
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1988

Logic design using programmable logic devices Logic design using programmable logic devices

Loc Bao Nguyen
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Nguyen, Loc Bao, "Logic design using programmable logic devices" (1988). Dissertations and Theses.
Paper 4103.
https://doi.org/10.15760/etd.5987

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

AN ABSTRACT OF THE THESIS OF Loe Bao Nguyen for the Master
of Science in Electrical Engineering presented August 18,

1988

Title: Logic Design Using Programmable Logic Devices

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Jac{f iley / /

The Programmable Logic Devices, PLO, have caused a
major impact in logic design of digital systems in this

decade. For instance, a twenty pin PLO device can replace
from three hundreds to six hundreds Transistor Transistor
Logic gates, which people have designed with since the 60s.
Therefore, by using PLD devices, designers can squeeze more
features, reduce chip counts, reduce power consumption, and
enhance the reliability of the digital systems.

This thesis covers the most important aspects of logic

design using PLD devices. They are Logic Minimization and
State Assignment. In addition, the thesis also covers a
seldomly used but very useful design style, Self-Synchro

nized Circuits.

2

The thesis introduces a new method to minimize

Two-Level Boolean Functions using Graph Coloring Algorithms
and the result is very encouraging. The raw speed of the

coloring algorithms is as fast as the Espresso, the industry

standard minimizer from Berkeley, and the solution is

equally good.

The thesis also introduces a rule-based state

assignment method which gives equal or better solutions than

STASH (an Intel Automatic CAD tool) by as much as twenty
percent.

One of the problems with Self-Synchronized circuits is

that it takes many extra components to implement the

circuit. The thesis shows how it can be designed using PLD

devices and also suggests the idea of a Clock Chip to reduce
the chip count to make the design style more attractive.

LOGIC DESIGN USING PROGRAMMABLE LOGIC DEVICES

by

LOC BAO NGUYEN

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

Portland State University

1988

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the dissertation

of Loe Bao Nguyen presented August 18, 1988.

Marek Perlowsk~

APPROVED:

Lee w. Casperson, Chair, Department of Electrical

Engineering

Bernard Ross, Vice Provost for Graduate studies

ACKNOWLEGEMENT

I sincerely thank Dr. Marek Perkowski and my wife,

Anhle for their encouragement. Dr. Perkowski has encouraged

me to come back to school during 1988 to finish up the

thesis after I had discontinued schooling for a year due to

the pressure at work. Without the support from those

mentioned, I could not have been able to finish this thesis.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER

I INTRODUCTION

II DESIGNING SELF-SYNCHRONIZED CIRCUIT

USING PALs OR PLDs

PAGE

iii

vi

vii

1

7

Self synchronized circuit structure . . . 11

Clock generator block 14

III INTERNAL STATE ASSIGNMENT FOR FINITE STATE

IV

MACHINE USING PLDs

Heuristic rules for state assignment

Output consideration

LOGIC MINIMIZATION OF TWO LEVEL BOOLEAN

FUNCTION USING GRAPH COLORING . .

Minimal Implicants

Compatible implicants and compatible

sets

Minimization of multi-output two-level

37

41

53

61

64

74

Boolean functions 88

CHAPTER

V ZAPAGAL BOARD

VI CONCLUSION • . .

BIBLIOGRAPHY

APPENDIX A ..

APPENDIX B

APPENDIX C .

v

PAGE

117

155

158

162

167

217

LIST OF TABLES

TABLE PAGE

I Transition Table of D-Flip-Flop 47

II Matching operator 75

III Star operation 108

IV Palmini performance 114

FIGURE

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

LIST OF FIGURES

Huffman Moore machine . . . •

Rey and Vaucher flow chart

Self-synchronized machine

MOC machine . . .

Clock generator block .

Change detector

TTL implementation of change detector

Symmetrical delay . .

Asymmetrical delay

Realization of asymmetrical delay

UIC machine

Crumb road problem

Asynchronous circuit for Crumb road problem .

