doll out of a sample size of 30 using a coin. So, he 

got 14 and he got 8 and he got 2. 21, 22, 23 and on. This is basically 

saying 21 to infinity but we are limited because this is a very discrete way 

of doing it plus it is a discrete sample. 
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Sean having experience and a strong understanding of simulation approaches proved to 

be useful when assessing James’ model to not only find the correct p-value, but also 

discusses important ways the empirical sampling distribution is related to theoretical 

ideas. For instance, in the excerpt above we see Sean relate to ideas of discrete sampling 

and how p-values measure tail regions that extend to infinity.  

Phil also shared a similar opinion to regarding the validity of the simulation 

model. Just like Sean, Phil computed a correct p-value using the empirical sampling 

distribution. Phil also mentions several times how he has done work with simulation 

models in the classroom. While Phil shares a similar opinion as Sean regarding the 

models validity, his explanation regarding his opinion on the model touches on a 

pedagogical reasoning why such models are useful for classroom the classroom.  

Interviewer: What do you think about number 4 (Helper-Hinderer Task)? My first 

question, but I think you've answered already it. You've probably done simulation 

models for hypothesis tests. 

Phil: I personally think this should be way we should teach it on day one. This is my 

personal opinion and I think Allan (Rossman) agrees with me, but there is no 

reason to force parametric test if you can simulate using non-parametric methods 

like this. These are...kids get these. Students get none...they understand flipping 

coins and rolling dice. They get these. Dice are used in MTH105. I am totally 

down where you can model it either...I like using manipulatives too. You 

obviously said, James gets a coin and flips the coin 30 times. 

Interviewer: Yeah. 
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Phil: So, you set it up as flipping a coin, but yeah computer simulations are huge so. 

It's funny you're question number 1, I had to look at it two or three times. It can't 

be that easy. I'm like so many of the questions you've asked at this point were 

really like, they forced me to look really carefully at what the student have written 

and I expected them all to be at that level well duh, equally likely from the coin 

and then I realized that is not obvious from anybody. You know they flip coins all 

the time, but they forget the context of what a coin flip is. It is an unbiased 

equally likely outcome. There you go, there is your part b. 

Unlike the previous interviewees who favored a theoretical approach, Phil was very 

focused on the pedagogical value of the empirical sampling distribution. Throughout the 

interview, Phil showed strong evidence of understanding both traditional and simulation-

based approaches to hypothesis testing. His explanation of the simulation model and its 

validity relates to how a teacher would discuss p-values to an introductory statistics class 

that might have very little understanding of theoretical probability. In his explanation, he 

suggests a preference to these “non-parametric” methods over the “forced parametric” 

because it is something his students would be able to understand. The connection 

between his understanding of both approaches and his experience as a teacher was shown 

particularly in this excerpt when he suggests a simulation approaches things students 

would likely understand. This shows an example of a teacher whose mixture of different 

forms of statistical knowledge come together to guide his pedagogical practices. 

6.2.3. Summary: Computation of the p-value using sampling distributions. 

This section outlines some important ideas related to the relationship between p-values, 
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simulations and sampling distributions. The survey results show that there is still 

inconsistency with the way teachers view the role of simulations to conduct hypothesis 

testing. With only 39 out of 55 correctly computing a p-value even when provided an 

explicit sampling distribution shows that there are still gaps in the knowledge of our 

current statistics teachers. Furthermore, those who even relied on theoretical models of 

computing the p-value would struggle computing the p-value incorrectly. This lack of 

knowledge on the relationship between simulations and hypothesis testing also caused 

further differences of opinions when discussing the validity of simulation approaches.  

In the interview data, we see that participants who have never learned a 

simulation approach to hypothesis testing struggle computing p-values using empirical 

sampling distributions. Because of this lack of experience working with simulation 

models, we see an effect on teachers’ opinions on its usefulness in the classroom and how 

it might support student development. Of all the interviewee participants, three 

questioned the simulation model and still preferred to stick to theoretical approaches. The 

two participants who did see the value of a simulation-approach was based on actual 

experience working with simulations both in statistical practice and in teaching. One 

teacher had a very strong belief that it could serve a greater purpose as a pedagogical tool 

in developing students understanding of p-values and hypothesis testing in general. 

Unfortunately, because of the minimal data gathered from the interviews on teachers’ 

opinions of a simulation approach to hypothesis testing, it is unknown how much of the 

general population of statistics teachers share a similar view of simulations.   
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6.3. Teachers’ Understanding of Conditional Probably and the p-value. 

An important component of a robust understanding of a p-value includes knowing 

it is a conditional probability structured around a relationship of the observed results and 

null hypothesis. Recall from the literature review that prior research indicated students 

overlook and/or misinterpret the conditional relationship of the p-value. In addition, prior 

research shows that often teachers have similar misconceptions as their students. Because 

understanding that the p-value is a conditional probability is important, data was analyzed 

to see what themes would emerge from the data when participants discussed their 

understanding of verbal and symbolic representations of the p-value. 

There were two primary instances where participants were pressed to discuss the 

relationship between a p-value and conditional probability. The first instance was the 

Drug Task, which assessed participants’ notions of verbal interpretations of the p-value. 

The second instance was the Car Task, which assessed participant’s notions of symbolic 

representations of the p-value.  

To illustrate the participants’ understanding of the relationship between a p-value 

and conditional reasoning, this section will examine data from the survey and the 

interview that highlight concepts related to a verbal and symbolic representation of the p-

value. I then provide dialogue from the interviews that highlight how teachers view the 

relationship between a verbal and symbolic representation of the p-value.  

6.3.1. Survey results: verbal interpretations of the p-value. The definition of 

the p-value is defined as ‘the probability of getting a result as extreme or more extreme as 

the observed result assuming the null hypothesis.’ This is a standard way for students and 
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teachers to verbally interpret a p-value in many introductory courses (and sometimes in 

statistical practice). The Drug Task was designed to incorporate the interpretation into a 

given context (Figure 21).  

A research article reports on a new drug test that is to be used to decrease vision loss. The 

article reports its results and a p-value of 0.04 in the analysis section. Below are six different 

student interpretations of the p-value.  

 

Student A: The probability of getting a result as large as or larger than the one in this study if 

the drug is actually not effective is 0.04. 

 

Is this student’s interpretation of a p-value valid?  ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student B: The probability that the drug is not effective is 0.04. 

 

Is this student’s interpretation of a p-value valid? ___Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student C: There is a 4% chance that the researcher made an error. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student D: If you were to repeat the study, there is a 4% chance of getting exactly the same 

result as the one in this study if the drug is actually not effective.  

 

Is this student’s interpretation of a p-value valid? ___Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student E: The probability that the drug is effective is 0.04. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 
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If you think this question is invalid, explain why you think it is invalid. 

 

Student F: There is a 96% chance the drug is effective. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

Figure 21. Drug Test Task. 

The task uses the context of a drug experiment on vision loss as a context for interpreting 

the p-value. Through this context, the participant is asked to identify whether six 

hypothetical student interpretations of the p-value are valid/invalid. A standard approach 

of interpreting the p-value for this context is, “the probability of getting a result as 

extreme or more extreme as the observed results assuming the drug is not effective.” 

Student A provides the closest example to the kind of verbal interpretation that aligns 

with the p-value’s interpretation. The difference between the standard interpretation 

mentioned and the one presented by Student A is the usage of the words ‘large or larger’ 

in place of ‘extreme or more extreme.’ The other five interpretations were all designed to 

be invalid interpretations. Student D does mention the importance of conditioning on the 

null hypothesis, but the interpretation fails to describe the important property that p-

values measure the probability of getting results “as extreme or more extreme as the 

observed sample result.” Student Interpretation B, C, E, and F are all written in a way that 

(among other properties of the p-value) do not highlight the important idea that the p-

value is a probability computed assuming a null hypothesis. Because the focus of this 

section is to assess a participant’s ability to recognize the importance of conditioning on 

the null hypothesis (i.e. the drug is not effective), it was important to assess whether they 
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thought Student A’s interpretation was valid because it is an interpretation most teachers 

consider to be valid. Second, it was important to note participant responses to Student D’s 

interpretation because it was correctly conditioning on null assumptions, but is syntactical 

incorrect because of the phrase “the same result” in place of “as extreme or more extreme 

as the observed result.” Finally, it was necessary to analyze whether the lack of 

conditional reasoning in the other student interpretations (B, C, E, and F) would raise an 

issue for the participants.  

Since the primary focus of this section is to analyze whether participants noted the 

importance of conditional reasoning in a p-value’s verbal interpretation, it was therefore 

important that analysis on responses for Student A and D were handled differently than 

Students B, C, E, and F. Since Student Interpretations A and D were both written as 

verbal interpretations that correctly conditioned on the null hypothesis, it was important 

to determine if a participant gave an appropriate explanation if they found the 

interpretation to be invalid. Examples of Student A’s interpretation that could be 

considered appropriate can be seen in Table 30. These explanations were categorized as 

accurate feedback (AF) if the participant criticized the syntactic use of the word “large or 

larger” as misleading. Some participants preferred the use of the word “low or lower” or 

“extreme or more extreme” because they felt better aligned with the problem’s context. 

Participants such as these noted that because the context refers to a decrease in vision 

loss, using the word “lower” would be considered acceptable. Using the word “extreme” 

would also be considered accurate because it is similar to the standard definition of a p-

value. This can seen in the explanations provided by the CCI in Table 30 who notes that 
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the word “Larger” to be misleading. Inaccurate feedback (IAF) include those 

explanations that were viewed as either not helpful or incorrect ways to assess the 

statement because it does not provide further connections to ideas of a p-value. An 

example of IAF can be seen in the explanation provided by the FYI in Table 30 who 

gives very little information regarding the importance of conditional reasoning of a p-

value. 

Table 30. Accurate and Inaccurate Feedback for Student Interpretation A. 

Category of 

Feedback 

Participant Explanation 

Accurate 

Feedback 

CCI (Masters in Math/Stat/Stat Ed): "Larger" is misleading - I think they 

would have meant "more extreme".  Although, with a simple tweak, this 

one's correct: "The probability of getting these results (or even more 

extremely lowered results) than the ones in this study, if the drug is actually 

not effective, is 0.04." 

Inaccurate 

Feedback  

FYI (Ph.D. in Statistics): This seems to be the interpretation of a one tailed 

test. 

 

Examples of explanations that categorized as AF and IAF for Student D is shown 

in Table 31. As mentioned, the main error with Student D’s interpretation was the use of 

the phrase “exactly the same result” which does not account for the fact that p-values are 

measures of tail regions. Examples of accurate feedback for those interpretations can be 

seen in one of the GTA responses in Table 31 who notes the incorrect phrase, “exactly 

the same result” as the error and notes that p-values are a measure of area. Examples of 

IAF encompass explanations that did not notice this key issue with the interpretation. 

This can also be seen in the sample explanation provided by the other GTA in Table 31 

who makes no mention of the error described.  
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Table 31. Accurate and Inaccurate Feedback for Student Interpretation D. 

Category of 

Feedback 

Participant Explanation 

Accurate 

Feedback 

GTA (M.S. in Other): p-value does not focus on "exactly the same result", it 

marks the area under the curve beyond that particular z-value. 

Inaccurate 

Feedback  

GTA (Doctoral Candidate in Mathematics): I've never heard this 

interpretation, but it's not correct since it disagrees with the valid 

interpretation 

 

Table 32 summarizes the results for the responses for Student Interpretation A and 

D. Based on the data collected, a total of 43 out of 55 the participants identified 

Interpretation A as a valid verbal interpretation of the p-value. For the 12 participants 

who considered Interpretation A as invalid, four participants gave appropriate feedback 

that focused on the syntactical error of the interpretation noting a preference for “small or 

smaller” or “extreme or more extreme” but still acknowledged the interpretation as 

“mostly valid”. Eight of the participants did not note the syntactic error, but gave 

erroneous responses or provided no explanations. For Interpretation D, six of the 

participants noted the interpretation as valid, while 49 noted the interpretation as invalid. 

Of the 49 participants, 32 participants gave accurate feedback noting the error of using 

the word “exactly the same” while 17 gave inaccurate feedback or provided no 

explanation.  

Table 32. Results for Student Verbal Interpretations A and D. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

STUDENT VERBAL 

INTERPRETATION A 

RESULTS 

 

Valid 19 5 3 8 7 1 43 

Invalid w/ 

Accurate Feedback (AF) 

1 0 0 3 0 0 4 
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Invalid w/ 

Inaccurate Feedback (IAF) 

2 0 0 4 2 0 8 

Total 

 

22 5 3 15 9 1 55 

STUDENT VERBAL 

INTERPRETATION D 

RESULTS 

 

Valid 2 0 0 2 2 0 6 

Invalid w/ 

Accurate Feedback (AF) 

11 5 2 10 3 1 32 

Invalid w/ 

Inaccurate Feedback (IAF) 

9 0 1 3 4 0 17 

Total 22 5 3 15 9 1 55 

 

As mentioned, the coding for the explanations provided for Student 

Interpretations B, C, E, and F were handled differently than those of Student A and D. A 

primary misconception with these four verbal interpretations (B, C, E, and F) was a lack 

of conditional reasoning in the student’s work. While these four interpretations were 

designed to highlight other issues regarding the p-value, a primary issue that should have 

been noted by the participants was the lack of the conditional reasoning. Thus, 

explanations of the participants were categorized based on whether the participant noted 

the lack of conditional reasoning. Table 33 shows examples of sample excerpts for 

Student B. 

Table 33. Conditional and Non-Conditional Feedback for Student Interpretation B. 

Categories Participant Explanation 

Conditional Feedback GTA (Doctoral Candidate in Statistics): p-values measure the 

probability of finding a result such as you got given the null is true 

Non-Conditional 

Feedback 

GTA (Masters Candidate in Math/Math Ed): The p-value is the 

measure of evidence against the null, not that the null is true. 

 

Conditional Feedback (CF) was used to categorize those participants whose 

explanation noted aspects of conditional reasoning. This can be seen in the first 
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participant’s explanation in Table 33 where they note that the p-value is a measure of a 

result given a null being true. This example shows evidence that the participant is 

criticizing a lack of conditional reasoning in the student interpretation.  

Non-Conditional Feedback (NCF) was used to categorized those participants who 

explanations made no mention of aspects conditional reasoning. Instead, the participant 

focuses on other parts of the interpretation they valued as incorrect. The can be seen in 

the second participant’s explanation in Table 33 who focuses primarily on notions of 

evidence against the null. It is completely unknown however whether the participants 

who provided similar explanations understands that p-values are conditional probabilities, 

but it does show that the primary feedback they chose to provide was not on conditional 

reasoning. For consistency, a similar categorization of conditional/non-conditional 

feedback was used for the Student Interpretations C, E, and F since all three verbal 

interpretations lacked conditional reasoning.  

Table 34 summarizes the survey results of the Drug Task for interpretations B, C, 

D, and F and whether they gave notions of conditional reasoning. For Interpretation B, 

four participants marked it as valid. For those 51 participants who marked the 

interpretation as invalid, 23 participants noted the lack of assuming some null hypothesis 

in the interpretation and 28 participants focused on other concepts related to the p-value 

unrelated to the conditional reasoning. For Interpretation C, four participants marked it as 

a valid interpretation. For the 51 participants who marked it as invalid, only nine 

mentioned the lack of conditional reasoning or assuming a null hypothesis. For 

Interpretation E, all the participants marked the interpretation as invalid. Only 17 of the 
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participants noted the lack of a conditional reasoning while 38 noted other aspects of the 

interpretation related to the p-value. Finally, for Interpretation F, four participants marked 

it as valid and 51 marked it as invalid. Furthermore, 13 of the 51 who marked it as invalid 

noted the lack of conditional reasoning in the interpretation.    

