
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1988

Logic design using programmable logic devices Logic design using programmable logic devices

Loc Bao Nguyen
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Nguyen, Loc Bao, "Logic design using programmable logic devices" (1988). Dissertations and Theses.
Paper 4103.
https://doi.org/10.15760/etd.5987

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4103
https://doi.org/10.15760/etd.5987
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Loe Bao Nguyen for the Master

of Science in Electrical Engineering presented August 18,

1988

Title: Logic Design Using Programmable Logic Devices

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Jac{f iley / /

The Programmable Logic Devices, PLO, have caused a

major impact in logic design of digital systems in this

decade. For instance, a twenty pin PLO device can replace

from three hundreds to six hundreds Transistor Transistor

Logic gates, which people have designed with since the 60s.

Therefore, by using PLD devices, designers can squeeze more

features, reduce chip counts, reduce power consumption, and

enhance the reliability of the digital systems.

This thesis covers the most important aspects of logic

design using PLD devices. They are Logic Minimization and
State Assignment. In addition, the thesis also covers a
seldomly used but very useful design style, Self-Synchro­

nized Circuits.

2

The thesis introduces a new method to minimize

Two-Level Boolean Functions using Graph Coloring Algorithms
and the result is very encouraging. The raw speed of the

coloring algorithms is as fast as the Espresso, the industry

standard minimizer from Berkeley, and the solution is

equally good.

The thesis also introduces a rule-based state

assignment method which gives equal or better solutions than

STASH (an Intel Automatic CAD tool) by as much as twenty
percent.

One of the problems with Self-Synchronized circuits is

that it takes many extra components to implement the

circuit. The thesis shows how it can be designed using PLD

devices and also suggests the idea of a Clock Chip to reduce
the chip count to make the design style more attractive.

LOGIC DESIGN USING PROGRAMMABLE LOGIC DEVICES

by

LOC BAO NGUYEN

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

Portland State University

1988

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the dissertation

of Loe Bao Nguyen presented August 18, 1988.

Marek Perlowsk~

APPROVED:

Lee w. Casperson, Chair, Department of Electrical

Engineering

Bernard Ross, Vice Provost for Graduate studies

ACKNOWLEGEMENT

I sincerely thank Dr. Marek Perkowski and my wife,

Anhle for their encouragement. Dr. Perkowski has encouraged

me to come back to school during 1988 to finish up the

thesis after I had discontinued schooling for a year due to

the pressure at work. Without the support from those

mentioned, I could not have been able to finish this thesis.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER

I INTRODUCTION

II DESIGNING SELF-SYNCHRONIZED CIRCUIT

USING PALs OR PLDs

PAGE

iii

vi

vii

1

7

Self synchronized circuit structure . . . 11

Clock generator block 14

III INTERNAL STATE ASSIGNMENT FOR FINITE STATE

IV

MACHINE USING PLDs

Heuristic rules for state assignment

Output consideration

LOGIC MINIMIZATION OF TWO LEVEL BOOLEAN

FUNCTION USING GRAPH COLORING . .

Minimal Implicants

Compatible implicants and compatible

sets

Minimization of multi-output two-level

37

41

53

61

64

74

Boolean functions 88

CHAPTER

V ZAPAGAL BOARD

VI CONCLUSION • . .

BIBLIOGRAPHY

APPENDIX A ..

APPENDIX B

APPENDIX C .

v

PAGE

117

155

158

162

167

217

LIST OF TABLES

TABLE PAGE

I Transition Table of D-Flip-Flop 47

II Matching operator 75

III Star operation 108

IV Palmini performance 114

FIGURE

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

LIST OF FIGURES

Huffman Moore machine . . . •

Rey and Vaucher flow chart

Self-synchronized machine

MOC machine . . .

Clock generator block .

Change detector

TTL implementation of change detector

Symmetrical delay . .

Asymmetrical delay

Realization of asymmetrical delay

UIC machine

Crumb road problem

Asynchronous circuit for Crumb road problem .

Synchronous circuit for Crumb road problem

Self-synchronized circuit for

Crumb road problem

UIC case for Crumb road problem . .

Front end chip

Combinatorial output

Registered output

PAGE

8

11

12

13

14

16

17

18

18

19

26

28

29

30

31

34

36

42

43

FIGURE

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Coston and Costof f

Coston and Costof f calculation

Transition equations

Rule 1

Reset signal

Rule 2

Rule 3

Grey code assignment

Rule based assignment . . .

Necessary implicant . .

Necessary implicant 2

Minimal implicant .

Example 4.4 •••••••.•••

Compatible implicants . .

Compatible coloring

Multioutput 1

Multioutput 2 ..••......

Example 4.8

Depth-first strategy with on successor

GAL16V8 logic diagram • •

Output macro cell . .

Zapagal board

Zapagal block diagram • • •

DC-DC converter

viii

PAGE

45

46

48

50

51

52

52

55

57

69

70

72

74

78

84

89

90

95

96

119

120

122

125

129

FIGURE

44.

45.

46.

47.

Programmable voltage converter•.•

Edit mode pinout • • • • . • . • • . • • . .

Shift register I/O timings

Array mpas for GAL16V8

ix

PAGE

130

144

147

148

CHAPTER I

INTRODUCTION

Programmable Logic Devices, PLDs and PALs, were

introduced in late 70s; at that time, the state of the art

MBI CPU boards from Intel Oregon Division, iSBC 86/12A,

iSBC86/30 had only two PALs per board. By the time the

iSBC286/20MP and iSBC86C38 boards were designed in 1986 and

1987 respectively, the average number of PALs per board was

20. In 1988, the high performance MBII CPU board,

iSBC386/125, has almost 40 PALs per board.

Why are PALs getting so popular? The answer is that

we can implement more logic for a given real estate of the

printed circuit board with PALs than with discrete logic

gates, TTL types. On the average, a PAL16X8 can replace up

to 300 logic gates. In addition, a CPU board in the 70s was

fairly simple. It contained some ROM, RAM 64K or less, I/O

section, and a Microprocessor. However, the CPU board in

the 80s is a complete computer system. It may have Cache,

Dram up to 64 megabyte on board, OMA capability, I/O and

SCSI subsystems, and a lot more. Without using PALs or

Custom Gate Array chips, it is impossible to design those

features into a board with an area of 9 x 9 inches.

2

Not only Intel is using PALs; other companies also use

PALs extensively. As a consequence, in 1988, there are so

many large manufacturers who are producing PLDs like Advance

Micro Device, Signetic, Lattice, Altera, Intel, Texas

Instrusments, National Semiconductor and many more. In

addition, there are a lot of small companies who sell PLD

programmers on the market. Some of the big names are Data

I/O, Lattice, Altera, and Pead.

At the time the work on this subject was started in

late 1985, there were not many low cost (less than $5000)

tools for PLDs on the market. Actually, there were only two

big companies who could support a rather complete CAD tools

for PLDs and they were Data I/O with ABEL and Assisted

Technology with CUPL. Today there are many vendors who can

offer a rather complete system for under $5000. Some of

them are Intel, Altera, Data I/O, Pead, Signetics etc.

A complete system consists of two parts: software and

hardware. The hardware portion is the programmer with

firmware on it. The software part consists of the

following:

- A high level language (a compiler like ABEL) to

translate the state machine description source

code to an intermediate level code for

processing.

- A State Machine Assignment tool. None of the low

3

cost tools above can do this. All they can do is

State Machine translation which translates the

preassigned state assignment to Boolean

equations.

A Boolean Minimization to minimize the logic

function so that the function will fit into the

target device.

A JEDEC file generation and programming part.

It is obvious that a complete system will require the

support of a company. When the thesis was first started, a

complete system was the intention. This thesis has touched

on many of the above areas. The details will be corvered in

the chapters. Following is the summary of the works on this

thesis.

Instead of writing a compiler (high level language),

a simple Parser to translate the equations from standard

ASCII characters to an intermediate form was provided. From

this the Boolean minimization program will read and minimize

it. Also Post processing will take this minimized version

and retranslate it back to ASCII characters.

- Instead of writing a state machine translation, a

set of three rules were offered to do state assignment for

PALs. These rules are heuristics but give very good results

when compared to those of STASH (a state assignment tool at

INTEL). Currently, the author of the thesis does not know

4

of any CAD tool which is optimized for PALs. There are some

tools in the main frame like KISS (DeMicheli, IBM) but KISS

will optimize the number of flip-flops rather than the

excitation functions. Hence, it does not work well for PAL

based designs.

- PALMINI, a Boolean Minimizer using Graph Coloring

Algorithms was introduced. At the time it was done in 1986,

there were very few Boolean Minimization programs existed in

personal computer on the market. They were Espresso from

Berkeley, which is considered to be the best, Presto from

ABEL, Data I/O corp, A plus from Altera Corp, and CUPL from

Assisted Technology. For small examples (PAL based

designs), PALMINI is equal or faster than ESPRESSO, much

faster than ABEL, and many times faster than ALTERA. As a

consequence, two papers were published on two subsequent

versions of PALMINI at two conferences: Northcon Conference

at Seattle, October 1986 and the other at the Design

Automation Conference in Florida, May 1987. In addition,

PALMINI offers static hazard elimination for asynchronous

machine designs which other Boolean Minimizers do not have.

- A chapter about design Self-synchronized circuits

using PALs was introduced. There are very few papers about

this topic. However, this design style is very useful.

Donald c. Kirkpatrick used it in the state of the art logic

analyzer DAS 9200, 1986 at Tektronix. The thesis will show

how we can design self-synchronized circuit using PALs and

the idea of building an intergrated circuit, an IC chip, to

make the design much easier and cheaper is suggested.

5

- In the last chapter, the thesis shows a complete

design of a generic PLD programmer. This low cost

programmer is attached to a PC computer and with adequate

software, it can perform like a very expensive programmer on

the market. It can potentially program all Lattice GAL

devices which can emulate many popular PALs, Altera EPLDs 20

and 24 pins, EPROMs from 64K to lMeg bit, and EEPROMs. With

the software already written, it can program EPROMs and

GALs, upload and download JEDEC code. Some friends at work

have asked me to fabricate this product and market it

because it is a very useful tool to have for the lab bench.

Realizing that there is still a lot of work that needs

to be done to put together a complete system, however, this

thesis has addressed most of the difficult aspects of the

system already.

CHAPTER II

DESIGNING SELF-SYNCHRONIZED CIRCUITS USING PALs OR PLDs

INTRODUCTION

Asynchronous Design methods can be used to solve

practical problems in the following cases 1) the

synchronizing clock in the system is not available, 2) the

interface between synchronous circuits, 3) the speed is

important and the system can not wait for the next clock

pulse to get synchronized.

However, the methods to perform asynchronous designs

are much more difficult compared to those of synchronous

designs due to stray delays, races, and hazards.

The idea of Self-Synchronized machines originates back

to 1971. Bredeson [Bredeson 1971] published the first method

to use the input transitions to generate a self-synchroniz­

ing clock pulse. He also described how the critical races

and logic hazards are avoided by the self-synchronizing

clock pulse. However, the design method in his paper is

strictly limited to a single-input change mode. Solution to

the multiple-input change problem took place in 1973. The

machine introduced by Chuang and Das [Chuang, 1973] used the

bank of flip-flops for internal registers to utilize the

7

advantage of abitrary state assignment of synchronous

circuits. The paper published by Rey and Vaucher [Rey,

1974] showed the triggering scheme for multiple input change

circuits. The most important paper in the 70s on this

subject was probably by Unger [Unger, 1977]. In his paper,

Unger discussed the machines of Rey and Vaucher and the

machines of Chuang and Das. He also showed how to implement

the differentiator circuit using the XOR gates and the

latch. In addition, he also discussed the unrestricted input

change mode circuits. Between 1976 and 1981, there were

some papers by Huertas and Acha [Huertas, 1976], o. Yenersoy

[Yenersoy, 1979], El-derini and Hegazy [El-derini, 1981]

which did not off er much more inf orrnation than those

previous papers. The latest paper on this subject by

Kirkpatrick [Kirkpatrick, 1986) was by far the best paper.

He introduced the asymmetrical delay elements which enable

machines to operate at a speed limited only by the required

function and the choice of circuit technology. His approach

is also extended for unrestricted input change mode

circuits.

BASIC CONCEPTS AND DEFINITIONS

The general model for a Huffman-Moore machine is shown

as follows:

PR
s

INPUTS

ESE NT
TATE

- COMBINATION AL --- LOGIC -

DELAY

--ELEMENT --
Figure 2.1 Huffman Moore machine

OUTPUTS
~ --

NEXT

STATE

This model applies for both synchronous and

asynchronous circuits.

Synchronous Machines:

Synchronous machines are machines which use clocked

8

delay elements or flip-flops. The system clock has a period

longer than the sum of the worst-case delay through the

combinational logic, plus the worst-case skews of the

inputs, and plus the worst-case flip-flop set-up time. The

present state value is not allowed to change until the

inputs and next states have settled to their proper values.

Hence, any arbitrary state-transition function and output

function can be easily computed in each clock cycle.

9

Asynchronous Machines:

Asynchronous machines are machines which do not have a

synchronizing clocl:. The advantages of the asynchronous

machine are that no synchronizing clock pulse is needed, and

that the state transitions can proceed at a rate limited

only by the time dulays in the feedback loop. However, they

also can suffer many failures which are not encountered in

synchronous designB. Some of the failure modes are as

follows:

Critical Races:

An asynchronous machine is said to have a critical

race if the proper operation of the machine depends upon the

relative speed of 1:.he state-variable changes.

Essential Hazards:

An asynchronous machine is said to have essential

hazards if any sta·:.e has the following behaviors: Starting

in state s, the machine should reach the stable state y with

the input change ti:> x. However, due to the improper state

assignment and the different delays and races in the

circuit, the machine may enter a different stable state

under the same inp1it change x at different times.

Static Hazards CLoqic Hazards):

Any combinational logic having the potential for

spurious outputs i3 said to have a logic hazard. one way to

10

avoid this is to introduce redundant prime implicants

(consensuses of prime implicants from the selected cover) to

subpress the spurious pulses.

Fundamental Mode:

A machine is said to operate in the fundamental mode

if the total state (stable state and inputs are stable) is

reached between input changes.

Single Input Change (SIC) mode:

A machine can have many inputs but only one input is

allowed to change level to cause the machine to enter the

next state.

Multiple Input Change (MIC) mode:

More than one input level is allowed to change, and

all changes within some small interval are accepted as if

they were simultaneous.

Unrestricted Input Change CUICl mode:

A machine is said to operate in UIC mode if there are

no constraints in the possible input sequences.

Single Output Change (SOC) mode:

A machine is said to operate in SOC mode if any input

sequence causes only one state transition. All the

synchronous circuits operate in soc mode. We will treat the

soc mode in this chapter.

11

Multiple Output Change (MOC) mode:

A machine is said to operate in MOC mode if any input

sequence causes the machine to perambulate through states

before reaching the stable state. Please refer to PH.D

Dissertation by Kirpatrick [Kirkpatrick 86] for the detailed

discussion of MOC case of Self-synchronized circuits.

SELF SYNCHRONIZED CIRCUIT STRUCTURE

The following diagram by Rey and Vaucher [Rey and

Vaucher, 1974] shows how the self synchronized machines

would operate.

~

' ENTRY I - <'

yes

Figure 2.2 Rey and Vaucher flow chart

TRIGGER
STA TE

CHANGE

From the flow chart, the operation can be summarized

as follows:

1) Detect the input change. (A change detector).

2) Let's inputs stable by keep sampling input changes

within a window with respect to the last input change.

3) Trigger the state machine by creating a clock pulse.

4) If the state variable are stable then go back to 1).

(This is for the soc case).

12

From the hardware standpoint, the self-synchronized

machines can be represented by the following block diagram.

INPUTS COMBINATIONAL ~ -------- LOGIC -
PRESENT NE) T

STATE ST1 ~TE

STATE ---REGSITERS

H
CLOCK

CLOCK PULSE --- GENERATOR

Figure 2.3 Self-synchronized machines

And for the MOC case machine, the following block is

used.

13

INPUTS COMBINATIONAL -------- LOGIC -
PRESENT NE) T

STATE ST J \.TE

STATE --._
REGSITERS

~l
CLOCK

CLOCK PULSE ---~ GENERATOR
~ -- MORE

Figure 2.4 MOC machine

Notice that the MORE signal is added to tell the clock

generator that more transitions are needed. The clock

generator uses the state of MORE each time to generate an

additional clock pulse. The signal MORE is produced by a

combinational circuit which compares the total state of the

machine before the clock with a predetermined final total

state. If the states are not equal, MORE will be high. MORE

is fed directly to a T flip-flop in the clock generator. So

when the clock occurs, the output of the T flip-flop

changes. This change will be captured in the change detector

to generate another clock pulse. If MORE is low when the

14

clock occurs, then the sequence ends.

The only block that is different from the synchronous

machines is the clock generator.

CLOCK GENERATOR BLOCK

The clock generator scheme presented here is detailed

in Kirkpatrick [Kirkpatrick, 1986].

The clock generator consists of two blocks: the Change

Detector and the Delay Element.

~r CHANGE

NPUTS CHANGE DIFFER DELAY -- ---- DETECTOR -- ELEMENT ---CLOCK

Figure 2.5 CLock generator block

The output of the change detector block is the signal

DIFFER.

The outputs of the delay element block are the signals

CHANGE and CLOCK.

The behaviour of the circuit is as follows:

1) DIFFER, CHANGE, and MORE are low. The change detector

and the machine is ready to accept input changes.

2) If there is an input change, DIFFER will go high to

15

indicate a change in inputs has been detected.

3) After a predictable time later through the delay, it

emerges as CHANGE. CHANGE is fed back to shut off the change

detector. During this time, DIFFER is high and CHANGE is

low, more input changes are allowable.

4) Eventually, DIFFER will go low but CHANGE is still

high. At this time, changes combined with the present state

travel through the combinational logic and setup to the

state registers (flip-flops) as the next state condition.

MORE is also updated at this time.

5) Lastly, through the delay again, CHANGE goes low

(DIFFER= CHANGE= low), and CLOCK goes high to trigger the

machine and reenable the machine again. (SOC case).

Note: in the MOC case, the signal MORE will cause more

clock pulses so that the machine can perambulate through

states until it finds the stable state. During the period

of perambulation, the change detector is held off.

6) Now, the machine with DIFFER = CHANGE = MORE = low, it

is ready for another input excitation.

CHANGE DECTECTOR

The change detector circuit can be realized as shown

below:

16

CHANG£

QI
Q2

LATCH

ON QN

II

12

DIFFER

I <N-1

IN

Figure 2.6 Change detector

First, the inputs I{l .. n} and the output of the latch

are the same Hence, DIFFER is inactive (low). Once, one or

more inputs I{l ... n} change levels, the respective exclusive

OR gate will detect the change and go high. DIFFER will

follow them. Later, CHANGE is generated to open up the

latch. Now, the change from the input propagates through the

latch to the exclusive OR gates. Eventually, DIFFER goes low

and CHANGE goes low again to shut off the latch. This

completes a sequence of input detection.

One can build an eight input change detector with only

two commercially available parts: one 74F373 eight-bit latch

and one 74F521 eight-bit equality comparator.

I I
Dl Ql

74F373
I ~ .

18 I - 1 n8 Q8
I I .. IA8

EN
74F521 ·DIFFER

I

Bl A=B

88

<--~~~~~CHANGE

Figure 2.7 TTL implementation of change detector

DELAY BLOCK

SYMMETRICAL DELAY:

A symmetrical delay is a pure delay line where it

transforms or shifts the input signal in time by amount D.

This delay can be easily realized with gates in series or

using available digital delay line.

17

INPUT .. - SYMMETRICAL DELAY
OUTPUT -

INPUT

OUTPUT D L
Figure 2.8 Symmetrical delay

ASYMMETRICAL DELAY:

An asymmetrical delay is a delay which the leading

edge of the input change is delayed by amount D, but the

18

trailing edge (opposite sense) is propagated without delay.

INPUT .. -
INPUT

OUTPUT
ASYMMETRICAL DELAY I ~

OUTPUT D

Figure 2.9 Asymmetrical delay

The asymmetrical delay can be realized as follow:

INPUT - I K
DIODE

RESISTOR

BUFFER

:> - OUTPUT

I CAPACITOR

- GND

Figure 2.10 Realization of asymmetrical delay

Thus, the trailing edge speed is limited only by the

technology. Different implementations are introduced in

Kirkpatrick [Kirkpatrick, 1986).

FUNCTIONAL OPERATION

19

The operation of the self-synchronized circuits can be

easily understood by studying the following timing diagram.

Notation:

STATE: <A> means the machine is ready to accept input

changes.

 means the inputs have to remain stable for

proper operation.

<kl> the time interval for which several input

signals may change.

<k2> the time interval for which input signals may

not change while the machine perambulates from one state to

20

the goal state. If the input signals change during this

interval, unpredictable behavior will occur. Hence, the

machine may malfunction accordingly.

min = minimum.

max = maximum.

Dm = Delay element.

Case 1) Using symmetrical delays:

INPUT 1

INPUTN

DIFFER

CHANGE

ST A TE ~ A~..- B--~~-------- A •
1 k i I k2 I

The problem we see with symmetrical delays is that

unless we have the control of the inputs, otherwise, the

machine may malfunction if the input changes during state

. If input changes occur during state , the inputs

may change to new state before the clock is generated to

clock the flip-flop. Thus, the machine may enter a different

state than it should be. In addition, The speed of the

machine is also slower due to this type of delay.

Case 2) Using asymmetrical delays:

21

INPUT 1

INPUTN

DIFFER

CHANGE

ST A TE ~ A_.. B 4------ A ...
J k i I

So we can minimize the problem mentioned above by

using the asymmetrical delay elements. The speed of the

circuit now is only limited by the chosen technology.

For the MOC case:

INPUT 1

INPUTN

DIFFER

CHANGE------'

MORE

STATE
,_. B ~

kl k2

The signal MORE is high when the machine has not

entered the final stable state.

TIMING ANALYSIS

The following notation will be used from now on to

evaluate the speed of the machines.

D : delay through delay elements.

d : Stray delays through combinational logic.

s: set-up time for register elements (flip-flops).

f : propagation delays through register elements

(flip-flops).

22

kl: the time interval for which several input signals may

change.

k2: the time interval for which input signals must remain

stable.

min: minimum.

max: maximum.

Asynchronous Huffman-Moore Machines:

A MIC Huffman-Moore machine having a proper critical

race-free state assigment will, in general, still require

delay elements for proper operation. The earliest that an

input change can reach output logic is dmin and the latest

it can reach the output logic is kl + dmax.

Thus the minimum valued for the delay element must be:

Dmin ~ k 1 + dmax - dmin.

Or to be safe:

Dmin ~ kl+ dmax.;

Hence k2 is bounded by Dmin + dmin and Dmax + dmax.

