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David I. Paul, Chair

ne A. Enneking

A modified Witten—-Sander algorithm was devised for the
diffusion—-limited aggregation process. The simulation and
analysis were performed on a personal computer. The fractal
dimension was determined by using various forms of a two-
point density correlation function and by the radius of
gyration. The results of computing the correlation function
with square and circular windows were analyzed. The

correlation function was further modified to exclude the
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edge from analysis and those results were compared to the
fractal dimensions obtained from the whole aggregate. The
fractal dimensions of 1.67 * .01 and 1.75 * .08 agree with
the accepted values. Animation of the aggregation process
elucidated the limited penetration into the interior and the
zone of most active deposition at the exterior of the

aggregate.
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CHAFPTER 1
INTRODUCTION

Many comple:x: forms in nature are products of some kind
of growth process. There are growth processes ranging from
the formation of galaxies to polymers, from the structure of
snowflakes to that of living systems. It is hoped that
insight into the underlying mechanisms of growth and the
formation of structure can be gained from exploration of
more tractable models than the direct study of these
complicated physical systems. Researchers have been
recently encouraged by the intricate patterns and scaling
relations that can be produced by computer simulations. By
using few and simple growth rules it is suggested‘that the
computer models can elucidate some of the essentials of the
mechanisms of growth.

Many everyday forms have the property of self-
similarity, that 1is, the appearance of the structure is
invariant under change of length scale. Familiar examples
include coastlines, rivers, and lightning. The quantitative
description of the structure of these forms, which had been
until recently regarded as too complicated, has been
facilitated by the concept of the fractal dimension, which

was primarily developed by Mandelbrot in 1975. It has
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provided the tool for understanding a diverse variety of
processes which lead to similar fractal geometries. Aside
from scientific considerations, structures with fractal
geometries are found in many processes and products of
technological importance, such as, aggregates arnd fluid
flows.

The other development which has stimulated much recent
research is the Witten-Sander model of diffusion—-limited
aggregation (1981). The fractal graphical output produced
by the computer simulation bears a striking resemblance to
actual structures and patterns found in nature, examples of
these include; cathodic deposition, dielectric breakdown,
and viscous fingering. These physical growth processes and
the stochastic growth rules of the simulation can be
related to a potential +field described by Laplace’s
equation. Moreover, computation of the fractal dimension
has been verified by direct experimental measurement. This
suggests that the model provides a basis for understanding
previously unrelated processes and that computer simulation
can serve as a bridge between theory and experiment.

I have devised a modified Witten—-Sander algorithm for

the diffusion—-limited aggregation process and performed the

simulation and analysis on an Atari 104057 personal
computer. After generating the patterns, the fractal
dimension was computed by wusing a two-point density

correlation function and compared to that obtained using the
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radius of gyration. The method of computing the correlation
function was modified to study edge effécts. Frequency
histograms were obtained for various coordinate systems to
investigate any defects in the simulation. Animation
programs were written to demonstrate the active zone of
deposition and to better i1illustrate the deposition process.

After presentation of background material and details
of the model, the method of simulation and programming
details are then discussed. Following that, the graphical

and numerical results are analyzed and compared to similar

theoretical and experimental studies. Concluding remarks
are then offered in support of the accepted fractal
dimension for diffusion-limited aggregation. Additionally,

comments are presented to address the differences between

the methods for computing the fractal dimension.



CHAPTER 11

BACKGROUND MATERIAL

THE FRACTAL DIMENSION

Mandelbrot has extended the application of geometrical
constructs to the natural sciences by generalizing the
scaling relationships found in certain mathematical
functions and geometric patterns. These had been previously
disregarded as pathological, to the forms common in nature.
He recognized that fractal forms could serve as tools for
analyzing physical phenomena. Fractal geometry may become
better suited to deal with the real world of intricacies and
irregularities than the Euclidean idealizations of abstract
regular forms of smooth curves and surfaces.

The concept of fractal dimension, subsequently
referred to in ¢this thesis as D, is demonstrated by
considering the diffusion-limited aggregate grown by the
simulation in the embedding Euclidean dimension, d = 2, as
having a fractional dimension such that 1 £ D £ d (Figure
1.). The aggregate is not a compact surface punctured with
holes, nor is it a meandering line, it is a fractal (except
on the scale of pixels). The irregularities are not
without order in that fractals have an intrinsic symmetry,

the property of self-similarity, although for random



Figure 1. Scale invariance of a fractal aggregate.

fractals this dilation symmetry is statistical.

Although the structure is grown by a random process,
it is not random. As the sections of the structure are
magnified the pattern is recognizable so that similar
structure exists on all scales between an upper cut off,
nearly the size of the aggregate and a lawer cut off, on the
order of a pixel diameter. Thus, there exist ’holes’ at all
length scales. A purely random pattern would not show this
scaling of ’holes’. As a consequence of having holes® of
all sizes, the pixel density decreases with increasing
length scale. This can be contrasted with a homogeneocus
obiect of Euclidean geometry where the density is

independent of the length scale on which it is measured.

DENSITY SCALING

The +fractal dimension is a measure of how density
approaches zero as the length over which it is measured
increases (assuming that there is no upper cut off).

The functional equation, MOALI=ATM(L) with A > O, describes



6
how the mass of Euclidean obiects scale with length. This is
analogous to regular fractal objects such as Sierpinski
gaskets. These can also be described by MOAL)=APM((L) with
D<d (D is also called the similarity dimension since it
describes how the mass changes after a change of scale, A.)
(Figure 2.,) The solution for the fractal mass dependence on
size is obtained by use of A = L~* and M(1) =1 and is

ML) Le, (1)

The density, w0, given by o = M/L9 for exact fractals is

o = LP~9, (2)

Figure 2. Sierpinski gasket.

For the Sierpinski gasket of Figure 2, the mass scales
according to M(2L) = 3M(L) = 2PM(L) and D = 1n3/1n2 & 1.585.
Although, for exact fractals such as Sierpinski gaskets the
fractal dimension can be calculated due to their
deterministic construction rules:; the fractal dimension for
diffusion—-limited aggregates grown with a stochastic process
can only be measured.

The fractal dimension, as introduced, corresponds to
the mass dimension in physics and any characteristic 1length
such as the radius of gyration can be used to relate an

aggregate’s mass to its size during the process of growth.



In a general way, the fractal dimension can be defined by:
N(r) = (r/re)® (3
where N(r) is the gquantity obtained by measuring a fractal
medium with a gauge ro. Forrest and Witten (1979) +first
obtained for éggregated smoke particles that M(L) = L*-®& and
concluded that there were long range carrelations in the
particle density. There is another, less globally defined
formulation for the fractal dimension, it is the correlation
function, C(ry, which must also reflect the scale

invariance.
THE CORRELATION FUNCTION

The correlation function, C(r), may be defined as the
average density of an aggregate at a length r from occupied
sites and, as such, it is a local measure of the average
environment of a site, C(r) = N7 S(ry+r)&(ry) sqmmed over
the occupied sites, ry, i = 1,....N. The correlation
function thus describes the probability that a site within a
length r is occupied. The probability of occupancy is the
ratio of occupied sites to the total sites of possible
occupancy. Using equation (2), the correlation function is:

C(r) = r® r—a = ¢rP~da = o (4)
Witten and Sander (1981) first noticed that the correlation
function for diffusion-limited aggregates wés consistent
with a power law, and found C(r) = r—<o-343, The correlation

function 1s scale—invariant in that C(Ar) = AC(r).
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Al though, globally, the density of the aggregate
decreases as it grows, (due to the corresponding qrowth in
the ’hole’ size distribution) locally, these unoccupied
sites between the extending tenuous arms do not affect the
correlation function 1f r << Lmax. It is the screening
effect of these growing arms that allows for fractal, as
opposed to compact growth. That is, it allows for the long
range correlations in the pattern, and the decrease in
aggregate density.

Aggregation processes can be roughly classified into
three regimes. The first of these is when an object grown
near equilibrium, such as a crystal, which has only short
range correlations. This correlation length or resemblance
distance is on the order of the unit cells of the crystal.
When the system is driven away from equilibrium, growth is
in the second regime. For example, in supercool ed
solidification, the morphology becaomes that of dendritic
pattern formation where the structure may still be regarded
as compact. The lengths associated with the steady-state
growth of the intricate patterns of snowflakes are much
longer than the crystalline lattice spacing (see Langer,
1980). The third regime, applies to diffusion-1limited
aggregation in which the growth process is irreversible and
its growth is even farther from equilibrium. It has 1long
range density correlations and no natural 1length scales,

evident by its having holes of all sizes.



THE DIFFUSION-LIMITED AGGREGATION MODEL

In the Witten-Sander model for diffusion-limited

aggregation or DLA, pixels are added one at a time to the

graowing aggregate, via random walk trajectories on a
lattice. The process is started with a single seed at the
lattice origin. Subsequent pixels are introduced +from

random points sufficiently distant so that their flux is
isotropic. They then undergo simulated Brownian motion
until a site adiacent to the aggregate is reached, where
they irreversibly "stick”™ without rearrangement.

Various improvements and extensions to this process
have been developed, beginning with the work of Meakin
(1983a). Meakin injected the random walkers from a random
point on a circle of radius five lattice spacings greater
than the distance from thé seed to the most distant pixel on
the growing aggregate, Rinoect = Rmax + S. The random
walker was also *killed’ if R > Rxzoe = 3Rmax-

With an average aggregate size of 9700 pixels, Meakin
obtained fractal dimensions, of 1.68 * ,04 and 1.68 * .07
taken from calculations using the radius of gyration and a
correlation function, respectively.

In order to investigate lattice effects, the sticking
rules were modified. The particle was incorporated into the
aggregate if it reached a next—-nearest neighbor position and

did not stick if it was at the nearest neighbor position.



10
The corresponding dimensions of, 1.9 £ .07 and 1.70 * .07
were obtained for aggregates with an average size of 3S900
pixels.

In order to investigate the effects of the “sticking’
probability on the fractal dimension, the probability was
set at 0.25 for nearest neighbor sites and 0.0 for the next-
nearest neighbors. The aggregates, with an average size of
16,300 pixels, vyielded <fractal dimensions of, 1.71 % .055
and 1.73 + .13 respectively. Setting the probabilities at
0.0 for nearest neighbor sites and 0.1 for the next—-nearest
neighbors, Meakin further obtained ¢the <fractal dimensions
of, 1.74 * .03 and 1.73 * .04 respectively, for aggregates
with an average size of 2,800 pixels.

Later improvements in the simulation algorithm include
those by Meakin (1983b) where the aggregation rate was
increased by scaling the step size of the random walk to the
distance from the aggregate. The step size was increased to
two lattice wunits if the random walker was at a distance
greater than rmax + 5 lattice units from the center seed,
four units, if greater than rmax + 10 units, four, if
greater than rmax + 20, eight if greater than rmax + 40,
and sixteen if rmax + B80. The correlation function was
calculated for 5 2 r £ 50 and gave a fractal dimension of,
1.68 * .05. The radius of gyration gave a fractal dimension
of, 1.73 * .04. These results were obtained from aggregates

whose average size was 8,585 pixels.
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It can be seen that, for these relatively small
aggregate sizes (Meakin states that these aggregate sizes
reached the practical limit for the VAX-11/780 computer
which was used), the fractal dimension obtained by radius of
gyration calculations agreed well with those that were based
on the correlation function. Furthermore, the results were
not significantly changed by the described modifications in
the simulation process.

The diffusion-limited aggregation model was developed
to provide a simple model for a broad class of growth
processes in which diffusion limits the rate of irreversible
growth. The reason that the model produces fractal growths
and not non-symmetric amorphous blobs can be qualitatively
explained by the interplay of noise and growth. Consider
the random deposition of a few nearby particles; tiny bumps
and ’holes” will be formed due to noise of the Brownian
process. The bumps will grow faster than the interior of
the ’holes’ because the probability that the random walking
particles will arrive at the bumps, is greater. (This is
demonstrated by the lightning rod effect in electrostatics.)
As the bumps become steeper, the deposition probability
decreases for the interior of the *holes’. The bumps grow
larger due to this screening effect and tiny bumps, in turn,
begin to form on them, then subsequent splitting occurs and
this gives rise to the ramified <fractal structure. This

evident growth instability is similar to the Mullins—-Sekerka
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instability of solidification processes. The association
between diffusion-limited aggregation and certain processes
of electrostatics (electrolytic deposition and dielectric
breakdown), thermal —mass transport (dendritic
solidification), and hydrodynamics (viscous fingering) is
more than similar growth instabilities, or structure.
Although these processes apparently do not involve diffusing
*particles?, the ’particles’ are conserved and under

appropriate conditions they can all be described by harmonic

functions which satisfy Laplace’s equation.

THE LAFLACE EQUATION

That the random walkers diffuse can be understood by
noting that the probability that the x site is reached on
the k+1 step is: (following Witten and Sander, 1983)

ul{x,k+1) = 1/4 Eu(x+1l,k), (€3]
where the summation over 1 runs over the 4 neighbors of x
and is simply the previous mean value of the neighboring
sites. Without boundaries to distort the probability field,
the random walk will eventually diffuse everywhere (In the
simulations, it 1is hoped that the random walker has no
preferred direction.) In the continuum limit, this becomes
the diffusion equation for the probability distribution of
an incomimg particle (equivalent to the average

concentration if many were simultaneously diffusing), with B

as the diffusion constant:



du/3t = Bv=u. (6)
The boundary conditions for DLA are given by the
simulation rules: because the particles deposit on the
growing aggregate u = 0 on the perimeter and because the
particles approach isotropically u = ua for x =2 o. Because
only one walker arrives at a time, they ’see’, essentially a
steady-state; that is, each deposit’s perturbation of the
field relaxes instantaneously. Thus, the diffusion equation
reduces to Laplace’s equation, outside the aggregate:
VZu = 0. (7)
More formally, the probability distribution is
analogous to a potential field, the gradient of which, is
proportional to the diffusion flux of random walkers.
Because the walkers are absorbed only on the perimeter, the
flux, v, has zero divergence (v £ Ww, V'vy = V2u = 0). The
growth of the aggregate is given by the flux at ité surface.
The varied physical systems of; solidification,
electrodeposition, fluid—-fluid displacement, and
aggregation, under appropriate approximations, all share
similar interfacial growth equations and morphologies. The
corresponding control variables for these systems are;
undercooling, applied voltage, pressure, and concentration.
For example, in electrodeposition, the potential is the
electric potential, V, where the growth rate is proportional
to the electric field, E, at the surface of the deposit

(E &£ -W, V'E = 0, and V=V = o).
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EXPERIMENTAL REALIZATIONS OF THE MODEL

Electrodeposition

Using a polymer to raise the viscosity of the copper
sulfate electrolyte so as to inhibit the mixing of the
sulfate ions by convection, and an added excess of sodium
sulphate to screen the electric field, Brady and Ball (1984)
deposited copper in which growth was limited by diffusion of
Cu=* ions. The radius of deposit was proportional to the
diffusion-limited current and the mass was obtained from
Faraday’s law. The inferred fractal dimension obtained was
2.43 x .03 which is in agreement with three dimensional
simulations of DLA.

Two dimensional zinc leaves were grown by Matsushita
et al. (1984) and their two-point correlation function was
obtained by digitized image analysis. The deposits grew in
an interfacial layer between a zinc sulphate solution and a
covering of n-butyl acetate. Because the applied voltage
was low, the growth process was controlled by the electrical
potential field, obevying Laplace’s equation. The +fractal

dimension obtained was 1.66 * ,03.

Hydrodynamics

Hele—-Shaw cells consisting of two parallel plates
where a low viscosity fluid, is injected into a high
viscosity fluid have been used as analogs for fluid flow

through homogeneous porous media. By Darcy’s law, the local
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fluid velocity is proportional to the pressure gradient, and
for an incompressible fluid, the fluid poteﬁtial field obeys
Laplace’s equation. Paterson (1984) was the first to point
out the similarities between the viscous fingers produced by
the Saffman-Taylor instabilities and the patterns of DLA.
He speculated that they should also scale like DLA.

Daccord et al. (19846) used water as the driving fluid
and a high viscosity polymer for displaced +fluid. The
boundary conditions agreed with those of DLA because the
viscosity of the water was negligible which allowed the
approximation that the interface be isobaric. However, the
polymer was non—-Newtonian and its shear thinning introduced
a non-linearity which was accounted for by using a power
function of the pressure gradient. The fractal dimension
was measured using various methods which produced consistent

results of, 1.70 * ,05.

Dielectric Breakdown

Lichtenberg figures are the electrical discharge
patterns formed by the conduction channels during dielectric
breakdown. Niemeyer (1984) assumed +that the breakdown
channel is a good enough conductor to be regarded as an
equipotential and that further breakdown or growth of the
breakdown channel 1is proportional to the surrounding
electric field (or the gradient of the electric potential).
Under these crude approximations the electric potential

obeys Laplace’s equation with similar boundary conditions as
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DLA. In compressed SFs gas, the surface discharge on a
plate of glass was analyzed and a fractal dimension of 1.7

was found from digitized photographs.



CHAPTER III

IMPLEMENTATION OF THE MODEL

Various modifications to Meakin’s improvements on the
original Witten-Sander model were made due to machine
limitations and the desire to have real-time graphics
display. (For more extensive discussion of these
modifications see the Appendix A.) The most notable of
these is the modification of the interfacial boundary
conditions. In consideration of memory and speed
limitations, the growth interface or exterior perimeter was
not stored separately from the aggregate as it was grown.
Consequently, the deposition rules at the interface were
changed so that the pixel was deposited only when it
attempted to ?jump’® into the aggregate and not when it was
on its interface. Thus interfacial transport was allowed
and the deposition probability as a function of the velocity
relative to the interface, P(v), was as follows:

F{-vVnormar) = 1
) 1§53
P{+vnormar) = P(EvranceEntiac) = 0.
Deposition occurred at the site from where it attempted to
*jump’ into the aggregate. As the pixel was only allowed to
single step while inside the deposition zone, R 2 Rmax + 35,

and because the steps were along the orthogonal lattice
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directions, the possibility of the pixel *jumping’ over a
deposit filament was eliminated.

In Meakin’s model the deposition forces acted over a
distance of one pixel diameter, since deposition occurred as
soon as the pixel entered the one pixel thick perimeter.
This is in contrast to the contact forces of the model used
in this study, which allowed the pixel to move tangentially
along the interface until an attempted ’jump’ caused the
centers of the pixels to coincide. In this sense, the
present study deals with aggregation of points and ignores
the excluded volume effect, whereas Meakin’s model
aggregated extended pixels of one lattice spacing in
diameter. Consequently, the surface variations on the order
of a lattice spacing were not smoothed over, which was an
effect of the overlapping of the surrounding perimeter
layer in Meakin’s model. Thus, pixels could enter into
cavities with entrances of one pixel in diameter and there
be deposited. However, this modification did not
significantly change the fractal dimension, which is a
measure of the local deposit density or compactness.

The growing aggregation was surrounded by a ’birthing’

circle which injected the random-walking pixels at a
distance oOf Rinomcr = Rmax + S lattice spacings away from
the initial center seed. The release was randomized over

half-degree increments around this circle. If the pixel was

outside of this circle the step size was scaled as follows:
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if 10°2M < R - Rmax < 10°2N*2  then stepsize = 2N*2,
The random walk was continued until deposition occurred or
until the pixel was terminated on the *killing® circle of
radius Rexioce= 2°Rmax + 9. This modification was made to
expedite the deposition process.

To complete the description of the model, 1t should be
noted that, although, there were toriodial boundaries
(remnants from a previous demonstration program, from which
the simulation program evolved), they were never reached
because the growth terminated when the aggregate reached a
radius of 200 lattice spacings. This constraint was devised
to insure that the whole aggregate could be displayed. The
center seed was located at (200,200) in the screen space.
The coordinates of the seed in the simulation space (a
Bool ean array 1in main memory) were (408, 408) with
boundaries at 3 and 812 in both x and vy. Althnugh; larger
aggregates could have been grown, their growth times would
have been excessive and it would have been necessary to
partition their displays. (For a more complete discussion
of the memory and time constraints, see Appendix A.)

Initially, 26 small aggregates were grown using the

demonstration program which stopped growth when the
’birthing’ circle reached the edge of the screen at R = 200
lattice spacings. These small aggregates were then used as

"seeds’ in the simulation program which allowed for larger

growth. A total of 30 large aggregates were grown.



CHAPTER IV

SIMULATION RESULTS AND DISCUSSION

NUMERICAL RESULTS

The output from the simulation program consisted of
two files which were stored on disk. The spatial deposit

array was stored as a sequential file in the order of

deposition. The screen buffer was also stored as a binary
file so that screen sites could be later checked for
depasition. These files were processed by programs to

obtain the fractal dimension from the correlation function
and the radius of gyration. (For more extensive discussioan
of these programs see Appendix A.)

The correlation program actually consisted of three
separate programs, each of which calculated the correlation
function using circular and square “windows®, and from its
dependence on the “window® size, the fractal dimension was
determined for each aggregate. The first of these programs
used circular “windows’ which accumulated the enclosed pixel
area by a polygonal approximation which in effect included
the pixel area as either inside or outside the ’window’.
This approximation technique affected only those pixels
which were on the perimeter of the *window’. This

correlation function was evaluated at all the depaosits
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comprising the aggregate. The second and third programs
excluded those pixels located at radii, R > Rmax = 32.5
lattice spacings as, 32.5 was the largest window size.
Because the edge of the growth was where deposition was most
active, it was thought that by excluding the edge from
consideration, the fractal dimension obtained would be more
representative of the complete aggregate. The third
correlation program utilized a look—up table of the exact
areas for those pixels that were bisected by the perimeter
of the circular *window’. The *window’ sizes for all the
programs were 28 + .5 lattice spacings, N = 0,1,2,3,4,5.
All the correlation programs were tested for accuracy by
evaluation of the fractal dimension of compact Euclidean
figures.

The radius of gyration program used the lattice origin
and not the center of mass of each aggregate to compute the
radius of gyration. The calculation of the center of mass
at each deposition would have greatly increased the process
time. Furthermore, it was assumed that any offset would not
be appreciable. I1f it was appreciable, it would distort the

numerical results in a complicated manner.