Table 34. Results for Student Verbal Interpretations B, C, E and F. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

STUDENT VERBAL 

INTERPRETATION B 

RESULTS 

 

Valid 2 0 0 1 1 0 4 

Invalid w/ 

Conditional Feedback (CF) 
6 4 2 6 4 1 23 

Invalid w/ 

Non-Conditional Feedback (NCF) 
14 1 1 8 4 0 28 

Total 

 
22 5 3 15 9 1 55 

STUDENT VERBAL 

INTERPRETATION C 

RESULTS 

 

Valid 1 0 0 1 2 0 4 

Invalid w/ 

Conditional Feedback (CF) 
5 1 1 1 1 0 9 

Invalid w/ 

Non-Conditional Feedback (NCF) 
16 4 2 13 6 1 42 

Total 22 5 3 

 

15 9 1 55 

STUDENT VERBAL 

INTERPRETATION E 

RESULTS 

 

Valid 0 0 0 0 0 0 0 

Invalid w/ 

Conditional Feedback (CF) 
7 3 0 4 2 1 17 

Invalid w/ 

Non-Conditional Feedback (NCF) 
15 2 3 11 7 0 38 

Total 22 5 3 15 9 1 55 

STUDENT VERBAL 

INTERPRETATION F 

RESULTS 

 

Valid 2 0 0 2 0 0 4 

Invalid w/ 

Conditional Feedback (CF) 
4 1 0 6 1 1 13 

Invalid w/ 16 4 3 7 8 0 38 
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Non-Conditional Feedback (NCF) 

Total 22 5 3 15 9 1 55 

 

An initial summary of the survey data from the Drug Task shows that several 

participants could correctly identify the correct verbal interpretation of the p-value. A 

large number of participants showed the ability to correctly identify valid/invalid 

interpretations of the p-value. The inconsistency came in the explanations provided by 

the participants regarding why interpretations were invalid. Looking at the results of 

verbal interpretations provided by Students B, C, E, and F, we see that the number of 

participants who explicitly focused on the lack of the conditional reasoning varied quite a 

bit. Instead of consistently focusing on the lack of conditional reasoning, several 

participants chose to focus on other aspects of the verbal interpretation they felt was 

problematic. There is possibility that some participants simply chose to give feedback for 

an invalid interpretation of a p-value based what they felt was a more pressing issue in 

the interpretation. Evidence for this can be seen when analyzing feedback for 

interpretations (B, C, E, and F) as a whole. Thirty participants noted a lack of conditional 

reasoning in at least one of the four interpretations. Twenty-five participants made no 

mention of conditional reasoning when they were asked to provide why a verbal 

interpretation was invalid. This shows some evidence that some of the participants did 

not understand that p-value was a conditional probability and/or found that giving 

feedback on the conditional reasoning of the p-value was not a primary criticism for 

verbal interpretations given by students.  

6.3.2. Survey results: symbolic representations of the p-value. A symbolic 

representation of the p-value is not often discussed as a major component in introductory 
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statistics courses even though it is an important concept in theoretical statistics. Since the 

p-value is defined as a conditional probability, knowing how to symbolically represent it 

using a conditional probability statement should be part of a teacher’s specialized 

knowledge. This thinking formed the basis for the Car Task (Figure 22) that assesses 

whether participants are able to recognize correct symbolic representations of the p-value.  

Research was conducted to determine whether people preferred hybrid over traditional gasoline 

powered vehicles. The article reports that their random sample showed that 60% of people 

preferred hybrids. The researchers gave a test statistic of z = 1.414 and a p-value of 0.08 using a 

right-tailed hypothesis test for proportions. Below are six different symbolic representations of 

the p-value given by introductory students when asked about this problem.  

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐀: 𝑷(𝒛 ≥  𝟏. 𝟒𝟏𝟒)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐁: 𝑷(𝒑̂  =  𝟎. 𝟔)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐂: 𝑷(𝑹𝒆𝒋𝒆𝒄𝒕 𝒕𝒉𝒆 𝒏𝒖𝒍𝒍 𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒔 | 𝒑̂ = 𝟎. 𝟔)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 
𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐃:  𝑷(𝒑 = 𝟎. 𝟓 | 𝒑̂ = 𝟎. 𝟔) = 𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value correct?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐄: 𝑷(𝒑̂ ≥  𝟎. 𝟔 | 𝒑 = 𝟎. 𝟓)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 
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𝐒𝐭𝐮𝐝𝐞𝐧𝐭 𝐅: 𝑷(𝒑̂ ≥  𝟎. 𝟔)  =  𝟎. 𝟎𝟖 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

Figure 22. Car Task. 

The Car Task uses a context of a study on hybrid and gasoline-powered vehicles 

to determine whether participants can identify valid symbolic representations of the p-

value. Like the Drug Task, the participant is presented with six hypothetical student 

symbolic representations of the p-value. Two representations (A and E) were designed to 

be correct. The first representation was by Student A who uses a z-score representation of 

the p-value that relies on an implicit conditional that is the result of the computational 

transformation to a z-score. The second was Student E who uses an explicit conditional 

probability statement to write out the p-value. The other representations were written to 

illustrate incorrect ways of writing a p-value symbolically. Focusing strictly on concepts 

related to the conditional nature of a p-value, Student B and F did not use either a z-score 

transformation or a conditional probability statement. Student C and D uses a conditional 

notation but incorrectly conditions on the observed sample instead of the null assumption. 

Since the focus of this section is on the importance of the conditional reasoning, I 

first present the results of the two valid representations of the p-value (A and E) from the 

Car Task. I then focus on the results of Student B and F, whose representation was 

designed to assess whether participants found the lack of a conditional statement 

problematic. Finally, I present the results of Student C and D, which contained (among 

other things) an incorrect conditional statement by assuming the observed sample instead 

of the null assumption. 
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Because this task also analyzes connections between a p-value and conditional 

probability, a similar type of analysis used in the Drug Task was reapplied for this task. A 

big challenge that occurred during analysis was that a number of the participants took 

issue to the use of specific notation used by students. In particular, the use of symbols 

(i.e. 𝑧, 𝑝̂, and 𝑝) in the different symbolic representations in the hypothetical student work 

became a main focal point of their criticism. This made it challenging to categorize 

themes related to conditional probability in several of the explanation. As a result, a 

coding strategy similar to the one used for the Drug Task was applied in an attempt to 

code areas where conditional reasoning popped up in the participants work.14 

Student B and F whose symbolic representation did not use a conditional 

probability or imply some form of conditional reasoning was analyzed on the 

participant’s ability to recognize the lack of conditioning reasoning in the symbolic form. 

For those participants who found representations B and F as invalid, a similar approach 

of noting whether the participant provided explanations that align with conditional 

feedback (CF) and non-conditional feedback (NCF) was applied for these representations 

as those seen in the Drug Task. Since Student Interpretation A and E were designed to 

represent correct symbolic representations of the p-value, explanations from participants 

who marked these representations invalid were categorized using a similar approach of 

appropriate feedback (AF) and inappropriate feedback (IAF) to see if their explanations 

focused on syntax. Student C and D both used an incorrect conditional representation of 

the p-value. Since these representations explicit conditionals, a similar treatment was 

                                                           
14 A more in-depth discussion of the issues surrounding the semantic issues will be addressed in the section 

on limitations of the research. 
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applied to the categorization of the explanations to see whether the participant provided 

appropriate/inappropriate feedback regarding the type of things they felt was incorrect 

about representation.  

Results of the categorization for the various participants can be found in Table 35. 

The data in the table shows that most of the participants could correctly identify the valid 

representations of the p-value in the Car Task. For Student A’s symbolic representation 

(z-score representation of the p-value), 44 participants identified it as a valid 

representation. For Student E (the conditional version of the p-value), 39 participants 

marked the representation as valid. Closer inspection of the survey data revealed 9 out of 

the original 44 participants who said Student A was valid marked Student E as invalid. 

On the other hand, 7 of the 39 participants who selected Student E (conditional version of 

the p-value) as valid marked Student A as invalid. These numbers show slight 

inconsistencies in the number of participants who validated implicit versus explicit 

conditional version of p-value. This shows some evidence that some teachers do not see a 

direct connection between a standard and non-standard form of writing a p-value 

symbolically. 

For the symbolic representations that did not use a conditional probability, 10 

participants noted that Student B and 23 participants noted Student F lacked a conditional 

representation. Furthermore, 44 students did not provide feedback that noted conditional 

reasoning for Student B and 23 did not provide feedback that noted conditional reasoning 

for Student F. Instead, the participants focused on other areas that would make the 

representation invalid (e.g. problems with equality, finding the wrong probability, etc.)  
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Table 35. Results for the Car Task on the Symbolic Representations of the P-value. 

  

GTA 

 

GRA 

GTA 

&  

GRA 

 

CCI 

 

FYI 

CCI 

& 

FYI 

 

Total 

STUDENT SYMBOLIC 

REPRESENTATION A 

RESULTS 

 

Valid 17 5 1 13 7 1 44 

Invalid w/ 

Appropriate Feedback (AF) 

2 0 0 0 0 0 2 

Invalid w/ 

Inappropriate Feedback (IAF) 

3 0 2 2 2 0 9 

Total 

 

22 5 3 15 9 1 55 

STUDENT SYMBOLIC 

REPRESENTATION B 

RESULTS 

 

Valid 1 0 0 0 0 0 1 

Invalid w/ 

Conditional Feedback (CF) 

2 2 1 2 3 0 10 

Invalid w/ 

Non-Conditional Feedback (NCF) 

19 3 2 13 6 0 44 

Total 22 5 3 15 9 1 55 

 

STUDENT SYMBOLIC 

REPRESENTATION C 

RESULTS 

 

Valid 2 0 0 0 0 0 2 

Invalid w/ 

Conditional Feedback (CF) 

2 0 1 5 3 0 11 

Invalid w/ 

Non-Conditional Feedback (NCF) 

18 5 2 10 6 1 42 

Total 22 5 3 15 9 1 55 

 

STUDENT SYMBOLIC 

REPRESENTATION D 

RESULTS 

 

Valid 2 0 0 0 0 0 2 

Invalid w/ 

Appropriate Feedback (AF) 

7 2 2 11 5 1 28 

Invalid w/ 

Inappropriate Feedback (IAF) 

13 3 1 4 4 0 25 

Total 22 5 3 15 9 1 55 

 

STUDENT SYMBOLIC 

REPRESENTATION E 

RESULTS 

 

Valid 14 3 2 12 7 1 39 

Invalid w/ 

Appropriate Feedback (AF) 

2 1 0 1 0 0 4 

Invalid w/ 6 1 1 2 2 0 12 
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Inappropriate Feedback (IAF) 

Total 22 5 3 15 9 1 55 

 

STUDENT SYMBOLIC 

REPRESENTATION F 

RESULTS 

 

Valid 5 0 0 4 2 0 11 

Invalid w/ 

Conditional Feedback (CF) 

5 4 2 8 4 0 23 

Invalid w/ 

Non-Conditional Feedback (NCF) 

12 1 1 3 3 1 21 

Total 22 5 3 15 9 1 55 

6.3.3. Interview results of the p-value conditional nature. The results of the 

survey data showed that not all the participants could correctly identify verbal and 

symbolic interpretations of the p-value. In order to investigate more deeply about 

teachers reasoning around a conditional probability, seven interviewees were chosen 

particularly because they showed a variety of responses to the Drug and Car Task. A 

summary of the survey responses for the seven interviewees can be found in Table 36 and 

37. 

Table 36. Results of the Drug Task for the Interviewees. 

Participant Responses to Drug Task Response 

Tod  

▪ Student Verbal Interpretation A VALID 

▪ Student Verbal Interpretation B VALID 

▪ Student Verbal Interpretation C VALID 

▪ Student Verbal Interpretation D INVALID (AF) 

▪ Student Verbal Interpretation E INVALID (AF) 

▪ Student Verbal Interpretation F VALID 

Angie  

▪ Student Verbal Interpretation A VALID 

▪ Student Verbal Interpretation B INVALID (NCF) 

▪ Student Verbal Interpretation C INVALID (IAF) 

▪ Student Verbal Interpretation D INVALID (IAF) 

▪ Student Verbal Interpretation E INVALID (AF) 

▪ Student Verbal Interpretation F INVALID (NCF) 

Sean  

▪ Student Verbal Interpretation A VALID 

▪ Student Verbal Interpretation B INVALID (CF) 

▪ Student Verbal Interpretation C INVALID (AF) 

▪ Student Verbal Interpretation D VALID  

▪ Student Verbal Interpretation E INVALID (AF)  
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▪ Student Verbal Interpretation F INVALID (CF) 

Carol  

▪ Student Verbal Interpretation A VALID 

▪ Student Verbal Interpretation B INVALID (NCF) 

▪ Student Verbal Interpretation C INVALID (IAF) 

▪ Student Verbal Interpretation D INVALID (IAF) 

▪ Student Verbal Interpretation E INVALID (IAF) 

▪ Student Verbal Interpretation F INVALID (NCF) 

Jane  

▪ Student Verbal Interpretation A VALID 

▪ Student Verbal Interpretation B INVALID (CF) 

▪ Student Verbal Interpretation C INVALID (IAF) 

▪ Student Verbal Interpretation D INVALID (IAF) 

▪ Student Verbal Interpretation E INVALID (AF) 

▪ Student Verbal Interpretation F INVALID (NCF) 

Phil  

▪ Student Verbal Interpretation A INVALID (AF) 

▪ Student Verbal Interpretation B INVALID (CF)  

▪ Student Verbal Interpretation C INVALID (IAF) 

▪ Student Verbal Interpretation D INVALID (IAF) 

▪ Student Verbal Interpretation E INVALID (AF) 

▪ Student Verbal Interpretation F INVALID (CF) 

James  

▪ Student Verbal Interpretation A INVALID (AF) 

▪ Student Verbal Interpretation B INVALID (CF) 

▪ Student Verbal Interpretation C INVALID (IAF) 

▪ Student Verbal Interpretation D INVALID (IAF) 

▪ Student Verbal Interpretation E INVALID (IAF) 

▪ Student Verbal Interpretation F INVALID (NCF) 

 

Table 36 indicates that the interviewees gave different results on their impressions for 

verbal interpretation of the p-value. Almost all the interviewees marked Student A’s 

verbal interpretation as valid with the exception of Phil and James. Even though Phil and 

James marked Student A’s verbal interpretation as invalid, they provided appropriate 

feedback that they understood the interpretation of the p-value and gave an explanation 

that commented on the context of the interpretation. Two of the interviewees incorrectly 

marked other interpretations as valid. Tod marked four (i.e. A, B, C, and F) of the six 

verbal interpretations as valid which leads me to believe that he possessed minimal 

understanding of a p-value’s verbal interpretation. Sean was another who marked Student 
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D’s verbal interpretation as valid, but whose explanations for invalid interpretations 

contained evidence of conditional reasoning. Jane, Phil, and James marked all the other 

invalid interpretations correctly and made some note in their explanations that they were 

thinking about conditional probability in at least one of the invalid interpretations. The 

only exception was Angie and Carol who did not make any mention of concepts related 

to conditional reasoning for verbal interpretations they considered invalid. 

Table 37. Results of the Car Task for the Interviewees. 