For soc case:

k2 + drnin ? drnax + (Drnax + drnax)

k2 ? Drnax + 2drnax - drnin.

This is the period that inputs have to remain stable

after the change.

23

In the case of MOC, we have another restriction. The

time that each state changes is bounded by Dmin + dmin and

Dmax + dmax. If n is the longest sequence of state

transition in the machine to produce the output then

k2 + drnin ~ drnax + n(Drnax + dmax)

or k2 ~ nDrnax + (n+ l)dmax - dmin.

and the time between states:

kl+ k2 ~ kl+ n(Dmax + dmax) + (dmax - dmin) (1)

Special case for Huffman-Moore machine:

If the machine is in soc mode and has no essential

hazard, then D = o. Thus,

k2 ~ 2dmax - drnin. (2)

Sefl-Synchronized Machines:

For the machine built using this structure, the clock

edge to the register elements (flip-flop2) must not arrive

before the input changes have gone through the combinational

logic section, reached the state-variable flip-flops, and

met the set-up time requirements. Thus,

Dmin ? kl + dmax + s

and similarly,

k2 + Dmin ? Dmax + fmax + dmax + s.

k2 ? fmax + dmax + s + (Dmax - Dmin).

and input changes are separated by:

24

kl + k2 ? kl + (fmax + dmax + s) + (Dmax - Dmin) (3)

for MOC case:

kl • k2 ~ kl • n(fmax • dmax + s) • (Dmax - Dmin) (4)

By comparison between (2) and (3), the Huffman-Moore

machine will always be faster if the machine operates in soc

and has no essential hazards. Otherwise, the combination

circuit will dictate the speed of the circuit in the

Huffman-Moore machines. The more complex the machine, the

bigger the combination circuit due to the complicated state

assigment to avoid races and hazards. This leads to larger

kl. On the other hand, the state assignment in Self-Syn­

chronized circuits can be arbitrary. Thus the combinational

logic can be made much simpler. Consequently, the speed of

the Self-Synchronized machines can be faster than that of

Huffman-Moore.

Self synchronized circuit extended to Unrestriced Input Chan

ge CUIC) case:

Almost all asynchronous designs assume that the

machine will operate in the fundamental mode - once the

input-state change is perceived by the machine, the machine

25

will reach a final stable state before another input-state

change is allowed. When the machine operates in UIC mode,

the fundamental mode assumption is violated. Since the

timing relationships between the inputs are not constrained,

ambiguous input-state states will result. This may cause

the machine to malfunction. As described in Kirkpatrick

[Kirpatrick, 1986], the extension to the UIC case is

straight forward. All we have to do is to add a transparent

latch like 74F373 to the input signals. While the machine

is in a stable state, the latch is enabled. Thus, the

machine is ready to accept input changes. Once, the machine

detects new inputs via DIFFER going high, this input latch

is disabled and freezing the input state in the latch. Next

this input-state is processed and once the machine returns

to the stable state, the input latch is again enbabled to

accept new input changes.

It should be noted that this UIC input latch will

exhibit the metastable behavior due to the input changes not

meeting the set-up and hold-time requirements for the latch.

To compensate for this, an additional delay has to be added

to kl (normally four time the propagation delay of the

latch). So the general structure of the UIC self

synchronized machine would look like:

26

INPUT_2
IUC INPUTS_ FSM

OUT PU --- - -- TS

LA TCl-

H
LE

CLOCK

H CLOCK IUC_L - E --- GENERATOR

Figure 2.11. UIC machine

And the speed of the circuit is:

For SOC:

kl + k2 ~ kl + (Sf max + dmax + s) + (Dmax - Dmin) (5)

For MOC:

kl+ k2 ~ kl+ n(Sfmax + dmax + s) + (Dmax - Dmin) (6)

COMPARISON BETWEEN SYNCHRONOUS, ASYNCHRONOUS, AND SELF-SYN-

CHRONIZED CIRCUITS

For the following example, assume we use 74FXX

technology and also assume each FXX gate delay is 3ns, lOns

for minimum and maximum respectively. For the PAL 16L8B and

16R4B, the set-up time is 15ns, the clock to output time is

12ns, and the propagation delay time is 15ns.

27

Example 16: The Crumb Road Problem.

This problem is the design of a sequential machine to

control the traffic at the intersection of Crumb Road and

Route 1. (For a complete description of the problem, see

Unger, 1969). Unger derived the following flow matrix.

Xl X2 0 0 0 1 1 1 0 0 yl y2

1 1,0 2,0 4,0 1,0 0 0

2 2,0 2,0 3,0 3,1 0 1

3 1,0 2,0 3,1 3,1 1 0

4 2,0 2,0 4,0 4,0 1 1

And the circuit is as follows:

28

z

xl

x2

/xl

Y2

Yl

Figure 2.12. Crumb road problem

z = xl./yl.y2 + xl.yl./y2

Yl = xl.x2./yl./y2 + xl./yl.y2 + xl.yl

Y2 = xl./x2 + yl.y2 + /xl.y2 + xl.x2 + /yl./y2

Asynchronous machine:

Using PAL 16L8, the Huffman-Moore machine for this

example would look like:

Xl

X2

PAL
16L8B

z

Yl

Y2

29

Figure 2.13. Asynchronnous circuit for crumb road problem

The speed of the Asynchronous machine = TPAL16L8B = 15ns

or 66.6 mhz.

Synchronous machine:

Using PAL 16R4B, the synchronous machine version of

this example would look like:

Xl

X2

CLK

PAL
16R4B

REG

REG

z

Yl

Y2

Figure 2.14. Synchronous circuit for crumb road problem

The maximum clock rate = Tsetup + Tclock-to-output

= 15ns + 12ns = 27ns.

So maximum speed = 27ns or 37 rnhz.

Self-synchronized machine:

30

The circuit realization for the above problem is shown

as follows:

XI

D
I .. iD

74F373

LE

Q
Q

Pl6R4B

74F521
CLOCK

I I :1:12

74F08
A = B t----'----1 I -.1B2

74F04

CHANGE

Figure 2.18. Self-synchronized circuit for crumb road

problem

First, let us understand the operation of the

circuit.Assume on power up, everything is stable (I

intentionally ignore the additional circuitry to bring the

31

circuit to a known state upon power-up or reset condition).

In this state, DIFFER, CHANGE are low and CLOCK is high, the

latch Ul is disabled. The circuit is ready to accept any

input changes. If any or both input xl, x2 change, the

changes will go to the PAL 16R4B and also through U2 to

cause DIFFER to go high. After the delay, CHANGE will go

high to enable the latch Ul. CLOCK then goes low. Next, the

input will go through Ul, U2 to turn off DIFFER, then the

32

delay to turn off CHANGE. Finally, the latch Ul is shut off

and CLOCK goes high to clock the PAL 16R4B. Now, the state

machine is ready for another input change.

Next we have to determine what is the delay line in

the circuit before we can calculate its speed.

The worst case timing analysis is as follows. There

are two paths in this circuit. Path 1, Pl, is the inputs to

the PAL 16R4B. The other path ,P2, is the inputs through the

clock generator. The only constraint is that the input

change has to arrive the PAL16R4B at least the minimum

set-up time, 15ns, before the CLOCK is generated, going

from low to high. Hence, the minimum delay through the clock

generator block must be equal or greater than the set-up

time requirement of the PAL. We have the following

inequality.

tU2min + tDmin + tUlmin + tU2min + tDmin + tU3min >=

tsetup

3 + tDmin + 3 + 3 + tDmin + 3 >= 15

2tDmin >= 3 ns

or tDmin >= 1.5ns.

(we can use a non-inverting buffer as the delay in

this case).

Suppose, we use a FOS and gate as the delay in this

example, then tDmin = 3ns. Then the speed of the circuit is:

Speed = 2tDmin + 2tU2min + tUlmin + tU3min

= 2*3 + 2*3 + 3 + 3

Speed = 18 ns or 55.5 mhz

33

So we can see that the self-synchronized circuit under

this scheme of implementation is faster than that of the

synchronous circuit about 33%.

Asynchronous Huffman-Moore machine

Self-Synchronized machine

Synchronous machine

For the UIC case:

= 66.6 mhz.

= 55.5 mhz.

= 37 mhz.

The UIC latch is added to the self-synchronized

circuit and a synchronizer has to be added to the

synchronous machine. The speed difference will be less

apparent because the self-synchronized circuit will be

slower by the extra UIC latch plus the compensation for

metastability. On the other hand, the synchronous machine

has to wait for an extra clock to synchronize the inputs.

With the above example, the realization for the rue

case is as follows:

Xl
74F373

D Q

z
Pl6R4B

YI

D Q
LE

IUCLE
Y2

74F373

D Q

D LE Q

74F521

A2
Bl

I ... 'B2 A=B

CLOCK

74F08

CHANGE

Figure 2.19. urc case for crumb road problem

74F04

As mentioned above, the rue latch may exhibit the

metastable condition, we allow 4 Tpd to allow the latch to

recover. Thus the speed is:

Speed = 2tDmin + 2tU2min + tUlmin + tU3min + TUIClatch

= 2*3 + 2*3 + 3 + 3 + 40

Speed= 58 ns or 17.24 mhz

For the synchronous machine, the metastable problem

also has to be taken into account. Hence,

Speed= 27 + 40 = 67 ns or 14.9 mhz.

34

35

CONCLUSION

This chapter has shown that the self-sychronized

circuits can be designed using commercially available PALs

or PLDs and TTL parts. It also shows that the

self-synchronized circuits are faster than those of the

synchronous circuits when implementing with PALs. The

biggest advantage here is that the methods of state

assignments and logic reduction of synchronous machines are

preserved while the speed can be improved.

The ideas of self-synchronized circuits are not new.

However, they were not used very much. Recently, there is a

trend for this design style. Kirkpattrick has used this

style in the design of Tektronix DAS 9200 Logic Analyzer in

1986 and also in 1987, a Japanese Semiconductor Company

introduced Self-timed RAM. I think that this is still a good

field to do further research. With respect to PALs or PLDs,

there are still a lot of extra components, 5 extra chips,

besides the PAL needed to implement a Self-Synchronized

circuit. I would like to propose the idea to design a front

end chip, CLOCK GENERATOR, so that we can build the

Self-Synchronized circuit with only three components: Clock

generator, PALs, and a resistor and a capacitor. The pair of

resistor and capacitor will set the time delay. The

asymmetrical delay element and the UIC mode if selected will

be taken care by this clock generator chip. This chip is

fairly small and should be a good project for the VLSI

class.

INPUTS PAL l 6RX 1 OUTPUTS

MORE

CLOCK CHIP

CLKO
CLOCK

UICLEN
UICLE I -

---•~!MORE
TRC

UICEN*

CAPACDTOR

GND

Figure 2.17. Front end chip

36

37

CHAPTER III

INTERNAL STATE ASSIGNMENT FOR FINITE STATE MACHINES USING

PLDs

INTRODUCTION

The following constraints must be taken into account

when designing state machines using PALs or PLDs. (From now

on, the term PLDs will be used for both PALs and PLDs)

1) Most of the commercial registered PLDs implement only

D-type flip-flop. This type is still the most popular among

high speed PLDs.

2) For the 20 and 24 pin PLDs, there are at most 8

registered outputs. Hence, this will limit how big the

finite state machine can be.

3) Each D-input of the above eight registered outputs has

at most eight products in the sum term. This condition will

severely limit the design.

4) The number of inputs is limited to 21 and it is found

adequate.

From these restrictions, only small and medium state

machines can be designed using PLDs. From my personal

experience, state machines of less than 15 inputs and 8

states are frequently encountered. In addition, each machine

38

normally has more than one output. It is then obvious to see

that the output pins are scarce resources in a PLD. As a

consequence, the outputs of the machines are normally

encoded in the state variables to save I/O pins for extra

functions (either for output or input). With this design

style, the designer often knows the minimum number of

flip-flops that are to be used in the design in advance.

All that he needs is a method to assign the binary code to

state variables such that the excitation functions described

by the Boolean equations will fit into the device. At the

moment, there are some CAD tools to do the automatic

state-assignment. However, these tools try to minimize the

number of flip-flops in the design rather than the

excitation functions [KISS by Michelli] and [STASH in

Logmin]. The author has not seen and does not know of any

CAD tool which minimizes the excitation functions for PALs

or PLDs yet on the market. Therefore, he would like to show

some set of heuristic rules which are based on his personal

experience with a hope that some future student who will be

designing such a system may take them into account.

BASIC DEFINITION

FSM : Finite State Machine.

ASM chart: a flow chart method to represent the state

transition of a FSM.

39

Bubble Diagram: A method to represent the state

transition of a FSM. states are represented in a circle and

the transistions are represented by arrows going out or

going in to the state.

X and /X : variable X and the complement of X

respectively.

STATE ASSIGNMENT

The procedure for designing a two level AND-OR Finite

State Machine can be summarized as follows:

1) Formulate the problem using: - Bubble Diagram

- ASM chart

- Karnaugh Maps

2) State Reduction: find minimum number of flip-flop

needed. This step is not needed in many cases for PAL based

designs.

3) State Assignment: assign binary code to the state

variables. This step is very important. A bad state

assignment will cause a more complex excitation function,

more expensive to build and less reliable due to more power

consumption.

4) Minimization of excitation functions: using PALMINI,

Espresso, or others.

For a PAL based design, the method can be summarized

as follows:

Begin

Stepl: Formulate the problem.

Step2: State reduction.

40

While (the excitation functions do not fit the device and

the possibility of state assignment has not been exhausted)

do

begin

Step3: State Assignment.

Step4: Minimization of excitation functions.

end while:

End.

step5: if the design does not fit the device, then show the

best solution. At this point, the designer has the

following options:

1) Combine output pin of PALs together to increase the

product of .§.YID terms for the excitation function.

2) Partition the design into smaller machines.

3) Go to a bigger device like Gate Array for example.

The rest of this chapter will only address step3 and

step5 described above.

41

STEP 3: HEURISTIC RULES FOR STATE ASSIGNMENT.

As mentioned earlier, the number of product terms for

a registered output PAL is very limited (only 8 terms).

Hence, the excitation input equations frequently exceed the

limit imposed by PAL architecture. So, the method to assign

binary codes to states is very important because the

complexity of excitation equations and the number of product

terms in particular are the direct result of the state

assignment. So, we would like to have a method that will

always produce an optimum solution.

Basically, there are two classes of designs.

A) The outputs are separate from the state variables.

- Outputs are functions of inputs and state

variables. (Mealy machines).

- Outputs are functions of only state variables.

(Moore machines) .

B) The outputs are encoded as state variables.

(Moore machines) .

In class B), the designer has less freedom to perform

the state assignment than in class A) because the output

signals' polarity dictates the state assignment.

Example 3.1:

{RI ,RO}

(Y= I)

Figure 3.1. Combinatorial output

State Variable = V = {Rl,RO}

output y = Rl./RO + /Rl.RO

This design takes 3 output pins.

Whereas

42

(Y= I)

43

V={Rl,RO}

A

(Y= 1) (Y= 1)

Figure 3.2. Registered output

Output y = RO.

This design takes only 2 output pins. However, in

this scheme, the state variable RO in state B and state D is

dictated by the polarity of the output y.

The following is a set of heuristic rules which will

attempt to minimize the excitation function for the state

assignment.

Definition 3.1: Definition of COSTON, COSTOFF.

Let set V is the set which contains the state variable

assignment and

VE= (0,1) for all V,E V

Where subscript i = state variable i

subscript n = current state.

X = set of branching conditions. ie A= (X,XY,Z).

Thus IAI = 3.

COSTON:

If Vin = o, then COSTON = 0

44

If Vin = 1, then COSTON = number of product terms

going into the state plus the number of product terms

looping in that state. The set D in figure 3.3 is considered

to be the set of looping product terms for that state.

COSTOFF:

If Vin = o, then COSTOFF = o.

If Vin = 1, then COSTOFF = number of product terms

going out of the state.

Example 3.2:

COSTON = IA + B + c + DI = 4

COSTOFF = E = 1

A

v

~
Figure 3.3. Coston and costoff

Note that: E = comp:ement of D. Otherwise, the

transition from state n to next state n+l would be not

deterministic.

Example 3.3:

The transition function for state B is shown below:

State Variables: v = {V2,V1,Vo}

The variables: X,Y,K, and Z are input variables and

they constitute the branching conditions.

45

46

KX

XY + Z IK +IX
001 010

A B c
Figure 3.4. Coston and costoff calculation

State Vars

COSTON COS TO FF

V2 0 0

V1 3 2

Vo 3 2

Implication of COSTON and COSTOFF:

The COSTON and COSTOFF together determine the number

of product terms that we have to write for the state

variable under consideration when the state machine transits

from the current state to the next state.

Method for writing equations directly from the flow chart.

For the D-type flip-flop, the transition table is as

follows:

Table I

TRANSITION TABLE OF D-FLIP-FLOP

D\Q 0 1

0 0 0

1 1 1

The following rules apply:

47

1) If Vin = O and Vin+l = O, then no equation is needed.

It is a free transition.

2) If Vin = 1 and Vin+l = O, and there is no looping back

at Vin, then no equation is needed. It is a free transition.

3) If Vin = 1 or o and Vin+l = 1, then equation is

needed. The number of product terms depends on the input

set.

Example 3.4:

Write the transition equation for state J:

V = {V3,V2,V1,Vo}

State I = 0101.

State J = 0011 = next state.

Branching condition = {xy • z}

XY + IZ

I J

Figure 3.5. Transistion equations

Equation for state J:

For v3 = none, cost = O

For v2 = none, cost = o

For v1 = (OlOl)*(XY + /Z) = two terms, cost = 2.

For v0 = (OlOl)*(XY + /Z) = two terms, cost = 2.

RULE 1:

48

Find the state which has the greatest COSTON, then

assign as many zero bits as possible to the state variables.

This is called the Hot Code Assignment.

Note: for any FSM, the reset signal is needed to reset

the FSM to a known state on the power up or during the reset

condition. Thus, the reset state normally has the highest

COSTON and is assigned binary code o.

There is a method which can bring the FSM to a known

state without using the reset signal. This is achieved by

assigning all of the unused states to branch to a selected

state in the state diagram.

Example 3.5:

49

Consider the following two bit up counter. When the

input x is high, the counter will count up. To be able to

control the counter, we introduce the signal reset to bring

it to the known state A during reset. Thus, at every state,

the counter will enter state A and stay there until the

reset signal is removed. The cost of state A in this

example is thus 5 and is the highest cost. So, to optimize

the excitation function for this example, we assign state A

to be 00.

50

X + RESET

RESET

x
x

Figure 3.6. Rule 1.

Normally the reset is shown as follows:

51

~RESET
~ x x

x
x

Figure 3.7. Reset signal

Rule 2:

If there is a transition from state SA to state SB,

and the state variable Vi in state SA is already assigned to

be 1, and there is looping condition in state SA, then

assign Vi in state SB to be 1 if possible.

52

ID

SA SB
Figure 3.8. Rule 2.

If in state SA, Vi = 1, then assign 1 to Vi in state

SB. Hence, COSTON of Vi in state SB = 1 since, COSTON of Vi

in state SB= SA* (ID+ /DI) =SA* (1) =SA= one term.

Rule 3:

When there is a transition from state SA to state SB

and there is no looping condition in SA, assign O to Vi in

state SB to achieve a free transition.

A

SA SB

Figure 3.9. Rule 3.

53

Note: Rule 3 will give better result than that of Grey

Code assignment. However, one has to pay attention to the

combinatorial outputs of the state machine because since the

state assignment are not Grey coded, the output may glitch

due to more than one variables are changing and their delays

are not equal.

We have introduced 3 rules which should be used in

doing the state assignment. Note that the number of times

that symbol o or 1 that one can assign to any variable is

limited by the number of flip-flops used in the designe. So

for some machines, in order to fit the device when using the

above rules, more state variables need to be introduced.

OUTPUT CONSIDERATION

The outputs of FSM can be registered outputs or

combinational outputs. In the latter case, it can be in the

Moore or Mealy machine form. This type of outputs required

the Grey Code assignment (only one variable changes per any

state transition) or the consensuses must be added to avoid

glitches (static hazards). In the first case, the outputs

are clocked. Therefore, glitches will not occur. In

addition, registered outputs are faster than that of

combinatorial outputs by a tpd (15 ns if B-PAL type is

used): and 15 ns is a lot of time in a high speed design.

Observation:

54

- The two schemes occupy the same number of pinouts.

- Registered output is more reliable due to no

glitching.

- Registered output is faster.

The following is a complete example of a DRAM BUS

INTERFACE design. The first part will illustrate the result

ot the Grey Code assignment. The second part will show the

result of using the above rules.

Example 3.6:

The state diagram shown in Figure 3.10 is encoded

using Grey Code. The Boolean equation version (the output

from LOGMIN) is given in the next page. We observe that:

Variable R2 has two terms.

Variable Rl has four terms.

Variable RO has six terms.

The state diagram shown in Figure 3.11 is encoded

using the above rules. The Boolean equation version is

given in the following page. We also observe the following:

Variable R2 has four terms.

Variable Rl has four terms.

Variable RO has two terms.

The result has shown that by using above rules we have

achieved a better solution compared to that of Grey Code

assignment method for this example. In fact, after years of

experience, my colleagues and I have used the above rules

55

almost every cases and every time the result is either equal

or better when compared to results from STASH (a CAD tool of

INTEL which does heuristic state assignment).

RESET

A/

8 l (R2,Rl,RO)

ALWAY
ACCESIS RDY ./FP

E

8 /ROY

ACCESSVPHIT
ROY .FP

, ... S2.Sl.SO _8"5SE
/ 0 ACCESS .PHI T

I ACCESS

Figure 3.10. Grey code assignment

PAL: ESPTEST

Intel Corporation

RESET ACCESS PHIT FP RDY S2 Sl SO

/R2 /Rl /RO

R2 := /RESET * FP * RDY * /R2 * /Rl * RO

+ /RESET * R2 * RO

Rl := /RESET * ACCESS * PHIT * R2 * /Rl * RO

+ /RESET * /SO * R2 * Rl * RO

+ /RESET * /Sl * R2 * Rl * RO

+ /RESET * /S2 * R2 * Rl * RO

RO := /RESET * ACCESS * /R2 * /Rl * /RO

+ /RESET * FP * RDY * /R2 * /Rl * RO

+ /RESET * /RDY * /R2 * /Rl * RO

+ /RESET * ACCESS * PHIT * R2 * /Rl * RO

+ /RESET * /ACCESS * R2 * /Rl * RO

+ /RESET * R2 * Rl * RO

DESCRIPTION:

PAL ESPTEST = [PLA ESPRESSO REDUCED FROM @ TEST]

Number of Inputs: 8

Number of Outputs: 4

Largest Number of Inputs for a Minterm: 6

56

57

Largest Number of Minterms for an outputs:5

Line Count: 27

STATE ASSIGNMENT METHOD: GREY CODE

RESET

A/

8 (R2,Rl ,RO)

ALWAY
RDY ./FP

E

8 /RDY

A CCESSVPHIT
RDY .FP

-4 S2.S1 .SO

C~ 8 ELSE
L Q}Q u ACCESS.PHIT ~ ~ D

I ACCESS

Figure 3.11. Rule based assignment

58

The COSTON and COSTOFF are found as belows:

State COSTON COS TO FF TOTAL CODE

A 5 1 6 000

B 2 1 3 001

c 2 1 3 110

D 4 1 5 010

E 1 1 2 100

COSTON of state A= 5 due to the RESET signal.