Correlation Function Results

For each aggregate, the results of the dependencies of
Ln(C(r)) on Ln(r), and Ln(Rg) on LN(N) were analyzed by
linear regression to give the corresponding fractal

dimensions. The individual results are given in Appendix B.
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Each of the 26 small aggregates served as a seed for the
growth of the large aggregates. The correlation results of
all the individual aggregates were averaged by a separate
least squares analysis of the average results of each
’window’. The average fractal dimension, as determined

from the radius of gyration, was determined by processing a

composite of all individual growths. (This composite was
also utilized in the determination of the fregquency
histograms, which are discussed below under Graphical

Results.) These results are listed in the following table.

TABLE 1
AVERAGE FRACTAL DIMENSIONS

Fracte! Dimension fros Average Correlation 'Window’ Data

Inciuding Edge Excluding Edge
Squares 'Lircles’ Souares ‘ircles’ Circles

Seai! Aggregates

] 1.66410592 1.610012451 1,6933093837 1.6393097109 1.6942591949
s.d. L00B2032213497  , 0079478124734 012447779431 011922381414 L012101511144
Large Aggreqates

] 1.666B4422°9 1.6107480877 1.6725249781 1,6160897292 1.672937113
s.d. 0033549107252 0050211512165 .0058509194604 0056517456068  ,0057074275171

Fractal Dimension from Composite of all Aggregates based on Radius of Gyration

Small Aggregates 1.8452894007 Large Aggregates 1.8120055785

Average Agoreaate Size

Seal] Agaregates N = 4510 t 702 pixels Large Aggregates N = 16298 * 2159 pixels
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Polygonal approximation of the circular ’windows® was
utilized to expedite implementation. Circular ‘*windows’
which computed the exact areas were Jjustified in so far as
the correlation function utilized the Euclidean metric.
Furthermore, in a statistical sense, the aggregates tended
to have a circular symmetry. It had been for computational
convenience that Forrest and Witten used square ’windows’ to
determine the correlations of smoke particles. However, the
underlying square lattice geometry also suggests the
utilization of the more natural square “windows’. In the
absence of an adequate discussion of this issue in the
literature, it will now be discussed as to whether these
computational schemes yielded significant differences of the
resulting fractal dimension.

The average fractal dimensions which were obtained by
using the correlation function with circular ’windows’ and
by excluding the edges of the aggregates, were, as follows:
for the small aggregates, polygonal approximation gave
results of D.c-= 1.639 & .012 and exact calculation vyielded
results of De= 1.696 = (012, For the 1large aggregates,
results were, D.c-= 1.616 * 006 and D= 1.673 £ .006,
respectively. Therefore, the polygonal approximation is not
Justified.

Comparison of the results obtained from the
correlation function by using exact circular and square

’windows® and by excluding the edges of the aggregates,
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indicates that the choice of methaod is arbitrary.
Specifically, the fractal dimensions which were obtained for
the small aggregates were, for circular and square
’windows’; De = 1.696 * .012 and De = 1.695 * .012,
respectively, and for the large aggregates the dimensions
were identical, De = Dg = 1.673 2 .0046. Whether structural
symmetry or the underlying lattice geometry alter the
fractal dimension, as determined by this correlation
function, can not be decisively concluded on the basis of
this analysis. Other correlation functions and scaling
relations could be formulated to address this issue more
conclusively.

The effect of screening on deposition is evident by
the decrease of the average fractal dimensions, computed
where edges are excluded, as the aggregates become larger.
Comparison of the corresponding average fractal dimensions
between the small and large aggregates must take into
account that the individual large aggregates were grown from
individual small aggregate seeds and not independently, each
with a particular fractal dimension and growth trend based
on its structure. However, because the analysis is based
upon the average fractal dimensions, (which suppress any
particular trend that an individual aggregate may have in
terms of its fractal dimension), it is valid for comparing
the change in the fractal dimension between the average

small aggregate and the average large aggregate. Because
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the excluded edge is 32.5 lattice spacings for both the
small and the large aggregates, the proportion of the region
of active deposition that is excluded, is greater for the
small aggregates than for the large aggregates. Conversely,
proportionately more of the inactive interior region (which
is more compact and thus has a greater fractal dimension) is
used in the correlation calculation that excludes the edge
for the small aggregates rather than for the large
aggregates. (Screening, and the active deposition zone, are
more fully discussed in the Graphical Results section.)?

The average fractal dimensions computed by not
excluding the edges of the aggregates and by using the
correlation function using square ’windows’ are; for the
small aggregates, Ds = 1.664 * .008, and for the large
aggregates, Des = 1.667 * .005. The difference in these
fractal dimensions is not significant, and is not
inconsistent with the above analysis. Furthermore, it
suggests that the active zone also scales as a fractal.

The sequence, of the average fractal dimensions,
obtained by using the various correlation function schemes,
(presented in Table I), 1is consistent between the small and
large aqgregates. This is illustrated in Figure 3, on both
the graphs for the small and large aggregates, where the
slopes of the regression lines are listed in decreasing
order. The regression line, for the rejected scheme using

polygonal approximation, is skew to those regression lines
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for the exact schemes. The coincident regression lines for
the exact schemes; where the edge is excluded, are parallel
to the regression line for the scheme using exact squares,
where the edge is included; is true for large aggregates and
not for the small aggregates. The regression 1lines have
different intercepts simply because edge deposits were
excluded. The average fractal dimensions, calculated by
the exact schemes, for the large aggregates, yield the
fractal dimension of D = 1.67 * .01. However, the

corresponding results, for the small aggregates, do not

agree within statistical uncertainty. Further analysis of
the average dimensions, between the small and large
aggregates, of all the exact schemes, indicates a

convergence, as the aggregates become larger, toward the
results given by the scheme using squares, and where the
calculations included the edge. This convergence is also
supported by the agreement between the average fractal
dimensions of the small and large aggregates, which are
produced by the scheme where the edge is included and the
correlation function utilizes squares. This agreement also
yields D = 1.67 % .01. This suggests that, to fully
characterize a growing aggregate, an additional fractal
dimension for the zone of active deposition could be
utilized.

The sequence of the fractal dimensions, obtained by

the various correlations schemes, is further illustrated in
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Figure 4. The graphs of the results for the individual
small and large aggregates do not interéect, indicating
that the consistency of the schemes is not dependent upon

the averaging process.
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Radius of Gyration Results

The results from the radius of gyration, Rg,
dependence on the number of deposits, N, reported in Table
I, are not in immediate agreement with the results discussed
above concerning the correlation function, C(r), dependence
on the *window’ size. In further contrast. are the fractal
dimensions reported by Meakin, which do agree. (These were
similarly related to the slopes of the graphs of Ln(Rg) vs.
Ln(N) and Ln(C(r)) vs. Ln(r).) The fractal dimensions,
calculated from the reciprocals of slopes of the graphs of
Ln(Rg) vs. LNn(N), were determined from composites of all the
small and large aggregates, over the entire ranges of N.
Time did not allow for an estimation of the statistical
uncertainties associated with the listed fractal dimensions,
even though this would have required only minor
modifications to the least squares routine in order to
obtain the standard deviation of the regression coefficient.
However, inspection of any of the Ln(Rg) vs. Ln(N) graphs in
Appendix B, indicates that the graphs for the individual
aggregates are not initially linear and only appear to
asymptotically become so with increasing N. However, due to
the condensed size of the graphs, this ;nterpretation may
not be valid. The non linear region of the- graphs, for
small values of N, indicates that the aggregates are
initially random, and that their structure stabilizes and

becomes fractal with more deposition. This corresponds to
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the apparent linear portions of the graph. As an aggregate
becomes larger, a deposit’s perturbation of the global
geometry is diminished. With the average large aggregate
size of only N = 146298, it is unknown whether the fractal
dimension also has an upper cut off, above which the
aggregate becomes non—-fractal, or its dimension approaches
another value. It was hoped that the averaging of the
individual aggregates into a compasite would damp the
initial transients and the graph would be linear over its
entire range. Indeed, at a first glance, the graphs in
Figure 3, appeared to indicate this result. However, when
the regression was parameterized by a lower cut off, the
resulting fractal dimensions did not stabilize, in fact, the
results, as shown in the chart overlaid on the graphs,
indicate that the graphs are actually slightly concave.
This 1is in accord with the effect of screening by the
perimeter. As the aggregate grows the perimeter effectively
leaves behind it a region ’frozen®> at an intermediate
fractal dimension. Deposition, when penetration is
restricted, tends to increase the radius of gyration more
because it occurs, on the average, at a greater distance. A
more thorough study of this concavity and asymptotic
growth would require an analysis of the scaling properties
of the zone of active deposition. The results which suggest
the concavity may lack statistical significance, as the

maximum graphical error for the graph of the large
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aggregates is only & 2%. Furthermore, the curve tends to
oscillate, which indicates that the graph can be regarded as
linear. The use of the upper endpoint, with the
parameterized lower cut offs in the linear regression, may
not accurately determine the fractal dimension for the
average mid region of the aggregates because it tends to
attach more statistical weight to the active =zone. A
separate correlation function analysis of the active zone
would determine whether the active zone had a smaller or
greater local density than the mid region of the aggregate.
Even without this separate analysis, it may be inferred that
the active =zone had a smaller local density than the mid
region of the aggregate. This inference is drawn from an
analysis of the results of correlations over the entire
aggregate, between those which exclude and those which
include, the edge. (These results are listed in Table I.)
The question arises, of whether the reported results should
represent Jjust the global properties of a stabilized and
relatively 1large aggregate, or whether they should also
include the residual effects of its 1incipient growth.
Utilizing the results for an average "mature’, yet growing
aggregate, the fractal dimensions are, for small aggregates,
D = 1.799, and for large aggregates, D = 1.773. In
acknowledgement of the uncertainties involved, and of the
apparent inverse nature of the growth of the aggregate and

its fractal dimension, the final result, using the radius of
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gyration is, D = 1,78 * .01. This does not agree with the
correlation function results. The relative discrepancy is
X 6.67%. The radius of gyration program could be flawed, as
there is no obvious explanation for the discrepancy between

the two methods (The averages of the individual aqgregates,
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Figure S. Radius of gyration dependence on number of
deposits for small and large aggregates.
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without cut off, are, for small aggregates, D = 1.84 * .07,

and for large aggregates, D = 1.80 % .035.)

GRAPHICAL RESULTS

This section discusses the graphical depiction of the
aggregates. The graphical output for all the aggregates are
found in Appendix C. It is evident that the aggregates
represent a diversity of structure, yet a recognizable
pattern is discernable. However, without the fractal

dimension, only a qualitative description of this pattern is

possible. However, aside from the pattern, other
characteristics can be demonstrated. Symmetries and
anisotropies were investigated by the use of frequency
histograms. The dynamics of growth were studied by use of

animation programs, the results of which were distilled into
the series of images depicting the evolution of growth.
Additionally., the animation programs were used to construct
a sequence displaying the depth of penetration at varying
stages of screened growth. Aggregate number 20 was selected
as a representative aggregate and its characteristics are
presented (Figure 6.). A similar presentation follows for
the composite of all the large aggregates. The extent that
subsequent growth depends upon 1initial conditions and the
persistence of growth trends are studied by the comparison
between two of the large growths, which were grown from the

same small growth.
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The most salient features are the radial symmetry and

the similarity of branching structure ramified over

different orders of magnitude. Predicting its occurrence

and structure in terms of natural ratios of characteristic

lengths, such as arm diameters and interarm distances,

unfortunately, was not relevant to the present study,
although it certainly merits further study.

Examination of the growth stages of aggregate number

20, in Figure 7, 1indicates that the initial pattern of the
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main branches is propagated, and persists 1in, the more

intricate stages of later growth. The Ln(Rg) wvs. Ln(N)
graph for this aggregate is presented in Figure 8. The
transients of the 1initial growth are visible 1in the
oscillations of the lower portion of the graph. The

frequency histogram of the radial mass distribution is
presented in Figure 9. The presence of ’holes” is indicated
by the 1increasing portion of the histogram. Growth was
terminated before uniformity in the distribution for the mid
region of the aggregate could be ascertained.

The radial symmetry is manifest in the outward growth
of the arms. The angular distribution, as shown 1in 1its
frequency histogram in Figure 10, indicates that the arms
‘sweep up® the incident flux of random walkers. The flux is
assumed to be uniform and isotropic. (The unsmoothed data

for aggregate number 20 is given Appendix C.)
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Figure 7. Quartile stages of growth of aggregate number 20.
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Because the deposit’s diameter, lattice spacing, and

step size, prior to deposition, are identical, it is
improbable that any periodicities in the X and ¥ directions

would be detected in the histograms for these coordinates.
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Figure 8. Radius of gyration dependence on number of
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These distributions, presented in Figures 11 and 12, are not
uniform due to the interaction between the arms and the
deposition process. (Comments concerning the averages of
these distributions are presented below under the discussion
of the cumulative distribution of the large aggregates.)
The effect of screening on the growth is depicted 1in
Figure 13. The ultimate N Z of the total deposits are
illustrated, for N = 10,...,%0. On the average, the

deposition occurs in the outer and more active shell.

However, occasionally, screening is incomplete and a random

walker wanders deeply into a ’fjord’ before coming to rest,

150——

150——

Figure 10 Angular mass distribution for aggregate
number 20 (smoothed).
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as shown by the stray deposits which have penetrated the

=

interior. This screening praocess 1limits the *filling in
of the interior, and growth continues in the outer shell.
Subsequently, this active shell extends, by virtue of the
deposition occurring there, leaving behind the incompletely
’filled in® interior of the aggregate, which is a fractal,
rather than a caompact structure.

Figure 14 examines the sample space of the cumulative
probability distribution of the 1large aggregates for
uniformity and isotropy of deposition. The suggestion of

underlying arms, most discernable in those images 1labeled

I\

13—

-200 -100 (smoothed) 100

Fiqure 11. Mass distribution in X for aggregate number 20.
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J0% and 40%, (which are projections of the deposition
distribution onto the XY plane, for P(X) 2..30 and .40) and
the corresponding modes in the angular mass distribution of
the large aggregates, which is presented in Figure 135, could
be an effect of the lattice, if deposition was most probable
along the orthogonal and diagonal directions of the lattice.
Moreover, there does not appear to be any pattern
associated with those sites which have not been deposited,
except that they tend to be between those arms. The
averaged growth appears to be uniform and radial because the

perimeters aof Figures 14 and 15 can be regarded as circular.

1e0——

—-z200 —100 (smoothed) i1Qao 230

Figure 12. Mass distribution in Y for aggregate number 20.
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The frequency histograms for the cumulative
distributions in X and Y are displayed in Figures 146 and 17,
respectively. The center of deposition 1is located at
(3.47,-5.37). The center is &.4 lattice spacings from the
origin of the simulation. This result exposes a possible
source of error in the fractal dimension based on the radius
of gyration and is discussed at length in the Conclusion and
Appendix D. Factors which might influence the displacement

of the average center of mass, as accumulated over the

h
o + -
'

EQ* 0 a09x

Pisels displayed represent sites with deposition probability
greater than or equal to the indicated percentage.

Figure 14. Cumulative probability distribution in X and Y.
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relatively large sample of aggregates, are that the incident
flux is not isotropic, that the deposition is preferential
to certain orientations, or that growth is restricted in
some directions. (The center of mass for any particular
aggregate is expected to be displaced.) Because the
graphics screen was dimensioned by even, and not odd
integers, the lattice origin was slightly eccentric to the
screen boundaries. Consequently, growth was terminated
slightly more often when the maximum radius was in the
fourth quadrant. However, this would explain the location

of center of deposition in the second, and not in the fourth

quadrant. Possibly, this asymmetry was caused by non-—
uniformity of the random number generator function. I+ it
was biased towards higher values, the ’birthing® circle

would have released a greater flux of random walkers into
the fourth quadrant. Unfortunately, time did not allow for
analysis of the random number generator. (This bias also
would have caused anisotropy in the Brownian motion, which
could have countered the above effect, because the leeward
side of the aggregate would have obstructed movement and
collected more deposition. However, not knowing the shape
of the random number distribution, it is impossible to
predict how the ?’jump® procedures, which direct the
movement, would have responded to the anisotropy.) The
radial symmetry is indicated by the joint symmetry in X and

Y, as shown in the histograms.
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The +frequency histograms for the radial distribution

of the large aggregates, shown in Figure 18, are included
for comparison to Figure 9. Because uniformity of
deposition would imply that the aggregates would not be
fractal, it is not to be expected. If the large aggregates
are fractal, then the increasing portion of the histogram
should exhibit power law dependence, specifically, r®2. That
it departs from this is most probably due to occasional
penetration into the interior. The decreasing portion of
the histogram indicates that growth is incomplete and

possibly that the active zone of deposition has different

3060—T—

3000

3000—1—

Figure 15. Cumulative angular mass distribution of
the 30 large aggregates (smoothed).
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scaling properties than the more complete interior region.
However, its decreased inclination, as compared to Figure %,
is most probably the result of the averaqging which occurred
when the histogram was constructed from a composite
of all the large aggregates.

Figure 19 depicts the dependence that subsequent
growth has on initial conditions. The 1large aggregates,
numbers 23 and 27, were each grown from the small aggregate,
number 23. Even though the large aggregates are more than
three times the size of the seed aggregate, the small

aggregate seems to have imparted a general growth trend.

3600

-200 -100 L00 200

{(snoothed)

Figure 16. Cumulative mass distribution in X for the
30 large aggregates.
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This similarity of structure between the two large
aggregates persisted, even into regions bechd the scale of
the original aggregate. The large aggregates were grawn to
sizes of 16464 and 17056 deposits, respectively. An
investigation of the divergence of their morpholaogies with
further growth was not performed.

All of the small aggregates were grown from a single

featureless seed. Yet, each of the aggregates developed
distinctly, with its own characteristic structure. The
3600——

-200 =130 (smoothed) 100 200

Fiqure 17. Cumulative mass distribution in Y for the
30 large aggregates.
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Figure 18. Cumulative radial mass distribution for
the 30 large aggregates.
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Figure 19. Persistence of growth trends.

fractal dimension not only describes how its density scales,
both 1locally and globally, but also the resemblance
noticeable in those characteristic structures due to the

scale invariance, or self-similarity.



CHAPTER V

CONCLUSION

The aggregates were grown by a random process vyet
their structure is not entirely random. Their structure is
symmetric under changes of scale, from lengths of a few

pixels to that on the order of the size of the aggregate

itself. A consequence of their self-similarity (or scale—
invariance of their patterns) is that their density
decreases as their size increases. By contrast, a two

dimensional Euclidean disk with homogeneous mass density,
which is compact within its perimeter, has constant density
regardless of its size. Consequently, as the density of a
fractal aggregate decreases to zero the perimeter becomes
infinite. (Another formularization for the fractal
dimension is, (perimeter)?’/® {{ (area)?®’2, see Mandelbrot,
1983.) The ramification of the structure of an aggregate
contributes to this increase in the aggregate’s perimeter.
The screening effect which causes the arms to grow out more
than interior to fill in, contributes to the decrease in
density. The diffusion-limited aggregation mechanism
operates on the microstructure using local growth rules, the
effects of which are mediated through the fractal

property of self-similarity and affect the resulting
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macrostructure.

Mass/length scaling relationships associated with the
aggregates were analyzed to obtain a measure of the fractal
dimension. The dependence of the radius of gyration on
aggregate mass vyielded a dimension related to global
properties of the aggregate while the density—-density
correlation function gave a dimension more associated with
local properties. The agreement between these two methods
is due to the fractal property of scale invariance.

The various modifications of the correlation function
indicated that the shape of the correlation *window’ is not
pertinent to the evaluation of an aggregate with radial
symmetry and which is grown on a square lattice. However,
the results given by the method using both square *windows’
and the inclusion of the edge, more quickly attained the
value to which the results of the other methods appeared to
converge, as the average size of the aggregates increased.
It should be noted however, that the method which would have
used exactly circular *windows’ together with inclusion of
the edge was not performed so that this value could be due
to only the inclusion of the edge, independent of the shape
of the *window’. The methods which excluded the edge did
provide additional information about the screening effect.
Furthermore, the results of these methods which wutilized
square ’windows’ and circular ’windows’ did not differ

significantly. The fractal dimension as calculated over the
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entire aggregate essentially remained constant as the si:ze
of the aggregate increased. When the edge was excluded from
the correlation analysis, the correlation function indicated
that the interior of the aggregate had a greater fractal
dimension than the entire aggregate. However, the interior
did not become compact indicating that the outer edge was
screening the interior. (See Appendix E for possible
modifications of the edge analysis.) The fractal dimension
using the correlation function is Dec = 1.67 * .01.

After finalizing the analysis and discussion of the
graphical results, it became evident that the offset in the
location of the center of deposition from the lattice origin
was, 1in fact, appreciable. Consequently, the approximation
used in the radius of gyration calculations was not
Justified and the results had a systematic error. This
offset, L, enters into the radius of gyration calculation in
a complicated manner. Although, utilization of the parallel
axis theorem could correct the radius of gyration for each
deposition, N, it would require the functional dependence,
L(N). However, the dependence that the offset has on N is

non—trivial and depends on the interaction of the growing

structure with the random mechanisms of the simulation.
Further discussion of the approximations used in the
recalculation of the fractal dimension based on the

corrected radius of gyration is given in Appendix D. It is

noted there that the concavity in the graphs, mentiocned
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above, may be due, in part, to this error. The error, also
indicates that “radius of gyration®, as measured from the
lattice origin, 1is not as characteristic of the aggregate
as the true radius of gyration. The fractal dimension based
on the radius of gyration dependence is, Dmg = 1.75 * .08B.

The correlation function results using ’windows® of
1.5 to 32.5 lattice spacings of 1.467 * .01 are in agreement
with the accepted results of 1.68 * .05, as reported by
Meakin (1983b), where “windows® of S to S0 lattice spacings
were utilized. The radius of gyration results of 1.75 * .08
are in precise agreement with the accepted results reported
there.

The differences with Meakin®’s model do not give
significantly different numerical results. The slight
difference in the boundary conditions, which might allow
pixels to more completely fill cavities with entrances of
one pixel in diameter, could give slightly different
graphical results. The aggregates could be analyzed for the
presence of “lakes”, which would indicate that ocecasionally
a pixel could close off the opening of a *fjord’. However,
this analysis was not performed, in part, because Meakin’s
graphical results were not available.