Participant Responses to Car Task Response 

Tod  

▪ Student Interpretation A VALID 

▪ Student Interpretation B VALID 

▪ Student Interpretation C VALID 

▪ Student Interpretation D INVALID (NCF) 

▪ Student Interpretation E VALID 

▪ Student Interpretation F VALID 

Angie  

▪ Student Interpretation A VALID  

▪ Student Interpretation B INVALID (NCF) 

▪ Student Interpretation C INVALID (NCF) 

▪ Student Interpretation D INVALID (CF) 

▪ Student Interpretation E VALID 

▪ Student Interpretation F INVALID (CF) 

Sean  

▪ Symbolic Representation A INVALID (AF) 

▪ Symbolic Representation B INVALID (NCF) 

▪ Symbolic Representation C INVALID (NCF) 

▪ Symbolic Representation D INVALID (CF) 

▪ Symbolic Representation E VALID 

▪ Symbolic Representation F INVALID (CF) 

Carol  

▪ Symbolic Representation A VALID  

▪ Symbolic Representation B INVALID (NCF) 

▪ Symbolic Representation C INVALID (NCF) 

▪ Symbolic Representation D INVALID (NCF) 

▪ Symbolic Representation E INVALID (IAF) 

▪ Symbolic Representation F INVALID (NCF) 

Jane  

▪ Symbolic Representation A VALID 

▪ Symbolic Representation B INVALID (NCF) 

▪ Symbolic Representation C INVALID (NCF) 

▪ Symbolic Representation D INVALID (CF) 
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▪ Symbolic Representation E VALID 

▪ Symbolic Representation F INVALID (NCF) 

Phil  

▪ Symbolic Representation A VALID  

▪ Symbolic Representation B INVALID (CF) 

▪ Symbolic Representation C INVALID (CF) 

▪ Symbolic Representation D INVALID (CF) 

▪ Symbolic Representation E VALID 

▪ Symbolic Representation F INVALID (NCF) 

James  

▪ Symbolic Representation A VALID 

▪ Symbolic Representation B INVALID (NCF) 

▪ Symbolic Representation C INVALID  

▪ Symbolic Representation D INVALID 

▪ Symbolic Representation E VALID 

▪ Symbolic Representation F INVALID (CF) 

 

Table 37 also showed varied responses by the interviewees regarding their 

understanding of the symbolic representations of the p-value. In the symbolic 

representation, Tod was the most inconsistent who marked five of the six symbolic 

representations as valid. This once again showed that he struggled in understanding 

notions of p-value. Carol was another participant who incorrectly marked representation 

E (explicit conditional statement) as invalid. She also made no mention of conditional 

reasoning in her explanations. Tod and Carol in particular struggled the most with the 

symbolic and verbal interpretations in general even during the interviews, which is 

potentially due to their difficulty understanding of the p-value in general. The other five 

interviewees all marked the same symbolic representations as valid (i.e. A and E) and the 

rest as invalid. Furthermore, these five interviewees noted issues with conditional 

reasoning in at least one of their invalid explanations.  

After reviewing their interview and survey data, a key theme that emerged was 

how the interviewees were coordinating their understanding of the verbal interpretation 
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with the symbolic representations of the p-value. The verbal interpretations of the p-value 

are standard practice in introductory statistics classes, but a symbolic representation is 

rarely discussed in detail. Surprisingly, the symbolic representation of a p-value is 

prominent in upper-division statistics classes when discussing theories of hypothesis 

testing. Being current (or future) teachers of statistics, the participants in this study are 

individuals we expect to have a deeper knowledge of statistics and probability than 

average introductory statistic students. Therefore, part of a teacher’s content knowledge 

should be the ability to articulate how verbal and symbolic representations of a p-value 

are related. This section will highlight areas in the interview data where we see how 

teachers’ think about the relationship between the verbal and symbolic representations. 

First, I present data showing two interviewees (Carol and Tod) who struggled with their 

understanding of verbal and symbolic representations of the p-value. Second, I present 

data showing the work of two interviewees (Angie and Phil) that illustrated strong 

understanding of the relationship between verbal and symbolic representations of the p-

value. Third, I will present data where two participants (Sean and James) had conflicted 

views on the use of a symbolic representation in the classroom. Lastly, I will present data 

showing one particular interviewee (Jane) who illustrated a cognitive shift in her 

understanding of the p-value’s conditional reasoning that resulted from her comparing 

verbal and symbolic representations. 

6.3.3.1. Struggling with verbal and symbolic representations of a p-value. 

During the interviewers, two participants’ work on the verbal and symbolic 

representations showed they struggled with the understanding of a p-value. Both these 
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interviewees had a strong background in mathematics, but minimal work in statistics 

and/or teaching statistics. Carol was a masters student in mathematics and mathematics 

education and Tod was a doctoral student in mathematics. During the interview, it was 

quite clear that they struggled describing the true meaning behind a verbal interpretation 

where most of their responses focused on a reiteration of a definition or their 

understanding about a hypothesis testing procedure. When asked to discuss symbolic 

representations, they struggled further due to their inability to understand the meaning 

behind the p-value’s conditional reasoning, conditional notation, and/or ideas relations to 

sampling distributions. 

The first interviewee we will look at is Carol who showed a strong preference to a 

procedural approach to a p-value. When first asked about her definition of the p-value, 

she provided the following response below. 

Interviewer: So, the first question before we get into the survey, can you describe 

for me your definition of a p-value? 

Carol: It's like the probability that...it's like the amount of evidence...per 

verbatim? 

 

Interviewer: Yeah sure. I just want to know what is your answer. If you think it 

is a textbook answer that's fine too. 

Carol: I think it's a textbook answer. I don't really know what it means, but I 

know that it's like the amount of evidence against the null or in favor of the 

alternative. Something like that. 

In her response, we see that Carol is very hesitant about her understanding of the p-

value’s definition. She even explicitly exclaims that she does not know what it means, but 
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knows it is measuring evidence against the null. While she is correct in saying that the p-

value does provide evidence against the null, she does not provide further information 

beyond her understanding of the procedure.  

Tod gave a similar response when asked about his definition of the p-value. When 

prompted on how he would tell a student what a p-value is, he struggled with the overall 

definition as seen in the excerpt below. 

Interviewer: So, assume I am a student and I ask you what is a p-value Tod? Can 

you tell me what it is? 

 

Tod: So, the p-value is the probability that null hypothesis can be rejected...no. 

 

Interviewer: No that's fine. Go ahead. Take your time. 

 

Tod: I'm trying to think. The p-value is...reject...the probability that the null 

hypothesis is true right? I guess you're not supposed to answer that. 

 

Interviewer: I'm just wondering what do you think. 

 

Tod: I'm trying to remember now. It's the probability that... 

 

Interviewer: If you want to use some of this... 

 

Tod: The probability that the null hypothesis is true. 

 

Interviewer: So, you are saying it is the probability that the null hypothesis is 

true? 

 

Tod: Right. 

 

Here we see Tod’s understanding of the p-value as the probability of the null hypothesis 

being true instead of thinking about it as the probability of the observed sample under the 

null hypothesis. This is a common misconception found in the research and was seen in 

the data found in the Graduate Student Task. This misconception becomes a major issue 

for him and when asked to respond to other verbal representations he would fall back on 
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the idea that p-value’s measure the probability of the null hypothesis, which becomes a 

major crux to his understanding. 

As Tod and Angie progress to the symbolic notation, it started to become clear 

that conditional reasoning of the p-value and conditional probability (in general) was a 

major hurdle in their understanding of the p-value. Angie and Tod both encountered 

different struggles when discussing the symbolic notation. Angie for example focused 

very much on her procedural understanding of the p-value. This can be seen when she 

discussed the first symbolic representation (Student A) that uses a z-score notation. 

Interviewer: So why do you say that’s (Student A) valid? 

 

Carol: Well okay, we are comparing our...yeah the p-value is a probability. It is 

an area under the curve. And so when you are trying to find the probability of 

this guy under here, z = 1.414. I am going to assume that this is the test 

statistic. 

Interviewer: Yeah. 

Carol: So, this is the test statistic and this symbolic representation here is asking 

us to find this guy right here. This guy right here 1.414. Is asking us to find 

the probability that we get a value larger than our test statistic right here. And 

that's I guess are the links. 

Here we see Carol discuss the symbolic representation of Student A and how her 

validation focuses on specific concepts related to hypothesis testing procedures. She uses 

the words like tests statistic and area under the curve, which is reminiscent of ideas 

related to conducting a hypothesis test procedure where you find a test statistic and mark 
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p-value regions. While she says Student A is valid, she never remarks about the 

importance of conditioning on the null hypothesis but only on getting value’s larger than 

the test statistic. It was later revealed in the interview while discussing Student E’s 

symbolic representation (explicit conditional) that she struggled understanding 

conditional reasoning. 

Interviewer: So, this one (Student E) you say is invalid? 

 

Carol: Yeah. 

 

Interviewer: And it is the same reasoning because it is not?  

 

Carol: So, I am seeing p and p hats here and I am thinking like there is no p 

distribution that I know of and in order for us to calculate the p-value we have 

to know the distribution and that is how we got the test statistic and none of 

the...that's how we get our p-value. And none of the or...we have to know our 

distribution and that is how we get our test statistic and our p-value. But none 

of these have any indication what the distribution is because we are comparing 

this guy right here (points at Student E), we are comparing the probability that 

our population proportion is 1/2 given that our sample is 0.6. Like we are 

asking for a probability of a probability, but we're not asking anything about 

the distribution or the data. It is giving us something about the data and it is 

giving us something about population but we're not, it doesn't look like we are 

going to use this to make an inference about anything. 

Interviewer: So, that is the same reason to both of these (Student E and F)? So, 

this one (Student F) doesn't have a conditional though? 
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Carol: Right, but we don't have a 𝑝̂ distribution like… 

 

Interviewer: So, when you see the z, what does that tell you about the 

distribution? 

 

Carol: That it's standard normal. 
 

The excerpt above shows Carol struggling with her understanding of the underlying 

sampling distribution of proportions and how it relates to the observed sample and the 

population proportion. She notes that the notation is difficult for her because it gives 

information about the population proportion and the sample proportion, but says nothing 

about a distribution or the data. This shows evidence that she does not recognize an 

underlying sampling distribution of sample proportions under the null hypothesis. When 

she makes a reference to notations like Student A (i.e. z-score representation) she knows 

that distribution is standard normal, but I conjecture that she still does not see the 

underlying sampling distribution that is the foundation of the hypothesis testing process. 

Furthermore, she also mentions how she is unaware how she is going to make an 

inference using the information that is given. This shows a struggle she has with the role 

conditional reasoning of the p-value and sampling distributions plays in a hypothesis test 

procedure. 

Prior to asking Tod about the explicit conditional representation for the p-value 

(i.e. Student E), it was revealed that he had no knowledge of the conditional notation as 

seen in the excerpt below when he discussed Student C’s symbolic representation. 

Interviewer: How are you seeing this symbol down the middle (line in the 

conditional)? 

Tod: This one (points at the line in the conditional statement)? 
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Interviewer: Yeah, the little line down the middle. 

Tod: Oh, reject the null hypothesis such that p is...so they are saying random 

sample showed 60 so I assume the preference level is 60. 

When asked about the meaning behind the line in the conditional notation, Tod described 

it to mean “such that” notation. This is in contrast to the meaning of the bar in conditional 

probability, which is supposed to symbolize the break between the assumption and event 

whose probability is being measured. His confusion is a direct result of his knowledge of 

mathematical set notation where bars represent “such that” in set theory. Probing further 

revealed that he had done very little work with conditional probability in general. This is 

not surprising considering his background is pure mathematics. This resulted in him 

struggling further with the rest of the task itself because it was his first time thinking 

about the conditional probability notation. 

Because Carol and Tod’s understanding of p-value was so limited, it was very 

difficult for them to further discuss how this would apply to student learning that went 

beyond a restating of a definition of the p-value’s procedural use. The work of Carol and 

Tod illustrate the difficulties of new instructors first learning notions of conditional 

probability and p-value. This is in part due to missing pieces of their statistical 

knowledge. The work of these two participants are contrasting examples to those done by 

the interviewees, Angie and Phil, who in the next section show a robust understanding of 

conditional reasoning, symbolic notation, and p-value.  

6.3.3.2. Relating verbal and symbolic representations of a p-value. Two of the 

interviewees showed a strong initial understanding of the conditional nature of the p-
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value. The first was Angie, a GTA and doctoral candidate in statistics, who expressed a 

clear understanding that a p-value measures the probabilistic relationship between an 

observed result and the null hypothesis. Angie showed a strong understanding of the 

importance of the conditional nature in the literary interpretation of the p-value. She 

correctly identified the valid interpretations of the p-value and provided correct 

explanations for invalid interpretations. During the interview when Angie was asked to 

clarify how she viewed the relationship between a p-value and conditional probability, 

she gave the following response. 

Angie: I would say here, first off, we are trying to test under the assumption that 

the drug is not effective. And we don't actually have a probability for that, 

that's the assumption we have going in. So, we are not interested in assessing 

the likelihood of that statement. Then we want to do from there, under the 

assumption that the drug has no effect, do we see the results that we got are 

consistent with that belief or are they more extreme and probably in the 

direction of drug effectiveness that might indicate that our initial assumption 

was incorrect. So, we want to find evidence of our initial assumption. We see 

here that the results we got under our initial assumptions would only happen 

about 4% of the time, so there is two situations. One where in the extreme 

case, 4% results that could happen if the drug weren't effective or two the drug 

is actually effective. How effective has to be determined. That drug 

effectiveness is the reason we got this extreme results. 
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In Angie’s excerpt above, we see her using her own interpretation of the p-value in the 

context of the Drug Task. In her explanations, she focuses on the p-value as a measure of 

the relationship between the observed results and the null hypothesis (e.g., the drug is not 

effective) through colloquial terms. For example, she used words like belief to describe 

the concept of assuming the null hypothesis in a hypothesis testing process. She also used 

consistency as a way to describe how researchers measure the behavior of observed data 

under a null hypothesis.  

The second interviewee, Phil, also showed a strong understanding of the 

conditional nature of the p-value. During the interview, Phil was particularly adamant 

that the process of hypothesis testing is built around the idea of assuming the null 

hypothesis and computation of the p-value is a measure of the relationship between the 

observed result and a null hypothesis. Phil, like Angie, focused on how the p-value itself 

is a measure of the consistency between the observed sample and the null hypothesis as 

seen in the excerpt below.  

Phil: Oh yeah. It's the way...I've wrestled with the wording to make it less 

‘mathy’ and more intuitive for years. And one of the ways, and I might go 

back to this one too.  I treat is as an agreement between the observed and null 

hypothesis. The less agreement the more difference. The more agreement, the 

more you can believe the null. I am using terms that are not statistically 

correct. Cause you use believe the null or...but the idea is that you have a 

small p-value, that means that there is a little bit of agreement or not much 

agreement with what you observed and what you thought you should have 
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observed under the hypothesis. So, you have to have both. That's why I got so 

excited in your survey whenever I saw a conditional probability. Because that 

is the whole point, it is conditional probability. Given this, what’s the chance 

this happens. 

In Phil’s excerpt, we see how he elaborates more on the importance of the 

conditional reasoning of a p-value and his attempt to make the definition “less mathy.” 

Unlike Angie, Phil, used words like agreement and difference to describe how the p-

value is measuring the relationship between what was observed and the null hypothesis. 

While the words used by Phil are different from Angie they both, in essence, describe in 

their own words what a p-value is meant to measure. Unlike Angie, Phil has a long 

background of teaching introductory statistics in community college with a background 

in mathematics and mathematics education. As he explains his interpretation of the p-

value, we see more of a push towards a non-standard interpretation of a p-value that he 

believes would be more applicable to students. This reveals his pedagogical practice and 

knowledge of student content that is a result of teaching statistics for several years. 

Analysis of both Phil and Angie’s interviews showed a strong understanding of 

the symbolic representation of the p-value. Both correctly identified the invalid and valid 

symbolic representations in the Car Task. They also gave thoughtful responses for the 

invalid symbolic representations of the p-value by focusing on the lack and/or misuse of 

the conditional statements. This was more apparent in the interview as they discussed the 

relationship between the symbolic and verbal representations of the p-value. For 
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example, below is an excerpt showing Angie’s discussion of why she believed Student A 

and Student E were both valid representations of the p-value.  