COSTON of state D = 4 due to the inversion of S2.Sl.SO

and the transition of ACC.PHIT into the node.

COSTOFF of state B = 1 because RDY.(FP + /FP) = RDY.

- So by RULE 1, 000 is assigned to state A because it

has the highest cost.

- Next node D is considered. RULE 1 is applied again

and the code 010

is arbitrarily chosen.

- Next node c is considered. RULE 2 is applied on

variable Rl. Thus the code 110 is chosen.

- Next node B is considered. RULE 1 is applied and

the code 001 is chosen.

- Lastly, node E is considered. RULE 3 is applied and

the code 100 is chosen. The equations are listed below and

59

it can be seen that the maximum number of sum terms for each

variable is four compared to six of the Grey Code assignment

above. This will have a better chance of fitting the

device. Following is the listing of the equations after

using these rules.

PAL: ESPTEST

Intel Corporation

RESET ACCESS PHIT FP ROY S2 Sl SO

/R2 /Rl /RO

R2 := /RESET * /R2 * /Rl * RO * ROY * FP

+ /RESET * R2 * Rl * /RO * /ACCESS

+ /RESET * R2 * Rl * /RO * ACC * /PHIT

+ /RESET * /R2 * Rl * /RO * S2 * Sl * SO

Rl := /RESET * /R2 * /Rl * RO * RDY * FP

+ /RESET * R2 * Rl * /RO * /ACCESS

+ /RESET * R2 * Rl * /RO * ACCESS * PHIT

+ /RESET * /R2 * Rl * /RO

RO := /RESET * /R2 * /Rl * /RO * ACCESS

+ /RESET * /R2 * /Rl * RO * /ROY

DESCRIPTION:

PAL ESPTEST = [PLA ESPRESSO REDUCED FROM @ TEST]

Number of Inputs: 8

Number of Outputs: 4

Largest Number of Inputs for a Minterm: 6

Largest Number of Minterms for an Outputs:S

Line Count: 27

STATE ASSIGNMENT METHOD: USING 3 RULES.

CONCLUSION

60

This chapter has introduced three new rules regarding

internal state assignment for finite state machines using

PLDs.

The result has shown that by using above rules we have

achieved a better solution compared to that of Grey Code

assignment method for this example. In fact, after years of

experience, my colleagues and I have used the above rules

almost every cases and every time the result is either equal

or better when compared to results from STASH (a CAD tool of

INTEL to do heuristic state assignment). Actually, these

three rules are best when used after the initial state

assignment is done (can be via other methods). If the

initial assignment does not give a good result, then one can

try applying the above rules to reduce the number of product

terms of selected variables.

61

CHAPTER IV

LOGIC MINIMIZATION OF TWO LEVEL BOOLEAN FUNCTION USING GRAPH

COLORING

INTRODUCTION

There has been recently an interest in programs for

optimimization of Programmable Logic Array (PLA) and

Programmable Array Logic (PAL) such as Presto (Brown 1981),

Espresso, Espresso-mv, Espresso-exact (Rudell 1985),

Prestol-II (Bartholomeus 1985), Mini (Hong 1974). Two

approaches are currently known: algorithms that look for the

minimum solution and approximate algorithms. The most

advanced programs for minimum solutions are Espresso-exact

(Rudell 1985),and McBoole (Dagenais 1986). All algorithms

which search for the minimal solutions include two stages:

- generation of prime implicants

minimum covering of minterms with prime implicants.

The number of prime implicants increases rapidly with

the number of minterrns, especially for functions with many

don't cares. The set of prime implicants can become too

large to enumerate even if it is possible to represent the

function in two-level form. This result limits the

application of algorithms based on generating all prime

62

implicants. The covering problem is NP-hard. Some func­

tions that lead to extremely hard to solve covering problems

have been constructed. It results then that there are two

reasons why the current approaches to exact minimization

will meet limited success.

In this chapter, we will introduce a new method to

solve the covering problems without generating prime

implicants. We reduce the covering problems to the coloring

problems. Instead of solving the covering problem with prime

implicants, we solve the coloring problem for a graph whose

nodes correspond to minterrns or some implicants of a new

type. Therefore, we solve one NP-hard problem (graph

coloring) instead of two NP-hard problems (the generation of

prime implicants and the covering).

Graph Coloring can be solved approximately or exactly.

We have written different algorithms for both solution

method. In this chapter, we will show one for each type.

The graph for coloring is created with any on-cubes of the

function as nodes. These can be minterrns, arbitrary cubes

(product implicants), minimal product implicants of the

function or disjoint minimum implicants. Minimal implicant

for a minterrn M is a product of all prime implicants

covering M. The number of such implicants never exceeds the

number of minterrns or the number of prime implicants.

63

SOME BASIC DEFINITIONS AND NOTATIONS

ON[f] = set of ON-cubes of function f.

OFF[f] = set of OFF-cubes of function f.

DC[f] = set of Don't cate cubes of function f.

Minterm = a cube which is contained in ON(f) set.

OFF-cell= a cell which is contained in OFF(f).

Set of cubes = array of cubes.

Cube Ci = a string of O's, l's, and X's; it represents

a product of literals of function f.

An implicant of a function = an arbitrary subset of

its minterms.

A product implicant = an implicant being a cube.

A prime implicant = a product implicant which is not

covered by any other product implicant of that function.

e = belongs to a set.

~ = inclusion of sets.

n = intersection of arrays of cubes.

n = product

Example:

{OlX.OXl} n {XlO.OXl} = (OlX n XlO) u (OlX n OXl)

u (OXl n XlO) u (OXl n OXl)

= 010 u 011 u 011 = 010 u 011 = OlX.

= sharp operator. It is equivalent to subtraction

of arrays of cubes.

Example: OXX # OlX = OOX.

64

{XXOX,lXlX} - {OlOX,XllX} = {XOXl,lXOl,lOlX}

MINIMAL IMPLICANTS

The set of minimal implicants constitutes the initial

data to the optimum graph coloring. If this set is too

large, we can use the set of disjoint cubes. Below, we will

describe the generation of these minimal implicants.

Definition 4.1

A product implicant of a function f is any cube which

is an implicant of that function.

Definition 4.2

The minimal implicant, MI, for minterm mi, denoted by

MI(mi),is the product of all prime implicants which cover

minterm mi·

Definition 4.3

Redundant minimal implicants are those which are

properly included in other minimal implicants.

The following properties hold.

Theorem 1

Each essential implicant of the function is a minimal

implicant, but a minimal implicant is not necessarily an

essential implicant.

65

Proof: Recall the definition for essential implicant: an

essential implicant is one which includes a singly covered

minterm. Therefore, if a minterm can be covered by one and

only one implicant, it will be by definition the minimal

implicant for that minterm.

Theorem 2

There exists exactly one set of nonredundant minimal

implicants for a Boolean function.

Proof: Follows from the fact that there exists exactly one

minimal implicant for each minterm.

Theorem 3

Let CUBES[j]mi be the set of all j-cubes that cover

minterm mi and do not cover any OFF-cell. Let CUBS[j]mi be

the set such that

CUBS[j] m, =CU BES [O]m, u CUBES [l] m, u ... CU BES [j] m,

If CUBS[j]m,=CUBS[j•l]m, then Ml(m,)=nCUBS[j]m,

Proof: the above algorithm generates the prime implicants

that cover minterm mi. Since CUBS[j]mi will be all the

j-cubes that cover mi, when we have completed adding all

CUBS[j]mi for j = O to n, all cubes included in a larger

cube will have been absorbed, and the terms that are left

will be the prime implicants that cover minterm mi. Then,

from the definition of minimal implicant, Theorem 4 follows.

66

The input data to the algorithm at this point for

generation of minimal implicants is the array DIC of

disjoint ON-cubes, ON{f), and the array OFF(f) not

necessarily disjoint cubes. Hence, the algorithms la and lb

below will create the array CC of minimal disjoint cubes.

The algorithm 1.b is the enhanced version from the

algorithm 1.a. It was invented by Ciesielski and was used

in PALMINI-MV:Multivalued Logic Minimizer by Ciesielski

(1988).

Algorithm 1.a

Begin

1. Find set CONS of all consensuses of cubes from

DIC{f).

2. Find all products of pairs of cubes from DIC{f) and

CONS.

PROD= { C ;n C 1 IC, EDI C(f) /\Ci ECON S)

3. Find set CC = (DIC(f) # CONS) lJ PROD.

4. Order the set cc according to the decreasing valued

of INDEX.

The value of INDEX is found using Algorithm 2.

End

End Algorithm 1.a

Algorithm 1.b

Begin

1. Find all consensuses of cubes from DIC(f}.

2. Expand consensuses to prime implicants.

DIC(f) +- Consensus(DIC(f)) v DIC(f).

3. Obtain products of all pairs of cubes.

DIC(f) +- Product(DIC(f)) v DIC(f)).

4. Delete cubes which are unions of other cubes.

5. Delete cubes contained in single cubes.

6. Make the resulting cubes disjoint:

V{X,Y}: P = XnY;tQ split{X.Y} -+{P,X#P.Y#P}.

End

End Algorithm l.b

Algorithm 2 generates an index for every minterm,

corresponding to the number of OFF-cells, adjacent to that

minterm in the function.

Algorithm 2

Begin

For each cube C1 =x 1 .xJ ... x 1 ••• xtECC

(where the Xi are variables in their true or complemented

form}

do begin

INDEX [Ci) = O;

MINTERMS = [Ci]*;

67

(create set MINTERMS = set of minterms included in

Ci

for each minterm EM I NT ERM S

do begin

end

end

end

j = l;

while j < k

do begin

end

change Xj to /Xj in minterm;

if X1X2···/Xj···Xk is the OFF-cell then

INDEX [Ci] = INDEX [Ci] + 1

end algorithm 2

68

Let CUBS[j] be a set of all prime implicants covering

a minimal implicant of cube Ci, MI(Ci)· We introduce the

relation of domination of prime implicants

p I ~ p 'J H [p In ON (11 rs;; [p 'Jn ON u 1 r
Definition 4

Let CUBS[j] be a set of all prime implicant Pl in

CUBS[j] such that (Yp,ECUBS[j])[p1:2:p,]

then Pl is called a necessary implicant for the minimal

implicant

Ml = n CUBS[j].

69

Necessary implicants are added to the minimal solution

and all cubes covered by it are deleted from cc.

Example 4.1

For K-map of Figure 4.1: [p 1noN]'-[p 2 noNj'-[M/(OXOX)J'

then p 1 ~ p 2 " P 2 ~ P i •

so either of them can be selected as necessary implicant.

I"": - -

00 01 11 10

00

01

11
i....::::::::11'5 I >zll --'I

101 0 0

);.._

Figure 4.1. Necessary implicant

Example 4.2

For K-map of Figure 4.2:

[p 2 TI0N]"=>[p 1 TI0N]". then p 2 ?:.p 1 •

Hence P2 is selected as the necessary implicant.

00 01 11 10
~I --- ~

00 - - - 0

01 ~~1 1 1 -·\ -.
-1

11 - 1 1 -J P..Z.
r"

10 0 - - 0

Figure 4.2. Necessary implicant 2

Algorithm 3 generates the minimal and the necessary

implicant for the cube Ci of cc. We denote the set of all

necessary implicants of function f by NEI.

Algorithm 3: Procedure MINIMPL (Ci)

Begin

j = O;

CUBS[O] = Ci;

repeat

j = j + 1;

create set CUBES[j] of j-cubes covering Ci;

delete from CUBES[j] the j-cubes that are not

implicants;

CU BS[J] =CUBE S[J] uCUBE S[J- l];

delete from CUBS[j] the products covered by other

products

until CUBS[j] = ¢:

MINIMPL = n CUBS[j];

(product of all cubes in array CUBS[j])

if there exists a necessary implicant p, E CUBS[j] then

70

begin

NEI = NEI u{p,};

CC = CC # Pr ;

end

End Algorithm 3

Example 3

Given the function f such that ON(f} = {0111,1111},

OFF(f} = {XXXO,XOOX}, and the rest is DC[f].

71

Find the minimal implicant MI(Olll) and the necessary

implicant.

Solution:

The K-map and stages for generating MI(Olll} are shown

in Figure 4.3.

00

01

11

10

00

01

11

10

00 01 11 10

0 0 - 0

0 - [] 0

0 - 1 0

0 0 - 0

CUBES(O]
00 01 11 10

-
0 - 1 0

0 - 1 0

0 I - 1 0

0 0 l-= 0

CUBS[2]

CUBES[3] = (J

00

01

11

10

00

01

11

10

10 00 01 11

0 0 ~ 0

I -
I

0 1, 0

0 - _!l 0

0 0 - 0

CUBS[l]
00 01 11 10

0 0 - 0
~

0 - 1 0
I

0 - ~ 0

0 0 - 0

Figure 4.3. Minimal implicants

72

We will denote SMI(f) is the set of minimal implicants

of function f.

Algorithm 4 will generate set SMI(f) from the disjoint set

cc (f) •

Algorithm 4

begin

SMl=(J;NEl=(J;

while CC ¢ (J do

begin

a) Ci = first cube from CC;

73

b) MI(Ci) = MINIMPL(Ci);

c) if Ml(C,)2M, where Mr is some minimal implicant from SMI.

then

delete Mr from SMI;

d) SM/= SM!u(Mt(c 1));

e) CC=CC-(C,eCCIMl(c,)2ci}

end;

end algorithm 4

Example 4.4

OFF(f) = {XXlO,XOOl,OllX}, ON(f} = {OXOO,llXl,XOll},

and the K-map is shown in figure 4.4

Consensus is computed: CONS = {lXll}

Product implicant from CONSENSUS is computed: PROD =

{1111,1011}

Disjoint set cc is then computed: cc =

{OX00,0011,1101,1111,1011}

Now, the algorithm 4 is invoked to compute set SMI.

MI(OXOO} = XXOO, M(OOll} = XOll (1011 deleted),

MI(llll} = 1111, MI(llOl) = 1101,

SMI(f) = {XXOO,XOll,1111,1101},

NEI(f} = {XXOO,XOll}.

74

00 01 11 10

00 1' 0 1,/ 0

01 0

11 0

10 - 0 0

Figure 4.4. Example 4.4

It is important to realize that with this approach we

do not have to store minterms, nor need we store at the same

time all the prime implicants of the function. The sets of

disjoint cubes or minimal cubes are almost always smaller

than the respective sets of minterms or prime implicants. In

the worst case, the set of minimal implicant is equal to the

set of minterms. However, this is rarely the case.

COMPATIBLE MINIMAL IMPLICANTS AND COMPATIBLE SETS

The goal of this section is to discuss some properties

of minimal implicants, which are essential to the method of

reduction which we shall present in section 4.

First, we introduce the MATCHING operator, which is a

main logic operation in our system.

Definition 4.5

C1 =(c: cn,._c 2 =(C~ ,C;) be cubes.

The matching operator $ is defined as follows

C 12 = (C: 2, Ct 2, ... , C ~ 2) = C 1 $ C :;i = (C: $ C ~,Ct $C ~, ... , C ~ $ C;)

where the operation $ is defined in Table 1

TABLE I

MATCHING OPERATOR

$ 0 1 x

0

1

x

0

x

x

x x

1 x

x x

75

The operator $ is commutative and associative and the

result of its operation is always a cube.

Theorem 4.4

Let PI be a prime implicant of a completely or a

partially specified Boolean function f. Then, for each set

of minterms SM of funtion f which are covered by PI

SM= {m 1 • m 2 mr} ~[Pl]"~ ON(/) u DC(/)

The following relation holds

$m,~PI (1)

m 1 E SM~ [Pl]°

i.e., a cube resulting from matching minterms included

in any subset of minterms of a prime implicant of a Boolean

76

function is an implicant (not necessarily prime) of this

function.

Proof:

a) If m E [Pl r-+ m ~Pl

b) From the definition of

C ~ PI H (Yi = 1. n) [C 1 = PI t v c 1 ~ PI t = X] (2)

Let C12 = C1 $ C2, where C 1 ~PI. C :i ~PI.

Then from the definition of the matching operator

(Vi) [Ct = C' when C' = C' 12 I I 2

= X in any other case] (3)

Using (2) for C1 and C2 we get

c c PI /\ c c Pl -+ (y i) [(c I = Pl i v c i c Pl I = x) c (c i = Pl I v c' c Pl i = x)] I- 2- I 1- - 2 2-

H(Yi)[C 1 =Pl 1 =C 1 vC 1 cC 1 =Pl 1 =XvC 1 cC 1 =Pl 1 =X I 2 2- I 1- 2

vC 1 =C 1 cPI;=Xv(C 1 ~C')cPI'=X] (4) I 2 - I 2 -

If c 1 i = Pii = c 2 i then taking (3) into account we get

C12i = c1i = Pii .

In the next two cases of (4) we get c 12 i = X from the

definition of the matching operator. From (3) we then have

c 12 = X = Pii. In the last case we may have c 1 i = c 2 i,

therefore c~ = c~ ~PI I= xv c~ ~Ch.

then c2i = X = Pii, which by (2) gives C 2 ~PI.

c) Using (a) and (b) we conclude that

$m 1 ~Pl

m 1 eSM~[PI]"

Definition 4.6

Minimal implicants Mii and Mij are called compatible

implicants when Mii $ Mij is an implicant of f, i.e. when

there exists OFF-cell, Z~OFF(/) such that Ml,$M/ 1 ~Z.

77

Minimal implicants Mii and Mij which are not compatible

will be called incompatible. A set of minimal implicants CM

will be called compatible set when

$Ml,nOFF(/)=f> where M/ 1 eCM (7)

A set of minimal implicants CP will be called set of

compatible pairs when

(Y (MI 1, M 1 1) ~ C P)[(MI,$ MI,) n OFF (/) = ¢>] (8)

Any subset of the set of minimal implicants included

in a prime implicant is then compatible, and the matching of

any compatible set of minimal implicants is a product

implicant of the function, while the matching of any pair of

compatible minimal implicants is a product implicant.

Theorem 4.5A

For each set of minimal implicants of the function f

which are covered by PI

SM I = {MI i I Mi 1 ~ [PI]"~ ON(/) u DC (/ J)

The following relation holds

$M/ 1 ~PI where M/ 1 eSMI~[PI]"

i.e., a cube resulting from matching minimal

implicants included in any subset of minimal implicants of a

prime implicants of a Boolean function is an implicant (not

78

necessarily prime) of this function.

Any compatible set is also a set of compatible pairs.

The opposite statement is however not true, as shown in the

following example.

Example 4.5

The Karnaugh map for function f is given in Figure 4.5

where m1 = ooo, m2 = 110, m3 = 101.

0 1

00 1 -
01 - 0

11 1 -
10

_,
i'

Figure 4.5. Compatible implicants

The minimal implicants are:

Mil = XOO

MI2 = lXO

MI3 = lOX

We have that Ml 1 $Ml:i=XXOEZ=Oll

M/ 1 $M/ 3 =XOXEZ=Oll

Ml:i$Ml 3 = lXXEZ=Oll

but Ml 1 $MI :i $MI 3 = XX X 2 Z = O l l

Hence, set of compatible pairs CP = {MI1 ,Mr2 ,MI3} is

then not a compatible set.

Lemma .l

Proof

If A~c. l\B~CJthen

A$B~C 1 $CJ

For some indices i:

C 11 $C~~X.

which means that C~:C~~x.

If c 1i = c 2i = o then Ai = Bi = o.

If c 1 i = c 2i = 1 then Ai = Bi = 1.

Therefore, cli = c2i = Ai = Bi and for these indices i

A 1$B 1 ~ C~ $C~

for other indices j: C($C~: X.

Then A 1 $B 1 ~C\$C~ for those indices j.

79

It thus holds for all indices that .A'$B 1 :;;C\$C~ and we have .A$B::;C 1 $CJ

Theorem 4.5B

Let CPR be any set of cubes covering all minterms and

don't cares, (i.e., the cells of Karnaugh map) included in

product implicant PR.

Then $C 1 : PR where C1 e CPR

Theorem 4.5C

Let c be the set of cubes covering cells co-cubes)

with minterms and don't cares.

If (YCpC,ec)[(C,$C,)nOFF(/):fi)

Then

80

1) PR=$C, is a product implicant where C,eC and

2) (vc 1 ec)[PR2C 1]

REDUCTION OF TWO-LEVEL SINGLE-OUTPUT BOOLEAN FUNCTION

MINIMIZATION PROBLEM TO THE MINIMAL GRAPH-COLORING PROBLEM.

The purpose of this section is to discuss how the

minimization of a single-ouput Boolean function can be

reformulated as a Graph-Coloring Problem.

Let us create the non-ordered graph GIM = (SMI,RS),

where SMI is equal to the set of minimal implicants of f and

RS is the set of edges where

e=(Ml 1 .Ml 2)eSMI x SM! such that M/ 1 is incompatible with Mi 2 .

This graph will be called graph of incompatibility of

minimal implicants.

Digression

The nodes of the graph correspond to minimal

implicants. However, it must be kept in mind that only for

moderately sized functions we can actually create graph GIM

with the minimal implicants to provide the minimum

solutions. For difficult functions of many variables, the

number of minimal implicants can be equal to the number of

minterms, which in turn can be equal to 2n, where n is the

number of variables. For more than n = 14 input variables,

there exists functions (they are rare for examples taken

from practice) for which product implicants can not be

81

generated. However, the method is still applicable, if we

use the disjoint cubes of the initial specification instead

of the minimal implicants or minimum disjoint cubes. This

can lead to nonminimal solutions. Nodes of the graph can

also correspond to arbitrary nondisjoint cubes; but this

would degrade the result even further.

In a normal sum of products form, each minimal

implicant MI from SMI(f) must be covered by some set

{PI1 1 PI2, ... ,Pim} of prime implicants of this function.

This denotes the monomorphism SMI(f) -> 2PI(f), where PI(f)

is the set of prime implicants for function f.

Then, for each prime implicant cover of the function,

we can assign to each minimal implicant a set of numbers of

the prime implicants that cover this minimal implicant. We

will call these numbers the colors of the minimal implicant.