Synchronous circuit for Crumb road problem

Self-synchronized circuit for

Crumb road problem

UIC case for Crumb road problem . .

Front end chip

Combinatorial output

Registered output

PAGE

8

11

12

13

14

16

17

18

18

19

26

28

29

30

31

34

36

42

43

FIGURE

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Coston and Costof f

Coston and Costof f calculation

Transition equations

Rule 1

Reset signal

Rule 2

Rule 3

Grey code assignment

Rule based assignment . . .

Necessary implicant . .

Necessary implicant 2

Minimal implicant .

Example 4.4 •••••••.•••

Compatible implicants . .

Compatible coloring

Multioutput 1

Multioutput 2 ..••......

Example 4.8

Depth-first strategy with on successor

GAL16V8 logic diagram • •

Output macro cell . .

Zapagal board

Zapagal block diagram • • •

DC-DC converter

viii

PAGE

45

46

48

50

51

52

52

55

57

69

70

72

74

78

84

89

90

95

96

119

120

122

125

129

FIGURE

44.

45.

46.

47.

Programmable voltage converter•.•

Edit mode pinout • • • • . • . • • . • • . .

Shift register I/O timings

Array mpas for GAL16V8

ix

PAGE

130

144

147

148

CHAPTER I

INTRODUCTION

Programmable Logic Devices, PLDs and PALs, were

introduced in late 70s; at that time, the state of the art

MBI CPU boards from Intel Oregon Division, iSBC 86/12A,

iSBC86/30 had only two PALs per board. By the time the

iSBC286/20MP and iSBC86C38 boards were designed in 1986 and

1987 respectively, the average number of PALs per board was

20. In 1988, the high performance MBII CPU board,

iSBC386/125, has almost 40 PALs per board.

Why are PALs getting so popular? The answer is that

we can implement more logic for a given real estate of the

printed circuit board with PALs than with discrete logic

gates, TTL types. On the average, a PAL16X8 can replace up

to 300 logic gates. In addition, a CPU board in the 70s was

fairly simple. It contained some ROM, RAM 64K or less, I/O

section, and a Microprocessor. However, the CPU board in

the 80s is a complete computer system. It may have Cache,

Dram up to 64 megabyte on board, OMA capability, I/O and

SCSI subsystems, and a lot more. Without using PALs or

Custom Gate Array chips, it is impossible to design those

features into a board with an area of 9 x 9 inches.

2

Not only Intel is using PALs; other companies also use

PALs extensively. As a consequence, in 1988, there are so

many large manufacturers who are producing PLDs like Advance

Micro Device, Signetic, Lattice, Altera, Intel, Texas

Instrusments, National Semiconductor and many more. In

addition, there are a lot of small companies who sell PLD

programmers on the market. Some of the big names are Data

I/O, Lattice, Altera, and Pead.

At the time the work on this subject was started in

late 1985, there were not many low cost (less than $5000)

tools for PLDs on the market. Actually, there were only two

big companies who could support a rather complete CAD tools

for PLDs and they were Data I/O with ABEL and Assisted

Technology with CUPL. Today there are many vendors who can

offer a rather complete system for under $5000. Some of

them are Intel, Altera, Data I/O, Pead, Signetics etc.

A complete system consists of two parts: software and

hardware. The hardware portion is the programmer with

firmware on it. The software part consists of the

following:

- A high level language (a compiler like ABEL) to

translate the state machine description source

code to an intermediate level code for

processing.

- A State Machine Assignment tool. None of the low

3

cost tools above can do this. All they can do is

State Machine translation which translates the

preassigned state assignment to Boolean

equations.

A Boolean Minimization to minimize the logic

function so that the function will fit into the

target device.

A JEDEC file generation and programming part.

It is obvious that a complete system will require the

support of a company. When the thesis was first started, a

complete system was the intention. This thesis has touched

on many of the above areas. The details will be corvered in

the chapters. Following is the summary of the works on this

thesis.