Interviewer: How would you write it? 

Angie: So unfortunately in the course I teach, because it is so low level we don't 

use this type of notation very often. I had one instructor who used it and we 

didn't use it much in the context of p-values. We only use it in the context of 

talking about really basic probability. You have probability A here and 

probability B. What is the probability of A and B. Stuff like that so we never 

got into this notation. If I were to be very thorough I would say E probably. A 

is also valid because it is addressing the values that it is looking at the 

standardized values other than some other value. So, it is inherent in that 

saying conditioned on some values. E is the best here the probability of 

getting this extreme results of 60%. Yeah the probability this extreme results 

under the assumption of our null hypothesis that the proportion is actually 

50% is 0.08. So, that would definitely be the best one there. I would say is not 

bad because by calculating the z value they are kind of stating that you know 

the proper proportion is 50% and we are 1.4 standard deviations above that. 

From Angie’s discussion, we gleam deeper insight into why she thought Student 

A and E symbolic representations were both valid. For Student E, Angie believed the 

symbolic representation was valid and linked the symbolic representation to her verbal 

interpretation of the p-value in this context. For Student A, Angie focused on the implicit 

assumption of the null hypothesis in the computation of the z-score.  
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Phil shared a similar kind of argument as Angie when describing the validity of 

Student A’s symbolic representation as shown in the excerpt below. 

Phil: So, if you go back to our original definition of a p-value, the chance of data 

or more extreme under a null hypothesis. Under a null hypothesis, then if you 

set it up intuitively and hopefully with a big ole graph on the board or a graph 

on their notebooks, then you can kind of work your way through these and see 

which ones tie to it. Like that number...the first one there. Student A's choice. 

The chance that z is bigger than or equal to 1.414. So, nowhere in that 

statement is there a conditional probability. There is no condition of a given 

null hypothesis. The thing about it is, is I wouldn't have that statement by 

itself on the board. That would be right next to a curve with 0 in the middle. 

Interviewer: Alright 

Phil: And then under that, you'd have what corresponds to 0. What corresponds to 

0...this is a...hold on let me read the context again. Well actually, it would be 0 

difference because they talk about hybrid over gasoline powered. You'd have 

the z-score axis and then under that you'd have the contextual axis.  

Interviewer: Alright. 

Phil: Literally, that is enough. That is enough because you've got the context in 

the curve. The sampling distribution showing the null distribution of the 

results. There is no difference in preference between these two things and then 

your data landed at 1.414 and more extreme is taken care off by the greater 

than sign. 



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  188 

In Phil’s discussion, we see him discussing properties of the normal distribution. He also 

expresses how, in the classroom, he would not simply just use a z-score symbol without 

first making it explicit that the z-score is a consequence of assuming a null hypothesis. He 

does this by first describing the null hypothesis in the context. He then describes that in 

spite of the fact that Student A’s use of a z-score does not show a conditional statement, 

the representation has an underlying null hypothesis being implicitly assumed by also 

discussing how he would accompany the notation with a graphical representation on the 

board. Phil’s approaches the question once more pedagogically by relating his discussion 

to how we would present the material in a classroom. 

In regards to Student E, Phil also showed a clear understanding on how a verbal 

interpretation relates to a symbolic representation of the p-value. The excerpt below 

illustrates Phil mapping the two representations to show the connections. 

Phil: I like E because number one, the condition, the assumption is in the right 

place.  

Interviewer: Alright. 

Phil: 0.5 is the assumption. It should be after the little vertical slash. And the p-

hat being the 0.6 should be in front of the slash if you are going pure symbols. 

It should be greater than or equal to not just got equal to. You are getting 

away from center (the middle of the distribution). 

The transcripts from of Angie and Phil highlight a very robust understanding of 

the conditional nature of the p-value through their description of the verbal and symbolic 

representations. Even though the both showed a strong understanding of the symbolic 
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representation and saw the value of representing a p-value using a conditional probability 

statement, their pedagogical vies of these ideas is noteworthy. Phil expressed a lot of 

ideas related to his ways of teachings these ideas while Angie herself focused largely on 

the assessment of the statements. Furthermore, both interviewees liked the symbolic 

representation of the p-value as a conditional statement, but had very different views of 

its use in the classroom. 

One question that came up during the interview was whether Angie felt using a 

conditional probability to represent a p-value in her classroom was something she would 

advocate. The excerpt below illustrates the kinds of pedagogical choice she would make 

if she were teaching a symbolic representation in the classroom.  

Interviewer: Would you be surprised if they (students) actually put E up there? 

Angie: If I were actually teaching this (Student E) notation I would probably 

stress conditional notation. So, I would be quite happy with them putting E 

but would be quite content with F (no conditional statement).  

Interviewer: …in E you stress this conditional statement but in A you don't.  

Angie: Yeah. 

Interviewer: Can't you just say condition on the fact that since you are using a 

normal distribution, your center is 0. 

Angie: Yeah that is what I was stating in A. So, the difference in F and A, you 

need this assumption to get to that point that the probability z is greater than 

whatever is 0.08. But with F, if you just presented me with this probability 

statement, the probability that 𝑝̂ is greater than 0.6, I actually can't assess that 
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so I actually don't know what that is equal to. Even with more information, 

knowing this other stuff, if I don't know the value p I can't assess that. If 

somebody gave me a response from Student A without everything right of the 

equal sign, I could say oh that's equal 0.08. That's just a normal distribution. 

Interviewer: Okay so here it is kind of similar to a question I gave you in the 

very first. What would you think would be a necessary and sufficient way that 

you want your students to write the p-value symbolically? 

Angie: Symbolically I would actually say something close to what student C was 

doing. Conditioning on the null hypothesis. Probability of 𝑝̂ greater than equal 

to 0.6 conditioned on just H0. That would be sufficient for me. 

In the above exchange, Angie seems to take some considerations on the different ways 

she wants her students to write a p-value symbolically. While she favored the conditional 

probability as her overall choice (Student E), she felt it was necessary to allow several 

freedoms for her students. One such freedom is the necessity of the conditional form of 

the p-value. When probed about why she felt Student A’s representation is appropriate 

even though it is not written as a conditional statement, she focuses on the importance of 

an assumption and how it is necessary to compute a probability. She then uses this 

reasoning to express how she finds issues with Student F as problematic because it is not 

clear what assumption is being made in order to find the probability. When finally asked 

about what she thought would be a reasonable expectation for her students, she still 

expressed that a conditional statement was what she desired but with the added freedom 

that a verbalization of a null assumption would be appropriate rather than strict symbols.  
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Phil strongly favored Student E’s approach on the use of the conditional 

probability statement. In spite of this, Phil also seemed very hesitant on the use of 

symbols. This is seen in the exchange below when asked about his general view of a 

symbolic representation for the p-value.  

Interviewer: So, if you were to give me just your general abstract view of what 

the symbolic representation should be? 

Phil: So, I do class-by-class depending on how comfortable they seem with...like 

my classes will change term to term depending on my audience. I don't teach 

the exact same thing every term. 

In the excerpt above, we see how Phil comments that deciding whether to use a symbolic 

representation depended highly on the audience of the class. The fact that he has the 

knowledge of his students and his understanding of symbolic representations allowed him 

to take more liberties in making pedagogical choices. So, decisions whether teaching 

specific symbolic representations versus sticking with verbal representation in the 

classroom was based his personal view of the needs of his students. 

Phil and Angie represent examples of two participants who showed a strong 

understanding of the verbal and symbolic representations of the p-value. Their ability to 

relate the different representations illustrates a specialized kind of knowledge of the p-

value that is not common amongst introductory statistics students, but is one that is 

appropriate for teachers of statistics. Furthermore, their understanding and ability to 

relate the two representations also revealed ways it might support the type of pedagogical 

decisions they choose to make in the classroom.  
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6.3.3.3. Conflicting views of the symbolic representations of a p-value. In 

addition to Phil and Angie, two notable participants were Sean and James. Sean and 

James showed a strong understanding of the conditional nature of the p-value during their 

discussions of the interview.  

The interviewee Sean felt that a symbolic representation was something that 

should be written in the classroom. Sean was one of the participants focused deeply on 

how p-values measured the likelihood of a sample in relation to a null assumption. Sean’s 

discussion of the symbolic representation showed a deeper understanding of his 

conditional reasoning particularly when discussing why conditioning on the null 

hypothesis was important as shown in the excerpt below. 

Interviewer: So, this whole idea, if they were to represent it correctly you would 

want to think of it like a conditional statement? 

Sean: Because I mean the probability that without the context it doesn't mean 

anything. I mean the probability that there is 3 oranges in your garbage can is 

kind of like that. 

Interviewer: Okay  

Sean: I mean if you said the probability that there is 3 oranges in your garbage 

can given that you live in Florida. 

Interviewer: So here is a question I was asking to people especially if they taught 

statistics. We don't usually write it as a conditional probability, but it seems to 

me from your understanding it should be written as a conditional.  

Sean: Yes. 
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In the excerpt above, we see Sean discussing why it is important to state the null 

assumption. He uses the context of oranges in the garbage. In his work, he describes the 

event of finding oranges in a garbage can to illustrate the importance of conditional 

probability by describing how the location of the garbage can affect the probability of the 

certain events.  

Sean is also a notable case because he felt strongly that Student A’s symbolic 

representation (i.e. z-score version of a p-value) was invalid. There was evidence that 

Sean had a strong procedural understanding of hypothesis testing so it was surprising that 

he found it to be invalid considering Student A’s symbolic representation is a common 

representation of the p-value in introductory statistics classes. When probed further 

regarding why he thought it was invalid, Sean provided the following reasoning shown 

below. 

Sean: Just that he (Student A) isn't making an assumption that the null is true. 

 

Interviewer: Okay. 

Sean: That is my sticking point. 

Interviewer: So, some people would consider this (Student A) to be valid. Just 

out of curiosity. 

Sean: I can see it is because coming from just a strictly math stat point of view, 

the probability that z is greater than that on a normal distribution, a standard 

normal distribution, is 0.08. I can see how that can be valid.  
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Interviewer: So, one of the things I think this is typically how we would write it 

in like intro stat course. So, I was wondering if you think...so you said it was 

invalid but now you are saying it is valid? 

Sean: I can see how it is valid, but then again I am at the sticking point of the 

conditional probability. 

Here we see Sean requiring that any symbolic representation of a p-value must require a 

conditional statement. This type of view almost hinders his understanding that when 

applying z-scores, there is an implicit null assumption being applied into the 

computation. While he states that he does see the potential for Student A’s symbolic 

representation, he feels quite strongly that due to his understanding of the conditional 

nature of the p-value just using a z-score representation of a p-value feels lacking. This is 

different from the ideas discussed by Angie and Phil who recognized Student A’s 

symbolic representation as acceptable because they potentially have a deeper 

understanding of the meaning behind the transformation. Here we can see how a strong a 

need for a conditional statement can prove to be detrimental to one’s own understanding. 

In contrast to Sean, James had a different opinion on the symbolic representation 

of the p-value. During the interview, James demonstrated in his survey and interview that 

he understood that the p-value is a conditional probability. When asked about regarding 

his pedagogical opinion on the usefulness of a symbolic representation in the classroom 

showed a distinct dislike of its usage in the classroom as illustrated in the excerpt below. 

Interviewer: So, I know like as far is the symbolic cases, to see a student write 

this one (Student E). Do you think that's good? 
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James: I wouldn't think that. I would think they wrote it (the symbolic notation). 

Interviewer: Really? 

James: I mean when student write down symbolic things in math classes it 

doesn't tell me anything about what they got. 

Interviewer: Okay. But as far as a teacher is concerned do you think they should 

understand what that actually means? 

James: Yes. But, I don't know how to check that other than asking them one-on-

one or having them write down in sentences what it actually means and they 

complain about me. You made a sentence. This is a math class. 

In the excerpt, we see James explain how symbolic notation might prove to be unfruitful 

in assessing a student’s understanding of a p-value. He discusses how a symbolic notation 

itself could potentially be something students memorized, but may not conceptually 

understand. This illustrates he uses his knowledge of students as a way to justify whether 

a symbolic representation might not be appropriate in the classroom. 

These two conflicting views on the usage of a symbolic form of the p-value in the 

classroom illustrate different beliefs amongst statistics teachers. Sean’s demonstrates a 

person with a strong understanding of a p-value who values the importance on 

formalization as an important idea in developing understanding of particular concept. 

This potentially stems from his background as a doctoral statistics student where notation 

plays an important of his understanding. James on the other hand is a community college 

instructor with greater experience teaching introductory statistics. His knowledge of 



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  196 

students and what he believes is accessible and necessary knowledge guides his 

pedagogical practices  

6.3.3.4. Developing an understanding of conditional reasoning. During analysis 

of the interview data, one notable interviewee was Jane who showed a distinct shift in her 

thinking of the conditional nature of the p-value. Jane was a statistics teacher who 

showed a strong understanding of the verbal interpretation of the p-value. She had a 

background in teaching statistics and was currently teaching at a community college and 

four-year university with a Masters in Mathematics Education. The survey data showed 

she had a strong understanding of conditional reasoning and was able to correctly identify 

correct verbal and symbolic representations of the p-value. When first asked about her 

definition of the p-value during the interview she gave the following response, 

Jane: Okay so the p-value would be the under this null hypothesis we have this 

behavior of a curve. Then we get a sample we have a certain statistic that 

comes out and the p-value describes how extreme that value is under that 

assumption. So, the p-value represents this area under the curve being extreme 

or more extreme than that sample value. 

The response given by Jane coincides with a standard interpretation of a p-value that we 

would expect from students in introductory statistics courses. Her use of words like 

extreme, statistic, and null hypothesis tend to be key things teachers look for when 

assessing a student’s verbal interpretation of a p-value. When asked about the symbolic 

representation during the interview, there was a notable shift in the conversation where 

she discussed how her understanding of the verbal interpretation related to a symbolic 
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representation of a p-value. This can be seen in the excerpt below where she discusses her 

thoughts on Student E’s representation. 

Jane: Yeah. I liked E a lot in that it has idea that it has the null in there. The null 

assumption that we are given this population proportion of 0.5 and then what 

is the probability of having a sample greater than or equal to 0.6. Like with the 

curve that maps kind of what I did there but built under 0.5 being our 

population out here at 0.6. The probability of being to the right of there. 

Here we see Jane give a thorough description of the symbolic representation for 

Student E and how it relates to a verbal interpretation of a p-value. She also linked 

the symbolic representation to how she imagines the p-value is represented in a 

distribution where she imagines 0.5 as the center, 0.6 as the location of the 

observed sample, and the tail region as the p-value. While she did like the use of a 

conditional statement of Student E, that did not hinder her understanding and 

assessment of Student A’s work as seen below. 

Jane: And A, although it (Student A symbolic representation) doesn't mention the 

null at all it kind of is able to separate from it by moving to the standard normal 

curve which I like in that. 

Here we see Jane discussing the implicit null assumption that is necessary in order to 

transform the observed sample proportion to the standard normal curve, similar to 

explanations offered by Phil and Angie. This is quite different from the work of Sean 

above who almost felt the need for a conditional statement.  
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The interesting moment came when Jane asked if she thinks the p-value should be 

written as a conditional statement, Jane makes the following remarks. 

Jane: Yeah like...I was going to say I can see doing it with the 244 students but 

they also don't see conditional probability at all in 244 so it feels even more 

disconnected. I like the conditional probability way of writing it. I can see 

actually getting the students to do it. 

Interviewer: Okay. 

Jane: Yeah with F, I can’t tell that if students wrote it that way they do 

understand what it represents. Probably in the back of their heads, there is this 

(points at the conditional probability) they just aren't representing it in that. 