The graphical results demonstrated the diversity in
the morphologies of the aggregates as well as the symmetry
property of self-similarity. The animation programs clearly

demonstrated the decreasing penetration into the interior of
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the aggregates by the random walkers as the aggregates grew
larger. The perimeter of an aggregate scréens the interior
and grows preferentially. Intricacies in the perimeter are
enhanced by the growth mechanism and tend to be extended.
Thus, the patterns of the large aggregates resemble the
patterns of their predecessors.

The morphology of a diffusion-limited aggregate
resembles the fractal structures of those physical processes
such as electrodeposition and fluid-fluid displacement. The
measur ed fractal dimensions for these processes, as
previously stated in Chapter 11, are 1.66 and 1.70,
respectively. This supports the contention that diffusion-—-
limited aggregation belongs to the same universality class

of physical behavior.
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APPENDIX A

THE COMPUTER PROGRAMS

The selection of this thesis topic was, 1in part,

motivated by the desire to demonstrate the feasibility of

performing credible physics research on a personnel
computer. Many student researchers do not have access to
mainframe computers, especially those with graphics

capabilities. Al though, it could be said that fractal
geometry is one of the computer viruses of the 19807 s. The
computer programs developed in this proiject can serve as a
basis for further research by students interested not only
in the fractal patterns they generate, which resemble many
patterns found 1in nature; but more importantly, by the
apparent generality of the model to natural and
technological processes.

Initially, the simulation was attempted on a Commodore
C-64 computer as it was a very popular and inexpensive
system. However, with only 64K bytes of random access
memory, a slow (1Mhz) B bit microprocessor, small maximum
array size (32k), and a graphics screen of only 320 pixels
by 200 pixels at *high’ resolution, it was abandoned as soon
as larger and faster machines became available. The Atari

1040ST was selected because it had the most advanced
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technology at that time (1986), although,.since then it has
been superseded by other systems, preferred by researchers,
because these systems are more technically supported.

The Atari 1040ST with 1its 16/32 Motorola 68000
microprocessor operating at 8 Mhz with 1 Megabyte of
random access memory 1is still a respectable system.
However, the basic language interpreter supplied by Atari
had ’bugs’ in the integer arithmetic routines and could not
even use 32K of memory for arrays. With this memory
limitation, simulations could not be done which would
realize the potential of the 640 pixels by 400 pixels
graphics display. Fortunately, OGFA Basic was developed by
GFA-Systemtechnik (which has become the system standard for
the Atari, especially in Europe, where Atari is on par with
IBM or Apple computers). The following computer programs
were written in GFA Basic version 2.0.

The following short demonstration program was the
prototype of more complicated and extensive programs and is

included, with comments, to offer insight into the structure

and coding of the simulation. It models DLA in a toroidal
geometry on a two dimensional square lattice. The
simulation space is a 400 by 400 lattice. The deposits are

stored sequentially in an integer array using ten bit packed
words; at the termination of the program the core image is

dumped to a binary sequential file on disk.
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Figure 20. Demonstration program flowchart.



Cls 7’ Clears the screen,
graphsode 3
' 3 is complesent mode, so plotix,y) alternately sets and clears (x,y).
Deftext 1
’ Standard text mode for Text cosmand.,
Color ¢
* Plot color is white (for white dot on black background}.
On Break Gosub Breakhandler
' Control-Shitt-Reset vectors through this cleanup routine.
On Error Gosub Errorhandler
' fAry errors vector through this cleanup routine.
Print “Starting seed filename:*®
Fileselect *\$,SCR®,"SEEL.SCR",A$
' Selects a filename {or NULL for none) to act as the seed.
Print At(l,1);"Storage filename: ’
Do
Fileselect *\#,5CR®,Mid$(As,2) B
' Selects filenase to save work.
Exit If B$<>*" And BSCX"\"
* Won't accept null filenasmes, a place is needed to save work:
* Loops until a vaild filename is obtained.
Loop
I Instr(ps,"SCE*}=0 Then
* 14 the SCReen extension isn’t there...
If Instr(8$,*.")=0 Then
* checks for a period;
B$=Bs+°."
’ adds it if it’s not there,
Endif
Be=Es+°5CR"
* then adds SCReen extension.
Endif
Hides
Dia OrderZ{30000)
* Allocates storage for the array of deposit coordinates.
Order%{0)=1
? (0) is location for the nusber of deposits, n={0)+1, since (0} and {1) are occcupied.
* That is, first deposit is in Qrderi{Z).
Order®{1)=0
7 (1) is the saximus radius of the growth froe the center of the screen.
If A$="" Dr A$="\" Then
' If *CANCEL’ was selected for *Starting Seed", then sets up standard screen,
Cls
Deffill 1,1
' Sets f111 as solid black, and
Fill 320,200
' fills it up fros the center out.
Flot 200,200
? Starting point (seed).
Order’(2)=205000 ' 205000 = 200 ¢ 1024 + 200
Orderi(0}=2 .
' Put the seed as the first elesent of the array.

Sé6
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Line 490,0,400,400
' Right boundary.
Line 401,301,639,301
* Dividing line beween title and data sections.
Text 408,16,"Siaulation of Diffusion-*
Text 408,32,"Limited Aggregation by®
Text 408,48,%single particle aigration.®
Text 408,64,"Diffusion space: 2-D planar®
Text 408,80," square lattice®
Text 408,95,°Deposit space: 2-D planar®
Text 408,112," sguare lattice®
Text 408,128, Trajectories:®
Text 408,144, collision layer: unit steps®
Text 408,160, diffusion zone: orthogonal®
Text 408,176,*  steps; scaled to R*
Text 408,192,"(R = maximua radius; dynamic}®
Text 408,208,"Initial seed: central pixel®
Text 408,224,"Generating geosetry: circle;"
Text 40B,240," radius = R + 5"
Text 408,256,"Killing geosetry: amnulus;®
Text 408,272,% wminiaus radius = 2R + 5"
Text 408,288,*Sticking probability = 1.0°
* Data section of screen starts here:
Text 408,716,*Deposits:*®
Text 408,332, "Maxisus growth radius:”
Text 408,348, "Angle of maximus radius:”
Text 408,364,"Data on Last Dancer"
Text 408,380,"R: o:"
Text 408,396, “Number of jumps:”
Else
* Else if a filename was selected for a seed, load the
Blpad A$,Xbiost2)
' screen portion into the screen semory and the
Bload Left$(AS, Instr{A%,". ") )+"ARR" Lpeek {Arrptr{Orderi(}))
* array portion into the previously allocated array.
Endit
Jump¥={
' Juspl is the nuaber of spaces a dancer can jump, depending on how close it is to the deoosition zone
Njuapsl=0
' Njuapsl is the nusber of jumps dancer{s) have sade since last depostion,
Do
? Main loop of progras. Loops until deposit reaches the edge.
Stuck=False
? Starts out with dancer unstuck, so it can aove,
Juapi=1
Gosub Newdancer
' benerates a new particle,
Repeat
' Actual dancing loop. This makes the dancer sove,
Xoldi=X1
Yoldi=Yi
' Saves old location of dancer for coamparison,
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' or to leaves particle there if deposition conditions are satisfied.
On Randos{4)+! Gasub Up,Down,Left,Right
’ Randos number 1 through 4. 1 goes up, 2 down, etc,
Inc Njuamps
' A jump was made, so count it.
On JuspX Gosub Check
' It Jumpi=1 (ie. in depostion :zone! then checks deposition criteria.
I+ Not Stuck Then
' [f the criteria was not met then
Plot XoldX,YoldX
* grases the old dancer pixel,
Plot X%,Y%
’ and draws the new one at the new coordinates.
Endit
Rai=Int (Sar{(XX-200) 224 (YL-200)+2))
* Calculates the distance froe the center of the deposit.
1f Rd%1>280rderyti)+3 Then
* 1f the dancer gets outside the killing circle at 2 Raax + 5...
Stuck=True
* artificially sticks it f{so it gets replaced with a new dancer)
Plot X¥.Y%
' and erases it froe the screen.
Endif
1f Rd%>0rderX(1)+3 Then
* If outside depostion zone, scales the jusping distance; larger jusps will econosize run tige.
Jump?=2*Int (1,4424958Log ((Rd%-Order%{1)}/5))
Else
JuepX=1
* Inside the deposition zone, juaping is single-stepped: the deposit
* can’t be jusped over and contact is normal.
Endif
Until Stuck
' Repeats dancing with this dancer until it’s stuck (deposited or killed!.
Exit If 210rderil(1)+55200
* Exits the main loop if growth is big enough,if the killing circle reaches the edge of the screen.
Loop
Gosub Cleanup
* Cleans up the mess befare finishing the prograe.
End
? Procedure Library:
Procedure Newdancer
’ Makes a new particle to deposit.
Xi=Randoa {720}
' Radial location in half degrees, 0 to 719,
Y1=200+Int ((Orderl(1)+3)8Cos(XYPi/360))
’ penerating circle is Rmax+5, so y=RCos{theta) and
1%=200+Int {{Orderl(1)+3) 85in (XY¥P1/360))
* theta={halfdegrees x pi1)/360.
Plot X%, Y%
' Puts the new dancer on the screen.
Return
Procedure Up



Sub Y%, Jumpd
* Jusp up, s0 y coordinate is decremented by the distance to jusp,
If YI<O Then
* 1¢ jump is off the screen, wraps around to the other edge,
! {never satisfied with kiliing circle present; dancer dies first),
Add YI, 400
Endit
Return
Procedure Down
Add Y, Jusp’
* Likewise, only jump is downward {increasing vy coordinate!,
It ¥Y1:399 Then
Sub Y¥,400
Endif
Return
Procedure Left
Sub XX, Jusp?
* As above, only decrease x.
If X1<0 Then
Add X%, 400
Endif
Return
Procedure Right
Add X%, JuspZ
If X1>399 Then
Sub X%,400
Endi¢
Return
Procedure Check
* Checks to see if deposition conditions are satisfied. If they are then, stick, Stuck=True.
1f Not -Point (X%,YZ) Then
' 1¢ the point jusped to is already occupied, then collision is detected
Stuck=True
* and stick at prevoius coordinates (Xoldi,Yaldl).
Inc Orderi(0)
’ Records the nueber of deposits as being one greater.
OrderX{Orderl(0}}=XoldX$1024+YoldX
' Encodes and saves the coordinates of the deposited particle.
Print At(62,20)1Using "$E44%°,Order’(0)-1;
* Displays the position
Ral=Sgr((Xold1-200)2+(Ypld1-200)2)
Print At{S3,24);Using “#44" Ral;
' and the radius of the deposit. Then calculates the angle from the center,
Anglel=Atn{{Yold1-200)/(Xold1-200+0,01))357.3
Thetai=Anglel
* This calculates the true angle from the arctan function, which gives
’ angles from -30 ta +90 degrees, instead of 0 to 359 degrees.
If AngleX<0 Then
Theta%=360+AngleX
Endif
If Xold1<200 Then
Theta%=180+Anglel



Endif
1f Rai>OrderX(1} Then
* 14 this is a saximum radius deposit, then
OrderX{1)=Ral
' updates Raax and
Manglel=Thetal
* reports the angle of the maxisusm radius of the deposit.
Endit
* Prints it all out...
Print At(73,21);Ucing 448", OrderX(l};
Print At(77,22);lising "#8%° Manglel;
Print At(63,24):Using "#88" Thetal;
Print At(49,25);Using “#448%° Njuspsi;
’ Makes a beep to indicate deposition,
Sound 1,15,1,6,1
Sound 1,0
Njumpsi=(
* Resets Njueps for the new dancer which will be generated. It’s here
* 50 Njuapsi is only reset between deposits, not when a dancer 15 killed

* and replaced: if it were in newdancer, it would count jumps only for that dancer.

Endit
Return
Procedure Breakhandier
' 1f Control-Shift-Reset is key-stroked, comes here and clean up.
bosub Cleanup
* Does the clean up routine,
On Break
? resets basic language’s default Break handler,
End
' and ends the progras,
Return
Procedure Errorhandler
' I an error happens, comes here.
bosub Cleanup
' Cleans up the mess,
Err$="Error # *+Str$(Erri+" occurred. {Data dusped to disk.®
' makes a message telling what happened,
flert 1,Errs,!, "Return® X1
' and displays it. Then...
On Error
’ resets error handler to basic’s regular one,
End
' and ends the progras.
Return
Procedure Cleanup
* This does the actual work of cleaning up.
I Point{XoldX,Yold%)=0 Then
’ It there’s a dancer on the screen at an old coordinate
Plot XoldZ,Yold%
* erases it so that it doesn’t appear in the SCR file.
Endif
I Point(X1,Y1)=0 Then

&0
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" Likewmise if it’s at the new coordinates.
Plot XL.YY
Endif
’ Binary saves the screen contents tp the save filenase,
Bsave BS.Xbins(2},32000
' binary saves the Order array to a file wath an ARF extension.
Bsave Left$(BY, Instr(Bs,”.*) 1 +*ARR" Lpeek (Arrotr(CrderX(})},Orderk{0i24+4
’ and announces the saving,
Text 80.64."Data saved to file "¢BS$
Return
In order to display the whole aggregate on the screen
at once, it was necessary to limit the maximum size of the
aggregate to 30,000 deposits. If a partitioned display had
been utilized., the constraints would have been upon the
limitations of the computer memory and the amount of time
available to run the simulation. The average time to grow
the small aggregates was approximately 8 hours and it took
30 hours to grow the large aggregates. If time had not been
a factor, then the memory requirements of the Boolean array
simulation space and the integer array deposit space, would
have allowed for a maximum of approximately 75,000 deposits.
For the large version of the simulation program., the
simulation was moved from the screen buffer into the main
memory. Additionally the deposit array was a changed from a
real number array with nine bit packed words consisting of;
the x and y coordinates and the number of ’jumps® taken from
a pixel’s *birth’, to its deposition, into an integer array
with ten bit packed words consisting of; the x and vy
coordinates of each deposit. (The encoding of the of the

coordinates saved memory space, allowing the simulation

spaces to be larger. In order to have the coordinates of
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the large simulation space to be greater than 512 the
coordinates required ten bits.) Although, the simulation
space needed four times as much memory as the deposit space,
in order to allow for the diffusion zone enclaosed in the
’killing’ circle, the deposit space could be larger than the
memory locations of the deposit array because the deposition
was fractal and not compact. Integer arrays require 4 bytes
of memory for each element, floating point arrays é6 bytes,
and Boolean arrays need only 1 bit for each element.

In order to more quickly execute the simulation,
deposition was determined by checking the spatial array of
the simulation space, rather than the sequential deposit
array and then only when the stepsize was a unit step. In
the 1large simulation, the information concerning the
>dancer’ or random walker was deleted: the *dancer® or
random walker was not plotted, the number of ’jumps’ was not
counted, and 1its polar coordinates at deposition were not
calculated. Implementation of a smaller *killing”> circle
rather than Meakin’s, (2Rmax. VvS. IRmax.), reduced the time
a pixel would be in the diffusion zone, this effectively
increased the rate of deposition. (The agreement of the
fractal dimension supports this modification. Further
analysis was not conducted to investigate whether this
simulation was, in fact, less diffusive than Meakin’s.)
Various 1look—-up tables were used to decrease the run time.

Examples are the jump table which gave the lengths aof the
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jumps that the random walker took when in the diffusion zone
(instead of using the exponential funttion), and the
Pythagorean array which gave radial distances (rather than
taking the square root).

Among the programs developed for this research, the
more salient are presented below. They are menu driven and
are provided with “Help’ screens. The Correlate Program
calculates the correlation function using exact circles and
squares. It is representative and the most developed of the
three correlation programs. It provides additional data
such as the number of excluded pixels in the edge and the
run time, (approximately 24 hours). (The number of excluded
pixels was computed with the intention of additional
analysis; to determine the connection between the
aggregate’s geometry, the correlation function results, and
the number of excluded pixels.) The loock—-up table of
partial areas is given for only one octant and by employing
symmetry, is used for the whole circle.

The Radius of Gyration Program wutilizes a running
average as it evaluates the deposit array. It also includes
the special procedure which corrects for the previously
mentioned error and calculates the radius of gyration from
the center of mass.

The <following programs provide graphical output and
analysis; Megamenu is the animation and file maintenance

program, Coremenu determines the various mass distributions
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for single aggregates and composites, and the Deposition
Frequency Histogram Program also compiles the composites, in
addition to, ’slicing’®™ the cumulative deposition probability
distribution, at any arbitrary deposition probability.

* Correlation Prograa
Version=6.1
Revdate$="13 Jun 88"
Dia Order? {30000}
Dim Pythagoras(100,100)
Dim Power (6,3)
Dia Include(32,32)
Cls
Print “Autosatic Correlation Calculator, version®’Version;®,"’Revdate$
Print "Determines the fractal dimension by least squares slope”
Input “Nusber of windows of increasing length (2 to &)";Limitl
Print “"Setting lookup table:®
11=0
Repeat
If (X1 And 7)=7
Print At{23,8):Using "X=#4",X1
Endif
Y1=0
Repeat
A=Sqr ({50-X%)~24(30-Y2)*2)
Pythagoras!X¥,Y1)=A
Pythagoras(Y%,X1)=A
Pythagoras(100-XX,YZ)=A
Pythagoras (100-YX,XX)=A
Pythagoras{Y%,100-X1)=A
Pythagoras (XY, 100-YX)=A
Pythagoras{100-XX,100-Y1)=A
Pythagoras{100-YZ,100-X1)=A
Inc Y%
Until YL XX
Inc XX
Until X%350
Print °Reading pixel integration table"
Y1=0
Repeat
17=Y%
Repeat
Read Include(X¥, Y1}
Let Include(YZ, XX} =Include (X2, YY)
Inc XX
Until X2>32
Inc Y2
Until Y532
Ndx1=1



Radiusl=2* (Limit2-1)

Repeat

Power (NdxX,1)=RadiusX+0.5
Inc Ndx%
Div Radiusl.2

Until NdxZ>LimitX

Do

Cls

Showa
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print

*Choose Mode of Operation: Type number or click on selection.®
*{ Automatic processing of all .ARR files on disk”

"2 Use alreadv created directory of filenases {CORELATE.DIRI®
*] Process single file"

*4 Helpful hints and instructions’

"5 Exit?

graphaode 3

Deffill 1,1

Ptrvertposi=Mousey

1§ Frac(Ptrvertposk/32)<0,5 Then
Bosub Inboy(Ftrvertpasi)

Else

In%=0

Endit
Do

Repeat
Ptrvertposi=Noesey

If (In%i30) And (Fraci{Ptrvertposk/32130.3} Then
Gosub Outbox{Ptrvertposi)
Endi+
If {In%=0} And (Frac{Ptrvertposi/32140.5) Then
Bosub Inbox (Ptrvertpos)
Endif
Switchi=Mousek
I Switchi) Then
If In¥>0 Then
Switchi={Ptrvertposi\32)-2
Else

Sound
Endif

Endi ¢

Key$=Inkey$
Until Key$<>"® Or SwitchX
If Switchi Then

Key$=Stré(SwitchX)
Endif
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Exit If Val(Key$)>0 And Val (Key$)<b
Sound 1,15,6,7,5
Sound §,0

Loop
Cls

braphsode |

On Vval
In%=0
Switch
Loop
End
Procedur
Hta=32

{Kev$) Bosub Auto,Existingfile,Single,Help,Exit

=0

e Inbox (HtY)
I SARYS

If Kti>16 And HEZ{192 Then

Pbox

Ini=

Endif
Return
Procedur

-1 Ht1, 500, Ht 1416
Ptrvertposi\32

e OQutbox (HtX)

HtX=3281n%
Pbox -1,Ht%,500,HtL+1b

Ini=0
Return
Procedur

Edit
Return
Procedur

Lls

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Print

Repeat

e Exit

e Help

® This progras can run in automatic mode, The reguirements are that®
*it aust be given a disk with a series of .ARR files with their"

"associated .SCK files, There can be no other .ARR files on the disk,®
"1# there are no .ARR files in the current disk or directory, a bus"
*error (two bosbs) will result.®

" To use the pre-existing directory mode {eg. to do only soame of"
*the .ARR files on a disk), create a text file nased CORELATE.DIR,"
*containing the filenaees of then .ARR files you wish to process.”
"Each filenase should appear on a single line in the file.*

* In both these cases, the results go into a file called CORELATE.DAT®
*in a tabular fora, with the filenaae at the top, followed by lines'
"with three nusbers separated by comsas. These represent K, Mdisk(R),"
*and Msquare(f) for each R processed (Mdisk is the average pixel"
*density in a disk of radius R}. The slopes of the best-fit power®
*curves for each technigue are printed on the next two lines, Thesze®
*slopes are the fractal dimensions as determined by the two-point®
*correlation function over disks and sguares respectively. The total"
*nuaber of deposits and the number of pixel excluded to elisinate edge”
“effects are printed on the last two lines."