Instead of writing a compiler (high level language),

a simple Parser to translate the equations from standard

ASCII characters to an intermediate form was provided. From

this the Boolean minimization program will read and minimize

it. Also Post processing will take this minimized version

and retranslate it back to ASCII characters.

- Instead of writing a state machine translation, a

set of three rules were offered to do state assignment for

PALs. These rules are heuristics but give very good results

when compared to those of STASH (a state assignment tool at

INTEL). Currently, the author of the thesis does not know

4

of any CAD tool which is optimized for PALs. There are some

tools in the main frame like KISS (DeMicheli, IBM) but KISS

will optimize the number of flip-flops rather than the

excitation functions. Hence, it does not work well for PAL

based designs.

- PALMINI, a Boolean Minimizer using Graph Coloring

Algorithms was introduced. At the time it was done in 1986,

there were very few Boolean Minimization programs existed in

personal computer on the market. They were Espresso from

Berkeley, which is considered to be the best, Presto from

ABEL, Data I/O corp, A plus from Altera Corp, and CUPL from

Assisted Technology. For small examples (PAL based

designs), PALMINI is equal or faster than ESPRESSO, much

faster than ABEL, and many times faster than ALTERA. As a

consequence, two papers were published on two subsequent

versions of PALMINI at two conferences: Northcon Conference

at Seattle, October 1986 and the other at the Design

Automation Conference in Florida, May 1987. In addition,

PALMINI offers static hazard elimination for asynchronous

machine designs which other Boolean Minimizers do not have.

- A chapter about design Self-synchronized circuits

using PALs was introduced. There are very few papers about

this topic. However, this design style is very useful.

Donald c. Kirkpatrick used it in the state of the art logic

analyzer DAS 9200, 1986 at Tektronix. The thesis will show

how we can design self-synchronized circuit using PALs and

the idea of building an intergrated circuit, an IC chip, to

make the design much easier and cheaper is suggested.

5

- In the last chapter, the thesis shows a complete

design of a generic PLD programmer. This low cost

programmer is attached to a PC computer and with adequate

software, it can perform like a very expensive programmer on

the market. It can potentially program all Lattice GAL

devices which can emulate many popular PALs, Altera EPLDs 20

and 24 pins, EPROMs from 64K to lMeg bit, and EEPROMs. With

the software already written, it can program EPROMs and

GALs, upload and download JEDEC code. Some friends at work

have asked me to fabricate this product and market it

because it is a very useful tool to have for the lab bench.

Realizing that there is still a lot of work that needs

to be done to put together a complete system, however, this

thesis has addressed most of the difficult aspects of the

system already.

CHAPTER II

DESIGNING SELF-SYNCHRONIZED CIRCUITS USING PALs OR PLDs

INTRODUCTION

Asynchronous Design methods can be used to solve

practical problems in the following cases 1) the

synchronizing clock in the system is not available, 2) the

interface between synchronous circuits, 3) the speed is

important and the system can not wait for the next clock

pulse to get synchronized.

However, the methods to perform asynchronous designs

are much more difficult compared to those of synchronous

designs due to stray delays, races, and hazards.

The idea of Self-Synchronized machines originates back

to 1971. Bredeson [Bredeson 1971] published the first method

to use the input transitions to generate a self-synchroniz

ing clock pulse. He also described how the critical races

and logic hazards are avoided by the self-synchronizing

clock pulse. However, the design method in his paper is

strictly limited to a single-input change mode. Solution to

the multiple-input change problem took place in 1973. The

machine introduced by Chuang and Das [Chuang, 1973] used the

bank of flip-flops for internal registers to utilize the

7

advantage of abitrary state assignment of synchronous

circuits. The paper published by Rey and Vaucher [Rey,

1974] showed the triggering scheme for multiple input change

circuits. The most important paper in the 70s on this

subject was probably by Unger [Unger, 1977]. In his paper,

Unger discussed the machines of Rey and Vaucher and the

machines of Chuang and Das. He also showed how to implement

the differentiator circuit using the XOR gates and the

latch. In addition, he also discussed the unrestricted input

change mode circuits. Between 1976 and 1981, there were

some papers by Huertas and Acha [Huertas, 1976], o. Yenersoy

[Yenersoy, 1979], El-derini and Hegazy [El-derini, 1981]

which did not off er much more inf orrnation than those

previous papers. The latest paper on this subject by

Kirkpatrick [Kirkpatrick, 1986) was by far the best paper.