Interviewer: So, that leads to my question. Do you think there is a relationship 

between how we view p-values and its notion as a conditional probability? 

Like is it a conditional probability or is it not a conditional probability? 

Jane: Yeah, I would say it is a conditional probability. I never thought of it that 

way, but whenever we talk about a p-value we do have this given assumption 

of the null being true. 

In the last statement, we see Jane mention that prior to the study she never viewed 

the p-value as a conditional statement. As she ponders the ideas of a symbolic 

representation, she recalls the ideas of the verbal interpretation. Through the comparison 

of the symbolic representations with a verbal interpretation of a p-value, Jane discovers 

that p-values are conditional probabilities. This becomes a moment of clarity regarding 

the conditional nature of the p-value. This emergence of new knowledge required her to 
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coordinate the meaning of a p-value with the concept of conditional probability. What 

makes this particularly interesting is that through Jane’s task of comparing different 

representations, we see her develop a new type of understanding of the p-value she did 

not originally possess. We also see a how this new understanding affects her pedagogical 

decisions in the classroom in her first statement where she mentions that she likes the 

ideas of using conditional probability to write a p-value in her teaching practice. This is 

primarily in light of her new understanding of a p-value. This is in contrast to the 

pedagogical view of James who believes there is no value in understanding the 

relationship between the symbolic and verbal interpretations of p-value. Furthermore, we 

also see important pedagogical ideas discussed by Jane who discusses how she might 

assess students who simply write a p-value symbolically without a conditional statement 

(i.e. Student F). She notes that it is hard to assess what exactly the student is thinking, 

showing the value of formalizing the p-value symbolically as a conditional statement. 

6.3.4. Summary: Conditional probability and p-values. The need to 

understanding the p-value as a conditional probability is crucial in order to develop a 

robust understanding of the p-value. This is particularly important for teachers because it 

can help determine the type of pedagogical decisions they make in the classroom. The 

results in this section show that understanding both a verbal and symbolic representation 

of the p-value can result in several pitfalls even when focusing solely on the p-value’s 

conditional nature. 

One of the important results of the analysis indicate that it is difficult to assess 

whether teachers or students really understand the conditional nature of the p-value solely 
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through their ability to identify the correct verbal and symbolic interpretation. The 

interviews revealed that some teachers who might appear to understand a verbal 

interpretation of the p-value might not be able to transfer that same type of knowledge to 

a symbolic representation. Participants in the survey appeared to have an understanding 

of the p-value’s interpretation by their ability to identify the correct statement, but some 

explanations were very limited and appeared to almost be a rephrasing of the definition. 

It was only through their discussion of the verbal and symbolic representation together 

during the interviews that I was able to thoroughly see participants make direct 

connections between the concept of the p-value and conditional probability. Carol and 

Tod for example had a lot of misconceptions that became more visible during their 

discussions of notational usage. Jane in particular clearly knew the verbal interpretation, 

but later revealed in her interview to have missing areas of content knowledge when she 

was asked to relate verbal and symbolic representations.  

Just studying a person’s ability to choose the correct interpretation of the p-value 

may not be as different as them simply memorizing a concept without understanding it’s 

underlying meaning. There is however, some value in having individuals compare 

multiple representations of statistical concepts like the p-value. Allowing students and 

teachers the opportunity to analyze the relationships between the symbolic and the verbal 

can lead to new avenues for learning. I also find that by studying both (verbal and 

symbolic) side-by-side can be useful in revealing a person’s understanding of a p-value 

and how it might inform their teaching practices.  
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7. DISCUSSIONS 

 

The overarching goal of this research is to analyze the SKT of teachers on the 

topic of probability in the context of hypothesis testing. In particular, the main research 

question of this study is: What knowledge do CCIs and GTAs have about probability in 

the context of hypothesis testing? In particular, 

1) How do CCIs and GTAs understand the concept of a p-value?  

2) How do CCIs and GTAs understand the role of conditional probability in the 

context of hypothesis testing? 

3) How do CCIs and GTAs understand formal/informal concepts of probability, 

simulations and sampling distributions when reasoning about tasks related to 

hypothesis testing? 

To answer these questions, I began with a review of the research on SKT. I then 

presented literature from the statistics education community on teachers’ and students’ 

understanding of probability in hypothesis testing and new pedagogical approaches in the 

statistics education literature that researchers believe could improve student 

understanding of hypothesis testing. In the designing of this study, the theoretical 

frameworks of Ball et al. (2005), Noll (2007), and Groth (2007) were paramount in 

creating a potential framework to assess the SKT of teachers’ understanding of 

probability. Using a research by Gonzalez (2012) a set of assessment questions was 

developed to assess CCK, SCK, and KCS through a framework for analyzing SKT in 

regard to the p-value (Table 38). This helped in the creation of survey and interview tools 

to study the knowledge of GTAs and CCIs with the goal of generating an initial model of 
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teachers’ understanding of probability in the context of hypothesis testing focused on the 

concept of a p-value. 

Table 38. Theoretical Framework for Analyzing Categories of SKT for the P-value. 

Category Indicators 

Common Content Knowledge  1. Is the teacher able to appropriately give a correct 

answer to questions related to p-value? 

 

2. Does the teacher consistently identify and interpret 

concepts of a p-value in a statistical task?  

 

Specialized Content Knowledge  1. Does the teacher have the ability to determine standard 

and non-standard approaches to arguments, methods, and 

solutions for statistical questions regarding a p-value? 

 

2. Does the teacher have the ability to provide evidence to 

analyze correct and incorrect solutions given by students 

and provide justifiable explanations and reasoning for 

responses that are clear and accurate? 

 

Knowledge of Content and Student 1. Is the teacher able to anticipate students’ common 

responses and misconceptions for a statistical task related 

to the p-value? 

 

2. Does the teacher show evidence of knowing the most 

likely reason for students’ responses and misconceptions 

in regarding tasks related to p-value?  

 

 

The results show that by analyzing SKT of GTAs and CCIs on the p-value 

provides a deeper understanding of teachers’ knowledge of probability in the context of 

hypothesis testing. It also provides the research community with information that can 

lead to greater implications for statistics education. In this chapter, I first begin with a 

section discussing the three compelling themes that resulted from the data in regards to 

the SKT of graduate students and instructors: (1) the magnitude of the p-value, (2) the 

computation of a p-value using empirical sampling distributions, and (3) the relationship 
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between p-value and conditional probability. I then discuss further implications of the 

results of this research in regard to statistics education curriculum in the various grade 

levels, professional development, and future research. I will then end with a section on 

limitations of the research. 

7.1. SKT of Probability on the concept of the p-value.  

The data gathered in this study showed that when participants are faced with 

solving statistical tasks on the p-value, they needed to access and coordinate various 

aspects of SKT (i.e. CCK, SCK, and KCS). For example, when assessing a student’s 

statistical work participants must be knowledgeable of the various ways students view a 

problem (i.e. KCS). The teacher must compare the students’ work with the common 

knowledge shared in the statistical classroom between teachers and students (i.e. CCK). 

At times, being able to understand a student’s work might extend beyond methods taught 

in the classroom and require the teacher to access more specialized knowledge learned 

outside the content he/she is required to teach (i.e. SCK). Being able to see the 

pedagogical values of alternative approaches to statistical inference requires knowing the 

limitations of students’ knowledge (i.e. KCS). An important part of this research is to 

highlight how SKT underlies graduate students and instructors understanding of 

probability in the context of hypothesis testing. To provide concrete examples, I discuss 

in the sections that follow areas where the participants accessed and related notions of 

CCK, SCK, and KCS with respect to the various statistical tasks provided in this study.  

7.1.1. Teachers’ understanding of p-value’s magnitude. Investigating teachers’ 

understanding of a p-value’s magnitude showed various ways graduate students and 
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instructors understood the magnitude of the p-value. Data from the Graduate Student 

Task showed that several participants understand the procedural usage of the p-value’s 

magnitude to show a statistically significant result. In particular, most graduate students 

and instructors understand how the size of a p-value can be used to claim a statistically 

significant result. Even participants who noted that a p-value did not relate to statistical 

significance still provided explanations that showed they understood procedurally why a 

small p-value relates to statistically significant results. Knowledge of the p-value’s 

magnitude to make statistically significant claims aligns with CCK of a p-value because 

it encompasses shared (or basic) knowledge that every statistically educated citizen 

should have after completing an introductory statistics course.  

Aside from knowing that small p-values are needed for a statistically significant 

result, four primary ways of thinking were discovered that categorized how teachers 

deeply understood the relationship between a small (or large) p-value and statistical 

significance that touched on elements of CCK and SCK. In the sections that follow, I will 

first discuss three types of categories of thinking that I believe highlight important and 

correct connections between CCK and SCK of the p-value’s magnitude. These three 

ways of thinking (SSHP/SSLP, SSL, and SSPPS) highlight important ideas that 

encompass a robust way of thinking about a p-value’s magnitude. I then discuss category 

SSD, which I believe is an important misconception that should be highlighted as an area 

of consideration by the statistics education regarding a p-value’s magnitude. 

7.1.1.1. Connecting CCK and SCK of a p-value’s magnitude. Aside from 

knowing that small p-values are needed for a statistically significant result, three primary 
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ways of thinking were discovered that categorized how teachers should understand the 

relationship between a small (or large) p-value and statistical significance that touched on 

elements of CCK and SCK. The first is based primarily on a procedural understanding of 

the p-value being compared to the level of significance (i.e. Categories SSHP and SSLP). 

The second is some graduate students and teachers view the p-value as a measure of 

likelihood of the observed sample under the null assumption (i.e. Category SSL). The 

third is some graduate students and teachers believe that when analyzing the magnitude 

of the p-value, one must also consider the factors of statistical power and practical 

significance (i.e. Category SSPPS). I consider these three ways of thinking to be crucial 

components for developing a robust understanding of a p-value’s magnitude for teachers 

(and students) and can be viewed as examples of SCK. A number of participants 

expressed only one way of explaining about the relationship between the p-value and 

level of significance. Still, in order to do this requires them to access forms of SCK that 

focuses on a deeper understanding of the procedure of hypothesis testing. In particular, 

those who categorized as SSPPS used notions of statistical power and/or practical 

significance, which is a primary example of SCK regarding a p-value’s magnitude 

because it allows teachers to provide a necessary and sufficient explanation why specific 

choices of a level of significance might not be appropriate. 

Being able to explain the connection between a p-value’s magnitude and 

statistical significance requires coordination between CCK and SCK. This is seen as 

participants tried to relate their multiple-choice responses to their understanding of the p-

value’s magnitude. Most participants focused mainly on a single category of thinking 
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about a p-value’s magnitude. In particular, most of the participants focused on comparing 

the p-value with a level of significance (i.e. SSHP and SSLP) or discussing likelihood 

(i.e. SSL). Even during the interview, some participants only extended their thinking to a 

single category. Only few participants illustrated hybrid ways of thinking. For example, 

some participants were able to relate how a small level of significance and small p-value 

(SSLP) related to ideas of likelihood of an observed data (SLP). Some were even able to 

extend their thinking to explain why the comparison of a p-value to a level of 

significance (SSLP) relates to concepts of statistical power and/or practical significance 

(SSPPS).  

The one category in particular that came up the least was how p-values and 

statistically significant claims relate to statistical power and/or practical significance (i.e. 

SSPPS). This is common considering that discussing statistical power and practical 

significance is not a primary focus of many introductory statistics courses. It should 

however be considered as part of a teacher’s SCK because it provides a deeper theoretical 

reason for choosing an appropriate level of significance that go beyond the standard 

values (i.e.1% or 5%) used in the statistics textbook. It is also a type of understanding 

members of the statistics community feel is undervalued even though it has great 

importance in statistical practice (Aberson et al., 2002).  

A major concern for the statistics education community is that the data shows 

very few of the participants possessed all three categories of thinking or had the ability to 

properly coordinate how they related. This shows a potential gap in the statistical 

knowledge of teachers regarding the magnitude of the p-value that we as a community 
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should address. As researchers, being knowledgeable of these three categories of thinking 

can be useful in the professional development of SKT regarding a p-value’s magnitude 

for statistics instructors in general.  

7.1.1.2. A misconception of the p-value’s magnitude. A way of thinking about 

the magnitude of the p-value that I wish to highlight is the misconception that p-values 

measure the truthfulness of a null hypothesis (i.e. SSD). Category SSD is a concept that 

should be viewed with great importance because it is a common misconception held by 

many students. The data shows that even graduate students and instructors who might 

have a strong procedural and conceptual understanding of the p-value have the potential 

to interpret the p-value as a way to measure the probability of the null hypothesis.  

As defined, the p-value only measures the probability of the getting results as 

extreme or more extreme than the observed result assuming the null hypothesis. Saying 

the p-value is the likelihood of the null hypothesis implies that we know the probability 

of the null hypothesis (which is not true). It is important for teachers (and students) to 

understand that hypothesis testing is a decision-making process structured around a 

random process. It is through this decision-making process that we are only able to show 

evidence against a null hypothesis based strictly on the probability of an observed sample 

conditioned on a null hypothesis. This brings into light an important distinction between 

evidence versus likelihood, which could potentially be a source of many misconceptions.  

A common metaphor for a hypothesis test is a judicial trial where we show 

evidence to prove whether a person is innocent or guilty in a trial. The greater the 

evidence against the individual, we tend to think the greater likelihood the person is 
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guilty. Since hypothesis testing is structured around a random process built on ideas of 

conditional probability, statisticians try to make similar claims but with a caution that our 

evidence is strictly on the probability of the observed sample structured around a 

decision-making process. We see similar misconceptions when discussing confidence 

intervals where research has shown that people misinterpret that a 95% confidence 

interval means the probability the population parameter is contained inside the interval is 

95% instead of relating the probability to the randomization process. Category SSD is 

something that I believe is worth investigating because it connects further to the 

importance of conditional reasoning and what it means to understand the decision-

making process of hypothesis testing. Understanding this type of thinking extends to 

notions of SCK because it requires a deeper level of understanding of conditional 

reasoning and how it fits into the overall structure of a hypothesis test. Training teachers 

to know how to respond to this misconception is also relevant in regard to developing 

KCS. Knowing that current and prospective teachers of statistics have difficulty 

understanding this subtle misconception means there is a greater chance introductory 

statistics students who have even less background in statistics will struggle with this 

common misconception.   

7.1.2. Teachers’ understanding of p-value’s computation. The data from the 

Helper-Hinderer Task has shown that when presented with a simulation-based approach 

to hypothesis testing, the computation of a p-value (and explanation of the computation) 

is not consistent amongst the current population of graduate students and instructors. This 

is not surprising considering that simulation-based approaches are rarely discussed in 
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introductory statistics courses. In the sections that follow, I wish to highlight three main 

themes that I believe are important ideas when considering how probability concepts like 

a p-value are computed when teachers are asked to use empirical sampling distributions 

to compute probability. The first theme centers on those who are able to compute 

probability of a p-value correctly using empirical sampling distributions. The second 

theme centers on misconceptions of a p-value as a direct result of using empirical 

sampling distributions. The third is a focus on computing p-values that favors theoretical 

over empirical probability methods. 

7.1.2.1. Correct computations with empirical sampling distributions. Although 

many of the participants were able to compute the p-value correctly using a relative 

frequency, only a small number emphasize the importance of a null hypothesis. The 

concept that the p-value is computed assuming a null hypothesis is an important idea that 

research has shown to be under emphasized because most students focus primarily on the 

procedure of computing and not the underlying meaning behind the computation. In this 

study, a similar phenomenon was seen where only a few participants emphasized the null 

hypothesis when they explained their computation. For teachers, it is important to 

consistently emphasize the relationship between the p-value and the null hypothesis 

because it is a critical part of understanding the role of conditional probability plays in 

the computation in both theoretical and simulation based approaches.  

