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AN ABSTRACT OF THE THESIS OF Cliff Myers for the Master of 
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A modified Witten-Sander algorithm was devised for the 

diffusion-limited aggregation process. The simulation and 

analysis were performed on a personal computer. The fractal 

dimension was determined by using various forms of a two-

point density correlation function and by the radius of 

gyration. The results of computing the correlation function 

with square and circular windows were analyzed. The 

correlation function was further modified to e>:clude the 
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edge from analysis and those results were compared to the 

fractal dimensions obtained from the whole aggregate. The 

fractal dimensions of 1.67 ± .01 and 1.75 ± .08 agree with 

the accepted values. Animation of the aggregation process 

elucidated the limited penetration into the interior and the 

zone of most active deposition at the exterior of the 

aggregate. 
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CHAPTER I 

INTRODUCTION 

Many complex forms in nature are products of some kind 

of growth process. There are growth processes ranging from 

the formation of galaxies to polymers, from the structure of 

snowflakes to that of living systems. It is hoped that 

insight into the underlying mechanisms of growth and the 

formation of structure can be gained from exploration of 

more tractable models than the direct study of these 

complicated physical systems. Researchers have been 

recently encouraged by the intricate patterns and scaling 

relations that can be produced by computer simulations. By 

using few and simple growth rules it is suggested that the 

computer models can elucidate some of the essentials of the 

mechanisms of growth. 

Many everyday forms have the property of self

simi lari ty, that is, the appearance of the structure is 

invariant under change of length scale. Familiar examples 

include coastlines, rivers, and lightning. The quantitative 

description of the structure of these forms, which had been 

until recently regarded as too complicated, has been 

facilitated by the concept of the fractal dimension, which 

was primarily developed by Mandelbrot in 1975. It has 
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provided the tool for understanding a diverse variety of 

processes which lead to similar fractal geometries. Aside 

from scientific considerations, structures with fractal 

geometries are found in many processes and products of 

technological importance, such as, aggregates and fluid 

flows. 

The other development which has stimulated much recent 

research is the Witten-Sander model of diffusion-limited 

aggregation <1981>. The fractal graphical output produced 

by the computer simulation bears a striking resemblance to 

actual structures and patterns found in nature, e:-: amp 1 es of 

these include; cathodic deposition, dielectric breakdown, 

and viscous fingering. These physical growth processes and 

the stochastic growth rules of the simulation can be 

related 

equation. 

to a potential field described by Laplace's 

Moreover, computation of the fractal dimension 

has been verified by direct experimental measurement. This 

suggests that the model provides a basis for understanding 

previously unrelated processes and that computer simulation 

can serve as a bridge between theory and experiment. 

I have devised a modified Witten-Sander algorithm for 

the diffusion-limited aggregation process and performed the 

simulation and analysis on an Atari 1040ST personal 

computer. 

dimension 

After generating the 

was computed by using 

patterns, the 

a two-point 

fractal 

density 

correlation function and compared to that obtained using the 
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radius of gyration. The method of computing the correlation 

function was modified to study edge effects. Frequency 

histograms were obtained for various coordinate systems to 

investigate any defects in the simulation. Animation 

programs were written to demonstrate the active zone of 

deposition and to better illustrate the deposition process. 

After presentation of background material and details 

of the model, the method of simulation and programming 

details are then discussed. Following that, the graphical 

and numerical results are analyzed and compared to similar 

theoretical and experimental studies. Concluding remarks 

are then offered in support of the accepted fractal 

dimension for diffusion-limited aggregation. Additionally, 

comments are presented to address the differences between 

the methods for computing the fractal dimension. 



CHAPTER II 

BACKGROUND MATERIAL 

THE FRACTAL DIMENSION 

Mandelbrot has extended the application of geometrical 

constructs to the natural sciences by generalizing the 

scaling relationships found in certain mathematical 

functions and geometric patterns. These had been previously 

disregarded as pathological, to the forms common in nature. 

He recognized that fractal forms could serve as tools for 

analyzing physical phenomena. Fractal geometry may become 

better suited to deal with the real world of intricacies and 

irregularities than the Euclidean idealizations of abstract 

regular forms of smooth curves and surfaces. 

The concept of fractal dimension, subsequently 

referred to in this thesis as D, is demonstrated by 

considering the diffusion-limited aggregate grown by the 

simulation in the embedding Euclidean dimension, d = 2, as 

having a fractional dimension such that 1 i D i d <Figure 

1.>. The aggregate is not a compact surface punctured with 

holes, nor is it a meandering line, it is a fractal <except 

on the scale of pixels>. The irregularities are not 

without order in that fractals have an intrinsic symmetry, 

the property of self-similarity, although for random 
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~ ~lJ~~ J!..w- . .t.,1,. 

Scale invariance of a fractal aggregate. 

fractals this dilation symmetry is statistical. 

Although the structure is grown by a random process, 

it is not random. As the sections of the structure are 

magnified the pattern is recognizable so that similar 

structure exists on all scales between an upper cut off, 

nearly the size of the aggregate and a lower cut off, on the 

order of a pixel diameter. Thus, there exist 'holes' at all 

length scales. A purely random pattern would not show this 

scaling of 'holes'. As a consequence of having 'holes' of 

all sizes, the pixel density decreases with increasing 

length scale. This can be contrasted with a homogeneous 

object of Euclidean geometry where the density is 

independent of the length scale on which it is measured. 

DENSITY SCALING 

The fractal dimension is a measure of how density 

approaches zero as the length over which it is measured 

increases <assuming that there is no upper cut off). 

The functional equation, M<AL>=AdM<L> with A > O, describes 
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how the mass of Euclidean objects scale with length. This is 

analogous to regular fractal objects such as Sierpinski 

gaskets. These can also be described by M<~L>=~°M<L> with 

D < d <D is also called the similarity dimension since it 

describes how the mass changes after a change of scale, ~-> 

<Figure 2.> The solution for the fractal mass dependence on 

size is obtained by use of ~ = L- 1 and M<1> = 1 and is 

M<L> = LD. ( 1) 

The density, p, given by p = M/La for exact fractals is 

p = LD-a. (2) 

' 

Figure 2. Sierpinski gasket. 

For the Sierpinski gasket of Figure 2, the mass scales 

according to M<2L> = 3M<L> = 2DMCL> and D = ln3/ln2 ~ 1.585. 

Although, for exact fractals such as Sierpinski gaskets the 

fractal dimension can be calculated due to their 

deterministic construction rules; the fractal dimension for 

diffusion-limited aggregates grown with a stochastic process 

can only be measured. 

The fractal dimension, as introduced, corresponds to 

the mass dimension in physics and any characteristic length 

such as the radius of gyration can be used to relate an 

aggregate's mass to its size during the process of growth. 
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In a general way, the fractal dimension can be defined by: 

N<r> = (r/ro)D (3) 

where N<r> is the quantity obtained by measuring a fractal 

medium with a gauge ro. Forrest and Witten <1979> first 

obtained for aggregated smoke particles that M<L> = L1 • 6 and 

concluded that there were long range correlations in the 

particle density. There is another, less globally defined 

formulation for the fractal dimension, it is the correlation 

function, C <r >, which must also reflect the scale 

invariance. 

THE CORRELATION FUNCTION 

The correlation function, C<r>, may be defined as the 

average density of an aggregate at a length r from occupied 

sites and, as such, it is a local measure of the average 

environment of a site, C<r> = N- 1E S<r1+r>S<r1 > summed over 

the occupied sites, r&, i = 1, ••• ,N. The correlation 

function thus describes the probability that a site within a 

length r is occupied. The probability of occupancy is the 

ratio of occupied sites to the total sites of possible 

occupancy. Using equation <2>, the correlation function is: 

C<r> = rD r-0 = rD-a = r•. (4) 

Witten and Sander <1981) first noticed that the correlation 

function for diffusion-limited aggregates was consistent 

with a power law, and found C<r> = r-0 - 3 • 3 • The correlation 

function is scale-invariant in that C<~r> = ~-C<r>. 
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Although, globally, the density of the aggregate 

decreases as it grows, <due to the corresponding growth in 

the 'hole' size distribution> locally, these unoccupied 

sites between the extending tenuous arms do not affect the 

correlation function if r << L...Ax• It is the screening 

effect of these growing arms that allows for fractal, as 

opposed to compact growth. That is, it allows for the long 

range correlations in the pattern, 

aggregate density. 

and the decrease in 

Aggregation processes can be roughly classified into 

three regimes. The first of these is when an object grown 

near equilibrium, such as a crystal, which has only short 

range correlations. This correlation length or resemblance 

distance is on the order of the unit cells of the crystal. 

When the system is driven away from equilibrium, growth is 

in the second regime. For example, in supercooled 

solidification, the morphology becomes that of dendritic 

pattern formation where the structure may still be regarded 

as compact. The lengths associated with the steady-state 

growth of the intricate patterns of snowflakes are much 

longer than the crystalline lattice spacing <see Langer, 

1980). The third regime, applies to diffusion-limited 

aggregation in which the growth process is irreversible and 

its growth is even farther from equilibrium. It has long 

range density correlations and no natural 

evident by its having holes of all sizes. 

length scales, 
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THE DIFFUSION-LIMITED AGGREGATION MODEL 

In the Witten-Sander model for diffusion-limited 

aggregation or DLA, pixels are added one at a time to the 

growing aggregate, via random walk trajectories on a 

lattice. The process is started with a single seed at the 

lattice origin. Subsequent pixels are introduced from 

random points sufficiently distant so that their flux is 

isotropic. They then undergo simulated Brownian motion 

until a site adjacent to the aggregate is reached, where 

they irreversibly •stick' without rearrangement. 

Various improvements and extensions to this process 

have been developed, beginning with the work of Meakin 

< 1983a). Meakin injected the random walkers from a random 

point on a circle of radius five lattice spacings greater 

than the distance from the seed to the most distant pixel on 

the growing aggregate, RsN~EcT = RMAx + 5. The random 

walker was also 'killed' if R > Rt<sLL = 3RMAX• 

With an average aggregate size of 9700 pixels, Meakin 

obtained fractal dimensions, of 1.68 ± .04 and 1.68 ± .07 

taken from calculations using the radius of gyration and a 

correlation function, respectively. 

In order to investigate lattice effects, the sticking 

rules were modified. The particle was incorporated into the 

aggregate if it reached a next-nearest neighbor position and 

did not stick if it was at the nearest neighbor position. 



The corresponding dimensions of, 
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1.69 ± .07 and 1.70 ± .07 

were obtained for aggregates with an average size of 5900 

pixels. 

In order to investigate the effects of the 'sticking' 

probability on the fractal dimension, the probability was 

set at 0.25 for nearest neighbor sites and 0.0 for the next

nearest neighbors. The aggregates, with an average size of 

16,300 pixels, yielded fractal dimensions of, 1.71 ± .055 

and 1.73 ± .13 respectively. Setting the probabilities at 

0.0 for nearest neighbor sites and 0.1 for the next-nearest 

neighbors, Meakin further obtained the fractal dimensions 

of, 1.74 ± .03 and 1.73 ± .04 respectively, for aggregates 

with an average size of 9,800 pixels. 

Later improvements in the simulation algorithm include 

those by Meakin (1983b> where the aggregation rate was 

increased by scaling the step size of the random walk to the 

distance from the aggregate. The step size was increased to 

two lattice units if the random walker was at a distance 

greater than rMAx + 5 lattice units from the center seed, 

four units, if greater than rMAx + 10 units, four, if 

greater than rMAx + 20, eight if greater than r"Ax + 40, 

and sixteen if r"Ax + BO. The correlation function was 

calculated for 5 i r i 50 and gave a fractal dimension of, 

1.68 ± .05. The radius of gyration gave a fractal dimension 

of, t.73 ± .06. These results were obtained from aggregates 

whose average size was B,585 pixels. 
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It can be seen that, for these relatively small 

aggregate sizes <Meakin states that these aggregate sizes 

reached the practical limit for the VAX-11/780 computer 

which was used>, the fractal dimension obtained by radius of 

gyration calculations agreed well with those that were based 

on the correlation function. Furthermore, the results were 

not significantly changed by the described modifications in 

the simulation process. 

The diffusion-limited aggregation model was developed 

to provide a simple model for a broad class of growth 

processes in which diffusion limits the rate of irreversible 

growth. The reason that the model produces fractal growths 

and not non-symmetric: amorphous blobs can be qualitatively 

explained by the interplay of noise and growth. Consider 

the random deposition of a few nearby particles; tiny bumps 

and 'holes• will be formed due to noise of the Brownian 

process. The bumps will grow faster than the interior of 

the 'holes' because the probability that the random walking 

particles will arrive at the bumps, is greater. <This is 

demonstrated by the lightning rod effect in electrostatics.> 

As the bumps become steeper, the deposition probability 

decreases for the interior of the 'holes•. The bumps grow 

larger due to this screening effect and tiny bumps, in turn, 

begin to form on them, then subsequent splitting occurs and 

this gives rise to the ramified fractal structure. This 

evident growth instability is similar to the Mullins-Sekerka 
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The association 

between diffusion-limited aggregation and certain processes 

of electrostatics <electrolytic deposition and dielectric 

breakdown>, thermal-mass transport Cdendritic 

solidification>, and hydrodynamics <viscous fingering> is 

more than similar growth instabilities, or structure. 

Although these processes apparently do not involve diffusing 

'particles', the 'particles' are conserved and under 

appropriate conditions they can all be described by harmonic 

functions which satisfy Laplace's equation. 

THE LAPLACE EQUATION 

That the random walkers diffuse can be understood by 

noting that the probability that the~ site is reached on 

the k+l step is: <following Witten and Sander, 1983> 

u C ~ k + 1 > = 1 I 4 Eu < x + L k > , C 5 > 

where the summation over 1 runs over the 4 neighbors of ~ 

and is simply the previous mean value of the neighboring 

sites. Without boundaries to distort the probability field, 

the random walk will eventually diffuse everywhere <In the 

simulations, it is hoped that the random walker has no 

preferred direction.> In the continuum limit, this becomes 

the diffusion equation for the probability distribution of 

an incomimg particle (equivalent to the average 

concentration if many were simultaneously diffusing>, with B 

as the diffusion constant: 
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au; at = BV2u. (6) 

The boundary conditions for DLA are given by the 

simulation rules: because the particles deposit on the 

growing aggregate u = 0 on the perimeter and because the 

particles approach isotropically u = u- for ~ ~ m. Because 

only one walker arrives at a time, they 'see', essentially a 

steady-state; that is, each deposit's perturbation of the 

field relaxes instantaneously. Thus, the diffusion equation 

reduces to Laplace's equation, outside the aggregate: 

V2u = 0. (7) 

More formally, the probability distribution is 

analogous to a potential field, 

proportional to the diffusion 

the gradient of 

flux of random 

which, is 

walkers. 

Because the walkers are absorbed only on the perimeter, the 

f 1 ux' y_, has zero divergence Cy_« 'Vll, v•y_ = V2u = O>. The 

growth of the aggregate is given by the flux at its surface. 

The varied physical systems of; solidification, 

electrodeposition, fluid-fluid displacement, and 

aggregation, under appropriate approximations, all share 

similar interfacial growth equations and morphologies. The 

corresponding 

undercooling, 

For example, 

control variables for these systems are; 

applied voltage, pressure, and concentration. 

in electrodeposition, the potential is the 

electric potential, V, where the growth rate is proportional 

to the electric field, S., at the surface of the deposit 

<~ ~ -VV, v·~ = o, and V"2V = o>. 
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EXPERIMENTAL REALIZATIONS OF THE MODEL 

Electrodeposition 

Using a polymer to raise the viscosity of the copper 

sulfate electrolyte so as to inhibit the mixing of the 

sulfate ions by convection, and an added excess of sodium 

sulphate to screen the electric field, Brady and Ball <1984) 

deposited copper in which growth was limited by diffusion of 

Cu2 + ions. The radius of deposit was proportional to the 

diffusion-limited current and the mass was obtained from 

Faraday's law. The inferred fractal dimension obtained was 

2.43 ± .03 which is in agreement with three dimensional 

simulations of DLA. 

Two dimensional zinc leaves were grown by Matsushita 

et al. <1984> and their two-point correlation function was 

obtained by digitized image analysis. The deposits grew in 

an interfacial layer between a zinc sulphate solution and a 

covering of n-butyl acetate. Because the applied voltage 

was low, the growth process was controlled by the electrical 

potential field, obeying Laplace's equation. The fractal 

dimension obtained was 1.66 ± .03. 

Hydrodynamics 

Hele-Shaw cells consisting of two parallel plates 

where a low viscosity fluid, is injected into a high 

viscosity fluid have been used as analogs for fluid flow 

through homogeneous porous media. By Darcy's law, the local 
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fluid velocity is proportional to the pressure gradient, and 

for an incompressible fluid, the fluid potential field obeys 

Laplace's equation. Paterson C1984) was the first to point 

out the similarities between the viscous fingers produced by 

the Saffman-Taylor instabilities and the patterns of DLA. 

He speculated that they should also scale like DLA. 

Daccord et al. <1986) used water as the driving fluid 

and a high viscosity polymer for displaced fluid. The 

boundary conditions agreed with those of DLA because the 

viscosity of the water was negligible which allowed the 

approximation that the interface be isobaric. However, the 

polymer was non-Newtonian and its shear thinning introduced 

a non-linearity which was accounted for by using a power 

function of the pressure gradient. The fractal dimension 

was measured using various methods which produced consistent 

results of, 1.70 ± .05. 

Dielectric Breakdown 

Lichtenberg figures are the electrical discharge 

patterns formed by the conduction channels during dielectric 

breakdown. Niemeyer C1984> assumed that the breakdown 

channel is a good enough conductor to be regarded as an 

equipotential and that further breakdown or growth of the 

breakdown channel is proportional to the surrounding 

electric field Cor the gradient of the electric potential>. 

Under these crude approximations the electric potential 

obeys Laplace's equation with similar boundary conditions as 
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DLA. In compressed SF. gas, the surface discharge on a 

plate of glass was analyzed and a fractal dimension of 1.7 

was found from digitized photographs. 



CHAPTER III 

IMPLEMENTATION OF THE MODEL 

Various modifications to Meakin's improvements on the 

original Witten-Sander model were made due to machine 

limitations and the desire to have real-time graphics 

display. <For more extensive discussion of these 

modifications see the Appendix A.> The most notable of 

these is the modification of the interfacial boundary 

conditions. 

1 i mi tat i on s ~ 

In consideration of memory and speed 

the growth interface or exterior perimeter was 

not stored separately from the aggregate as it was grown. 

Consequently, the 

changed so that 

deposition rules at the 

the pixel was deposited 

interface were 

only when it 

attempted to 'jump' into the aggregate and not when it was 

on its interface. Thus interfacial transport was allowed 

and the deposition probability as a function of the velocity 

relative to the interface, P<v>, was as follows: 

PC-vNoAMAL> = 1 
(8) 

P<+vNoAMAL> = P<±vTANG~NTXAL> = 0. 

Deposition occurred at the site from where it attempted to 

'jump' into the aggregate. As the pixel was only allowed to 

single step while inside the deposition zone, R ~ Rl"IAX + 5, 

and because the steps were along the orthogonal lattice 
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directions, the possibility of the pixel 'jumping' over a 

deposit filament was eliminated. 

In Meakin's model the deposition forces acted over a 

distance of one pixel diameter, since deposition occurred as 

soon as the pixel entered the one pixel thick perimeter. 

This is in contrast to the contact forces of the model used 

in this study, which allowed the pixel to move tangentially 

along the interface until an attempted 'jump' caused the 

centers of the pixels to coincide. In this sense, the 

present study deals with aggregation of points and ignores 

the excluded volume effect, whereas Meakin's model 

aggregated extended pixels of one lattice spacing in 

diameter. Consequently, the surface variations on the order 

of a lattice spacing were not smoothed over, which was an 

effect of the overlapping of the surrounding perimeter 

layer in Meakin's model. Thus, pixels could enter into 

cavities with entrances of one pixel in diameter and there 

be deposited. However, this modification did not 

significantly change the fractal dimension, which is a 

measure of the local deposit density or compactness. 

The growing aggregation was surrounded by a 'birthing' 

circle which injected the random-walking pixels at a 

distance of RxNJEcT = RMAx + 5 lattice spacings away from 

the initial center seed. The release was randomized over 

half-degree increments around this circle. If the pixel was 

outside of this circle the step size was scaled as follows: 
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if 10•2N < R - RMAX < 10•2N- 1 then stepsize = 2N+1 

The random walk was continued until deposition occurred or 

until the pixel was terminated on the 'killing' circle of 

radius RKxLL= 2•RMAx + 5. This modification was made to 

expedite the deposition process. 

To complete the description of the model, it should be 

noted that, although, there were toriodial boundaries 

<remnants from a previous demonstration program, from which 

the simulation program evolved>, they were never reached 

because the growth terminated when the aggregate reached a 

radius of 200 lattice spacings. This constraint was devised 

to insure that the whole aggregate could be displayed. The 

center seed was located at <200,200) in the screen space. 

The coordinates of the seed in the simulation space (a 

Boolean array in main memory> were (408,408) with 

boundaries at 3 and 812 in both x and y. Although, larger 

aggregates could have been grown, their growth times would 

have been excessive and it would have been necessary to 

partition their displays. <For a more complete discussion 

of the memory and time constraints, see Appendix A.> 

Initially, 26 small aggregates were grown using the 

demonstration program which stopped growth when the 

'birthing' circle reached the edge of the screen at R = 200 

lattice spacings. These small aggregates were then used as 

'seeds' in the simulation program which allowed for larger 

growth. A total of 30 large aggregates were grown. 



CHAPTER IV 

SIMULATION RESULTS AND DISCUSSION 

NUMERICAL RESULTS 

The output from the simulation program consisted of 

two files which were stored on disk. The spatial deposit 

array was stored as a sequential file in the order of 

deposition. The screen buffer was also stored as a binary 

file so that screen sites could be later checked for 

deposition. These files were processed by programs to 

obtain the fractal dimension from the correlation function 

and the radius of gyration. CFor more extensive discussion 

of these programs see Appendix A.> 

The correlation program actually consisted of three 

separate programs, each of which calculated the correlation 

function using circular and square 'windows•, and from its 

dependence on the 'window' size, the fractal dimension was 

determined for each aggregate. The first of these programs 

used circular 'windows' which accumulated the enclosed pixel 

area by a polygonal approximation which in effect included 

the pixel area as either inside or outside the 'window'. 

This approximation technique affected only those 

which were on the perimeter of the 'window'. 

pixels 

This 

correlation function was evaluated at all the deposits 



comprising the aggregate. 
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The second and third programs 

excluded those pixels located at radii, R > RMAx = 32.5 

lattice spacings as, 32.5 was the largest window size. 

Because the edge of the growth was where deposition was most 

active, it was thought that by excluding the edge from 

consideration, the fractal dimension obtained 

representative of the complete aggregate. 

would be more 

The third 

correlation program utilized a look-up table of the exact 

areas for those pixels that were bisected by the perimeter 

of the circular 'window'. The 'window• sizes for all the 

programs were 2"' + .5 lattice spacings, N = 0,1,2,3,4,5. 

All the correlation programs were tested for accuracy by 

evaluation of the fractal dimension of compact Euclidean 

figures. 

The radius of gyration program used the lattice origin 

and not the center of mass of each aggregate to compute the 

radius of gyration. The calculation of the center of mass 

at each deposition would have greatly increased the process 

time. Furthermore, it was assumed that any offset would not 

be appreciable. If it was appreciable, it would distort the 

numerical results in a complicated manner. 

Correlation Function Results 

For each aggregate, the results of the dependencies of 

Ln<C<r>> on Ln<r>, and Ln<~> on Ln<N> were analyzed by 

linear regression to give the corresponding fractal 

dimensions. The individual results are given in Appendix B. 
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Each of the 26 small aggregates served as a seed for the 

growth of the large aggregates. The correlation results of 

all the individual aggregates were averaged by a separate 

least squares analysis of the average results of each 

'window'. The average fractal dimension, as determined 

from the radius of gyration, was determined by processing a 

composite of all individual growths. CThis composite was 

also utilized in the determination of the frequency 

histograms, which are discussed below under Graphical 

Results.> These results are listed in the following table. 

TABLE I 

AVERAGE FRACTAL DIMENSIONS 

Fract~l D11ens1on fro1 Average Correlation 'W1ndow' Data 

Incl udi na Edge Excludino Edge 
Squares 'Circles' Sauares 'Circles' Circles 

S1ail AJl..!lI!9.ates 

~ 1.66410592 1.610013451 1.6953093637 1.6393097109 1. 6%2591969 

s.d. .0082032213497 .0079478124734 .012463779431 .011922381434 .012101511144 

Large Aggregates 

~ 1.6668462298 1. 6107480877 1. 6725249781 1. 6160897292 1.672937113 

s.d. • 0053549107253 .0050211512165 .0058509194604 .0056517456068 • 005707 4275171 

Fractal Di1ension fro1 Co1posite of all Aggregates based on Radius of 6vration 

S1all Aggregates 1.8452894007 Large Aggregates 1.8120055785 

Average Agoreaate Size 

S1all Aggregates N = 4510 ± 702 pixels Large Aggregates N = 16298 ± 2159 pixels 
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Polygonal approximation of the circular 'windows' was 

utilized to expedite implementation. Circular 'windows' 

which computed the exact areas were justified in so far as 

the correlation function utilized the Euclidean metric. 

