
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1990

HyperCard-based learning environment for DIADES HyperCard-based learning environment for DIADES

Ali A. Shamsapour
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Shamsapour, Ali A., "HyperCard-based learning environment for DIADES" (1990). Dissertations and
Theses. Paper 4128.
https://doi.org/10.15760/etd.6011

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4128&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4128
https://doi.org/10.15760/etd.6011
mailto:pdxscholar@pdx.edu

AN ABSTRACT OF THE THESIS OF Ali A. Shamsapour for the Master of Science in

Electrical and Computer Engineering presented February 16, 1990.

Title: HyperCard-based Learning Environment for DIADES

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Mareklerkowski, Chairman

Rajinder Aggarwal

Maria Balogh

This thesis is an attempt to create a HyperCard-based learning environment to

teach DIADES and other related material. It is a departure from the classical Computer

Aided Instruction methods towards a more flexible and user-controlled design. The goal

was to set the foundation of a new CAI design which would closely resemble a Hyper-

Text system. These systems are characterized as having interconnections between

related concepts in the CAI environment.

Creating HyperCard stacks to carry out the DIADES-related material is the first

of its kind. The environment provides text editing capability as well as drawing and

painting tools. Using HyperCard to create CAI lessons has made it much easier to design

2

and use such lessons. The most important characteristic of this Composite lesson design

probably lies in the fact that it provides an open-end structure for future DIADES

developers to incorporate their pieces of DIADES documentation into the existing data­

base.

The unique features of the tutorial can be described as:

a) The user has control over the presentation of the material. Usually there are

several options available to the user to choose from.

b) It can be changed and modified at any time if DIADES research group has pro­

duced new results.

c) The information is organized into several major topics. Subtopics are included

wherever they exist. The organization of the lesson can be compared to a tree­

like structure. More specific and more specialized subjects reside on remote

branches.

d) Incorporation of the related subjects into the DIADES tutorial allows expansion

of the lesson to a degree which would be a comprehensive tutorial for most digital

courses.

HYPERCARD-BASED LEARNING ENVIRONMENT FOR DIADES

by

ALI A. SHAMSAPOUR

A thesis submitted in partial fulfillment of the
requirement for the degree of

MASTER OF SCIENCE
m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1990

TO THE OFFICE OF GRADUATE STUDIES:

The members of the committee approve the thesis of Ali A. Shamsapour presented

February 16, 1990.

Marek Per'towski, Chairman
I

I

Rajinder Aggarwal

Maria Balogh

APPROVED:

Rolf Schaumann, Chairman, Department of Electrical Engineering

C. William Savery, Interim Vice Prov~ for Graduate Studies and Research

ACKNOWLEDGEMENT

I would like to thank Dr. Marek A. Perkowski for providing valuable instructions,

new ideas, hints, related material and overall guidance all the way through the prepara­

tion of this paper.

I also appreciate comments and guidance of Dr. Maria Balogh and Dr. Rajinder

Aggarwal which helped me to improve the quality of the thesis.

Research of the PSU DIADES group provided valuable documentation about

DIADES design automation system which were used during the preparation of this paper.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGE!vIBNTS .. iii

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

CHAPTER

I IN1RODUCTION .. 1

II CHARACTERIZATION OF TIIE CLASSICAL CAI

:NiEIBODS ... 5

CAI Lesson Designs 6

CAI Systems 13

III USE OF HYPER CARD FOR COMPUTER AIDED INSTRUC-

TION .. 16

Buttons, Fields, Cards, Backgrounds and Stacks 21

Message Box ... 25

Multifinder 27

Mouse Functions ... 27

Power Keys and Blind Typing .. 30

Click and Double Click ... 31

Option, Command and Shift Keys .. 31

HyperTalk ... 32

v

Home Stack ... 38

Copying and Pasting from Other Stacks 39

H yperCard in CAI 3 9

The Idea of the Learning Environment for DIADES 40

How HyperCard I~teracts with the User :.................. 42

IV COMPOSITE CAI METHOD AND HIERARCHICAL,

GRAPHICAL HELP SYSTEMS .. 45

Introduction to Our New Concept .. 45

V THE DIADES SYSTEM .. 52

What is DIADES? .. 54

VI LESSON DESIGN .. 60

The Actual Design 61

VII CONCLUSION ... 76

Preparing the Tutorial 77

What Was Achieved and What Not? 78

How Can the Current Design be Improved? 79

REFERENCES•..... 81

APPENDICES

A SOME SAMPLE SCRIPTS .. 83

B DESIGN DATA FOR SIGNAL DELAY PROCESSOR 114

TABLE

I

LIST OF TABLES

PAGE

Comparison Between Composite and Classical CAI Methods 47

FIGURE

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

LIST OF FIGURES

PAGE

Inheritance Path for HyperCard 18

Macintosh Menus and Tools Menu .. 20

Some Icons and a Button Dialogue Box... 22

Field Properties and Available Fonts .. 24

The Layers and the Message Box 26

HyperCard Object Hierarchy for Resources 35

"Home" Stack's "User Preferences" Card .. 37

Dialogue Boxes for "ASK" and "ANSWER" Commands 43

Design Process Steps in DIADES ... 53

First and Second Card of the "Start" Stack ... 62

Sample Cards of the "HELP" Stack .. 65

Two Sample Cards of the "DIADES" Stack....................................... 66

Sample Pop Quiz and Evaluation Cards ... 71

Sample Index Cards of the "ADL" Stack ... 72

First and Second Card of the "Home" Stack....................................... 74

The Parallel Control Flow Diagram ... 126

Layout of the Control Part of the System ... 127

CHAPTER I

INTRODUCTION

Using computers in education has concerned most educators from the time that

computers became more available to the public. CAI (Computer Aided Instruction), is

one of the areas that has been developed in the past to help the teacher and students to

improve their educational performance. Along with the development of the computer

hardware and consequently computer software, CAI developers started to create more

sophisticated programs and tools to help satisfy increasing demand for supplementary

means for education. Considering the amount of dependency that the modem life has on

computers, there is no doubt that their use in education is no exception.

Computer Engineering and computer science students are two groups of people

who are most involved in creating and using educational software. Electrical and Com­

puter Engineering department in Portland State University is now preparing grounds to

create and develop a unified CAI lesson design which not only will be used by the stu­

dents, but also will be modified and improved as time goes on and the computer technol­

ogy grows rapidly. A CAI lesson environment in Electrical and Computer Engineering

department is being created and developed under the supervision of Dr. Marek Perkowski

to aid the computer engineering students to acquire knowledge about DIADES, a

hardware design automation system, and its programming language ADL.

In creating such an environment there were few decisions to make as to what kind

of computer or what sort of software is to be used to make the task of creating, modifying

and learning easier for both users and designers of the CAI lesson. Choice was made to

use the Macintosh computer for its user friendly interface, and HyperCard software

2

which resides on Macintosh. HyperCard gives the designer of a CAI lesson the ability to

create HyperText systems which are characterized by having linkages between similar

ideas and concepts in different parts of the system.

The idea for creating such environment is to be able to describe DIADES system

as it is known at the time of this writing, and to expand the environment later as it gets

used by the students and engineers. It is expected that the use of the system will intro­

duce some practical problems, and consequently will require the system to be improved

and explained in more details. In HyperCard, both textual and graphical materials are

stored in form of a stack. Any new material can be incorporated to an existing one by

making a link between them. The existing material also can be modified or left

unchanged.

With these goals in mind we started to create a HyperCard-based learning

environment for DIADES design automation system. A tutorial about microprogram­

ming was already written by Mark Von Presentin which is also included as part of the

whole tutorial. In the following chapters some characteristics of the classical CAI lesson

are described. This is intended to serve two purposes. first it will give us some ideas as

to where we stand with regard to capabilities of the present CAI lessons. Second, it will

introduce the existing shortcomings and aspects to be improved. Then we will see how

the Macintosh and HyperCard will help us to overcome some of the obstacles that the

early CAI lesson designers had to face.

According to Robert Burke [5], in the book "CAI source book", a classical Com­

puter Aided Instruction (CAI) program approximates the performance of a human tutor

and frequently asks questions which require the learner to formulate an answer after

some thought. Ordinarily short answers composed by a learner must match perfectly,

character for character, with the correct answer in order to be recognized by a basic CAI

program. A simple computer subroutine analyzes the essentials of the correct answer and

3

of the learner's input. The learner's answer is then categorized as:

a) A perfect match to the correct answer;

b) Not a perfect match but correct in the essentials;

c) Incorrect.

Reasonable misspellings and correct answers in excess verbiage fall into category

(b). The computer can be programmed either to accept category (b) answers or to require

a perfect match. This subroutine can be used to create lessons in conjunction with text

files containing embedded commands from a word processor. In other words the ques­

tions in the lesson will be presented in a way that the answers to them can be categorized

by the subroutine as correct or incorrect.

In classical CAI the computer largely controls the process of learning, presenting

the reading material to the student to read and then periodically giving the student ques­

tions to answer or problems to solve. Language for creating CAI lessons is called CAI

authoring language. Common PILOT is name of one of the most popular languages used

for CAI. The big advantage of CAI authoring language is that it saves time for the CAI

author. It was estimated to be about six times faster to create CAI lesson by using

language like PILOT than using a more general purpose language like Basic. The first

generation of CAI authoring systems were limited in capability and such systems used

also lots of memory. They were also prone to bugs which rendered them inoperable until

regenerated by the vendor, and they sometimes lost data or lessons generated by users.

In classical CAI, since a classroom teacher may not be present when the cour­

seware is to be used, it is important to apply a systematic model of instruction design to

CAI courseware development to make the end product usable and effective. Classical

CAI programs did not use graphics, contained more dogma and less experimentation. It

exploited only small part of the computer's power and the student had to memorize right

answers and enter them exactly word by word.

4

However, classical CAI approach can be developed and made more flexible and

useful when implementing HyperText systems by using the HyperCard. HyperCard is an

authoring tool and an information organizer for Macintosh computers. According to the

creator of the HyperCard, Bill Atkinson, one can use it to create stacks of information to

share with other people or to read stacks of information made by other people. Stacks are

largest units of data and graphics which are created by HyperCard. These stacks can

contain everything that can be found and used by a HyperCard author. It is both an

authoring tool and sort of a "video cassette player" for information. HyperCard is like

many different programs combined into one, graphics program, programming environ­

ment, and ability to do a lot of things with these tools are the characteristics of Hyper­

Card. It has an "opening up" potential which allows a user to go inside a stack that some­

body else has written, see how it was done, and modify it and tweak it a little to tune it

for his uses and learn from what someone else has done.

CHAPTER II

CHARACTERIZATION OF THE CLASSICAL CAI METHODS

Classical CAI used several design methods which will be discussed shortly. These

methods have evolved from CAI practice with large computers. Albert E. Hickey [6], in

the book "Computer Assisted Instruction", and Robert L. Burke [5], in the book "CAI

source book", have classified classical CAI methods with respect to their use and design.

They have mentioned about three aspects of CAI lesson design that must be considered

by the CAI author in choosing a design.

First is a functional design, what instructional purpose or educational function is

expected. Is that primary or supplementary means of education, and so on. These are the

questions to be considered when determining functional aspects of a lesson design.

Second aspect of a CAI lesson design is that of the computer usage (using the

HyperCard for CAI lesson design will improve this aspect of the consideration). This

applies to the kind of hardware and instructional software available for a CAI lesson

designer.

Third is the logical design of the lesson that depends largely on instructional con­

siderations in the learning task analysis. This aspect applies to the way in which a lesson

can or should be learned. Which material should be presented first, and which one

second. Or, what successive steps should be included into the entire learning process.

According to Robert Burke [5], CAI lesson designs basically depend on instructional

function. These methods are described below.

6

CAI LESSON DESIGNS

1. Drill and Practice Design

This method is used to facilitate the learning of a drill and practice material,

which requires also additional reinforcement which is not available within most class­

room environments. Drill and practice programs do not teach, they simply allow students

to practice skills they have already learned somewhere else. These programs present the

learner with a problem to be solved or a question to be answered. Questions could be

assigned to have a yes/no format, or multiple choice format. Fill in blanks are also com-

mon.

The criticism about drill and practice design is that computers are too expensive

to be used as automatic flashcard machines. Another concern is that such an approach

may influence a student's perception of instruction by reducing learning to a game that

implies that all questions have only one correct answer.

Another criticism is that drills do not teach but merely practice with the assump­

tion that the student is already familiar with the information to some degree. In computer

aided instruction this means that the drill should be preceded with an appropriate tutorial.

It may also mean preceding the computer based drill with reading a textbook or with a

classroom lesson.

It has been also criticized of having a low quality, of not incorporating good

instructional principles, and of not collecting enough useful information to show the

instructor how well a student is progressing. The response-judging procedures are fre­

quently poorly programmed so that reasonable responses are sometimes judged as being

incorrect.

Advantage of using this method of instruction is that computers are well suited

for presenting repetitious tasks and patiently responding to students.

7

2. Tutorial Design

In this design method the computer simulates the actions of a very good tutor. It

works best for the initial presentation of a new material. It also works best with highly

verbal material which lends itself to the narrative description techniques as well as to the

question and answer techniques. The characteristics of this design include:

a) An ordered sequence of instruction.

b) The presentation of information in small increments.

c) Active student responses.

d) A narrow range of possible answers.

e) Provisions to reinforce correct responses while informing the learner about his or

her progress.

Some students find this design to be tedious and boring. The linear instructional

design in a tutorial lesson requires a learner to successfully complete each task in

sequence.

3. Gamelike Design

The motivation of a student can sometimes benefit greatly when the objectives of

a CAI lesson can be accomplished by using a gamelike approach. In this type of design

the subjects to be learned are usually hidden inside a game, and the student will

encounter them as he makes progress with the game. The gamelike type of design is

especially useful for subjects that are either not easy to learn, or for an abstract type of

material which requires special interest and attention to learn. The student will be

motivated by the game which will ease the task of learning.

An example of a computer game is for instance when the computer provides the

player with four letters and asks the player to create as many words as possible. Each

letter can be used once or more or not used at all. These letters can be specified either by

8

the player or by the computer and may be constrained by having a specific letter in a

specific position in the word. After all the words are created by the player, the computer

fills in the remaining words from its dictionary and assigns a score to the player.

4. Problem Solving Design

This method allows the student to use computer to solve problems. In some

problem-solving models the computer is used as an intelligent calculator which monitors

the student's actions step by step. The process which the student uses is analyzed at each

step and the student is given a feedback immediately. In other models the student only

proposes a solution and the computations are carried out by the computer.

An example of using this method is when the student must solve the problem of

"making the turtle move in a square". Through the experimentation and help from other

people, the student discovers how to make the turtle move along a straight line, turn in

different directions, and eventually move in a square. The student deals then with pro­

gressively more difficult problems, such as making the turtle move in a circle and getting

the turtle to solve math problems.

5. Combined Functional Design

Combinations of some functional designs can make an interesting single synergis­

tic system. Example of a combined functional design might be combining the drill and

practice design with a gamelike design. Students get some time to enjoy the fruits of their

expertise if they provide the number of expected answers per minute.

6. Linear Design

Linear design is the most common of all CAI designs. It is directly patterned after

linear, paper and pencil programmed instruction and after a great deal of CAI cour­

sewares which have been written for large computers. Linear CAI does not exploit the

powers of the computer fully, but it works. It is the easiest design to use and to revise or

9

validate by making necessary changes to the lesson, therefore it is a good design for the

beginning CAI author to implement.

In a linear lesson design, the lesson progresses from one topic or concept to the

next one, first presenting information and then asking questions. All students go through

the presentations and questions in the same order, and the order does not change regard­

less of whether students answer questions correctly or incorrectly. The sequence in a

linear lesson is determined by the author. One way to determine sequence is through the

hierarchy of information. For instance in math, being able to perform addition is neces­

sary before one can learn multiplication. Addition, subtraction and multiplication are

next needed to learn long division. Thus, most arithmetic curricula begin with addition,

followed by subtraction, multiplication and division.

The determination of the sequence may be also based on the familiarity or

difficulty of the information. Vocabulary instruction usually begins with words of higher

usage frequency. Next come words that are less common.

In a CAI lesson which has a linear design, each student is presented with the same

material as every other student. Even if a linear design is able to provide different

branches of information depending on different response from the students, it is still a

linear design from the instructional point of view, and not a branching design.

7. Spiral Design

In this method the lesson logic flows in a spiral through the material to be learned,

each time dwelling on a different property of the material. An example of the spiral

design would be for instance first to provide information about what is a logic design and

what steps are involved in going through the logic design process. Then to start the les­

son over again dwelling on how to design each part of the process.

The logic behind spiral design is that it constantly keeps the learner aware of the

whole lesson, and this way reminds him what is the most important to learn and where

10

the emphasis should be given to. In a lesson design which does not use the spiral

method, the student may spend too much time on learning something that is not really

essential in the whole lesson structure.

8. Branching Design

The term "branching design" denotes the kind of lesson design in which there are

several different branches. A branching design is based on an instructional design which

includes alternative tracks through the lesson. Depending on the performance of the stu­

dent he may see different material than other students going through the same lesson.

Typically the branching occurs following a criterion question frame. Students making a

correct response would all take the same successive track. Students making incorrect

responses would take one or another alternative track, depending upon the exact nature of

their incorrect answer. Branching designs take advantage of the great power of the com­

puter to individualize the lesson and to provide a personalized learning experience for

each student. As a result the student who is capable of moving quickly through a lesson,

is enabled to do so. The student who needs more time and more practice, may progress

slower, at his pace, but also accomplish the assumed learning task.

9. Multitrack Design

Material is written on several distinctly different levels to permit the individuali­

zation of the lesson. The top track or the highest level is likely to be the shortest. Material

is likely to be more abstract, with less explanation and at a higher reading level. With the

lowering of tracks more explanations will be added and more examples will be given.

Depending on the performance of the students multitrack branching will allow students

to branch to another level or to stay in the same level.

A multitrack design allows more advanced students to be able to choose the top

track which is the shortest and will take much less time to complete. If a learner feels

11

that he is not able to follow the lesson as it is being presented, then he can switch to a

lower track which has more explanations and more examples.

10. Regenerative Design

The lesson can generate a different set of problems for each student or for each

iteration of the lesson for the same student. Advantage of this method is that the student

can use the same program over and over again. Each time, the program will present a

new set of problems and examples which will look like a new program, so that the stu­

dent can strengthen his skills. Some of the newer regenerative lesson designs permit the

teacher to specify the type of arithmetic problems that the student will encounter in each

iteration.

11. Adaptive Design

This method uses the data that is accumulated as they are used with a particular

population as a basis for the self improvement of the lesson. This type of design

improves as it is used and more experience is achieved. In other words, the adaptive

design is more like a self-test on other types of CAI lessons. It does not pertain much as

to how a lesson is presented, but rather to how a design can be improved. In fact it is an

additional part of other design types, and can be implemented by installing appropriate

handlers in some parts of the tutorial.

12. Logical Design

This is another way of considering different types of lesson designs in which the

logic of the design is the main consideration. The terminology used to describe lesson

logic comes largely from the behavioral psychology of learning. Indeed CAI lesson

design owes much to the development of the behavioral learning theory. This type of

design may get considerable attention in the future. In the same way as with the adaptive

design, logical design does not represent a specific design type. The term is used to

12

denote a category of design in which the focus is on the issue of human learning habits

with regard to some specific subjects.

13. Didactic Design

In this type of lesson design the student is presented with information and then

asked to respond to questions, basically giving the same information back. Typically the

student is presented the information in small "steps" and is asked to do minimal synthesis

or manipulation of the material. The purpose is to convey information to the student, to

provide him or her with a minimum opportunity for practice, and then to check retention,

if not understanding.

14. Discovery Design

Discovery design can be very effective when it is used with material for which it

is well suited. Design involves creating conditions within which students can reach

insights on their own. Normally students are supplied with only as much material as is

needed to reach an insight, for example about the relationship among a set of facts. This

type of design maybe more useful in subjects areas such as humanities, philosophy and

social science, since most people are more or less familiar with these subjects. Present­

ing a set of facts can stir student's curiosity to find out about the missing part.