He introduced the asymmetrical delay elements which enable

machines to operate at a speed limited only by the required

function and the choice of circuit technology. His approach

is also extended for unrestricted input change mode

circuits.

BASIC CONCEPTS AND DEFINITIONS

The general model for a Huffman-Moore machine is shown

as follows:

PR
s

INPUTS

ESE NT
TATE

- COMBINATION AL --- LOGIC -

DELAY

--ELEMENT --
Figure 2.1 Huffman Moore machine

OUTPUTS
~ --

NEXT

STATE

This model applies for both synchronous and

asynchronous circuits.

Synchronous Machines:

Synchronous machines are machines which use clocked

8

delay elements or flip-flops. The system clock has a period

longer than the sum of the worst-case delay through the

combinational logic, plus the worst-case skews of the

inputs, and plus the worst-case flip-flop set-up time. The

present state value is not allowed to change until the

inputs and next states have settled to their proper values.

Hence, any arbitrary state-transition function and output

function can be easily computed in each clock cycle.

9

Asynchronous Machines:

Asynchronous machines are machines which do not have a

synchronizing clocl:. The advantages of the asynchronous

machine are that no synchronizing clock pulse is needed, and

that the state transitions can proceed at a rate limited

only by the time dulays in the feedback loop. However, they

also can suffer many failures which are not encountered in

synchronous designB. Some of the failure modes are as

follows:

Critical Races:

An asynchronous machine is said to have a critical

race if the proper operation of the machine depends upon the

relative speed of 1:.he state-variable changes.

Essential Hazards:

An asynchronous machine is said to have essential

hazards if any sta·:.e has the following behaviors: Starting

in state s, the machine should reach the stable state y with

the input change ti:> x. However, due to the improper state

assignment and the different delays and races in the

circuit, the machine may enter a different stable state

under the same inp1it change x at different times.

Static Hazards CLoqic Hazards):

Any combinational logic having the potential for

spurious outputs i3 said to have a logic hazard. one way to

10

avoid this is to introduce redundant prime implicants

(consensuses of prime implicants from the selected cover) to

subpress the spurious pulses.

Fundamental Mode:

A machine is said to operate in the fundamental mode

if the total state (stable state and inputs are stable) is

reached between input changes.

Single Input Change (SIC) mode:

A machine can have many inputs but only one input is

allowed to change level to cause the machine to enter the

next state.

Multiple Input Change (MIC) mode:

More than one input level is allowed to change, and

all changes within some small interval are accepted as if

they were simultaneous.

Unrestricted Input Change CUICl mode:

A machine is said to operate in UIC mode if there are

no constraints in the possible input sequences.

Single Output Change (SOC) mode:

A machine is said to operate in SOC mode if any input

sequence causes only one state transition. All the

synchronous circuits operate in soc mode. We will treat the

soc mode in this chapter.

11

Multiple Output Change (MOC) mode:

A machine is said to operate in MOC mode if any input

sequence causes the machine to perambulate through states

before reaching the stable state. Please refer to PH.D

Dissertation by Kirpatrick [Kirkpatrick 86] for the detailed

discussion of MOC case of Self-synchronized circuits.

SELF SYNCHRONIZED CIRCUIT STRUCTURE

The following diagram by Rey and Vaucher [Rey and

Vaucher, 1974] shows how the self synchronized machines

would operate.

~

' ENTRY I - <'

yes

Figure 2.2 Rey and Vaucher flow chart

TRIGGER
STA TE

CHANGE

From the flow chart, the operation can be summarized

as follows:

1) Detect the input change. (A change detector).