Furthermore, in a statistical sense, the aggregates tended 

to have a circular symmetry. It had been for computational 

convenience that Forrest and Witten used square 'windows' to 

determine the correlations of smoke particles. However, the 

underlying square lattice geometry also suggests the 

utilization of the more natural square 'windows'. In the 

absence of an adequate discussion of this issue in the 

literature, it will now be discussed as to whether these 

computational schemes yielded significant differences of the 

resulting fractal dimension. 

The average fractal dimensions which were obtained by 

using the correlation function with circular 'windows' and 

by excluding the edges of the aggregates, were, as follows: 

for the small aggregates, polygonal approximation gave 

results of D·e·= 1.639 ± .012 and exact calculation yielded 

results of De= 1.696 ± .012. For the large aggregates, 

results were, D·c·= 1.616 ± .006 and De= 1.673 ± .006, 

respectively. Therefore, the polygonal approximation is not 

justified. 

Comparison of the results obtained from the 

correlation function by using exact circular and square 

'windows' and by excluding the edges of the aggregates, 



24 

indicates that the choice of method is arbitrary. 

Specifically, the fractal dimensions which were obtained for 

the small aggregates were, for circular and square 

~windows~; De = 1.696 ± .012 and De = 1.695 ± .012, 

respectively, and for the large aggregates the dimensions 

were identical, De = De = 1.673 ± .006. Whether structural 

symmetry or the underlying lattice geometry alter the 

fractal dimension, as determined by this correlation 

function, can not be decisively concluded on the basis of 

this analysis. Other correlation functions and scaling 

relations could be formulated to address this issue more 

conclusively. 

The effect of screening on deposition is evident by 

the decrease of the average fractal dimensions, computed 

where edges are excluded, as the aggregates become larger. 

Comparison of the corresponding average fractal dimensions 

between the small and large aggregates must take into 

account that the individual large aggregates were grown from 

individual small aggregate seeds and not independently, each 

with a particular fractal dimension and growth trend based 

on its structure. However, because the analysis is based 

upon the average fractal dimensions, <which suppress any 

particular trend that an individual aggregate may have in 

terms of its fractal dimension>, it is valid for comparing 

the change in the fractal dimension between the average 

small aggregate and the average large aggregate. Because 
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the excluded edge is 32.5 lattice spacings for both the 

small and the large aggregates, the proportion of the region 

of active deposition that is excluded, is greater for the 

small aggregates than for the large aggregates. Conversely, 

proportionately more of the inactive interior region <which 

is more compact and thus has a greater fractal dimension) is 

used in the correlation calculation that excludes the edge 

for the small aggregates rather than for the large 

aggregates. <Screening, and the active deposition zone, are 

more fully discussed in the Graphical Results section.) 

The average fractal dimensions computed by not 

excluding the edges of the aggregates and by using the 

correlation function using square 'windows' are; for the 

small aggregates, De = 1.664 ± .008, and for the large 

aggregates, De = 1.667 ± .005. The difference in these 

fractal dimensions is not significant, and is not 

inconsistent with the above analysis. Furthermore, it 

suggests that the active zone also scales as a fractal. 

The sequence, of the average fractal dimensions, 

obtained by using the various correlation function schemes, 

(presented in Table I>, is consistent between the small and 

large aggregates. This is illustrated in Figure 3, on both 

the graphs for the small and large aggregates, where the 

slopes of the regression lines are listed in decreasing 

order. The regression line, for the rejected scheme using 

polygonal approximation, is skew to those regression lines 
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for the exact schemes. The coincident regression lines for 

the exact schemes; where the edge is excluded, are parallel 

to the regression line for the scheme using exact squares, 

where the edge is included; is true for large aggregates and 

not for the small aggregates. The regression lines have 

different intercepts simply because edge deposits were 

excluded. The average fractal dimensions, calculated by 

the exact schemes, for the large aggregates, yield the 

fractal dimension of D = 1.67 ± .01. However, the 

corresponding results, for the small aggregates, do not 

agree within statistical uncertainty. Further analysis of 

the average dimensions, between the small and large 

aggregates, of all the exact schemes, indicates a 

convergence, as the aggregates become larger, toward the 

results given by the scheme using squares, and where the 

calculations included the edge. This convergence is also 

supported by the agreement between the average fractal 

dimensions of the small and large aggregates, which are 

produced by the scheme where the edge is included and the 

correlation function utilizes squares. This agreement also 

yields D = 1.67 ± .01. This suggests that, to fully 

characterize a growing aggregate, an additional fractal 

dimension for the zone of active deposition could be 

utilized. 

The sequence of the fractal dimensions, obtained by 

the various correlations schemes, is further illustrated in 
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Figure 4. The graphs of the results for the individual 

small and large aggregates do not intersect, indicating 

that the consistency of the schemes is not dependent upon 

the averaging process. 
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Radius of Gyration Results 

The results from the radius of gyration, Rv, 

dependence on the number of deposits, N, reported in Table 

I, are not in immediate agreement with the results discussed 

above concerning the correlation function, C<r>, dependence 

on the 'window' size. In further contrast, are the fractal 

dimensions reported by Meakin, which do agree. <These were 

similarly related to the slopes of the graphs of LnCR9 ) vs. 

LnCN> and LnCCCr>> vs. LnCr>.> The fractal dimensions, 

calculated from the reciprocals of slopes of the graphs of 

LnCR9 ) vs. Ln<N>, were determined from composites of all the 

small and large aggregates, over the entire ranges of N. 

Time did not allow for an estimation of the statistical 

uncertainties associated with the listed fractal dimensions, 

even though this would have required only minor 

modifications to the least squares routine in order to 

obtain the standard deviation of the regression coefficient. 

However, inspection of any of the Ln<Rv> vs. Ln<N> graphs in 

Appendix B, indicates that the graphs for the individual 

aggregates are not initially linear and only appear to 

asymptotically become so with increasing N. However, due to 

the condensed size of the graphs, this interpretation may 

not be valid. The non linear region of the graphs, for 

small values of N, indicates that the aggregates are 

initially random, and that their structure stabilizes and 

becomes fractal with more deposition. This corresponds to 



the apparent linear portions o~ the graph. 
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As an aggregate 

becomes larger, a deposit's perturbation of the global 

geometry is diminished. With the average large aggregate 

size of only N = 16298, it is unknown whether the fractal 

dimension also has an upper cut off, above which the 

aggregate becomes non-fractal, or its dimension approaches 

another value. It was hoped that the averaging of the 

individual aggregates into a composite would damp the 

initial transients and the graph would be linear over its 

entire range. Indeed, at a first glance, the graphs in 

Figure S, appeared to indicate this result. However, when 

the regression was parameterized by a lower cut off, the 

resulting fractal dimensions did not stabilize, in fact, the 

results, as shown in the chart overlaid on the graphs, 

indicate that the graphs are actually slightly concave. 

This is in accord with the effect of screening by the 

perimeter. As the aggregate grows the perimeter effectively 

leaves behind it a region 'frozen' at an intermediate 

fractal dimension. Deposition, when penetration is 

restricted, tends to increase the radius of gyration more 

because it occurs, on the average, at a greater distance. A 

more thorough study of this concavity and asymptotic 

growth would require an analysis of the scaling properties 

of the zone of active deposition. The results which suggest 

the concavity may lack statistical significance, as the 

maximum graphical error for the graph of the large 
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aggregates is only ~ 27.. Furthermore, the curve tends to 

oscillate, which indicates that the graph can be regarded as 

linear. The use of the upper endpoint, with the 

parameterized lower cut offs in the linear regression, may 

not accurately determine the fractal dimension for the 

average mid region of the aggregates because it tends to 

attach more statistical weight to the active zone. A 

separate correlation function analysis of the active zone 

would determine whether the active zone had a smaller or 

greater local density than the mid region of the aggregate. 

Even without this separate analysis, it may be inferred that 

the active zone had a smaller local density than the mid 

region of the aggregate. This inference is drawn from an 

analysis of the results of correlations over the entire 

aggregate, between those which exclude and those which 

include, the edge. <These results are listed in ~able I.> 

The question arises, of whether the reported results should 

represent just the global properties of a stabilized and 

relatively large aggregate, or whether they should also 

include the residual effects of its incipient growth. 

Utilizing the results for an average 'mature', yet growing 

aggregate, the fractal dimensions are, for small aggregates, 

D = 1.799, and for large aggregates, D = 1.773. In 

acknowledgement of the uncertainties involved, and of the 

apparent inverse nature of the growth of the aggregate and 

its fractal dimension, the final result, using the radius of 
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gyration is, D = 1.78 ± .01. This does not agree with the 
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~ 6.6%. The radius of gyration program could be flawed, as 

there is no obvious explanation for the discrepancy between 
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without cut off, are, for small aggregates, D = 1.84 ± .07, 

and for large aggregates, D = 1.80 ± .05.> 

GRAPHICAL RESULTS 

This section discusses the graphical depiction of the 

aggregates. The graphical output for all the aggregates are 

found in Appendix C. It is evident that the aggregates 

represent a diversity of structure, yet a recognizable 

pattern is discernable. However, without the fractal 

dimension, only a qualitative description of this pattern is 

possible. However, aside from the pattern, other 

characteristics can be demonstrated. Symmetries and 

anisotropies were investigated by the use of frequency 

histograms. The dynamics of growth were studied by use of 

animation programs, the results of which were distilled into 

the series of images depicting the evolution of growth. 

Additionally, the animation programs were used to construct 

a sequence displaying the depth of penetration at varying 

stages of screened growth. Aggregate number 20 was selected 

as a representative aggregate and its characteristics are 

presented <Figure 6.>. A similar presentation follows for 

the composite of all the large aggregates. The extent that 

subsequent growth depends upon initial conditions and the 

persistence of growth trends are studied by the comparison 

between two of the large growths, which were grown from the 

same small growth. 
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The most salient features are the radial symmetry and 

the similarity of branching structure ramified over 

different orders of magnitude. Predicting its occurrence 

and structure in terms of natural ratios of characteristic 

lengths, such as arm diameters and interarm distances, 

unfortunately, was not relevant to the present study, 

although it certainly merits further study. 

Examination of the growth stages of aggregate number 

20, in Figure 7, indicates that the initial pattern of the 

Figure 6. Aggregate number 20. 
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main branches is propagated, and persists in. the more 

intricate stages of later growth. The Ln<R~> vs. Ln <N> 

graph for this aggregate is presented in Figure 8. The 

transients of the initial growth are visible in the 

oscillations of the lower portion of the graph. The 

frequency histogram of the radial mass distribution is 

presented in Figure 9. The presence of 'holes' is indicated 

by the increasing portion of the histogram. Growth was 

terminated before uniformity in the distribution for the mid 

region of the aggregate could be ascertained. 

The radial symmetry is manifest in the outward growth 

of the arms. The angular distribution, as shown in its 

frequency histogram in Figure 10, indicates that the arms 

'sweep up' the incident flux of random walkers. The flu:< is 

assumed to be uniform and isotropic. CThe unsmoothed data 

for aggregate number 20 is given Appendix C.> 
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Because the deposit's diameter, lattice spacing, and 

step size, prior to deposition, are identical, it is 

improbable that any periodicities in the X and Y directions 

would be detected in the histograms for these coordinates. 
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These distributions, presented in Figures 11 and 12, are not 

uniform due to the interaction between the arms and the 

deposition process. <Comments concerning the averages of 

these distributions are presented below under the discussion 

of the cumulative distribution of the large aggregates.> 

The effect of screening on the growth is depicted in 

Figure 13. The ultimate N ;. of the total deposits are 

illustrated, for N = 10, ••• ,90. On the average, the 

deposition occurs in the outer and more active shell. 

However, occasionally, screening is incomplete and a random 

walker wanders deeply into a 'fjord' before coming to rest, 

150---1.-

1.50 

'1 
II 

.150 

Figure 10. Angular mass distribution for 
number 20 <smoothed>. 
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aggregate 
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as shown by the stray deposits which have penetrated the 

interior. This screening process limits the 'filling in' 

of the interior, and growth continues in the outer shell. 

Subsequently, this active shell extends, by virtue of the 

deposition occurring there, leaving behind the incompletely 

'filled in' interior of the aggregate, which is a fractal, 

rather than a compact structure. 

Figure 14 examines the sample space of the cumulative 

probability distribution of the large aggregates for 

uniformity and isotropy of deposition. The suggestion of 

underlying arms, most discernable in those images labeled 

180+ 

-200 -100 x -4.02 
.100 200 

-2·00 -1.00 (SMOO"t:hed) 100 

Figure 11. Mass distribution in X for aggregate number 20. 
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30% and 407., <which are projections of the deposition 

distribution onto the XV plane, for PCX> ~ .30 and .40> and 

the corresponding modes in the angular mass distribution of 

the large aggregates, which is presented in Figure 15, could 

be an effect of the lattice, if deposition was most probable 

along the orthogonal and diagonal directions of the lattice. 

Moreover, there does not appear to be any pattern 

associated with those sites which have not been deposited, 

except that they tend to be between those arms. The 

averaged growth appears to be uniform and radial because the 

perimeters of Figures 14 and 15 can be regarded as circular • 

.19 

-200 
y = .02 

-zoo -1-00 (SMOothed) .100 zoo 

Figure 12. Mass distribution in Y for aggregate number 20. 
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The frequency histograms for the cumulative 

distributions in X and Y are displayed in Figures 16 and 17, 

respectively. The center of deposition is located at 

(3.47,-5.37). The center is 6.4 lattice spacings from the 

origin of the simulation. This result exposes a possible 

source of error in the fractal dimension based on the radius 

of gyration and is discussed at length in the Conclusion and 

Appendix D. Factors which might influence the displacement 

of the average center of mass, as accumulated over the 
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Figure 14. Cumulative probability distribution in X and Y. 
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relatively large sample of aggregates, are that the incident 

flux is not isotropic, that the deposition is preferential 

to certain orientations, or that growth is restricted in 

some directions. <The center of mass for any particular 

aggregate is expected to be displaced.) 

graphics screen was dimensioned by even, 

Because the 

and not odd 

integers, the lattice origin was slightly eccentric to the 

screen boundaries. Consequently, growth was terminated 

slightly more often when the maximum radius was in the 

fourth quadrant. However, this would explain the location 

of center of deposition in the second, and not in the fourth 

quadrant. Possibly, this asymmetry was caused by non-

uniformity of the random number generator function. If it 

was biased towards higher values, the 'birthing' circle 

would have released a greater flux of random walkers into 

the fourth quadrant. Unfortunately, time did not allow for 

analysis of the random number generator. <This bias also 

would have caused anisotropy in the Brownian motion, which 

could have countered the above effect, because the leeward 

side of the aggregate would have obstructed movement and 

collected more deposition. However, not knowing the shape 

of the random number distribution, it is impossible to 

predict how the 'jump' procedures, which direct the 

movement, would have responded to the anisotropy.> The 

radial symmetry is indicated by the joint symmetry in X and 

Y, as shown in the histograms. 
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The frequency histograms for the radial distribution 

of the large aggregates, shown in Figure 18, are included 

for comparison to Figure 9. Because uniformity of 

deposition would imply that the aggregates would not be 

fractal, it is not to be expected. If the large aggregates 

are fractal, then the increasing portion of the histogram 

should exhibit power law dependence, specifically, r 0 • That 

it departs from this is most probably due to occasional 

penetration into the interior. The decreasing portion of 

the histogram indicates that growth is incomplete and 

possibly that the active zone of deposition has different 

3000 

3000 3000 

3000 

Figure 15. Cumulative angular mass distribution of 
the 30 large aggregates <smoothed). 
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scaling properties than the more complete interior region. 

However, its decreased inclination, as compared to Figure 9, 

is most probably the result of the averaging which occurred 

when the histogram was constructed from a composite 

of all the large aggregates. 

Figure 19 depicts the dependence that subsequent 

growth has on initial conditions. The large aggregates, 

numbers 23 and 27, were each grown from the small aggregate, 

number 23. Even though the large aggregates are more than 

three times the size of the seed aggregate, the small 

aggregate seems to have imparted a general growth trend. 

3600~ 

-20l) 

-100 
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Figure 16. Cumulative mass distribution in X for the 
30 large aggregates. 
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This similarity of structure between the two large 

aggregates persisted, even into regions beyond the scale of 

the original aggregate. The large aggregates were grown to 

sizes of 16464 and 19056 deposits, respectively. An 

investigation of the divergence of their morphologies with 

further growth was not performed. 

All of the small aggregates were grown from a single 

featureless seed. Yet, each of the aggregates developed 

distinctly, with its own characteristic structure. The 

-200 

3600---t-

200 

y = -5.37 

-1.1) (I (SMOO"t:hed) J.00 200 

Figure 17. Cumulative mass distribution in Y for the 
30 large aggregates. 
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Figure 18. Cumulative radial mass distribution for 
the 30 large aggregates. 
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Figure 19. Persistence of growth trends. 

fractal dimension not only describes how its density scales, 

both locally and globally, but also the resemblance 

noticeable in those characteristic structures due to the 

scale invariance~ or self-similarity. 



CHAPTER V 

CONCLUSION 

The aggregates were grown by a random process yet 

their structure is not entirely random. Their structure is 

symmetric under changes of scale, from lengths of a few 

pixels to that on the order of the size of the aggregate 

itself. A consequence of their self-similarity <or scale-

invariance of their patterns> is that their density 

decreases as their size increases. By contrast, a two 

dimensional Euclidean disk with homogeneous mass density, 

which is compact within its perimeter, has constant density 

regardless of its size. Consequently, as the density of a 

fractal aggregate decreases to zero the perimeter becomes 

infinite. <Another formularization for the fractal 

dimension is, Cperimeter> 1 'D ~ <area) 1 ' 2 , see Mandelbrot, 

1983.) The ramification of the structure of an aggregate 

contributes to this increase in the aggregate's perimeter. 

The screening effect which causes the arms to grow out more 

than interior to fill in, contributes to the decrease in 

density. The diffusion-limited aggregation mechanism 

operates on the microstructure using local growth rules, the 

effects of which are mediated through the fractal 

property of self-similarity and affect the resulting 
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macrostructure. 

Mass/length scaling relationships associated with the 

aggregates were analyzed to obtain a measure of the fractal 

dimension. The dependence of the radius of gyration on 

aggregate mass yielded a dimension related to global 

properties of the aggregate while the density-density 

correlation function gave a dimension more associated with 

local properties. 

is due to the 

The agreement between these two methods 

fractal property of scale invariance. 

The various modifications of the correlation function 

indicated that the shape of the correlation 'window• is not 

pertinent to the evaluation of an aggregate with radial 

symmetry and which is grown on a square lattice. However, 

the results given by the method using both square 'windows' 

and the inclusion of the edge, more quickly attained the 

value to which the results of the other methods appeared to 

converge, as the average size of the aggregates increased. 

It should be noted however, that the method which would have 

used exactly circular 'windows' together with inclusion of 

the edge was not performed so that this value could be due 

to only the inclusion of the edge, independent of the shape 

of the 'window'. The methods which excluded the edge did 

provide additional information about the screening effect. 

Furthermore, the results of these methods which utilized 

square 'windows• and circular 'windows• did not differ 

significantly. The fractal dimension as calculated over the 
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entire aggregate essentially remained constant as the size 

of the aggregate increased. When the edge was excluded from 

the correlation analysis, the correlation function indicated 

that the interior of the aggregate had a greater fractal 

dimension than the entire aggregate. However, the interior 

did not become compact indicating that the outer edge was 

screening the interior. <See Appendix E for possible 

modifications of the edge analysis.> The fractal dimension 

using the correlation function is De = 1.67 ± .01. 

After finalizing the analysis and discussion of the 

graphical results, it became evident that the offset in the 

location of the center of deposition from the lattice origin 

was, in fact, appreciable. Consequently, the approximation 

used in the radius of gyration calculations was not 

justified and the results had a systematic error. This 

offset, L, enters into the radius of gyration calculation in 

a complicated manner. Although, utilization of the parallel 

axis theorem could correct the radius of gyration for each 

deposition, N, it would require the functional dependence, 

L<N>. However, the dependence that the offset has on N is 

non-trivial and depends on the interaction of the growing 

structure with the random mechanisms of the simulation. 

Further discussion of the approximations used in the 

recalculation of the fractal dimension based on the 

corrected radius of gyration is given in Appendix D. It is 

noted there that the concavity in the graphs, mentioned 



50 

above, may be due, in part, to this error. The error, also 

indicates that 'radius of gyration', as measured from the 

lattice origin, is not as characteristic of the aggregate 

as the true radius of gyration. The fractal dimension based 

on the radius of gyration dependence is, 0.-9 = 1.75 ± .08. 

The correlation function results using 'windows' of 

1.5 to 32.5 lattice spacings of 1.67 ± .01 are in agreement 

with the accepted results of 1.68 ± .05, as reported by 

Meakin (1983b>, where 'windows' of 5 to 50 lattice spacings 

were utilized. The radius of gyration results of 1.75 ± .08 

are in precise agreement with the accepted results reported 

there. 

The differences with Meakin's model do not give 

significantly different numerical results. The slight 

difference in the boundary conditions, which might allow 

pixels to more completely fill cavities with entrances of 

one pixel in diameter, could give slightly different 

graphical results. The aggregates could be analyzed for the 

presence of 'lakes', which would indicate that occasionally 

a pixel could close off the opening of a 'fjord'. However, 

this analysis was not performed, in part, because Meakin's 

graphical results were not available. 

The graphical results demonstrated the diversity in 

the morphologies of the aggregates as well as the symmetry 

property of self-similarity. The animation programs clearly 

demonstrated the decreasing penetration into the interior of 
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the aggregates by the random walkers as the aggregates grew 

larger. The perimeter of an aggregate screens the interior 

and grows preferentially. Intricacies in the perimeter are 

enhanced by the growth mechanism and tend to be extended. 

Thus, the patterns of the large aggregates resemble the 

patterns of their predecessors. 

The morphology of a diffusion-limited aggregate 

resembles the fractal structures of those physical processes 

such as electrodeposition and fluid-fluid displacement. The 

measured fractal dimensions for these processes~ as 

previously stated in Chapter II, are 1.66 and 1.70, 

respectively. This supports the contention that diffusion

limited aggregation belongs to the same universality class 

of physical behavior. 



REFERENCES CITED 

Brady, R. and R. Ball. "Frac:tal Growth of Copper Electro
deposi ts," Nature, 309, 225, < 1984). 

Dac:c:ord, D., J. Nittmann, and H. Stanley. "Radial Viscous 
Fingers and Diffusion-Limited Aggregation: Fractal 
Dimension and Growth Sites," Phys. Rev. Lett., 56, 
336, ( 1986). 

Forrest, S. and T. Witten. "Long Range Correlations in Smoke 
Particles," J. Phys. A: Math. Gen., 12, L109, <1979>. 

Langer, J.. "Instabilities and Pattern Formation in Pattern 
Growth," J. Rev. Mod. Phys., 52, 1, <1980). 

Mandelbrot, B.. The Fractal Geometry of Nature, <Freeman, 
New York, 1983>. 

Matsushita, M., M. Sano, Y. Hayakawa, H. Honjo, and 
Y. Sawada. "Frac:tal Structures of Zinc: Metal Leaves by 
Elec:trodeposition," Phys. Rev. Lett., 53, 286, <1984). 

Meakin, P.. "Diffusion-Controlled Cluster Formation in Two, 
Three, and Four Dimensions," Phys. Rev. A, 27, 604, 
< 1983a>. 

Meakin, P.. "Diffusion-Controlled Cluster Formation in 2-6 
Dimensional Spac:e," Phys. Rev. A, 27, 1495, <1983b>. 

Niemeyer, L., L. Pi etronero, and H. Wi esmann. "Fractal 
Dimension of Dielectric: Breakdown," Phys. Rev. Lett., 
52, 1033, ( 1984>. 

Paterson, L.. "Diffusion-Limited Aggregation and Two-Fluid 
Displacements in Porous Media," Phys. Rev. Lett., 52, 
1621 ' ( 1 984 ) • 

Witten, T. and L. Sander. "Diffusion-Limited Aggregation, a 
Kinetic: Critical Phenomenon," Phys. Rev. Lett., 47, 
1400, (1981). 

Witten, T. and L. Sander. "Diffusion-Limited Aggregation," 
Phys. Rev. B, 27, 5586, <1983>. 