15. Egrul Design

Egrul is an acronym for a lesson design in which the instructional logic proceeds

from an example (EG) to a rule (RUL). Typically the student would be provided with a

training and an opportunity to practice using sets of examples in order to determine some

property which all the members of the class had in common. EGRUL designs are in fact

a form of discovery learning and are inductive in nature.

Difference between EGRUL and DISCOVERY design is that the former starts

with examples only, while in the latter any kind of information is used to help the

13

students think about the subject to get an insight. This type of design is also more appli-

cable to humanities and similar subjects.

16. Ruleg Design

In this type of lesson design the instructional logic proceeds from a rule (RUL) to

an example (EG), and basically is a deductive process. The student is typically taught to

apply a law, a principle or some other form of a rule, to a set of examples.

17. Fading Design

Fading design is useful for content which has to be memorized, such as poetry or

anatomy terms. The term "fading" refers to the fading of prompts. The prompts can be

thought of as the aids that the CAI author builds to help the student develop the answer to

the questions of the lesson. The lesson starts with frames (amount of information that is

presented on the computer display screen at any time), containing very strong prompts,

and then changes to frames with gradually weaker prompts as the lesson progresses.

The classical CAI approach uses several systems for implementing the lessons.

Examples of these systems include PLATO, LOGO and TICCIT.

CAI SYSTEMS

In the same book (CAI source book [5]), the author talks about several computer

instruction systems which were developed to aid users and authors of the CAI lessons.

More common of these systems were called PLATO, LOGO and TICCIT.

PLATO

PLATO was the name of the first project aimed at using computers in education.

It began in 1960 with the goal of designing a large computer-based system for instruc­

tion. The PLATO project in early 1970's introduced PLATO IV, a large time shared

instructional system. Students study on individual terminals, hundreds of which are

14

connected to a large computer on which all lessons and student data are stored. All pro-

gram execution occurs on the main computer. PLATO IV allows up to 600 students to

use the computer simultaneously. It also allows authors to develop instructional materials

at the same time that students are studying lessons.

LOGO

LOGO was a major development of Papert's project who claimed that the stu­

dents can learn many problem-solving skills on their own, given the correct educational

environment which was an easily programmed computer. Papert believes that the stu­

dents can transfer the powerful ideas of LOGO through a discovery learning environ­

ment. LOGO used text as well as graphics, which is called Turtle graphics. In the Turtle

mode, a small triangle is in the center of the screen. This Turtle moves about the screen

making line drawings in response to simple program instructions. Since the students tend

to identify with the movement of the Turtle, the activities in this packet are first intro­

duced as spatial movements in which the student acts out the role of a Turtle, following

commands of FORWARD, BACK, RIGHT and LEFT. To produce graphics with this

software, commands need to be entered to give instruction to each part of the plot. This

means that the graphics is created by command line arguments. Of course there are ways

to combine several commands in one to do the job of creating the graphics easier.

TICCIT

In 1972 the Mitre corporation and Brigham Young University started develop­

ment of the TICCIT (Time Shared Interactive Computer Controlled Instructional Televi­

sion) system. There are two primary considerations in the original TICCIT project. The

first is that the instruction be expository, with direct explication to the student, of various

facts, rules, concepts and principles. This presentation is followed by the examples of,

and then practice with, these facts, rules, concepts and principles. The second primary

15

consideration in TICCIT was that the sequence of instruction be learner controlled. The

student has control not only over the sequence through a curriculum, but also within any

part of that curriculum, over the presentation order of initial explanations, examples,

practice, exercises, tests and even the difficulty level of the material. The drawback of

the TICCIT system is that it restricts the instruction primarily to a strictly expository

approach, which precludes simulations, games, and other more creative uses of the com­

puter.

With the TICCIT system the students can study lessons presented on standard

color televisions and interact through modified typewriter keyboards, all of which are

controlled by a minicomputer. Intended for adult instruction, TICCIT embodied an

instructional philosophy called learner controlled instruction (LCI). Lessons on TICCIT

always included a variety of information presentations, examples, practice problems,

tests and a map of the structure of the curriculum. Keyboard had additional keys labeled

RULE, EXAMPLE, PRACTICE, EASY, HARD and ADVICE. By pressing these keys

the student can change instructional activities, ask for easier or harder activities or ask for

advice as to what to do. LCI had two advantages. First, the students can adopt the

sequence of instruction to their own pace and learning styles. Second, the instructional

developers did not have to make complex decisions about the content sequence, because

the students can make their own sequencing decisions via the keyboard.

CHAPTER III

USE OF HYPER CARD FOR COMPUTER AIDED INSTRUCTION

In summer of 1987 Apple Computer Company introduced a new software for

Macintosh computers. This software was called HyperCard. In the short life of the

HyperCard a lot of material and programs, including graphical data bases, instructional

material and computer games have been created by using this software. There are certain

characteristics of HyperCard which make it a unique programming environment. They

can be described as below.

a) Flexibility of the software.

This is accomplished by introducing several new ideas such as for instance fields

and buttons which are treated as objects and can be placed in any desired loca­

tions on the display screen. Buttons are especially useful in creating links

between different parts of a database. This is intended to enable the author to

create HyperText systems which have been discussed in many conferences. The

user of a HyperText system will not only learn about the subject matter, but also

will be given access to any other subject which has something in common with

the present material. Philosophically the idea of HyperText is extracted from the

way that the human mind works. HyperCard takes a big step forward in helping

HyperText systems come to existence.

b) Ease of use.

After a HyperCard-based material is created, using of the material will not take

more than clicking a mouse button. A button which can activate hundreds of

lines of code, is activated by a mouse click. This applies to fields, cards and

17

backgrounds as well. A mouse click on top of a card can activate all or part of the

code written in the script of that card. Scripts of the cards, backgrounds, fields,

buttons and stacks are part of these objects. They can be left empty, or a number

of codes can be placed in them. If these scripts contain codes, they will respond

to a handler. Handlers are discussed later in this chapter. The code is written in

HyperTalk, the programming language for HyperCard, and placed in the script of

a card which is a part of the card. A background (explained later in this chapter)

has the same kind of script, with the only difference that it is one layer down in

the inheritance path (HyperCard's hierarchy in receiving messages from a mouse,

see Figure 1) and will receive messages only after they have gone through the

card's script. A field has a name and a number and can be referenced by either

one from anywhere in the stack. A stack is a collection of cards, backgrounds,

fields and buttons which can be moved or copied altogether. Unlike the conven­

tional computers in which the user has to know certain commands and procedures

to be able to use a software, in HyperCard what the user does is only to follow

instructions on the screen.

c) English-like language.

HyperTalk which is the programming language for HyperCard, is more like

English. HyperTalk commands can be easily understood and used. Consider fol­

lowing lines of code:

get the number of cards in this stack

put it into first line of card field id 20

Using natural language makes it much easier to understand HyperCard com­

mands as well as to know what they are supposed to do. It also eliminates the

need to comment lines inside programs which is common in other programming

languages. External commands and functions are very common in HyperCard.

One can write a program in C or Pascal or even in assembly language, and make a

Mouse (msg)

Menu Items (msg)

Message Box (msg)

These 3 message originators have no script
capability and therefore no message handlers.

Note: fields only receive MouseDown, MouseUp,
and MouseStillDown messages if they are
locked.

Hypercard Inheritance Path

With Branch To New Stack

This portion of the inheritance
path comes into play when you
branch to another stack. Upon
entry to that stack, the
inheritance path continues with
the card, background, and stack
scripts of the branch (current)
stack, then cycles back to the
HOME stack in the main
inheritance path.

18

Field (script) I Button (script) I

My Background
(script)

My Stack
(script)

My Stack
Resources (externals)

Home Stack
(script)

Home Stack 114-1

Hypercard
Resources (externals)

System Resources

Hypercard

Current Card
(script)

Current Background
(script)

Current Stack
(script)

Current Stack
Resources (externals)

, , , ,
,, ,,,,, ,,,,,, ,, , , ,,.

Messages can be
generated at any
level. They are
then inherited
from that point,
in a downward
fashion, until an
appropriate
message handler
is found.

Figure 1. Inheritance path for HyperCard

19

new command by placing the executable code in an appropriate place. This abil­

ity is known as the external interface. It provides the means to rewrite or create

new HyperTalk language commands (XCMD's) and functions (XFCN's).

According to Danny Goodman in the book "HYPERCARD developer's guide",

writing an XCMD requires working knowledge of a programming language Pas­

cal, C, or Assembler, and a working knowledge of the Macintosh programming

environment.

The names and parameters of XCMD's and XFCN's are sent along the inheri­

tance path (explained later in this chapter) like any other message. If no message

handler is found in the current card, background or stack script, the resource fork

of the current stack is checked for an XCMD or XFCN that corresponds to the

name of the message sent. See Figure 1 for the complete inheritance path for

HyperCard.

d) Graphics included.

HyperCard uses several graphics tools which are under "tools" menubar. Menu­

bar is a list of available tools and functions which is provided at the top of the

Macintosh screen. Each word of this list represents a column of items with simi­

lar functions. Creating pictures is as easy as drawing with pencil on a piece of

paper, or even easier, since movement of the tools can be controlled by keyboard

keys.

e) Sound and music.

Sound and music can be created and played in. HyperCard. A HyperTalk com­

mand "play" allows playing notes of music, or a digitized sound.

These were some of the features that HyperCard carries, and these are the reasons

why this author has selected HyperCard to create computer aided instruction lesson

designs. These characteristics make computers usable to those who do not have com-

20

Menus

'w'ith Painting checked on the H~me stack User Preferences card
'w'ith Authoring

'w'hile using any Paint tool

The Tools menu and window

HyperCard is preset to use just the Browse tool-the one
that looks like a hand. When you've had some
experience browsing and typing, go to the last card in
the Home stack and set your User Level Preference to

l!!l!lmi--;;-'.:"'..;-::···· Painting, Authoring (to use the Button and Field tools),
II.MN Pamt or Scripting (to edit scripts).

f'? 0 EJ .
······················
~-~ p t1 ,_ .. _ ...
e u

l•·~ D 0

~ 0 C?

A 0 a,_

Choose tools from the Tool menu or "tear off" a tool
window by dragging down and beyond the menu. Move
the window on the screen by dragging its top bar. Click
the close box to put the window away.
Paint tools

Choose patterns from the Patterns menu, and other
options from the Options menu.

Figure 2. Macintosh menus and tools menu

21

puter knowledge. HyperCard takes the load off the user and carries out most of the work

which makes Macintosh a better computer aided instruction tool to use.

BUTTONS, FIELDS, CARDS, BACKGROUNDS AND STACKS

Buttons

In the HyperCard, one is working with objects. These objects are buttons, fields,

cards, backgrounds and stacks. Each of these objects can carry some amount of informa­

tion and/or data in itself. When a button is selected, the entire script carried by it is also

selected. Size of a button is determined by the author. It can be as small as a 0.5*0.5

sq.cm square, or it can take the whole screen. Copying and pasting is done from the

menubar, which saves time when creating buttons with similar scripts. They also take

different shapes and icons or names. Some sample button icons along with a dialogue

box for buttons are shown in Figure 3. Transparent buttons serve many useful purposes in

designing tutorials. These buttons are exactly the same as other types of buttons, except

that they are not visible to the user. The objects behind these buttons can be seen through

the button.

Buttons can serve as a connection between two cards which have related informa­

tion, or can be used to perform a sequence of actions when clicked on. Playing music,

drawing a picture, creating a script, expanding a stack, quitting from HyperCard and

displaying information, are few of the functions which can be performed by using the

button scripts.

Fields

In the same way as the buttons, the fields are objects which carry text. They can

be installed either in the card or in the background. Each field has a unique ID number

and a sequence number which can be referred to by these numbers. Very large volumes

of text can be placed in a single field with a scrolling bar. Each field can be set to have a

n
~

D

~
ti]

[!]

ii

•
0

*
~

~

Card or Back-

~

~

~

[[j .
.

~

II?

m . . -

~

Lh
l~I

~
p

a
~ . -

~

~

~
+'

~

ground button Button Name: j Use any name that starts with a chad
and order from ·
back to front Bkgnd button number: 11 Style:
U~iq~e number Bk nd button ID: 63 @transparent
w1thm card or g Q opaque
background Show name 0 rectangle
Display name A t h"l"t 0 shadow
on button U O I I e
'w'hen button is 0 round rec t

. ~To see and select
clicked Icon... fi . · Q check boH rom 1cons m

~
~
00

~
~

[BJ

~

To see choices current stack or Q radio button
for button's Lin kl 0... Hy perCard
destination ~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~

To see Script... n OK J (Cancel J
script

Edit script of selected
button.

Press the Return key to
do the same thing

Figure 3. Some icons and a button dialogue box

22

23

certain text font, though one field can not have more than one font

Card and background fields occupy an area on the screen, and are responsive to

the mouse click on top of the occupied surface. This is true only if the field has a handler

for mouse click. A handler in HyperTalk is the word "on" which is used along with dif­

ferent mouse functions. For example the HyperTalk: code "on mouseup" will trap releas­

ing of the mouse button on top of the object carrying the code. Creating and adjusting

size and location of a field is very easy. A very specific area of a field can be accessed

from within other cards and stacks. These areas are addressed by line numbers, items

(comma separated statements), and words (space separated statements). This makes the

fields suitable for use in database systems.

In the same way as the buttons, the fields are also treated as objects. They can be

created from the menubar. Field dialogue box provides all the possible ways to set field

properties. While editing inside a field, text will be entered after the cursor and will be

automatically wrapped around at the end of each line. The author needs not to worry

about pressing the return key at the end of each line, unless if he does not want to fill a

line. Figure 4 shows a field dialogue box along with the available fonts for the text.

Selected field properties are highlighted in the font dialogue box.

Cards

A card is a collection of all the objects that are displayed on the screen. It has a

background which can be shared with other cards in the stack. Hiding some of the

objects in the card is a very common practice. These hidden fields or buttons are

displayed in response to some parameter. When a card is being selected, all of the

objects in the card are also selected.

The field name is=-; Creating/modifying fields
preset to match its rr4r.-::~=========================i1 number. You can •I
change it.

Background or card
and order back to
front (used to
determine Tab
and search order.
Use Bring Closer
and Send Farther

· in Objects menu
to change order.

Field Name:

Bkgnd field number: 1

Bkgnd field 10:1

Lock TeHt
DShow Lines
D Wide Margins

Font ••.

Style:

®transparent
0 opaque
O rectangle
O shadow

scrolling Permanent ID
assigned at creation

Lock text to ' ' ' Script ... JI I (OK D (Cancel)
prevent editing

Edit script of selected Choose font:---
fie ld. for selected field

Style

~Bold

D Italic

D Underline

D Outline

D Shadow

New York
poris
Rome
Saigon
Son Diego
Monaco
Montreal
Geneva

Use with up to
32 Kby tes of text

0119
10

14
18
20
24

Olr::::-1
~

11111m m~m (cance~

~~II
I IQ! Line

Hi ht Times ··-·-·-·· 9
D condense I Helvetica
D EHtend

Align
@Left
0 Center
0 Right

Chicago
Venice

I ~~vd::pyool I !sample I
Figure 4. Field Properties and available fonts

The look
of the
field

24

25

Backgrounds

Each screenfull in HyperCard can be thought of as layers <Figure 5) of objects on

top of each other. Buttons and fields are two layers on the top which can be eliminated.

This means that a HyperCard screen does not necessarily need to have fields and/or but­

tons, but it always has a card and a background. Two other layers are cards and back­

grounds. A card resides on top of a background. Each background can be shared by a

number of cards, and this is a characteristic that is very useful when we want to see an

object from several cards. Instead of placing that object in every card, we just put it in

the background to be shared by a number of cards.

Stacks

Stacks are largest units of collecting data and information in the HyperCard. The

smallest (in size) stack contains at least one card and one background. Size of a stack

grows by adding fields and buttons, more cards and backgrounds, graphics, text and data.

Upon opening a HyperCard application the existing stacks will show up on the Macin­

tosh screen (or buttons which would open these stacks). They can be opened by double­

clicking on them. A folder (provided from the Macintosh menu), can hold several stacks

for the ease of stack management.

MESSAGE BOX

Message box can be compared to the "command line" in more conventional com­

puters (see Figure 5). One can enter HyperCard commands from within the message box

by simply typing them and pressing the "return" key. The message box has some addi­

tional functions like calculating algebraic expressions and showing contents of the global

variables. To calculate a numeric expression, one has to type it in the message box

without the equal sign, and press the "return" key. The result of the calculation will show

up in the box. To find out the value of a global variable, one types the name of that

26

Background layer
Card layer

~ff ff f ~ttt~f~t~f~~tf f ~ttt~ F 1e1 d 1 ayer
:::::::::: ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· B tt 1 ·:·:·:·:·:_._ u on ayer
~~rr : ~ ~ .·.·.·.·.· ·.·.·.·.· ·.·.·.·.·
:::::::::: .·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· . . ·.·.·.·.·
:::::::::: ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.· .·.·.·.·.· ·.·.·.·.· ·.·.·.·.·

r~:~:~:~:::~::::~::~~:~::~:~·~:~::~::~:1
(b)

Figure 5. (a) The Layers , and (b) The Message box

27

variable in the box and presses the "return" key. The value will appear in the message

box.

MUL TIFINDER

The Multifinder, if installed on the Macintosh, allows using more than one appli­

cation program at the same time. This means that one can switch from one application to

another without quitting that application. To use the HyperCard with the Multifinder, it

should be installed in the Multifinder. The HyperCard usually needs 800k of memory

which does not leave much memory for another application if the Macintosh has only

one megabyte of memory. This problem can be solved by upgrading the Macintosh

memory.

MOUSE FUNCTIONS

Almost the entire HyperCard environment depends on mouse functions for dif­

ferent purposes. Scripts of cards, buttons, fields, backgrounds and stacks are activated by

a mouse click, and a user of the HyperCard needs not to know much about the Hyper­

Card to be able to use the tutorial. All of the scripts of different objects are contained

inside the handlers. These handlers are activated either by a mouse click, or by calling

the name of the handler from inside of another script. All of them start with "on" key­

word and end with "end" keyword. Mouse functions which can be used as handler

names, are listed below.

The mouse

This will return "up" or "down" values depending on the mouse button.

The mouseclick

This function is sensitive to clicking on the mouse button. Whenever the Hyper-

28

Card user clicks on the mouse button, this function gets a "true" value. Clicking the

mouse button must occur on top of the object that carries this function, and has a handler

for that. This function is useful if the CAI lesson designer tries to monitor responses by

the user on the computer screen.

ThemouseH

'.fhe function has the horizontal dimension of the mouse cursor. In a variety of

mathematical calculations where the distance between the mouse cursor and the left edge

of the screen is to be determined, this function becomes very useful.

The mouseLoc

Both horizontal and vertical dimensions of the mouse location are stored here.

This function gets dimensions of the mouse cursor. These are two numbers stored in the

function reference and are separated by a single comma. These numbers are the number

of pixels on the screen to the left and top of the mouse cursor. The original point is the

top left corner of the HyperCard screen. The maximum horizontal distance is 512 pixels,

and the maximum vertical distance is 342 pixels. A pixel is the smallest amount of dis­

tance visible on the screen.

ThemouseV

The vertical dimension of the mouse cursor is stored here. This is the same as

mouseH except that it holds the vertical value of the mouse location.

Mouseup

This pertains to the releasing of the mouse button. Each click of the mouse but­

ton has two steps involved, one is when the button is pushed down, and the other is when

it is released. MouseUp refers to the releasing of the mouse button which will set the

value of this function to "true". This function can act as a preventive step if the user has

29

pressed the mouse button in a wrong location. By moving the mouse cursor to another

location and releasing the button he can avoid doing some mistake.

Mousedown

Pressing on the mouse button is indicated by the function. The function works

opposite the mouseUp function and detects the pressing of the mouse button. The value

of the function will remain "true" for as long as the button is pressed.

Mouseenter

The function gets "true" value when the mouse cursor enters the object. If an

object has this function as a handler, the handler will be activated upon entering of the

mouse cursor into the area of the object. The function is useful in detecting the move­

ment of the mouse cursor.

Mousel eave

The function holds "true" value when the mouse cursor leaves the object This

function works opposite to the MouseEnter function. It is responsive to the mouse cursor

leaving the area of the object which carries such a handler, and is useful in the monitor­

ing of the movement of the mouse cursor.