* The Single File mode allows you to process a single file on the®
*disk, which can be entered froe a Fileselect box, The results do not*
"go into a file, but are just printed on the screen.®

. Hit any key to continue”
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Until Inkey$(>**
Return
Procedure Single
Gosub Loader
I+ File$<>"* Then
Time=Timer
Gosub ProcesstFiles)
s
bosub Secs_to_hes((Timer-Time}/200)
Print *Running time:"’Has$
Ndx%=!
Repeat
Fower (Nd: X, 2)=Power (Ndx%,2} / (Power (G, 1)}
Power (NdxX,3)=Power (Ndx%,3)/ (Power (0, 1)}
Print Power (Rdx%,1);",";Power (Ndx¥,215°, ";Power (Ndx%, 3}
Inc Ndx%
Until NdxXMimitk
Power (0,9)=Linit%
bosub Power
Print *Fractal Dimension{disk}="3;5loped
Print *Fractal Disension{square’}=";5lopes
Print ®Total Nusber of Deposits=";Order%{0)-{
Frint "Nusber of excluded pixels=";Power{0,2)
Print "Hit any key to continue®
Repeat
Until Inkey$<>**
Endit
Return
Procedure Ruto
Dir "$.ARR" To "CORELATE.DIR®
Bosub Existingfile
Return
Procedure Existingfile
Open "1",#0,"CORELATE.DIR"
1f Eof {#0) Then
goto Escape
Endif
kepeat
Bosub Open_file_for_output_or_append{*CORELATE.DAT®, !}
Input #0,Files
14 File$="" Then

Print * Directory file is empty: either no .ARR files on current®
Print " directory, or you forgot to fill the .DIR file.®
Print * Hit any key to continue.®

Repeat

Until Inkey$()>"®
Boto Escape
Endif
bosub LoadiFile$}
Time=Timer
Gosub Process(File$)
Bosub Secs_to_has({Timer-Time)/200)
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Frint #1,File$
Print #1,"Running tise:"’'Has$
Ndx =1
Repeat
Power (Ndx1,2)=Power (Ndx¥,2)/ (Power (¢, 1))
Power {Ndx%,3)=Power (Ndx %, 3)/ (Power {0, 1))
Print #1,Power (Ndx%,1);",":Poser (Ndx%,2);", " ;Power (Ndx%,3)
Inc Nd:%
Until NdsXdLimit}
Power {0, 0)=Liaitd
bosub Fower
Print #1,"Fractal Disension{disk}=";Sloped
Print #1,"Fractal dimension{sguare}s":Slopes
Print #1,"Total Nuaber of Deposits=";0rder%(0)-{
Print #1,"Nuaber of excluded pixels=";Power(0,2)
Close #1
Until Eof (40)
Ezcape:
Close
Return
Frocedure Process{Files!
Deffill 0,1
Phox 401,0,439,399
Dettill 1,1
Rwindogaz%=Irt (Power(1,1))
Rdepositmaxi=Orderifl)
Ndx%=1
Power (0,1)=0
Power (0,2} =
Repeat
Fower {Ndx%,21=0
Power [Ndx%,3)=0
Inc Ndx%
Until NdxILimitX
Print At{53,3):"File:":’Files
Print AY{33,3);"N= 0"
Print At(33,7);Using *Out of ##### total deposits®,Order(0)-1
Print At{53,9);"Excluded pixels= 0"
Ni=2
Repeat
Xw¥=0rderX (N1)\1024
Yul=0rder (N1} And 1023
I Abs{Sqr({Xw%-200)2+{Yw1-200)2))+Rwindomax%{=Rdepositmax’ Then
Inc Power(0,1)
Xi=Xwl-Kwindomax¥
Repeat
Y1=Yul-Rwindosax}
Repeat
If Point{X%,Yi) Then
Rpix=Pythagoras{Xi-Xwi+30,Y1-Yul+50)
Ndx%=
Repeat
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Exit I+ Abs(Xwi-X1)>Power (NdxX.1) Or Abs{Ywi-YI)>Power (Ndz%,1}
Inc Power {(Ndx%, 3}
Exit If Roix>Power (Ngx7,1}+0.70710678119
I Rpix<{Power (NdzxX,1)-C.70710478119 Then
Inc Pawer (Ndx%,2)
Else
Corner=Sgn{Power (Ndx%, 1) -Fpix)$0.5
Renr=(Abs{Abs(XY)-Abs(Xwl))+Corner}*2
Add Rcar, (Abs{Abs(YX)-Abs(YwX))+Corner)*2
Rznr=Sar (Rcnr)
It Power INdx¥, 1) Min(Rpix,Renr) And Fower (Ndx¥,1){Max {Rpix,Rcnr}
Add Power (Ndx%, 2}, Include(Ahs (XwZ-X¥},Abs{Ywi-YY))
Else
If Power (Ndi%.1!>Epix Then
Inc Power (Ndx1,2)
Endif
Endif
End: 4
Inz Ndxd
Until Newidlimitl
Endit
Inc Y4
Until YE>Ywi+Rwindomaxl
Inc X%
Until X7:Xwi+Rwindomaxd
Elce
Inc Power (0,2}
Print AL(70,9);Using "#3%88",Poweri(,2)
Endif
Print At(53,5):Using "N=8888%" N1-1
Inc NY
Option "U1*
Until NY>Order¥(0)
Return
Frocedure Loader
Print At{1,3):"5elect array: .
Fileselect "\$.ARR","SEED.ARR*,File$
If File${:"" Then
Bosub Load{File$)
Endif
Return
Procedure Load{Files)
Hidea
Arraviill Orderi{),0
Bload File$,Lpeek (Arrptr{Order?(}})
fosub Parsefilename(Filet)
Bload Pathname$+*\"+Left$(File$.Instri{Files,"."})+*SCR* Shios(2)
Return
Procedure Parsefilenase(Fn$)
Local First,LastZ, X%
Pathnases$=Left$(Fn$, Instr(Fn$,":"})}
Firsti=Instr{Fn$,"\"}
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For XI=Len{Fn$) Downtao |
14 Mid$(Fn$ XL, 1)="\"
Lasti=1%
End: ¢
Exit 1f Mid$(Fn$, X1, 1)="\"
Next X%
Pathnase$=Pathnape$+Mig$ (Fns,First, Lastl-Firstl)
File$=zMid$ (Fn$,Lasti+l)
Return
Procedure Ooen_file_for_outout_or_append{File$,Chanll)
It Not Exist(File$! Then
Open "0°, #Chanly,Files
Else .
Open "A",#Chanli.Files
Endif
Return
Procedure Power
Local I%,NX,Susofx,Susofy,Sumofz,Susoforoducts,SusnfprodZ,Susofsquares
N%=Fower (0,0}
Sumofx=0
Sumafv=0
Supofz=0
Sugofproducts=0
Suactprod2=0
Sumofsquares=0
For 1i=1 To MY
Add Sumofx,Log!(Foweril%, 1)}
Add Sumofy,logiPower {I%,2})
Add Sumofz,Log(Fower (11,3))
Add Susofproducts, {LogiPower (1%,1)) )8 ogPower {1%,2)))
Add Susofprod2, (Log{Power (I1,1)))8(Log(Power (1X,3)}}
Add Susofsquares, (Log(Power {I%,1})}72
Next IZ
Sloped=(NL¥Susoforoducts-Susafx $Sumofy)/ (NL8Sumofsouares-Suacfs*2)
Slopes={Ni8Sumofprod2-SueofxASumctz}/ (NTtSusofsguares-Sumofx*2)
Return
Procedure Secs_to_hmsiSecs)
Local H,M,5
Hos$=""
H=Sec313600
M={Secs Mod J4600)\40
S=(Secs Mod 34600} Mod 40
1f H>0 Then
Has$=Str$(H)+" hours, *
Endif
Has$=Hes$+Stré(M)+® minutes, "+5tr$(5)+" seconds"
Return
Data 1,.97173982736,.9B3231874634,1,.99072351790,0,0,0,.99509540182
Data 0,0,0,0,0,0,1,.99747439951,9,0.0,9,0,0,0,0,0,0,0,0,0,0,1,.99871790316
Data 54540604028, ,76932502669,1,.87745745419,0,0,1,.93596316353

Data . 13685639153,1,.51818108335,0,0,1,.75401284272

70



Data 0,0,0,9,0,0,1,.87575702090,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,.93711375142
Data .79041291337,.040929641236,0,0,1, . 44699616090

Data 0,0,0,0,0,0,1,.72232444282,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,.85994358825
Data 0.0,1,.97966414755, 063188476255, 0, 0,0,0,0,0, 1, 50504463958

Data 0,0,0,0,0,0,0.0,0,0,0,0,0,0,1,,75139505196

Data 1..99978095027,.36478676474,0,¢,0,0,0,0,0,1,.22126674792

Data 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,.61175243929

Data .50713675836,0,0,0,0,0,0,0,1,.86285867404, , 0044426875975

Data 0,0.0,0,0,0,0,0,0,0,0,0,0,0,1,.44000194594

Data 0.0,0,0,0,0,0,1, nmm%91ooq0000000000001

Data .23582534771

Data 0,0,0,0,0,1,.88988358927, . 037209702427,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Data 1,.96754775755, 031044089235

Data 0,0,0.1,,99993904191,,32508403414,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,1
Data 72754780948, 0

Data 0,0.1,.61978262358,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,1

Data .42180377617,0

Data 1,.76123750181,.031030323298,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

Data .98595157766,0. 09436695149, 0

Data .05568853789,0,9,9,0,0,0,0,0,0,0,0,0,0,0,0,0,1,.70187921077,0,0

Data 0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,.28507660143, 0,0
Data ¢,9,0,0,0,0,0,0,0,0,0,0,0,0,1,.82387863618,.0043956641457,0,0
Data ¢,9,0,0,0,0,0,0,0,0,0,0,0,1,,32935993207,0,0,0

Data 0,0,0,0,0,0,0,0,0,0,0,1,.782780131,, 0039638586902, 0,0,0

Data 0,0,0,0,0,0,0,0,0, 1..98990506335..2074“‘75794 ¢,0,0,0

Jata 0»0_0v0‘0'0_0,0A1, 95789679661,0,0,0,0,0

Data 0,0,0,0,¢,0, 1..8\02864°80..014906049143 0,0,0,0,0

Data 0,0,0,0,1,.95098614268, .16377227806,0,0,0,0,0,0

Data 0,0.1,. 99049313342,.710655468299,0,0,0,0,0,0,0

Data 1,.99880149052,.41972986399,0,0,0,0, 0'0,0,0

Data .43948478866,90,0,0,0,0,0,0,0,0

Data 0,0,0,0,0,0,0,0,0

Data 0,9,0,9,0,0,0,0

Data 0.0,0,0,0,0,0

Data €,0,0,0,0,0
0

Data 0,0,
Data 0,0
Data 0

* Radius of byration Progras
Version=1,7
Revdate$="29 Oct 88"
Dim Order(30000)
Dis Radii {1,400}
Dia Pythagoras(100,100)
Do
Lls
Showa

Print “Automatic Radius of Gvration Calculator, version®’Version;®,*’Revdates$

Print "Choose Mode of Operation: Type number or click on selection.®
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Print
Print
Print
Print
Print
Print
Print
Print
Print
Print

*1 Automatic processing of all .ARR files on disk®

*2 Use already created directory of filenases (BYRATE.DIR}®
*3 Process single file"

*4 Helpful hints and instructions®

"3 Exit®
*s Special processing of single file®

Graphaode 3

Deffill 1.1

Ptrvertposi=Mousey

1 Frac(Ptrvertposi/321¢0.5 Then
fosub Inbox(Ptrvertposi)

Elze

Ini=

Endif
Do

0

Repeat
Ptrvertpaosi=Mousey
It (In%>0) And (Frac(Ptrvertposz/32)0.5) Then

bosub Qutbex (Ptrvertposl)

Endi ¢
If (In%=0) And {Frac(Ftrvertpos%/32}{0.5) Then

Gosub Inbox (Ptrvertpost)

Endif
Switchi=Mousek
I Switch%:? Then

1+ In%30 Then
Switchi=(Ptrvertposi\i2)
Else
Switchi=0
Scund 1,15,6,7,3
Sound 1,0
Endif

Enci¢
Key$=Inkey$
Until Key$(>"" Or Switchi
If Switchl Then
Key$=5tré${Switchl)
Endif
Exit If Yal{Key$) 20 And Val (Key$)<7
Sound 1,15,6,7,3
Sound 1,0

Loop
Lls

braphacde 1
On Val(Key$) Gosub Auto,Existingfile,Single,Help,Exit,Special

Inl=0

Switch%=0

Loop
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End
Procedure Inbax (HtY)
Ht2=328 (Kt 1\32)
If Ht%>16 And HEA<224 Then
Pbox -1,Ht%, 500, HtL+1b
Ini=Ptrvertposi\i2
Endif
Return
Procedure Outbox (HtY!
Ht%=3281nk
Ptox -1,Ht%, 500, HtZ+16
InZ=0
Retyrn
Procedure Exit
Edit
Return
Procedure Help
ls
Print "This progras can run in automatic sode. The reguiresents are that®
Print "it sust be given a disk with a series of .ARR files. If there are no*
Print ".ARR files on the disk an error {two boebs) will result.®
Print "To use the pre-existing directory sode {(eg. to dc only some ot®
Print ®the .ARR files on a disk}, create a text file named 6YRATE.DIR,®
Print “containing the filenames of the .ARR files vou wish to process.®
Print "Each filename should appear on a single line in the file."
Print "The Single File sode allows vou to process a single file on the®
Print *disk, which can be entered from a Fileselect box."
Print *In all these cases, the results go into a file called <FILENA®E}.EYR"
Print *Type 'Y’ If You Have Inserted An Expendable Disk®
Repeat
Answer$=Inkey$
Until Answer$="Y" Or Answer$="y"
Return
Procedure Single
Bosub Lcader
It File$<3"" Then
Tige=Tiger
Bosub Process{File$)
Cls
Gosub Secs_to_hes{(Timer-Time!/200)
Print "Running time:“’Has$
Print "Hit any key to continue®
Repeat
Until Inkey$(>""
ls
gosub Drawaxes(1€0,300,0,450,250,0,40,30)
For X%=1 To Radii{0,0)-1
Depvari=Log(Radii (0,XX)) $40+100
Indvar¥=Log{Radii (1,X%)} 830
Dv2%=Log{(Radii (0, XZ1+1)) 8404100
Iv2%=Log(Radii{1,XX+1)1830
Draw Depvar,300-Indvard To Dv21,300-1v2X



Next X%
Repeat
Until Inkev$(>**
Endi ¢
Return
Procedure Auto
Dir "$.ARR® To "6YRATE.DIR"
Posub Existingfile
Return
Praocedure Existingfile
Open "1°,#%0,"6YRATE.DIR"
14 Eof (#0) Then
Boto Escape
Endif
kepeat
Input #0,File$
If File$="" Then

Print * Directory ¢#ile is eepty: either nc ,ARR files on current®
Print * directory, or you forgot to €11l the ,DIR file."
Print * Hit any key to continue.*®

Repeat

Until Inkey$()**®
boto Escape
Endif
bosub Load!Files$)
Bosub Process{File$)
Until Ecf(#0}
Escape:
Clese
feturn
Procedure ProcessiFile$)
ls
Line 400,0,400,399
Print At(S3,2);"File:*;’Files
Print At(53.5i:"N= O°
Print AY(S3,7):Using "Out of #8884 total deposits®.Orderi{Q}-1
Sus=0
Radii(g,0}=1
Avex=0
Avey=0
Desti=Int(({Radii{0,0}+10)42,.41/82)
N1=2
Repeat
XpixelZ=OrderZ (NX)1\1024
YpixelZ=0rderX(N%1} fnd 1023
Avex=(Avex INI-2} +Xpixel 1)/ (N1-1)
fivey=(Avey8 (NX-2) +YpixelX)/ (NZ-1)
Add Sus, (Avex-Xpixell}*2+{Avey-Ypixell}*2
Plot XpixelX,YpixelX
If (NY-1}=Destl Then
Radii(1,Radii(0,0))=Sqr (Sun/(NX~1}}
Radii{0,Radii(0,0))=Destl
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Inc Radii(0,0)
Dest¥=Int ({(Radii{0,0)+10)~2,4)/82)
Endif
If (N%t-1) Mod {00=0 Then
Print At(S3,3):Using "N=$3334" NI-1
Endif
Inc NY
Option “Uf"
Until N%>Order’i0)
Dec Radii (0,0}
Bosub ParsefilenaseiFile$)
File$=Pathnase$+*\*+Left$i{Files, InstriFiles,”.") ) +"GYA"
Bsave File$,Lpeek{Arrptr{Radii{})), (Radii{0,01+1)312+8
Return
Procedure Loader
Print Ati1,3):"Select arrav: .
Fileselect "\3.ARR","SEED.ARR",File$
If File$<>"" Then
Bosubk Load(File$)
Endi f
Return
Procedure Load(File$)
Hiden
Arraviill Order’Z(),0
Arrayfill Radii(),0
Bload File$,Lpeek (Arrptr{Orderi{}))}
Return
Procedure Parsefilenase(Fn$)
Local Firsti,Lastl, X4
Pathnames=Left$(Fn$, Instr(Fn$,":*))
Firsti=Instr (Fn$,"\")
For Xi=Ler(Fn$) Downto 1
If Mid$(Fn$, X%, 10="\"
Lasti=x%
Endit
Exit If Mid$(Fn$, X%, 1)="\"
Next X%
Pathnase$=Fathname$+Mid$ (Fn$, First¥,Lasti-Firsti)
File$=Mid$ (Fn$,Lasti+l)
Return
Procedure Power
Local I%,N%,Sumofx,Sumofy,Supofz,Susctproducts, Susctprod2, Susofsgquares
Ni=Power (0,0}
Suscfx=(
Suaofy=0
Sumofz=0
Sumofproducts=0
Sumofprod2=0
Sumofsquares=0
For 1i=1 To N
Add Sumcfx,Log(Pawer{I%,1)}
Add Susofv,Log(Power {I%,2))
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Add Suscfz,Log(Power{l%,3})
Add Sumafpraducts, (Log{Pawer (1%,1)))¥(Log(Power {1Z,2)})
Add Suscfprod2, (Log{Fower (1%,1}))8{Log(Power {I1,3}))
Add Sumofsguares, (Log(Power (1%,1}}}%2
Next 1%
Sloped=(NZ8Susofproducts-Sumofx$Sumafy)/ (NL¥Sumofsquares-Suanfx*2)
Slopes=(N1¥Susofprod2-Sumofx85umofz}/ (NY¥Suanfsquares-Sumofx*2)
Return
Procedure Secs_to_hes(Sece)
Local H,K,5
Heg$=""
H=Secst 3600
H=(5ecs Mod J600)\60
S={Secs Mod 34600) Mod &0
If H>¢ Then
Hes$=Str$(H!+" hours, "
Endif
Has$=Hac$+Strs(M)+* minutes, “+Str${S}+" seconds®
Return
Procedure Drawaxes!(Driginx¥,0OriginyX,LendxX,Rendzi, Upendy¥, Loendy’, Hashx, Kashyl)
Defline 1,1,1,1
I Lendxi=0 Then
Defline §,1,0,1
Endif
1 RendxX=0 Then
Defline §,1,1,0
Endif
Draw Drigins%-Lendx%,0Originy¥ To Originx¥+Rendx¥,Originyl
Defline {,1,1,1
I Upendyi=C Then
Defline {,1,0,1
Endif
If LoendyX=0 Then
Defline {,1,1,0
Endif
Draw OriginxZ,0riginy%-UpendyX To OriginxX,Originyl+Loendyl
Local A%,Lengthi
Length¥=10
Defline {,1,0,0
I HashxX<0 Then
For AZ=Originx¥ Tc Originzi-Lendx% Step -Hashxl
Draw AX%,Originyl-Lengthl To AX,Criginyi+LengthX
Next AL
For A%=0riginxi To OriginxX+Rendx¥ Step Hashxi
Draw AY,OriginyX-Lengthl To A%,OriginyltLengthi
Next AL
Endi¢
If HashyX(}0 Then
For AL=0riginyX To Originy%-UpendyX Step -Hashyl
Draw Originxl+Lengthl,A To OriginxI-Lengthl,A%
Next A%
For A%=0riginyi To OriginyX+LoendyX Step Hashyl



Draw Originx%+Lengthi,AL To OriginxX-LengthZ,A%
Next AX
Endif
Return
Procedure Centerofmass(P,array,Lat)
N1=0
Swap #P,array,Avearraylf{)
Avex=0
Avey=0
Do
Inc NX
Exit 1f NIdat)
Avex=(Avex ¥ (NX-1) +{Avearrayl (N%+1)\1024)) /N
Avey=(Aveyd (NX-1)+(AvearrayX (NL+1) And 1023))/NX
Loop
Swap $P.array,Avearrayi()
Return
Procedure Special
Bosub Loader
If File$<>** Then
Do
Print "Input nusber o¢ deposits to include in Rg (up to *;Order%(0)-1;*, 0 to quit}®;
Input LimitX
Exit I LimitX=0
Gosub Centerofmass($Orderl{) Liait¥)
Print "Center of mass =""Avex-200:","’200-Avey
Print "Distance Center of Mass to Origin ="’Sqr ((Avex-200)*2+(Avey-200)42)
Bosub Specialprocess{File$)
Print *Ln(# of deposits) ="’Logilimit¥)
Print "Ln{Rg) =""Log!Sgr(Sus/(Lisitl))}
Loop
Endi4
Return
Procedure SpecialprocessiFiles)
Sua=0
Ni=2
Repeat
Lpixel 1=0rder? (NX1\1024
Ypixell=Orderl(NYX) And 1023
Add Sus, {Avex-Xpixell)~2+(Avey-Ypixel1)*2
Inc NY
Option "U1*
Until NZLimitX
Return

’ Megamenu Progras
Version=4.3
Revdate$="29 Jun 88"
Dim Order {30000)

Dia Order%(30000)
Dis Menu$(30)

Let Menu$(0)="Desk®
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Let Menu${1}=" Utilities info"
Let Menu$(2)=* .
For 1=3 To 9
Let Menu${I)=Stré{l}
Next 1
Do
Inc 1
Read Menu${l)
Exit 14 Menus{l)="*"

Loop

Data "Exit",* @Quit *,**,“Utilities"," Invert®," Display SCR file °
Data * Duep to printer®,” Strip data lines"," View array file®,""
Data *Animation"," Load ARR file °,"---<----u-ccomee- *." Anisate*

Data " Involute"," lonal growth®,*®,*",**"
Menu Menu$(}
On Menu bGosub Handle_it_for_me
Print At(1,3);"Menu Progras Version®''Version;®," Revdate$
Do
On Nenu
Loop
End
Procedure Handle_it_for_me
Cls
1¢ Nenu(0)=! Then
Rosub Give_info
Else
On Menu(0)-11 Gosub Quit,Dusmy,Dummy, Invert,Disp,Prscreen,Strin,Viewarr
I Menu{0!219 Then
On Menu(0)-19 Gosub Dumay,Duemy,Loader,Dusay,Anieate, Involute,Zanal
Endif
Endif
Menu Menu$i{)
Print At(1,3);"Select function: .
Return
Procedure Bive_info
Return
Procedure Quit
Menu Kill
Edit
Return
Procedure Invert
Print At{1,3);"File to invert: *
Fileselect *\#.5CR","*SEED.SCR",A$
If A$<>"® Then
Hides
Bload A$,Xbios(2)
For Xi=¥bins(2) To Xbios(2)+31998 Step 2
Dpoke XX,Not Dpeek(X1)
Next X1
Bsave A$,Xbios{2),32000
Showa
Endif