APPENDIX A 

THE COMPUTER PROGRAMS 

The selection of this thesis topic was, in part. 

motivated by the desire to demonstrate the feasibility of 

credible physics research on a personnel performing 

computer. Many student researchers do not have access to 

mainframe computers, especially those with graphics 

capabilities. Although, it could be said that fractal 

geometry is one of the computer viruses of the 1980~s. The 

computer programs developed in this project can serve as a 

basis for further research by students interested not only 

in the fractal patterns they generate, which resemble many 

patterns found in nature; but more importantly, by the 

apparent generality of the model to natural and 

technological processes. 

Initially, the simulation was attempted on a Commodore 

C-64 computer as it was a very popular and inexpensive 

system. However, with only 64K bytes of random access 

memory, a slow ClMhz> 8 bit microprocessor, small maximum 

array size <32K>, and a graphics screen of only 320 pixels 

by 200 pixels at 'high' resolution, it was abandoned as soon 

as larger and faster machines became available. The Atari 

1040ST was selected because it had the most advanced 
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technology at that time <1986>, although, since then it has 

been superseded by other systems, pref erred by researchers, 

because these systems are more technically supported. 

The Atari 1040ST with its 16/32 Motorola 68000 

microprocessor operating at 8 Mhz with 1 Megabyte of 

random access memory is still a respectable system. 

However, the basic language interpreter supplied by Atari 

had 'bugs' in the integer arithmetic routines and could not 

even use 32K of memory for arrays. With this memory 

limitation, simulations could not be done which would 

realize the potential of the 640 pixels by 400 pixels 

graphics display. Fortunately, GFA Basic was developed by 

GFA-Systemtechnik <which has become the system standard for 

the Atari, especially in Europe, where Atari is on par with 

IBM or Apple computers>. The following computer programs 

were written in GFA Basic version 2.0. 

The following short demonstration program was the 

prototype of more complicated and extensive programs and is 

included, with comments, to offer insight into the structure 

and coding of the simulation. It models DLA in a toroidal 

geometry on a two dimensional square lattice. The 

simulation space is a 400 by 400 lattice. The deposits are 

stored sequentially in an integer array using ten bit packed 

words; at the termination of the program the core image is 

dumped to a binary sequential file on disk. 



+----------------+ 
I Start 
I 
!Allocate storage! 
I Get filenames I 
I Load Screen I 
I template I 
I Load seeds I 
+----------------+ 

"' +----------------------+ 
Generate New Dancer !---------------<------------+ 

+----------------------+ I 
~ I 

+-------+ I 
Jump !---------<-----------+ I 
Up I I I 
Down I I ~ 

Left I I I 
Right I A I 

+-------+ I I 
.J. I Inside I 

=========== ======= I 
I Check \ I Check \ I 

I Deposition \ Not Stuck I Killing\ Outside! 
\ Conditions /------>-----\ Circle /---->---+ 

\ I \ I I 
=========== ======= I 

.J. Stuck I 
+-------------+ I 
I Update data I A 

!Display data I 
+-------------+ 

~ 
========= 

I Check 
I Maximum 
\ Radius 

\ 
========= 

\ Less than limits of radius 
\---------------->----------------+ 
I 

I 

~ Out to edge 
+----------------+ 

Clean Up 
!Save SCReen file I 
!Save ARRay file I 
+----------------+ 

"' +-----+ 
I End I 
+-----+ 

Figure 20. Demonstration program flowchart. 
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Cls ' Clears the screen. 
6raoh1ode 3 
' 3 is co1ple1ent 1ode, so plotlx,yl alternately sets and clears lx,yl. 
Deftext 1 
' Standard text 1ode for Text co11and. 
Color 0 
' Plot color is white (for white dot on black background!. 
On Break 6osub Breakhandler 
' Control-Shift-Reset vectors through this cleanup routine. 
On Error 6osub Errorhandler 
' Ar.y errors vector through this cleanup routine. 
Print •starting seed f1lena1e:' 
Fileselect "\S.SCR", 1 SEED.SCR 1 ,A$ 
' Selects a filena1e lor NULL for nonel to act as the seed. 
Print Atll,ll;'Storage filena1e: 
Do 

Fileselect "\l.SCR',"idSIAS,2l,Bf 
' Selects f1lena1e to save work. 
Exit If BS<> 11 And BS<>'\ 1 

' Won't accept null filena1es, a place is needed to save work: 
' Loops until a vaild filena1e is obtained. 

Loop 
If Instr!Bf, 1 SCR 1 l=O Then 

' If the SCReen extension isn't there ••• 
If Instr(8$, 1

,
1 l=O Then 

' checks for a period; 
Bf=Bs+•,• 
' adds it if it's not there, 

Endif 
Bf=BS+"SCR" 
' then adds SCReen extension. 

Endif 
Hide1 
D11 Orderll30000l 
' Allocates storage for the array of deposit coordinates. 
Orderl(Ql=l 
' (0) is location for the nu1ber of deposits, n=!Ol+l, since !Ol and Ill are occupied. 
' That is, first deposit is in Order4(2l. 
Orderllll=O 
' Ill is the 1axi1u1 radius of the growth fro1 the center of the screen. 
If A$="' Or A$= 1

\
1 Then 

' If 'CANCEL' was selected for •starting Seed', then sets up standard screen. 
Cls 
Deffill 1,1 
' Sets fill as solid black, and 
Fill 320,200 
' fills it up fro• the center out. 
Plot 200,200 
' Starting point (seed). 
Orderl12l=205000 ' 205000 = 200 i 1024 + 200 
Orderl!Ol=2 
' Put the seed as the first ele1ent of the array. 
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Line 400,0,400,400 
' Right boundary. 
Line 401,301,639,301 
' Dividing line beween title and data sections. 
Text 408,16, 1 Si1ulation of Diffusion-• 
Text 408,32,"Liiited Aggregation by" 
Text 408,48, "single particle migration.• 
Text 408,64,"Diffusion space: 2-D planar• 
Text 408 180," square lattice" 
Text 408,96,"Deposit space: 2-D planar• 
Text 408,112," square lattice• 
Text 408,128,"Trajectories:• 
Text 408,144." collision layer: unit steps' 
Text 408,160," diffusion zone: orthogonal" 
Text 408,17b," steps; scaled to R" 
Text 408,192,"!R = 1axi1u1 radius; dyna1ic) 1 

Text 408,208,"lnitial seed: central pixel" 
Text 408,224,'6enerating geometry: circle;' 
Text 408,240," radius= R + 51 

Text 408,256,'Killing geometry: annulus;• 
Text 408,272, 1 1ini1u1 radius= 2R + 51 

Text 408,288,"Sticking probability= 1.0• 
' Data section of screen starts here: 
Text 408,316, 1 Depos1ts: 1 

Text 408,332,'"axi1u1 growth radius:• 
Text 408,348,"Angle of 1axi1u1 radius:• 
Text 408,364,"Data on Last Dancer• 
Text 408,380,"R: e:• 
Text 408,396,"Nuiber of ju1ps: 1 

Else 
' Else if a filename was selected for a seed, load the 
Bload AS,Xbios!2l 
' screen portion into the screen 1e1ory and the 
Bload LeftS!AS,lnstrlAS,'. 1 ll+ 1 ARR 1 ,LpeeklArrptr{Order%{)ll 
' array portion into the previously allocated array. 

Endif 
Ju1p%=1 
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' Ju1p% is the number of spaces a dancer can ju1p, depending on how close it is to the deoosition zone 
NJu1psI=O 
' Nju1psl is the number of ju1os dancer!sl have 1ade since last depostion. 
Do 

' "ain loop of program. Loops until deposit reaches the edge. 
Stuck=False 
' Starts out with dancer unstuck, so it can 1ove. 
Ju1pI=t 
6osub Newdancer 
' Generates a new particle. 
Repeat 

' Actual dancing loop. This makes the dancer 1ove. 
XoldI=XX 
Yold!=YI 
' Saves old location of dancer for comparison, 

I 
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' or to leaves particle there if deposition conditions are satisfied. 
On Rando1(4J+1 6osub Up,Down,Left,Right 
' Rando• nu1ber 1 through 4. 1 goes up, 2 down, etc. 
Inc Nju1pst 
' A ju1p was 1ade, so count it. 
On Ju1pt 6osub Check 
' If Ju1p!=1 (ie. in depostion zone) then checks deposition criteria. 
If Not Stuck Then 

' If the criteria was not 1et then 
Plot Xoldl,Yoldl 
' erases the old dancer pixel, 
Plot XZ,YZ 
' and draws the new one at the new coordinates. 

Endif 
RdZ=Int(SQr!IXZ-200JA2+1Yl-2001A211 
' Calculates the distance fro1 the center of the deposit. 
If Rdl>2t0rderll11+5 Then 

' If the dancer gets outside the k1ll1ng circle at 2 R1ax + 5 ••• 
Stuck= True 
' artificially sticks it (so it gets replaced with a new dancer) 
Plot XI.YI 
' and erases it fro• the screen. 

Endif 
If Rdl>Order!l1l+5 Then 
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' If outside depostion :one, scales the JUIPlng distance; larger ju1ps will econo1i:e run t11e. 
Ju1cZ=2Aintl1.442695lLog((Rdl-Orderlllll/511 

Else 
Ju1pZ=1 
' Inside the deposition zone, ju1ping is single-stepped: the deposit 
' can't be Ju1oed over and contact is nor1al. 

Endif 
Until Stuck 
' Repeats dancing with this dancer until it's stuck ldeposited or killed). 
Exit If 2l0rderllll+5>200 
' Exits the 1ain loop if growth is big enough, if the killing circle reache: the edge of the screen. 

Loop 
6osub Cleanup 
' Cleans up the 1ess before finishing the progra1. 
End 
' Procedure Library: 
Procedure Newdancer 

' "akes a new particle to deposit. 
XZ=Rando1(720l 
' Radial location in half degrees, 0 to 719. 
Yl=200+Intll0rderll1l+SllCoslXllPi/3601) 
' Generating circle is R1ax+S, so y=RCoslthetal and 
Xl=200+IntflOrderl(1l+5llSinlXllPi/360ll 
' theta=!halfdegrees x pil/360. 
Plot Xl,Yl 
' Puts the new dancer on the screen. 

Return 
Procedure Up 



Sub YI, Ju1pl 
' Ju1p up, so y coordinate is decre1ented by the distance to ju1p. 
If YI<O Then 

' If ju1p is off the screen, wraps around to the other edge, 
' (never satisfied with killing circle present; dancer dies first), 
Add Yl,400 

Endif 
Return 
Procedure Do11n 

Add Yl, Ju1pl 
' Like11ise, only ju1p is do11nward !increasing v coordinate), 
If ff>399 Then 

Sub Y!,400 
Endif 

Return 
Procedure Left 

Sub n, Ju1p% 
' As above, only decrease x. 
If n<o Then 

Add n, 400 
Endif 

Return 
Procedure Right 

Add Xl,Ju1p! 
If XZ,1399 Then 

Sub U, 400 
End1f 

Return 
Procedure Check 

' Checks to see if deposition conditions are satisfied. If they are then, stick, Stuck=True. 
If Not -Po1nt\Xl,Yll Then 

' If the point ju1ped to is already occupied, then collision is detected 
Stuck= True 
' and stick at prevoius coordinates !Xoldl,Yoldll. 
Inc Order%(0l 
' Records the nu1ber of deposits as being one greater. 
Orderl!Orderl(Oll=Xoldlt1024+Yoldl 
' Encodes and saves the coordinates of the deposited particle. 
Print At!b2,20):Us1ng "11111',0rderl!Ol-1; 
' Displays the position 
Ral=Sqr!!Xoldl-200lA2+(Yoldl-200lA2) 
Print At!SS,24l;Using 1 111 1 ,Ral; 
' and the radius of the depos1t. 1hen calculates the angle fro1 the ·center. 
Anglel=Atn!iYoldl-200l/!Xoldl-200+0.0lllt57.3 
Theta'l=Anglel 
' This calculates the true angle fro1 the arctan function, which gives 
' angles fro1 -90 to +90 degrees, instead of 0 to 359 degrees. 
If Anglel<O Then 

Thetal=3bO+Anglel 
Endif 
If Xoldl<200 Then 

Thetal=lSO+Anglel 
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Endit 
It Ral>Orderl!ll Then 

' If this is a 1axi1u1 radius deposit, then 
Orderl!ll=Ral 
' updates R1ax and 
"anglel=Thetal 
' reports the angle of the 1ax11u1 radius of the deposit. 

Endif 
' Prints it all out ••• 
Print At!75,21l;Using '111',0rderl!ll; 
Print At!77,22l;Using 'lll',"angle%; 
Print At!63,24l:Using 'Ill', Thetal; 
Print At!69,25l:Using 'llltt',Njumpsl: 
' "akes a beep to indicate deposition. 
Sound 1,15,1,B,1 
Sound 1,0 
Njumpsl=O 
' Resets NJumps for the new dancer which will be generated. It's here 
' so NJu1os% is only reset between deposits, not when a dancer is killed 
' and replaced: if it were in newdancer, it would count jumps only for that dancer. 

Endif 
Return 
Procedure Breaknandler 

' If Control-Shift-Reset is key-stroked, comes here and clean up, 
Gosub Cleanup 
' Does the clean up routine, 
On Break 
' reset~ basic language's default Break handler, 
End 
' and ends the program. 

Return 
Procedure Errorhandler 

' If an error happens, comes here. 
6osub Cleanup 
' Cleans up the 1ess, 
ErrS='Error I '+StrS!Err)+' occurred. I Data dumped to disk.' 
' makes a message telling what happened, 
Alert 1,ErrS,1,'Return',Xl 
' and disolavs it. Then ••• 
~ &r~ 

' resets error handler to basic's regular one, 
End 
' and ends the program. 

Return 
Procedure Cleanup 

' This does the actual work of cleaning up. 
If Point!Xoldl,YoldlJ=O Then 

' If there's a dancer on the screen at an old coordinate 
Plot Xoldl,Yoldl 
' erases it so that it doesn't appear in the SCR file. 

Endif 
If Point!Xl,Yll=O Then 
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' LikeM1se if it's at the neM coordinates. 
Plot x~.YX 

Endif 
' Binarv saves the screen contents to the save filena1e, 
Bsave BS.Ibios(2l.32000 
' binary saves the Or~er arrav to a file Mith an ARR extension. 
Bsave Left$(8$,Instr(B$,', 1 i)+ 1 ARR",Lpeek(Arrotr(Order4())),Qrder4(0lt4+4 
' and announces the saving. 
Text 80,b4.'Data Sived to file '+BS 

Return 
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In order to display the whole aggregate on the screen 

at once, it was necessary to limit the maximum size of the 

aggregate to 30,000 deposits. If a partitioned display had 

been utilized, the constraints would have been upon the 

limitations of the computer memory and the amount of time 

available to run the simulation. The average time to grow 

the small aggregates was approximately 8 hours and it took 

30 hours to grow the large aggregates. If time had not been 

a factor, then the memory requirements of the Boolean array 

simulation space and the integer array deposit space, would 

have allowed for a maximum of approximately 75,000 deposits. 

For the large version of the simulation program, the 

simulation was moved from the screen buffer into the main 

memory. Additionally the deposit array was a changed from a 

real number array with nine bit packed words consisting of; 

the x and y coordinates and the number of 'jumps' taken from 

a pixel's 'birth', to its deposition, into an integer array 

with ten bit packed words consisting of; the x and y 

coordinates of each deposit. <The encoding of the of the 

coordinates saved memory space, allowing the simulation 

spaces to be larger. In order to have the coordinates of 
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the large simulation space to be greater than 512 the 

coordinates required ten bits.> Although, the simulation 

space needed four times as much memory as the deposit space, 

in order to allow for the diffusion zone enclosed in the 

'killing• circle, the deposit space could be larger than the 

memory locations of the deposit array because the deposition 

was fractal and not compact. Integer arrays require 4 bytes 

of memory for each element, floating point arrays 6 bytes, 

and Boolean arrays need only 1 bit for each element. 

In order to more quickly execute the simulation, 

deposition was determined by checking the spatial array of 

the simulation space, rather than the sequential deposit 

array and then only when the stepsize was a unit step. In 

the large simulation, the information concerning the 

'dancer' or random walker was deleted; the 'dancer' or 

random walker was not plotted, the number of 'jumps' was not 

counted, and its polar coordinates at deposition were not 

calculated. Implementation of a smaller 'killing' circle 

rather than Meakin's, C2Rr-x. vs. 3R"Ax.>, reduced the time 

a pixel would be in the diffusion zone, this effectively 

increased the rate of deposition. <The agreement of the 

fractal dimension supports this modification. Further 

analysis was not conducted to investigate whether this 

simulation was, in fact, less diffusive than Meakin's.> 

Various look-up tables were used to decrease the run time. 

Examples are the jump table which gave the lengths of the 
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jumps that the random walker took when in the diffusion zone 

(instead of using the exponential function>, and the 

Pythagorean array which gave radial distances <rather than 

taking the square root>. 

Among the programs developed for this research, the 

more salient are presented below. 

are provided with 'Help' screens. 

They are menu driven and 

The Correlate Program 

calculates the correlation function using exact circles and 

squares. It is representative and the most developed of the 

three correlation programs. It provides additional data 

such as the number of excluded pixels in the edge and the 

run time, <approximately 24 hours>. <The number of excluded 

pixels was computed with the intention of additional 

analysis; to determine the connection between the 

aggregate's geometry, the correlation function results, and 

the number of excluded pixels.> The look-up table of 

partial areas is given for only one octant and by employing 

symmetry~ is used for the whole circle. 

The Radius of Gyration Program utilizes a running 

average as it evaluates the deposit array. It also includes 

the special procedure which corrects for the previously 

mentioned error and calculates the radius of gyration from 

the center of mass. 

The following programs provide graphical output and 

analysis; Megamenu is the animation and file maintenance 

program, Coremenu determines the various mass distributions 
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for single aggregates and composites, and the Deposition 

Frequency Histogram Program also compiles the composites, in 

addition to, 'slicing• the cumulative deposition probability 

distribution, at any arbitrary deposition probability. 

' Correlation Progra1 
Yersion=b.1 
Revdate$='13 Jun BB' 
Di• OrderI!30000l 
Di• Pvthagoras!100,100l 
Di1 Po11er!b,3l 
Di• Include!32,32l 
Cls 
Print 1 Auto1atic Correlation Calculator, version 1 'Version; 1

,
1 'Revdate$ 

Print 1 Deter1ines the fractal di1ens1on by least squares slope• 
Input 1 Nu1ber of 11indo11s of increasing length 12 to bl 1 ;Li1itI 
Print 'Setting lookup table:• 
Xl=O 
Repeat 

If m And 71=7 
Print At!23,4l;Using 1 X=ll 1 ,Xl 

Endif 
Yl=O 
Repeat 

A=Sqr((50-XIlA2+!50-YilA2) 
Pythagoras!XI,Yil=A 
Pythagoras!Yl,XIl=A 
PvthagorastlOO-XI,Yil=A 
Pythagoras!lOO-YI,XIl=A 
Pvthagoras!Yl,100-Xll=A 
PythagorastXl,100-Yil=A 
PythagorastlOO-XI,100-Yll=A 
PythagorastlOO-Yl,100-XIl=A 
Inc YI 

Until YI>Xl 
Inc xt 

Unti 1 XI>SO 
Print 'Reading pixel integration table" 
Yl=O 
Repeat 

Xl=Yl 
Repeat 

Read lnclude!Xl,Yll 
Let Include!YI,Xll=Include!Xt,Yll 
Inc XI 

Until Xl>32 
Inc YI 

Until Yl>32 
NdxI=l 



Radius%=2Alli1it%-ll 
Repeat 

Po11er1Ndxl,1l=Radiusl+0.5 
Inc: NdxX 
Div Radiusl,2 

Until Ndxl>Li1it% 
Do 

Cls 
Sho111 
Print "Choose "ode of Operation: Type nu1ber or c:lic:k on selection.• 
Print 
Print "l Auto1atic processing of all .ARR files on disk" 
Print 
Print •2 Use already created directory of filena1es ICORELATE.DIRi" 
Print 
Print "3 Process single file" 
Print 
Print "4 Helpful hints and instructions' 
Print 
Print •5 Exit" 
6raph1ode 3 
Deff i 11 1, 1 
PtrvertposX=l'lousey 
If Frac(Ptrvertpos%/32l<0.5 Then 

Gosub Inbox(Ptrvertposll 
Else 

Ini:=O 
Endif 
Do 

Repeat 
Ptuertposl=~a11ser 

If ( In~>Ol And IFrac (f'trvertpos%/32l>O. 5) Then 
6osub Outbor.(Ptrvertposl) 

Endif 
If (In7.=01 And (Frac1Ptrvertpos%/32l<0.5l Then 

5osub Inbox(Ptrvertpos7.) 
Endif 
Switchl=l'lousek 
If Switch~\O Then 

If Inl\O Then 
S11itch%=1Ptrvertpos%\32l-2 

Else 
S11itchl=O 
Sound 1,15,6,7,5 
Sound 1, 0 

Endif 
Endif 
Key$=lnkey$ 

Until Key$t) 11 Or Switch% 
If S11i tch7. Then 

Keyf=StrflS11itchll 
En di f 
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Exit If Val !KeySl>O And Val !KeySl<b 
Sound 1,15,6,7,5 
Sound 1,0 

Loop 
Cls 
6raph1ode 1 
On Val!KeyfJ 6osub Auta,Existingfile,Single,Help,Exit 
In4=0 
SMitchl=O 

Loop 
End 
Procedure Inbox!Ht4) 

Htl=32S(Htl\32l 
If Ht4>16 And Ht4<192 Then 

Pbox -1,Htl,SOO,Htl+16 
lnl=Ptrvertposl\32 

Endif 
Return 
Procedure Outba~!Htll 

Htl=32llnl 
Pbox -!,Htl,500,Htl+lb 
In4=0 

Return 
Procedure Exit 

Edit 
Return 
Procedure Help 

Cls 
Print • This progra1 can run in auto1atic aode. The require1ents are that' 
Print 'it aust be given a disk Mith a series of .ARR files Mith their' 
Print 'associated .SCR files. There can be no other .ARR files on the dis;,,• 
Print 'If there are no .ARR files in the current disk or directory, a bus' 
Print 'error (tMo boabsl Mill result.• 
Print • To use the pre-existing directory 1ode ieg. to do only so1e of" 
Print 'the .ARR files on a disk), create a text file naaed CORELATE.DIR,' 
Print 'containing the filenaaes of then .ARR files you Mish to process.' 
Print "Each filenaae should appear on a single line in the file.• 
Print • In both these cases, the results go into a file called CORELATE.DAT' 
Print 'in a tabular fora, with the filena1e at the top, followed by lines' 
Print 'with three nuabers separated by co11as. These represent R, "disk!Rl,' 
Print 'and ~sQuare!Rl for each R processed ("disk is the average pixel• 
Print 'density in a disk of radius Rl. The slopes of the best-fit power' 
Print 'curves for each techniQue are printed on the next two lines. These• 
Print 'slopes are the fractal di1ens1ons as deter1ined by the tMo-point' 
Print 'correlation function over disks and squares respectively. The total' 
Print 1 nu1ber of deposits and the nu1ber of pixel excluded to eliainate edge' 
Print 'effects are printed on the last two lines.• 
Print • The Single File aode allows you to process a single file on the' 
Print 'disk, which can be entered fra1 a Fileselect box. The results do not' 
Print 'go into a file, but are just printed an the screen.• 
Print • Hit any key to continue' 
Repeat 
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Until Inkey$()"" 
Return 
Procedure Single 

6osub Loader 
If File$()"" Then 

Tiae=Ti1er 
6osub ProcesslFile$l 
Cls 
6osub Secs_to_h1sl(Ti1er-Ti1el/200l 
Print 'Running ti1e:''H1s$ 
Ndxl=l 
Repeat 

Power(Ndx%,2l=PowerlNdxZ,2J/(Power(0,lll 
Power(Ndxl,3i=Power(Ndxl,3l/(Power(0,lll 
Print Power(NdxZ,ll;',';Power(Ndxl,2l;",';Power(Ndxl,3l 
Inc Ndxl 

Until Ndx%>Li1itl 
Power(O,Ol=Lititl 
6o:ub Power 
Print "Fractal Ditension{disk}=';Sloped 
Print "Fractal Diaension{square}=':Slooes 
Print "Total Nuaber of Deposits=';Orderl(Ol-1 
Print 'Nuaber of excluded pixels=':Power(0,2l 
Print 'Hit any key to continue' 
Repeat 
Until Inkey$()'' 

Endif 
Return 
Procedure Auto 

Dir 'l.ARR' To 'CORELATE.DIR' 
6osub Existingfile 

Return 
Procedure Existingfile 

Open 'I',10,"CORELATE.DIR' 
If Eof( 10 l Then 

6oto Escape 
Endif 
Reoeat 

6osub Open_file_for _output_or _append('CORELATE.DAT',ll 
Input IO,File$ 
If File$='' Then 