MouseStillDown

It continues sending the "true" signal while mouse button is pressed. The func­

tion keeps sending the "true" message for as long as the mouse button is pressed and kept

down.

Mousewithin

It will send signal while mouse cursor is within the object. If the mouse cursor is

inside the area of an object which carries a handler containing this function, the handler

will be activated. The function will continue to send the "true" value for as long the

30

mouse cursor is within that object.

idle (for mouseidle)

This will send the signal while the mouse is idle. If the mouse cursor is not being

moved on the screen, it will set the value of this function to "true". A HyperCard-based

CAI lesson designer can use the message sent by this function to account for the amount

of time that the mouse is idle.

All of the above functions can be used to react to some state of the mouse tool.

This allows a HyperTalk programmer to measure every possible move of the HyperCard

user, and install a suitable handler to trap for that move.

POWER KEYS AND BLIND TYPING

In the User Preferences Card in the home stack there is an option called "power

Keys". This option appears by setting the user level to "painting" or higher. There are

five user levels in HyperCard which are also numbered from one to five. The higher the

user level is, the more ability that user has in working with the HyperCard. For example

if the user level is set to one, that user will not be able to access scripts of the cards and

stacks, neither will he have access to the painting tools. If the "power keys" option is

selected, the HyperCard allows to use the keyboard to perform certain painting functions.

This means that by using abbreviations from the keyboard one can enhance the painting

ability. These abbreviations basically perform same functions as those provided in the

painting menu. This is designed to save time while using the paint tools. The power

keys can also be enabled by choosing from the "Options" menu. This menu item appears

when one selects a paint tool. Once a menu item is selected, a check-mark appears in

front of it to indicate the selection. To turn the option off, the item has to be chosen

again, and the check-mark will disappear. However, the power keys can not be used with

the text tool. A power key usually corresponds to the first letter of the word in the

31

options menu. For example, to "Darken" a painting, type "D", or to "Invert" the painting

type "I". For a complete list of power keys refer to "HyperCard Users Guide" [7], or

"The complete HyperCard handbook" given in the references section.

Another option comes with the user level set to "scripting". This option is called

"Blind Typing" and allows typing of commands into message box without actually see­

ing the typed line. This property can also be set by a function called "BlindTyping" in a

script. The function takes "true" or "false" values. An example is: set the BlindTyping to

false.

CLICK AND DOUBLE CLICK

For the most part, clicking once on an item chooses that item for further use.

However, double clicking an item has a different purpose. It opens an application, or a

dialogue box, a folder, etc. In the case of the "erase tool", double clicking erases the

whole card or the background from the painted items. In the case of tools, double click­

ing opens some dialogue box to allow the author to make some changes in the selection.

For the complete list of the effects of the double clicking on different tools the reader is

referred to the "HyperCard User's Guide" [7].

OPTION, COMMAND AND SHIFT KEYS

These keys are used to enhance the performance of the HyperCard author. For

example pushing down both command and option keys at the same time will outline all

of the buttons on the screen. Pressing down the shift key while drawing a line will keep

that line on a straight direction. Option key allows copying objects on the screen just by

selecting that object, clicking on that and dragging to another location.

32

HYPERTALK

The programming language for the HyperCard is called HyperTalk. It is similar

to an applications programming language which uses commands in each line of code.

HyperTalk provides some basic commands to be used, but one can add extra commands

written in Pascal or C languages. HyperTalk is written in English although HyperCard

provides a facility to write programs in other languages as well. The language has its

syntax but it is also forgiving if a line of code is typed differently. The name of the com­

mand must be first in the line.

Variables in HyperTalk

There are two kinds of variables in HyperTalk: local and global. A local variable

is used inside a script and is not known to any other script in other objects either in the

same or other stack. It does not need to be declared at the top as it is common in other

programming languages. Whenever name of a local variable is used for the first time, it

is also initialized to a certain value. HyperCard will remember this value as long as the

script has not reached the "end" keyword. Once that specific script ends, the value of the

variable will be lost. On the other hand, a global variable should be declared at the top of

the script as global. It can then be used in that or any other script as long as one does not

quit the HyperCard. To use a global variable which has already been used in another

script, it should be declared again as global to remind the HyperCard as to where it

should look for its value. Both the local and global variables can hold any type of value

without any need to declare its type first (integer, character or string).

Indentation

While editing a script, there is no need to indent the lines of code since Hyper­

Card will automatically do this. Every keyword which has a corresponding "end" key­

word, may include several lines of code which are indented a certain number of

33

characters. This not only eliminates the need for taking care of the indentation, but also

helps to find out if the corresponding "end" keyword has been typed or not. If it has not

been typed, then indentation will not be complete, and that will notify the author of the

missing keyword.

Comment lines can be included in the script by typing two minus signs at the

beginning of the line (--).

Executing HyperTalk Commands

There are two ways to execute a HyperTalk command. One is in a script, another

is from within a message box. Each button, field, card, background and stack has a

script. These scripts can be empty or they may include a large number of lines of code.

They are responsive to some specific handlers which are inserted on top of a number of

lines of code. A handler ends with the "end" keyword followed by the name of that

handler. Except for a small number of HyperTalk commands which can not be entered

and executed from the message box, all others can be executed from the message box as

well. It can only carry one line of code at a time. After a line of code has been entered

from a message box, to enter the next line there is no need to click on the box again. Just

start typing and the previous line will be automatically erased and replaced with a new

one.

Source of the HyperTalk commands can be placed everywhere from buttons and

field's scripts to the HyperCard resources itself. The HyperCard application contains

essential commands and functions to use the HyperCard. However, one can add extra

commands and functions and call them from inside a script. These external commands

and functions can be written in Pascal, C or assembly languages. External commands

and functions are an important source for extension of HyperCard.

The way that HyperCard looks for external commands is through a path called

inheritance path for resources. It starts from buttons and fields scripts and then goes

34

through card, background, stack, home stack and finally the HyperCard application itself.

This means that if an external command or function is placed somewhere along the inher­

itance path, upon calling that will get executed and HyperCard will look no further. This

path is shown in theFigure6. A command or function is called upon entering its name in

the script and executing that script.

Debugging is rather simple in HyperTalk programs. Indeed, no special debug­

ging is needed. If an error occurs in a program, a dialogue box will appear on the screen

and will notify the user of the kind of error. Not only this dialogue box will tell what it

does not understand, but it will also provide access to the script (this is true only if the

user's level is set to scripting in the home stack's user preferences card). Upon entering

the script, cursor will be placed right in front of the word that HyperCard could not

understand. The author can then make necessary changes to the script and make it work.

Creating Sound and Music

Sound and music are provided in HyperCard with two commands, play and beep.

A beep command simply beeps for the number of times specified as its argument.

Macintosh has four different sounds for this command. Another command "play" is

more powerful and it plays number of lines of code specified as its arguments. Lengthy

lines of music notes can be written and played by this command. Codes of music sounds

are recognized by the HyperCard. In the same way as composing a musical piece, one

can write musical codes in HyperCard and play them by using the "play" command.

By adding some additional hardware and software to the Macintosh, one can also

record and play external music and sounds. This allows the CAI lesson designer to be

able to include some real sounds in the tutorial if necessary. If lengthy lines of code are

to be played, then the whole code should be written in a card or a background field. Then

the name or number of that field is given as an argument to the command "play".

Stack

Background

Card

~

I Home stack 1~

t
Stack

Resources

Button I I Field

Hypercard

T
System File
Resources

T
HyperCard
Resources

~ r-.

Home Stack
Resources

Figure 6. Hypercard object hierarchy for resources

35

36

Given that the picture of an object or a person can also be entered into Macintosh,

combined with the real sound of the person or object can create a more real environment

for the CAI lesson user. This is another reason to confirm that the use of the HyperCard

to create CAI lessons will considerably improve the quality of the lesson, and will retain

more characteristics of the real learning environment for the student.

Different User Levels in HyperCard

There are five user levels in HyperCard. These levels are designed to restrict user

abilities to avoid accidental deletions and unwanted changes. From low to high priority

there are Browsing, Typing, Painting, Authoring, and Scripting levels. Browsing mode

allows searching for information only. Typing level adds ability to enter text on cards.

Painting level allows access to painting tools by adding a menubar item which provides

these tools. Authoring level adds access to button and field tools, and finally Scripting

level gives access to the HyperTalk scripts.

All of the user levels can be set from a message box or from inside a script. For

example if the designer of a HyperCard stack does not want any modification to be done

to that stack, then he can set the user level to browsing upon opening that stack, and set it

back to previous level when closing that stack. All of the user levels are provided in the

"Home stack" in the "user preferences" card (seeFigure7).

If user level is set to painting or higher, HyperCard provides tools to be used for

painting and creating graphics. These tools can be accessed from the menubar. Creating

complicated graphics by using these tools is no harder than creating scripts. Keyboard

keys are very helpful while painting. They can be used to monitor movement of the tool

so to avoid distortions in the movement of the hand.

User Name:

User Leuel:

O Browsing

0 Typing

O Painting

O Authoring

®Scripting

User Preferences

[81 TeHt Arrows

[81 Power Keys

[81 Blind Typing

Figure 7. "Home" stack's "User Preferences" card

37

38

External Commands in HyperCard

HyperTalk provides some basic commands to be used. However, there is a way

to add external commands to it and that way to expand the abilities of HyperTalk to do

more specific tasks. These external commands (XCMD's) and functions (XFCN's) are

written in high level languages, and after being processed through a compiler or assem­

bler, attached to a stack as a resource. According to Danny Goodman when HyperCard

sees that the message you send matches an XCMD or XFCN resource, HyperCard grabs

a small chunk of memory to store what is called a parameter block. This parameter block

acts as a staging area for information that goes back and forth between HyperCard and

the resource's code.

In addition to source code for a XCMD some additional units are needed to make

the command usable for HyperCard. These units are called interfaces or glue. The glue

routines are short functions and procedures that do the communicating with HyperCard.

They often condition the data in the XCMD code so that the information is in the right

spots of the parameter block before jumping back into HyperCard. HyperCard object

hierarchy is more complex when considering resources for XCMD's. The System File

Resources are checked for a XCMD before a message reaches HyperCard. This hierar­

chy is shown inFigure6.

HOME STACK

The home stack is the most important stack of the HyperCard. It not only pro­

vides buttons to all other stacks, but also sets user preferences in a special card. It con­

tains commands and functions which are not part of the HyperCard application, but are

supposed to be used by all other stacks, as well as the list of documents to be looked for

while searching for files. A card named "user preferences" provides buttons for five lev­

els of using the HyperCard.

39

A customized home stack can replace HyperCard's home stack. Then HyperCard

will retrieve information about pathnames for documents and applications and stacks as

well as the user level from this stack.

COPYING AND PASTING FROM OTHER STACKS

Modifying a HyperCard stack is no more difficult than creating a new stack.

Modification comes handy when one wants to incorporate ideas expressed by other

HyperCard lesson designers into his own. A stack is always expandable and its size is

limited only by the size of the disk. A facility called "clip board" allows transferring

material from one stack to another stack, or from one disk to another disk. Even if one

quits HyperCard, the copied material will remain in the "clip board" to be pasted into

another stack. Lengthy scripts written by others which may seem to serve our lesson

design purposes, may be copied and pasted. This virtual connection between separate

lesson designs can help improve the quality of the tutorial.

HYPERCARD IN CAI

With the characteristics as mentioned in the above sections, combination of HyperCard

software and Macintosh computer is a perfect tool to be used for creation of computer

aided lessons. In CAI lesson design the goal is to make the material as easy to use and as

much efficient as possible. The word efficient is used to describe the kind of lesson

design in which the student will get most out of the tutorial in the least amount of time.

Card, background, field and button properties seem to off er a lot in this respect. This is

due to the special properties and characteristics of these objects as described earlier.

All of the classical CAI lesson designs discussed in chapter IT can be imple­

mented by HyperCard, plus some more features offered by HyperCard. We can easily

combine the more useful characteristics of the classical methods to create a unique

40

design which eliminates a number of obstacles.

Lessons designed by using HyperCard allow the user to have control over the les­

son and be able to examine different parts and sections which are related together,

without loosing the original point where he started from. The user gets the advantage of

using the written material (since the access can be provided to all parts of the lesson at

any time), plus the speed of access, sound effects, and The most important feature of

the HyperCard is, however, the power of the software to interrelate different parts of the

material which might have related information about a subject. If someone is learning

material about digital systems, on the same screen, the user can have access to the related

information about digital systems by just clicking on the corresponding screen areas.

In the classical lesson designs the user did not have much control on the flow of

the lesson. Even though he could affect the computer by his performance, the decision

making was left to the computer. The prepared lesson design would decide which direc­

tion the user should follow. This is not true for the HyperCard-based lesson designs. If

in the middle of the tutorial a user decides to go back and forth and search for something,

he will be able to do that, and then will be able to return to the same point as he left from.

For the reasons mentioned above, HyperCard program can dramatically improve

quality of a lesson design. A well designed lesson in HyperCard can be assumed as

being a collection of information about a subject on a disk which can be accessed by

choice. Each screenfull of information is also connected to all related information which

one may also want to know about.

THE IDEA OF THE LEARNING ENVIRONMENT FOR DIADES

Computer aided instruction in the past was mostly based on following the steps

provided by the computer. The student did not have much to do with the lesson design,

neither he had much choice with the prepared design. In real life situations, however, a

41

person's learning ability increases if he is provided a variety of choices in each step

through the lesson. With the introduction of HyperCard it seemed plausible to create

such lesson designs with not much difficulty.

HyperCard provides such flexibility and user interaction that makes it possible to

have a "floating" design. The word "floating" is used to denote a kind of design in which

the user will be able to tell the computer how to present the material. In other words the

learner will have ability to design the lesson. Of course this does not mean that the user

should have HyperCard knowledge or any computer knowledge at all. The assumption is

that a user of the CAI doesn't know much about computers, but still will be able to read

the instructions on the computer screen and affect the way a lesson is presented.

The above mentioned ideas come to existence by using several methods of

interaction provided by the HyperCard. For example a CAI lesson designer can ask few

questions from the learner before presenting the material. Responses given by the user

can then be used to present the material as requested. The persistence of a global vari­

able to hold it's value to the end of a HyperCard session, combined with the conditional

statements in the HyperTalk code, provide such ability to present material differently

according to the response from the learner.

As described earlier, a series of HyperCard commands can be activated by a sim­

ple click of the mouse button on top of the object carrying the script. These commands

can access another objects even in different stacks, and activate their scripts. This unique

capability of the HyperCard scripts allows a CAI lesson designer to execute a series of

commands in different objects and stacks from a single object by a mouseclick. This

way several lesson designs can be incorporated into the same lesson, and the user will

have an opportunity to choose the one that may seem to serve him the best.

Each object in HyperCard has a unique name and a unique number. Even if two

objects have the same name, once their full name is specified (including name of the

42

stack), then the names will differ. Of course no two stacks can have the same name. By

referencing an object by the full pathname, it is possible to access that object and make

necessary changes to the script or other contents it may have.

HOW HYPERCARD INTERACTS WITH THE USER

The interaction between the user and the computer can be accomplished in

several ways. Commands "ask" and "answer" provide different types of user interaction.

With the command "answer" the user is presented with a dialogue box. Along with the

dialogue box there can be one, two or three possible responses. The response goes into a

local variable "it". Designer of the CAI lesson can use this response to decide about the

way the lesson should be presented. Another command "ask" interacts differently. It

also presents a question in a dialogue box, but does not present prepared replies. Instead

it asks the user to enter a response to a question. The response is again stored in the local

variable "it". The value of the "it" variable can be examined or used later in the tutorial.

Figure 8 shows dialogue boxes for these two commands.

HyperCard provides also another way of evaluating the behavior of the user. The

location of the mouse is monitored with a function called "The mouseLoc". This func­

tion gets the location of the mouse on the computer screen. CAI designer can then

decide to evaluate this location and give an appropriate response according to that loca­

tion. There are other mouse functions which serve almost the same purpose. The click

of the mouse can be measured by "The mouseClick" function. If the user clicks on some

location on the computer screen, it sets the value of the mouseClick function to "true".

The HyperCard lesson designer can use the answers from the user either at the

beginning of the tutorial to decide about the presentation method, or he can place dialo­

gue boxes in appropriate places to make sure that the user is making enough progress.

This way if not enough progress have been made by the learner, then the computer will

spuewwoo .. H3MSNV .. pue .. >iS'v' .. JOJ saxoq an601e1a ·g aJhD!,:j

[~-asuodsau] (z-asuodsau) (1-asuodsau)

auu si1.11 lO s.Joaddo uonsantJ

(1a:JUOJ) [)t0]

a.Jal.I asuodsa.J .Jnofi .Ja1u3 I
au i l s illl lO s.Joaddo uo i lSantJ

44

suggest to provide alternative ways in which the learner can do a better job.

The above mentioned methods of interaction make it possible to have a very

flexible lesson design in which the student will have a variety of choices to make. A

HyperCard-based lesson designer is not able to tell in advance what the specific needs of

each student will be while learning a subject with HyperCard. However, the designer has

the capability to present a lesson in a manner that can be used differently by different

users with diverse backgrounds.

Comparison between the classical CAI methods and the HyperCard-based CAI

methods (both described in earlier chapters), shows how much these methods can be

improved by using the HyperCard. It allows the user to take the control of the lesson,

search for the subject, go back and forth in the lesson, create pictures and get much closer

to a real learning environment.

This project attempted to use HyperCard to improve classical CAI lesson design

methods, and design a new method for teaching the DIADES design automation system.

The CAI lesson designs which use HyperCard, are not quite common yet, so there is not

much previous work in this area to draw upon.

CHAPTER IV

COMPOSITE CAI METHOD AND HIERARCHICAL, GRAPHICAL HELP SYSTEMS

INTRODUCTION TO OUR NEW CONCEPT

With a look back into the history of the Computer Aided Instruction, and after

taking into account all the instructional functions that could have been accomplished by

different CAI methods, and properties that have not been accomplished, the author tried

to create a lesson design style which would include most if not all of the previous design

strategies. This new design system, which is called COMPOSITE Computer Aided

Instruction system, has a unique structure. It allows to incorporate many design systems

into one system. The Composite system is hierarchical and graphical. It is one step

towards the future "ideal" HyperText system. The internal conceptual connections can

be found in every stage of the lesson.

The Composite CAI System allows modification, addition and expansion of the

graphical, hierarchical help system at any time. The authors of this system will have

access to the expansion process which is mostly carried out by the system itself. The

author clicks on the "expand help system" button, and the button goes to work. It will

ask the index and the contents of the proposed help. After the help text and help index

are entered in the pre-determined areas, the author will click on another button to install

the new help text. The content and index of the new help will be installed in proper loca­

tions.

Each time someone uses the composite CAI system, he will be notified to have

his comments about the system ready to enter in a suggestion box. At the end of the les-

46

son when he wants to quit, he will be asked if he has any suggestions to make. The

suggestions from various users will be taken into account by the main CAI developer and

will affect the modification process or creating of the new material.

1. Comparison of the Environment and Classical CAI Methods

A comparison between our Composite system and more common classical

methods of CAI will reveal the ability, flexibility, efficiency and power of the Composite

system. While each of the previous methods accommodates a certain way of learning

and is limited in the presentation method, the new Composite system has all those

methods combined into one in a comprehensive and expandable way. A comparison of

the well known classical CAI methods and the Composite method is shown in Table I.

Each method is given a score for the capabilities possessed by it. The accumulated score

is an indication of the usefulness of the method.

The Composite design seems to have the combined capability of all other CAI

methods. This is what makes it a new and improved lesson design. Some capabilities of

the Composite lesson design are unique in itself, and are not implemented any time

before. For example the conceptual connection of the similar material, as it is defined in

a HyperText system, can be found only in our Composite system.

Now, let us see how each of the advantages offered by the other design methods

can be accomplished by the Composite design. Games and discovery methods which

would normally get attention of the users, can be created in the new system. HyperCard

allows creation of all kinds of games. There have been numerous games written in

HyperCard. The design is user-controlled and there is no one way or a prepared way

through the lesson. This ability is provided only by two of the previous methods, branch­

ing and multitrack designs. They still lack the ability to be fully user-controlled since

after choosing a branch or a track that will be the only way through the lesson.

r-....
"'1" -U

l
.....l
p:i

f'.S

en
Q

0 ~ ~ -() ~ - en en
<

d ~ <

~ en
0 ~ 0 u z ~ U

l
p

:i

z 0 en
~

~ 0 u

....
do

~
 5

I *
0

0
.....