Return
Procedure Disp
Print At{1,3);"File to display: *
Fileselect *\$,SCR","“SEED,SCR*,AS
If A$<)>*" Then
Hidenm
Bload A$, Xbios{2)
Repeat
Until Inkey$<>*®
Showe
Endif
Return
Procedure Prscreen
Print At{1,3):"File to print: °
Fileselect "\¥.SCR",*SEED.SCR",A$
I+ A$£>** Then
Hides
Bload A$,Xbios(2)
Sdpoke 1262,0
Showa
Endif
Return
Procedure Strip
A$="File aust be in noreal video|amode (black on white) to strip.|"
A$=A$+"1f in doubt, check with|display function.®
Alert 3,A$,2,"go ahead | cancel® AL
I+ AX=1 Then
Fileselect *\#.5CR","SEED.SCR",A$
[f A$¢>"* Then

Hides

Bload A$,Xbios(2)

Print At(52,23);" o
Print At{52,24);" "
Print At(52,25);" o

bosub Invert_window(488,304,527,319)
Bosub Invert window!592,320,615,335)
Bosub Invert_window{608,336,631,351)
Bsave A$,Xbios(2),32000
Showa
Endif
Endif
Return
Procedure Invert window({X1,YZ,X1%,YIX%}
Color ©
Graphmode 3
For AZ=YL To YIX
For BY=XX To Xi1
Plot BI,AL
Next BY
Next A%
keturn
Procedure Viewarr



Begin:
Local StartX,lineX, Leni,As,Did!, Optr¥,Nptri,Changed’
Changed'=False
Optri=Lpeek (Arrptr(Order()})
Notri=Lpeek (Arrptr (Orderl(}}}
Lpoke Optri,30001
Lpoke Nptri,30001
Arrayfill Order(),0
Arrayfill OrderiZ(),0
Print At{1,3);"Array file to view:";
Fileselect "\8$,AR?","SEED.ARR",Arr$
I Arr$(>*" Then
Bload Arr$,Optri
0ld!=True
Lenl=0rder (0}
I Ordert1)}{>Int(Order(i}) Then
Baove Optri,Nptri,8
1 OrderX{0)(3000{ Then
Brove Optri, Nptri,OrderX(Q)34+8
Else
Bmove Optri,Nptr, 120008
Endif
0ld!=False
Endif
If Not Old! Then
Leni=0rderZ(0}
Endif
I Instr(°23456789" Right$(Arr$,1]1)=0 Then
Bleni=LenZ
Segl=|
Segaentl=0
Else
Open "R".#!,Left${Arr$,Len{Arrs)-1)+*R",4
Field 1,4 As Buf$
bet #1,2
BlenZ=Cvi(But$)
Close #!
Segl=Val (Right$(Arr$, 1))
Segment¥=29999% (Segi-1)
Endif
Bosub Yiewarrscreen
Do
For Linei=StartY To StartX+23
I 01d! Then
I Line%=0 Then
Print At(1,2);" N = “;0Order (LineXi-1;*
Endi¢
1 Linel=! Then

Print At(1,3);" Rmax = ";0rder(Linel);"

Endif
If Linel}! And LineX(3000! Then

Print At(l,Linel-Startl+2);Using "#448% *,LineX-1;
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Print At{9,Linel-Starti+2);lUsing "$k44%  °, Order{Linel)\2462144;

Print At(18,Linel-Starti+2);Using *#&%,",0rder (Linel) Mod 262144\512;

Print At(22,Linel-Start¥%+2);Using “#8% *,Order (LineX) Mod 512;
Endif
Else
I Line%=0 Then
Print At(1,2);" = ":0rderX(Line¥l}-1;" *:
Endif
I LineX=!{ Then
Print At(1,3);" fmax = “;0rder%{Line%};" “t
Endif
It Line%>! And Line%{30001 Then
Print At(1,LineX-Starti+2):Using "#484%  ",LineX+Segaenti-1;
Print At(9,Linel-Start%+2);Using *  #4%,°,Orderi{linel}\1024;
Print At{17,Linel-Starti+2);Using "#8# °,Ordert{Linel) And 1023;
Endit
Endif
It LineX>30000 Then
Print At(1,Line4-Starti+2);* "
Endi {
Next Linel
Repeat
As$=Inkey$
Let MouseX=Mousek
I Mouse¥<>0 Then
A$="E"
PtrxX=Mousex
PtryZ=Mousey
Endif
Until ASCH"®
It As$="A" Then
bosub Addseed
Endif
I A$="C" Then
Bosub Convert
Endif
If As$="E" Then
bosub Editarr
Endi¢
I A$=*5" Then
bosub Save
Endi f
I A$=Chr$(0)+Chr$(31) Then
Bosub Changenane
Endit
1f A%$="N" Then
fls
botc Begin
Endi ¢
I A$=Chr$(13) Or A$=Chr$(32} Or A$=Chr$(0)+Chr${B0) Then
Add StartX,24
I Start%>29999 Then
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Inc Segl
bosub bet_new_seg
Start=0
Endif
Endit
1 A$=Chr$(0)+Chr$(72) Then
Sub StartX,24
I Starti<0 And Seql}! Then
Dec Segi
bosub bet_new_seq
Start1=29977
Else
Startl=0
Endif
Endit
I A$=Chre(0)+Chr$(71) Then
Segl=1
bosub bet_new_seg
Starti=0
Endif
1 A$=Chr$(0)+Chr$(119) Then
Startl=0
Endit
If A$=Chr$(0}+Chr$(B2) Then
Starti=Nin{29977, (Order%(0)\24)324)
Endif{
If A$=Chr$(0)+Chr$(77) Then
If Blen¥(3000¢ Then
Starti=tLenl\24)124
Else
Segl={Glen%-2)/29999+1
I+ Segi{>Seqaentl/29999+1 Then
bosub bet_new_seg
Endif
Startl=(LenZ\24) 824
Endi f
Endi
Exit 1 A$=Chr$(27)
Loop
Endi ¢
Cls
Return
Procedure Yiewarrscreen
ls
Box 250,75,600,279
Text 280,93,"Up arrow - Page up"
Text 280,109, "Down arrow - Page down®
Text 280,123, "{Space’, <CR> - same as Down arrow”
Text 280,141,"(Hose> - Top of array®
Text 280,157,*Left arrow - Last page of array®
Text 280,173,°<Ctrl> <(Home} - First page of segaent”
Text 280,189, *CInsert) - Last page of current segaent"
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Text 280,203,"<Esc> - Main aenu”
Text 280,221,"(Shift> € ~ Convert file®
Text 280,237,°¢<Shift> A - Add seed point to file"
Text 280,293,"<Shift> S - Save smodified file’
Text 280,269,"<Alt> § - Change filenaae and save"
Startx=0
14 Old! Then
Print At(4,1};°N%;
Print AL{9,1);"Juaps®;
Print At(1%,1);*X";
Print At(23,1};°Y";
Print At(54,1):"01d style array"®
Else
Print At{4,1):°N";
Print At{14,1Y;%X";
Print At{1B,1);°Y";
Print At{54,1);"New style array"
Endif
Print At(32,1):Arrs
If Changed® Then
Print At(54,2}:"t File Changed®!'®
Endif
Return
Procedure Get_new_seg
14 Changed! Then
Print At{52,20);"Writing changed segment...®
Gosub Save
Endi¢
It Seqi=! Then
Arr$=Left$(Arr$,Len(Arr$)-{)+"R"
Else
Arrs=Left${Arrs,Len(Arrs)-1)+5tr$(Seql)
Endif
Arrayfill OrderX(),0
Segment?=29999%(SeqX-1)
Print At(32,3);"Loading segment®’Seq¥;®... Please wait."
Bload Arr$,Nptri
LenX=0rder1(0)
gosub Viewarrscreen
Return
Procedure Addseed
Local Seedlocation, Al
Seedlocation=203000
1 0ld' Then
AL=0ptri
Else
A%=Nptrd
Endif
Cls
Print "1’s checking the length block of *;Arr$’’"=";Lpeek {AY)
I Lpeek (AX)>30001 Then
Print *1’s resetting the length block to 30001°
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Lpoke AZ,30001
Changed'=True
Endif
1f 0ld! Then
Seedlocation=(Seedlncation\1024]8512+(Seedlocation Mod 1024)
1f Order(2)¢>Seedlocation Then
Print "1’m seeding the array®
Baove AL+16,A%+22,6%(0rder (0)-1)
Order (0)=0rder (0)+1
Inc Len%
Order (2)=Seedlocation
Changed'=True
Print Arr$;® has been seeded."”
Else
Print "This file appears to be seeded, first location is *;
Print Order®(2)\512;*,";0rderZ(2) Mod 512
Endi+
Else
I+ Order{2){>Seedlocation Then
Print *I'a seeding the array"
Beove AZ+12,A%+14,48(0rderl(0)-1}
OrderZ(0)=0rder1(0)+1
Inc Len%
OrderZ(2)=Seedlocation
Changed'=True
Print Arr$:" has been seeded.”
Else
Print *This file appears to be seeded, first location is *;
Print Order1(2)\1024;",":0rder%(2) And 1023
Endif
Endif
Print "Hit any key to continue."®
Repeat
Until Inkey$<(>"*
Gosub Viewarrscreen
Return
Procedure Convert
Local A$
Cls
I Not Qid! Then
Print "This file appears to be converted already!'®
Print "New foraat N=";0rderX(0}-1"’"Kmax=";0rder}(1)
Input “Should I convert it anyway (Y or N}? *,A¢
Else
Ag="Y"
Endif
If (Asc{A$) And 223)=69 Then
Lpoke NptrX,30001
Arrayfill Orderi(},0
Print *N x 1000:%’*’
For ¥=0 To Order (0}
If ™



Order%{X)=0rder (X) Mod 262144
Ordert(X)={0rderl(X) And 261632)32+{0rderi{X} And 311)
Else
DrderX{X)=0rder (X}
Endif
If X Mod 1000=0
Print X\1000°7°
Endif
Next X
0ld'=False
Changed'=True
Print
Print Arr$’*has been converted to new format®
Print "Hit any key to continue"
Repeat
Until Inkey$(>**
Endif
bosub Viewarrscreen
Return
Procedure Editarr
Local DestX,ldxZ
PtryX=(Ptry2\16)+1
If Ptrxl{=13! And Ptryi>! Then
IdxX=Starti+Ptryl-3
I 1dx1>0 Then
Print At(53,20);°~D to delete”’ Idx%
Print At{55,21);"(TAB> to insert blank®
Print At(35,23);"¢ESC> aborts.”
I PtrxX>=94 And Ptrxi<=131 Then
Print At(33,22}:"ar type number®;
14 PtrxX{=119 Then
Dest1=1024
Box 93,PtryXs16-17,120,Ptrylsté
Print **for X*
Bosub Betnus(13)
Else
Dest =1
Box 127,PtryXs16-17,132,Ftrylsle
Print *"for Y*
bosub Getnua(17)
Endif
Else
DestX=0
Box -1,Ptryl16-17,152,Ptrylsié
fosub Getnua(0)
Endif
Else
14 IdxZ=-1 Then
Print At(55,20);"Please don’t change the"
Print At(35,21};"length directly,*
Sound 1,15,1,1,10
Sound 1,0
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Else
Dest=1
Box 119,31,144,48
Print At(95,20);"Type new maximus radius:”
Bosub Getnua{ié)
Endif
Endif
grapheode |
Deffill 0,1
Pbox 430, 300,439,399
Color 0
Drawm 0,15 To 152,15
Color
If Changed! Then
Print At(54,2)3"% File Changed!!!"
Endif
Endi+
Return
Proccedure betnus(DestcolX)
Lacal Accept$,Nua$,Done!
Let Done'=False
Nua$=""
Accept$=Chr${4)+Chr$(9) +Chr$(27)
If Destcoli<>0 Then
Accept$=Accept$+Chr$ {13} +Chre (8)+" 0123434789
Endif
Kepeat
Repeat
Ans$=Inkey$
If Ans${>"* And Instr{Accept$,Ans$)}=0 Then
Ang$=""
Sound 1,15,4,8,2
Sound 1,0
Endif
Until Ans$(>""
On Instr{Accept$,Ans$) bosub Delentry,Insspace,Esc,Endnum,Delchar
I Instr(Accept$,Ans$)>3 Then
bosub Nua
Endit _
Until Done!
Return
Procedure Delentry
I Order%(0)-1dx%-1>0 Then
Baove Nptri+{IdxZ+3) 84, Nptri+ (Idx1+2) 84, (OrderX(0)-IdsX-1) 44
Endif
If Order%(0)-1dx%-1>=0 Then
Qrderl(OrderX(0))=0
Dec Orderz{0}
Changed!=True
Else
Sound 1,15,6,7,2
Sound 0,0
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Endif
Let Donel=True
Return
Procedure Insspace
1f OrderZ(0)-I1dx1>0 Then
Bmove Nptri+{IdxX+2)s4 Nptri+(I1dxX+3) 84, (Ordert(0)-Tdx%) ¢4
Orderf(ldx¥+1)=0
Inc Drderl(0)
Changed'=True
Let Done!=True
Endif
Return
Procedure Esc
Let Done!=True
Return
Procedure Endnua
OrderX(Idx%+1)=OrderZ{I1dx¥X+1) And (Not (1023sDestl))
Add Ordert(IdxT+1),Val(Num$)tDest?
If Idx%+1>0rder’(0) Then
OrderZ(Q)=Idx1+1
Len%=0rder% (0}
Endif
Changed'=True
Let Done!=True
Return
Procedure Delchar
If Num$(>**
Nuz$=Lett$ (Nus$,Len (Nua$)-1)
Print At{Destcoll,ldxi-Start2+3);Using “#8#",Val (Nua$)
Else
Sound 1,15,6,7,2
Sound 9,0
Endif
Return
Procedure Nua
I Len{Nua$){2 Then
Nus$=Nuz$+Ans$
Print At{DestcolX, IdxX-Starti+3);Using "844",Val (Nuss$)
Else
Print At{55,20);"3 Digits Only ‘
Sound 1,15,6,7,2
Sound 0,0
Endif
Return
Procedure Parsefilename(Fn$}
Local FirstX,LastY, X
Pathnames=Left$(Fn$, Instr{Fn$,*:"})
Firsti=Instr(Fns,"\")
For f%=Len{Fn$) Downto 1
I+ Mid$(Fn$, X2, 1)="\*
Lasti=X1
Endif



Exit 1f Mid$(Fn$,Xi, 1}="\"
Next X%
Pathnase$=Pathname$+Mid${Fn$,Firsti,Lasti-Firsti)
Files=Mid$(Fn$,Lasti+]}
Return
Procedure Loader
Print At(1,3);"Select array: ‘
Fileselect *\1.ARR","SEED.ARR',File$
If File$(>** Then
Bload File$,Lpeek{ArrptriCrderli)))
Endi ¢
Return
Procedure Save
Local A, F1%,F2%,Tlenk
Tleni=Mintilen%, 30000}
A¥=Nptrl
Fli=4
F2%=8
I 0ld! Then
ALl=OptrX
Fll=4
F21=10
Endit
Print At(32,2);"Saving array to"’Arr$
Bsave Arr$, A%, TlenlsF11+F2%
Changedi=False
Gosub Viewarrscreen
Return
Procedure Changenase
Local Taps
Tap$=File$
bosub Parsefilenase(Arr$)
Print At{(32,2);°File to save array to:"
Fileselect "\¥.ARR" Arr$,Arrs
Gosub Parsefilename(Rrr$)
It Instri(Files,".")=0 Then
Arr$=Arr$+", ARR"
Endif
File$=Tap$
posub Save
Return
Procedure Drawscreen
14 File$="* Then
bosub Loader
Endit
Lls
Hides
Graphaode 3
Color 1
Line 400,0,400,399
Deftext 0,16,0,32
Text 435,45, "Animator”
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Text 433,373, "Anisator”
Deftext 0,0,0,13
Print AL{S2,1);Files
Text #410,77,°% - Reverse growth direction®
Text 410,109,*(Enter> - Continue automatic®
Text 490,125, growth®
Text 410,157,*. - Stop autosatic growth®
Text 410,189,"( - ®hite background”
Text 410,221,") - Black background"
Text 410,253, "Any other key - Single step"
Text 338,269,"%in Stop mode"
Text 410,301,/ - Fill in to current pixel®
Text 410,333, "CUndo> ~ Exit/abort anisator®
Return
Procedure Plot(Start%,FinishY,Directionl,Hidthk)
Local MWait',Ss$
X%=Startl
Repeat
If (Directiont>0 And X¥(=Finishl) Or (Directioni{0 And XX>=Finish%) Then
Plat Orderf(XX)\1024,0rder%{X%} And 1023
If WigdthX>0 And XI1Width%+! Then
Plot Order®(X%-Width1}\1024,0rderI(X%-Width%) And 1023
Endi §
Add XX,DirectionX
Endif
A$=Inkey$
I #ait! Then
Repeat
fs=Inkey$
Until As$(>""
Endi
I A$C>"" Then
If A$="%" Then
Plot DrderZ{X%}\1024,0rder2{X}%) And 1023
I Width%>0 And X1 WidthX+1 Then
Plot Orderf{xX-Width¥%)\1024,0rderX{X1-Widthl) And 1023
Endif
Swap Starti,Finishi
Mul Direction¥,-1
Endif
If As$="." Then
Wait!=-1
Endif
I As=Chre(13) Then
Wait!=0
Endif
If A$="(" Then
Setcolor 9,1
Endif
If A$=*)" Then
Setcolor 0,0
Endif
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It A$="/" Then
Sget S$
AL=X%
bosub Plot(2,X%,1,0)
Sput S%
Xi=A%
A‘:II
Endi f
Endi+
Until A$=Chr${0)+Chr$(97)
Return
Procedure Animate
Bosub Drawscreen
Bosub Plot(2,0rdert(0},1,0)
Setcolor 0,1
Showe
Return
Procedure Involute
Bosub Drawscreen
bosub Plot(Order¥{0},2,-1,0
Setcolor 0,1
Showa
Return
Procedure Zonal
Cls
Print At{10,12);
Input "Enter nusber of pixels to display in deposition zone";Widthi
bosub Drawscreen
Gosub Plot(2,0rder% (0} 1, Hidth%)
Setcolor 0,1
Showe
Return

* Coresenu Prograa
Version=3.6
Revdates$="2 Oct 88"
Dim Order%{32000} ! Make room for FHE arrays too.
Din Results{1,400)
Dim Pawer (1,400}
Dis Std_graphl{12)
Dia Menu$(50}
Let Menu${0)="Desk"
Let Menu${1)=" Utilities info"
Let Menu$(2)=" .
For 1=3 To 9
Let Menu$(I)=Str$(l)
Next |
Do
Inc |
Read Menu$(I)
Exit [ Menu$(l)="**
Loop
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Data “Exit®," Quit °,"",°ARR Funcs'," Autocorrelation Vectors®
Data * Mass Distribution in X and Y"
Data * Mass Distribution in R and Theta *
Data "*,"FH6 Funcs®," Mass Distribution in X ang Y*
Data * Mass Distribution in R and Theta *
Data "","6YR Funcs®,* Prep for new file °," '
Data " View 7YA File®," Plot*,* Regression®,"*,"*,"**
Menu Menu${)
On Menu BGosub Handle_it_for_me
Print At(1,3);"Correlation functions, Version®’Version;®,"’Revdate$
Do
On Menu
Loop
Procedure Handle_it_for _se
Cls
14 Menu(0)=1 Then
Bosub hive_info
Else
On Menu{0)-11 Gosub Buit,D,D,Auto,Massxy,Massrt,D,D,Feassxy,Feassrt
1f Menu(0)>2{ Then
On Menuf0)-2{ Gosub Dusay,D,Prep_for_new,Dumsy,Viewdat,Plotya,Regression
Endif
Endif
Menu Menu$ ()
Print At{§,3);"Select function:®
Return
Procedure bive_info
Return
Procedure Quit
Menu Kill
Edit
Return
Procedure Auto
Local AY,BX,CY,I1%,0%
bosub toader
Cls
14 File${>*" Then
Input *Input n:®;N%
Print *Calculating Autocorrelation vectors®
For A%=2 To OrderX{0)-N}
I AY Mod 100=0 Then
Print At(1,6);"N=";A
Endi ¢
J1=0rderX (A%+N1)
[1=0rder’ (A%}
Xj1=02\1024
Xit=11\1024
Yil=J1 And 1023
Yid=I1 And 1023
OrgerX{AX-1)=Int (Sgr{(YiX-YiX)*2¢{Xj1-Xi1)*2))
Next AZ
Cls




Order%(OrderX(0)}=0
frderi(OrderX(0)-1)=0
For A%=Order%{0)-N% To OrderX(0)
OrderZ(A%)=0
Next A%
Gosub Set_up(20,380,0,400,350,0,100,50,1,1)
Bosub Axes{(1Std_graph%Z())
bosub Label _hashes(3Std_graph%(})
graphsode |
For Begin%=1 To ({OrderZ{0)\400)+1)8600 Step 600
Text 20,396,5tr$(Begin¥)
Text 5B0,396,5tr$(Begin¥+399)
For A%=1 To 600
Color ¢
Draw A%+20,380 To A%+20,380-Orderi(A%+Begini-1)
Color ¢
Draw A%+20,379-Order%(Al+Begini-1) To A%+20,0
Next A%
Color
Repeat
Until Inkey${>"*®
Next Begini
Endif
Return
Procedure Massuy
Bosub Loader
Cls
If File${>"" Then
Print At(1,5);*Calculating Center of Mass ... Please wait"
Bosub Centerofaass{sOrderX(}))
Print "Center of mass at X=";Avex’’"Y=";Avey
Print At(1,5);"Calculating X and Y density functions *
Print “Processed 0 of"’Order%(0)’ *Points"
For X%=2 To Order¥{0)
If X% Mod 100=0 Then
Print At(t1,6);X%
Endif
Inc Results(0,0rderX(X%)\1024)
Inc Results{l,OrderX(X1) And 1023)
Next X1
bosub Set_up(320,240,220,220,200,0,100,180,1,1)
bosub Dispxy
Endif
Return
Procedure Faassxy
Local Coil%,Exp¥,Freql,Iter?,Sixbit:,Uncoild,Xpizell,Ypixell
Gosub Floader
fls
If File$<>*" Then
Print At{1,5);"Calculating Center of Mass ... Please wait®
bosub Fcenterofaass(3Orderl())
Print "Center of mass at X="jAvex’’"Y=";Avey
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Print At(1,5);"Calculating X and Y density functions
Print “Processed 0 of 160000 Points®
For Iterl=1 To 32000
CoilX=(IterX-1)43
Freqi=OrderX{IterX)
I Coil% Mod 100=0 Then
Print At(11,4);CoilX
Endi
14 Freq%{>0 Then
For Sixbit%=0 To 4
Expi=64*5ixbith
Freqi=Order2{Iter?) And (638Exp¥)
14 Freq¥{>0 Then
Div Freqi,ExpX
Uncoil%=CoilX+SixbitX
Xpixel%=Uncoil%\400
Ypixel¥%=Uncoil% Mod 400
Add Results(0,XpixelZ),Freql
Add Results{l,Ypixel%),Freqk
Dption "UL"
Endi$
Next Sixbitl
Endif
Next IterX
fosub Set_up{320,240,220,220,200,0,100,180,1,-20)
bosub Dispxy
Endi$
Return
Procedure Dispry
Tester:
Cls
braphaode |
I Loaded! Then
Files$=Dat$
Endit
Bosub Parsefilenane(Files)
bosub Axes(1Std_graphi{))
bosub Label tiashes (#5td_graphi(})
Std_graphl(0)=1
5td_graph%(3)=0
Std_graph%(4)=199
Std_graph¥{5)=-200-Int {Avex!
bosub Plot (45td_grapht())