To each cover there corresponds then a certain coloring

function: COLF:SMI(f) -> 2N where N is the set of natural

numbers.

This function has the property that any two

incompatible minimal implicants are colored by different

colors. We will call this the property of "proper coloring"

M 1 1 e SM I(/) 11 MI 'JES MI(/)" (M 1 , M 'J) E RS-+ COLF (M 11) nCOLF (M 1 'J) = (>.

Let us now consider the inverse mode. We will find

the coloring satisfying this property. If each set of

minimal implicants with the same color denotes some prime

82

implicant then a prime implicant cover of the function

corresponds to this coloring. To the coloring with the

minimal number of colors, there corresponds a cover with the

minimum number of implicants. Because nodes which are

linked with an edge must belong to different implicants,

local fulfillment of the condition of proper coloring for

each node implies that the set of colors of any node is

disjoint with the set of colors of any of its adjacent

(linked) nodes. Let us now assume that each node has only

one color:

COLF : ON(f) -> N

A proper coloring will be defined as one in which

different values of the function COLF are assigned to any

pair of nodes which are connected by an edge (M/ 1 ,Ml~)ERS.

Definition 4.7: Compatible Coloring.

A Compatible coloring is a proper coloring in which

each set of nodes of the graph having the same color is a

compatible set of minimal implicants of the function.

By finding the compatible coloring of the graph with

minimum number of colors, we minimize the number of

compatible sets of minimal implicants, and then the number

of product implicants in the cover, and as a consequence the

number of prime implicants in the cover. This result is

stated in the following theorem

83

Theorem 4.6

The minimal number of compatible sets of minimal

implicants is the same as the number of prime implicants in

the minimal cover of the function.

Proof: Let Pii be any prime implicant of function f, then

there exists for it exactly one matching cube

C = $M 1 1

Ml 1 eSMl(f) ,....Mf ,~Pl 1

which is a product implicant. Let us assume then that MCP

is a minimal cover of the function f with prime implicants,

and MMC is a minimal cover of this function with matchings

of compatible sets of minimal implicants and CARD(MCP) <

CARD(MMC). This is inconsistent with the fact that MMC is a

minimal cover, because if we find the corresponding matching

group for each prime implicant in MCP, we will obtain the

cover MMC' such that CARD(MCP) = CARD(MMC'), and then MMC is

not the minimal cover.

There are different optimal and quasioptimal proper

graph-coloring algorithms, both for sequential and parallel

computers (Gare 73), (John 84), (Kauf 68), (Perk 83), (McDia

79), (Vizi 64), (Perk 84), (Perk 84b). The compatible

coloring algorithms are presented in (Perk 83).

After completing the compatible coloring of graph GIM,

the algorithm returns a set of cubes that are matchings of

compatible sets of minimal implicants. Depending on the

84

coloring algorithm that is used, this set of product

implicants has a minimal or quasi-minimal number of

implicants. Where our intention is to find only the minimal

number of implicants (minimization of cost function CF1) 1

then the minimization process is finished. However, if we

intend to find the minimal number of inputs to gates under

the assumption that it is the number of gates that is to be

minimized first, then we will attempt to delete all possible

subsets of the set of literals from each product implicant

independently.

Example 4.6

Consider the following incompletely specified funtion:

ON(f(Xl,X2,X3,X4)) = {0000,0100,0011,1101,llll,1011}

OFF(f(Xl,X2,X3,X4)) =

{0010,0101,0lll,1110,1001,,1010}

00 01 11 10

00

01

11

10

1

1

-
-

-
0

1

0

1 0

0 -
1 0

1 0

Figure 4.6. Compatible coloring

Method i: Necessary implicant is taken into account.

First SMI(f) = ON(f) = {0000,0100,0011,1101,1111,1011}

~
i

85

The necessary implicants are XXOO and XOll

Hence, SMI(f) = {1101,1111} (others are absorbed in

NEI(f))

The graph GIM is as follows:

8 8
By matching operator: 1101 $ 1111 = llXl , where

llXlrlOFF(/)=¢>

Thus, we can color this graph with one color. In other

word, we can combine the two cubes into one: llXl.

Hence, the solution is f = NEI(f) + llXl =

{XXOO,XOll,llXl}

Method i: Necessary implicant is not taken into account.

SMI(f) = ON(f) = {0000,0100,0011,1101,1111,1011}

Node 1 = 0000

Node 2 = 0100

Node 3 = 0011

Node 4 = 1101

Node 5 = 1111

Node 6 = 1011

By matching each pairs of node, we create graph GIM as

follows

86

The graph can be represented as an Incompatibility

Matrix as follows:

1 2 3 4 5 6
Node

1 0 0 1 1 1 1

2 0 0 1 1 1 1

3 1 1 0 1 1 0

4 1 1 1 0 0 1

5 1 1 1 0 0 0

6 1 1 0 1 0 0

1 = an edge between two nodes
O = there is no edge between two nodes.

Now we can start coloring the nodes. Remember that if

there is an edge between two nodes, then the two nodes must

87

have different colors. The minimum number of colors needed

for this graph is three. The coloring with colors A, B, and

c is shown on the graph. This means that we can realize the

minimal solution for this function with three product

implicants. By matching minterms with colors A, we get 0000

$ 0100 = oxoo. Similarly, by matching minterms with color

B, we get 0011 $ 1011 = XOll. Finally, by matching minterms

with color C, we get 1101 $ 1111 = llXl.

So, f(X1,X2 1 X3,X4) = {OXOO,XOll,llXl}

Or f = X 1 • X 3 • X 4 + X :i. X 3 • X 4 + X 1 • X :i. X •

I1 = OXOO, I2 = XOll, I3 = llXl

If our goal is to minimize the cost function CF2, then

we want to minimize the number of literals. So we will try

to delete literals from the product implicants. For r 1 and

I3 this is not possible

x :2. x 320010' x :2. x 420001. x 3. x 420111

and

x :2 x 4 2 0 11 1 . x l x 4 2 l 00 l . x l x :2 2 l l l 0 .

However, deleting x1 from r1 gives us the prime

implicant / 11 = X 3 .X 4

Other deletions do not lead to new implicants. We have

then obtained

f = X 3 .X 4 +X:i.X 3 .X.+X 1 .X:i.X •.

88

MINIMIZATION OF MULTI-OUTPUT TWO-LEVEL BOOLEAN FUNCTIONS

Full minimization of multi-output two-level functions

consists of: reducing such a function to a single output

function using the method presented by [Mill 65], then

minimizing this function using the method of section 4, and,

finally, finding multioutput implicants from the implicants

of the single-output function.

From function f we define an n+m-input, 1-output

function ff as follows:

ON (If)= (cf = c 0 z r I (3 r E II ml) [c EON (r) Jl. and

OFF (I 1) = (C 1 = C 0 Zr I (3 r E (l m)) [CE OFF (Ir))}.

where zmr = (Z1 1 Z2,···,Zi,···iZm) is them-tuple defined for

each component function fr, in which Zi = 1

For t;tr,..,Z,=O for i = r.

Symbol 0 means concatenation.

We minimize this new function ff using the method

described in the previous section. Then, from the

implicants of ff, we find the implicants of the initial

multi-output function f. Each of the generated implicants

of ff can be presented in the form /=/c
1
•zm

where the m-tuple zm has one of the following forms:

1. Zk = 1 or Zk = X - then ICi is an implicant of fk

if f

Zk = X, k = 1, ... ,m,

2. zk = o or Zk = x - then ICi is an implicant of fk

89

iff

zk = o, k = 1, ... ,m,

3. zk = X - then ICi is an implicant of fk, k = 1, ... m.

Example 4.7

The goal of this example is to minimize the two

function f 1 and f2 at the same time. The K-map of the

functions are shown in Figure 4.7a.

Number of inputs = 3.

Number of outputs (functions) = 2.

Hence, we will create a function f 3 which has 5 input

variables as shown in Figure 4.7b. With this method, as the

number of outputs increases, we can quickly see that the

function f 3 is strongly incompletely specified.

0 1 0 1

00 1 0 00 1 0

01 1 1 01 0 0

1 1 1 0 1 1 1 0

10 0 0 10 1 1

fl f 2

Figure 4.7a. Multioutput 1

~---,

r

90

00 01 11 10

000 - (i) -
I" 0

001 - 0 - 0

- /i''i - 0
I

011

010 - \1) - 0

- (~ - (1)
' /

110

111 - 0 - 0
~

101 - 0 - (1
I\

100 - 0 - ·u
fl f2

Figure 4.7.b Multioutput 2

Now SMI(f3) = {OOOl,OlXOl,11001,00010,11010,lOXlO}

Using the previous method,

The necessary implicants are:

For lOXlO - lOXlX or lOXXO - we select the first one:

lOXlX.

For OlXOl - OlXOX or OlXXl - we select the first one:

OlXOX.

The graph of incompatibility for the remaining SMI(f3)

= {0001,11001,00010,11010} is then computed.

B

As a result of coloring of the graph, we get

Ii = 00001 $ 00010 = oooxx

I2 = 11001 $ 11010 = llOXX

Then f 3 = {lOXlX,OlXOX,OOOXX,llOXX}

After the separation into component functions

according to the above method, we obtain:

000 belongs to both fl and f2

110 belongs to both fl and f2

lOX belongs to f2

OlX belongs to fl

Then fi = {000,110,0lX}

f2 = {000,110,lOX}

EXTENSION OF PRODUCT IMPLICANTS

After using the graph coloring to minimize the

function f. The implicants can be further extended by

91

deleting redundant literals. The result can in some case

lead to less input pins to the PI.A. We will show two

algorithms for -extension: approxi~ate and optimum.

Algorithm 5

An approximate method for extending product implicants

Given: the set II 1 of product implicants for function f

K is the number of variables in cubes.

Begin

II2 = efJ;

for each product implicant I E 11 1 do

begin

N = l;

while N 5:K do

begin

92

Ii = I with the Nth literal from the left deleted;

if (3ZE[OFF(/)]l[1 1 2z):

then

N = N + l;

end

else

begin

I = I1;

N = N + l;

end

end

llj=ll').ul

end

End algorithm 5;

93

This algorithm is very fast and is sufficient for most

problems. It is implemented in PAI.MINI.

Algorithm 6

Exact method for extending product implicants

Given: set II1 of product implicants of function f

Begin

El. l/J.=¢J;

E2. For each product implicant /E// 1 do

Begin

a.- SOLUTION= I, CFmin = CF3(I)

(Cost function CF3 calculates number of literals in

implicant I);

b.- place initial state of the tree (N=O) :[QS(N), GS(N),

CF3(N)]= [I, set of indices "in" of cube I for which

Iin <> X, CF3(I)J, on the list BT (BT stands for

Branch of Tree) • At this point BT has only one

element (the triple {QS(O), GS{O), CF3(0)));

c.- FE= (QS(N), GS(N), CF3(N)) =first element from

list BT;

if GS(N) = jJ

begin

end

delete FE from BT;

go to d;

INDEX= first element from GS(N),

QS(N+l} = cube QS(N) with symbol X inserted in the

position INDEX;

GS(N+l} = (GS(N) with INDEX deleted),

if (3Ze[OFF(/)]) [QS(N+ l)::>Z] then

"cut-off and backtrack in tree" go to d;

CF3(N+l} = CF3(N) - 1;

if CF3(N+l) < CFmin

begin

CFmin = CF3(N+l};

SOLUTION = QS(N+l};

end;

if GS(N+ 1) = jJ

go to d;

else

94

add new state (QS(N+l}, GS(N+l), CF3 (N+l)) to the

top of list BT;

d. - if BT = ~

95

add prime implicant SOLUTION to the set II2

else go to c;

end;

end algorithm 6;

The following example will illustrate the operation of

this algorithm.

Example 4.8

The Karnaugh map for function f is given in Figure 4.8

ON(f) = {0001,XlOO,lOXl}

OFF(f) = {0000,0010,0111,1010}

00 01 11 10

00 0 '11 - 0
--,,.__

01 1, - 0 -
I

11 l/ - - -
.---......_

- \J l· 0 -10

Figure 4.8. Example 4.8

From coloring the graph GIM, the product implicant

0001 was found. This is the case where the necessary

implicants have not been taken into account. Figure 4.8b

shows the tree for deleting literals. Deleting literal

INDEX corresponds to replacing the corresponding index with

the symbol X. The tree is created as a tree of subsets of

the given set. When a newly created cube is found not to be

an implicant, the cut-off in the tree is executed. The

enumeration of nodes in the f iqure corresponds to the

Depth-first strategy with one successor (Perk SOb) applied

in this algorithm 6. As a solution, cubes XXOl, XOXl were

found.

..

..:
i ~ ..
• • - - . . . -- -
~

..
0

g: 1e
• • 0

..

. ...
:I ..

-~
•• ...
== ~

I • . -
• • ...

~ • ..

! : "'1--=l• .. --. "' ~ ~1 ; • • - • • I - - ... - - -:;t; •; e

• •

..
i ~ ~
• •

-

;
i :: I e

• • - - ii;

ii l:i

-..
.. • •

~
~

~
i

.. ••
E

Figure 4.8.b Depth-first strategy with one successor

96

97

ALGORITHMS FOR GRAPH COLORING

In this section, we will introduce two algorithms of

proper coloring which can be used for Boolean Minimization.

1) The first algorithm colors node after node with one of

the colors admissible for this node. The remaining colors

are stored for later possible use after backtracking. We

initially asssume that the number of colors is equal to the

number of nodes in the graph. The tree is searched with a

Depth First Strategy With One Successor. After finding each

solution, the algorithm calculates its cost CF(N). The

solution with lower cost is printed and stored. This cost

CF(N) is now used as a new upper estimate of the chromatic

number of the graph. From the sets of the possible colors

for used in the nodes (sets GS(N)), all those colors not

included in the last solution are deleted. The process of

tree search is executed applying the cut-off principle based

on the cost function, CF(N).

This algorithm will give us the optimum solution. The

complete listing and example of this algorithm is given in

the Appendix c.

2) The second algorithm is based on a heuristic approach.

This is a non backtracking and approximate algorithm.

However, it is very fast and gives good results. This

procedure is currently implemented in PALMINI.

Algorithm 9:

Approximate Coloring of the Graph

Color(Nodel) = 1; {first color}

for Nodei = Node2 to Noden do

begin

Color(Nodei) = 1;

for Nodej = Nodel to Nodei - 1 do

begin

if {Nodei,Nodej} ERS and Color(Nodei) = Color(Nodej) then

Color(Nodei) = Color(Nodei) + 1;

end;

end;

End algorithm 10;

PERFORMANCE EVALUATION

98

The above algorithms were implemented in two versions.

The first one was written in PASCAL and called PLAMCO and

the other was written in C and called PALMINI. The major

difference between PLAMCO and PALMINI is the data structure

being used to represent the cubes. In PLAMCO, the bits of

the cubes are realized as elements of two dimensional

arrays. Hence, all the operations operate on arrays. Whereas

in PALMINI, the bits of the cubes are represented as pairs

of bits in registers. Hence, all the operators operate on

99

registers which is much faster and occupy much less memory.

PLAXCO:

- PLAMCO did not have the complementation part. We

originally assumed that when we designed a Boolean function,

we will also know the OFF(f) along with ON(f) and we treated

the rest as DC(f). However, this is not true at all. The

reality is that most of the time, we only know the set

ON(f).

- PLAMCO used Boolean arrays to represent cubes.

Hence, each bit takes a lot of memory (on the average, two

integers, it varies from compiler to compiler).

- PLAMCO did not have the Static Hazardless feature.

This feature will be described in detail in PALMINI section.

- PLAMCO used back-tracking Graph Coloring Algorithm

to color graph GIM. The result turned out to be very

dissapointing. A function with 19 terms/6 inputs could take

more than half an hour. With PLAMCO, we observed the

following things:

- 30 % of the time was spent in coloring graph

GIM. So, the back-tracking Graph Coloring Algorithm was some

what slow.

70 % of the time was spent in generating Minimal

Implicants.

- The time spent in other procedures is too small

to bring it into the picture. Hence, they are not accounted

100

for here.

It was 1985 and PALs and PLDs began to gain popularity

in industry. However, the software support was still weak.

The only CAD tools available for PC at the time was from

CUPL and DATA I/O. Therefore, our goal was to focus on a

Boolean Minimizer for PAL-Based circuits. The main goal was

to provide a reasonably good solution (does not have to be

optimal) within a reasonable amount of time. And, the next

product was PAL.MINI.

It is worth while to insert a reminder here that most

commercially available minimizers are only approximate,

including PRESTO, ESPRESSO, etc. For exact minimization

procedure, only McBOOLE (Degais 85) and ESPRESSO-EXACT

(Rudell 85) have been designed.

PALMINI.

- PAL.MINI has a complementation part. We decided to

use the Disjoint Sharp method because it was easy to

implement. This method is the worst one compared to those

used in ESPRESSO or MINI. For PALs and PLDs, where the

number of products of sums are not large (normally less than

20) and the number of input variable are not large (normally

less than 24), the Disjoint Sharp is manageable. For better

algorithm, we should have used the one described by (Brayton

84) or (Sasao 83).

- PAL.MINI uses bits inside a register to represent

101

Boolean bits.

A Boolean bit of a cube is represented by two binary

bits. Hence, a short integer or a byte (8 bits) can store 4

Boolean bits. Thus it offers a lot memory saving compared

to the case in PLAMCO. In addition, the operations on cubes

can now be done with operations on registers which include:

AND, OR, and XOR, and they are many orders of magnitude

faster than in the case of PLAMCO.

- Instead of generating the Minimal Implicants, we

chose to generate minimum disjoint cubes from set SMI(f).

The method used is the Disjoint Sharp method.

- Instead of using the back-tracking Algorithm to

color graph GIM, we invented a heuristic non-backtracking

Algorithm. This method is very fast and gives good

solutions. However, it is only approximate.

The result is very encouraging. For small single-out­

put functions, the speed is far better than APLUS 1.0 from

ALTERA CORP, many times faster than ABEL 1.1 (Presto) from

DATA I/O CORP, and comparable and even faster than ESPRESSO.

With the current version of the program, we observe

the following:

- 60 % of the time is to compute the

complementation.

- 20 % of the time is to compute disjoint cubes.

- 10 % of the time is to compute graph GIM.

102

5 % of the time is to color the graph.

5 % of the time is to delete the literal.

The fact that 60 % of the time is to compute the

complementation suggests that by having a better algorithm

such as the one used in Espresso, the speed of the program

can be improved even further.

PALMINI

Description of PALMINI

input: cubes (product implicants) of completely

specified functions in terms of sum of products. The input

cubes can be overlapping.

output: a minimized version of the function.

features as options:

1- Form of input cubes for Graph Coloring.

2- Optimal and quasi-optimal Graph-coloring

algorithms.

3- Invert the polarity of the output.

4- Check for Static Hazards for combinatorial

outputs.

5. Minimize the number of literals in each term of

the function.

Main Procedures of PALMINI.

procedure COMPLCSMI) ;

This procedure returns the complementation of the

103

input function contained in SMI. The Disjoint Sharp method

(Ulug 1974) is currently employed. At the end of each loop,

the list OFF which contains new ON-cubes that were created

in the previous pass, is passed to procedure ABSORBE to

delete redundant terms.

procedure CREATEDISJOINTCSMI);

This procedure receives data from the input set SMI.

It then returns a set of disjoint cubes back into set SMI.

The algorithm is as follows:

for i = 1 to (last cube in SMI -1)

begin

for j = i + 1 to last cube in SMI

begin

if cubei intersects cubej then

begin

list D = cubei # cubej;

cubej is deleted from SMI;

list D is added to SMI;

end;

end;

end;

procedure CREATEMINIMALCSMI);

This procedure is used to create disjoint minimum

product implicants. In general, only implicants of this

104

type (or ones included in them, like minterms) assure the

minimum solution if the solution to graph coloring problem

is also optimal.

At the moment the Disjoint Sharp method is used. This

will give a worse result than the algorithm below.

The following algorithm will be implemented later.

1. Find all consensuses of cubes from SMI and add them

to the set SMI.

2. Find all products of pairs, pairs of pairs, pairs of

pairs of pairs, ... etc. of cubes from SMI;

remembering for each new product cube the product

cubes that it originates from. This is done in the

form of the (directed, acyclic) graph. An arrow

points from cubel to cube2 if cube2 originates from

cubel.

3. Remove from the tree all cubes, that are cube unions

of other cubes from the graph. This is done from top

to bottom of the graph (staring from the largest

cubes).

4. Remove from the tree all the cubes that are included

into a single cube only.

The remaining cubes in the tree are the disjoint minimum

implicants. Return them as the value of CREATEMINIMAL.

"

105

Example 4.10. For function f(a,b,c,d) =

{OXOl,XlXl,OllX,1100,1011}. The consensuses are

{llOX,lXll,OlXl}. The products of cubes are

{0101,0111,1101,1111}. After removal of products being

unions of other products the set SMI is

{ll00,1011,0llX,OXOl,OlOl,Olll,llll,1101}. After removing

of cubes that are included into only one cube, the set SMI =

{ll00,1101,1111,1011,0llX,OXOl}. This set is used to create

graph GIM.

procedure GRAPHCSMI. OFF. GIM};

This procedure will construct graph GIM from disjoint

set SMI and set OFF which contains the complementation of

the input function.

The algorithm is as follows:

for i = 1 to (last cube in SMI - 1)

begin

for j = 1 to last cube in SMI

begin

if (cubei $ cubej) riOF F # f> then

GIM(i,j) = GIM((j,i) = 1;

{an edge exists between node i and node j}

else GIM(i,j) = GIM(j,i) = O;

end;

end;

{no edge exists between node i and node j}

106

procedure COLORCGIM.costl);

The algorithm in PALMINI is a non-backtracking,

approximate algorithm. The optimal algorithm is implemented

in PASCAL version called PLAMCO.

This procedure uses GIM as its input and returns costl as

the number of colors needed to color this graph. The

Algorithm 10 was implemented in this procedure.

procedure DELETELITERAL(SOL.OFF);

This procedure takes each term in SOL and tries to

remove as many redundant variables as possible according to

the following algorithm:

for i = 1 to last cube in SOL

begin

for j = 1 to max number of input variables

begin

temp= cubei[j];

cubei[j] = X;

if cubei riOFF~(> then

cubei[j] = temp;

end;

end;

Hazardless minimization

Product implicants Pil and PI2 are adjacent when they

include two minterms, m 1 EPI1 "m:i E PI2

107

such that m1 and m2 differ in a single bit only (are

adjacent in a sense of a Gray Code). The static hazard in

ones occurs in a two-level circuit when there are two ANDs

realizing adjacent product implicants but lacking a third

product to cover the adjacent minterms of the two products.

The result of such hazards is a glitch (short pulse zero) in

the output before it reaches the stable state 1.