Ill

efficiency

presenting
graphical
m

aterial
hierarchi­
cal p

rese­
ntation
tests in

the
lesson

presenting
new

m

aterial
practice

w
ith

I *
exam

ples

individua 1-
ization

capability
to be

im
proved

u
ser

controlled

in
terest in~
to w

ork
I
-

do
O

'>

"' c "' > ~ "'

~
 1-g

~

_g
"':;:;

.........
0

do I !;:::
"
'

"
'

!....
!....

c:
~

C
L

* * * * 'iV
I: 0
..... ::i
.....

* * do

¥ o; E

"' O"•

* *

E

O
'>

do
c

:a.>
0

....
!....

0
C

L

,_..,

* * * * * *
~
 'iV

do
c

c
0

.,... .,...
..a
E

 o
0

§
0

'+
-

* * * * !....

"' do ;§

* * 'iV !....
·o.. Ill

* * * * * * * * O
'>

c
:c 0 c "' !.... ..a

* * * * * * .:II:
0 "' !....

::::
.....
:;
E

* * * * do
>

.....
.....

I
"
'

do
!....

!....
do
c do
o>

* * * * do
.)::
..... C

L

"' ~ "'

* * 'iV 0
·o-.
~

* * * * -~
..... 0 "' ~ :0

* * * * * * ="
!....
do
>

0 0 Ill
:0

* *

* * * * * * * * * * do
.....
'Vi 0 C

L

E

0 0

48

The only classical method which can be still used to improve the Composite

method, is the adaptive design. The Composite design can incorporate necessary

changes into itself by using automatic methods to modify the contents of the stacks (not

implemented yet, but can be implemented in HyperCard). Stacks of the Composite

design are expandable and modifiable. The user-controlled capability of the Composite

design allows each user to individualize the lesson. The previous design methods do not

go too far in accommodating this aspect of the design. Those methods which allowed the

user to practice with examples related to the lesson, are included in our Composite sys­

tem. The random number generator in HyperCard also allows presenting different prob­

lems each time through the lesson.

Presenting of the new and graphical material is possible in the Composite design.

Tests, exercises and comprehensive final examinations are given and scored in

HyperCard-based systems. Probably a very important feature of the Composite design is

that it provides means of presenting material in a hierarchical form. The more a student

goes down in the hierarchy, the more detailed and specific information will be available

to him. Ability of the Composite system to accommodate all of the above mentioned

methods will obviously increase the efficiency of the system. This is actually the goal of

a better CAI lesson design.

The prepared lesson design to teach about DIADES has incorporated many of the

Composite characteristics as mentioned above. Use of the material by students and the

feedback that we can get from them can help to enhance those characteristics that will be

found most useful.

2. How General is the Environment?

The current design system is implemented to teach the students about DIADES

and microprogramming. There are some specific elements about this design, such as a

glossary and a final exam. However, once the Composite lesson design is established as

49

a useful and productive design method, the lesson structure can be used to produce les-

sons which would teach different subjects. The design environment is not limited to

teach only few subject matters. Depending on the subject of the lesson, the environment

should be modified to accommodate the specific ways in which the lesson can be learned.

For example, if one wants to create a HyperCard-based environment using the

Composite design methodology to teach about a power engineering course such as distri­

bution systems, the following steps will be taken to accomplish the task.

Step 1: The textual material about distribution systems will be written into com­

puter. If it is already stored in the VAX system, it will be transferred to Macintosh.

Step 2: The major sections of the lesson will be recognized and put into different

fields. The text inside these fields will be later divided into card fields. These sections

will be further divided into sub-sections until the text is no more dividable.

Step 3: All necessary graphical diagrams and pictures will be created by using

drawing and painting tools. They will be stored in the same stack as the pertaining text is

stored.

Step 4: A card will be created which would include names of the major divisions

of the lesson. For each major division which has sub-divisions, a new card will be

created to carry titles of those sub-divisions. This way the hierarchical presentation sys­

tem of the Composite design will be created.

Step 5: A card design will be chosen. At this step the author can copy the card

design of the DIADES system. It consists of two text fields to enter the textual material,

and a set of buttons in the lower side of the card to carry out connection between dif­

ferent parts of the lesson.

Step 6: Text will be copied to card fields. The graphics will be pasted into cards

right after the explanation of the figures. These figures if part of an example, can be

linked to the text of the example so that the user can go back and forth and view the

50

example and the figure at the same time.

Step 7: A glossary will be made of difficult technical words. These words will be

highlighted in the text of the lesson to indicate the presence of more explanation.

Step 8: Help system will be created to carry out the task of informing the users

about the presentation method. The help system for the most part depends on the subject

matter and is created in the same way as other stacks. The connections must be main­

tained between the help system and the appropriate part of the lesson where the help will

be needed.

Step 9: Tests will be added which would pop up in the middle of the lesson, if

desired. The author is responsible to extract the test questions from the text and score the

students. He can also give appropriate comments each time a student gives a right or a

wrong answer.

The Composite system is created to teach about distribution systems. It has a

hierarchical construct, includes help system, tests, glossary, graphics and connections

between different parts of the lesson.

Another example of creating a Composite lesson design would be creating a

data-base system which would carry information about a certain subject. The informa­

tion will be divided into small components. Then a card will be created with a number of

fields on it. This number will match the number of the components in a chunk of infor­

mation. One can add graphics to the card to explain the subject of the information in a

graphical form as well. This card will be copied and pasted as many times as the amount

of information requires. Then the pieces of information will be placed in the appropriate

fields.

After creating the graphical data-base system, one can easily search for informa­

tion with respect to the contents of any individual field. These fields are recognized by

HyperCard with their names. After copying and pasting a card, all of the fields inside the

51

new card will hold the same name as the previous card. This allows searching for con-

tents of a specific field in all cards.

3. How a Composite Design Can be Expanded by New Users?

To create a Composite lesson design for each class, the material for that class

should be first entered into Macintosh. Then according to the subject of the lesson, the

high points of the presentation method will be determined. The steps involved in creat­

ing the lesson are similar to those explained in section 3. The question might arise how a

user who does not know much about HyperCard, can go through those steps and create

his projected design. The answer is that if the author of the Composite lesson design

wants to make the system expandable by the users, then he will write the necessary

scripts to carry out each step's function. Then he will place these scripts in several but­

tons and would give a name or a number to each button. The designer-user would then

click on these buttons in sequence and will answer some questions wherever necessary.

The rest of the design process will be carried out by the scripts.

An example of this in a data-base system would be creating a script that would

ask questions from the user, and will place those responses in appropriate fields of the

new cards. These new cards are already created by the script and placed at the end of the

data-base system. The script can even be written such that it would check for the correct­

ness of the responses. If a numerical response is needed, then it will not accept non­

numeric responses. Or, if a three part response is required, a suitable script code will

make sure that the response has three parts in it.

CHAPTERV

THE DIADES SYSTEM

DIADES which is created by Dr. Marek Perkowski, and is being developed by

several graduate students from Portland State University, as a hardware design automa­

tion system, has not entered industrial applications yet. It is still in the stage of research

and development. The prepared tutorial attempts to present DIADES in its present stage

of development, including TAG user's guide, ADL bugs, and a glossary. The material is

presented in a textual form along with graphics which are inserted wherever necessary.

The environment developed in the lesson is based on the text and diagrams from

the class textbook that has been written in the winter of 1989 by Marek Perkowski and

his graduate students David Smith, Jiuling Liu, Pan Wu and William Zhao. The goal of

creating a learning environment for DIADES is to be able to collect all the information

about DIADES in one place. This will help the students to have easy and quick access to

that information, and will help the developers of the DIADES to add their new findings

and improvements to the existing data base.

According to David Smith in the DIADES manual [14], the DIADES design auto­

mation system is a set of programs for the synthesis of digital circuits from high level

behavioral descriptions. A digital system is described on the behavioral level in terms of

variables and operations using the language ADL. The behavioral description is com­

piled to a structural description which is composed of specific hardware units such as

adders, buffers and multiplexors.

DIADES has several components which work together to get the final result. As

it can be seen from the Figure 9, the design process starts with writing an ADL program

S3GVIG LI! sdeis sseooJd u5!sea ·6 aJn01.:::1

-----••s1salnufis Jl9011._ ____ _
sa1u uba·* sa1u w·*

ubazn N39""'

suo J l9nba l l" * l:Jn.J1s

U6Jsap lJUn 10.JlUOJ
en "ti ., .,
= g "C .,

:::r = 3

9Ul

lOU

54

to describe the desired system.

WHAT IS DIADES?

DIADES is a set of programs which work together to automate the design process

of the VLSI realization of a digital system. The purpose of a system such as DIADES is

basically providing a tool which would allow the engineer to describe his chip in a

behavioral level and leave the task of designing the hardware (logic and VLSI layout) to

the DIADES system. The system will get few input data from the user during the design

process and will output the final layout of the chip to the monitor.

To actually find out how one can use DIADES, and what steps are involved in the

design process, an example is included in Appendix B. This example demonstrates a

parallel program description. The goal of the design is to delay an input signal A by the

time 2T. The device will have information signal A as input, information signal B as

output and a control input T. A and Bare logic signals and Tis an integer number of the

specified clock cycles. The parallel control flow diagram is shown in Figure 16.

The first step in designing the system is writing the ADL high level description.

This is shown in section 1 of the appendix B. Then the user of the DIADES will run the

TAG compiler to transform the ADL description into a program graph format. As it can

be seen from the example, section 2, list of arrows and nodes are created at this stage. A

node represents an operation or program statement. An operation can be a variable

transfer, arithmetic operation, logical operation or comparison. An arrow represents the

fl.ow of control from one node to another. Syntax checking, macro expansion and iden­

tity replacements are carried out at this stage.

The other sections of the example are inputs and outputs of the different programs

in DIADES. They do not make sense for a reader but they in fact represent different

transformation stages from the high level description to the final layout. The layout of

55

the control part of the system is shown irt Figure 17.

AOL Programming Language

ADL is a block-structured algorithmic language developed for DIADES. It is

very similar to a Pascal or C program. Variables and arithmetic and logical operations

are not mapped to specific hardware elements. An ADL program is specified by a set of

input and output ports, internal or intermediate variables, and the algorithm. The

DIADES system translates an ADL program into a hardware structure executing the

algorithm. DIADES analyzes the program and generates computer hardware and a con­

trol program. The translation process is called synthesis. Steps of the algorithm are

analyzed and the appropriate hardware elements are generated and wired together. There

are usually several different hardware designs possible for the same algorithm. Some

hardware designs will be small in area but take longer to execute. Others will have large

area with maximum parallelism and run quickly.

ADL uses a LISP-like syntax. It consists of a series of statements and programs

enclosed in multiple levels of parenthesis. Each part of an ADL program is a list. The

simple ADL program is first broken down into two lists, a declaration list and an algo­

rithm list. At the beginning of an ADL program instructions are placed for the TAG

compiler which are not part of any lists. They can be summarized as follows:

Listing : Echoes the program to the screen.

Adl : Tells the compiler this is an ADL program.

Graph : Tells the compiler to evaluate the main program first.

Subgraph: Tells the compiler to evaluate the sub programs last.

The adl command is necessary, others are optional. Structure of an ADL program

can be described in the following manner:

<clock list>::= ((clock (<natural number>)));

<input variable list>::= (input <variable declaration>+ I empty);

<internal variable list>::= (intern <variable declaration>+ I empty);

<output variable list>::= (output <variable declaration>+ I empty);

<variable declaration> : := (<description> (<type>));

<description>::= <name> I <indexed variable>;

<indexed variable> : := (<name> [<size>]);

<size>::= <natural number> I <index variable>;

<type>::= <p variable> I <d variable>;

<p variable>::= (p kl <number of bits>);

<number of bits> ::=<positive integer>;

<d variable>::= (d);

<subroutine list> ::= (subr <subroutine element>+ I empty);

56

<subroutine element> ::= (<subroutine type> <symbol> <name> (<fix flag> <parame­

ter>+));

<subroutine type>::= macro I block I logmacro I logblock;

<fix flag>::= fix I empty;

<parameter>::= <number> I <vector> I <parameter name>;

<parameter name>::= <name>;

<constant list>::= (const <list of parameters> I empty);

<identity list>::= (iden <identity> I empty);

<identity> ::= (<name> <expression>);

<name> ::= Any combination of letters and numbers;

<expression> ::= <constant> I <variable> I <arithmetic expression> I <logical expres­

sion> I <predicate> I <expression> @ <expression>;

Subroutines in ADL Program. Subroutines can be used in ADL program. The

subroutine itself is listed at the end of the ADL program. Subroutine names and parame­

ters are listed in the declaration section. There are two types of subroutines, macros and

57

blocks. A subroutine can be structural or behavioral. Macros and blocks can be

behavioral. A logmacro subroutine is a special form of the macro and describes structure

only. A macro is a sequence of statements which is represented by a single macro call

statement in the main program. Macros share the same resources with the main program.

A block is a separate system. DIADES generates a separate data path and control unit for

the block. The block operates asynchronously with the main program and no resources

are shared.

Logical Statements. Logical statements in ADL are composed of an assignment

statement and a logical expression. A logical expression takes a number of operands and

maps them into a logical operator. Any expression can be an operand. The number of

operands is unlimited except for "exor" which takes two operands and "not" which takes

one operand. If all operands of an expression have one bit, the result of the logical

operator is one bit If the operands have different sizes, the result of the logical operator

is equal to the size of the largest operator. Smaller operands have zeros added to the

more significant sides.

Control Flow Statements. In the same way as other programming languages,

ADL language contains a number of control flow statements. These statements are used

to control execution of the branches in the program. They are GO, IF-THEN-ELSE,

WHILE, COND and WAIT statements. GO statements branch unconditionally. IF­

THEN-ELSE and WHILE statements allow the program to have several branches. The

branch executed depends on the value of the predicate in the control statement. COND

statements select one of several branches depending on the value of the predicate at the

beginning of each branch. WAIT statements hold the system in a loop for a specific time

or until some input value changes. Each statement except GO uses a predicate to control

branching. Predicates are expressions which have two values, true and false. True is

represented by one bit with value one, and false with one bit with value zero.

58
System Control Statements. System control statements are divided into two

groups, statements controlling the starting and stopping of the digital system, and state­

ments controlling parallel operations. There are three statements controlling the execu­

tion of the system. They are start, stopadl and return. The "start" statement begins the

algorithm description. This statement always appears as the first line of the algorithm.

The control unit always jumps to this location at the start of the program execution. The

"stopadl" statement marks the end of the algorithm description. It can appear anywhere

in the program but is not necessary. The "return" statement is used in subroutines. When

the return statement is reached, the subroutine is done and a signal is sent to the main

system, allowing it to continue.

DIADES can design a system with parallel operations. Parallel operations use the

same control unit but multiple hardware elements are enabled at the same time. The sim

instruction is used to execute more than one assignment instruction in the same cycle.

All instructions within the scope of the "sim" instruction are executed in the same cycle.

Besides describing a digital systems in behavioral level, ADL has the capability

to describe them in a structural level. Instead of describing a system in terms of opera­

tions and variable transfers, the system is described in terms of hardware operators and

connections between them. The system is still described with statements syntactically

similar to behavioral statements, but their meaning is different.

TAG Compiler

The DIADES system takes ADL descriptions of digital systems and generates

structural descriptions. The program TAG is the top program in DIADES. It takes an

ADL program and generates a program graph which is used by other programs to gen­

erate structural description. TAG is written in LISP and is run from the LISP environ­

ment. The name of a file containing the ADL program is entered and TAG goes to work.

The program graph is written out to two files, one each for the data path generator

59

IMPLEM, and the control unit generators MICUS or CERTIF. The ADL program is

listed to the terminal along with debugging and error information. To run TAG one

should do the following:

1. Be in a directory where files can be read and written.

2. Prepare the ADL program and name it such that it will have the extension ".adl".

3. At the prompt type: /slush/dsmith/bin/tag

4. Follow the instructions on the screen.

5. Once the message "tag loaded" is printed on the screen, then you can compile

your ADL program by typing "tag87 <filename>".

6. If the program is correct, the message "Graph is cohesive, no errors" will appear

on the screen.

The output files will be generated and placed in the working directory. Follow

the instructions on the screen and the final result will be shown on a separate monitor.

CHAPTER VI

LESSON DESIGN

This chapter is intended to explain the lesson design as it is implemented, and to

be a guide for the developers of the tutorial, as well as user's manual for the users. There

are two main branches in the lesson design. One of these branches teaches micropro­

gramming which was written by another student (Mark Presentin), and is incorporated

into DIADES lesson. Another branch teaches about DIADES and related subjects such

as ADL language and TAG compiler. With regard to the large size of the whole tutorial

it is installed on the hard disk. This also corresponds to our long term goal which is

creating a HyperCard-based learning environment for a complete DIADES system which

is expected to take a large disk space.

In the lesson design primary consideration is given to the following.

- The ease of use of the material

- Giving control of the tutorial mostly to the student

- Making tutorial interesting to work with

- Future expansion of the material by adding new cards and stacks

- Incorporating graphics along with written text if applicable

The whole material consists of several subjects which have been presented

separately in different stacks. This will allow more experienced user to be able to branch

out just to the subject that he needs to learn about. Of course, less experienced users are

provided a predetermined path which will lead them through the tutorial from one card to

another card and from one stack to another stack.

61

The idea of dividing tutorial into several stacks not only helps the students in

searching for specific subjects, but it will also make it easy to expand the tutorial in the

future by adding new stacks rather than by modifying the existing ones. This ability is

also included by creating new cards. This will be explained in details later in this chapter.

THE ACTUAL DESIGN

It was decided to divide the lesson into several stacks each containing a homo­

geneous subject matter. There are several major components in the DIADES system.

ADL programming language, TAG compiler, ADL errors and bugs are each a separate

stack. Besides these main core stacks, there are four other stacks with special purposes.

These are "start", "help", "home" and "glossary" stacks. Each and every one of these

stacks is explained in details in the following sections.

1. The "Start" Stack

The tutorial for DIADES starts from the "start" stack (Figure 10). This stack does

not contain any material related to DIADES. It is solely used to control flow of the pro­

gram. This is done by providing several buttons at the beginning of the tutorial to start

with. The user has these options:

a) To go to the "HELP" stack and find out more about the tutorial and lesson design.

This path is primarily intended to help new users who are not quite familiar with

the computer aided instruction using HyperCard.

b) To start the lesson immediately. This path takes the student to a pre-determined

stack "DIADES", and then continues with "ADL" stack and so on. If a student

quits tutorial in some point, next time when he tries to use it again, he will be

placed in the same stack and card from which he had quitted.

c) To go to a specific stack. An experienced user will probably want to directly go

to a certain stack and search for some subject. This button provides such ability.

! :T
I

Ul - 11>

::J

0
.

(/
) co

(
)

0 ::J

0
.

(
)

11>
 a. 0
.

.....
.

::
;

co
 =

(/
) -11> ;::
:i.

 =

(/
) -ll> (
)

:;:
>\

"

j
?
~
.
.
A
A
.
d
.
.
A
.
4
A
.
4
.
.
d
4
.
.
4
A
A
&
'
!
A
-
~
A
A
A
.
A
A
d
A
A
A
.
.
.
A
4
d
.
.
4
A
.
d
.
.
d

lfil
 ~

; ~
 &.

 ;
.

;
Q

~

iL
:J

3
~

~
0

~
0

®

~
~
~

=
-
~
~

O'

"~

9
~

00

=
~
~
~

illil

(J

n
g

o
::

r'
""

"
t
:
:
i
t
:
:
i

0
'""

"=
 ~

0

~

~

"'1

'""
"

"'1

i
:
"
"
'
l
o
'
"
"
"
~
=

n
~
:
:
s
c
:
r

oo

'""
"

00

-
~

-
·

io
o

00

'"
""

0

0
•

=
 =

•

i:>
-

00

~
 :s i:>
-

0 :s ~ 0 ~

@

~

i.:
;;;

;;;
(J

@

~

@
) 2
r

(l
a

a
·.