2) Let's inputs stable by keep sampling input changes

within a window with respect to the last input change.

3) Trigger the state machine by creating a clock pulse.

4) If the state variable are stable then go back to 1).

(This is for the soc case).

12

From the hardware standpoint, the self-synchronized

machines can be represented by the following block diagram.

INPUTS COMBINATIONAL ~ -------- LOGIC -
PRESENT NE) T

STATE ST1 ~TE

STATE ---REGSITERS

H
CLOCK

CLOCK PULSE --- GENERATOR

Figure 2.3 Self-synchronized machines

And for the MOC case machine, the following block is

used.

13

INPUTS COMBINATIONAL -------- LOGIC -
PRESENT NE) T

STATE ST J \.TE

STATE --._
REGSITERS

~l
CLOCK

CLOCK PULSE ---~ GENERATOR
~ -- MORE

Figure 2.4 MOC machine

Notice that the MORE signal is added to tell the clock

generator that more transitions are needed. The clock

generator uses the state of MORE each time to generate an

additional clock pulse. The signal MORE is produced by a

combinational circuit which compares the total state of the

machine before the clock with a predetermined final total

state. If the states are not equal, MORE will be high. MORE

is fed directly to a T flip-flop in the clock generator. So

when the clock occurs, the output of the T flip-flop

changes. This change will be captured in the change detector

to generate another clock pulse. If MORE is low when the

14

clock occurs, then the sequence ends.

The only block that is different from the synchronous

machines is the clock generator.

CLOCK GENERATOR BLOCK

The clock generator scheme presented here is detailed

in Kirkpatrick [Kirkpatrick, 1986].

The clock generator consists of two blocks: the Change

Detector and the Delay Element.

~r CHANGE

NPUTS CHANGE DIFFER DELAY -- ---- DETECTOR -- ELEMENT ---CLOCK

Figure 2.5 CLock generator block

The output of the change detector block is the signal

DIFFER.

The outputs of the delay element block are the signals

CHANGE and CLOCK.

The behaviour of the circuit is as follows:

1) DIFFER, CHANGE, and MORE are low. The change detector

and the machine is ready to accept input changes.

2) If there is an input change, DIFFER will go high to

15

indicate a change in inputs has been detected.

3) After a predictable time later through the delay, it

emerges as CHANGE. CHANGE is fed back to shut off the change

detector. During this time, DIFFER is high and CHANGE is

low, more input changes are allowable.

4) Eventually, DIFFER will go low but CHANGE is still

high. At this time, changes combined with the present state

travel through the combinational logic and setup to the

state registers (flip-flops) as the next state condition.

MORE is also updated at this time.

5) Lastly, through the delay again, CHANGE goes low

(DIFFER= CHANGE= low), and CLOCK goes high to trigger the

machine and reenable the machine again. (SOC case).

Note: in the MOC case, the signal MORE will cause more

clock pulses so that the machine can perambulate through

states until it finds the stable state. During the period

of perambulation, the change detector is held off.

6) Now, the machine with DIFFER = CHANGE = MORE = low, it

is ready for another input excitation.

CHANGE DECTECTOR

The change detector circuit can be realized as shown

below:

16

CHANG£

QI
Q2

LATCH

ON QN

II

12

DIFFER

I <N-1

IN

Figure 2.6 Change detector

First, the inputs I{l .. n} and the output of the latch

are the same Hence, DIFFER is inactive (low). Once, one or

more inputs I{l ... n} change levels, the respective exclusive

OR gate will detect the change and go high. DIFFER will

follow them. Later, CHANGE is generated to open up the

latch. Now, the change from the input propagates through the

latch to the exclusive OR gates. Eventually, DIFFER goes low

and CHANGE goes low again to shut off the latch. This

completes a sequence of input detection.

One can build an eight input change detector with only

two commercially available parts: one 74F373 eight-bit latch

and one 74F521 eight-bit equality comparator.

I I
Dl Ql

74F373
I ~ .