The data also shows that not all teachers are able to proficiently compute the p-

value correctly using an empirical sampling distribution. Those graduate students and 

instructors who were unable to compute the p-value correctly either computed the relative 
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frequency incorrectly, used theoretical probability methods, or applied methods based on 

traditional hypothesis testing. This highlights an inconsistency in the type of SCK held by 

some of the participants regarding alternative approaches to hypothesis testing. These 

inconsistencies are important areas of consideration because they are potential areas of 

student misconceptions that we as a community should be aware of as we move towards 

more simulation-based approaches to statistical inference. 

7.1.2.2. Misconceptions when using empirical sampling distributions. Those 

participants who incorrectly computed the p-value using relative frequency fell into two 

categories: CUA and CIOS. Recall, the CUA category is when a participant would apply 

methods typically used in traditional statistics to find probability in empirical sampling 

distributions. This category of CUA fails particularly because simulations do not always 

generate a perfect distribution. Those participants who fell in this category clearly noted 

the frequency of the data, but did not to attend to the fact that simulated data does not 

guarantee “perfectly-shaped” sampling distributions that are common in theoretical 

sampling distributions. This shows a potential misconception teachers (and students) 

might encounter as they transition between computing p-values from a theoretical to an 

empirical sampling distribution. It also shows a gap between CCK and SCK in a small 

sample of graduate students and instructors. 

The category of CIOS shows an inconsistency by teachers whose relative 

frequency computation of the p-value ignores the observed sample. In other words, their 

computation of the p-value is a strict inequality, which does not correspond to the 

meaning of the p-value. As mentioned, this method of computation would not be 
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problematic in traditional introductory statistics because most approaches use a 

continuous probability distribution so the computation of the p-value using strict 

inequality does not affect the final value. This however is not the case of empirical 

sampling distributions whose outcomes are discrete. This shows another potential hurdle 

that might occur when transitioning teachers (and students) towards computing p-value’s 

using empirical sampling distributions. I want to emphasize that using a strict inequality 

is a misconception that statistics teachers (and students) need to be conscious of because 

it is inconsistent with the true definition of a p-value.15 This is type of misconception can 

only be visible in the calculation of a p-value when computing a probability using a 

discrete or empirical probability distribution. Traditional textbooks rarely (if at all) teach 

hypothesis testing using discrete probability distributions, but with the rise of simulations 

and empirical sampling distributions as a new standard to hypothesis testing, statistics 

educators need to be aware of this potential misconception.  

One possible misconception that I was expecting to see, but did not occur in the 

study, is a participant who only computed the probability of the observed sample 

outcome. Although this did not show up in the research data, it is one misconception that 

should also be part of a statistics teachers’ KCS. The misconceptions mentioned here can 

be easily discussed using empirical sampling distributions with students because it does 

not require the use of theoretical probability ideas that is usually beyond the scope of 

many introductory statistics students. Knowing these types of misconceptions and how 

they can be addressed using simulations shows the value of understanding a simulation-

                                                           
15 This misconception is a lack of noticing p-values are defined using “as extreme or more extreme.”  
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based approach to hypothesis testing which consequently makes it a valuable part of a 

statistics teachers’ SKT.  

7.1.2.3. Theoretical over empirical methods. In addition to participants who use 

relative frequencies to compute a p-value, the data revealed that some participants 

struggle understanding the purpose of the empirical sampling distribution that was 

provided to them. Some participants relied heavily on traditional methods of finding a p-

value even when prompted to use the empirical sampling distribution to compute an 

approximate p-value. When prompted regarding which approach they would prefer to use 

in teaching, only a few participants understood the relationship between a theoretical and 

empirical approach to hypothesis testing. Even amongst those who could coordinate the 

two ways of performing hypothesis testing, some did not recognize the value of a 

simulation approach to hypothesis testing as pedagogically useful. Participants who held 

this type of view clearly showed the necessary CCK to perform hypothesis testing in 

introductory statistics courses, but lacked some of understanding of the simulation-based 

approach (i.e. SCK) and how it might be useful in helping students development (i.e. 

KCS). Instead, some participants focused mainly on the existence of approximation 

errors in the simulation even though their suggested theoretical method would also lead 

to similar errors.  

Those who did see the value of the empirical sampling distributions clearly 

viewed its importance in the teaching of hypothesis testing. This view was most common 

amongst those participants who had a strong background in simulation and possessed 

abundant experience teaching introductory statistics. This shows an amalgamation 
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between SCK and KCS because it shows a strong example of a teacher who understands 

what a simulation-approach to hypothesis testing is meant to exhibit and how it might be 

useful in developing knowledge that is accessible by introductory statistics students. 

7.1.3. Teachers’ understanding of conditional probability. One of the big 

ideas in hypothesis testing is that all probability being computed in a hypothesis test is a 

result of conditional probability. One particular probability being computed is the p-value 

that is based on the relationship between the observed result and the null assumption. 

Understanding this idea is key because it clarifies the role of the p-value in the decision-

making process and why the p-value is a way to measure evidence against the null 

hypothesis.  

A major goal of this dissertation is analyzing how graduate students and 

instructors see the role of conditional probability in the context of hypothesis testing. This 

was done using the p-value as the main probability concept. Through the Drug Task and 

Car Task, the participants were asked to assess various verbal and symbolic 

representations of the p-value. In order to make appropriate judgments whether a specific 

verbal and/or symbolic representation was valid also required the participant to 

coordinate their knowledge of CCK, SCK, and KCS. To illustrate this, in the sections that 

follow I first discuss the results of the verbal interpretations. Second, I discuss the results 

of the symbolic representations of the p-value. Finally, I discuss the importance of 

relating verbal and symbolic representations in the practice of teaching p-value. 

7.1.3.1. Verbal interpretations of the p-value. Being able to write an appropriate 

verbal interpretation can be viewed as CCK considering it should be part of a person’s 
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everyday statistical practice after completing an introductory statistics course. In terms of 

the data, several of the participants could correctly identify a standard verbal 

interpretation of the p-value within a statistical context. Furthermore, a number of 

participants were able to correctly identify incorrect verbal interpretations.  

The most interesting data came primarily from the explanations of participants 

when they provided explanations for interpretations they considered invalid. Most 

explanations offered by participants focused more on aspects of a student’s interpretation 

that sometimes had very little connection with a p-value’s conditional reasoning. This is 

interesting considering that the conditional nature of the p-value should be a primary 

focus of any interpretation of the p-value. This could be a potential weakness of the 

survey design, or that teachers themselves sometimes do not value the importance of 

conditional reasoning when verbally interpreting a p-value. For this reason, I have some 

reservations regarding these results. I say this because, some participants were able to 

correctly mark all verbal interpretations as valid/invalid but would then not make a single 

mention regarding the lack of conditional probability in those they marked as invalid. 

One example is the interviewee (Carol) who was able to identify the correct verbal 

interpretation but struggled explaining the conditional relationship. Carol in particular 

had some experience seeing the definition of the p-value during her work as a statistics 

recitation leader, but spent very little time deeply thinking about how a p-value is a 

conditional probability. This is primarily due to fact that her background was in 

mathematics and mathematics education with very minimal experience taking and/or 

teaching statistics courses. It is possible that only identifying a correct verbal 
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interpretation will not be the most adequate way to assess a participant’s understanding of 

a p-value as a conditional probability since a valid interpretation itself can be easily 

memorized.  

7.1.3.2. Symbolic representations of the p-value. The participants’ work on the 

symbolic representations of the p-value provided useful information on teachers’ 

understanding conditional probability because it forced participants to view a p-value in a 

lens that is not typical in standard practice. While the verbal interpretations of the p-value 

can be viewed as CCK in the introductory statistics classroom, a symbolic representation 

is primarily SCK used by statisticians.  

By assessing whether a participant had the ability to identify correct symbolic 

representations requires them to consider the importance of symbols and formalization of 

statistical concepts. The resulting data showed that there was less consistency amongst 

the participants that marked symbolic representations as valid/invalid.16 In regard to 

conditional probability, many of the participants identified with the standard use of a z 

statistic as a way to represent a p-value. This is not unusual considering that using a z-

score is standard practice in introductory statistics where the conditional probability is 

implicit in the computation. When presented with a representation where the conditional 

probability of p-value was made explicit, the data shows a large number of participants 

who felt the representation were valid. However, when directly comparing the results for 

the implicit conditional and explicit conditional directly, there revealed to be a slight 

discrepancy in number of participants who found both representations valid. Some 

                                                           
16 It is important to note that a major hurdle was in syntax used for some of the representations, which 

caused a few participants to focus on specific symbols. This will be discussed further in the section on 

future research. 
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participants were unfamiliar with the use of a conditional probability to represent a p-

value or unfamiliar with the notation for conditional probability. Those participants who 

struggled with the explicit form were particularly those with a background in pure 

mathematics. This makes sense considering that they might not have much experience 

working with conditional probability and using an explicit conditional form of a p-value 

is not commonly introduced except in upper level statistics courses.  

When analyzing explanations for symbolic representations that participants 

viewed as invalid, many participants chose to focus on other aspects of the representation 

that once again had very little to do with discussing conditional probability. For example, 

many participants took to noting specific usage of notations like the 𝑝̂ to be a primary 

focus of their disagreement with certain symbolic representation and paid little attention 

to the fact that some symbolic representations lacked a proper conditional statement. 

While the design of the task itself was meant to illustrate a realistic view of a student with 

limited ability to write a symbolic notation, this was enough of a distractor to cause most 

participants to ignore the important component which was the representation being 

presented lacked a conditional notation. This was very similar to what was seen when 

participants gave explanations to invalid verbal interpretations where they chose to 

provide feedback that did not highlight a lack of conditional reasoning in the student’s 

work. The fact that this phenomenon occurred in both the verbal and symbolic could 

potentially be due to the task design of the survey or that we as an education community 

do not place a significant emphasis on that fact that conditional probability is an 

important aspect of a p-value even though it is explicit in its definition.  
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7.1.3.3. Reasons for relating verbal and symbolic representations. While the 

results of participants’ ability to assess verbal and symbolic representations provide some 

useful background information regarding how some graduate students and instructors 

might be able to assess student work, an important result from analyzing the data came 

from the interviews where the participants made direct connection between the verbal and 

symbolic representation of p-values. Those that could make direct connections showed 

the ability to coordinate what could be considered informal statistical concepts with 

formal statistical ideas. In this case, the verbal interpretations might be viewed as an 

informal approach to the p-value because it is a written (or spoken) description of the p-

value’s interpretation in the context of a statistical task but is a form of CCK that is part 

of introductory statistics. The symbolic representation can be thought of as formal 

considering that it uses statistical symbols and notations that align with formal statistical 

practice. For example, the use of probability notation (or conditional probability notation) 

is a formalization of the verbal form of finding the probability of a given event. The 

coordination of these ideas as seen in the data is non-trivial, but expected of teachers of 

statistics and should be considers as an area of SCK considering that advance 

representations of probability (or conditional probability) is sometimes beyond the 

understanding of introductory statistics students.  

An important concept that arose from the interview data that I wish to highlight 

was the pedagogical value of discussing the relationship between verbal and symbolic 

representations, which was shown to be enlightening to some of the participants. A major 

design concern with the Car Task on symbolic representations of the p-value is that 
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having an explicit conditional statement of a p-value present as one of the possible 

hypothetical student representations (i.e. Student E) might be too revealing. One 

participant (Jane) noted that during the interview the moment she saw the conditional 

probability form of the p-value, she immediately had to rethink her understanding the p-

value. I hypothesize that the cause of this shift in thinking was due to Jane observing this 

very notation that caused her to reconstruct the meaning behind the notation. In 

particular, by seeing the symbolized form and rethinking how it relates to the verbal 

interpretation was a useful avenue in constructing new understanding of the p-value.   

In traditional hypothesis testing, the use of a conditional probability to represent 

the p-value is rarely done. It is therefore not surprising that teachers who might have a 

limited statistics background might not realize a p-value can be written as a conditional 

probability statement. Jane for example, was a participant who at first illustrated a strong 

understanding of the p-value’s verbal interpretation during the interview. She also had a 

strong background in the concept of conditional probability notation. By providing her an 

opportunity to discuss the two representations allowed her to connect her CCK of a p-

value’s verbal interpretation and conditional probability to construct a deeper 

understanding behind the relationship between a p-value and conditional probability that 

did not exist. This can almost be seen as a development of a new kind of SCK that is not 

commonly discussed in the introductory statistics classroom. While the other participants 

did not show such an explicit realization of the conditional nature of the p-value as Jane, I 

would suspect there is a possibility other participants might have had a similar 

realization.   
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7.2. Implications and Future Research 

This research presented here highlights important ideas focused on the statistical 

knowledge for teaching for the college level, but I believe the findings can lead to further 

implications for statistics education in general. In this section, I will highlight areas of 

implications for this research and areas for future research that I feel directly connect 

with the results of this dissertation. 

7.2.1. Implications for undergraduate education statistics curriculum. The 

research presented here shows that there is a need by researchers and educators to 

consider the restructuring of the current way statistics is taught. Two big topics that have 

been widely discussed in the statistics education community under the umbrella of 

statistical inference is transitioning into a statistics curriculum that uses simulations as a 

centerpiece in the teaching of statistical inference and relating the importance of informal 

and formal statistical inference. In this section, I will first discuss the implications of 

using simulations as a basis for teaching statistical inference. I then discuss how we as 

statistics education community should consider the importance of informal and formal 

statistical inference in the classroom. I then end with an additional section discussing the 

role of conditional probability in the teaching of statistical inference. 

7.2.1.1. Simulations and statistical inference in the classroom. At present, in 

order to be proficient in the computation of a p-value in traditional statistics text, teachers 

and students must know how to correctly compute a test statistic (z, t, etc.) and use the 

appropriate probability distribution table to generate a probability. While teachers and 

students might be able to procedurally compute the p-value using traditional methods, 
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research has shown that many of them fail to understand the deeper theoretical ideas 

surrounding these procedures (e.g. Batanero, 2000; Batanero & Diaz, 2006; Castro Sotos 

et al, 2007; Castro Sotos et al, 2009; Falk, 1986; Garfield & Ben-Zvi, 2008; Haller & 

Krauss, 2002; Vallecillos & Batanero, 1997, Haller & Krauss, 2002; Heid, et al., 2005; 

Thompson, Liu, & Saldahna, 2007). This is no surprise for many introductory statistics 

students who learn these procedures, but are ill prepared due to a lack of pre-requisite 

knowledge (i.e. calculus and advanced probability) to develop a robust understanding. 

Currently, many institutions continue to teach introductory statistics courses using these 

traditional procedures. Cobb (2007) describes these as archaic methods considering the 

advancement of educational technology and the accessibility of computers in the modern 

classroom.   

The statistics education community has advocated for the use of simulations in the 

teaching of statistics for years because it allows students to develop core ideas of 

statistical inference built upon concepts that are within the scope of a typical introductory 

statistics students. A significant hurdle in developing a robust understanding of 

hypothesis testing is the sampling distribution. Traditional hypothesis testing uses 

theoretical sampling distributions to compute a p-value, but research has shown that 

students struggle understanding sampling distributions and their overall role in hypothesis 

testing. By using a simulation-approach to hypothesis testing, empirical sampling 

distributions take center stage in the hypothesis testing process. Rather than using recipes 

structured around theoretical computations, students can create models to simulate data to 

generate empirical sampling distributions to then compute a p-value using relative 
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frequencies. The computation of probability concepts in statistical inference like the p-

value using an empirical sampling distribution should be a starting point for 

understanding probability since it can be easily accessible by a larger population of 

students. This helps alleviate some of the theoretical baggage in the hypothesis testing 

process by making the computation of probability easily accessible to students. This 

allows teachers to better assess whether students understand core concepts of hypothesis 

testing.  