·>
··

··
··

··
··

··
·>

·,
-,

-,
-,

-)
·,

.-
,-

,.
-,

-,
-,

-,
-,

.-
,,

-,
.-

,•
••

••
•

I ... ~.> .
...

 >>
>

>
>

>
>

>
>

>
>

>
>

>
.
>

>
,
>

>
>

.
>

>
>

>
>

>

 >
. >

 >
 >

 >
>

>

,
>

.
>

)

>
 >

 >
 >

 >
 >

 >
 >

 >
>

>
.

>
>

>
>

>
.

>
>

>

>
>

>

>
>

>

>

>

>
>

>

>

>
 >

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

 >
. >

 >

•
•
•

>
 >

>

 >
 >

>

>

>

 >
 >

>

>

>
>

>

>
>

>

>
>

>
>

>

 >

>
>

>

 >
 >

 >
 >

 >
 >

 >

>
 >

 >
>

>

 >
 >

 >
 >

>

>
 >

>

>

•
•

>

>
>

>

>
>

>

>
.

>

>

>
 >

>
>

>

>

>

 >
 >

 >

>

>

.
>

>

>

>
>

>

>
>

>

 >
 >

>
>

>

>

)
)
)
)
)
)
)
)
)
>

>
>

>
>

>
>

>
>

>

>
>

>
>

•
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>

,
,
,
,
.
.
,
,

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

)

>
>

>
>

>
>

>
>

>
>

>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

(I

)
::r

>

>
>

>
>

>
>

,•,

•,•
,•,

•,•
,.>

»•
,•,

•,•
.

>

..
..

.
•
,•

,•
,•

,•
,•

,•
,.

•

•
•

•
•

•
•

•
•

•
•

>

Q
)

0
•

•
•

•
•

•
•

.<
N

...
...

...
...

e

..
..

..
 .

·:·
:·:

·:·
:·:

·:·
:·:

·:·
:·

:i

:·:
·:·

:·:
·:·

:·
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
t
>

>
>

>
>

t
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

•
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
•
>

>
>

>

>
>

t
>

>
>

>

>
t
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
t
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

•,.

•,.
•,.

•,.
>,

.>
,."

,•.
·.·

.·.
·

•
,•,

•,•
.•,

.•,
.•,

,
•,•

,.•
,•,

.>
,.•

,.•
,•,

.•,
.•,

.•,
.>

:

,.>
,•,

•,.
•,.

","
•"

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
•
>

>
>

>

>
>

>
>

>
>

>
>

>
>

)
)
)
)
)
)
)

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
)
)
)
)

)
)
)
)
)
)
)

...
,.
.. ,.

.. ,
.,

.. ,.

...
,.

,
.
,
.
,
,
,
.
,
.
,
.
,
,
,
.
.
.

>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
 >

 >
 >

 >
>

>

>

>

>
 >

>

 >
.

>
 >

 >
)

)

>
 >

>

>
>

>

>

>

>
>

>
>

>

>
 >

 >
>

>

 >
>

>

 >

>
 >

 >
 >

>

>
 >

 >
 >

 >
>

>

 >
>

>

 >
>

>
>

>

>

>

>
 >

>

>
>

>

>
>

>

 >
 >

>

 >
>

>

>

>
 >

 >
 >

>

>
 >

>
>

>
>

.,

.
•
•
•
 ,
.

>
>

.
>

 >
 >

 >
 >

 >
 >

>

 >
 >

 >
 >

>

 >
 >

>

>

>
 >

 >
 >

 >
 >

>
>

>
>

>

>

>

>
 •

•
•

>
 >

 >
 >

 >

>
 >

 >
 >

 >

>
 >

 >
>

>

>
 >

>

>

>
>

>

 >
>

>

>
 >

>

;,
>

>

.

>
 >

 >
 >

 >
 >

 >

>
 >

.
>

 >

>
 >

 >

>
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >

I>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

•
•
•

,.
•
•

>

>
>

>
>

>

i
..

~

·l

111
111

111
111

111
111

111
111

111
1i1

11~

Ax
!d
.,
;,
1A
..
il
l~
'L
.d
-~
.,
;,
'L
.•
:3
..
:i
?l
.,
;,
'L
.•
::
!.
Jl
l.
.:
::
1.
.<
~-
~.
.:
::
l.
:>
::
!.
J!
l.
.:
::
'!
4d
&'
!A
Al
..
»1
,4
~~
.d

....
.

>..
_>

>

>

>

 >
 >

 >
 >

 >
 >

 >
 >

,

>
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 ,

>

J

>
 >
 >

 >
 >

 >
 >

 >
>

 > >
 >

, >
 >

 > >
 >

>
 >

>
 >

 >
 >
 >

 > >
 >

 >
 >

 >
 >
 >

 >
 >
 > >

 > >
 >
 >

 >
 >
 >

 >
 >

 >
 >

 >
 >

, >
 >

 >
 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >

J >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >

>

,
>

>

>
 >

 >
 >

 >
 >

 >
)

>
>

>

 >
>

>

 >

>
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

>

>
 >

 >
 >

 >
 >

>

>
 >

>
>

>

 >
>

>

>
>

>

>

>

>
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
>

>

 >
>

>

>
 >

 >
>

>
>

>

>
>

>

>

>
>

>

a•,•
.•,

.•,
•,•

,•.
•,.

>
,•,

.•,
•,•

,•
>,

.•,
•,•

,.•
,.•

••

>
>
>
>
>
>
>
>
>
~
>
>
>
>
>

>
>

>
•
>

>

...

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

lF

>

>

>
>

>
>

>
>

>
>

>
>
>
>
>
~
>
>
>
>
>

>

>
>

>
>

>
>

>
>

=

,,
..

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>
>

~
·
·
•
•
>

<
>

>
>

>
•

00

.

>
>

>
>

>
>

>
>

>

>
>

>
>

)

>
>

>
>

>

>

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
)
)
)

>

>
>
>
>
>
>
>
>
>
~
n
>
J
)
)
)

>
>

>
>

>

>

>
>

>
>

>
>

>
>

,_

_
. .
.
.
.
.
.
.
.

>
>

>
>

>

>

•
,

,
•

•
•

•
,

,.
R

,.

•
•

,.
,.
~
~
 ,

 ,
 ,

 •
 ,

 >

•
)
)
)
)
)
)
)
>

>

>
>

>
>

..

--
•
•
•
•

,
>

>

>
>

>
>

>
>

>
>

>

>
>

•
•
@

>

>
>

>
>

~
·

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>
>

u
:
v

..

>
>

>
>

>

>
>

>
>

>

>

>
 >

 >
 >

>

>

 >

>

~
~

>
 >

 >

>
 >

>

 >
 >

 >
 >

>

··
··
··
··
·~

>
>
>
>
>
~

>
>
>
>
>
~

>

,.
>

>

 >
 ,

>

 >

>
 >

 >
 >

 >

\J
,
~
·

>
>

>

>

>
>

>
>

>

>
>

>
>

>

>

>

>

>
>

>
>

>

>
>

>
>

>

>

•
>

m

,.,
.&

>D

>
>

>
>

>
I:

=
)

>
>

>
>

>
z
:

>

>

-
>

>

>
>

>
>

r-

-p
,,

.
••

 ,

>

>
>

(
D

>
>

>

>
>

>
>

&
>

&
J

>

>
>

>
>

t.=

;;:
::;

1"

·:
·

o
.:

,
:·

:·
:,

:·
:·

:·

:,
:·

:·
:·

-

·
e:

·
>

 >
 >

-a

 .
....

>
 > >

>

 >
 >,

. >
 >

 >
 >

 >
 >

>

 >
 >
 > >

 >
 >

 >
 >

 >

~

t,::
:;r

:t1
. >

>

 >

0
:::?

. >
 >

>

 >
 >

 >
 >

>

 >
 >

 >
 >

 z
~..

L\-
11

>

·:
·

..
,

0
·:

·
:·

:·
:·

:·
:·

:·

:·
:·

:·
:·

:·

••

.....
m

..
••

••
•

,,,
.,.

,
?e

J·
>

-

-
>

>

 >

>
 >

 >

>
 >

 >

>
 >

Q

·'

-'
>

,,

.
m

.,

,
,.•

,.•
,•,

.•,
.•

,."
,.•

,.>
,>

,•
,.•

.
.... .

...
. .

. .

...
 l9

 , .
 . .

 .
n

.
.. ,
,.

_

,
>

>

>
>

>
>

>

>
>

>
>

,

•
•c

o
a.

 m
 •

•
>

 • • .
 . . D

. .

 .
• .

.

>

,
•
>

>
>

>

>
>

>
>

>

>

>

>
O

)
:J

>

 >

>
 >

 >
 >

 >

~

>
 >

 >
 >

 >

>
 .

•:>
co

te

 •
:•

:•:•

:•:>
:•
~
 :•

:•:•
:•:•

:•

•
•
e
n
=
·
,
.
~
 .

•
,. .

.
"

•
•
•
•
•

,
>

_

,
>

if
.
-
.
\
>

>
>

>
>

>

>
>

>
>

?eJ

'
•

•
::;:-

<D
 •

•
,-

-"
 >

 •
•

>
 •

•

>
 •

•

>

00

.....

>

I

liA
I'

>

>
 >

 >
 >

>

>

 >
 >

 >
 >

QI

.v

>

>
•

...
.

<
D

""

>
>

>
>

>

>
>

>
>

>

>

>

>

>
>

>
>

>

>
>

>
>

>

>

••
•

<D

-.
 •

,•

••
••

••
••

••

,.
•,

•,
•,

.•
,.

•
<

 ~·
·

>
 ,

.-
.&

.
-
·
 >

 >

>
 >

 >
 >

 >
 ~
 >

 >
 >

 >
 >

r
-
1

>

,•,

co

:J
 ,

,,
.

•,
•,

•,
.•

,•
,.

•,

.•
,>

,.
>

,.
•,

.
~
·
.

,•,
.c

o
c

cc
 ,

.•.

•,
.>

,•
,.

>
,.

•,
.

•,
•,

.•
,.

>
,.

•,

1-
--

--
t

~
»

>

>

>
>

>
>

>

>
>

>
>

>

,.
._

,,

>

>
 ,

o
 :

:J

>

>
 (

fJ
 >

>
 >

>

 >
 "

'
>

 >
 >

 >
 >

~

•
>

-
·

>

>
>

>
>

>

>
>

>
>

>

(?
D'

•••

<

c

•,•

,•,
•,.

>,
•,.

•
••

••
• ,

.,,
...

,>

•
•

<D

<
D
'
'
~
·
·
·
·
·

••
••

•
a

•
>

>

>

>
>

>
>

>

>
>

>
>

>

>

>

.,
..

,.
..

..
.

>
>

>
>

>

>
>
>
>
>
~

>'

•

'"
"
>

>

>
>

>
>

>

>
>

>
>

>

••

en

,,,
 •

•
~
·
·
·
·
·
~
·
·
•
•
•

•
>

-
·

..,
.

>

>
 >

 >
 >

 >

.\..
.JJ

>
>

•

,.
>

>

•,.>

,.....

 .
,

•,.>

,•,
.•,

•.•
,>

,.•

,.•
,.•

,•,
•
z

,•
••

'<

,
.
.
.
,
,
~

•
•
•
•
•
~

>
••

••

F
~
•

·:·

3
·:·

:·:

·:·
:·:

·
~~
 :

·:·
:·:

·:·

~~
:.

•
•

<
D

··

··
··
·~

··
··
-~
~

rr
~·

·:

·
::J

·:

·
@

:·

:,
.:

·:
·:

·
~:

·:
·:

·:
>:

•
.

\~
 :·

>

>

..
..

.
,

>
>

>
>

>

>
>

>
>

>

~
·

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

•
•
•
•
•
•
•
•
•

~
>
>
>
>
>
©
•
>
>
>
>
p
t
]

•
>

>
>

>
>

>
>

>

F
1

•
•
•
•
•

>
>

>
>

>

>

•
,
.
•
,
•
,
.
•
,
•
,
•
,
·
.
·
.
·
~

,•,

•,•
,•,

.•
,•,

•,.
•,.

•,.
•

.,..
>

 >
 >

 >
 >

•

>
 >

 •
'
~

>
 >

 >
 >

 >

~

>
 >

 >
 >

 >
 z

.
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

•
>

>

>

>
>

>
>

>
>

>
>

•
©

>

•
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>

>
>

>
>

>

•
>

>
>

>

•
>

>
>

>
>

>
>

>
•

>
>

>
>

>

>
>

>
>

>

>

,.
..

..
..

. .

..
.

w
 .

. ,
,.

,

>
>

>
>

>
>

>
>

•
f
9

>

>
>

>
>

>
>
>
>
>
~

>

>
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>
>

>
>
>
>
•
~
·
·
·
·
·

•
>

>
>

>
>

>
>

>

>
>

>
>

>

>
>

>
>

>

>

•
•
•
•
•
•
•
•
•

~

>
>

>
>

>

>
>

>
>

>

>

>
>

>
>

>
>

>
>

~
·
·
·
·
·

>
>

>
>

>

>

)

·.
•.

>
,.

•,
•,

>
,.

•,
.>

,.
>

,.

•,
.•

,.
•,

.•
,•

~4
),
.·
,·
··
··
··

,•
>

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 r
T

>

>
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >
 >

 >

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

)
)

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>

 >
>

>

 >
 >

 >
 >

 >
 >

 >
 >

>

>

>
>

>
>

>
>

>
>

>

>
>

>

>
>

>

>
 >

 >
 >

>

>

>
 >

 >
 >

>

>
 >

>
>

>

 >
 >

>

>
 >

>
>

>
>

>
>

>
>

>
>

>

>
 >

 >
 >

l·

.
~

~

-
~
l
-

.. i
.

-
~

~

.
.

.
.

.
~

.i

:•~
?~?

:~~
:•!

i~3
~~~

~~~
~~~

?~~
~~?

~~~
:~~

~~
~ ~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~J

O

'a
I\

)

63

Eight buttons show up when a user clicks at this button, each going to a different

stack. The user is asked to choose one and click on that.

d) To use the second branch of the lesson and learn about microprogramming. This

branch has its own environment with help, glossary and final exam stacks. There

is no interconnection between these two branches except at the beginning of each

branch.

These are options that are provided at this time, But one can add more buttons to

the same card and give users another alternative paths to choose from. Quit button is

provided in almost every card of every stack to allow users to stop reading whenever they

want to.

Saving Card Numbers. An important feature of "start" stack is the ability to save

card numbers of the stacks which have been reviewed by the user. When a user tries to

quit the tutorial from any stack by clicking on the quit button, he will be asked if the card

numbers should be saved. If the answer is "yes", then the card numbers will be kept in a

hidden background field. This will allow the user next time to start from where he had

left the tutorial. If the answer is "no", then no card number will be saved, and next time

the user tries to use the material, he will start from beginning of each stack.

If the answer is "cancel", then the "quit" button will be ignored and the user will

be provided a "resume" button. Clicking on this button will take the user to the same

card in the last stack where the user pressed the "quit" button.

Third card of the "start" stack contains a schematic of the steps involved in a

DIADES design process. At present time it only serves as a guide for the users of the

DIADES as to what the organization of the whole system is and how it works. It is also

intended to be used and expanded in the future by the developers of the material to

organize their work.

64

2. The "HELP" Stack

"HELP" stack is designed to provide every possible assistance which users may

need before or during the use of the material. This stack can be accessed from all other

stacks. The first card of the stack is an index of all kinds of help available. In every stage

of the tutorial if a user clicks on the "HELP" button, (this button is the one with question

mark on it), he will be directed to the help index card and will be asked to choose the

kind of help needed. The choice of help will take the user to the appropriate card in the

"HELP" stack where he can find the necessary information.

"HELP" stack is given a special format (Figure 11). Instead of presenting the

entire help text in a lump, it is being typed slowly on the screen. This is supposed to get

more attention from the user to read the text. The text cursor stays at the end of the text

if there is more help to come. But it will disappear at the end to indicate that the user

needs to click on the "more" button if he needs more help. The "more" button stays inop­

erable during the time when the text is being typed. This is shown by the changing of the

color of the button to black. It turns white when it is ready to be used again.

How To Expand The "HELP" Stack. The design of the help stack is such that it

allows the expandability of the stack in the future. To add a different type of help to the

"HELP" stack, simply a button is added to the index card (which is the first card of the

stack), and this button is linked to the appropriate card in the stack where the help can be

found. The help itself is added to the end of the stack. Two background buttons are pro­

vided in the "HELP" stack. One of these will take the user back to the previous stack,

and the other will provide more help, if available.

3. The "DIADES" Stack

This stack (Figure 12) contains main and comprehensive explanation to the

DIADES system, although it is not the largest stack. First card of the stack is an actual

beginning of the lesson. In this card several buttons can be found in the bottom row of

!Pa@@®@ OIJil@JO@@U@ [!!Q[ii)@J @ii rru@a!f) OU©©@l©@l ~

I how to use tutorial I I how to find a word I

This tutorial contains lessons about DIADES,
ADL, ADL BUGS, TAG user's guide and a
GLOSSARY. To go to one stack simply click on
the button corresponding to that stack.

To get more information about tutorial click on
the more button. To go back and start lesson
click on return button.

Figure 11. Sample cards of the "HELP" stack

65

:1 card 1 of 2

l•Jtj•]$W1
Design Automation System

1. I n trod u ct i on

2:45 PM

The behavioral description is
structural compiled to a·

description, which is
composed of specific
hardware units such as
adders, buffers, and
multiplexors.

66

The DIADES design
automation system is a set of
programs for the synthesis of
digital circuits from high­
level, behavioral descriptions.
ALILtltl*"-0EAt1IHi is described

The need for com pl i coted, 11

special purpose digital

on the behovioroJ level in

systems is increasing. One of
the problems is the time
required to design such

terms of variables and
operations using a 1 anguage
cal 1 edfJiil_[ref].

systems.

lU IT I <2> I BUGS open I find I ~

... card 2 of 2 2:44 PM

Input variables: operand 1, operand2 - 8 bit numbers.
Output variables: answer - 8 bit number
Internal variable: temp - holds answer
line 1: (((adl a example_circuit
line 2: (input (op 1 AfliiifD (op2 (p k 1 8)))
1 ine 3: (intern (temp (p k 1 8)))
line 4: (output (answer (p k 1 8)))
1 i n e 5: ((st a rt) a
line 6: 1 O (temp := (op 1 + op2))
line 7: (if (temp = 1 O) then (temp := (op 1 - op2)))
line 8: (answer:= temp)
line 9: (go 10)
line 10:)))
1 i ne 11: end

Figure 12. Two sample cards of the "DIADES" stack

67

the card, and three fields at the top of the card. All these features are the background pro-

perties, and will appear in all cards of the stack which share the same background.

Each button in the stack is used for some purpose. There are five buttons which

serve as connection between DIADES stack and five other stacks. These buttons are

named: ADL, GLOSSARY, ADL-BUGS, TAG-USERS-GUIDE, and a button with ques­

tion mark on it for HELP stack. The QUIT button is used to end a session.

The important property of the above mentioned buttons is that using them to

move from one stack to another will save card id number of the present stack. This

number is used to bring the user back to the same card where he had left the stack for

another stack. This property will allow the user to be able to observe different cards

from different stacks with one click. These card numbers are later saved to be used next

time when the user opens the tutorial.

When the "QUIT" button is used to end a session, the user will be taken to the

"start" stack which is also used to save the card numbers. The user will be asked if the

card numbers of the stacks should be saved. If the answer is "yes" then all the card

numbers of stacks will be saved in a background field. This background field is invisible

and has smallest possible size. The card numbers are saved in global variables which

makes them usable from and within all stacks. These global variables are: A_ID (for

ADL stack), B_ID (for ADL_bugs stack), D_ID (for DIADES stack), G_ID (for GLOS­

SARY stack), and T_ID (for TAG-users-guide stack). If the answer is "no", then no card

number will be saved, and next time the user will start from beginning of each stack.

And finally, if the answer is "cancel", a button will appear right beneath the "cancel" but­

ton. This button is called "RESUME" and if used, will take the user to the last stack

where he clicked on the "QUIT" button.