Print • 
Print • 
Print • 
Repeat 

Directory file is eapty: either no .ARR files on current' 
directory, or you forgot to fill the .DIR file.• 

Hit any key to continue.• 

Until InkeyS<>'' 
6oto Escape 

Endif 
6osub Load(File$l 
Ti 1e=Tiaer 
6osub Process(File$) 
6osub Secs_to_h1s((Ti1er-Ti1el/200l 
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Print 11,FileS 
Print 11,'Running ti1e: 1 'H1sS 
NdxI=l 
Repeat 

Power(NdxI,2l=Power(NdxI,2l/(Power(0,1ll 
Power(NdxI.3l=Power!Ndxl,3l/(Power(0,1ll 
Print 11,Power(NdxI,ll;',';Power!Ndx!,2l;', ';Power(NdxI,3l 
Inc Ndxl 

Until NdxI>Li1itI 
Power(0,0)=Li1itI 
6osub Power 
Print 11. 'Fractal Di1ension{disU= 1 ;Sloped 
Print 11,'Fractal di1ension{sQuare}= 1 :Slopes 
Print 11,'Total Nu1ber of Deposits=';OrderI(Ol-1 
Print ll, 1 Nu1ber of excluded pixels=';Power(0,2l 
Close 11 

Until Eof (f0) 
E::aoe: 
Close 

Retur~ 

Procedure Process(FileSl 
Deff i 11 O, 1 
Pbor. 401,0,639,399 
DeHill 1, 1 
Rwindo1axI=InttPower(l,lll 
Rdeposit1axI=OrderI(l) 
NdxI=l 
Power(O,ll=O 
Power(0,2l=O 
Repeat 

Po11er(Ndxl,2l=O 
Po11er(NdxI,3l=O 
Inc NdxI 

Until NdxI>Li1itX 
Print At(53,3l:'File:':'FileS 
Print At(53,5l;'N= 01 

Print At(53,7l;Using 'Out of 11111 total deposits',Orderl(Ol-1 
Print At(53,9l;'Excluded pixels= O' 
Nl=2 
Reoeat 

Xwl=Orderl(Nll\1024 
Ywl=Orderl(Nll And 1023 
If Abs!Sqr((X11I-200lA2+(YwI-200lA2)l+Rwindo1axl<=Rdeposit1axI Then 

Inc Power (0, 1l 
Xl=XwI-Rwindo1axI 
Repeat 

YI=Ywl-Rwindo1axI 
Reoeat 

If Point!XI,Yll Then 
Roix=Pythagoras(X4-Xwl+50,YI-YwI+50) 
Ndx!=l 
Repeat 
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Exit If Abs(lwl-lll>PoNer!Ndxl.11 Or AbslYNl-Yll>PoNerlNdxl,ll 
Inc Power(NdxZ,31 
Exit If Rcix>Power(Ndxl.11+0.70710678119 
If Rpix<PoNer!NdxZ,11-C.70710678119 Then 

Inc Power(Ndxi.,2l 
Else 

Corner=SgnlPower(NdxZ,11-RoixlSO.S 
Rcnr=tAbslAbslXIl-AbslXNlll+CornerJA2 
Add Rcnr, IAbslAbslYZl-Abs!Ywlll+CornerlA2 
R:nr=SqrlRcnrl 
If PoNerlNdxZ,11>"inlRoix,Rcnrl And PoNerlNdx7..11<"axlRoix,Rcnr) 

Add Power(Ndxi.,2l,Include!AbslXwl-Xi.i,AbslYN7.-Ylll 
Else 

If PowerlNdxl, ll>Rpix Then 
Inc PowerlNdx!,21 

Endif 
Endif 

End:f 
In: Ndxl 

Until Ne~i.>Li1itl 

Endif 
Inc YZ 

Until Y:>Yw!+RNindomax! 
Inc XI 

Until XZ>XwZ+Rwinda1axl 
Else 

Inc Power(0,2l 
Pri~t Atl70,9l:Using '11111',Power(0,21 

Endif 
Print At!53,Sl;Using "N=lllll",NI-1 
Inc N7. 
Option ·u1· 

Until NZ>OrderZIOI 
Return 
Procedure Loader 

Pri~t Atl1,31:'Select array: 
Fileselect 1 \S.ARR 1

,
1 SEED.ARR 1 ,File$ 

If File$()'' Then 
Gosub LoadlFileSI 

Endif 
Return 
Pro:edure LoadtFileSI 

Hide1 
Arravfill Orderlll,O 
Bload FileS,Lpeek!ArrptrlOrderillll 
6osub Parsefilena1elFileSI 
Bload Pathna1ef+ 1 \'+LeftS!Filef,InstrlFileS, 1

•
1 ll+ 1 SCR 1 ,Xbios(21 

Return 
Procedure Parsefilena1elFnSI 

Local Firstl,Last!,Xl 
Pathna1ef=LeftSIFnS,Instr!FnS,':'ll 
Firstl=InstrlFnS,'\'I 
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For XI=Len(FnS) Downto 1 
If "idS(Fn$,Xl.ll= 1

\
1 

Lastt=XX 
End1+ 
Exit If MidS(Fns,XI,ll= 1

\
1 

Next XX 
Pathna1eS=Pathna1eS+"idSIFnS.Firstl,Lastl-F1rstll 
FileS="idS(FnS,Lastl+ll 

Return 
Procedure Ooen_file_for _outout_or _append(FileS,ChanlI) 

If Not Exist(F1le$) Then 
Open 1 0",lChar.17..FileS 

Else 
Open "A".IChanlI.FileS 

Endif 
Return 
Procedure Power 

Local Il,Nl,Su1ofx,Su1ofv,Su1of:,Su1oforoducts,Su1oforod2,Sumofsquares 
NI=Power(O,Ol 
Sumoh=O 
Sumoh=O 
Su11ofz=O 
Su1ofproducts=O 
Su1of prod2=0 
Su1ofsouares=O 
For 11=1 To NI 

Add Su1ofx,LoglPowerlll,lll 
Add Su1ofy,Log1Power(l%,21l 
Add Sumofz,LoglPowerlll,3)) 
Add Su1ofproducts. lloglPower(ll,11 ))Sllog1Powerll1,21)l 
Add Susofprod2. (Log(Powerlll,l)l)SlloglPowerlll.3))) 
Add Su1ofsquares, (log(Powerlll,1)))A2 

Next 17. 
Slooed=(NISSu1oforoducts-SumofxlSu1ofvl/INilSu1ofsouares-Su1ofxA2) 
Slooes=INliSu1ofprod2-Su1ofxlSu1ofzl/(N7.lSu1ofsQuares-Su1ofxA2) 

Return 
Procedure Secs_to_h1slSecsl 

local H, I'!, S 
Hiss=·· 
H=Secs\3600 
"=\Secs "od 3600!\60 
S=(Secs "od 3600) "od 60 
If H>O Then 

H1sS=StrS!H)+ 1 hours, • 
Endif 
H1sS=H1ss+StrS!Ml+ 1 1inutes. 1 +Str$!Sl+ 1 seconds' 

Return 
Data 1,.97173982736,.98323187634,1,.99072351790,0,0,0,.99509549182 
Data o,o,o,o,o,0.1 •. 99747439951,0,0.o.o,o,o.o,o.o,o.o,o.o.o.1 •• 99871790316 
Data .54540604028,. 76932502669, 1,.87746746419,0,0,1,.93596316353 
Data o,o,o.0,0,0,1,.96712950448,0,o,o,o.o.o,o,o,o,o,o,o.o.o.1,.9833278216 
Data. 13685659153,1,.51818108335,0,0,1,.75601286272 
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Data o,o.o,o,o,o,1 •. e1s15102090,o.o.o,o.o,o,o,o.o.o,o,o,o.o.1,.93711375142 
Data ,79041291337,.040939641236,0,0,1,.44699616090 
Data o.o.o,o,o,o,1 •• 12232444292,o,o,o,o,o,o,o.o,o,o,o.o.o,o.1,.es99435992b 
Data 0,0,1,.92966414755,.063188476255,0,0,0,0,0,0,1,.50504463958 
Data o.o.o,o,o.o,o.o,o,o,o,o,0,0,1,.15159505196 
Data 1 •• 99978095027,.36478676634,0,0,o.o,o.o,o.1,.22126674792 
Data o.o.o,o.o,o,o,o.o,o.o,o,o.o,1 •• 6111s243929 
Data .50713675836,o,o.o,o.o,o,o,1,.86285867404,.0044426875975 
Data o,o,o.o,o,o,o,o,o,o,o,o,o,0,1,.44000194594 
Data o.o,o,o,o,o,0,1,.43815088971.0,o,o,o,o.o.o,o.o,o,o,o,o.o.o,1 
Data .23582534771 
Data o.o.o.o.o.1,.sa9aa358922 •• 037209702437.o,o.o,o.o,o,o,o,o,o,o.o.o.o 
Data 1,.96754775755,.031044089235 
Data 0,0,0,1,.99993904191,.32508603414,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 
Data .72754780948,0 
Data o.o.1,.61Q3826235a,o,o.o.o,o.o.o,o,o,o.o.o,o.o.o,o.1 
Data .42180377617,0 
Data 1,.761237601a1,.03103032329a,o,o.o.o,o,o,o,o,o,o,o,o,o,o,o,1 
Data .98595157766,0.094366951496,0 
Data .o5568B53789,o,o,o,o,o,o,o,o.o.o,o,o,o.o,o.o,1,.101a1921011.o.o 
Data o,o,o,o,o,o.o.o.o,o,o,o.o,o,o,o,1,.2e507660143,o,o 
Data o,o,o.o.o,o,o,o,o,o,o,o.o.o,1,.a23a1s6361B •• 0043956641457,o,o 
Data o,o,o,o,o,o,o,o.o.o.o,0,0,1,.32956993207,o,o,o 
Data o,o,o,o,o,o.o.o,o.o,o.1,.1827ao131,.003965a596902,o,o.o 
Data o,o,o,o,o,o,o,o,0,1,.98980506335,.20740175794,0,o.o,o 
Data o.o,o.o,o,o,o,0,1,.55789679661,0,o,o.o,o 
Data o,o,o,o,o.o,1,.8302864983,.034906049143,0,o,o,o,o 
Data 0,0,0,0,1,.95098614268,.16377227806,0.0,0,0.0,0 
Data 0,0,1,.99069313362,.31065568299,0,0,0,0,0,0,0 
Data 1,.99880149052,.41972986399,o,o,o,o,o,o,o,o 
Data .45948678866.o.o.o,o,o.o,o,o,o 
Data 0,0,0,0,0,0,0,0,0 
Data 0,0,0,0,0,0,0,0 
Data O.O,O,O,O,O,O 
Data 0,0,0,0,0,0 
Data O,O,O,O,O 
Data O.O,O,O 
Data O,O,O 
Data O,O 
Data 0 

' Radius of Gyration Progra1 
Version=l. 7 
Revdatef= 1 29 Oct 88 1 

Di• OrderZ!30000l 
Di1 Radii !1.400l 
Di1 Pythagoras!100,100l 
Do 

Cls 
Shon 
Print 1 Auto1atic Radius of Gvration Calculator, version"'Version;',"'Revdatef 
Print "Choose Mode of Ooeration: Type nu1ber or click on selection.• 
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Print "1 Auto1at1c processing of all .ARR files on disk" 
Print 
Print 1 2 Use already created directory of filena1es !GYRATE.DIR!" 
Print 
Print •3 Process single file" 
Print 
Print •4 Helpful hints and instructions• 
Print 
Print •5 Exit" 
Print 1 6 Special processing of single file" 
6raph1ode 3 
Deff i 11 1.1 
Ptrvertposl="ousey 
If Frac!Ptrvertposl/32l<0.5 Then 

6osub Inbo~(Ptrvertposil 

Else 
InZ=O 

Endif 
Do 

Repeat 
PtrvertposI="ousev 
If (lnZ>Ol And (Frac (Ptrvertposii32l >O. ~) Then 

6osub Outbox(Ptrvertposil 
Endif 
If !InZ=Ol And (Frac(Ptrvertpos%/32l<0.5) Then 

Gosub Inbox(Ptrvertposll 
Endif 
Siu t:hI=l'lousek 
If SwitchZ>O Then 

If Inl>O Then 
SwitchZ=!PtrvertposI\32l 

Else 
S11itchl=O 
Sound 1,15,6,7,5 
Sound 1,0 

Endif 
Endif 
KeyS=lnkey$ 

Until Key$() 11 Or Switch% 
If Swi tchI Then 

Key$=Str$(S11itchil 
Endif 
Exit If Val!Kevfl>O And Val(Key$l<7 
Sound 1,15,6,7,5 
Sound 1,0 

Loop 
Cls 
6raph1ode 1 
On Val!Keyfl 6osub Auto,Existingfile,Single,Help,Exit,Special 
InI=O 
Switc:hI=O 

Loop 
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End 
Procedure Inbox!Hti.) 

Hti.=32t!HtI\32l 
If HtI>1b And HtI<224 Then 

Pbox -1,HtI,SOO,HtI+lb 
InI=PtrvertposI\32 

Endif 
Return 
Procedure Outbox!Htil 

Htt=32tlnI 
Ptox -1,Htt,500,Ht!+lb 
lnI=O 

Return 
Procedure Exit 

Edit 
Return 
Procedure Help 

Cls 
Print 1 Th1s prograa can run in auto1atic 1ode. The require1ents are that• 
Print 'it 1ust be given a disk with a series of .ARR files. If there are no• 
Print ".ARR files on the disk an error !two bo1bsl will result.• 
Print 'Tc use the pre-e~isting directory 1ode (eg. to do only so1e of" 
Print "the .ARR files on a disk), create a text file na1ed GYRATE.DIR,' 
Print 'containing the filena1es of the .ARR files vou wish to process.' 
Print 'Each filena1e should appear on a single line in the file.• 
Print 'The Single File 1ode allows vou to process a single file on the' 
Print 'disk, which can be entered fro• a Fileselect box.' 
Print 'In all these cases, the results go into a file called <FILENA~E>.GYR" 
Print 'Type 'Y' If You Have Inserted An Expendable Disk' 
Repeat 

AnswerS=InkevS 
Until Answer$= 1 Y1 Or Answer$= 1 y1 

Return 
Procedure Single 

6osub Loader 
If File$()'' Then 

Ti1e=Ti1er 
Gosub Process!File$l 
Cls 
Gosub Secs_to_h1s((Ti1er-Ti1el/200l 
Print 'Running t11e:"'H1sS 
Print "Hit any key to continue• 
Reoeat 
Until Inkey$()' 1 

Cls 
Gosub Drawaxes!100,300,0,450,250,0,40,30) 
For XI=l To Radii!O,Ol-1 

Depvari.=Log(Radii (0,XIllt40+100 
lndvarI=Log(Radii (1,XIllS30 
Dv2I=Log(Radii!O,XI+1llS40+100 
lv2I=Log(Radii!1,XI+llll30 
Draw Deovari.,300-lndvarI To Dv2I,300-Iv2I 
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Next XX 
Repeat 
Until Inkev$() 11 

Endif 
Return 
Procedure Auto 

Dir 1 l.ARR 1 To 1 6YRATE.DIR 1 

6osub Existingf1le 
Return 
Procedure Existingfile 

Open 1 l 1 ,t0, 1 6YRATE.DIR 1 

If Eof(tOl Then 
Goto Escape 

Endif 
Repeat 

Input tO.File$ 
If F1leS= 11 Then 

Print • 
Print • 
Print • 
Repeat 

Directorv file is empty: either no .ARR files on current• 
directory, or you forgot to fill the .DIR file.• 

Until InkeyS() 11 

Goto Escaoe 
Endif 
Gosub Load(File$l 
6osub Process(File$) 

Until Eof(tOl 
Escape: 
Clcse 

Reb~n 

Procedure Process(File$) 
Cls 
Line 400,0,400,399 
Print At(53,3l; 1 F1le: 1 ;'File$ 
Print At!53.5l: 1 N= 01 

Hit any key to continue.• 

Print At(53,7);Using "Out of tttll total deposits'.OrderI!Ol-1 
Su1=0 
Radii (O,Ol=l 
Avex=O 
Avey=O 
DestI=Int(((Radii!O,Ol+10lA2.4l/82l 
NI=2 
Repeat 

XpixelI=OrderitNil\1024 
YpixelI=OrderI!Nil And 1023 
Avex=!Avexl(NI-2l+Xpixe1Il/!NI-1l 
Avey=!Aveyt!NI-2l+Ypixelil/!NI-1l 
Add Sui, (Avex-XpixelilA2+!Avey-YpixelilA2 
Plot XpixelI,YpixelI 
If INI-l)=DestI Then 

Radii 11,Radii (O,Oll=Sqr(Su1/!NI-1l l 
Radii(O,Radii(O,Oll=DestI 
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Inc: Radii 10,0l 
DesU=lnt( (<Radii (Q,Ol+10l'·2.4l /82l 

Endif 
If !Nl-1l Mod 100=0 Then 

Print Atl51,5l;Using "N=lllll".NI-1 
Endif 
Inc NI 
Option ·u1· 

Until Nl>OrderZIOl 
Dec Radii(O,Ol 
6osub Parsefilena1e(File$) 
File$=Pathna1e$+ 1

\
1 +Left$ifile$, InstriFile$, 1

•
1 ll+ 1 6YA' 

Bsave File$,LpeeklArrptrlRad1illll, 1Radiil0,01+1lt12+B 
Return 
Procedure Loader 

Print At(1,3l;'Selec:t arrav: 
Fileselect 1 \t.ARR 1

,
1 SEED.ARR".File$ 

If File$()"' Then 
6osut Load1File$l 

End if 
Return 
Procedure LoadlFileSl 

Hi dell 
Arravfill Orderl(l,0 
Arrayfill Radii() ,O 
Bload FileS,LpeeklArrptrlOrderlllll 

Return 
Procedure Parsefilena1e!Fn$l 

Local FirstZ,LastI.XZ 
Pathname$=Left$!Fn$,lnstr1FnS,":'ll 
Firstl=InstrlFnS,'\"l 
For XX=Len1Fn$) Downto 1 

If "1dSIFn$,XI,11= 1
\

1 

Lastl=U 
End if 
Exit If Mid$!Fn$,X'%.,1l= 1

\
1 

Next XI 
Pathna1eS=Pathname$+"idSIFnS,FirstZ,LastX-FirstZl 
File$="id$1Fn$,Last%+1l 

Return 
Procedure Power 

Local IZ.NZ,Su1ofx,Su1ofv.Su1ofz,Su1ofproducts,Su10fprod2,Su1ofsQuares 
tU=Power (0, Ol 
Suaofx=O 
Su1ofy=O 
Suaofz=O 
Su1ofproducts=O 
Su1ofprod2=0 
Suaofsquares=O 
For 1'!=1 To NZ 

Add Su1ofx,LoglPowerlil, lll 
Add Su1ofv.Log1Power!ll,2ll 
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Add Su1ofz,Log!Power!II,31) 
Add Su1ofproducts, (LoglPower!II,1lllSILog(Powerlll,2lll 
Add Su1ofprod2, !Log I Power m, u llt !Log (Power m, 3) l) 
Add Su1ofsauares, !Log I Power rn;, 1) l l "2 

liex t I l 
Sloped=(NlSSu1ofproducts-Su1ofxlSu1ofyi/INlSSu1ofsauares-Su1ofx"2l 
Slopes=INilSu1ofprod2-Su1ofxlSu1ofzl/INilSu1ofsquares-Su1ofx"2l 

Return 
Procedure Se:s_to_h1s(Secsl 

Local P.,",s 
H1s$= 1

• 

H=Secs\3600 
"=!Secs Mod 36001\60 
S=(Secs "ad 36001 "od 60 
If H>O Then 

H1sS=StrSIHl+ 1 hours, • 
Endif 
H1sS=H1sS+StrS!Ml+ 1 1inutes, •+strSiSI+" seconds" 

Return 
Procedure Drawaxes!Originxl,Originyl,LendxX,Rendxl,Upendyl,Loendyl,Hashxl,Hashy:l 

Defline 1, 1, 1, 1 
If Lendxl=O Then 

Defline 1,1,0,1 
En:li f 
If Rendx7.=0 Then 

Defline 1, 1, 1,0 
Endif 
Draw Originxl-Lendxl,Originyl To Originx7.+Rendx!,Originvl 
Def line 1, 1, 1, 1 
If Upendyl=O Then 

Def line 1, 1,0, 1 
En di f 
If Loendyl=O Then 

Defline 1,1,1,0 
Endif 
Draw Originxl,Originyl-Upendyl To OriginxI,OriginyI+LoendvI 
Local AI,Lengthl 
Length1=10 
Def line 1, 1,0,0 
If Hashxl<>O Then 

For AI=Originxl To OriginxI-LendxI Step -HashxI 
Draw AI,OriginvI-LengthI To AI,OriginyI+LengthI 

Next A! 
For AI=OriginxI To OriginxI+RendxI Step HashxI 

Draw AI,OriginyI-LengthI To AI,OriginyI+LengthI 
Next AI 

End if 
If HashyI<>O Then 

For AI=Originyl To OriginyI-UpendyI Step -HashyI 
Draw OriginxI+LengthI,AI To OriginxI-LengthI,A7. 

Next AI 
For AI=OriginyI To OriginyI+LoendyI Step HashyI 
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Draw Originxl+Lengthl,Al To Originxl-Lengthl,A7. 
Next Al 

Endif 
Return 
Procedure Centerof1ass!P.array,L1t7.l 

NZ=O 
Swap SP.array,Avearrayl!l 
Avex=O 
Avey=O 
Do 

Inc N7. 
Exit If NI >Litt 
Avex=(AvexS!Nl-1l+!AvearrayZ(Nl+ll\1024ll/N7. 
Avey=!AveyS!NZ-1l+(Avearrayl!N7.+1) And 1023ll/N7. 