Understanding a simulation-based approach to hypothesis testing is currently 

viewed as SCK for teachers. I say this because simulation-based approaches are rarely 

introduced as standard practice in introductory statistics and are viewed as alternative 

approaches to performing hypothesis tests by statisticians. One of the big weaknesses in 

the traditional curriculum is that most textbooks use theoretical sampling distributions 

even though empirical sampling distributions are more accessible especially in the 

computation of probability for many students. As statistics education push for more 

simulation-based approaches to statistical inference, it is vital that teachers of statistics 

are proficient in the use and instruction of the simulation based approach to hypothesis 

testing. With the current shift in the curriculum outlined by American Statistical 

Association (ASA) in the GAISE report (2012), soon simulation-based approaches will 

begin to become the norm of introductory statistics classrooms. As result, simulation-

based approaches to statistical inference will soon align with CCK for many statistics 

teachers. 
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Furthermore, if we as a community continue to value teaching traditional methods 

of hypothesis testing in the classrooms then more time needs to be spent discussing the 

similarities and differences between theoretical and simulation-based approaches of 

statistical inference. In this research, one of the big ideas that came out was that teachers 

felt a simulation-based approach to computing a p-value (or hypothesis testing in general) 

was not sufficient because it could give rise to approximation error. In particular, some 

participants felt p-values were better approximated using theoretical approaches like a 

binomial approximation instead of simulations because of the underlying approximation 

error in the technique. This was an interesting discovery that was seen in a number of 

participants who felt that a theoretical approach for a one-proportion was more valid even 

though it also contained problems of approximation errors. Having discussions between 

theoretical and simulation-based approaches to statistical inference can be useful in 

filling gaps in the SKT of current and future statistics teachers. It can also be useful 

discussions in introductory statistics classrooms that currently (or planning) to teach 

traditional methods. This can help in developing deeper meaning behind methods that at 

present are a mystery for most introductory statistics students. 

In addition to understanding how to compute probability concepts (e.g. p-value) 

using empirical sampling distributions, it is also important that professional development 

focuses on training teachers in the use of a simulation-based approach to hypothesis 

testing in the introductory statistics classroom. Not only will they learn how to compute 

probability concepts correctly using empirical sampling distributions, but they will be 

able to develop a better understanding of the purpose of the empirical sampling 
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distribution in practice. During the interviews, some of the participants expressed great 

value in a simulation-based approach mainly because they have experience using such 

methods. Those who did not have large experience using these types of methods appeared 

to favor a traditional approach and did not seem clear how it might affect student 

development. It is therefore important to support the professional development of 

teachers on the understanding of simulation-based approaches and how it can be useful in 

the classroom. 

A natural step would be to focus on the research and design of curriculum that 

helps teachers (and students) better understand concepts of probability through 

simulations. Current curriculums that use a simulation-based approach to statistical 

inference have seen much success in the work of Garfield, delMas, and Zieffler (2012) in 

their CATALAST curriculum. Similar results can be seen in empirical research with 

teachers as seen in work conducted by Dolor & Noll (2015) who used a curriculum based 

on a simulation-based approach to hypothesis testing to support in-service and pre-

service teachers gain a deeper understanding of the role test statistics and sampling 

distributions play in statistical inference. Work such as these show the potential of using 

a simulation-based approach in practice and how it can lead to deeper understanding of 

hypothesis testing by both students and teachers. 

7.2.1.2. Informal and formal statistical inference in the classroom. One of many 

areas discussed in the statistics education literature is developing teachers’ and students’ 

informal inferential reasoning (Zieffler et al, 2008; Makar & Rubin, 2009). I believe it is 

important to focus on how students and teachers construct relationships between informal 
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and formal. In particular, introducing classroom activities that build on the constructing 

and comparing of verbal and symbolic representations of the p-values is something I see 

as a fruitful part of learning about probability concepts in statistical inference. In this 

research, we see how individuals can construct new knowledge through a formalization 

of a p-value. 

Based on this research, I believe helping student and teachers see connections 

between a verbal and symbolic representations have significance in the learning of 

statistical concepts. The data shows there was value in having teachers talk about the 

symbolic representation of the p-value because it enlightened their understanding that it 

was a conditional probability. A potential tweak to such formalizations tasks is to have 

participants symbolize their verbal interpretations as a first phase prior to showing 

possible initial understandings of the concept and their ability to formalize. This will 

allow a better view of a teacher’s initial understandings of a symbolic representation and 

provide more robust evidence of developing knowledge as those seen in the interviewee 

Jane. 

Research has shown that the transition from informal to formal mathematics and 

statistics is non-trivial. Students struggle with this transition when they need to write 

formulas to represent their statistical knowledge. This research shows that there is value 

that can be found through the discussion of formal and informal ideas because it allows 

an individual to rethink their understanding of a particular concept.  

7.2.1.3. Conditional probability and statistical inference. Conditional probability 

is a topic commonly taught in introductory statistics, but is given a minor role in many 
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introductory statistics classrooms. The work of Watson & Moritz (2002), highlight that 

conditional probability is a concept that many students struggle with even though 

statisticians view it as a major component of statistical understanding. This is troubling 

considering that understanding all aspects of probability is necessary to deeply 

understand statistical inference. 

In the research shown here, we see that some graduate students and instructors 

struggle understanding conditional probability in the context of hypothesis testing even 

though all probability is conditional probability. This was common amongst those 

participants who did not possess a strong statistical background. This is not surprising 

considering that discussing the direct connections between conditional probability and 

statistical inference is primarily done in upper-divisions statistical courses. In upper-

division statistics, the defining and writing of hypothesis testing concepts like the p-value 

or level of significance are done using formal conditional probability notation. This 

unfortunately is inconsistent when we teach introductory statistics to the larger student 

population where the discussion of the relationship between conditional probability and 

statistical inference is almost non-existent. In fact, most undergraduate statistics 

textbooks (e.g. Brase & Brase, 2012) only spend a few sections discussing conditional 

probability before moving on to statistical inference without ever making connections 

between the two concepts. 

As a result, I believe a restructuring of our current curriculum needs to emphasize 

a deeper connection between the concepts found in statistical inference and conditional 

probability. Even though statistics instructors on all levels use similar definitions for p-
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value and level of significance, the fact that we as a community underemphasize such 

connections in the introductory statistics classrooms might be a reason for several of the 

misconceptions we might be currently seeing.  

7.2.2. Implications for the preK-12 classrooms. The research presented here 

focuses primarily on the SKT of teachers in the undergraduate level, but I believe this 

information can also be useful information for the work currently being done in the preK-

12 classrooms. In particular, this research can be useful when considering current 

research on potential learning trajectories for students of statistics as they progress 

towards college.  

One of the underlying ideas that have been growing in the preK-12 curriculum is 

a restructuring of the curriculum to focus more on developing students’ statistical 

reasoning and thinking. A report put forth by the American Statistical Association (ASA) 

entitled Guidelines for Assessing Instruction in Statistics Education: A preK-12 

Framework (Franklin et al., 2007) detail a potential learning trajectory that focuses on 

developing the statistical understanding of students prior to reaching college. The report 

outlines the importance of developing students’ ability through levels of statistical 

maturation as they gain a deeper understanding of the statistical problem-solving process 

that includes notions of questioning, conjecturing, data analysis, investigation, and 

inference.  

At present, the GAISE report for the preK-12 highlights a start in the reform of 

traditional curriculum that closely relates to the work presented here. In particular, the 

report itself stresses that classrooms should spend more time using simulations and 
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empirical sampling distributions as pedagogical tools to develop students’ understanding 

of statistical inference. The report also highlights the appropriate times to introduce 

formal statistical concepts and methods that I believe is an important component 

especially if students wish to transition to collegiate level statistics where formalization is 

still a primary component of many statistics classrooms. I believe the work done here 

provide useful information that applies particularly to the recommendations put forth in 

GAISE and highlight potential areas where students might struggle as they come to 

develop their statistical knowledge in these areas. 

Furthermore, in order for students to properly develop their statistical knowledge, 

it is important that teachers themselves have received proper training and preparation in 

these grade levels. A report released by the American Statistics Association (ASA) 

entitled the Statistics Education of Teachers (SET) (Franklin et al., 2015) highlight 

recommendations for the teachers in preK-12 grade level and the kinds of SKT needed to 

be well-prepared teachers of statistics. One particular recommendation highlighted by 

SET states the following, 

“Prospective teachers need to learn statistics in a way that enable them to develop 

deep conceptual understanding of the statistics they teach. The statistical content 

knowledge needed by teachers at all levels is substantial, yet quite different from 

that typically addressed in most college-level introductory statistics courses. 

Prospective teachers need to understand the statistical investigative process and 

particular statistical techniques/methods so they can help diverse group of 

students understand this process as a coherent, reasoned activity. Teachers of 
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statistics must also be able to communicate an appreciation of the usefulness and 

power of statistical thinking. Thus, coursework for prospective teachers should 

allow them to examine the statistics they will teach in depth and from a teacher’s 

perspective (p. 5).” 

This recommendation points to the need for a reevaluation of the professional 

development programs for all levels to focus on developing deeper SKT. This includes 

requiring teachers to understand all aspects of statistical inference like simulation-based 

approaches that is starting to become more standard in middle and high-school 

curriculum. This is no surprise considering that SET report is based upon the 

recommendations put forth by GAISE.  

With standard curriculum currently pushing towards the important of statistical 

inference and deeper understanding of the use of simulation-based approaches in the 

classroom, this research in particular can become useful in how we train preK-12 grade 

teachers so that they have the necessary knowledge to teach students as they progress 

towards college. Furthermore, the tasks seen in this research can be potential professional 

development tools that can be used for training and assessing many middle and high-

school teachers especially if they plan to teach more advance statistical ideas in the 

classroom. 

7.2.3. Implications for professional development for graduate students and 

instructors. The results of the data illustrate a potential need for more research regarding 

professional development of graduate students and instructors in the college level. The 

survey and interview data show that not all our current and future introductory statistics 
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teachers are consistent in how they view an understanding of the p-value or hypothesis 

testing in general.  

The work of Speer, Gutman, & Murphy (2010) mention the educational 

community should consider the importance of professional development of our graduate 

teaching assistants. As our educational community transitions in the next few years, more 

graduate teaching and research assistants will become the future faculty for many college 

institutions. If the primary goal of graduate programs is focused on developing graduate 

students to become professionals in their future careers, then this should include helping 

those who plan to move towards careers in academia.  

A major concern is that several graduate programs focused primarily on 

developing the mathematical or statistical content knowledge of their students through 

coursework, but little opportunity is spent developing their pedagogical content 

knowledge. This research highlights that graduate teaching assistants with minimal 

teaching and/or research experience were unable to highlight important aspects of SKT 

that focused on the importance of pedagogy. This is not surprising considering that for 

many graduate teaching assistants, graduate programs are their first introduction into 

teaching. It might be worth conjecturing that most graduate students in statistics might 

have sufficient training in their statistical content knowledge, but a potential lack of 

pedagogical training. Therefore, I believe we as a community might need to re-evaluate 

our current graduate programs to also emphasize the importance of developing the 

pedagogical content knowledge of graduate teaching assistants if we as a community 

want them be successful educators and future colleagues in the university level. 
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Mesa et al. (2012) mentions that there is a lack of research regarding teachers in 

community colleges. This research is a useful launching point in assessing the statistical 

knowledge of these teachers. With the student population of community college 

continually growing, it is important that we continue to focus on this community of 

educators that teach a large portion of introductory statistics courses.  

The research presented here shows there is a vast amount of information we can 

still learn from the instructors of community colleges in regard to their SKT. The 

community college instructors who were interviewed in this study showed diverse levels 

of understanding regarding content and pedagogy. This is quite common considering the 

diversity of instructors in these institutions. This brings into light the question of 

professional development for these individuals. Unlike graduate students who are 

expected to continually take coursework to improve their statistical and mathematical 

content knowledge, it is not required for community college instructors to take further 

coursework in the fields they teach. Most professional development is primarily due to 

their work on outside projects, conferences, and self-study which is done on an individual 

basis. Unfortunately, this makes it difficult to track how different instructors develop 

their SKT in both content and pedagogy. The results of this research show that there is 

some evidence that wealth of teaching experience by community college instructors does 

contribute to their pedagogical content knowledge. Unfortunately, there is very little 

information provided in this research to make a stronger claim that experience and 

knowledge correlate strongly for this population. Still, this brings into question what kind 
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of professional development is necessary for these individuals who are already 

considered working professionals in their field.  

The data presented here shows a potential gap in the statistical knowledge of 

teaching for graduate students and instructors in four-year universities and community 

colleges. This brings into mind the importance of accountability regarding our 

undergraduate institutions in the selection and preparation of the individuals who teach 

our introductory statistics classrooms. In order to know what is necessary, it might be 

useful as an educational community to consider standards necessary to teach introductory 

statistics courses in the college level. To do this requires further research into the 

knowledge of undergraduate introductory statistics teachers. This knowledge can then 

help administrators plan professional development programs so that current and future 

statistics teachers are better prepared to teach introductory statistics courses. It is vital 

that those who are given the opportunity to teach several of our current and future 

students are properly trained if we wish as an education community wish to maintain a 

high-level of educational standards.  

7.2.4. Implications for future research. There are areas of future research that 

I believe can benefit from the work done in this research. In this section, I highlight 

potential avenues of future research that directly connect with the work presented here. 

I believe more work can be done exploring concepts related to the p-value. This 

study shows that understanding the definition of the p-value is non-trivial even for those 

who teach it. I suggest future researchers to expand this research through the creation of 

more refined assessment tools. The interview results in this research showed diverse 
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levels of thinking that one might not see through survey tools. Future plans for this 

research should focus on continued work in the interviewing of current and prospective 

statistics teachers through tasks that might better assess teachers’ SKT of a p-value. For 

example, finding better ways to assess formal and informal representations of the p-value 

as those suggested here might be useful areas of improvement. Also, we need to give 

more opportunities for teachers (and students) to solve statistical problems by having 

them walk through modeling tasks using simulations that include the computation of the 

p-value. This will can give us information about their modeling process and how 

probability concepts fit in their overall thinking of statistical inference. Furthermore, a 

particular concept of research that shows potential for future research is teachers’ 

understanding of the meaning behind the phrase “as extreme or more extreme” in the 

definition of the p-value. In this study, there were areas in the participants’ work that 

showed they struggled in conceptualizing the meaning behind the concept of “extreme” 

values. Evidence of this can be found in the computation of the p-value using empirical 

sampling distributions where some of the participants did not include the observed 

sample value when they computed the relative frequency of the p-value. Furthermore, 

during the discussion of the conditional probability, some participants recognized the 

importance of talking about extreme values and how this impacts the need to 

symbolically write a p-value. I only mention a few ideas related to the p-value, but I 

believe the concept is still a wide-open of area that needs further investigation. 

This research only touches on a few concepts related to probability in hypothesis 

testing. In particular, this research focuses primarily on the concept of a p-value, but 
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minimally on the concept of level of significance. Therefore, a prospective extension of 

this research is to create assessment tools of SKT focusing on level of significance and 

statistical power since these concepts also fall into the umbrella of probability in 

hypothesis testing and encompass concepts of conditional probability. As highlighted in 

the literature review, level of significance is a concept of hypothesis testing that has 

proven to be difficult for students and teachers. Furthermore, statistical power has also 

proved to be a challenging area of study because understanding statistical power requires 

a strong understanding of the process of hypothesis testing and the concepts related to it 

(Aberson et al., 2002). In order to assess an understanding of statistical power requires 

researchers to first assess whether the individual even has a basic understanding of 

hypothesis testing concepts like the research being conducted here.  