There are three buttons in the right hand side of the stack in each card. The one

with the "RETURN" icon on it is used to take the user back to the stack which he was

68

reading before coming to the present stack. This button will not work if the present stack

is the first one being opened.

The other two buttons have different properties. One of them is the "find" button.

As the name implies, it is used to find words in a stack. Upon clicking on this button the

user will be asked for the word to be found. After the user enters the word and clicks on

the "ok" button (or presses "RETURN" key), present stack will be searched for the given

word. Along with the search procedure, the message box is shown along with the text of

the desired word in it. The user is also instructed to press the "RETURN" key to find the

next occurrences of the word. If there is no such word in the present stack, the user will

be notified, and the message box will disappear. The same button is provided in all stacks

so that the user can open some other stack and look for the words.

With the revision 1.2 of the HyperCard the "find whole" function can be used to

look for a whole statement This will include several words with white spaces between

them. After installing new version of HyperCard on our Macintosh the "find Whole"

function replaced "find" function.

There is another button called "open". This is the button which will be used by

authors to open the locked text and add, change or modify it, if necessary. This button

might as well be hidden for the user level of less than 4, so that the users will not see this

button at all. When a CAI author clicks on this button, a statement will appear right on

top of the button to inform the author that the fields are now open for writing.

There are three fields in the top part of the background. These fields display help­

ful information. The field in the top left is used to display the total number of cards in

the stack plus the current card number. This way the user will be notified of the amount

of progress that he has made. A message such as Card 12 of77 appears in the field, with

77 being the total number of cards in the stack. The second field is used to display the

date in a short form. The third field displays the current time. The time in the third field

69

is updated every minute.

A very significant feature of the stack is that all the technical and other difficult

words are highlighted. A transparent button is installed on the top of each highlighted

word. The purpose of installing these buttons is to lead the user to the explanation of the

word in the glossary stack. The button will locate the explanation of the word in the

glossary stack and will highlight it for the ease of search. After reading the explanation,

the user can go back to the previous card and stack. This is accomplished in two ways:

a) By pressing the "RETURN" button which will take the user back to the last stack

where he clicked the highlighted button.

b) By using any other button in the bottom row of the glossary stack.

Some of the words in the stack which have been highlighted, have a short expla­

nation which is provided in the same card by showing a field. Field is located in an

appropriate place and will be hidden again when clicked on it.

Graphics in the stack are created by using HyperCard tools. In examples which

have also graphical explanations, different parts are connected to each other with buttons.

The user can go back and forth in the stack to see the example text itself, the graphics

and the explanations, without moving out of the examples environment. The buttons can

be considered as windows to related information which can be opened upon clicking.

Tests In The "DIADES" Stack. Since design of the whole material is intended to

be used by the students and engineers in the industry, tests are included in each stack.

These tests are pop quizzes which unexpectedly pop up during the use of the stack. Dur­

ing the tests the menubar is hidden and the user is provided only with the "QUIT" button.

Each test consists of three questions. Each question is given four possible responses,

while only one of them is a correct answer. The tests are graded and the user is given the

result. In the case he fails to respond correctly to two out of three questions, he will be

given a choice of reviewing the material. There are various numbers of tests in each

70

stack depending on the size of the stack (Figure13).

Modifying The "DIADES" Stack. The DIADES stack, like all other stacks, is

designed in a way that makes it very easy to modify, to add more material or to change

the existing material. All of the text is stored in two card fields (in some cards only one

field is used). The background button with the name "open" is used to unlock the text in

both fields for modification. There is no need to lock the text after opening it, since this

has been already taken care of in the card script. Locking of the text at all times prevents

unwanted changes to the text.

Adding new material to the stack is as easy as modifying the existing text. A

"NEWCARD" handler is included in the script of the stack. Whenever an author wants

to create a new card in the stack, this handler will set the script of the new card and will

put two text fields into the card. All the background fields and buttons are visible from

all the cards.

Adding graphics to the stack is also possible. The author can simply delete one or

both text fields (depending on how much space is required to create the graphics) and use

HyperCard tools to create pictures. Size of a stack is only limited by the disk space, oth­

erwise there is no other limit.

4. The "ADL" Stack

So far, the "ADL" stack is the largest stack of the tutorial. It takes up to 400k of

the disk space. The design of the stack is basically the same as DIADES stack to make it

easier to use. It has a different background pattern, has more tests and more graphics. It

is modified in the same way as the DIADES stack is, and has the same number of back­

ground fields and buttons. The space in the DIADES stack's background which has been

allocated to the "ADL" button, becomes now allocated to the "DIADES" button.

Because of the large size of the "ADL" stack, the index of the whole contents of

the stack is provided at the beginning (Figurel4). A user can go directly to a section by

71

!fJ@[f_) . ~ (Jj] !J:g

ADL program describes a digital system in:

Behavioral level

[r @" U @W tB U U ~ [k lm (!}[fl(!} ~ Ii§ iJ i§ iii

tBWOO\tU OOl!!IW tBU U~[k lmW(r@-- ... ~ ii.J.Jfo\i(j

Figure 13. Sample pop quiz and evaluation cards

Em:m Statements and
Expressions

FCti1 Introduction
lgClil Labels
Miiii Assignment Statements
Flil•I Arithmetic Statements
Elill Logical Operations
Mfll Complicated Expressions

!l:mControl Flow Statements

F•2;J Go Statements
fl91il If-Then-Else Statements
@ .. -'Iii While Loops

t.
·· ""'f·111:~i-- Parallel Execution

Statements

fliUMultiple Statement
Execution

""'1¥ .. l"""'i!•i!"WI Parallel Program
Execution

fNM Subroutines

f$1;1 Macro Subroutines
fl!l!ilBl ock Subroutines

ff-W•ICond Statement

U. Special Statements

lglifiJWai t Statements
lgli!ilSet and Rese~

Statements

efmSystem Control
Statements

JW«i1Starting and Stopping
Statements

2:40 PM

fluMstructural Descriptions

fl ul;'I Dec 1 a rations
flUlilStructural Assignment

Statements
-5-1-1-.1-iJl-structura 1 Condit i ona 1

Statements
""'f._l ... ["""'•l·•-]Subroutine Calls
flltJllStructural subroutines

Figure 14. Sample index cards of the "AOL" stack

72

73

clicking on the corresponding button in the index. The button with the name "back" is

used in the "ADL" stack to take the user to the last card in the stack before coming to the

present card. This is useful in taking the user back to the index cards.

5. The "GLOSSARY" Stack

This is the stack that contains all the technical words along with their definitions.

"GLOSSARY" stack can be accessed directly by clicking on the "GLOSSARY" button

from every stack, or it can be accessed by clicking on the highlighted words. If accessed

through the highlighted words, the beginning of the definition of the word in the stack

will be highlighted. New words along with their definitions can be added to the GLOS­

SARY stack, but the author is responsible to find the correct alphabetic order to place the

new word. This stack has a different background pattern, but it has the same number of

background fields and buttons as the ADL and DIADES stacks.

6. The "ADL-bugs" And "TAG-users-guide" Stacks

These two small size stacks contain information about TAG compiler and BUGs

in the ADL language. Their structure is the same as the ADL and DIADES stacks.

7. The "HOME" Stack

A customized "Home" stack is created to set different user attributes if necessary

(Figure 15). First card of the stack provides small icons of all of the stacks on the disk. It

should be updated if a new stack is added to the tutorial or if one is deleted. Last card of

the stack contains buttons to set the user level. Probably it is a good idea to set the user

level to browsing during the use of the tutorial, so that the stacks can not be accidentally

modified or deleted.

External command and function codes are kept in home stack to make them

usable from all other stacks. No external command or function is used at the time of this

writing. The inheritance path of the HyperCard goes from the card, the background, the