Loop 
Swap tP.array,Avearray7.(l 

Return 
Procedure Special 

6osub Loader 
If FileS<>"" Then 

Do 
Print "Input nu1ber of deposits to include in Rg !up to ":Orderl!Ol-1:", 0 to quitl"; 
Input Li1it7. 
Exit If Li1itl=O 
Gosub Centerof1ass!SOrderl!l,Li1it7.l 
Print "Center of mass ="'Avex-200:","'200-Avey 
Print "Distance Center of "ass to Origin ="'Sqr!!Avex-2001A2+1Avev-2001A2J 
Gosub SpecialprocesslFile$l 
Print "Ln!I of deposits) =''Log!Li1it7.l 
Print 'Ln!Rgl ="'Log!Sqr(Su1/!Li1itllll 

Loop 
Endif 

Return 
Procedure Specialprocess(File$l 

Su1=0 
Nl=2 
Repeat 

Xpixell=Orderl!Nll\1024 
Ypixell=Orderl!Nll And 1023 
Add Sui, !Avex-XpixelllA2+(Avey-YpixelllA2 
Inc NZ 
Op ti on "Ul • 

Until N7.>Li1it7. 
Return 

' "ega1enu Progra1 
Yersion=4.3 
Revdate$="29 Jun SB" 
Di• Order!30000l 
D11 Order7.130000l 
Di• "enu$!50l 
Let "enuS!Ol="Desk" 
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Let "enuStll=" Utilities info" 
Let "enuSt2l="--------------------• 
For I=3 To 9 

Let "enuS(Il=StrS!Il 
Next I 
Do 

Inc I 
Read l'lenustil 
Exit If "enuS(ll= 1

'
1 

Loop 
Data "Exit"," Quit 1

,
11 ,"Utilities•,• Invert•,• Display SCR file • 

Data• Duap to printer•,• Strip data lines•,• View array file', 11 

Data 1 Ani1ation 1
,

1 Load ARR file •,•-----------------•,• Ani1ate 1 

Data• Involute•,• Zonal growth", 11
,

11
,

1
'

1 

"enu l'lenuS(l 
On l'lenu 6osub Handle_it_for _1e 
Print Att1,3l;""enu Progra1 Version"'Version; 1

,
1 'RevdateS 

Do 
On l'lenu 

Loop 
End 
Procedure Handle_it_for _1e 

Cls 
If l'lenu(Ol=l Then 

6osub 6i ve_i nfo 
Else 

On "enu(Ol-11 6osub Quit,Du11v,Du11v,Invert,Disp,Prscreen,Strio,Viewarr 
If "enu!Ol>19 Then 

On l'lenu(Ol-19 6osub Du11v,Du11y,Loader,Du11y,Ani1ate,Involute,Zonal 
Endif 

Endif 
"enu l'lenuS!l 
Print Attl,3l;"Select function: 

Return 
Procedure 6ive_info 
Return 
Procedure Quit 

llenu Ki 11 
Edit 

Return 
Procedure Invert 

Print Atll,3l:"File to invert: • 
Fileselect 1 \S.SCR 1

,
1 SEED.SCR 1 ,AS 

If AS0 11 Then 
Hidet 
Bload AS,Xbiosl2l 
For XI=Xbiost2l To Xbiost2l+31998 Step 2 

Dpoke XI,Not DpeektXtl 
Next Xl 
Bsave AS,Xbiosl2l,32000 
Showa 

Endif 
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Return 
Procedure Di sp 

Print Atl1,3l;"File to display: • 
Fileselect 1 \S.SCR 1

,
1 SEED.SCR 1 ,AS 

If AS0 11 Then 
Hide1 
Bload AS,Xbios(2l 
Repeat 
Until InkevS<>"" 
Sho111 

Endif 
Return 
Procedure Prscreen 

Print At(1,3l;"File to print: 
Fileselect 1 \S.SCR1

,
1 SEED.SCR 1 ,AS 

If AK) 11 Then 
Hide• 
Bload AS,Xbios(2l 
Sdpoke 1262,0 
Show1 

Endif 
Return 
Procedure Strip 

AS= 1 File 1ust be in normal video I 1ode (black on white! to strip. I• 
AS=A$+ 1 lf in doubt, check with I display function.• 
Alert 3,AS,2,"go ahead I cancel 1 ,AI 
If AI=l Then 

Fileselect 1 \S.SCR1
,

1 SEED.SCR 1 ,AS 
If AS0 1 

• Then 
Hide1 
Bload AS,Xbios(2l 
Print Atl52,23l; 1 

Print At(52,24l; 1 

Print At(52,25l; 1 

Gosub lnvert_window(488,304,S27,319l 
6osub lnvert_w1ndow(S92,320,615,335l 
6osub Invert_window(608,336,631,3S1l 
Bsave AS,Xb1os(2l,32000 
Show• 

Endif 
Endif 

Return 
Procedure Invert_window(XI,YI,XlI,Ylll 

Color 0 
6raph1ode 3 
For AI=YI To Ylt 

For Bl=Xl To XII 
Plot Bl,At 

Next Bl 
Next AI 

Return 
Procedure Yiewarr 

I' 

' I' 

' .. 
' 
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Begin: 
Local StartI,Linel,Lenl,AS,Old!,Optrl,Nptrl,Changed' 
Changed!=False 
Optrl=Lpeek!Arrptr!Orderllll 
Nptrl=Lpeek(Arrptr(Orderlllll 
Lpoke Optrl,30001 
Lpoke Nptrl,30001 
Arrayfill Orderll,0 
Arrayfill Orderlll,O 
Print At(1,3l;"Array file to view:•; 
Fileselect 1 \l.AR? 1

,
1 SEED.ARR 1 ,Arr$ 

If Arr${)11 Then 
Bload ArrS,Optrl 
01d 1 =True 
Lenl=Order (Ql 
If Orderlll<>Int!Order(lll Then 

B1ove Optrl,Nptrl,8 
If Orderl!Ol<30001 Then 

B1ove Optrl,Nptrl,Orderl(Olt4+8 
Else 

B1ove Optr!.,Nptrl,120008 
Endif 
Old 1=False 

Endif 
If Not Old! Then 

lenl=Orderl(Ol 
Endif 
If Instr!"23456709",Right$(Arr$,1ll=O Then 

6lenl=Lenl 
SegI=I 
Segaentl=O 

Else 
Open 1 R1 ,ll,LeftS!ArrS,Len!ArrSl-ll+1 R1 ,4 
Field 11,4 As BufS 
Get 11,2 
6lenl=Cvl(BufSl 
Close 11 
Segl=Val(R1ght$!Arr$,lll 
Seg1entI=29999l(Segl-1l 

Endif 
6osub Viewarrscreen 
Do 

For Linel=Startl To Startl+23 
If Old! Then 

If linel=O Then 
Print Atl1,2l;" 

Endif 
If Linel=l Then 

Print At!1,3l;" 
Endif 

N = ":Order!Linell-1:" 

R1ax = ";Order!Linell;" 

If lineI>l And LineI<30001 Then 
Print At(1,LineI-StartI+2l;Using "11111 ",LineI-1; 

I' • 

I' 

' 
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Print Atl9,LineI-Startl+2l;Using •11111 •,orderlLinell\262144; 
Print At!1B,Linet-StarU+2l :Using •111, • ,OrderlLinetl Kod 262144\512: 
Print At!22,Linel-Startt+2l;Using •111 •,OrderlLineII Kod 512; 

Endif 
Else 

If Li neZ=O Then 
Print Atll,2l;' 

Endif 
If Linel=l Then 

Print Atl1,3l;' 
Endif 

N = ";OrderllLinell-1:' 

R1ax = ";OrderllLinetJ;• 

If LineI>l And LineI<30001 Then 

.. 
' 

.. 
' 

Print Atl1,LineI-Startt+2l;Using •11111 •,Linel+Seg1entI-l; 
Print At!9,Linet-Startl+2l;Using • 111,",0rderXILinell\1024; 
Print Atl17,Linel-Startt+2l;Using 'Ill ',Order1.1Line!l And 1023; 

Endif 
Endif 
If Line1.>30000 Then 

Print Atll,Line1.-Startt+2J;• 
Endif 

Next Li nel 
Repeat 

Af=Inkeyf 
Let Kouset=Kousek 
If Kouset<>O Then 

AS= 1 E1 

PtrxI=Kousex 
Ptryt=Kousey 

Endif 
Until AS0 11 

If AS= 1 A1 Then 
6osub Addseed 

Endif 
If AS='C' Then 

6osub Convert 
Endif 
If AS='E' Then 

6osub Editarr 
Endif 
If AS= 1 S1 Then 

6osub Save 
Endif 
If AS=ChrS!Ol+ChrSl31l Then 

6osub Chan9ena1e 
En~it 

If AS= 1 N1 Then 
Cls 
Goto Begin 

Endif 

.. 
' 

If Af=Chrfl131 Or AS=ChrSl32l Or AS=ChrSIOl+ChrSIBOI Then 
Add StartI, 24 
If Start%>29999 Then 
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Inc Seg7. 
Gosub 6et_new_seg 
StarU=O 

Endif 
Endif 
If AS=ChrS(Ol+ChrS!72l Then 

Sub StarU,24 
If Startl<O And Segl>l Then 

Dec Segl 
Gosub 6et_new_seg 
StarU=29977 

Else 
StarU=O 

Endif 
Endif 
If AS=ChrS(0l+ChrS!71i Then 

Segl=l 
6osub 6et_new_seg 
StarU=O 

Endif 
If AS=ChrS!Ol+ChrS(119J Then 

StarU=O 
Endif 
If AS=ChrS(0l+ChrS!82l Then 

StartZ=Min(29977, (0rderl10l\24lS24J 
Endif 
If AS=ChrS(0J+ChrS!77l Then 

If 6len1<30001 Then 
Startl=!Lenl\24Jf24 

Else 
Seg1=16lenl-2l/29999+1 
If Segl<>Segaentl/29999+1 Then 

Gosub 6et_new_seg 
Endif 
Startl=ILenl\24lS24 

Endif 
Endif 
Exit If AS=ChrS!27l 

Loop 
Endif 
Cls 

Return 
Procedure Viewarrscreen 

Cls 
Box 250,75,600,279 
Text 280,93,"Up arrow - Page up• 
Text 280,109,"Down arrow - Page down' 
Text 280,125,"<Space>, <CR> - saae as Down arrow• 
Text 280,141,"<Hoae> - Top of array• 
Text 280,157,"Left arrow - Last page of array• 
Text 280,173,"<Ctrl> <Hoae> - First page of segaent• 
Text 280,189,"<Insert> - Last page of current seg1ent 1 
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Text 2B0,20S, 1 <Esc> - Main 1enu 1 

Text 280,221,"<Shift> C - Convert file' 
Text 280,237,'<Shift> A - Add seed point to file" 
Text 280,253,'<Shift> 5 - Save 1odified file' 
Text 280,269,"<Alt> 5 - Change filena1e and save• 
StartX=O 
If Old~ Then 

Print At(4 11l: 1 N1
; 

Print Ati9,1l; 1 Ju1ps 1
; 

Print At(19,1l; 1 X1
; 

Print At(23,1l;"Y"; 
Print At!54,1l:'Old style array• 

Else 
Print At(4,ll: 1 N1

; 

Print At(l4,11; 1 X1
; 

Print At(18,1l;'Y'; 
Print At(54,1l;'New style array• 

Endif 
Print At(32,1l:Arr$ 
If Changed! Then 

Print At!S4,2l;'S File Changed'!!' 
Endif 

Return 
Procedure Get_new_seg 

If Changed' Then 
Print At!52,20l;'Nriting changed seg1ent ••• • 
6osub Save 

Endif 
If SegI=l Then 

Arrf=Leftf!Arrf,Len!Arrfl-!l+ 1 R1 

Else 
Arrf=Leftf!Arrf,Len(Arrfl-!i+Strf(Segil 

Endif 
Arravfill OrderI(l,O 
Seg1entI=29999l!SegI-1l 
Print At(32,3l; 1 Loading seg1ent 1 'SegI; 1 

••• Please wait.• 
Bload Arrf,NptrX 
LenI=OrderI!Ol 
6osub Yiewarrscreen 

Return 
Procedure Addseed 

Local Seedlocation,AI 
Seedlocation=205000 
If Old' Then 

AI=OptrI 
Else 

AX=NptrI 
Endif 
Cls 
Print 1 I'1 checking the length block of 1 ;Arrf'' 1 =1 ;Lpeek!AIJ 
If Loeek!Ail>30001 Then 

Print 1 !'1 resetting the length block to 30001' 
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Lpoke AI,30001 
Changed'=True 

Endif 
If OW Then 

Seedlocation=!Seedlocation\1024lS512+!Seedlocation ~od 1024l 
If Order!2J<)Seedlocation Then 

Print "I'1 seeding the array• 
B1ove AI+16,AI+22,6l!Order!Ol-1l 
Order(Ol=Order!Ol+t 
Inc Len% 
Order!2l=Seedlocation 
Changed'=True 
Print Arrf;" has been seeded." 

Else 
Print "This file appears to be seeded, first location is "; 
Print OrderI!2l\512:",":0rderI!2l "od 512 

Endif 
Else 

If OrderI(2l<>Seedlocation Then 
Print 1 I'1 seeding the array• 
B1ove AI+12,AI+lb,4S!OrderI!Ol-ll 
Order%!0l=OrderI!Ol+1 
Inc LenI 
Order%!2l=Seedlocation 
Changed 1=True 
Print ArrS:" has been seeded." 

Else 
Print "This file appears to be seeded, first location is "; 
Print OrderI(2l\1024;",":0rderI!2l And 1023 

Endif 
Endif 
Print "Hit any key to continue.• 
Repeat 
Un ti I Inkevf< >" • 
6osub Yiewarrscreen 

Return 
Procedure Convert 

Local Af 
Cls 
If Not Old' Then 

Print "This file appears to be converted already 1 " 

Print "New for1at N=';OrderI(Ol-l'' 1 R1ax= 1 :0rderI!ll 
Input 'Should I convert it anyway !Y or Nl? ",Af 

Else . 
Af="Y" 

Endif 
If (Asc!Afl And 223!=89 Then 

Lpoke NptrI,30001 
Arrayfill OrderI!l,O 
Print 'N x 1000:'''' 
For X=O To Order!Ol 

If X>t 
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OrderI!Xl=Order!Xl "od 262144 
Orderl!Xl=!Orderl!Xl And 261632lS2+(0rderl!Xl And Sill 

Else 
Orderl!Xl=Order!Xl 

Endif 
If X "od I 000=0 

Print X\1000'" 
Endif 

Next X 
01 d: =Fa! se 
Changed'=True 
Print 
Print Arr$' 1 has been converted to ne11 for1at• 
Print "Hit any key to continue• 
Repeat 
Until Inkey$0 11 

Endif 
6osub Vie11arrscreen 

Return 
Procedure Editarr 

Local DestI,Idxr. 
Ptryl=!Ptryl\16l+1 
If PtrxI<=ISI And Ptry%>1 Then 

IdxX=Startl+PtryI-3 
If ldxl>O Then 

Print At!SS,20l;"AD to delete"'IdxI 
Print At!SS,21l;"<TAB> to insert blank" 
Print At!SS,23l;"<ESC> aborts.• 
If PtrxX>=96 And Ptrxl<=151 Then 

Print At!SS,22l;"or type nu1ber 1
; 

If PtrxI<=ll9 Then 
DestI=1024 
Box 95,Ptry%S16-17,120,Ptryil16 
Print '"for X" 
6osub 6etnu1(13) 

Else 
DestI=1 
Box 127,Ptryll16-17,152,PtrylSl6 
Print '"for Y" 
6osub 6etnu1!17) 

Endif 
Else 

Destl=O 
Box -l,PtryISl6-17,152,PtryIS16 
6osub Getnu1!0I 

Endif 
Else 

If IdxI=-1 Then 
Print At!55,20l;"Please don't change the" 
Print At!SS,211;"length directly.• 
Sound 1,1s,1,1,10 
Sound 1,0 
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Else 
DesU=1 
Box 119,31,144,48 
Print Atl55,20l;"Type new 1axi1u1 radius:• 
6osub 6etnu1!l6l 

Endif 
Endif 
6raph1ode 1 
Deff i 11 O, l 
Pbcx 430,300,639,399 
Color 0 
Draw 0,15 To 152,15 
Col or 1 
If Changed! Then 

Print At!54,2);"l File Changed!!!" 
Endif 

Endif 
Return 
Procedure 6etnu1!Destcol%l 

local AcceptS,Nu1S,Dcne! 
let Dcne'=False 
Nu1$= 11 

AcceptS=Chr$!4l+Chrf!9)+Chr$!27l 
If DestcolI<>O Then 

AcceptS=AcceptS+ChrS!l3l+Chrf!Bl+"0123456789" 
Endif 
Repeat 

Reoeat 
Ans$= In key$ 
If AnsS<>"" And Instr!AcceptS,Ansf)=O Then 

Ans$=11 

Sound 1,15,4,8,2 
Sound 1,0 

Endif 
Until Ansso•• 
On InstrlAcceptf,Ansfl 6osub Delentry,Insspace,Esc,Endnua,Delchar 
If Instr!AcceptS,AnsSJ>S Then 

6osub Nu1 
Endif 

Until Done' 
Return 
Procedure Delentry 

If Order%!0l-Idx%-l>O Then 
Baove Nptr%+!Idx%+3lS4,Nptr%+!IdxI+2lS4, !Order%!0l-Idx%-1JS4 

Endif 
If Order%!0l-Idx%-1>=0 Then 

OrderI!Order%10ll=O 
Dec OrderI!Ol 
Changed'=True 

Else 
Sound 1,15,6,7,2 
Sound O,O 
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Endif 
Let Done!=True 

Return 
Procedure Insspace 

If Orderl!Ol-Idxl>O Then 
Baove NptrX+!Idxl+2l$4,Nptrl+!Idxl+3lS4, !Orderl!Ol-IdxllS4 
Orderl!Idxl+ll=O 
Inc Orderl!Ol 
Changed 1=True 
Let Done'=True 

Endif 
Return 
Procedure Esc 

Let Done!=True 
Return 
Procedure Endnua 

OrderX!Idx1.+ll=OrderX!IdxX+ll And !Not !1023SDestXll 
Add Orderl!Idxl+ll,Val !Nu1$l!DestX 
If IdxX+l>Orderl(O) Then 

Orderl!Ol=IdxX+l 
Len~=OrderX !Ol 

Endif 
Changed'=True 
Let Done!=True 

Return 
Procedure Delchar 

If Nu1so•• 
Nu1$=LeftS!Nu1$,Len!Nu1$l-ll 
Print At!Destcoll,Idxl-StartX+3l;Using 1 111 1 ,Val !Nu1$) 

Else 
Sound 1,15,6,7,2 
Sound O,O 

Endif 
Return 
Procedure Nua 

If Len!Nu1$l<3 Then 
Nu1S=Nu1S+Ans$ 
Print At!DestcolX,IdxX-StartX+3l;Using 1 1111 ,Val (NuaSl 

Else 
Print At!55,20l;"3 Digits Only 
Sound 1,15,b,7,2 
Sound O,O 

End if 
Return 
Procedure Parsefilenaae!FnSl 

Local Firstl,Lastl,XX 
Pathna1eS=LeftS!Fnf,Instr!FnS, 1

:
1 ll 

Firstl=Instr!Fn$, 1
\

1 l 
For XX=Len!Fnfl Oownto 1 

If "id$!fnS,Xl,ll=1
\

1 

Last%= XX 
En di f 
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Exit If "idS!FnS,Xl,ll="\" 
Next Xl 
Pathna1ef=Pathna1ef+"idf!Fnf,Firstl,Lastl-Firstll 
File$="id$!FnS,Last4+1l 

Return 
Procedure Loader 

Print At!1,3l;'Select array: 
Fileselect "\l.ARR","SEED.ARR',FileS 
If Filef<>"" Then 

Bload FileS,Lpeek!Arrptr!Orderl!lll 
Endif 

Return 
Procedure Save 

Local Al,F11,F21,Tlenl 
Tlenl="in!Lenl,30000) 
Al=NptrX 
Flk=4 
F2l=B 
If Old! Then 

Al=OptrX 
Fll=b 
F21=10 

Endif 
Print At!32,2l;'Saving array to''Arrf 
Bsave Arr$,Al,TlenllF1l+F2X 
Changed 1=False 
6osub VieMarrscreen 

Return 
Procedure Changena1e 

Local Tmpf 
T1p$=File$ 
6osub Parsefilena1e!Arrfl 
Print At!32,2l;'File to save array to:• 
Fileselect "\i.ARR',Arrf,Arrf 
6osub Parsefilena1e!Arr$) 
If Instr!FileS,'.'l=O Then 

Arrl=ArrS+".ARR" 
Endif 
FileS=Tlp$ 
6osub Save 

Return 
Procedure DraMscreen 

If Files=•• Then 
6osub Loader 

Endif 
Cls 
HidH 
6raph1ode 3 
Color 1 
Line 400,0,400,399 
Deftext 0,16,0,32 
Text 455,45,'Aniiator• 
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Text 455,375,'Anitator• 
Deftext 0,0,0,13 
Print At!S2,1l;FileS 
Text 410,77,"S - Reverse growth direction• 
Text 410,109,'<Enter> - Continue auto1atic 1 

Text 490,125,"growth" 
Text 410,157,', - Stop auto1atic growth' 
Text 410,189, 1

( - White background" 
Text 410,221,'l - Black background' 
Text 410,253,"Any other key - Single step• 
Text 538,269,"in Stop 1ode 1 

Text 410,301, 1
/ - Fill in to current pixel" 

Text 410,333,'<Undo> - Exit/abort ani1ator 1 

Return 
Procedure Plot(StartX,FinishX,DirectionI,WidthI) 

Local Wait!, SS 
XX=Start% 
Repeat 

If !DirectionI>O And XI<=FinishXl Or !Direction%<0 And XX>=Finish7.l Then 
Plot OrderI!XIl\1024,0rderI!XIl And 1023 
If WidthI>O And XI>Width%+1 Then 

Plot OrderI!XI-WidthIJ\1024,0rderI(XI-Widthil And 1023 
Endif 
Add XI,Direction7. 

Endif 
AS=lnkeyS 
If Wait 1 Then 

Repeat 
AS=InkeyS 

Until A$0 11 

Endif 
If AS0 11 Then 

If As=••• Then 
Plot OrderI(XIl\1024,0rderI!XIl And 1023 
If WidthI>O And XI>Width%+1 Then 

Plot OrderI!XI-Widthil\1024,0rderI!XI-Widthil And 1023 
Endif 
Swap StartI,FinishI 
"ul DirectionI,-1 

Endif 
If As=·.· Then 

Wait!=-1 
Endif 
If A$=ChrS!13l Then 

Wait!=O 
Endif 
If AS=' ( • Then 

Setcolor 0,1 
Endif 
If AS=" l • Then 

Setcolor O,O 
Endif 
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If As=• t• Then 
Sget 5$ 
Al=XX 
6osub Plotl2,XX,1,0l 
Sput SS 
Xl=Al 
A$="" 

Endif 
Endif 

Until AS=Chr$!0l+Chr$(97l 
Return 
Procedure Aniaate 

6osub Dra•screen 
6osub Plot!2,0rderl!Oi,1,0) 
Setcolor 0,1 
Sho111 

Return 
Procedure Involute 

Gosub Dra•screen 
Gosub Plot(Orderl!Ol,2,-1,0l 
Setcolor 0,1 
Sho111 

Return 
Procedure Zonal 

Cls 
Print At!10,12l; 
Input "Enter nuaber of pixels to display in deposition zone";Nidthl 
Gosub Dra•screen 
Gosub Plot!2,0rderX!Ol,1,NidthX) 
Setcolor O, 1 
Sho111 

Return 

' Coreaenu Progra1 
Version=5.6 
RevdateS="2 Oct 88 1 

Dia Orderl!32000) ! "ake roo1 for FH6 arrays too. 
Dia Resultsl1,400l 
Di• Po11erl1,400) 
Di• Std_graphll12l 
Dia l'!enuSl50l 
Let l'!enuS!Ol="Desk" 
Let l'!enuSlll=" Utilities info" 
Let l'!enuS!2l="--------------------• 
For I=3 To 9 

Let l'!enuS!Il=StrS!Il 
Next I 
Do 

Inc I 
Read l'!enuS!Il 
Exit If "enu$!Il= 1 ~· 

Loop 
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Data 1 Exit 1
,

1 Quit 1
,

11
,

1 ARR Funes•,• Autocorrelation Vectors' 
Data I "ass Distribution in x and v· 
Data • "ass Distribution in R and Theta • 
Data '",'FH6 Funes•,• "ass Distribution in X and Y" 
Data • "ass Distribution in R and Theta • 
Data 11

,
1 6YR Funes•,• Prep for ne" file •,•---------------------• 

Data • Vie" ?YA File 1
,

1 Plot•,• Regression•,••,••,•~· 

"enu "enuf() 
On "enu Gosub Handle_it_for _1e 
Print Attl,3l;'Correlation functions, Version''Version; 1

,
1 'Revdate$ 

Do 
On l'!enu 

Loop 
Procedure Handle_it_for _1e 

Cls 
If "enu(Ol=l Then 

Gosub Give_info 
Else 

On "enu(0)-11 6osub Quit,D,D,Auto,"assxy,"assrt,D,D,F1assxv,F1assrt 
If "enu(Ol>21 Then 

On "enu(Ol-21 6osub Du11y,D,Prep_for _ne" 1Du11y,Vie"dat,Plotya,Regression 
Endif 

Endif 
"enu l!enu$ ( l 
Print Atl1,3l;'Select function:• 

Return 
Procedure Give_info 
Return 
Procedure Quit 

"enu Kill 
Edit 

Return 
Procedure Auto 

Local AI,Bl,CI,II,Jl 
6osub Loader 
Cls 
If Filef<>11 Then 

Input 'Input n: 1 ;N% 
Print 'Calculating Autocorrelation vectors• 
For A%=2 To Orderl!Ol-NI 

If AI "od 100=0 Then 
Print Atll,6l; 1 N= 1 ;A% 

Endif 
J%=0rder%tA%+Nil 
Il=Orderl(Al) 
Xj'Z,=Jl\1024 
Xil=Il\1024 
YjI=JI And 1023 
YiX=II And 1023 
OrderltAI-ll=InttSqr((Yjl-YillA2+tXjl-Xil)A2JJ 

Next Al 
Cls 
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Orderl!OrderI!Oll=O 
OrderI!Orderl!Ol-ll=O 
For Al=Orderl!Ol-NI To Orderl!Ol 

Order I !AX! =O 
Next Al 
6osub Set_up !20, 380, O, bOO, 350, O, 100, 50, 1, 1l 
6osub Axes!tStd_graphl!ll 
6osub Label_hashes!SStd_graphl!ll 
6raph1ode 1 
For Beginl=l To l!Orderl!Ol\bOOl+llSbOO Step 600 

Text 20,396,StrS!Beginll 
Text 580,39b,StrS!Beginl+599l 
For AI=l To 600 

Color 1 
Draw AI+20,380 To AI+20,380-0rderl!Al+Beginl-1l 
Color 0 
Draw A%+20,379-0rder%!AI+Beginl-1l To Al+20,0 

Next Al 
Color 1 
Repeat 
Until Inkeyt<>11 

Next Begin% 
Endif 

Return 
Procedure Massxv 

Gosub Loader 
Cls 
If FileS<> 11 Then 

Print At!1,5l:'Calculating Center of Mass ••• Please wait' 
Gosub Centerof1ass!SOrderl!ll 
Print 'Center of 1ass at X=';Avex'''Y=';Avey 
Print At!l,Sl;'Calculating X and Y density functions 
Print 'Processed 0 of''Orderl!Ol''Points' 
For Xl=2 To Orderl!Ol 

If XI Mod 100=0 Then 
Print At!11,6l;X% 

Endif 
Inc Results!O,Orderl!Xll\1024! 
Inc Results!1,0rder%!XIl And 1023! 