Example 4.11. Let us assume a two-level realization of an

expression

t = a.c.d+ a.b.c+ a.b.c+ a.c.d

Assume that all the gates have the same delay "tpd". The

pair of cells 0101 and 0111 is a pair of adjacent minterms

not covered by a single implicant. So are also the pairs:

0111 and 1111, 1111 and 1101, 1101 and 0101. This is then a

circuit with four static hazards. Depending on the later

stages of the circuitry, these glitches may cause

catastrophic failures to the rest of the operation of the

circuitry (for instance if hazard occurs in a feedback loop

of an asynchronous circuit or if a counter is driven from a

circuit with hazard). By introducing a fifth cube to cover

the adjacent l's between the original product implicants, we

effectively eliminate all four hazards.

Solution: f=a.c.d+a.b.c+a.b.c+a.c.d+bd is then hazardless.

108

One of the features of PALMINI is the ability to

correct all the static hazards that exist in the solution.

After the solution is obtained from the Graph Coloring

Algorithm and if the hazardless option is selected, PALMINI

will compute all the consensuses which exist among the cubes

in SOL. Next it will find all mergings (distant-one merge

groups A.B + A./B = A) of consensuses and of consensuses and

product implicants. This operation is repeated until no

more groups are created. It will then remove the

consensuses that are properly included into some mergings.

The consensuses and the mergings are attached to SOL as a

part of the final solution.

Below we will present the algorithmic way to find all

the hazard eliminating cubes. The consensus of two cubes A

and B is created as follows. First, we calculate the

bit-by-bit operation star (*) on cubes A and B. The STAR

operation per bit is defined as follows:

TABLE II

STAR OPERATION: *

* 0 1 x

0

1

x

I I I
0 e

e 1

0 1

-
0

1

x

109

Next if the resultant cube includes exactly one e, it

is changed to X.

Otherwise the cube is not a consensus of the function.

Example 4.12: from the example 4.11 above, we have

cubel * cube2 = OXOl * OllX = Olel = OlXl.

Note: Olel contains only one "e". Therefore, it can

be changed to "X". There are four consensuses in this

example: OlXl, llXl, XlOl, and Xlll. Merging of OlXl and

llXl produces cube XlXl. All consensuses are now removed

since they are covered by this cube. This leads to a

hazardless solution for example 4.11.

procedure HAZARDLESSCSOL);

1. {Find the set of all consensuses cubec of cubes from

solution SOL}

for i = 1 to (last cube in SOL - 1)

begin

for j = (i + 1) to last cube in SOL

begin

cubec = cubei * cubej;

{if there is no result of consensus operation cubec

is an empty set}

if cube. is not empty and cube. e SOL

then add cubec to SOL;

end;

end;

2. {Find the set NEW_CUBES of all cubes cubem being

results of merging oprations (cubem = cubei m cubej)

off all cubei and cubej in SOL}

for i = 1 to (last cube in SOL - 1)

begin

for j = (i + 1) to last cube in SOL

begin

cubem = cubei m cubej;

{ m is a merging operator, if cubes do not

merge, the result cubem is an empty set}

if cubQ.., is not empty and cubQ,,.. e: SOL then

begin

add cubem to SOL;

add cubem to NEW_CUBES;

end;

end;

end;

3. NEW CUBES - MERGING(NEW_CUBES,SOL);

if NEW _CUBES = " then

return SOL = SOL with removed cubes included in

other cubes of SOL;

else begin

110

SOL= SOL uN EW _CUBES;

goto 3;

end;

function MERGINGCNEW CUBES.ALL CUBES);

NEW_CUBES = ";

for i = 1 to last cube in ALL CUBES

begin

for j = 1 to last cube in ALL CUBES

begin

cubem = cubei m cubej;

if cube ... ~ (J and cube"'£ SOL then

add cubem to NEW_CUBES;

end;

end;

return NEW_CUBES;

Note: m = merging operation. If two cubes are

different by only one variable in their literal,

they will be merged.

Flow chart of PALMINI

Get input: set SMI <- sum of products

1. Find the complementation from this set:

OFF <- COMPL{SMI) .

2. If invert polarity is selected then

begin

111

SM! <- OFF.

OFF <- SMI.

end.

3. If createdisjoint variant is selected then create

disjoint set from SMI:

SM!<- CREATEDISJOINT(SMI).

else create minimal set from SMI:

SM! <- CREATEMINIMAL(SMI).

4. Create graph GIM: GIM <- GRAPH(SMI, OFF, GIM).

5. Color graph GIM to find cost:

cost <- COLOR(GIM, costl).

6. Find solution and store in array SOL.

7. If the Static Hazardless option is selected then

SOL<- HAZARDLESS(SOL).

8. If the literal delete option is selected then

delete redundant literals in each term of

solution SOL.

SOL <- DELETELITERAL{SOL, OFF).

Solution is now contained in SOL.

Pef ormance Evaluation of PALMINI

112

Palmini is written in C using computer words

(registers) to represent cubes. We have tried about thirty

examples from work (at INTEL) ranging from 4 terms/4 inputs

to 20 terms/18 inputs. The solutions were then compared to

those of LOGMIN and were the same. LOGMIN is an INTEL's

113

proprietary CAD tool which consists of many different CAD

programs and one of them is Espresso which is used to

minimize PI.A's. The table below used a set of nine

selected examples to compare PALMINI with LOGMIN, APLUS

Verl.O (tool from ALTERA Corp for EPLD), and ABEL Verl.1

(tool from DATA I/O Corp). All tests were done on a PC XT

compatible machine with 8 MHz clock. The minimizers from

ALTERA, DATA I/O, and LOGMIN run on the same machine. The

algorithm used in ALTERA software is an order of magnitude

slower than PALMINI and is not shown here. On the other

hand, Presto from ABEL is very reasonable. The version used

is 1.1 which is much better than version 1.04. PALMINI is

found to be equal or better than ABEL. Depending on the

types of functions, sometimes, PALMINI is faster than both

Espresso and ABEL and sometimes it is not.

In the following table, the numbers of terms and input

variables are given for each example. Next, the times (in

seconds) and numbers of terms in solution are given for

PALMINI, ABEL, and ESPRESSO.

114

TABLE III

PALMINI PERFORMANCE

EX# Function PALM I NI ABEL ESPRESSO

EX# Term Input Time Term Time Term Time Term

1 19 6 2 13 12 13 4.5 14

2 8 9 2 4 9 4 2 4

3 15 9 1 4 9 4 2 4

4 10 10 1 10 12 10 3 10

5 10 11 2 9 8 9 3 9

6 12 12 2 10 27 10 5 10

7 13 13 4 10 26 10 4 10

8 11 17 9 10 7 10 4 10

9 20 18 6 17 -- -- 8 17
Note: -- means no answer in 20 minutes and the test is

aborted.

As we can see that PALMINI on the average is much

faster than ABEL 1.1 and gives good results as compared to

ESPRESSO for small examples. We can easily see that PALMINI

is adequate for PALs or PLDs based designs.

CONCLUSION AND FUTURE WORK

The examples discussed above were taken from examples

at work. PAL.MINI has shown us that it indeed gives good

solutions within an acceptable time frame. Besides the fact

that its speed on functions of small size is comparable or

115

better than ESPRESSO and many times faster than ABEL

(Presto), it has an useful feature which other low cost

minimizers do not have. That is Static Hazard correction.

PALMINI is easily recompiled to run on various

personal and home computers which support standard c like

IBM PC, APPLE, Commodore, and etc. The compiled code is

small. It can easily fit into 64K of memory. This includes

all the code and data areas, which permits the use of this

program together with other memory-resident programs.

Executable code of PALMINI is only 30K, versus 177K of

Espresso.

The limitation of the current version is as follows:

- up to 64 input variables. (PAL or PLO only allow

up to 23 inputs)

- up to 60 product terms. (PAL or PLD only allow 8

product terms)

The current version also supports multi-output

function.

With respect to the Graph Coloring Algorithm, we can

summarize the limitations as follows:

- The reduction and coloring algorithms are fast.

- The weakest part is the complementation.

Two improvements are possible:

1) Better complementation algorithm.

2) Avoid complementation and check inclusion of

matchings of ON-cubes instead of checking

intersection of matchings with OFF-cubes while

creating the graph GIM.

The algorithm to find Minimal Implicant is slow and

needs to be reinvestigated. This must be done to insure a

good (optimal) solutions.

116

The limitations of the program result could be due to

the way of the implementation itself rather than the method.

In short, the result of the study of Graph Coloring,

PLAMCO and PALMINI, gives us a good foundation for further

investigation of other variants. With little effort, next

students can easily extend the algorithm to support

- Multivalued Logic Functions.

- Multilevel Logic Functions.

117

CHAPTER V

ZAP A GAL BOARD

INTRODUCTION

The purpose of this chapter is to show how to design a

GAL programmer. Actually, the design is capable of

programming EPROMs, EEPROMs, EPLDs, and GALs. For the scope

of the thesis, only the GAL section is mentioned in detail.

The author chooses the Lattice GAL for the following

reasons:

- GAL can emulate many different types of PAL.

- GAL is reprogrammable while PAL is not. This makes

GAL ideal for prototypes.

- Building a GAL programmer is much easier and

cheaper.

- GAL is designed with new technology, EECMOS

technology, with very low power consumption.

The design of the ZAP A GAL board consists of two

parts. One is HARDWARE and the other is SOFTWARE. The host

of the ZAP A GAL board is a PC XT or AT personal computer.

118

INTRODUCTION TO GENERIC ARRAY LOGIC (GAL)

The Lattice E2CMOS GAL device combines a high

performance CMOS process with electrically erasable floating

gate technology. This programmable memory technology

applied to array logic provides designers with reconfig­

urable and bipolar performance at significant reduced power

levels when compared with bipolar PALs. Lattice also

guarantees that a GAL device can be programmed and erased at

least 100 times and data retention will be at least twenty

years.

The 20-pin GAL16V8, which will be described in this

chapter, features 8 programmable Output Logic Macrocells

(OLMCs) allowing each output to be configured by the user.

Each output can be configured as a dedicated input,

dedicated asynchronous output, bidirectional output, and

bidirectional synchronous output. With these OLMCs, the

GAL16V8 is capable of emulating, in a functional/fuse

map/parametric compatible device, all common 20-pin PAL

device architectures. The output of each OLMC can be

program as active high or low. If it is programmed as

dedicated output pin, that particular OLMC can have eight

product terms instead of seven for PALs. In addition,

Lattice GAL offers a very useful feature. That is the

security protection via the Security Cell. After program­

ming the GAL, one can prevent others from observing or

119

copying the content of the design by programming the

Security bit. Following is the picture of a GAL16V8 logic

diagram.

OE

Figure 5.1. GAL16V8 logic diagram

120

From the logic diagram, Pin 1 can be used either as

input pin or clock pin as in registered PALs. Pin 11 can be

used as input or as Output Enable Control pin as in

registered PALs. Lastly, OLMC12 through OLMC19 can be user

prorammable. The Figure 5.2 shows the logic diagram of one

of the OLMC cells.

FlllOM r
ANO~

.UUll,&T l b
0"'"'

, ·~ T [!= I ., 11· i
FUDBACX :::3:J I I ~ . ~ ~11---.

I I ACll" \ .C,, .. ,. * I
AC1fnl lJ L---------1-------1

,_
~TSTAGI

OUT"'1f IMt

ell OE

GAL 16VB Output L09ic M1crocell(nl

Figure 5.2. output macro cell

"'*'

The designer can configure the OLMC to one of the

options described above by programming the bits ACO, ACl,

and SYN for each OLMC. These bits are located in the

Architecture Array which will be described in detail later

in the chapter.

121

OVERVIEW OF THE ZAPAGAL BOARD

The Zapagal board consists of two pieces. The first

piece is the adapter board which can be plugged in any eight

bit slot of any PC XT or AT computers. At the end of the

board is a 50-pin locking edge connector. A 50-pin ribbon

cable connects the adapter board to a socket board which is

a small printed circuit board which contains a 20-pin dip

socket. The length of the cable can be as much as three

feet long. The reason to have a separate socket adapter is

as follows. To support many different devices with different

pinouts and possible future devices, all we have to change

are the socket adapter board and software. The Figure 5.3

below shows the block diagram of the Zapagal board.

ADAPTER BOARD

L:J RIBBO~ C:\BLE

I

BT
SOCKET BOARD

Fiqure 5.3. Zapagal block diaqram

i\
I\
I \

\\
'

122

ZAPAGAL HARDWARE

The Zapagal board is a PC XT add in card. It fits and

meets all the electrical interface for both PC XT and AT

(Smhz) computers. It functions as an I/O board. It does not

have any firmware on board nor any mircroprocessor. Hence,

all the control software is coming from the host PC. Thus,

it is very convenient to develop software for it because we

can use all the features of PC DOS.

This Zapagal board can potentially perform as a very

expensive programmer in the commercial market. It costs less

than $100 to build and it can do the task of programmers in

$1000 range.

The board is designed to program the following

devices:

Lattice GAL 20 and 24 pin devices.

- Altera EPLD 20 and 24 pin devices.

- Erasic EPLD 20 and 24 pin devices.

- EPROM and EEPROM from 2764 upto 27010.

- Any CMOS PLDs in the future.

One of the features of this board is that it is device

programmable selectable. The Zapagal board behaves like a

permanent adapter. All we need to do is to change the socket

board which contains device sockets and software to

accommodate new devices. All the address and data pin to

the socket board are tristatable and bidirectional; this

123

allows the board to accommodate any CMOS PLDs in the future.

The picture 5.4 shows the block level schematic of the

board. It has six main blocks.

1) DECODEl: this block contains the circuit for PC

interface.

2) DECODE2: this block contains circuits for the timer and

I/O pins.

3) DECODE3: this block contains circuits for more of I/O

pins.

4) EPROM: this block has two subblocks.

EPROMl and EPROM2 contains circuits to generate

programming voltages for EPROM types.

5) BOOSTER: this block contains circuits to generate the

supervoltage 16.50 Vdc for GAL.

6) CONNECTOR: this block contains the connector to the

daughter board.

~
~ f

n

~ ·~ I ...

1111~-rl ~ 111
11111111111111 11 ~

!''l"'""""""!'O"[""j"O'"'l'"''0~ •
~- ' !''i~~ ~§t ~f ~ -1- "£°'"' I i <~n~~~i ~~ ._e 'it:~.~< <~ 0

I
~ ..

~ Hl'l:iiU~,U~J d • 8 ~
i'iB£ii~i~---~------·Mi 02°~gic~ - ... •-"''-'•,,11...imca .. < - w_

1111~·111 I!! 111 I I
~-.-,~ '!'A.J

I
;.,_ ~:.~

C",'.\ .. <i::\ -.. \ '' .. . \ ' ', \ ,· \ \ \
:r=il I I! I

I

I
: ,.. I ~ : ~ -: , ~ ~ ~ ;n ·~ I ! - ,. • ' . - ' . s. I ! ' ~ I ·- ••• 9
i < .. I I ~

I

I
c

I
~ ~ ~j ,.............. c

'~ y-----,.,
~ • .. .a: ... ,...

~ ').ill.&:-:!~ .. ~
I 1!1$$1'9''""1:"9 ... ~ .

I !!l
I

I
I ... &.io;:-::; • ~

~·- ~"' I I l.IWL..I ~ ~

~
I -- ,;;;.

I
I :. j ~

I i II ' ,
l

u
I .. n .. ·-...;"J""l'V

~ ~ : 1. i..;·"IJ~:.; ... -· i

I
.......

I
·it I! • ••

i 111111 I - ~ ~ I I I 11 ~ j II ~ m 1 '' i • i ~ ~

~I li1 • ll l ~-

P- '1

. -
ti i

-~""Ii I' 1 \ I

., i I I I •
- ~·' I. I i~1~~-r;;~~-;~ 1~E=~;.~

1i, l ':11s:..s~I~"'-~" ~~ II~~ ~ !'ei i It• •• I 91 ,., 0 I 91• ~ .. ""
G jj'" ~ , j'"'j~ ~e

Q ~ R ~ ~ ~ ..
r ~ ~ ~ ~

~ ~ ~ ~

I
...

I I ~
I I 1r1
I C:

125

The following table shows the address map of the board

and the LSI components on the board:

Base address = 130H.

Chip Select Hex Address

CSO 130H - 13FH

CSl 140H - 14FH

port iB2SSA

CS2

port i82SSA

CS3

port i8255A

150H - 15FH

160H - 16FH

DECODEl: PC INTERFACE.

Device Number

U2

Ul

U22

U24

Device Name

Timer i8254

Parallel

Parallel

Parallel

The circuit for PC interface is quite simple. The

circuit is designed to respond to any I/O READ or WRITE

cycle within the address range: 13XH to 17XH.

A PLO device is used to decode the internal /RD or /WR and

the equation is as follows:

RD= /(IORC * /RESET * BDSLT * /AEN * /A7 * /A6 * A5 * A4

+ IORC * /RESET * BDSLT * /AEN * /A7 * A6 * /A5

+ IORC * /RESET * BDSLT * /AEN * /A7 * A6 * /A4);

WR= /(IOWC */RESET * BDSLT * /AEN * /A7 * /A6 * AS * A4

+ IOWC * /RESET * BDSLT * /AEN * /A7 * A6 * /AS

+ IOWC * /RESET * BDSLT * /AEN * /A7 * A6 * /A4);

The IORC from the PC is used to control the direction

control of the data bus transceiver, UlO, 74LS245.

126

The address AO and Al are buffered and become LAO and

LAl before being used to access specific registers in LSI

devices.

Since the above design has already been prototyped,

otherwise the PLO device can replace the Ull, 74LS08, and

U12, 74LS138 and save two res.

DECODE2: TIMER CONTROL

Each device requires different pulse duration for

programming purposes. Thus, we must have a programmable

timer source. One easy way is to use the software loop as a

timer. However, this scheme will not work because different

PCs run at different frequencies. For instance, a PC XT 8

mhz is running twice as slow as an PC AT 6 mhz. If we use

the software loops, then the same software will have two

different effects on two different machine. This will cause

the Zapagal board not to work. Hence, we must have a fixed

timer source on our board. The author chose the INTEL 8254

sixteen bit timer. The input frequency comes from the fixed

oscillator, 14.2 mhz, on the mother board. This oscillator

is used for TV monitor and is fixed on any PC XT or PC AT.

This frequency was divided by 4 and then fed in to the

counter timer. This worked out very well.

Ul, i8255A-5, 24 bit parallel port, is used to control

the GAL. Port A and B are fed through U3 and US, 74LS244

--i

127

tristate buffers, since GAL devices require many pins to be

floated during entering Edit mode and exiting Edit mode.

Port C is used to control SDIN, P/V, /STR pin.

DECODE3: EPROM DECODE.

This block contains two more i8255A-5 chips that are

used for EPROM devices. Hence, it is not in the scope of

this chapter and will not be discussed.

Port A of U24, i8255A-5, is used to sample data from

the SDOUT pin.

BOOSTER: VOLTAGE CONVERTER.

A DC to DC converter chip, LM3578, from National

Semiconductor, is used to perform the voltage conversion.

This chip is a new product, 1987, and is very inexpensive

and easy to use. It is configured in the fly back mode.

The voltage gain is set by resistors R3 and Rl.

Vout = R3/Rl + 1.

The combination of CS, C4, CJ, and R2 sets the duty

cycle (50%) for the squared wave at pin 6 of the LM3578.

During the lower half of the pulse, the energy is released

through the inductor and sustains the load. On the high

half of the pulse, the energy is built up in the inductor

and the capacitor, Cl, supplies energy to the load. The

Shottky diode Dl, 1N5817, needs to be a fast switching diode

to keep a good load regulation. The voltage Vout is set to

128

be around 22 Vdc because this voltage is then passed through

another programmable voltage stage to generate VEDIT, 16.5

Vdc .

...:co-~~--.-~~~~~~~~~~~~~~~-.

t?~

~--- ..L
T

C& ·-.. 1 1-

"'3

-J.t(

Figure 5.5. DC-DC converter

EPROMl and EPROM2.

This block contains circuitry to implement pro-

grammable power supplies for GALs and EPROMs. In the

following section the programmable voltage converter for the

super voltage will be discussed in detail. The other

programmable voltage converters work the same way.

In order to enter the Edit mode, we need to apply

16.50 Vdc to Edit pin. Normally it is at O or at 5 Vdc.

Thus we have to have a way to set the voltage to three

different values via programming the software. Normally,

this can be done using Digital-Analog converter chip.

However, this design could be expensive. The following

shows a very inexpensive way to implement the circuit .

•

(:Z.Z v'~,-----_J.,,
Ll"\~17 l

\H voj I t> VFt>iT \IOI.IT

11.4.
P'i~~

~.11(

IH~,q~

ltQj' I (IC H)

G1
J"1?>904

-1.1.v

Ill. > .140

eat

u~

1--,.b.%.

Figure 5.6. Programmable voltage converter

129

The inexpensive adjustable voltage regulator, LM317,

is chosen for the design. This device is very easy to use.

The input voltage comes from the VOLTAGE BOOSTER block, 22

Vdc, and goes to input pin Vi. The output voltage is

determined by the following transfer function:

VEDIT = 1.25 * (1 + Rx/Rl).

In this case, our Rx is either R2 or R3.

Additionally, if we applly a slightly negative voltage to

the adjust pin, ADS, Vout = O Vdc.

The circuit which interfaces between digital and

negative analog voltage is done via the transistor pairs

130

NPN/PNP Ql and Q2. If PB3 is high "l" digitally, both Ql

and Q2 are turned on; the node ADJ will be pulled down to o

Vdc and shut off Vout regardless of any gain network. Ql is

needed to absorbe any negative voltage across its

collector-emitter so that PB3 will not see any voltage below

o Vdc. If PB3 is programmed "O", Ql and Q2 are turned off.

Effectively, Q2 is removed from node ADJ. Consequently, the

Vout is now the function of the gain net work of Rl and Rx.

The circuit which interfaces between digital and

analog output voltage is done via U2, 7407 chip. The output

of this chip is open-collector type and can operate from o

Vdc upto 30 Vdc. So, if we want to turn on VEDIT, 16.5 Vdc,

PBl should be programmed high and PB2 low. With PBl high

and PB2 low, the upper path which consists of R2, 750 ohms,

and the gate 7407 is off and considered disconnected from

the circuit. On the other hand, the lower path which

consists or R3, 2.2k ohms, and the gate 7407 is on. The

current flows through Rl, R2, and through the gate to

constitute a complete path. Hence the VEDIT is equal to the

gain network = (1 + 2.94k/240) = 16.56 Vdc. All the

resistors must be 1% tolerance to stay within GAL's

electrical specification. Similarly, if we want to set

VEDIT to 5 volts, then program PB3, PBl low and PB2 high.