~Home Card~

IQl
~

~~~~~ 
DIADES lXJ ~ ~ ~ 

\. 

(QI~ 
~ FINAL2 

0 ~~ ~ 
~ ~ ~ 

Mike Sand ~ ~ EE371 PERKY II FINAL 

¢le) 2:38 PM 

:HyperCard Stacks: 
:More Stacks: 
:My Stacks: 
:Help Stacks: 
:Idea Stacks: 

Look for Stacks in: 

HyperCard & Stacks:More Stacks: 
HyperCard Help:Help Stacks: 
HyperCard ldeas:ldea Stacks: 
hard88:HyperCard Stacks: 
hard88:More Stacks: 
hard88:Help Stacks: 
hard88:ldea Stacks: 

¢le) 

Figure 15. First and second card of the "Home" stack 

Q 

II 
0 

74 



75 

stack scripts to the home stack. Any external command in the customized home stack 

will be available to all the stacks on the disk. 

8. The "FINAL" Stack 

There are two final stacks in the tutorial. One is written to test the microprogram­

ming knowledge of the students after they have completed the related material. The test 

consists of twelve multiple answer questions. Students have one hour to complete the 

test During a test one can find out about the remaining time by clicking on a button. At 

the end of the test the student's performance is evaluated and he is given a score. Then 

the student will be given a certificate if he passes the test, and if he does not pass the test, 

he will be suggested to review the material and take the test again. 

Another final stack is created to test the knowledge of the students on the subjects 

related to DIADES system and related material. The structure of the stack is basically 

the same as the previous one. It is called "FINAL2" to distinguish that from other final 

stack. 



CHAPTER VII 

CONCLUSION 

Computer aided instruction has been used in the past by different groups. How­

ever, these classical CAI methods (as described in many papers) were very rigid in the 

way they presented the material. Students had to follow the computer and submit to the 

way that the lesson was designed. There was no way to ask the computer questions, and 

if the student did not understand a subject, he could not go back in the lesson and review 

the material one more time. This would require starting the whole lesson from the begin­

ning. In other words, the learning from the computer was very different from the learn­

ing in the class. It was not able to provide the graphics and sound along with the textual 

material. One aspect of this lesson design is that it attempts to take advantage of the 

known classical CAI methods by combining them and by improving them. Of course it 

can be improved in many ways which are discussed later on in this chapter. 

With the present design, knowledge of the student is often checked by the system 

which is impossible in normal classes for obvious reasons. The material together with all 

figures, is presented with "cards" (windows). There are automatic quizzes after each sub­

section, section, and at the end of the tutorial. The quizzes are scored. There is also a 

final exam. Grading system for final exam is the same as for the quizzes. 

HyperCard is really a revolutionary kind of software of a long lasting importance. 

Its importance is compared to the invention of such mediums as data bases, spreadsheets 

or laser printers. This system permits creating authoring systems that include CAI, CAD 

video presentations, animation of physical processes, graphical data bases and many 

other. This technology is expected to have applications particularly in the improvement 



77 

of education, since everybody who has to teach something and is not an expert program-

mer, will be able to write programs quickly to teach their personnel in the area of their 

expertise. These programs will include text, graphics, voice, music, and in the future 

even the video CD ROM, that have either been created by the easy to use tools provided 

by Apple Inc. (like MacPaint or MacDraw), or acquired from practical media such as 

books or records (for instance with use of programs like Image Grabber or ThunderScan). 

PREPARING TIIB TUTORIAL 

There were several topics to be studied and used while developing the tutorial. 

This includes the HyperCard as our lesson-design tool, the well-known CAI lesson 

design methods to get some ideas as to what is expected from a computer aided instruc­

tion, and DIADES as the subject of the tutorial. All of the above-mentioned topics con­

stitute a major part of the work in preparing the whole tutorial. 

The author had to study classical CAI lesson designs and the tools that they were 

created with. This would clarify as to what goals have been achieved and what goals 

were not. Attempt was made to preserve such aspects of a lesson design which still are 

valuable to the user. At the meantime, the priority was given to finding ways which 

would satisfy the specifications of a more advanced CAI method. The HyperCard had to 

be learned well before one is able to write CAI programs in the HyperCard environment. 

It was to provide means of creating the projected lesson design. Finally the DIADES 

system as the subject of the lesson was studied. There still are some aspects about 

DIADES that are not clear enough and need to be developed, such as for example writing 

structural and functional descriptions. 

DIADES is taught in Portland State University every year. The students for this 

course will finally be provided with a comprehensive computer-based instruction to sup­

plement their in-class efforts. Computerizing the whole DIADES system will allow the 



78 

future developers to incorporate their contributions to the system. An example of this is 

combining DIADES tutorial with microprogramming stacks as part of the whole lesson. 

Especially since DIADES is in the development stage, a unified environment will gather 

all the related information in one place to be reviewed. 

WHAT WAS ACHIEVED AND WHAT NOT? 

Creating a graphical data-base for DIADES which would serve as a tutorial for 

users of the DIADES, was the goal of the thesis. At the meantime it had to be prepared 

in such a manner that would make it easy for the future developers of the tutorial to 

incorporate their findings into the existing data-base. This also was an attempt to use 

HyperCard to prepare a CAI lesson, to examine the advantages that one would get in 

working in such an environment. The prepared design can be characterized with visual 

effects, graphical presentations, connections between similar subjects in different stacks, 

hierarchical organization of the lesson design, automatizing the tests and scoring them, 

ease of use and expansion, comprehensiveness and a resemblance of a HyperText sys­

tem. 

In recent years, there have been many conferences about HyperText systems. 

These systems are defined as having connections between related pieces of material. The 

connection is not necessarily between major categorical divisions. It can include any­

thing that may help the learner to understand and absorb the subject matter. At the 

present development stage of the software, HyperText systems seem to be more of an 

ideal system which leads software developers to create better programs. Designing such 

a system was considered while creating our system. Our goal has been creating a Hyper­

Text environment which would closely resemble a real-life learning environment. 

An educational software developer needs to be concerned about taking care of the 

internal connections in HyperText systems. This is a conscious effort and requires writ-



79 

ing hundreds of lines of code to carry out the design goals. With the advancement of 

artificial intelligence and expert systems we can look forward to creating HyperText sys­

tems in much less time and effort with more efficiency. 

There were few problems with regard to preparing and using of the tutorial which 

can be summarized as below: 

a) The compiler for DIADES resides on the VAX system. This means that the user 

needs to go out of HyperCard environment to do some real work. 

b) There are some uncertain areas about DIADES. Not everything is clear with 

DIADES and ADL. 

c) Transfering files and figures from VAX to Macintosh and vice versa is not easily 

possible. 

d) To use Multifinder (which would allow using several application programs at the 

same time), a large Macintosh memory space is required. The plan was to allow 

the user to stay in the HyperCard environment and be able to access VAX to use 

the TAG compiler. The "network login" application would let the Macintosh 

users to login into the VAX, but doing this from inside the HyperCard would 

require using "Multifinder" which for the reasons mentioned above was not possi­

ble. 

HOW CAN THE CURRENT DESIGN BE IMPROVED? 

The present design provides the tutorial and the reference for those who are 

interested to learn about DIADES. However, there is a part that has not been completed 

yet. This is the actual implementation of the DIADES system as is shown in the third 

card of the "start" stack. The purpose of this section is to provide the user with the ability 

to write, compile, debug and execute DIADES programs from Macintosh. The DIADES 

compiler and debugger are located in dsmith directory in VAX system. The ideal design 



80 

will allow the user to write hardware description program by using Macintosh, and then 

access the VAX system to compile and debug the program. If this is done in every stage 

of the learning process, it can give the user ability to learn DIADES quickly and 

efficiently. 

The written text and graphics from David Smith's reports about DIADES were 

primary source of information for DIADES. These documents are transferred from VAX 

to Macintosh and placed in HyperCard fields. A user of the tutorial can access this infor­

mation in a linear method. A better presentation would be extracting main topics of each 

subject, placing them in one card and allowing the user to choose one of them to learn 

about. Later he will make some more choices to narrow down just to what he wants to 

learn about. To accomplish this objective, a more organized DIADES manual is needed. 

At the time being only the "ADL" stack has some index cards. The task of searching for 

a specific subject is still left to the user. A better system would lead the user just to the 

information that he wants to learn about. 

Considering the amount of available manuals for DIADES, it will require a good 

deal of programming to create such a design. To reduce the number of program codes, 

one solution is to have a fixed format for presenting material. This way only the contents 

of some fields will change depending on the choice subject of the learner. This kind of 

design requires organized DIADES manuals to draw upon. 

Another plan can be providing an automatic hardware design procedure. The 

DIADES user will write his ADL program in a field, then will click on a button to initial­

ize design process. At present time a user of the TAG responds to several questions 

before he is able to see the actual design on a separate monitor. A program which would 

take care of the answers to these questions, can simplify and automatize the design pro­

cess. Installing TAG compiler on a Macintosh or accessing VAX from within Hyper­

Card are steps in this direction. 



REFERENCES 

[l] Gary Bond, XCMD's for HyperCard, 1988, Management information source, Inc. 
1107 N.W. 14th Avenue, Portland, Oregon 97209 tel: (503)222-2399 

[2] William Lee, "?": A context sensitive Help System based on Hypertext, Design 
Automation Proceedings, 1987, Pages 429-435, VHSIC Test Systems, SENTRY 
Schlumberger 1601 Technology Drive, San Jose, CA 95110-1397 

[3] Danny Goodman, The complete HYPERCARD handbook,1987 Bantam Books, 
666 Fifth Avenue, New York, New York, 10103 

[4] Danny Goodman, HYPERCARD developer's guide, 1988 Bantam Books, 666 
Fifth Avenue, New York, New York, 10103 

[5] Robert L. Burke, CAI source book, Englewood Cliffs, N.J. : Prentice-Hall,1982 

[6] Albert E. Hickey, Computer assisted instruction 

[7] Hypercard User's Guide, Apple Computer Inc. 20525 Mariani Avenue, Cuper­
tino, California 95014 (408)996-1010 TLX 171-576 

[8] Journal of Computer Based Instruction, 1986-1987, Association for the develop­
ment of Computer-Based Instruction systems, Computer Center, Western Wash­
ington University 

[9] Journal of Educational Computing Research, Farmingdale, N.Y. : Baywood Pub. 
Co., 1986 

[10] Shirley Torgerson, LOGO in the classroom, 1984, ICCE Publications, Eugene, 
OR, University of Oregon, 1787 Agate St., Eugene 97403-1943, International 
Council for Computers in Education 

[11] Stephen Alessi, Computer Based Instruction, 1985 Prentice Hall Inc., Englewood 
Cliffs, N.J. 

[12] Etienne Wenger, Artificial Inteligence and Tutoring Systems, 1987 Morgan Kauf­
mann Publishers, Inc. 95 First Street, Los Altos, CA 94022 

[13] IEEE Software, IEEE Computer Society, Los Angeles, CA, Jan. 1989 

[14] Smith, D., "DIADES Design Automation System", Technical Report 88-9, Electr­
ical Engineering Dept, Portland State University, Portland, OR, 1988. 



82 

[15] Smith, D., "ADL Reference Manual", Technical Report 88-10, Electrical 
Engineering Dept, Portland State University, Portland, OR, 1988. 

[16] Smith, D., "MOEN: STRUCT to M-Language Translation", Technical Report 
88-11, Electrical Engineering Dept., Portland State University, Portland, OR, 
1988. 

[17] Smith D., "Graph Language", Technical Report 89-1, Electrical Engineering 
Dept, Portland State University, Portland, OR, 1989. 

[18] Marek Pekowski, Ideas about new approach to computer aided instruction for ele­
mentary logic design 

[19] Academic Computing, P.O.Box 804, McKinney, TX 75069 
May 1989, Page 20 
February 1988, Page 22 
Dec 87/Jan 88, Page 22, 26 

[20] Wheels for the mind, 1988, Volume 4, number 2 
Pages 17, 95-98 

[21] Coed, Computers in education division of ASEE 
Vol. VIII, No. 3, July/Sep 1988, Page 20, 28 
Vol. VIII, No. 4, Oct/Dec 1988, Page 38 

[22] Perkowski, M, Integration of logic synthesis and high-level synthesis into the 
DIADES design automation system, Proceedings of the 1989 IEEE International 
symposium on circuits and systems, Volume 2, pages 7 48-7 51 

[23] Perkowski, M, DIADES - A high level synthesis system, Proceedings of the 1989 
IEEE International symposium on circuits and systems, Volume 3, pages 
1895-1898 



SJ.dlli:JS 31dWVS 3WOS 

VXIGN3ddV 



84 

APPENDIX A 

This appendix contains scripts of all stacks along with script of 
chosen cards, backgrounds, buttons and fields which perform a 
special function. 

*** Scripts of the stack "start" *** 
* Stack script 

on closestack 
global RET,LAST _STK 
put "second card" && "of" && "stack start" into RET 
put RET into LAST_STK 

end closestack 

* Script of the first card 

on opencard 
hide menubar 
hide card button 1 
choose browse tool 
set TextFont to New York 
set T extSize to 18 
set TextStyle to outline 
set TextAlign to Center 
click at 240, 70 

type "HYPERCARD_BASED" 
click at 240, 100 

type "LEARNING EVIRONMENT" 
click at 240,160 
type "Advisor: Dr. M. Perkowski" 
click at 240,220 
type "Writer: Ali Shamsapour" 
set TextFont to geneva 
set TextSize to 12 



set TextStyle to Bold 
set TextAlign to Center 
click at 240,250 
type " Electrical Engineering Department" 
click at 240,270 
type " Portland State University" 
click at 240,286 
type "1989 - 1990" 
click at 5,5 
wait 2 seconds 
go next 

end opencard 

on closecard 
global ST _STK 
put "ok" into ST _STK 

put empty into card field 1 
put empty into card field 2 

end closecard 

* Script of the second card 

on opencard 
global A_ID,B_ID, D_ID,G_ID,T _ID,ST _STK 
show menubar 
set userLevel to 5 
hide card field id 59 
repeat with x = 164 to 178 

hide card field id x 
end repeat 
hide card button id 2 
hide card button id 53 
hide card button id 54 
hide card button id 55 
hide card button id 56 
hide card button id 57 
hide card button id 62 

85 



hide card button id 102 
hide card button id 103 
show card button id 1 
show card button id 4 
show card button id 52 
show card button id 179 
if ST _STK is "ok" then 

if first line of background field 1 is not empty then 
get first line of background field 1 

put it into A_ID 
put empty into first line of background field 1 

end if 
if second line of background field 1 is not empty then 

put second line of background field 1 into B_ID 
put empty into second line of background field 1 

end if 
if third line of background field 1 is not empty then 

put third line of background field 1 into D_ID 
put empty into third line of background field 1 

end if 
if fourth line of background field 1 is not empty then 

put fourth line of background field 1 into G_ID 
put empty into fourth line of background field 1 

end if 
if fifth line of background field 1 is not empty then 

put fifth line of background field 1 into T _ID 
put empty into fifth line of background field 1 

end if 
--put 164 into begin 
--repeat until the mouseClick 
--repeat with x = 14 to 24 
--set hilite of card button x to true 

--end repeat 
--show card field id begin 
--add 1 to begin 
--if begin is "179" then 
--put 164 into begin 
--repeat with x = 164 to 178 

86 



--hide card field id x 
--end repeat 
--end if 
--repeat with x = 14 to 24 
--set hilite of card button x to false 

--end repeat 
--show card field id begin 
--add 1 to begin 
--if begin is "179" then 
--put 164 into begin 
--repeat with x = 164 to 178 
--hide card field id x 
--end repeat 
--end if 
--end repeat 
--repeat with x = 164 to 178 
--hide card field id x 
--end repeat 

end if 
end opencard 

on closecard 
global ST _STK 
put empty into ST _STK 
hide card field id 59 
hide card field id 60 
hide card button id 53 
hide card button id 54 
hide card button id 55 
hide card button id 56 
hide card button id 57 
hide card button id 62 
hide card button id 102 
hide card button id 103 

end closecard 

87 



* Script of the "quit" button 

on mouseUp 
global A_ID,B_ID,D_ID,G_ID,T _ID 
hide card button id 1 
hide card button id 2 
hide card button id 4 
hide card button id 52 
hide card button id 53 
hide card button id 54 
hide card button id 55 
hide card button id 56 
hide card button id 57 
hide card button id 62 
hide card button id 102 
hide card button id 1 03 
hide card button id 179 
hide card field id 59 
hide card field id 60 
Answer "Save card numbers before quitting?" with "yes" --, 
or "no" or "cancel" 
if it is "cancel" then 

show card button id 1 
show card button id 2 
show card button id 4 
show card button id 52 
show card button id 179 

end if 
if it is "yes" then 

put A_ID into first line of background field 1 
put B_ID into second line of background field 1 
put D_ID into third line of background field 1 
put G_ID into fourth line of background field 1 
put T _ID into fifth line of background field 1 

end if 
if it is "yes" then domenu quit hypercard 
if it is "no" then domenu quit hypercard 

end mouseUp 

88 



* Script of the "go to lesson ... " button 

on mouseUp 
hide card button id 52 
show card field id 59 
--select Text in card field id 59 
show card button id 53 
show card button id 54 
show card button id 55 
show card button id 56 
show card button id 57 
show card button id 62 
show card button id 102 
show card button id 103 
repeat until the mouseClick 

set hilite of card button id 53 to true 
set hilite of card button id 54 to true 
set hilite of card button id 55 to true 
set hilite of card button id 56 to true 
set hilite of card button id 57 to true 
set hilite of card button id 62 to true 
set hi lite of card button id 102 to true 
set hilite of card button id 103 to true 
set hilite of card button id 53 to false 
set hilite of card button id 54 to false 
set hilite of card button id 55 to false 
set hilite of card button id 56 to false 
set hilite of card button id 57 to false 
set hilite of card button id 62 to false 
set hi lite of card button id 102 to false 
set hilite of card button id 103 to false 

end repeat 
hide card field id 59 
show card field id 60 
--select Text in card field id 60 

end mouseUp 

89 



* Script of the "microprogramming" button 

on mouseUp 
global M_ID,TEMP 
put M_ID && "of" && "EE371 stack" into TEMP 
repeat 5 times 

set hilite of card button ID 179 to true 
wait 1 
set hilite of card button ID 179 to false 
wait 1 

end repeat 
if M_ID is empty then go to card one in stack "EE371 stack" 
else go to TEMP 

end mouseUp 

Note: Other buttons in the "start" stack have scripts similar to 
"microprogramming" button, except that they are linked to 
different cards and/or stacks. 

* Stack script 

on openstack 
global D_STK 

*** Script of the "DIADES" stack *** 

put "stack DIADES" into D_STK 
end openstack 

on closestack 
global D_ID,RET,D_STK,LAST_STK 
put D_ID && "of" && D_STK into RET 
put RET into LAST _STK 

end closestack 

90 



on NewCard 
put script of card id 5075 into scr 
get the number of this card 
set the script of card it to scr 
doMenu new field 
drag from 164, 126 to 24,31 
drag from 345, 195 to 241,287 
drag from 128, 152 to 371, 152 with Option Key, ShiftKey 
choose browse tool 
put "First field of the new card." into card field 1 
set TextStyle of card field 1 to Bold 
put "Second field of the new card." into card field 2 
set TextStyle of card field 2 to Bold 

end NewCard 

* Background script of the "DIADES" stack 

on openbackground 
put the date into background field 2 
put the time into background field 3 

end openbackground 

on idle 
put the time into background field 3 

end idle 

* Script of the first card of the "DIADES" stack 

on opencard 
global D_ID,STK,RET 
get the ID of this card 
put it into D_ID 
put D_ID && "of" && STK into RET 
set hilite of card button id 17 to true 
put the date into background field 2 
put "card " into background field one 
get the number of this card 
put it after background field one 

91 



put " of " after background field one 
get the number of cards 
put it after background field one 
set lockText of card field 1 to true 
set lockText of card field 2 to true 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 
set hilite of card button 5 to true 

end opencard 

on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the second card 

on opencard 
global D_ID 
put the date into background field 2 
get the ID of this card 
put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

92 



on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the card 3 

on opencard 
global D_ID 
put the date into background field 2 
get the ID of this card 
put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the card 4 

on opencard 
global D_ID 
set hilite of card button 1 to true 
put the date into background field 2 
get the ID of this card 

93 



put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the card 5 

Do not modify script of card id 5075. 
-- It is used in creating new cards. 

on opencard 
global D_ID 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
put the date into background field 2 
get the ID of this card 
put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

94 



on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of card 6 

on opencard 
global D_ID 
put the date into background field 2 
get the ID of this card 
put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the card 7 (pop quiz) 

on opencard 
hide menubar 
hide card field id 9 
hide card field id 1 O 
hide card field id 11 
hide card field id 12 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 

95 



set hilite of card button 4 to true 
end opencard 

* Script of the card 8 (pop quiz) 

on opencard 
hide card field id 9 
hide card field id 1 O 
hide card field id 11 
hide card field id 12 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 

end opencard 

* Script of the card 9 (pop quiz) 

on opencard 
hide card field id 8 
hide card field id 9 
hide card field id 1 O 
hide card field id 11 
hide card field id 12 
hide card field id 13 
hide card field id 16 
hide card button id 14 
hide card button id 15 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 

end opencard 

on closecard 
hide card field id 12 
hide card field id 13 

96 



hide card field id 16 
hide card button id 14 
hide card button id 15 
show menubar 

end closecard 

* Script of a answer button (A) 

on mouseUp 
global score 
put "1" into score 
show card field id 9 
wait 2 seconds 
show card field id 1 O 
wait 4 seconds 
hide card field id 9 
hide card field id 1 O 
go next 

end mouseUp 

* Script of a answer button (B) 

on mouseUp 
global score 
put "O" into score 
show card field id 11 
wait 2 seconds 
show card field id 12 
wait 5 seconds 
hide card field id 11 
hide card field id 12 
go next 

end mouseUp 

* Script of answer button (C) 

on mouseUp 
global score 

97 



put "O" into score 
show card field id 11 
wait 2 seconds 
show card field id 12 
wait 5 seconds 
hide card field id 11 
hide card field id 12 
go next 

end mouseUp 

* Script of answer button (D) 

on mouseUp 
global score 
put "O" into score 
show card field id 11 
wait 2 seconds 

show card field id 12 
wait 5 seconds 
hide card field id 11 
hide card field id 12 
go next 

end mouseUp 

* Script of the card 1 O 

on opencard 
global D_ID,CARD_ID 
set hilite of card button id 7 to true 
put the date into background field 2 
get the ID of this card 
put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 