Lbl$="Deposit "+File$+" Mass Distribution Function in X*

Al=40-Len(Lbi%)/2

Print At{AY%,22);ibl$

Print At(52,4);"Center 0f Mass:"
Print At(52,5);Avex;","* Avey
fosub Cad_driver("*)

{ls

bosub Axes{#5td_graphi())

bosub Label hashes{#5td_graphX())
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Std_graphZ(0)=1+4
Std_graph%i3)=0
Std_graphl(4)=399
Std_graphi(3)=-200+Int {Avey)
Gosub Plot ($5td_graphi(})
Lbl$=Left$(Lbl%, Len(Lbl$)-1)+"Y"
Print At(A%,22);Lbl%
Print At(52,4);"Center Of Mass:®
Print At(52,3);Avex;"," Avey
bosub Csd_driver(""}
Return
Procedure Massrt
Local A%,BX,RY,Th%,Rav,Ral,Rhai
Graphsode 1
Gosub Loader
Cls
If File$O>"" Then
Print At(1,5);"Caiculating Center of Mass ... Please wait"
Rosub Centerofmass($Orderi())
Print "Center of mass at X="jAvex’’"Y=";Avey
Print At(1,3);"Calculating R and Theta density functions *
Print "Processed 0 of"’Order%(0}’ "Points*
For X%=2 To Orderl(0)
14 X% Mod 100=0 Then
Print At(11,6);X%
Endi ¢
A%=Order%(X2)11024
BY=0rderX(X%) And 1023
R%=Int (Sqr((AL-Avex~200}*2+(BL+Avey-2001°2))
Thi=Trunc (Atn{ (BX+Avey-200)/ (AZ-Avex-200+0,00001})8$57.3)
Add Th%,180
If A%-Avex-200{0 Then
Add Th, 180
Endi¢
I Th1)>=340 Then
Sub Th%, 340
Endit
Inc Resultsi{0,R%)
Inc Results(1,ThX)
Next XY
bosub Set_up(100,250,0,220,220,0,50,100,1,1)
Gosub Disprt
Endit
Return
Procedure Femassrt
Local Coill,Exp%,Freg¥, Iter¥,Sixbit?,Uncoil, Xpixel?, Ypixell
bosub Floader
ls
I File${>*" Then
Print At(1,5);"Calculating Center of Mass ... Please wait"
Gosub Fcenterofaass(#0rderi(})
Print "Center of mass at X=";Avex’’"¥=";Avey



Frint At(1,5);"Calculating R and Theta density functions *
Print *Processed 0 of 140000 Points®
For Iteri=1 To 32000
Coilz=(Iter%-1185
Fregt=Order%(Iter¥}
1 CoilZ Mad 100=0 Then
Prirt At(11,8);C0il%
Endif
If Fregi{*d Then
For SixbitX=0 To 4
Expl=64~Sixbit%
Fregi=Ordert{Iter’} And (AT1Esp%}
I Fregi<X0 Then
Div FreaZ, ExpX
Uncoil%=CoilZ+SixhitX
Ypizel¥=Uncoi1%\400
Ypixel%=Uncoil’ Mod 400
RX=Int (Sor ((XpizelX-Avex-2001*2+(Ypixeli+Avey-200172))
Thi=Trunc(Atn((YpixelX+Avey-200)/ [¥pixel i-Avex-20040,000011)457.3)
Add ThZ,180
If XpixelZ-Avex-200¢0 Then
fAdd Thi, 180
Endif
If Thi»=340 Then
Sub Thi, 240
Endif
fdd Resultsi¢,R1),Fregi
fdd Resultsi!,Thii,FreqZ
Option "U1"
Endif
Next Sixbitl
Endif
Ne:t Iter}
bosub Set_up{100,25¢,9,220,220,0,50,10C,-20,-20)
Bosub Disprt
Endif
Return
Procedure Disprt
fls
I Loaded' Then
File$=Dat$
Endif
bosub Parsefilenane(File$)
Testing:
Sclx1=Std_graph%(9)
Std_graphX(9)=1
bosub Axes(s5td_graphi())
bosub Label_hashes!($5td_graphil())
Std_graph%(0)=1+8
Std_graphl(3)=0
Std_graphi(4)=201
Std_qraph%id)=0
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Bosub Plot{tStd_graphi())
Lbl¢="Deposit "+Files+* Mass Distribution Function in R®
At=40-Len{Lbl$)/2
Print AL(A%X,22);Lbl$
Frint At(52,4)"tenter 0f Mass:"”
Print At(32,3):fAvex:","’ Avey
Print At{32,6):Chr$(235):"=""Ave
braphaode 3
Text 408,93,°r"
Bosub Baruraph(100+Ave.250.0,-20)
Bosub Bargraph{100+Mode’,250,9,-28)
Braphacde 3
Deftext 1,0,0,6
Text 100+Ave-3,230420+10,°r"
Text 100+Ave-3,250420+9,Chr${255)
Text 100+Mode’-15,250+20+18, “sode”
Deftext 1,0,0,13
brapheode 1!
bosub Cag_driver{®r®)
s
Bosut Set_up(220,200,180,180,180,180,150,150,5c14%,5td_graphl{10})
bosub Axes(1Std_graphli))
Bosut Label hashes(35td_graphi{})
Std_graphi(0)=1+44+32 '{ color, 4 upper, 22 polar
Std_graphii3)=0
Std_grapht{4)=340
Std_graphiisi=0
bosub Plct(#Etd_graphi(})
Lbls=Lefts(Lbls, LeniLbl$)-1}+"Theta"
Al=Len(Lbl$}
Print At(52,2);Left$(Lbls, AL-15);
Print At(52,3);Mids{Lbls,A%-34,17)
Print At{5Z,4);Rights(Lbls,17)
Frint At(32,6);"Center 0f Mass:®
Print At(22,7);Avex;"," Avey
bosub Cad_driver(*")
Let Loaded'=True
LenZ=340
Rketurn
Procedure Cad_driver (Char$)
Local CharX
Char¥=-{Char$<>"")
Do
bosub Faline{("S = Smoothing M = Modes E = Edit Screen <ESC) aborts
Repeat ‘
As=Inkey$
Until A$O"®
Exit If A$=Chrs(27)
I (Asc(A%) And 95)=83 Then
On Char¥ Gosub Label ave
basub Smoothing
On Charl Gosub Label ave

(CF> stores screen®)

96



Endif
On -((Asc(A$) And 95)=77) Bosub Modes
On -{{Asc(A$) And 93)=69) Bosub Ed
14 A$=Chr$(13) Then
Bosub Paline("*)
Sget Scrs
Fileselect "\$.BRF","",Dat$
Sput Scr$
If Instri(Dat$,®.GRF")=0 Then
bosub Parsefilenase(Dat$)
Dat$=Pathname$+*\*+Left$(Files+".®, InstriFiles+", " ", ") +"GRF"
Endif
Bsave Dat$, Xbios(2},32000
Print At(1,2);"Saved as"’'Dat$
Endi¢
Exit If As=Chrs$(i3}
Loop
Return
Procedure Label _ave
braphaode 3
Deftext 1,0,0,6
Text 100+Ave-3,250+20+10,Chars
Text 100+Ave-J,230+20+9,Chr${233)
Text 100+ModeX-13,250+20+18, “sode"
Bosub Bargraph{100+Ave,250,9,-20)
Bosub Bargraph{{00+Node,250,0,-28)
Graphaade !
Print At(35,6);Ave
Deftext 1,0,0,13
Return
Procedure Smoothing
fosub Moving_ave
Return
Procedure Moving_ave
Local X%,N%,Cus¥ Nr%,Upper!,Split!
Interval%=3
Upper'={5td_graph2(0} And 4)
Split!=(5td graphi(0} And 128!
Std_graph1(0)=Std_graph%(0) And 25
Bosub Plot ($5td_graphi())
If Not Split! Then
For X%=5td_graphX(3) To Std_graph¥(4)
Cunl=0
Nrl=0
For NI=-Intervall To IntervalX
I+ XL+NL>=0 And XY+N1{400 Then
Add Cusi,Results{Abs(Upper!) X1+N})
Inc Nr%
Endif
Next NZ
Results(Abs(Upper‘},X1}=Int (CuaZ/Nri}
Next XX
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Else
Endif
Add 5td_graph%i0},1
bosub Plot (#5td_graphi())
Return
Procedure Ed
Local X,Y,K,A$
Bosub Peline{*{Left Button> - Add Text  <Right Button: - Move Area {ESC} exits")
Repeat
Mouse X,Y,K
On ¥ bosub Text,Move

If K Then
bosub Pelire(*{Left Button> - Add Text  <Right Button: - Move Area {ESC> exits”)
K=0
Endit
A$=Inkey$
Until (A$=Chre(13)) Or (A$=Chrs(27))
RKeturn

Procedure Preo_for_new
Let Loaded'=False
Datg=""
Return
Procedure Viewdat
Local StartZ,Line%,A$,01d! Optri NptrX
Dptri=Lpeek {Arrptr(Results()})
It Not Loaded! Then
bosub Dloader
Endif
If Dat$¢>"" Then
bosub Viewdatscreen
Do
For LineZ=Start% To Starti+23
It LineX<4C1 Then
Print At({,LineX-Starti+2);Using " ##% * LineZ+Basel;
Print At{12,LineX-Starti+2);Using "$44%%, H4444484° Results(0,Linel+Base));
Print At{28,Linei-Starti+2);Using "$#%. $RE4R888R° Fesults{] Linet+Basel);
Endif
I Line2>400 Then
Print At(1,LineX-Starti+i);" .
Endif
Next Linel
Repeat
A$=Inkey$
Until ASOH"®
I+ A$=Chr$(13) Or A$=Chr$(32) Or A$=Chr$(0)+Chr$(80) Then
Add Startl,23
If Starti>375 Then
Starti=373
Endi ¢
Endif
It A$=Chr$(0)+Chr$(72) Then
Sub StartX,25



I Starti<0 Then
Starti=0
Endit
Endif
1 A$=Chr$(0)+Chr$(71) Then
Start¥=0
Endif
1¥ A$=Chr$(0)+Chr${77) Then
Starti=(Len¥\25)325
Endif
Exit If A$=Chre(27)
Loop
Endif
Cls
Return
Procedure Viewdatscreen
Cis
Box 384,75,600,183
Text 392,93,"Up arrow - Page up"
Test 392,109,"Down arrow - Page down®
Text 392,125,"¢(Space>, <CR> - same as Down arrow®
Text 392,141,"{Hose’ - Top of array"
Text 392,197,"Left arrow - Last page of array"
Text 392,173,"¢Esc> - Main senu”
Start%=0
Print At{1,1);"N of"'Leni
Print At(12,1):1ero%;
Print At(28,1);0nes;
Print At{49,1);:Dat$
Return
Procedure Plotya
If Not Loaded' Then
Bosub Dloader
Endi¢
If Dat$<>"" Then
I Typ$="XYR" Then
bosub Dispxy
Else
If Typ$="RYA" Then
Bosub Disprt
Else
Cls
Gosub Axes($5td_graphi())
bosub Label_hashes(#5td_graphi{))
bosub Plot(35td_graphi())
bosub Regression
Gosub Cad_driver{"*)
Endif
Endif
Endif
Return
Procegure Regression



Local Cutoff,Cutoffl

1¢ Not Loaded! Then
Gosub Dloader

Endif

I+ Dat$<>"" Then
Power (0,0)=0

Input "Lower cutoff for regression (Ln(N) in linear region, 0 for all}®;Cutoff

If Cutoff=0 Then
Cutoffi=1
Else
Cutoffi=Int ((B28Exp(Cutoff))*0.41666566566671-10
Endif
For N%=Cutoff% To Leni
Inz Power (0,0}
Power (0, Power (0,0))=Results{0,N%)
Power (1, Power (0,0} }=Results{],N¥}
Next K%
Bosub Paower
Print * D = “:1/Slope
Print *File = ";Dats$
Endif
Return
Procedure Loader
Print At{1,3);"Select array: .
Fileselect “\$,ARR","SEED.ARR",File$
I+ File${3"* Then
Arrayfill Results(),0
Arraytill Order%{),0
Bload File$,Lpeek (Arrptr(Orderi()})
Endif
Return
Procedure Floader
Print AL(1,3);*Select array: .
Fileselect "\#,FHG","LONGLIST.FHG®,File$
If File${>"" Then
Arrayfill Results(),0
Arrayfill Orderi(),0
Bload File$,Lpeek{Arrptr{Ordert()))
Endif
Return
Procedure Dloader
Local T¢%,Tp$
Do
Print At(1,3};"Select array: *
Fileselect *\t#.7YA","",Dat$
If Dat$<>*" Then
Tf$=Files
Tp$=Pathnage$
Gosub Parsefilename(Dat$)
Typ$=Mid$(File$,Instr{Files,".")+1)
Datpath$=Pathnaae$
Pathname$=Tp$
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File$=T¢$
Endit
Exit 1f Instr(“PYABYAXYARYA",Typ$)>0 Or (Dats="")
Print At{l,1);Dat$’"is an unknown type of data file. Please"
Print “enter file with .PYA, .6YA, .XYA, or .RYA extension.®
Loop
If Dat$<>"" Then
Arrayfill Results(}),0
Bload Dat$,Lpeek{Arrptr{Results(}})
Let Loaded!=True
If Instr{*PG",Left${Typ$,11)>0 Then
LenZ=Results (0,0}
Basei=1
Split!=True
1# Typ$="PYA" Then
lero$="Radius of zone®
I$="{n R*
Let One$="Filled Area"
Y$="Ln C(R}*
bosub Set_up(100,300,0,430,230,0,50,30,50,50)
Std_graph%(0)=1+64+128+236
Std_graphi(3)=Basel
Std_graph’%(4)=Len}
Std_graphi{3)=0
Else
leros="¥ of Deposits"
I$="Ln K"
Let One$="Radius of byration®
Y$="Ln Rg"
bosub Set _up{100,300,0,430,230,0,40,40,40,40)
Std_graph%(0)=1+64+128+234
Std_graphX{3)=Basel
Std_graphi{4)=Len}
Std_graph%{3)=0
Endit
Else
Basels0
Split!=False
I+ Typ$="1YA" Then
Len¥=80¢
Len0%=400
Len1%=40¢0
lero$="Density in X*
Let One$="Density in Y"
I$="x"
Y$="Density in X°
bosub Set _up{320,240,220,220,200,0,10¢,180,1, 1)
Std_graphZ{0)=1
Std_graph%(3)=Basel
Std_graph%(4)=LenX
Std_graph%{5)=0
Endit
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I¥ Typ$="RYA® Then
Len%=3460
Len0%=201
Len1%=360
lero$="Density in R"
Let One$="Qensity in Theta®
Bosub Set_up(100,230,0,220,220,0,50,100,1,1)
Std_graphi{0)=1+8
Std_graph%{3)=Rase’
Std_graphi(#)=Len0l
Std_graphi(Si=0
Engi f
Endi
Endi ¢
_ Return
Procedure Parsefilenase{Fn$)
Local Firsti,Lastd, X
Pathnases$=Leit$(Fn$, Instr(Fns,":1"))
Firsti=Instr(Fns,"\")
For Xi=Len{Fn$} Downto 1
It Mid$(Fn$, X%, 1)="\"
Last =X
Endif
Exit If Mid$!{Fns$, XX, 1)="\*
Next X%
Pathnases$=Pathname$+Mids (Fn$,Firsty,Lasti-Firsty)
File$=Mid$(Fn$,Last%+1)
Return
Procedure Set_up(Orx%,0ryi,Lendx¥,RendxX, Tendy¥%, Bendy¥, Hashx X, Hashy¥%, Sclx’, Scly)
Std_graphl{1)=0rxX
Std_graph%(2)=0ryl
Std_graphi{6)=633368LendsL+RendxX
Std_graphi{7)=635368Tendy%+Bendy?
5td_graphl!B)=635363HashsL+Hashyl
Std_graphi{9)=5clxX%
Std_graphi(10)=Scly%
Return
Procedure Axes(P.array)
Local Orx1,0ryZ,LendxY,Rendx¥, Tendyl, BendyX, Hashx ¥, Hashyl
Local A%, Lengthi
Swap #P.array,Arrayi{)
Orx%=Arrayl{l}
Dryi=Arrayli2}
Lendx%=Arrayl(6)\465336
Rendx1=Array%(4) And 65335
TendyX=Array%{7)\65336
Bendyl=Arrayl(7} And 63333
Hashx1=Arrayl(B)\465536
Hashyl=Arrayl(8) And 65535
Gosub Drawaxes($Arrayil{}}
Lengthd=10
Detline 1,1,0,0



1f Hashx%{>0 Then
Far A%=0rx% To Orx%-lendx’ Step -Hashii

Draw AX,OryX-Length% To AZ,Oryl+LengthZ

Next A%
For A%=0rx% To Orxi+Rendx% Step Hashul

Draw AL, Oryi-Lengthy To AX,DryX+Lengthd

Next A%
Endit
If Hashy%{>0 Then
For AX=0ry% To Oryi-Tendy¥ Step -Hashyi

Draw OrxY+Lengthl, A% To OrxY-Length¥,AX

Ne:t AY
For A%=0ryY To OryZt+Bendy¥ Step Hashy%

Draw Orxl+LengthX,AX To OrxX-LengthX,A¥

Next A%
Endif
Swap $P.array,Arrayi(}
Return
Procedure Drawaxes(P.array}

Local Orx?,0ryi,Lend:%, Rendx?, TendyX,Bendyl, Hashx,Hashyl

Swap $P.array,ArrayL(}
Orxil=Arrayi{l}
Oryl=Arrayii2}
LendzZ=Arrayl(6)\63536
Rendx%=ArrayZi(b) And 65573
Tendyi=Arrayk{7)163334
Bendvi=Array%{7) And 65313
Detline 1,1,1,1
It Lendx¥%=0 Then

Defline 1,1,0,1
Endif
1f Rendx%=0 Then

Defline {,1,1,0
Endif
Draw OrxX-Lendx%,0ryX To OrxX+RendxX,Oryi
Defline 1,1,1,1
It TendyX=0 Then

Defline 1,1,0,1
Endif
It Bendy%=0 Then

Detline {,1,1,0
Endif
Draw OrxZ,0ryX-TendyX To OrxZ,0ryi+Bendy?
Swap $P.array,Arrayll}
Defline 1,1,0,0

Return
Procedure Label_hashes{P.array)

Local Hashi,Loendl,Hiendl,Scale,AZ,Lbl$
Swap 3P, array,ArrayX()
Deftext 1,0,0,5
Hash%=Array%(B) \65536
LoendZ=Array%(6)\45336

103



104

HiendY=Arrayl{b) And 63535
Scale=Arrayi(9)
{f Scale<0 Then
Scale=-1/Scale
Endif
A%=Hashil ! To Hiendl Step Hashi
Khile Al(HiendX
Lbl$=Str$(A%/Scale)
Text Arrayl(1}+A%-LeniLbl$) 84, ArrayX(2)+18,Lbls
I+ AX<LoendX Then
Text Arrayi(1)-A%-{Len{Lbl$)+1)34, Array%(2) +18,*-"+Lb1$
Endi ¢
Add A%, Hashl
Wend
Hash¥=ArrayX(B) And 635235
Hiend%=Arrayl(7)\43536
Loend%=Arravi{7) And 635335
Scale=Arrayl{10}
If Scale(0 Then
Scale=-1/Scale
Endi f
Al=Hashi ' To HiendX Step HashX
While AX{Hiend%
Lbl$=Str$(A%/Scale}
Text Arrayi{1)-10-Len{Lbl$)#B,Arrayl(2)-A1+4,Lbl%
I+ A¥<LoendX Then
Text Arrayl(ii-10-{Len(Lbl$}+1) 48, ArrayX(2}+A%+4,"-"+Lb1¢
Endif
Add AZ%,HashX
¥end
Swap #P.array,ArrayX()
Deftext 1,0,0,13
Return
Procedure Plot(P.array)
Local FlagsX,Upper',Collect! Xplot!,Polar!,Line!,5plit!,Logs!,CountX
Local Datuam,Indep,Xbeq¥,XendX,Ybeql, Yend%, MaxZ,Suak,Nave)
Local Scix,Scly
Swap IP.array,Arrayi{}
FlagsX=Array%(0)
Upperi=Flags? And 4
Collect!sFlags? #nd 8
Xplot!=FlagsZ And 16
Polar!=Flagsk And 32
Let Line!=Flagsk And 64
Split!=Flagst And 128
Logs'=Flags) And 236
Sclx=Arrayi(9)
Scly=Arrayl{10}
If Sclx<0 Then
Sclx=~1/Sclx
Endif
If Scly<0 Then