18 I - 1 n8 Q8
I I .. IA8

EN
74F521 ·DIFFER

I

Bl A=B

88

<--~~~~~CHANGE

Figure 2.7 TTL implementation of change detector

DELAY BLOCK

SYMMETRICAL DELAY:

A symmetrical delay is a pure delay line where it

transforms or shifts the input signal in time by amount D.

This delay can be easily realized with gates in series or

using available digital delay line.

17

INPUT .. - SYMMETRICAL DELAY
OUTPUT -

INPUT

OUTPUT D L
Figure 2.8 Symmetrical delay

ASYMMETRICAL DELAY:

An asymmetrical delay is a delay which the leading

edge of the input change is delayed by amount D, but the

18

trailing edge (opposite sense) is propagated without delay.

INPUT .. -
INPUT

OUTPUT
ASYMMETRICAL DELAY I ~

OUTPUT D

Figure 2.9 Asymmetrical delay

The asymmetrical delay can be realized as follow:

INPUT - I K
DIODE

RESISTOR

BUFFER

:> - OUTPUT

I CAPACITOR

- GND

Figure 2.10 Realization of asymmetrical delay

Thus, the trailing edge speed is limited only by the

technology. Different implementations are introduced in

Kirkpatrick [Kirkpatrick, 1986).

FUNCTIONAL OPERATION

19

The operation of the self-synchronized circuits can be

easily understood by studying the following timing diagram.

Notation:

STATE: <A> means the machine is ready to accept input

changes.

 means the inputs have to remain stable for

proper operation.

<kl> the time interval for which several input

signals may change.

<k2> the time interval for which input signals may

not change while the machine perambulates from one state to

20

the goal state. If the input signals change during this

interval, unpredictable behavior will occur. Hence, the

machine may malfunction accordingly.

min = minimum.

max = maximum.

Dm = Delay element.

Case 1) Using symmetrical delays:

INPUT 1

INPUTN

DIFFER

CHANGE

ST A TE ~ A~..- B--~~-------- A •
1 k i I k2 I

The problem we see with symmetrical delays is that

unless we have the control of the inputs, otherwise, the

machine may malfunction if the input changes during state

. If input changes occur during state , the inputs

may change to new state before the clock is generated to

clock the flip-flop. Thus, the machine may enter a different

state than it should be. In addition, The speed of the

machine is also slower due to this type of delay.

Case 2) Using asymmetrical delays:

21

INPUT 1

INPUTN

DIFFER

CHANGE

ST A TE ~ A_.. B 4------ A ...
J k i I

So we can minimize the problem mentioned above by

using the asymmetrical delay elements. The speed of the

circuit now is only limited by the chosen technology.

For the MOC case:

INPUT 1

INPUTN

DIFFER

CHANGE------'

MORE

STATE
,_. B ~

kl k2

The signal MORE is high when the machine has not

entered the final stable state.

TIMING ANALYSIS

The following notation will be used from now on to

evaluate the speed of the machines.

D : delay through delay elements.

d : Stray delays through combinational logic.

s: set-up time for register elements (flip-flops).

f : propagation delays through register elements

(flip-flops).

22

kl: the time interval for which several input signals may

change.

k2: the time interval for which input signals must remain

stable.

min: minimum.

max: maximum.

Asynchronous Huffman-Moore Machines:

A MIC Huffman-Moore machine having a proper critical

race-free state assigment will, in general, still require

delay elements for proper operation. The earliest that an

input change can reach output logic is dmin and the latest

it can reach the output logic is kl + dmax.

Thus the minimum valued for the delay element must be:

Dmin ~ k 1 + dmax - dmin.

Or to be safe:

Dmin ~ kl+ dmax.;

Hence k2 is bounded by Dmin + dmin and Dmax + dmax.

For soc case:

k2 + drnin ? drnax + (Drnax + drnax)

k2 ? Drnax + 2drnax - drnin.

This is the period that inputs have to remain stable

after the change.