The rest of the programmable voltages for other pins

function similarly.

131

All the I/O pins come from the parallel ports,

i8255A-5. Thus, programming the polarity of PB3, PB2, and

PBl, is just the matter of programming the registers of the

LSI i8255A-5 and considered to be easy.

GAL PIN DEFINITION WITH RESPECT TO THE DAUGHTER BOARD

CONNECTOR

The following tabel shows the current pin out of the

daughter board and the way the software maps the I/O pin for

GAL16V8.

GAL PIN CONNECTOR PIN

1 17

2 44

3 3

4 5

5 7

6 9

7 11

8 33

9 34

10 6,8,10

11 35

12 50

13 27

14 25

15

16

17

18

19

20

23

21

19

1

36

30,32,47

GAL PIN DEFINITION with respect to the connector name:

RAGO - RAG? = AO - A7

VILO - VIL? = AS - Al5

SDOUT = PDO

SCLK = 00

SDIN = 01

/STR = 02

P/V = 03

EDIT = Pl

vcc = P30

ZAPAGAL SOFTWARE

OVERVIEW OF PROGRAMMING PLD DEVICES

132

Most of the commercial PLD devices are programmed as

follows:

Step 1: - High level description of the problem.

The designer specifies the state diagram or the

Boolean equations.

133

Step 2: - The compiler then translates the description into

a binary format called JEDEC code. JEDEC format is the

industry standard format to represent the information for

PLDs which most companies follow to represent the binary

code for their respective PLO devices. The following page

shows an example of a JEDEC code for GAL16VB.

Step 3: - The programming device then uses this JEDEC file

to program the device.

The rest of this chapter will concentrate on step 3

only.

OVERVIEW OF JEDEC FORMAT

The JEDEC FORMAT document defines a format for the

transfer of information between a data preparation system

and a logic device programmer. This format provides for,

but is not limited to, the transfer of fuse, test,

identification, and comment information in an ASCII

representation. This format defines the "intermediate code"

between device programmers and data preparation systems. A

complete description of the JEDEC format can be found in the

ABEL manual. Following is an example of a JEDEC file from

ABEL output. The "*" character is a special character which

is used to end a special field. The first part is the

comment which is used for documentation purposes. It ends

with an "*"· The next field "QP20" means that this device

134

has 20 pins. The field "QF2194" means that the total number

of fuses in the device is 2194. The field "LOOOO"

designates fuse number o. At the end, there are two

checksums. The first one is the checksum of the content of

total number of fuses transmitted, in this case is 2194

fuses. The other is the checksum of all the ASCII

characters transmitted in the JEDEC file.

ABABEL(tm) Version 2.00b

JEDEC file for: Pl6V8C

Created on: 09-Sep-87 07:50 PM

86c38 arbiter

designer: Loe Nguyen

Intel corp Dec/1986 *

QP20* QF2194* LOOOO

11111111111111111111111111111111

10101011101110111011101111111111

01010111011101110111011111111111

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

SC1

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

9£!

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

* L2048 10000000

137

* L2056

00

0000

* L2120 11111111

* L2128

11

1111

* L2192 11

* C144A

* "CD89C

The fuses which are numbered from LOOOO to L2047 are

compatible to those of 20-pin PAL devices. The fuses from

L2048 to L2192 are specific to the OLMC cells of GAL16V8

devices.

HOW TO PROGRAM A GAL16V8

GAL16V8 from Lattice Semiconductor Corp has its unique

way of programming the part. It requires a super voltage of

16.5 volt to bring the part into the programming mode (EDIT

mode). In order to load the data (fuse map) into the device,

it requires the data to be shifted into a special register

138

serially. Furthermore, it also has a special way to

represent the address location of each bit in the JEDEC fuse

map file.

Due to the NON DISCLOSURE AGREEMENT that the author

signed with Lattice Corp. The author will not reveal all the

information which are important to the programming aspects

of the GAL in this thesis. Likely, most of the fuse address

location and programming timing parameters are altered

accordingly. However, the concept is still correct. If

anyone is interested in building one, he or she can

prototype one using the enclosed schematic and then write

the author for the software. If that person wants to write

his or her own software, then that person has to contact

Lattice Semiconductor Corp for information.

PROGRAMMING ALGORITHM

A GAL16V8 is programmed as follows:

1) Enter the EDIT mode.

Within the EDIT mode, you can perform the following:

a) Bulk Erase: erase the GAL.

b) Erase Verification: verify that the device is blank

after erase.

c) Program/Verify Logic Array.

d) Program/Verify UES Array.

e) Program/Verify Architecture Array.

f) Program the Security Cell if desired.

2) Exit the EDIT mode.

139

To enter the EDIT mode, a supervoltage of 16.50 Vdc is

applied to the EDIT pin.

Also, in the EDIT mode, a 64 bit Shift Register is

active and provides the means to load and unload data from

the device via pin SDIN and S'DOUT respectively.

Also, in the EDIT mode, the GAL reconfigures itself to

give the progranm1er the access to three arrays: l} Logic

Array, 2) the Users Electronic Signature (UES) array, 3) the

Architecture array. Each of these arrays are broken into

rows. An array can have several rows, as the Logic array

does, or just one row, as the UES array does. To address

the different rows in an array, Row Address Gates (RAGs) are

used. There is a total of six RAGs on a GAL16V8 device.

The RAGs are reconfigured to external pins when a device is

in the EDIT mode.

Before any of the arrays in the device can be

programmed the device must be erased. To erase a GAL device

one procedure (Bulk Erase) is perfonned and all of the

arrays in the device are erased.

An erase verification is performed to make sure that

all of the cells in the device were erased and are

£unctional. I£ a cell does not erase, the device is

considered non-£unctional and should be discarded. If all

of the cells did properly erase the device is ready to be

programmed.

140

The first array in the device to program is the Logic

array. Data is loaded into the Shift Register to program

into a row of the Logic array. With the data loaded into

the Shift Register a row in the Logic array is addressed

with the RAGs. With the RAGs set, a programming cycle is

performed to the device which will transfer the data from

the Shift Register into the addressed row. It is necessary

to hold the RAGs constant throughout the programming cycle

because they are not internally latched.

After the Logic array is programmed, it is verified

that the correct data has been programmed.

The next array to program and verify is the Users

Electronic Signature (UES) array.

The last array to program and verify is the

Architecture array.

Once all three of the arrays are programmed and

verified the user has the option to program the Security

Cell. The Security Cell programs in the same fashion, using

the same voltage and timing specifications as any cell in

the device.

Once all of the arrays in the device have been

programmed and verified, the device is ready to be taken out

of the EDIT mode. Upon exiting the EDIT mode the device

will internally reconfigure itself back to perform logic

operations.

EDIT MODE

141

To program a GAL16V8 device, it needs to be in the

programming mode, called the Edit mode. To enter the Edit

mode, one supervoltage of 16.50 volts is applied to the Edit

pin of the device. In the Edit mode, the device is

internally reconfigured to perform programming operations.

When the device is internally reconfigured the external pins

of the device are also reconfigured to operate: the Shift

Register, the Row Address Gates (RAGs), and the Program/Ver­

ify control lines.

The Shift Register provides the means to load and

unload data from the device. The Shift Register operates on

standard TTL levels as do all the programming control

signals.

In the Edit mode, the array of the device is broken

down into three unique arrays: The Logic array, The Users

Electronic Signature array and the Architecture array.

These three arrays are broken down again into rows. The

number of rows in an array is dependent on that array. The

Logic array for a GAL16V8 consists of 32 rows, while the

Architecture array consists of only one row. The RAGs

address all of the different rows in an array. There are

six RAGs (RAGO-RAGS) which address all of the rows in an

array.

142

Two more pins are configured to control the

programming and verifying operations of the GAL16V8 device,

Strobe-bar (/STR) and Program/Verify-bar (P/V). P/V

determines if the device is to be programmed or verified.

By applying a high signal (logic "1") to the P/V input, the

device will enter the programming state. By applying a low

level (logic "O") to the P/V input, the device will enter

the verify state.

In the desired state, pulsing /STR low for the

appropriate time produces a program or verify cycle. A

programming cycle will transfer the data from the shift

Register into the addressed row. A verify cycle will

transfer the data from the addressed row into the Shift

Register.

In the Edit mode, there are several pins that are

unused, the pins must be connected to VIL or ground.

SDOUT is an open drain output that must be connected

to VIH through a resistor (lOK ohms).

Whenever in the Edit mode the P/V input should always

be held at a logic "O", unless a programming cycle is to

occur. /STR should be held at VIH at all times, except when

143

performing an actual program, verify, or load cycle.

The Edit mode pinout of the GAL16V8 is shown in figure 5.7

below.

VIL 1 20 vcc
EDIT 2 19 P/V

RAGl 3 18 RAGO
RAG2 4 GAL 17 VIL
RAG3 s 16 VIL
RAG4 6 16V8 15 VIL
RAGS 7 14 VIL
SCLK 8 13 VIL
SDIN 9 12 SD OUT
GND 10 1 l /STR

Figure 5.7. Edit mode pinout

ENTERING THE EDIT MODE PROCEDURE

When preparing to enter the Edit mode, all of the

normal output pins on the device should be floated, or

terminated through a high impedance of lOK ohms or greater

to ground.

VIE, the Edit mode voltage is applied to pin 2 of the

device, and the device will enter the Edit mode. The rise

time of VIE is important. (Please contact Lattice Semi Corp

for exact information about this timing).

In the Edit mode there are several unused pins on the

device. These unused pins should be terminated to VIL or

ground whenever in the Edit mode.

144

PROCEDURE:

1) Float all the normal output pins or terminate through a

high impedance of lOK ohms or greater to ground.

GAL16V8 pins 12 - 19

2) Select the Edit mode by placing VIE (16.50 Vdc) on pin

2, the Edit mode pin.

3) Terminate all unused pins to VIL or ground, do not

float.

4) Apply: VIH to /STR.

VIL to P/V.

EXITING THE EDIT MODE PROCEDURE

When programming is completed, the device needs to be

taken out of the Edit mode. When preparing to exit the Edit

mode all of the normal output pins on the device should be

floated, or terminated through a high impedance of lOK ohms

or greater to ground.

VIE, the Edit mode voltage is removed from pin 2 of

the device, and the device will exit the Edit mode. Pin 2

should be connected to GND or VCC after exiting the Edit

mode.

PROCEDURE:

1) Float all normal output pins through a high impedance

of lOK ohms or greater to ground.

GAL16V8 pins: 12 - 19.

2) Remove VIE(l6.SO Vdc) from pin 2, the Edit mode pin

145

SHIFT REGISTER OPERATION

The Shift Register is active in the Edit mode and

three external pins are designated for its operation. These

pins are: Serial CLock (SCLK), Serial Data Input (SDIN), and

Serial Data out (SDOUT). The SDIN is the input to the Shift

Register, and SDOUT is the output of the Shift Register.

Data is clocked into or through the Shift Register on the

falling edge of the SCLK. It is possible to clock data

straight through the Shift Register without performing a

program or verify cycle.

The Shift Register operates on a first in first out

format (FIFO). The first bit of data loaded into the device

is located in the most significant bit of the array, product

term 63 for a 16V8. Clocking the Shift Register 63 times

will shift the data bit to the least significant bit

location of the Shift Register, product term o for 16V8.

The data in least significant bit of the Shift Register is

always present on SDOUT.

When rows 60, and 63 are addressed the Shift Register

is reconfigured to be different lengths. When row 60 is

addressed the Shift Register reconfigures to 82 bits

(Architecture array). When row 63 is addressed the Shift

Register reconfigures to be transparent, the data applied to

SDIN will appear immediately on SDOUT.

The timing waveforms for loading and unloading data

from the Shift Register are shown below in Figure 5.2.

Vee

EDIT

RAGS :><x VALID RO\./ ADDRESS

146

SDIN :::><:"X BIT(NJ X BITCN•IJ X X BIT(N·~.n X

SCLK 1 ~ ~

SD OUT::><::::" x BIT(N-64) x BIT(N-63) x x (N•M-64) x
Figure 5.8. Shift register I/O timings

ADDRESSING ROWS

A GAL16V8 device is broken down into three array: the

Logic array, the UES array, and the Architecture array. All

three of these arrays consist of one or more rows. The

relationship between the arrays and the rows is shown in

figure 5.3. The picture shows the number of rows for

GAL16V8.

To program data into a GAL16V8 device, a row in an

array needs to be addressed. There are a total of 36

147

functional rows in a 16V8 device. To address a row in the

device Row Address Gates (RAGs) are used; the GAL16V8 has

six RAGS (RAGO - RAGS).

SDINj SHIFT REGISTER I SDOUT ..

ROw
ADD RES

PT64 PT32 PT3I PTO
0

LOGIC ARRAY LOGIC ARRAY

3I
3 2 r-1 ----:-:u=-Es=--A-R_R_A_Y __ _JI

UESARRAY

60 I ARCHITECTURE ARRA y I 82 BITS

62 H SECURITY CELL

63 BULK ER A SE

Figure 5.9. Array maps for GAL16V8

The RAGs are not internally latched so during a

program or verify cycle the RAGs must be held constant.

Only when a program or verify cycle is complete (/STR = 1)

is it acceptable to change the RAGs.

148

BULK ERASE PROCEDURE

Before any of the E2CMOS cells in a GAL device can be

programmed, they need to be erased. The reason why a GAL

device must be Bulk Erased is as follows. A cell that is

programmed equals a logic 11 0 11 , and a cell that is erased

equals logic 11 1 11 • When a cell is programmed to a 11 0 11 from a

11 1 11 , the charge on the floating gate is altered. It is only

possible to change the charge on the floating gate of a cell

through the Shift Register form a 11 1 11 to a 11 0 11 • It is

impossible to change the charge on the floating gate via the

Shift Register from a 11 0 11 to a 11 1 11 • the only way to change

the charge on the floating gate from a 11 0 11 back to a 11 1 11 is

to perform a Bulk Erase. The Bulk Erase procedure is,

therefore, an initialization of all arrays in the device to

a logic 11 1 11 •

The following procedure shows how to perform a Bulk

Erase on a GAL16V8 device.

1) In Edit mode

2) Address row 63 using RAGO - RAG5 and hold constant

3) Apply: VIH to P/V

VIH to SDIN

4) Pulse /STR low for 50 ms

5) Apply VIL to P/V

Note: If the Security cell is set before performing a

Bulk Erase, the programmer will not be able to edit any rows

149

in the device. The programmer needs to take the device out

of the Edit mode and then back in. Exiting and reentering

the Edit mode resets an internal latch, giving the

programmer access to all the rows.

VERIFY PROCEDURE

The Verify procedure determines if a row has been

programmed correctly, or if a Bulk Erase has properly

occurred. If a Verify procedure is performed to verify that

a row is correctly programmed, the original data programmed

into the device is needed for comparison. If a Verify

procedure is performed to verify that a Bulk Erase occurred

properly, the data in the device needs to be verified it is

all "ls".

In a Verify procedure a designated row in an array is

addressed using RAGO - RAGS. A Verify cycle performed and

the data stored in the addressed row is transferred into the

Shift Register. The data transferred into the Shift

Register is now available to be shifted out through the

Serial Data Output.

The following procedure shows how to perform a Verify

procedure.

1) Select a row to verify using RAGO - RAGS and hold

constant.

2) Pulse /STR low for 1 ms.

3) Shift the data out of the Shift Register.

4) Compare the data Programmed into the device to the

original data.

PROGRAMMING PROCEDURE

lSO

A row of an array in a GAL is programmed as follows.

First, the desired data to program is loaded into the Shift

Register. Next, RAGO - RAGS are set to address the

appropriate row and held constant. To perform the

programming cycle, apply VIH to P/V and pulse /STR low for

10 ms. After the /STR pulse is complete, return P/V to VIL.

Programming a GAL16V8 is straight forward in that each

row is read from memory and programmed into the device. The

file in memory could have been a JEDEC file down loaded from

a disk, or loaded into the programmer from another device.

The following procedure shows how to perform a

programming cycle.

1) Load the Shift Register with the desired data.

2) Address a row to program using RAGO - RAGS and hold

constant.

3) Apply VIH to P/V.

4) Pulse /STR low for 10 ms.

5) Return P/V to VIL.

SECURITY CELL PROCEDURE

All the Lattice GAL devices feature a Security Cell so

151

that it is impossible to copy or observe the Logic array in

a GAL device. However it is always possible to observe the

UES array and the Architecture array in a secured device.

If a device is secured, programming and verification of the

Logic array is impossible, until a Bulk Erase is performed.

To secure a GAL device, row 61 is addressed with the

RAGs and held constant. VIH is applied to both SDIN and

P/V. It is not necessary to clock a 11 1 11 into the Shift

Register when row 61 is addressed because the Shift Register

is transparent (SDIN = SDOUT). A programming cycle is

performed on row 61 by pulsing /STR low for 10 ms. Upon

completion of the program cycle, P/V is returned to VIL.

At this point in the process, the device is not yet

secured. The device needs to exit and reenter the Edit mode

to set the Security Cell latch. Exiting and reentering the

Edit mode clocks the Security Cell latch and inhibits access

to the Logic array. Further programming and verification of

all arrays is allowed until the Edit mode is exited, at

which time the device becomes secured. Once the Security

Cell is latched, data read from the Logic array will be all

"ls"; the device appears erased.

The following procedure describes how to secure a

device.

1) Address row 61 using RAGO - RAG5 and hold constant.

2) Apply VIH to P/V and SDIN.

152

3) Pulse /STR low for 10 ms.

4) Return P/V to VIL.

Note: The User Electronic Signature array and

Architecture array can not be secured. This data is always

available to the user to observer.

All the low level software is written in C language.

Writing the low level software is easy but tedious. All one

needs are the address locations and the specification of the

boards and the LSI chips. One can obtain these information

from INTEL data book and Lattice Semiconductor Corp for GAL

programming details. However, there is a great deal of high

level software that one needs to write to make the product

marketable. One of the immediate needs is the way to

download the JEDEC format file to the device and also the

way to upload the content of the device to the standard

JEDEC format. The JEDEC format can be obtained form IEEE

standard committee.

At the moment, a minimum amount of software was written to

use the product effectively. It consists of following screen

menu:

Screenl: GAL TYPE

16V8 TYPE 1

20V8 TYPE 2

EXIT TO DOS X

Screen2:

Screen3:

153

GAL TYPE SELECT: 16V8 (If chosen)

MENU - LOAD <L>

- VERIFY <V>

- PROG <P>

- UPLOAD <U>

- DOWNLOAD <D>

- EDIT <E>

- EXIT <X>

GAL TYPE SELECT: 16V8

MENU - MAIN ARRAY <A>

- UES ARRAY

- ARCH ARRAY <C>

If you want to obtain a copy of this software, please

write to the author at:

LOC NGUYEN

1323 S.W. 213 AVE

ALOHA, OR. 97006

Note that for different devices like EPROMs or PLDs,

you may have to rewrite many pieces of code. It turns out

that the effort to build the hardware is very small compared

to the total time to spend for writing and maintaining

software.

154

CONCLUSION

The Zapagal board was successfully built and tested.

It is used extensively for EPROM and GAL programming at

home. At the moment, ABEL is used to compile the Boolean

equations to JEDEC code. It is obvious that a compiler can

be written to incorporate PALMINI to compile the Boolean

equations to JEDEC code. When it is done, we will have a

complete integrated tool from software to hardware.

At work, the author has some friends who are making

fabs for this board. It is their opinion that the product

is marketable and it will be a lowcost, useful tool to the

lab bench.

Enclosed is the complete schematic of the Zapagal

board. Again, due to the non-disclosure agreement with

Lattice, the author can not disclose all the detailed

analysis including timing parameters which are necessary to

program the GAL. Anyone who builds the board according to

the schematic and uses author's software will find that it

works.

155

CHAPTER VI

CONCLUSION

Recently, the race in introduction of new PLO devices

has become very hot on the market. Every manufacturer wants

a piece of the vast, 1 bilion dollar, market by 1990. The

projection was made by Data Quest Source. We begin to see

the emergence of new architecture like On-chip-programmable

PLO like GAL16Z8 and those of Zilink and the gate array cell

type PLO of Zilink as well as multiple layer NOR-NOR PLO of

Erasic. Within the PLO technology, the CAD tool aspect is

still behind the chip technology. Hence, the CAD tool

provides a very good field to do further research on. Some

of the hot topic and also the immediate needs for CAD tools

are: functional and timing simulation, routing and fitting

devices, functional logic partitioning of a design into

multiple PLDs, automatic state assignment, and lastly logic

synthesis.

In this thesis, we were concerned with two kinds of

questions:

- The first one related to the theory and algorithms.

- The other related to the practical implementation of

a system.

156

With respect to the first group of question, we have

investigated a new approach to the Boolean Minimization.

Almost all of the existing algorithms for exact minimization

of Boolean functions solve in sequence two N-P complete

problems. The first one is the generation of all prime

implicants and the other is the set covering problem. In

the present approach, we only have to solve one N-P complete

problem; that is the graph coloring problem. We think that

this approach is general and can be used in CAD. It permits

us to use the existing graph coloring algorithms which have

been optimized to very high extents. In addition, a lot of

very sophisticated mathematical analysis have been done for

these algorithms. The next contribution is a new method for

designing hazardless-two-level networks.

The proposed rules for state assignment are based on

new principles not found in literature. It should be an

interesting topic for further research to formulate the

given-by-me rules and see how they relate to the existing

state assignment methods. Carefull analysis of the rules can

perhaps lead to some theorems and properties that would

prove that this algorithm will give efficient results for

wide classes of state machines using D-flip flops.

The proposal of a front end chip for self-synchronized

circuits is also introduced. This should ease the design

task, lower the cost and the board space.

157

Another group of problems are related to the

integration of PLO systems. This is a challenge and will

require a lot of effort and time. Besides the hardware

aspects, it requires a lot of software modules like language

processor, user interface, etc. Lastly, it requires the

integration of all the CAD software and hardware together.

This can be a very good long term project for a group of

students.

BIBLIOGRAPHY

[l] Bartholomeus, M., : "Prestol-II: Yet Another Logic
Minimizer for Programmed Logic Arrays", Proc. Int.
Symp. Circ. Syst., June 1985, p.58.

[2] Brown, o.w. : "A State Machine Synthesizer-SMS", Proc
18th Design Automation Conference, p.301, June 1981.

[3] Dietmeyer, D.L. :"Logic Design of Digital Systems'',
Allyn and Bacon, Boston, 1971.

[4] Dagenais, M.R., Agarwal, V.K., Rumin, N.C. : "McBoole: A
New Procedure for Exact Logic Minimization", IEEE
Trans. on CAD, Jan. 1986, pp. 229 - 238.

[5] Hong, S.J., Cain, R.G., Ostapko, D.L. : "MINI: A
Heuristic Approach for Logic Minimization",
IBM J. Res. and Dev., Vol.18, No.5, pp. 443-
458, September 1974.