Next XI 
Gosub Set_up!320,240,220,220,200,0,100,180,1,1l 
6osub Dispxy 

Endi f 
Return 
Procedure F1assxy 

Local Coill,Expl,FreqI,IterI,SixbitI,UncoilI,XpixelI,YpixelI 
Gosub Fl oader 
Cls 
If Filet<>'' Then 

Print Atl1,5l;'Calculating Center of Mass ••• Please wait' 
Gosub Fcenterof1ass!tOrderI!ll 
Print 'Center of 1ass at X=';Avex'''Y=';Avey 
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Print At!1,5l;"Ciltulating X and Y density functions 
Print "Processed 0 of 160000 Points• 
For Iter%=1 To 32000 

Coil%=!IterX-11t5 
FreqX=OrderZ!IterXl 
If Coil% "od 100=0 Then 

Print At!11,bl;Coi!X 
Endif 
If FreqX<>O Then 

For SixbitX=O To 4 
Exp?=b4"Sixbit7. 
FreoX=Orderl(lterll And (b3tExp%l 
If FreqI<>O Then 

Div FreqI,Exp% 
Uncoil%=CoilI+SixbitX 
Xpixell=UncoilX\400 
YpixelX=Uncoil% "od 400 
Add Results(0,Xpixe1Xl,Freq% 
Add Results!1,Ypixel%l,FreqX 
Option •u1• 

Endif 
Next SixbitI 

Endif 
Next IterX 
6osub Set_up!320,240,220,220,200,0,100,1B0,1,-20l 
6osub Dispxy 

Endif 
Return 
Procedure Dispxy 

Tester: 
Cls 
6raph1ode 1 
If L caded 1 Then 

File$=Dats 
Endif 
6osub Parsefilena1e!File$l 
6osub Axes\lStd_graphZ!ll 
6osub Label)ashesltStd_graphrn l 
Std_graphl(Ql=1 
Std_graph%!3l=O 
Std_graph%(4l=399 
Std_graphX!Sl=-200-Int!Avex) 
6osub Plot(lStd_graphl!ll 
LblS="Deposit "+File$+' "ass Distribution Function in X" 
A%=40-Len!Lbl$l/2 
Print At!AX,22l;Lbl$ 
Print At(52,41;"Center Of "ass:• 
Print At!52,5J;Avex;","'Avey 
6osub C1d_driver! 11 l 
Cls 
6osub Axes!tStd_graphX!ll 
Gosub Label_hashes!tStd_graphl!ll 
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Std_graph%(0)=1+4 
Std_graphI(3)=0 
Std_graph%(4l=399 
Std_graph%(5)=-200+Int<Avey> 
Gosub Plot(lStd_graphl(l) 
Lbl$=Left$(Lbl$,Len(Lbl$l-1l+'Y' 
Print At!AI,22l;Lbl$ 
Print Atl52,4l;'Center Of ~ass:' 

Print At(S2,Sl;Avex;',''Avey 
Gosub C1d_driver( 11 l 

Return 
Procedure Massrt 

Local A%,B%,R%,Th%,Rav,R14,Rho% 
6raph1ode 1 
Gosub Loader 
Cls 
If File$()'' Then 

Print At(l,Sl;'Calculating Center of Mass ..• Please wait' 
Gosub Centerofaass(lOrderI(ll 
Print 'Center of 1ass at X=';Avex''"Y=";Avey 
Print At(1,5l;'Calculating Rand Theta density functions • 
Print 'Processed 0 of''OrderI(O)'"Po1nts 1 

For X%=2 To Orderl!Ol 
If XI "od 100=0 Then 

Print At(11,6l;X% 
Endif 
AI=Orderl(Xll\1024 
BI=Orderl(Xll And 1023 
R%=Int(Sqr((A%-Avex-200lA2+(8%+Avey-200ln2ll 
Th%=Trunc(Atn((B%+Avey-200l/(A%-Avex-200+0.00001llS57.3l 
Add ThI,180 
If Al-Avex-200(0 Then 

Add ThI,180 
Endif 
If Th%>=360 Then 

Sub Thl,360 
Endif 
Inc Results(O,Rll 
Inc Results(1,ThI) 

Next XX 
6osub Set_upl100,250,0,220,220,0,50,100,1,1l 
Gosub Disprt 

Endif 
Return 
Procedure Ftassrt 

Local Coil%,ExpI,Freq%,Iter%,Sixbit%,Uncoil%,Xpixel%,Ypixel% 
Gosub Floader 
Cls 
If File$()'' Then 

Print At(1,5l;'Calculating Center of Mass ••. Please wait' 
Gosub Fcenterof1ass(fQrder%()) 
Print 'Center of mass at X=':Avex'''Y=';Avey 
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Print Atil.5):'Calculating Rand Theta density functions • 
Print "Processed 0 of 160000 Points• 
For IterI=l To 32000 

Ccil%=1IterX-1lS5 
Freo7.=0rder7.(lter7.) 
If Coi!7. ~od 100=0 Then 

Print At(11,6l:Coil4 
Endi f 
If Freq7.<>0 Then 

For Sixb1tI=O To 4 
Exp7.=64'·Six~i ti. 
FreqZ=Order7.(!terXl And (63$Exp7.) 
If FreqZt>O Then 

Div Frea7.,bp7. 
Uncoil7.=Coil7.+Sixbit7. 
Xpixel!=Uncoill\400 
Ypixel7.=Uncoil% Mod 400 
RZ=lnt(Sqr((Xp1~ell-Avex-2001A2+(Yprxell+Avey-200JA2ll 

ThZ=TrunclAtn((Ypixe!Z+Avey-200l/llpixel%-Aiex-200+0.00001ll*57.3l 
Add ThZ,180 
If XpixelZ-Avex-200<0 Then 

Add Thl,180 
Endif 
If ThZ>=360 Then 

Sub ThI,360 
Endif 
Add Resultsl0,PZl,Freq7. 
Add Resultsll,Th41,Freq7. 
Option 'Ul' 

Endif 
Next SixbiU 

Endif 
Ne::t IterZ 
6osub Set_upl100,250,0,220,220,0,50,10C,-20,-20l 
6osub Disort 

Endif 
Return 
Procedure Disprt 

Cls 
If Loaded' Then 

FileS=DatS 
Endif 
6osub Parsefilename1File$) 
Testing: 
Sclx%=Std_graph7.19l 
Std_graphZm=t 
6osub AxeslSStd_graphZI)) 
6osub Label_hashes!lStd_graphZlll 
Std_graphZ(Ol=l+B 
Std_graphI13l=O 
Std_graph%(4l=201 
Std_graphZl5l=O 
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Gosub Plot(lStd_graph!()) 
Lblf=•Deposit •+Filef+• "ass Distribution Function in R' 
Ai.=40-Len!LblSl/2 
Print At!AX,22l;Lbl$ 
Print At(52,4J;•Center Of Mass:• 
Print AtlS2.5):Avex: 1 ,•'Avey 
Print At!52,6l:ChrS(255l;"=''Ave 
6raph11ode 3 
Text 408,93, •r• 
Gosub Bargraphl100+Ave,250,0,-20l 
Gosub Bargraphl100+Mode1,250,0,-28l 
Graphmode 3 
Deftext 1,0,0,6 
Text 100+Ave-3,250+20+10,•r• 
Text 100+Ave-3,250+20+9,Chr$(255l 
Text 100+ModeZ-1S,250+20+18,"1ode 1 

Deftext 1,0,0, 13 
Graph11ode 1 
Gosub C1d_driver(•r•) 
Cls 
Gosub Set_up !220, 200, 180, 180, 180, 180, 150, 15(1, Sc! x?, Std_graphi. ( 1 Ol) 
Gosub Axes(fStd_graph!(l) 
Gosut Label_hashes!SStd_graph!()) 
Std_graph110l=1+4+32 11 color, 4 upper, 32 polar 
Std_gr aphi. (3) =O 
Std_graphi.(4)=360 
Std_graph115l=O 
Gosub Piot(tStd_graph!()) 
Lblf=Left$(LblS,Lenllbl$)-ll+"Theta• 
AI=Len !LbUl 
Print At(52,2l;Leftf(LblS,A7.-35l; 
Print At(52,3l;MidSILblS,Al-34,17l 
Print At(52,4l ;R1ghtf(Lbl$, l7l 
Print Atl52,6l;'Center Of Mass:• 
Print At(52,7l;Avex:',''Avey 
Gcsub C1d_driver( 11 l 
Let Lcaded 1=True 
Len7.=360 

Return 
Procedure C1d_driver(Charfl 

Local Char! 
Char?=-(Charf(}''l 
Do 

6osub P1line('S = S1oothing M =Modes E =Edit Screen <ESC> aborts <CR\ stores screen') 
Repeat 

AS=InkeyS 
Unti I Aso•• 
Exit If AS=ChrS!27l 
If !Asc(ASl And 95l=83 Then 

On Char! 6osub Label_ave 
Gcsub S1coth1ng 
On Char? 6osub Label_ave 
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Endif 
On -(!Asc(Afl And 95l=77l 6osub "odes 
On -((Asc!Afl And 95)=69) Gosub Ed 
If A$=Chr$(13l Then 

Gosub P1line( 11 l 
Sget Serf 
Fileselect "\S.6RF 1 ,••,Datf 
Sput Serf 
If Instr(Datf,".6P.F")=0 Then 

Gosub Parsefilena1e(Datfl 
DatS=Pathna1eS+"\ 1 +Left$(File$+'. 1 ,Instr(File$+ 1

•
1

,
1

•
1 ll+'6P.F 1 

Endif 
Bsave Datf,Xbios(2l,32000 
Print At(1,2l;"Saved as"'Dat$ 

Endif 
Exit If Af=Chr$(13l 

Loop 
Return 
Procedure Label_ave 

6raph1ode 3 
Deftext 1,0,0,6 
Text lOO+Ave-3,250+20+10,Charf 
Text 100+Ave-3,250+20+9,Chr$(255l 
Text 100+"ode%-15,250+20+18, 1 1ode' 
Gosub Bargraph(100+Ave,250,0,-20l 
Gosub Bargraph(100+"ode%,250,0,-2Bl 
6raoh1ode 1 
Print At(55,6l;Ave 
Deftext 1,0,0,13 

Return 
Procedure S1ooth1ng 

Gosub "oving_ave 
Return 
Procedure "oving_ave 

Local Xl,Nl,Cu1I,Nrl,Upoer 1,Split! 
Interval I=S 
Upoer!=(Std_graphl(Ol And 4l 
Split 1=(5td_graphl(0) And 128) 
Std_graphl(O)=Std_graphl!Ol And 252 
6osub Plot(tStd_graphl()) 
If Not Sol it 1 Then 

For XI=Std_graphl(3) To Std_graph!(4) 
Cul!=O 
Nr!=O 
For Nl=-Intervall To Interval! 

If Xl+Nl>=O And Xl+Nl<400 Then 
Add Cu1l,Results(Abs(Upper!l,Xl+N!.l 
Inc Nrl 

Endif 
Next N7. 
Results(Abs(Upper 1 l,Xll=IntiCu1!/Nr!l 

Next XI 
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Else 
Endif 
Add Std_graphl(Ql,1 
6osub Plot(lStd_graphil>l 

Return 
Procedure Ed 

Local X,Y,K,AS 
Gosub P1line(•(Left Button> - Add Text <Right Button> - Move Area <ESC> exits•) 
Reoeat 

Mouse X.Y.K 
On K 6osub Text,"ove 
If K Then 

Gosub P1line( 1 (Left Button> - Add Text <Right Button> - Move Area <ESC> exits") 
K=O 

Endi f 
AS=InkeyS 

Until (AS=ChrSl13ll Or IAS=ChrSl27ll 
Return 
Procedure Prec_for _new 

Let Loaded 1=False 
Oats= .. 

Return 
Procedure Viewdat 

Local Startl,L1nel,AS,Old!,Ootrl,NptrI 
Optrl=LpeeklArrptr(Results())) 
If Not Loaded' Then 

Gosub Dloader 
Endif 
If Datf<> 11 Then 

Gosub VieMdatscreen 
Do 

For Linel=StartI To StartI+23 
If Linel<401 Then 

Print Atl1,Linel-Startl+2l;Using • Ill ",Linel+Basel: 
Print Atl12,Linel-Startl+2);Using 'lllll.lttlttll',Results(0,Line7.+Basell; 
Print Atl28,Linel-Startl+2l;Using "1#1.1111111111',Fesults(l,Linei.+Basell: 

Endif 
If LineI>400 Then 

Print Atll,Linei.-StartI+ll;' 
Endif 

Next LineI 
Repeat 

AS=InkevS 
Until Aso•• 
If Af=ChrSl!3l Or Af=Chrfl32l Or Af=ChrflOl+ChrflBOl Then 

Add StarU,25 
If 5tartl>375 Then 

Startl=375 
Endif 

Endif 
If AS=Chrf(Ql+Chrf(72J Then 

Sub Start%, 25 

.. 
' 

98 



If StartI<O Then 
StarU=O 

Endif 
Endif 
If AS=ChrS!Ol+ChrS\71l Then 

StarU=O 
Endif 
If AS=Chr$(0l+Chr$\77l Then 

Start%=!LenX\25lt25 
Endif 
Exit If AS=ChrS!27l 

Loop 
Endif 
Cls 

Return 
Procedure Viewdatscreen 

Cls 
Box 384,75,600,185 
Text 392,93,'Uo arrow - Page up• 
Text 392,109,'Down arrow - Page down• 
Text 392,125,'(Space>, <CR> - sa1e as Down arrow• 
Text 392.141,'<Hoie> - Top of array' 
Text 392,157,'Left arrow - Last page of array• 
Text 392,173,'<Esc> - "ain 1enu 1 

Startt=O 
Print At!l,ll;'N of''LenI 
Print At!12,1l;ZeroS; 
Print At!28,1l;OneS; 
Print At(49,!l;Dats 

Return 
Procedure Plotya 

If Not Loaded' Then 
Gosub Dloader 

Endif 
If DatS<> 11 Then 

If Typ$= 1 XYA 1 Then 
Gosub Dispxy 

Else 
If Typ$= 1 RYA 1 Then 

Gosub Disprt 
Else 

Cls 
6osub Axes!SStd_graphI!ll 
Gosub Label_hashes!lStd_graph%()) 
6osub Plot!tStd_graphI!ll 
Gosub Regression 
Gosub C1d_driver( 1 'l 

End if 
Endi f 

Endif 
Return 
Procedure Regression 
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Local Cutoff.Cutoff% 
If Not Loaded~ Then 

Gosub Dloader 
Endi f 
If DatS<>11 Then 

Po11er(O,Ol=O 
Input "Lower cutoff for regression !Ln!Nl in linear region, 0 for alll';Cutoff 
If Cutoff=O Then 

Cutoff%=! 
Else 

CutoffX=Int((82iExp!Cutoff))A0.41666666667l-10 
Endif 
For NX=Cutof fX To Len% 

Inc Po11er(O,Ol 
Po11er(O,Power(O,Oll=Results!O,N%l 
Po11er(l,Po11er(O,Oll=Results(l,Nil 

Next NX 
Gosub Po11er 
Print • D = ":1/Slope 
Print 'File = ';Oats 

Endif 
Return 
Procedure Loader 

Print At (1,3); 'Select array: 
Fileselect 1 \S.ARR", 1 SEED.ARR 1 ,F1le$ 
If FileS<> 11 Then 

Arrayfill Results(l,O 
Arravfill Order%(l,O 
Bload File$,Lpeek(Arrptr!Order%())) 

Endif 
Return 
Procedure Floader 

Print At!1,3J;'Select array: 
Fileselect 1 \l.FH6 1

,
1 LON6LIST.FH6 1 ,File$ 

If File$()11 Then 
Arrayfill Results!l,O 
Arrayfill Order%(l,O 
Bload FileS,Lpeek!Arrptr!OrderI!lll 

Endi f 
Return 
Procedure Dloader 

Local HS, TpS 
Do 

Print At!1,3l; 1 Select array: 
Fileselect 1 \t,?YA 1

,
11 ,DatS 

If DaU011 Then 
Tf S=Fi le$ 
TpS=PathnaaeS 
Gosub Parsefilenaae!DatSJ 
TypS=~idS!FileS,Instr!File$, 1 , 1 l+ll 

DatpathS=Pathna1e$ 
PathnaaeS=Tpf 
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FileS=TfS 
Endif 
Exit If Instrl 1 PYA6YAXYARYA 1 ,Typfl>O Or (DatS= 11 l 
Print Atll,ll;DatS'"is an unknown type of data file. Please• 
Print "enter file with .PYA, .6YA, .XYA, or .RYA extension.' 

Loop 
If DatS<>11 Then 

Arrayfill Results(l,O 
Bload DatS,Lpeek!Arrptr(Results(lll 
Let Loaded'=True 
If lnstrl'PG',LeftSITypS,lll)O Then 

LenX=ResultslO,Ol 
Base%=1 
Split'=True 
If TypS= 1 PYA 1 Then 

ZeroS='Radius of zone• 
U='Ln R' 
Let One$= 1 Filled Area• 
YS='Ln C!R) • 
6osub Set_up(I00,300,0,430,230,0,50,50,50,50) 
Std_graphX(Oi=1+64+12B+256 
Std_graphX(3l=BaseI 
Std_graphX(4l=LenX 
Std_graphX(5l=O 

Else 
ZeroS='I of Deposits' 
XS='Ln N1 

Let One$= 1 Radius of Gyration' 
YS='Ln Rg 1 

6osub Set_up(100,300,0,430,230,0,40,40,40,40i 
Std_graphX(Ol=1+64+12B+256 
Std_graphX(3l=BaseZ 
Std_graph%(4l=Len% 
Std_graph%(5l=O 

Endif 
Else 

Base%=0 
Split'=False 
If TycS='XYA' Then 

Len%=400 
Len0%=400 
Len1%=400 
ZeroS='Density in X1 

Let OneS='Density in Y' 
XS='X" 
YS='Density in X' 
6osub Set_up(320,240,220,220,200,0, 100,!Bv,1, ll 
Std_graph% (Ol=l 
Std_graph%13l=Base1 
Std_graph%(4l=Len% 
Std_graph115l=O 

Endi f 
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If Tya$= 1 RYA 1 Then 
Lenl=360 
Len0l=201 
Lenll=360 
Zero$= 1 Densitv in R" 
Let One$= 1 Density in Theta• 
Gosub Set_upl100,250,0,220,220,0,SO, 100, 1, ll 
Std_graphZ!Ol=l+B 
Std_graph7.!3l=Base7. 
Std_graphl!4l=Len0l 
Std_graph7.\Si=O 

Endif 
Endif 

Endif 
Return 
Procedure Parsefilena1e(fn$l 

Local First!,Last7.,X% 
Pathna1eS=LeftS(FnS, Instr!FnS, 1

:
1
)) 

First7.=Instr!FnS, 1
\

1 l 
For XI=Len!Fn$) Downto 1 

If "id$(Fn$,Xl,ll= 1
\

1 

LastI=XI 
Endif 
Exit If "idS!FnS,Xl,ll= 1

\
1 

Next X7. 
Pathna1e$=Pathna1eS+"idS!Fn$,Firstl,Lastl-Firstil 
File$="1dS!FnS,LastI+ll 

Return 
Procedure Set_up!Orxl,Oryl,Lendxl,Rendxl,Tendyl,Bendyl,Hashxl,Hashy7.,5clxl,5clyll 

Std_graphI!ll=Orx7. 
Std_graph7.l2l=OryI 
Std_graphI!6l=65S3bSLendxI+Rendx7. 
Std_graph7.(7l=b5536STendvt+Bendyl 
Std_graphl!Bl=6S536lHashxI+Hashy% 
5td_graphl!9l=Sclxl 
Std_graoh7.(10l=Scly7. 

Return 
Procedure Axes!P.arrayl 

Local Orxl,OryI,LendxI,Rendxl,Tendyl,BendyI,Hashxl,Hashyl 
Local AI,Length7. 
Swap SP.array,Arrayl!l 
Orx7.=Arrayl(ll 
Oryl=Arrayl!2l 
LendxI=Arrayllbl\65536 
Rendxl=Arrayl!6l And 65535 
Tendy7.=Array%!7l\6S536 
BendvI=Arrayl(7l And 65535 
Hashxl=Arrayl!Bl\65536 
Hashyl=Arrayl!Bl And 65535 
Gosub Drawaxes!lArrayllll 
Lengthl=lO 
Defline 1, 1,0,0 
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If Hashxl<>O Then 
For Al=Orxt To Orxl-Lendx7. Step -Hashxl 

Draw Al,Oryl-Length7. To A7.,0ryl+Length7. 
Next Al 
For Al=Orxl To Orx7.+Rendx7. Step Hashx7. 

Draw Al,Oryl-Lengthl To A7.,0ry7.+length7. 
Next Al 

Endi f 
If Hashv7.<>0 Then 

For A7.=0rvY. To Ory7.-Tendy7. Step -Hashyl 
Draw Orx%+length%,Al To Orxl-Lengthl,AX 

Next Al 
For A7.=0ry7. To Oryl+Bendyt Step Hashyt 

Draw Orx!+Length7.,A7. To Orxl-Length7.,A7. 
Next Al 

Endif 
Swap fP.array,Arrayl(l 

Return 
Procedure Drawaxes(P.array) 

Local Orxl,Oryl,Lendxl,Rendxl,Tendyl,Bendyl,Hashxl,Hashy7. 
Swap SP.arrav,Array7.(l 
Orxl=Arravl ( 1l 
Orv7.=Array7.(2l 
Lendxl=Arrav7.16l\65536 
Rendx7.=Array7.!6l And 65535 
TendvZ=Arravl!7)\65536 
BendvZ=ArravZ!7l And 65535 
Defline 1, 1, 1, 1 
If Lendxl=O Then 

Defline 1,1,0,1 
Endif 
If RendxZ=O Then 

Def line 1, I, 1, 0 
Endif 
Draw Orx7.-Lendx7.,0ry7. To OrxI+Rendxt,Orvl 
Defline 1, 1, 1, 1 
If Tendvt=O Then 

Defline 1.1,0,1 
Endif 
If Bendvl=O Then 

Defline 1, 1, 1,0 
Endif 
Draw Orxl,Oryl-Tendyl To Orxl,Oryl+BendvI 
Swap lP.array,Arraylll 
Defline 1,1,0,0 

Return 
Procedure Label_hashes(P.arravl 

Local Hashl,Loendl,Hiendl,Scale,Al 1Lb!S 
Swap fP.array,Arrayl(l 
Deftext 1,0,0,6 
Hashl=Arrayl!B)\65536 
Loendl=Arrayl(6)\65536 
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HiendI=ArravX!6l And 65535 
Sc:ale=Array%!9l 
If Sc: ale< 0 Then 

Sc:ale=-1/Sc:ale 
Endi f 
AX=HashI 1 To HiendX Step Hash% 
Nhile AX<HiendX 

Lblf=Strf(AI/Sc:alel 
Text Array7.!1l+AI-Len(Lblflt4,Array%!2l+18,Lblf 
If AX<Loend/. Then 

Text ArravXl1l-AX-!Len(Lbl$l+1lt4,ArrayI(2)+18, 1
-

1 +Lbl$ 
Endif 
Add A!,HashI 

Mend 
HashX=ArrayX!Bl And 65535 
HiendX=Array%(7l\65536 
Loend7.=Arrav%!7l And 65535 
Scale=ArravitlOl 
If Scale<O Then 

Scale=-1/Scale 
Endif 
AX=HashX ! To HiendX Step Hash% 
lihile AI<HiendX 

Lblf=Strf!AX/Scalel 
Text ArrayXtll-10-Lenilbl$lf8,ArrayXl2l-AX+4,LblS 
If Al<LoendX Then 

Text Arrayll1l-10-(Len!Lbl$l+1lSB,ArrayX!2l+AX+4, 1
-

1 +Lbl$ 
Endif 
Add AX,Hashl 

liend 
SMap tP.array,Arrayl!l 
Deftext 1,0,0,13 

Return 
Procedure Plot!P.arrayl 

Local Flagsl,Upper 1 ,Collec:t 1 ,Xplot!,Polar 1 ,Line 1 ,Split!,Logs~,CountX 

Local Datu1,Indep,XbegX,XendX.Ybegl,YendX,"axX,Su1X,NaveX 
Local Sclx, Sc:l y 
SNap tP.array,ArrayI(l 
Flagsl=Arrayl!Ol 
Upper 1=Flags7. And 4 
Collect!=Flagsl And 8 
Xplot!=Flags7. And 16 
Polar 1=FlagsX And 32 
Let Line!=FlagsX And 64 
Split!=FlagsX And 128 
Logs!=Flagsl And 256 
Sc:lx=Array%!9l 
Scl y=Arr ay% ( 10 l 
If Sclx<O Then 

Sclx=-1/Sclx 
Endif 
If Sc:l y( 0 Then 
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Scl y=-1/Scl y 
Endi f 
If Collect' Then 

Su1Z=O 
NaveX=O 

Endif 
Color Flags! And 1 
6raph1ode <FlagsZ And 2l+1 
For Countt=Arravl(3l To Arrayl(4l 

If Sp 1 it ! Then 
Indep=Results<O,Count!l 
Datua=Results(l,Countll 

Else 
Indep=Countt 
Datua=ResultstAbs(Upper!l,Countll 

End if 
If Logs! Then 

Indep=Log!lndep) 
Datu1=Log(Datu1l 

Endif 
If Not Polar! Then 

XbegZ=ArrayZ!ll+Abs(Xplot!+llS(lndeoSSclx+Arrayl!Sll 
Ybegl=Arrayl(2l+Abs(Xplot!ll!IndepiScly+ArravZ!5l) 
Xendl=DatumtSclxSAbs(Xplot!l 
Yendl=DatuatSclylAbs!Xplot!+ll 

Else 
XbegZ=Arr ayl ( 1l 
YbegI=Arrayl(2) 
XendI=DatumSSclySCoslllndeplSclx-lSO!tPi!lSOl 
Yendl=-Datu1tSclvlSin((lndeptSclx-lBOllPi/l80l 

Endif 
If Line! Then 

If CountX=Arravt!3l Then 
Draw XbegZ+XendI,YbegZ-Yendl 

Else 
Draw To XbegZ+XendI,Ybegl-YendZ 

Endif 
Else 

Draw XbegI,Ybegl To XbegZ+Xendl,Ybegl-YendZ 
Endif 
If Collect! Then 

If Datu1Z>l1axl Then 
l1axZ=Datu1t 
11odeZ=Count7. 