98 



set hilite of card button 1 to true 
set hilite of card button 2 to true 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the card 11 

on opencard 
global D_ID 
put the date into background field 2 
get the ID of this card 
put it into D_ID 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 
get number of cards 
put it after background field one 
set hilite of card button 1 to true 
set lockText of card field 1 to true 
set lockText of card field 2 to true 

end opencard 

on closecard 
global CARD_ID,D_ID 
put D_ID into CARD_ID 

end closecard 

* Script of the card 12 

on openstack 
global D_STK 

99 



put "stack DIADES" into D_STK 
end openstack 

on closestack 
global D_ID,RET,D_STK,LAST_STK 
put D_ID && "of" && D_STK into RET 
put RET into LAST_STK 

end closestack 

on NewCard 
put script of card id 5075 into scr 
get the number of this card 
set the script of card it to scr 
doMenu new field 

Note: All of the cards in the "DIADES" stack have almost the same 
script. 

* Script of a sample "pop quiz" card in the "DIADES" stack 

on opencard 
hide card field id 8 
hide card field id 9 
hide card field id 1 O 
hide card field id 11 
hide card field id 12 
hide card field id 13 
hide card field id 16 
hide card button id 14 
hide card button id 15 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 

end opencard 

100 



on closecard 
hide card field id 12 
hide card field id 13 
hide card field id 16 
hide card button id 14 
hide card button id 15 
show menubar 

end closecard 

* Script of the "quit" button 

on mouseUp 
go to card id 4505 of stack "start" 
click at 49,291 

end mouseUp 

* Script of the "?" button 

on mouseUp 
repeat 5 times 

set hilite of bkgnd button id 33 to true 
set hilite of bkgnd button id 33 to false 

end repeat 
go to card id 2964 of stack "HELP" 

end mouseUp 

Note: Buttons which link one stack to another, have the same 
script as "?" button, except that they are linked to 
different stacks. 

* Script of the "open" button 

on mouseUp 
get the number of card fields 
if it is 1 then 

set lockText of card field 1 to false 
else if it >= 2 then 

set lockText of card field 1 to false 

101 



set lockText of card field 2 to false 
end if 
show background button id 97 
wait 3 seconds 
hide background button id 97 

end mouseUp 

* Script of the "find" button 

on mouseUp 
global temp 
Ask "Enter the word to be found." 
if it is not empty then 

show message box at 18,361 
put "find whole " & quote & it & quote into message box 
put " -- To find next occurence press return key." after 

message box 
do message box 
if the result is not empty then 

put quote & it & quote && "not found" && "in this stack." into 
temp 

Answer temp 
hide message box 

end if 
end if 

end mouseUp 

* Script of the "return" button 

on mouseUp 
global LAST_STK 
repeat 5 times 

set hilite of background button ID 78 to true 
set hilite of background button ID 78 to false 

end repeat 
if LAST _STK is not empty then go to LAST _STK 

end mouseUp 

102 



* Script of the "right arrow" button 

on mouseUp 
get number of this card 
put it into num 
get number of cards 
if it=num then go to card ID 2892 
else go to next card 

end mouseUp 

* Script of the left arrow button 

on mouseUp 
visual effect scroll right 

go to prev card 
end mouseUp 

* Script of a "answer" button in a pop quiz 

on mouseUp 
global score 
put "1" into score 
show card field id 9 
wait 2 seconds 
show card field id 1 O 
wait 4 seconds 
hide card field id 9 
hide card field id 1 O 
go next 

end mouseUp 

* Script of an "evaluation" button in a pop quiz 

on mouseUp 
global score 
show card field id 8 
wait 2 seconds 
show card field id 9 

103 



wait 5 seconds 
hide card field id 8 
hide card field id 9 
if score = 2 then 

show card field id 16 
wait 3 seconds 
go next 

else 
show card field id 13 
show card button id 14 
show card button id 15 
set hilite of card button id 14 to true 
set hilite of card button id 15 to true 

end if 
end mouseUp 

*** Script of the "AOL" stack " 

* Script of a sample card 

on opencard 
global A_ID,NAM 
put the date into background field 2 
set hilite of card button 1 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 
set hilite of card button 5 to true 
set hilite of card button 6 to true 
get the ID of this card 
put it into A_ID 
if NAM is "intro" then set hilite of card button 2 to true 
put "card " into background field one 
get the number of this card 
put it after background field one 
put " of " after background field one 
get the number of cards 
put it after background field one 
set lockText of card field 1 to true 

104 



set lockText of card field 2 to true 
end opencard 

on closecard 
global A_IO,CARO_NO,NAM 
put A_IO into CARO_NO 
put empty into NAM 
set hilite of card button 2 to false 

end closecard 

Note: Most of the buttons and cards in the "AOL" stack have 
similar scripts as "DIAOES" stack. So, most of the scripts 
in this stack are not printed out, except those that are 
different from other stacks. 

* Script of a "pop quiz" card in "AOL" stack 

on opencard 
set hilite of card button 1 to true 
set hilite of card button 2 to true 
set hilite of card button 3 to true 
set hilite of card button 4 to true 
hide card field id 13 
hide card field id 14 
hide card field id 15 
hide card field id 16 
hide card field id 17 
hide card field id 18 
hide card field id 22 
hide card field id 23 
hide card button id 24 
hide card button id 25 

end opencard 

on closecard 
hide card field id 13 
hide card field id 14 
hide card field id 15 

105 



hide card field id 16 
hide card field id 17 
hide card field id 18 
hide card field id 22 
hide card field id 23 
hide card button id 24 
hide card button id 25 
show menubar 

end closecard 

*** Scripts in the "HELP" stack *** 

* Stack script 

on closestack 
global RET, LAST _STK 
put "first card" && "of" && "stack HELP" into RET 
put RET into LAST_STK 

end closestack 

* Script of a sample card in "HELP" stack 

on opencard 
show background button id 8 
set hilite of background button id 8 to true 
choose browse tool 
click at 66, 79 
set TextFont to New York 
set Text Size to 14 
set TextStyle to Bold 

106 

type "This tutorial contains lessons about DIADES, AOL, ADL BUGS," 
type "TAG user's guide and a GLOSSARY." 
wait 3 seconds 
type " To go to one stack simply click on the button corresponding" 
type " to that stack." 
wait 3 seconds 



click at 66, 180 
type "To get more information about tutorial click on the more 

button." 
wait 3 seconds 
type " To go back and start lesson click on return button." 
set hilite of background button id 8 to false 

end opencard 

on closecard 
put empty into card field 1 

end closecard 

* Script of the "return" button 

on mouseUp 
global LAST _STK 
repeat 8 times 

set hilite of background button ID 9 to true 
set hilite of background button ID 9 to false 

end repeat 
if LAST _STK is not empty then go to LAST _STK 

end mouseUp 

*** Scripts of the "GLOSSARY" stack *** 

* Script of a sample card 

on opencard 
global G_ID,G_STK,RET,NAME 
get the ID of this card 
put it into G_ID 
put G_ID && "of" && G_STK into RET 
set hilite of card button id 15 to true 
put the date into background field 2 
put "card " into background field one 
get number of this card 
put it after background field one 
put " of " after background field one 

107 



get number of cards 
put it after background field one 
set lockText of card field 1 to true 
set lockText of card field 2 to true 
if NAME is "ALGORITHM" then set hilite of card button 1 to true 
if NAME is "AOL" then set hilite of card button 2 to true 
if NAME is "ASSIGNMENT" then set hilite of card button 3 to true 

end opencard 

on closecard 
global NAME 
set hilite of card button 1 to false 
set hilite of card button 2 to false 
set hilite of card button 3 to false 
put empty into NAME 

end closecard 
Note: "GLOSSARY" stack and most of it's cards have almost the 

same script as "DIADES" stack with minor differences. So 
these scripts are not printed. 

*** Scripts in the "Home" stack *** 

* Stack script (this is copied from HyperCard's "HOME" stack 

on startup 
getHomelnfo 
pass startup -- to a startup XCMD, if present 

end startup 

on resume 
getHomelnfo 
pass resume -- to a resume XCMD, if present 

end resume 

on getHomelnfo 
global stacks,applications,documents,userName 
set lockScreen to true 

108 



set lockMessages to true 
push this card 
go to card "User Preferences" of stack "Home" 
put card field "User Name" into userName 
set userlevel to card field "User Level" 
set powerKeys to the hilite of button "Power Keys" 
--set textArrows to the hilite of button "Text Arrows" 
set blindTyping to the hilite of button "Blind Typing" 
put field "paths" of card "stacks" into stacks 
put field "paths" of card "applications" into applications 
put field "paths" of card "documents" into documents 

pop card 
set lockScreen to false 
set lockMessages to false 

end getHomelnfo 

109 

on searchScript pattern,stackName -- search all scripts of a stack 
set lockMessages to true 
if stackName is not empty then go to stack stackName 

if the script of this stack contains pattern 
then edit script of this stack 

repeat with i = 1 to the number of bkgnds 
go to card 1 of bkgnd i 
if the script of this bkgnd contains pattern 
then edit script of bkgnd 

repeat with j = 1 to the number of bkgnd buttons 
if the script of bkgnd button j contains pattern 
then edit script of bkgnd button j 

end repeat 

repeat with j = 1 to the number of bkgnd fields 
if the script of bkgnd field j contains pattern 
then edit script of bkgnd field j 

end repeat 
end repeat 



repeat with i = 1 to the number of cards 
go card i 

if the script of this card contains pattern 
then edit script of this card 

repeat with j = 1 to the number of card buttons 
if the script of card button j contains pattern 
then edit script of card button j 

end repeat 

repeat with j = 1 to the number of card fields 
if the script of card field j contains pattern 
then edit script of card field j 

end repeat 

end repeat 
set lockMessages to false 

end searchScript 

* Script of the first card of the "Home" stack 

on idle 
put the time into card field "Time" 
pass idle 

end idle 

on startup 
show card field "Copyright" 

end startup 

on closeCard 
hide card field "Copyright" 

end closeCard 

110 

* Script of the field "paths" in the second card of the "Home" stack 

on closeField 
global stacks,applications,documents 



put field "paths" of card "stacks" into stacks 
put field "paths" of card "applications" into applications 
put field "paths" of card "documents" into documents 

end closeField 

* Script of the "user preferences" card of the "Home" stack 

on openCard 
setUserLevel the userLevel 
if card field "User Name" is empty 
then click at the loc of card field "User Name" 

end openCard 

on setUserLevel whatLevel 
set userLevel to whatLevel 
if the userLevel is whatLevel then 

put the userLevel into card field "User Level" 
set hilite of button "Browsing" to the userLevel = 1 
set hilite of button "Typing" to the userLevel = 2 
set hilite of button "Painting" to the userLevel = 3 
set hilite of button "Authoring" to the userLevel = 4 
set hilite of button "Scripting" to the userLevel = 5 
set visible of button ''Text Arrows" to the userlevel >= 2 
set visible of button "Power Keys" to the userLevel >= 3 
set visible of button "Blind Typing" to the userLevel = 5 
set hilite of button "Text Arrows" to the textArrows 
set hilite of button "Power Keys" to the powerKeys 
set hilite of button "Blind Typing" to the blindTyping 

else 
set hilite of the target to false 

end if 
end setUserLevel 

* Script of the field "User Nmae" in the "user preferences" card 

on closeField 
global userName 
put card field "User Name" into userName 

1 1 1 



end closeField 

* Script of the button "Scripting" in the "User Preferences" card 

on mouseUp 
setUserlevel 5 

end mouseUp 

11 2 

* Script of the button "Power Keys" in the "User Preferences" card 

on mouseUp 
set powerKeys to the hilite of button "Power Keys" 

end mouseUp 

*** Scripts in the "FINAL" stack *** 

* Script of the button "start final" (see note at the end of scripts) 

on mouseUp 
global Finalsum 
global startfi nal 

global endtime 
put O into Finalsum 
put 1 into startfinal 
put the seconds into endtime 
add 3600 to endtime 
visual effect iris close 

go to next card 
visual effect iris open 

end mouseUp 

* Script of the button "time remaining" 

on mouseUp 
global endtime 
put endtime - the seconds into timeleft 
put timeleft div 60 into minleft 
put timeleft mod 60 into secleft 



put minleft into background field id 18 
if secleft < 1 O then 

put "O" & secleft into background field id 15 
else 

put secleft into background field id 15 
end if 
show background field id 18 
show background field id 17 
show background field id 15 
wait 1 seconds 
hide background field id 18 
hide background field id 17 
hide background field id 15 

end mouseUp 

* Script of the background of the "FINAL" stack 

on idle 
global startfinal 

global endtime 
if startfinal = 1 and endtime < the seconds then 

visual effect zoom close very slow to black 
end if 
pass idle 

end idle 

Note: Most of the "FINAL" stack scripts are copied from the 
microprogramming stacks written by Mark Presentin. 

11 3 



~OSS3;:)Q~d J... V'13G 'lVNOIS ~Od VJ.VG NOIS3G 

HXIGN3ddV 



APPENDIXB 

DESIGN DATA FOR SIGNAL DELAY PROCESSOR 

1) The description of signal delay device in ADL: 

graph 
subgraph 

(((ad.I c opimp 
((clock(lOOO))) 
(input(a(d))(t(p kl 8))) 
(intern(l(p kl 8))(lt(p kl 8))(f(p kl 8))) 
(output(b(d)))) 

((Stan) C 
10 (sim (1 := 0) (lt := t)(f := 0)) 

(if(! a)then(go 10)) 

end 

(fork 
(15 (f := (f + 1)) 
(if (!(f = 100)) then (go 15))) 

(12(lt :=It) 
(It :=(It - 1)) 

(if(!(It = O))then(go 12))) 
(11 (1 := (1 + 1)) 
(if(and a (!(It= 0))) then(go 11)) 
(drop)) 
dand) 
13(if a then (b = l)(go 13) ) 
14(sim 
(I := (I - 1)) 
(b = 1)) 

(if(l = O)then(go lO)else(go 14)) 
))) 

2) The cf-graph description of signal delay device: 

a) List of arrows : 
(setq *coplisset* ' ((1 

(((not 22) 22 19) 
(22 22 2) 
(x 19 22) 
((not 6) 17 19) 
(x 18 17) 
(6 17 18) 
(e 16 17) 
(12 12 16) 

115 



(9 9 16) 
((not 14) 14 15) 
(14 14 13) 
(x 13 14) 
(e 7 13) 
((not 12) 12 10) 
(x 1112) 
(x 10 11) : 
(e 7 10) 
((not 9) 9 8) 
(x 8 9) 
(e 7 8) 
(6 6 7) 
((not 6) 6 2) 
(x 2 6) 
(x 1 2))))) 

b) List of node properties : 
(setq *nolisset* ' ((1 

((cond 22 nil) 
(19 19 nil) 
(18 18 nil) 
(cond 17 nil) 
(dand 16 nil) 
(drop 15 nil) 
(cond 14 nil) 
(13 13 nil) 
(cond 12 nil) 
(1111 nil) 
(10 10 nil) 
(cond 9 nil) 
(8 8 nil) 
(fork 7 nil) 
(cond 6 nil) 
(2 2 nil) 
(Stan 1 nil)))) ) 

c) List of Assignments: 
(setq *nalisset* ' ((1 

((19 (18 20)) 
(20(:=1 (plus I (minus 1)))) 
(18 (= b 1)) 
(13 (:=I (plus I 1))) 
(11 (:=It (plus It (minus 1)))) 
(10 (:= It It)) 
(8 (:= f (plus f 1))) 
(2 (3 4 5)) 
(5 (:= f 0)) 
(4 (:=It t)) 
(3 (:=I 0)))))) 

d)List of predicates : 
(setq *plisset* ' ((1 

116 



((22 (equal 1 0)) 
(14 (and a (not (equal lt 0)))) 
(12 (equal It 0)) 
(9 (equal f 100)) 
(6 a)))) ) 

e) List of node groups : 
(setq *anlisset* ' ((1 
((cond (6 9 12 14 17 22)) 
(19 (19)) 
(18 (18)) 
(dand (16)) 
(drop (15)) 
(13 (13)) 
(11 (11)) 
(10 (10)) 
(8 (8)) 
(fork (7)) 
(2 (2)) 
(start (1))))) ) 

f) List of memory variables : 
(setq *lzmset* ' ((1 (bf It 1))) ) 

g) List of systems under design : 
(setq *symlis* ' ((c 1)) ) 

3) Compact parallel cf-graph description : 

a) Transition description list : 
((1 (11)) 
(9 (7 2)) 
(9 (9 3)) 
(7 (7 4)) 
(7 (2 5)) 
(8 (9 6)) 
(8 (8 7)) 
(6 (9 8)) 
(6 (5 9)) 
(3 (3 10)) 
(8(711)) 
(2 (8 12)) 
(6 (7 13)) 
(5 (6 14)) 
(2 (5 15)) 
(3 (4 16)) 
(2 (3 17)) 
(2 (2 18)) 
(1 (2 19))) 

b) Relation description list : 
((1 (1) ((not (start)))) 

117 



(2 (18 20) ((not 6))) 
(3 (18) (6)) 
(4 (18 20) ((not 22))) 
(5 (3 4 5) (22)) 
(6 (18) (6 9)) 
(7 (8) ((not 9))) 
(8 (18) (6 12)) 
(9 (10) ((not 12))) 
(10 (13) (14)) 
(11 (18 20) ((not 6) 9)) 
(12 (8) (6)) 
(13 (18 20) ((not 6) 12)) 
(14 (11) nil) 
(15 (10) (6)) 
(16 (drop) ((not 14))) 
(17 (13) (6)) 
(18 (3 4 5) ((not 6))) 
(19 (3 4 5) ((stan)))) 

c) Passing FORK transitions list: 
((2 8) (2 5) (2 3)) 

d) Passing DAND transitions list : 
((8 9) (6 9) (8 7) (6 7)) 

4) Kiss format and state table descriptions of FSM control unit : 

----0 stl stl 0000000 
----1 stl st2 1110000 
----1- st2 st3 0001010 
---0- st2 st2 1110000 
-1-11- st3 st4 0000110 
-0-11- st3 st5 0000100 
-1-0- st3 st6 0001110 
-0-0- st3 st7 0001100 
-0-10- st3 st5 0000100 
--111- st7 st8 0000000 
--011- st7 st9 0000000 
--101- st7 stlO 0001000 
--00-- st7stl1 0001000 
--100- st7 stl 0 0001000 
--010- st7 st9 0000000 
--110- st7 st 12 0000001 
---11- stll st5 0000100 
---0-- stll st7 0001100 
---10- stll st5 0000100 
---11- stl 0 st8 0000000 
---0-- stlO stlO 0001000 
---10- stlO st12 0000001 
------ st9 st5 0000100 
-0111- st6 st8 0000000 
-1011- st6 st13 0000010 
-0011- st6 st9 0000000 

118 



-0101- st6 stlO 0001000 
-100-- st6 st 14 0001010 
-000-- st6 st 11 0001000 
-0100- st6 stl 0 0001000 
-0010- st6 st9 0000000 
-0110- st6 st12 0000001 
-1-11- st14 st4 0000110 
-0-11- stl4 st5 0000100 
-1-0-- st14 st6 0001110 
-0-0-- stl4 st7 0001100 
-0-10- st14 st5 0000100 
-1---- st13 st4 0000110 
-0---- st13 st5 0000100 
--1-1- st5 st8 0000000 
--0-- st5 st9 0000000 
--1-0- st5 stl2 0000001 
-01-1- st4 st8 0000000 
-10-- st4 st13 0000010 
-00-- st4 st9 0000000 
-01-0- st4 st12 0000001 
0----- st12 stl2 0000001 
1---- st12 st2 1110000 
---0- st8 st12 0000001 
---1- st8 st8 0000000 

.lp 
----0 
----1 
--111-
--011-
--101-
--00-
--100-
--010-
--110-
---11-
---0--
---10-

-0111-
-1011-
-0011-
-0101-
-100--
-000--
-0100-
-0010-
-0110-
-1-11-
-0-11-
-1-0--
-0-0--
-0-10-

119 



-1----
-0----
--1-1-
--0---
--1-0-
-01-1-
-10---
-00--
-01-0-
0-----
1----­
----0-
----1-
0001010 
0001000 
0001110 
0001100 
0000110 
0000100 
0000010 
1110000 
0000001 
0000000 
.dr 
0100000000000000000000000000000000000000 
1000000000000000000000000000000000000000 
0001111110110011111111001110001101110010 
0010111110110100111111001110010110010010 
0011011111010111011111110010001101110010 
0011101111010111100111110010010110010000 
0011110111010111111011110010011011100001 
0011111011100111111101111100010110010001 
0011111101100111111110111100011011100001 
0000111110110000111111001110000100010010 
0011000111010111000011110010000000000000 
0011111001100111111100111100010010000001 
0000000000000000000000000000000000000000 
0001111110110011111111101111001101110010 
0010111110110101111111011110110110110010 
0010111110110110111111101111010111010010 
0011011111010111011111111011001101110010 
0011101111010111101111110110110110110000 
0011101111010111110111111011010111010000 
0011110111010111111011111011011011100001 
0011111011100111111101111101010111010001 
0011111101100111111110111101011011100001 
0000111110110101111111011110100110110010 
0000111110110010111111101111000101010010 
0011000111010111101111110110100010110000 
0011000111010111010011111011000001000000 
0011111001100111111100111101010011000001 . 
0000000000000101101111010110100010110000 
0000000000000010010000101001000001000000 

120 



0001011110010011011111000010001101110010 
0010101010000100100101000000010110010000 
0011110101000111111010110000011011100001 
0001011110010011011111101011001101110010 
0010101010000101101111010110110110110000 
0010101010000110110101101001010111010000 
0011110101000111111010111001011011100001 
0000000000000000000000000000000000000100 
0000000000000000000000000000000000001000 
0011100001000111100000110000010010000001 
0000001110010000000111000010000100010010 
end 

5) Minimized Kiss format format description : 

-----0 st 1 ·st 1 0000000 
----1 st 1 st 2 1110000 
----0- st 2 st 2 1110000 
----1- st 2 st13 0001010 
-01-1- st 3 st 7 0000000 
-10--- st 3 st12 0000010 
-00-- st 3 st 8 0000000 
-01-0- st 3 stll 0000001 
--1-1- st 4 st 7 0000000 
--0-- st 4 st 8 0000000 
--1-0- st 4 stll 0000001 
-0111- st 5 st 7 0000000 
-1011- st 5 st12 0000010 
-0011- st 5 st 8 0000000 
-0101- st 5 st 9 0001000 
-100-- st 5st13 0001010 
-000-- st 5 stlO 0001000 
-0100- st 5 st 9 0001000 
-0010- st 5 st 8 0000000 
-0110- st 5 stl 1 0000001 
--111- st 6 st 7 0000000 
--011- st 6 st 8 0000000 
--101- st 6 st 9 0001000 
--00-- st 6 st 10 0001000 
--100- st 6 st 9 0001000 
--010- st 6 st 8 0000000 
--110- st 6stl1 0000001 
----0- st 7 stll 0000001 
----1- st 7 st 7 0000000 
------ St 8 St 4 0000100 
---11- st 9 st 7 0000000 
---0-- st 9 st 9 0001000 
---10- st 9 stll 0000001 
---11- stlO st 4 0000100 
---0-- stlO st 6 0001100 
---10- stlO st 4 0000100 
0----- stl 1 stl 1 0000001 
1----- st 11 st 2 1110000 

121 



' 

122 

-1--- st12 st 3 0000110 
-0---- st12 st 4 0000100 
-1-11- st13 st 3 0000110 
-0-11- st 13 st 4 0000100 
-1-0-- st13 st 5 0001110 
-0-0- st13 st 6 0001100 
-0-10- st13 st 4 0000100 

6) Input and output implications 

input-implication: 
((equal I 0) (equal f 10) (equal It 0) (and a (not (equal It 0))) a 
(start)) 

output-implication: 
((:=I 0) 
(:=It t) 
(:= e 0) 
(:= f 0) 
(:= 1 (plus 11)) 
(:=It (plus It (minus 1))) 
(:= e (plus e 1)) 
(:= f (plus f 1)) 
(:= 1 (plus I (minus 1)))) 

7) Encoded states : 

stl 0 0 0 0 
st2 0001 
st3 1 101 
st4 0 100 
st5 100 0 
st6 111 0 
st7 1100 
st8 0 11 0 
st9 101 0 
stlO 0 0 1 0 
stll 100 1 
st12 1111 
stl3 , 0 101 

8) Truth-table description for the combinational part of F~M : 

.i 10 

.o 11 

---1 0000 0001 1110000 
-----0 0000 0000 0000000 
----1- 0001 0101 0001010 
---0- 0001 00011110000 
-01-0- 1101 1001 0000001 
-00-- 110101100000000 
-10-- 1101 1111 0000010 



-01-1- 1101 1100 0000000 
--1-0- 0100 1001 0000001 
--0--- 0100 0110 0000000 
--1-1- 0100 1100 0000000 
-0110- 1000 1001 0000001 
-0010- 1000 0110 0000000 
-0100- 1000 1010 0001000 
-000-- 1000 0010 0001000 
-100-- 1000 0101 0001010 
-0101- 1000 1010 0001000 
-0011- 1000 0110 0000000 
-1011-1000 1111 0000010 
-0111- 1000 1100 0000000 
--110- 1110 1001 0000001 
--010- 1110 0110 0000000 
--100- 1110 1010 0001000 
--00-- 1110 0010 0001000 
--101- 1110 1010 0001000 
--011- 1110 0110 0000000 
--111- 1110 1100 0000000 
---1- 1100 1100 0000000 
---0- 1100 1001 0000001 
----- 0110 0100 0000100 
---10- 1010 1001 0000001 
---0-- 1010 1010 0001000 
---11- 1010 1100 0000000 
---10- 0010 0100 0000100 
---0-- 0010 1110 0001100 
---11- 0010 0100 0000100 
1---- 1001 0001 1110000 
0---- 1001 1001 0000001 
-0--- 1111 0100 0000100 
-1--- 11111101 0000110 
-0-10- 010101000000100 
-0-0-- 0101 1110 0001100 
-1-0-- 01011000 0001110 
-0-11- 01010100 0000100 
-1-11- 01011101 0000110 
.e 

9) Optimized truth-table description for the combinational part of FSM : 

.i 10 

.o 11 

.p 36 
-001--1000 01100000000 
-0-11-1--0 01000000000 
-1011-1000 11110000010 . 
-0110-1--0 00010000001 
-0-0--0101 10100001000 
-100--1000 01010001010 
-1-0--0101 10000001110 
---11--1-0 01000000000 

123 



-1-11-0101 11010000110 
--110-11-0 00010000001 
--01--1110 01100000000 
---11-1010 11000000000 
---0-0001 00011110000 
-01-1-110- 11000000000 
-----10000 00011110000 
-0-0--10-0 00100001000 
---10-1010 10010000001 
-0---0101 01000000100 
-01-0-110- 10010000001 
1-----1001 00011110000 
--0---0100 01100000000 
--0---1101 01100000000 
-10--11-110010000010 
---1-0001 01010001010 
-1----1111 10010000010 
0-----1001 10010000001 
---0--1-10 00100001000 
--1-1--100 11000000000 
--1-0--100 10010000001 
--1---1-10 10000000000 
-01---1--0 10000000000 
---0---010 10100001000 
-----1111 01000000100 
---1-1100 11000000000 
---0-1100 10010000001 
------0-10 01000000100 
.e 

10) The result of the conversion from truth-table format to EQN format: 

Ql =IN2 &IN3 &IN4& ! IN6 &IN7 & ! IN8 & ! IN9 
Q2 = INl & IN2 & ! IN3 & ! IN6 & IN7 & ! IN8 & ! IN9 
Q3 = ! IN2 & IN'3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9 
Q4 = IN2 & IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9 
Q5 = IN2 & ! IN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9 
Q6 = ! IN2 & ! iN3 & ! IN4 & ! IN6 & IN7 & ! IN8 & ! IN9 
Q7 = ! IN2 & IN4 & ! IN6 & IN7 & ! IN8 & ! IN9 
Q8 = IN5 & ! IN6 & ! IN7 & ! IN8 & ! IN9 
Q9 = IN6 & ! IN7 & ! IN8 & IN9 
QlO= ! IN6 & ! IN7 &INS &IN9 
Q 11 = IN6 & ! IN7 & IN8 & ! IN9 
Q 12 = IN6 & IN7 & ! INS & ! IN9 
Q13 = IN6 & ! IN7 & ! INS & ! IN9 
Q14= ! IN6 &IN7 & INS & IN9 
Q 15 = ! IN6 & ! IN7 & ! INS & IN9 
Q16 = IN6 & IN7 & IN8 & ., IN9 
Q 17 = ! IN6 & IN7 & INS & ! IN9 
Q 18 = ! IN6 & IN7 & ! IN8 & IN9 
OUTl = Q7 I Q12 I Q15 I Q16 
OUT2 = Q3 I Q6 I Q7 I Q9 I QlS 
OUT3 = Q2 I Q4 I Q5 I Q6 I QlO I Qll 

124 



I & IN3 & IN4 & ! IN6 & IN7 
I Ql3 I Q14 I Q16 I Q17 I QI8 

OUT4 = Q3 I Q8 I Q15 j Q17 I QI8 
OUTS = Q3 I Q6 I Q7 
OUT6=Q8 
OUT7 =QI2 
OUTS= Q15 I Q16 I Q17 I Q18 
0UT9=Q9 
OUT10=Q9 
OUTll =Q4 
OUT12 = Qll I Q14 
OUT13 = QlO I Qll 
OUT14 = Q2 / QS 
OUT15=Ql 
OUT16=Ql 
OUT17 = Q15 ! Ql6 I Ql7 I Q18 
OUT18 =Ql3 

125 



.( START 
;.~ 

1 :=0 
It :=T I Al 
f:= 0 

~Pt 
IA6 n f 

B = I lbl-il A7 

~ 
'f 

·~n 
~s 

y 

Figure 16. The parallel control flow diagram 

126 



"' C\I ~ 

E
 

CJ) 

- (/) >
. 

(/) 

C
J) 

..c 
-- 0 t C\l 
a. 

0 "-

- c 0 (.) 

CJ) 
..c 
--0 - ::J 0 >

.. 
C\l 

...J 

"' ,-~I 
::J 
0 

LL 


	HyperCard-based learning environment for DIADES
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1519154421.pdf.yxa_v