Scly=-1/Scly
Endif
1¢ Collect! Then
Sunml=0
Navel=0
Endi f
Color Flags? And |
Graphecde (Flagsi And 2)+i
For Count¥=Array%{l) To Array%(4)
1f Split! Then
Indep=Results{0,Count®)
Datue=Results(!,Counti)
Else
Indep=Count?
Datus=Fesults{Abs(Upper'),Count¥}
Endif
If Logs! Then
Indep=Log(1ndep)
Datus=Log(Datua)
Endif
1f Not Polar! Then
Ybegi=Array%(1) +Abs(Xplot!+1} ¢(IndepsSclx+Array’(5})
Ybegi=Arrayl(2)+Abs{Xplot!) ¥ (IndeptScly+Array%(3))
Yendi=DatustScix#Abs(Xplat!)
YendZ=DatuatScly¥Abs(Xplot'+)
Else
XbegX=Array¥{i}
Ybeg4=Array%{2)
YendZ=Datup#SclysCos{{IndepsSclx-180i 4P/ 180}
Yendl=-Datus$Scly$Sin{{IndepsSclx-180)8Fi/1B0)
Endi{
If Line! Then
1# Counti=Array%{3) Then
Draw Xbegk+Xend%,YbegX-Yendl
Else
Draw To Xbegk+XendX,YbegZ-YendX
Endif
Else
Draw Xbegl,Ybeg’ To Xbeg%+Xendl,Ybegk-Yend%
Endi¢
1¢ Collect! Then
14 DatusZ>MaxY Then
MaxX=Datus)
HodeX=Count’
Endif
Add Sum%,Results(AbstUpper'},Count))$CountX
Add Navel,Results(Abs(Upper';,Count?)
Endif
Next CountX
It Collect' Then
Ave=Sua’/Navel
Endif
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I ((Flagsl And 1) Or {Flags% And 2})=0 Then
Colar 1
Graphsode 1
gosub Drawaxes($Arrayi(})
Endif
Swap #P.array,Arrayi(}
Return
Procedure Bargraph!Xbeg¥,Ybeg¥, XendX,YendZ)
Draw Xbegh,Ybeg? To XbegX+Xerdi,Ybeg¥-Yend’
Return
Procedure Peline{Txt$)
Destext 1,0.0,6
braphaode 1
Text 0,398,5pace$!80)
If Tat$<3"" Then
Graphacde 4
Txt$=Space$ (40-{Len(Txt$)12);+Txts
Text 0,398, Txt$+Spaces(B0-Len(Tuts))
Endif
Graphacde 1
Shows
Return
Procedure Text
Local X,Y,K,In$,Titles Mse$,Bigese$,Scr$,Sizel,A$
Sizel=b
bosub Peline{"{Left> ~ Locate text line T - Toggle print Size <ESC} aborts®)
Deftext 1,0,0,5ize%
braphsode 1
Mse$=Nk]$(393224) +Mk 1 $(63336) +Mk1$( 11 +Mk1$ (2080412150} +Mk1$(1811949548)
Mse$=Nse$+Mk1$ (671098880 +Mk1$ (671116288 +Mk]1$(-1845462016) +Mk1S (0) +Mk1S{0) +Mk]1$(0)
Moe$=Mse$+Mkl¢ (276481 +Mk1$(26B439352) +Mk1$(268439532) +Mk1$(268439532)
Hse$=Mse$+Mk]$(1B11939328) +Mk1$(0)+Mk1$ (0} +Mk]1$(0)
Bigase$=Mk1$(ASTI7)+Mkis{1}+Mk1$(1) ' Ref at 1,1; filler; standard colors 0,1
Bignse$=Bigases+Mkl$(104633461536) +Mk]14 (545267840} +Mk1$ (1530948992)
Bigases$=Bigoses+Mk1$(-1147100448) +Nk1$(-1079984224) +Mk]1$(1598038144)
Bigese$=Bigases+Mkl$(T45267640) +Mk1$(1063353214)
Bigeses$=Rigmse$+Mk]${7936) +Mk1$(320101632) +Mk]1$ (612382056 +Mk1$(1145076800)
Bigase$=Bigases$+Mk1$ (10779325741 +Hk]$ (345267436) +Mk1${520101632) +Mk1$(0)
Defsouse Mse$
Repeat
Until Mousek=0
Repeat
Mouse X,Y,K
As=Inkey$
If (Asc{A$) And 95)=B4 Then
Sizel=-{5ize%-9.5}49.3
If Sizel=13 Then
Defaouse Bigase$
Else
Demouse Mse$
Endif
Deftext 1,0,0,5izel
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Endit
Exit 1f A$=Chr$(27)
If K=! Then
Sget Scré
Gosub Paline("Type line  <Arrows) - Direction  <CR} - ends input  <ESC> aborts®)
Deftext 1,0,0,5ize%
Titleg=""
Text X,Y,Chr(3)+" *
Do
Repeat
In$=Inkey$
Until In${*"
Exit I In$=Chré(13} Or In$=Chr$(27)
14 Asc{In$)=0 Then
On (Asc(Right${In$,1))-71) Bosub Ug,Dua,Dus,Back,Due,Far,Dua,Dus,Dn
Endif
If In$>Chr$(B; Then
Titles=Title$+In$
Endif
If In$=Chr$(8) Then
Titles=Left$(Title$, Max(Len(Title$)-1,0))
Endif
Text X,Y,Titles+Chre(3)+" *
Loop
Text XY, Title$s+® *
14 In$=Chr${27) Then
Sput Scrs
In$=Chrs (13}
Endif
Endi
Until In$=Chr$(13)
Defaouse 0
Return
Procedure Up
Text X,Y,Space${leniTitle$)+1)
Deftext 1,0,900,5ize%
Text X, Y,Title$+Chr$(3)+" *
Return
Procedure On
Text X,Y,Spaces{len(Title$)+i}
Deftext 1,0,2700,5izeX
Text X,Y,Title$+Chr$(3)+* *
Return
Procedure For
Text X,Y,Spaces{len(Titles)+!)
Deftext 1,0,0,5izel
Text X,Y,Title$+Chre(3)+® *
Return
Procedure Back
Text X,Y,Space$({Len(Title$)+1)
Deftext 1,0,1800,5ize%
Text X,Y,Titles+Chré(3}+® *



Return
Procedure Move
Local X.Y,K,A$,Mses, XOX, V0%
Mouse X,Y,K
bosub Paline("(Right> - opens boy, release records area.”)
Graphaode 3
X0%=X
Yoi=Y
While K=2
Mouse X,V,K
Box X0%,Y0%,X,Y
Box X0%,Y0%,X,Y
Nend
bet X0%,Y0%,),Y,Mses
X0t=Min{X0%, X}
YOI=Min(Y0L,Y)
Put X0%,Y0L,Mse$,é
fosub Paline{*CLeft> - Places area [ - Copies area D - Deletes area
Hiden
Graphacde |
Do
Mouse X,Y,K
Put X,Y,Mses, 4
A$=Inkey$
If (Asc(A$) And 95)=67 Then
Put X0%,Y0%,Mses$,7
Endif
If (Asc(A%) And 92)=68 Then
Put X,Y Mse$,b
K=1
Endif
If A$=Chr$(27) Then
Put X,Y,Mse$,4
Put X0%,Y0%L Mses,?
K={
Endif
Exit If K=1 Or Mousek=!
Put X,Y,Hse$, 6
Loop
Showa
Repeat
Unti] Mousek=(
Return
Procedure Centerofmass(P.array}
N1=0
Swap $P.array,Avearrayl{}
Print *Processed ¢ of "’ Avearrayl{0}’ "Points"
Avex=Avearray%{2)\1024
Avey=Avearrayl{2) And 1023
Do
Inc N%
14 NI Mod 100=0 Then

<ESC> aborts")
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Print At(1l,6):NX
Endif
Exit [f Avearrayl(Ni+1)=0 And AvearrayX(NX+2)=0
Avex={Avext (NL-1)+(AvearrayX (N4+1)\11024)) /NX
Avey=(Avey${NI-1)+{Avearrayl(Ni+1) And 1023))/NY
Loap
Sub Avex, 200
Avey=200-Avey
Swap #P.array,Avearrayil{}
Return
Procedure Fcenterofmass{P.array)
Swap #P.array,Avearrayi(}
Print “Processed ¢ of 160000 Points®
Count=0
N%=0
Repeat
Inc NX
Until AvearrayZ(N%}1(30
Sixbitx=0
while (Avearrayl(NI) And (63864*SixbitY)}=0
Inc SixhitX
Wend
UncoilZ={N%-1)85+5ixbit}
Expi=64Sisbit¥
Fregi={Avearrayi{Ni) And (638ExpL)}/Expl
Avex={Uncoil2\400) sFreq’
Avey={Uncoil¥ Mod 400)8Freql
Add CountX,FreqX
Inc Sixbit)
Repeat
Expl=64"Sixbit}
Freql={Avearrayl{NL} And (638Expl})/Exp%
I FreqlX0 Then
Avex={Avex fCountl+ (UncoilY\a00) sFregk) / (Counti+Fregh)
Avey=(Avey¥$Countl+({Uncoily Mod 400)%Freqi}/{CountZ+Fregl)
Add Counti,fregql
Endif
Inc Sixbiti
Until SixbitX>4
Inc NI
Repeat
CoilX=(NL-1)83
Freqi=AvearrayL(NY)
Uncoil%=CoilX+SixbitX
I Uncoill Mod 100=0 Then
Print At{tl,6);UncoilX
Endif
I Freql{)0 Then
For Sixbit¥=0 To 4
Expil=64*Sixbitl
FregX=AvearrayZ(NI) And (638ExpY)
If Freql(>0 Then



Div Freq¥,Expl
Avex={AvextCountX+{Uncoil%\400) ¢FreqX) /(Counti+Freql)
Avey=(AveysCounti+(Uncoill Mod 400)%Freql)/{Counti+Freql)
Add Count’,Fregk
Endif
Next Sixbitl

Endif
Inc NX
Until NI>32000
Sub Avex,200
Avey=200-Avey
Swap #P.array,Avearrayl{)

Return

Procedure Power
Local I%,N%,Sumofx,Sumofy,Susofproducts,Susofsquares
Ni=Pawer (0,0)
Sumofx=0
Sueofy=0
Susofproducts=0
Sumofsquares=0

for

[1=1 To NX

Add Sumofx,Log(Power {0,1X))

fAdd Sumofy,Log(Power(l, %))

Add Sumofproducts, (Log(Power (0,11)) 18 (Log(Power{{,1X)))

Add Sumofsguares, {Log(Power (0,1%}))*2
Next 1%
Slope= (N{8Sumofproducts-Sumof«¥Sumafy)/ (NL$Sumofsquares-Sumafx*2)
Intercept=(SuaofsquaressSumofy-Sumofx3Sumofproducts)/ IN#Sumcfsquares-Sumofx*2)

Return

* Deposition Frequency Histogram Progran
Version={,3
Revdate$="28 Jun 88"

Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print
Print

Repeat

*Deposition Freguency Histographer, version®’Version;®,"'Revdates$

"This program regquires saximal memory...do not boot-up with systea disk"
*This progras will collect the frequencies of deposition over the pixel'
*field (x,y) for all deposits, either large or seall,”

*The output will be a freguency list {f{x,y)) called Longlist.FHE"

*The field will be sliced by a cutoff a; all pixels{x,y) that have a”
*P(deposit) greater, lower, or equal to « will be displayed,”

"The synthesized deposit will then be stored as a standard .SCR file with®
*the exception that a (the cutoff), and type of region will be overlaid.®
*The deposit coordinates are stored in a standard .ARR file"
*torresponding to the above .SCR file.*

*If you have inserted an Array Disk and have ready an Eapty and Forsatted"
*disk and are ready tc process .ARR files then.,..type *Y'"

*When the new screen appears then ,..type or select '1'*"

"Cose back when you hear the tonmes........"

Answer$=Inkey$

Until

Answer$="Y" Or Answer$="y"

110
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Dia Order{30000}
Dis Longlistd{32000)
D=0
Grand%=0
Seqaent=0
Arrayfill Longlist(),0
Cls
Do
Cls
Shows
Print "Chpose Mode of Operation: Type number or click on selection.®
Print
Print 1 Autosatic processing of all .ARR files on disk®
Print
Print *2 Process field array with input of a for upper slice"
Print
Print "3 Process field array with input of a for lower slice'
Print
Print "4 Process field array for freguency contours®
Print
Print "5 Helpful hints and instructions®
Print
Print "4 Exit"
braphsode 3
Deffill 1,1}
Ptrvertposi=Mousey
If Frac(Ptrvertposi/32)¢0.5 Then
Gosub Inbox(Ptrvertposk)
Else
Inl=0
Endif
Do
Repeat
Ptrvertposi=Nousey
If {In%>0) And (Frac{PtrvertposX/32)30.5) Then
bosub Outbox (Ptrvertposi)
Endif
If (Inl=0) And (Frac(Ptrvertposl/32)<0.5) Then
Bosub Inbox (Ptrvertposi)
Endif
Switchl=Mousek
If Switchi>} Then
If In2)0 Then
Switchl={PtrvertposX\32)
Else
Switchl=0
Sound 1,15,6,7,9
Sound 1,0
Endif
Endif
Key$=Inkey$
Until Key$<>"" Or Switchl
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If Switch) Then
Key$=Stré(Switchi)
Endif
Exit If Val(Key$)>0 And Val (Key$}<7
Sound 1,15,6,7,3
Sound 1,0
Loop
s
praphaode {
On Val (Key$) bosub Array,Upper,Lower,Contour Help,Exit
In%=0
Switchi=0
Loop
End
Procedure Inbox{Ht1)
HtA=328 (HE1\32)
If Ht%}16 And HEYX(224 Then
Pbax -1,Ht%,500,Hti+16
In%=PtrvertposX\32
Endif
Return
Procedure Outbox (Ht%)
Ht1=3281n%
Phox -1,Ht1, 500, Ht%+14
Inl=0
Return
Procedure Exit
Edit
Return
Procedure Help
Cls
Print "This progras has two stages; the first, the .ARR file processor®
Print *requires a disk with a series of .ARR files. If there are no .ARR"
Print "files on the disk an error {two bombs) will result.®
Print “The screen during this processing is overlaid with depesits however,®
Print "the screen density is not representative of the frequency at (x,y).*
Print "The second stage slices the cusulative histogram at the value of o*
Print *which is input at the prospt. .SCR, .FHG, and .ARR files are then®
Print "set-up after the input whether the higher or lower slices are chosen."
Print "After viewing, these files named {Freghist}, can be further processed®
Print "by existing aethods®
Print *If you have inserted an Array Disk and have ready an Empty and Forsatted Disk®
Print *and are ready to process .ARR files then.,..type ’Y*"
Print "When the new screen appears then ...type or select '{’*
Print "Cose back when you hear the tones........"
Print "If you want to further process a Longlist............then type "Y’'*
Print "When the new screen appears then type or select ’1’ or *2°"
Print "and follow the prospts....*
Repeat
Answer$=Inkey$
Until Answer$="Y" Or Answer$=‘"y"
Return
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Procedure Upper
Local SixbitX,Exp%,Freql,FeinX,CoilX,Uncaill, [ter]
On Error Gosub Seq_array
gosub Checkandload
Tmaxi=LonglistX(14041) And 43 ! The center pixel {200,200} always on.
bosub bet_freq
File$="UPPER"+Str$(Int (Feinl/Teax24100))+" SCR"
{ls
Print At(32,1);"Upper slice of*
Print At(52,2);"frequency histograa"
Print At(32.4);"Pixels displayed"
Print At(32,5);°represent sites with"
Print At{(S2,4);"frequency a >="'Feink/Toaxl
Print At{5Z,7);"based an®’Tmax}’ "depasits®
Print At{32,20):" 0% of screen painted"
Orderi(0)=1
Order%{1)=201
For Iter%=1 To 32000
Coill={Iteri-1345
Fregl=Longlist%{Iter?)
If Iter% Mod 320=0 Then
Print At(52,20);Using “#447%", IterX8100/32000
Endi¢
I FreqX{>0 Then
For Sixbit%=0 To 4
UncoilX=CailX+SixbitX
Expi=64-Sixbitld
Freqi=Longlistt(Iter’) fng (63%Exp¥)
If Freqt{>0 Then
Div FreqX,ExpX
1 Fregqi)=FainX Then
IpixelZ=Uncoil 1\400
Ypixell=UncoilX Mod 400
Plot Xpixel},YpixelX
Inc Order%{Q)
Dpticn *Uti*
DrderX{Drderl(0))=Ypixel 181024+Ypixel%
Endif
Endif
Next SixbitX
Endi¢
Next Iteri
Hides
Print At(52,20);Space$(28)
Bsave File$,Xbios(2),32000
Print At(S52,20);"Save filenames:’
Print At(52,21):File$
Print At(52,22);"and"
Files=Left$(File$,InstriFiles,".") ) +"ARR"
Print At(52,23);Files
bosub Save_segs
Return
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Procedure Lower
Local SixbitX Exp¥,Freql,Feink,Coil¥, UncoilX,Iter)
On Error Gosub Seg_array
Gosub Checkandload
Tmax)=LonglistZ (14041} And &3 ! The center pixel (200,200) always an.
bosub Get_freq
File$="LONER"+Str$(Int (Feink/Teax18100))+" SCR"
Lls
Print At(52,1):"Lawer slice of"
Print At(52,2);"frequency histogras"
Print At(52,4);"Pixels displayed"
Print At(52,5);"represent sites with"
Print At(52,6);"freguency a <="’Feini/Teail
Print Ati32,7):"based on®’Tmax’l’ "deposits”
Print At(52,20):" 0% of screen painted®
Order%(0)=1
Order%(1)=201
For Iteri=! To 32000
Coili=(IterX-1}43
Fregi=Longlistd{Iterd)
I Itery Mod 320=0 Then
Print At{52,20i:Using “##4%", [terX8i00/32000
Endit
I FreoX<»0 Then
For Sixbiti=0 To 4
Uncoil¥=Coili+Sixbit
Expi=64+Sixbit
Fregt=LonglistX(Iterl) And (433Exp%)
I+ FreqX<>0 Then
Div Freo¥ Expl
If Freqi(=Fain) And Freg%>0 Then
YpixelZ=UncoilZ\400
Ypixell=Uncoil% Mod 400
Plot XpixelX,Ypixel’
Inc Order%(0)
Option "U1"
Ordert(Order’{0))=Xpixel 141024+Ypixeld
Endif
Endif
Next SixbitX
Endif
Next [terZ
Hidea
Print At(52,20):5pace$(28)
Bsave File$,Xbiasi2),32000
Print At(52,20);"Save filenames:"
Print At(52,21):File$
Print At(52,22);"and"
Files=Left$(File$, Instr{File$,".")}+"ARR"
Print At(52,22):Filet
bosub Save_segs
Return
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Procedure Contour
Local Sixbit¥,Exp¥,FreqX,FeinX,Coil%,Uncoil’, Iterd
On Error Gosub Seg_array
pasub Checkandload
TmaxZ=Longlisti{16041) And 6T ! The center pixel (200,200} always on.
bosub bet_freg
File$="CNTUR"+Stré{Int (Faini/Tmax¥%3100))+" SCR"
fls
Print At(52,1};"Contour slice of*
print At(32,2);"frequency histogram®
Print At{52,4);"Pixels displayed"
Print At(32,5):"represent sites with"
Print At(S2,6);"frequency a =""Fain%/Taaxl
Print At(52,7):"based on"’Tmax%’ "deposits®
Print At(32,20);" 0% of screen painted"
Order%{0)=1
Order%(1}=201
For Iter¥=1 To 32000
CoilZ=(Iter¥-1)435
Fregt=LonglistZ(Iterl)
If Iter% Mod 320=0 Then
Print At(S2,20);Using "#442%°, [terid100/32000
Endif
I Freql(>0 Then
For Sixbit%=0 To 4
Uncoil¥=Coil%+SixbitX
Expl=64*Sixbitl
Freql=Longlist%{Iter%) And (638Exp¥)
I Fregi<>0 Then
Div Freq%,Expk
1 Freqi=Fminl Then
Ipixeli=lncail 400
Ypixel¥=Urcoild Mod 400
Plot XpixelX,Y¥pixel®
Inc Order%(0)
Option “U1"
Drder?(OrderX(0))=Xpixel X81024+Ypixeld
Endif
Endif
Next Sixbitk
Endi ¢
Next Iterl
Hidea
Print At(52,20);Spaces$ {28}
Bsave File$,Xbios{2),32000
Print At(52,20);"Save filenases:®
Print At{52,21);File$
Print At(52,22});"and"
Files=Left$(File$,Instr(File$,". ")) +"ARR"
Print At(52,23);F1]e$
Bosub Save_segs
Return
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Procedure Checkandload
Local Fail!,File$,Devlist$,Deventl
Devlist$="ADB"
14 LonglistX(0)=0 Then
Do
Deventi=1
Repeat
File$=Mid$(Devlist$,DevcntX,1)+*: \LONGLIST.FHE"
Print “Checking device"’Left$({File$,2}’ "for LONGLIST,FHE"
Exit If Exist(File$)
Inc Devent?
Until DevcntidLen{Devlists$)
Exit If Devcnti{=Len(Devlist$)
Print "Can’t find any longlist files. Please load a disk with a®
Print "longlist at top level and hit any key, (ESC} aborts®
Print "the prograe.’
Repeat
File$=Inkey$
Until File${>""
If File$=Chr$(27) Then
Edit
Endif
Loop
Print *Loading*’Files$
Bload File$,Lpeek{Arrptr(Longlist{)})
frrayfill Orderl(},0
Endif
Return
Procedure bet_freg
Local Fains$
Print *Cutoff frequencies must be integer multiples of 1/°;Tmax¥;*.*
Print *Freguency will autosatically be rounded to nearest 1/°;Taax%;"th."
Do
Input "Cutoff frequency (absolute n, or al)";Fein$
If Instr(Fain$,"1*)<>0 Then
FeinZ=Teax%$0.018Val (Fmin$}+0.5
Else
Faini=Val (Fein$}+(.5
Endif
Exit I FainZ(=Tpax)
Print *Fregquency can’t exceed 1001 or*’'TmaxY’“deposits. Please reenter.”
Loop
Return
Procedure Seg_array
Local Ecodel,Seqi,5eq$
Ecodel=Err
On Error Gosub Seg_array
I+ Ecodel{>14 Then
On Error
Error EcodeX
Endif
SegX={SegaentX\29999) +1
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Print At{(53,21);"Segmenting ,ARR file"
Print At(53,22);"Segment"’Seqk
Print At(33,23):"Please wait,.."
If Segi>t Then
Segs=Left$(File$, Instr(Files,".")) +*AR"+5tr¢ (SeqX)
Else
Seq$=Left$(Files, InstriFiles,*.") ) +"ARR"
Endif
Dec Order%(0}
Bsave Seg$.Lpeek{Arrptr(OrderZ{))},Order’{0)¥4+8
frrayfill Order%{),0
Order%{0)=2
OrderX{1)=201
Add Segeent,29999
Print At{52,21);5pc(29)
Print At(S52,22);5pc(29)
Print At(52,23};5pc(29)
Resume
Return
Procedure Save_segs
Local Bases$
Base$=Lefts$(File$,Instr(Files,"."))
If Segment®=0 Then
Bsave File$,Lpeek (Arrptr{OrderX(})),Order’ (0} $4+8
Else
File$=Base$+"AR"+5tré(Int (Seqment%/29999)+1)
Bsave File$,Lpeek (Arrotr(Orderi())),0rderl{0)14+8
Open "R",#i,Base$+"ARR",4
Field #1,4 As Buf$
Lset Buf$=Mk1$(Segmenti+Order%(0))
Put #1,2
Llose #
Endif
Return
Procedure Array
Print At(52,1);"Deposit brand Total= 0"
Print AY(52,3);"Fi]e:"
Print At(52,5);"File nymber=";'0
Print At(52,7):°N= 0"
Print At(52,9);"0ut of 0 total deposits’
Repeat
Dir "$,ARR* To "FREGHIST.DIR"
Open *1°*,#G, "FREQHIST.DIR®
Repeat
bosub Loader
Gosub Process
Until Eof(%0)
Repeat
Print At(52,22);"Hit any key to continue®
P=Trunc{123/Rnd{1)+0.3)
Sound 1,15,%°,50
Until Inkey$<>**
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Sound 1,0
Print At(52,10);*1f all Array Disks are done"
Print At(52,11);"Resove the last Array Disk"
Print At(52,13);"1f all are done... Type "D’*
Print At(52,15);"1f wore Disks are to be done*
Print At(32,16};"insert the next Array Disk®
Print At(52,17);"into the disk drive®
Print At(52,19};*If more to do..... Type "#*"
kepeat
Repeat
Answer$=Inkey$
Until Answer${>'"
Answer$=Chr$ (Asc{Answer$) And 93)
1f Answer$="D" Then
Gosub Blank
fosub Escape
Endif
14 Answer$="H" Then
Bosub Blank
Close
Endif
Until Answer$="5* Or Answer$="n*
Until Answer$="§"
Return
Procedure Escape
Print At(52,10};"Insert a Forsatted and Espty"
Print At(52,11};"Disk into the disk drive"
Print AL(52,13);"If the drive is ready’
Print At(52,14);"then Lonqlist will be saved"
Print At{52,16);"To save.........Type '§’"
Repeat
Answer$=Inkey$
Answer$=Chr$ {Asc (Answer$} And 93}
Until Answer$="S"
Bsave "LONGLIST.FHE",Lpeek(Arrptr{Longlisti{)}}, 128008
Close
Return
Procedure Process
Inc D
Print At(58,3):5pace$(22
Print At(38,3);Files
Print At(63,3);D
Print At(52,9);Using "Out of #¥¥4E total deposits”,Orderi(0)-1
Ni=2
Repeat
XpixelX=Order1(N1)\1024
Ypixel%=0rder (KX} And 1023
Plot XpixelX,Ypixell
Coil¥i=4008XpixelX+Ypixell
Dispi=Coil% Mod 35
CoilX=CoilI\G
Add Longlistl(Coil%+l),64*Displ
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Inc brandX
14 (N%-1) Mod 100=0 Then
Print At(72,1):Using “Se48%8", brandX
Print At(54,7);Using "$484%" ,NI-}
Endi f
Inc N1
Uintil N%>Order%(0)
Print At{52,1);Using "Deposit Grand Total=$43#4%°,6rand}
Longlist¥{0}=brandX
Return
Procedure Loader
Arrayfill Orderi!),0
Input #0,Files
Bload File$,Lpeek (Arrptri{Qrderi())}
Return
Procedure Hlank
Det#il] 0,1
Pbox 401,124,639,399
Return