Endif 
Add Su1l,Results!Abs!Upper 1l,CountllSCountl 
Add Navel,Results!Abs!Upper 1 l,Countll 

Endif 
Next Countx 
If Collect' Then 

Ave=Sull/Nave7. 
Endif 
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If ((flags% And ll Or !Flags% And 2ll=O Then 
Col or 1 
6raph1ode 1 
6osub Dra"axes<•Arravl<ll 

Endif 
Swap SP.array,ArrayI(l 

Return 
Procedure Bargraph(Xbeg%,YbegI,Xend7.,Yend7.) 

Draw XbegZ,YbegI To XbegI+Xend7.,Ybeg7.-Ye~d7. 

Return 
Procedure P1line(Txt$l 

Deftext 1,0,0,6 
6raph1ode 1 
Text 0,398,SoaceS!BOl 
If Txt$()11 Then 

6raph1ode 4 
Txtf=SpaceS(40-ILenlTxt$l\21l+Txtf 
Text 0,398,TxtS+Space$(80-LenlTxtS!I 

Endi f 
Graphaode 1 
Show• 

Return 
Procedure Text 

Local X, Y,K,Inf, Titlef,"sef,Big1seS,Scr$,SizeI,AS 
Sizel=6 
Gosub Palinel"<Left> - Locate text line T - Toggle print Size <ESC> aborts') 
Deftext 1,0,0,SizeZ 
6raph1ode 1 
"seS="klf(393224l+"klSl65536l+"kiSl1l+"klS12080412160l+"klSl1811949568l 
"se$="se$+"kl$1671098880l+"kl$l67111628Bl+"kl$1-1845462016l+"klSIOl+~kl$(0)+"klSIOl 

"se$="se$+"klS(27648l+"klS12684395521+"kl$1268439552l+"k!S(2684395521 
"seS="seS+"k!S(1811939328l+"klSIOl+"kl$(0)+"klS(Ol 
Big1seS="klSl65537J+"ki$11l+"k!Slll 1 Ref at 1,1; filler; standard colors 0,1 
Big1seS=Big1seS+l'tklSl106S361536l+"k!Sl545267840l+MklS(1530968992l 
Big1seS=Big1seS+"k!S(-114710B448l+"k!Sl-1079984224l+"klSl1598038144l 
Big1seS=Big1seS+"klSl545267840l+"klS11065353216l 
Big1seS=Big1seS+"klS17936l+"k!Sl520101632l+"k!S(612385856l+Mkl$(1145076800l 
Big1seS=B1g1seS+"klSl1077952576)+"klS1545267456l+"k!Sl520101632l+MklS(Ol 
Deflouse l'tseS 
Repeat 
Until "ousek=O 
Reoeat 

"ouse X,Y,K 
AS=lnkeyS 
If IAsclASl And 95l=B4 Then 

Sizel=-(Sizel-9.51+9.5 
If Sizel=13 Then 

Def1ouse Big1ses 
Else 

Deflouse "seS 
Endif 
Deftext 1,0,0,Sizel 
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Endif 
Exit If AS=ChrS!27l 
If K=l Then 

Sget Serf 
6osub P1line!'Type line <Arrows> - Direction <CR> - ends input <ESC> aborts"! 
Deftext 1,0,0,SizeX 
Title$= .. 
Text X,Y,ChrS!3l+' • 
Do 

Repeat 
lnS=InkevS 

Until In SO .. 
Exit If lnS=ChrS!13l Or lnS=ChrS!27l 
If Asc!InSl=O Then 

On !Asc!RightS!InS,1ll-71l 6osub Up,Du1,Du1,Back,Du1,For,Du1,Du1,Dn 
Endi f 
If InS>ChrS!Bi Then 

TitleS=TitleS+lnS 
Endif 
If InS=ChrS!Bl Then 

TitleS=LeftS!TitleS,"ax!Len!TitleSl-1,0ll 
Endif 
Text X,Y, TitleS+Chr$!3l+' • 

Loop 
Text X,Y,Titlef+• • 
If InS=ChrS!27l Then 

Sput Sers 
InS=ChrS ! 13! 

Endif 
Endif 

Until InS=ChrS!13l 
Deflouse 0 

Return 
Procedure Up 

Text X,Y,SpaceS!Len!TitleSl+ll 
Deftext 1,0,900,Size7. 
Text X,Y,TitleS+ChrS!3J+• • 

Return 
Procedure Dn 

Text X,Y,SpaceS!Len!TitleSl+ll 
Deftext 1,0,2700,Size% 
Text X,Y,TitleS+ChrS!3l+' • 

Return 
Procedure For 

Text X,Y,SpaceS!Len!Title$l+1l 
Deftext 1,0,0,SizeI 
Text X,Y,TitleS+ChrS!3l+" • 

Return 
Procedure Back 

Text X,Y,SpaceS!Len!TitleSl+ll 
Deftext 1,0,1800,Sizel 
Text X,Y,TitleS+ChrS!3l+" • 
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Return 
Procedure 11ove 

Local X,Y,K,A$,"se$,X0%,YO% 
"ouse X,Y,K 
6osub P1line<'<Right> - opens box, release records area.'! 
6raph1ode 3 
XOI=X 
YOI=Y 
llhile K=2 

"ouse X,Y,K 
Box X07.,Y0%,X,Y 
Box XO%,YO%,X, Y 

II end 
Get XO%,YOI,X,Y,"se$ 
X0%=11in (XO!, Xl 
Y0%=11in(Y0%,Yl 
Put XO%,YO!,"se$,6 
Gosub P1line('(Left> - Places area C - Copies area D - Deletes area <ESC> aborts') 
Hidem 
6raph1ode 1 
Do 

11ouse X,Y,K 
Put X,Y,11seS,6 
AS=Inkevf 
If (Asc(ASl And 95!=67 Then 

Put XOI,YOI,"seS,7 
Endif 
If (Asc(A$! And 95)=68 Then 

Put X,Y.~seS,6 
K=l 

Endif 
If AS=ChrS!27l Then 

Put X,Y,"seS,6 
Put XOI,Y0%,11seS,7 
K=l 

Endif 
Exit If K=l Or 11ousek=1 
Put X,Y,"seS,6 

Loop 
Sho111 
Repeat 
Until 11ousek=O 

Return 
Procedure Centerof1ass<P.arravl 

NI=O 
Swap tP.array,AvearrayI!l 
Print "Processed 0 of 1 'Avearray%(Ol' 1 Points' 
Avex=Avearray%!2l\1024 
Avey=Avearrayt!2l And 1023 
Do 

Inc NX 
If NI 11od 100=0 Then 
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Print Atl11,bl:NY. 
Endif 
Exit If Avearrayl!Nl+ll=O And Avearrayl(N1+2l=O 
Avex=iAvexi(Nl-1l+IAvearrayl!Nl+ll\1024ll/N7. 
Avey=IAvevSIN1-1l+IAvearrayl(Nl+ll And 1023ll/Nl 

Loop 
Sub Avex,200 
Avey=200-Avey 
SMap SP.array,Avearrayl(l 

Return 
Procedure Fcenterof1ass!P.arrayl 

Swap lP.array,Avearraylll 
Print "Processed 0 of 160000 Points• 
Countl=O 
Nl=O 
Repeat 

Inc NI 
Until Avearrayl!Nli<>O 
Sixbitl=O 
Nhile (Avearrayl(Nll And (63S64"Sixbitlll=O 

Inc Sixbitl 
Mend 
Uncoill=INl-llS5+Sixbitl 
ExpI=b4"Sixbit% 
Freql=(Avearrayl!Nll And 163SExplll/ExpX 
Avex=(Uncoill\400lSFreq7. 
Avey=(Uncoill "od 400lSFreql 
Add CountI,FreqY. 
Inc Sixbitl 
Repeat 

Expl=64"Sixbit1 
FreQl=IAvearrayIINY.l And lb3SExplll/Expl 
If FreqI>O Then 

Avex=IAvexSCountI+IUncoilI\400ltFreql)/ICount1.+Freq7.l 
Avey=IAvevSCountI+IUncoilI Mod 400iSFreql)/(Countl+FreqY.l 
Add Countl,Freql 

Endif 
Inc SixbitI 

Until SixbitI>4 
Inc NI 
Repeat 

Coi ll= INI-!l SS 
Freql=Avearrayl(Nll 
Uncoill=CoilI+Sixbitl 
If Uncoill "od 100=0 Then 

Print Atl11,bl;Uncoill 
Endif 
If FreqI<>O Then 

For Sixbitl=O To 4 
Expl=64"Sixbitl 
Freql=Avearray7.(Nll And 163SExpll 
If FreqI<>O Then 
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Div Freql,Exp7. 
Avex=!AvextCountt+!Uncoil7.\400ltFreq7.l/!Countt+Freqll 
Avey=!AvevtCount7.+!Uncoil1 "ad 400lJFreqll/!Count7.+Freqll 
Add Count7.,Freq7. 

Endif 
Next Six bi t7. 

Endif 
Inc NI 

Until NX>32000 
Sub Avex,200 
Avey=200-Avey 
Swap SP.array,Avearray7.!l 

Return 
Procedure Power 

Local I7.,N7.,Su1ofx,Su1ofy,Su1ofproducts,Sumofsquares 
NI=Power!O,Ol 
Su1ofx=O 
Su1ofy=O 
Su1ofproducts=O 
Su1ofsquares=O 
For 17.=1 To N7. 

Add Su1ofx,Log!Power!O,I7.ll 
Add Su1ofy,Log!Power!1,llll 
Add Su1ofproducts, !Log!Power!O,Illlll(Log(Power!l,17.lll 
Add Su1ofsquares, !Log!Power!0,17.lllA2 

Next 17. 
Slope=!NISSu1ofproducts-Su1ofxtSu1ofyl/!N7.tSu1ofsquares-Su1ofxA2) 
Intercept=!Su1ofsquaresJSu1ofy-Su1ofxJSu1ofproductsl/(NlSu1ofsquares-Su10fxA2) 

Return 

' Deposition Frequency Histogra1 Progra1 
Version=l.S 
RevdateS="28 Jun 88 1 

Print "Deposition Frequency Histographer, version"'Version;","'RevdateS 
Print "This progra1 requires 1axital tetory ••• do not boot-up with syste1 disk" 
Print "This prograt will collect the frequencies of deposition over the pixel• 
Print "field !x,yl for all deposits, either large or stall." 
Print "The output will be a frequency list !f!x,yll called Longlist.FH6" 
Print "The field will be sliced by a cutoff a; all pixels!x,yl that have a• 
Print 1 P!depositl greater, lower, or equal to a will be displayed." 
Print "The synthesized deposit will then be stored as a standard .SCR file with" 
Print "the exception that a !the cutoff), and type of region will be overlaid." 
Print "The deposit coordinates are stored in a standard .ARR file" 
Print "corresponding to the above .SCR file.• 
Print "If you have inserted an Array Disk and have ready an E1pty and Fortatted" 
Print "disk and are ready to process .ARR files then •••• type 'Y'" 
Print "Mhen the new screen appears then ••• type or select '1' 1 

Print "Cote back when you hear the tones •••••••• • 
Repeat 

AnswerS=InkevS 
Until AnswerS= 1 Y1 Or Answers=•y• 
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Di• Order%!30000l 
Di1 Longlist%!32000l 
D=O 
6randl=O 
Seg1enU=O 
Arrayfill Longlistll,O 
Cls 
Do 

Cls 
Showa 
Print 'Choose "ode of Operation: Type nu1ber or click on selection.• 
Print 
Print 1 1 Auto1atic processing of all .ARR files on disk' 
Print 
Print 1 2 Process field array with input of a for upper slice" 
Print 
Print •3 Process field array with input of a for lower slice• 
Print 
Print •4 Process field array for frequency contours" 
Print 
Print •5 Helpful hints and instructions" 
Print 
Print 1 b Exit" 
6raph1ode 3 
Deff i 11 1, 1 
PtrvertposX="ousey 
If Frat !Ptrvertpos%/32l <O. 5 Then 

6osub InboxtPtrvertpos%) 
Else 

InX=O 
Endif 
Do 

Repeat 
Ptrvertposl="ousey 
If (Inl>Ol And !Frac!Ptrvertposl/32l>0.5l Then 

6osub Outbox!Ptrvertposll 
Endif 
If linl=Ol And <Frac<Ptrvertposl/32l<0.5l Then 

6osub Inbox!PtrvertposXl 
Endif 
S11itch%="ousek 
If S11itchl>O Then 

If InX>O Then 
S11itchl=1Ptrvertposl\32l 

Else 
S11itc:hl=O 
Sound 1,15,b,7,5 
Sound 1,0 

Endif 
Endif 
KeyS=InkeyS 

Until KeyS<>"" Or S11itchl 

111 



If Switchl Then 
KeyS=Strf(Switchll 

Endif 
Exit If Val(KeySl>O And Val (Keyfl<7 
Sound 1,15,6,7,5 
Sound 1,0 

Loop 
Cls 
6raoh1ode 1 
On Val(Keyf) 6osub Array,Upper,Lower,Contour,Help,Exit 
In!=O 
Switch!=O 

Loop 
End 
Procedure Inbox!Htll 

Ht%=32t!Htl\32l 
If HtX>16 And HtX<224 Then 

Pbox -1,Htl,500,Htl+16 
Inl=Ptrvertposl\32 

Endif 
Return 
Procedure Outbox!Htll 

HtX=32tinl 
Pbox -1,Htl,500,Htl+16 
Inl=O 

Return 
Procedure Exit 

Edit 
Return 
Procedure Help 

Cls 
Print "This progra1 has two stages; the first, the .ARR file processor• 
Print •reQuires a disk with a series of .ARR files. If there are no .ARR' 
Print 'files on the disk an error !two boabsl will result.' 
Print 'The screen during this processing is overlaid with deposits however,• 
Print "the screen density is not representative of the freauency at !x,yl.' 
Print 'The second stage slices the cu1ulative histogra1 at the value of a' 
Print 'which is input at the proapt. .SCR, .FH6, and .ARR files are then• 
Print •set-uo after the input whether the higher or lower slices are chosen.• 
Print "After viewing, these files na1ed <Freqhist>. can be further processed' 
Print 'by existing 1ethods 1 

Print 'If you have inserted an Array Disk and have ready an Eapty and For1atted Disk' 
Print 'and are ready to process .ARR files then .••• type 'Y' 1 

Print 'When the new screen appears then ••• type or select '1' 1 

Print 1 Co1e back when you hear the tones •••••••• • 
Print "If you want to further process a Longlist •••••••••••• then type 'Y'' 
Print 'When the new screen appears then type or select '1' or '211 

Print •and follow the proapts •••• • 
Repeat 

Answerf=lnkeyS 
Until Answer$= 1 Y1 Or Answer$= 1 y' 

Return 
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Procedure Upoer 
Local SixbitX,ExpX,FreqX,F1inX,CoilX,UncoilX,IterX 
On Error 6osub Seg_array 
Gosub Checkandload 
T1axl=Longlistl(1b041l And b3 ! The center pixel (200,200) always on. 
6osub Get_freq 
FileS=1 UPPER 1 +StrS!Int!F1inX/T1axlt100ll+ 1 .SCR1 

Cls 
Print At(52,1l;"Upper slice of• 
Print Atl52,2l;'freauency histogra1 1 

Print At(52,4l;'Pixels displayed" 
Print At(52,5l;'represent sites with" 
Print Atl52,6l;"frequency a >= 1 'F1inl/T1axl 
Print Atl52,7l;'based on 1 'T1axl' 1 deposits 1 

Print At(52,20l;" OX of screen painted" 
Orderl(Ol=1 
Orderl(1l=201 
For Iterl=1 To 32000 

CoilX=!Iterl-llSS 
FreqX=Longlistlllterll 
If Iterl Mod 320=0 Then 

Print At!52,20l;Using 'lllX',IterXS100/32000 
Endif 
If Freql<>O Then 

For Sixbitl=O To 4 
Uncoill=Coill+Sixbitl 
Expl=b4'·Sixbi tl 
Freql=Longlistlllterll And (63SExpll 
If FreqX<>O Then 

Div Freql,Expl 
If FreqX>=F1inl Then 

Xpixell=Uncoill\400 
YpixelX=UncoilX Mod 400 
Plot XpixelX,Ypixel7. 
Inc Orderl!Ol 
Option •u1• 
DrderX!OrderX!Oll=XpixellS1024+YpixelX 

Endif 
Endif 

Next Sixbitl 
Endif 

Next Iterl 
Hide1 
Print Atl52,20l;SpaceS!28l 
Bsave FileS,Xbios!2l,32000 
Print At!S2,20l;'Save filena1es: 1 

Print At!S2,21l;FileS 
Print Atl52,22l;'and" 
FileS=LeftS!FileS,lnstr!FileS, 1

•
1 ll+1 ARR 1 

Print Atl52,23l;FileS 
Gosub Save_segs 

Return 

113 



Procedure Lower 
Local Sixbitl,Expt,Freql,F1inl,Coilt,Uncoill,Itert 
On Error Gosub Seg_array 
Gosub Checkandload 
T1axX=Longlistl(16041l And 63 1 The center pixel (200,200) al"ays on. 
6osub Get_freq 
File$= 1 LONER 1 +StrSIIntlF1inl/T1axXSIOOll+ 1 .SCR 1 

Cls 
Print At!52,1l:"Lower slice of" 
Print At!52,2l;'frequencv histogra1 1 

Print At!52.4l:"Pixels displayed' 
Print At!52,5l:"represent sites with' 
Print At!52,61;'frequencv d <="'F1inl/T1axl 
Print At\52,7l;'based on''T1axl' 1 deposits• 
Print At!S2,20l:' Ol cf screen painted" 
Orderl(01=1 
Order% ( 1l =201 
For Iterl=l To 32000 

Ccill=!Itert-IJSS 
Freql=Longlistl!Iterll 
If Iterl "cd 320=0 Then 

Print At!52,20l:Using 'llll',Iterttl00/32000 
Endif 
If Freql<>O Then 

For Sixbitl=O To 4 
Uncoill=Coill+S1xbitl 
Expl=64"SixbiU. 
Freql=Longlistl(Iterll And !63lExpll 
If FreoX<>O Then 

Div Freql,Exp7. 
If Freqt<=F1inl And Freql>O Then 

Xpixell=Uncoill\400 
Vpixell=Uncoill "cd 400 
Plot Xpixelt,Vpixell 
Inc Orderl (01 
Option •u1• 
Ordert!Orderl!Oll=Xpixellt1024+Ypixell 

Endif 
Endif 

Next Sixbitl 
Endif 

Next lter7. 
Hide• 
Print At!52,20l:ScaceS!28l 
Bsave FileS,Xbios(2J,32000 
Print At(52,201;'Save filena1es: 1 

Print At!52,21l;FileS 
Print Atl52,22l;'and' 
FileS=Left$(FileS,Instr!FileS, 1

•
1 ll+ 1 ARR 1 

Print At!52,23l;FileS 
Gosub Save_segs 

Return 
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Procedure Contour 
Local SixbitI,ExpI,Freql,F1inI,CoilI,UncoilI,Iterl 
On Error Gosub Seg_array 
Gosub Checkandload 
T1axl=Longlistl!16041l And 63 ! The center pixel !200,200) alMays on. 
Gosub Get_freq 
Filef= 1 CNTUR 1 +Strf!Int!F1in%/T1axll100ll+ 1 ,SCR 1 

Cls 
Print At!52,1l;"Contour slice of" 
Print At(52,2l;'frequency histogram• 
Print At!52,4l;'Pixels displayed' 
Print At(52,5l:'represent sites Mith' 
Print At!52,6l;'frequency a =1 'F1inl/T1axl 
Print At!52,7i:'based on 1 'T1axl' 1 deposits 1 

Print At!52,20l;' 01 of screen painted' 
Orderl!Ol=1 
Orderl!ll=201 
For Iterl=1 To 32000 

Coill=(lterI-lllS 
Freql=Longlistl(lterll 
If lterl "od 320=0 Then 

Print Atl52,20l;Using 'lllI',Iteril!00/32000 
Endif 
If FreqI<>O Then 

For Sixbitl=O To 4 
UncoilI=Coill+SixbitI 
Exp1=64"5ixbitl 
Freql=Longlistl(Iterll And (63lExpll 
If FreqI<>O Then 

Div Freql,Exp7. 
If FreqI=FtinI Then 

XpixelI=Uncoill\400 
YpixelZ=Uncoill ~od 400 
Plot Xpixell,Ypixell 
Inc Orderl!Ol 
Option •u1 • 
Orderl(0rderl(0)l=XpixellS!024+Ypixell 

End if 
Endif 

Next Sixb1tl 
Endif 

Next lterl 
Hidet 
Print At!52,20l;Spacef!2Bl 
Bsave File$,Xbios12l,32000 
Print At!52,20l;'Save filena1es:' 
Print At!S2,21l:FileS 
Print At!52,22l; 1 and 1 

File$=LeftS!FileS,Instr(File$, 1
•

1 l)+ 1 ARR 1 

Print At!52,23l;Filef 
Gosub Save_segs 

Return 
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Procedure Checkandload 
Local Fail!,Filef,Devlistf,Devcntl 
Devli sts='ADB' 
If LonglistXIOl=O Then 

Do 
Devcntt=1 
Repeat 

Filef="id$(Devlistf,Devcnt7.,ll+ 1 :\LON6LIST.FH61 

Print 'Checking device''LeftS!FileS,2i''for LON6LlST.FH6' 
Exit If Exist!File$l 
Inc Devcnt7. 