23

In the case of MOC, we have another restriction. The

time that each state changes is bounded by Dmin + dmin and

Dmax + dmax. If n is the longest sequence of state

transition in the machine to produce the output then

k2 + drnin ~ drnax + n(Drnax + dmax)

or k2 ~ nDrnax + (n+ l)dmax - dmin.

and the time between states:

kl+ k2 ~ kl+ n(Dmax + dmax) + (dmax - dmin) (1)

Special case for Huffman-Moore machine:

If the machine is in soc mode and has no essential

hazard, then D = o. Thus,

k2 ~ 2dmax - drnin. (2)

Sefl-Synchronized Machines:

For the machine built using this structure, the clock

edge to the register elements (flip-flop2) must not arrive

before the input changes have gone through the combinational

logic section, reached the state-variable flip-flops, and

met the set-up time requirements. Thus,

Dmin ? kl + dmax + s

and similarly,

k2 + Dmin ? Dmax + fmax + dmax + s.

k2 ? fmax + dmax + s + (Dmax - Dmin).

and input changes are separated by:

24

kl + k2 ? kl + (fmax + dmax + s) + (Dmax - Dmin) (3)

for MOC case:

kl • k2 ~ kl • n(fmax • dmax + s) • (Dmax - Dmin) (4)

By comparison between (2) and (3), the Huffman-Moore

machine will always be faster if the machine operates in soc

and has no essential hazards. Otherwise, the combination

circuit will dictate the speed of the circuit in the

Huffman-Moore machines. The more complex the machine, the

bigger the combination circuit due to the complicated state

assigment to avoid races and hazards. This leads to larger

kl. On the other hand, the state assignment in Self-Syn

chronized circuits can be arbitrary. Thus the combinational

logic can be made much simpler. Consequently, the speed of

the Self-Synchronized machines can be faster than that of

Huffman-Moore.

Self synchronized circuit extended to Unrestriced Input Chan

ge CUIC) case:

Almost all asynchronous designs assume that the

machine will operate in the fundamental mode - once the

input-state change is perceived by the machine, the machine

25

will reach a final stable state before another input-state

change is allowed. When the machine operates in UIC mode,

the fundamental mode assumption is violated. Since the

timing relationships between the inputs are not constrained,

ambiguous input-state states will result. This may cause

the machine to malfunction. As described in Kirkpatrick

[Kirpatrick, 1986], the extension to the UIC case is

straight forward. All we have to do is to add a transparent

latch like 74F373 to the input signals. While the machine

is in a stable state, the latch is enabled. Thus, the

machine is ready to accept input changes. Once, the machine

detects new inputs via DIFFER going high, this input latch

is disabled and freezing the input state in the latch. Next

this input-state is processed and once the machine returns

to the stable state, the input latch is again enbabled to

accept new input changes.

It should be noted that this UIC input latch will

exhibit the metastable behavior due to the input changes not

meeting the set-up and hold-time requirements for the latch.

To compensate for this, an additional delay has to be added

to kl (normally four time the propagation delay of the

latch). So the general structure of the UIC self

synchronized machine would look like:

26

INPUT_2
IUC INPUTS_ FSM

OUT PU --- - -- TS

LA TCl-

H
LE

CLOCK

H CLOCK IUC_L - E --- GENERATOR

Figure 2.11. UIC machine

And the speed of the circuit is:

For SOC:

kl + k2 ~ kl + (Sf max + dmax + s) + (Dmax - Dmin) (5)

For MOC:

kl+ k2 ~ kl+ n(Sfmax + dmax + s) + (Dmax - Dmin) (6)

COMPARISON BETWEEN SYNCHRONOUS, ASYNCHRONOUS, AND SELF-SYN-

CHRONIZED CIRCUITS

For the following example, assume we use 74FXX

technology and also assume each FXX gate delay is 3ns, lOns

for minimum and maximum respectively. For the PAL 16L8B and

16R4B, the set-up time is 15ns, the clock to output time is

12ns, and the propagation delay time is 15ns.