APPENDIX B

NUMERICAL DATA

TABLE II

FRACTAL DIMENSION DATA FDR INDIVIDUAL SMALL AGGREGATES

Deposit

D 4 O N &N

§767
3825
3899
4621
2972
4949
4639
4354
3333
4512
3314
4622
529
3793
5000
5042
3793
4420
LD
3764
5318
3506
5238
4132
5212
5080

Dro

1.8353344401
1,9224513243
1,8374010038
1,7910889197
1.8931199782
1,8368096251
2.0458284556
1.807984199

1.8242820754
1.7398365792
1.871951025

1.7310142902
1.6186270042
1.9193907128
1. 744598435

1.908052491

1.B193060173
1.8347762916
1774914953

1.8319819071
1,93400692635
1.8022675617
1.8128935234
1.84B4878424
1.8311292049
1.8549047671

Including Edge

Sguares

O

1.6373104232
1. 6409789001
1.6399607926
1,6525600963
1.6661022793
1.65827745%

1. 64353806026
1.6621301618
1.6716123386
1,6704012543
1.6601788582
1,6670967371
1,6832599808
1.6587313458
1,674623683

1.6698298248
1.6598486635
1.6675452361
1.6571104783
1. 6676959306
1,6632756023
1.6635810306
1.6633275148
1, 6692567821
1.6781571799
1. 6544908435

*Circlee’

De

1.6020511402
1. 6046445531
1.4062148931
1.5983715229
1. 6156322733
1.6020197103
1,5943751484
1.6069461333
1,6187794088
1,6162811829
1,6030092667
1. 6151354645
1.6293001878
1, 6041033153
1,6183214248
1.61431918%7
1.6081433871
1. 6127089791
1.6045614382
1.6104902431
1.6127396026
1.6119526325
1.4087703385
1.6186259044
1.6220593334
1. 46005912453

Squares

De

1.6880387015
1.6810192676
1.6785667926
1.6831302681
1.6790711059
1.697172808
1.6857970137
1.6969820377
1.7187509464
1,4992186088
1.6769611661
1.6974291693
1.7139555174
1. 6808722818
1.7054809103
1.7050727731
1.688375014
1.6962384305
1,6832531101
1.7177188699
1,71013505382
1.6881568945
1,7004290545
1.4962588726
1.7136615232
1.4962772343

Excluding Edge

'Circles’

De

303281027
2310239

242967218
267701358
272317401
389580136
1.631360547%
1641131271

1.6628165381
1,6438876088
1,6188760225
1. 6423349234
1.63756903035
1.6253296977
1, 6467311771
1.6477016711
1.6344183185
1.6398140939
1,6293954963
1.4591283631
1.4534793156
1.6351435214
1. 6410850401
1. 6438149748
1,6362096633
1,6391177077

1.
1.
1.
i,
1.
1.

o~ o~ O~ O~ O~ O

Circles

O

1,6870086816
1,6802291833
1.6817418526
1.6839210176
1, 6833733409
1.4957571287
1,6BB136336

1,6984913942
1. 7197489563
1.7012425911
1.6749274763
1, 699262593

1.7150032462
1. 6819975035
1,703506851

1.7047734201
1.6909629697
1.696621738

1,6864977259
1.7163278898
1.7130257265
1, 6918002253
1.469825338

1.7007075376
17132077267
1.6958024112
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FRACTAL DIMENSION DATA FOR INDIVIDUAL LARGE AGGREGATES

Deposit N

1 17428
2 14872
3 13411
) 15243
3 12208
b 18052
7 16429
B 16525
9 21268
10 17189
1 13706
12 14393
13 15320
14 12854
15 14897
16 16326
17 14544
18 16338
19 15752
20 17715
21 19255
2 12613
23 16444
24 17161
23 16907
26 19615
27 19056
28 17401
29 13680
30 14909

The

Drs

1.82979542

1.8571485234
1.777909486
1.7746517225
1.8329831474
1.843776623
1.9543270463
1.7756269843
1.7853591922
1.7354014398
1.8248883544
1.7357438244
1.788791035

1.8613387844
1.7333504997
1.8693838524
1.7978242181
1.8051414443
17697621444
1,8098581288
1.8781901382
1,73207933°

1.7898308771
1.7829201003
1.B0£6831114
1. B434988508
1.792280263%
1.8293298347
1.7937369861
1.80456050822

following graphs

Including Edge

Squares
De

1,6499438252
1.6693933744
1.6693841613
1. 6682995941
1,6688731404
1. 663568467035
1.6670483288
1.659262413

1,66729%8319
1. 6635703673
1,6666992685
1, 6680916447
1,6776510533
1.6673974328
1.6649833480
1. 5607155269
1. 6689430768
1.6639643543
1,6720236587
1,6613071914
1.667062°371
1.6710463412
1.6746682685
1.66889242°C
1.6733568534
1.661437214

1.6761666367
1.6572971729
1. 6629374201
1,6336823046

*Circles’

De

1.6126899269
1.6113824213
1618141623
1.6118757841
1.6120067888
1.6073511179
1.6106346917
1,6031247851
1.6113788372
1.6088319099
1.6092906897
1,610045142
1,62072031
1,£1257635M7
1.6076303434
1.6052765298
1,6111271849
1.60817652
1. 6144379524
1.6057271884
1. 6142472474
1.6159165963
1.6178779R16
1.6152812764
1.6161727453
1.6072074543
1.6198860929
1. 6042628967
1,6062976033
1.3971666179

of

the

Squares

De

1.6747005497
1. 6730954403
1. 6711084925
1.6733022653
1.4705759311
1.673057645
1.6786194158
1.668189111

1.679432124
1.6693108723
1, 6700040635
1.6711784013
1.6798353916
1,6713090894
1. 6718644097
1. 6647752132
1,6716337209
1.6667714793
1. 67594425

1.6662990664
1,6752969272
1.6745999834
1.6813031254
1.6774442037
1.679628272°9
1.6693702278
1, 6857029233
1.663857393
1.6672379819
1.6573053393

radius

Excluding Edge

'Circles’

De

1.6170335607
1.6167919779
1.6163991094
1.6164864462
1.6138051472
1.6160872085
1.6212306642
1.6115435375
1,623083186
1,6144074109
1,6128300832
1,6131569843
1.622090424

1,6167350474
1,6139E22354
1, 6089647983
1.6136249278
1,6110258009
1,6178834626
1,6105434317
1.621885911

1.619317032
1,6243320708
1,623302901

1,6220518204
1.61454239

1,6287472478
1.6101775892
1,6101002107
1.6004981638

of

Circles

De

1.4738238665
1,6757736634
1.6733642509
1.6733864314
1.4703587024
1.67276B3344
1.6781842979
1.6682588539
1.6B801694666
1.6711497312
1.6696128472
1.6699%14866
1,6769364492
1.4734974508
1.6707704828
1.665931117

1,6705724942
1, 6679065033
1,6750132934
1. 6672416964
1,678824173

1.6761888828
1.6811924391
1.680249824

1.6788707044
1,6713265236
1,6837074059
1.6666498788
1.6668820211
1,6573353164

gyration

dependence on the number of deposits are based on the radius

of

gyration which was calculated from the

The slopes are also listed in Table III.

lattice

origin.
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GRAPHICAL DATA
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APPENDIX D

ADDITIONAL RADIUS OF GYRATION ANALYSIS

The radius of gyration is defined as the average sum
of squares of the distances from the center of deposition to
each deposit. The exact calculation of the radius of
gyration dependence on the number of deposits would have
necessitated N recalculations for the center of deposition
and consequently a much longer process time. The assumption

was made that the average center of deposition, for a large

sample of aggregates, would be near the lattice origin.
However, as discussed above, the average center of
deposition was appreciably displaced <from the origin.

Moreover, the discrepancy in the fractal dimension, as based
on this approximate radius of gyration, was unacceptable.
In o}der to obtain a reasonable bound on this error it would
be necessary to be able to estimate the dependence that this
displacement had on the number of deposits. Analysis of the
composite of all the aggregates and also of aggregate number
20, indicated that this displacement was not even monotonic.
Instead of analyzing this distribution further, and
estimating the fractal dimension using data that was known
to be 1ip error, it became obvious that it would be most

prudent to recalculate the exact radius of gyration for a
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selected number of deposits and to aobtain an approximate
fractal dimension based on exact data. The following
provides the details of the above argument and the resulting
analysis.

The parallel axis theorem for the moment of inertia,
I = Ic.m.+ N'L2Z, where L is the displacement from the center
of mass, c.m., can be utilized to modify the radius of
gyration, Rg = (I/N)*“2_, The dependence, L = L(N), was not
obtainable, only L (Nmax.) was known. Although, regression
over all N of the deposits would have been the preferred
method, however, without the corrections based on L(N), the
results would have been systematically in error. A two-
point approximation for the slope of Ln(Rg) vs. Ln(N) could
have been obtained (utilizing the parallel axis theorem with
the <final displacements of the centers of deposition) by
using the final deposits of the small and large farms of the
same aggregate (Slope = Slope (Nmax.)). However,
recalculation of the radius of gyration based on the center
of mass for a limited number of points would not have
required an excessive amount of time. Thus, the radius of
gyration program was modified and these data points were
calculated directly. A more thorough analysis of aggregate
number 20 was also performed in order to provide an
additional comparison. These slopes, of 26 independent
aggregates, were averaged. The result was compared with the

slope of the least squares regression line based on the plot
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of the 52 data points. Any discrepancy here would indicate
correlations between those data points associated with the
large and small forms of the same aggregate.

The result of the two-point slope calculation for
éggregate number 20 is, slope = 0.3592, which gives a fractal
dimension of Dng = 1.649. The results based on the
approximate radius of gyration for aggregate number 20 from
Appendix B, are, for the small aggregate, Dmng = 1.8Z, and
for the large aggregate, Dmg = 1.81, their average is 1.82.
Even though there is considerable variation among any of the
individual deposits, this discrepancy is substantial.
Aggregate number 20 was sampled at 20 increments of 5% of
Nmax. and this data was analyzed using least squares. The
resulting fractal dimension based on the slope of the
regression line is Dmg = 1.67. The coefficient of
determination, R=2*, for the regression is 0.95. This is in
close agreement with the more approximate result based on
the two-point slope calculation. Thus, the two—point slope
method vyields credible results. The data obtained +for
aggregate number 20 is listed below in Table IV and the
graph is in Figure 51.

The average of the two-point slope calculations of
aggregates numbers 1 to 26, inclusive, using the final
deposits of the small and large forms of each aggregate is,
slope = .98 * .02, This result yields a fractal dimension

of 1.73 £ ,064. The raw data for this calculation is listed
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CORRECTED RADIUS OF GYRATION RESULTS FOR AGGREGATE NUMBER 20

%N DEPOSITS Ln (N) Ln(Rg) Re. m.
100 17715 2.782170 4, 690065 4.017097
925 146829 9.730858 4,658574 4,.096033
0 15944 9.6746838 4.,626698 3.901621
85 15058 ?.619665 4.593242 4,.014032
80 14172 9.3559023 4,558203 4.011677
73 13286 Q?.494447 4,3520182 4,38313%9
70 12401 9.425532 4,479921 4.,.448924
65 11515 ?2.351406 4,436583 4,.809595
60 10629 ?.271342 4,390161 S5.0446088
53 9743 9.184303 4,338853 S5.412689
30 8858 9.089076 4,281730 6.012647
45 7972 8.983691 4.,218701 S.740685
40 7086 8.865877 4.148299 5.921705
35 &200 8.732305 4,069269 6.429103
30 9315 8.578288 3.977641 7.069431
235 4429 8. 395929 3.868652 7.602726
20 3543 8.172728 3.739125 7.767349
15 2657 7 .884954 3.971964 6.718258
10 1772 7.4798464 3.332235 9.915089
S 886 b&.786717 2.950274 4,181003
5,00
Ln(Rg) £ -1.147 + .600°Ln(N) e
l.".ﬂ.‘
_ | R= = .48 e
> o
~ e
z -
] ,v"f'
[ & ] ._F,".
e
2.50
6.6 LnCN) 18.0

Fiqure S1.

number of deposits for aggregate number 20,

Corrected radius of gyration dependence on



in Table V

and the coordinates are plotted

in
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Figure 52.

The graph was analyzed using linear regression and the slope

of the regression line is,

slope =

coefficient for the regression is,

variance is .028.

Dng =

These

«971. The

correlation

« 99 and the residual

results yield a fractal dimension,

.08. Additional analysis of the covariance of

the paired points associated with the small and large forms

of the aggregates was not performed because the results of

the two methods of calculation were in agreement.

TABLE V

CORRECTED RADIUS OF GYRATION RESULTS FOR AGGREGATES
NUMBERS 1 TO 20,

AGGREGATE
NUMBER

SMALL

L(N)
8.469472
B8.249315
B.267962
B8.438366
7.996991
8.510973
8.442254
8.378850
8.582045
8.41449%56
8.105911
8. 438581
8.418256
8. 240913
8.517194
8. 525558
8.241439
8.393839
8.391857
8. 4652385
8.615770
8.162231
B. 563695
B.326517
8.558719
B. 533068

Ln(Rg).
3.963612
3.853862
3.850265
3.9462984
3.731075
3.994435
4.004926
3.920564
4.0044637
3.925898
3.785593
3.9526468
3.906203
3.833317
3.979296
3.983830
3.902611
3.920980
3.934570
4.025738
4.043975
3.839269
3.9864628
3.892380
3.985567
4,018763

INCLUSIVE

L

L(N)
?.765833
?.607237
?.642836
?.631877
?.409845
?.801012
?.874521
9.712629
?.964959
?.752024
?.525589
?.574634
?.636714
?.461409
?.608915
?.700514
?.612064
9.701248
9.664720
?.782168
9.865526
9.442482
?.708932
?.750394
9.735482
7.884102

ARGE

Ln(Rg)
4.693800
4.6446392
4.639245
4. 669662
4.545592
4.722027
4,.784022
4,706285
4.782405
4.692201
4.614721
4.629936
4.5618569
4.59215Z
4.633099
4.667667
4.631654
4.,659043
4., 672567
4, 690065
4,74842467
4.597081
4,676501
4.742227
4.672455
4,752329
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Although time did not allow for additional analysis,

an examination of the dependence that the displacement of
the center of deposition has on the number of deposits could
explain the concavity which was previously noticed in the
graphs of Ln(Rg) vs. Ln{N). The previously mentioned cut
offs in the regression analysis of, O to &6, only excluded a
relatively small number of pixels ({(2.5Z of the average
number of pixels, 16298). Furthermore, the displacement of
the center of deposition appears to quickly attain a value
comparable with the final displacement after only 5% of the
total deposits. The sequence of regressions which indicated
a convexity in the graphs of Ln(Rg) vs. Ln(N) (concavity in

the fractal dimension) occurred over the same range of

5
Ln(Rg) & —.859 + .571°Ln(N) ot
R = .997 tiad
= .
- ) '
2 4
"] . L
(W) ot '
v"’..
3
7 6 3 10
Ln(N)

Figure 52. Corrected radius of gyration dependence on
total number of deposits for 26 small and large
aggregates.
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deposition in which the displacement was convex, evident in
the data shown in Table IV for Rec.m. and N. This suggests
that they are correlated just as the corrections to the
formula for the radius of gyration would require and that
the concavity may be related to the systematic error.

The estimate for the fractal dimension which is based
aon the average of the slopes is regarded as the most
accurate. This result, Dmg = 1.73 % .06, reflecting the
carrections in the radius of gyration, is approximately 3%
less than the result which utilized the uncorrected radius

of gyration.



APPENDIX E

CONSIDERATIONS FOR FURTHER WORK

In addition to those items already presented as
subjects for further study, the following ideas could also
provide more insight into the model.

Analysis of the effect of varying the width of the
exclusion zone., or of making it more closely conform to the
mean perimeter, instead of merely being concentric with the
lattice origin, could provide insight into the active zone.
The correlation function could also be separately evaluated
over the excluded edge and the results compared to the
results from the interior.

The average coordination number could be used to
measure the local density and then be compared to the
results of the correlation function. The sizes of the
correlation windows could also be varied, although, no
effect was noticed between the sizes used in this thesis to
those used by Meakin.

The random walk routine could be altered with a
deterministic component to simulate motion in an imposed
field (Langevin equation).

The ?sticking”® probability could be made to be a

function of the local curvature, {Gibbs-Thompson relation)



161
to realistically model solidification processes. Diffusion
within the aggregate and *slumping’ of the perimeter could
also be investigated .

The number of jumps a random walker takes prior to
depaosition could be used as a psuedo-time in order to study
the dynamics of growth. However, it would be necessary to
adjust its values so that the velocities would not be
greater for the longer Jjump distances in the diffusion zone.

The axial center of mass could be defined along the
arms of the aggregate to study the motion of the arms.
Pattérns and cycles of movement, independent of and also in
coordination with neighboring arms could possibly be
detected.

Dimensionless ratios of the step—-size in the
deposition zone, the size of the random walkers, and the
distance of interaction with the aggregate could be formed,
analogous to the Peclet number, and could be related to the
fractal dimension.

The deposition probability could be found using
relaxation methods, similarly, a large deposit could be
bombarded many times and the number of attempted depositions
could be recorded for the perimeter sites also giving the
probability distribution. It is expected that the tips of
the arms would have the greatest probablity. The average
penetration depth could also be found.

If a color monitor were used, the age of the deposits
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could be color coded, and each color could have different
diffusion and deposition properties.

The geometry of the arms could be analyzed to
determine what factors might affect the ratios of the length
and spacing and lengths of the side branches.

Various boundary conditions could be utilized in place
of a the ’killing® circle such as reflecting or toroidial,
and the geometry of the boundary could be changed to model
diffusion along a channel or at a planar surface.

Finally, seeds of different geametries could be
utiiized, in order to investigate how persistent a sharp

corner might grow, or how a cavity might be filled in.
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