Finally, I also feel there are avenues to pursue research regarding the connections 

between teachers’ understanding of statistical concepts and how it relates to the 

pedagogical choices they make in the classroom. The work of Schoenfield (2011) 

highlights that the decisions made by mathematics teachers can be seen as a function of 

their knowledge, goals, and beliefs. In this research, we see how teachers’ statistical 

knowledge played a significant factor in the type of pedagogical choices graduate 

students and instructors make regarding concepts of the p-value. In particular, how the 

participants felt about the usage of symbolic notation of the p-value and simulation-based 

approaches to hypothesis testing in the teaching of students. Thus, I believe this research 

is a good launch point to investigate how the work of Schoenfield applies to the types of 
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decisions current and future teachers of statistics make in the classroom based on their 

SKT. 

7.3. Limitations of the Research 

While the data itself provided a lot of fruitful information on graduate students 

and instructors’ understanding of the p-value, there are limitations to the kinds of 

implications that can be made by this study. One of the major limitations of this research 

is the overall sample size of the data. Considering the overall population of graduate 

students and instructors, a sample of 55 individuals may not be large enough to make 

deeper implications about the results. Furthermore, the sample itself was not random, but 

through convenience. It is likely that many of the participants who chose to complete the 

survey represent those individuals who have a deeper understanding of statistical ideas 

and are therefore more willing to participate in the study. 

A second area that might limit further implications of this research is due to the 

survey design. During the course of the interviews, all the participants provided more in 

depth explanations on their understanding of the p-value when given the opportunity. 

During the survey, many participants limited their explanations to a single sentence or 

short excerpts. As a result, the information provided in the survey only showed a small 

piece of a participant’s understanding of the p-value. This created limitations to the kind 

of implications we can say about teachers in general because I was only able to 

categorize the kinds of understandings based solely on snippets of a participant’s 

explanations.  



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  235 

Lastly, there is need to improve the tasks themselves. The Car Task in particular 

needs further modification. One major issue encountered in the results was that usage of 

specific notation caused some of the participants to disregard key aspects of the problem. 

As mentioned in the methodology, the task was designed to highlight hypothetical 

student work on symbolic notation of the p-value. The choice to use specific notations in 

the six hypothetical student representations was done to make the student work feel more 

authentic, but also hindered the analysis. The data itself showed that specific notations 

caused some participants to focus primarily on semantic issues rather than greater 

concepts like conditional probability of the p-value. This made categorization of 

participant’s understanding challenging and minimally informative as originally 

expected. A redesign of the task could be useful in helping better assess teachers’ 

understanding of p-value’s verbal and symbolic representation of the p-value.  
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8. CONCLUSIONS 

 

I believe this research will be useful in filling a gap in the statistics education 

literature of SKT on aspects probability in the context hypothesis testing particularly in 

the realm of GTAs and CCIs. One of key proponents of this research that differs from 

other current assessment tools in the literature is the importance of analyzing a teachers’ 

understanding of a distinct concept of probability (i.e. p-value) that I believe needs 

continued research.  

Probability itself is a subject that we as an educational community have come to 

realize is a difficult concept for many students and by combining it with concepts like 

statistical inference only increases the cognitive load for introductory statistics students. 

Unfortunately, probability plays an important role in the understanding of statistical 

inference. Makar & Rubin (2009) outline three important facets of statistical inference: 

probabilistic understanding, generalization, and recognizing the importance of data. This 

research highlights the probabilistic understanding of statistical inference particular to the 

concept of a p-value. Based on the results of the study, I propose to future educators to 

continue to re-evaluate aspects of SKT of teachers for all levels of teachers in the realm 

of probability and statistical inference. This research shows that there is still potential for 

a growing body of research that has yet to be explored. In the previous section, I offer a 

few suggestions that extend beyond the concept of the p-value that I believe could be 

great avenues for future research. Being able to deeply understand teachers’ and students’ 

knowledge of probability is especially important considering the drastic reform now 

being conducted in the statistics education curriculum throughout all education levels.  
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By assessing the SKT of GTAs and CCIs, I was able to provide a framework 

outlining ways to assess teachers’ understanding of probability specific to the p-value. I 

believe assessing SKT of teachers should always be an important responsibility of all 

institutions if they wish to provide quality education for their students. Garfield and Ben-

Zvi (2008) mention that very few courses focus on the preparation of teachers of statistics 

at any educational level. In their work, they highlight that graduate courses for future 

statistics teachers need: (1) emphasize statistical literacy and develop statistical thinking; 

(2) use real data; (3) stress conceptual understanding rather than mere knowledge of 

procedures; (4) foster active learning in the classroom; (5) use technology for developing 

understanding and analyzing data; and (6) use assessments to evaluate the student 

learning. This research focuses on the assessment aspect highlighted by Garfield and 

Ben-Zvi, which I conjecture will be useful for designers of professional development 

curriculum for elementary, secondary, and collegiate teachers.  

By knowing the baseline SKT that teachers possess on concepts of hypothesis 

testing, curriculum designers can develop material to support current and upcoming 

statistics teachers. For example, one of the key features of this study is to not only 

analyze teachers’ statistical content knowledge, but also touch on areas of pedagogical 

knowledge by assessing the teachers’ knowledge of student misconceptions and cognitive 

limitations when learning about hypothesis testing. By knowing this knowledge, 

researchers and policy-makers will be better informed in making decisions when 

choosing and designing curriculum to strengthen teachers’ knowledge in statistics 

classrooms that align with current guidelines such as those prescribed in the GAISE 
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report (Aliaga et al. 2012). This is especially crucial in the professional development of 

instructors in the collegiate level where many researchers feel there is a need for 

empirical research on mathematical and statistical knowledge of teachers (Speer et al. 

2010; Mesa et al., 2014). 

I also recommend we continue research into the population of graduate teaching 

assistants and community college instructors. In this research, I highlight only a small 

glance into the SKT of these two populations through their work on concepts of 

probability and statistical inference. By analyzing how graduate students and instructors 

discuss the p-value, I hope to give researchers a lens into the current understandings and 

misconceptions held by statistics teachers in the college level. Understanding the SKT of 

teachers in the collegiate level is a body of research that has been primarily overlooked 

by both the statistics and mathematics education community even though college 

instructors play a significant role in educating our overall population.  

With the statistics education community pushing for greater reform of the 

statistics curriculum, it is important that teachers are properly trained in new pedagogical 

approaches. I believe this research is needed considering the important role GTAs and 

CCIs play in the development of undergraduate students’ statistical knowledge. I 

envisioned that this research is a stepping stone towards improving professional 

development by setting a standard in the types of knowledge we expect in statistics 

teachers in all levels of education. 
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APPENDIX A: TASK DESCRIPTIONS 

 

Assessment 

Question 

Question Goals and Outcomes 

Drug Test Task  - Modified version of the question from the CAOS test (delMas et 

al., 2007) to have participant respond to hypothetical student 

interpretations. 

- Assesses whether a participant is able to interpret the meaning 

of the p-value in-context. 

- Assesses whether a participant is able to recognize the 

conditional nature of the p-value. 

- Participant should recognize that p-value measures the 

probability of getting extreme samples using the observed 

sample as the point of reference, thus making Student A’s 

interpretation the only valid statement. 

- Assess KCS by analyzing how a participant might responds to 

student correct/incorrect interpretations through qualitative 

responses. 

- Participant should recognize Student A as the only correct 

interpretation. 

 

Graduate Student 

Task  

- Modified version of the question from the CAOS test (delMas et 

al., 2007). 

- Assess whether participant is able to interpret the magnitude of 

the p-value in a hypothesis test task. 

- Participant should understand that a small p-value provides 

statistical significant results. 

- Assesses how a participant views the relationship between 

statistical significance and p-value through a qualitative 

response. 

 

Car Task - Original question inspired by the work Castro Sotos et al. (2009) 

and Shaughnessy and Chance (2005). 

- Assesses whether the participant is able to recognize symbolic 

representation of a p-value. 

- Determines whether participant can recognize student common 

misconceptions of a p-value’s representation related to 

conditional probability. 

- Participant should recognize that Student A and Student F are 

both correct symbolic representations. 
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Approval Poll Task - Original question inspired by the work of Chance et al. (2004 & 

2007) and the CATALST curriculum. 

- Assesses whether a participant is able to recognize the null 

hypothesis in a simulation approach to hypothesis testing. 

- Assesses whether a participant is able to recognize the role of 

the sampling distribution in a hypothesis test. 

- Assesses whether a participant is able to correctly compute a p-

value using an empirical sampling distribution. 

- Assesses whether a participant is able to correctly conclude the 

results of a simulation-based approach to hypothesis testing. 
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APPENDIX B: SURVEY QUESTIONS 

 

1. A research article reports on a new drug test that is to be used to decrease vision loss. The article reports 

that the sample results gave a p-value of 0.04 in the analysis section. Below are six different student 

interpretations of the p-value.  

Student A: The probability of getting a result as large as or larger than the one in this study if the drug is 

actually not effective is 0.04. 

 

Is this student’s interpretation of a p-value valid?  ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student B: The probability that the drug is not effective is 0.04. 

 

Is this student’s interpretation of a p-value valid? ___Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student C: There is a 4% chance that the researcher made an error. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student D: If you were to repeat the study, there is a 4% chance of getting exactly the same result as the 

one in this study if the drug is actually not effective.  

 

Is this student’s interpretation of a p-value valid? ___Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 

Student E: The probability that the drug is effective is 0.04. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student F: There is a 96% chance the drug is effective. 

 

Is this student’s interpretation of a p-value valid? ___ Valid ___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 



INVESTIGATING STATISTICS TEACHERS’ KNOWLEDGE                                  254 

2. A graduate student is designing a research study. She is hoping to show that the results of an experiment 

are statistically significant. What type of p-value would she want to obtain? 

a. A large p-value. 

b. A small p-value.   

c. The magnitude of a p-value has no impact on statistical significance. 

 

Explain your understanding of the relationship between a p-value and statistical significance in the context 

of this problem. 
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3. A research was conducted to determine whether people preferred hybrid over traditional gasoline 

powered vehicles. The article reports that their random sample showed that 60% of people preferred 

hybrids that yielded a test statistic of z = 1.414 and a p-value of 0.08 using a right-tailed hypothesis test for 

proportions. Below are six different symbolic representations of the p-value given by students.  

Student A: 𝑃(𝑧 ≥  1.414)  =  0.08 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student B: 𝑃(𝑝̂  =  0.6)  =  0.08 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student C: 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 𝑛𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 | 𝑝̂ = 0.6)  =  0.08 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

 
Student D:  𝑃(𝑝 = 0.5 | 𝑝̂ = 0.6) = 0.08 

Is this student’s symbolic representation of a p-value correct?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student E: 𝑃(𝑝̂ ≥  0.6 | 𝑝 = 0.5)  =  0.08 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 

 

Student F: 𝑃(𝑝̂ ≥  0.6)  =  0.08 

Is this student’s symbolic representation of a p-value valid?  ___ Valid___ Invalid 

 

If you think this question is invalid, explain why you think it is invalid. 
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4. A sociology study was conducted to determine whether babies are able to recognize the difference 

between good and bad. In one experiment, 30 six-month old babies were randomly selected. Each baby was 

shown two possible puppets to play with, a ‘good’ puppet that helped and a ‘bad’ puppet that hindered.  21 

out of 30 babies showed a strong preference for the helper puppet over the hinderer. In order to determine if 

this result provides strong statistical evidence that babies really do have a preference for the ‘good’ or 

helper puppet, James, a statistics student, conducted the following test procedure: 

• James gets a coin and flips the coin 30 times. 

o If the coin lands on the “heads”, he records the baby as preferring the helper puppet. 

o If the coin lands on the “tails”, he records the baby as preferring the hinderer puppet. 

• James then used a computer simulation to repeat the previous step 1000 times. 

• James then plots the distribution for the number of times a baby chooses the helper puppet from 

each of the 1000 samples of size 30. This is shown in the graph below. 

 

 

i.) James’ procedure is based on which assumption? 

a. A baby is more likely to choose the helper puppet. 

b. A baby is equally likely to choose either the helper or hinderer puppet. 

c. A baby is more likely to choose the hinderer puppet. 

 

Explain the reason for your choice. 

 

 

ii.) Suppose James wanted to conduct a right-tailed hypothesis test using the simulated data.  

• What would you estimate for the p-value?  

• Explain how you found the p-value and interpret it in the context of James’ research. 

 

iii.) Based on your estimated p-value, what do you think should be James’ conclusion?   

a. There is statistically significant evidence that babies are more likely to choose helper puppets. 

b. There is statistically significant evidence that babies are more likely to choose hinderer puppets. 

c. There is statistically significant evidence that babies are equally likely to choose helper or hinderer 

puppets. 

 

Explain the reason for your choice. 
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5.  Gender:      Male  Female 

 

6.  What is your highest academic level and degree? (Circle all the apply) 

 

a. Bachelor’s Degree. 

b. Current Master’s Student 

c. Master’s Degree 

d. Current Ph.D. Student 

e. Ph. D. 

 

7. What academic level are you currently (or planning) to teach? (Circle all the apply) 

a. Four-year College/University 

b. Community College 

c. High-School 

d. Elementary School 

 

8. How many years have you been a mathematics/statistics teacher?  

 

 

9. How many different kinds of statistical courses have you taken (including those you are presently 

taking)? If you answered at least one, what were those courses? 

 

10. How many times have you taught a mathematics/statistics course (including those you are 

currently teaching)? 

  

11. Based on your response to 10, how many of those times have you taught introductory statistics 

course? 

 

12. Have you taught other kinds of statistics courses besides introductory statistics? If yes, what were 

these other courses? 
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APPENDIX C: INTERVIEW QUESTIONS 

 

 
Follow-up Question to Drug Test Task: 

• Can you describe in your own words the definition of the p-value? 

• What do think the p-value means in this context? 

• Can you explain your reason for agreeing/disagreeing with each of these statements? 

• Suppose a student wrote (a) as their definition of a p-value. What would your response be to that 

student? 

• Suppose a student does not mention the notion of extreme values in their definition. What would 

your response be to that student? 

 

Follow-up Question to Graduate Student Task: 

• Can you describe in your own words the definition of statistical significance? 

• What do you think statistical significance means in the context of this question? 

• Can you explain in your own words how a p-value is related to statistical significance? 

• Suppose a student asks you about the importance of the size of the p-value? How would you 

respond be to that student?  

 

Follow-up Questions to the Car Task: 

• Suppose a student in your class were to ask for a symbolic representation of a p-value. How you 

would respond?  

• Have participant discuss each representation and explain in their own words why they 

agree/disagree.  

• Have participant describe in their own words each of the symbolic representation in the context of 

the problem. 

• Suppose a student asked if there was an alternative way to symbolically write a p-value for this 

problem. How would you respond? 

 

Follow-up Questions to Helper-Hinderer Task: 

• Question 1: Walk through each assumption and discuss why they are valid/invalid assumptions.  

• Question 2: Walk through each interpretation and discuss why they are not valid/invalid choices. 

• Question 3: Have the participant discuss their method of computing a p-value for the given task?  

o Discuss alternative ways of computing the p-value with the participant and have them 

respond to each. 

• Question 4: Discuss participant’s conclusion for the given task. 

o If the participant does not mention the use of p-value from Question 3, first have them 

discuss their reasoning then introduce the idea of using the p-value to make a conclusion. 

o If the participant does not mention using a level of significance, introduce the idea of 

level of significance into the problem and ask how they might be use it for the given task.  

o Prompt the participant to find a critical value for a 1% (or 5%) level of significance if 

they have not already done so and question how they might use it to complete the given 

task. 
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