[6] Perkowski, M.A., Nguyen, L.B., Goldstein, N.B. :
"An Approach to Minimization, Decomposition,
and Partitioning of PLA and PAL Circuits Based
on Multi-Valued Algebra and Graph Coloring",
Technical Report, Dept EE, PSU 1987.

[7] Rudell, R., Sangiovanni-Vincentelli, A.,
"Espresso-mv: Algorithms for Multiple-Valued
Logic Minimization", Proc. 1985 Custom
Integrated Circuits Conference, pp. 230 - 234,
Portland, May 1985.

[8] Rudell, R. : "Mulitple-Valued Logic Minimization
for PLA Synthesis", Research report, June 5,
1986, Univ. of California, Berkeley.

[9] Nguyen, L.B, Perkowski, M.A., Goldstein, N.B. :
"PALMINI - Fast Boolean Minimizer for Personal
Computers.", Proc. 24th Design Automation
Conference, p. 615 - 621, 1987.

[10] Nguyen, L.B, Perkowski, M.A., Goldstein, N.B.
"Boolean Minimization for PALs Using Graph
Coloring On Personal Computers", Northcon.
Conf. Proc., 1986.

[11] Sasao, T. : "An Algorithm to Derive the
Complement of a Binary Function with Multiple­
Valued Input", IEEE Trans on Comput., Vol. C-34,
No.2, pp. 131 - 140, Feb. 1985.

[12] Laarhoven, P.J.M., Aarts, E.H.L, Davie, M. :
"PHIPLA - A New Algorithm For Logic Minimization"
, Proc. 22th Design Automation Conference, p. 739
- 743, 1985.

[13] Brayton, R.K., Hachtel, G.D., McMullen, C. T.,
Sangiovanni Vincentelli, A.L. :"Logic Minimization
Algorithms for VLSI Synthesis." Kluwer Academic
Publishers, 1984.

[14] Ulug, M.E., Bowen, B.A. :"A Unified Theory of the
Algebraic Topological Methods for the Synthesis of
Switching Systems", IEEE Trans. on Comput., p. 255
- 267, March 1974.

[15] Tracey, J.H., "Internal State Assigments for
asynchronous sequential machines," IEEE Trans.
Electronic Computers, vol. EC-15, pp. 551-560,
Aug 1966.

159

[16] Bredeson, J.G., and Hulina, P.T., "Generation of a
clock pulse for asynchronous sequential machines to
eliminate critical races," IEEE Trans Computer, vol.
c-20, pp. 225-226, Feb. 1971.

[17] Rey, C.A., and Vaucher, J., "Self-synchronized
asynchronous sequential machines," IEEE Trans.
Computer., vol. C-23, pp. 1306-1311, Dec. 1974.

160

[18] Chuang, H.Y.H., and Das, s., "Synthesis of mulitple
-input change asynchronous machines using controlled
excitation and flip-flops," IEEE Trans. Computer.,
vol. c-22, pp. 1103-1109, Dec. 1973

[19] Huertas, J.L., and Acha, J.I., "Self-synchronization
of Asynchronous Sequential Circuits Employing a
General Clock Function," IEEE Trans. Computer., pp.
297-300, March. 1976.

[20] Unger, SH., "Self-synchronizing circuits and
nonfundamental-mode operation," IEEE Trans. Computer.,
vol. C-26, pp. 278-281, March 1977.

[21] Yenersoy. o., "Synthesis of Asynchronous Machines
Using Mixed-Operation Mode," IEEE Trans. Computer.,
vol. C-26, pp. 325-329, Apr. 1979.

[22] Kirkpatrick, D.C.; Powers, V.M., "An asynchronous
design style to achieve ultimate operating speed,"
Fifth Annual International Phoenix Conference on
Computers and Communications: PCCC'86. pp. 662-673,
1986.

[23] PH.D Dissertation at osu by Kirkpatrick, D.C; 1985.
"Design of Self-Synchronized Aysnchronous Sequential
State Machines Using Asymmetrical Delay Elements".

[24] Robert Breuninger, William Thompson, "Metastability
Evaluation of Logic Technologies", Texas Intruments
Inc, 1986.

[25] Lattice GAL Data Book, Spring 1988.

[26] EPLD Hand Book, ALTERA, 1986

[26] PAL ProgrRmmable Array Logic Handbook, MMI, 1981

[27] Intel Memory Data Book, 1987, 1988

[28] Intel Communication Handbook, 1988

[29] Steve Garcia, " Build an intelligent serial EPROM
programmer", BYTE magazine, pl03 - pll9, Oct. 1986.

[30] DOS 3.1 User Guide, Microsoft Corp, 1987.

[31] TUROBC, Borland International Corp, 1987.

161

APPENDIX A

MINIMAL BACTRACKING ALGORITHM FOR PROPER GRAPH COLORING

Algorithm 9.

Proper Coloring of the Graph, (Minimal Bactracking

Algorithm)

Al. Create the initial node N= Q of the solution tree.

NODEl = SMI(f) [1]; NODE2 = SMI(f) [2];

{ NODEX refers to a node in graph GIM }

ALL-COLORS = {1,2, ... , CARD(SMI(f)) } ;

N = O; CFmin = CARD{SMI(f));

if { NODE l, NODE2} E RS then CF(N) = 2 else CF(N) = 1;

QS(N) = { (NODE,1), (NODE2, CF(N)) };

if { NODEl, NODE2} ERS then M = 3 else M = 2:

{ M is the number of next node of GIM }

MI = SMI (f) [M] ;

GS(N) =ALL-COLORS - { COLF(MI,)i{M/ 1 ,Ml)ERS};

At this point COLF{Mii) may not be completely

specified, we take only those Mii that have been

colored already.

if {NODE!, NODE2} eRS then COLORS(N) = {1.2} else COLORS(N) ={I}:

{ COLORS(N) are the colors that have been already used }

BT = { (QS (N) , GS (N) , COLORS (N) , CF (N) } ;

A2. Selection of new node of tree for extension.

if BT = fJ then

begin

print "OPTIMAL SOLUTION".,

print SOLUTION;

return;

end;

(BT = fJ when the tree has been searched completely.)

else begin

FE= (QS(N), GS(N), COLORS(N), CF(N)) ;

{ FE = £irst element from list BT }

A3. Extension of the node.

a) if GS(N) = fJ

begin

delete FE from BT;

M = M - 1;

go to A2;

end;

COLOR= first element from GS(N);

N = N + 1;

163

GS(N) = GS(N) \ COLOR; (deleting COLOR from set GS(N)}

b) QS(N+ l) = QS(N) u {(MI. COLOR)}:

if COLOR e COLORS(N)

begin

CF(N+l) = CF(N);

COLORS(N+l) = COLORS(N);

end;

else begin

CF(N+l) = CF(N) + 1;

COLORS(N+ 1) = COLORS(N) u{ COLOR }:

end;

if CF(N• l) ~CF min then CUT-OFF

go to A3;

c) if (CF(N+l) < CFmin) and (M = CARD(SMI(f))

begin

1) SOLUTION= QS(N+l);

CFmin = CF(N+l);

print ("solution found", SOLUTION, CFmin>;

2) for all nodes

end;

(QS(Ni), GS(Ni). COLORS(Ni), CF(Ni)) E BT

do

begin

GS(N,)=GS(Ni)nCOLORS(N• l):

end;

GS(N+ l)=t'>;

M = M + 1;

go to A3;

else begin

164

165

{ creation of new node)

MI= SMI(f) [M);

GS(N+l) =ALL-COLORS - (COLF(Ml 1)l(Mli'Ml)ERS}

put 4-tuple (QS(N+l), GS(N+l), COLORS(N+l), CF(N+l))

at the beginning of list BT;

M = M + l;

go to A2;

end;

end algorithm;

Comments to Algorithm ~

1. Coordinate QS(N) of a node of the solution tree includes

a partial coloring of the graph, i.e. a set of pairs (MI,

COLFUN(MI)) where MIESMI(/).

In the initial node of the tree two incompatible nodes

of graph GIM are colored with different colors, 1 and 2, or

two compatible nodes are colored with the same color 1.

2. GS(N) is a set of colors which can be used to color the

currently selected node (minimal implicant) MI of GIM.

3. To make the execution of the program more efficient, the

CUT-OFF rules are applied before calculating GS(N+l). As

the possible colors for the minimal implicant, MI, we select

colors which are different from the colors already assigned

to the minimal implicants that have common edges with MI.

4. When solution QS(N+l) in node N+l is found we know that

the minimal solution is contained in the set of proper

166

coloring with at most CARD {COLORS(N+l)) colors. It is then

sufficient to use only colors f=orn the set COLORS(N+l) for

the next colorings. The colors not belonging to COLORS(N+l)

are then deleted f=om coordinates GS{Ni) in nodes with

numbers Ni that are in the branch leading from the node with

number N0 to the solution node with number N+l.

#include <time.h>

#include <types.h>

#include <timeb.h>

#include <STDIO.H>

APPENDIX B

LISTING OF PALMINI

int max,maxi,i,il,f,onsize,offsize,solsize,cost;

int secl,sec2,minl,min2,hourl,hour2,time_flag;

long int *onpt,*offpt,*solpt;

char name[64),c,*pa;

int wcount,remainder,level[4],GIM[l20][120),color[l20];

long int cubel[l),cube2[2],cube3[3),cube4[4];

void getime ()

{ struct tm *foo;

time t *tl;

*tl = time(NULL);

foo = localtime(tl);

if (time_flag == O)

{

secl = (*foo).tm_sec;

}

minl = (*foo) .tm_min;

hourl = (*foo).tm_hour;

time_flag = 1;

/* printf ("%d:%d:%dn",hourl,minl,secl) ;*/

else if (time_flag == 1)

{

sec2 = (*foo) .tm sn",hour2,min2,sec2); */

sec2 = sec2 - secl;

min2 = min2 - minl;

hour2 = hour2 - hourl;

printf("nTOTAL TIME = %d:%d:%dn",hour2,min2,sec2);

/* function to compact inputs from name to cubes */

void compact_cube(name,pt,max,i)

long int *pt;

int max,i;

char name[];

{

int il,ii,i2;

168

/* clear the storage first */

for (il = (wcount-1); il >= o: --il)

*(pt+(i•wcount)+il) = oxo;

169

i2 = O;

name[] */

/* keep track of index in

for (il = (wcount-1); il >= O; --il)

{

max= level[il];

for (ii = O; ii <= (max-1); ++ii)

{

if (name[ii+i2] == '1')

{

}

*(pt+(i*wcount)+il) = *(pt+(i*wcount)+il) I Ox2;

goto compactl;

else if (name[ii+i2] == 'O')

{

*(pt+(i*wcount)+il) = *(pt+(i*wcount)+il) I Oxl;

goto compactl;

}

else

{

*(pt+(i*wcount)+il) = *(pt+(i*wcount)+il) I Ox3;

goto compactl;

}

compactl:

170

if (ii< (max-1))

twice */

/* last digit, do not shift left

*(pt+(i*wcount)+il) <<= 2;

i2 = i2 + max; /* i2 will point to correct name[O] for

next wcount */

/* function to print out cubes from arrays */

void uncompact cube (name,pt,max,i)

{

long int •pt;

int max,i;

char name[];

int ii,il,mask,index;

long int temp;

/* process output */

index = O;

for (il = (wcount-1); il >= o

{

max= level[il];

temp= *(pt+(i•wcount)+il);

for (ii = l; ii <= max; ++ii)

--il}

{

bits*/

}

mask temp & Ox3;

if (mask == Ox2)

{

/* mask off but last 2

*(name+index+max-ii) = '1';

temp >>= 2;

else if (mask == Oxl)

{

*(name+index+max-ii) = IQ I i

temp >>= 2;

}

else if (mask == oxo)

{

*(name+index+max-ii) = I e Ii

temp >>=2;

}

else

{

*(name+index+max-ii) = 'XI;

temp >>= 2;

}

171

index += max;

}

}

void print_cube(name,max)

int max;

{

char name[];

int i;

char *pt;

max = max;

pt= &name[O];

for (i=O; i<= (maxi-1); ++i)

{ printf("%c",*(pt+i));}

printf("\n");

/* inclusion: this procedure will take each entry of ON

array

*/

and see if it is included in OFF array.

A flag f is returned: o = included.

1 = not included.

int include(onpt,offpt,i,f)

long int *onpt,*offpt;

int i,f;

172

{

int il,i2,i3;

long int reg,mask;

il = O;

f = O;

while (il != offsize)

{

f = O;

for (i3 = O; i3 <= (wcount-1); ++i3)

{

173

reg = *(onpt+(i*wcount)+i3) & *(offpt+(il*wcount)+i3);

I* A * Bi */

max= level[i3];

for (i2 = O;i2 <= (max-1) ;++i2)

{

mask = reg;

mask= mask & Ox3;

last 2 bits */

if (mask == 0)

f = 1;

}

i2 = max;

reg >>= 2;

else if (mask !=O)

{ reg>>= 2;}

/* mask off but

/* A /[Bi */

17~

}

if (f == 0)

return(f): /* A [Bi return f = o

*I

++il:

}

return (f) :

*I

/* A /[B, return f = 1

/* function absorbe: will check the array apt for subsumes.

Suppose

Ai [Bi then Ai will be deleted.

The deleting method is as follows: the last entry in

array apt is

copied into Ai and asize is decreased by one.

*/

void absorbe(apt,asize)

long int *apt:

int *asize;

{

int il,i2,i3,flag:

long int *regpt:

/* printf ("in absorben"): *I

regpt = (long int*) calloc(l,sizeof(cube4)):

if (regpt = NULL}

n") ;

goto absorbe_exit;

}

il = O;

while (il <= (*asize-1))

{

flag = O;

175

/* flag is used to indicate if Ai is deleted. Flag =

1, Ai is.

If Ai is deleted, update new value into Ai but keep

the same

pointer and reset inside loop. If Bi is deleted,

keep same Ai

*I

and pointer and Bi pointer.

If none is deleted, keep Ai and advance pointer

*I

for (i3 = O; i3 <= (wcount-1); ++i3)

*(regpt+i3) = *(apt+(il*wcount)+i3);

/* Ai [Bi ? */

i2 = (il+l);

while (i2 <= (*asize-1))

{

/* get Ai

for (i3 = O; i3 <= (wcount-1); ++i3)

{

}

*(regpt+i3) &= *(apt+{i2*wcount)+i3);

if (*(regpt+i3) != *(apt+(il*wcount)+i3))

goto step2;

/* here, Ai [Bi */

176

for (i3 = O; i3 <= (wcount-1); ++i3) /* delete Ai

*/

*(apt+(il*wcount)+i3) =

*(apt+((*asize-l)*wcount)+i3);

--•asize;

flag = 1;

i2 = •asize;

inside loop */

goto steps;

/* Bi [Ai ? */

/* reset

step2: for {i3 = o: i3 <= (wcount-1): ++i3)

*(regpt+i3) = *(apt+{il•wcount)+i3);

for {i3 = O; i3 <= (wcount-1); ++i3)

{

*(regpt+i3) &= *{apt+(i2*wcount)+i3);

if (*(regpt+i3) != *(apt+(i2*wcount)+i3))

177

goto step5:

}

/* Bi [Ai */

for (i3 = o: i3 <= (wcount-1): ++i3) /* delete Bi

*I

*(apt+(i2*wcount)+i3) =

*(apt+((*asize-l)*wcount)+i3):

--*asize:

--i2: /* to stay at the same pointer */

/* Ai [/ Bi and Bi [/ Ai */

step5: :

++i2:

} /* end of while i2 */

if (flag == O)

{++il:}

/* end for while il */

absorbe_exit::

}

/* function: make_graph_GIM will create graph GIM. The

result

is stored at GIM. GIM is a two dimensional array

with row = column = onsize.

A o = no edge between that row and column.

A 1 = an edge exists between that row and column.

*/

void make_graph_GIM(onpt,offpt,GIM)

long int *onpt,*offpt;

int GIM[60][60];

{

int il,i2,i3;

long int *regpt;

/* printf("in make_graph_GIMn"); */

for (il = O; il <= (onsize - 1); ++il)

G IM [i 1] (i 1] = o ; n") ;

goto make_graph_exit;

for (il = O; il <= (onsize-1); ++il)

{

for (i2 = (il+l); i2 <= (onsize-1); ++i2)

{

for (i3 = O; i3 <= (wcount-1); ++i3)

{

*(regpt+i3) = *(onpt+(il*wcount)+i3) I

*(onpt+(i2*wcount)+i3);

I* Ai $ Ai+l */

}

178

f = include(regpt,offpt,O,f);

if (f != O)

{ GIM[il][i2] = O;

GIM[i2][il] = O;

}

else

{ GIM[il][i2] = l;

GIM[i2][il] = l;

}

make_graph_exit:

free(regpt);

179

/* compute cost of GIM: this function computes the cost to - - -
color graph

GIM and also colors the graph and saves solution in array

COLOR[]

*I

void compute_cost_of_GIM(GIM)

int GIM[l20][120];

{

int il,iO,i2,f,tempcolor;

long int *regpt;

printf("in compute cost of GIMn"); - - -

n") ;

*I

regpt =(long int*) calloc(l,sizeof(cube4));

if (regpt == NULL)

goto compute_cost_exit;

}

if (onsize < 2)

cost = 1;

else

{

ltlU

color[O] = 1; /* assign first color to first node

iO = 1;

while (iO <= (onsize-1))

{

tempcolor = 1;

il = O;

while (il <= (i0-1)) /*check against previous

nodes */

{

if (GIM[iO][il] == 1)

{

}

if (tempcolor == color[il])

++tempcolor;

++il;

checkl:

}

color[iO) = tempcolor; /* next node gets color */

/* check and see if this color valid */

printf ("checkl, tempcolor = %d\n",tempcolor);

for (il = O; il <= (wcount-1); ++il)

*(regpt+il) = *(onpt+(iO*wcount)+il); /* get

this cube */

for (il = O; il <= (i0-1); ++il)

{

f = O;

if (color[il] == color[iO])

{

for (i2 = O; i2 <= (wcount-1); ++i2)

*(regpt+i2) I= *(onpt+(il*wcount)+i2); /*

match cubes */

f = 1;

}

if (f == 1)

{

/* set flag */

181

f = include(regpt,offpt,O,f); /* check cube

*I

if (f == 0)

{

++tempcolor;

/* cube overlaps offset */

/* search for another color */

182

printf("overlap, tempcolor = %d\n",tempcolor);

i2 = O;

}

}

++io;

}

while (i2 <= (i0-1))

{

if (GIM[iO][i2] == 1)

{ if (tempcolor == color[i2])

++tempcolor;

}

++i2;

color[iO] = tempcolor;

goto checkl;

} /* end of else */

/* compute cost */

iO = O;

cost = 1;

while (iO <= (onsize-1))

{

if (color[iO] > cost)

}

cost= color[iO];

++io;

compute cost exit:; - -
}

void graph_coloring()

int iO,il,i5,i2;

/* printf ("in graphcoloring\n"); */

switch (wcount)

{

case 1:

solpt = (long int *) calloc(cost+lOO,size­

of (cubel)); /* 16 vars*/

break;

case 2:

solpt = (long int *) calloc(cost+lOO,size­

of(cube2)); /* 32 vars*/

break;

case 3:

solpt = (long int *) calloc(cost+lOO,size­

of (cube3)); /* 48 vars*/

break;

default:

183

solpt = (long int *) calloc(cost+lOO,size­

of (cube4)); /* 64 vars*/

break;

}

if (solpt == NULL}

{

printf ("Can not allocate memory for SOL array\n");

goto graph_exit;

if (onsize == 1)

{

for (il = O; il <= (wcount-1); ++il}

*(solpt+il} = *(onpt+il};

else

for (il = O; il <= (cost-1); ++il)

{

solsize = 1;

for (i5 = 1; is <= cost; ++is)

{

for (iO = O; io <= (onsize-1); ++iO)

{

if (color(iO] == iS)

184

{

for (i2 = O; i2 <= (wcount-1); ++i2)

*(solpt+((solsize-l)*wcount)+i2) =

*(onpt+(iO*wcount)+i2);

185

color(iO] = O; /* delete the used node

*/

il = iO + 1;

while (il <= (onsize-1))

{

if (color[il] == i5)

{

for (i2 = O; i2 <= (wcount-1); ++i2)

*(solpt+((solsize-l)*wcount)+i2) I=

*(onpt+(il*wcount)+i2);

}

}

}

}

/* match cubes of same color */

color[il] = O; /* this step is extra */

++il;

++solsize;

}

}

--solsize;

absorbe(solpt,&solsize);

graph exit:;

void deleteliteral(apt,asize)

long int *apt;

int *asize;

{

long int maskl,mask2,mask3,temp;

int il,i2,i3,f;

for (il = O; il <= (*asize-1); il++)

{

maskl = OX3;

for (i2 = O; i2 <= (wcount-1); ++i2)

{

max= level[i2];

temp= *(apt+(il*wcount)+i2);

for (i3 = O; i3 <= (max-1); ++i3)

{

if ((mask2 =temp & maskl) != OX3)

{

/* save the working bit of present cubes

in mask2 */

186

*I

temp */

offpt */

}

}

187

/*printf ("temp = \n"):

uncompact_cube(name,&temp,max,o):

print_cube(name,max) :*/

mask3 = -maskl:

temp I= maskl: /* turn the bit into x

f = include(&temp,offpt,O,f):

if (f == 0) /* temp is included in offpt */

}

temp &= mask3:

temp I= mask2:

maskl <<= 2:

else if (f == 1)

maskl <<= 2:

/* blank this bit */

/* restore this bit into

/* shift to next bit */

/* temp is not included in

/* shift to next bit */

else

maskl <<= 2;

*{apt+(il*wcount)+i2) =temp;

}

}

}

void find consensus(apt,asize)

long int *apt;

int *asize;

{

long int *tempt,mask,reg;

int il,i2,i3,i4,ecount;

tempt= (long int*) calloc(l,sizeof(cube4));

if (tempt == NULL}

{

printf ("Can not allocate memory for TEMPT in

find_consensus\n");

goto consensus_exit;

for (il = O; il <= (*asize-2); ++il}

{

for (i2 = 1; i2 <= (*asize-1); ++i2)

{

for (i3 = O; i3 <= (wcount-1); ++i3)

*(tempt+i3) = *(apt+(il*wcount)+i3) &

*(apt+(i2*wcount)+i3);

/* star operator can be realized with AND

188

operator */

ecount = O;

for (i3 = O; i3 <= (wcount-1); ++i3)

{

max= level[i3];

reg= *(tempt+i3);

for (i4 = O; i4 <= (max-1); ++i4)

mask = reg;

189

mask &= OX3;

if (mask == O)