Until Devcntl>Len!Devlistf) 
Exit If Devcnt7.<=Len!Devlistfl 
Print 'Can't find any longlist files. Please load a disk with a• 
Print 'longlist at top level and hit any key, <ESC> aborts' 
Print 'the program.' 
Repeat 

Filef=Inkey$ 
Until FilefO" 
If File$=Chr$1271 Then 

Edit 
Endif 

Loop 
Print 'Loading''FileS 
Bload FileS,Lpeek!Arrptr(Longlistl!lll 
Arrayfill Orderl!l,O 

Endif 
Return 
Procedure Get_freq 

Local Fain$ 
Print 'Cutoff frequencies 1ust be integer 1ultiples of 1/ 1 ;T1axl;'.' 
Print 'Frequency will auto1atically be rounded to nearest l/';T1axl;'th.' 
Do 

Input 'Cutoff frequency (absolute n, or all';F1in$ 
If Instr!F1inS,'l'l<>O Then 

F1in7.=T1axlSO.OlSVal!F1inSl+O.S 
Else 

F1inl=Val !Ftinfl+0.5 
Endif 
Exit If F1inl<=T1axl 
Print 'Frequency can't exceed 1001 or 1 'T1axl''deposits. Please reenter.• 

Loop 
Return 
Procedure Seg_array 

Local Ecodel,Segl,Segf 
Ecodel=Err 
On Error 6osub Seg_array 
If Ecodel<>lb Then 

On Error 
Error Ecodel 

Endif 
Segl=!Segaentl\299991+1 
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Print At!53,2ll; 1 Seg1ent1ng .ARR file' 
Print At!53,22l; 1 Seg1ent1 'Segl 
Print At!S3,23l;'Please wait ••• • 
If Segl >1 Then 

Segf=LeftS!FileS,lnstr!Filef, 1
•

1 ll+ 1 AR 1 +StrS!Segll 
Else 

SegS=LeftS!FileS,Instr!FileS, 1
•

1 ))+ 1 ARR 1 

Endif 
Dec Orderl!O) 
Bsave SegS,Lpeek!Arrptr!Orderlllll,Orderl!OlS4+8 
Arrayfill Orderl!l,O 
Orderl!Ol=2 
Orderl!ll=201 
Add Segaentl,29999 
Print At!S2.21l;Spc!29l 
Print At!52.22l;Spc(29l 
Print At!52,23);5pc(29l 
Resuae 

Return 
Procedure Save_segs 

Local Bases 
BaseS=LeftS!FileS,Instr!FileS, 1

•
1 ll 

If Segaentl=O Then 
Bsave FileS,Lpeek!Arrptr!Orderlllll,Orderl!OlS4+8 

Else 
FileS=BaseS+ 1 AR 1 +StrSilnt(Seg1entl/29999l+1l 
Bsave File$,Lpeek(Arrotr(Qrderl(lll,Orderl(0ll4+8 
Open 1 R1 ,ll,BaseS+ 1 ARR 1 ,4 
Field 11,4 As Buff 
Lset BufS="klS(Segaentl+Order/.(Oll 
Put 11,2 
Close 11 

Endif 
Return 
Procedure Array 

Print At!S2,1l;'Deposit 6rand Total= 01 

Print Atl52,3l;'File:" 
Print At(52,5l;"File nuaber=";'O 
Print At(52,7l;"N= 01 

Print At(52,9l:'Out of 0 total deposits• 
Repeat 

Dir •s.ARR" To 1 FREQHIST.DIR 1 

Open 1 l 1 ,I0, 1 FREQHIST.DIR" 
Repeat 

Gosub Loader 
Gosub Process 

Until Eof !101 
Repeat 

Print At(52,22J;"Hit any key to continue• 
P=Trunc!12S/Rnd(1J+O.Sl 
Sound 1,15,IP,50 

Until lnkey$()" 1 
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Sound 1,0 
Print At!S2,10l;'lf all Array Disks are done' 
Print At(S2,11l; 1 Re1ove the last Array Disk' 
Print At!S2, 13l;'lf all are done ••• Type 'D'' 
Print At(S2,1Sl;'lf 1ore Disks are to be done' 
Print At!S2,16l;'insert the next Array Disk' 
Print At!52,17i;'into the disk drive' 
Print At(52,19l;'If 1ore to do ••••• Type'"'" 
Repeat 

Repeat 
AnswerS=InkeyS 

Until Answers<>'" 
Answer$=Chr$(Asc!AnsNer$) And 95) 
If Answer$= 1 D1 Then 

6osub Blank 
6osub Escape 

Endif 
If Answer$='"' Then 

6osub Blank 
Close 

Endif 
Until AnswerS="S' Or Answers='"' 

Until Answer$= 1 S1 

Return 
Procedure Escape 

Print At(S2, 10l;'Insert a For1atted and E1pty 1 

Print At(S2,11l;'Disk into the disk drive• 
Print At(52,13l;"If the drive is ready' 
Print At!S2,14l;'then Longlist will be saved' 
Print At!S2,1bl;'To save ••••••••• Type 'S'" 
Repeat 

AnswerS=InkeyS 
AnswerS=Chr$!Asc(Answer$) And 9Sl 

Until Answers=·s• 
Bsave 1 LON6LIST.FH6 1 ,Lpeek!Arrptr(Longlistl!lll,12BOOB 
Close 

Return 
Procedure Process 

Inc D 
Print At!SB,3l;SpaceS(22l 
Print At(S8,3l;File$ 
Print At(bS,Sl;D 
Print At(S2,9l;Using 'Out of 11111 total deposits',Orderl(Ol-1 
Nl=2 
Repeat 

Xpixell=Orderl(Nll\1024 
Ypixell=Orderl!Nll And 1023 
Plot Xpixell,Ypixell 
Coill=400lXpixell+Ypixell 
Displ=Coill "od 5 
Coill=Coill\5 
Add Longlistl!Coilt+1l,b4ADispl 
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Inc: 6rand7. 
If !Hl-1l "od 100=0 Then 

Print At!72,1l:Using 1 111111 1 ,Grandl 
Print At!54,7l;Using 1 11111 1 ,Nl-1 

Endif 
Inc Nl 

Until NI>Orderl!Ol 
Print At!52,1l;Using 'Deposit Grand Total=ttltll1 ,6randl 
Longlistl!Ol=6randl 

Return 
Procedure Loader 

Arrayfill Orderl!l,O 
Input 10,FileS 
Bload FileS,Lpeek!Arrptr!Orderl!lll 

Return 
Procedure Blank 

Deffill 0, 1 
Pbox 401,124,639,399 

Return 
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APPENDIX B 

NUMERICAL DATA 

TABLE II 

FRACTAL DIMENSION DATA FOR INDIVIDUAL SMALL AGGREGATES 

Includina..J..!!.Q! Excludi nq Edge 

Sau ares 'Circle5' Squares 'Circles' Circles 

Deposit t! R,.. g,i; g,i; g,i; g,i; g,i; 

1 4767 1.8355364401 1.6573104232 1.6020511402 1.6880587015 1.6303281027 1.6870086816 
2 3825 1.9224613245 1.6609789001 1.6046445531 1.6810192676 1.623102596 1.6802291833 
3 3899 1.8374010038 1.6599607926 1.6062148931 1.6785667926 1.6242967218 1.6817418526 
4 4621 1.7910889197 1.6525600963 1.5983715229 1.6831302681 !.6267701358 1.6839210176 
5 2972 1.8931199782 1.6661022793 1.6156322755 1.6790711059 1.6272517401 1.6833733409 
6 4969 1.8368096251 1.658277456 1.6020197103 1.697172808 1.6389580136 1.6957571247 
7 4639 2.0458284656 1.6453806026 1.5943751484 1.6857970137 1.6313605475 1.688136336 
8 4354 1.807984199 1.6621301618 1.6069461333 1.6969820377 1.641131271 1. 6984915942 
9 5335 1.8242820754 1.6716125386 1.6187794088 1.7187509464 1.6628165381 1.7197489563 
10 4512 1.7398365792 1.6704012545 1.6162811829 1.6992186088 1.6438876088 1.7012425911 
11 3314 1. 871951025 1.6601788582 1.6030092667 1.6769611661 1.6188760225 1.6749274763 
12 4622 1.7310142902 1.6670967371 1.6151354645 1.6974291693 1.6423349234 1.699262593 
13 4529 1.8186270042 1.6852599808 1.6293001878 1.7139555174 1.6575690305 1.7150032462 
14 3793 1.9193907128 1.6587513458 1.b041053153 1.6808722818 1.6253296977 1.6819975035 
15 5000 1. 744598435 1.674623683 1.6185214248 1.7054809105 1.6467311771 1.703906851 
16 5042 1.908052491 1.6698398268 1.6143191837 1.7050727751 1.6477016711 1.7047734201 
17 3795 1.8193060175 1.6598486635 1.6081433871 1.688375014 1.6344183185 1.6909629697 
18 4420 1.8347762916 1.6675452581 1.6127089791 1.6962384505 1.6398140939 1.696631758 
19 4411 1. 774914963 1.6571104783 1.6045614382 1.6832531101 1.6293954963 1.6864977259 
20 5764 1.8319819071 1.6676959306 1.6104902431 1.7177188699 1.6591283631 1.7163278898 
21 5518 1.9340069265 1.6632756023 1.6127396026 1.7101350582 1.6554795156 1.7130257265 
22 3506 1.8022675617 1.6635810306 1.6119526325 1.6881568945 1.6351435214 1.6918002253 
23 5238 1.8128935254 1.6653275148 1.6097703385 1.7004290546 1.6410850401 1.69825338 
24 4132 1.8484878424 1.6692567821 1.6186259044 1.6962588726 1.6438149748 1.7007075376 
25 5212 1.8311292049 1.6781571799 1.6220593534 1.7136615252 1.6562096633 1.7132077267 
26 5080 1.8549047671 1.6544908435 1.6005912453 1.6962772363 1.6391177077 1.6958024112 
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TABLE III 

FRACTAL DIMENSION DATA FOR INDIVIDUAL LARGE AGGREGATES 

Dtposit It 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

17428 
14872 
15411 
15243 
12208 
18052 
19429 
16525 
21268 
17189 
13706 
14395 
15320 
12854 
14897 
16326 
14ci44 
16338 
15752 
17715 
19255 
12613 
16464 
17161 
16907 
1%15 
19056 
17401 
15680 
14909 

Including Edge 

~ 'Circles' Squares 

Q,.. ~ ~ ~ 

1.82979542 1.6699438252 1.6126899269 1.6747005497 
1.8571485234 1.6695933746 1.6113824213 1.6750954405 
1.777909686 1.6693841613 1.614141633 1.6711044925 
1.7746517225 1.6682995941 1.6118757841 1.6735022653 
1.8329831474 1.6688731604 1.6120067888 1.6705759311 
1.843776623 1.6635686705 1.6073511179 1.673057665 
1.9543270665 1.6670483288 1.6106346917 1.6786194158 
1.7756269843 1.659262413 1.6031247851 1.668189111 
1.7853591922 1.6672958319 1.6113788372 1.679632124 
1.7354014398 1.6635703673 1.6088319099 1.6693108723 
1.8248885544 1.6666992685 1.6092906897 1.6700040655 
1.7357458246 1.6680916443 1.610045142 1.6711784013 
1.78879105 1.6776510535 1.620::031 1.6798353916 
1.8613387844 1.6675974528 1.6125763577 1.6715090894 
1.7333504997 1.664983349° 1.6076303434 1.6718644097 
1.8693838524 1.6607155269 1.6052765298 1.664775°:32 
1.7978242181 1.6689430768 1.6111271869 1.6716337209 
1. 8051414443 1. 6639643543 1. 60817652 1. 6667714795 
1.769 1 6~1464 1.6720236587 1.6144379524 1.675944359 
1.00°esst3B8 1.6613071914 1.6057271824 1.6662990664 
1.8781901382 1.667062~371 1.6142472474 1.6752969272 
1.73207933° 1.6710463412 1.6159165965 1.6745999834 
1.7898308771 1.6746682685 1.6178779816 1.6815031254 
1.7829201003 1.66889243°5 1.6152812764 t.6774442037 
1.8066831114 1.6733568534 1.6161727463 1.6796282729 
:.8434988508 1.661437214 1.6072074545 1.6695702278 
1.7922802635 1.6761666367 1.6198860929 1.6857029235 
1.8293298347 1.6572971729 1.6042628967 1.663857593 
1.7937369861 1.6629574201 1.6063976033 1.6672379819 
1.8046050822 1.6~368:3066 1.5971666179 1.6573053395 

Exc:luding Edge 

'Circles' 

~ 

1.6170335607 
1.6167919779 
1.61639910% 
1.6164864462 
1. 6138091472 
1.6160872085 
1. 6212306642 
1.6115455375 
1.623083186 
1.6144074109 
1.6128300832 
1. 6131569843 
1. 622090424 
1. 6167550434 
1.6139623356 
1. 6089647983 
1.6136249278 
1. 6110268009 
l.6178854626 
1.6105454317 
1.6218851111 
1. 619317032 
1.6243320708 
1. 623302901 
1.6220518204 
1.61454239 
1.6287472478 
1.6101775892 
1. 6101002107 
1. 6004981638 

The following oraphs of the radius of 

Circles 

~ 

1.6738358665 
1.6737356634 
1.6733642509 
1. 6 733864314 
1. 6 705589024 
1. 6 727 6853 44 
1.6781842979 
1.6682588539 
1. 6801694666 
1. 6711497312 
1.6696128472 
1.6699916866 
1. 6789364492 
1.6734976508 
1.61 07704828 
1. 665931117 
1. 6705724942 
1.6679065033 
1.6750132936 
1. 6672416964 
1.678824173 
1. 6761888829 
1. 6811924391 
1.680249824 
1. 6788707044 
1.6713265236 
1. 6857074059 
1.6666498788 
1.6668820211 
1. 6573353164 

gyration 

dependence on the number of deposits are based on the radius 

of gyration which was calculated from the lattice origin. 

The slopes are also listed in Table III. 
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Figure 23. Ln<Rw> vs. Ln<N> for aggregate number 3. 
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Figure 24. Ln<Rw> vs. Ln<N> for aggregate number 4. 
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Figure 25. Ln<R9 ) vs. Ln<N> for aggregate number 5. 
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Figure 26. Ln<R9 ) vs. Ln<N> for aggregate number 6. 
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Figure 27. Ln<R9 > vs. Ln<N> for aggregate number 7. 
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Figure 29. Ln<Rv> vs. Ln<N> for aggregate number 9. 
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Figure 33. Ln<R9 ) vs. Ln<N> for aggregate number 13. 
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Figure 35. Ln<Rv> vs. Ln<N> for aggregate number 15. 
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Figure 37. LnCR9 ) vs. Ln<N> for aggregate number 17. 
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Figure 39. Ln<Re> vs. Ln<N> for aggregate number 19. 
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Figure 41. Ln<Rw> vs. Ln<N> for aggregate number 21. 
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Figure 43. Ln<Rv> vs. Ln<N> for aggregate number 23. 
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Figure 47. Ln<Re> vs. Ln<N> for aggregate number 27. 
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Figure 48. Ln<R9 > vs. Ln<N> for aggregate number 28. 
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APPENDIX D 

ADDITIONAL RADIUS OF GYRATION ANALYSIS 

The radius of gyration is defined as the average sum 

of squares of the distances from the center of deposition to 

each deposit. The exact calculation of the radius of 

gyration dependence on the number of deposits would have 

necessitated N recalculations for the center of deposition 

and consequently a much longer process time. The assumption 

was made that the average center of deposition, for a large 

sample of aggregates, would be near the lattice origin. 

However, as discussed above, the average center of 

deposition was appreciably displaced from the origin. 

Moreover, the discrepancy in the fractal dimension, as based 

on this approximate radius of gyration, was unacceptable. 

In order to obtain a reasonable bound on this error it would 

be necessary to be able to estimate the dependence that this 

displacement had on the number of deposits. Analysis of the 

composite of all the aggregates and also of aggregate number 

20, indicated that this displacement was not even monotonic. 

Instead of analyzing this distribution further, and 

estimating the fractal dimension using data that was known 

to be in error, it became obvious that it would be most 

prudent to recalculate the exact radius of gyration for a 
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selected number of deposits and to obtain an approximate 

fractal dimension based on exact data. The following 

provides the details of the above argument and the resulting 

analysis. 

The parallel axis theorem for the moment of inertia, 

I = le.~.+ N•L2 , where L is the displacement from the center 

of mass, c.m., can be utilized to modify the radius of 

gyration, R9 = <IIN> 1 ' 2 • The dependence, L = L<N>, was not 

obtainable, only L<~Ax.> was known. Although, regression 

over all N of the deposits would have been the preferred 

method, however, without the corrections based on L<N>, the 

results would have been systematically in error. A two

point approximation for the slope of Ln<Rv> vs. Ln<N> could 

have been obtained <utilizing the parallel axis theorem with 

the final displacements of the centers of deposition> by 

using the final deposits of the small and large forms of the 

same aggregate <Slope = Slope<N...Ax.>>. However, 

recalculation of the radius of gyration based on the center 

of mass for a limited number of points would not have 

required an excessive amount of time. Thus, the radius of 

gyration program was modified and these data points were 

calculated directly. A more thorough analysis of aggregate 

number 20 was also performed in order to provide an 

additional comparison. These slopes, of 26 independent 

aggregates, were averaged. The result was compared with the 

slope of the least squares regression line based on the plot 
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of the 52 data points. Any discrepancy here would indicate 

correlations between those data points associated with the 

large and small forms of the same aggregate. 

The result of the two-point slope calculation for 

aggregate number 20 is, slope = 0.592, which gives a fractal 

dimension of Dfte = 1.69. The results based on the 

approximate radius of gyration for aggregate number 20 from 

Appendix B, are, for the small aggregate, DA• = 1.83, and 

for the large aggregate, ~. = 1.81, their average is 1.82. 

Even though there is considerable variation among any of the 

individual deposits, this discrepancy is substantial. 

Aggregate number 20 was sampled at 20 increments of 5X of 

N"Ax. And this data was analyzed using least squares. The 

resulting fractal dimension based on the slope of the 

regression line is oft. = 1.67. The coefficient of 

determination, R2 , for the regression is 0.95. This is in 

close agreement with the more approximate result based on 

the two-point slope calculation. 

method yields credible results. 

Thus, the two-point slope 

The data obtained for 

aggregate number 20 is listed below in Table IV and the 

graph is in Figure 51. 

The average of the two-point slope calculations of 

aggregates numbers 1 to 26, inclusive, using the final 

deposits of the small and large forms of each aggregate is, 

slope = .58 ± .02. This result yields a fractal dimension 

of 1.73 ± .06. The raw data for this calculation is listed 
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TABLE IV 

CORRECTED RADIUS OF GYRATION RESULTS FOR AGGREGATE NUMBER 20 

'Y. N 

100 
95 
90 
85 
80 
75 
70 
65 
60 
55 
50 
45 
40 
35 
30 
25 
20 
15 
10 

5 

5' 0[] 

r
= " " Ill 
""' 

DEPOSITS Ln<N> Ln <Re1l. 

17715 9.782170 4.690065 
16829 9.730858 4.658574 
15944 9.676838 4.626698 
15058 9.619665 4.593242 
14172 9.559023 4.558203 
13286 9.494467 4.520182 
12401 9.425532 4.479921 
11515 9.351406 4.436583 
10629 9.271342 4.390161 
9743 9.184303 4.338853 
8858 9.089076 4.281730 
7972 8.983691 4.218701 
7086 8.865877 4.148299 
6200 8.732305 4.069269 
5315 8.578288 3.977641 
4429 8.395929 3.868652 
3543 8.172728 3.739125 
2657 7.884954 3.571964 
1772 7.479864 3.332235 
886 6.786717 2.950274 

Ln<R9 ) ~ -1.147 + .600•Ln<N> 

R2 = .948 

r-' 

.1.,..-J-
,, .. , .. 

,,,,.... .. ,----
..... ""' ... .. -

.... -·-",. -

, .. .... 
•' 

~ · · 
--~~...-1. , ..... 

.. -
~-.. -
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Figure 51. Corrected radius of gyration dependence on 
number of deposits for aggregate number 20. 
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in Table V and the coordinates are plotted in Figure 52. 

The graph was analyzed using linear regression and the slope 

of the regression line is, slope = .571. The correlation 

coefficient for the regression is, R = .99 and the residual 

variance is .028. These results yield a fractal dimension, 

D"e = 1.75 ± .08. Additional analysis of the covariance of 

the paired points associated with the small and large forms 

of the aggregates was not performed because the results of 

the two methods of calculation were in agreement. 

TABLE V 

CORRECTED RADIUS OF GYRATION RESULTS FOR AGGREGATES 
NUMBERS 1 TO 20, INCLUSIVE 

AGGREGATE 
NUMBER 

1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

L<N> 
8.469472 
8.249315 
8.267962 
8.438366 
7.996991 
8.510973 
8.442254 
8.378850 
8.582045 
8.414496 
8.105911 
8.438581 
8.418256 
8.240913 
8.517194 
8.525558 
8.241439 
8.393839 
8.391857 
8.659385 
8.615770 
8.162231 
8.563695 
8.326517 
8.558719 
8.533068 

SMALL 
Ln <R8 l. 

3.963612 
3.853862 
3.850265 
3.962984 
3.731075 
3.994435 
4.004926 
3.920564 
4.004637 
3.925898 
3.785593 
3.952668 
3.906203 
3.833317 
3.979296 
3.983830 
3.902611 
3.920980 
3.934570 
4.025738 
4.043975 
3.839269 
3.986628 
3.892380 
3.985567 
4.018763 

L<N> 
9.765833 
9.607237 
9.642836 
9.631877 
9.409845 
9.801012 
9.874521 
9.712629 
9.964959 
9.752024 
9.525589 
9.574636 
9.636914 
9.461409 
9.608915 
9.700514 
9.612064 
9.701248 
9.664720 
9.782168 
9.865526 
9.442482 
9.708932 
9.750394 
9.735482 
9.884102 

LARGE 
Ln <Rul. 

4.693800 
4.646392 
4.639245 
4.669662 
4.545592 
4.722027 
4.784022 
4.706285 
4.782405 
4.699201 
4.614721 
4.629936 
4.618569 
4.592153 
4.633099 
4.667667 
4.631654 
4.659043 
4.672567 
4.690065 
4.744267 
4.597081 
4.676501 
4.742227 
4.672455 
4.752329 



158 

Although time did not allow for additional analysis, 

an examination of the dependence that the displacement of 

the center of deposition has on the number of deposits could 

explain the concavity which was previously noticed in the 

graphs of Ln<~> vs. Ln<N>. The previously mentioned cut 

offs in the regression analysis of, 0 to 6, only excluded a 

relatively small number of pixels <<2.57. of the average 

number of pixels, 16298>. Furthermore, the displacement of 

the center of deposition appears to quickly attain a value 

comparable with the final displacement after only 57. of the 

total deposits. The sequence of regressions which indicated 

a convexity in the graphs of Ln<~> vs. Ln<N> <concavity in 

the fractal dimension> occurred over the same range of 
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Figure 52. Corrected radius of gyration dependence on 
total number of deposits for 26 small and large 
aggregates. 
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deposition in which the displacement was convex, evident in 

the data shown in Table IV for Rc.M. and N. This suggests 

that they are correlated just as the corrections to the 

formula for the radius of gyration would require and that 

the concavity may be related to the systematic error. 

The estimate for the fractal dimension which is based 

on the average of the slopes is regarded as the most 

accurate. This result, D~v = 1.73 ± .06, reflecting the 

corrections in the radius of gyration, is approximately 3% 

less than the result which utilized the uncorrected radius 

of gyration. 



APPENDIX E 

CONSIDERATIONS FOR FURTHER WORK 

In addition to those items already presented as 

subjects for further study, the following ideas could also 

provide more insight into the model. 

Analysis of the effect of varying the width of the 

exclusion zone, or of making it more closely conform to the 

mean perimeter, instead of merely being concentric with the 

lattice origin, could provide insight into the active zone. 

The correlation function could also be separately evaluated 

over the excluded edge and the results compared to the 

results from the interior. 

The average coordination number could be used to 

measure the local density and then be compared to the 

results of the correlation function. The sizes of the 

correlation windows could also be varied, although, no 

effect was noticed between the sizes used in this thesis to 

those used by Meakin. 

The random walk routine could be altered with a 

deterministic component to simulate motion in an imposed 

field <Langevin equation). 

The 'sticking' probability could be made to be a 

function of the local curvature, <Gibbs-Thompson relation> 
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to realistically model solidification processes. Diffusion 

within the aggregate and 7 slumping~ of the perimeter could 

also be investigated • 

The number of jumps a random walker takes prior to 

deposition could be used as a psuedo-time in order to study 

the dynamics of growth. However, it would be necessary to 

adjust its values so that the velocities would not be 

greater for the longer jump distances in the diffusion zone. 

The axial center of mass could be defined along the 

arms of the aggregate to study the motion of the arms. 

Patterns and cycles of movement, 

coordination 

detected. 

with neighboring 

independent of and also in 

arms could possibly be 

Dimensionless ratios of the step-size in the 

deposition zone, the size of the random walkers, and the 

distance of interaction with the aggregate could be formed, 

analogous to the Peclet number, and could be related to the 

fractal dimension. 

The deposition probability could be found using 

relaxation methods, similarly, a large deposit could be 

bombarded many times and the number of attempted depositions 

could be recorded for the perimeter sites also giving the 

probability distribution. It is expected that the tips of 

the arms would have the greatest probablity. The average 

penetration depth could also be found. 

If a color monitor were used, the age of the deposits 
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could be color coded, and each color could have different 

diffusion and deposition properties. 

The geometry of the arms could be analyzed to 

determine what factors might affect the ratios of the length 

and spacing and lengths of the side branches. 

Various boundary conditions could be utilized in place 

of a the 'killing' circle such as reflecting or toroidial, 

and the geometry of the boundary could be changed to model 

diffusion along a channel or at a planar surface. 

Finally, seeds of different geometries could be 

utilized, in order to investigate how persistent a sharp 

corner might grow, or how a cavity might be filled in. 
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