/* check last two bits */

bit */

{ ++ecount;

mask I= OX3; /* turn these bits into X */

mask <<= 2*i4;

*(tempt+i3) I= mask;

}

reg >>= 2;

}

if (ecount > 1)

{

il = *asize;

i2 = *asize;

i3 =wcount;

/* shift to next Boolean

/* no consensus exists

between A and B

i4 = max;

}

}

if (ecount == 1)

ecount = 1 */

++*asize;

190

so, exit */

/* create consensus if

for (i4 = O; i4 <= (wcount-1): ++i4)

*(apt+((*asize-l)*wcount)+i4) = *(tempt+i4):

}

}

consensus_exit::

}

/* function scompl: this function will find the complementa­

tion

of cpt. The result is stored in bpt.

method: disjoint sharp. */

void scomplement(apt,asize,onpt,onsize)

long int *apt,*onpt;

int *asize,*onsize;

int i2,i3,i4,offset,cptx,bptx,cptr,bptr:

long int *regpt,mask,temp,temp2;

/* printf ("in scomplementn"); *I

regpt = (long int*) calloc(l,sizeof(cube4));

if (regpt = NULL)

n II) ;

goto scompl_exit;

}

/* fill apt[lJ = xxxxx */

for (i2 = O ; i2 <= (wcount-1); ++i2)

{*(apt+i2) = oxo;

* (apt+i2) = -* (apt+i2);}

cptr = O;

bptr = O;

*asize = 1;

while (bptr <= (*onsize-1))

{

cptr = O;

191

bptx = bptr*wcount; /* bptx = offset into onpt */

while (cptr <= (*asize-1))

{

cptx = cptr*wcount; /* cptx = offset into apt */

/* is A [Bi ? */

for (i2 = O; i2 <= (wcount-1); ++i2)

{

*(regpt+i2) = *(apt+cptx+i2) & *(onpt+bptx+i2);

}

if (*(regpt+i2) != *(apt+cptx+i2))

{ /* printf(" A [/ B\n"); *I

goto stepl;} /*A [/Bi*/

/* here A [B, delete A */

offset= (*asize-l)*wcount;

for (i2 = O; i2 <= (wcount-1); ++i2)

*(apt+cptx+i2) = *(apt+offset+i2);

--*asize;

--cptr;

goto step3;

stepl: /* is A overlapped Bi ? *I

for (i3 = O; i3 <= (wcount-1); ++i3)

*(regpt+i3) = *(apt+cptx+i3) & *(onpt+bptx+i3);

max= level[i3];

for (i2 = O;i2 <= (max-1) ;++i2)

{

192

mask= *(regpt+i3);

mask= mask & Ox3; /* mask off but

last 2 bits */

if (mask == 0)

{goto step3;}

else if (mask !=O)

/* A/[Bi */

- --- ----,

{ *(regpt+i3) >>= 2;}

}

/* printf ("A is overlapped B\n"); *I

/* now regpt contains A * Bi. It then is sharped

against A */

step2:

/* main body of sharp */

for (i3 = O; i3 <= (wcount-1); ++i3)

*(regpt+i3) = *(apt+cptx+i3) & *(onpt+bptx+i3);

for (i3 = O; i3 <= (wcount-1); ++i3)

*(regpt+i3) A= *(apt+cptx+i3);

for {i3 = O; i3 <= (wcount-1); ++i3)

{

max= level[i3];

for (i2 = O; i2 <= (max-1); ++i2)

two bits */

mask= *(regpt+i3);

mask &= OX3;

if (mask != O)

{

temp = mask;

if (mask == OXl)

temp2 = OX2;

/* mask all but last

193

*/

in A */

}

}

else if (mask == OX2)

temp2 = OXl;

else if (mask == OX3)

194

temp2 = OXO;

temp <<= 2*i2;

temp2 <<= 2*i2;

mask = -temp; /* to mask of these bits

mask "= temp2;

mask &= *(apt+cptx+i3); /* clear these bits

/* create new cube */

++*asize;

}

offset = wcount * (*asize-1);

for (i4 = O; i4 <= (wcount-1); ++i4)

{

}

if (i4 == i3)

*(apt+offset+i4) =temp I mask;

else

*(apt+offset+i4) = *(apt+cptx+i4);

*(regpt+i3) >>= 2;

/* delete the entry Ai due to new created cubes */

for {i4 = O; i4 <= {wcount-1); ++i4)

{

/* swap the last cube into current cube */

*(apt+cptx+i4) = *(apt+((*asize-l)*wcount)+i4);

}

--*asize;

195

--cptr; /* decrement by one to remain at this

pointer

step3:;

for next cube */

++cptr;

if {*asize == O)

{printf ("asize = O\n");

goto scompl_exit;}

} /* end for while cptr */

absorbe(apt,asize);

++bptr; /* if no new cube is created, increment

cptr */

} /* end for while cptr */

scompl_exit:;

)

void create_disjoint(apt,asize)

long int *apt;

int *asize;

{

196

int il,i2,i3,i4,i5,f,xcountl,xcount2,cptx,bptx,offset;

long int reg,mask,maskl,temp,temp2,*regpt;

n II) i

/* printf ("in create_disjointn") ;*/

regpt = (long int*) calloc(l,sizeof(cube4));

if (regpt = NULL)

goto disjoint_exit;

}

il = O;

while (il <= (*asize-1))

{

i2 = il + 1;

while (i2 <= (*asize-1))

f = O;

for (i3 = O; i3 <= (wcount-1); ++i3)

{

reg = *(apt+(wcount*il)+i3) &

*(apt+(wcount*i2)+i3);

max= level[i3];

for (i4 = O; i4 <= (max-1); ++i4)

A */

197

{

mask = reg;

mask= mask & OX3;

if (mask == 0)

{

f = 1;

i3 = wcount;

}

else if (mask != O)

{ reg>>= 2;}

}

}

if (f == 0) /* A [B, then find if A > B or B >

{

xcountl = O;

xcount2 = O;

for (i3 = (wcount-1}; i3 >= O; --i3}

{

max= level[i3];

mask= *(apt+(wcount*il)+i3);

maskl = *(apt+(wcount*i2)+i3);

for (i4 = O; i4 <= (max-1}; ++i4}

{

if ((mask & OX3) == OX3)

++xcountl;

if ((maskl & OX3) == OX3)

++xcount2;

mask >>= 2;

maskl >>= 2;

}

if (xcountl != xcount2)

significant bit */

i3 = -1;

/* is A [Bi ? */

cptx = wcount*il;

bptx = wcount *i2;

/* check from most

for (i3 = O; i3 <= (wcount-1); ++i3)

{

198

*(regpt+i3) = *(apt+cptx+i3) & *(apt+bptx+i3);

if (*(regpt+i3) != *(apt+cptx+i3))

goto stepO; /* A [/ Bi */

}

/* here A [B, delete A */

offset= (*asize-l)*wcount;

for (i3 = O; i3 <= (wcount-1); ++i3)

*(apt+cptx+i3) = *(apt+offset+i3);

--*asize;

goto step3;

stepO:; /*is B [A*/

for (i3 = O; i3 <= (wcount-1); ++i3)

{

199

*(regpt+i3) = *(apt+cptx+i3) & *(apt+bptx+i3);

if (*(regpt+i3) != *(apt+bptx+i3))

goto stepl;

}

/* here B A, delte B */

offset= (*asize-l)*wcount;

for (i3 = O; i3 <= (wcount-1): ++i3)

*(apt+bptx+i3) = *(apt+offset+i3);

--*asize;

--i2; /* to remain at the same pointer */

goto step3;

stepl: /* is A overlapped Bi ? */

for (i3 = o: i3 <= (wcount-1); ++i3)

{

*(regpt+i3) = *(apt+cptx+i3) & *(apt+bptx+i3);

max= level[i3];

for (i5 = O;i5 <= (max-1) ;++i5)

{

200

mask = *(regpt+i3);

mask= mask & Ox3; /* mask off

but last 2 bits */

}

delete A */

if (mask == O)

{goto step3;}

else if (mask !=O)

{ *(regpt+i3) >>= 2;}

if (xcount2 > xcountl)

/* A /[Bi */

{il = cptx; /* if B > A, then delete B, else

cptx = bptx;

bptx = il;}

/* printf ("A is overlapped B\n"); *I

/* now regpt contains A * Bi. It then is sharped

against A */

step2:

/* main body of sharp */

for (i3 = O; i3 <= (wcount-1); ++i3)

*(regpt+i3) = *(apt+cptx+i3) & *(apt+bptx+i3);

for (i3 = O; i3 <= (wcount-1); ++i3)

*(regpt+i3) A= *(apt+cptx+i3);

for (i3 = O; i3 <= (wcount-1); ++i3)

{

two bits */

bits */

bits in A */

max= level[i3];

for (i4 = O; i4 <= (max-1); ++i4)

{

201

mask= *(regpt+i3);

mask &= OX3; /* mask all but last

if (mask != 0)

temp = mask;

if (mask == OXl)

temp2 = OX2;

else if (mask == OX2)

temp2 = OXl;

else if (mask == OX3)

temp2 = OXO;

temp<<= 2*i4;

temp2 <<= 2*i4;

mask = -temp;

mask "'= temp2;

/* to mask of these

mask &= *(apt+cptx+i3); /* clear these

/* create new cube */

++*asize;

}

offset = wcount * (*asize-1);

for (iS = O; is <= (wcount-1); ++iS)

{

if (i5 == i3}

*(apt+offset+i5) = temp I mask;

else

*(apt+offset+i5) = *(apt+cptx+i5);

*(regpt+i3) >>= 2;

/* delete the entry Ai due to new created cubes */

for (i4 = O; i4 <= (wcount-1); ++i4)

{

202

*(apt+cptx+i4} = *(apt+((*asize-l}*wcount}+i4);

}

--*asize;

/* if B is deleted, then adjust i2 to remain the

same pointer */

step3:;

if (xcount2 > xcountl}

--i2;

if (*asize == 0)

{printf("asize = O\n");

goto disjoint_exit;}

}

++i2;

} /* end of while i2 */

++il;

} /* end of while il */

disjoint_exit:

203

/***

*I

main ()

{

/* this program demonstrates the representation of Boolean

cubes

*/

as bits in registers.

0 = 01

1 = 10

x = 11

e = oo

int toffsize,out,il,i2,i3,flag,static_hazard_flag;

int delete_literal_flag,invert_output_flag,rsize;

long int timpl,timp2,*tempt;

FILE *input_file,*output_file, *fopen ();

printf("nPALMINin");

time_flag = O;

pa= &name[O);

if ((input_file = fopen ("texti.pas", "r")

{ printf("texti.pas can not be opened\n");

goto exit;

/* skip comment lines */

startl:

c = getc(input_file);

i f ((c == I ; ') I I (c == I I))

204

~- 0)

{ while ((c=getc(input_file)) != '\n'); /* skip a line

*I

goto startl;

}

if ((c == I i I) I I (c == I I I))

{fscanf(input_file,"%d",&max);

printf("number of input variables= %dn",max) ;}

else

{printf ("can not find in");

goto exit;}

while ((c=getc(input_file)) !=

In I) i /* skip i x line */

) ;

c = getc(input_file);

if ((c == ' o ') I I (c == ' On ') ;

c = getc(input_file);

/* skip o x line */

if ((c == Ip I) I I (c == I p I))

{fscanf(input_file,"%d11 ,&onsize);

printf("number of input terms= %dn",onsize) ;}

else

{printf ("can not find pn");

goto exit;}

205

while ((c=getc(input_file)) != '\n'); /*skip p x line*/

c = getc(input_file);

if ((c == I h I) I I (c == I H I))

{fscanf(input_file, 11 %d",&static_hazard_flag);

if (static_hazard_flag == l}

printf ("Static_Hazard_Check_Option = ON\n");

else

printf ("Static_Hazard_Check_Option = OFF\n");

else

{printf ("can not find hn");

goto exit;}

while ((c=getc(input_file)) != '\n'); /* skip h x line n"

else

printf ("Delete_Literal_Option = OFFn");

~06

else

{printf ("can not find dn");

goto exit;}

while ((c=getc(input file)) != '\n'); /*skip d x line*/

c = getc(input_file);

*I

i f ((c == ' e ') I I (c == ' E '))

{fscanf(input_file,"%d",&invert_output_flag);

if (invert_output_flag== 1)

printf("Invert·output flag= ON\n"}; - -
else

printf ("Invert_output_flag = OFF\n"};

else

{printf ("can not find e\n"};

goto exit;}

while ((c=getc(input_file}} != '\n'); /*skip ex line*/

maxi = max + out;

wcount = (maxi * 2) / 32;

remainder= (maxi * 2) % 32; /* modulus operator

if (remainder > O)

++wcount;

switch (wcount) /* setup level[i] for cube manipula-

tion */

{

case O:

printf ("error 1: number of variable = O\n");

goto exit;

break;

case 1:

if (remainder == O)

level[O] = 16;

else

level[O] = remainder/ 2;

break;

case 2:

level(O] = 16;

if (remainder == O)

level[l] = 16;

else

level(l] = remainder /2;

break;

case 3:

level[O] = 16;

level[l] = 16;

if (remainder == O)

level(2] = 16;

else

207

level[2] = remainder /2;

break;

default:

level[O] = 16;

level[l] = 16;

level[2] = 16;

if (remainder == 0)

level[3] = 16;

else

level[3] = remainder /2;

break;

switch (wcount)

{

case 1:

onpt = (long int *) calloc(out*onsize+lOO,size­

of (cubel)); /* 16 vars*/

break;

case 2:

onpt = (long int *) calloc(out*onsize+lOO,size­

of (cube2)); /* 32 vars*/

break;

case 3:

onpt = (long int *) calloc(out*onsize+lOO,size­

of(cube3)); /* 48 vars*/

208

break;

default:

onpt = (long int *) calloc(out*onsize+lOO,size­

of(cube4)); /* 64 vars*/

break;

}

if (onpt == NULL)

{

}

printf ("Can not allocate memory for ON array\n");

goto exit;

/* read in the on cubes */

rsize = O;

for (il = O; il <= (onsize-1); ++il)

{

for (i = O; i <= (max-1); ++i)

{

c = getc(input_file);

if (c == I 1 I I I c == I 0 I I I c == I x I I I c == I x I)

*(pa+i) = c;

else

{ printf("error, data is not 0,1,x or X\n");

printf("%c",c);

'!09

goto exit;

}

}

/* take care of number of output here */

for (i = 1; i <= out; ++i)

{

blank */

}

while ((c = getc(input_file)) == ' '); /*skip

if (C == I 1 1
)

{

}

for (i2 = 1; i2 <= out; ++i2)

{

}

if (i2 == i)

*(pa+(max-l)+i2) = 'O';

else if (i2 != i)

*(pa+(max-l)+i2) = '1';

compact_cube(name,onpt,max,rsize);

++rsize;

while((c=getc(input_file)) != '\n'); /*skip to next

line */

210

}

fclose(input_file);

onsize = rsize;

/* start counting time */

getime ();

toffsize = 600;

switch (wcount)

{

case 1:

offpt = (long int *) calloc(toffsize,size­

of(cubel)); /* 16 vars*/

break;

case 2:

offpt = (long int *) calloc(toffsize,size­

of (cube2)); /* 32 vars*/

break;

case 3:

offpt = (long int *) calloc(toffsize,size­

of(cube3)); /* 48 vars*/

break;

default:

offpt = (long int *) calloc(toffsize,size­

of(cube4)); /* 64 vars*/

211

break;

}

if (offpt == NULL)

{

}

printf ("Can not allocate memory for OFF arrayn");

goto exit;

printf ("Complementation using Disjoint Sharp methodn");

/* check for special cases of all xxxxxx */

for (il = O; il <= (onsize-1); ++il)

for (i2 = O; i2 <= (wcount-1); ++i2)

{

timpl = *(onpt+(il*wcount)+i2);

max= level[i2];

flag = O;

for (i3 = O; i3 <= (max-1); ++i3)

{

timp2 = timpl;

if ((timp2 &= OX3) != OX3)

bits */

/* check last two

212

{i3 = max; /* check next cube

*I

}

}

}

flag= 1;}

else

timpl >>= 2;

if (flag == O)

/* here, the cube is all xxxx */

{

offsize = O;

printf ("nComplementation of f is emptyn");

goto print_result;

scomplement(offpt,&offsize,onpt,&onsize);

absorbe(offpt,&offsize);

print_result:;

printf("number of MAXTERMS = %d\n",offsize);

if (invert_output_flag == 1)

{

tempt = onpt;

onpt = offpt;

offpt = tempt;

il = onsize;

213

}

onsize = offsize;

offsize = il;

printf ("Create_disjoint_cubesn");

create_disjoint(onpt,&onsize);

absorbe(onpt,&onsize);

printf ("Cn");

make_graph_GIM(onpt,offpt,GIM);

cornpute_cost_of_GIM(GIM);

graph_coloring();

if (delete literal flag == 1) - -
{

}

printf ("Delete literalsn");

deleteliteral(solpt,&solsize);

if (static hazard flag == 1) - -
{

n II) i

find consensus(solpt,&solsize);

}

/* stop counting time */

printf ("Minimized solution = %dn",solsize);

max = maxi - out;

++maxi; /* adjust maxi fern");

214

if ((output_file = fopen ("texto", "w")

{ printf("texto can not be openedn"):

goto exit;

}

fprintf(output_file,"i %dn",maxi);

fprintf(output_file,"o %dn",out);

fprintf(output_file,"p %dn",solsize);

for (il = O; il <= (solsize-1); ++il)

{

uncompact_cube(name,solpt,max,il);

for (i = l; i <= out; ++i)

{

215

~~ 0)

if ((*(pa+(max-l)+i) == 'O') 11 (*(pa+(max-l)+i) ~-

'x')

*(pa+(max-l)+i) = 'l';

else

*(pa+(max-l)+i) = 1 _I i

}

for (i = 1: i <= out: ++i)

*(pa+max+out-i+l) = *(pa+max+out-i):

* (pa+max) = ' ';

for (i = O; i <= (maxi-1); ++i)

fprintf(output_file,"%c",name[i]);

fprintf(output_file,"\n"):

91Z

! () auq::+af>

! (a1~;-:+nd:+no)aso1~;

{

{

APPENDIX C

SCHEMATIC OF ZAPAGAL BOARD

Enclosed is the complete schematic of the Zapagal Board.

~ I ~

~

~
.

! i ~ ! ! . j
' (1 (I ~

~
I r ,,. /

~i l
•

--~Ill
l J(; L Ill ., .. ,~ irh

I
,~iii ~iiiS~2i ! ~

1lD§jl ?'"~'"'"''"i ... ~li ·1~N; I
~

I ~~~~~~~: ~J~!~!~i ~:il~~~I ~~~~a~~~ ~~~!~~~i ~~~~e~~i ; I w
I

tt ll LI4 "f;-tkp.t .. ~1 ~H'J ~ la w.A' jl i I I 1 ~+la I I! I I I I I I I ~I I I I 1 I
'. iJll

:~:::..-:.~.::.::
' (•-• . • "'~~t~t l ' .lll (J,,

\\', ' • '' '.\.I
~

~
l j

AA

•1

I -!~
I ~ ~ ~

! '" ~
! ! !

,, I) •

l:
; I

1~-
L j

j j j
:a ~:u:::iD !

11
i 16-.. JIWlll'"

.. l~HUI!

I
I

~
.. • lol

I
! j ~ ~

j ~
.. i:l

• ii

s '

}l

8!2

t I

~
• •
! !

~
~

~ I ~

·~-n
11111111111111 11 I 111 ~

X~i~~~iiii!?~i~!~iiiig~j~l~i~;: I
•

1 I

i!lllli!ill!!!!!!!!!!'i:iSiiiS~ !
1

l I
1

111 I l , .. - ~· ·T· ~

.,. ','-. ., '"!""

' I ,, . \ '

"ITTl
11 1n ~ J ff'. .. :-~ $1":

Ill

t• !I !I : ~ '
T

!
•IT TL ~

ct ct ~j
Ii i r.-ll':'':'-1 ~ ~ ~ .. •.~ ·~· j
I •••"'"' ·.

~· ; j~~ j ~
•i':'':' ~
~:r't•~ I

~
,.,,,.11 •. ~ .. ;. \j~

Ill
......... 'I I.I

~~~!~;~~: 
~ ~ ~ ' 

1111 

!I !I ; 

~ ~ ~ ~ ~ ~ 1C I.I 

I~ = . !I !I !I 

r~--2 
I '-ti-.. 
I I A "' 

~ -LIJ 
-~"' 11 I "' 

. "!' >9 •• I 

..... 'B I i 
~::.,..aunn1 

~~ ~u ~ I :1111-<i1~I~"'~~ I 
, 

l 
~:!I: H ~ I I• .. ~ •• .,j 

ct~js . . b ct~ .. ~a 

.. 
' ~ ~ ~ ~ ~ 
~ ~ ~. 

i 

-. 
'5 

Ji 

6tZ 



ozz 

" ... , I a·i 

I .. 



I 

122 



l• : 
'• i 

222 

i n 
~ 

i 



£ZZ 



; I ~ 

~ l I I 
r===u ~~ 

~ 1. . = I . . . ~ ~ 8 

;~! ~~1 

~-J . ~Ii 

t>ZZ 



I 

I 

~ 

Lj .... 
Hii 

szz 



I ! 
I 

gzz 

-.. • 

I· 

.! 
~ 

~ 

:ri H 

0 
.. ,, 
~ 

~ ~ ~ ~ 

l ~ !ii! ~iiiS~:i Ii 

~~~ ~~~ ~Q· 
~~ ;~.

~

I"'\
-~

~ lr n

r-ne~
~ I

~ rii--
"'

Cl

~.Ji
~

~ ~
! r-J~ rs-~ -rr< j

Cll 0

, . I i
~

-~

l
i

.
~
•

=
.

I
:ll!iil ~iiiS~~i ~
! ..

~~~~~~~~ ~il~~~~I ~~~l!~!J 
[~*'.rH>t-I. ~~ 

~I I 

.... "" ~llD " ~r;.~ 
r9tf11~9 
f) 111 I j I I I 

' , 

WI 1 ~ 
,j 
u 

Ji. I..!':!-~ J •. Ji. . •. 
' "' .. '\)·~-:.:~----.... ~;; ~~~~£;£; c i Ml r:£~H£ :ill ·~ ·•w •w ...... 

: f\ll\INN•.,.•• N"PU'U..,.••• 
<( -( "( o( "(, ~-< "( ... "• .... ~ ~ ... ~ awJrU••Wil~· aw~·•Wf\I• 

J . ..t 
Uf~ ~ 

!: 
I 1 I 1.t f 1~ 
. '. '-

~ 

';:\', 

~ 
' j ~ 


	Logic design using programmable logic devices
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1518125302.pdf.p9WgA

